
Solving Identity
Management in
Modern Applications

Demystifying OAuth 2, OpenID Connect,
and SAML 2
—
Second Edition
—
Yvonne Wilson
Abhishek Hingnikar

Solving Identity
Management in Modern

Applications
Demystifying OAuth 2, OpenID

Connect, and SAML 2

Second Edition

Yvonne Wilson
Abhishek Hingnikar

Solving Identity Management in Modern Applications: Demystifying OAuth 2,
OpenID Connect, and SAML 2

ISBN-13 (pbk): 978-1-4842-8260-1		 ISBN-13 (electronic): 978-1-4842-8261-8
https://doi.org/10.1007/978-1-4842-8261-8

Copyright © 2023 by Yvonne Wilson, Abhishek Hingnikar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, 1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on the Github repository: https://github.com/Apress/Solving-Identity-Management-in-Modern-
Applications. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Yvonne Wilson
San Francisco, CA, USA

Abhishek Hingnikar
London, UK

https://doi.org/10.1007/978-1-4842-8261-8

iii

About the Authors��xix

About the Technical Reviewers���xxi

Acknowledgments���xxiii

Introduction��xxvii

Table of Contents

Chapter 1: �The Hydra of Modern Identity��� 1

Identity Challenges�� 2

Who Are Your Users? And Will They Authenticate?��� 3

Level of Authentication Strength�� 3

Simplifying Access for Users�� 4

Migrating Users from Legacy Applications��� 4

Regulatory Requirements��� 5

User Experience Constraints�� 5

Objective�� 6

Sample Application�� 9

Design Questions��� 9

Summary��� 10

Key Points��� 10

Notes�� 10

Chapter 2: �The Life of an Identity�� 11

Terminology��� 11

Events in the Life of an Identity��� 13

Provisioning�� 14

Authorization�� 15

Authentication�� 16

iv

Access Policy Enforcement�� 16

Sessions��� 17

Single Sign-On (SSO)�� 18

Stronger Authentication�� 19

Logout��� 19

Account Management and Recovery�� 20

Deprovisioning�� 21

Summary��� 21

Key Points��� 22

Chapter 3: �Evolution of Identity��� 23

Identity Management Approaches��� 23

Per-Application Identity Silo��� 24

Centralized User Repository��� 25

Early SSO Servers��� 26

Federated Identity and SAML 2�� 27

WS-Fed��� 28

OpenID�� 28

OAuth 2��� 28

OpenID Connect (OIDC)��� 30

OAuth 2.1�� 30

Standard Protocols��� 31

Summary��� 32

Key Points��� 32

Notes�� 33

Chapter 4: �Identity Provisioning�� 35

Provisioning Options�� 35

Self-Registration��� 36

Identity Migration��� 39

Administrative Account Creation�� 44

Leverage Existing Identity Service��� 46

Table of Contents

v

Selecting an External Identity Service��� 47

Self-Registered Identities��� 48

Organization Identities�� 49

Government Identities�� 49

Industry Consortium Identities��� 50

Identity Provider Selection��� 50

Identity Proofing��� 52

Choosing and Validating Identity Attributes��� 54

Attribute Usage��� 56

Validating Critical Attributes��� 57

Consent Management�� 58

Summary��� 60

Key Points��� 61

Notes�� 62

Chapter 5: �OAuth 2 and API Authorization��� 63

API Authorization�� 64

OAuth 2�� 65

Terminology��� 68

Roles��� 68

Confidential and Public Clients��� 68

Client Profiles��� 69

Tokens and Authorization Code�� 70

How It Works�� 70

Authorization Code Grant�� 71

Authorization Code Grant Type + PKCE��� 73

Client Credentials Grant�� 80

Implicit Grant (Removed in OAuth 2.1)��� 81

Resource Owner Password Credentials Grant (Removed from OAuth 2.1)����������������������������� 83

Device Authorization Grant��� 86

Calling an API�� 93

Refresh Tokens��� 93

Table of Contents

vi

Token Usage Guidance��� 94

Access Tokens�� 94

Refresh Tokens��� 96

Confidentiality and Integrity��� 97

Token Revocation��� 98

Further Learning�� 98

Advanced Use Cases�� 99

Summary��� 99

Key Points��� 99

Notes�� 100

Chapter 6: �OpenID Connect�� 103

Problem to Solve�� 103

Terminology��� 105

Roles��� 105

Client Types�� 105

Tokens and Authorization Code�� 105

Endpoints�� 106

ID Token�� 106

How It Works�� 108

OIDC Flows��� 109

OIDC Authorization Code Flow�� 109

OIDC Implicit Flow�� 116

OIDC Hybrid Flow�� 119

UserInfo Endpoint��� 122

Further Learning�� 123

Summary��� 124

Key Points��� 124

Notes�� 125

Table of Contents

vii

Chapter 7: �SAML 2��� 127

Problem to Solve�� 127

Terminology��� 128

How It Works�� 129

SP-Initiated SSO��� 130

Single Sign-On�� 131

IdP-Initiated Flow��� 131

Identity Federation��� 134

Authentication Brokers�� 135

Configuration��� 137

Summary��� 139

Key Points��� 140

Notes�� 141

Chapter 8: �Authorization and Policy Enforcement��� 143

Authorization vs. Policy Enforcement�� 143

Levels of Authorization and Access Policy Enforcement�� 144

Level 1 – Application or API Access�� 144

Level 2 – Functional Access��� 145

Level 3 – Data Access�� 145

User vs. Application Authorization��� 146

User Authorization�� 147

Delivery�� 150

Enforcement��� 152

Application Authorization��� 152

Application Attributes��� 152

Authorization�� 153

Delivery�� 155

Enforcement��� 155

Authorization and Enforcement Extensions��� 156

Table of Contents

viii

Summary��� 157

Key Points��� 158

Notes�� 159

Chapter 9: �Sessions��� 161

Application Sessions�� 161

Identity Provider Sessions�� 163

Multiple Sessions��� 164

Session Duration�� 165

Session Renewal�� 166

Token Renewal��� 167

Reconstituted Sessions�� 168

Summary��� 169

Key Points��� 169

Notes�� 170

Chapter 10: �Using Modern Identity to Build Applications�������������������������������������� 171

Sample Application: Collaborative Text Editor�� 171

Discovery�� 172

Design�� 175

Buy vs. Build��� 176

Industry Standard Protocols��� 176

Architecture�� 177

Implementation: Front End��� 178

login( ) and handleCallback( )�� 180

getToken( ) and getProfile( )�� 182

.�logout( )�� 185

Closing Note��� 186

Implementation: Back-End API��� 186

.�getUserId( )�� 188

.�canPerform( )��� 188

Linking Accounts�� 190

Anonymous Access��� 191

Table of Contents

ix

Granting Access Based on Domains��� 192

Other Applications�� 193

Additional Note on Sessions�� 194

Browsers, Trackers, and OAuth 2��� 195

Summary��� 196

Key Points��� 196

Notes�� 197

Chapter 11: �Single Sign-On��� 199

What Is SSO?��� 199

How SSO Works��� 200

SSO Configuration�� 202

SSO Session Duration��� 202

Authentication Mechanisms��� 203

Login Page Branding�� 203

Multiple Identity Providers�� 203

Summary��� 204

Key Points��� 204

Notes�� 205

Chapter 12: �Stronger Authentication��� 207

The Problem with Passwords�� 207

Stronger Forms of Authentication�� 208

Multi-factor Authentication��� 209

Step-Up Authentication�� 210

Multi-factor Authentication and SSO�� 211

Session Timeouts��� 211

Requesting Authentication Mechanisms�� 212

SAML 2��� 212

OIDC�� 213

Step-Down Authentication��� 213

Table of Contents

x

Deployment�� 214

Summary��� 217

Key Points��� 217

Notes�� 218

Chapter 13: �Logout�� 219

Multiple Sessions��� 219

Logout Triggers�� 221

Logout Options��� 222

Application Logout��� 224

OAuth 2�� 224

OIDC��� 225

SAML 2��� 227

Session Termination��� 229

Logout and Multilevel Authentication��� 229

Redirect After Logout��� 230

Summary��� 230

Key Points��� 230

Notes�� 231

Chapter 14: �Account Management�� 233

Identity Attributes��� 233

User Profile Attributes�� 233

Update Process�� 234

Cached Identity Attributes�� 234

Updated Identifiers��� 235

Credential Reset��� 236

Account Recovery�� 236

Password Guidance��� 237

Helpdesk Reset�� 238

Notification��� 238

Table of Contents

xi

Summary��� 239

Key Points��� 239

Notes�� 240

Chapter 15: �Deprovisioning��� 241

Account Termination�� 241

Best Practices�� 242

Just Do It�� 242

Provide a Soft Delete Technique��� 242

Reserve Deprovisioned Identities��� 243

Preserve Account Record��� 243

Data Transfer�� 244

Privacy Right to Erasure��� 245

Certificate of Deletion��� 246

Secure Delete��� 246

Consider Reprovisioning Requirements��� 247

Summary��� 248

Key Points��� 248

Notes�� 249

Chapter 16: �Troubleshooting�� 251

Get Familiar with the Protocols�� 251

Prepare Your Tools�� 252

Test Environment�� 252

Independent Browser Windows�� 253

Capture HTTP Traces�� 253

View HTTP Traces��� 254

Make API Calls�� 254

View API Calls��� 254

View JWT and SAML 2 Tokens�� 254

Check the Simple Things��� 255

Gather Information��� 255

Table of Contents

xii

How Many Users Impacted?��� 256

Contributing Environmental Factors?��� 256

Which Applications Impacted?��� 256

Consistent or Intermittent Issue?��� 257

Worked Previously?�� 257

Where Does Failure Occur?�� 257

Replicate the Problem�� 258

Analyzing an HTTP/Network Trace��� 258

Capture a Trace��� 258

Check Sequence of Interaction��� 258

Check Parameters in Requests�� 260

Check HTTP Status Codes�� 260

Check Security Token Contents�� 261

Check for Security Token Validation Errors��� 262

Collaborating with Others�� 263

Summary��� 263

Key Points��� 264

Note��� 264

Chapter 17: �Exceptions�� 265

Accounts�� 265

Data Restore��� 266

Account Decommission�� 266

Orphaned Account�� 267

Account Takeover��� 267

Phone Lost, Damaged, or Stolen��� 268

Identity Providers��� 268

Account Recovery Requests��� 268

Brute Force Attacks�� 269

Breached Passwords�� 270

Table of Contents

xiii

System Outages��� 270

Authentication System Outage��� 271

Admin Access��� 271

Provisioning Systems��� 271

Cybersecurity Threats�� 272

Compromised Personal Data�� 272

Compromised Credentials�� 273

Compromised Secrets�� 274

Summary��� 274

Key Points��� 275

Notes�� 275

Chapter 18: �Less Common Requirements�� 277

People�� 277

Family Accounts��� 277

Temporary Positions��� 278

Status Transition��� 278

No Email Address��� 278

Identity Defederation�� 279

Accounts�� 279

Mergers and Acquisitions��� 279

Account Linking�� 280

Progressive Profiling�� 282

Impersonation�� 283

Delegation�� 283

Environment��� 284

Shared Workstations�� 284

Identity Provider Discovery��� 285

Multitenant Applications��� 285

Summary��� 286

Key Points��� 287

Table of Contents

xiv

Chapter 19: �Failures�� 289

Pay Attention to Process�� 290

Beware of Phishy Emails�� 291

Use Multi-factor Authentication��� 291

Stay on Top of Patches��� 292

Secure Your Cloud Storage�� 292

Encrypt Sensitive Data��� 293

Do Not Store Cleartext Passwords��� 294

Provide Security Training to Developers�� 294

Vet Your Partners�� 295

Insider Threat��� 296

Summary��� 297

Key Points��� 297

Notes�� 298

Chapter 20: �Compliance�� 303

What Is Compliance?��� 303

Government-Mandated Compliance��� 304

Industry Compliance��� 305

Elective Compliance Frameworks�� 306

Why Compliance�� 306

Data Protection��� 307

Competitive Advantage��� 307

Reduce Penalties�� 307

Efficiency�� 308

Compliance Landscape�� 309

Security Compliance��� 309

Privacy Compliance�� 310

Assessment and Certification��� 311

Table of Contents

xv

How to Proceed�� 311

Summary��� 313

Key Points��� 313

Notes�� 314

Chapter 21: �Looking into the Crystal Ball�� 317

Continued Security Challenges�� 318

Ongoing Breaches�� 318

Evolving Targets�� 318

Increasing Complexity�� 319

Diversifying Motives��� 319

More Targets�� 320

Homes and Businesses�� 320

Cars�� 321

Medical Implants and Monitoring��� 321

Robots�� 322

Erosion of Perimeter Protection��� 323

Identity – Not Just for Humans�� 323

Personal Agents�� 323

Autonomous Vehicles��� 324

IoT Devices��� 324

Robots�� 325

On the Horizon��� 325

e-Identity�� 325

Stronger Authentication�� 326

Solutions for Smaller Devices�� 327

Asynchronous Online Interaction�� 327

Easier Adoption��� 328

Lessons Learned�� 328

Always Look Forward��� 328

Usability Is Important�� 329

Table of Contents

xvi

Validation Is Critical�� 330

Logout Takes Time�� 330

Monitor Trends and Vulnerabilities��� 330

Summary��� 330

Key Points��� 331

Notes�� 332

Chapter 22: �Conclusion�� 335

��Appendix A: Glossary��� 337

��Appendix B: Resources for Further Learning��� 341

��B.1. OAuth 2 – Related Specifications��� 341

��B.2. JWT��� 342

��B.3. OIDC�� 342

��B.4. SAML��� 342

��B.5. Multi-factor Authentication��� 343

��B.6. Background Information��� 343

��B.7. Privacy�� 343

��Appendix C: SAML 2 Authentication Request and Response��������������������������������� 345

��C.1. SAML 2 Authentication Request�� 345

��C.2. SAML 2 Authentication Response��� 348

C.2.1. Response�� 349

��C.3. Validation�� 354

��Appendix D: Public Key Cryptography��� 357

��Appendix E: Troubleshooting Tools�� 359

��E.1. Capture an HTTP Trace�� 359

��E.2. View a HAR File��� 360

��E.3. Capture a Network Trace��� 361

��E.4. View Security Tokens�� 361

��E.5. Test APIs�� 362

Table of Contents

xvii

��Appendix F: Privacy Legislation�� 363

��F.1. European Union��� 363

��F.2. United States��� 364

��F.3. Other Countries�� 367

��F.4. Notes��� 367

��Appendix G: Security Compliance Frameworks��� 369

��G.1. General Security Frameworks�� 369

�G.1.1. Center for Internet Security – Top 20 Controls��� 369

�G.1.2. Cloud Security Alliance��� 369

�G.1.3. ISO 27000��� 370

��G.1.4. PCI DSS�� 370

��G.2. US Frameworks�� 371

G.2.1. CJIS Security Policyv – Criminal Justice Information Services Security Policy���������� 371

�G.2.2. FFIEC Information Technology Examination Handbook and Cybersecurity
Assessment Toolvi��� 371

�G.2.3. FISMA – Federal Information Security Management Actvii��� 371

G.2.4. FedRAMP – Federal Risk and Authorization Management Programviii������������������������ 372

�G.2.5. GLBA Safeguards Ruleix�� 372

G.2.6. HIPAAx��� 372

G.2.7. HITECH Actxi�� 372

�G.2.8. NISTxii�� 372

��G.3. SOC(Service Organization Control)��� 373

�G.3.1. SOC1��� 373

�G.3.2. SOC2��� 373

��G.4. Notes��� 373

Index�� 375

Table of Contents

xix

About the Authors

Yvonne Wilson has had many roles in the software industry

related to security and identity management as a security

and identity architect; enterprise architect; director of

developer success working with identity customers; senior

director of security governance, risk, and compliance

(GRC); chief strategy officer; and founder of cloud identity

services. Yvonne was responsible for IT security strategy and

architecture at Sun Microsystems, founded and designed

the identity management services offered through Oracle

Managed Cloud Services, and founded a developer success

team for Auth0, working with customers and overseeing the

creation of an identity management training program for customer-facing support and

professional services engineers. Yvonne currently serves as an advisor on cybersecurity

and identity management to startups in the lending, healthtech, financial, and

cybersecurity consulting sectors. 

In working with business teams at Sun, designing and deploying identity systems

for customers at Oracle, and while founding a developer success team at Auth0, Yvonne

had the opportunity of working with many customers, from small startups to large

enterprises. Her experience spans the implementation of SSO, identity federation,

directory services, adaptive knowledge-based authentication, and identity provisioning

as well as multilevel authentication systems with certificate-based authentication

and enterprise security architectures. She founded training programs for professional

services and support staff on identity and access management (IDAM), including

OIDC, SAML 2, WS-Fed, and OAuth 2. From this depth of experience, Yvonne realized

the growing need for a basic overview of identity management concepts that is

understandable to business application owners as well as architects and developers.

xx

Abhishek Hingnikar is a staff engineer at Okta, in the Auth0

Product Unit. He has seven years of experience designing

and demonstrating identity management with open

standards like OAuth 2, OpenID Connect, and SAML 2. His

current focus areas involve identity for SaaS applications,

Consumer IoT, Device Identity, and designing solutions that

apply web-based identity in peripheral domains.  

About the Authors

xxi

About the Technical Reviewers

Artiom Ciumac is a Senior Solutions Architect at Okta / Auth0 Product Unit. He has

12 years of Software Engineering experience, including over 5 years of IAM with open

standards like OAuth2, OpenID Connect, and SAML2. During his career he fulfilled

various roles like developer, team lead, software architect, and solutions architect.

Currently, the main focus is to consult customers in order to integrate with SaaS IDP

in the most secure and optimal way possible to get maximum benefit out of the used

services.

Sumana Malkapuram is a Staff Solutions Architect Auth0 (Okta’s Product Unit). Sumana

is CISSP certified with 15 years of experience in building innovative services within

Cloud Security and IAM.

Carlos Mostek is a Principal Solution Architect for Okta.

Carlos has more than 20 years of experience working in

software development and security. He loves challenging

problems and enjoys dealing with the complexities of

identity management. Previous to his time at Okta, he held

engineering and leadership roles at Auth0, Thomson Reuters,

and BAE Systems. He has a Master’s in Software Engineering

and undergrad degree in Aerospace Engineering. Identity

isn’t rocket science, but it could be! For fun Carlos likes to

juggle fire and play soccer, generally not at the same time.

xxii

 Jared Hanson is a software engineer with experience

across the full stack of desktop, mobile, and server-

side application development. Jared is the developer of

Passport.js, the popular Node.js authentication framework,

and a contributor to the OpenID and OAuth family of

specifications. He has worked as an architect at both Auth0

and Okta, leading companies in the identity and access

management industry.

About the Technical Reviewers

xxiii

Acknowledgments

The best way to find yourself is to lose yourself in the service of others.

—Mahatma Gandhi

This book would not have been possible without the generous help of many friends and

coworkers who have graciously shared their expertise and knowledge to review and

improve the original draft. It has been a pleasure working with each of them over the

years, and we are fortunate and much indebted for the knowledge, wisdom, and insights

they have shared with us as well as, on occasion, the laughs.

We owe a huge debt of gratitude to Artiom Ciumac for his review of, and many

helpful comments and suggestions on, the entire second edition of this book. His

comments, based on a depth of experience from helping many customers with

identity and access management challenges over the years, led to the addition of many

clarifications, use cases, and explanations that will be beneficial to readers.

We are also very grateful for Sumana Malkapuram’s review and suggestions for

improving portions of the second edition of this book. Sumana’s insightful feedback

contributed to many clarifications and additions drawing on her significant experience

working with customers to solve identity and access management scenarios.

Our massive appreciation and heartfelt thanks to Carlos Mostek for careful reviews of

the first and second editions of this book and contributing many corrections, insightful

additions, and helpful advice from his trove of development and IAM wisdom as well as

his experience helping many customers solve their IAM challenges over the years.

Immense, heartfelt thanks also to Peter Stromquist for thoroughly reviewing the

original draft version of this book and adding many corrections, suggesting additional

ideas we’d left out, and adding wisdom from his valuable store of development and IAM

expertise developed while designing solutions for many, many customers.

Huge, sincere gratitude to Amaan Cheval for careful reviews of the original draft

for this book and contributing many corrections, clarifications, and suggestions for

additional content from his keen knowledge of IAM topics, customer challenges, and

broad development experience.

xxiv

Enormous and ardent thank you to Nicolas Philippe for thorough reviews of the

original draft of this book from his extensive identity, security, and development

experience; suggesting clarifications and additional topics requiring explanation;

and adding wisdom from his years of experience with IAM as well as application

development.

Titanic, sincere thanks also to Nicolás Sabena for excellent, careful reviews

and contributing much valuable guidance to the original draft of this book on

troubleshooting from his extensive expertise in IAM and development, as well as his

keen ability to solve even the most puzzling customer issues.

Huge, grateful thanks to Jared Hanson for generously answering many questions and

for reviewing and contributing corrections to many chapters of the original edition of

this book from his deep knowledge of identity protocols.

Massive gratitude and thanks as well to Vittorio Bertocci for graciously sharing his

extensive IAM knowledge in many forums, from which we and others have learned

a great deal, and for reviewing portions of the original edition of this book with an

eagle eye, providing valuable critique on errors in content, logic, and flow as well as

suggestions for improvements and kind advice about writing.

Immense gratitude is due to Erin Richards for careful reviews, corrections, and

additions to the original edition of this book on compliance matters, adding wisdom and

practical advice from her long experience in this field as well as content on privacy and

security frameworks.

Huge appreciation also to Adam Nunn for thorough reviews, corrections, and

suggestions for the compliance chapter of the original edition based on his wisdom and

experience in technical audits and compliance.

Sincere gratitude to Bill Soley for commiseration during the project as well as

review and contributing suggestions and advice to the original draft from his immense

knowledge of security matters.

Much appreciation also to Subra Kumaraswamy for reviewing a portion of the

original draft of this book and contributing suggestions from his experience in both IAM

and security.

Immeasurable and heartfelt gratitude to Laura Hill for insightful editorial reviews,

finding the logic disconnects in early drafts, and making numerous suggestions for how

to cut out extraneous fluff and clarify explanations in the original draft. Many thanks as

well for patiently listening and providing encouragement as this project took shape!

Acknowledgments

xxv

Colossal thanks to Terence Rabuzzi for his razor-sharp editorial reviews of the

original draft and advice on everything from graphics to structure and approaches for

evaluating the logic of many sections.

Tremendous thanks to the creative eye, graphic talents, and technical knowledge of

Liliya Pustovoyt for creating diagrams to illustrate several of the concepts discussed in

the book.

We are also extremely grateful for the work of Vittorio Bertocci and the graphic

design team at Auth0 for creating a library of identicons, a visual library for use in

illustrating identity management concepts, which we have incorporated into many

diagrams in this book.

We also owe a huge debt of gratitude to Rita Fernando, Susan McDermott, Laura

Berendson, Liz Arcury, Jessica Vakili, and the rest of the Apress team for their patient

advice, answering numerous questions, clear guidance, help with promotion, as well as

editing on the text and graphics for this project.

A final massive and heartfelt thank you is due to our dear friends and family for

their patience and support during this very long project. The kind words and voices

of encouragement throughout meant a lot during the long hours of research, writing,

development, and editing.

We are incredibly grateful to all who helped make this project possible by reviewing

early drafts and contributing suggestions, advice, corrections, and additions. The text has

been immeasurably improved by our reviewers’ careful attention and many insightful

comments. We could not have done this without them. That said, a line by Albert Camus

is appropriate here: “The only real progress lies in learning to be wrong all alone.” Any

errors in the final text are solely ours. Any errata we discover after the book is published

will be noted in the Apress GitHub repo for the book, accessible via https://github.com/

Apress/Solving-Identity-Management-in-Modern-Applications.

Acknowledgments

https://github.com/Apress/Solving-Identity-Management-in-Modern-Applications
https://github.com/Apress/Solving-Identity-Management-in-Modern-Applications

xxvii

Introduction

Every day you play with the light of the universe.

—Pablo Neruda, Chilean poet, politician, and diplomat, from Twenty
Love Poems and a Song of Despair (1925)

There is a significant and growing cybersecurity workforce gap. A Global Information

Security Workforce Study1 predicts a cybersecurity workforce gap of 1.8 million

individuals by 2022. At a time when the number of online services and devices that

need security is growing rapidly, this is nothing short of alarming. In order to fill this

gap, it is imperative to encourage more people to learn about this field and provide

adequate resources for them to efficiently come up to speed. Identity management is an

important component of security which is critical to protect the rapidly expanding array

of innovative online services, smart devices, bots, automated agents, and the like that are

being created.

The authors of this book are fortunate to have been a part of this field for some

time. Between the two of us, we have created and deployed a variety of different types

of applications, single sign-on, identity federation, provisioning systems for various

access control models, directory services, and various forms of strong authentication.

We have had the pleasure of working closely with many customers to understand their

unique requirements and help them design and deploy identity and access management

systems in both cloud and enterprise environments. We’ve learned many lessons from

these projects, some of them the hard way through the school of hard knocks!

We wrote this book to share what we’ve learned from our experiences. We hope to

provide others a head start based on the lessons we’ve learned. Our intent is to provide

an introduction for those who are new to identity management and inspire them to

continue learning more about this topic. We provide an overview of three identity

management protocols, namely, OIDC, OAuth 2, and SAML 2, that will be useful for

application developers who need to add authentication and authorization to their

1 www.prnewswire.com/news-releases/global-cybersecurity-workforce-shortage-to-
reach-18-million-as-threats-loom-larger-and-stakes-rise-higher-300469866.html

https://www.prnewswire.com/news-releases/global-cybersecurity-workforce-shortage-to-reach-18-million-as-threats-loom-larger-and-stakes-rise-higher-300469866.html
https://www.prnewswire.com/news-releases/global-cybersecurity-workforce-shortage-to-reach-18-million-as-threats-loom-larger-and-stakes-rise-higher-300469866.html

xxviii

applications and APIs. We’ve covered the problem each protocol is designed to solve,

how to initiate basic requests, and how to troubleshoot issues. A sample program

accompanies the book and illustrates some of the concepts. We’ve also provided

information on typical identity management requirements to help you identify what

to include in your project plan, things that can go wrong that should be planned for,

common mistakes, and how to approach compliance. These chapters will be valuable

for developers as well as architects, technical project managers, and members of security

teams involved with application development projects.

In terms of scope, the book is designed to provide an introduction to identity

management. We cover how the three identity protocols can be used to solve common

use cases for authentication and authorization that you will encounter in creating an

application. We don’t have space to cover every protocol, corner case, or every nuance

of the protocols. We also can’t cover every detail in the specifications for the protocols.

Our intent is to give you an overview that will help you get started and provide sufficient

background to help you more fully understand more in-depth materials.

We are extremely grateful to numerous colleagues who’ve generously contributed to

this book through reviewing original drafts and providing corrections and feedback on

what we missed, what might be misunderstood, and what is most valuable for people to

know. This project would not have been possible without their assistance and expertise,

as noted in the acknowledgments. That said, any errors are completely our own. Any

errata we discover after the book is published will be noted in the Apress GitHub repo for

the book, accessible via https://github.com/Apress/Solving-Identity-Management-

in-Modern-Applications.

We hope this book and the sample code are useful to you and wish you luck and

security for your application projects!

Introduction

https://github.com/Apress/Solving-Identity-Management-in-Modern-Applications
https://github.com/Apress/Solving-Identity-Management-in-Modern-Applications

1

CHAPTER 1

The Hydra of Modern
Identity

Wisdom is not a product of schooling but of the lifelong attempt to acquire it.

—Albert Einstein, theoretical physicist, from a letter dated March
24, 1954

Throughout our experiences helping customers implement identity management

solutions for their applications, we have seen two common paths that lead a company to

focus on identity management-related issues. In many cases, this focus even leads to a

dedicated identity management division or project within the company.

Some companies quickly recognize the challenge and build identity management

as a component separate from their applications from the beginning. This is common in

larger organizations starting new projects, often after they have experienced significant

challenges. Another common pattern we have observed is an organization taking a

reactive approach, usually triggered by having to resolve blockers in product sales,

reduce unexpected downtimes, solve challenges associated with continuous investment

of time and effort required for building and maintaining identity management services,

or, in the worst case, having to face identity-related crises like data breaches that need

immediate attention.

On both paths, we have often seen application developers start by cataloging a laundry

list of to-dos involving what the user journeys such as sign-up, login, and account deletion

should look like, what account management and analytical requirements are needed, if

multi-factor authentication is required, and so-on. There is an expectation for all of this to

work smoothly across multiple devices, several versions of browsers and operating systems,

all while satisfying many constraints in terms of user experience and of course cost.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_1

https://doi.org/10.1007/978-1-4842-8261-8_1

2

The result is usually an identity service built using in-house engineering and

DevOps teams, often with commodity off-the-shelf or open source tools. As one or more

applications connect to this service, it quickly becomes obvious that this identity service

needs to be fault-tolerant and highly available, to avoid becoming a point of failure for

the applications. It also needs to be secure and protect user data against many types of

attacks.

Over the course of time, the teams maintaining the in-house identity service start to

feel like they are fighting a Hydra – the mythical beast from Greek mythology with nine

heads. When any one of her heads was cut off, two more grew back in its place. In the

same way, solving one identity management challenge can give rise to more without a

well-planned strategy.

In this book, we’d like to give you a high-level introduction to identity management

and provide you with as much knowledge as we can to better equip you on your quest

toward delivering successful identity management in your application and avoiding

a Hydra.

�Identity Challenges
While identity management may initially seem to require little more than a form with

a username and password, many factors need to work together for it to work well in

practice. It requires careful planning, design, and development to implement identity

management for an application while balancing the myriad expectations stemming from

business requirements and security, not to mention the need to provide a great user

experience.

Unfortunately, identity management isn’t a one-size-fits-all proposition. There isn’t

a master solution we can provide that fits every use case. However, we believe that our

combined experience may help you navigate through the landscape better, equipped

with an overview of the challenges that you’ll face ahead.

As an example of these challenges, here are a few of the most common decisions to

consider when developing your applications.

Chapter 1 The Hydra of Modern Identity

3

�Who Are Your Users? And Will They Authenticate?
A consumer using an app on their phone to book a restaurant will probably want

the ability to log in quickly, perhaps using an existing identity like Google or Apple,

often referred to as social logins. Users may even expect to use more than one way to

authenticate and still be recognized as the same person. We have seen this happen

often as a result of a user forgetting the original “account” they signed in with, resulting

in confusion and a drop-off in application usage because users can’t remember how

to log in.

Employee users of an application at their workplace want easy access via a single

work account. This is usually referred to as single sign-on, enterprise federation or

enterprise login. For an increasing number of organizations, this is a mandatory

requirement when purchasing a workforce application.

You may also encounter requirements to offer passwordless authentication

or username-password authentication for first-party accounts that are stored in

your system.

�Level of Authentication Strength
Which authentication mechanisms will adequately protect your application? It depends.

An application with sensitive content like a banking application is a clear scenario where

you’d want to ensure you know who the user is, in the most secure way possible. For

other, less sensitive, applications, you may need to determine how to provide adequate

security while still being convenient for users.

There are many options to consider for authentication. Today, the most common

means of implementing authentication are based on something the user knows, such

as a password. While passwords provide basic security, they are prone to being stolen.

For more secure applications, there are additional means to verify a user’s identity,

which may be used on their own or with a password. These strategies typically rely

on something the user possesses like a one-time password generated on a device or

a hardware security token with a cryptographic key. Alternatively, other approaches

rely on who you are, leveraging biometric scans or user behavior, such as typing, to

authenticate a user. You need solutions that are easy for users to adopt and use because

cumbersome solutions may result in users circumventing the solution or simply

abandoning the application entirely.

Chapter 1 The Hydra of Modern Identity

4

Unfortunately, your problems don’t end once the user is authenticated. After

authentication, a user’s password may be compromised or their authentication device

stolen. Applications need to accommodate for additional threat vectors, such as

authentication tokens being lost or stolen, credentials being breached, and scripts that

mimic user activity in order to brute-force their access into user accounts.

�Simplifying Access for Users
How do you provide simple but secure access for your users? Your users will likely want

single sign-on so they can log in oncei and access their account at multiple applications

easily, such as your application and your application’s support center. Single sign-on

provides convenience to users, but it is also considered great security hygiene as it offers

a single place to control authentication policy, reduces the number of passwords that

users have to remember, and allows you to focus efforts on simplifying identity.

It is important to keep in mind that authentication requirements will often

change depending on the platform or device the user is using to access your product.

Authentication on the Web is very different from apps running on a smartphone or a

Smart TV. It can be even more different if you want to support devices like Alexa. Identity

management can easily become a limiting factor if your solution does not accommodate

the possibility of easily supporting diverse future platforms and devices for users.

In addition to authenticating users, your application will also need to enforce access

policies. For some applications, such as a platform to stream movies, access policy

may be simple, based solely on whether a subscription fee has been paid. For other

applications, such as enterprise systems for manufacturing and inventory control or

sales management, access policies can become complex and might need to take into

account a user’s profile attributes, the time of day, the method of authentication used,

and the specific data involved.

�Migrating Users from Legacy Applications
Will you need to migrate any existing user accounts from elsewhere? A part of

simplifying access is the integration challenge if you need to migrate users from legacy

in-house applications that have highly specialized user stores and third-party apps like

support centers and community forums that also have their own user stores. Mature

Chapter 1 The Hydra of Modern Identity

5

legacy application projects may offer a means to connect single sign-on, but in other

cases, it is largely left as an open problem to solve for the application builder, with

minimal support for industry identity standards like SAML, OAuth, or OpenID Connect.

The migration of existing users from legacy user stores, however, is not covered by

those standards and is often a very time-consuming and expensive process to solve.

This involves migrating existing users along with their credentials, merging duplicate

users in a secure manner, ensuring uptime for the existing applications during the

migration, and migrating some apps while ensuring other systems can stay in place. This

is a challenging part of many identity projects and can severely impact the likelihood of

success due to scope creep!

�Regulatory Requirements
How will you satisfy regulatory and compliance requirements? Privacy is a hot topic

among developers, companies, and legislators. Modern users are concerned about

identity data breaches, identity theft, and about being continuously tracked, in many

cases without their consent, by third-party marketing analytical websites. These issues

raise several ethical and technological challenges.

Many governments see the privacy of their constituents as a fundamental right and

have been working on regulations for the handling and protection of sensitive identity

data. These are topics of increasing interest among global legislators. With legislation

like the GDPR (General Data Protection Regulation) in the European Union, California’s

CCPA (California Consumer Privacy Act), and similar legislation being drafted, debated,

and enacted in many jurisdictions, applications that collect or process user data must

comply with privacy requirements, as noncompliance may incur severe penalties in the

event of a breach.

�User Experience Constraints
How do you create a good onboarding experience for your users? Bad identity decisions

can negatively impact a user’s perception of an application. Imagine you just installed a

brand-new application to look at pictures and the sign-up process asks for a scan of your

passport and a selfie video. This would doubtless seem a bit suspicious because it’s hard

to imagine why a picture browsing application needs your passport information. A bad

sign-up and login experience can hurt the usability and adoption of your application.

Chapter 1 The Hydra of Modern Identity

6

On the other hand, for a financial application, the need to provide a passport for identity

validation would seem more reasonable. Recording a video to verify your identity is, in

fact, part of an innovative onboarding experience for a challenger bank application like

Monzo.ii

The challenges outlined here are just a sample of what you may face in designing identity

management for your application. Additional challenges involve when and how to collect

user profile information, how to manage user sessions, and even what to do when a user

logs out. The design of identity management for your application needs to answer all these

questions and more while considering the sensitivity of your application and satisfying all

the relevant business and legal requirements. You’ll need to weigh different approaches

and design for a user experience appropriate for your application’s delivery platforms.

�Objective
Our objective in writing this book is to provide you with an introduction to the topic of

identity management, based on our experience building and deploying applications.

The focus is particularly on aspects of identity management for software applications,

such as creating accounts, authentication, API authorization, single sign-on, account

management, logging users out, and deprovisioning accounts. To set realistic

expectations, identity management is a huge topic. One book cannot make you an expert

or cover everything there is to know. The specifications for the identity protocols we’ll

discuss total over 800 pages, and they represent only a portion of the information that

you need to know. We cannot hope to cover every aspect of these protocols or every

identity management use case. What we can reasonably do is provide an introductory

overview that helps you understand common aspects of identity management needed by

a typical application project, how three standard identity protocols solve basic use cases

for you, and how a sample program solves some real-world scenarios.

We will cover three popular identity protocols, namely, OAuth 2, OIDC, and

SAML 2 – specifically, what problem each is designed to solve, how they work, how

to implement authentication and authorization requests for simple cases, and how to

troubleshoot issues. We can’t cover every parameter or use case, but you should get a basic

understanding of what each protocol does and how it works. We hope the text and sample

program that accompanies this book give you a helpful overview of identity management for

your application development projects. We also hope you are inspired to explore this topic

further to learn about more advanced use cases and solutions.

Chapter 1 The Hydra of Modern Identity

7

Appropriately designed, an identity management solution can simplify your

overall architecture. It can allow your application to delegate some identity-related

responsibilities to other components, and it can provide a single view of the user and

unify access control to simplify access issues, provide critical auditing capabilities,

and more.

We’ve organized the content around the events in the life of an identity. We start out

with a discussion of account provisioning and several options for getting users set up so

they can use your application. Then we dive into API authorization and authentication

and provide an overview of three popular protocols in use today, namely, OAuth 2,

OpenID Connect (OIDC), and Security Assertion Markup Language (SAML) 2. These

chapters cover authenticating users and handling authorization for applications

and APIs. After covering the basic mechanics of the protocols, we have a chapter

that explains the sample program that accompanies this book and how it uses these

protocols.

The subsequent chapters cover additional scenarios, with introductory information

about single sign-on, stronger forms of authentication, account management, logout,

and deprovisioning. In case your application doesn’t work perfectly the first time, we’ve

included a chapter with guidance on troubleshooting. We’ve also shared information

on problematic scenarios that may arise and some more unusual use cases we’ve come

across. We close with a quick overview of compliance as well as some mistakes that have

led to some very unfortunate breaches.

We recommend reading the chapters in order, at least through Chapter 15, as many

of these chapters build on previous chapters. For the rebels in the crowd, we especially

recommend at least reading Chapters 4 through 10 in order as they have the most

dependencies on earlier content. The chapters after Chapter 15 can mostly be read in

any order. Chapter 16 on troubleshooting will be most relevant when you need to debug

an issue. Chapter 18 on less common requirements might be valuable to read early on

in a project as it may help you identify items to include in your project plan. Chapters 17

and 19 cover different types of issues and will help you plan for, or avoid, many mistakes.

In the chapters on OAuth 2 and OIDC, we’ve provided samples of HTTP requests

to be made by an application. We realize you may use a library or SDK to facilitate such

calls, and in fact we heartily encourage this. If so, the call syntax will differ for your

chosen implementation. However, while every library or SDK will be different, the

underlying calls should be in alignment with the standard specifications. When it comes

time to troubleshoot your implementation, you’ll likely use a browser tool or debugger

Chapter 1 The Hydra of Modern Identity

8

to analyze the calls made, and at that point, an understanding of the underlying

HTTP requests such as we’ve shown in the book will be useful. Even if you are merely

configuring a purchased application, an understanding of the basic requests and

responses will be of benefit for troubleshooting.

One note about naming is in order. The protocols we cover have each used different

terminology. This makes it difficult to use consistent terms for certain components. We

debated between several approaches and finally decided that in a chapter discussing a

specific protocol, we would use the terms used by that protocol, and in other chapters,

we would use more generic terms. For example, in the OAuth 2 chapter, we refer to

an authorization server; in the OIDC chapter, the OpenID Provider; and in the SAML

2 chapter, the identity provider. In the other, more general chapters, we use the term

identity provider for a service that authenticates a user for an application. One exception

is in our term for a client application. There are many names for a client application

across these protocols – client, relying party, service provider, client application. The

terms client and relying party mean different things in some specifications. To reduce

confusion for beginners, we’ve chosen to use the term “application” throughout to refer

to an application making authentication or API authorization requests via OAuth 2,

OIDC, or SAML 2. This is not ideal as it ignores the fact that in more involved use cases,

OIDC and SAML 2 clients may not be applications but rather can also be providers to

other clients. Since our focus is on introductory, basic use cases, we decided to make

this trade-off for the sake of simplicity and consistency across chapters. We occasionally

use the term relying party where the entity referenced is a relying party which could in

turn be an identity provider serving other clients rather than a simple application. We

also refer to end users as simply users, as we don’t need to differentiate between types

of users.

A note on versions is also in order. Since the original publication of this book, there

has been additional work on OAuth, resulting in the OAuth 2.1 framework specification

document. This edition of the book is aligned with the recommendations made in the

current draft of OAuth 2.1, and the versions of OIDC and SAML 2.0 published at the time

of writing. For the sake of simplicity, we will refer to these identity protocols as OAuth

2, OIDC, and SAML 2, unless we are referencing a particular version of a specification

document or a document title.

Chapter 1 The Hydra of Modern Identity

9

�Sample Application
To complement the text, we’ve provided a sample application that uses the OIDC and

OAuth 2 protocols. Chapter 10 explains the sample application and how it was designed

to use the identity protocols as part of an identity management solution. We need to

give the usual caveat here. As sample code, the code samples in the book and sample

application omit various functions for the sake of simplicity. They are not production-

ready code and should not be used as a basis for production applications.

�Design Questions
To get started on your own identity solution, we suggest thinking about the following

questions in preparation for reading through the following chapters:

•	 Who are your users: employees, consumers, or a business?

•	 How will users log in? Is there an existing account available to them

that they would like to reuse?

•	 Can your application be used anonymously or is

authentication needed?

•	 What kind of delivery – Web or native – does your application intend

to provide?

•	 Will your application need to call any APIs? If so, who owns the data

that your application will retrieve?

•	 How will your application interact with APIs, both public APIs and

your trusted subsystems?

•	 How sensitive is the data that your application handles?

•	 What access control requirements are needed?

•	 How long should a user stay logged in?

•	 Is there more than one application in your system? If so, will users

benefit from single sign-on? (Don’t forget a support forum!)

•	 What should happen when users log out?

•	 Are there any compliance requirements associated with this data?

Chapter 1 The Hydra of Modern Identity

10

�Summary
Modern users expect a frictionless, well-designed experience when using an application.

Identity management should help them access an application quickly, not get in their

way. In order to achieve that, developers face a lot of questions and need to sort through

a wide range of options available to them when developing identity management

solutions for modern applications. The next chapter will help you understand the

components of an identity management solution by covering the events in the life of an

identity.

�Key Points
•	 Identity management poses many challenges to developers of

modern applications.

•	 Identity management solutions must be appropriate for the

sensitivity, desired user experience, and delivery platforms of an

application.

•	 Identity management is a huge topic, more than can be covered

completely in one book.

•	 We’ll provide an overview of identity management and typical

requirements for identity management for your application.

•	 We’ll cover three protocols – what they are used for, how they work,

and how to make a basic authentication or authorization request.

•	 We’ll provide a sample program that illustrates some of the topics

discussed.

�Notes

	 i.	 https://auth0.com/blog/what-your-customers-really-want-

from-your-login-box/

	 ii.	 https://monzo.com/

Chapter 1 The Hydra of Modern Identity

https://auth0.com/blog/what-your-customers-really-want-from-your-login-box/
https://auth0.com/blog/what-your-customers-really-want-from-your-login-box/
https://monzo.com/

11

CHAPTER 2

The Life of an Identity
That it will never come again is what makes life so sweet.

—Emily Dickinson in “That it will never come again” (1741)

To clarify the terms used in subsequent chapters, we need to describe what an identity is

and how it is used, as well as the most common events in the life of an identity.

�Terminology
The concepts of an identity, an identifier, and an account are closely related but subtly

different. We use the term “identifier” to refer to a single attribute whose purpose is

to uniquely identify a person or entity, within a specific context. Passport numbers,

driver’s license numbers, and employee numbers are all examples of identifiers used

for people. Nonhuman entities, such as agents, bots, or devices, may be identified by

an alphanumeric string of characters assigned at their time of creation or registration

within a context where they will act. The context, for our purposes, is an application,

online service, or a set of the same. Identifiers allow us to refer to a specific person or

nonhuman entity within such a context and are essential to identity management.

The term “identity” is defined as a collection of attributes associated with a specific

person or entity in a particular context. An identity includes one or more identifiers and

may contain other attributes associated with a person or entity. Human identities may

include attributes such as name, age, address, phone number, eye color, and job title.

Nonhuman identities may include attributes such as an owner, IP address, and perhaps

a model or version number. The attributes which make up an identity may be used for

authentication and authorization as well as conveying information about the identity to

applications.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_2

https://doi.org/10.1007/978-1-4842-8261-8_2

12

A given person may have more than one identity. Just as a person might take on

different personas in different social contexts, such as a parent, child, engineer, or coach,

a person can have multiple online identities as well. One might have a work identity

used to perform tasks for an employer. The identity attributes might include an identifier

issued by the employer, a department name, building location, and manager. One might

also have a variety of personal identities used for different purposes, including managing

a youth sports team or running a side business. These real-world examples demonstrate

the contextual aspect of our definition. An online identity consists of at least one

identifier and a set of attributes for a user or entity in a particular context, such as an

application or suite of applications.

An identity is associated with an account in each such context. We define an account

as a local construct within a given application or application suite that is used to perform

actions within that context. Identity attributes may be contained within an application’s

account object, or they may be stored separately and referenced from the account object.

An account is uniquely identified by an identifier. Usernames, email addresses, and

mobile phone numbers have often been used as identifiers for online accounts. As we

will see in Chapter 4, the selection of an appropriate account identifier requires careful

thought because identifiers such as email addresses and mobile phone numbers can

change over time or may be shared by multiple people in some contexts. An account

may have its own, internal identifier in addition to that of the identity associated with

it. Having an account identifier separate from the identity associated with the account

provides a useful degree of separation. The internal account identifier can be used in

application records, which makes it easier for users to change the username or other

identifiers associated with their account without impacting all the application records.

An account typically has several attributes associated with the owner of the

account. An account for a human being might have attributes for the person’s name,

home address, phone number, email address, age, and preferences, as relevant to the

application. An account for a bot might have attributes such as the owner of the bot, the

manufacturer, bot model, and version. This set of attributes will vary widely based on

application needs and is often referred to as the user profile for an account. In addition,

an account will typically have some attributes used for the purposes of authentication

and authorization. These may include credentials, information to support multi-factor

authentication, and attributes used in access control decisions.

Chapter 2 The Life of an Identity

13

We will use the term “identity” when specifically referring to online identities as the

set of attributes about a person or entity. We will use the term account when referring to

an account as a construct within an application or service that has an identity associated

with it. It should be noted that an account can have more than one identity associated

with it through account linking which will be explained further in Chapter 18. In addition,

a user may establish many accounts using the same identity attributes. To summarize, a

person logs in to use an account which has various identity attributes associated with it

and which enables them to perform actions within a system.

Nonhuman actors can certainly have identities as well. Software components

serving as agents or bots and smart devices can have identities and may interact with

other software or devices in ways that require authentication and authorization just

like human actors. In order to keep this book to a manageable size, however, we will

primarily discuss human actors and their online identities.

As you might guess, an identity management (IdM) system is a set of services that

support the creation, modification, and removal of identities and associated accounts,

as well as the authentication and authorization required to access resources. Identity

management systems are used to protect online resources from unauthorized access

and comprise an important part of a comprehensive security model.

�Events in the Life of an Identity
With basic definitions out of the way, we can move on to describe the primary events in

the life of an identity, illustrated in Figure 2-1. We’ve shown this as a linear diagram for

the sake of simplicity and to provide an organizing sequence for subsequent chapters.

In real life, the events shown can repeat, branch, loop back, and in general are more

complex than a single linear thread. We’ll outline the events in this chapter in the

order shown, to provide a high-level overview, and then go into each in more depth in

subsequent chapters.

Chapter 2 The Life of an Identity

14

Figure 2-1.  Events in the Life of an Identity

�Provisioning
The first step in the life of an identity is its creation. The act of creating an account and

associated identity information is often referred to as provisioning. Provisioning might

be done by having users register, importing identity information from a legacy system or

leveraging an external identity service. Regardless of the mechanism used, the objective

of the provisioning phase is to establish an account with associated identity data. This

involves obtaining or assigning a unique identifier for the identity, optionally a unique

identifier for the account distinct from that of the identity, creating an account, and

associating identity profile attributes with the account.

For example, a user named Alice wishes to use some online banking services. Alice

might establish an online account at a bank by filling out an account registration form.

Alice would provide identity information including a username, a password, her name,

home address, phone number, email address, and some form of tax ID. This data would

be used to provision an online account at the bank associated with Alice’s personal

identity.

Chapter 2 The Life of an Identity

15

Alice could create multiple online accounts at the bank for different identities. In

addition to the personal account, Alice might establish a second identity as a small

business owner with a second online account using her business identity and tax ID. The

provisioning phase establishes an online identity and account, which are then used to

access online services.

As part of the provisioning process, the identity information associated with an

account may optionally be subject to a verification process. Identity proofing is the

process of collecting, authenticating, and validating identity information to ensure an

account holder is who they claim to be and the owner of the identity is a person who

can be held liable for actions taken using an account issued to them. In-person identity

proofing usually involves showing one or more government-issued identification

documents. Online identity proofing solutions exist that ask a user to record a selfie

video in real time for a “liveness” check and then verify a facial match with government-

issued identification documents shown in the video.

�Authorization
When an account is created, it is often necessary to specify what the account can do, in

the form of privileges. We use the term authorization for the granting of privileges that

govern what an account is allowed to do. The authorization may be based on a variety of

factors, including identity attributes such as a team membership at work or the purchase

of an application subscription level by the user.

When Alice creates her online account, the bank authorizes her account to access

the application to view checking accounts. If she does not have a brokerage account

at the bank, her account would not be authorized to access the bank’s stock trading

application. Needless to say, her account would also not be authorized to view account

information for the bank’s other customers! Alice’s authorization indicates the privileges

her account has been granted in the form of which applications she can access and

what types of transactions she can perform. This type of authorization for an account is

typically done at the time an account is created and may be updated over time.

Another form of authorization may happen later in a user’s interaction with an

application or service. One example is a more complex use case that involves more

than one application domain. If a user invokes a feature in one application which

requires data owned by the user in a third-party application in another domain, the

user may be asked by that third-party application to authorize the first application to

Chapter 2 The Life of an Identity

16

programmatically access the user’s data in the third-party domain. In this case, the

authorization grant is for an application to act on the user’s behalf. This has become a

common scenario in modern applications and will be discussed further in Chapter 5.

�Authentication
To access online content that is not publicly available, a user needs to authenticate.

A user provides an identifier to signify the account they wish to use and enters login

credentials for the account. These are validated against credentials previously registered

during the account provisioning phase. The credentials may involve something the user

knows, something the user has, and/or something the user is. A password is something

the user knows. A numeric code generated from a previously registered device, such as

a mobile phone or hardware security key, involves something the user has. Biometric

information such as a fingerprint or facial scan is something the user is. Authentication

with one or more credentials which are validated against previously registered

information demonstrates, to some degree of confidence, a user’s right to use an account

to access protected resources.

After Alice establishes her online identity and account at the bank, she can access

the bank’s online services. To access protected resources, such as her checking

account balance, she will need to authenticate by entering the username and password

established during the registration step. The username indicates the account she wishes

to use, and knowledge of the password demonstrates her right to use the account. For

sensitive applications and transactions, it is best to use additional, stronger forms of

authentication, as described later in this chapter.

�Access Policy Enforcement
Once a user has been authenticated and associated with an account, it is necessary

to enforce access policy to ensure any actions taken by the user are allowed by the

privileges they have been granted. We use the term access policy enforcement for the

enforcement of access policy specified by authorization. In other words, authorization

specifies what a user or entity is allowed to do in a particular context such as within

a banking application, and access policy enforcement checks that a user’s requested

actions are allowed by the privileges they’ve been authorized to use and any other

relevant policy.

Chapter 2 The Life of an Identity

17

When Alice logs in to the bank’s online retail banking application and makes a

request, the application will check she has the authorization to make the request. If

she attempts to access the stock trading services, she would be denied as she is not

authorized to access those services. In this case, the application might display a message

indicating she is not allowed to view that service, perhaps with information on how to

sign up for it.

Access policy enforcement may need to implement a variety of policies. For example,

if Alice opens a savings account, she would typically be authorized to withdraw funds

from the account. However, the authorization to withdraw money would typically not

allow her to withdraw more money than exists in her account. Then again, if she has a

checking account with overdraft protection, she might be able to write checks for more

money than is in her account, up to a certain limit. Access policy enforcement in this

case includes the privileges associated with her account as well as other bank policies

around overdrafts.

�Sessions
Once a user has been authenticated and authorized, they will perform various actions

within an application. Some applications, typically traditional web applications and

sensitive applications, only allow a user to remain active for a limited period of time

before requiring the user to authenticate again. They do this by managing a session for

the user. A session tracks information such as whether the user has been authenticated

and, if so, typically also the authentication mechanism and/or strength level of the

authentication mechanism used, when authentication occurred, and the IP address, in

addition to a user identifier. This enables an application to decide when the user should

be prompted to reauthenticate.

The length of time a user is allowed to remain active before reauthentication is

known as a session limit or session timeout. The session timeout settings will typically

vary by the sensitivity of the data in the application. Session limits help protect against

users who walk away from their screen without logging off and identity information

that may have changed since the session was created. A session limit that forces a

user to periodically reauthenticate provides a check that it is still the legitimate user

at the keyboard. It can also trigger a renewal of the user’s identity information and

account status.

Chapter 2 The Life of an Identity

18

Alice’s retail banking application that provides access to her bank account may allow

only a relatively short session, measured in minutes. Another, less sensitive service

offered by the bank, such as an investment newsletter, may allow a longer session,

measured in hours or days. Each time Alice makes a request of either application, it is

necessary for the application to check if she has authenticated recently enough for the

requested transaction. If so, she can continue without authenticating again. If too much

time has elapsed since she last authenticated, she would have to authenticate again.

The previous example is a scenario where interactive reauthentication with the

user is required. There are additional scenarios where security tokens obtained by an

application during a user’s session have expired. These tokens usually have a short

expiration time to reduce the risk impact if they are compromised. When they expire, an

application can request new tokens from the entity that issued the original tokens, and

there are scenarios where this can be done without any interaction with the user. This is

sometimes called silent reauthentication and occurs when the entity issuing the security

tokens has sufficient knowledge about the user’s activity and the security context to

warrant issuing new tokens without requiring the user to actively reauthenticate.

�Single Sign-On (SSO)
After a user accesses one application, they may wish to do something else involving

another application. Single sign-on (SSO) is the ability to log in once and then

access additional protected resources or applications with the same authentication

requirements, without having to reenter credentials.

When Alice accesses her bank’s website, single sign-on would provide convenient

access to multiple banking services. If Alice signed up for the investment newsletter

service at her bank, she could log in to access first the retail banking application to view

her account balance and then access the investment newsletter without having to sign

in again.

Single sign-on is possible when a set of applications has delegated authentication to

the same entity. An authenticated session in that entity can be used to access multiple

resources via single sign-on and is often called an SSO session. The use of single sign-

on can result in multiple layers of sessions for a user because there may be a session for

a user maintained in each application as well as in an entity to which the applications

delegate authentication. In this case, the design of session handling is important for

security and a good user experience.

Chapter 2 The Life of an Identity

19

�Stronger Authentication
Step-up authentication and multi-factor authentication (MFA) both involve authenticating

a user with stronger forms of authentication. Some forms of authentication, such as

username-password authentication, are considered relatively weak because they involve

a single factor, the password, which can be captured and easily used by others. Stronger

forms of authentication involve other factors, such as something the user has and/or

something the user is. Authentication that requires multiple factors at the same time is

known as multi-factor authentication. Multi-factor authentication typically involves a

password as well as possession of a device such as a laptop or mobile phone or possibly a

biometric factor such as a fingerprint, facial scan, or voiceprint.

Step-up authentication is the act of elevating an existing authentication session to

a higher level of assurance by authenticating with a stronger form of authentication.

For example, a user might initially log in with a username and password to establish an

authentication session. Later, when accessing a more sensitive feature or application

with higher authentication requirements, the user would be prompted for additional

credentials, such as a one-time password generated on their mobile phone or through

the use of a hardware security key. Step-up authentication may be required when a user

accesses a more sensitive application or when they attempt to perform more sensitive

transactions, like withdrawing unusually large amounts of money.

Alice might initially log in with a username and password and be able to view

investment newsletters on the bank’s website. If she later attempts to access her bank

account to transfer a large amount of money out of her account, she might have to step

up her session and enter a stronger authentication factor, such as a special one-time use

code generated by an application on her phone. This elevates her session to a higher

level of authentication assurance which provides a higher degree of confidence that the

user requesting access or performing a transaction is the legitimate account owner.

�Logout
When a user is done with an application, they should terminate their session by logging

out. At a minimum, the act of logging out should terminate the user’s application

session. If they return to the application, they would have to authenticate again before

being granted access. In situations where single sign-on is used, there may be multiple

sessions to terminate, and it is a design decision as to which sessions should be

terminated when the user logs out of one application.

Chapter 2 The Life of an Identity

20

The act of logging out is slightly different than a session timing out. In the former

case, the user explicitly requests that their session be terminated. When a session times

out, an application may elect to keep the session in a suspended state and reconstitute

the session if the user authenticates again.

In a scenario where Alice has logged in to her bank’s website and viewed her bank

balance as well as a recent investment newsletter, she would have a session in the retail

banking application, in the investment newsletter application, and in the bank’s SSO

service. If she is idle for a few minutes to take a phone call, her session in the retail

banking application may time out. When she finishes her phone call, she would have to

reauthenticate to continue. When she finishes viewing her account, she would click a

“Logout” link to terminate all of her open sessions.

�Account Management and Recovery
During the course of an identity’s lifetime, it may be necessary to change various

attributes of the user profile for the identity. For example, a user may need to update

their email address or phone number. A user may need to update their name in some

circumstances or to periodically change their password or mobile device used in the

authentication process. In a company, a user’s profile might be updated to reflect a

new position, office location, or privileges such as roles. In addition, many privacy laws

around the world require that users have the ability to view, correct, transfer, and request

the deletion of certain information held about them. Account management consists of

features or processes which enable users and administrators to view and update user

profile attributes associated with an account and to remove accounts, when appropriate.

In addition to user-initiated changes, administrators may need to modify or remove

a user’s account over time. Administrators may change the privileges associated with

a user’s account, especially in an enterprise when an employee moves from one team

to another or when responsibility for a particular function is moved from one team to

another in a corporate reorganization. Corporate compliance initiatives and governance

audits that periodically review all user accounts and the access they’ve been granted may

also trigger the removal of access or accounts that are no longer appropriate.

A user may forget their password or lose a device that is required for an

authentication process. If this happens, a user needs to establish new credentials. This

requires an alternate means of establishing the user’s ownership of the account before

Chapter 2 The Life of an Identity

21

allowing them to set new credentials. Account recovery is a mechanism to validate a user

is the legitimate owner of an account through some secondary means before allowing

the user to establish new credentials.

If Alice goes on a trip and forgets her password after being gone for a while, she

would need a means of resetting her password. She may have to enter a code using an

alternate authentication mechanism she set up previously, or she may be able to trigger

an account recovery link sent to her email that will enable her to reset her credentials.

Similarly, if Alice decides to move, she would need the ability to update her profile at the

bank to reflect her new address. Throughout the lifetime of an identity, various changes

may occur, requiring the ability to view and update the identity profile attributes as well

as reset account credentials.

�Deprovisioning
There may come a time when it is necessary to close an account. In this case, the user’s

account and associated identity information must be deprovisioned so that it can no

longer be used. Deprovisioning may take the form of completely deleting the account

and associated identity information or simply disabling the account, to preserve

information for audit purposes.

If Alice decides at some point to terminate her relationship with the bank, she would

request that her accounts be closed. The bank would close out her checking and savings

accounts and terminate her online account so that she could no longer log in. The bank

would, however, need to keep sufficient information to meet tax reporting and audit

obligations. Deprovisioning can be challenging to design as it must balance numerous

requirements including audit needs and privacy regulations.

�Summary
This chapter has introduced the concept of an account and an associated identity

and the most typical events that occur during their existence, from provisioning

and authorization to authentication and access policy enforcement, all the way to

deprovisioning. In the next chapters, we’ll dive into more detail for each event, starting

with a summarized history of approaches to identity management.

Chapter 2 The Life of an Identity

22

�Key Points
•	 Provisioning creates an account and associated identity.

•	 Provisioning may include an identity proofing process to validate the

owner of an account is who they say they are.

•	 Authentication validates a user is entitled to use an account.

•	 Authorization specifies the privileges granted for an account.

•	 Access policy enforcement checks that requests are within the

privileges granted by authorization.

•	 A session and session limit are used to govern how long a user can

remain active without reauthenticating.

•	 Single sign-on allows a user to log in once and then access additional

protected resources without reentering credentials.

•	 Multi-factor authentication requires authentication by multiple

forms of authentication, such as something the user knows (a

password), something the user has (such as a device), and/or

something the user is (such as a fingerprint or facial scan).

•	 Step-up authentication is the elevation of an existing authentication

session to a higher authentication assurance level when a user

authenticates with a stronger form of authentication.

•	 Logout terminates an authenticated session, requiring

reauthentication to access a protected resource again.

•	 Account management features allow a user or administrator to

update account and identity profile attributes.

•	 Account recovery is required when a user loses the ability to

authenticate using previously established credentials.

•	 Deprovisioning is the removal or disabling of an account and

associated identity information.

Chapter 2 The Life of an Identity

23

CHAPTER 3

Evolution of Identity
Progress is not an illusion; it happens, but it is slow and invariably
disappointing.

—George Orwell, from Inside the Whale and Other Essays (1940)

Over the years, there has been an ongoing evolution in how identity information is

stored and used to enable users to access applications and the functionality they

provide. You’ll see in this chapter that each bit of progress has solved some problems

but given rise to new ones, as technology and security challenges evolved. We’ll describe

some past approaches that have been used to manage identity information and provide

authentication and authorization. We’ve selected specific technologies to highlight

specific advantages and disadvantages of each approach that may help you evaluate

solutions for your project. We’ll also discuss why you should use an industry standard

protocol instead of inventing your own solution. Subsequent chapters will then cover

specific protocols in more depth.

�Identity Management Approaches
It’s valuable to understand the advantages and drawbacks of approaches which have

been used in the past for managing identity data, authentication, authorization, and

access control. Many of these approaches are still in use today. This will not be an

exhaustive list of every approach or technology, but rather a curated list to illustrate the

practical, real-world benefits and drawbacks of selected approaches. As you read about

each one, pay attention to the problems each solution was designed to solve as well as

the benefits and shortcomings of each. Knowing the advantages and disadvantages of

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_3

https://doi.org/10.1007/978-1-4842-8261-8_3

24

each will help you evaluate alternatives for your projects and more effectively advocate

for use of newer solutions. We’ll start by going back in time to when applications each

implemented their own authentication and user repository.

�Per-Application Identity Silo
In the Stone Age, relatively speaking, of computer applications, each application often

implemented its own identity repository, authentication, authorization, and access

control. A large enterprise company typically had core business applications, such as

finance and inventory control systems, and perhaps a few productivity applications.

Each application often had its own dedicated database or other storage in which user

identities, credentials, and user profile data were stored, and each application prompted

the user to log in and then validated the user’s credentials against its own repository

of user information. This meant an employee might have a different username and

password to remember for each application. It also meant that if some element of a

user’s profile changed, the profile change had to be made in multiple applications.

Of course, this did not happen reliably if a company had many applications, so user

profile data invariably became out of sync across systems. User exasperation with data

integrity issues and having to remember numerous passwords was bad enough when

there were just a few applications. As the number of applications in an enterprise grew,

however, having every application implement its own siloed identity repository and

authentication solution quickly became untenable for businesses.

This siloed approach is still used today in many consumer-facing scenarios where

a user signs up by providing an application-specific username and password. If a user

reuses the same password across multiple sites, a compromise at any one site could

put the user’s data at other sites at risk. If a user specifies a different password for

every application, they have to remember or securely store the passwords or rely on

the security of an account recovery process provided by the application. Either way,

consumer users face some of the same inconvenience with this approach experienced

earlier by corporate users.

Chapter 3 Evolution of Identity

25

�Centralized User Repository
With time, more and more software was written for a wide swathe of business functions.

This drove a need for a better approach to identity management. Many companies

implemented directory services to house and centralize user identity information.

Directory services are optimized for information that is frequently read but infrequently

modified, which is often the case for user identity data. Applications were able to use a

directory service to store user data and credentials. It was also possible for an application

to prompt a user to log in and validate the entered credentials using information in a

directory service. Large, on-site commercial business applications targeted to enterprise

environments1 often included support for this approach. This centralized approach

offered a significant improvement over the siloed, per-application approach.

The centralization of identity administration and access with a directory service

provided many advantages. Directory replication capabilities enabled applications

hosted around the world to leverage the same identity information, eliminating

data inconsistency issues. The same username and password could be used across

applications. A centralized directory service also provided a single point of control at

which to implement password policy or quickly terminate an identity if necessary. As a

result, directory services became widely adopted, at least in larger companies.

For all their advantages, however, directory services also had some disadvantages.

A directory service by itself did not maintain any sort of session for a user. The

centralization of identity information in a directory service usually meant a user had

only one username and password to remember, but the user still had to enter the

credentials into each application’s login screen because each application needed to

collect user credentials and validate them using the directory service (in the absence

of additional technology such as single sign-on servers and proprietary OS features).

In addition to being an inconvenience, this exposed the user’s password to the

applications. A compromise at one application might put other applications at risk. This

was bad enough when all applications involved were inside a trusted corporate network.

As companies began using cloud applications, exposing directory passwords to cloud

applications owned by others would have posed an unacceptable risk. Once again, a

better solution was needed!

1 Such as Oracle and SAP application suites.

Chapter 3 Evolution of Identity

26

�Early SSO Servers
Several types of what became known as identity and access management (IAM) or single

sign-on (SSO) servers provided further improvement. Early SSO servers leveraged the

identity information in a directory service, but provided a layer on top of the directory

service that maintained a session to remember users that had already authenticated.

The way they worked varied, but in a typical approach, an application could redirect a

user’s browser to an SSO server to have the user authenticated there, and the application

would receive the authentication results in a secure, predetermined fashion. If a user

accessed a second application, shortly after they authenticated for the first application,

the second application redirected the user’s browser to the SSO server,2 and the SSO

server would detect the user’s existing session and redirect them back to the application

with a success status without prompting the user for credentials again.

The introduction of single sign-on servers offered many advantages over directory

services. Users benefited from the ability to access multiple applications with a single

authentication. Security teams appreciated that the user’s static directory password

was only exposed to the SSO server, instead of to each application the user accessed.

IT departments were happy because it gave them a single place to implement

authentication policy and stronger authentication mechanisms.

Unfortunately, there were some disadvantages with early SSO servers in practice.

The interaction between applications and SSO servers was somewhat proprietary, and

SSO products were often time-consuming to implement. This meant their adoption

was more evident in larger companies with resources to integrate applications with SSO

servers. A more significant limitation was that single sign-on relied on cookies which,

due to browser restrictions on cookie access, meant the solutions worked within one

Internet domain such as www.mycompany.com. As many companies were becoming

interested in external Software-as-a-Service (SaaS) applications, this was a limiting

restriction.

2 As an optimization, an agent was sometimes installed in front of the application to check session
state with the SSO server and only redirect the user to the SSO server if the session state could not
be confirmed.

Chapter 3 Evolution of Identity

http://www.mycompany.com

27

�Federated Identity and SAML 2
The explosion of new SaaS applications created challenges for managing identities. In

the blink of an eye, business teams everywhere could thumb their noses at backlogged

IT departments and sign up for SaaS applications with a credit card. Unfortunately,

there was often no good way to manage employee identities in SaaS applications. It was

difficult for a company to track accounts its employees created in SaaS systems, and

users once again had to remember a password for every application. The single sign-on

they enjoyed across internal applications didn’t extend to external SaaS applications in

other domains.

Fortunately, a new industry standard, SAML 2 (Security Assertion Markup

Language), had been published in 2005.i It provided a solution for web single sign-on

across domains and federated identity. This happened to be perfect for enterprises with

SaaS applications. Although the SAML 2 technical overview focused on a consumer-

facing use case, SAML 2 provided an excellent solution for enterprises needing better

control over employee identities in SaaS applications.

With SAML 2, SaaS applications could redirect corporate users back to a corporate

authentication service, known as an identity provider (IdP), for authentication.

Identity federation provided a way to link an identity used in an application with an

identity at the identity provider. Companies could now have the advantages of single

sign-on with both internal and SaaS applications. Users benefited by having a single

username/password to remember. The enterprise had a centralized control point for

both internal and external identities and could shut off access quickly at the corporate

identity provider if needed. Password policy and multi-factor authentication could be

implemented in a single place. In this way, SAML 2 solved many identity headaches for

enterprises.

Despite being widely adopted, however, SAML 2 was no silver bullet. The protocol

was designed to cover many scenarios, making it complex to configure and implement.

While SAML 2 became widely adopted within enterprise environments, there was no

viable business model for it to address consumer-facing scenarios. Users were unlikely

to pay money for a consumer-facing identity service. As we’ll see later, this was solved

by making someone else entirely pay for the service! Another limitation was that SAML

2 only solved the problem of authentication. Applications were evolving to architectures

based on APIs. As typically implemented, SAML 2 solved the problem of authenticating

users but didn’t help with API authorization.

Chapter 3 Evolution of Identity

28

�WS-Fed
The Web Services Federation Language (WS-Fed) federation framework was created by

an industry coalition as part of a larger set of protocols known as the WS-∗ specifications.

The WS-Fed 1.2 specification was published as an OASIS standard in 2009ii and provided

mechanisms whereby “authorized access to resources managed in one realm can be

provided to security principals whose identities are managed in other realms.”iii It was

supported by Microsoft’s ADFS server as well as many other commercial SSO products

and provided similar functionality to SAML 2’s web single sign-on and federation

capability. It was taken up in many enterprise environments and, like SAML 2, is still in

use today in many corporate settings.

�OpenID
The original OpenID protocoliv is worth mentioning for its notion of user-centric

identity. With SAML 2 only adopted in employee-facing scenarios, consumer users were

still forced to register anew at each consumer-facing website. A new industry group

formed to create a solution for what it termed “user-centric” identity, and this gave rise

to a protocol called OpenID. In addition to organization-controlled identity providers

commonly used with SAML 2 and WS-Fed, OpenID included the idea of user-controlled

identity for the consumer use case. Consumer users could even set up their own identity

provider and point applications to it for authentication. The original OpenID protocol

didn’t become widely used, but it did highlight the need for user-centric identity

solutions and laid the groundwork for another protocol named OpenID Connect, which

we’ll cover shortly.

�OAuth 2
With Web 2.0 and the rise of social media, many consumer-facing websites were created

that allowed users to upload content such as pictures. This gave rise to use cases where

an application needed to retrieve such content on the user’s behalf. For example, a

person who uploaded photos to a social media site might want to enable another

website that printed photos (www.photos.com) to access their photos at the social media

site. In the absence of a better solution, the user would have to share their social media

credentials with the photo printing site. If the photo printing site were compromised, it

would put the user’s social media account at risk. The user also had no control over what

Chapter 3 Evolution of Identity

http://www.photos.com

29

the photo printing site could do once it had the user’s password for the social media site.

A solution was needed that would allow a user to authorize an application at one website

to retrieve their content from another website’s API, without the user having to expose

their credentials to the first site.

The OAuth protocol provided a solution for this use case. The OAuth 2.0v version

of the specification allows a user to authorize one application, known as a client (the

photo printing site), to send a request to an API, known as a resource server (the social

media site), on the user’s behalf to retrieve data at the resource server owned by the user.

To do this, the application interacts with an authorization server which authenticates a

user as part of obtaining their consent for the application to access their resources. The

application receives a token which enables it to call the resource server on the user’s

behalf. OAuth 2 solved an important API authorization use case. Given the lack of a

consumer-facing authentication solution like SAML 2 and WS-Fed, and the fact that

authorization servers might need to authenticate users as part of obtaining the user’s

authorization consent, it may have been tempting to some to want to use it for more

than this.

By this time, there were several social media sites on the Internet, such as Google

and LinkedIn, and they implemented OAuth 2 to enable consumer-facing applications

to retrieve information from a user’s Google or LinkedIn profile. The authentication

step performed by an OAuth 2 authorization server as part of obtaining a user’s consent

might have seemed to some like it could provide a handy authentication solution. There

had not been a viable business model earlier for general consumer-facing SAML 2

identity provider services. Neither the users, applications, nor anyone else were likely to

fund such services.

The rise of social media, however, provided a new possibility for a solution. Social

media providers already had to authenticate users for access to their site and when an

OAuth 2 authorization request was received that required authenticated user consent.

If they were to provide a general authentication service, it might attract more users to

their platform, and a consumer-facing authentication service would effectively be paid

for by the advertising that paid for the social media sites. There was one slight problem,

however. OAuth 2 was not designed as a general authentication service and could not

securely be used for this purpose, at least without proprietary additions to the pure

OAuth 2 features. (Several social providers that support OAuth 2 have implemented such

proprietary additions.) Another solution standard was needed.

Chapter 3 Evolution of Identity

30

�OpenID Connect (OIDC)
OpenID Connect (OIDC) was designed to provide a key feature needed for an

authentication service. Even if OAuth 2 authorization servers were capable of

authenticating users, the framework did not provide a standard way to securely convey

the identity of an authenticated user to an application. OIDC provided a solution for this

need. OIDC was devised as a layer on top of the OAuth 2 protocol to provide information

in a standard format to applications about the identity of an authenticated user.vi This

provided a solution for applications for user authentication as well as API authorization.

The implementation of OIDC by widely used social media/service providers like Google,

PayPal, and Yahoo provided a solution for consumer-facing authentication services, but

there was nothing in the protocol to limit it to consumer-facing scenarios.

OIDC offers benefits to users, application developers, and identity providers. Website

developers can delegate the work of implementing authentication and password reset

logic to an OIDC provider. Users benefit because they can leverage one account to log in

to many sites without exposing their account credentials to those other sites. Users have

fewer usernames and passwords to manage and enjoy single sign-on. Providers may

benefit if OIDC support attracts more users to their platform. OIDC provides the web

single sign-on benefits that were attractive in SAML 2 and, when combined with OAuth 2,

provides a solution with authentication as well as the API authorization capabilities needed

by modern applications.

�OAuth 2.1
After the publication of the OAuth 2.0 specification in 2012, technology and applications

continued to evolve. To address changes, several additional specifications and

documents describing best practices were published. By 2020, application developers

were faced with the prospect of finding and reading many lengthy OAuth 2–related

documents, and then carefully reconciling the differences between them, to fully

understand the current best practices for using OAuth 2 in different types of applications,

such as browser-based applications, native mobile applications, and classic web

applications.

At the time of writing, a new draft OAuth 2.1vii authorization framework specification

document has been published to consolidate, reconcile, and merge several earlier OAuth

2–related specifications and best practice recommendation documents. The OAuth 2.1

specification document is meant to replace the OAuth 2.0 specification document. The

Chapter 3 Evolution of Identity

31

new version includes updates for native applications and browser-based applications as

well as several security-related updates. It also removes some elements included in the

original OAuth 2.0 specification which are no longer recommended. This book is aligned

with OAuth 2 as described in the draft OAuth 2.1 authorization framework specification.

We will include a brief discussion of some features which were removed from OAuth

2.1, to help you understand how these features worked and why they are no longer

appropriate. We will use the more general term “OAuth 2” except when referring to a

specific version of the framework specification.

The previous sections provided a brief history of different solutions for managing

identities and authenticating users. We’ll close with a few words on the benefits of

standard protocols.

�Standard Protocols
The next several chapters will describe three commonly used industry standard identity

protocols and how they work. But first, why use an industry standard protocol? First,

as open standards, these protocols have been scrutinized for flaws by many people, so

they are less likely to have vulnerabilities than something you’d invent yourself. Second,

these protocols are widely used, providing interoperability between your application

and service providers which support the protocols. Third, if you wish to access user

profile data from services such as Google, you will have to use the standard protocols as

implemented by these services. Similarly, if your application will be used by enterprises,

the enterprise may expect your application to use one of these protocols. Fourth,

the protocols designed for authentication support single sign-on which represents

convenience for your users. Finally, using an existing protocol can save you time as many

programming languages offer SDKs that support them. So, there you have five good

reasons to use industry standard identity protocols!

If you are new to the identity space, it may at first seem a little daunting to learn

these protocols and possibly tempting to invent a simpler authentication scheme of your

own. We have two words for that: “Just Don’t!” We hope this book will make it easier

for you to understand how to use these protocols. We hate to discourage innovation,

but innovation in the authentication space should be done with care. Your innovative

energies would be better spent on the core value proposition of your application.

Chapter 3 Evolution of Identity

32

�Summary
We’ve reviewed several approaches to identity management, authentication, and

authorization. The advantages and disadvantages of each are helpful to keep in mind

when evaluating the benefits of new designs. Before deciding upon the protocol(s) you

need, however, it’s helpful to consider where the information on your users will come

from and reside. This is part of identity provisioning which we’ll cover next.

�Key Points
•	 Identity management, authentication, and authorization approaches

have evolved over time.

•	 Early approaches often involved application-specific identities and

credentials.

•	 Centralization of identity data with directory services enabled a

single identity and credential, but this had to be entered by a user

into each application (in the absence of other complementary

technology).

•	 Single sign-on servers provided session management so users

could log in once and access multiple applications, within the same

domain, with one authentication.

•	 SAML 2 and WS-Fed provide single sign-on and federated identity

across domains.

•	 OAuth 2 provides a solution for authorizing applications to call APIs.

•	 OIDC provides a layer on top of OAuth 2 for authenticating users and

returning information to applications in a standard format about the

authenticated user.

•	 OAuth 2.1, currently in draft form, consolidates several OAuth 2–

related specifications and best practice documents released after

the publication of the original OAuth 2.0 authorization framework

specification.

Chapter 3 Evolution of Identity

33

�Notes

	 i.	 http://saml.xml.org/saml-specifications

	 ii.	 http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-

federation-1.2-spec-os.html

	 iii.	 http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-

federation-1.2-spec-os.html

	 iv.	 https://openid.net/specs/openid-authentication-1_1.html

	 v.	 https://tools.ietf.org/html/rfc6749

	 vi.	 https://openid.net/specs/openid-connect-core-1_0.html

	 vii.	 https://oauth.net/2.1/

Chapter 3 Evolution of Identity

http://saml.xml.org/saml-specifications
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-­spec-­os.html
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-­spec-­os.html
https://openid.net/specs/openid-authentication-1_1.html
https://tools.ietf.org/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://oauth.net/2.1/

35

CHAPTER 4

Identity Provisioning
The more identities a man has, the more they express the person they
conceal.

—John le Carré, from Tinker, Tailor, Soldier, Spy (1974)

The first step in the life of an identity is its creation. If Descartes had lived in the time

of Internet identity, he might have quipped, “Ego signati sursum, ergo sum” (I signed

up, therefore I am). Provisioning is the act of establishing identities and accounts for

your application. As defined in Chapter 2, an identity includes at least one identifier

and various additional user profile attributes. An online account is associated with

an identity and can be used to access protected online resources. The objective of the

provisioning phase is the creation or selection of a repository of user accounts and

identity information that will be used in the authentication and authorization of users as

they access protected resources.

�Provisioning Options
For an application developer, the identity provisioning phase involves getting users and

creating accounts and identity profiles for them. One obvious approach for this is to have

users sign up for a local application account, but that isn’t the only possibility. A list of

approaches to consider includes

•	 A user creates a new identity by filling out a self-registration form.

•	 A special case of self-registration is sending select users an invitation

to sign up.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_4

https://doi.org/10.1007/978-1-4842-8261-8_4

36

•	 User identities are transferred from a previously existing user

repository.

•	 An identity service with an existing repository of user identities is

leveraged.

•	 An administrator or automated process creates identities.

These approaches are not mutually exclusive; in some cases, a combination of

approaches might work best. We’ll describe each in more detail along with some

advantages and disadvantages for each.

�Self-Registration
One option is to have users create a new account for your application and specify their

identity information via self-service sign-up. This requires enticing users to your site,

having them fill out a registration form and then storing the collected information. This

is a common approach for consumer-facing sites and requires you to design and create

the sign-up form(s). The sign-up form and process must be capable of scaling to the

expected volume of user sign-ups especially for a big, widely announced launch. Self-

registration also necessitates privacy notices about the information you are collecting

and obtaining the user’s consent for the planned use of the information collected.

You should keep the information requested to a minimum as users may abandon the

registration process if too much data is required.

With a self-registration form, you control the user sign-up experience. You can

customize the information you collect and ask the user directly for information that may

not be available from other sources. Self-registration is more scalable, at least compared

to having administrators manually create accounts. On the flip side, there is work to

implement and maintain a registration form, along with procedures for obtaining

user consent for the data collection and processing. In addition, having to fill out a

registration form may deter some users from signing up. Table 4-1 summarizes some of

the advantages and disadvantages of using a registration form.

Chapter 4 Identity Provisioning

37

Table 4-1.  Self-Registration

Advantages Disadvantages

• � Ability to collect user attributes that don’t exist

elsewhere.

• � Control over user registration experience.

• �S calability through self-service.

• � May deter some prospective new users from

signing up.

• � Liability associated with storing login

credentials.

�Progressive Profiling

You can reduce the information a user has to enter upon sign-up by using progressive

profiling, the practice of building up user profile attributes for an identity over time,

instead of requesting them all at once. With progressive profiling, a user is asked to

provide minimal attributes when they sign up. If the user later performs a transaction

that requires more information, it is collected at that time. Alternatively, additional

information can be gathered after a certain amount of time has passed or a set number

of logins. Progressive profiling reduces the sign-up friction that a lengthy initial sign-up

form would present. It is often used in conjunction with self-registration sign-up, but can

be used with other provisioning options.

�Invite-Only Registration

A variant of the self-service registration approach is the invite-only registration flow. In

this scenario, specific users are invited to sign up. The invitation may be triggered by

another user. Some social networking sites use this approach to have users invite their

friends to join the site. The invited user gets a link which takes them to a sign-up form

where they can register. The invited user should create the password for their account

when they register, rather than having it included in the invitation, so that only the user

knows the password.

An invitation may also be triggered by an administrator of a site. This case may

involve a registration form for the user, or, if the administrator has already provided all

account data needed, it might only involve email address validation and/or a password

reset. This technique might be useful to invite specific users to test an early access

(alpha) version of an application or release.

Chapter 4 Identity Provisioning

38

With an invite-only sign-up, access to the registration form is restricted to a select

group of users who receive an invitation. The invitation can be delivered via channels

such as email or text message and contains a link that allows the user to register. The

registration page can lock the email address or phone number to that used in the

invitation so it cannot be changed at the time of registration. This prevents an uninvited

person from stealing someone else’s invitation and signing up as themselves. The link

in the invitation can also have an expiration associated with it, if necessary, and each

invitation is usually tracked so it can only be used once.

An invite-only flow can also be used for situations where you need to create an

account in order to assign privileges to it before sending the invitation. This approach

could be used to establish employee accounts for new hires or customer accounts for

access to early access (alpha) application environments. An administrator or automated

process can create the account, assign it privileges, and then trigger the sending of

the invitation link to the new user. The user clicks the link and provides additional

information in a registration form if needed. The information entered by the user can be

associated with the previously created account. The account is then ready for the person

to use and has the privileges previously assigned to the account by the administrator.

The invite-only flow has similar considerations to the self-registration option

described previously. It can additionally protect against registrations by hackers

and bots, unless, of course, they find a way to finagle an invitation. An invite-only

registration flow obviously requires extra work to implement the invitation mechanism

as well as access control to limit access to the invitation distribution. It may require

work by an administrator to issue the invitations or to create an automated process to

do this. As with open self-registration, the invite-only registration process should be

capable of supporting the expected volume of invited sign-ups. Some advantages and

disadvantages of the invite-only sign-up approach are shown in Table 4-2.

Chapter 4 Identity Provisioning

39

Table 4-2.  Invite-Only Registration

Advantages Disadvantages

• �A bility to collect user attributes not

available from other sources.

• � Control over user registration experience.

• �S ome protection against registration by

hackers and bots.

• �S calability through self-service if users

invite others.

• �T he work to implement the invitation mechanism

and control access to it.

• �T he work to issue invitations.

• � May deter some prospective new users from

signing up.

•  Liability associated with storing login credentials.

�Identity Migration
If identities already exist elsewhere, they can be moved from one repository, such

as a legacy database, to another repository that can be used by the new application.

The advantage is that users don’t have to provide information they already entered

elsewhere, and the new repository can be quickly populated with users from the legacy

repository.

While most user profile attributes can be extracted and moved, passwords represent

a challenge. Passwords are typically stored in a hashed format. Hashing converts them to

a string of random characters, and this cannot be reversed to get the original “cleartext”

value. Each time the user logs in and enters their password, it is hashed and the hashed

value is compared to the password that was hashed and stored when the user registered

or last reset their password. Storing passwords in hashed format allows validation of

entered passwords but prevents administrators with access to password repositories

from seeing cleartext passwords and makes it difficult to use the passwords if the storage

repository is compromised or stolen.

There are different algorithms for hashing passwords and different inputs passed

to the hashing algorithms such as salts and iteration counts. As a result, a password

hashed in one system cannot necessarily be imported and used by another system. If

two different systems use different hashing algorithms or different inputs to the same

algorithm, it is not possible to move a hashed password from one system to the other

and have it be usable by the new system. In such circumstances, there are a few solutions

to consider for migrating identities to a new system.

Chapter 4 Identity Provisioning

40

�Support Legacy Hashing Algorithm

One solution is to move the hashed passwords to the new system and update the new

system to support the hashing algorithm(s) used by the legacy system. This requires

implementing in the new system the legacy system’s hashing algorithm(s) and a means

of determining which hashing algorithm to use with each account. This will enable

moving all identity data and hashed passwords from the legacy system to the new system

without requiring the users to reset a password. Table 4-3 summarizes some advantages

and disadvantages of supporting legacy hashing algorithms.

Table 4-3.  Supporting Legacy Hashing Algorithms

Advantages Disadvantages

• A voids need for password reset.

• �T ransfers all accounts in a usable

state.

• � Work to implement legacy hashing algorithm(s).

• � Liability associated with storing login credentials.

• � Inherits any weakness associated with legacy hashing

algorithms.

�Bulk Identity Migration

If it is not possible for the new system to support the legacy hashed passwords, it may

be possible to extract the users’ identity data, minus the hashed passwords, from the

legacy system and import it into the new system. The new system would then need

to send each user a unique password reset link to establish a new password for their

account in the new system. This requires the identity information in the legacy system

to include a validated email address, and that a password reset link sent via email is

deemed adequately secure for the sensitivity of the information handled by the new

system. If other forms of communication besides email are used, the same validation

and security requirements apply. This solution may also be useful if the passwords in the

legacy system were not stored in a hashed form and the new system requires newly reset,

hashed passwords for improved security. Users should be notified in advance about the

migration, so they will know to expect the password reset message and not view it as an

attempted phishing attack.

Chapter 4 Identity Provisioning

41

When forcing users to reset their passwords is acceptable, a bulk transfer can be

done all at once, making it possible to retire the legacy system soon after the transfer.

Table 4-4 summarizes some advantages and disadvantages of a bulk transfer of users.

Table 4-4.  Bulk Migration of Users

Advantages Disadvantages

• T ransfers all users at once.

• �E nables immediate

shutdown of legacy user

repository.

• �N o latency added at login

time to check a legacy

system for a user account.

• � Code to transfer identities

can be independent of

application code.

• �T ransfers all accounts, even inactive accounts, unless they are

filtered out during the transfer.

• �R equires all users to set new password via account recovery,

unless the new system can support the legacy hashed passwords.

• � Migrating all users at once may cause an outage or delay the

migration if things go wrong with the migration and there is no

backout plan.

• � If multiple applications use the legacy repository, they must

migrate at the same time if the legacy repository is to be shut

off after migration.

• � Liability associated with storing login credentials.

�Gradual Migration of Users

Identities can also be transferred gradually as users log in. This requires a login

mechanism that prompts users for credentials, validates the credentials against the

legacy repository, and, if validated, retrieves identity information from the legacy

repository and stores it along with the entered credentials in the new repository. The

password entered by the user, after validation against the legacy system, is hashed

by the new system using its hashing algorithm and stored in the user’s account in

the new system. This option will only migrate users who log in and requires the new

authentication system to have direct access to the legacy system to validate the entered

password and retrieve user profile information. This is convenient for users because no

password reset is required, but it means the legacy system must remain operational until

the identities have been migrated. This solution will not transfer inactive accounts (users

who don’t log in).

Chapter 4 Identity Provisioning

42

With the gradual migration approach, a subset of users may not log in and therefore

not have their identity information migrated. You can set a cutoff date for the migration

and decide what to do about any identities that have not been migrated by that date. One

possibility is to declare the unmigrated accounts inactive and abandon them. A common

approach is to use the bulk move option described previously on the inactive accounts

so you can decommission the old system. You may want to migrate only a subset of

identities that you have reason to believe will be active again in the future. If you do not

migrate all remaining identities, you should consider reserving the account identifiers

of unmigrated identities to prevent them from being used by new accounts in the future.

Chapter 15 explains why.

Of course, a user whose identity has not yet been migrated might forget their

password. The user could use the new system to enter their email and get a password

reset token or link. The user would confirm receipt of the email and be prompted to

enter a new password. The new system would create an account for the user in the new

system, with information retrieved from the legacy system for an account with matching

email address. This scheme is only appropriate if there is no possibility that an email

address used in the old system could have been recycled and assigned to a different user.

The gradual migration of active identities, combined with bulk migration of

remaining identities and credential reset, provides a nice user experience for active users

while not abandoning infrequent users. If using this approach, care should be taken

to minimize exposure of login credentials, ideally by using an identity provider service

that implements such a migration. In this case, the credentials are only exposed to the

identity provider service that will handle authentication with those credentials going

forward.

A final consideration with the gradual migration option is that it may be confusing

for users if other applications are using the legacy identity store and the user resets

their password in the new application to which their account has been migrated. If the

new password is not synchronized back to the legacy identity store, the user may have

one password for the applications that continue to use the legacy identity store and a

different password for the new application. Performing synchronization back to the

legacy system would depend on technical feasibility, cost, and the security of the legacy

system. Alternatively, clear differentiation of the legacy and new login screens could

reduce confusion to some extent.

Table 4-5 summarizes some advantages and disadvantages of a gradual migration.

Chapter 4 Identity Provisioning

43

Table 4-5.  Gradual Migration of Users

Advantages Disadvantages

• � Inactive accounts can be weeded out.

• �N o password reset required (for users who log

in during migration).

• �S preads out risk of outages by migrating

identities gradually (no big bang risk).

• � Can support continued use of previous sign-up

mechanisms or applications that use the legacy

identity repository during the gradual migration.

• �R equires that legacy identity store

is accessible from new application’s

authentication mechanism.

• � Legacy identity store must remain accessible

until enough identities are transferred.

• �T ransfer mechanism must be maintained

throughout the gradual migration.

• �A user’s first login after migration starts

may have some latency as identity data is

transferred from the legacy system.

• �P otential for user confusion after password

reset if other applications continue to use

the legacy data store.

• �P otential for user confusion if users can

make user profile updates in both legacy

and new systems after migration.

• � Implementation work cannot be easily

decoupled from the application team.

• � Liability associated with storing login

credentials.

Any time identity data is moved from one system to another, it is important to

consider any changes that might occur during the transition. The easiest approach

is to prohibit users from making changes to either the old or new system during the

transition, but this may not be feasible in some cases. If users are allowed to make

changes to their identity information in the old system during an identity data migration,

a plan is needed for how to identify and transfer such interim changes from the old

system to the new system. In the case of a gradual identity migration, the user’s account

in the old system can be disabled when the user’s account is migrated, preventing

further changes in the old system. This assumes there are no other applications which

will continue to use the old system. Requirements for each environment can be unique,

so creating a plan that takes into account all applications in an environment, the

migration timing, and potential for user changes during the migration is essential.

Chapter 4 Identity Provisioning

44

�Administrative Account Creation
Yet another solution to consider for creating accounts and identities is to have an

administrator or automated process create them. The best approach for a situation

should take into account

•	 The size of an organization

•	 The frequency with which new users need to be added

•	 Whether provisioning needs to be done across domains

The following sections provide a few variants of this solution to consider.

�Manual Account Creation

Having an administrator manually create accounts for new identities will only be

practical for very small organizations (low tens of users) with an infrequent need

to add new users and few applications. For very small organizations, the work to

implement account provisioning automation may not be justified. In the absence of

automation, written procedures and checklists can be used to ensure necessary account

provisioning steps are consistently followed. If passwords are used as credentials, the

account provisioning procedures should ensure that administrators do not know the

user’s password. This can be done by sending a password reset link to the user and/or

requiring a password reset upon initial login. If the organization grows or starts to need

more than a handful of applications, some form of automation will be beneficial for

consistency, accuracy, security, and trackability.

�Automated Account Creation

This approach is often used for employee identities. When a new employee joins a

company, the company can automatically create an account for the employee using

identity information from a Human Resources (HR) system. If large volumes of accounts

need to be created on an ongoing basis, workflow software or specialized account

provisioning software can be used to automate account creation and provide identity

attributes for accounts.

Chapter 4 Identity Provisioning

45

�Cross-Domain Account Creation

In several situations, account provisioning may need to occur across domains. This can

occur when

•	 Maintaining employee accounts in external SaaS (Software-as-a-

Service) applications

•	 Maintaining partner accounts in corporate identity repositories or

applications

•	 Maintaining business customer user accounts in business-facing

applications

•	 Maintaining guest professor or student accounts in collaborating

universities’ systems

•	 Maintaining guest user accounts in collaborating government

agencies’ systems

Ideally, modern authentication protocols would convey user profile attributes

to applications in authentication tokens at the time of login, but provisioning or

synchronizing identity information across domains may still be needed if

•	 Applications are not designed to extract identity information from

authentication tokens.

•	 The identity profile information is too large to convey in

authentication tokens.

•	 User logins are not frequent enough to keep profile information

sufficiently up to date.

When needed, the provisioning of accounts and identity information across domains

is still commonly done using proprietary solutions, but an industry standard protocol,

SCIM 2.0 (System for Cross-domain Identity Management),i was defined in 2015 to

provide a more standard approach to sending and updating identity information from

one domain to another. SCIM 2.0 provides a standard REST API for one system to send

requests to another system for adding, modifying, or deleting user and group records.

This can be used to keep identity data synchronized between different systems. A

common use case is for a centralized identity repository to send user account and profile

Chapter 4 Identity Provisioning

46

updates, as well as account deactivation requests, to other service provider systems.

SCIM 2.0 also provides an optional common user schema, though user profile attributes

vary widely across systems so mapping user profile attributes between systems is usually

required.

Table 4-6 shows some advantages and disadvantages of administrative account

provisioning.

Table 4-6.  Administrative Account Creation

Advantages Disadvantages

•  User doesn’t fill out registration form.

• �A dministrator can assign customized privileges

for the account.

• � Can incorporate manual identity validation step

if required by the organization creating account.

• � Can be automated via workflow or identity

provisioning software.

• �T ime-consuming if not automated.

• �R equires care to ensure that only the user

knows the password for the account created.

• � Liability associated with storing login

credentials if stored locally.

�Leverage Existing Identity Service
It’s also possible to leverage an identity that already exists for a user in an identity

provider service. This allows users to employ an account they already have such as at a

social provider like Facebook or Google, a corporate identity provider service operated

by their employer, or a government identity service. With this option, your application

delegates responsibility for authenticating users to an identity provider and receives

back a security token with information about the user’s authenticated session and,

optionally, attributes about the user.

Leveraging accounts in an existing identity provider service may mean less

work for users if it reduces the data they have to enter into a registration form. It also

usually means users don’t need to set up another password. This may translate to less

development work if you don’t have to implement a login form or account recovery

mechanism because all users authenticate via an identity provider service. It may also

reduce your risk somewhat if user passwords are not stored in your infrastructure. If an

identity provider service does not contain all the attributes your application needs about

the user, you can always collect additional data later. Of course, it’s a good idea to vet

Chapter 4 Identity Provisioning

47

an external identity service before trusting it, and the use of an identity provider service

requires collaborative troubleshooting as described in Chapter 16. Table 4-7 summarizes

some advantages and disadvantages of using an external identity service.

Table 4-7.  Leveraging an Existing Identity Service

Advantages Disadvantages

• � Better user experience if it reduces the

data required to sign up.

• �E asier for user to remember password

if identity provider account is used

frequently.

• �Y ou may not have to implement a login

form or account recovery mechanism if all

users authenticate via the identity provider

service.

• � Less risk if you do not store user

passwords.

• �Y ou may have to collect additional profile

information not available from the identity provider

service.

• �Y ou need to evaluate the service and availability

levels of the external identity service to ensure it

meets your needs.

• � May require additional development or

configuration work for each identity provider

service to be used.

• � May require configuration work at each identity

provider service for each application you have,

unless you use an authentication broker service

(described in Chapter 7).

• � May require collaborative troubleshooting with

another organization when issues occur.

In addition to existing identity provider services, you can of course set up your own,

new identity provider service for use by your application. If you choose that route, many

cloud services are available to facilitate the task, and any of the previous provisioning

options could be used to populate the new identity provider service with users.

�Selecting an External Identity Service
If you choose to leverage an external identity service, it’s important to consider the

strength of the identity issued by a service as well as the suitability and availability of

a provider for a particular environment. The strength of an identity is one factor in

determining how much trust can be placed in the identity, and several factors influence

the strength of an identity:

Chapter 4 Identity Provisioning

48

•	 The validation of the information used to establish the identity

•	 The identity’s implementation that prevents it from being forged or

used by others

•	 Recognition of certain issuers of identities as authoritative for a

particular domain

Table 4-8 provides a comparison of characteristics of strong vs. weak identities.

Table 4-8.  Characteristics of Strong vs. Weak Identities

Strong Identities Weak Identities

• � Linked to a real person, who can be held accountable for

actions taken with the identity and associated accounts.

• � Identity attributes are validated during account issuance

process.

• � Issued by entity recognized as authoritative for a particular

context.

• � Contains mechanisms to protect against forgery or

unauthorized use.

• �A nonymous, cannot be linked

to a real person.

• � Little validation of identity

attributes.

• � Issued by an entity with little

recognized authority.

• � Few protections against forgery

or unauthorized use.

The strength of an identity is based on the trustworthiness of the issuer, the

validation of identity data, the practices behind the issuing and distribution of the

identity, and, in some cases, agreements, either implicit or explicit, between the issuer

and any entities trusting identity information from the issuer. The next sections provide

examples.

�Self-Registered Identities
A self-registered identity, such as a basic Gmail or Yahoo email account, is an example

of a weak identity. You can sign up for these accounts using any identifier that has not

already been taken, such as frodo_baggins@gmail.com or santa.claus@yahoo.com. You

do not have to supply true information in the sign-up form, and the service provider

does not validate most of the identity data. Several social providers have added security

features to protect against unauthorized use of accounts, but self-registered accounts

are typically not considered authoritative for identity information due to the lack of

Chapter 4 Identity Provisioning

49

validation. Identity providers with self-registered accounts and little validation of

attributes are most suitable for consumer-facing applications that do not require strongly

validated identity data and would otherwise rely on self-registered information. Allowing

users to authenticate via such providers gives users convenience and the ability to reuse

a common profile.

�Organization Identities
Many organizations, such as companies or universities, will issue an online identity

for their members, such as employees or students, respectively. These identities meet

some of the criteria for a strong identity. For example, in the United States, one must

show government-issued identity when starting a new job. This enables validation of the

identity attributes used to establish an online account within the company and ties the

account to a real person. Most companies implement measures in their identity service

such as minimum password length and possibly stronger forms of authentication,

to protect an account against unauthorized use. The corporate identity service is

authoritative for user login, at least within the domain of the issuing company. However,

a user typically cannot log in via their corporate identity service and access services

outside the organization and its contracted SaaS services. A user could not, for example,

expect to log in via their corporate identity service and access a government site to buy

stamps as the government site would not have any basis to trust the corporate identity

service. Organization identity services are primarily suitable for use by applications

selected by the organization to provide services to organization members.

�Government Identities
A government-issued online identity, such as those issued by the United Kingdom’s

EasyID,ii Belgian eID,iii or Estonian e-identity,iv is an example of a stronger identity. These

require supplying information that is checked by a validation process. Some require

applying in person at a government office, and some can be done online. Required

documentation includes government-issued identity documents and photos that clearly

show one’s face and may include fingerprints and financial questions. The resulting

identity contains validated information and employs several security mechanisms to

prevent unauthorized use.

Chapter 4 Identity Provisioning

50

The EasyID service, for example, can be used within the United Kingdom to prove

identity and access various services conducted via the Post Office. The Belgian eID

program issues an electronic identity that can be used for identification, digitally signing

documents, and logging in to public services. Estonia issues a mandatory, secure,

national digital identity and card which Estonians use to travel within the EU, as well as

access e-services such as voting and logging in to bank accounts, access medical records,

file taxes, and sign documents with a digital signature. Government-issued identities

provide more strongly validated identities, but may be limited to users from one country

and may be limited to use at the issuing government’s services. Wider use would need

international standards similar to those for passports as well as a model for funding the

incremental service operation costs.

�Industry Consortium Identities
The Belgian Mobile IDv project is a consortium of financial institutions and mobile

network operators to provide a strongly validated identity for anyone with a Belgian-

issued eID and a mobile phone. It’s used to register at services, digitally sign documents,

and securely log in as well as confirm transactions. The service includes a mobile

application, “itsme,” which is used to authenticate without the need for passwords. The

service is used to access Belgian government services such as social security and tax

services as well as telecom and ebanking applications.

�Identity Provider Selection
If you are creating a consumer-facing application that does not require validated identity

information, allowing users to authenticate via an existing self-registered identity, such

as a social provider account, offers users convenience over signing up with the same self-

registered information at multiple sites.

If you are creating an employee-facing application, however, relying on social

identity provider accounts to access company applications can be problematic because

the user owns their identity and account at these providers. The credential standards of

the provider may not meet company needs, and when an employee leaves the company,

you could not delete their account to terminate their access. If, on the other hand, a

social provider account is linked to a local application account, to enable logging in to

Chapter 4 Identity Provisioning

51

the application via the social provider identity, the link can be removed and the local

account disabled if an employee leaves. In the absence of such account linking, access

would often need to be removed within individual applications, and one or more

applications might be missed. For employee-facing applications, therefore, it’s best to

use an identity service where the employing organization owns the accounts. The same

logic applies to other organizations, such as educational institutions.

An organization-controlled identity service provides a single place at which

the organization can provision accounts as well as shut off accounts if an employee

or member leaves the organization. It also gives a single point at which to enforce

credential strength/policy and deploy multi-factor authentication as well as log

authentication activity. There are several cloud vendors that offer an identity service on

a subscription basis. Cloud services such as Google Apps, Azure AD, Auth0,1 Amazon

Cognito, and Okta offer cloud-based identity services. Organizations can provision

employees or members into these services and have complete control over the accounts

including the ability to quickly terminate or disable the accounts of anyone who leaves

the organization.

If you are creating an application where your customers are businesses, you will

likely need to support a variety of different identity providers because each business

may have its own preferred identity provider service and want their users to sign in to

your application via their chosen identity provider. Your business-to-business (B2B)

customers may ask you to support authentication against cloud identity providers, such

as those mentioned in the previous sections, or private identity providers that they

operate themselves on their corporate network. It is best to do this via standard identity

protocols such as OIDC or SAML 2. Implementing authentication directly against a

customer’s internally hosted database or directory service would involve custom work

for each customer and may expose your staff to passwords or administrative access

which significantly increases your potential liability. Table 4-9 summarizes the types of

identity providers that are most common for different scenarios.

1 Full disclosure: At the time of writing this book, the authors worked for Auth0.

Chapter 4 Identity Provisioning

52

2 Social Identity Providers are identity services such as are offered by Facebook, Twitter, Google,
GitHub, or LinkedIn.

Table 4-9.  Identity Providers for Different Customer Types

Scenario Common Type(s) of Identity Provider

B2C: Business to

consumer

Social Identity Providers2

Identity services such as Azure AD or Auth0

Application-specific repository

B2E: Business to

employee

Identity services such as Google Apps, Azure AD, Auth0

Any OIDC or SAML 2–compliant identity provider

B2B: Business to

business

Identity services such as Google Apps, Azure AD, Auth0

Any OIDC or SAML 2–compliant provider controlled by the business

customer

To recap, you should consider the target audience and strength of identity needed by your

application. If a strong identity is required, it must be issued by a process which validates the

information used to establish the identity and includes protections, such as strong password

requirements or multi-factor authentication, to prevent unauthorized use of the identity. It

must also be issued by an entity recognized as authoritative for the application’s domain.

�Identity Proofing
The need for validated identity has been increasing. One important driver is the need to

combat fraud, identity theft, and money laundering, especially in industries such as the

financial sector. In the United States, the USA Patriot Actvi requires financial institutions

to validate the identity of account holders, maintain records of the information used

in such validation, and check if an account holder is on a list of known or suspected

terrorists or traffickers. These measures are designed to reduce funding for organizations

involved in terrorism, narcotics, and human trafficking. Similar requirements have been

enacted by governments around the world, and they are sometimes called Know Your

Customer (KYC) and Anti-Money Laundering (AML) requirements.

Chapter 4 Identity Provisioning

53

There are additional drivers for identity validation. In the United States, the

Immigration Reform and Control Act (IRCA) of 1986 requires employers to validate

the identity and employment eligibility of new employees. Businesses with sensitive

intellectual property may validate the identity of new employees to reduce the risk of

espionage. Applications targeted for a specific group, such as members of a trade union,

may need to validate identity as part of eligibility requirements. Background checks

can validate that an identity meets certain requirements, but at some point, the person

applying must prove that they are the person represented by the submitted identity

information. In the past, identity validation often took place via in-person presentation

of identity documents. When an online service has no storefront at which in-person

identity verification can take place, or when businesses hire remote employees, previous

validation approaches may no longer be feasible. Many businesses may need to validate

the identity of online users, and this process is known as identity proofing. The National

Institute of Standards and Technology (NIST) in the United States has published a

document on Digital Identity Guidelinesvii that outlines different identity assurance

levels and the type of identity validation required for each.

A variety of digital services have sprung up to assist with this need. Some services

validate an identity by having an applicant answer a series of multiple-choice questions

that only the legitimate owner of an identity is likely to know, such as questions about

past financial transactions. Other services will have a user record a selfie video to prove

liveness, match the face on the video with a government-issued identity document,

validate the identity document is legitimate, and retrieve validated identity attributes

about the person from the identity document. Some providers can additionally check an

identity against government lists of people and organizations on global sanctions and

watchlists.

At the time of writing, providers such as ID.me, Sumsub, Socure, and Trulioo are

a few examples of vendors offering solutions to help validate the identities of self-

registered users. They can help businesses automate the process of identity verification

to comply with government regulations, combat money laundering, or validate a user

is a member of a particular class such as a military veteran or credentialed teacher.

If validated identity is a requirement for your project, using such services can help

validate user identity and profile attributes, freeing up application developers to focus

on differentiating innovation for your application. It is important to note, however, that

Chapter 4 Identity Provisioning

54

online identity validation services may not yet meet requirements for certain cases, such

as identity verification for employment in the United States with the I-9 form required by

the IRCA.

�Choosing and Validating Identity Attributes
A common question that arises during the design of provisioning processes is how to

identify a user. Email addresses have been widely adopted as identifiers. Using an email

address as an identifier has the advantage that it includes a domain name and thus

provides built-in uniqueness across domains. This eliminates the need for a user to

find a name on each site that hasn’t been taken already. An email address is probably

easier for a user to remember because it is used frequently, and it can double as a

communication attribute. Email address identifiers, however, create several issues.

Users may need to change their email address for any number of reasons and still retain

access to their account as well as transactions performed using the previous email

address. In addition, an email provider may reassign a previously used email address

to a new owner. For business-facing applications, some businesses do not provide their

employees with email accounts which can be an issue if an application assumes the

availability of an email address. Similarly, applications marketed to children should

recognize that some children may not have an email address.

Using a user-selected username also has advantages and disadvantages. A username

may make it easier for a person to set up multiple accounts if needed and is typically

shorter and therefore easier to type on mobile devices. A user must choose a unique

username, however, and if their favorite username is already taken on a site, they have

to choose another. It may be hard for users to remember which username was used at

each site, which may create a need for a forgotten username feature. When one company

acquires another, it often requires the merging of user repositories which may involve

eliminating duplicate usernames. Table 4-10 lists some common advantages and

disadvantages of different identifiers.

Chapter 4 Identity Provisioning

55

Table 4-10.  Advantages and Disadvantages of Account Identifiers

Advantages Disadvantages

Email: Globally unique.

No need to hunt for a name that isn’t taken already.

May be easier to remember than a username.

Can double as a communication attribute, such as

for password resets.

Email:

May need to be changed by a user.

May be reassigned by an email provider to a

new user.

May be reassigned by a corporate provider to

a new user.

Terminated by the employer if a user leaves.

Not all companies issue email addresses.

Children may not have email addresses.

Family members may share an email address.

May expose personal information (user’s

name).

Exposure as display name may result in spam

email.

Username:

Easier to set up multiple accounts at a site.

May be shorter to type on mobile devices.

Can be used in searches, allowing other attributes

with personal data to be encrypted.

Username:

Only unique within an application domain.

Merging user repositories problematic after

acquisitions.

May be harder for a user to remember which

username was used at each site.

A user may want to change a username over

time.

May expose personal information if used for

display and it contains personal information.

(continued)

Chapter 4 Identity Provisioning

56

�Attribute Usage
Some of the disadvantages listed earlier stem from using the same attribute for multiple

purposes. They can be avoided by decoupling and using a different attribute for each of

the following purposes:

•	 Identifier for logging in

•	 Display name

•	 Notification/communication/account recovery

•	 Internal account implementation such as for

•	 Linking an identity/account to application records

•	 Capturing user activity in log files

•	 Consistent identifier for a user over time for audit purposes

The last three in the list are used for internal account implementation and should use

a unique, internal account identifier that is not impacted by a user’s need to change profile

attributes such as their email address, phone number, or their legal name. In addition, the

following suggestions can avoid some of the other disadvantages outlined in Table 4-9:

Table 4-10.  (continued)

Advantages Disadvantages

Phone number:

Globally unique (with country code).

No need to hunt for a free identifier. Can double as

a communication attribute, such as for password

resets.

May be easier for a user to remember than a

username.

Phone number:

Exposure as display name may cause spam

calls.

Might be reassigned to a new user over time.

May involve a charge to obtain a phone

number.

More difficult for a person to set up multiple

accounts at the same site.

May be changed by a user for various reasons.

May be terminated by a phone provider.

Chapter 4 Identity Provisioning

57

•	 Avoid exposing identifiers that may contain personal data.

•	 Use an internal account identifier in log files to avoid directly

exposing personal data in logs.

•	 Use an internal account identifier in application records.

•	 Allow users to specify a display name for use on screens/

printouts to protect privacy.

•	 Identifiers/attributes for logging in, display, and notification should

be distinct and easily changeable by the user.

•	 Allow setting multiple attributes for notification purposes, such as a

primary and secondary email, in case one becomes inoperable.

•	 Allowing usernames that are long, contain special characters, and that

can be changed by users enables flexibility. Users can use an email

address as their username if that is easier for them to remember, while

other users can use other values. A separate profile attribute besides

the username should be used for display purposes and another for

notification/contact information to decouple these different usages.

If your application will leverage an identity provider, and users will access multiple

applications through that identity provider, the use of Pairwise Pseudonymous

Identifiers (PPIDs) reduces the ability for someone to correlate the user’s activity across

different applications. For each user, a unique identifier is used between the identity

provider and each application. A given user might be identified with “a8h3” for one

application site and “c37j” for another. (In practice, the identifiers would be long,

opaque, unguessable strings.) Support for PPIDs may vary by identity provider.

�Validating Critical Attributes
In addition to using different profile attributes for different functions, it is important

to validate email addresses and other profile attributes if used in activities that impact

security and privacy. This includes attributes used for

•	 Authorization decisions

•	 Account recovery

•	 Delivery of sensitive information to the user

Chapter 4 Identity Provisioning

58

For example, if a user profile includes an email address, and the email address

attribute is used in authorization decisions, you should implement email address

validation. Similarly, email address attributes used for notification in account recovery

or delivery of sensitive information should be validated. The same holds true if a phone

number is used for such purposes. If you import identities from elsewhere, you should

ensure email addresses or other critical attributes used for the listed functions have been

validated before accepting them so that you can rely on the profile attributes.

Security and privacy-related issues can arise with unvalidated attributes. If users

can sign up using a fictitious, unvalidated email address and this attribute is used for

authorization, their fictitious email address may match authorization rules that grant

access to resources they are not really entitled to access. Validating email addresses

also prevents accidental entry of an incorrect address. Incorrect email addresses could

enable account takeover via account recovery mechanisms or result in the delivery of

sensitive information to the wrong recipient. For these reasons, it is critical to decouple

attributes for different purposes and validate any email addresses or other profile

attributes that are used in authorization decisions, account recovery mechanisms, or to

deliver sensitive information to users.

�Consent Management
A less obvious requirement that must usually be addressed as part of provisioning

processes is obtaining any necessary user consent for the collection, processing, and

use of their personal data as well as notifying users about their rights related to such

collection, processing, and use. Privacy legislation varies by jurisdiction but typically

requires that a site provide privacy-related notification to users and have a legal basis

for collecting and using data about individuals. Such legal bases include obtaining user

consent, fulfilling a contract, satisfying a legal obligation, or performing a task that is vital

to a data subject, in the public interest, or for a legitimate business purpose.

It is beyond the scope of this book to cover privacy requirements in detail, but we

will provide some considerations of technical features related to consent management

that may be useful for the account provisioning process. A need to obtain user consent is

primarily driven by privacy legislation, but, if done well, can facilitate user trust, which

in turn may make users more willing to engage with your site by sharing information,

responding to surveys, and consenting to practices such as personalization. Consent

management encompasses the processes and mechanisms for providing privacy-related

Chapter 4 Identity Provisioning

59

notification to users, obtaining their consent when required, allowing users to set

privacy-related preferences, and securely storing consent records to support compliance

with relevant privacy legislation.

Consent management includes displaying privacy notice(s) that describes

data collection and processing practices, including the use of cookies and tracking

technologies. Rather than a single opt-in vs. opt-out, best practices have evolved to provide

more granular choices that enable users to opt in to the use of various cookies and tracking

technologies, as well as the use of their data for functions such as marketing, ongoing

communications, and analytics. Progressive consent gathering can be used to reduce

consent fatigue on the part of users, but consent must be obtained prior to collection

and use of data about users unless another legal basis applies. Consent must also be

obtained in a way that complies with applicable privacy legislation. For example, in some

jurisdictions, a user’s ability to access content on your site cannot require the user to agree

to the use of their data for purposes such as analytics, personalization, or cross-marketing.

You will need to keep a record of consent obtained from users. Consent records

should include information such as

•	 Who gave consent, in the form of an identifier, such as email address

or other account identifier, or in more anonymous cases, a cookie or

device ID

•	 When the consent was given, in the form of a timestamp

•	 The site for which consent was given

•	 The purposes of processing for which the user has consented

•	 The version of privacy/consent notice used at the time of consent

•	 Any subsequent changes or withdrawal of consent

The data about users’ consent choices may be used in several ways, so the decision

about how and where to store it should consider such needs. It should be possible for

users to view and update their consent choices over time. User consent data may need

to be accessible by applications to trigger the execution of code which gathers data on

user behavior, for feedback and learning about users. Marketing applications may also

need consent data to govern communications sent to users. Lastly, auditors may need

to review records that show that user consent has been obtained. To support these

requirements, user consent data should be centralized and accessible by different

business functions and systems.

Chapter 4 Identity Provisioning

60

A site may collect different types of data about users, including what is known as

zero-party data, first-party data, and third-party data. Zero-party data is a term coined by

Forrester Research and refers to data that users provide themselves, such as preferences,

survey responses, or sharing information about themselves. First-party data is data

collected by an application about a user. It can include observations of user behavior on

a site and transactions the user submits. Third-party data is that collected or purchased

from third parties, to augment data collected by an application. The data you hold about

users may be subject to Data Subject Access Requests (DSARs).

Privacy legislation typically gives users, also known as data subjects in this context,

the right to access data held about them. Companies must respond to DSAR requests in

a timely manner, with the exact time varying by jurisdiction. The data collected about

a user during the provisioning process and beyond may be subject to such requests.

Applications must support a user’s right of access, right to rectification, right to erasure,

right to restrict processing, right to data portability, and right to object to processing.

Users must be able to see data held about them, rectify it if needed, and erase data, as

well as revoke or adjust any consent given earlier. You will need to implement processes

and/or online mechanisms to support these rights.

�Summary
We’ve covered several approaches that can be used to establish accounts for the users

of your application, including self-registration, progressive profiling, transferring users

from elsewhere, administrative processes, and leveraging identity provider services. In

selecting a provisioning approach, you will want to consider the strength and suitability

of the identity offered by each option against the sensitivity and target audience of

your application. You may need to design consent management processes to provide

notification and obtain user consent for the collection and processing of personal

data, and you may additionally need to utilize identity proofing services to validate the

identities of your users. Once you have an idea how your users will be created, you can

start implementing authentication and access control. Modern applications are often

designed starting with APIs, so we’ll start off in the next chapter with OAuth 2, which is

designed for protecting APIs.

Chapter 4 Identity Provisioning

61

�Key Points
•	 Provisioning is the process of creating an account and associated

identity information.

•	 Applications can create new accounts for users or leverage identities

in existing identity provider services.

•	 Progressive profiling can be used to build up user profiles over time.

•	 Email addresses and other attributes used for notifications to users

must be validated.

•	 Identities can be classified as weak or strong depending on a

provider’s practices.

•	 Weak identities are created with unvalidated information.

•	 Strong identities are based on validated information and

mechanisms to prevent forgery and unauthorized use. They must be

issued via secure distribution mechanisms by authoritative providers.

•	 In choosing identity providers, a service should match the strength of

the identity offered by the provider with the identity validation and

strength requirements of an application.

•	 A variety of services are available to perform online identity

verification which can help prevent fraud and meet legislative

requirements for knowing your customer and combatting money

laundering.

•	 Application designers should decouple and designate appropriate

user profile attributes for each of several purposes, including login,

display, notification, and internal tracking.

•	 To comply with privacy regulations, provisioning processes should

include consent management to provide privacy notifications to

users and obtain and securely store user consent for the collection

and processing of their personal data.

Chapter 4 Identity Provisioning

62

�Notes

	 i.	 https://tools.ietf.org/html/rfc7644

	 ii.	 https://www.postoffice.co.uk/identity/easyid

	 iii.	 https://eid.belgium.be/en/what-eid

	 iv.	 https://e-estonia.com/solutions/e-identity/

	 v.	 https://www.itsme-id.com/why-itsme

	 vi.	 www.fincen.gov/resources/statutes-regulations/usa-

patriot-act

	 vii.	 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-63a.pdf

Chapter 4 Identity Provisioning

https://tools.ietf.org/html/rfc7644
https://www.postoffice.co.uk/identity/easyid
https://eid.belgium.be/en/what-eid
https://e-estonia.com/solutions/e-identity/
https://www.itsme-id.com/why-itsme
http://www.fincen.gov/resources/statutes-regulations/usa-patriot-act
http://www.fincen.gov/resources/statutes-regulations/usa-patriot-act
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63a.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63a.pdf

63

CHAPTER 5

OAuth 2 and API
Authorization

The possession of great power necessarily implies great responsibility.

—William Lamb, British Member of Parliament, Home Secretary, and
Prime Minister. From a speech in the House of Commons, 1817

Modern applications are often designed around APIs. APIs enable applications to reuse

logic and take advantage of innovative services. APIs provide access to valuable data or

services, so they typically need to restrict API access to authorized parties. Applications

therefore need authorization to call APIs. If an application wants to call an API on a

user’s behalf to access resources owned by the user, it needs the user’s consent. In the

past, a user often had to share their credentials with the application to enable such an

API call on their behalf. This gave the application an unnecessary amount of access, not

to mention the responsibility of safeguarding the credential. In this chapter, we will cover

how the OAuth 2 Authorization Framework provides a better solution for authorizing

applications to call APIs.

In this chapter, we will provide an overview of the OAuth 2 Authorization Framework

aligned with the draft OAuth 2.1 version (draft 6) of the specification.i OAuth 2.1 is a

consolidation of the earlier OAuth 2.0 Authorization Framework,ii several subsequent

specifications, and security best practice documents. We will also point out key elements

of the framework which changed or were removed between OAuth 2.0 and OAuth 2.1.

At the time of writing, OAuth 2.1 is still in draft status, so there may be further revisions

in the future. Application owners and developers should check for ongoing changes and

best practice guidance.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_5

https://doi.org/10.1007/978-1-4842-8261-8_5

64

For the remainder of this chapter, we will use the term OAuth 2 when describing

benefits or impacts of the OAuth Authorization Framework in general. We will use the

term OAuth 2.1 when specifically referring to the OAuth 2.1 Authorization Framework

specification and OAuth 2.0 when specifically referring to the OAuth 2.0 Authorization

Framework specification.

�API Authorization
An application may need to call an API on behalf of a user, to access content owned

by the user, or on its own behalf if the application owns the desired content. Figure 5-1

illustrates these two cases using a sample scenario.

Figure 5-1.  API Authorization: User-Based vs. Client-Based Flow

In this scenario, the application, WriteAPaper.com, is a specialized editor that helps

users write and edit research papers. It calls two APIs, both of which are owned by

different organizations. The first is famousquotes.com which provides validated quotes

for use in papers. The second API is at documents.com and provides a document storage

service. There is a second, mobile application that calls the documents.com API to

provide access to documents from a user’s mobile device.

When the WriteAPaper application calls the API at famousquotes.com, it does so on

its own behalf. The quotes content is not owned by the user, so the user’s consent isn’t

needed for this access. The application only needs to be a registered client authorized to

Chapter 5 OAuth 2 and API Authorization

65

call the quotes API. When the application calls the API at documents.com, however, to

obtain a user’s documents, the request must be made on behalf of the user. In this case,

the content accessed belongs to the user, and the application must obtain the user’s

consent to retrieve the user’s documents. The client application has no right by itself to

access the user’s data at another site.

The mobile application provides read-only access to a user’s documents and

doesn’t offer access to the quotes service. It requires authorization from a user to call

the documents API and retrieve the user’s documents. We’ve included the mobile

application in the example because we’ll show in the following sections how OAuth 2

could be used to enforce different privileges for the two applications.

�OAuth 2
The OAuth 2 Authorization Framework, originally published as OAuth 2.0 in 2012 and

revised starting in 2020, and continuing through 2022 to create OAuth 2.1, was designed

to enable an application to obtain authorization to call third-party APIs. With OAuth 2,

an application can obtain a user’s consent to call an API on their behalf, without needing

the user’s credentials for the API site. An application can also obtain authorization to call

an API on its own behalf if it owns the content to be accessed.

The primary use case involves a user, called a resource owner, who wishes to allow

an application to access a protected resource, owned by the resource owner, at a logically

separate site, known as the resource server. Using our example from Figure 5-1, the

resource owner (the user) has stored documents at a resource server (documents.com).

The resource owner is using the WriteAPaper application to write a paper based on

content they’ve uploaded to documents.com. The resource owner wants to grant the

WriteAPaper application access to their content at documents.com so it can retrieve the

content for use in their research paper.

Before OAuth 2, the usual solution involved some risks. The user had to give the

WriteAPaper application their documents.com credentials so WriteAPaper could

retrieve their documents at documents.com. Once it had the user’s credentials, however,

WriteAPaper could retrieve anything from the user’s account and even modify or delete

documents as the user. There was no way for the user to restrict what the WriteAPaper

application could do. Furthermore, WriteAPaper might need to retain the password

in a decryptable form, or worse, in cleartext form, to access documents.com later.

Chapter 5 OAuth 2 and API Authorization

66

If WriteAPaper were compromised, and the password decryption key or cleartext

passwords stolen, the user’s data at documents.com would be at risk. The user also had

no way of revoking WriteAPaper’s access to documents.com except by changing their

credentials. Unfortunately, changing credentials to revoke one application’s access

would effectively revoke access for any other applications using the credentials to access

documents.com on their behalf. The scenario prior to OAuth 2 is depicted in Figure 5-2.

Figure 5-2.  Access Requests Prior to OAuth 2

OAuth 2 provides a better solution. OAuth 2 enables a user to explicitly authorize an

application to call an API on the user’s behalf, without giving their credentials for the API

site to the application and in a way that limits what the application can do. With OAuth 2,

when an application needs to call an API on behalf of a user, it sends an authorization

request to an authorization server for the API. An authorization server handles access

requests for an API and returns a security token that can be used by the application to

access the API. In the authorization request, the application gives an indication of what

it wants to request from the API. The authorization server evaluates the request and, if

authorized, returns a token to the application.

If the application asks for content owned by the user, the API’s authorization server

authenticates the user and then asks the user to give their consent for the application

to access the requested data. The authentication step ensures the user providing the

consent is the owner of the resource being accessed. The authorization server uses

details in the application’s authorization request to prompt the user for their consent.

If the user consents to the requested access, the application receives a token to call

the API on the user’s behalf. The token is called an access token, and it enables the

application to make API requests within the scope of what the user authorized when

they gave their consent for the request. This solution eliminates the need for the user

Chapter 5 OAuth 2 and API Authorization

67

to share credentials with the application and gives the user more control over what the

application can access. (Note: The exact process by which the application gets the access

token is described here in a simplified form but will be explained more accurately in

subsequent sections.) Figure 5-3 shows the solution with OAuth 2 in the picture.

Figure 5-3.  Access Requests with OAuth 2

To recap, the OAuth 2 protocol provides an authorization solution, not an

authentication solution. It enables an application to call an API on its own behalf or

a user’s behalf, with the call constrained to the scope of an authorized request. The

authentication step in OAuth 2 validates the user is entitled to give consent to authorize

an access request for a particular resource. The OAuth 2 access token is only intended

for API access and not to convey information about the authentication event or the

user. The use of OAuth 2 is therefore appropriate for authorizing API calls but not as

an authentication solution (at least in the absence of any proprietary additions to the

base protocol, which some providers have implemented). OIDC, described in the next

chapter, can be used to authenticate a user to an application, but this chapter focuses on

describing how OAuth 2 works for the purpose of API authorization.

Chapter 5 OAuth 2 and API Authorization

68

�Terminology
To describe OAuth 2 in more detail, we need to describe a few terms.

�Roles
OAuth 2 defines four roles involved in an authorization request:

•	 Resource Server – A service (with an API) storing protected

resources to be accessed by an application.

•	 Resource Owner – A user or other entity that owns protected

resources at the resource server.

•	 Client – An application which needs to access resources at the

resource server, on the resource owner’s behalf or on its own

behalf. We’ll generally use the term application instead of client, for

consistency across chapters.

•	 Authorization Server – A service trusted by the resource server to

authorize applications to call the resource server. It authenticates

the application or resource owner and requests consent from the

resource owner if the application will make requests on the resource

owner’s behalf. With OAuth 2, the resource server (API) is a relying

party to the authorization server. The authorization server and

resource server may be operated by the same entity.

�Confidential and Public Clients
OAuth 2 defines two client types1:

•	 Confidential Client – An application that can securely store

confidential secrets with which to authenticate itself to an

authorization server or use another secure authentication

1 Earlier versions of OAuth 2.1 defined a “Credentialed Client” as an application with no
previously established relationship with the authorization server, but able to securely store
confidential secrets with which to authenticate itself, such as a dynamically registered mobile
client. At the time of writing, this client type has been removed from OAuth 2.1.

Chapter 5 OAuth 2 and API Authorization

69

mechanism for that purpose. Confidential clients typically execute

primarily on a protected server.

•	 Public Client – An application that can neither securely store a secret

or credentials to authenticate itself to an authorization server nor use

another secure authentication mechanism for that purpose. Public

clients typically execute primarily on the user’s client device or in the

client browser.

�Client Profiles
OAuth 2 defines three profiles for client applications based on application topologies:

•	 Web Application – A confidential client with code executing on a

protected, back-end server. The server can securely store any secrets

needed for the client to authenticate itself as well as any tokens it

receives from the authorization server. Such credentials and tokens

are not exposed to the resource owner.

•	 Browser-Based Application – Assumed to be a public client with

code executing in the user’s browser. Example: A JavaScript-based,

single-page application running in the browser. Such an application

is assumed to be incapable, with current technology (at the time

of writing), of adequately securing credentials with which to

authenticate itself to an authorization server.

•	 Native Application – Assumed to be a public client that is installed

and executed on the user’s device, such as a mobile application or

desktop application.

In practice, these definitions may overlap because a web application may serve up

HTML pages that contain some JavaScript, and single-page applications may have a

small back end. For further discussion on this, see the description in Chapter 6 of the

OIDC Hybrid Flow.

Chapter 5 OAuth 2 and API Authorization

70

�Tokens and Authorization Code
OAuth 2 defines two security tokens and an intermediary authorization code:

•	 Authorization Code – An intermediary, opaque code returned to

an application and used to obtain an access token and optionally a

refresh token. Each authorization code is used once.

•	 Access Token – A token used by an application to access an API. It

represents the application’s authorization to call an API and has an

expiration.

•	 Refresh Token – An optional token that can be used by an

application to request a new access token when a prior access token

has expired.

�How It Works
The OAuth 2 Authorization Framework defines different methods by which an

application interacts with an authorization server to obtain authorization to call an

API. Each method uses a credential to represent the authorization. These credentials

are known as authorization grants and are used by an application to obtain an access

token with which to call an API. The type of authorization grant to use depends on the

use case.

The following authorization grant types are defined:

•	 Authorization code

•	 Client credentials

•	 Refresh token

In OAuth 2.0, there were two additional authorization grant types that were removed

in OAuth 2.1. We will describe these briefly to explain why they have been removed and

should not be used. These obsolete grant types are

•	 Implicit (removed)

•	 Resource owner password credentials (removed)

Chapter 5 OAuth 2 and API Authorization

71

An additional authorization grant type has been designed for devices which have

limited capabilities for user interaction. This grant type is not part of the core OAuth 2.1

specification (at the time of writing) but is useful to include as it is designed for scenarios

involving devices that make up the Internet of Things (IoT). This grant type is

•	 Client device

The following sections will describe how each of these authorization grant types

work, as well as why the obsolete authorization grant types were removed.

�Authorization Code Grant
The authorization code grant type uses two requests from the application to the

authorization server to obtain an access token. In the first request, the user’s browser

is redirected to the authorization endpoint at the authorization server with a request

to authorize an API call to be made on the user’s behalf. The browser redirect enables

the authorization server to interact with the user to authenticate them and obtain

their consent for the authorization request. After obtaining the user’s consent, the

authorization server redirects the user’s browser back to the application with an

authorization code. The application uses the authorization code to send a second, back-

channel request to the authorization server’s token endpoint to obtain an access token.

The authorization server responds with an access token issued to the application which

it can use to call the API. Figure 5-4 shows the sequence of steps.

Figure 5-4.  Authorization Code Grant Type + PKCE

Chapter 5 OAuth 2 and API Authorization

72

	 1.	 The user (resource owner) accesses the application.

	 2.	 The application redirects the browser to the authorization server’s

authorize endpoint2 with an authorization request.

	 3.	 The authorization server prompts the user for authentication and

consent.3

	 4.	 The user authenticates and provides consent for the request.

	 5.	 The authorization server redirects the user’s browser back to the

application’s callback URL4 with an authorization code.

	 6.	 The application calls the authorization server’s token endpoint,5

passing the authorization code.

	 7.	 The authorization server responds with an access token (and

optionally a refresh token).

	 8.	 The application calls the resource server (API), using the

access token.

The authorization code grant type was originally optimized for confidential clients.

The first (authorization) request redirects the user to the authorization server so it can

interact with the user. The second request could be made by the application’s back end

directly to the authorization server’s token endpoint. This enables an application back

end, which is assumed to be capable of securely managing an authentication secret,

to authenticate itself to the authorization server when exchanging the authorization

code for the access token. It also means that the response with the access token can be

delivered to the application back end, which will make the subsequent API calls. An

added side benefit is that the tokens are returned via secure back-channel response.

However, while originally optimized for confidential clients, the addition of PKCE

enables other client types to use this grant type as well.

2 The authorization server’s authorization endpoint is defined in the OAuth 2 specification.
3 The mechanism by which a user is authenticated to provide consent is outside the scope of the
OAuth 2 specifications. It is shown in the diagram (steps 3 and 4) to show where it occurs in the
sequence.
4 The application’s callback URL is defined in the OAuth 2 specification.
5 The authorization server’s token endpoint is defined in the OAuth 2 specification.

Chapter 5 OAuth 2 and API Authorization

73

�Authorization Code Grant Type + PKCE
The authorization code grant type diagram shows the use of Proof Key for Code

Exchange (PKCE).iii PKCE is a mechanism that can be used with authorization and token

requests to prevent a malicious process, especially on mobile devices and with public

clients, from intercepting an authorization code and using it to get an access token.

PKCE does not authenticate clients. Rather, it ensures that the application that requested

an authorization code is the same application that uses the authorization code to obtain

an access token. PKCE was defined after OAuth 2.0, but has been incorporated into the

core OAuth 2.1 specification for use with the authorization code grant type.

To use PKCE, the application creates a cryptographically random string, called

a code verifier, that is long enough to provide sufficient protection against guessing.

The application then computes a derived value, called a code challenge, from the

code verifier. This derived value is typically a hash of the code verifier. It should not be

possible to compute the code verifier from the derived value in a time period that would

enable compromising the transaction. When the application sends an authorization

request in step 2 in the diagram, it includes the code challenge, along with the method

used to derive it.

When the application sends the authorization code to the authorization server’s

token endpoint to get the access token in step 6, it includes the code verifier. The

authorization server transforms the code verifier value using the transformation method

received in the authorization request and checks that the result matches the code

challenge sent with the authorization request. This enables an authorization server to

detect if a malicious application is trying to use a stolen authorization code. Only the

legitimate application will know the code verifier to pass in Figure 5-4’s step 6 that will

match the code challenge passed in step 2.

The PKCE specification lists two transform methods that can be used to derive the

code challenge from the code verifier, namely, “plain” and “S256.” With the “plain”

method, the code challenge and verifier are identical, so there is no protection against

the code challenge being compromised. Applications using the authorization code grant

with PKCE should use the S256 transform method which uses a base64 URL encoded

SHA256 hash of the code verifier to protect it.

Chapter 5 OAuth 2 and API Authorization

74

�The Authorization Request

Here is a sample application’s API authorization request with PKCE. It would be directed

to an authorization server’s authorization endpoint.6

GET /authorize?

response_type=code

& client_id=<client_id>

& state=<state>

& scope=<scope>

& redirect_uri=<callback uri>

& resource=<API identifier>

& code_challenge=<PKCE code_challenge>

& code_challenge_method=S256 HTTP/1.1

Host: authorizationserver.com

Table 5-1 shows common parameters for the authorization request.

6 The parameters for all of the examples may vary somewhat for your specific provider. See
the documentation for your provider and the OAuth 2.1 specification for additional optional
parameters.

Chapter 5 OAuth 2 and API Authorization

75

Table 5-1.  Authorization Request Parameters

Parameter Meaning

response_type Indicates the OAuth 2 grant type. “code” is used for the authorization code grant

type.

client_id Identifier for the application, assigned when it registered with the authorization

server.

state A nonguessable string, unique for each call, opaque to the authorization server,

and used by the client to track state between a corresponding request and

response to mitigate the risk of CSRF attacks. It should contain a value that

associates the request with the user’s session. This could be done by including

a hash of the session cookie or other session identifier concatenated with an

additional unique-per-request component. When a response is received, the

client should ensure the state parameter in the response matches the state

parameter for a request it sent from the same browser. This parameter should

not include any sensitive information in plain text.

scope Indicates the scope of access privileges for which authorization is requested.

For example: “get:documents”. This parameter should not include any sensitive

information in plain text.

redirect_uri The authorization server sends its response with the authorization code to

this callback URL at the application. The specified URI must exactly match

the callback URI previously registered at the authorization server for the client

application. For example: https%3A%2F%2Fclient%2Eapplication%2Ecom%2

Fcallback. (An exception to the exact match requirement is noted for the port

number in local host redirect URLs in native applications.)

resource Identifier for a specific API registered at the authorization server for which the

access token is requested. Some implementations may use other names, such

as “audience.” Primarily used in deployments with custom APIs. This parameter

isn’t needed unless there are multiple possible APIs.

code_challenge PKCE code challenge derived from the PKCE code verifier using the code

challenge method specified in the code_challenge_method parameter, as

described in Section 4.2 of the PKCE specification.iv

code_challenge_

method

“S256” or “plain.” Applications capable of using S256 must use it.

Chapter 5 OAuth 2 and API Authorization

76

The scope parameter is used by an application to request a scope of access

privileges. Using our WriteAPaper application example from the beginning of the

chapter, the primary, single-page application would request a scope of “get:documents

update:documents,” whereas if the mobile client only needed read access to documents,

it would only request “get:documents.” There are additional parameters available which

applications can use to express richer, more detailed authorization requests. These will

be discussed in Chapter 8.

The redirect_uri parameter must exactly match a redirect URI specified at the time

the client application was registered with the authorization server. While OAuth 2.0

allowed the URI registered with the authorization server to contain wildcards, OAuth 2.1

now disallows the use of wildcards in the redirect URI registered for a client application.

This change reduces the possibility of open redirect attacks.

The resource parameter was not in the original OAuth 2.0 specification. Since that

time, authorization servers have been written to handle requests for multiple APIs

and, in such cases, may support an additional parameter to indicate a specific API

for an authorization request. This parameter is defined in the Resource Indicators

for OAuth 2.0 extension.v This parameter may be called the “resource” or “audience”

depending on the authorization server implementation.

�Response

The authorization server sends a response like the following to the application’s

callback, specified in the redirect_uri parameter of the authorization request:

HTTP/1.1 302 Found

Location: https://clientapplication.com/callback?

code=<authorization code>

& state=<state>

Chapter 5 OAuth 2 and API Authorization

77

Table 5-2 shows the response parameters.

Table 5-2.  Authorization Response Parameters

Parameter Meaning

code The authorization code to be used by the application to request an access token.

state The state value, unmodified, sent in the authorization request. The application must

validate that the state value in the response matches the state value sent with the

initial request.

�Calling the Token Endpoint

After receiving an authorization code, the application uses it in a second request to the

authorization server’s token endpoint to obtain the access token.

POST /token HTTP/1.1

Host: authorizationserver.com

Authorization: Basic <encoded application credentials>

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code

& code=<authorization_code>

& client_id=<client id>

& code_verifier=<code verifier>

& redirect_uri=<callback URI>

The parameters for this example request to the authorization server’s token endpoint

are shown in Table 5-3.

Chapter 5 OAuth 2 and API Authorization

78

Table 5-3.  Token Request Parameters

Parameter Meaning

grant_type Must be “authorization_code” for the authorization code grant.

code The authorization code received in response to the authorization call.

client_id Identifier for the application, assigned when it registered with the authorization server.

code_

verifier

The PKCE code verifier value from which the code challenge was derived. It should

be an unguessable, cryptographically random string between 43 and 128 characters

in length, inclusive, using the characters A–Z, a–z, 0–9, “-”, “.”, “_”, and “~” and

formed as described in Section 4.1 of the PKCE specification.vi

redirect_uri The callback URI for the authorization server’s response. Should match the redirect_

uri value passed in the authorization request to the authorize endpoint.

The response from the token endpoint will be similar to the following:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

 {

 "access_token":"<access_token_for_API>",

 "token_type":"Bearer",

 "expires_in":<token expiration>,

 "refresh_token":"<refresh_token>"

 }

The parameters for the response are shown in Table 5-4.

Chapter 5 OAuth 2 and API Authorization

79

Table 5-4.  Token Endpoint Response Parameters

Parameter Meaning

access_

token

The access token to use in calling the API. Different authorization servers may use

different formats for access tokens.

token_type Type of token issued. “Bearer,” for example.

expires_in How long the token will be valid.

refresh_

token

A refresh token is optional. It is up to an authorization server’s discretion whether to

return a refresh token or not. See the “Refresh Tokens” section later in this chapter for

further information.

An authorization server may include an additional parameter “scope” to indicate the

actual scope of access granted with the issued access token. This is necessary when an

authorization server issues an access token for a more restrictive scope than requested

by the client.

There are different types of access tokens in use. Some authorization servers issue

an opaque access token in the form of an encoded string. A resource server receiving

such an access token can call a token introspection endpoint at the issuing authorization

server to obtain information about the token, such as the client that requested the token,

the intended audience (resource server) for the token, the token expiration, whether

the token has been revoked, and the scopes included in the token. The OAuth 2.0 Token

Introspection specificationvii defines the token introspection endpoint and how resource

servers can use it to obtain information about opaque tokens issued by authorization

servers.

Another common format for access tokens is a JSON Web Token (JWT). This is a

structured format that is cryptographically signed and contains various claims about

the token such as the client that requested the token, the intended audience (resource

server), when the token expires, and the scopes authorized for the token. With self-

contained tokens, a resource server can obtain the claims directly from the token

without having to call a token endpoint at an authorization server. The JSON Web Token

(JWT) Profile for OAuth 2.0 Access Tokensviii defines this type of token along with a set

of mandatory and optional claims. The documentation for your authorization server

should indicate the type of access token it issues and the steps a resource server should

take to validate the token and obtain the claims represented by the token.

Chapter 5 OAuth 2 and API Authorization

80

�Client Credentials Grant
The client credentials grant type is used when an application calls an API to access

resources the application owns. An example is shown in Figure 5-1 with the call to the

quotes service. A quote is not owned by the individual user who needs the quote, so the

call can be made on the application’s behalf. The application uses the client credentials

grant type and authenticates to the authorization server with its own credentials to

obtain an access token. The use of this grant type requires that the application have

the ability to maintain confidential secrets (or use another secure mechanism) to

authenticate itself. The sequence diagram for this grant type is shown in Figure 5-5.

Figure 5-5.  Client Credentials Grant Type

	 1.	 The application sends an authorization request including the

application’s credentials to the authorization server.

	 2.	 The authorization server validates the credentials and responds

with an access token.

Chapter 5 OAuth 2 and API Authorization

81

	 3.	 The application calls the resource server (API) using the

access token.

	 4.	 The steps repeat if the access token has expired by the next time

the application calls the API.

No end-user interaction with the authorization server is required for this flow. The

application credentials serve as the authorization for the application and are used to

request an access token from the token endpoint. Our sample uses a client ID and client

secret obtained when the application registered with the authorization server.

�The Authorization Request

A sample token request for the client credentials grant type follows, with parameter

definitions the same as those for the previous grant type but with the grant_type set to

“client_credentials”. The application authenticates in this example with a client ID and

secret registered at the authorization server, one of several options.

POST /token HTTP/1.1

Host: authorizationserver.com

Authorization: Basic <encoded application credentials>

Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials

& scope=<scope>

& resource=<API identifier>

A successful client credentials grant request will result in a response from the token

endpoint with an access token, similar to the example in the previous section for the

authorization code grant.

�Implicit Grant (Removed in OAuth 2.1)

Note T he implicit grant type was removed in OAuth 2.1. It is included here to explain
its original purpose, why it is no longer needed, and what should be used in its place.

Chapter 5 OAuth 2 and API Authorization

82

OAuth 2.0 defined an implicit grant type which was optimized for use with public clients

such as single-page applications. The use of this grant type returned an access token to an

application in one request. It was designed at a time when the CORS (Cross-Origin Resource

Sharing) standardix was not widely supported in browsers so that web pages could only

“phone home.” In other words, they could only make calls to the domain from which the

page was loaded which meant they couldn’t call an authorization server’s token endpoint.

To compensate for this limitation, the implicit grant type had the authorization server

respond to an authorization request by returning tokens to the application in a redirect with

a URL hash fragment. The interaction for the implicit grant type is shown in Figure 5-6.

Figure 5-6.  OAuth 2.0 Implicit Grant Type (Removed in OAuth 2.1)

	 1.	 The user (resource owner) accesses the application.

	 2.	 The application redirects the browser to the authorization server’s

authorize endpoint with an authorization request.

	 3.	 The authorization server prompts the user to authenticate and

provide consent.7

7 The mechanism by which a user is authenticated to provide consent is outside the scope of the
OAuth 2 specifications. It is shown in the diagram (steps 3 and 4) to show where it occurs in the
sequence.

Chapter 5 OAuth 2 and API Authorization

83

	 4.	 The user authenticates and provides consent for the authorization

request.

	 5.	 The authorization server redirects back to the application’s

callback URL with an access token.

	 6.	 The application uses the access token to call the resource

server (API).

Since the OAuth 2.0 specification was originally published, CORS has become

supported by most browsers. Consequently, the implicit grant type isn’t needed

anymore for its original purpose. Furthermore, returning an access token in a URL hash

fragment exposes the access token to potential leakage via browser history or referer

headers. The OAuth 2.0 implicit grant type has therefore been removed from OAuth 2.1.x

The authorization code grant type with PKCE should be used instead.

New applications should avoid the use of the implicit grant type. For existing

applications, it is possible that existing authorization servers will continue to support the

use of the implicit grant for some time. However, given the security concerns associated

with this grant type, existing applications should migrate to the authorization code grant

type with PKCE to reduce the risk from leaked tokens, avoid a rushed upgrade if an

authorization server decides to end support for the implicit grant, and align with OAuth 2.1.

�Resource Owner Password Credentials Grant (Removed
from OAuth 2.1)

Note T he resource owner password credentials grant type was removed from
OAuth 2.1. It is included here to explain its initial purpose and why it should not
be used.

With the OAuth 2.0 resource owner password credentials grant type, the

application collected the user’s credentials directly instead of redirecting the user

to the authorization server. The application passed the collected credentials to the

authorization server for validation as part of its request to get an access token. This grant

type was intended to support situations where an application was trusted to handle end-

user credentials and no other grant type was possible.

Chapter 5 OAuth 2 and API Authorization

84

The interaction for resource owner password grant type is shown in Figure 5-7.

Figure 5-7.  Resource Owner Password Credentials Grant Type (Removed from
OAuth 2.1)

	 1.	 The user (resource owner) accesses the application.

	 2.	 The application prompts the user for their credentials.8

	 3.	 The user provides their credentials to the application.

	 4.	 The application sends a token request to the authorization

server’s token endpoint, with the user’s credentials.

	 5.	 The authorization server responds with an access token (and

optionally a refresh token).

	 6.	 The application calls the resource server (API), using the

access token.

8 The mechanism by which the application obtains the user credentials is outside the OAuth 2
specification. It is shown in the diagram (steps 2 and 3) to provide a more complete picture of the
solution.

Chapter 5 OAuth 2 and API Authorization

85

The use of this grant type was not actively encouraged for several reasons. First, it

exposed the user’s credentials to the application. A vulnerability in the application could

compromise the user’s credentials. There was also no specification for how to extend this

grant to provide multi-factor authentication, so applications might have added multi-

factor authentication capabilities in custom ways that might not have received adequate

security review. In addition, this grant type did not involve a user consent step, so an

application could request any access it wished using the user’s credentials. The user had

no way to prevent abuse of their credentials.

This grant type has been used for mobile apps, legacy embedded login pages, and

user migration scenarios. Some mobile applications used this grant type when calling

first-party APIs. This was often done because login flows that redirected via browsers on

mobile devices were originally perceived as cumbersome. This has since improved, and

OAuth 2.1 has incorporated the guidance of RFC 8252, OAuth 2.0 for Native Apps,xi to

use the authorization code grant, combined with PKCE, for native applications using the

system browser.

This grant type was also used when login fields were embedded within an application

page. This was often done to conform to corporate user interface standards or simply

a desire to have an embedded login screen rather than the disruption of a browser

redirect. For the reasons stated earlier, this grant type has been removed from OAuth 2.1.

Applications should redirect users to the authorization server using the authorization code

grant type with PKCE, rather than collect user credentials themselves.

Another scenario for this grant type was user migration use cases. When users

needed to be migrated from one identity repository to another with incompatible

password hashes, the new system could prompt a user for their credentials, use the

resource owner password grant to validate them against the old system, and, if valid,

retrieve the user profile from the old system and store it and the credentials in the new

system. This avoided the necessity for large-scale forced password resets when migrating

identity information. However, if passwords in the old system were compromised, either

directly or via password reuse, this scheme would add vulnerable accounts to the new

system, unless password checks were implemented as part of the transfer.

To mitigate some of the risk associated with this grant type, the client was supposed

to throw away the user credentials as soon as it had obtained the access token, to reduce

the possibility of compromised credentials. This guidance, however, only addresses

one aspect of the risk associated with this grant type. With other risks remaining, the

resource owner password credentials grant type has been removed from OAuth 2.1.xii

Chapter 5 OAuth 2 and API Authorization

86

New applications should avoid the use of this grant type. For existing applications, it is

possible that existing authorization servers will continue to support this grant type for

some time. However, given the security and liability concerns associated with this grant

type, existing applications should migrate to the authorization code grant type with

PKCE to reduce the risk from credentials exposed to client applications, facilitate use

of multi-factor authentication, and avoid a rushed upgrade if an authorization server

decides to end support for this grant type. While legacy applications that cannot be

upgraded will probably continue to use this grant type for some time, application owners

should understand that applications that continue to use the resource owner password

credentials grant type will have the responsibility and liability associated with reviewing

the security of their approach. They also risk being forced to upgrade if their identity

provider ends support for this grant type.

�Device Authorization Grant
Since the publication of OAuth 2, there has been a proliferation of Internet-connected

devices often called the Internet of Things (IoT). As with applications, the functionality

of IoT devices can be greatly enhanced by calling APIs. A classic example is a digital

picture frame. Rather than manually uploading photos to a digital picture frame, it

would be nice if you could simply authorize the frame to retrieve photos you have

already uploaded to a social media site. This requires you as the owner of the pictures to

authenticate to the social media site and provide your consent for the frame to retrieve

photos from your account.

The OAuth 2 authorization code grant requires user interaction on the client device

for authentication and authorization, yet a digital picture frame and many IoT devices

have very limited facilities for user interaction. While a digital frame might be able to

implement a touch screen and some limited browser capability to support the redirects

and input required, that would increase the complexity and cost of the device which may

not be feasible for such devices from a technical or business perspective.

The OAuth 2.0 Device Authorization Grantxiii provides a mechanism for the user

interaction to occur on another device. With this grant, the user triggers an action on the

primary device (an IoT device) that requires an API call. This action could be anything

from turning on a device like a TV or making a specific request such as retrieving

pictures from a specific social media account. In response to the action, the primary

Chapter 5 OAuth 2 and API Authorization

87

device initiates an authorization request to the authorization server for the API. The

authorization server responds with a URL and code that the primary device displays to

the user, along with instructions.

The user follows the instructions and accesses the URL on a secondary device, such

as a mobile phone. The user interacts with the authorization server on the secondary

device to authenticate, input their code, and provide their authorization for the

requested action. While the user is doing this, the primary device polls the authorization

server. Once the user has completed the interaction on the secondary device, the

primary device’s next polling request will result in a successful response with an access

token and, optionally, a refresh token. The primary device can then use the access token

to make an API call on the user’s behalf.

Figure 5-8 shows the sequence of steps for the Device Authorization Grant.

Figure 5-8.  Device Authorization Grant

	 1.	 The user (resource owner) accesses the primary device.

	 2.	 The primary device sends an authorization request to the

authorization server for the API. This request includes the device’s

client ID.

	 3.	 The authorization server responds with a device code, end-user

code, and a user verification URI.

Chapter 5 OAuth 2 and API Authorization

88

	 4.	 The primary device displays or communicates to the user the URI

and end-user code.

	 5.	 The user accesses the verification URI on a secondary device such

as a phone.

	 6.	 The authorization server interacts with the user on the secondary

device to authenticate them.

	 7.	 The user supplies their login credentials to the

authorization server.

	 8.	 The authorization server prompts the user for their user code and

for authorization of the API call.

	 9.	 The user supplies their end-user code and approves the

authorization request.

	 10.	 The primary device continually polls the authorization server.

	 11.	 When the user approves the request, the authorization server

responds to the next polling request with an access token and

optionally a refresh token.

	 12.	 The primary device can then use the access token to call the API

on the user’s behalf.

There are several requirements for this Device Authorization Grant to work. The

primary device must be connected to the Internet, and the device must be capable of

making outbound HTTPS requests to the authorization server for the desired API. The

primary device must also be capable of displaying or communicating to the user the user

verification URI, an end-user code, and instructions for how to proceed. This grant also

requires the user to have a secondary device capable of supporting the user interaction

to authenticate and authorize the API requests.

The following sections show the steps for the Device Authorization Grant in

more detail.

Chapter 5 OAuth 2 and API Authorization

89

�The Authorization Request

An example of a primary device’s authorization request is shown here. It would be

directed via HTTP-POST to an authorization server’s device_authorization endpoint.

POST /device_authorization HTTP/1.1

Host: authorizationserver.com

Content-Type: application/x-www-form-urlencoded

client_id=<client id>

& resource=<API identifier>

& scope=<scope>

Table 5-5 shows common parameters for the authorization request.

Table 5-5.  Authorization Request Parameters

Parameter Meaning

client_id Identifier for the primary device, assigned when it registered with the authorization

server.

scope The scope of access privileges for which authorization is requested. For example:

“get:photos”.

resource Identifier for a specific API registered at the authorization server and for which the

access token is requested. Some implementations may use other names, such as

“audience.” Primarily used in deployments with custom APIs. This parameter isn’t

needed unless there are multiple possible APIs.

The scope parameter is used by the primary device to request a scope of access

privileges. Using our digital photo frame example, the digital frame would request a

scope of “get:photos” as it needs to retrieve photos for display in the frame. There are

additional parameters which can be used to express richer authorization requests and

which will be discussed in Chapter 8.

An authorization server may support a parameter to indicate a specific API for an

authorization request as defined in the Resource Indicators for OAuth 2.0 extension.xiv

This parameter may be called the “resource” or “audience.”

Chapter 5 OAuth 2 and API Authorization

90

�Authorization Response

The authorization server responds to the primary device’s authorization request with

a device code, a user code, and a verification URI, as well as an expiration and polling

interval. A sample HTTP response body with these parameters follows:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

 "device_code": <code issued for device>,

 "user_code": <code issued for end user>,

 "verification_uri": "https://authorizationserver.com/device",

 "expires_in": 600,

 "interval": 5

 }

Table 5-6 shows the authorization response parameters.

Table 5-6.  Authorization Response Parameters

Parameter Meaning

device_code A code generated by the authorization server for the primary device, to be used

by the device when it makes the subsequent token request.

user_code A code generated by the authorization server for a particular end user’s device

authorization session, to be used when the user subsequently interacts with the

authorization server on a secondary device to authorize the primary device’s

request.

verification_uri A URI to be displayed or communicated to the user by the primary device, along

with instructions for the user to access that URI from a secondary device to

consent to the authorization request.

expires_in Validity period for the device_code and user_code. Specified in seconds.

interval Minimum time, specified in seconds, that the primary device should wait

between polling requests.

Chapter 5 OAuth 2 and API Authorization

91

The primary device receives an authorization response with a user verification URI,

a device code, and a user code. The primary device communicates the verification URI

and user code to the user in any format suitable for the device and which facilitates

the user’s interaction. For example, the primary device could display a text URL or a

QR code. The primary device also provides instructions for the user to navigate to the

verification URI on a secondary device, such as a smartphone, and enter the user code

when prompted. The secondary device needs to have a user agent, such as a browser,

that can support redirects to the authorization server. It also must allow the user to

interact with the authorization server for authentication and consent.

When the user navigates to the verification URI, the authorization server will prompt

the user to log in, enter the user code, and consent to the authorization request. The

exact sequence and process for this interaction may vary by authorization server.

While the user is interacting with the authorization server on the secondary device,

the primary device periodically polls the authorization server.

�Polling the Authorization Server

The primary device polls the authorization server by repeatedly posting an access token

request to the authorization server’s token endpoint. The precise mechanism by which

the primary device authenticates itself for the request may vary by authorization server

and configuration settings chosen when the primary device registers at the authorization

server. The interval between polling requests should be governed by the “interval”

parameter returned by the authorization server, as described in Table 5-6. The following

shows a sample primary device’s token request, specifying the “device_code” grant type,

the device code, and the client ID:

POST /token HTTP/1.1

Host: authorizationserver.com

Content-Type: application/x-www-form-urlencoded

grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Adevice_code

& device_code=<device code>

& client_id=<client id>

Chapter 5 OAuth 2 and API Authorization

92

Table 5-7 shows common parameters for the token request.

Table 5-7.  Token Request Parameters

Parameter Meaning

grant_type Indicates the type of grant requested. For this scenario, it must be set to

“urn:ietf:params:oauth:grant-type:device_code”.

device_code A code generated by the authorization server for the primary device and used by

the device when it makes the token request.

client_id Identifier for the primary device, assigned when it registered with the authorization

server.

The client ID and device code are used by the authorization server to associate the

polling request with the primary device’s initial authorization request. The primary

device should make polling requests no more frequently than the number of seconds

specified in the interval parameter from the authorization server response. The device

code and interval parameter are shown in Table 5-6. The primary device continues

polling while the user interacts with the authorization server.

If the user has not yet completed the interaction, the client device will receive either

an “authorization_pending” status or a “slow_down” status. The slow_down status

indicates the client device should send subsequent polling requests less frequently. If the

user does not approve the request, a status of “access_denied” will be returned, and if

too much time passes, a status of “expired_token” may be returned, indicating the device

code is no longer valid. These error codes are in addition to the general OAuth 2 error

responses for conditions such as invalid requests, client IDs, grants, grant_types, and

scopes or unauthorized requests.

When the user successfully completes the interaction on the secondary device to

authenticate and authorize the access request, the primary device’s next polling request

will result in a success response with an access token and, optionally, a refresh token as

described in Table 5-4. The primary device can then use the access token to make an API

call on the user’s behalf, as described in the following section.

Chapter 5 OAuth 2 and API Authorization

93

�Calling an API
Once an application receives an access token via one of the grant types described in

the previous sections, it can call the resource server, sending the access token with

its request. OAuth 2.1 specifies that an access token must be sent in either the HTTP

Authorization request header or HTTP request payload. OAuth 2.1 specifically prohibits

the access token from being sent in a URI query parameter.

A common approach has been to send the access token as a bearer token, using the

HTTP “Authorization” request header field with an authentication token type of “Bearer”

followed by the access token as shown in the following snippet:

GET /api-endpoint HTTP/1.1

Host: api-server.com

Authorization: Bearer <access_token>

A drawback with a bearer token is that it can be used by anyone that possesses the

token. If an access token is stolen, an unauthorized party could use it to make a request

to the API for which the token was issued. OAuth 2.1 recommends several measures,

including short-lived access tokens, to mitigate the risk of access tokens being captured

and used in an unauthorized manner. These are discussed in the “Token Usage

Guidance” section later in this chapter.

�Refresh Tokens
As mentioned previously, access tokens have an expiration. When an access token

expires, an application could make a new authorization request, but with short-lived

access tokens, this could result in frequent consent requests for users which would

be cumbersome. OAuth 2 defines an alternative approach that involves another type

of token called a refresh token. Authorization servers may, at their discretion, return

a refresh token along with an access token. If an application receives a refresh token

from an authorization server, it can use it to obtain a new access token when a previous

access token expires. The use of a refresh token to obtain a new access token does not

require user interaction, so an application can use a refresh token to obtain a new access

token when the user is offline, which facilitates ongoing API access from native mobile

applications.

Chapter 5 OAuth 2 and API Authorization

94

OAuth 2 does not include a mechanism for applications to request refresh tokens,

leaving the issuance up to authorization servers. The handling of refresh tokens may

therefore vary across individual authorization servers. Some issue refresh tokens

automatically, and others expect an application to explicitly request a refresh token

via a proprietary mechanism. (The OIDC specification, covered in the next chapter,

includes a mechanism for an application to request a refresh token for one specific

use case.) The documentation for your chosen authorization server should explain the

implementation-specific details for refresh tokens.

A sample call with a refresh token to an authorization server’s token endpoint

to request a new access token is shown in the following sample. The client must

authenticate itself for the request.

POST /token HTTP/1.1

Host: authorizationserver.com

Authorization: Basic <encoded application credentials>

Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token

& refresh_token=<refresh_token>

The access token will be returned in a response similar to that described in previous

sections. The scope parameter is optional and, if used, must be equal to, or lesser than,

the scope in the original authorization request, and the client credentials passed must be

those of the application which made the original authorization request.

The use of refresh tokens applies primarily to authorization flows where a user is

the resource owner. There is no need for a refresh token with the client credentials grant

because an application can simply request an access token programmatically at any

time, without a need for user interaction.

In addition to the basic mechanics of using access tokens and refresh tokens, there

are several usage guidelines which we’ll cover in the next section.

�Token Usage Guidance
�Access Tokens
An access token is intended to be consumed by a resource server API. An application

should not depend on using data in the access token (in the absence of proprietary

extensions). Depending on the authorization server implementation, the format of an

Chapter 5 OAuth 2 and API Authorization

95

access token may be an opaque token or a JSON Web Token (JWT) as defined by the

JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens.xv In the case of an opaque

token, a resource server calls the authorization server’s token introspection endpoint to

obtain the relevant information associated with the token. In the case of a JWT, the token

is self-contained and a resource server can view the JWT attributes in the token. In either

case, a resource server that receives an access token must validate it before processing

the request it accompanies. The process for validating a token may vary by authorization

server implementation.

Access tokens have an expiration time, and in general, it is recommended that access

token duration be short-lived and a new access token obtained only when needed, if the

previous access token has expired. It may be tempting to automatically refresh an access

token as soon as it expires, but in keeping with the principle of least privilege, it is better

to only refresh an access token when it is needed, rather than always keeping a current

access token on hand. The access token expiration should be determined based on the

sensitivity of the resources to be accessed.

Though access tokens have an expiration, they are not one-time-use tokens. Access

tokens can be cached, for a period of time less than or equal to their expiration, as a

performance optimization. Caching access tokens can also reduce the risk of hitting rate

limits via excessive calls to an authorization server.

An access token must have been granted the appropriate scope of privileges for an

application’s API calls. This should not, however, encourage the use of overly broad

scopes, such as “do:anything” to avoid the work of designing an appropriate set of

scopes. Applications should follow the security principle of “least privilege” to request

access tokens with the minimum scope needed for a particular scenario. For example, a

document viewer application that doesn’t provide editing features should only request

a scope such as “get:documents” rather than scopes that would allow modifying or

deleting documents.

Scopes should typically be used to model the coarse-grained privileges that an

application can request of an API on a user’s behalf, such as “get:documents” rather than

granular privileges involving specific resources. Baking specific resources into scopes

can cause the number of scopes to become unwieldy to administer as the number of

resources grows. In an enterprise scenario, baking user profile attributes or organization

attributes used for access control into scopes will result in rework when the inevitable

reorganizations occur. In addition, when the scope parameter is sent via URL, it can hit

a length limitation. Additional options for authorization and access enforcement will be

discussed further in Chapter 8.

Chapter 5 OAuth 2 and API Authorization

96

Where possible, applications should request access tokens restricted to a particular

resource server via a “resource” or “audience” parameter. This can prevent an access

token issued for one resource server from being used at another resource server.

Narrowing down the scope and intended recipient of the token can reduce the possibility

of an access token being abused.

�Refresh Tokens
Refresh tokens provide a convenient way for applications to obtain new access tokens. This

facilitates the use of access tokens with a short duration, which minimizes risk if an access

token is compromised. However, the use of refresh tokens introduces a different risk,

namely, the risk of a stolen refresh token. Refresh tokens are sensitive credentials because

they can be used to obtain access tokens. Applications must therefore protect and securely

store both access tokens and refresh tokens. Applications should utilize the secure storage

options available with their underlying platform when storing such tokens. At the time of

writing, secure storage for single-page applications executing in browsers is limited. This

means that use of static, long-lived refresh tokens is problematic, especially for public

clients that lack mechanisms for securely storing sensitive tokens.

There are solutions to reduce the risk of compromised refresh tokens. The OAuth

2.0 Threat Model and Security Considerationsxvi document proposed the notion of

refresh token rotation to detect if a refresh token has been stolen and is being used by

two or more clients. This scheme has the authorization server return a new, single-use

refresh token with each access token renewal request. If a refresh token is stolen and

used twice, once by the legitimate client and again by a second, malicious client, the

authorization server is supposed to detect it as an anomalous situation and invalidate

the refresh token.

Another approach is the use of sender-constrained tokens, which can be used with

both access tokens and refresh tokens. With this approach, the authorization server

binds a token it issues to the authorized client application which requested it. If an

unauthorized client application steals a token and attempts to use it, the authorization

server or API will detect that the client attempting to use the token is not the client to

which the token was issued. Several approaches for sender-constrained tokens have

been defined. We will describe two methods. At the time of writing, it is not yet clear

which approach(es) will become widely adopted.

Chapter 5 OAuth 2 and API Authorization

97

One approach for sender-constrained tokens leverages Mutual-TLS. For this

scheme, a client application authenticates to an authorization server using Mutual-TLS

authentication, so that the authorization server can bind an access or refresh token

to the client certificate used in the Mutual-TLS authentication. When the client wants

to use the token, it must authenticate to the resource server, again using Mutual-TLS,

proving that it possesses the private key associated with the certificate bound with the

token. This scheme is defined in the OAuth 2.0 Mutual-TLS Client Authentication and

Certificate-Bound Access Tokens specification.xvii This specification has moved out of

draft status but may result in a confusing user experience in some cases, if users are

prompted to select an appropriate certificate to use.

Another scheme for sender-constrained tokens is defined in the draft (at the time

of writing) OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer

(DPoP) specification.xviii With DPoP, when a client application sends an authorization

grant or refresh token to get an access token, it creates and cryptographically signs a

JSON Web Token (JWT). This token, called a DPoP proof JWT, includes the public key

that corresponds to the private key used to sign the JWT. The client application includes

the DPoP proof JWT in its request to the authorization server. The authorization server

responds with an access token that includes a hash of the public key from the request.

This binds the token to the public key. When the client application makes a request to

the resource server, it sends the token, bound to the public key, and also sends another

DPoP proof JWT demonstrating that it has possession of the original signing material.

DPoP is currently being actively developed and we expect it will be adopted in the future.

OAuth 2.1 specifies that authorization servers must use either refresh token rotation

or sender-constrained refresh tokens (bound to a particular client) with public clients to

mitigate the risk of compromised refresh tokens. At the time of writing, it is not yet clear

which of these solutions will become widely adopted and how long it will take. Check

the documentation for your OAuth 2 provider for details on support for refresh token

rotation and/or sender-constrained tokens.

�Confidentiality and Integrity
The protocol interactions we have described in this chapter assume the use of a suitably

up-to-date version of Transport Layer Security (TLS) between the application and the

OAuth 2 authorization server, between the application and the resource server, and for

interaction between the resource server and authorization server, if any. The OAuth 2

Chapter 5 OAuth 2 and API Authorization

98

specifications state that authorization servers must require the use of TLS for requests

to the authorization and token endpoints and that applications should enforce the use

of TLS for the application callback. Further security implementation guidance can be

found in the Security Considerations section of the OAuth 2.1 Authorization Framework

document.xix

Applications must take suitable measures to ensure the security of access tokens and

refresh tokens. Applications must perform all token validation checks recommended

by their authorization server as well as a TLS certificate check when calling the resource

server to ensure a request is sent to the correct resource server. Applications must use

secure storage when storing sensitive tokens and take care to prevent leakage of such

tokens. In addition, secure coding practices must be used, including implementing

measures against attacks such as Cross-Site Scripting (XSS) and Cross-Site Request

Forgery (CSRF), as applicable for the type of application.

�Token Revocation
Applications should revoke refresh tokens and access tokens if possible, when they are

no longer needed. The OAuth 2.0 Token Revocationxx specification defines a mechanism

for clients to request the revocation of access tokens and refresh tokens. The ability to

revoke access tokens, however, is not a mandatory feature, so some authorization servers

may not support it. You’ll need to check the documentation for your OAuth 2 provider to

determine support for revoking tokens. Additional discussion of token revocation with

respect to logout is discussed in Chapter 13.

�Further Learning
The preceding sections covered an introduction to how an application requests API

authorization via OAuth 2. We realize it may seem like a lot to learn. An SDK may

abstract and simplify the OAuth 2 interaction for you, and we recommend checking for

the availability of SDKs for your platform. We should also note that it is beyond the scope

of this chapter to cover every application implementation requirement mentioned in the

specifications as they vary by application scenario. Application implementers should

review the specifications for the latest version of implementation requirements for their

type of application as well as guidance from any SDKs used.

Chapter 5 OAuth 2 and API Authorization

99

�Advanced Use Cases
There are additional, more complex use cases for which additional parameters and

extensions to the core protocol have been advanced, such as the “OAuth 2.0 Token

Exchange” specification.xxi It is beyond the scope of this book to provide sufficient

guidance for how to implement such use cases securely, so we will only mention that

there is a lot more to explore and learn about. We hope that this introduction to OAuth

2 prepares and encourages you to explore additional use cases and extensions in

the future.

�Summary
The OAuth 2 protocol enables an application to obtain authorization to call an API on

either a user’s behalf or on its own behalf. This eliminates the requirement for users

to share their credentials with the application. It also provides the user greater control

over what the application can do and a limit on the duration of API access. The user can

revoke API access for an individual application without impacting the ability of other

applications to call the API on their behalf. Once you have an application authorized to

call an API, you’ll want to authenticate users to that application, which is covered in the

next chapter.

�Key Points
•	 OAuth 2 enables applications to request authorization and obtain an

access token to call resource server APIs.

•	 With OAuth 2, a user has control over API authorizations for

applications.

•	 Scopes can be used to control the access an application has when

calling an API.

•	 The original OAuth 2.0 specification defined four authorization grant

types but two of these were removed in OAuth 2.1.

Chapter 5 OAuth 2 and API Authorization

100

•	 The OAuth 2.1 specification removes the implicit authorization grant

type as it is no longer needed and can expose an access token to

potential compromise. The authorization code grant type with PKCE

should be used instead.

•	 The OAuth 2.1 specification removes the resource owner password

credentials authorization grant type as it exposes user credentials to

client applications.

•	 The authorization code grant type with PKCE can be used by

traditional web applications, public applications, as well as native

applications.

•	 The client credentials grant type is for API calls where the application

owns the requested resource.

•	 The Device Authorization Grant type is an extension defined to

enable flows involving client devices that lack the capability needed

for user interaction to authenticate and authorize requests.

•	 A refresh token is used to obtain a new access token when a previous

access token has expired.

•	 Refresh tokens should be sender-constrained or employ a refresh

token rotation scheme.

•	 Applications must take measures to secure access tokens and

refresh tokens.

•	 Applications must use a suitably up-to-date version of Transport

Layer Security (TLS) for communications with an OAuth 2

authorization server.

Notes

	 i.	 https://datatracker.ietf.org/doc/html/draft-ietf-

oauth-v2-1-06

	 ii.	 https://tools.ietf.org/html/rfc6749

	 iii.	 https://www.rfc-editor.org/rfc/rfc7636

Chapter 5 OAuth 2 and API Authorization

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-06
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-06
https://tools.ietf.org/html/rfc6749
https://www.rfc-editor.org/rfc/rfc7636

101

	 iv.	 https://www.rfc-editor.org/rfc/rfc7636#section-4.2

	 v.	 https://datatracker.ietf.org/doc/html/rfc8707

	 vi.	 https://www.rfc-editor.org/rfc/rfc7636

	 vii.	 https://datatracker.ietf.org/doc/html/rfc7662

	viii.	 https://datatracker.ietf.org/doc/html/rfc9068

	 ix.	 https://www.w3.org/wiki/CORS

	 x.	 https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

security-topics-21#section-2.1.2

	 xi.	 https://tools.ietf.org/html/rfc8252

	 xii.	 https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

security-topics-21#section-2.4

	xiii.	 https://datatracker.ietf.org/doc/html/rfc8628

	 xiv.	 https://datatracker.ietf.org/doc/html/rfc8707

	 xv.	 https://datatracker.ietf.org/doc/html/rfc9068

	xvi.	 https://datatracker.ietf.org/doc/html/rfc6819

	xvii.	 https://datatracker.ietf.org/doc/html/rfc8705

	xviii.	 https://datatracker.ietf.org/doc/html/draft-ietf-

oauth-dpop

	xix.	 https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

v2-1-06#section-7

	 xx.	 https://datatracker.ietf.org/doc/html/rfc7009

	xxi.	 https://datatracker.ietf.org/doc/html/rfc8693

Chapter 5 OAuth 2 and API Authorization

https://www.rfc-editor.org/rfc/rfc7636#section-4.2
https://datatracker.ietf.org/doc/html/rfc8707
https://www.rfc-editor.org/rfc/rfc7636
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc9068
https://www.w3.org/wiki/CORS
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21#section-2.1.2
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21#section-2.1.2
https://tools.ietf.org/html/rfc8252
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21#section-2.4
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21#section-2.4
https://datatracker.ietf.org/doc/html/rfc8628
https://datatracker.ietf.org/doc/html/rfc8707
https://datatracker.ietf.org/doc/html/rfc9068
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc8705
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-06#section-7
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-06#section-7
https://datatracker.ietf.org/doc/html/rfc7009
https://datatracker.ietf.org/doc/html/rfc8693

103

CHAPTER 6

OpenID Connect
In the social jungle of human existence, there is no feeling of being alive
without a sense of identity.

—Erik Erikson, German-American developmental psychologist and
psychoanalyst who coined the phrase “Identity crisis,” from Identities:

Youth and Crisis (1968)

As described in the previous chapter, OAuth 2 provides a framework for authorizing

applications to call APIs, but isn’t designed for authenticating users to applications. The

OpenID Connect (OIDC)i protocol provides an identity service layer on top of OAuth 2,

designed to allow authorization servers to authenticate users for applications and return

the results in a standard way. Some implementations of OAuth 2 added proprietary

additions to do this, but a standard solution was needed. In this chapter, we’ll describe

the problem OIDC solves in more detail and how an application can use OIDC to

authenticate a user.

�Problem to Solve
The scenario OIDC is designed to solve involves a user who needs to be authenticated

in order to access an application. OIDC enables an application to delegate user

authentication to an OAuth 2 authorization server and have it return to the application a

set of claims about the authenticated user and authentication event in a standard format.

Figure 6-1 provides an illustration of how this works.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_6

https://doi.org/10.1007/978-1-4842-8261-8_6

104

Figure 6-1.  OIDC Authentication

When a user accesses an application, it redirects the user’s browser (or similar user

agent for native/mobile apps) to an authorization server that implements OIDC. OIDC

calls such an authorization server an OpenID Provider, so we’ll use that term in this

chapter. The OpenID Provider interacts with the user to authenticate them (assuming

they haven’t logged in already). After authentication, the user’s browser is redirected

back to the application. The application can request that claims about the authenticated

user be returned in a security token called an ID Token. Alternatively, it can request

an OAuth 2 access token and use it to call the OpenID Provider’s UserInfo endpoint to

obtain the claims. Because OIDC is a layer on top of OAuth 2, an application can use

an OpenID Provider for both user authentication and authorization to call the OpenID

Provider’s API. We’ve glossed over a few details in this first description just to convey

the basic concept. The next section will define some additional terms so we can provide

further details and a more accurate description.

Chapter 6 OpenID Connect

105

�Terminology
OIDC defines the following terms.

�Roles
There are three different roles involved in the OIDC solution:

•	 End User – The end user is a subject to be authenticated. (We will use

the term “user” for simplicity and consistency across chapters.)

•	 OpenID Provider (OP) – The OpenID Provider is an OAuth 2

authorization server that implements OIDC and can authenticate

a user and return claims about the authenticated user and the

authentication event to a relying party (application).

•	 Relying Party (RP) – An OAuth 2 client which delegates user

authentication to an OpenID Provider and requests claims about

the user from the OpenID Provider. We will generally use the term

“application” for the relying party for consistency across chapters, but

a relying party could be another identity provider in more advanced

use cases.

�Client Types
The OIDC specification references the public and confidential application types as

described in the previous chapter as well as native applications, defined in the “OAuth

2.0 for Native Apps”ii best current practice document as applications installed on, and

run natively on, a user’s device.

�Tokens and Authorization Code
OIDC uses the authorization code, access token, and refresh token as described in the

previous chapter for OAuth 2 and defines a new token called an ID Token.

•	 ID Token – A token used to convey claims about an authentication

event and an authenticated user to a relying party (application).

Chapter 6 OpenID Connect

106

�Endpoints
OIDC utilizes the authorization and token endpoints described in the previous chapter

for OAuth 2 and adds the UserInfo endpoint.

•	 UserInfo Endpoint – Returns claims about an authenticated user.

Calling the endpoint requires an access token, and the claims

returned are governed by the access token.

�ID Token
An ID Token is a security token used by an OpenID Provider to convey claims to an

application about an authentication event and authenticated user. ID Tokens are

encoded in JSON Web Token (JWT)iii format. Figure 6-2 shows a sample ID Token.

Figure 6-2.  Sample ID Token

The JWT format is designed to convey claims between two parties. As a JWT, an

ID Token consists of a header, a payload, and a signature. The header section of the

ID Token contains information on the type of object (JWT) and the specific signature

algorithm used to protect the integrity of the claims in the payload. Common signature

algorithms are HS256 (HMAC with SHA256) or RS256 (RSA Signature with SHA256).

Chapter 6 OpenID Connect

107

The payload section contains the claims about a user and the authentication event. The

signature section contains a digital signature based on the payload section of the ID

Token and a secret key known to the OpenID Provider.

The OpenID Provider signs the JWT in accordance with the JSON Web Signature (JWS)

specification.iv A relying party application can validate the signature on the ID Token

to check the integrity of the claims in it. For confidentiality, the OpenID Provider can

optionally encrypt the JWT using JSON Web Encryption (JWE)v after it is signed. If this is

done, it produces a nested JWT.

The name:value pairs in the payload section of the ID Token JWT are the claims

about an authenticated user and authentication event. The OIDC specification (Section 2)

defines a set of claims for ID Tokens applicable to all types of OIDC authentication

requests,vi shown in Table 6-1.

Table 6-1.  OIDC Claims in ID Tokens for All OIDC Flows

Claim Meaning

iss Issuer of the ID Token, identified in URL format. The issuer is typically the OpenID Provider.

The “iss” claim should not include URL query or fragment components.

sub Unique (within the OpenID Provider), case-sensitive string identifier for the authenticated

user or subject entity, no more than 255 ASCII characters long. The identifier in the subclaim

should never be reassigned to a new user or entity.

aud Client ID of the relying party (application) for which the ID Token is intended. May be a

single, case-sensitive string or an array of the same if there are multiple audiences.

exp Expiration time for the ID Token, specified as the number of seconds since January 1, 1970,

00:00:00 UTC to the time of token expiration. Applications must consider an ID Token invalid

after this time, with a few minutes of tolerance allowed for clock skew.

iat Time at which the ID Token was issued, specified as the number of seconds since January

1, 1970, 00:00:00 UTC to the time of ID Token issuance.

auth_

time

Time at which the user was authenticated, specified as the number of seconds since

January 1, 1970, 00:00:00 UTC to the time of authentication.

(continued)

Chapter 6 OpenID Connect

108

Table 6-1.  (continued)

Claim Meaning

nonce Unguessable, case-sensitive string value passed in authentication request from the relying

party and added by an OpenID Provider to an ID Token to link the ID Token to a relying party

application session and to facilitate detection of replayed ID Tokens.

amr String containing an authentication method reference – used to indicate the method(s) of

authentication used to authenticate the subject of the ID Token. The Authentication Method

Reference Values specificationvii defines a set of initial standard values for this claim.

acr String containing an authentication context class reference – used to indicate authentication

context class for the authentication mechanism used to authenticate the subject of the ID

Token. Values may be decided by OpenID Provider or agreed upon between relying party

and OpenID Provider and might use standards such as the draft OpenID Connect Extended

Authentication Profile ACR values.viii

azp Client ID of the authorized party to which the ID_Token is issued. Typically not used unless

the ID Token only has a single audience in the “aud” claim and that audience is different

from the authorized party, though it can be used even if the audience and authorized party

are the same.

An ID Token can contain additional claims beyond those listed in Table 6-1.

Examples of additional standard claimsix which may be added are the user’s name,

given_name, family_name, email, email_verified, locale, and picture. A list of additional

standard claims can be found in Section 5.1 of the OIDC core specification.x Specific

types of OIDC requests (flows) may involve additional claims. Custom claims can also be

defined and added by an OpenID Provider.

�How It Works
OIDC defines three different flows by which an application can interact with an OpenID

Provider to make an authentication request.

Chapter 6 OpenID Connect

109

�OIDC Flows
The OIDC flows are designed around the constraints of different types of applications

and bear some similarity to the grant types defined in OAuth 2. The original OIDC core

specification defines the following flows:

•	 Authorization Code Flow

•	 Implicit Flow

•	 Hybrid Flow

The following sections cover each of these flows in more detail.

�OIDC Authorization Code Flow
The OIDC Authorization Code Flow is similar to the OAuth 2 authorization code grant

in relying upon two requests and an intermediary authorization code. To authenticate

a user, an application redirects the user’s browser to an OpenID Provider. The OpenID

Provider authenticates the user and redirects the user’s browser back to the application

with an authorization code. The application uses the authorization code to obtain an ID

Token, access token, and optionally a refresh token, from the OpenID Provider’s token

endpoint. Figure 6-3 depicts this flow, assuming the application requested all three

security tokens and the user had no existing login session. This diagram also shows the

use of PKCE, as explained in Chapter 5.

Chapter 6 OpenID Connect

110

Figure 6-3.  OIDC Authorization Code Flow

	 1.	 The user accesses the application (relying party).

	 2.	 The user’s browser redirected to the OpenID Provider with an

authentication request.

	 3.	 The OpenID Provider interacts with the user for authentication

and to obtain consent for the scope of user info request.

	 4.	 The user authenticates and gives consent, and the OpenID

Provider creates or updates an authentication session for the user.

	 5.	 The user’s browser redirected back to the application with

authorization code.

	 6.	 The application sends a token request to the OpenID Provider,

with the authorization code.

	 7.	 The OpenID Provider responds with an ID Token, access token,

and optionally a refresh token.

	 8.	 The application can use the access token at the OpenID Provider’s

UserInfo endpoint, described later in this chapter.

Chapter 6 OpenID Connect

111

The second call to the token endpoint to obtain the security tokens assumes the

application has the ability to authenticate itself to the OpenID Provider. Public client

applications that cannot securely maintain a secret for such authentication can use

Proof Key for Code Exchange (PKCE) as described in the previous chapter. The use of

PKCE is designed to mitigate the risk of an authorization code being intercepted by an

unauthorized party. The following sample requests assume the use of PKCE.

�Authentication Request

An application redirects the user’s browser with an authentication request to the OpenID

Provider’s authorization endpoint such as

GET /authorize?

response_type=code

& client_id=<client_id>

& state=<state_value>

& nonce=<nonce_value>

& scope=<scope>

& redirect_uri=<callback_url>

& code_challenge=<code_challenge>

& code_challenge_method=<code_challenge_method> HTTP/1.1

Host: authorizationserver.com

The parameters used in the example are described in Table 6-2, but may vary by

individual OpenID Provider.

Chapter 6 OpenID Connect

112

Table 6-2.  OIDC Authentication Request Parameters

Parameter Meaning

response_type The response type indicates which OIDC flow to use. “code” indicates that the

Authorization Code Flow should be used.

response_mode An optional parameter used to request a nondefault mechanism to be used

by the authorization server to deliver response parameters to the client

application.

client_id The client ID for the relying party application, obtained when it registered with

the OpenID Provider (authorization server).

state An unguessable value passed to the OpenID Provider in the request. The

OpenID Provider is supposed to return the exact same state parameter and

value in a success response. Used by the relying party application to validate

the response corresponds to a request it sent previously. This helps protect

against token injection and CSRF (Cross-Site Request Forgery).

nonce An unguessable value passed to the OpenID Provider in the request and

returned unmodified as a claim in the ID Token if an ID Token is requested.

Used to protect against token replay.

scope A string specifying the claims requested about the authenticated user.

Example scope: “openid%20profile%20email”.

redirect_uri URI where the OpenID Provider directs the response upon completion of the

authentication request. For example: “https%3A%2F%2Fclient%2Eexample%2

Ecom%2Fcallback”.

code_challenge PKCE code challenge derived from the PKCE code verifier using the code

challenge method specified in the code_challenge_method parameter, as

described in Section 4.2 of the PKCE specification.xi

code_challenge_

method

“S256” or “plain.” Applications capable of using S256 (SHA256 hash) must

use it.

The response_type parameter in the authentication request is used to indicate the

desired OIDC flow. For the Authorization Code Flow, the response_type should be

“code,” appropriately named as it returns an authorization code to the application. This

OIDC flow is similar to the authorization code grant described in the previous chapter.

Chapter 6 OpenID Connect

113

The optional response_mode parameter governs the method by which the response

parameters are returned to the application. With the “query” response mode, the

response from the OpenID Provider is returned in a query string appended to the

redirect URI specified in the request. This mode is the default when the “code” response

type is used. With the “fragment” response mode, the response from the OpenID

Provider is included in a fragment appended to the redirect URI. This is the default

response mode for the “token” response type, discussed later in this chapter. These

two response modes are defined in the “OAuth 2.0 Multiple Response Type Encoding

Practices” specification.xii Unless otherwise noted, the examples in this chapter do

not include response_mode as they assume the use of the default response mode for

each flow.

The scope parameter in OAuth 2 is used to request API privileges to be represented

via an access token. With OIDC authentication requests, the scope is used to indicate

the use of OIDC and request particular claims about the authenticated user. OIDC

authentication requests must include the “openid” scope value. The string “openid

profile email” is a sample scope value. Adding “profile” to the scope value requests a

set of default user profile claims such as name, family name, and given name. Adding

“email” requests the user’s email address and whether that address has been validated.

When the response_type results in the issuance of an access token, the scope applies

to the claims returned by the OpenID Provider’s UserInfo endpoint. If an access token

is not issued, the requested claims will be included in the ID Token. Additional details

on requesting claims can be found in Sections 5.4 and 5.5 of the OpenID Connect Core

specification.xiii

Another optional parameter, called “nonce,” is important to mention. The nonce

value should be included if an ID Token is requested. When an application makes an

authentication request to an OpenID Provider, it should specify a unique, nonguessable

nonce value that is tied to the session an application has started for the user. One option

is to generate a random value, store it securely in the user session, and use its hash as the

nonce. When the application receives an ID Token, it must check that the token contains

the exact nonce value specified in the authentication request and that the nonce

matches the hash of the value previously stored in the session. This links an ID Token

with a user’s application session and mitigates the risk of ID Tokens being replayed.

There are several additional, optional parameters which may be passed in an

authentication request to govern how and whether an OpenID Provider prompts a user

to authenticate and provide consent, to specify preferred language(s), to pass hints about

Chapter 6 OpenID Connect

114

a user’s session or identifier, or to request specific user claims. See Section 3.1.2.1 of the

OpenID Core specificationxiv for further information.

�Authentication Response

The OpenID Provider returns a response to the redirect URI specified in the

authentication request and which must be registered with the OpenID Provider. For the

Authorization Code Flow, the default response mode returns the authorization code

using a query parameter to the redirect URI (callback) specified in the authentication

request. It also returns the exact state value that was passed in the authentication

request.

HTTP/1.1 302 Found

Location: https://clientapplication.com/callback?

code=<authorization_code>

& state=<state_value>

The application should check to see if the response contains any error codes

and if the state value returned with a response matches the state value it sent in its

authentication request. It can then use the authorization code to make a token request.

An application should take care to only use each authorization code once as the server is

obligated to respond with an error if an authorization code has already been used.

�Token Request

The authorization code returned by an OpenID Provider is used by an application in a

token request to the OpenID Provider’s token endpoint. The following sample request

assumes a confidential client application that was registered at the OpenID Provider to

authenticate with a client secret and HTTP Basic authentication.

POST /token HTTP/1.1

Host: authorizationserver.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic <encoded client credentials>

 grant_type=authorization_code

& code=<authorization_code>

& redirect_uri=<redirect_uri>

& code_verifier=<code_verifier>

Chapter 6 OpenID Connect

115

The registration for an application at an OpenID Provider may specify one of

several authentication methods to be used with token requests. Further information

on the defined authentication methods can be found in Section 9 of the OIDC Core

specification.xv The parameters for the sample token request are shown in Table 6-3.

The OpenID Provider will respond with the requested tokens in JSON format. The

following shows a sample response:

HTTP/ 1.1 200 OK

Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

 Pragma: no-cache

{

 "id_token" : <id_token>,

 "access_token" : <access_token value>,

 "refresh_token" : <refresh_token value>,

 "token_type" : "Bearer",

 "expires_in" : <token lifetime>

}

Table 6-3.  OIDC Parameters for Sample Token Request

Parameter Meaning

grant_type “authorization_code” is used when exchanging an authorization code for tokens.

code The authorization code received in response to the authentication request.

redirect_

uri

Callback location at the application for the OpenID Provider’s response from this call.

code_

verifier

The PKCE code verifier value from which the code challenge in the authentication

request was derived. It should be an unguessable, cryptographically random string

between 43 and 128 characters in length, inclusive, using the characters A–Z, a–z,

0–9, “-”, “.”, “_”, and “~” and formed as described in Section 4.1 of the PKCE

specification.xvi

Chapter 6 OpenID Connect

116

The sample response elements are described in Table 6-4.

Before relying on claims in an ID Token, an application should validate the ID Token

following guidance provided by the issuing OpenID Provider and the validation steps in

the JWT specification.xvii The application can obtain claims about the authenticated user

from the ID Token or by using the access token to call the OpenID Provider’s UserInfo

endpoint.

�OIDC Implicit Flow
The Implicit Flow in OIDC is similar to the OAuth 2 grant type of the same name. As

explained in Chapter 5, the use of the OAuth 2 implicit grant to obtain an access token,

at least with default response mode, is no longer recommended and has been removed

from the OAuth 2.1 version of the specification. However, that guidance is based on the

risk of exposing an access token in a URL fragment which can be leaked via the browser

history or referer header. An application that only needs to authenticate users and can

obtain user information via an ID Token does not need an access token. In this case, the

OIDC Implicit Flow may be acceptable. Figure 6-4 shows this flow with the application

receiving only an ID Token.

Table 6-4.  Response Elements for Token Requests

Parameter Meaning

id_token The ID Token with user claims.

access_token The access token for the OpenID Provider’s UserInfo

endpoint.

refresh_token A refresh token, if a refresh token was requested or is

returned by default.

token type Bearer is typically used unless an OpenID Provider has

documented another type.

expires_in The lifetime of the access token, in seconds.

Chapter 6 OpenID Connect

117

Figure 6-4.  OIDC Implicit Flow

	 1.	 The user accesses the application (relying party).

	 2.	 The user’s browser redirected to the OpenID Provider with an

authentication request.

	 3.	 The OpenID Provider interacts with the user for authentication

and to obtain consent for the scope of user info request.

	 4.	 The user provides login credentials and consent, and the OpenID

Provider creates or updates an authentication session for the user.

	 5.	 The user’s browser redirected back to the application with an

ID Token.

	 6.	 The application obtains user claims from the ID Token and

displays suitable application content to the user.

Chapter 6 OpenID Connect

118

�Authentication Request

An authentication request to authenticate a user with the OIDC Implicit Flow, and

request only an ID Token, will look similar to the following:

GET /authorize?

response_type=id_token

& client_id=<client_id>

& state=<state_value>

& nonce=<nonce_value>

& scope=<scope_value>

& redirect_uri=<callback_url> HTTP/1.1

Host: authorizationserver.com

The parameters used in the OIDC Implicit Flow authentication request have the

same definition as shown in Table 6-2, with the exception of response_type values. For

the Implicit Flow, the allowed response_type values are

•	 “id_token” – Response contains only an ID Token.

•	 “id_token token” – Response contains an ID Token and access token.

By default, the OIDC Implicit Flow returns all tokens via front-channel browser

interaction to the redirect URI, using a URL fragment. The use of “id_token token”

response_type is not recommended with the default response mode as it would expose

an access token to potential compromise through a referer header or the browser’s

history.xviii Using the OIDC Implicit Flow with the default response mode and “id_token”

response_type to return only an ID Token avoids this risk, assuming the ID Token does

not contain sensitive data.

Another option is to use a nondefault response mode. The OAuth 2.0 Form Post

Response Mode specificationxix defines a response mode, “form_post,” which results in

the response from the authorization server being encoded in an HTML form sent via

HTTP-POST to the application. This response mode could be considered for applications

needing only an ID Token. This avoids exposing the ID Token and data in it via a URL

fragment, but this response mode may not be feasible for some application types. Public

clients needing an access token and/or ID Token with sensitive elements should use the

Authorization Code Flow with PKCE instead.

Chapter 6 OpenID Connect

119

It is unclear if authorization servers and OpenID Providers will terminate support for

the Implicit Flow. New applications should use the Authorization Code Flow with PKCE

instead of Implicit Flow. Existing applications that use the Implicit Flow should consider

replacing it to reduce the risk of access token exposure as well as a potential end-of-life

announcement from their OpenID Provider.

�Authentication Response

The following shows a sample response to an Implicit Flow authentication request that

used an “id_token” response type to request only an ID Token. This approach can be

used if the claims in the ID Token do not contain sensitive data.

HTTP/1.1 302 Found

Location: https://clientapplication.com/callback#

 id_token=<id_token>

& state = <state>

�OIDC Hybrid Flow
The OIDC Hybrid Flow includes elements of both the OIDC Authorization Code Flow

and OIDC Implicit Flow. It is designed for applications with both a secure back end

and a front end with client-side JavaScript executing in a browser. The OIDC Hybrid

Flow enables models such as returning an ID Token and authorization code in a front-

channel response to the application front end, leaving the application back end to

obtain an access token (and optional refresh token) from the token endpoint using the

authorization code. This flow is shown in Figure 6-5.

Chapter 6 OpenID Connect

120

Figure 6-5.  OIDC Hybrid Flow

	 1.	 The user accesses the application (relying party).

	 2.	 The user’s browser redirected to the OpenID Provider with an

authentication request.

	 3.	 The OpenID Provider interacts with the user for authentication

and to obtain consent for the scope of user info request.

	 4.	 The user authenticates and provides consent, and the OpenID

Provider creates or updates an authentication session for the user.

	 5.	 The user’s browser redirected back to the application front end

with an authorization code and ID Token.

	 6.	 The client application validates the ID Token, and, if valid, the

back end calls the token endpoint with authorization code to get

additional tokens.

	 7.	 The OpenID Provider token endpoint returns requested tokens.

	 8.	 The client application can call the OpenID Provider’s UserInfo

endpoint with an access token.

Chapter 6 OpenID Connect

121

�Authentication Request

The parameters for the authentication request are as defined in Table 6-2 with the

exception that the response_type for the OIDC Hybrid Flow uses three different values

to govern which tokens are returned in the response from the OpenID Provider’s

authorization endpoint. Additional tokens can be requested via the subsequent

token request to the token endpoint. Table 6-5 summarizes the possible values for

response_type.

Table 6-5.  OIDC Hybrid Flow Response Types

response_type Returned from Authorization Endpoint

“code id_token” Authorization code, id_token

“code token” Authorization code, access token – NOT recommended with default response_

mode

“code id_token

token”

Authorization code, id_token, access token – NOT recommended with default

response_mode

The response_types which return an access token via front-channel response from

the authorization endpoint, namely, “code token” and “code id_token token,” are not

recommended for use with the default response mode as the access token would be

exposed as a URL fragment in the browser and possibly leaked via referer headers or

browser history.xx If the default response mode is used, the “code id_token” response_

type should be used to return only the ID Token and authorization code using a front-

channel response to the browser. An access token, and optional refresh token, can

then be obtained from the OpenID Provider’s token endpoint via secure back-channel

interaction from the application’s back end. In practice, the Hybrid Flow is not widely

used. Using this flow requires an application implementation that will provide both

the front-end and back-end with information, such as nonce and state, with which to

validate any responses and security tokens they receive as well as prevent attacks such

as CSRF or token injection. Applications should consider using the Authorization Code

Flow with PKCE unless they have a specific use case that requires the OIDC Hybrid Flow.

Chapter 6 OpenID Connect

122

A sample authentication request using the OIDC Hybrid Flow and “code id_token”

response type and default response mode is shown in the following example, with

parameter definitions similar to previous examples:

GET /authorize?

response_type=code%20id_token

&client_id=<client_identifier>

&redirect_uri=<callback_url>

&scope=<scope_value>

&state=<state_value>

&nonce=<nonce_value> HTTP/1.1

Host: authorizationserver.com

�Authentication Response

When the application receives the response, the application back end can use the

authorization code at the OpenID Provider’s token endpoint as described in the previous

section for OIDC Authorization Code Flow.

�UserInfo Endpoint
An application can retrieve claims about a user from the OpenID Provider’s UserInfo

endpoint. The UserInfo endpoint is an OAuth 2 API endpoint, and to call it requires

an access token issued by the OpenID Provider. When requesting the access token, an

application uses the scope parameter to indicate the desired claims about the user. The

OpenID Provider authenticates the user and obtains their consent for the requested

claims and then issues the access token with the authorized scope for the claims to the

application. The application then uses the access token to request the claims from the

UserInfo endpoint. A sample application request to the UserInfo endpoint looks like the

following:

GET /userinfo HTTP/1.1

Host: authorizationserver.com

Authorization: Bearer <access_token>

Chapter 6 OpenID Connect

123

The OpenID Provider’s UserInfo endpoint response returns claims with a JSON

object (unless signed or encrypted responses are used). The following sample response

assumes the requested scope was “openid profile email”:

HTTP/1.1 200 OK

Content-Type: application/json

{

 "sub": "1234567",

 "name": "Fred Smith",

 "given_name": "Fred",

 "family_name": "Smith",

 "preferred_username": "fred.smith",

 "email": "fred.smith@example.com",

 "email_verified": true,

 "picture":"https://example.com/fred.smith/fred.smith.jpg",

 }

An application should perform any validation on responses recommended by its

specific OpenID Provider.

The UserInfo endpoint is primarily useful if the desired user profile claims are too

large for an ID Token returned via a URL fragment or if the claims contain sensitive

information.

�Further Learning
The three OIDC flows described earlier all assume that the end user initiates an action in

an application on their device, which triggers the need for authentication, which in turn

redirects the user to an OpenID Provider. In other words, the application that initiates

the authentication request is assumed to be running on the same device where the user

will authenticate. There are some common scenarios, however, where a different flow

is needed. The OIDC Client-Initiated Backchannel Authentication Flow (CIBA) defines

a flow where an application used by a third party, such as a bank teller, a support agent,

or even a self-service point-of-sale terminal, can initiate an authentication request to

an OpenID Provider to have it authenticate and provide claims about a particular user.

The OpenID Provider then initiates an interaction with the user on a device, such as a

cellphone, to authenticate them. The key difference with this flow is that the application

Chapter 6 OpenID Connect

124

that needs to authenticate the user is not running on the user’s device. Covering this

flow in detail is beyond the scope of this introductory book, but it is mentioned here for

awareness and a more detailed description can be found in the OpenID Connect Client-

Initiated Backchannel Authentication Flow specification.xxi

�Summary
In this chapter, we’ve discussed a mechanism for authenticating a user and how an

application can obtain information from an OIDC Provider about the authenticated

user. The OpenID Connect protocol provides an identity layer on top of OAuth 2 that

supports authenticating users to applications and enables single sign-on. Adding to

OAuth 2, OIDC adds an ID Token and a UserInfo endpoint, which return claims about

an authentication event and the authenticated user to the application. Using OIDC

allows applications to delegate user authentication to an OpenID Provider, and using

OIDC and OAuth 2 together solves both authentication and API authorization. In later

chapters, we’ll cover additional application tasks, such as the need to maintain a session

for a user, single sign-on, and logout, including awareness of when a user’s session at the

OIDC Provider has terminated. Before we leave the topic of authentication, however, in

case you encounter customers that ask you to support the older authentication protocol

known as SAML 2, we’ll cover an overview of that in the next chapter.

�Key Points
•	 OIDC provides an identity layer on top of OAuth 2 to

authenticate users.

•	 OIDC enables single sign-on.

•	 OIDC provides an ID Token and UserInfo endpoint to obtain user

profile info.

•	 OIDC defines a set of standard claims that can be obtained

about a user.

•	 OIDC allows for the use of additional, custom claims.

•	 OIDC defines three grant flows for different client profiles.

Chapter 6 OpenID Connect

125

•	 OIDC provides several options for returning an authorization code

and/or security tokens via front-channel or back-channel response.

•	 Returning access tokens or refresh tokens via front-channel

responses should be avoided by using a back-channel response or

alternate response mode.

•	 Returning sensitive information in ID Tokens via front-channel

responses should be avoided by using a back-channel response or

the UserInfo endpoint or encrypting the ID Token if encryption is

supported.

•	 The OIDC CIBA flow allows an application used by a third party to

send a request to an OpenID Provider to authenticate a user via a

device in the user’s possession such as their cellphone.

�Notes

	 i.	 https://openid.net/connect/

	 ii.	 https://tools.ietf.org/html/rfc8252

	 iii.	 https://tools.ietf.org/html/rfc7519

	 iv.	 https://tools.ietf.org/html/rfc7515

	 v.	 https://tools.ietf.org/html/rfc7516

	 vi.	 https://openid.net/specs/openid-connect-core-1_0.

html#IDToken

	 vii.	 https://datatracker.ietf.org/doc/html/rfc8176

	viii.	 https://openid.net/specs/openid-connect-eap-acr-

values-1_0.html

	 ix.	 https://openid.net/specs/openid-connect-core-1_0.

html#StandardClaims

	 x.	 https://openid.net/specs/openid-connect-core-1_0.

html#StandardClaims

	 xi.	 https://tools.ietf.org/html/rfc7636

Chapter 6 OpenID Connect

https://openid.net/connect/
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://datatracker.ietf.org/doc/html/rfc8176
https://openid.net/specs/openid-connect-eap-acr-values-1_0.html
https://openid.net/specs/openid-connect-eap-acr-values-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://tools.ietf.org/html/rfc7636

126

	 xii.	 https://openid.net/specs/oauth-v2-multiple-response-

types-1_0.html

	xiii.	 https://openid.net/specs/openid-connect-core-1_0.

html#ScopeClaims

	 xiv.	 https://openid.net/specs/openid-connect-core-1_0.

html#AuthRequest

	 xv.	 https://openid.net/specs/openid-connect-core-1_0.html#Cl

ientAuthentication

	xvi.	 https://tools.ietf.org/html/rfc7636

	xvii.	 https://tools.ietf.org/html/rfc7519#section-7.2

	xviii.	 https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

security-topics-21#section-2.1.2

	xix.	 https://openid.net/specs/oauth-v2-form-post-response-

mode-1_0.html

	 xx.	 https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

security-topics-21#section-2.1.2

	xxi.	 https://openid.net/specs/openid-client-initiated-

backchannel-authentication-core-1_0-final.html

Chapter 6 OpenID Connect

https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7519#section-7.2
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21#section-2.1.2
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21#section-2.1.2
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21#section-2.1.2
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21#section-2.1.2
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0-final.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0-final.html

127

CHAPTER 7

SAML 2
To be trusted is a greater compliment than to be loved.

—George MacDonald, from The Marquis of Lossie (1877)

The Security Assertion Markup Language (SAML) 2i is known for providing two

important features, cross-domain single sign-on (SSO) and identity federation. SAML 2

has been adopted in many enterprise environments because it enabled the enterprise

to have applications used by employees, customers, and partners delegate user

authentication to a centralized enterprise identity provider. This gave the enterprise a

central place to manage and control identities. If you are writing an application for large

enterprise customers, they may expect you to support authentication using SAML 2.

In this chapter, we’ll provide an overview of SAML 2, the problem it is designed to

solve, and the cross-domain single sign-on and identity federation features in SAML 2.

We’ll also provide a suggestion for how to leverage newer protocols like OIDC in your

application and still efficiently implement support for SAML.1

�Problem to Solve
The most common use case for which SAML is used in our experience is cross-domain

single sign-on. In this scenario, a user needs to access multiple applications which reside

in different domains, such as application1.com and application2.com. Without cross-

domain single sign-on, a user might have to establish an account in each application and

log in to each application individually. This means potentially many different usernames

and passwords for a user to remember. If the user is a corporate employee and the

1 All unqualified uses of the term “SAML” refer to SAML 2.0.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_7

https://doi.org/10.1007/978-1-4842-8261-8_7

128

applications are SaaS applications, it would be difficult for the enterprise to manage all

the SaaS application accounts their employees create.

SAML was designed as an “eXtensible Markup Language (XML)–based framework

for describing and exchanging security information between online business partners.”ii

SAML enables applications to delegate user authentication to a remote entity known

as an identity provider. The identity provider authenticates the user and returns

to the application an assertion with information about the authenticated user and

authentication event. If the user accesses a second application shortly afterward, which

delegates authentication to the same identity provider, the user will be able to access

the second application without being prompted again to log in. This capability is single

sign-on.

SAML also provides a mechanism for an application and identity provider to use a

common shared identifier for a user in order to exchange information about the user.

This is known as federated identity. The federated identity can use the same identifier

across systems, or it can use an opaque, internal identifier which is mapped to the

identifier for the user in each system. We’ll see more about how these features work in

the following sections, but, first, we need to explain some terms we’ll use.

�Terminology
The SAML specifications define the following terms:

•	 Subject – An entity about which security information will be

exchanged. A subject usually refers to a person, but can be any entity

capable of authentication, including a software program. For the use

cases we’ll discuss, the subject is a user of an application.

•	 SAML Assertion – An XML-based message that contains security

information about a subject.

•	 SAML Profile – A specification that defines how to use SAML

messages for a business use case such as cross-domain single

sign-on.

•	 Identity Provider – A role defined for the SAML cross-domain single

sign-on profile. An identity provider is a server which issues SAML

assertions about an authenticated subject, in the context of cross-

domain single sign-on.

Chapter 7 SAML 2

129

•	 Service Provider – Another role defined for the SAML cross-domain

single sign-on profile. A service provider delegates authentication to

an identity provider and relies on information about an authenticated

subject in a SAML assertion issued by an identity provider in the

context of cross-domain single sign-on.

•	 Trust Relationship – An agreement between a SAML service

provider and a SAML identity provider whereby the service provider

trusts assertions issued by the identity provider.

•	 SAML Protocol Binding – A description of how SAML message

elements are mapped onto standard communication protocols, such

as HTTP, for transmission between service providers and identity

providers. In practice, SAML request and response messages are

typically sent over HTTPS using either HTTP-Redirect or HTTP-POST,

using the HTTP-Redirect and HTTP-POST bindings, respectively.

�How It Works
The most common SAML scenario is cross-domain web single sign-on. In this

scenario, the subject is a user that wishes to use an application. The application acts

as a SAML service provider. The application delegates user authentication to a SAML

identity provider that may be in a different security domain. The identity provider

authenticates a user and returns a security token, known as a SAML assertion, to the

application. A SAML assertion provides information about the authentication event and

the authenticated user, known as the subject. We will use the term application along

with service provider for consistency across chapters, but should note that an entity

acting as an identity provider can also act as a service provider by further delegating

authentication to another identity provider.

To establish the ability to do cross-domain web single sign-on, the organizations

owning the service provider (application) and identity provider exchange information,

known as metadata. The metadata contains information such as URL endpoints and

digital certificates. This data enables the two parties to exchange messages that are digitally

signed and optionally encrypted. The metadata is used to configure and set up a trust

relationship between the service provider and the identity provider and must be done

before the identity provider can authenticate users for the service provider (application).

Chapter 7 SAML 2

130

Once mutual configuration of providers is in place, when a user accesses the service

provider (application), it redirects the user’s browser over to the identity provider with

a SAML authentication request message. The identity provider authenticates the user

and issues a redirect back to the application with a SAML authentication response

message. The response contains a SAML assertion with information about the user and

authentication event, or an error, if an error condition occurred. The identity provider

can tailor the identity claims in the assertion as needed for each service provider. Please

see Appendix C for sample SAML authentication request and response messages and a

description of commonly used elements within each.

�SP-Initiated SSO
The simplest form of cross-domain single sign-on is illustrated in Figure 7-1. In this

example, the user starts at the service provider (SP) (application) so it is known as

the “SP-initiated” flow. (The diagram and accompanying description of steps depict a

scenario where the user does not have an existing authentication session at the identity

provider and therefore has to authenticate.)

Figure 7-1.  SAML SP-Initiated Single Sign-On

	 1.	 The user visits a service provider (application).

	 2.	 The service provider redirects the user’s browser to the identity

provider with a SAML authentication request.

Chapter 7 SAML 2

131

	 3.	 The identity provider interacts with the user for authentication.

	 4.	 The user authenticates. The identity provider validates

credentials.

	 5.	 The identity provider redirects the user’s browser back to the

service provider with a SAML response containing a SAML

authentication assertion. The response is sent to the service

provider’s Assertion Consumer Service (ACS) URL.

	 6.	 The service provider consumes and validates the SAML response

and responds to the user’s original request (assuming the user

was successfully authenticated and has sufficient privileges for the

request).

�Single Sign-On
Figure 7-1 shows the user accessing a single application. Multiple service providers can

choose to delegate user authentication to the same identity provider. When this occurs,

a user can access a first application and be redirected to authenticate to the identity

provider to establish an authentication session there, as shown in Figure 7-1. The user

can then use the same browser to access a second application which relies on the same

identity provider. When the user is redirected by the second application to the identity

provider, the identity provider will recognize the user already has a session and won’t ask

them to authenticate again. The identity provider will simply redirect the user’s browser

back to the second application with a successful SAML authentication response. This is

called single sign-on (SSO), and it will be covered in more detail in Chapter 11.

To keep things simple, the example in this chapter assumes that both applications

require the same strength of authentication mechanism, namely, password

authentication. In Chapter 12, we will discuss stronger forms of authentication and how

this impacts single sign-on.

�IdP-Initiated Flow
Figure 7-1 showed an interaction sequence with the user starting at the service provider

(application). This is called “SP-initiated” because the user initiates the interaction at

the service provider (SP). SAML also defined another flow, known as “IdP-initiated,”

Chapter 7 SAML 2

132

where the user starts at the identity provider (IdP), and which is shown in Figure 7-2. In

this case, the identity provider redirects the user’s browser to the service provider with

a SAML response message without the service provider having sent any authentication

request. This flow is found in some enterprise environments where a user accesses

applications via a corporate portal.

When the user initially accesses the corporate portal, they are redirected to the

corporate identity provider to log in. After logging in, the user is returned to the portal

and sees a menu of application links on the portal. Clicking one of these links redirects

the user to the identity provider, with the application URL as a parameter. The identity

provider detects the user already has an authenticated session and redirects the user’s

browser to the application, with a SAML response message as in the SP-initiated case.

The IdP-initiated flow does not require a portal, but we’ve chosen to show it as it is a

common way this flow is used.

The IdP-initiated flow with a portal has been used in enterprises because it provides

single sign-on and ensures users go to the correct URL for each application which

reduces the risk of users being phished. The IdP-initiated flow is shown in Figure 7-2.

(This diagram assumes the user does not have an existing authentication session.)

Figure 7-2.  SAML IdP-Initiated Single Sign-On

Chapter 7 SAML 2

133

	 1.	 The user visits a corporate portal.

	 2.	 The portal redirects the user’s browser to the identity provider

with a SAML authentication request.

	 3.	 The identity provider interacts with the user for authentication.

	 4.	 The user authenticates. The identity provider validates

credentials.

	 5.	 The identity provider redirects the user’s browser back to

the portal with a SAML response for the portal (response #1)

containing an authentication assertion. The user is logged in to

the portal which displays content to the user, including a list of

applications.

	 6.	 The user clicks a link in the portal for an application. The

link directs the user’s browser to the identity provider with a

parameter indicating the desired service provider application. The

IdP checks the user’s session. This diagram assumes the user’s

session is still valid.

	 7.	 The identity provider redirects the user’s browser to the service

provider’s Assertion Consumer Service (ACS) URL, with a new

SAML response (response #2) for that service provider (the

application).

	 8.	 The service provider (application) consumes the SAML response

and authentication assertion and renders an appropriate page for

the user, assuming their identity and privileges are sufficient for

their request.

For more detailed information on the contents of SAML authentication requests

and responses, as well as some application validation steps, see Appendix C. In general,

with IdP-initiated flows, there are fewer checkpoints with which to validate incoming

SAML responses, which may make applications more vulnerable to certain types of

replay or injection attacks, especially if IdP-initiated flows can initiate actions within an

application. We recommend using a flow that initiates from a Service Provider rather

than one that initiates from an Identity Provider.

Chapter 7 SAML 2

134

�Identity Federation
With SAML, identity federation establishes an agreed-upon identifier that is used

between a service provider (application) and an identity provider to refer to a subject

(user). This enables a service provider to delegate authentication of the user to an

identity provider and receive back an authentication assertion with identity claims that

include an identifier for the authenticated subject that will be recognizable by the service

provider.

Figure 7-3 illustrates an example. A user named Ann Smith has an account in two

applications, application1 hosted at app1.com and application2 hosted at app2.com. In

application1, her account identifier is ann@corp.com, and in application2, her account

identifier is “ann.” Ann also has an account at a corporate identity provider where her

account identifier is ann@corp.com.

The administrators for application1 and the identity provider exchange metadata

about their environments and use it to set up federation information between

application1 and the identity provider. The same is done by the administrators of

application2 and the identity provider. In practice, the administrators of an identity

provider configure it to send assertions to each service provider that contain appropriate

identifiers and attributes for the service provider (application).

Figure 7-3.  Identity Federation

Chapter 7 SAML 2

135

When Ann accesses application1, it redirects her browser to her employer’s identity

provider at “corp.com”. The identity provider authenticates Ann and redirects her

browser back to application1 with an authentication assertion containing a naming

attribute identifying her as ann@corp.com. Application1 uses the same identifier for Ann,

so it recognizes her based on that identity.

When Ann accesses application2, it redirects her browser to the identity provider

which recognizes that she already has a session. If the identity provider returns an

authentication assertion identifying her as ann@corp.com, however, application2 will

not recognize her as a valid user by that name. The identity provider needs to return an

appropriate identifier for each service provider. In this case, when the identity provider

delivers the authentication assertion to application2, it needs to identify the subject of

the assertion with a naming attribute using “ann.”

The logical link between the identity for a person at a service provider and at an

identity provider can be set up in different ways. In practice, a user’s email address is

often used as the identifier for a user at both the service provider and identity provider.

This can be problematic, however, as a user may need to change their email address, and

it can conflict with privacy requirements. The use of a specific identifier attribute can be

requested dynamically in a request, or an identity provider can be configured to send a

particular identifier to a service provider. It is also possible for an identity provider and

service provider to exchange information using an opaque, internal identifier for a user

that is mapped on each entity’s side to the user’s profile within that entity. The use of a

unique identifier for each federation is privacy-friendly and prevents correlation of user

activity across providers, but this has not been widely done in practice. The approach

to use is set up when the owners of the service provider and identity provider exchange

metadata and configure their servers to establish the trust relationship (often called a

federation) between the service provider and identity provider.

�Authentication Brokers
Authentication brokers can be used by applications to easily enable support for multiple

authentication protocols and mechanisms. If you are building a new application and

plan to use OIDC for authentication, you may receive requests to support SAML from

business customers who want their users authenticated at their corporate SAML

Chapter 7 SAML 2

136

identity provider. SAML is a complex protocol, which would require significant work to

implement and support across many customers because each customer’s SAML Identity

Provider may be configured differently, resulting in minor differences in the assertions.

Rather than implement SAML directly in your application yourself, you can use

an authentication broker to simplify the task of supporting SAML.2 An authentication

broker allows your application to use a newer identity protocol like OIDC and rely on

the authentication broker to communicate via different protocols to a variety of identity

providers. Figure 7-4 depicts an application implemented to use OIDC and OAuth 2 with

an authentication broker which communicates in turn with several identity providers,

each of which uses a different protocol. The use of an authentication broker allows an

application team to implement newer identity protocols in their application and focus

on the core features of their application instead of spending time to directly implement

and support older identity protocols requested by customers.

Figure 7-4.  Benefits of an Authentication Broker

If you elect not to use an authentication broker, we recommend at least using a

SAML library rather than attempting to implement SAML yourself. SAML assertions

are lengthy, with many XML elements to parse and validate, making it a complex

protocol to implement. Using a SAML library will allow you to spend more time on your

application’s core features instead of fiddling around with a lot of XML.

2 Full disclosure: At the time of writing, the authors of this book worked for Auth0, a vendor of an
authentication broker service.

Chapter 7 SAML 2

137

�Configuration
Whether you use an authentication broker or a library, Tables 7-1 and 7-2 show the

elements that typically need to be configured at the service provider (application) and

identity provider and their meaning. The owners of the service provider and identity

provider need to exchange the information in these tables to enable the configuration of

the federation.

In practice, the information is often available via a discovery URL. The owner of the

service provider can consult the discovery URL at the identity provider to obtain the

information to enter into the service provider’s configuration for the federation, and

vice versa for the owner of the identity provider. The identity provider must furthermore

be configured to send an assertion that contains an identifier for the user that will be

recognized by the service provider application. The assertion must also contain any

additional attributes needed by the application. These attributes might include user

profile attributes used to customize the user experience or information about roles or

groups that are needed for the application’s access control enforcement.

Table 7-1.  Common Service Provider Configuration

Element Description

SSO URL Single sign-on URL of the identity provider. This is where the service provider will

send its authentication requests.

Certificate Certificate(s) from the identity provider. Used to validate signatures on SAML

responses/assertions from the identity provider. Also used if a service provider sends

encrypted requests. Some providers allow different certificates for the two uses.

Protocol

binding

Protocol binding to use when sending requests. HTTP-Redirect for simple requests or

HTTP-POST if requests are signed, which is recommended.

Request

signing

Whether to digitally sign SAML authentication requests and, if so, via which

signature algorithm. Signing is recommended. It can protect request elements from

modification and make DOS attacks more costly to perform.

Request

encryption

Whether to digitally encrypt a SAML authentication request.

Chapter 7 SAML 2

138

Table 7-2.  Common Identity Provider Configuration

Element Description

ACS URL AssertionConsumerService URL of the service provider. This is where it will receive

SAML authentication responses from the identity provider.

Certificate Certificate(s) from the service provider. Used to validate signatures on SAML

requests. Also needed if responses are to be encrypted. Some providers allow

different certificates for the two uses.

Protocol

binding

Protocol binding to use when sending a response. HTTP-POST is typically required to

accommodate signed messages.

Response

signing

Whether to digitally sign the SAML authentication response, the assertion, or both

and, if so, via which signature algorithm. Signing is mandatory.

Response

encryption

Whether to digitally encrypt a SAML response.

The configuration elements listed in Table 7-1 are set up at the Service Provider for

each Identity Provider it will rely upon. Similarly, the configuration elements in Table 7-2

are configured at the Identity Provider for each Service Provider that will rely upon the

Identity Provider. The correct configuration of the federation at the Service Provider

and Identity Provider is necessary for the Service Provider to redirect users to a trusted

Identity Provider and to receive and trust the SAML responses from the Identity Provider.

You’ll need to consult the documentation for the authentication broker or SAML

library you’ve chosen for the specific details of where and how to configure the

preceding elements. Once both providers are configured and you have attempted a trial

authentication, it’s common for authentication to fail the first time. You can debug issues

by attempting an authentication, capturing a trace of the SAML request and response

message, and examining them. We’ve provided guidance for how to troubleshoot in

Chapter 16 and details on what to look for in the SAML request and response messages

in Appendix C.

As time passes, the information used to establish the federation may change. The

most common change is for the digital certificates or cryptographic keys to expire. These

are exchanged during the setup of a federation relationship between providers and used

to validate digital signatures on SAML messages and optionally to decrypt encrypted

SAML messages. If a certificate or key expires, the identity provider may not be able

Chapter 7 SAML 2

139

to consume a SAML request from the service provider, or the service provider will not

be able to consume and validate the SAML assertion from the identity provider, and

authentication requests will fail. The owners of service providers and identity providers

need to notify the other party for each federation when a change is coming and work out

an appropriate procedure to make updates without disrupting service. Some providers

may facilitate such changes by either dynamically checking for updates at a provider’s

discovery URL or allowing the configuration of two values. The latter option requires the

provider to try one value, and if it fails, try the second value. These capabilities can save

a lot of administrator time and minimize risk of downtime from changes, especially in

scenarios where an application must support a lot of different identity providers or an

identity provider is used by many service providers.

Another operational requirement is to ensure providers have accurate time. SAML

assertions have an expiration, which is often just long enough for the assertion to be

transmitted to the recipient and consumed. If the servers for the service provider or

identity provider are not synchronized with an accurate time source, their internal clock

may slowly drift. This can cause a service provider to receive an assertion that is already

expired. Therefore, in addition to the configuration in Tables 7-1 and 7-2, it is imperative

for the service provider and identity provider to synchronize their time with an accurate

time service such as the Network Time Protocol (NTP).iii

�Summary
SAML 2 provides an industry standard solution for web single sign-on and identity

federation. These key features enabled enterprises to use cloud applications and still

maintain centralized control of identities. The use of SAML eliminates exposure of

static password credentials to applications and provides users the convenience of single

sign-on. Many enterprises have implemented SAML identity providers and expect SaaS

application vendors to support it.

At this point, however, SAML is an older protocol compared to OIDC. Now that

OIDC and OAuth 2 exist, modern applications designed around APIs will benefit from

implementing these newer protocols, as they provide support for both authentication

and API authorization, respectively, and identity providers that support them exist for

both consumer- and corporate-facing scenarios.

Chapter 7 SAML 2

140

If you need to support SAML, rather than implementing it in a new application

yourself, it is more efficient to use an authentication broker service that can take care

of the SAML implementation complexity for you.3 This will enable you to implement

your application with newer protocols and still support customers who require a variety

of older protocols such as SAML and WS-Fed. Alternatively, you can use a library for

your chosen platform to implement such protocols. Once authentication is solved,

authorization and policy enforcement are needed to govern what a user can do, and

that’s coming up in the very next chapter.

�Key Points
•	 SAML is an XML-based framework for exchanging security

information between business partners.

•	 SAML provided two features which became widely used: cross-

domain single sign-on and identity federation.

•	 A SAML service provider delegates user authentication to an identity

provider.

•	 A SAML identity provider authenticates a user and returns the

results of a user authentication event in an XML message called an

authentication response.

•	 An authentication response contains an authentication assertion

with claims about the authentication event and authenticated user.

•	 Identity federation establishes a common identifier for a user

between an identity provider and a service provider.

•	 Business customers of applications often want to use their corporate

identity providers to authenticate their users to applications. Many of

these still use SAML and WS-Fed.

•	 New applications should consider using an authentication broker

service to simplify the task of supporting SAML and WS-Fed.

3 Disclosure: At the time of writing, the authors of this book worked for Auth0, a vendor of an
authentication broker service.

Chapter 7 SAML 2

141

•	 Owners of SAML service providers and identity providers need to

coordinate when making configuration changes that will impact

the other.

•	 SAML service providers and identity providers need to be

synchronized with an accurate time source.

�Notes

	 i.	 https://wiki.oasis-open.org/security/FrontPage

	 ii.	 www.oasis-open.org/committees/download.php/27819/sstc-

saml-tech-overview-2.0-cd-02.pdf (Section 2)

	 iii.	 www.ntp.org/

Chapter 7 SAML 2

https://wiki.oasis-open.org/security/FrontPage
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://www.ntp.org/

143

CHAPTER 8

Authorization and Policy
Enforcement

A people that values its privileges above its principles soon loses both.

—Dwight D. Eisenhower, 34th president of the United States,
from first inaugural address

The previous chapters covered the mechanics of authorizing an API call and

authenticating a user. This chapter will discuss authorization vs. the enforcement of

access policy and how identity protocols can be used to help implement them.

�Authorization vs. Policy Enforcement
In governing what a user or application can do, there are two distinct functions. We

use the term authorization for the granting of privileges. In contrast, access policy

enforcement is defined as the act of checking that a person or application has been

granted the necessary privilege before responding to a request for a protected resource.

For example, if you buy a theater ticket, the ticket constitutes your authorization to

attend the performance. On the night of the performance, the ticket taker at the door

enforces policy by checking to ensure that only authorized patrons (with tickets) enter

the theater.

Authorization may be granted well in advance of a resource being requested

or at the time of requesting access. It may be done using an interface provided by

the entity containing the requested resource or by a trusted third party with the

authorization information conveyed securely to the policy enforcement point. Access

policy enforcement is done at the time a resource request is made and ideally at an

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_8

https://doi.org/10.1007/978-1-4842-8261-8_8

144

enforcement point within or close to the protected resource to reduce the possibility

of the enforcement being bypassed. If a policy enforcement point is separate from

the resources it protects, the environment must be designed to ensure the only route

to the protected resource involves going through the policy enforcement point, to

prevent bypass.

�Levels of Authorization and Access
Policy Enforcement
There are different levels at which authorization and access policy enforcement may be

specified and applied, respectively:

•	 Level 1 – Whether an entity can access an application or API at all

•	 Level 2 – What functions an entity can use in an application or API

•	 Level 3 – What data an entity can access or operate on

�Level 1 – Application or API Access
At the highest level, authorization and access policy enforcement can control whether an

entity has permission to access an application or API at all. This use case is often found

in corporate settings. For example, an employee in a marketing team probably has no

business accessing the corporate accounting system. This level of policy enforcement

may be handled within an application or by an entity in front of the application as shown

in Figure 8-1. The enforcement can be done external to an application by components

such as an authentication broker or a reverse proxy that works with an identity and

access management (IAM) system. Such systems can act as a high-level enforcement

point to deflect users who are not authorized to access an application at all. A similar

approach can be used with API Gateways protecting APIs and in both cases is useful to

reduce policy enforcement workload on target systems.

Chapter 8 Authorization and Policy Enforcement

145

Figure 8-1.  Application-Level Access Policy Enforcement

�Level 2 – Functional Access
Functional-level authorization and access policy enforcement govern the functions or

tasks an entity can do within an application or API. For example, a junior accounting

clerk in the finance department might be able to access the corporate accounting

system and enter individual journal entries but not perform a month-end close, which

would typically be done by a more senior, experienced employee. A mobile app for

library patrons might be able to call a “place hold” API endpoint, but not an endpoint

to modify the description of a library book. This level of authorization and access policy

enforcement is sometimes called “coarse-grained” and tends to be application specific.

It may leverage information about a user stored in the application or elsewhere, such as

roles or groups in a directory service, but is often enforced within an application or API

in order to enforce application-specific policy logic.

�Level 3 – Data Access
A third level of authorization and access policy enforcement governs access to particular

subsets of data or resources. This is sometimes called the fine-grained or granular level

of access control. If functional-level access policy enforcement defines the functions or

tasks an entity can do, data-level or fine-grained access policy further restricts access

to specific data or resources. For example, in a sales order entry application, a user with

the role “regional sales manager” may be authorized at a functional level to view sales

orders, but data-level access policy restricts them to only view sales orders for their

specific region. The user’s region would be specified as an attribute in their user profile.

Chapter 8 Authorization and Policy Enforcement

146

Data-level access is often enforced within an application or API, but may leverage

capabilities within an underlying storage layer, such as the ability to restrict access to

tablespaces or views in an Oracle Database.

�User vs. Application Authorization
We will cover two situations that require authorization and access policy enforcement.

The first governs what a user (or entity) can do in an application, and the second controls

what an application can request from an API.

A user needs authorization to perform various functions within an application. The

application may render the application’s user interface based on a user’s authorized

privileges so it doesn’t display features a user cannot use. In addition, when a user makes

a request, the application back end or API must enforce policy by checking that the user

has the necessary authorization for the request before executing it.

An application requires authorization to call a protected API. If the content at a third-

party API is owned by the user of the application, the application’s access is on the user’s

behalf and requires the user’s authorization. This scenario is often found in consumer-

facing applications. A common example of this scenario is a user of a photo printing

application that wants the application to retrieve and print photos from their account at

a social media site.

If, on the other hand, the content at the API is owned by the application or

accessed by the application on its own behalf, an authorization server can authorize

the application based on permissions previously configured by the administrator

of the authorization server. There is no need for the user to authorize the request

because the application owns the requested resource. Some examples of this scenario

are, respectively, an application front end that calls its own back-end API and a

travel application that calls a third-party API to retrieve weather data for the user’s

destination. In the latter case, the weather data retrieved from the remote site is not

owned by the user, and the ability of the application to call the weather API is based on

the application’s relationship with the weather API. The application owner may pay a

subscription fee to access the weather API, for example.

In addition to any authorization by a user or authorization server, an API may still

need to enforce additional access policy. In other words, an access token issued by an

authorization server is not necessarily the final word on whether an access request

should be granted. Some access policy decisions, especially for granular, data-level

Chapter 8 Authorization and Policy Enforcement

147

access, may be most efficiently handled by the API designed to manage the data as

opposed to a generic authorization server. For example, a bank application may be

authorized to call an API to transfer money to pay a bill, and the user may authorize a

particular payment, but if the user’s account has insufficient funds, the API will probably

reject the payment request, per bank policy.

Regardless of the entity being authorized, there are three steps commonly involved

in controlling access:

•	 Authorization and the specification of access policy

•	 Delivery of authorization information to the enforcement point

(if needed)

•	 Enforcement of the access policy by the enforcement point

We will discuss these three steps first for users and then applications.

�User Authorization
The specification of authorization is a complex topic. So many schemes have been

invented for this over the years that covering them in detail is outside the scope of this

book. We will provide a brief description of a few common models to show how they

can be used with identity protocols. We note that many existing applications vary in

their choice of authorization policy model as well as the terms used for collections of

privileges and users. For the purposes of this chapter, we will rely on the definitions

provided in the following paragraphs.

A relatively simple model is an access control list (ACL).i In this scheme,

authorization policy is often specified as a list of entities granted access for a specific

protected resource. Our sample program uses such a scheme. Each individual file has

a list of the users or groups of users which have been granted access to the file. When

someone requests access to a file, the policy enforcement point needs to check if the

authenticated identity of the requestor is in the list of users in the file’s ACL. For our

sample program, the resource server API is the policy enforcement point, so it needs a

claim from the identity provider (an OIDC Provider in the sample) about the identity of

the user as well as any groups to which they belong.

​​In a role-based access control (RBAC)ii model, protected resources have various

functions which can be performed on them. For example, an order management

system may allow users to create, read, update, and delete sales orders. These actions

Chapter 8 Authorization and Policy Enforcement

148

represent privileges which can be granted to users who need to perform such functions.

For administrative convenience, it is common to define roles, which are collections of

privileges that would typically be assigned together to a user, to facilitate the role they

serve in an organization. For example, a small company may need its sales staff to be

able to create, read, update, and delete (CRUD) sales orders, quotes, and invoices in a

sales management system. Rather than assigning each of these privileges individually

to each sales person, a role can be created that lumps them together. Such a role might

be called “salesexecution.” The role can then be assigned to a salesperson user, giving

them all the privileges they need with one administrative action. Another role could

be defined that only had read access to those objects, perhaps called “salesanalysis,”

and that role could be used for analysts who only need to retrieve sales order data for

analytical purposes but not update it.

As a further administrative convenience, collections of users, often called groups,

can be defined. This would enable the assignment of a role to sets of users at once, rather

than individually. For example, a group called "salespeople" could be defined, with all

sales people being members of the group. The “salesexecution” role and other roles

needed by sales teams could be assigned to the “salespeople” group. Similarly, sales

analysts could be members of a group called "salesanalysts" which would be granted the

“salesanalysis” role along with any other roles needed by analysts. With an RBAC model,

an application or resource server API serving as a policy enforcement point needs claims

about the identity of the authenticated user as well as roles they've been assigned and/or

groups to which they belong.

In an attribute-based access control (ABAC)iii model, authorization is specified via

rules that utilize attributes in a user's profile. For example, access to a finance system

might be allowed for all users that satisfy the rule “user_profile:team = finance.” In

other words, a user will get access if their user profile has a value of “finance” in the

“team” attribute. In this case, an application or resource server API acting as a policy

enforcement point needs claims about the identity of the user and the relevant user

profile attributes needed for evaluation of access control rules.

For access enforcement with these models, the component implementing policy

enforcement typically requires trusted claims for the authenticated user’s identity and

any user profile attributes relevant for access control decisions and enforcement. These

claims must originate from an authoritative source and be transmitted to the policy

enforcement point in a way that precludes tampering. In the rest of this chapter, we will

Chapter 8 Authorization and Policy Enforcement

149

describe how OIDC and SAML 2 can be used to deliver such claims about a user to an

application and how OAuth 2 can be used to authorize access to APIs and deliver claims

needed for access policy enforcement.

�User Profile Attributes

The attributes used to convey authorization for users can vary, but fall into two main

categories. A user’s identity may be granted authorization based on roles which they’ve

been assigned in a role-based access control (RBAC)iv model, membership in a group or

access control list (ACL), or individual user profile attributes evaluated by rules as part of

an attribute-based access control (ABAC)v,vi model. These attributes are relatively static

factors that remain the same, regardless of where the user is or what device they are

using at the time of accessing a protected resource.

If such authorization information is specified outside an application, such as in

a corporate directory service or policy service, but accessible by the identity provider

authenticating a user, these attributes can be delivered to the application by the identity

provider. If authorization is specified in the application, the identity provider can deliver

an identifier for the authenticated user to the application so it can retrieve the necessary

authorization information from its own data store.

The authorization step to grant a user privileges is typically done in advance of the

user making a request in an application. For example, if a new employee joins a company’s

finance team, the business may authorize the employee to access its accounting

application by assigning the user roles in a corporate identity system on the new hire’s first

day. For a consumer-facing application, a user may be assigned access-related user profile

attributes when they purchase a particular subscription level for the application.

�Transactional User Attributes

Authorization may also be based upon factors that are part of the user’s physical

environment at the time of authentication or accessing a protected resource. Such

factors can include the user’s geographic location, whether the user is inside or outside a

corporate firewall, or whether the user’s device is certified as adhering to certain security

configuration standards. The day of the week or time of day may be factors as well as the

strength of the authentication mechanism used. These factors are captured at the time

of authentication rather than being part of the user’s profile. Such factors, if captured

by an identity provider, can also be provided to applications in the form of claims in a

security token.

Chapter 8 Authorization and Policy Enforcement

150

�Delivery
For applications using OIDC, user profile attributes and authorization information can

be delivered to applications as claims in an ID Token or in the response from the OIDC

Provider’s UserInfo endpoint. Applications using SAML 2 can receive the information

via attribute statements in a SAML 2 assertion. For resource servers (APIs) using OAuth 2,

such information can be delivered via standard and custom claims, such as described

for JWT-format access tokens,vii provided the issuing authorization server supports

such a feature. User profile information such as a user’s roles, groups, or a purchased

subscription level, and factors such as a user’s IP address or strength of authentication

method, can be delivered to an application or API in this way. An application can use

the information to tailor the application user interface for the user’s allowed capabilities,

and an application back end or API can use it to perform access policy enforcement.

An example showing the delivery of user profile information via an ID Token to support

access enforcement is shown in Figure 8-2. In this example, the application is a movie

rental application where users can purchase different subscription levels (such as

bronze, silver, and gold) to get access to different selections of movies. The ID Token

delivers to the application the user’s purchased subscription level.

Figure 8-2.  Delivering Authorization Attributes to an Application

Chapter 8 Authorization and Policy Enforcement

151

	 1.	 The user redirected to login at the OIDC OpenID Provider.

	 2.	 The ID Token includes the user’s purchased subscription.

	 3.	 Subscription data in the ID Token is used to determine the list of

movies displayed.

	 4.	 The user selects a movie to view.

	 5.	 The application back end checks the user has the required

subscription level for their selected movie.

In the example, the information in the ID Token about a user’s subscription level is

used to display to the user the movies they are entitled to rent. It is also used to perform

access policy enforcement. Even though the front end is designed to restrict the list of

movies to what the user can view, a malicious user might find a way to get around this, so

the access policy enforcement check must be made in the application back end where it

cannot be circumvented.

This example uses OIDC, but applications using SAML 2 can follow a similar model,

obtaining authorization data from the SAML 2 assertion. This example assumes that the

user profile attributes, such as the user’s subscription level, are stored in a centralized

repository available to the OIDC Provider. Centralizing such information is useful if there

are several applications relying on the same user profile attributes.

Alternatively, a stand-alone application may implement features in the application

user interface for the administration of authorization and store all authorization

information within the application’s data store. In this case, the application may only

need from the OIDC Provider a claim for the identity of the authenticated user. The

application would then use that identity to look up authorization information for the

user in its own data store and perform the necessary policy enforcement.

Another possible model involves an API Gateway deployed in front of an

application’s back-end API or set of APIs. API Gateways can inspect incoming API

requests, route them to an appropriate API, and perform load balancing and failover.

They can also handle authentication and authorization of requests coming to APIs. As

described earlier in this section, application APIs can make use of claims in an access

token to perform access enforcement, and API Gateways that support OAuth 2 can be

used to perform a similar function.

Chapter 8 Authorization and Policy Enforcement

152

�Enforcement
Before relying on any information in a security token, an application must validate the

token. In the case of an ID Token, validation steps include

•	 Validate the ID Token is a correctly formatted JWT (JSON Web Token)

•	 Validate the signature on the ID Token

•	 Check that the token has not expired

•	 Check the issuer is the correct OpenID Provider

•	 Check the intended audience for the token is the application

Be sure to check the latest protocol specifications for further guidance, in case of

updates, as well as the documentation for your OpenID Provider for the exact validation

steps required by their implementation. Similarly, an application receiving a SAML 2

assertion must validate the assertion. This will include steps such as checking that the

assertion is signed, validating the signature on the assertion, validating the issuer is a

trusted provider, and checking the assertion is within its validity period. Again, check

with your SAML provider for the complete list of validation requirements. Once a

security token has been validated, the application or API can use relevant claims within

the token for access policy enforcement.

�Application Authorization
The second case of authorization and policy enforcement is that of applications

calling APIs.

�Application Attributes
With OAuth 2, application requests to call APIs on a user’s behalf are authorized by

the user, but requests to call APIs on the application’s own behalf are authorized by an

authorization server based on configured policy. This policy is typically configured in

advance of an application calling an API. If the number of applications or API endpoints

is small, the policy specification may be expressed by indicating the specific applications

authorized to call specific API endpoints. In scenarios with large numbers of client

applications or API endpoints, with widely varying authorization requirements for each,

Chapter 8 Authorization and Policy Enforcement

153

policy specification can become complex. There is no widely adopted standard for such

policy administration and specification, so the options available from authorization

servers, especially to support complex cases, vary.

�Authorization
An application that makes an OAuth 2 request for authorization to call an API can specify

its requested scope of access using the scopes parameter to the authorization request.

For example, an application requesting an access token for an OpenID Provider’s

UserInfo endpoint to retrieve user attributes might use “scope = openid profile email”.

An application calling a third-party API to retrieve a user’s documents might request a

scope of “get:documents”. In these examples, the requested API resources are owned by

the user, so the OAuth 2 authorization server will prompt the user, displaying the scopes

requested by the application, and ask for the user’s consent for the access request before

issuing an access token.

There aren’t any official rules about how to make use of OAuth 2 scopes, but

as a simple string, constrained by URL length limits, scopes may be best suited for

simple scenarios like these, where an authorization server requests easily described

authorization from a user to allow an application to act on their behalf. For other, more

complex access policy scenarios, a richer request mechanism is often needed.

Several newer specifications provide additional capabilities for authorization

requests. While still in draft form, the Rich Authorization Requestviii (RAR) specification

defines the ability to submit complex authorization requests to authorization servers in

the form of a JSON object. A request can specify information using a set of standardized

fields as well as custom-defined fields. Standard fields are defined for request attributes

such as the location of resources, the privileges requested, and actions to be performed.

A RAR is submitted to an authorization server using the authorization_details parameter,

which can be used with requests where the scope parameter can be used. For resources

owned by a user, an authorization server can prompt the user to authorize access using

information in the RAR. For resources owned by an application, the authorization server

can compare the request parameters in the RAR to policy configured in the authorization

server to decide whether to issue an access token.

Applications can also encapsulate an authorization request and its parameters in

a JWT-secured Authorization Request (JAR)ix which enables the application to digitally

sign and optionally encrypt the request object. This provides for better authenticity and

Chapter 8 Authorization and Policy Enforcement

154

confidentiality for request parameters. An authorization request can also be pushed

by the application directly to an authorization server using a Pushed Authorization

Requestx (PAR). After pushing an authorization request, the application receives

a request URI, which it can reference when it makes the authorization call to the

authorization server via the browser (or other user agent), further reducing the exposure

of authorization request information via browser interaction.

With the client credentials grant, the requested API resources are owned by

the application, and no user interaction is required. The privileges granted to each

application are specified in the authorization server (or a policy server accessed from it).

An authorization server can compare the information in an authorization request with

policy configured in the authorization server to decide whether to issue an access token.

For scenarios with complex policy, a RAR may be useful to express relevant details of the

authorization request.

It is beyond the scope of this book to provide detailed guidance on how to make

authorization requests for scenarios with complex access control policy, but a few points

are worth considering in designing the authorization requests for an API:

•	 When access requests are displayed for a user’s authorization, it must

be easy for a user to understand the access they are granting.

•	 Users may be unwilling to authorize requests with confusing or

overly broad scopes.

•	 If an application requests many scopes in one authorization request,

the request may hit URL length limits.

•	 If an application has to make many authorization requests, such as

when very granular scopes are used, it can generate a lot of traffic to

the authorization server.

•	 Frequently prompting users for authorization may cause users to

click “ok” without paying much attention to the request.

•	 Information needed for access policy decisions can be conveyed in

authorization requests by other means than scopes, such as via Rich

Authorization Requests (RARs).

•	 Where supported, custom claims in access tokens can convey

additional information useful to APIs for policy enforcement.

Chapter 8 Authorization and Policy Enforcement

155

•	 The use of JWT-secured Authorization Requests (JARs) and Pushed

Authorization Requests (PARs) enables increased integrity protection

and confidentiality for authorization requests and their parameters.

•	 Access policy decisions and enforcement may be handled by a

combination of authorization servers, API Gateways, and APIs.

�Delivery
Regardless of whether the protected resource is owned by the user or the application,

if the request is authorized, the authorization server will issue an access token to the

application for the requested API. An authorization server may allow adding additional

custom claims to an access token, such as claims about the user, including user profile

attributes and roles they’ve been assigned. These additional claims may be useful to an

API in enforcing access. Support for extensibility via custom claims and attributes about

users may vary by individual authorization server implementations.

�Enforcement
An API must validate an access token and perform access policy enforcement to make

sure the application’s request is permitted before responding. The steps to validate and

obtain information about an access token will vary depending on the authorization

server’s implementation for access tokens. You should check the authorization server

documentation for details about how to validate any tokens it issues. Once the access

token has been validated, the API can use the information in the token, including

any custom claims if allowed, to perform its own access policy enforcement before

responding to the request.

For example, an application may call an API with a valid access token that contains

the scope “get:documents” which allows it to retrieve documents. The API still needs to

perform more granular checks, such as whether the specific user, on whose behalf the

request is made, is allowed to access the specific documents requested, and whether the

authentication mechanism used to authenticate the user met or exceeded the access

requirements for the requested documents. Similarly, a banking application client may

have an access token that allows it to request a transfer of funds, but the API that receives

the request must check, among other things, that the transfer-from account has sufficient

funds for the requested transfer. An API may be in a better position than an authorization

server to enforce that type of detailed, application-specific enforcement check.

Chapter 8 Authorization and Policy Enforcement

156

�Authorization and Enforcement Extensions
Some identity providers have implemented proprietary mechanisms on top of SAML,

OIDC, and OAuth in order to provide access enforcement capabilities for applications

and resource servers. This enables application administrators to define access policy in

the administrative interface for the identity provider using a combination of privileges,

roles, groups and rules. When an application makes an authorization request, the

identity provider can check the access policies it contains and return an unauthorized

status if the requesting user doesn’t satisfy the access policies for the request. This

relieves the application or resource server from having to implement some policy

enforcement logic. There is no standard governing such authorization and enforcement

extensions, so check your identity provider’s documentation for information regarding

any such capabilities.

Leveraging an identity provider for access enforcement may be feasible for

applications with simple access control policies. However, applications and APIs

often have to take on a significant portion of authorization and access enforcement

responsibility for more complex scenarios, as when there is a large number of resources

with specific access requirements (such as granular access governing documents in a file

system) or when applications must check user profile attributes like “region” that govern

tasks such as running a regional month-end close in a financial system. If nothing else,

it is challenging to make the administrative interface of access policy understandable

when application-specific actions and policies need to be mapped onto a generic

identity provider’s administrative user interface. It is critical that administrators

understand what they have done when they use an interface to specify access policy.

To understand the access requirements for your application, you can inventory the

data objects involved in your application. For each item in the inventory, identify the

functions that can be performed on it. Be sure to include functions beyond the basic

create, read, update, and delete tasks, such as triggering a month-end financial close or

certifying a set of audit records. Then consider the policy for who can do each task or

operate on each data object and under what conditions. Having a good understanding of

your required access policy can help you evaluate if an identity provider’s authorization

capabilities will be sufficient for your application.

You should also consider how access policy will be administered. Some providers

may have an administrative user interface for specifying policy. If the provider only has

an API, you may have to develop a custom interface to enable the specification of policy

at the identity provider. Creating a custom administrative interface based on a provider’s

Chapter 8 Authorization and Policy Enforcement

157

administrative API or using their administrative interface may lock you into using that

provider more strongly than simply using a provider’s authentication and authorization

capabilities. Decisions about where and how to administer policy should be made

consciously and strategically rather than solely by convenience.

The specification of access policy can quickly become even more complex if there

is a need for delegated administration, where different people administer different

portions of the policy. For example, in a large enterprise, managers (rather than

centralized administrators) may assign their team members to access control roles or

groups because the managers know what each person’s job requires. In this case, an

interface is needed to specify policy for who can administer each part of the access

policy as well as provide a delegated administration interface for managers to assign

roles or groups to people. Be sure to consider your requirements for access policy, policy

administration, delegated administration, and policy enforcement before deciding upon

a solution for access control.

�Summary
Authorization involves the granting of privileges, whereas access policy enforcement

is a check done at the time a resource is requested, to validate the requestor has

been granted the requisite privileges for the request. Authorization and access policy

enforcement may be used to govern what a user can do in an application as well as

whether an application can make a request to an API.

User authorization may be based on static factors in a user’s profile and/or dynamic

factors evaluated at the time of authentication, both of which can be delivered to an

application in a security token. Application authorization may be based on scopes or

more complex parameters and approved by a user or based on configuration in an

authorization server and represented by an access token delivered to an application to

call an API.

Identity providers may provide custom features that aid access policy enforcement,

but applications and APIs often need to implement at least some access policy

enforcement themselves. When deciding upon the best option for your application,

take into account your access control policy requirements, policy administration

requirements, and access policy enforcement requirements as well as which entity in

your architecture is best positioned to satisfy each.

Chapter 8 Authorization and Policy Enforcement

158

In addition to authorizing and enforcing access policy, it is important to consider

how frequently to renew access, and this first requires an understanding of sessions,

which is the topic of our next chapter.

�Key Points
•	 Authorization is the granting of privileges to access protected

resources.

•	 Access policy enforcement is done when a request is made and

checks if a requestor has been granted sufficient authorization for the

request.

•	 Authorization and access policy enforcement apply to users

accessing applications as well as applications calling APIs.

•	 There are many models for specifying access policy, including access

control lists, role-based access control, and attribute-based access

control.

•	 Roles and groups are used to facilitate the administration of

authorization and access policy.

•	 Authorization policy for users may be based upon user profile

attributes or dynamic factors evaluated at the time a user

authenticates or makes a request.

•	 Authorization for applications to call APIs is granted by users or

authorization servers depending on the OAuth 2 grant type used.

•	 Authorization and access policy enforcement can be specified on

multiple levels.

•	 OAuth 2 scopes are likely best suited for simple authorization

scenarios where users authorize easily expressed requests to access

APIs on their behalf.

•	 Applications with complex access policy and enforcement

needs should consider the use of JWT-secured Authorization

Requests (JARs), Rich Authorization Requests (RARs), and Pushed

Authorization Requests (PARs).

Chapter 8 Authorization and Policy Enforcement

159

•	 Claims in security tokens can be used as a basis for access policy

enforcement decisions in applications and APIs.

•	 Security tokens must be validated before their claims are used for

security decisions.

•	 Some identity providers have proprietary features that provide simple

access policy enforcement.

•	 Access policy decisions and enforcement may be handled by a

combination of authorization servers, API Gateways, and APIs.

•	 Remember to consider requirements for access policy, policy

administration, delegated policy administration, and policy

enforcement when designing access control for your application.

�Notes

	 i.	 https://csrc.nist.gov/glossary/term/access_control_list

	 ii.	 https://csrc.nist.gov/Projects/Role-Based-Access-Control

	 iii.	 https://csrc.nist.gov/Projects/Attribute-Based-

Access-Control

	 iv.	 https://csrc.nist.gov/Projects/Role-Based-Access-Control

	 v.	 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-162.pdf

	 vi.	 https://csrc.nist.gov/Projects/Attribute-Based-

Access-Control

	 vii.	 https://datatracker.ietf.org/doc/html/rfc9068

	viii.	 https://datatracker.ietf.org/doc/html/draft-ietf-

oauth-rar

	 ix.	 https://datatracker.ietf.org/doc/html/rfc9101

	 x.	 https://datatracker.ietf.org/doc/html/rfc9126

Chapter 8 Authorization and Policy Enforcement

https://csrc.nist.gov/glossary/term/access_control_list
https://csrc.nist.gov/Projects/Role-Based-Access-Control
https://csrc.nist.gov/Projects/Attribute-Based-Access-Control
https://csrc.nist.gov/Projects/Attribute-Based-Access-Control
https://csrc.nist.gov/Projects/Role-Based-Access-Control
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://csrc.nist.gov/Projects/Attribute-Based-Access-Control
https://csrc.nist.gov/Projects/Attribute-Based-Access-Control
https://datatracker.ietf.org/doc/html/rfc9068
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-rar
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-rar
https://datatracker.ietf.org/doc/html/rfc9101
https://datatracker.ietf.org/doc/html/rfc9126

161

CHAPTER 9

Sessions
Everything measurable passes, everything that can be counted has an end.
Only three things are infinite: the sky in its stars, the sea in its drops of water,
and the heart in its tears.

—Gustave Flaubert, French novelist, from The Letters of Gustave
Flaubert (1980)

A user’s interaction with an application over a period of time is known as a session. Users

expect to navigate through the application and perform various transactions during their

session without having to authenticate every time they interact with the application.

In order to make this possible, an application needs a way to track that a user has been

authenticated. Data about whether, when, and how a user has authenticated may be

tracked by an application along with other information it maintains during a user’s

session. Sessions and session state may be handled differently for web applications,

single-page applications, and applications that run natively on a device, such as mobile

applications. In this chapter, we’ll describe where sessions exist, session expiration, and

renewing sessions.

�Application Sessions
An application may need to track session information such as the identity of the user, the

user’s in-flight transactions, or how long the user’s session can continue. This is usually

accomplished via the creation of a unique session identifier that represents session

activity. This identifier can be used to refer to additional details that may be stored in

memory, a filesystem, a database, or a shared service like Redis.i For web applications,

the session identifier and session information is usually stored in a cookie set by the

application server, which is then sent by the browser with each request to the application

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_9

https://doi.org/10.1007/978-1-4842-8261-8_9

162

server. When a request is received, the server can use the session identifier from the

cookie to retrieve the user’s session information and process the request. Sometimes, if

the session data is small enough, the entire data may be stored in the cookie, eliminating

the need for server-side storage. For native applications and single-page web apps,

storing data on the client side in memory or local persistent storage is a common

strategy. When doing so, special care should be taken so as to not leave sensitive user

data on the device.

Traditional web applications often limit the time for which they retain a session.

Session information maintained on a server typically consumes server resources. If

a user abandons a session by forgetting to log off, or a client loses its connection to a

session for some reason, server resources would be wasted. In addition, a session left

open and forgotten on a user’s computer invites some risk of potentially being taken over

by a malicious actor. As a result, traditional web applications often implement a session

timeout which effectively limits how long a user’s session can last. Session timeout might

occur after a period of inactivity or a maximum period of time, with the allowed session

duration in either case often based in part on the sensitivity of the application and data

involved.

With single-page applications and stateless back-end APIs, server-side sessions

for users are no longer required, but the concept of a session timeout persists for other

reasons. Applications are still vulnerable to the possibility that a session left open for an

extended period might be hijacked. This concern is especially relevant for applications

handling sensitive data, many business-facing applications, and applications accessed

from shared devices. Having a user reauthenticate when a session times out provides

some assurance that the authorized user is still in control of the device and session. As

applications increasingly leverage identity providers, a user’s reauthentication can renew

an identity provider session leveraged by many applications. As a result, a user would

not have to actively reauthenticate to every application. Periodic reauthentication to the

identity provider is less onerous than having to reauthenticate to every application.

Native applications running on mobile devices have additional considerations.

The small form factor and input mechanisms on mobile phones make frequent

reauthentication a significant detractor to user experience. Especially for some

consumer-facing applications, it is desirable to remove barriers to usage and make

it easy for users to stay logged in as long as possible. Native applications often use

stateless APIs, resulting in little server-side cost for allowing a user’s native application

session to continue for an extended period of time. Sensitive applications, such as

Chapter 9 Sessions

163

banking applications, often still implement a session timeout on mobile devices,

but less sensitive native mobile applications may allow a session to continue for an

extended period, sometimes until a user explicitly logs out. Lengthy sessions on mobile

devices rely in part on the fact that mobile devices are often in a user’s possession,

making session hijacking less likely than with other scenarios, such as shared devices

or desktop computers in an open office.

In some cases, in order to improve user experience, mobile applications store

a refresh token in the device’s native storage system, such as Apple’s Keychain, and

enforce a check like requiring the user to provide a PIN or Biometric factor to unlock the

device. This validation, however, requires the user to have access to the device and have

previously enrolled their PIN or Biometric factor to the device.

�Identity Provider Sessions
Identity providers also need to maintain a session for a user as a mechanism to

remember and recognize an authenticated user across multiple requests. One solution

is to create a session object with a session identifier and attributes such as an identifier

for the user, the authentication mechanism used, the time of authentication, and when

the session will expire. An identity provider can create a cookie in the user’s browser

that contains all the session information or just a session identifier that maps to a server-

side session data store. The browser then sends the identity provider cookie with every

request to the identity provider. When a user is redirected to the identity provider, it uses

data from the cookie to detect if a user already has an authenticated session.

This scheme helps an identity provider recognize users it has authenticated.

After successfully authenticating a user, the identity provider sets or updates in the

user’s browser a cookie with session information and returns a security token to the

application. The application may then create or update its own application session for

the user. When the application session expires, the application can check the status of

the user’s session at the identity provider. It may do this by redirecting the user’s browser

to the identity provider. Such a request will include any cookies set previously by the

identity provider, which contain the user’s session information. If the user’s session at

the identity provider is still valid, the identity provider returns a new security token to

the application without forcing the user to authenticate again. Some identity providers

may support alternative mechanisms for checking the status of the user’s session at the

identity provider which can enable an application to avoid a browser redirect when the

Chapter 9 Sessions

164

user’s identity provider session is still valid. Of course, if the identity provider session has

expired and the user needs to reauthenticate, the user will need to be redirected to the

identity provider.

�Multiple Sessions
A user may have multiple sessions across different solution components. The user may

have a session in one or more applications. If an application delegated authentication

to an identity provider, the identity provider may also have a session for the user. If an

application delegates authentication to an authentication broker (explained in Chapter 7)

that in turn delegates authentication to a remote identity provider, such as a social

identity provider or corporate identity provider, there may be three architecture layers

at which sessions exist. Figure 9-1 shows three different architectural models and where

authentication sessions may exist in each. (Chapter 13 contains further discussion on

sessions which may exist and options to detect their status.)

Application

Authenticated user session

Identity ProviderApplication

Application Authentication Broker Identity Provider

Model 1:

Model 2:

Model 3:

Figure 9-1.  Architectural Layers Where User Sessions May Exist

Chapter 9 Sessions

165

�Session Duration
Each session established for a user can be terminated at different times and for various

reasons. Sessions may time out if they are established with a specific duration. A session

may have an idle timeout where the session is invalidated if the user has been inactive

for a period of time. A session may also have a maximum session time limit which ends

the session after a period of time regardless of the user’s activity level.

With an idle session timeout, if a user takes certain types of actions tracked by the

application, the idle session timer gets reset, which extends the session. Activity in

an application may reset an application session’s idle timer, but not be visible to an

identity provider and consequently not reset an idle timeout at the identity provider. The

identity provider’s idle timeout is typically only reset by requests visible to it, such as an

authentication request from an application.

If an application enforces an idle session timeout, it can be disruptive to a user

to suddenly lose an application session, especially if the user was in the middle of

entering a lot of data for a transaction. An application can mitigate the potential for bad

user experience by tracking the session duration, providing a warning to users before

the session times out, and resetting the idle timeout if the user indicates they wish to

continue. Proactively prompting the user when a session timeout approaches and letting

them renew their session can avoid bad user experience when enforcing an idle timeout.

Alternatively, an application can store the user’s progress locally and request the user

to reauthenticate when the session times out. Once the user has reauthenticated, the

application can retrieve the session data, allow the user to continue working, and submit

the user’s work to the back end, depending on where the user left off.

The appropriate session duration time for an application will vary based on

factors such as the sensitivity of the application or the delivery platform. For an idle

timeout, it may help to consider how long you would want to tolerate a user’s session

remaining open if the user walks away from their desk with the application open. For

applications on mobile phones carried around by their owners, it may be less likely

for an open application session to be physically accessible by others. For a maximum

session timeout, it may help to evaluate how frequently or infrequently the user should

reauthenticate to confirm they are still in control of the session as well as how frequently

user profile information might need refreshing. It’s a balance between protecting the

user and data they access and annoying the user by requiring them to authenticate too

frequently. The duration may differ for applications run on desktop/laptop computers

vs. mobile phones and for consumer-facing applications vs. enterprise applications as

Chapter 9 Sessions

166

well as for applications with data of different sensitivity levels. It can often take some trial

and error to get session timeout settings just right.

Sessions may end for reasons other than a timeout. A user may explicitly log out.

This is covered in more detail in Chapter 13. An administrator may terminate a user’s

session at an identity provider for various reasons, such as in response to a report of a

compromised credential. A user’s session might be terminated if a server is restarted. A

user’s session might exist at a server, but be irretrievable if the user deleted the cookies

in their browser that contain an identifier or other information about their session. The

possibilities for session termination should be considered in application designs with

appropriate actions defined for each case.

With many ways for sessions to terminate, and multiple sessions in the mix, it

is important for application designers to specify or understand the impact on other

sessions when any session is terminated. For example, if an application session expires,

should the application request the termination of the user’s session at an identity

provider? If a user’s identity provider session is terminated, should that trigger the

immediate termination of a session in other applications using the same identity

provider? The options to consider may be constrained by identity provider policy when

an identity provider is controlled by an external party, but designs should still enumerate

what happens for different session termination scenarios.

An application may want to periodically check the status of a user’s session at an

identity provider. This may be done so the application can terminate its own session

when the identity provider’s session has ended. This may also be done when an

application’s session for a user has timed out, with the application checking the state of

the user’s identity provider session as part of its own session renewal process.

�Session Renewal
When an application’s session for a user expires, the application may wish to enable

the user to renew the session. It can do this by redirecting the user back to the identity

provider. The identity provider can authenticate the user if it doesn’t have a valid

session for them and return new security tokens to the application per the parameters

in the application’s authentication request. If the user’s identity provider session is still

valid, the user would not need to reauthenticate, and the application would receive

new security tokens based on the user’s existing session. The application can then use

information in the new security tokens to renew the user’s application session.

Chapter 9 Sessions

167

Applications can use parameters in an authentication request to suppress or

force active authentication. It may be desirable, for example, to have reauthentication

occur if a certain amount of time has passed since the user last actively authenticated.

With OIDC, the optional “prompt” parameter can be added to an authentication

request to force or suppress authentication at the OpenID Provider. The optional

“max_age” parameter can be used to control how long a user can go without actively

reauthenticating. Applications using max_age should still check the auth_time claim

in the ID Token to ensure the requested max_age was followed. The use of max_age

and auth_time is useful if an OpenID Provider has a relatively long maximum or idle

timeout, and a particular application requires more frequent authentication. With SAML

2, applications can use the “ForceAuthn” attribute of the authentication request to force

the identity provider to actively authenticate the user. An application can check the

“AuthnInstant” element of the SAML response to see when authentication occurred.

Such authentication request parameters give applications some measure of control over

whether the user is actively reauthenticated when they are redirected to the identity

provider. The auth_time claim in an ID Token and the AuthnInstant claim in a SAML

response also provide information back to applications that can be used in subsequent

security decisions.

Identity providers may support alternative methods for checking the status of a

user’s session at the identity provider. If a user has a valid session at an identity provider,

such methods may enable renewing an application session without requiring a browser

redirect. On the other hand, if a user’s identity provider session is no longer valid, the

user can be redirected to renew the identity provider session.

�Token Renewal
In addition to renewing a session, an application may need to periodically renew a

security token. The application may have received an ID Token and possibly an access

token to call an API. An application may need to periodically request a new ID Token

to ensure it has up-to-date claims for an authenticated user. An application may wish

to request a new access token because it needs to call an API and the access token

it requested previously has expired. It is considered a best practice in many cases,

and especially with public clients, to issue access tokens with short expiration times

and renew the tokens when needed. As a result, the need for new tokens may occur

throughout a session’s existence.

Chapter 9 Sessions

168

During an application session, an application can renew an ID Token or access

token using different mechanisms, based on the type of application. Traditional web

applications and native applications may be able to obtain a refresh token for use in

renewing ID Tokens and/or access tokens, but they are not required to do so. Using a

refresh token to renew tokens avoids the need to interrupt the user experience, but back-

channel requests with a refresh token may not update the identity provider’s session

cookie, resulting in a faster idle timeout.

Single-page applications implemented as public clients cannot securely store and

handle refresh tokens. They should use an approach that doesn’t rely on refresh tokens

unless their authorization server implements measures against leaked refresh tokens

such as refresh token rotation or sender-constrained refresh tokens.ii Applications that

do not receive refresh tokens can redirect the user to the OpenID Provider when new

tokens are needed. If the user has a valid session, the application will receive new tokens.

If the user does not have a valid session, the request will trigger authentication and

consent as needed, before new tokens are issued. Even applications with refresh tokens

may want to use the redirect approach periodically to update the identity provider’s

session cookie and idle timeout.

Redirecting the user to the OpenID Provider and back, however, involves challenges

as it can interrupt the user experience. With single-page applications, this can result

in the loss of a user’s work unless the application saves the user’s application state and

restores it after the return from the OpenID Provider. One alternative has been to do the

redirect using a hidden iframe in the application and setting the “prompt” parameter

to “none” to avoid interrupting the user experience. If the user had a valid session, the

application would receive new tokens. If not, the application would receive an error

response and could redirect the user again without the “prompt=none” option to trigger

authentication. However, technology changes such as Apple’s Intelligent Tracking

Protection (ITP) have made the hidden iframe redirect option less viable.

�Reconstituted Sessions
It can be disruptive to users to have their session timeout frequently in heavily used

applications if they have to reenter several selections every time they reauthenticate. An

application that needs a session timeout and falls in this category may want to provide

an improved user experience by offering a session that can be reconstituted after

session timeout. With this scheme, upon session timeout, the system invalidates the

Chapter 9 Sessions

169

session for further use, but retains a memory of the session and the identity associated

with it, so that the session state can be restored to its former state if the user actively

reauthenticates. Such a session is terminated and permanently deleted by an active user

logout, not a session timeout. That said, it is still desirable to have a limit for how long a

session stays in a dormant state, to reduce backward compatibility issues and to avoid

storing session data forever for sessions orphaned when a user deletes their session

cookies.

�Summary
Applications maintain sessions for users during a user’s interaction with the application.

If applications delegate authentication to an external identity provider, there may be

multiple sessions for the user at different layers within the solution architecture. Each

component maintaining a session for a user may have one or more types of session

timeout. Sessions are a key enabler for single sign-on, which will be discussed in

Chapter 11. First, however, we’ll pull everything we’ve covered so far together in the next

chapter and discuss a sample application and how it uses OIDC and OAuth 2 together to

authenticate users and authorize access to APIs.

�Key Points
•	 A user’s interaction with an application for a duration of time is a

session.

•	 Session state may contain data about the user and

authentication event.

•	 In solutions with single sign-on, a user may have multiple

authentication sessions.

•	 Sessions may be subject to an idle and maximum timeout.

•	 Session duration is typically based on the sensitivity of the resources

accessible from the session, the application delivery platform, and

the type of application.

•	 A continuous authentication session can be used to remember and

reconstitute user sessions which have expired.

Chapter 9 Sessions

170

Notes

	 i.	 https://redis.io/

	 ii.	 https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

security-topics-21#section-2.2.2

Chapter 9 Sessions

https://redis.io/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21#section-2.2.2
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21#section-2.2.2

171

CHAPTER 10

Using Modern Identity
to Build Applications

It’s not just what it looks like and feels like. Design is how it works.

—Steve Jobs, founder of Apple Computers, as quoted in “The Guts of a
New Machine,” New York Times Magazine

The past chapters covered how certain identity protocols provide a solution for

authentication, API authorization, and application authorization. It may seem daunting

at first to learn these identity protocols, but using them will reduce the work you have to

do in the long run. In this chapter, we’ll describe how we created a sample application to

demonstrate how OpenID Connect (OIDC) and OAuth 2 can easily be applied to identity

challenges faced by modern applications.

The source code for this book is available on GitHub via the book’s product page,

located at https://github.com/Apress/Solving-Identity-Management-in-Modern-

Applications. This repository contains the sample application discussed in this chapter.

�Sample Application: Collaborative Text Editor
We chose to demonstrate how modern identity protocols can be used to build an

application by modeling a collaborative document editor. The application involves

a stateless back-end API serving a single-page application (SPA). This architecture is

very popular at the time of writing, and learnings from it can be carried over to mobile

applications, which require a similar separation of concerns between the client and

API Server.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_10

https://github.com/Apress/Solving-Identity-Management-in-Modern-Applications
https://github.com/Apress/Solving-Identity-Management-in-Modern-Applications
https://doi.org/10.1007/978-1-4842-8261-8_10

172

Note  Discussing every detail of how to build and deploy modern applications
is far beyond the scope of this chapter; thus, we will focus here on the identity-
related aspects of the application.

The application offers the following features and services:

•	 Allows the user to create an article, using rich text – via Markdown.i

•	 Articles belong to the author (user).

•	 Authors can share an article with others.

•	 Authors can invite others to collaboratively edit an article.

•	 Authors can invite others to view the contents of an article in read-

only mode.

The demo doesn’t support multiple users editing the same article at the same

time. Furthermore, a new version is created every time a document is saved. Thus, if

Jon created an article, and Jessie were to edit it, Jessie would get their own copy of the

version, which is a full copy of the document, and any subsequent edits by either will be

in their own history and branch. We kept the user interface quite simple, with minimal

validation and error checking, to keep the focus on identity management. Now that

we’ve covered the obligatory caveats about what isn’t included, we can discuss what the

application will do.

�Discovery
In Chapter 1, we suggested several questions to ask about your project that would help

you better understand your identity management requirements. Let us now revisit those

questions for this sample application. We share the following answers to clarify the

application requirements for the demo application.

�Who Are Your Users: Employees or Consumers?

Our sample application provides all types of users the ability to create and share

documents. Therefore, both consumers and employees should be able to log in.

Chapter 10 Using Modern Identity to Build Applications

173

�How Will Users Authenticate?

Our sample application allows a user to sign up for an account using a username and

password and optionally offers the ability to use a social authentication provider. If a user

tries to use more than one way to authenticate, they are prompted to link their accounts,

in order to reduce confusion and offer a better experience.

�Can Your App Be Used Anonymously?

Users can start out anonymously and create an anonymous document. To keep the

application simple, if a user subsequently signs in, their anonymous documents are not

converted to named-owner documents and are not visible to the named account. If an

anonymous document is edited, the application creates another copy of the document.

�Web-Based or Native App Format or Both?

The sample application will provide a web-based single-page application. This question

helps us understand the scope of the project and argues for creating an API that

encapsulates the back-end business logic needed by front-end applications. Such an

API would make it easier to add a native application in the future. If you are writing a

native application, many of these paradigms will remain the same.

�Does Your Application Call APIs?

Our application will call our first-party API, which provides access to users’ articles.

There is no use of third-party APIs at this time. The front-end application and back-end

API are logically part of the same entity.

�Does Your Application Store Sensitive Data?

The sample application assumes that the data in a user’s article might be sensitive.

�What Access Control Requirements Exist?

The sample application provides anonymous authors with the ability to write and share

documents. These documents are visible to everyone and such documents can be edited

by the document author or cloned by anyone else.

Chapter 10 Using Modern Identity to Build Applications

174

Registered users can view documents shared with them, create new documents,

edit the documents they created, and share their documents with others by specifying

an email address or domain name. Documents can be shared with an individual user

via their email address or with a group of users via a domain name. Basing document

sharing on an email address’s Internet domain name allows us to demonstrate a simple

implementation of group-based sharing.

�How Long Should a User Session Last?

The application offers a three-day maximum session timeout. There is no inactivity

timeout implemented on the application. Instead, the application uses ephemeral access

tokens issued by the identity provider. This is discussed further later in this chapter. After

session timeout occurs, a user must reauthenticate.

�Will Users Need Single Sign-On (If More Than One Application)?

In our sample scenario, there is only one application. However, we have implemented

single sign-on into Discourse,ii a popular tool that is used for community documentation

and support forums. This allows us to demonstrate a common scenario where users

have single sign-on between an application, documentation, a public community, and

some kind of support center.

�What Should Happen When a User Logs Out?

When a user logs out, their application session should be terminated, and the user

should be returned to a home page from which they could log in again.

�Are There Any Compliance Requirements?

We assume no compliance requirements. The sample does not include a privacy notice,

nor does it support any privacy requirements such as the right to erasure. We can only do

this because it is a sample and can only run on a developer’s machine. Real applications

have to consider privacy requirements, and we encourage investigating them early in a

project to understand the scope of work required.

Chapter 10 Using Modern Identity to Build Applications

175

�Platform, Framework, and Identity Provider

In order to keep the application simple and easy to understand, it is implemented using

the popular React Frameworkiii for the front end and Express.jsiv on the back end. All the

code is written in JavaScript. This decision was made as the learnings from javascript can

be translated easily to many frameworks in many different languages. The application

components can be easily deployed to a hosting platform such as Herokuv or Vercel.vi

�Design
Based on the answers to the requirements questionnaire, we made a list of identity-related

and application-related tasks in our design. The categorization for your application might

not be as simple as our sample, but we recommend doing this exercise as it helps identify

identity management requirements. Our list of tasks is shown in Table 10-1.

Table 10-1.  Identity-Related and Application-Related Tasks in Sample Application

Identity-Related Application-Related

Authenticating users Reading/writing documents

Issuing tokens Performing checks on documents

Revoking sessions/tokens Access to documents

Logout

From the preceding list, it’s clear that we have a lot of identity-related tasks to

implement. We would like to abstract out the identity-related tasks as much as we

can. There are different approaches for doing this, such as using a library and building

individual components or using an identity provider server or service. Instead of

building an identity provider from scratch, we chose to leverage a third-party identity

provider service for the identity-related tasks. This allows us to focus more of our time on

the core functionality of our application.

Chapter 10 Using Modern Identity to Build Applications

https://expressjs.com/

176

�Buy vs. Build
A useful analogy for this buy vs. build decision is someone needing to write a paper. A

computer buff with experience building computers as a hobby might enjoy designing

and building a custom computer for document editing. It would take a lot of time,

possibly more time than writing the paper itself. If it is their hobby, they might not mind

the time required, and since they have significant experience, they would be able to

design a reliable computer and fix anything that breaks down later.

Most people, however, would just want to focus on writing the paper. They would not

have the time or expertise to build a reliable custom computer. It would make a lot more

sense for them to buy a computer so they could immediately get to work on their writing.

If the computer malfunctions, they could get help more readily for a standard computer

than one they built themselves. For similar reasons, we’ll leverage a third-party identity

provider rather than build our own identity provider. It enables us to focus on our

application’s features and reduces our future support burden.

There are several third-party identity providers available. We chose Auth01 as we are

familiar with it, but there are several good identity providers to choose from. Third-party

providers enable applications to integrate with them using common identity protocols.

�Industry Standard Protocols
Industry standard identity protocols play a very important dual role here. While

they provide features such as single sign-on, user federation from social or employer

accounts, and authorization, they also facilitate the use of third-party identity providers.

They have probably undergone more thorough security review than custom code, and

it may be easier to hire engineers to work with industry standard protocols than custom

code. We strongly recommend using open, industry standard identity protocols and

a third-party identity provider rather than building your own identity provider from

scratch. While it may seem daunting to learn the protocols at first, it reduces complexity,

liability, and maintenance burden in the long run, as we will see in the next few pages.

When picking an identity provider, we strongly recommend using one that supports

open, industry standard protocols to integrate with your application.

1 At the time of writing, the authors worked for Auth0.

Chapter 10 Using Modern Identity to Build Applications

177

�Architecture
Choosing to use industry standard protocols and a third-party identity provider allows us

to refactor our solution. Figure 10-1 shows our application architecture with a third-party

identity provider.

Figure 10-1.  High-Level Design of the Sample Application

With an identity provider in the picture, we can reshape our original problem space

into the following questions from an identity perspective:

•	 How is my application going to trigger a login and logout?

•	 How is my application going to establish who the logged-in user is?

•	 How is my application going to call the API?

•	 How can the API ensure the request it received is valid/authorized?

•	 How can my API ensure the requested user has sufficient

authorization to perform this task?

We will focus on implementing these details in the next section. From an

architectural point of view, we recommend writing a thin “glue” layer to abstract these

details out from your core application code into a set of convenience functions that

handle the identity calls. This can simplify your application code and make it less tightly

coupled to a specific identity provider. With an identity layer, our solution can be divided

into three components, shown in Table 10-2.

Chapter 10 Using Modern Identity to Build Applications

178

Table 10-2.  Architectural Components for Our Application

Component Responsible for

Identity Provider Authenticating users

Managing service-wide session

Providing logout

Providing identity federation

Application and API Performing application-related tasks

Application-specific identity layer

(convenience functions)

Acting as a glue between the identity provider and the

API/application

�Implementation: Front End
Our list of problems to solve can be further split into two groups: front end and back end.

The problems on the front end are

•	 How is my application going to trigger a login and logout?

•	 How is my application going to establish who the logged-in user is?

•	 How is my application going to call the API?

The answers are obvious: using modern identity and access management (IAM)

protocols of course! We are going to be using OpenID Connect (OIDC) to communicate

between our application and the identity provider. At a high level, the identity provider

will issue an ID Token to our application to convey information about the user and an

access token to grant our application access to the API.

To start, we should mention that our application needs to be registered as an OIDC

client on the identity provider. Different identity providers have various means of

doing this. The registration process assigns a client ID to an application and allows the

application to specify a callback URL, among other things. The registration process is

important to establish a trust relationship between the application and identity provider.

The information exchanged is used during the protocol interaction to mitigate the risk

of various types of attacks. Registering our application at the identity provider gives us

information, such as the client ID, that we will need to include in calls to the identity

provider.

Chapter 10 Using Modern Identity to Build Applications

179

You may recall from previous chapters that integrating OIDC in your application

requires constructing a URL, redirecting the user to the identity provider, and handling

the callback from the identity provider. Fortunately, there are many OIDC-compliant

client SDKs that will do the heavy lifting of this detailed protocol interaction for you. We

chose an SDK from our identity provider because it simplifies the OIDC interaction and

we knew it would be supported for use with the provider.

We then created our application’s identity layer of convenience functions to call the

identity provider SDK. This allowed us to abstract the protocol details into more use

case–driven tasks, which map directly to our list of problems to solve on the front end.

Our solution’s front-end identity layer needs four convenience functions, as shown in

Table 10-3.

Table 10-3.  Front-End Functions Needed

Function Purpose

login To authenticate the user using the identity provider.

getToken To get a token to call an API with specific scopes.

logout To end the current authentication session via the identity provider.

getProfile To get information about the current user.

handleCallback To handle redirection back from the identity provider, mostly needed for redirect-

based flows on browsers.

Depending on your identity provider, the protocol in use, and the user/application/

API model, the exact signatures for these functions might vary. The tasks they need

to perform, however, will likely be roughly the same as ours. For instance, the login()

function might handle the details of storing the current application state and redirecting

to an identity provider. At the identity provider, the redirection is typically handled by a

method called “authorize,” which in our case requires parameters for an “audience” and

“scopes”. Our login convenience function therefore requires such parameters to call the

identity provider SDK.

Beyond the functions shown in Table 10-3, we need some kind of in-memory

persistence layer in which to store the data received from the identity provider, such

as user profile data or access tokens. This can reduce the frequency with which our

application has to call the identity provider and improve the responsiveness of our

application. Some applications store the user profile data fetched from identity providers

Chapter 10 Using Modern Identity to Build Applications

180

on client storage (e.g., LocalStorage). However, any sensitive data, such as access tokens,

must only be placed in adequately secure storage. The storage options available vary

based on the type of application and platform used. In your identity abstraction layer,

you should try to reuse as much functionality from the identity SDK as possible. If your

identity SDK offers some type of storage, you should prefer using it. However, if your

identity SDK provides only the bare-bones methods for abstracting OIDC, your methods

would need to be doing something like that described in the following sections.

�login( ) and handleCallback( )
Login in OIDC usually involves implementing the redirection flow using the

“authorization code” flow. Implementing this two-step process as one “logical” unit

has advantages. For instance, consider a scenario where a user who has never logged in

navigates to a document at /articles/foo/1 via a hyperlink shared to them. At this point,

we’d like to redirect the user to the identity provider and then redirect them to /articles/

foo/1 after they have logged in successfully.

To solve this, we can include state data such as the user’s desired document URL

and any additional metadata on client-side storage and then “refer” to it via a string

key, which we pass to the identity provider as a state parameter. Upon successful

authentication of the user, our application will receive the state parameter back and

would be able to use this data to redirect the user to the desired document URL.

To send such a key of state data, we usually use the state parameter in OIDC. One

thing to stress here is that when using state it must be an opaque string. One simple

storage solution could be to use localStorage and JSON in the browser as shown in the

following code snippet:

javascript

// encoding

function encodeState(data) {

 const state = randomBytes(32);

 const serializedData = JSON.stringify(data);

 localStorage.setItem(“state_”+ state, serializedData);

 return state;

}

Chapter 10 Using Modern Identity to Build Applications

181

// decoding

function decodeState(state) {

 const stateKey = "state_"+ state;

 if (!localStorage.hasItem(stateKey)) {

 throw new Error("State not found");

 }

 const storedState = JSON.parse(localStorage.getItem(stateKey));

 localStorage.clearItem(stateKey);

 return storedState;

}

// Then use it when redirecting

.authorize({ state: encodeState({ returnTo: "/articles/foo/1" }) });

// On callback

// Assume parsedResponseUrl is URL Object

const state = parsedResponseUrl.search.state;

const storedState = decodeState(state);

window.history.push(storedState.returnTo); // replace with your library

/ router

The key things to look for in an identity SDK for login() and handleCallback() are

•	 How does the identity SDK create the authorization URL? This may

be exposed as a method named “login,” “authorize,” or something

similar.

•	 How does the identity SDK receive the data that is returned by the

identity provider?

•	 Does the SDK handle the implementation details of redirecting the

user and handling the response?

•	 What information are you responsible for storing and providing

to the SDK?

•	 Does the SDK implement verification of the ID Token or not?

Chapter 10 Using Modern Identity to Build Applications

182

Once you have those details, then the flow to implement login can be

•	 Serialize your application state and generate any parameters needed

to call the SDK.

•	 Call the method to generate the /authorize URL and redirect to the

OpenID Provider in the SDK.

•	 Resume flow when redirect occurs using .handleCallback.

•	 Perform necessary validation steps, such as checking the ID Token

is valid.

•	 Perform any additional required steps, such as redirecting to the

original page, prefilling a form, etc.

Invoking “.handleCallback” should occur on a dedicated route in your web

application such as /user/auth/callback, which is registered on the identity provider’s

configuration as the callback URL for the application. The callback handler should

be written to process both successful and unsuccessful authentication cases to avoid

unexpected behavior when an identity provider doesn’t return with a successful status.

Note T here are some differences between authentication in a native app and a
web-based app in terms of how authentication is delegated to the identity provider.
On the Web, it is natural for a web-based application to redirect the user’s browser
to the identity provider in order for the user to authenticate there. For native apps,
both iOS, MacOS and Android offer system browser integrations for doing this
securely, and such redirection has become a widely accepted user experience on
such platforms.

�getToken( ) and getProfile( )
As a part of the login method using OIDC, the application will receive an ID Token and

an access token. These should ideally be stored in a javascript variable (in memory)

effectively acting as if they are cached until they expire. The getToken and getProfile

convenience functions would primarily work on top of this cache, fetching the user

profile and access token from it as needed.

Chapter 10 Using Modern Identity to Build Applications

183

The access token received will expire at some point. When it does, you will need to

communicate with the identity provider and obtain a new token to continue accessing

the API, as described in Chapter 6. There are two strategies available for getting a new

token after the original token has expired. If your application is using refresh tokens, it

would be able to get a new access token using the refresh token and the refresh token

grant. If your application is not using refresh tokens, it would need to redirect to the

identity provider to get a new access token. As described previously in Chapter 9, this

can be done in a hidden iframe to improve user experience. OIDC SDKs and identity

providers may implement this using response_mode “web_message”.

Things to look for in an identity SDK for getToken() and getProfile():

•	 Does the SDK support the web_message response type?

•	 Does the SDK support refresh tokens and refresh token rotation?

Note L ong-lived, nonrotating refresh tokens are effectively sensitive credentials
and should not be used on public, web-based clients due to the higher risk of
exposure and compromise. If refresh token rotation is not available in an SDK,
you’ll need to implement the logic to receive a new refresh token each time a
refresh token is used and store this new refresh token for the next request. This
logic can be added on top of your token management logic, which would be
responsible for checking when you need new access tokens or ID Tokens.

Once you have chosen the strategy for renewing expired access tokens, the

implementation for both getToken and getProfile includes the following:

•	 Check if cached content is available.

•	 If not, use the refresh token, or do a hidden redirect flow to get a new

access token and any other necessary information from the identity

provider.

•	 If an error is raised, handle it. For example, if the error requires user

interaction, handle it by redirecting the user to the identity provider.

•	 Once all data is obtained, for getToken return the access token, and

for getProfile return the contents of the ID Token.

Chapter 10 Using Modern Identity to Build Applications

184

�A Detailed Note on Token Management in SPAs

We abstract token management in the getToken method for the front end. When

the token is acquired, the application uses the “expires_in” element of the response

to compute an expected timeout for the token. All this information, along with the

audience, scope, and other metadata associated with the token, is stored in memory.

Later, when the application needs an access token with specific scopes, the getToken

method simply returns an access token from the in-memory cache, until the token

expires, at which point the application needs to request a new access token.

When using refresh token rotation, there are three possible flows to request a new

access token (with our identity provider’s feature set), as shown in Table 10-4.

Table 10-4.  Steps for SPAs to Obtain New Access Tokens

Scenario Steps

A refresh token is in memory. Request a new access token using refresh token rotation.

A refresh token is not available

(no longer in memory).

Try to retrieve a new access token from the identity provider using

a hidden iframe. This may fail with browsers implementing tracking

protections.

A refresh token is not

available, and a redirect via

hidden iframe fails.

Fully redirect the user’s browser to the identity provider with

prompt=none. If a session exists, the browser will be redirected

back to the application with new tokens.

Implementing this can be challenging, especially since doing so in a browser

where the user has never authenticated or is not authenticated will create unnecessary

overhead for your identity provider. To simplify that, we recommend using some kind of

a localStorage flag or variable, such as _lastSessionValidated_, which would represent

the likelihood of a session being available on your identity provider. Based on this

variable, you could execute the logic for the second and third flows, as appropriate.

In our case, we abstract getToken using the getToken method in our identity

provider’s SDK, auth0-spa-js.vii The auth0-spa-js library offers a cache implementation as

well, so we do not reimplement it in the application. However, we do provide an example

class that represents what such a cache requires.

Chapter 10 Using Modern Identity to Build Applications

185

�.logout( )
Logout is implemented by clearing any tokens available to the application from memory.

This includes tokens received during the user’s session as well as any cookies and session

state set by the application. In addition, when logging out, we redirect to the OpenID

Provider’s logout endpoint. This terminates the identity provider session as the provider

will log the user out when the logout endpoint is invoked. The implementation for logout

and session termination is vendor specific, and we recommend checking your identity

provider’s documentation for their specific implementation of any logout-related features.

Things to look for in an identity SDK for .logout():

•	 How to invoke the OIDC (Relying Party) RP-Initiated Logoutviii

•	 Methods to clear any meta state the SDK might have stored for the

user session

Implementing logout is pretty straightforward in our case and includes

•	 Clear all tokens in memory

•	 Remove all other locally stored information about the user

•	 Redirect the user to the identity provider’s OIDC Logout endpoint

via the SDK

An additional consideration is how to handle access tokens at logout. Identity

providers that issue opaque access tokens may provide a mechanism to revoke access

tokens. If provided, this can be used within a logout function. With a JWT access token,

however, it is not possible to revoke the access token unless the issuing identity provider

supports a blocklist feature or provides an introspection endpoint to check the status

of the current token. It is possible to maintain a blocklist at your resource server, but

synchronizing these blocklists can be challenging. If not revoked or blocklisted, the access

tokens will stay valid until they expire. In practice, it’s often more convenient to use a short

token expiration than to call the provider for each token to check for blocklisting.

Our provider uses a JWT-format access token. The access tokens for our API are

configured in the identity provider to have a sufficiently short expiration period so we

can avoid the development work and performance impact of checking for blocklisting.

We recommend checking for the recommendations from your chosen identity provider

on how to terminate access associated with security tokens it has issued, as the process

may vary by the provider.

Chapter 10 Using Modern Identity to Build Applications

186

�Closing Note
In the preceding sections, we’ve described an approach for writing an identity layer of

convenience functions that call an identity provider’s SDK. We did this to simplify our

application code and isolate the details of a particular identity provider’s SDK in the

identity layer. Even if an identity provider offers a higher-level SDK, we still recommend

writing an identity layer as a simple wrapper on top of the SDK. This makes it easier to

update your code if the SDK’s API changes in the future. It can also facilitate testing,

debugging, and Continuous Integration/Continuous Deployment (CI/CD) workflows

without having to call the identity provider during your tests because you can stub out

the convenience functions with a dummy implementation.

In our sample application, Auth0’s auth-spa-js SDK is doing most of the heavy lifting

for the identity protocol interaction with the identity provider. For additional learning,

we have included a sample using OAuth4WebAPI which is a pure OpenID Connect

Client to implement capabilities mentioned earlier. You can find this sample in the code

repository in examples/oidc-spa-js.js.

�Implementation: Back-End API
So far, we’ve been happily building the front end and haven’t talked much about the back

end. A strong separation of concerns between the front end and the back end allows them

to be implemented with some independence. The advantage of developing with well-

designed, industry standard identity protocols is that you can largely develop a front end

and/or a back end as long as they agree upon the identity protocol. The front ends, whether

native, browser-based, or web applications, will be able to access the back end, or many

back ends, as long as they have the appropriate access token for the specific back end.

With that, let’s start designing and implementing our back end. Just like the front

end, there are the two major problems to solve:

•	 How can the API ensure the request it received is valid/authorized?

•	 How can my API ensure the requested user has sufficient

authorization to perform this task?

The first task is primarily dependent on the client via the identity provider. The

access token issued by the identity provider must be included in all requests from the

client application to the back-end server, as a bearer token. Identity Providers have

Chapter 10 Using Modern Identity to Build Applications

187

different ways of representing an API, but, in general, you’ll register a back-end server/

API with an identity provider, which will issue it a unique identifier. A client application

can then request an access token for a specific API using that identifier. In our case, the

identifier for our registered API is used with the “audience” parameter in the client’s

authorization request to Auth0, our identity provider. (This parameter may be called the

“resource” parameter in some implementations.)

Depending on the identity provider, you may receive an opaque access token that is

validated by checking with the identity provider via an API call. Alternatively, you may

receive a JWT-format access token, which is a self-contained token that includes the

proof of its legitimacy cryptographically attached to it. JWT-format tokens are common,

and there is now a defined “JSON Web Token (JWT) Profile for OAuth 2.0 Access

Tokens.”ix We use JWT access tokens that use the RS256 signature algorithm. Doing so

allows us to validate the JWT using the public key hosted by the identity provider on a

well-known URL. This avoids the requirement to store a secret symmetric key on our API

servers to validate the signature of JWT access tokens as would be required with HS256.

This reduces risk, because if the secret key were compromised, it could be used by a

rogue element to issue unauthorized tokens.

Once a JWT is received by an API and extracted from the request header, the API

server should decode it and perform a quick assessment on whether the JWT uses one of

the approved algorithms and is issued by an approved identity provider for the API. The

API back end should then fetch and cache the public key from the identity provider and

validate the signature on the JWT access token before trusting the contents of the token.

Most languages and development frameworks provide a library for JWT access token

validation. The website https://jwt.io lists a large number of these libraries. Your

identity provider or SDK vendor might provide a more specialized library for this task.

You will need to ensure the audience, issuer, and algorithms are valid, by having an

approved list on your API Server. You should not trust the incoming information in the

access token without validating it. For example, if the issuer ID on your identity provider

is https://foo.bar, then any requests to your API using access tokens from another

issuer must receive an HTTP 401 response (unauthorized). Another example is that

tokens with “none” as the algorithm must be rejected.

The second problem to solve in the back end can be divided into two major tasks,

namely, identifying who the user is and what they are allowed to do. We can convert

these into methods, like we did on the front end, and then focus on implementing them.

Table 10-5 shows the API Helper Functions for our application.

Chapter 10 Using Modern Identity to Build Applications

https://jwt.io
https://foo.bar

188

Table 10-5.  API Helper Functions Needed

Function Purpose

function getUserId(token) {} Takes a token and extracts the user_id

function canPerform(token,

resource, action) {}

Given a token check a specific action can

be performed using the token

�.getUserId( )
This function is rather simple to implement. The claim “sub” in a JSON Web Token is

often used to represent the user. Since we are using the Express framework,x we can

extract this claim and populate this as an additional property on the request object.

As recommended in Chapter 4, we use an internal, application-specific identifier

for a user in all application and API logic and use separate identifier attributes for

display and notification. This enables a user to change the value of attributes such as

their display name or notification email address without impacting articles tied to their

identity. To keep the program simple, we didn’t implement functionality to let them

actually make such changes, but this may serve as a fun modeling problem for the future.

The things to look for in the identity SDK for getUserId are

•	 How will it perform JWT validation?

•	 What contents are returned?

�.canPerform( )
This method is an abstraction of authorization and requires a lot more explanation. The

attributes needed to answer the authorization question need to be available either in the

incoming request to the API or via some form of secondary storage that is referenced by

information in the incoming request.

In our case, however, we needed access control at a very granular level, namely, each

individual document. In our implementation, permissions for a document are stored

on the document itself. Each document is stored on disk with an additional field that

encapsulates who has access to the document. As a result, we elected to handle access

control enforcement within our API. This meant the API needed to receive information

Chapter 10 Using Modern Identity to Build Applications

189

about the user in each request for a document. The canPerform method therefore

accesses a document resource’s metadata and then returns true or false depending on

whether the resource is accessible by the user.

To model permissioning, the metadata for document resources is an array of access

control which represents the following:

•	 The type of access granted, whether based on a user or a domain

(discussed later)

•	 The benefactor of this access

•	 A list of the permissions that the benefactor has (“owner,” “editor,”

“reader”)

A simple implementation of canPerform, which ignores the domain-based access is

javascript

/**

 * Simple implementation of canPerform

 */

canPerform(token, resource, action){

 const userId = getUserId(token);

 if (resource .type !== “Document”) return false;

 const {acl} = Documents.read(resource.id);

 return acl.some(access => access.userId === userId

&& access.permission.includes(action)

);

}

�Using OAuth 2 Scopes – for API Authorization

OAuth 2 defines scopes as a means for an application to indicate the specific privileges

it requests for an API call. We defined access scopes for the applications around the API

endpoints and functions the applications would perform. This resulted in the following

scopes that the applications can request:

•	 get:article

•	 post:article

Chapter 10 Using Modern Identity to Build Applications

190

•	 patch:article

•	 patch:profile

•	 get:author

Note that these are the privileges that the front-end applications will use with the

API, and not privileges that will be granted for individual users. The advantage here is

that we could now expose our API to third-party applications, or even other first-party

applications, and customize the access granted to each one, based on the defined

scopes, without having to modify our API implementation. To reiterate, the scopes are

used to grant application clients the ability to make various requests to our API. We will

discuss authorization of users later in this chapter.

As a final note, the access policy for our demo application is extremely simple

and easily expressed using the scope parameter. If we had a different application with

a significantly more complex access policy, we would have considered using a Rich

Authorization Request (RAR), as described in Chapter 8. At the time of writing, this is still

a draft specification, so timing and support from identity providers would be factors to

keep in mind against the capabilities this specification offers.

�Linking Accounts
The benefit of having abstracted the identity aspects of our application is that we

can handle challenges like user duplication, where a user may inadvertently create

more than one account, by using a different way to authenticate than the one they

initially used.

One option is to avoid the issue by simply enforcing a constraint that they must

register first with a username/password account. However, such an approach proves

to reduce the efficiency offered by using a social provider. In our case, we used an

extension feature in the identity provider to add an additional constraint in the login

procedure. When a user is authenticating, if we determine that the email address is

already registered, we prompt the user to link their existing identity. It is important that

we verify the original identity and that the current user has access to the original identity

before linking the accounts. Otherwise, we would open up a vulnerability whereby a

Chapter 10 Using Modern Identity to Build Applications

191

compromised social account could propagate into potential account takeovers, even if

the user had never used the social provider to log in to our app. Further discussion of

account linking can be found in Chapter 18.

In the case of our identity provider, adding additional logic during the login process

can be done by running additional javascript code, post login. An extension is provided

to accomplish this task. Most identity providers have some means of accomplishing this

type of linking. As a last resort, you might be able to query the user record on the first login,

bring it into your application, and handle this linking challenge in your application instead.

�Anonymous Access
In our API, the core of the data model is a document on which CRUD (Create, Read,

Update, Delete) operations are performed. We modeled those as HTTP “verbs” that map

to POST, GET, PATCH, and DELETE functions.

By decoupling the business logic from the user information and implementing

just these operations, our application could be fully functional without the notion of

a user. As a bonus feature, in our case it would allow anonymous access, which might

entice users to try out the app who might otherwise balk at having to sign up for an

account first.

However, if we enable a user to create documents anonymously and the user

later signs in, documents created before logging in will stay anonymous and public.

The trade-off we made is that allowing a user to start anonymously means that if they

upgrade to a full user later, we miss out on the ability to integrate the information about

the user with content created anonymously.

Applications may choose to offer anonymous access or require mandatory user

authentication from the start. In our sample, we chose to allow anonymous use as it felt

natural to encourage users to try out the application with the least amount of friction.

To make this work with our JWT validation strategy, the application sends the

Bearer value of “anonym.” This is a special value that means the user is untrusted. The

.canPerform method can then be adapted to grant “create only” access to all documents,

with anonymous identifiers.

Chapter 10 Using Modern Identity to Build Applications

192

�Granting Access Based on Domains
One of the features that we find really convenient today is being able to grant access to

an entire domain. This is a simple version of the feature to share a document with an

entire team on Google Workspace. Solving this is outside the domain of OAuth 2 and

OIDC. However, this allows us to highlight how easily solutions can be built on top of

these standards.

In the previous sections, we loosely defined the access model for our application.

In practice, we store permissions in the document metadata, similar to how files have

permissions associated with them in Unix-like operating systems.

Files can be shared using the full email address “user@domain.com” or using

“@domain.com” identifiers which must start with the @ symbol. A file permission of

“@domain.com” provides a simple way to grant access to a team and allows all users

with an @domain.com email to access the file. The creator of a file has full access to the

file, and to keep things simple, only the creator of a file is able to grant “share” privilege

to others.

To implement this, each file has an array in metadata with the following shape:

{

 Type: "DOMAIN"|"INDIVIDUAL"

 identifier: String,

 permission: Permission[],

}

The “identifier” attribute is either an email address or a domain name, while

“permission” is one or more of the following, “read,” “write,” “share,” and “owner.” In

the current permission model, a complete email will be matched in its entirety with the

user’s email. In the interest of privacy, instead of sharing the full email, only a salted

hash of the information is stored.

This brings us to another problem. So far, our application has no means of fetching the

user’s hashed email or their hashed email domain in the access token. To work around this,

we add custom claims in the JWT access token issued by the identity provider. To convey

information about the authenticated user to an API, it is very useful to have an identity

provider that offers some means of adding custom claims to the access tokens it issues.

Chapter 10 Using Modern Identity to Build Applications

193

A nonstandard claim, such as “https://dev.doc/team”, is used to indicate a team’s

email domain, and “https://dev.doc/email” is used to indicate the salted email

address of an individual user. An extensibility feature in our chosen identity provider

allows us to use custom code logic to augment the claims in the access token. We used a

snippet of code like the following to add a claim:

export async function (user, context, callback) {

 user.app_metadata = user.app_metadata || {};

 �user.app_metadata.teamId = user.app_metadata.teamId || async

hash(getDomain(user.email));

 context.accessToken["https://dev.doc/team"] = user.app_metadata.teamId;

 callback(null, user, context);

}

We have found that access policies vary quite a bit, and it is very common for

applications to have unique access requirements. For this reason, we recommend

checking for extensibility features when selecting your identity provider, as well

as carefully evaluating a provider’s support for your application’s access control

requirements. If your identity provider doesn’t support either your requirements or such

extensibility, you’ll need to handle more logic on your application back end or add this

in the provisioning step. In our case, this is conveniently handled for us out of the box

with extensibility features in our identity provider, giving us more time to focus on our

business logic.

The same need for extensibility applies to front-end customization as well, as

most applications will want to customize consent screens and need tailored consent

management or approval logic. Having an identity provider with some form of front-end

extensibility for functions like login, sign-up, and consent can reduce what you have to

build in your application.

�Other Applications
In addition to the application that we developed, we are also using Discourse as a second

application to demonstrate single sign-on. The Discourse application is registered

separately with the identity provider and uses the Authorization Code Flow to authenticate

Chapter 10 Using Modern Identity to Build Applications

https://dev.doc/team
https://dev.doc/email”

194

users. The instructions about this are documented at the Discourse Documentation. One

of the advantages of using an industry standard protocol like OIDC, OAuth 2, or SAML 2 is

the benefit of support for single sign-on with third-party services like this one.

If you have an application that has a native application counterpart, the native

application should also be registered at the identity provider as a second application.

There are many benefits of doing so. It reduces the chances of potential abuse by limiting

the impact of a bug, vulnerability, or misconfiguration. It can also improve visibility of

users’ usage patterns, enable implementing different access control for the two client

applications, as well as provide flexibility for branding and customization.

�Additional Note on Sessions
In the modern identity world, a session for a user may be in turn a series of sessions,

interconnected. Even for our simple user application, there are two layers of session.

There is an application session for the user as well as an identity provider session for the

user. There may be additional sessions, as shown in Figure 10-2, when a user’s account

in one identity provider is federated to an account in a remote identity provider. Sessions

A, B, and C are independent sessions, managed by each application.

The single-page app relies on the identity provider session for a user and, as such,

does not store data locally, beyond storing the tokens it receives in the in-memory

cache. This simplifies the application but comes with the disadvantage that every time

the application is started in the browser, it has to check with the identity provider for the

status of the user’s session.

Figure 10-2.  Sessions Illustrated

Luckily, it is very simple to make this transparent and perform this activity in the

background. The SDK we use abstracts this for us. However, it can be achieved simply

by storing some information about the user, like name and picture URL, rendering

the UI optimistically, and performing the authentication in the background. This can

Chapter 10 Using Modern Identity to Build Applications

195

be done by redirecting to the identity provider and fetching the response from the

identity provider in an iframe, at least for first-party applications. The ability to run the

authentication in the background is subject to being supported by your identity provider,

but has usually been made available via “web_message” response mode or via the

OpenID Connect Session Management specification.xi

As you learned in Chapter 9, in a typical SSO deployment, a user may have multiple

sessions including an application session, identity provider session, and an additional

session in each of any other applications they’ve authenticated to via the same

identity provider. It is desirable in some cases to have a binding between the session

at an identity provider and all the relying party applications it serves, so that a given

application can be aware of changes to the user’s session in the identity provider and

vice versa. At the time of writing, there is no reliable, standard way of achieving this

with OIDC. There is a recently finalized specification for session management which we

elected not to use for reasons described in the following section.

�Browsers, Trackers, and OAuth 2
Modern browsers deploy powerful defenses to prevent the monitoring of a user without

their consent, despite being constantly challenged by tracking companies. In the past

few years, in order to protect the user from being tracked by such third parties, many

modern browsers now remove cookies placed by third parties and limit access to cookies

in iframes. Some browsers even go so far as to remove any cookies placed by websites

that use CNAMES to refer to other domains (e.g., a CDN Service) after seven days. All of

this has had a cascading effect that limits the background detection of session status as

described in the OpenID Connect Session Management specification.xi

In response to the additional security added by browsers to thwart third-party

trackers, the OAuth 2 specification now recommends the use of refresh token rotation

in browsers. This involves using a short-lived, refresh token. Each consumption of the

refresh token results in a new refresh token being issued, such that each refresh token is

only used once. The utility here is that since this refresh token is short-lived, the risk of

exposure is limited, and it makes the programming model almost the same as for native

applications. Additionally, OAuth 2 recommends adding token reuse detection and

revoking sessions in case of a token reuse being detected, to further improve the user’s

security.

Chapter 10 Using Modern Identity to Build Applications

196

�Summary
We’ve covered in this chapter how we designed and built a sample application that uses

OIDC for user authentication and OAuth 2 for API authorization for our custom API. In

this scenario, both functions are handled by our identity provider, which serves as an

OpenID Provider and an OAuth 2 authorization server. We shared some key design

decisions and implementation points involved in creating the application. The following

chapters will discuss additional aspects of identity management that applications have

to handle after the user has been initially authenticated, starting with single sign-on.

�Key Points
•	 OIDC is used to authenticate users and obtain an ID Token with

claims about the authenticated user.

•	 OAuth 2 is used to obtain an access token to authorize the

application to call our custom API.

•	 To obtain access tokens for our custom API, we need to obtain and

configure our own identity provider to protect it.

•	 We used customization features from the identity provider to add

custom claims to the access token to provide additional information

to the API about the user. The custom claims enable the API to

enforce user-level access policy. Customization features vary by

identity provider.

•	 Both applications use the OIDC authorization code flow with PKCE

for a user’s initial authentication.

•	 Our application uses a library that uses the web_message response

mode for renewing access tokens for a better user experience.

•	 The native application uses a refresh token to obtain a new access

token if the previous access token has expired.

•	 Registering the single-page and native versions of our application

separately at the identity provider allows us to distinguish between

the two application versions for access control, branding, and

logging.

Chapter 10 Using Modern Identity to Build Applications

197

�Notes

	 i.	 www.markdownguide.org/getting-started/

	 ii.	 www.discourse.org/

	 iii.	 https://reactjs.org

	 iv.	 https://expressjs.com

	 v.	 https://heroku.com

	 vi.	 https://vercel.com/

	 vii.	 https://auth0.com/docs/libraries/auth0-single-

page-app-sdk

	viii.	 https://openid.net/specs/openid-connect-

rpinitiated-1_0.html

	 ix.	 https://datatracker.ietf.org/doc/html/rfc9068

	 x.	 https://expressjs.com/

	 xi.	 https://openid.net/specs/openid-connect-session-1_0.html

	 xii.	 https://openid.net/specs/openid-connect-session-1_0.html

Chapter 10 Using Modern Identity to Build Applications

https://www.markdownguide.org/getting-started/
https://www.discourse.org/
https://reactjs.org
https://expressjs.com
https://heroku.com
https://vercel.com/
https://auth0.com/docs/libraries/auth0-single-page-app-sdk
https://auth0.com/docs/libraries/auth0-single-page-app-sdk
https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://datatracker.ietf.org/doc/html/rfc9068
https://expressjs.com/
https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html

199

CHAPTER 11

Single Sign-On
A ripple widening from a single stone Winding around the waters of
the world.

—Theodore Roethke, American poet, from The Far Field (1964)

Now that we’ve covered some protocol basics and a sample application, we can discuss

single sign-on (SSO), starting with what it is and why it is valuable. We’ll also cover how it

works and considerations for attributes of single sign-on sessions to help you design SSO

for your projects.

�What Is SSO?
Single sign-on is the ability for a user to authenticate once and access multiple

applications without having to log in again. It is usually enabled by using an identity

provider. This chapter will focus on SSO and assumes a set of applications that use either

OIDC or SAML 2, use the same identity provider, and are accessed via the same browser,

or, in the case of native applications, at least use the same browser when delegating

authentication to the identity provider. Once authenticated, a user enjoys single sign-on

access to applications as long as their identity provider session (SSO session) has not

expired or been terminated.

Single sign-on can aid a variety of scenarios. In consumer-facing environments,

for example, a user might enjoy single sign-on across multiple applications that allow

the user to log in via Google Sign-In.i In an enterprise environment, an employee

might enjoy single sign-on across internal and cloud applications that leveraged their

company identity provider for authentication. In universities, students, professors, and

administrators might enjoy single sign-on across university applications leveraging a

university identity provider.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_11

https://www.goodreads.com/work/quotes/14197
https://doi.org/10.1007/978-1-4842-8261-8_11

200

Single sign-on offers many benefits. For users, single sign-on offers the convenience

of not having to authenticate as often, fewer usernames and passwords to remember,

and no exposure of their credentials to applications. Application owners can delegate

to the identity provider the work for implementing login pages, credential validation,

secure storage of credentials, and some account recovery features. For a business or

organization, single sign-on additionally provides a single place at which to implement

and enforce authentication policy, different forms of authentication, account recovery,

logging, and account termination. It’s easier to enforce best practices in a single place

than in many individual applications. SSO also improves security to the extent that users

with only one password to remember are less likely to write it down on the proverbial

sticky note or whiteboard.

There are, however, a few trade-offs with single sign-on. Implementing single

sign-on creates a gateway to your application with the potential to be a single point of

failure. A centralized service also provides a single point of attack. To mitigate these

risks, it’s essential to select an identity provider that is designed to be highly available

and implements security best practices. An identity provider also has greater visibility of

user activity and the ability to track users across sites, which can be a privacy concern.

When selecting an identity provider, you should perform due diligence evaluation of

the privacy features and security certifications of a provider before entrusting your

application’s authentication to it.

�How SSO Works
Single sign-on is possible with the authentication protocols discussed in this book

because an identity provider maintains a session for a user it has authenticated.

Using the example shown in Figure 11-1, a user visits application 1 which redirects

their browser to an identity provider with an authentication request. The identity

provider authenticates the user, establishes a session for the user, and creates a cookie

in the user’s browser with information about the session. Then it redirects the user’s

browser back to the application with security token(s) which contain data about the

authentication event and authenticated user. The application can then create or update

its own local session (and possibly a cookie) for the user as appropriate for the type of

application.

Chapter 11 Single Sign-On

201

Figure 11-1.  Single Sign-On

If the user then visits application 2 with the same browser, the second application

detects that the user has not yet logged in to it and redirects the user to the identity

provider. The user’s browser includes the identity provider cookie with the request, so

the identity provider uses the cookie to detect the user already has an authenticated

session at the identity provider. It checks if the user’s session is still valid and, if so,

redirects the user’s browser back to the second application with the requested security

token(s) without prompting the user for credentials. The second application then creates

or updates a local session for the user (and possibly a cookie) as appropriate for the type

of application it is. The user can continue to access subsequent applications or come

back to the first two, without signing in again, as long as their session at the identity

provider, often called their SSO session, remains valid.

There are various reasons that the user’s session might become invalid. It might

have timed out as described in Chapter 9. Alternatively, the session might have been

terminated at the identity provider by an administrator or if the user logged out of the

identity provider. The user might have even logged out of another application that

triggered a logout request to end the identity provider session. We’ll cover more about

logout scenarios in Chapter 13. Regardless of the reason, if a user is redirected to an

identity provider with an authentication request and their session is no longer valid, the

identity provider will prompt the user to reauthenticate (unless the request contained

authentication request parameters to suppress active authentication).

Chapter 11 Single Sign-On

202

Even with a valid SSO session, there are situations where the user still has to

interact with the identity provider. If the user visits an application that requests API

authorization to call an API on the user’s behalf, and the identity provider is also the

authorization server for the API, the identity provider will prompt the user for consent

for the API access. If the user visits an application that requires a stronger or different

form of authentication than that used to establish their existing session, the user will be

prompted to meet the new application’s authentication requirements. If an application

includes in its authentication request a parameter to force authentication, the user will

need to reauthenticate. Similarly, a parameter can be used to specify a maximum length

of time that can elapse between active authentications, and this may trigger a need for a

user to reauthenticate as well. In the absence of such special cases, SSO enables a user to

access multiple applications after authenticating once, until their authentication session

expires.

�SSO Configuration
When implementing single sign-on with an identity provider you control, there are

typically several features to configure, from session duration to the strength of the

authentication mechanisms used as well as login page branding and circles of trust for

each identity provider.

�SSO Session Duration
The length of the SSO session, often specified in terms of maximum and idle timeouts,

should be configured, keeping in mind the sensitivity of the applications relying on

the SSO session; however, it is possible to accommodate applications with different

requirements. If an application using OIDC requires a user to actively authenticate more

frequently than an identity provider session would require, the “max_age” parameter

in the authentication request can be used to specify the maximum allowed time, in

seconds, that can elapse since the user was last actively authenticated. The use of this

parameter requires the identity provider to actively authenticate the user again if the

value of max_age in an authentication request is less than the elapsed time since the

user last authenticated. Applications should still check the auth_time claim in the ID

Token to ensure the requested max_age was followed.

Chapter 11 Single Sign-On

203

An application can enable a user to remain active in the application without

reauthenticating for a longer time than an identity provider session by using a longer

application session timeout.

�Authentication Mechanisms
An identity provider should be selected and configured to support the specific

authentication mechanisms required by the applications leveraging the session.

Applications can use parameters in the authentication request to specify desired classes

of authentication mechanisms. For example, one application might require only a

username/password login, whereas another application might require a stronger form

of authentication such as a one-time password. Stronger forms of authentication are

discussed further in the next chapter.

�Login Page Branding
In terms of user experience, the login page for an SSO session should make it clear what

the user is logging in to. For example, if an employee is redirected to a corporate identity

provider, it is helpful for the login page to be branded to identify it as the corporate

login page. We’ll talk more about logout in Chapter 13, but it should be easy for users

to terminate the sessions created when they log in. If the user’s login creates an SSO

session, but the application only performs a local application logout, users may not

realize another step is needed to terminate the SSO session. In designing or configuring

login pages, it should be clear through branding and other means what the user is

logging in to and how to terminate any sessions when done.

�Multiple Identity Providers
If SSO is implemented using an authentication broker that allows for the configuration

of multiple identity providers, the broker should be configured to ensure that users

from each identity provider can only log in to the applications appropriate for them.

This is sometimes called the Circle of Trust (CoT) for an identity provider. For example,

if a company has an authentication broker with one identity provider configured for

employees and another configured for partners, the configuration should ensure that

partners cannot get access to applications intended only for employees. This scenario is

Chapter 11 Single Sign-On

204

illustrated in Figure 11-2. In this example, Application 1 should only be accessed by users

authenticated by Identity Provider A. Application 2 should only be accessed by users

authenticated by Identity Provider B. An SSO session established by a user logging in to

Identity Provider B should not enable access to Application 1.

Figure 11-2.  Authentication Broker with Multiple Identity Providers

�Summary
Single sign-on is the ability to log in once and access multiple applications that rely on

the same identity provider without having to reauthenticate for each application. Single

sign-on offers convenience to users and provides a centralized administration point

for authentication policy. Application owners should ensure the characteristics of a

single sign-on session at an identity provider are compatible with their requirements for

factors such as session duration and the strength of authentication required. We’ll cover

authentication strength in more detail in the following chapter.

�Key Points
•	 Single sign-on is the ability for a user to authenticate once and

access multiple applications that delegate authentication to the

same identity provider without the user reauthenticating to each

application.

•	 Single sign-on with an identity provider avoids exposure of user

credentials to applications and can reduce the number of passwords

for users to remember.

Chapter 11 Single Sign-On

205

•	 The use of an identity provider may relieve developers of the work

to build login pages and account recovery mechanisms in each

application.

•	 The use of an identity provider for single sign-on provides a single

place to administer authentication policy and a single account shut-

off point.

•	 Single sign-on can create a single point of failure if not designed to be

highly available as well as secure.

•	 Identity providers should be configured with session settings

appropriate for the applications relying on the identity provider.

�Notes

	 i.	 https://developers.google.com/identity/

Chapter 11 Single Sign-On

https://developers.google.com/identity/

207

CHAPTER 12

Stronger Authentication
Come, let us hasten to a higher plane,

Where dyads tread the fairy fields of Venn,

Their indices bedecked from one to n,

Commingled in an endless Markov chain!

—Stanislaw Lem, Polish author of science fiction,
philosophy, and satire, from The Cyberiad (1965)

Different methods of authentication are not considered equal. The static passwords

that still enable access to many Internet services are considered a relatively weak

authentication mechanism. Several stronger forms of authentication exist, and their

use is recommended to better protect online resources. In this chapter, we’ll discuss the

issues with static passwords and how stronger forms of authentication can be used for

multi-factor authentication and step-up authentication.

�The Problem with Passwords
A static password is a secret string of characters used repeatedly over time by a user

to authenticate to a particular protected resource. Static passwords are widely used

today but have several drawbacks. Short passwords may be guessed by brute force

attacks which try every possible password. Long passwords can be difficult for users

to remember, but writing them down makes them more prone to being stolen. If a

username and password are stolen, they can be used by someone far distant from the

account owner, who may not realize the password has been compromised until it is used

to do something unauthorized. Worse, if the compromised password has been used

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_12

https://doi.org/10.1007/978-1-4842-8261-8_12

208

across multiple sites, its theft can put them all at risk. The introduction of single sign-on

makes the use of static passwords more problematic in the sense that a stolen password

may grant access to many systems.

�Stronger Forms of Authentication
To avoid the weakness of static passwords, there are several stronger forms of

authentication that can be used. One widely used mechanism has been to send

a one-time password (OTP) to a user via SMS text message or email. The OTP is

often a numeric code that is generated by an application and sent to the user at the

time of authentication. The user enters the OTP into a login screen to complete the

authentication.

Alternatively, a one-time password can be generated by an application on a user

device or by a specialized hardware OTP display token. As the name implies, a one-time

password can only be used once, making it more difficult for an unauthorized party to

use a stolen OTP than a stolen password. Examples of OTP-generating phone apps at

the time of writing are Google Authenticator, Duo, Authy, and VIP Access. Apple has

also added a built-in OTP generator capability in iOS 15.1. Symantec, Gemalto, and RSA

are examples of vendors that produce a hardware OTP display token that generates and

displays a one-time password. For some users, a phone is more convenient for OTP

generation because they tend to always have their phone with them.

Another approach involves the use of a pair of cryptographic keys. A private key is

securely encapsulated in a device such as a smartcard, hardware authentication device,

or mobile phone. The entity wishing to authenticate the user sends a challenge nonce

to the authenticator device. The secret key encapsulated in the device is used to sign the

challenge nonce. With some multi-factor authenticator devices, the user has to enter a

PIN or provide a biometric factor to unlock the device before it will sign the challenge

nonce, providing a layer of protection against theft of the device. The authenticating

entity receives a message back from the device with the signed challenge nonce and

validates the signature, using a public key that corresponds to the private key on the

device. The public key would have been previously registered during a setup step. If

the signature is valid, this process indicates that the user (subject) attempting to log in

possesses the authenticator device associated with the account. With this approach,

authentication is based on possession of the device with the key as well as a factor (such

as a PIN or fingerprint) to unlock the device.

Chapter 12 Stronger Authentication

209

An industry standard was defined for such hardware security keys called Fast

Identity Online (FIDO) Universal Second Factor (U2F).i This initial protocol has since

been extended with newer protocols that add additional features, known collectively as

FIDO2. At the time of writing, Yubico provides many types of security keys compliant

with FIDO U2F and FIDO2 and is a well-established vendor of such products. Newer

offerings are also available from vendors such as Google (Titan key), Thetis, TrustKey,

and Feitian.

Biometric factors such as fingerprints, facial scans, retinal scans, and voiceprints can

serve as stronger forms of identification. Apple’s Face IDii and Touch IDiii are examples

of biometric authentication, and the Android framework also enables biometric

authentication.iv

It’s worth noting that knowledge-based authentication (KBA), which involves

answering security questions, has similar risks to passwords. Answers can be guessed,

sourced from public information, or stolen and then used by a remote entity without

the owner’s knowledge. The strength of authentication methods can be classified, and

one example classification scheme is the NIST 800-63 Security standardv which defines

criteria for three levels of authenticator assurance.

�Multi-factor Authentication
Multi-factor authentication requires the use of multiple authentication factors in order to

authenticate. These typically include something you know as well as something you have

and/or something you are. The something you know can be a password or passphrase.

The something you have may be a device such as a mobile phone or a hardware security

device used for one of the authentication mechanisms described in the previous section.

The something you are can be a biometric factor such as a fingerprint, voiceprint, or

facial scan.

The use of multi-factor authentication reduces the risk if any one factor is

compromised. If authentication requires entering a static password as well as a one-time

password generated by a mobile phone, a hacker would have to steal a user’s password

and unlocked phone to impersonate the user and gain access to their account. Requiring

multiple factors for authentication therefore provides a stronger assurance that the

person authenticating is the legitimate account owner.

Chapter 12 Stronger Authentication

210

Authorization policy may require multi-factor authentication for certain situations.

It may be required at all times to access sensitive content such as administrative access

to production cloud servers. In other situations, multi-factor authentication may only be

required if an unusual situation is detected, such as a user attempting access from a new

device or an atypical geographic location. Some enterprise environments may require

multi-factor authentication for remote access or even in the office for more sensitive

resources.

The selection of authentication mechanisms for a solution should take into

account the sensitivity of the application and data involved as well as the usability of

the solution because users may try to circumvent mechanisms that are too onerous

or deemed overkill for a particular situation. Section 6 and specifically Section 6.2 of

NIST publication 800-63-3 shows one example of how to approach the selection of an

appropriate authenticator assurance level for a deployment.vi (NIST Special Publication

800-63Bvii has the accompanying list of types of authentication for each authentication

assurance level.)

�Step-Up Authentication
When a user authenticates, an authenticated session is created with a certain level

of authentication assurance that the user is the legitimate owner of the account. For

example, if a user logs in with a static password, there is some chance the password

was stolen and the account is being used by an imposter, so the user’s session might be

considered at “level one” in terms of authentication assurance. If a user subsequently

authenticates with a stronger form of authentication such as a one-time password

generated on their mobile phone, the confidence that the user logging in is the legitimate

account owner is much higher because it would be harder for someone to impersonate

the user when their phone is required for authentication. After authenticating with

the one-time password, the user’s session might then be considered at “level two” for

authentication assurance. (Our choice of levels and names is an arbitrary example for

purposes of illustration.) Step-up authentication is the process of authenticating with a

stronger form of authentication in order to elevate the authentication assurance level of

an existing authentication session.

Authorization policy may require authentication sessions to be at a specific

authentication assurance level in order for a user to access resources or execute

transactions that involve more risk. Applications with features that vary in sensitivity

Chapter 12 Stronger Authentication

211

can use step-up authentication to require stronger authentication for more sensitive

transactions. For example, a user might be able to browse a retail website anonymously,

but have to elevate their session by authenticating with a password to access previously

stored address information for a purchase delivery. In an enterprise, a manager might

be able to access the accounts payable system with a password to run reports, but then

have to step up their session by authenticating with a one-time password in order to

approve a large payment. Step-up authentication facilitates a model where the strength

of the authentication mechanism required for a situation is commensurate with the risk

inherent in the protected resources involved.

�Multi-factor Authentication and SSO
The use of multi-factor authentication can impact the user experience with single sign-

on. If a user first accesses an application that only requires password authentication,

and then moves on to a second application that uses the same identity provider as the

first but requires a stronger form of authentication, such as entering a one-time code

sent to their phone, the user will be prompted to satisfy that stronger authentication

requirement. Therefore, when rolling out single sign-on deployments where applications

may require different levels of authentication strength, you should avoid wording such

as “login once, access everything” because users may in fact have to authenticate again

with a stronger mechanism to access more sensitive applications. You can reduce

user confusion by warning users in advance if a particular action requires stronger

authentication. Don’t make such notices intrusive, however, or they will create more

exasperation than they avoid.

�Session Timeouts
An identity provider may allow the configuration of multiple forms of authentication

along with a classification or level of authentication assurance for each. A user’s

authentication session may then include information about the authentication

mechanism(s) used, an authentication assurance level or authentication context class,

and the session expiration. If an identity provider supports authentication sessions at

different authentication assurance levels, you should consider shorter session timeouts

for elevated sessions which provide access to more sensitive resources. Shorter session

Chapter 12 Stronger Authentication

212

timeouts for more privileged sessions reduce the chances of highly privileged sessions

being hijacked for malicious purposes and align with the security principle of least

privilege.

�Requesting Authentication Mechanisms
Applications may need a way to request an identity provider use a particular class of

authentication mechanism to achieve a desired level of authentication assurance. This

can be done with an authentication context class reference. An authentication context

involves several factors, such as the identification processes used to create an account,

the protections against credential compromise, and the authentication mechanism

used. An authentication context class represents a set of authentication methods. An

authentication context class reference is an identifier for an authentication context class.

Authentication context classes and class references are often defined by an identity

provider, but may be worked out by a service provider in conjunction with an identity

provider. The following sections explain how applications can request a particular

authentication context class and how identity providers can provide claims to convey the

authentication context class reference and/or authentication mechanism(s) used.

�SAML 2
A SAML 2 authentication request can specify an application’s desired authentication

context class using the <RequestedAuthnContext> element. A SAML 2 authentication

response will show the authentication context class used to authenticate a user

in the <AuthnContext> element of the authentication assertion, if the identity

provider provides this information. Appendix C has additional information on SAML

authentication requests and responses including the AuthnContext element. The

application (service provider) and identity provider must establish in advance the

definitions for different authentication context classes. The document “Authentication

Context for the OASIS Security Assertion Markup Language (SAML) V2.0”viii lists several

predefined authentication context classes which may be used.

Chapter 12 Stronger Authentication

213

�OIDC
OIDC clients can request one or more authentication context classes, in order of

preference, using the following parameter to the authentication request:

•	 acr_values – Authentication context class reference

An ID Token issued to an application can contain the following parameters to convey

the authentication context class and authentication methods used to authenticate the

user (subject) referenced in the ID Token.

•	 acr – Authentication context class reference, an identifier for an

authentication context class

•	 amr – Authentication method reference, the identifiers for one or

more methods used to authenticate a user

The application and OpenID Provider must establish the values and meaning for acr

and amr values used. At the time of writing, there are specifications for standard values

for these claims. The draft specification for OpenID Connect Extended Authentication

Profile (EAP) ACR Values 1.0ix lists acr values, and the RFC8176 specification for

Authentication Method Reference Valuesx lists amr values.

�Step-Down Authentication
To align with the security principle of “least privilege,” a user should operate at the

minimum privilege level necessary for a particular task. In an environment where

sessions can exist with different assurance levels or authentication contexts, with higher-

level sessions that enable access to more sensitive resources, users would ideally be able

to “step down” their session’s authentication assurance level when they no longer need

the elevated privileges. This reduces the damage that can be done if a session is hijacked

as well as the risk from simple human error when operating at a higher privilege level.

Step-down could be implemented with an explicit mechanism, though we have not seen

this done in our experience. It is probably more practical to simply rely on short session

timeouts for more privileged sessions as well as user logout for immediate termination of

a session.

Chapter 12 Stronger Authentication

214

�Deployment
There are several deployment considerations worth mentioning for multi-factor

authentication (MFA). MFA of any form is an improvement over static passwords which

can be stolen through a variety of means including phishing, social engineering, and

malware. However, security, usability, maintainability, cost, and recovery are all factors

to consider when choosing one or more forms of MFA for your project.

Sending one-time authentication codes to users via SMS messages is widely used

and easy for many users to set up and use. If a user’s phone is broken, lost, or stolen, the

user only has to have the cellular company associate their phone number with the SIM

card in their new replacement phone. Once this is done, all the user’s SMS messages

will come to the new phone, enabling the user to authenticate to applications using the

new phone.

The use of SMS messages for authentication can involve a short delay as the user

must wait for the code to arrive, and some users may incur a charge to receive SMS

messages. A user must also have connectivity to receive the message. This may be a

problem in remote environments, environments that restrict use of cellphones such

as hospitals, or shielded environments such as underground data centers. Once the

message is received, the user must enter the code from the message into a login screen.

This is reasonably convenient when logging in to a separate device, such as a laptop, but

can be more cumbersome for an app on the same phone.

At the time of writing, the security of SMS codes sent to phones is threatened by

several types of attacks. In a SIM-swapping attack, an attacker impersonates a cellular

customer (or bribes a cellular company employee) and requests that the victim’s phone

number be associated with a new SIM card possessed by the attacker. This enables the

attacker to intercept the victim’s calls and SMS messages. Other attacks have intercepted

voice and SMS communications on cellular networks by targeting Signaling System

No. 7 (SS7), a protocol layer in the infrastructure that provides connectivity between

mobile phone networks. Such attacks are not yet widespread, but may increase in the

future. One approach to mitigate this risk is to require the user to re-enter their password

when they enter the code, but users may find this annoying, especially if they do not

understand the purpose. Your projects should evaluate the current status of SMS attacks

before deciding to rely on SMS codes for multi-factor authentication.

Specialized hardware authenticator tokens that generate and display a one-time

password have been used in enterprise environments but are becoming less common.

They avoid the vulnerabilities associated with SMS messages, but are less convenient

Chapter 12 Stronger Authentication

215

because the user has one more item to carry around. The devices can break, get lost,

stop working due to a drifting inner clock, or run out of battery and the ongoing cost of

replacing devices can be substantial, in one author’s experience. In addition, if it takes

time to send a new device to a user, they may not be able to log in until they receive the

new device and go through an administrative step to associate the new device with their

account.

Using an application on a user’s mobile phone to generate a one-time password

avoids the drawbacks associated with SMS messages and specialized authenticator

tokens, but has other issues. There are many OTP-generating applications and each of

the different websites a user visits may only support the use of a particular one. This

requires users to remember which generator application to use with each website

they log in to. Furthermore, if a user’s phone is broken, lost, or stolen, the user may

temporarily lose the ability to log in while they get a new phone, install the generator

apps on their new phone and go through an administrative process at each website they

use to authenticate them through other means, remove the old phone, and reenroll with

their new phone. The same applies if a user inadvertently deletes the OTP-generating

application from their phone. For applications where frequent access might be critical,

such as stock trading applications, being locked out of the application until a new phone

is registered could have significant negative impact to users.

Authentication devices with cryptographic keys are becoming more common.

The authentication secret in this case, a private key, never leaves the device. This

means a user cannot be phished or tricked into revealing it. Some devices employ a

fingerprint reader such that a user simply touches the reader to unlock the device for

authentication. This provides a convenient user authentication experience. On the

negative side, this solution involves a separate device which a user must remember

to have with them when they need to authenticate. In the past, a given website may

have only supported specific security keys or keys from a specific vendor, potentially

requiring a user to have more than one across different websites. The FIDO2 protocols

and interoperability testing should help alleviate this issue by facilitating interoperability

between different vendors’ security keys and different websites needing to authenticate

users. Like phones, these devices can break, get lost, or be stolen, and a user may

temporarily lose the ability to log in if this happens.

With OTP-generating apps on phones or hardware authentication devices, an

administrative process is required to deregister an old device and associate a new

device with a user’s account. If the old device is available and functioning, the user can

Chapter 12 Stronger Authentication

216

authenticate with it in order to perform this administrative step themselves. If, however,

the device is not available, a user cannot authenticate. Some sites provide the ability

to download a set of backup codes for this scenario. The backup codes are system-

generated so they are typically long, unique to a particular site, and can only be used

once. The use of backup codes, however, relies on the user safely storing the backup

codes, noting the site they are for, and having them readily available if their primary

authentication device is no longer usable. If a user does not have their backup codes, it is

necessary to authenticate them through another means before registering a new device.

This is to prevent hackers from bypassing multi-factor authentication by calling up and

claiming to be the user and that they’ve lost their phone. In addition, an attacker who

is able to steal a user’s backup codes, and password if used, can potentially bypass the

multi-factor authentication and take control of the user’s account.

Biometric factors have the drawback that if used for authentication and

compromised or damaged, they cannot be reissued. In other words, a person

cannot be issued a new finger if a hacker is able to capture their fingerprint and use

it with biometric fingerprint authentication. If a biometric authentication factor is

compromised, it is necessary to either change the factors used or change what the

authentication algorithm looks for in the existing factors. In addition, with some

biometric factors such as a fingerprint scan, it may be possible for an attacker who has

stolen a phone to unlock it if the user is asleep or to physically force the user to unlock

the phone. As with other forms of authentication, you need to plan in advance for how to

recover from likely compromise scenarios.

Beyond security considerations, be sure to consider usability and ongoing

maintenance requirements. Testing multi-factor authentication mechanisms and

the use of step-up authentication with users who are representative of the target user

population is valuable to identify any usability issues before widespread rollout. Be sure

to test failure (unsuccessful) cases as well as successful cases. For every failure case,

consider what a user would need to do to recover from the situation and make sure it is

reasonable. Evaluate authentication devices for their durability as well as likely battery

life if applicable to avoid unexpected costs for replacing broken/dead hardware devices.

Depending on the type of authenticator chosen, you may have to budget for replacing

lost and damaged devices. When replacement is necessary, you’ll also need a process for

quickly but securely replacing lost or damaged devices to restore a user’s ability to log in.

Be sure to plan for secure distribution, replacement, and revocation of authentication

mechanisms as part of any deployment.

Chapter 12 Stronger Authentication

217

�Summary
Some forms of authentication are considered stronger than others. Passwords are a

weak form of authentication, whereas the use of one-time passwords generated on

a device or multi-factor cryptographic authentication devices are stronger forms of

authentication. Multi-factor authentication requires the use of multiple authentication

factors, typically something you have as well as something you know. Step-up

authentication is the act of authenticating with a stronger form of authentication which

elevates a previously existing authentication session to a higher level of authentication

assurance. Authorization policy may require a session to be at a specific level in order

to access sensitive resources. Both OIDC and SAML 2 allow applications to request that

an identity provider authenticate a user with a particular authentication context class of

authentication mechanisms and to receive information about the authentication context

class and/or authentication method(s) used to authenticate a user. You should also plan

to terminate higher-level sessions in a timely manner via shorter session timeouts or

logout, and, conveniently, logout is the topic of the next chapter.

�Key Points
•	 Static passwords are considered a weak form of authentication.

•	 The compromise of a static password may not be noticed until

damage is done.

•	 It is harder for remote hackers to impersonate a user when

authentication requires physical devices in the user’s possession.

•	 Multi-factor authentication relies on multiple factors, such as

something you know, something you have, and/or something

you are.

•	 Step-up authentication involves authenticating with a stronger form

of authentication to elevate the authentication assurance level of a

session.

Chapter 12 Stronger Authentication

218

•	 Both SAML 2 and OIDC allow an application to request an identity

provider use a specified authentication context class when

authenticating users.

•	 To support the principle of least privilege, it may be desirable to have

shorter session timeouts for elevated sessions required to access

sensitive resources.

•	 Multi-factor authentication provides greater authentication

assurance, but involves considerations of usability, maintenance,

cost, and how to securely recover when a user’s multi-factor

authentication device is lost, broken, or stolen.

�Notes

	 i.	 https://fidoalliance.org/specifications/

	 ii.	 https://support.apple.com/en-us/HT208108

	 iii.	 https://support.apple.com/en-us/HT204587

	 iv.	 https://source.android.com/security/biometric

	 v.	 https://pages.nist.gov/800-63-3/sp800-63b.html

	 vi.	 https://pages.nist.gov/800-63-3/sp800-63-3.html#sec6

	 vii.	 https://pages.nist.gov/800-63-3/sp800-63b.html

	viii.	 https://docs.oasis-open.org/security/saml/v2.0/saml-

authn-context-2.0-os.pdf

	 ix.	 https://openid.net/specs/openid-connect-eap-acr-

values-1_0.html

	 x.	 https://datatracker.ietf.org/doc/html/rfc8176

Chapter 12 Stronger Authentication

https://fidoalliance.org/specifications/
https://support.apple.com/en-us/HT208108
https://support.apple.com/en-us/HT204587
https://source.android.com/security/biometric
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63-3.html#sec6
https://pages.nist.gov/800-63-3/sp800-63b.html
https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
https://openid.net/specs/openid-connect-eap-acr-values-1_0.html
https://openid.net/specs/openid-connect-eap-acr-values-1_0.html
https://datatracker.ietf.org/doc/html/rfc8176

219

CHAPTER 13

Logout
Great is the art of beginning, but greater is the art of ending.

—Henry Wadsworth Longfellow, American poet and educator, from
“Elegiac Verse” (1881)

Logout is probably not something that you think about very often, if ever. It might not

even be on any of your project’s planned sprints, but it should be. Implementing logout

can be more complex to design and test in some cases than login.

For many applications, it’s important for users to have a way to terminate their

session. This is especially true for shared device environments that are used to access

sensitive applications, like ATMs, kiosks employed on a manufacturing shop floor,

or a medical facility where many doctors and nurses access the terminals in patient

examination rooms or hospital stations. Terminating a session if it is no longer needed

eliminates the chance that the session can be hijacked by others. This complements

other measures in a comprehensive security strategy and is beneficial for situations

where devices might be stolen or confiscated. In this chapter, we’ll cover why logout

can be complicated, what to include when designing logout, and some implementation

options.

�Multiple Sessions
Logout can be complex to implement in environments with single sign-on, because

there may be multiple sessions to worry about. Figure 13-1 shows three different

scenarios with the resultant authentication sessions for the user in each one. At a

minimum, a user has an application session (Model 1). If an application delegates

authentication to an identity provider (IdP), the identity provider may have an active

session for the user (Model 2). If an application uses an authentication broker, to

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_13

https://doi.org/10.1007/978-1-4842-8261-8_13

220

facilitate handling many different identity providers and protocols, the authentication

broker may also have an active session for the user (Model 3). This means that a user

could have sessions in up to three different tiers of a solution architecture like Model

3 after logging in. It is possible for an identity provider to delegate authentication

to another identity provider, so there could be even more tiers involved, but that is

not common.

Authenticated user session

Model 1:

Model 2:

Model 3:

Application

Identity ProviderApplication

Application Authentication Broker Identity Provider

Figure 13-1.  Multiple User Sessions

Logout is further complicated because with single sign-on (SSO), there might be

even more sessions to consider. If a user can access multiple applications via SSO,

there could be an additional session in each of those applications. This possibility is

illustrated in Figure 13-2 which shows a scenario where applications A and B delegate

authentication to an authentication broker, which in turn delegates user authentication

to an identity provider. Application C delegates authentication directly to the identity

provider. If a user accesses applications A, B, and C in short order, the user would have

five active sessions.

Chapter 13 Logout

221

Figure 13-2.  Sessions in Relying Parties

�Logout Triggers
The termination of any of a user’s sessions can be triggered by several different events.

The most obvious is when a user clicks a logout button in an application. A user may also

be able to trigger a logout of their session directly at an identity provider if it provides

such a feature. In addition to user-initiated logout, an administrator might terminate a

user’s session in either an application or identity provider. Another possibility is that a

user’s session times out if the user has been idle or logged in for too long. Then again, an

application or identity provider may receive a logout request from another component

in the environment. When any of these events occur, one or more of the user’s sessions

will be terminated. The question is: Which ones should be terminated and under which

circumstances?

Chapter 13 Logout

222

�Logout Options
When there are multiple sessions for a user, it is necessary to decide what should

happen when any of the user’s sessions are terminated. Using the models depicted in

Figure 13-1, if a user’s session in an application is terminated, it may be appropriate to

terminate one or more of the following, depending on where sessions exist:

•	 Application session

•	 Authentication broker session (if a broker is used)

•	 Identity provider session

In addition, if a user’s SSO session is terminated at an identity provider or

authentication broker, it may be appropriate to terminate one or more of the

•	 User sessions for the user at any “upstream” relying parties

(applications or other providers)

•	 User sessions for the user at any “downstream” identity providers

For example, in Figure 13-2, when the user logs out of application A, the application

could send a logout request to the authentication broker. The authentication broker

may have other applications (relying parties) relying on its session for the user, such as

application B in the diagram. When it receives the logout request, the authentication

broker could send a logout request to application B to terminate the user’s session

there. In addition, the authentication broker could send a logout request to the identity

provider. The identity provider would see that application C relied on its session for the

user and could send a logout request to application C.

The same possibilities should be evaluated if a user’s session is terminated at an

identity provider or authentication broker for any reason. Again using Figure 13-2, if

the user’s session is terminated at the identity provider, it could send a logout request

to application C and the authentication broker because they are both relying parties to

the identity provider. Similarly, if the user’s session is terminated at the authentication

broker, it could send a logout request to the identity provider and/or to one or both of the

relying party applications A and B.

In designing logout, it is necessary to consider where sessions exist and which

should be terminated when a user initiates a logout or if their session is terminated for

other reasons. One factor in the decision is the entity owning the sessions. In enterprise

environments, corporate security policy may dictate that a logout in an application must

Chapter 13 Logout

223

trigger the termination of an identity provider session and possibly all the user’s open

sessions in other applications. In a consumer-facing environment where a user logs in

with a social provider, however, it may be less justified or impossible for an application

logout to terminate the user’s session at the social identity provider. Obviously, an

identity provider or authentication broker’s supported features for logout are another

factor that will influence logout design.

User experience is an important factor as well. Care should be taken to avoid

surprises for users. Terminating all application and SSO sessions for a user with one

logout provides a convenient way to terminate all access at once. This may be desirable

in an enterprise environment because if users have to log out of each application

individually, they may forget one. However, if the impact of such a logout is not clear to

a user, this may “pull the rug out” from under the user’s other application sessions that

rely on the same SSO session. An example will help illustrate this.

Using the scenario in Figure 13-2, if a user is working simultaneously in the three

applications, A, B, and C, and a logout from application A triggers the termination

of their sessions everywhere, that may prevent the user from completing in-flight

transactions in application B or C, depending on how those applications handle session

termination. The abrupt termination of sessions in other applications may cause a user

to lose their work there. Whether the user can continue working in the other applications

depends on how logout and session termination is implemented.

One possibility is to have the logout in application A trigger an immediate logout of

the user in applications B and C. This would require that the termination of the user’s

session at application A triggers a logout request to the authentication broker, which is

configured to send, upon its session termination, a logout request to application B.

The authentication broker could also send a logout request to the identity provider,

which in turn could send a logout request to application C. These logout messages

would effectively terminate all the user’s sessions across the three applications, the

authentication broker, and the identity provider.

Alternatively, when application A sends a logout request to the authentication

broker, the broker could simply terminate its own session for the user. In this case, the

user can continue working in application B until the user’s session in application B

times out. Upon such timeout, application B would check if the user’s session is valid

at the authentication broker. If the user’s session in the authentication broker had been

terminated, the user would need to log in again to continue to access application B.

Chapter 13 Logout

224

The decision regarding which sessions to terminate is specific to each environment

and should take into account the entity that owns a session, the user experience, and

the sensitivity of the application as well as security benefits of not leaving sessions

open when not needed. The design of logout will also need to consider the capabilities

of individual applications, brokers, and identity providers as their support for logout

features may vary. Once logout is implemented, it should be thoroughly tested to make

sure it works as designed. The best advice we can give is to allow plenty of time in your

project for both designing and testing logout and to start early, as it often takes more

time than expected. As shown in Figure 13-1, other entities besides applications, such as

authentication brokers, may be relying parties to identity providers. In the subsequent

sections, we’ll therefore use the broader term “relying party” in places instead of

“application” to recognize all types of entities which may be impacted by logout.

�Application Logout
The simplest case to implement is local application logout, which terminates a user’s

session in one individual application. For application logout, when any of the logout

triggers described in an earlier section occur, the application needs to delete any

application session information, tokens, and browser cookies set by the application. If

using OAuth 2 access tokens from an authorization server that supports access token

revocation, they should be revoked via the authorization server’s revocation endpoint.

Refresh tokens, if used, should be revoked as well. Local application logout by itself

does not impact any other authenticated sessions the user might have established at an

identity provider or authentication broker, but an application can choose to send logout

request messages to such other components when local application logout is triggered.

�OAuth 2
OAuth 2 does not contain a logout endpoint because it is designed for authorizing an API

call, not authenticating users. Nevertheless, upon the termination of a user’s session, an

application should clean up security tokens related to the user if possible. An application

may have obtained access tokens for APIs and possibly refresh tokens as well. The OAuth

2 specification indicates that authorization servers SHOULD provide a mechanism to

Chapter 13 Logout

225

revoke access tokens, and the “OAuth 2.0 Token Revocation”i specification defines a

standard for this. Providing an access token revocation mechanism is not mandatory,

however, so some authorization server implementations may not support it.

If an authorization server supports access token revocation, an application should

use its revocation endpoint to revoke access tokens authorized by a user for that

application when the user logs out or their session is terminated for other reasons. If an

access token cannot be revoked, an application that has refresh token(s) for renewing

expired access tokens should revoke the refresh tokens. (Authorization servers must

support refresh token revocation.) Without a refresh token, when a previously issued

access token expires, the application will not be able to obtain a new access token.

Applications that cannot revoke access tokens must rely on the access token

expiration to terminate the application’s ability to call an API. This underscores a benefit

of access tokens with short expirations.

�OIDC
The original OIDC specification does not define an explicit logout mechanism for an

application to request termination of a user’s session at an OpenID Provider or a way

for an OpenID Provider to notify a relying party when the OpenID Provider’s session

has terminated. At the time of writing, however, there are several recently finalized

specifications related to OIDC logout which bear consideration. You should keep in

mind that it may take time for providers to implement support for newly approved

specifications. Consult your OIDC Provider’s documentation and plans regarding any

recent specifications and logout capability.

The OpenID Connect RP-Initiated Logoutii specification describes a logout flow

whereby a relying party can request an OIDC Provider to log a user out. The relying

party does this by redirecting the user’s browser to a logout endpoint at the OIDC

Provider. The OIDC Provider then asks the user to confirm they wish to log out and, if

so, terminates its session for the user. The relying party can optionally specify a URL to

which the user is redirected after logout at the OIDC Provider.

The OpenID Connect Session Managementiii specification offers a solution for a

relying party application to detect when an OpenID Provider session has terminated.

It is designed to use a hidden iframe loaded from an OpenID Provider and which has

access to browser state from the OpenID Provider. This iframe is polled from another

hidden iframe loaded from the relying party application and will receive back a status

Chapter 13 Logout

226

of “changed” if the user’s session at the OpenID Provider has changed. If this occurs,

the relying party application can redirect the user to the OpenID Provider with a

new authentication request using prompt=none, and if this request receives an error

response, it indicates the user session at the OpenID Provider is no longer valid. The

application can terminate its session for the user, if appropriate, or perhaps ask the user

if they’d like to renew their session. If so, the application can redirect them back to the

OpenID Provider to authenticate and renew the session. At the time of writing, however,

recent browser features for tracking prevention may prevent this scheme from reliably

working as designed. It is not yet clear if a fix or workaround will be developed.

The OpenID Connect Front-Channel Logout facilityiv provides a solution for an

OpenID Provider to send logout requests to relying party applications when the OpenID

Provider session for a user has been terminated. Front-Channel Logout relies on an

OpenID Provider rendering an iframe that contains the relying party’s logout URL. The

logout URL must have been previously registered with the OpenID Provider. This

mechanism can enable a global logout capability but suffers from some disadvantages.

At the time of writing, this specification is also impacted by recent browser features for

tracking prevention. This can prevent a relying party application from being able to

process the logout. In addition, if a user has navigated away from an application in their

browser, a Front-Channel Logout request to the application may fail, with the user’s

session in the application only logged out if the user returns to it using the browser’s

back button.

The OpenID Connect Back-Channel Logoutv specification provides a solution

for an OpenID Provider to send logout requests to a relying party via back-channel

communication directly between servers rather than via front-channel browser actions.

This may provide a more reliable logout option than Front-Channel Logout when there

are many relying parties. For this solution, relying parties register a back-channel logout

URI with an OpenID Provider. The OpenID Provider remembers all relying parties

to which a user has logged in via their OpenID Provider session. When the OpenID

Provider session for the user is terminated, the OpenID Provider sends a logout request,

formatted as a JWT and called a Logout Token, to each of the relying parties the user

visited during the session.

The Logout Token is sent via back-channel communication (server to server) using

an HTTP-POST to the relying party’s back-channel logout URI previously registered with

the OpenID Provider. Upon receiving and validating a Logout Token, a relying party

removes its session for the user and returns a status response to the OpenID Provider.

This solution requires direct connectivity between the OpenID Provider and a relying

Chapter 13 Logout

227

party’s back-channel logout URI. This may be problematic for applications residing in

on-premise enterprise environments behind firewalls unless the OpenID Provider is also

in the same internal environment behind the firewalls.

It is also possible for a relying party application to detect the termination of a

user’s session at an OpenID Provider by periodically polling the OpenID Provider by

redirecting a user’s browser to the OpenID Provider with the prompt parameter in

the authentication request set to “none.” If the user does not have a valid session at

the OpenID Provider, an error status response will be returned, and the application

can terminate the user’s session in the application or redirect the user again to

reauthenticate and renew their session. This approach results in network traffic from

the polling and has the drawback that the redirect may interrupt the user experience. As

noted previously, doing the redirect in a hidden iframe to mitigate user experience issues

has been negatively impacted by recent browser features for tracking prevention and

may not be a viable solution for some scenarios. Repeatedly polling an OpenID Provider

may also run the risk of hitting rate limits.

A common concern is the ability to quickly terminate a user’s access to an

application. This may be needed in corporate situations if an employee has been

terminated against their will. If the OpenID Provider for an environment supports

a capability to notify relying parties when a user’s OpenID Provider session has

terminated, this can be used. In the absence of such single logout capabilities, an

application can poll an OpenID Provider periodically as previously described. If the

user’s account in the OpenID Provider has been disabled, the application will not receive

the successful response needed to renew the session. This should effectively terminate

the user’s ability to use the application, at least with a tolerance period equal to the

application’s polling frequency.

�SAML 2
With SAML 2, a service provider application can terminate a user’s session at an identity

provider by issuing a logout request message to the identity provider. Upon receipt of the

logout request message, the identity provider terminates the session it holds for the user,

identified by a subject identifier in the request and possibly a session identifier for the

session. The identity provider may also update or remove its session cookie in the user’s

browser. The identity provider then responds to the application with a logout response

message.

Chapter 13 Logout

228

SAML 2 also provides a way for the identity provider to notify other relying parties if

a user’s session is terminated at the identity provider. Upon termination of the identity

provider session or receipt of a logout request message from a service provider, the

identity provider can send a logout request message to each of the other relying parties

with an active session for the user. The relying parties are supposed to terminate their

session and respond with a logout response message to the identity provider. If the

global logout was initiated by one service provider, the identity provider returns a logout

response message to the relying party that initiated the logout. This interaction is shown

in Figure 13-3.

Figure 13-3.  SAML 2.0 Single Logout

	 1.	 The user initiates the logout at Application 1 (a relying party).

	 2.	 Application 1 redirects the user’s browser to the Identity Provider

with a SAML Logout Request message.

	 3.	 The Identity Provider sends a SAML Logout Request message to

other relying parties, such as Application 2.

	 4.	 Application 2 sends a SAML Logout Response message after

processing the logout.

Chapter 13 Logout

229

	 5.	 The Identity Provider sends a SAML Logout Response message

back to the relying party that sent the original Logout Request.

	 6.	 Application 1 acknowledges the logout.

Steps 3 and 4 in the preceding sequence are commonly sent via the user’s browser,

using front-channel interaction. Many SAML 2 identity providers reside behind

corporate firewalls, and using a front-channel implementation avoids issues with

firewalls. In a complicated logout scenario, however, with several relying parties, the

sequence may fail before it completes, leaving some sessions intact. The SAML 2

specification includes a back-channel logout mechanism which may be more reliable if

logout messages need to be sent to multiple parties. However, back-channel logout may

not be implemented in all SAML 2 implementations, and back-channel logout messages

require direct connectivity between the identity provider and the relying parties, which

may be challenging for components behind corporate firewalls.

�Session Termination
There may be a need at times to quickly terminate a user’s SSO session as well as

application sessions. In corporate settings, this is often a requirement for situations

where an employee is terminated against their will. In the absence of single logout, a

user’s account can be disabled at an identity provider, but they may be able to remain

active in applications with open sessions until the applications next communicate

with the identity provider. In the case of OIDC or OAuth 2, this may be when the

application session and/or access token expires. In the case of SAML 2, it will be

when the application session expires. When this occurs, the application sends a new

authentication request to the identity provider, which will fail if the user’s account is

disabled. If user termination risk is a concern, application session duration and access

token expiration should be set considering the sensitivity of applications involved and

the availability of means to quickly terminate a user’s sessions.

�Logout and Multilevel Authentication
If step-up or multi-factor authentication is implemented such that it is possible for a

user’s session to be at different authentication assurance levels, based on the strength of

authentication mechanisms used, it should be clear what happens when a user logs out.

Chapter 13 Logout

230

A common solution is for logout to completely terminate the user’s session, regardless of

the authentication level it was at. Whatever logout behavior is chosen, it is important that

its behavior and effect be clear to users.

�Redirect After Logout
A final aspect of designing logout is deciding where to send the user after logout. If

you send the user to an application home page which redirects the user to an identity

provider where the user still has a valid session, the user will be returned right back into

the application with a new session created for them. This effectively breaks the logout

process and can waste your helpdesk’s time with complaints that logout doesn’t work.

For a better user experience, you can redirect to a logout confirmation page or a home

page that doesn’t automatically redirect a user to an identity provider. In addition to

carefully selecting where to send a user after logout, you should ensure that redirection

is only done to a list of allow-listed URLs to avoid vulnerabilities stemming from open

redirects.vi Planning appropriate redirect URLs for logout and including them in an

allow-list will provide a good user experience and avoid open redirect vulnerabilities.

�Summary
Implementing logout can be more complex to design and test than login. There may be

multiple authentication sessions for a user, and you need to decide which to terminate

when any user session is terminated or times out. In addition to the logout behavior,

designs should specify where to send a user after logout has occurred.

We’ve now covered all the events that happen as a user logs in and out of systems.

At some point in the life of an identity, changes may occur which require identity profile

attributes to be updated. Account management enables that and is the topic of the next

chapter.

�Key Points
•	 Logout often takes more time to design and test than login.

•	 Solution designs should specify which authentication sessions

should be terminated when a user logs out.

Chapter 13 Logout

231

•	 The effect of a logout action should be made clear to users so they

know which sessions have been terminated and which have not.

•	 Designs should specify where to redirect the user after logout.

•	 Single logout can be used to send a logout message to relying party

sessions associated with a user’s identity provider session.

•	 There are several recently finalized specifications related to logout

with OIDC.

•	 SAML 2 relying parties can send a logout request to terminate a user’s

session at an identity provider.

•	 SAML 2 supports single logout.

•	 The effect and scope of any logout should be clear to users.

�Notes

	 i.	 https://tools.ietf.org/html/rfc7009

	 ii.	 https://openid.net/specs/openid-connect-

rpinitiated-1_0.html

	 iii.	 https://openid.net/specs/openid-connect-session-1_0.html

	 iv.	 https://openid.net/specs/openid-connect-

frontchannel-1_0.html

	 v.	 https://openid.net/specs/openid-connect-

backchannel-1_0.html

	 vi.	 https://cwe.mitre.org/data/definitions/601.html

Chapter 13 Logout

https://tools.ietf.org/html/rfc7009
https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html
https://cwe.mitre.org/data/definitions/601.html

233

CHAPTER 14

Account Management
And yet in our world, everybody thinks of changing humanity and nobody
thinks of changing himself.

—Leo Tolstoy, from “Three Methods of Reform”

It may be true, as suggested by Tolstoy, that people are unwilling to make deep internal

changes, but when it comes to identity information, it is quite common for there to be

changes. In this chapter, we’ll cover the need to support changes to an identity and its

attributes over time.

�Identity Attributes
You will need to consider many scenarios related to altered identity attributes.

�User Profile Attributes
A user’s identity information may change over time for multiple reasons. Some updates

will come from users themselves, and others may come from administrators. You should

assume that users may need to change almost any attribute in their profile such as

their email address, street address, phone number, and even their name. Many privacy

regulations, including Article 15 of the GDPR (EU General Data Protection Regulation),

mandate that users must be able to access and correct data about themselves held by a

data controller.i If you are a data processor, you may need to help provide this capability

to the data controllers who use your service.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_14

https://doi.org/10.1007/978-1-4842-8261-8_14

234

�Update Process
The need to support identity profile changes depends on where the information is

managed. If your application delegates authentication to social providers, the user may

need to update some profile attributes at the social provider. Similarly, if your application

delegates authentication to an enterprise provider, the user may need to update identity

information there. In addition to updates made by users themselves, administrators or

automated administrative processes may make updates to user identities. These updates

often impact attributes that are controlled by the owner of the identity provider instead

of the user and may involve attributes used for access control decisions in applications

such as a job level, department, and roles or group memberships.

If user profile data in your application comes from multiple sources, you must make

clear how and where to update each attribute. Your application may pull some user

attributes from an identity provider and augment that data with additional data that is

collected and managed by the application. In this case, users need to know where to

update different attributes. Any administrative or support processes for your application

will also need to know how and where to update each attribute.

�Cached Identity Attributes
When user profile data from an identity provider is cached by an application, the

necessary frequency for updating the cache must be considered. When a user

authenticates, the application may receive user profile attributes in a token or assertion

from the authenticating identity provider. The application will have the information

during a user’s login session and may store the information in its own repository for

use when the user is offline. A cache, however, will become stale if the user attribute

information changes at the identity provider.

Each time a user logs in to an application via an identity provider, the application

should receive user profile information from the provider that is current at the

time of the authentication. If an application allows lengthy user sessions without

reauthentication, it is possible that a user’s profile attributes at the identity provider

may have changed during their application session. In an enterprise scenario, if a user’s

privileges, such as roles or group memberships are changed at the identity provider, it

may be problematic if an application has an ID Token or SAML assertion with out-of-

date profile information. The same issue holds for self-contained access tokens that

contain claims with stale user profile attributes.

Chapter 14 Account Management

235

To mitigate the risk of outdated information, applications can request updated

profile information periodically or before executing sensitive transactions which

require up-to-date profile attributes. This has been done by issuing a redirect to the

identity provider with a parameter that suppresses active interaction with the user for

authentication. At the time of writing, however, browser changes to prevent tracking

may impact the feasibility of this approach, especially for single-page applications.

Future browser changes may mitigate some of the issues created by tracking prevention,

but in the meantime, an alternate approach is to use a refresh token to request new

tokens. Refresh token rotation should be used to mitigate the risk of compromised

refresh tokens.

Applications which obtain user profile information from identity providers and

store a copy in their own database have an additional challenge. If users do not log in

frequently, the user profile information in the application database may get stale. This

can be an issue for reports that include user profile data if the reports are run by other

users, such as administrators. If up-to-date information is needed in between user

logins, it may be possible for an application to query an API at the identity provider for

updated information. Alternatively, if an identity provider supports a capability whereby

a log entry about an altered identity profile triggers a webhook, a webhook could be

written to push identity profile changes to another system. The feasibility of such an

approach may be impacted by firewalls and accessibility between the systems involved.

Otherwise, periodic synchronization may be needed. Historically, such synchronization

has been done with proprietary solutions, but the System for Cross-domain Identity

Management (SCIM) protocolii was created to standardize the synchronization of

identity updates across domains, typically between corporate identity providers and

relying parties. Adoption of SCIM is not widespread at the time of writing and may

not be supported for scenarios where individual users own their accounts at social

providers, but for enterprise scenarios, SCIM may be worth considering over proprietary

one-off solutions, especially if an entity anticipates having many partners with which to

synchronize.

�Updated Identifiers
A special case to accommodate is the situation where a user needs to update the

attribute which serves as an identifier for their account at a remote identity provider. If

a remote identity provider identifier for a user is changed, the next time the user logs in,

Chapter 14 Account Management

236

the application will receive the new identifier. If the application account or data is tied to

the old identifier, and the user logs in with a new identifier, the user may not be able to

access the application account or data associated with the old identifier. The issue can be

avoided if the identity provider delivers to applications an internal identifier that never

changes, in addition to other user profile attributes. Alternatively, if explicit account

linking is used, as described in Chapter 18, a user may be able to unlink the old identity

before the change and relink to the new identity after the change, but this requires

forethought on the part of a user which may not be realistic.

�Credential Reset
Users may also need to update their credentials from time to time. An application that

delegates authentication to an identity provider does not have to store credentials or

implement credential reset functionality because the credentials are at the identity

provider. An application can simply provide a link or instructions that point to the

credential reset function at the appropriate provider. If you use an identity provider

service, you should be sure to select one that supports self-service credential update and

account recovery.

�Account Recovery
A user may forget or lose the credential to an account. In the case of a password, the user

may forget it. In the case of authenticators such as a phone or hardware security token,

they may be lost, stolen, damaged, or broken. If this occurs, a user has to prove they are

the owners of an account, via some mechanism other than the original credential, before

being allowed to set a new credential.

In many cases, an application relying on an identity provider may be able to leverage

account recovery mechanisms provided by the identity provider. It then becomes

important to select provider(s) with reasonably secure self-service account recovery

mechanisms. Solutions that prompt a user for answers to previously established security

questions are problematic as the answers can often be looked up or guessed. They also

depend on the user remembering the answers, which is not always the case. Schemes

that require users to download recovery codes rely on users saving the codes in a secure

place, which may not be dependable either.

Chapter 14 Account Management

237

A solution that sends a password reset link to an email address previously registered

with the account avoids the drawbacks of the previous schemes. This depends, however,

on the owner of the account being able to access the email for the email address

associated with the account. Sending a one-time code via SMS to a previously registered

cellphone number in the user’s profile relies on the number being current and the

security of SMS messages. At the time of writing, vulnerabilities persist in Signaling

System 7, which connects different phone networks, that have enabled some researchers

and hackers to intercept SMS messages. There have also been SIM-swapping attacksiii

and other demonstrated vulnerabilitiesiv that allowed phone numbers to be rerouted

to phones controlled by attackers. These attacks have not been widespread at the time

of writing, but raise some questions about the future security of using SMS messaging.

Project owners should evaluate the current state of such issues before deciding to use

SMS messages in future projects. Enabling users to set up a primary and one or more

backup authentication mechanisms may provide the best defense against any one

authentication mechanism becoming broken or compromised.

�Password Guidance
If passwords are used, you may wish to provide guidance to your users on what

constitutes a good password and, where you have a choice, select identity providers

that enforce stronger password policy. Interesting new research by NIST has examined

the effectiveness of previous password guidelines.v Security advice in the past has

recommended a mixture of lowercase and uppercase characters, numbers, and special

characters, the longer the better. Users were also advised to change their password

on a regular interval. This advice was designed to make a password hard to guess by

humans or discover by a brute force password guessing approach and mitigate risk from

compromised passwords. This research by NIST suggests that some elements of the past

guidance may not have been as effective as expected.

Their new guidance suggests that the size of a password matters more than the

password complexity as user-selected password complexity is somewhat predictable,

and rate limiting on failed password attempts may be a more effective approach. Users

are recommended to select a long passphrase that consists of several words but is

not a common or guessable phrase. Users are recommended to change a password

if there is evidence it has been compromised, but rate limits on failed passwords and

checking for breached passwords may be more effective than periodic forced password

Chapter 14 Account Management

238

resets. Authentication services should implement rate limiting on failed login attempts

and check username/password combinations against databases of known breached

passwords to protect against brute force attacks and compromised passwords. You’ll

want to use identity providers that offer such features.

�Helpdesk Reset
A manual, helpdesk-assisted credential reset process is expensive to provide and can

expose sensitive information. If done remotely, such as over the phone, it requires

the helpdesk staff to have knowledge of secret information with which to validate an

account owner. Examples of secrets that have been used in the past are a portion of a

government-issued identity number, information on recent transactions, or answers to

secret questions. This process has the advantage of providing human assistance, but may

expose sensitive information to risk of compromise. If the sensitive information used to

validate an account owner is used at other sites, a compromise of the information at one

site may allow a malicious actor to take over a person’s accounts elsewhere.

If assisted credential reset is handled in person, account owner validation can

leverage government-issued identification documents, avoiding exposure of other

sensitive identity attributes. This approach requires staff that is properly trained to check

the authenticity of such documents and involves the cost of maintaining such staff. This

also assumes that users can appear in person where such staff is located, and that users

have government-issued identification documents, which may not be true in some

scenarios. Given the drawbacks with assisted credential reset, for both cost savings and

security, self-service credential reset capability should be preferred for most scenarios.

�Notification
Whether a user is updating user profile attributes, resetting a password, or performing

other account management transactions, it is useful to send notification of the

changes to the previously registered email, phone number, or address for the account.

Notifications can help users recognize if they’ve made an error, such as accidentally

making a change they did not intend. Notifications can also provide an early warning

system if an account has been taken over by an unauthorized entity. The notification

message should be sent using the prior contact information when contact information

Chapter 14 Account Management

239

has been changed and include instructions on what to do if the user did not intend

or initiate the changes. To the extent that users pay attention to notifications, such

messages can be a useful tool to recognize and combat fraud.

�Summary
Identity information may need to be updated over time. Privacy regulations often

require that users have the ability to view and correct personal information held about

them. Account updates can be handled by identity providers for information managed

by them. If identity information is maintained in both an identity provider and an

application, account update mechanisms must help users make updates in the right

place. Changes to the primary identifier for a user at an identity provider may impact

a user’s ability to access application accounts tied to the old identifier. Credentials

need to be reset if compromised, forgotten, or rendered inoperable, but a user must

be validated before being allowed to reset credentials. An application may delegate

credential reset and account recovery features to an identity provider, but the integrity

of the mechanisms used by the identity provider should be validated. Last but not least,

confirmation notifications should be sent to users regarding all changes to mitigate the

damage from mistakes or fraud. This brings us in the next chapter to the final event in

the life of an identity, which is deprovisioning.

�Key Points
•	 User identity attributes may need to change over time.

•	 Privacy regulations may mandate a process for users to update

identity information.

•	 Account management may be delegated to identity providers when

the attributes to be changed reside at the identity provider.

•	 If a user changes their identifier at an identity provider, it may impact

their ability to access application accounts tied to an old identifier

unless a solution is provided for this scenario.

Chapter 14 Account Management

240

•	 Credential reset and account recovery may be delegated to identity

providers for many common scenarios, but exceptional cases such as

account takeover may need to involve application owners as well.

•	 Notification messages to confirm account changes should be sent to

users, with instructions on what to do if they did not intend or initiate

the changes.

�Notes

	 i.	 https://gdpr.eu/article-15-right-of-access/

	 ii.	 https://tools.ietf.org/html/rfc7644

	 iii.	 www.vice.com/en/article/d3n3am/att-and-verizon-

employees-charged-sim-swapping-criminal-ring

	 iv.	 www.vice.com/en/article/y3g8wb/hacker-got-my-texts-16-

dollars-sakari-netnumber

	 v.	 https://pages.nist.gov/800-63-3/sp800-63b.html#appA

Chapter 14 Account Management

https://gdpr.eu/article-15-right-of-access/
https://tools.ietf.org/html/rfc7644
http://www.vice.com/en/article/d3n3am/att-and-verizon-employees-charged-sim-swapping-criminal-ring
http://www.vice.com/en/article/d3n3am/att-and-verizon-employees-charged-sim-swapping-criminal-ring
http://www.vice.com/en/article/y3g8wb/hacker-got-my-texts-16-dollars-sakari-netnumber
http://www.vice.com/en/article/y3g8wb/hacker-got-my-texts-16-dollars-sakari-netnumber
https://pages.nist.gov/800-63-3/sp800-63b.html#appA

241

CHAPTER 15

Deprovisioning
The boundaries which divide Life from Death are at best shadowy and
vague. Who shall say where the one ends, and where the other begins?

—Edgar Allan Poe, American author, from The Premature Burial (1844)

The final event in the life of an identity is deprovisioning, when an account and

associated identity attributes are deleted or disabled so they can no longer be used.

When an account is terminated, there are several design points to consider related to

how to delete or disable accounts, what identity information to keep, and for how long.

�Account Termination
An account may be terminated for several reasons. An account may be deleted by the

account owner if they no longer need to use a service. An account may also be deleted

by an administrator of a service if the account appears to have been abandoned or if

a customer has abused a service in violation of terms of service. With a paid service,

termination may result if a user fails to pay for the service. In a university setting, a

student’s account may be terminated when the student graduates. In a corporate setting,

an account may be terminated if an employee leaves the company’s employ. Regardless

of the reason, upon termination, it is necessary to render the account so it can no longer

be used to access resources. As we will see in the following sections, simply deleting an

account may not be an appropriate solution for this.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_15

https://doi.org/10.1007/978-1-4842-8261-8_15

242

�Best Practices
Processes for the deprovisioning of accounts and identity information should be

designed with several best practices in mind. These range from ensuring it gets done

in a timely fashion to protecting against accidental account deletion and from enabling

customers to transfer data elsewhere to satisfying privacy rights and requests for secure

deletion. The exact requirements will vary by environment. This section will describe

many common requirements associated with deprovisioning to help you identify which

might be necessary for your projects.

�Just Do It
The best practice for deprovisioning is to make sure it gets done in a timely fashion. If an

account is no longer needed, it should be immediately disabled so it cannot be hijacked

by an unauthorized user. Unfortunately, deprovisioning is notoriously overlooked

in settings that lack mature identity management. To minimize the possibility of

abandoned or unused accounts, you should implement automation to trigger periodic

account review and to deprovision accounts that are unused or no longer appropriate.

In a company setting, an HR system may initiate a deprovisioning workflow when a

user is terminated. In a university environment, a student information system may

trigger account deprovisioning upon graduation, at least for access reserved for current

students. Automation can detect accounts that have not been used for a long time and

privileges that are not aligned with a user’s profile. Even the best automation fails at

some point, however, so a periodic manual audit of existing accounts is essential to find

accounts and privileges that are no longer appropriate so they can be deprovisioned.

In consumer-facing environments, it may be appropriate to consider deprovisioning

accounts which have had no activity for many years.

�Provide a Soft Delete Technique
Human beings make mistakes. If you provide a “delete account” button, it’s almost

guaranteed that someone will delete their account by mistake. To save yourself

the trouble of restoring customer data when that occurs, you can make it harder to

erroneously delete an account by implementing a soft delete. This can take the form of

a confirmation screen (“Caution: Are you sure you want to delete your account? This

cannot be undone!”) and marking an account as deleted while providing a grace period

Chapter 15 Deprovisioning

243

before the account is truly deleted. During the grace period, an “undelete account”

capability should be available. You can also send a confirmation email at the beginning

of the grace period explaining that the account is marked for removal and will be

permanently deleted at the end of the grace period. The email can include instructions

for how to reverse the account deletion if it was done in error. While not foolproof, these

ideas may prevent some accidental account removals and the work to restore mistakenly

deleted accounts.

If you implement a soft delete that delays the actual account deletion, privacy

compliance may require that you include in your site’s privacy notice and/or Terms

and Conditions an explanation that deleted accounts will not be deleted immediately

and why. As privacy laws vary by jurisdiction, you will need to consult the privacy laws

relevant for your application to determine what is required.

�Reserve Deprovisioned Identities
When deprovisioning accounts, it is best to preserve a list of deleted account identifiers

and prevent each identifier from being reused by a new owner in the future. If this is

not done, a new person could create an account with a previously used identifier and

might be able to request a restore of historical data associated with that identifier to get

data that belonged to the previous owner of the account. If a deleted account identifier

was used in a single sign-on scenario and was used to access multiple applications, the

owner of a new account with the same identifier might be able to access the previous

person’s data in those applications. This is especially important if an email address is

used as the sole identifier for an account. (See Chapter 4 for why this is problematic.)

By reserving previously used identifiers and checking all new identifiers for uniqueness

against both active and deprovisioned accounts, several issues can be avoided.

�Preserve Account Record
You never know when unauthorized activity might be detected. It could be weeks or

even months after the fact. Because a fraud investigation may arise at any time, even

after an account has been closed, you need to consider whether information about

deleted accounts should be kept for some period of time, including transactions, the

time they were submitted, the accounts that performed them, identity data linked to the

accounts, and any other information needed for forensic evidence. When an account is

deleted, it may be appropriate to preserve some account identity information along with

Chapter 15 Deprovisioning

244

the date, time, and reason why an account was disabled or terminated. If an account is

terminated due to abuse, keeping sufficient records may help identify if a user attempts

to open another account, at least with the same identity data.

One caveat is that privacy regulations require that data be kept only as long as

needed for legitimate business purposes, and users have the right to request that

personal data about them be erased. These rights may conflict with the need to have

backups and audit logs. In practice, approaches are being worked out to satisfy the

intent of privacy rights as well as operational system needs. Such approaches include

minimizing data that is retained, encrypting and restricting access to retained data, and

following defined data retention policies and procedures. Such policies and procedures

should be created with guidance from legal and privacy advisors to ensure alignment

with best current practices.

�Data Transfer
It may be helpful or even required to provide customers a means to download or transfer

data out of your service. Users may have this right, at least for personal information, as

part of privacy legislation. Providing such a feature for all of a customer’s data may make

customers who worry about vendor lock-in more likely to sign up because they know

if they are unhappy, they can take their data and go elsewhere. Corporate customers

will often request the ability to periodically obtain an extract of all their data to protect

themselves against a vendor failure.

For consumer users, the most scalable option is to provide a self-service means

to download customer-owned data. The feature to download data can be shown in

the “Delete account” process as an option before the account is deleted. You should

consider the data formats that will be most useful to customers. For sensitive data,

you should have a procedure to validate the requestor before providing a data dump.

Requiring step-up authentication or at least reauthentication to obtain the data is

one good precaution. This protects a user’s data if they have walked away from their

keyboard without locking their screen.

For corporate or business customers, there are a few more points to consider. It

may make sense to require the involvement of two people from the customer in the

request process to prevent a lone actor from downloading sensitive corporate data for

unauthorized purposes. Once suitable customer validation is obtained for the download

request, it should be provided in the most direct, self-service manner to minimize the

Chapter 15 Deprovisioning

245

service provider’s access to the customer’s data. For example, if a data dump were

done manually by the service provider, it might be downloaded to a person’s laptop or

transferred to the customer by a channel that introduces risk.

For corporate customer data that involves user identities and passwords, the

passwords should have been stored in a hashed format and may not be usable elsewhere

if different hashing functions are used. Chapter 4 discusses options for migrating user

identity data between systems. As with consumer users, thought should be given to

the data format for a transfer as well as the security of the transfer process. Even if a

customer is leaving, providing a good experience may keep a future opportunity open.

�Privacy Right to Erasure
When a user deletes their account, it may not be enough to simply delete data your

own service holds about a user. Article 17 of the General Data Protection Regulation

(GDPR) provides consumers the right to erasure, commonly referred to as the right

to be forgotten, which enables a user to request that an organization delete the data

it has about the user.i Under Article 19 of the GDPR, data controllers are obligated to

communicate an erasure request to any data processors to whom they’ve given personal

data.ii The California Consumer Privacy Act (CCPA),iii the Virginia Consumer Data

Protection Act (VCDPA),iv and the Colorado Privacy Act (CPA)v in the United States

contain similar requirements, and future legislation enacted by other US states will likely

follow suit. Users who wish to delete their account may wish to exercise their right to

erasure, which may require deleting data in an application’s user repository and possibly

other data processor services.

It should be noted that the right of erasure does not nullify other obligations a

business or organization may have that require keeping records, including those which

contain personal information. There are several exceptions to the right to erasure.

Article 17, paragraph 3, of the GDPR outlines several situations where the right of erasure

does not apply. These include the fulfillment of legal obligations on the part of a data

controller or processor, supporting rights for freedom of information and establishing,

exercising, or defending legal claims. The CCPA, VCDPA, and CPA also provide for

several exceptions. Financial institutions may have legal obligations to retain records

with personal information for a period of time after an account is closed. Healthcare

organizations often are required to retain healthcare-related records for a period after

the date of service. Even small businesses have legal obligations to retain employment

and tax records for a period of time.

Chapter 15 Deprovisioning

246

Privacy legislation may dictate allowed mechanisms for users to make erasure

requests and timeframes in which organizations must respond as well as whether

confirmation notices are required. Unfortunately for businesses, there are differences

between the privacy legislation enacted in different jurisdictions. Balancing privacy

rights and other legal obligations can be complex, so you should define a data retention

policy and procedures for handling erasure requests, in consultation with legal and

privacy experts.

�Certificate of Deletion
In addition to having procedures for disabling and terminating individual user

accounts for privacy reasons, corporate customers that terminate their use of a service

may request that their corporate account be deleted. This can include the user data

of administrative users associated with the account, application data related to the

service, and user data. Customers may request a certificate of deletion that states that

all their data has been deleted. If sensitive data is involved, including data about users,

customers may request a certificate of secure deletion. This demonstrates their due

diligence to ensure data they’ve given to vendors has been deleted when no longer

needed, which helps protect sensitive information.

�Secure Delete
It can be surprisingly complex to “completely delete” data. Simply issuing a delete

command in a database or to delete a file may not completely delete the data. In some

cases, such a delete simply removes pointers to the data, but does not alter the space on

the disk where it was stored, allowing specially written tools to recover the data.

Various techniques have been employed to effect secure deletion. One approach

is to encrypt data and throw away the encryption key. This effectively deletes the data

because it can no longer be decrypted. This approach assumes the time required to

decrypt the data using brute force mechanisms is significantly longer than the time

during which the data is likely to be valuable to data thieves. Since it is impossible to

predict how long this assumption will be true as well as the future value of data, this is

not a reliable option.

Chapter 15 Deprovisioning

247

Another method of deleting data from a disk or other magnetic storage media

involves degaussing a disk. Information is stored on disks by magnetizing the surface of

the disk with small pulses of electricity as the read/write head of the disk passes over it.

A disk can be erased with a special tool called a degausser which generates a powerful

magnetic field that scrambles and removes magnetic fields on a disk. This method

may be feasible when all information on a disk needs to be removed, as when the disk

will be completely decommissioned from use. A drawback is that degaussing, as with

physical destruction of a disk, may render the disk unusable and contribute to e-waste.

Degaussing to remove only one customer’s data is also not feasible in a cloud service

where many customers’ data resides on the same disk.

When a disk stores data of many customers, one customer’s data can effectively be

erased by overwriting the data with random 0s and 1s. The question is how many times

the data must be overwritten in order to ensure that residual magnetic traces do not

allow data recovery. The US Department of Defense (DoD) 5220.22-M protocol has been

cited for this. The 1995 version of this standard indicated data should be overwritten

three times. This is now considered obsolete however.vi For specific sanitization details,

it has been superseded by the National Institute of Standards and Technology’s (NIST)

“Special Publication 800-88: Guidelines for Media Sanitization” which indicates that for

most of today’s media, overwriting with a fixed pattern, such as all zeros, with at least one

pass is sufficient.vii This technique would require a service to create features to perform

the overwriting. Requirements for secure delete may vary by industry and country so

researching requirements for your target customer base will provide the best guidance

on secure account deletion expectations.

�Consider Reprovisioning Requirements
It may be worth considering the likelihood of requests from customers to reprovision

their previously deprovisioned account and establishing policies for this. It would

constitute a security breach if an account were reprovisioned and given to someone

other than the original authorized owner, so one option is to not support reprovisioning.

If reprovisioning is to be supported, you’ll need procedures for validating that a

requestor is an authorized owner of the original account. Any practices to support this

should also be aligned with applicable privacy legislation.

Chapter 15 Deprovisioning

248

�Summary
When a relationship with an employee or customer ends, you may need to do more than

just delete their account. You may need to preserve the identifier for the account and

prevent it from being used again by someone else. Privacy legislation around the world

often includes a right to erasure of personal data which may extend to subprocessors

who process or store personal data you collect. You should create a data inventory to

understand the data you collect and process and then create a data retention plan and

erasure procedures in compliance with both privacy and legal advice. You may also need

to satisfy requirements for secure delete procedures and provide certificates of deletion

or confirmation notices.

We’ve now covered the key events in the life of an identity that your implementation

will likely need to support. Since it is common during an implementation to need to

troubleshoot a few issues, the next chapter covers advice on troubleshooting techniques

for authentication and authorization issues.

�Key Points
•	 Deprovisioning deletes or disables an account and associated

identity information so it can no longer be used to access protected

resources.

•	 Deprovisioning may be initiated by either an account owner or the

owners of a service where the account resides.

•	 Automation and periodic account review should be used to help

identify accounts that are no longer needed.

•	 A soft delete feature can be used to reduce accidental account

deletion.

•	 Identifiers for deprovisioned accounts should be reserved and not

used for new accounts.

•	 Data retention policies and procedures should be developed in

consultation with legal and privacy experts.

•	 Procedures may need to be created to enable customers to download

their data for use elsewhere, as part of account deprovisioning.

Chapter 15 Deprovisioning

249

•	 Privacy legislation often includes a right to erasure. There may

be requirements for how requests are to be made, timeframes for

responses, and whether confirmations are sent. There are also several

exceptions describing situations where data should not be erased.

•	 It may be necessary to provide customers a certificate of deletion or

to follow secure delete procedures as part of account deprovisioning.

•	 Policies should be created for whether reprovisioning of accounts is

allowed and, if so, the procedures to follow.

�Notes

	 i.	 https://gdpr.eu/article-17-right-to-be-forgotten/

	 ii.	 https://gdpr.eu/article-19-notification-obligation/

	 iii.	 https://oag.ca.gov/privacy/ccpa#sectione

	 iv.	 https://lis.virginia.gov/cgi-bin/legp604.

exe?211+sum+SB1392

	 v.	 https://leg.colorado.gov/sites/default/files/2021a_190_

signed.pdf

	 vi.	 www.dami.army.pentagon.mil/site/IndustSec/

docs/5220.22m.pdf

	 vii.	 https://csrc.nist.gov/publications/detail/sp/800-88/

rev-1/final

Chapter 15 Deprovisioning

https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-19-notification-obligation/
https://oag.ca.gov/privacy/ccpa#sectione
https://lis.virginia.gov/cgi-bin/legp604.exe?211+sum+SB1392
https://lis.virginia.gov/cgi-bin/legp604.exe?211+sum+SB1392
https://leg.colorado.gov/sites/default/files/2021a_190_signed.pdf
https://leg.colorado.gov/sites/default/files/2021a_190_signed.pdf
https://www.dami.army.pentagon.mil/site/IndustSec/docs/5220.22m.pdf
https://www.dami.army.pentagon.mil/site/IndustSec/docs/5220.22m.pdf
https://csrc.nist.gov/publications/detail/sp/800-88/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-88/rev-1/final

251

CHAPTER 16

Troubleshooting
When you have eliminated the impossible, whatever remains, however
improbable, must be the truth.

—Sir Arthur Conan Doyle, British author, from The Sign of the
Four (1890)

You’ve created your application, fired off your first authentication, and your hard work

blows up in a roaring flame of error messages… or, worse, nothing happens, no error

messages are displayed, and you don’t have a clue where to start looking. Fear not, there

is a methodical approach to debugging authentication and authorization issues. We’ll

share an approach, tools, and techniques, and soon you’ll be solving authentication and

authorization issues with the mastery of Sherlock Holmes.

�Get Familiar with the Protocols
A working knowledge of the identity protocol(s) you are using for authentication

and API authorization is helpful. These protocols involve browser redirects and/

or HTTP requests/responses between several components. Troubleshooting will be

easier if you are familiar with the expected sequence of interaction for a particular

scenario. You can capture an HTTP or network trace for a situation and compare it

to the expected interaction as described in a protocol specification and/or identity

provider documentation, to identify where things are going wrong. It is particularly

helpful to know

•	 The sequence of interaction for different scenarios

•	 The parameters expected by each protocol endpoint

•	 The responses and error codes returned by each endpoint

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_16

https://doi.org/10.1007/978-1-4842-8261-8_16

252

In addition to the protocol specifications, you should know the identity provider APIs

and SDKs you are using. Vendors may extend a specification when they implement a

protocol. Using an API testing tool to try out calls with various parameters and observing

the results can give you a better understanding of the identity provider and APIs you use,

which can help when debugging issues.

�Prepare Your Tools
The following tools will help you debug an issue:

•	 An environment where you can duplicate a problem and test

•	 Two independent browser windows

•	 Tools to capture and view HTTP traces

•	 A tool with which to test API calls

•	 Tools to capture and view network traces of back-end API calls

•	 Tools for viewing and creating JWT and SAML 2.0 tokens

The next few sections will explain why each tool is necessary in more detail, and

Appendix E contains a list of some specific tools. New tools may arise over time, so be

sure to check for any new tools, including vendor- or protocol-specific solutions as well

as browser extensions.

�Test Environment
It is often helpful to have an environment in which to duplicate a problem. For some

issues, you may be able to use your production environment to collect all the data

you need. For others, you may need an environment where you can experiment and

change settings as part of your investigation. You’ll need a test environment with an

instance of the identity provider used and with an account for a test user. Ideally, you’ll

have administrative access so you can alter configuration settings or create users with

different profiles if needed. Having a test environment in which to test and debug an

issue avoids any impact to your production system from debugging activity.

Chapter 16 Troubleshooting

253

�Independent Browser Windows
In addition to a test environment, it is helpful to bring up two independent browser

windows. You can use two different browsers or two windows for the same browser with

“Private” or “Incognito” browsing mode so they do not share cookies between them.

One browser window is for testing the broken login issue as an end user. The other

browser window is for accessing the administrative interface of your identity provider or

application to make configuration changes. Independent browser windows ensure that

activity in one window doesn’t impact the other window and give you confusing results.

It is also necessary to note how each browser handles sessions, particularly whether

it will save or reconstitute a previous session. When testing, it is best to start with a clean

browser session, unless the issue you are debugging does not occur with a new session.

A new browser session ensures that there are no cookies or state from a previous session

to confuse results. Browsers now offer the ability to restore state from a previous session

so it is best to use a new “Private” or “Incognito” browser session and start with a clean

slate each time.

�Capture HTTP Traces
You’ll need a browser with the ability to capture an HTTP trace. The Chrome, Firefox,

and Edge browsers offer developer tools features that provide a built-in ability to capture

an HTTP trace in the “Network” tab. Safari’s Web Inspector, accessible via the “Develop”

menu option, enables you to capture network activity in the Network tab. Learn how to

capture an HTTP trace in every browser that your service officially supports so you are

prepared to debug issues on each browser.

If you are collaborating with others, it is convenient to be able to dump the HTTP

trace to an HTTP Archive format file (.har file). Note, however, that a .har file will capture

everything, including the cleartext value of any secret (client secret, password, API key,

etc.) entered or transmitted during the capture. If you can’t avoid capturing a secret by

limiting a trace to only a part of the interaction, you should edit the files to remove any

sensitive information and/or reset any secrets after capture so you don’t expose valid

secret(s). If you ask another person to send you a .har file, be sure to have them take

these precautions to reduce your liability from exposure to secrets in the file.

Chapter 16 Troubleshooting

254

�View HTTP Traces
If you receive an HTTP Archive (.har) file from someone else, you’ll need a tool to view

it. A list of HTTP trace and .har file viewers as well as other useful debugging tools is

included in Appendix E. The ability to view traces sent by others is useful if you cannot

duplicate a problem yourself.

�Make API Calls
Another valuable tool is an API client explorer that allows you to create and send API

calls. This provides a convenient interface for learning, debugging, and testing API calls

for identity providers as well as your own APIs. Vendors of identity services (or authors

of other APIs) may provide ready-built packages with calls for their APIs that you can

import into such tools. Appendix E lists some current tools in this category. You can use

such tools to test and debug individual API calls which can facilitate finding the source of

problems.

�View API Calls
If you make API calls from a back-end application component or native application, you

will need a different mechanism to capture the calls as they do not go through a browser.

You can use a network web debugging proxy tool or a debugger. Appendix E lists a few

tools for this purpose.

�View JWT and SAML 2 Tokens
A tool to decode and view the security tokens received by your application is essential.

Appendix E lists a few sites which are useful for viewing JWTs and SAML 2 requests/

responses. These tools will allow you to inspect the contents of the tokens. They may also

provide you with a way to create test tokens for sending to APIs for tests. With these tools

in place, you’re ready to start debugging.

Chapter 16 Troubleshooting

255

�Check the Simple Things
You may save yourself some time by checking a few simple things before diving into a

detailed analysis:

•	 Check the identity provider is accessible and not experiencing

an outage.

•	 Check the credentials supplied are correct for the environment (test

vs. production).

•	 Check the login account and credentials are not disabled or expired

at the identity provider. You can do this by logging in to another

application that uses the same identity provider.

•	 Check the application is using the correct URL for the identity provider.

•	 Check the client ID in the application matches that registered in the

identity provider.

•	 Check the redirect/callback URL for the application exactly matches

the URL registered in the identity provider.

•	 Check whether any certificates or cryptographic keys have expired.

•	 Check for any error messages logged by the application or identity

provider to see if they provide valuable clues.

Once you’ve checked the simple things, if the issue is reported by someone else, ask

questions to understand the problem so you can replicate it or focus your debugging on

the most likely spot. Start by asking for a general description of what happens, followed

by questions to elicit more details on what the user did so you can replicate the situation.

Be sure to ask about any error messages displayed on the screen or in any log files. Also

ask what the user expected, because sometimes users can have an incorrect expectation

of how a system is supposed to work.

�Gather Information
Troubleshooting is facilitated by knowing what questions to ask. Identity solutions

involve many components, including your application, the user’s browser, and an

identity provider. There may also be APIs, an API Gateway, or an authentication hub

Chapter 16 Troubleshooting

256

in the mix. Any of these components could potentially contribute to a problem. The

following questions will give you useful information to replicate the problem and/or

narrow down the possible source of an issue.

�How Many Users Impacted?
Is the issue experienced by all users or just a few? If only a few users, the issue is most

likely caused by something unique to those users’ profiles or their environments, such

as browser configuration settings. On the other hand, if all users experience an issue, it

is probably caused by something in the components common to all users, such as the

application or the identity provider.

�Contributing Environmental Factors?
Does the issue occur with all browsers, devices, locations, or platforms or just one?

Testing with different browsers, devices, locations, and platforms can identify if there are

any environmental factors contributing to the issue. Authentication and single sign-on

can be impacted by browser settings for third-party cookies and tracking prevention, so

you should check browser settings related to those features. If an issue occurs in multiple

environments, it is probably not caused by an environmental factor, and debugging

should focus on other components such as the application or identity provider. If,

however, an issue occurs on only one browser or type of device, your inquiry should

focus on whether the browser or device could cause the issue.

�Which Applications Impacted?
How many applications does the issue affect? If there are multiple applications

involved in a scenario, it can be helpful to test each to see if the problem occurs in all

of them or just some applications. If all applications experience the issue, the problem

may be caused by an issue at the identity provider. If only one or some applications

experience the issue, it is probably caused by the application code/configuration or the

configuration for the application(s) at the identity provider.

Chapter 16 Troubleshooting

257

�Consistent or Intermittent Issue?
Does the problem happen consistently or only intermittently? An intermittent problem

will be easier to debug if you can reduce it to a problem you can reliably reproduce. If

there are multiple instances of application, identity provider, firewall, or load balancer

servers, for example, try checking whether one instance of a component out of several

could be misconfigured, such as one application server or one firewall instance. You can

do this by shutting them all down and starting them up one at a time to see if the issue

occurs consistently with one.

�Worked Previously?
Does the issue occur in an application that worked previously but suddenly stopped

working? If so, check for recent changes, such as the following:

•	 Identity provider outage

•	 Change to the identity provider API or API used by the failing

application

•	 Network connectivity issue

•	 User password expired

•	 Recent software upgrades

•	 Recent browser or device configuration changes

•	 Certificate expiration or key rotation

•	 Servers with incorrect time due to NTPi not running

These are common causes of failures of previously working systems.

�Where Does Failure Occur?
How much of the authentication and authorization sequence of interaction completes,

as observed during a login transaction or in an HTTP/network trace? Noting where the

interaction stopped often suggests which component to investigate first.

Chapter 16 Troubleshooting

258

�Replicate the Problem
If the issue is reported by someone else, it is valuable to replicate the problem in your

own environment. This can determine if the other person’s environment contributes to

the issue. It also provides a test environment in which to try different things to gather more

information about what causes the problem to appear. This is particularly useful if the person

reporting the problem is unable or unwilling to test different scenarios to aid debugging.

�Analyzing an HTTP/Network Trace
An HTTP or network trace of a broken scenario is invaluable for debugging. In this

section, we’ll describe what to look for in a trace.

�Capture a Trace
A trace of HTTP and API calls will be one of the most valuable debugging aids. Using

a debugger or other tracing tool, perform the failing authentication, authorization, or

logout transaction starting from the beginning and going as far as you can through the

sequence. When done, stop the trace to minimize the capture of irrelevant data. If you

receive a trace captured by someone else, use a suitable tool to view it.

�Check Sequence of Interaction
The first thing to check is the sequence of redirects or API calls to see how much of the

expected interaction succeeded. The sequence diagrams in earlier chapters may be

helpful for this. For OIDC or OAuth 2, look first for a call to an “authorize” endpoint on

the authorization server. For SAML 2, look for a “SAMLRequest” message to the SSO URL

of the identity provider. Then look for the requests to prompt the user to log in and for a

redirect or response back to the application after the user has authenticated. For OIDC/

OAuth 2, this will be to one of the callback URLs configured in the authorization server.

For SAML 2, this will be a SAMLResponse message to the ACS (Assertion Consumer

Service) URL configured in the identity provider. If you do not see the complete

sequence of expected calls and responses, the place where the interaction started to

deviate from normal is a clue for where to start looking for issues. Table 16-1 provides

some symptoms and possible causes.

Chapter 16 Troubleshooting

259

Table 16-1.  Symptoms and Issues

Symptom Possible Causes

User never redirected to identity provider. Application has incorrect URL for identity provider.

User redirected to identity provider but no login

prompt.

Application sent malformed request.

Incorrect client ID or client secret.

Error in identity provider login page configuration.

User prompted to log in but receives error. User error. Test with a different account.

User password has expired.

Wrong password for environment.

User account does not exist.

Identity provider lost connection to data store.

Misconfigured login page at identity provider.

User logs in without error, but not redirected

back to application.

Incorrect or invalid callback URL for application at

authorization server (OAuth 2/OIDC).

Incorrect Assertion Consumer Service URL for

application at identity provider (SAML 2).

Misconfigured extensibility feature at identity

provider.

User redirected back to application but

receives authorization error, or application

content doesn’t display.

Tokens or assertions returned to application are

malformed or do not contain information expected

by application.

Exchange of authorization code for token fails.

Application not granted necessary scopes.

User does not have sufficient privileges in

application.

Chapter 16 Troubleshooting

260

�Check Parameters in Requests
Check the parameters in a request. For OAuth 2 or OIDC, check the following:

•	 The request is sent to the correct endpoint at the authorization server.

•	 Correct response_type used for the desired grant type or flow.

•	 The scope parameter value is adequate for the requested action.

•	 The callback URL matches what is registered in the

authorization server.

•	 A state parameter value is specified, if required by

authorization server.

For SAML 2 requests, check the following:

•	 The request is sent to the correct URL at the identity provider.

•	 The request specifies the binding for a response, if required.

•	 The correct certificates and public keys have been configured.

�Check HTTP Status Codes
The next step is to check the HTTP status code on the response from the authorization

server or identity provider. Table 16-2 lists some common HTTP status codes for error

scenarios and some possible causes.

Chapter 16 Troubleshooting

261

Table 16-2.  HTTP Status Codes and Possible Causes

HTTP Status Code Possible Causes

400 Malformed request. Check your request has the correct parameters and valid

values for them.

401 Unauthorized. Check the application or user has the necessary privileges for

the request.

403 Forbidden. Check the application or user has the necessary privileges for the

request.

500 Internal Server Error. Check the configuration at the authorization server or

identity provider.

503 Service Unavailable. Check if the authorization server or identity provider

service is running and reachable.

�Check Security Token Contents
If the HTTP status code does not indicate there is an error, check the security token(s)

returned. Appendix E lists tools for viewing the contents of these security tokens. Check

the relevant security tokens to see if they are formatted correctly and they contain the

requisite information.

For ID Tokens, check

•	 The ID Token contains the correct user information in the

“sub” claim.

•	 The ID Token contains any other claims expected by the application.

For Access Tokens that can be viewed, check

•	 Scopes granted to the application are adequate for the request.

•	 The access token contains any claims needed by an API.

•	 Audience for the token is correct for the intended recipient API.

•	 The access token is valid and has not expired.

Chapter 16 Troubleshooting

262

For SAML 2 SAMLResponse messages:

•	 Subject element’s name identifier (nameid) element contains a user

identifier expected by the application.

•	 Additional attribute statements expected by the application exist.

An application may need information for authorization conveyed in custom claims.

If such authorization data is missing from an ID Token or SAML 2 assertion, the user

may get an “unauthorized” message or possibly a blank screen. If an API you call

requires custom claims in an access token, your program may get an error status from

the API. You should check the contents of the access token if possible. If the access

tokens are in JWT format, they can be viewed in a JWT viewer. If they are opaque strings,

however, you may need to use an introspection endpoint on the authorization server

to get information about the token. If the contents of the security tokens are correct,

another possible cause of issues is a problem validating a security token.

�Check for Security Token Validation Errors
After an application receives a security token, it must validate it. The security tokens

returned by OIDC and SAML 2 are digitally signed. They may also be digitally encrypted.

If an application cannot validate the signature on a security token (or decrypt it if

encrypted), it should log an error. Checking application logs for such errors can help

identify if this type of issue exists. You can also check whether signing keys are being

properly retrieved and managed as incorrect key management can contribute to token

validation errors.

Errors with security tokens can also occur at identity providers. One identity provider

may delegate authentication for a user to another identity provider. If the first identity

provider does not receive a valid authentication token from the remote provider, it

should log the authentication failure. Identity provider logs should be consulted if errors

seem to originate at the identity provider as these logs will often have the most useful

information.

Chapter 16 Troubleshooting

263

�Collaborating with Others
The previous sections described a series of troubleshooting steps that will help you

solve many common causes of authentication and authorization issues. A frequent

complication with troubleshooting is that you may not own all the pieces. In such cases,

you need to collaborate with others.

If you are not able to test the application personally, or can’t replicate the problem,

you will need to ask someone who can replicate the problem to capture a trace of the

issue. A .har file or network trace can show interactions between an application and

an identity provider as well as an API if used. This can include the requests made, the

parameters, the timing of such interactions, and the responses received. Such traces

are extremely useful for debugging issues with authentication, SSO, and authorization.

When you receive a trace file, you’ll need a viewer suitable for the type of trace captured.

Appendix E includes a few such tools.

You should remember that a trace may capture sensitive data, including a username

and password typed by a user or sensitive security tokens returned to applications. If

someone sends you a trace file, you may wish to warn them about this so they can reset

a captured password or invalidate any sensitive tokens. This can reduce your liability.

Furthermore, invalidating any long-lived tokens captured and deleting trace files when

you are done troubleshooting is another good practice.

Lastly, if you use an identity provider product, the vendor may offer support services.

The staff at the helpdesk should be able to help you debug issues related to your use of

their product. Be sure to take advantage of such an option where available, to speed your

debugging.

�Summary
This chapter described tools and approaches useful for troubleshooting many common

issues. It helps to know the protocols you are working with and to have debugging tools

that give you sufficient visibility into the authentication and authorization interactions

of your program. Collecting data about where and when the problem occurs can narrow

down the possible source of an issue. An HTTP trace, network trace, or debugger can

help you analyze the flow of traffic between components as well as the parameters in

Chapter 16 Troubleshooting

264

the requests and responses. By obtaining the right tools, and asking the right questions,

you can speed up the process of debugging an issue. This completes the set of chapters

on building and debugging the code for your application. The next chapter covers some

things which can go wrong beyond the code and for which you should prepare.

�Key Points
•	 Develop a working knowledge of the specifications for the identity

protocols you use.

•	 Prepare a suite of debugging tools.

•	 Check the simple things first.

•	 Gather relevant information about the problem.

•	 Replicate the problem in your own environment if reported by

someone else.

•	 Use an HTTP or network trace to help identify where a

problem occurs.

•	 Check the list of symptoms and causes in this chapter.

•	 Check for error responses from identity providers.

•	 Check application and identity provider log files, if possible, for clues.

•	 You may need to develop collaborative troubleshooting procedures

with the owners of remote identity providers.

•	 You should ensure that troubleshooting procedures include steps to

delete all trace and log files when an issue is closed as these files may

contain sensitive information.

�Note

	 i.	 www.ntp.org/ntpfaq/NTP-s-def.htm

Chapter 16 Troubleshooting

https://www.ntp.org/ntpfaq/NTP-s-def.htm

265

CHAPTER 17

Exceptions
An ounce of prevention is worth a pound of cure.

—Benjamin Franklin, American founding father, inventor,
politician, diplomat, scientist, and printer, from a letter to

The Pennsylvania Gazette (1735)

The previous chapters have covered many cases where things happen as expected.

There are times, however, when failures occur or things don’t go as planned. Situations

involving exceptions require planning to handle them well. Examples include

accidentally deleted data, lost phones, system outages, or even a large-scale compromise

of user credentials. We can’t predict every problem your project may encounter, but

this chapter should provide you with a list of exception scenarios that might apply to

your environment. You can select which you’ll need to handle and define a process for

handling them. We recommend starting with the scenarios that are most likely as well as

those that would have the biggest negative impact if they were to occur. We also suggest

identifying in advance any log information necessary to help you handle the scenarios or

records to keep to monitor your response to the events. With a plan in place, your team

can respond quickly and effectively if one of these situations arises.

�Accounts
The cases in this section apply primarily to accounts and may require some human

involvement to assess risk or perform due diligence evaluation of a request.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_17

https://doi.org/10.1007/978-1-4842-8261-8_17

266

�Data Restore
A customer may inadvertently delete their account data and then regret it. The likelihood

of this occurring can be reduced by requiring confirmation before deleting data and

implementing a soft delete as described in Chapter 15. If you support requests to restore

deleted accounts, you should develop policies and secure practices for such requests so

they don’t provide an opportunity for a social engineering exploit. Procedures should

include evaluating the requestor, the timing of the request, and the nature of the request.

The requestor should be validated as a legitimate registered owner or administrator of

the account in the request. Requests made weeks or months after the data was deleted

or to restore data into different accounts with different owners probably need higher

scrutiny than a request made only minutes after data was deleted. For business accounts

with multiple administrators, it may be appropriate to require confirmation of requests

from a second person. The details will vary by application, but you’ll want to define

policy and procedures to ensure unauthorized parties cannot get access to data via data

restore requests.

�Account Decommission
A request to terminate an account carries risk similar to a data restore request. You

need a means to validate that the person initiating such a request is legitimately

entitled to terminate the account. For consumer-facing accounts, a self-service

account decommission feature may be sufficient. Such a feature may be needed as

part of supporting privacy requirements as well. For corporate accounts with multiple

administrators, it may be useful to require a request by two authorized administrators

or implement a delay coupled with confirmation notices to all administrators in order

to prevent an unauthorized, malicious delete action by one disgruntled employee.

Chapter 15 has further guidance for account decommissions accompanied by requests

for account data transfers.

Also in Chapter 15 is guidance to reserve the account identifier for accounts which

have been decommissioned. It should not be possible for someone to create a new

account with the same identifier as a previously deleted account and then request the

restoration of data from a time when the original account existed. The use of an email

address as account identifier does not mitigate the risk because email addresses have

been recycled by some providers in the past.i Reserving the account identifier for a

Chapter 17 Exceptions

267

decommissioned account for a period longer than the data retention period for backups

of deleted account data mitigates this risk at least for the local system.

�Orphaned Account
Although rare, the person who established an account may be terminated from a

company or decease. If they were the only person associated with the account, someone

not previously associated with the account may request access to it. The legitimacy of a

requestor making such a claim needs to be validated before they are given access to an

account. For a corporate account, it may require obtaining a contact from the company’s

website to help in validating that a requestor is a legitimate representative for the

company and authorized to take over the account. Be sure to obtain requests in writing,

validate the authenticity and authorization of requestors through independent channels,

and keep records of all requests, validation steps, and actions.

When a user of a consumer-facing site has passed away, policies vary. Some social

media sites allow family members to request an account be terminated or memorialized.

Estate executors can direct the disposition of some types of accounts such as financial

accounts. Until legal guidelines and practices governing online data and digital

inheritance mature, you should obtain legal guidance, especially for accounts involving

financial value or health-related information. For less sensitive accounts, allowing a

user to specify a contact authorized to take over an account in the event of death may be

helpful.

�Account Takeover
The legitimate owner of an account can be locked out of their account as a result of a

compromised password, stolen phone, social engineering, or software vulnerability. If a

user calls your helpdesk and claims their account has been taken over by someone else,

you will need a process for determining the legitimate owner of the account, bearing

in mind that an unauthorized user could have viewed account details and changed

user profile information as well as passwords after taking over the account. In this case,

the legitimate owner may look like an imposter because they won’t know the current

password or profile information. Maintaining a history of past profile information such

as addresses or phone numbers, especially if not displayed in the application user

Chapter 17 Exceptions

268

interface, may help in validating a locked-out, legitimate account owner, though further

validation will probably be required. Encouraging the use of multi-factor authentication,

as discussed in Chapter 12, can reduce the chances of account takeover happening.

�Phone Lost, Damaged, or Stolen
If your site uses an authentication mechanism that leverages a user’s mobile phone,

you will need a process to help customers whose phone is lost, stolen, or damaged.

Depending on the authentication mechanism, a user might need to deregister an old

phone and register a new one with their account and/or install an app on their new

phone. If a user’s phone is stolen and open at the time of the theft, the user’s account

may be accessible by the thief. For this case, you’ll need a process to help the legitimate

owner of an account terminate the phone’s access to their account.

�Identity Providers
This section covers cases which may involve an identity provider.

�Account Recovery Requests
To assist users who’ve forgotten their password or lost a device needed to authenticate,

an identity provider may provide an account recovery mechanism. One option is

sending a “magic link” to a previously registered email address for the account. A magic

link is a nonguessable URL that is valid for a single use within a short time period and

allows a user to bypass authentication to access a credential reset feature. The use of

a magic link can be combined with a confirmation email indicating a credential was

reset, with instructions for what to do if this action was not taken by the legitimate

account owner. With a magic link, the user’s access to their email becomes a backup

authentication factor for account recovery.

Alternate forms of authentication can serve as a secondary authentication factor

as an alternative to relying on the security of a user’s email account. Sending one-time

codes via Short Message Service (SMS) text messages to a user’s previously registered

phone number has been a common solution. At the time of writing, however, there

have been some successful attacks based on SIM swapping,ii rerouting phone numbers

to unauthorized phones,iii and intercepting SMS messages.iv, v Future projects should

Chapter 17 Exceptions

269

evaluate the threats posed by these issues and available mitigations before selecting an

SMS-based approach. Other approaches use a mobile app or a specialized device to

generate a one-time code. An identity provider that supports multiple authentication

mechanisms and having users set them up can improve your ability to quickly adapt if

one mechanism becomes compromised.

An identity provider’s account recovery mechanism can open up other risks,

depending on how it is implemented. A password reset link which immediately

invalidates the current account password could enable a person to lock someone else

out of their account. If the legitimate owner of the account has not kept their email

address up to date, they will not receive the password reset link and be locked out of

their account. A password reset link could even be used by pranksters to trigger an

account recovery SMS message or phone call in the middle of the night to wake someone

up. If a user’s email account has been compromised, a hacker could use a password

reset feature to trigger password reset emails and gain control of the user’s accounts that

use that email address. Approaches to mitigating these risks include requiring some

information from the user before triggering an account recovery action, reminding users

to keep their notification information current and not invalidating a current credential

until a reset link has been activated.

�Brute Force Attacks
In a brute force attack, a hacker attempts to log in with many different username/

password combinations in hopes of guessing a user’s password. They may use common

or known breached passwords, and their attempts are often automated. An identity

provider can reduce the chances of brute force attacks succeeding by detecting a series

of many successive failed login attempts or failed password reset attempts against

one account from the same IP address. If either of these situations occurs, an identity

provider can slow down an attacker by techniques such as blocking an account for a

short time period or asking for multi-factor authentication (if configured). An alert can

be sent to the site administrator and an email sent to the owner of the account to alert

them about the attack. The email can indicate why the account was blocked and provide

a link for unblocking the account immediately in case the failed logins were caused by

the legitimate account owner.

Chapter 17 Exceptions

270

If an identity provider detects a series of failed logins or failed password reset

attempts hitting multiple accounts from a single IP address, this is more suspicious, and

it may be appropriate to simply block that IP address immediately. However, corporate

customers with many users whose traffic comes from the same IP address due to

network address translation (NAT) are an exception. If enough users on the internal

network mistype their password in a set time period, it could trigger a false alarm for a

brute force attack. Allowlisting IP addresses for environments using NAT helps avoid

false alarms for brute force attacks in this case.

One additional caution involves environments with an automated system that will

access a user’s account using their credentials. If the user changes their password, but

the update is not provided to the automated system, it could trigger the brute force

attack response. Reviewing an environment for such cases can prevent wasting time due

to false alarms.

�Breached Passwords
Breached passwords are being aggregated into massive databases that can be exploited

by hackers, including one discovered by breached identity curator 4iQ containing

1.4 billion breached, cleartext passwords.vi If a user’s password at your site is easily

guessable or has been compromised elsewhere, it could enable a hacker to take

over the user’s account on your site. Fortunately, there are databases on the Internet

containing information on breached passwords, such as “have i been pwned”vii created

by Troy Hunt. An application or an identity provider can check a user’s password

against such databases when they sign up for an account or reset their password. If

the user’s password has been breached, they can be notified and asked to select a

different password. An application or identity provider can perform such checks when a

password is initially set, at password reset, and periodically when users log in to detect

if a password has been compromised after being set. These actions will help detect, and

mitigate the risk of, breached passwords.

�System Outages
Evaluating the impact of identity system failures on support systems and administrative

access is recommended as part of business continuity planning.

Chapter 17 Exceptions

271

�Authentication System Outage
It may be desirable to use the same authentication service for your primary website

and a support site, so users have single sign-on (SSO) across the sites. However, if the

authentication service is unavailable, users will be locked out of both sites. It can be

annoying for customers if they are unable to access a website and then realize they can’t

report the problem. If you have this scenario, you should plan for how to handle support

in the event of an outage to your authentication system.

One approach is to rely on proactive outbound communication during an outage.

Some mechanisms to consider include a support phone number with a recorded

message to acknowledge the issue and provide updated information or a public

community support forum or status page where outage updates can be posted. In

designing processes for business continuity during an outage of an authentication

system, you’ll want to ensure that alternate processes do not rely on the primary

authentication system.

�Admin Access
It is helpful to evaluate your use of authentication services for your internal operations

and administrative access to your site. If single sign-on is used as a primary access

mechanism for administrative access, such access could be blocked during a failure of

the SSO system. You may need alternate authentication mechanisms to access critical

administrative functions during an outage. This includes administrative access to your

service, monitoring and alerting infrastructure, and the ability to post outage updates

to your customers. You should of course ensure an adequate level of security on all

access paths to administrative functions. Planning for an outage of authentication

solutions used for administrative access will help your team respond efficiently during

an actual outage.

�Provisioning Systems
Provisioning processes and systems may be less critical during an outage than

authentication systems, but if you have time-critical account provisioning or

deprovisioning processes, it may be necessary to define alternate processes for use

during an outage of a provisioning system. Once service is restored, it may be necessary

to validate that all in-flight transactions at the time of the outage were completed,

Chapter 17 Exceptions

272

especially account removal or privilege removal transactions. A routine check after an

outage for incomplete deprovisioning transactions can help prevent incorrect access

privileges.

�Cybersecurity Threats
Your application could experience any of a wide variety of cybersecurity threats, from

denial-of-service (DoS) and ransomware attacks to a data breach or suddenly being

notified of a vulnerability in a code library leveraged by your application’s code. It is

critical to have defined a cybersecurity incident response plan in advance and trained

staff on the plan. An incident response plan should minimally include

•	 The owner accountable for leading the response

•	 The response team and responsibilities of each member

•	 Clear priorities and required timeframes for the response effort

•	 The steps to take, including preventing further damage, preserving

required evidence, assessing the damage, documenting all findings

and decisions, and identifying and fixing the root cause as well as

related damage

•	 Reporting and notification requirements

•	 Follow-up actions to prevent the incident from happening again

Having an incident response team identified and a response plan defined enables

staff to respond quickly and smoothly if a cybersecurity incident occurs. According

to the Ponemon Institute’s 2019 and 2020 Cost of a Data Breach reports, this can help

reduce the impact and cost of an adverse cybersecurity event. In addition, there may

be aggressive timeframes within which you must notify regulators, law enforcement, or

users if a breach occurs, so it is imperative to have a thorough response plan defined in

advance that includes such responsibilities.

�Compromised Personal Data
If the unthinkable happens and you experience a suspected or verified breach of

personal data, you need to act quickly. It is imperative that you are aware of any legal

requirements related to the exposure of personal data, have a plan worked out in

Chapter 17 Exceptions

273

advance, and have retained any outside assistance needed to respond quickly. In

addition to a general incident response plan described in the previous section, your plan

for responding to a breach of personal data should additionally define

•	 When and how to engage law enforcement, if appropriate

•	 When and how to engage insurers

•	 The process to follow for user and regulatory notification

•	 The process to follow for public relations communications

If personal data is compromised, many privacy regulations require notification

to regulatory agencies within a certain time period. For organizations subject to the

General Data Protection Regulation (GDPR), Article 33 specifies that notification should

be made within 72 hours of becoming aware of a breach. Breach response procedures

require significant coordination. Notification may be required to multiple government

organizations, law enforcement, and users. You may need to coordinate press releases

and communications on social media. Communications may need to be vetted

internally with legal, security, and marketing teams and with a representative from your

cyber-insurance carrier if you have such a policy. The amount of communication and

collaboration for a well-coordinated, professional response can only be done in the

required timeframes by having a plan and process defined in advance, as well as training

staff on the plan along with templates, checklists, and contacts.

�Compromised Credentials
If there is a large-scale compromise of your users’ authentication credentials, the

legitimate users need a way to reset their credentials and recover their accounts if thieves

have taken over the accounts. Relying on users calling a support center is costly and

difficult to scale and requires a secret the legitimate user and the support staff know that

the thief won’t know. Sending a password reset link to the user’s registered email address

or phone number may not work if significant time has passed between the breach and

its discovery because the thief may have altered authentication credentials and user

profile information, including notification attributes such as a user’s email address and

phone number. You need a secure and scalable account recovery process worked out in

advance so that you can act in a timely manner if this happens.

Chapter 17 Exceptions

274

�Compromised Secrets
A related scenario is the compromise of other “secrets” such as OAuth 2.0 client secrets

or private keys used in the signing or decryption of security tokens. This can happen as a

result of human error, so it is wise to prepare for this possibility. An inventory should be

maintained of all such secrets used in your operations, how each is used, and recovery

steps needed if any are compromised.

Your application can facilitate recovery by dynamically retrieving the public keys

used to validate security tokens. This makes it easier to rotate them but may create

issues for caching. If your application caches dynamically retrieved public keys for

performance reasons, and invalidates the cache anytime a signature validation fails, this

could enable a denial-of-service (DoS) attack by someone sending counterfeit security

tokens with fake signatures. If caching is needed, it may be possible to reduce this risk

using a periodic refresh and by having applications only invalidate their cache upon

a validation failure once per a certain time period, rather than for each failure, and

triggering an alert for human intervention if a lot of invalid tokens are received.

If your solution includes the use of SAML 2 with other organizations and a private

key used to sign or decrypt SAML 2 messages is compromised, you need to update

configurations with new keys. If there is no dynamic mechanism to update federation

metadata, you may need to synchronize updates with another organization. You should

work out recovery processes in advance for the secrets in your environment so you can

execute quickly if needed.

�Summary
We’ve covered several scenarios that involve some type of failure and the need to create

a response plan for them. Some, like forgotten passwords, are likely to occur. Others,

like a breach of personal data or user credentials, may never occur. The failures possible

in your environment may differ from those we outlined, but our list should help you

identify possibilities to consider. This enables you to create response plans, train your

team, and test your preparedness periodically to ensure you are ready if something

happens. Be sure your response plan identifies any logging and records necessary to

facilitate or monitor your response. Besides these failure/exception cases, there are also

use cases that are simply less common, and they are the topic of the next chapter.

Chapter 17 Exceptions

275

�Key Points
•	 It’s essential to plan for what can go wrong in an environment.

•	 You may need a process for restoring accidentally deleted data.

•	 You need a process for customers who wish to decommission their

account.

•	 You should have a process to handle an orphaned account.

•	 Users may forget or lose credentials and need an account recovery

mechanism.

•	 You need a process to check for and fix accounts whose password has

been compromised.

•	 You need a process to identify the legitimate account owner if

account takeover has occurred.

•	 If your support system or administrative access depends on a single

sign-on system, you should plan for how to handle an outage to the

single sign-on system.

•	 You should have an incident response plan in place for responding

to cybersecurity threats, including compromised personal data, user

credentials, or private keys.

•	 In planning how to handle exceptional events, be sure to consider

logging data that could facilitate your response or records to keep of

your response actions to demonstrate proper handling of an event.

�Notes

	 i.	 https://thenextweb.com/news/microsoft-can-recycle-

your-outlook-com-email-address-if-your-account-

becomes-inactive

	 ii.	 https://www.pcmag.com/news/fcc-to-create-rules-to-stop-

sim-swapping-attacks

Chapter 17 Exceptions

https://thenextweb.com/news/microsoft-can-recycle-your-outlook-com-email-address-if-your-account-becomes-inactive
https://thenextweb.com/news/microsoft-can-recycle-your-outlook-com-email-address-if-your-account-becomes-inactive
https://thenextweb.com/news/microsoft-can-recycle-your-outlook-com-email-address-if-your-account-becomes-inactive
https://www.pcmag.com/news/fcc-to-create-rules-to-stop-sim-swapping-attacks
https://www.pcmag.com/news/fcc-to-create-rules-to-stop-sim-swapping-attacks

276

	 iii.	 www.vice.com/en/article/y3g8wb/hacker-got-my-texts-16-

dollars-sakari-netnumber

	 iv.	 https://usa.kaspersky.com/blog/ss7-hacked/17099/

	 v.	 www.theguardian.com/technology/2016/apr/19/ss7-

hack-explained-mobile-phone-vulnerability-snooping-

texts-calls

	 vi.	 https://medium.com/4iqdelvedeep/1-4-billion-clear-text-

credentials-discovered-in-a-single-database-3131d0a1ae14

	 vii.	 https://haveibeenpwned.com

Chapter 17 Exceptions

https://usa.kaspersky.com/blog/ss7-hacked/17099/
https://usa.kaspersky.com/blog/ss7-hacked/17099/
https://usa.kaspersky.com/blog/ss7-hacked/17099/
https://www.theguardian.com/technology/2016/apr/19/ss7-hack-explained-mobile-phone-vulnerability-snooping-texts-calls
https://www.theguardian.com/technology/2016/apr/19/ss7-hack-explained-mobile-phone-vulnerability-snooping-texts-calls
https://www.theguardian.com/technology/2016/apr/19/ss7-hack-explained-mobile-phone-vulnerability-snooping-texts-calls
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14
https://haveibeenpwned.com

277

CHAPTER 18

Less Common
Requirements

Two roads diverged in a wood, and I— I took the one less traveled by, And
that has made all the difference.

—Robert Frost, American poet, from “The Road Not Taken” (1916)

Previous chapters covered common identity management use cases. In this chapter,

we’ll share some less common requirements that may apply to your project. Identifying

the need for them early in a project can help you avoid surprises and project delays.

We’ve organized these scenarios loosely around people, accounts, and environments.

�People
Several requirements stem from activities, changes, or relationships in the life of people.

�Family Accounts
With services that can be shared between members of a household, such as movie

streaming, it may be necessary to associate multiple family members with a family

account. For accountability purposes, it is often better to allow the association of

different user accounts, each with their own login credential(s), with a family or shared

account rather than encouraging multiple users to log in with the same user account.

This sharing requirement can apply to insurance, digital libraries, cellular service

providers, healthcare, or other services traditionally shared among members of a family

or household. In addition, one family member may need to be informed about, or

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_18

https://doi.org/10.1007/978-1-4842-8261-8_18

278

communicate on behalf of, another person such as a minor child or an elderly adult. For

such family-oriented services, applications may need to recognize all family members

associated with an account as well as what each family member can do for others.

�Temporary Positions
In corporate settings, temporary accounts are sometimes needed for contractors,

interns, or partner workers. If temporary accounts are not governed by a company’s

normal account management processes, they might not be terminated when the

temporary working relationship is over. A best practice is to set an expiration date for

temporary accounts and require the manager of a temporary worker to periodically

approve renewal of the temporary account. If the account is not renewed, it should be

disabled. The sensitivity of the privileges allowed by the temporary account’s access can

determine the appropriate frequency for account review and renewal.

�Status Transition
Another corporate requirement involves a person who transitions from working in

one capacity to another, such as a temporary contract worker transitioning to full-time

employee status or vice versa. If temporary workers are registered and administered

separately from employees, but all sources feed into one identity provider, it might be

possible for two accounts for the same person to exist at the same time which might

cause ambiguity at best or unauthorized access at worst. If a person can transition from

one status to another, processes should be designed to avoid duplicate accounts for the

same person.

�No Email Address
Many applications expect an email address attribute in a user’s profile. There may be

cases, however, where users don’t have email addresses. Some businesses do not issue

email addresses to employees who have no need to read email on the job. Parents of

younger children may not allow them to have an email address. Some organizations may

provide their users an email address but have privacy guidelines that prohibit the use of

email addresses as account identifiers. Applications may need to accommodate users

who do not have email addresses or restrictions on where an email address can be used.

Chapter 18 Less Common Requirements

279

�Identity Defederation
It may be necessary to support account defederation while otherwise leaving an account

intact. For example, when a person terminates their relationship with an employer, they

may need to use a personal account to access resources that they previously accessed

via an account at the employer’s identity provider. If a company provides to employees

a pension program, employees might sign in to the external pension website via their

employer’s chosen identity provider. If an employee quits their job, their account at

the corporate identity provider will cease to exist. The user will need their account

at the pension system to be defederated from their employer’s identity provider so

they can log in with an individual account local to the pension system, or perhaps

federated to another identity provider operated by a government entity or a social

provider. In general, defederation is needed when a user can sever a relationship with an

organization, but is still entitled to access resources there that they previously accessed

via a federated identity operated by that organization.

�Accounts
Another category of requirements is associated with users’ accounts.

�Mergers and Acquisitions
Mergers and acquisitions can create identity management challenges. It is advantageous

for a company to have a single identity repository against which all users are

authenticated. When a company acquires or merges with another company, it is

common for the identity repositories of the two companies to be merged, which may

require resolving duplicate usernames to achieve username uniqueness in the new

merged entity.

Changing usernames to eliminate duplicates may impact applications. When a user

is authenticated by a centralized identity provider, an identifier for the user is passed to

applications. If an application maintains a user profile or data records that contain the

user’s identifier, the identifier passed to the application from an identity provider must

match the identifier for the user in the application. If a user’s identifier is changed as

part of a merger, (mary@domain1.com becomes mary@domain2.com or “mary” becomes

“mary.smith”), an identity provider may need to translate identifiers so the user can

Chapter 18 Less Common Requirements

280

authenticate with a new identifier but have their former identifier passed to legacy

applications still using the old identifier.

Alternatively, user identifier changes can be implemented in applications. This

should be done with care, however, as it may require updating data records within the

application besides the user’s profile. This can become complicated, so it may be easiest

to have an identity provider pass old usernames to legacy applications until the legacy

systems are replaced.

This scenario demonstrates why it is a bad idea to use a user’s email address

(or other attributes which might change) as an account identifier throughout an

application’s data records. It is better to use an internal account identifier throughout

the application’s data records and treat the user’s email address as a user profile

attribute that is used for communication purposes. This way, if the user’s email address

or external identity needs to change, it can be changed in the user profile without

impacting the rest of the application. Chapter 4 contains further discussion about

decoupling user profile attributes that serve different purposes.

�Account Linking
A common requirement, particularly in a consumer-facing environment, is to allow a

user to sign up for an application account, entering user profile information required by

the application, and then add the ability later for the user to log in to their local account

via a social identity provider. This requirement can come about for several reasons,

including

•	 An application has a legacy data store of identities but wants to offer

users the convenience of logging in via a remote identity provider,

most commonly a social identity provider.

•	 A user wants to try out a new application without granting the

application access to their profile at a social identity provider. If they

like the application, the user would later want to leverage their social

identity provider account to log in to the application.

Applications typically want to remove as many barriers to usage as possible. Allowing

a user to log in via a remote identity provider means the user can log in with credentials

they may use frequently and are more likely to remember than an application-specific

credential. Furthermore, if the user has an existing authentication session with the

Chapter 18 Less Common Requirements

281

identity provider when they access the application, the user may get right into the

application via single sign-on, for even more convenience.

Account linking can be used to link remote accounts to a local application account.

Linking is useful because accounts are associated with a particular context. For example,

a local application account with identifier “mary@gmail.com” is a different account

than an account at a remote identity provider that uses the same identifier. If a user

signs up for an application account using identifier “mary@gmail.com” and then logs

in with the identifier and credentials specified at sign-up, she will access the local

application account created as a result of her sign-up. However, if Mary then signs in to

the application via a social identity provider, the application will receive a security token

with various claims about Mary. The claims might include an internal identifier specific

to that provider and a claim about her email address. However, Mary might have used a

different identifier or email address at the social provider. Unless the application has a

way to associate the social provider account attributes with the user’s local account, the

user won’t be able to access their existing application account when they sign in via the

social provider.

It is risky for an application to make an automatic association between accounts

based simply on matching attributes because a remote account may not have validated

user profile data. Therefore, it is best for any linking between accounts to be made

explicitly using a process such as the following, which requires a user to authenticate to

both accounts to prove ownership of each, before the accounts are linked:

•	 The user logs in to a local application account, proving ownership of

that account.

•	 The local application provides a list of remote identity providers

supported for linking.

•	 The user selects the remote identity provider for a second account to

be linked, such as a social provider.

•	 The application triggers an authentication request to the remote

identity provider to authenticate the user.

•	 The user authenticates to the remote identity provider, proving

ownership of their account at the provider.

•	 The application receives a security token from the remote identity

provider with claims about the user.

Chapter 18 Less Common Requirements

282

•	 The application uses claims in the security token to associate an

identifier for the remote account with the local account for the

user. It may add a user identifier from the security token to the local

account’s user profile as a secondary identifier.

•	 When a user authenticates, if the user selects local authentication,

the application searches through the primary account identifier, and

if the user logs in via a remote provider, the application searches

through any secondary, linked identifiers in the user profiles to find

the appropriate account for the user.

In this example, the linking steps establish a link between a user’s account at a

social identity provider and their previously established, local account in an application.

The user must authenticate to both accounts to prove ownership of them and give the

application the user’s identifier at the remote identity provider. The authentication to the

accounts to be linked can be done in any order, but it must be done, to prevent the risk

of account takeover via account linking. It’s important to note that automatic linking of

accounts that have the same value for a profile attribute such as email address, without

the explicit dual authentication step, should be avoided, to prevent the possibility of

unauthorized account takeover. If automatic account linking is done between accounts

with unvalidated attributes, such as an email address, accounts could be erroneously

linked that belong to different people. Lastly, if account linking is implemented, it should

be possible for users to unlink accounts they have previously linked, in case the user

wishes to stop using a linked account for some reason. This might occur if an account is

compromised or if a user wants to stop using a particular identity provider. Implemented

properly, account linking can provide a convenience for users to log in via different

identity providers and still access the same account.

�Progressive Profiling
Progressive profiling can be used to avoid having to collect a lot of information from a

user at once. A user can sign up for an application account with minimal information,

and progressive profiling can then add to that data over time. The gathering of additional

profile attributes can be done upon subsequent uses of the application or when it is

needed for a specific type of transaction. A user can even sign in to an application using

a remote identity provider, and the application can create a local account for them with

information from the remote provider. A user can then be prompted to supply additional

Chapter 18 Less Common Requirements

283

profile attributes either before or after they are redirected to that identity provider, with

information from both sources merged into the local application’s profile for the user.

�Impersonation
Impersonation is defined as the ability of one person to log in to an application as if

they were another person and perform any task as that person. The most common use

case is the need for support personnel to log in to an application as another user and

see what the user experiences in order to troubleshoot an issue. Unfortunately, such a

capability has the potential to be abused, and it can be challenging to retrofit secure,

restricted impersonation capabilities into an existing application. Rather than building

impersonation capabilities directly into a primary application accessible by your entire

user population, you can reduce risk and liability by creating a separate application

with a subset of features needed by the impersonators and making it only accessible to

such users.

For example, to reduce the risk of unauthorized or accidental activity by support staff

impersonating real users, a separate troubleshooting application can be created that

is restricted to viewing only the data needed for troubleshooting. For example, it could

provide view access to customer account configuration and data, for troubleshooting,

but not the ability to modify customer data or initiate transactions. The troubleshooting

application should log all activity for audit purposes. In addition, automatic monitoring

of logs for anomalous activity should be implemented. Ideally, consent should be

obtained from account owners before the troubleshooting application allows access

to an account. Needless to say, the troubleshooting application should be protected

with rigorous security measures and accessible only by authorized staff, with the list of

authorized users reviewed frequently. This approach can reduce the risk of unauthorized

activity via impersonation.

�Delegation
Another use case sometimes referred to as delegation is when one user needs to grant

another user the ability to act on their behalf, for a specific subset of tasks or data. A

busy executive, for example, may delegate some chores to an executive assistant. The

executive’s assistant would be granted access to perform tasks on their behalf. A variant

of this is when an employee goes on vacation and needs to delegate ownership of their

Chapter 18 Less Common Requirements

284

tasks (such as support tickets) to another person while they are away. In both cases, one

user needs to be granted access to perform specific actions on behalf of another user.

Such capabilities are best designed into an application as the granting of delegation

privileges is quite application specific. For example, an executive may wish to delegate

to an assistant the ability to approve expense reports, but only up to a certain amount.

Application logging should be delegation-aware so that all activity done by delegates is

logged and shows both the delegating and delegated identities involved, for a full audit

trail. The task-specific nature of delegation and need for audit logging makes it best

implemented within an application itself.

�Environment
Last but not least, we have a few use cases related to an application’s environment.

�Shared Workstations
There are some environments where users log in to shared kiosks or workstations. Such

environments provide a shared device that is used by many users. Examples can be

found on manufacturing shop floors, medical offices, and point-of-sale systems. With the

same device used by multiple people, it is important to have each user log in when they

start a session and log off when they complete a session.

In some environments, such as food service, it may be necessary to support a

very fast transition between users where users simply enter a four-digit PIN to begin

a session. Such PINs share the weaknesses of short passwords. Requiring users to

remember and enter long passwords may be infeasible, and issuing users a badge with

a stronger credential requires them to remember to bring the badge to work each day,

which may also be infeasible. In environments that experience high employee turnover,

issuing and decommissioning such badges could be expensive. Biometric solutions may

be too expensive for businesses with low margins and involve the risk of a biometric

factor being compromised or spoofed. The right solution for a particular environment

will need to consider the sensitivity of data or actions involved, the user population,

and costs.

Having users log in at the beginning of a session is easy enough, but ensuring that a

user logs out is more challenging because users may get distracted and forget to log out

before walking away. Implementing a session timeout after a short period of inactivity

Chapter 18 Less Common Requirements

285

can help protect users. Bank ATM machines provide a good example, asking after

every transaction if the user wants to do another, and if there is no response within a

short period of time, the session is immediately terminated. For applications that run

in a browser, it is helpful to use a browser that supports ephemeral sessions and to set

browser policy to force ephemeral sessions so that information from previous users’

sessions is cleaned up. If your application may be used on shared devices, it’s also

important to consider if information could be leaked through other means, such as

temporary files, and mitigate any risks found. Such steps can prevent user sessions and

data from being compromised on shared devices.

�Identity Provider Discovery
With an employee-facing environment, there is usually one identity provider to

authenticate all users. In other scenarios, such as a multitenant application used by

many businesses, each business may have its own identity provider configured, and the

application may need to determine the appropriate identity provider for a user needing

to log in. This has been called identity provider discovery or home realm discovery.

When there are multiple possible identity providers, mechanisms to identify which to

use for each user include

•	 The user selects the appropriate identity provider from a list.

•	 The user selects or enters information about their organization, and a

lookup is performed to determine the correct identity provider.

•	 Derive the identity provider from an environment factor such as the

originating application or domain.

•	 Obtain the identity provider from information in a browser cookie, if

available, and revert to one of the previous methods if not.

If an application has multiple identity providers configured for authenticating users,

one of these options can help determine the correct identity provider for a user.

�Multitenant Applications
Multitenant applications serve multiple tenants with a single running instance of the

application, where a tenant is a group of related users sharing access to a group of

resources managed by the application. While multitenant applications themselves are

Chapter 18 Less Common Requirements

286

quite common, they pose some unique challenges related to identity management.

Users are typically authorized to access specific tenants. Scenarios where a user might

need to access multiple tenants include consultants working for multiple corporate

clients or administrative employees needing access to test and production tenants of a

corporate application.

If a given user is authorized to access multiple tenants, the appropriate tenant can be

determined by mechanisms such as

•	 Requiring users to have a different identity for each tenant

•	 Providing a tenant selection mechanism before or after login

The first option may not be very convenient for users. The second option is often

achieved by including the tenant name in the URL by which a user accesses the

application or by providing a tenant selection mechanism for the user. Obviously, there

needs to be an access check so that only authorized users can select or access a tenant.

In addition to routing a user to a specific tenant, there may be a requirement

to enable different authentication policies across tenants. For a business-facing

application, it may be necessary to allow the administrators for each tenant to configure

different identity-related preferences, such as password strength requirements, the

identity provider(s) by which to authenticate users, or the allowed length of single sign-

on sessions. It may also be necessary to support the ability of customers to retrieve log

data but only for their tenant. In short, a multitenant application has to satisfy all the

usual identity-related requirements, but may have to provide the ability for each tenant

to have their own identity-related configuration settings as well as access to identity-

related log data for their tenant.

�Summary
We’ve covered several less common use cases that might apply to your environment to

help you identify such requirements early in a project. In the next chapter, we’ll cover

some mistakes that have led to breaches to help you avoid a similar scenario.

Chapter 18 Less Common Requirements

287

�Key Points
•	 Applications may need to accommodate family relationships,

temporary accounts, users changing status, and users who may need

to defederate their identity.

•	 Users in some scenarios may not have email accounts.

•	 Merging of identity repositories during company mergers may

require changing usernames and supporting legacy applications’

need for old usernames.

•	 Account linking allows users to link multiple remote identities to one

local account and authenticate with any of them to use that account.

•	 Progressive profiling enables an application to build up user profiles

over time.

•	 Impersonation for support purposes has potential for abuse which

can be mitigated with customized troubleshooting applications.

•	 If an application supports multiple identity providers, a discovery

mechanism is needed to determine the correct identity provider to

use for each user.

Chapter 18 Less Common Requirements

289

CHAPTER 19

Failures
Those who cannot remember the past are condemned to repeat it.

—George Santayana, Spanish philosopher, poet, and novelist, from
The Life of Reason, vol. 1 (1905)

We have covered several aspects of identity management relevant to an application

development project. Writing an application with perfect identity management will be

for naught, however, if flaws in your environment or processes introduce a vulnerability,

especially one that compromises sensitive identity data. It is often said that one can

learn a lot from failure. When it comes to identity management, however, we think it

is preferable to learn from others’ failures rather than your own. Inspired by George

Santayana’s advice about the need to learn from the past, we’ve collected stories of past

security breaches and their causes to help you avoid making such mistakes in your

environment.

This chapter describes failures that resulted in significant breaches or exposure of

identity data. There may be some wonderfully interesting and obscure cryptography

bugs that have caused a breach somewhere. We won’t be covering any here because,

sadly, many breaches have been caused by very simple failures. While there are

many attack vectors, the annual Verizon Data Breach Reporti provides some valuable

statistics on the top causes behind breaches. Hacking, malware, human error, and social

engineering topped the lists in the 2020ii, 2021iii and 2022iv reports. You’ll see those and

more in the following stories. Take note of the root causes in each story and avoid them

in your projects!

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_19

https://doi.org/10.1007/978-1-4842-8261-8_19

290

�Pay Attention to Process
Our first case doesn’t involve technology or a breach of identity data, but we included

it because it underscores the importance of securing not just technology but also

processes. In 2015, Edward Hornsey, an enterprising young businessman, hit upon the

idea of buying used iPhones, many of which were stolen, and returning them to Apple to

take advantage of their liberal return policy. He received shiny new replacement phones

in exchange, which he was then able to sell at a handsome profit. Surprisingly, he

managed to do this 51 times before Apple caught on. At the time, Apple did not check to

see if a returned phone had been reported stolen or was being returned by the registered

owner of the phone. Nor did Apple have any check on the number of phones returned

by a single person. This demonstrates the necessity of designing appropriate anti-fraud

mechanisms and identity checks into business processes. In case you are wondering,

Apple did catch on and fix its processes, and Mr. Hornsey was duly convicted of fraud

and sent to jail. Don't try to replicate his scheme at home.

Another classic example of an attack that involved no technology beyond charm and

chocolate, yes you read that correctly, chocolate, is the 2007 social engineering attack by

a perpetrator who purloined 21 million euros of jewels from safe deposit boxes at ABN

AMRO Bank in Belgium.v The thief’s charm and gifts of chocolate were apparently used

to obtain safe deposit box keys and information about the diamonds. Don’t shortcut

security processes, even for charming, chocolate-bearing customers!

Another failure occurred in 2006 when office workers employed by The Boston Globe

newspaper mistakenly printed out lists of subscribers’ credit card and bank routing

numbers. Rather than shred the printouts, the workers placed them in a recycling bin.

This environmentally conscious newspaper used recycled paper for routing slips for

the bundles of newspapers they distribute to newspaper vendors. As you suspected, the

recycled printouts with customer credit card and bank information were used to wrap

bundles of newspapers that were then distributed all around the city of Boston.vi The

newspaper certainly earned an “A” for environmental awareness, but an “F” for data

protection that day. If you handle any identity information, avoid printing sensitive

information except where absolutely necessary. In addition, provide shredders and

train all staff regularly on data protection procedures, including shredding printouts

with sensitive information. These examples highlight the need to analyze any of your

processes that touch identity data and other sensitive information to ensure there are

adequate process safeguards to prevent breaches.

Chapter 19 Failures

291

�Beware of Phishy Emails
Don’t take the bait when someone is phishing! Continuing the unfortunate tale of

breaches is Anthem which suffered a breach in 2015 impacting 78.8 million records

including social security numbers, birthdays, addresses, email, and income data.vii

The Anthem breach is suspected to have originated in a single employee inadvertently

clicking on a link in a phishing email containing malware. At the time, Anthem had on

the order of 50,000 employees and a single person clicking a dodgy email may have

opened up a door for hackers. Sadly, the list of breaches caused by phishing attacks

continues unabated. In 2018, UnityPoint Health fell victim to a phishing attack, resulting

in the exposure of 1.4 million patient records including names, addresses, medical

data, and possibly social security numbers and payment card information.viii Aultman

Health Foundation was compromised by phishing, impacting over 42,000 patients.ix

MedSpring Urgent Care in Austin Texas compromised over 13,000 patients’ data as

a result of a successful phishing attack.x This should underscore the importance of

security training, endpoint protection software, and procedures/tools to help employees

recognize phishing attacks which may come in the form of emails, text messages, or even

voicemails. Implementing a comprehensive program of security measures, for defense in

depth, may help reduce or contain the damage if someone falls for a phishing attack, but

preventing malware in the first place is preferable.

�Use Multi-factor Authentication
While the causes behind some breaches do not involve technology, there are certainly

many that do. In November 2015, JP Morgan announced they’d suffered a data breach

of 83 million customers’ accounts.xi At the time, it was the largest data breach suffered

by an American financial institution. This breach was the result of an attack that began

with stealing an employee’s credentials and then gaining access to the bank’s network

through a lone server that did not require multi-factor authentication. The moral of

this story is one of attention to detail. Have accurate lists of servers, check that multi-

factor authentication is required for access to all access points and sensitive resources,

and repeat the checks regularly. Rather than rely on error-prone manual processes,

use automated processes to identify servers for asset management, build servers with

Chapter 19 Failures

292

secure configuration, and automate regular security scans to ensure all servers remain

configured to secure build standards. Scan networks and use device management

regularly to find any equipment that does not meet secure configuration standards.

�Stay on Top of Patches
While we’re on the topic of staying on top of things, we should cover the 2017 Equifax

breach. This breach exposed the personal data of 143 million people. The breach

was made possible when Equifax did not act on security vulnerability notices for its

technology stack. A vulnerability in the Apache Struts technology (CVE-2017-5638)xii

was made public on March 6, 2017.xiii A patch was promptly made available by Apache.xiv

Installing a patch requires time to update the impacted software and thoroughly test

applications relying on the patched technology. Care must be taken to ensure the

installation of a patch doesn’t cause outages or other issues. In this case, however,

aggressive attempts to take advantage of the vulnerability were already being reported in

March.xv Unfortunately for the victims in this breach, Equifax failed to patch its systems

for this known vulnerability. Equifax reported that its systems were breached in May of

2017, two months after the patch for the vulnerability was provided.xvi The lesson here

is the necessity of knowing your infrastructure and technology stack, monitoring the

vulnerability announcements for each technology used, and having a process to quickly

triage and apply patches for critical vulnerabilities. It is challenging to identify and keep

up with patches even in small environments, so leveraging automation, at least for

identifying vulnerabilities, is essential.

�Secure Your Cloud Storage
Just because you use cloud services with rigorous security practices doesn’t give you

a free ride. If you use a cloud service, you must configure and use it securely. In 2018,

MBM, which runs a company called Limoges Jewelry (a Walmart partner), exposed

the personal information of 1.3 million customers via an improperly secured Amazon

S3 bucket. This S3 bucket contained a database backup file and left this information

publicly exposed for many weeks. The compromised information included names,

addresses, phone numbers, email addresses, plaintext passwords, and encrypted credit

card information.xvii A similar incident, in 2017, this time by a Verizon partner, exposed

Chapter 19 Failures

293

personal information and PINs of up to 14 million Verizon customers via an improperly

secured S3 bucket.xviii Continuing the pattern, Uber exposed the personal information

of 57 million users in a vulnerable S3 bucket.xix A Florida credit repair firm, National

Credit Federation, exposed data including names, addresses, driver’s licenses, dates of

birth, social security numbers, and credit reports for tens of thousands of customers in

a similar fashion.xx Learn from these examples and check the configuration of any S3

buckets you use, but don’t stop there. There were a surprising number of discoveries by

security researchers from 2019 through 2021 of improperly secured cloud databases.

VoIP Provider Broadvoice inadvertently left an unsecured Elasticsearch database

exposed to the Internet that contained more than 350 million records. The data involved

included caller names, phone numbers, city, state, and, in some cases, call transcripts.xxi

At the time the breach was reported, it was unclear if the information had been accessed

and misused by unauthorized parties. The country of Thailand inadvertently exposed

personal information including names, passport numbers, visas, and residency status

of over 106 million travelers in an unprotected Elasticsearch database containing ten

years of information. Thailand promptly addressed the issue when discovered by

cybersecurity researchers and announced that the unsecured database had not been

accessed by unauthorized parties.xxii Cybersecurity analytics firm Cognyte exposed

an Elasticsearch database to the Internet without authentication required for access.

The database contained more than five billion records of data culled from previous

breaches, which included names, email addresses, passwords, and the original source

breach. It is unclear if the data was accessed by unauthorized users.xxiii Furthermore,

researchers discovered numerous mobile applications with improperly secured Firebase

databases.xiv An easy way to reduce the likelihood of a costly data breach is to simply take

the time to periodically check the configuration of any cloud storage you use, such as S3

buckets, Elasticsearch, MongoDB, and Firebase.

�Encrypt Sensitive Data
Another critical lesson can be learned from the breach of Sony PlayStation Network. The

Sony attack involved 77 million accounts, 12 million of which had unencrypted data.

This resulted in the compromise of names, emails, passwords, addresses, and credit card

numbers.xxv The lesson here concerns the need to protect data. If you handle sensitive

data, and identity data is by definition considered sensitive, you should encrypt the data

at rest and in transit. This protection should extend to backups and log files. In addition,

Chapter 19 Failures

294

logs should be scanned to ensure sensitive data isn’t leaked to log files. Twitter learned

this lesson the hard way when a bug inadvertently wrote out cleartext passwords to log

files and they didn’t discover the issue for months.xxvi Legislators around the world are

reacting to public outrage about data breaches and enacting privacy legislation with

sanctions for companies that fail to adequately protect personal data. In the event of a

breach, these fines may be avoided, or at least significantly reduced, if data is protected

by proper encryption.

�Do Not Store Cleartext Passwords
It is risky to store passwords in cleartext. Unfortunately, numerous breaches of

cleartext passwords show that many sites have run this risk, to the detriment of their

customers. The third largest data breach in Finnish history resulted in the compromise

of usernames and cleartext passwords of 130,000 users of the New Business Center, a site

for entrepreneurs.xxvii A breach of ClixSense, a site for viewing ads and surveys, resulted

from an unsecured older server with access to a primary database. This breach exposed

personal information such as names, email addresses, dates of birth, and IP addresses

as well as the cleartext passwords of 6.6 million users.xxviii A service called “Teen Safe,”

designed to allow parents to track their children’s phone activity, compromised the

data of tens of thousands of customers. The data exposed included parent emails as

well as children’s Apple ID and cleartext password for the Apple ID. This incident was

caused by improperly secured servers in Amazon Cloud, but the impact of the breach

was compounded by passwords stored in cleartext.xxix All we can say is, when it comes to

storing passwords in cleartext, just don’t.

�Provide Security Training to Developers
Secure infrastructure and practices won’t help if applications themselves contain coding

vulnerabilities. A good place to start for advice on secure coding practices is the most

recent version of the Open Web Application Security Project (OWASP) Top 10 security

and coding guidance.

•	 OWASP Top 10 – 2021xxx

This site contains advice about the most common coding vulnerabilities and how to

avoid them.

Chapter 19 Failures

295

Heartland Payment Systems suffered a data breach in 2008 that exposed 134 million

credit cards and was caused by a SQL injection attack.xxxi This type of attack takes

advantage of applications that do not properly validate input that is subsequently used

to form queries against back-end data systems. The Heartland breach in 2008 might have

been prevented had they heeded the 2007 version of the OWASP Top 10, which showed

injection-style attacks as number two in the list.xxxii They are easy attacks to perform and

automate but can be prevented with proper input validation. To reduce vulnerabilities in

application code, ensure that developers are thoroughly trained on the current OWASP

Top 10 application security risks and how to prevent them. In addition, to mitigate

the risk of human error, institute code reviews and automated software vulnerability

scanning to identify vulnerabilities in your application code.

�Vet Your Partners
Many companies today use a dizzying array of vendors, and if their access is not properly

managed and segregated, the results can be disastrous. The retail company Target

announced in 2014 that it had been attacked, resulting in the exposure of 40 million card

numbers and personal data of 70 million customers. This attack is suspected to have

originated in the compromise of Target’s HVAC (heating, ventilation, and air conditioning)

contractor via a phishing attack which installed a Citadel Trojan. Unfortunately, there

was inadequate separation between the network access granted to the HVAC vendor and

other systems on Target’s business network. The attackers were able to leverage the access

provided to the HVAC vendor to access vulnerable systems on Target’s network and from

there to access POS (point of sale) systems where they collected credit and debit card data.

While Target had installed security tools such as FireEye and Symantec, key monitoring

features were either turned off or not monitored.xxxiii The lesson to learn from this breach

is to thoroughly validate the security practices of all partners on an ongoing basis and

ensure adequate network segregation between low sensitivity systems and systems with

highly sensitive data. Applying the principle of least privilege by granting the minimum

necessary access to each actor in an environment can provide another layer of defense.

Last but not least, ensure monitoring systems are turned on and pay attention to alerts

from security monitoring systems.

There are several more examples of breaches related to business partners. [24]7.

ai, a customer service and chat vendor used by several retailers such as Sears, Kmart,

Best Buy, and Delta, caused a breach in 2018 resulting in exposure of personal data and

Chapter 19 Failures

296

credit card information for hundreds of thousands of customers of each of these large

companies.xxxiv In 2017, Deep Root Analytics, a small professional services company used

by the Republican National Committee, mistakenly put the data of 200 million voters

on a publicly accessible server.xxxv Volkswagen announced in 2021 that personal data

on over 3.3 million Audi customers or prospective customers was compromised by a

business partner that left the data exposed sometime between 2019 and 2021. The data

involved was part of a dataset used between 2014 and 2019 and included first and last

names, email addresses, and phone numbers as well as any cars bought or leased.xxxvi To

avoid a repeat of these cases, make sure to track all partners you use, vet their security

practices and certifications, and ask for information on whether they share your data

with any of their partners and how they’ve vetted their partners.

�Insider Threat
Some breaches are caused by insiders. The Verizon Data Breach Investigations Report

for 2018 indicated that 28% of attacks were perpetrated by insiders.xxxvii The same report

for 2022 shows this has declined slightly since 2018, but is still around 20%.xxxviii While the

motivation in most cases remains financial gain, perhaps the most infamous example of

insider threat was not. Edward Snowden, a systems administration contractor working

at the US National Security Agency (NSA), was able to exfiltrate thousands of top secret

documents from a Defense Intelligence Agency network. The exact scope of the breach

may never be known, but the impact to political strategy as well as to offensive national

cybersecurity interests will be felt for years. Snowden apparently accessed 1.7 million files

using automated web-crawling software on networks to which he was legitimately given

access or obtained credentials to access. He configured the software to look for specific

topics. His activity was apparently not detected in part because he worked in a field office

that had not yet upgraded systems to implement the latest security controls which might

have detected his activity.xxxix, xl

The Snowden incident illustrates the threat of a malicious insider. Several lessons

can be learned from the Snowden incident. The first is to implement the classic security

principle of granting each person the least privilege required to do their job and to

design access models to enforce segregation of duties. Admittedly, this is challenging

in smaller organizations where each person has many responsibilities. A second

protection is to encrypt data at rest and in transit and implement adequate protection

of the encryption keys. A third technique is to employ security monitoring software that

Chapter 19 Failures

297

can detect anomalous activity (especially high-volume data retrieval and exfiltration).

It usually takes significant time to tune such solutions so that they do not generate a

time-wasting volume of false positives. Data loss prevention (DLP) solutions, which are

designed to prevent exfiltration of data by detecting anomalous traffic out of a network

or device, can also be used. Unfortunately, none of these techniques can guarantee

protection against data theft. However, if there is a breach and such solutions are not in

place, it will look much worse for the victimized organization.

�Summary
This chapter was a very sobering chapter to write. The number and magnitude of

breaches seem to continually get bigger and bigger. The root causes are often basic

issues that seem easy to avoid in theory, but are proving to be stubbornly challenging

in the scale and demands of real-world environments. George Santayana, the Spanish

philosopher, poet, and novelist, said, “Those who cannot remember the past are

condemned to repeat it.” We hope the lessons from past breaches help you avoid

following in the footsteps of the many companies featured in the preceding sections. If

you are writing an application that contains or uses identity data, you have an obligation

to protect that data. Unlike the game of golf, there is unfortunately no handicapping

system to give beginners a break. If you are creating an application, you must follow

security best practices for the coding, deployment, and environment of the application

as well as people, processes, and partners involved in the project.

Furthermore, in today’s world, it’s not good enough to just implement security

technology. You need to be able to demonstrate diligent adherence to security- and

privacy-related policies and procedures, which is related to compliance, the topic of our

next chapter.

�Key Points
•	 Processes, in addition to infrastructure, should be analyzed for

vulnerabilities.

•	 Train users to recognize and avoid phishing attacks to reduce risk of

malware.

Chapter 19 Failures

298

•	 Use multi-factor authentication to mitigate the risk of compromised

passwords.

•	 Monitor for software vulnerabilities and apply patches when

vulnerabilities are announced. Leverage automation and tools for

this process where possible.

•	 Follow secure configuration guidelines for all cloud-hosted

components such as Amazon S3 buckets and cloud databases such as

Elasticsearch, Firebase, and MongoDB.

•	 Encrypt sensitive data at rest and in transit, including backups and

log files.

•	 Avoid storing cleartext passwords.

•	 Provide security and secure coding training for developers.

•	 Vet partners by checking certifications and conducting due diligence

evaluation of security practices.

•	 Mitigate the risk of insider threat by granting minimum needed

privileges and frequently reviewing access grants as well as logs.

�Notes

	 i.	 https://enterprise.verizon.com/resources/reports/dbir/

	 ii.	 https://www.verizon.com/business/resources/reports/2020-

data-breach-investigations-report.pdfx

	 iii.	 https://www.verizon.com/business/resources/reports/2021-

data-breach-investigations-report.pdfx

	 iv.	 https://www.verizon.com/business/resources/reports/2022/

dbir/2022-data-breach-investigations-report-dbir.pdf

	 v.	 https://www.independent.co.uk/news/world/europe/thief-

woos-bank-staff-with-chocolates-then-steals-diamonds-

worth-163-14m-5332414.html

Chapter 19 Failures

https://enterprise.verizon.com/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/2020-data-breach-investigations-report.pdfx
https://www.verizon.com/business/resources/reports/2020-data-breach-investigations-report.pdfx
https://www.verizon.com/business/resources/reports/2021-data-breach-investigations-report.pdfx
https://www.verizon.com/business/resources/reports/2021-data-breach-investigations-report.pdfx
https://www.verizon.com/business/resources/reports/2022/dbir/2022-data-breach-investigations-report-dbir.pdf
https://www.verizon.com/business/resources/reports/2022/dbir/2022-data-breach-investigations-report-dbir.pdf
https://www.independent.co.uk/news/world/europe/thief-woos-bank-staff-with-chocolates-then-steals-diamonds-worth-163-14m-5332414.html
https://www.independent.co.uk/news/world/europe/thief-woos-bank-staff-with-chocolates-then-steals-diamonds-worth-163-14m-5332414.html
https://www.independent.co.uk/news/world/europe/thief-woos-bank-staff-with-chocolates-then-steals-diamonds-worth-163-14m-5332414.html

299

	 vi.	 www.computerworld.com/article/2560335/security0/

security-snafu-at-boston-globe-exposes-

subscriber-data.html

	 vii.	 https://nakedsecurity.sophos.com/2019/05/13/two-chinese-

hackers-indicted-for-massive-anthem-breach/

	viii.	 https://www.hipaajournal.com/unitypoint-health-phishing-

attack-1-4-million-patients/

	 ix.	 https://www.healthcareitnews.com/news/phishing-hack-

ohio-provider-breaches-data-42000-patients-month

	 x.	 https://www.databreaches.net/tx-medspring-urgent-care-

notifies-13000-patients-after-phishing-attack/

	 xi.	 https://archive.nytimes.com/dealbook.nytimes.

com/2014/12/22/entry-point-of-jpmorgan-data-

breach-is-identified/

	 xii.	 https://nvd.nist.gov/vuln/detail/CVE-2017-5638

	xiii.	 https://www.imperva.com/blog/cve-2017-5638-new-remote-

code-execution-rce-vulnerability-in-apache-struts/

	 xiv.	 https://cwiki.apache.org/confluence/display/WW/S2-045

	 xv.	 www.imperva.com/blog/cve-2017-5638-new-remote-code-

execution-rce-vulnerability-in-apache-struts/

	xvi.	 https://www.wired.com/story/equifax-breach-no-excuse/

	xvii.	 https://www.retailtouchpoints.com/features/news-briefs/

walmart-partner-exposed-personal-data-of-1-3-million-sho

ppers

	xviii.	 https://threatpost.com/third-party-exposes-14-million-

verizon-customer-records/126798/

	xix.	 https://www.techtarget.com/searchsecurity/

news/252488361/The-Uber-data-breach-cover-

up-A-timeline-of-events

Chapter 19 Failures

http://www.computerworld.com/article/2560335/security0/security-snafu-at-boston-globe-exposes-subscriber-data.html
http://www.computerworld.com/article/2560335/security0/security-snafu-at-boston-globe-exposes-subscriber-data.html
http://www.computerworld.com/article/2560335/security0/security-snafu-at-boston-globe-exposes-subscriber-data.html
https://nakedsecurity.sophos.com/2019/05/13/two-chinese-hackers-indicted-for-massive-anthem-breach/
https://nakedsecurity.sophos.com/2019/05/13/two-chinese-hackers-indicted-for-massive-anthem-breach/
https://www.hipaajournal.com/unitypoint-health-phishing-attack-1-4-million-patients/
https://www.hipaajournal.com/unitypoint-health-phishing-attack-1-4-million-patients/
https://www.healthcareitnews.com/news/phishing-hack-ohio-provider-breaches-data-42000-patients-month
https://www.healthcareitnews.com/news/phishing-hack-ohio-provider-breaches-data-42000-patients-month
https://www.databreaches.net/tx-medspring-urgent-care-notifies-13000-patients-after-phishing-attack/
https://www.databreaches.net/tx-medspring-urgent-care-notifies-13000-patients-after-phishing-attack/
https://archive.nytimes.com/dealbook.nytimes.com/2014/12/22/entry-point-of-jpmorgan-data-breach-is-identified/
https://archive.nytimes.com/dealbook.nytimes.com/2014/12/22/entry-point-of-jpmorgan-data-breach-is-identified/
https://archive.nytimes.com/dealbook.nytimes.com/2014/12/22/entry-point-of-jpmorgan-data-breach-is-identified/
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://www.imperva.com/blog/cve-2017-5638-new-remote-code-execution-rce-vulnerability-in-apache-struts/
https://www.imperva.com/blog/cve-2017-5638-new-remote-code-execution-rce-vulnerability-in-apache-struts/
https://cwiki.apache.org/confluence/display/WW/S2-045
http://www.imperva.com/blog/cve-2017-5638-new-remote-code-execution-rce-vulnerability-in-apache-struts/
http://www.imperva.com/blog/cve-2017-5638-new-remote-code-execution-rce-vulnerability-in-apache-struts/
https://www.wired.com/story/equifax-breach-no-excuse/
https://www.retailtouchpoints.com/features/news-briefs/walmart-partner-exposed-personal-data-of-1-3-million-shoppers
https://www.retailtouchpoints.com/features/news-briefs/walmart-partner-exposed-personal-data-of-1-3-million-shoppers
https://www.retailtouchpoints.com/features/news-briefs/walmart-partner-exposed-personal-data-of-1-3-million-shoppers
https://threatpost.com/third-party-exposes-14-million-verizon-customer-records/126798/
https://threatpost.com/third-party-exposes-14-million-verizon-customer-records/126798/
https://www.techtarget.com/searchsecurity/news/252488361/The-Uber-data-breach-cover-up-A-timeline-of-events
https://www.techtarget.com/searchsecurity/news/252488361/The-Uber-data-breach-cover-up-A-timeline-of-events
https://www.techtarget.com/searchsecurity/news/252488361/The-Uber-data-breach-cover-up-A-timeline-of-events

300

	 xx.	 https://www.zdnet.com/article/national-credit-

federation-leaked-us-citizen-data-through-

unsecured-aws-bucket/

	xxi.	 www.comparitech.com/blog/vpn-privacy/350-million-

customer-records-exposed-online/

	xxii.	 www.infosecurity-magazine.com/news/data-of-106-million-

visitors-to/

	xxiii.	 https://www.hackread.com/cybersecurity-firm-expose-data-

breach-records/

	xxiv.	 https://cybernews.com/security/research-popular-android-

apps-with-142-5-million-collective-downloads-are-leaking-

user-data/

	xxv.	 https://www.extremetech.com/gaming/84218-how-the-

playstation-network-was-hacked

	xxvi.	 www.zdnet.com/article/twitter-says-bug-exposed-

passwords-in-plaintext/

	xxvii.	 https://thehackernews.com/2018/04/helsingin-

uusyrityskeskus-hack.html

	xxviii.	 https://thehackernews.com/2016/09/plaintext-passwords-

leaked.html

	xxix.	 https://www.theverge.com/2018/5/21/17375428/teensafe-

app-breach-security-data-apple-id

	xxx.	 https://owasp.org/Top10/

	xxxi.	 https://www.computerworld.com/article/2522155/heartland-

pays-amex--3-6m-over-2008-data-breach.html

	xxxii.	 https://owasp.org/www-pdf-archive/OWASP_Top_10_2007.pdf

	xxxiii.	 https://arxiv.org/pdf/1701.04940.pdf

	xxxiv.	 https://www.cybergrx.com/resources/research-and-

insights/blog/top-11-third-party-breaches-of-2018-so-

far-data-breach-report

Chapter 19 Failures

https://www.zdnet.com/article/national-credit-federation-leaked-us-citizen-data-through-unsecured-aws-bucket/
https://www.zdnet.com/article/national-credit-federation-leaked-us-citizen-data-through-unsecured-aws-bucket/
https://www.zdnet.com/article/national-credit-federation-leaked-us-citizen-data-through-unsecured-aws-bucket/
http://www.comparitech.com/blog/vpn-privacy/350-million-customer-records-exposed-online/
http://www.comparitech.com/blog/vpn-privacy/350-million-customer-records-exposed-online/
http://www.infosecurity-magazine.com/news/data-of-106-million-visitors-to/
http://www.infosecurity-magazine.com/news/data-of-106-million-visitors-to/
https://www.hackread.com/cybersecurity-firm-expose-data-breach-records/
https://www.hackread.com/cybersecurity-firm-expose-data-breach-records/
https://cybernews.com/security/research-popular-android-apps-with-142-5-million-collective-downloads-are-leaking-user-data/
https://cybernews.com/security/research-popular-android-apps-with-142-5-million-collective-downloads-are-leaking-user-data/
https://cybernews.com/security/research-popular-android-apps-with-142-5-million-collective-downloads-are-leaking-user-data/
https://www.extremetech.com/gaming/84218-how-the-playstation-network-was-hacked
https://www.extremetech.com/gaming/84218-how-the-playstation-network-was-hacked
http://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext/
http://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext/
https://thehackernews.com/2018/04/helsingin-uusyrityskeskus-hack.html
https://thehackernews.com/2018/04/helsingin-uusyrityskeskus-hack.html
https://thehackernews.com/2016/09/plaintext-passwords-leaked.html
https://thehackernews.com/2016/09/plaintext-passwords-leaked.html
https://www.theverge.com/2018/5/21/17375428/teensafe-app-breach-security-data-apple-id
https://www.theverge.com/2018/5/21/17375428/teensafe-app-breach-security-data-apple-id
https://owasp.org/Top10/
https://www.computerworld.com/article/2522155/heartland-pays-amex--3-6m-over-2008-data-breach.html
https://www.computerworld.com/article/2522155/heartland-pays-amex--3-6m-over-2008-data-breach.html
https://owasp.org/www-pdf-archive/OWASP_Top_10_2007.pdf
https://arxiv.org/pdf/1701.04940.pdf
https://www.cybergrx.com/resources/research-and-insights/blog/top-11-third-party-breaches-of-2018-so-far-data-breach-report
https://www.cybergrx.com/resources/research-and-insights/blog/top-11-third-party-breaches-of-2018-so-far-data-breach-report
https://www.cybergrx.com/resources/research-and-insights/blog/top-11-third-party-breaches-of-2018-so-far-data-breach-report

301

	xxxv.	 https://gizmodo.com/gop-data-firm-accidentally-leaks-

personal-details-of-ne-1796211612

	xxxvi.	 www.zdnet.com/article/volkswagen-audi-disclose-data-

breach-impacting-over-3-3-million-customers-interested-

buyers/

	xxxvii.	 https://www.verizon.com/business/

verizonpartnersolutions/business/resources/reports/

DBIR_2018_Report.pdf

	xxxviii.	 https://www.verizon.com/business/resources/reports/2022/

dbir/2022-data-breach-investigations-report-dbir.pdf

	xxxix.	 https://www.nbcnews.com/news/world/how-snowden-did-it-

flna8C11003160

	 xl.	 https://www.venafi.com/blog/deciphering-how-edward-

snowden-breached-the-nsa

Chapter 19 Failures

https://gizmodo.com/gop-data-firm-accidentally-leaks-personal-details-of-ne-1796211612
https://gizmodo.com/gop-data-firm-accidentally-leaks-personal-details-of-ne-1796211612
http://www.zdnet.com/article/volkswagen-audi-disclose-data-breach-impacting-over-3-3-million-customers-interested-buyers/
http://www.zdnet.com/article/volkswagen-audi-disclose-data-breach-impacting-over-3-3-million-customers-interested-buyers/
http://www.zdnet.com/article/volkswagen-audi-disclose-data-breach-impacting-over-3-3-million-customers-interested-buyers/
https://www.verizon.com/business/verizonpartnersolutions/business/resources/reports/DBIR_2018_Report.pdf
https://www.verizon.com/business/verizonpartnersolutions/business/resources/reports/DBIR_2018_Report.pdf
https://www.verizon.com/business/verizonpartnersolutions/business/resources/reports/DBIR_2018_Report.pdf
https://www.verizon.com/business/resources/reports/2022/dbir/2022-data-breach-investigations-report-dbir.pdf
https://www.verizon.com/business/resources/reports/2022/dbir/2022-data-breach-investigations-report-dbir.pdf
https://www.nbcnews.com/news/world/how-snowden-did-it-flna8C11003160
https://www.nbcnews.com/news/world/how-snowden-did-it-flna8C11003160
https://www.venafi.com/blog/deciphering-how-edward-snowden-breached-the-nsa
https://www.venafi.com/blog/deciphering-how-edward-snowden-breached-the-nsa

303

CHAPTER 20

Compliance
“Compliance” is just a subset of “governance” and not the other way around.

—Pearl Zhu, from Digitizing Boardroom (2016)

Mention the word “compliance” to an application development team, and you may get

some quizzical looks. What exactly is compliance and why does it matter to application

developers? This chapter will provide a brief overview of compliance, why it’s needed,

how it benefits application providers, and how to approach it.

�What Is Compliance?
Compliance is conforming to a rule, such as a specification, policy, standard, or law.

Organizations set goals for, and aspire to achieve, compliance to ensure that their

policies and practices are in conformance with relevant laws, policies, and regulations

or relevant standards. While compliance may be mandated and enforced differently

across the globe, it is designed to check that measures are in place to protect the privacy

of individuals and the confidentiality, availability, and integrity of services and data. One

way of categorizing different types of compliance is

•	 Compliance required by legislation

•	 Compliance required by an industry

•	 Elective compliance

For compliance that is required by legislation or a particular industry, you must

determine if the compliance requirements apply to your project and take steps to comply

if so. For elective compliance, you can determine if it is advantageous to you to comply.

A later section will explain why compliance can be beneficial for your project. If you are

part of a larger company, compliance requirements may be given to you by a compliance

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_20

https://doi.org/10.1007/978-1-4842-8261-8_20

304

team, possibly in conjunction with outside auditors. If you are part of a small startup

building a new application, you may wish to hire an auditor to help you understand the

requirements that apply for your type of project.

�Government-Mandated Compliance
Many governments have established legislation regarding privacy and data protection.i

Perhaps the most well known is the GDPR (General Data Protection Regulation).ii

Enacted in the European Union, it took effect in May of 2018. It contains 99 articles

which describe the principles underlying the GDPR, the specific provisions of the GDPR,

supervisory authorities, penalties for nonconformance, and practical matters related to

implementation. The GDPR describes a legal basis for processing personal data, outlines

the obligations of organizations which collect and process personal data, and establishes

the rights of data subjects whose personal data is being processed.

The scope of applicability for the GDPR is any product or service that processes

(e.g., collects, stores, uses, transmits, deletes) personal information (PI) of EU residents

regardless of where such information is held. This includes companies in countries

outside the EU who merely hold or process data about people in the EU. It applies to

companies of any size, though Article 30 of the GDPR outlines some recordkeeping

exemptions for companies with fewer than 250 employees and who meet additional

criteria for data processing. The GDPR also requires that the latest technology be

used for developing applications, privacy must be embedded into the design of the

application, and the application is released with privacy default settings. If your service

is likely to be used by residents of the EU, you need to understand and comply with the

requirements stemming from this legislation.

The GDPR is the most comprehensive change to data privacy legislation in over

20 years. Its effects are being felt globally, and other countries are establishing similar

changes. In the United States, the State of California passed the California Consumer

Privacy Act (CCPA), a bill that enhances consumer rights for residents residing in the

state. The CCPA went into effect in January 2020 and entitles residents to know what

personal data is being collected, whether it’s sold or shared, the right to opt out to the sale

or sharing of their personal data, access to their data, and equal service and price even if

they exercise their opt-out choice. The California Privacy Rights Act (CPRA) adds to and

amends the CCPA. It adds, among other things, a right for consumers to correct inaccurate

personal information about themselves and a right to limit the use and disclosure of

sensitive personal information. Most of its provisions will take effect on January 1, 2023.

Chapter 20 Compliance

305

Many other states have privacy legislation in the works. In 2021, the state of Virginia

passed the Virginia Consumer Data Protection Act (VCDPA) which takes effect on

January 1, 2023, and Colorado passed the Colorado Privacy Act (CPA) which takes

effect on July 1, 2023. Both provide comprehensive privacy legislation and offer many

rights similar to the CCPA and CPRA, but each has minor differences in definitions,

applicability, compliance, and enforcement. Over half of the US states are considering

their own consumer privacy acts.

At the US federal level, the Federal Trade Commission (FTC) Fair Information

Practice Principles (FIPP)iii is designed to ensure that the practice of collecting

information is fair and provides adequate information privacy protection. It is based on

the principles of Notice/Awareness, Choice/Consent, Access/Participation, Integrity/

Security, and Enforcement/Redress. The FTC gives recommendations for maintaining

privacy-friendly, consumer-oriented data collection practices which are self-regulated.

These principles form the basis for many sectoral laws, including the Fair Credit

Reporting Act and the Right to Financial Privacy Act.

Similarly, HIPAA (Health Insurance Portability and Accountability)iv and HITECH

(Health Information Technology for Economic and Clinical Health)v are US legislation

which apply to the handling of healthcare-related data. These frameworks may apply to

you if you process, store, or transmit any electronic healthcare data for your customers.

These are just a few examples of government-mandated requirements.

�Industry Compliance
Compliance requirements can stem from an industry when a consortium of companies

in an industry creates a standard and a means of enforcing it. The payment card

industry requires all organizations that handle payment card data, including credit

and debit cards, to comply with a set of standards, known as PCI DSS (Payment Card

Industry Data Security Standard).vi This set of security standards was created by the

PCI Security Standards Council, which was founded by five international credit card

companies (AMEX, Discover, JCP, Mastercard, and Visa).vii The standards are designed to

protect payment card data held or processed by companies. The standards are updated

periodically and documents for PCI DSS v4 are now available.1

1 www.pcisecuritystandards.org/document_library/

Chapter 20 Compliance

http://www.pcisecuritystandards.org/document_library/

306

Compliance with PCI DSS is enforced by the individual payment brands (the

five financial institutions that founded the PCI DSS). The PCI DSS controls apply to

systems which process, store, or transmit cardholder data or authentication credentials

and also apply to any systems connected to an environment that directly contains or

processes such cardholder data. If your organization accepts, handles, or stores any type

of payment card data, or if you outsource payment processing to a third-party vendor

but can impact the security of the payment transactions in some way, you likely have

obligations under PCI DSS.

�Elective Compliance Frameworks
There are other security-related standards for which compliance is elective. Companies

can choose to be audited against these standards to demonstrate their practices and

operations follow the standard. For example, a company can elect to comply with the

ISO 27000 (International Organization for Standardization 27000 family of standards for

information security management systems).viii Another elective security standard is from

the CSA STAR (Cloud Security Alliance Security Trust Assurance and Risk) Program.ix

The CSA STAR program provides a comprehensive list of controls known as the Cloud

Controls Matrix (CCM). Compliance with these or other elective standards is a choice.

Companies can weigh the cost and level of effort for compliance against the benefits,

which can include achieving competitive advantage, expanding into new markets

or industries, supporting a brand image, or responding to customer audit requests

efficiently.

�Why Compliance
Compliance required by legislation or an industry is typically mandatory. Recent

years have seen the passage of privacy- and security-related legislation as a reaction

by governments to the alarming number of security breaches that have occurred. If

your project falls under the jurisdiction of legislation which requires compliance, you

must comply. Elective compliance, however, is a choice. There are several reasons why

companies choose to be certified against a set of security or privacy standards:

•	 Protect the sensitive data they process or hold

•	 Use certification as a competitive sales tool

Chapter 20 Compliance

307

•	 Show due diligence to minimize penalties in the event of a breach

•	 Cost savings and efficiency in handling customer audit requests

Each of these reasons can offer significant benefits, as described in the following

sections.

�Data Protection
The first reason for pursuing compliance with an elective standard is to ensure your

organization is doing its due diligence to protect the data for which you are under

contract to protect. This is essentially the “sleep well at night” argument for compliance.

The process of preparing for an audit initiates a thorough review of security- and

privacy-related practices. This identifies any lapses from policy or defined procedures

that might lead to vulnerabilities, so they can be fixed. Regular audits reinforce security

best practices as your organization grows and changes. Of course, passing an audit does

not guarantee an absence of security incidents. The retail store chain Target was certified

against the PCI DSS standard and unfortunately still suffered a significant breach.x

However, a properly implemented compliance framework and certification should

reduce the risk of a security incident and subsequent impact should an incident occur.

�Competitive Advantage
A second reason to obtain a compliance certification is because it can be used as a

competitive sales tool. With so many breaches in the news, and penalties for data

breaches increasing, customers are demanding more security assurances from their

vendors. Having a certification from an independent, third-party auditor can help

assuage customer concerns. This can reduce delays related to security concerns during

the sales cycle and may help close deals. Vendors with security-conscious customers

may find certification valuable for this reason.

�Reduce Penalties
Another good reason to obtain certification is to reduce penalties in the event of a

breach. For example, with the GDPR, the existence of a previously earned certification

is one factor taken into account when a fine is levied on an organization related to a

Chapter 20 Compliance

308

compromise of personal data. A certification is no guarantee against a breach, but if you

have audit evidence of due diligence in implementing best practices, you may receive

lower fines than if you do not have a certification in place.

�Efficiency
A final impetus to earn certification is efficiency and cost reduction. A given cloud

service today typically uses many components in its software stack and relies on a

number of cloud services. Many of the cloud services used by a company may have

visibility into its sensitive data including personal data of its customers. In order to

provide a secure service to customers, a company must ensure that every third party it

uses protects the data it shares with them. The challenge is how to obtain such assurance

efficiently from the vendors.

In the absence of any standards for privacy and security, each company would need

to define privacy and security standards and examine each of its vendors against them.

Such an examination would need to review a wide range of artifacts such as policies

and procedures for managing employees, assets, access, physical and environmental

security, software development practices, operations, network security, incident

management, and business continuity. The examination would also need to check

evidence that policies and procedures for all those areas are being followed and the

organization’s documented controls are operating effectively. This is a lot of information

to analyze.

The field work for such an audit can take a week or more. Even a small company

will typically have several vendors to review, and because there is always entropy in

organizations, it is wise to repeat audits at least annually. It would be very costly for a

company to conduct its own audits of every vendor it uses. From a vendor’s perspective,

it would be time-consuming to provide such evidence individually to each of their

customers. In the absence of standards, different customers would request different data

and perhaps in different formats, making the work to provide evidence to every customer

unmanageable.

Security- and privacy-related standards provide a standard list of practices and a

consistent expectation for evidence to demonstrate compliance with the standard. This

enables a company to hire an independent third-party auditor to conduct a review and

certify the company’s practices against a standard. A company’s customers can then

Chapter 20 Compliance

309

rely on the independent auditor’s assessment instead of conducting their own audit. A

vendor undergoes one audit (for each type of assessment) and can then share the official

audit report with all of its customers. Customers can use an auditor’s report as evidence

that they’ve done their due diligence to ensure they are using vendors who provide

an adequate level of data protection. The entire process is made more efficient and

manageable for vendors and customers alike.

�Compliance Landscape
Compliance frameworks are often divided into privacy and security categories, but

privacy frameworks typically include some form of security requirements because

security is a prerequisite for privacy.

�Security Compliance
Security compliance frameworks are mandatory for some industries. Compliance

with PCI DSS is required for the payment card industry. Compliance with HIPAA and

HITECH security rules is required in the United States for the healthcare industry.

FISMA (Federal Information Security Management Act) is required for US government

agencies and FedRAMP (Federal Risk and Authorization Management Program) for

cloud providers providing services to US government agencies. Companies can also

elect to be certified for elective security compliance frameworks. A list of some security-

related compliance frameworks is provided in Appendix G.

Privacy depends on security, so it is common for privacy-related legislation to

contain security requirements. The GDPR contains articles that require security of data

and privacy by design. HIPAA in the United States has a “Security Rule” that similarly

requires data stewards to adequately protect healthcare data. Also in the United States,

the Gramm-Leach-Bliley Act requires financial institutions to safeguard, and conform

to privacy practices for, customer financial information. When creating a security

compliance road map, be sure to include security requirements stemming from any

privacy-related obligations your project may have.

Chapter 20 Compliance

310

�Privacy Compliance
Many countries have now enacted privacy-related legislation to protect the rights of

individuals with respect to how their personal data is handled. In fact, over 100 countries

around the world have enacted some sort of privacy legislation.xi A few data privacy laws

and sources for identifying more are listed in Appendix F. Your project may be subject to

a region’s privacy laws if you receive, collect, process, or store data about people in that

country. In other words, you may need to comply with a country’s legislation, even if

your business does not have a legal presence in the country, as with the GDPR (General

Data Protection Regulation) in the EU. The same holds for privacy legislation enacted by

individual states in the United States.

The role you play in handling data influences your obligations. Privacy legislation

often differentiates between the responsibilities of a data controller and a data processor.

A data controller controls how personal data is used as documented in a contractual

agreement or policy. The data controller collects data from end users and has obligations

such as providing privacy notices, obtaining user consent for the use of their data, and

providing users with certain access to their data as well as the ability to correct it. A data

processor, on the other hand, processes data in accordance with instructions from a

data collector in a data processing agreement. Knowing your role as data controller or

processor is essential to understand your privacy obligations.

It is also important to determine privacy obligations early in the project cycle,

because they can impact the application design in order to give notice about the

purposes of data collection, obtain and record consent for how data is used, manage

data retention, and implement data correction and erasure features. Knowing such

requirements early in the project cycle is critical for a realistic project plan.

If you are writing an application that has any personal data about individuals, you

should understand the locations of your users and the privacy requirements that apply

for the jurisdictions applicable to your user population. You should also check security-

or privacy-related legislation for your industry. You need to know your role in the

handling of data, whether data collector or data processor, and the requirements for your

role. Once you have your compliance requirements, it’s time to prepare for and pursue

certification.

Chapter 20 Compliance

311

�Assessment and Certification
Some standards rely on self-assessment, but most require an audit by an independent

third-party organization certified to conduct the particular type of audit. Self-assessment

requires an organization to examine their policies and practices against the standard and

remedy any gaps. The CSA STAR framework’s first level of compliance is one example

that involves self-assessment. Even if insufficient for official certification, self-assessment

can be a useful first step in preparing for an independent, third-party audit.

For many other standards, an independent, third-party audit of policies, practices,

and operations against the standard is a requirement. The ISO 27000 family of standards,

for example, requires an independent audit for an organization to be considered

certified against these standards. When third-party assessment is required, the

organization creating a set of standards for compliance will typically certify auditors

or establish the standards for certifying them. Certified auditors then conduct the

assessments, in accordance with audit standards, to evaluate whether an organization

complies with the standards. Auditor certification ensures audits are carried out in a

rigorous, standard, and unbiased way and the use of certified auditors is required for

many certifications.

There is a lot of overlap between different cybersecurity-related compliance

frameworks. The Cloud Controls Matrix (CCM) created by the Cloud Security

Alliance (CSA) provides a useful mapping of controls relevant to cloud security and

privacy across different frameworks. Organizations wishing to pursue more than one

certification can easily see how a specific control, such as having an established change

control and configuration management process, will satisfy requirements in different

compliance frameworks.

�How to Proceed
Once you’ve identified relevant compliance frameworks for your project, you need to

plan the work required to implement and demonstrate compliance. The following list of

activities can help you understand and organize the effort:

•	 Identify the national, state, or industry-specific privacy legislation

applicable for the regions in which your business operates.

•	 Research privacy and security requirements for the countries or

regions in which your users reside.

Chapter 20 Compliance

312

•	 Identify cybersecurity requirements applicable for your industry.

•	 If you supply services to public sector organizations or process

government data, check for applicable government requirements.

•	 Identify elective security standards which may be beneficial to

demonstrate your security practices to prospective customers.

•	 Consult with legal, privacy, or security experts if you have any

questions about which legislation or security requirements apply.

•	 Create a data map that describes the data elements of all data

repositories and data flows for all data you handle.

•	 Note all data elements in the map which involve personal data.

•	 Document the reason for collecting the data and the data processing

activities to be performed with the data.

•	 Review data processing to ensure your application collects the

minimum data required in accordance with your privacy statement.

•	 If available, use a self-assessment tool for a compliance standard to

identify gaps that must be mitigated before an official audit.

•	 Retain a secondary auditor for advice on what to expect or an

informal assessment before an official audit to help you meet audit

requirements without wasting time on unnecessary tasks.

•	 Know the scope of evidence required for an audit. For some

certifications, a year’s worth of past evidence is required.

•	 Make a list of audit evidence required, and identify owners within

your organization for each category of evidence.

•	 Periodically check that owners understand the evidence required

and their teams are generating the evidence needed for an audit.

•	 Select a reputable third-party auditor with experience in your domain

and who will provide both an official audit result and an internal

report on recommended improvement activities.

•	 Prior to an audit, get the official list from the auditor of evidence

required. Work with owners to obtain the requested evidence.

Chapter 20 Compliance

313

•	 During the audit, additional information is often requested. Have

parties ready to gather additional evidence.

•	 Conduct a postaudit assessment after an audit to identify what went

well and how to improve the process for the next audit.

•	 Focus on one certification at a time.

�Summary
Privacy-related compliance is usually mandatory, by virtue of government legislation to

protect people’s privacy and personal data. Security-related compliance may be elective

in some cases, but is undertaken for several reasons: as a sales tool, to efficiently satisfy

customer demands for audits, to demonstrate due diligence and reduce penalties in the

event of a breach, or simply to help you sleep at night. There are myriad privacy laws

and security standards, but there is a lot of overlap across them. Once you’ve passed

a certification for one, you will likely be able to reuse some of the work to satisfy the

requirements of additional compliance frameworks. This chapter concludes our advice

for current projects, so in the last chapter, we’ll share our ideas about why we think

identity management will be even more important and necessary in the future.

�Key Points
•	 Compliance involves assessing and demonstrating adherence to a set

of controls.

•	 Privacy- and security-related compliance may be required by

legislation or industry.

•	 Security-related compliance can be chosen for security and business

advantage in scenarios where it is not mandatory.

•	 Privacy-related legislation is mandatory for entities which meet the

criteria set out in the legislation.

•	 Over 100 countries have enacted privacy-related legislation.xii

•	 In the United States, privacy-related legislation is being enacted by

many states as well as industry sectors.

Chapter 20 Compliance

314

•	 Certification against privacy- and security-related compliance

frameworks

•	 Demonstrates due diligence in protecting data you manage

•	 Can be used as a competitive sales tool

•	 May lessen fines in the event of a breach

•	 Is an efficient way to respond to audit needs of individual

customers

•	 A critical first step for compliance is building an inventory of systems

and the data they contain, along with the reason for collecting any

personal data and how the data is processed.

•	 The Cloud Security Alliance’s Cloud Controls Matrix provides a useful

mapping of controls across different security-related compliance

frameworks.

�Notes

	 i.	 https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-

Legislation/eCom-Data-Protection-Laws.aspx

	 ii.	 https://ec.europa.eu/commission/priorities/justice-and-

fundamental-rights/data-protection/2018-reform-eu-data-

protection-rules_en

	 iii.	 https://www.fpc.gov/resources/fipps/

	 iv.	 www.hhs.gov/hipaa/for-professionals/index.html

	 v.	 www.hhs.gov/hipaa/for-professionals/special-topics/

hitech-act-enforcement-interim-final-rule/index.html

	 vi.	 www.pcisecuritystandards.org/

	 vii.	 https://www.pcisecuritystandards.org/about_us/

	viii.	 www.iso.org/isoiec-27001-information-security.html

	 ix.	 https://cloudsecurityalliance.org/star/#_overview

Chapter 20 Compliance

https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://www.fpc.gov/resources/fipps/
https://www.hhs.gov/hipaa/for-professionals/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/hitech-act-enforcement-interim-final-rule/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/hitech-act-enforcement-interim-final-rule/index.html
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/about_us/
https://www.iso.org/isoiec-27001-information-security.html
https://cloudsecurityalliance.org/star/#_overview

315

	 x.	 https://blogs.gartner.com/avivah-litan/2014/01/20/how-

pci-failed-target-and-u-s-consumers/

	 xi.	 https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-

Legislation/eCom-Data-Protection-Laws.aspx

	 xii.	 https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-

Legislation/eCom-Data-Protection-Laws.aspx

Chapter 20 Compliance

https://blogs.gartner.com/avivah-litan/2014/01/20/how-pci-failed-target-and-u-s-consumers/
https://blogs.gartner.com/avivah-litan/2014/01/20/how-pci-failed-target-and-u-s-consumers/
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx

317

CHAPTER 21

Looking into the Crystal
Ball

The future cannot be predicted, but futures can be invented. It was man’s
ability to invent which has made human society what it is.

—Dennis Gabor, Hungarian physicist, 1971 Nobel Prize winner in
physics for inventing holography, from Inventing the Future (1963)

If we had a crystal ball, what would it show for the future of identity management?

As the swirling mists parted in our all-seeing globe, we believe it would undoubtedly

show identity management becoming increasingly necessary in the future for several

reasons. First, it is unlikely that hackers will stop hacking, which means we’ll continue

to need security measures to protect against increasingly diverse and potentially more

automated threats. At the same time, there will be many innovative new services

and devices that will be beneficial in our lives, but they’ll need adequate identity

management to reduce the risk of them being used against us. We’ll also see a rise in

autonomous entities requiring identification, authentication, and authorization just

like humans. The notion of identity will need to spread from humans to all manner of

devices, agents, and robots acting on our behalf, and such entities will need identity

management as part of their defenses against malicious attacks. In addition, the

Covid-19 pandemic has greatly increased the number of employees working from home

or other locations outside the corporate network. This has accelerated a shift from

older enterprise security models that depended on a network perimeter to a different

approach, based on Zero Trust principles,i that relies more heavily on identity and access

management to control access to digital resources that reside both within and outside a

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_21

https://doi.org/10.1007/978-1-4842-8261-8_21

318

corporate network. For all these reasons, the need for identity management in the future

will be more important than ever before, and we’ll need to find ways to make it easier to

implement and manage effectively.

In this chapter, we’ll share our thoughts on where identity management will be

needed in the future as well as some of the top lessons we’ve learned from the past that

we think will apply in the future.

�Continued Security Challenges
For starters, it doesn’t take a crystal ball to predict that we will continue to face ever

more diverse security challenges in the future. The targets and types of cyberattacks will

continue to diversify as hackers are inspired with new ways to obtain and take advantage

of stolen data and breached resources.

�Ongoing Breaches
The number of breaches and data records reported every year as compromised shows

no sign of letting up. The number of confirmed breaches covered by the Verizon Data

Breach Report for 2021 rose to 5258 and for 2022 to 5212 compared to 3950 in 2020 and

approximately 2000 from 2015 to 2019.ii A top target of cyberattacks is often credential

theft, with the primary motive behind attacks being financial and the perpetrators

frequently involved with organized crime groups. It’s important to remember that any

statistics about security incidents and breaches depend on the events being discovered

and voluntarily reported so these numbers may not represent the whole picture. A large

breach can also skew the numbers from one year to the next. However, both common

sense and the numbers reported each year indicate that the need for cybersecurity is not

going away anytime soon, and identity management solutions that mitigate risk from

credential theft can help minimize the damage of an attack.

�Evolving Targets
The targets and methods by which stolen data is monetized have been evolving. As

one industry or avenue of theft comes under attack, consumers and service providers

implement mitigations, causing cybercriminals to pivot to easier targets. The financial

industry was an early target, but as financial institutions implemented more defenses,

Chapter 21 Looking into the Crystal Ball

319

the entertainment and retail industries came under increasing attack, often as a source

for stolen credit card data. Recent years have seen increased attacks on healthcare and

small/medium-sized businesses and a focus on credential theft as well as an increase in

ransomware attacks.

With the introduction of an EMV microchip in credit cards, and the increasing use

of multi-factor authentication in financial services, some hackers have shifted their

focus to stealing identity data and creating new ways to monetize it. Fraudsters have

used stolen identity data to obtain medical services, commit insurance fraud, apply for

tax refunds, and even redeem loyalty club points. Hackers have successfully exploited

vulnerabilities in the Signaling System 7 (SS7) system that allows interconnection

between phone networks, in order to intercept SMS text messages commonly used for

multi-factor authentication to protect access to financial accounts and other targets

of value.iii Malicious actors often seek and take advantage of undisclosed or unknown

vulnerabilities which gives them the advantage of surprise against defenders. The

constant adoption by attackers of new targets and techniques will require commensurate

ongoing evolution in security defenses, including identity management mechanisms, to

protect consumers and businesses.

�Increasing Complexity
As the world becomes ever more connected, software systems are similarly becoming

more interconnected and more complex. Greater integration and complexity increases

the risk of a vulnerability, either within an individual component or in the interfaces

between components. At the same time, identity information and other sensitive

data is increasingly collected and shared between systems, putting it at risk when a

vulnerability is found and exploited by hackers. Developers and administrators will

need to continually adopt more effective solutions and practices to securely develop and

manage large, highly integrated software systems.

�Diversifying Motives
While early hackers often hacked into systems for entertainment and bragging rights, the

motives for hackers have diversified over the years. Financial motives dominate today,

with the 2022 Verizon Data Breach Report indicating that financial motives were behind

well over 80% of the breaches studied.iv Recent years have also seen attacks with other

Chapter 21 Looking into the Crystal Ball

320

motives including hacktivism, industrial espionage, cyber espionage by nation states,

election tampering for political gain, and cyberwarfare as a political tool or in support

of physical warfare. The development of comprehensive threat models and mitigation

plans will need to consider a widening array of actors and motives in addition to many

new types of targets.

�More Targets
There is a dizzying array of new technology available to benefit many aspects of our

life, which unfortunately also creates many new types of targets that require protection.

A wide offering of products, from home security cameras and baby monitors to smart

speakers and HVAC systems, as well as car entertainment systems, health monitoring

devices, and robots, has increased the possibility that malicious actors can threaten

our homes, businesses, cars, and even our bodies from afar. Better security, including

identity management, will be required to protect the devices in our homes and

businesses so they’re not used against us.

�Homes and Businesses
Smart devices for homes and businesses offer many conveniences, but require security

to prevent them from being used against their owners. Security cameras and baby

monitors have been hacked to spy on people in their homes.v Even smart dolls such

as the My Friend Cayla doll and Furby, designed to interact with children, have been

found to have significant privacy and security issues, being hackable via Bluetooth

connection.vi, vii Smart devices have also been used to enable attacks against other

resources on the same network. A particularly eye-opening example is the hack of a

network-attached sensor for an aquarium heater for a large fish tank in a Las Vegas

casino lobby.viii The sensor provided a conduit for hackers to infiltrate the casino’s

network and exfiltrate data. Without adequate security, the Internet makes it possible for

hackers anywhere in the world to leverage vulnerable network-attached devices, even

innocuous-seeming fish tank heaters, for malicious purposes.

Chapter 21 Looking into the Crystal Ball

321

�Cars
Cars now offer new infotainment systems with an increasing number of helpful services.

Passengers can view movies and play video games. Drivers benefit from onboard

navigation systems, and services like OnStar can provide communication, weather

information, emergency assistance, and remote diagnostics.ix Along with these valuable

services, however, has come a new attack surface, and security researchers have

demonstrated several exploits against it.

In July 2015, news broke of an attack against Jeep Cherokee where two security

researchers demonstrated taking control of a car driving down a highway 10 miles

away.x By exploiting a vulnerability in the Uconnect system which controls the car’s

entertainment system, they were able to send commands from their laptop to the

car’s dashboard, steering, brakes, and transmission.xi This incident was alarming by

demonstrating the potential for a security vulnerability to be exploited to inflict physical

harm on a car’s occupants. Since then, researchers have demonstrated additional

vulnerabilities by compromising a Tesla key fob to steal a Tesla, unlocking and remotely

starting cars with OnStar RemoteLink, and taking control of navigation systems in

Volkswagen and Audi vehicles.xii Cars and the services delivered to them will need to be

designed with adequate security to protect the privacy and physical safety of occupants.

�Medical Implants and Monitoring
A wide variety of medical devices help us treat chronic conditions and live fuller lives.

Remote patient monitoring (RPM) technologies can be used for monitoring factors such

as blood pressure and pulse, blood sugar levels for diabetes, and even heart function.xiii

Implanted cardiac devices, for example, connect to the heart and provide relief for

several heart conditions including hearts that beat too slowly, too fast, or unevenly. A

monitor often connects wirelessly to retrieve data from the device. Remote monitoring

with implanted cardiac devices provides the ability for doctors to assess patients without

physical visits and detect problems earlier. The technology designed to improve our

health, however, could potentially be used against us if not adequately secured.

In March 2019, a security vulnerability was announced for Medtronic implantable

cardiac devices (implantable cardioverter defibrillator).xiv The devices rely on

the Conexus protocol, which was not designed with any form of authentication,

authorization, or encryption. Data was transmitted in the clear, potentially allowing an

eavesdropper to gather information about a person’s condition. Most alarming, however,

Chapter 21 Looking into the Crystal Ball

322

was the possibility that an attacker within 20 feet could reprogram the cardiac device.

The small size of these devices means they may not have the memory or processing

power to run some of the security protocols used in less constrained environments.

Further innovation and education will be needed to design and deploy efficient but

lightweight security protocols on extremely small capacity devices.

�Robots
Robots and industrial automation technologies are being designed for many industries

and offer promises of efficiency, accuracy, scale, and performing tasks in environments

dangerous to humans. Robots have been designed for surveillance, monitoring, routine

chores such as vacuuming, disaster response, education, entertainment, manufacturing,

medical applications, autonomous mobility, and research.xv The breadth of applications

for which robots have already been designed is incredible. However, security researchers

have also demonstrated security vulnerabilities in several types of robots.

Security research firm IOActive described a worrying list of security issues in robots

in a paper about a recent investigation they conducted.xvi They evaluated robots used

in homes, businesses, and industry settings, and despite it being a limited study, they

found almost 50 vulnerabilities, including inadequate authentication and authorization,

allowing unauthorized access to robots as well as the ability to install software on the

robots. Communications involving sensitive data were not secured, and encryption of

data was either missing or improperly implemented. The devices were often not secure

by default, and best practices such as changing default administrative passwords were

difficult.

Given the likely widespread use of robots in the future, this should be fairly alarming.

Microphones and cameras in robots can be taken over for cyber espionage purposes

to steal personal information or proprietary corporate information. The security of a

network can be threatened by vulnerable devices attached to the network, meaning

inadequately secured robots could potentially provide a conduit for attackers. Robots

could also be taken over and weaponized, disabled, or held for ransom. Significant

damage could be done if robotic technology is not hardened.

Chapter 21 Looking into the Crystal Ball

323

�Erosion of Perimeter Protection
The computing infrastructure used to deliver services to consumers and businesses

alike has been moving from individual data centers to cloud services and involves logic

running on myriad new types of devices and edge computing servers. At the same

time, the employees involved in creating and managing such services are increasingly

working from home or locations other than a corporate network. This has decreased the

effectiveness of the security once provided by enterprise network perimeters. As a result,

organizations have been moving toward architectures based on Zero Trust principles,

making identity and access management services critical to protect the access to

individual infrastructure components. Organizations utilizing many services will need

efficient solutions to provision and manage identities and access privileges across a

widening portfolio of services and devices.

The combination of ongoing threats, evolving targets, a widening circle of actors

and motives, and the bypassing of traditional network perimeter protections result in

an increased need for effective identity management. At the same time, we’re seeing an

explosion in the number and types of entities which need an identity in order to securely

participate on the Internet and access services.

�Identity – Not Just for Humans
Most of the examples in this book have featured a human user, but there will be more

nonhuman devices and agents in our lives in the future. They will need identities and

the ability to authenticate themselves much like human users. They will also need to

authenticate the services with which they communicate. Some of them may need to

be associated with their owner’s identities, and identity management will be needed to

adequately secure them as well as the services they interact with. The following sections

provide a few examples.

�Personal Agents
Virtual personal assistants, customer assistants, and employee assistants will become

more capable and connected. Applications on smartphones can use virtual personal

assistants such as Siri or Google Assistant through APIs, enabling users to access app

features and shortcuts from the lock screen or in hands-free mode. Users will be able

Chapter 21 Looking into the Crystal Ball

324

to go beyond having assistants do simple tasks like taking notes, setting alarms, and

calling friends to enabling them to perform tasks in applications on their behalf, such as

making purchases or sending payments. Concierge applications might use information

about our habits and preferences to help with tasks like making dinner reservations or

purchasing airline tickets. Without requiring our interaction, smart applications could

help with routine chores like making preventive doctor appointments, regular purchases,

or texting a friend with whom we have a meeting to let them know we’re running late. In

corporate settings, virtual employee assistants could help with tasks such as scheduling

meetings, diagnosing problems, or analyzing data. As virtual personal assistants act

more autonomously, they will need to be authenticated and authorized just like a

human user to ensure they perform authorized tasks and not those of a hacker. They’ll

also need to be capable of authenticating the services with which they interact, to avoid

disclosing sensitive information to incorrect parties.

�Autonomous Vehicles
Autonomous vehicles will significantly change transportation, but lack of a driver will

shift some identity requirements from drivers to other entities. Humans may need to

identify and authenticate autonomous vehicles that give them a ride as part of mobility

as a service. Entrance gates to secured facilities may need reliable mechanisms to

authenticate autonomous delivery vehicles, rather than drivers, when goods are

delivered. Smart cities may want to authenticate and monitor autonomous vehicles on

bridges, in tunnels, or near critical infrastructure. Autonomous vehicles may even need

to identify and authenticate each other and validate the integrity of software controlling

a nearby car, especially in tight spaces or at high speeds. Just as some networks only

allow managed devices with validated configuration to connect, cities or highways

may want to only allow authenticated and properly secured autonomous vehicles in

sensitive areas.

�IoT Devices
The potential applications for Internet of Things (IoT) devices are enormous. Smart

thermostats, cameras, TVs, lighting, appliances, toys, medical devices, and a fascinating

array of data-collecting sensors are just a few examples. IoT devices that have an IP

address with which to communicate on the Internet will also need to authenticate

themselves to remote servers and use adequate transmission encryption before

Chapter 21 Looking into the Crystal Ball

325

transferring data to protect sensitive data as well as the integrity of uploaded remote

datasets. They will also need to authenticate requests coming from administrative

applications to mitigate the risk of malicious commands and the upload of malware

to the devices. Without identity management and security measures, IoT devices can

potentially be used to spy on their environment and corrupt datasets or, worse, be

hijacked or rendered inoperable for malicious purposes.

�Robots
Robots will need identities for the same reason as other IoT devices. They will need

to authenticate themselves to services with which they interact, and they will need

to authenticate incoming requests to prevent the robot from being taken over for

unauthorized purposes. Robots will, in general, have significantly more capabilities and

processing power, and therefore the potential for how they can be turned to malicious

purposes may be greater than with smaller, simpler IoT devices like sensors. In addition

to being used for espionage, robots can potentially be taken over and weaponized to

cause physical harm.

�On the Horizon
There are several promising solutions which bear attention. Efforts by governments and

private consortiums to establish strongly validated identities, more standardized strong

authentication, and new protocols for constrained devices will be rolled out and tested

in real-world scenarios and will benefit identity management.

�e-Identity
We expect to see more electronic identity initiatives around the world. Governments

face the same pressures as businesses to deliver services more efficiently to distributed

populations, which typically drives pursuit of online delivery for services. At the same

time, many government services must be protected against fraud, which means their

online delivery requires well-validated electronic identity information and stronger

forms of authentication than simple passwords. This is likely to increase interest by

governments in government-issued electronic identities (e-identity) or public-private

sector collaboration for e-identities.

Chapter 21 Looking into the Crystal Ball

326

Several governments have already embarked on national e-identity initiatives.

Estonia has a well-established e-identity program that issues a digital identity to citizens

and residents and is used to streamline functions such as accessing government

services, paying taxes, coordinating healthcare, and voting.xvii Estonia is even working on

expanding this to create a digital nation, offering select services to remote e-residents.xviii

Belgium has issued a national digital identity which can be used for identification,

digital signature, and access with public services online.xix A consortium of mobile

phone network providers and banks in Belgium, called Belgian Mobile ID, have created

a mobile application called itsme that enables those with a Belgian e-identity (eID)

and mobile phone to register at participating websites, authenticate, confirm payment

transactions, and digitally sign documents.xx In yet another model, Sweden offers access

to some public services via electronic identities issued by banks.xxi

Electronic identity programs will face some adoption challenges. Cultural distrust of

governments or the banking industry in some countries may hinder and slow e-identity

initiatives. Privacy and security concerns with electronic identity schemes will also need

to be addressed. The constitutional validity of India’s ambitious Aadhaar electronic

identity program, for example, faced a lengthy Supreme Court challenge which hinged

on security and privacy concerns.xxii However, the need for governments to deliver public

services efficiently and securely, the desire by some businesses to leverage more strongly

validated identities, and the preference by citizens and customers to conduct more

transactions online will likely drive continued efforts by governments and private sector

consortiums for citizen/consumer-facing e-identities. In addition to validated identity

information, such identities will need to support stronger forms of authentication.

�Stronger Authentication
We will doubtless see increased adoption of stronger forms of authentication to mitigate

the risks associated with static passwords. The W3C Web Authentication (webauthn)

specification creates a more standardized level of abstraction between applications

and specific authenticators. Developers will be able to implement authenticator-

agnostic strong authentication, and users will gain the ability to use authenticators of

their own choosing, whether hardware security tokens or biometric factors collected

by their device. This standard is likely to facilitate the adoption of stronger forms of

authentication and reduce the use of passwords as a sole authentication factor.

Chapter 21 Looking into the Crystal Ball

327

�Solutions for Smaller Devices
We anticipate ongoing evolution in solutions and protocols to support smaller,

constrained IoT devices that need protections such as authentication, authorization,

message integrity validation, and encryption. Devices with small amounts of memory

and which need to minimize power consumption to conserve battery life need protocols

that are lightweight and use techniques such as minimizing round trips and overhead

as well as using cryptographic algorithms that enable the use of smaller keys and/or

certificates. Entities which need to validate the likes of security messages and certificates

depend on having accurate time as well as solutions for detecting certificate revocations,

but existing solutions may not work on constrained devices. The Constrained

Application Protocol (CoAP),xxiii Transport Layer Security (TLS) 1.3,xxiv and Datagram

Transport Layer Security (DTLS) 1.3xxv may prove useful for solutions involving such

devices.

�Asynchronous Online Interaction
With digital transformation driving more services and interactions online, we are likely

to see innovation and AI driving more autonomous and asynchronous interaction

between digital services. Users may want to facilitate automation by authorizing third-

party entities to perform tasks on their behalf or to access their data. For example,

when applying for a loan online, a lender might require information about an

applicant’s income, credit score, ratio of debt to income, past tax returns, and credit

card statements. An online lender will want to obtain information electronically for

efficiency and to facilitate the use of artificial intelligence in evaluating applicant data.

A user could authorize the loan site to obtain information about their salary from an

employer, data on their credit history from a credit reporting agency, and perhaps

credit purchase history from their credit card company, but such checks would likely

occur asynchronously, triggered by a cascade of online transactions once the applicant

submits their request.

Specifications such as the “User Managed Access grant for OAuth 2.0”xxvi from the

Kantara Initiativexxvii may contribute to making such use cases feasible, in parallel with

efforts to explore the risk, liability, and privacy rights applicable for such scenarios.

This standard allows a user to authorize access to their content to a third-party while

decoupling the timing of the authorization from the access request. A third party can

initiate a request to a resource server without the user’s synchronous involvement.

Chapter 21 Looking into the Crystal Ball

328

The third party interacts with the authorization server to obtain claims to satisfy access

policy specified by the owner of the requested data. Solutions for autonomous and

asynchronous interaction will require work on technical protocols and products as well

as work on business, social, and legal feasibility, and identity and access management

will be an important enabler.

�Easier Adoption
We need better resources created to make correct implementation of identity

management easier for developers. The specifications we have discussed total over 800

pages. This is a lot for developers to absorb especially when you consider the number

of specifications involved, requiring developers to go back and forth between multiple

documents to coalesce advice and figure out how to apply the technology correctly in

their application and environment. Libraries will be needed that are well documented,

support a good user experience, and help developers implement the protocols/

frameworks correctly. To be successful, this will require collaboration between parties

creating or promoting specifications, platform/device vendors, user agent vendors

(for devices with browsers or other user agents), security analysts, and those creating

libraries and SDKs. A sentiment from John Dickinson’s 1768 “The Liberty Song” says it

best: “By uniting we stand, by dividing we fall.”xxviii

�Lessons Learned
Knowing that identity management will be critical in the future to help secure our

homes, businesses, civic infrastructure, and all manner of devices in our world, we close

with some of the lessons we’ve learned from working on many identity management

projects and deployments.

�Always Look Forward
During our years of working with customers, engaging with product and solutions teams,

and building identity solutions for projects, we have come to appreciate that what starts

with just a simple login box can quickly grow into a primary line of defense between your

application and threat actors, yet can also serve as a key driver for customer conversion.

Chapter 21 Looking into the Crystal Ball

329

Authenticating a user today requires validating their credentials and additional

factors, intelligently assessing risk associated with the authentication transaction,

implementing password brute force attack protection, and more, but the sign-in box and

process is also the leading conversion influencer. A large number of user abandonments

in the online sales process happen at the login box for online retail sites.

Balancing the needs of security and user experience can be an accelerator for

business value, but may cause tremendous overhead in technical implementation if

not done efficiently and well. Being able to look ahead and develop identity features for

your application as a service that can be worked on independently from your application

allows you to easily integrate and expand the identity service to meet your future

requirements. You may also be able to offload or even integrate with a vendor solution to

provide risk-based security assessment.

Open standards play a very large role in being able to realize this vision. Following

an open standard may seem daunting at first, but as we learned in Chapter 10,

implementing standards-based identity management for an application can be simple

and straightforward. Open source libraries and vendor-provided libraries are readily

available for most of your application requirements. Leveraging standards enables you

to more easily adopt open source and third-party solutions that can provide helpful

features, make it easier to adapt to future trends, and allow you to focus on innovation

for your application’s core purpose.

�Usability Is Important
Designing or deploying a complex security mechanism can be a satisfying intellectual

challenge. You should ensure, however, that the resulting system can be easily used and

understood by mere mortals. Users who are annoyed by overly cumbersome security

measures will seek ways to bypass them. Users who do not adequately understand

security technology can inadvertently render it useless through misconfiguration or

erroneous usage. Make it easy for users to understand how to do the right thing and

conduct some usability testing with target users to identify any usability glitches before a

big deployment.

Chapter 21 Looking into the Crystal Ball

330

�Validation Is Critical
You’ve probably heard the phrase “Garbage In, Garbage Out,” and this certainly applies

to security. Security decisions depend upon validated information as input. For this

reason, be sure to correctly validate all tokens before relying upon the information

they contain, and validate all input of identity and user profile attributes used in access

control decisions or communication to users.

�Logout Takes Time
In environments where a user may have sessions in many components or tiers of an

architecture, designing, implementing, and testing logout can take longer than login.

Make sure to understand the challenges involved in logout as well as session termination

and allow adequate time in your project to make this feature work correctly.

�Monitor Trends and Vulnerabilities
The only thing constant is change. Keep an eye on the current security guidance for

the protocols, technologies, and products you use to stay aligned with best practices

as they evolve. Read security industry reports, such as the Verizon Data Breach

Investigations Report, to stay abreast of trends in attacks, common vulnerabilities, and

how to minimize your risk. Make sure to also monitor nonsecurity trends impacting

your target users, industry, or market, as they may give rise to new security challenges or

requirements. Lastly, to facilitate your ability to respond to changes, be sure to allocate

budget and resources for responding to unexpected vulnerabilities/incidents as well as

proactively upgrading to adopt new best practices.

�Summary
The future will undoubtedly bring increased and more diverse challenges to our online

security. Perimeters that provided a layer of protection in times past, especially in

enterprises, are increasingly bypassed. New threats will arise from the use of many

innovative new services and Internet-connected devices that need to be secured. At

the same time, nonhuman, autonomous entities and agents will act on our behalf and

need to be authenticated, authorized, and monitored just like humans. We’ll need

Chapter 21 Looking into the Crystal Ball

331

more strongly validated identity, stronger authentication, and solutions for constrained

devices as well as better resources to help developers do the right thing quickly

and easily.

�Key Points
•	 Security challenges will continue with diversified targets, actors, and

motives.

•	 We will face more security and privacy risks from network-connected

devices in our lives such as smart home devices, car infotainment,

and medical monitoring.

•	 The number of nonhuman entities that will need identities

and identity management will grow substantially, considering

technologies such as personal agents, autonomous vehicles, and IoT

devices including robots.

•	 More governments and/or private consortiums will issue electronic

identities based on more strongly validated identity information.

•	 Passwords as a single authentication factor will continue to be

replaced with stronger forms of authentication.

•	 Security protocols will need to accommodate the small memory,

processing power, and power consumption requirements of small

IoT devices to better secure them.

•	 Identity management will become even more important in the future

to help protect innovative new services and devices.

Lessons we have learned from the past that will apply in the future include the

following:

•	 It is essential to design for the entire identity life cycle, from

provisioning/onboarding to deprovisioning, and even audit records

required for accountability after deprovisioning.

•	 Architecting your application to treat identity management as a

separable component will enable you to work on it in parallel with

Chapter 21 Looking into the Crystal Ball

332

your application and take advantage of open source or third-party

solutions where it makes sense.

•	 The use of open standards will give you flexibility to adopt open

source or third-party solutions that can provide many important

security features.

•	 Identity management features should satisfy both security and

usability requirements.

•	 It is critical to validate all inputs to security decisions and policy

enforcement points, including security tokens and identity profile

attributes.

•	 Implementing logout features can take time, especially when there

are multiple sessions for users across different components. Research

requirements early so you can allow sufficient time to implement

logout well.

•	 To avoid surprises, periodically monitor trends in security, identity

management solutions, types of attacks, common root causes of

breaches, updated guidance for how to use open standards, and

nonsecurity-related trends impacting your target customer base.

�Notes

	 i.	 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-207.pdf

	 ii.	 https://www.verizon.com/business/resources/reports/

dbir/#archive

	 iii.	 www.telegraph.co.uk/technology/2019/02/01/metro-bank-

hit-cyber-attack-used-empty-customer-accounts/

	 iv.	 https://www.verizon.com/business/resources/reports/2022/

dbir/2022-data-breach-investigations-report-dbir.pdf

Chapter 21 Looking into the Crystal Ball

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://www.verizon.com/business/resources/reports/dbir/#archive
https://www.verizon.com/business/resources/reports/dbir/#archive
http://www.telegraph.co.uk/technology/2019/02/01/metro-bank-hit-cyber-attack-used-empty-customer-accounts/
http://www.telegraph.co.uk/technology/2019/02/01/metro-bank-hit-cyber-attack-used-empty-customer-accounts/
https://www.verizon.com/business/resources/reports/2022/dbir/2022-data-breach-investigations-report-dbir.pdf
https://www.verizon.com/business/resources/reports/2022/dbir/2022-data-breach-investigations-report-dbir.pdf

333

	 v.	 www.cbsnews.com/news/nest-camera-hacked-hacker-spoke-

to-baby-hurled-obscenities-at-couple-using-nest-camera-

dad-says/

	 vi.	 www.bbc.com/news/technology-38222472

	 vii.	 www.nytimes.com/2017/12/21/technology/connected-toys-

hacking.html

	viii.	 www.washingtonpost.com/news/innovations/wp/2017/07/21/

how-a-fish-tank-helped-hack-a-casino/?noredirect=on&utm_

term=.a22c8c331869

	 ix.	 https://www.onstar.com/us/en/why-onstar

	 x.	 https://www.pcmag.com/news/hackers-remotely-hijack-a-

jeep-crash-it-into-a-ditch

	 xi.	 www.wired.com/2015/07/hackers-remotely-kill-

jeep-highway/

	 xii.	 www.zdnet.com/article/these-are-the-most-interesting-

ways-to-hack-internet-connected-vehicles/

	xiii.	 www.cchpca.org/about/about-telehealth/remote-patient-

monitoring-rpm

	 xiv.	 https://www.securityweek.com/dhs-warns-vulnerabilities-

medtronic-defibrillators

	 xv.	 https://robots.ieee.org/learn/types-of-robots/

	xvi.	 https://ioactive.com/pdfs/Hacking-Robots-Before-

Skynet.pdf

	xvii.	 www.newyorker.com/magazine/2017/12/18/estonia-the-

digital-republic

	xviii.	 https://e-resident.gov.ee/

	xix.	 https://eid.belgium.be/en/what-eid

	 xx.	 https://www.itsme-id.com/why-itsme

Chapter 21 Looking into the Crystal Ball

http://www.cbsnews.com/news/nest-camera-hacked-hacker-spoke-to-baby-hurled-obscenities-at-couple-using-nest-camera-dad-says/
http://www.cbsnews.com/news/nest-camera-hacked-hacker-spoke-to-baby-hurled-obscenities-at-couple-using-nest-camera-dad-says/
http://www.cbsnews.com/news/nest-camera-hacked-hacker-spoke-to-baby-hurled-obscenities-at-couple-using-nest-camera-dad-says/
http://www.bbc.com/news/technology-38222472
http://www.nytimes.com/2017/12/21/technology/connected-toys-hacking.html
http://www.nytimes.com/2017/12/21/technology/connected-toys-hacking.html
http://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/?noredirect=on&utm_term=.a22c8c331869
http://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/?noredirect=on&utm_term=.a22c8c331869
http://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/?noredirect=on&utm_term=.a22c8c331869
https://www.onstar.com/us/en/why-onstar
https://www.pcmag.com/news/hackers-remotely-hijack-a-jeep-crash-it-into-a-ditch
https://www.pcmag.com/news/hackers-remotely-hijack-a-jeep-crash-it-into-a-ditch
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.zdnet.com/article/these-are-the-most-interesting-ways-to-hack-internet-connected-vehicles/
http://www.zdnet.com/article/these-are-the-most-interesting-ways-to-hack-internet-connected-vehicles/
http://www.cchpca.org/about/about-telehealth/remote-patient-monitoring-rpm
http://www.cchpca.org/about/about-telehealth/remote-patient-monitoring-rpm
https://www.securityweek.com/dhs-warns-vulnerabilities-medtronic-defibrillators
https://www.securityweek.com/dhs-warns-vulnerabilities-medtronic-defibrillators
https://robots.ieee.org/learn/types-of-robots/
https://ioactive.com/pdfs/Hacking-Robots-Before-Skynet.pdf
https://ioactive.com/pdfs/Hacking-Robots-Before-Skynet.pdf
http://www.newyorker.com/magazine/2017/12/18/estonia-the-digital-republic
http://www.newyorker.com/magazine/2017/12/18/estonia-the-digital-republic
https://e-resident.gov.ee/
https://eid.belgium.be/en/what-eid
https://www.itsme-id.com/why-itsme

334

	xxi.	 https://bolagsverket.se/en/fee/e-services/swedish-e-

identification-1.1639

	xxii.	 https://iapp.org/news/a/the-indian-supreme-courts-

aadhaar-judgement-a-privacy-perspective/

	xxiii.	 https://tools.ietf.org/html/rfc7252#section-9

	xxiv.	 https://tools.ietf.org/html/rfc8446

	xxv.	 https://datatracker.ietf.org/doc/rfc9147/

	xxvi.	 https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-

grant-2.0.html

	xxvii.	 https://kantarainitiative.org/

	xxviii.	 http://archives.dickinson.edu/sundries/liberty-song-1768

Chapter 21 Looking into the Crystal Ball

https://bolagsverket.se/en/fee/e-services/swedish-e-identification-1.1639
https://bolagsverket.se/en/fee/e-services/swedish-e-identification-1.1639
https://iapp.org/news/a/the-indian-supreme-courts-aadhaar-judgement-a-privacy-perspective/
https://iapp.org/news/a/the-indian-supreme-courts-aadhaar-judgement-a-privacy-perspective/
https://tools.ietf.org/html/rfc7252#section-9
https://tools.ietf.org/html/rfc8446
https://datatracker.ietf.org/doc/rfc9147/
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://kantarainitiative.org/
http://archives.dickinson.edu/sundries/liberty-song-1768

335

CHAPTER 22

Conclusion
I didn’t know I loved so many things and I had to wait until sixty to find it
out sitting by the window on the Prague-Berlin train watching the world
disappear as if on a journey of no return.

—Nâzim Hikmet, Turkish poet, from “Things I Didn’t Know I
Loved” (1962)

The world would be a strange place without identity. It’s woven through much of our

lives and enables us to establish trust relationships with others in order to conduct

transactions. When conducting those transactions online, identity management is a core

foundation of security which in turn is a prerequisite for privacy. The complexity of how

to handle identity management well in the face of evolving technology and business

requirements has continued to unfold over time, a bit like a Mandelbrot set. We hope

this book has provided a useful introduction to identity management for those involved

in projects to build applications. We hope you enjoy the challenges presented by this

field and are inspired to learn more. Identity management is a broad topic, and there is a

lot more to learn beyond what we could cover in this book.

We started out by introducing the types of problems faced by developers related

to identity and how trying to solve them might seem like battling a many-headed

Hydra. We covered the key events in the life of an online identity, from provisioning to

deprovisioning, and everything in between, including authentication, authorization,

policy enforcement, step-up and multi-factor authentication, logging out, and account

management. We provided more information on each of these topics in subsequent

chapters to provide an overview on the identity management capabilities a typical

application might need. Our objective was to provide an introductory, practical overview

of such topics, specifically for anyone building applications delivered via the Web or to

mobile devices. We hope we’ve provided sufficient background information to help you

get started and more easily understand other resources as you continue learning.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8_22

https://doi.org/10.1007/978-1-4842-8261-8_22

336

We’ve also shared some lessons learned based on our past experience, such as how

to approach troubleshooting and some of the typical things that can go wrong. We’ve

added some of the less common use cases we’ve come across so you can evaluate at

the beginning of your project whether they might apply to your environment. Learning

about additional requirements near the end of a project is never conducive to delivering

on time.

There have unfortunately been many breaches that have compromised identity

information. We collected information on a variety of breaches and researched the

root causes to help you learn from the past. The root causes of many breaches are not

complex, but they do require diligence if they are to be avoided. Pursuing a compliance

certification can instill the practices needed to find cybersecurity gaps and avoid errors

leading to security incidents. We added the compliance chapter to help you identify

privacy- or security-related requirements you may need to comply with, why compliance

can be a beneficial exercise, and how to approach it.

We closed with a summary of why we think knowledge of identity management will

be even more important in the future. The need for identity management will expand to

all manner of devices, bots, agents, cars, and more. That means a lot more people need

to be familiar with the requirements for identity management and how to solve them. We

hope the information in this book and the sample program help you understand some

of the scope of what identity management entails. Most of all, we hope this encourages

you to continue to learn more about the topic, to leverage the knowledge gained for

your projects, and to find ways to share any new learning or techniques you discover

with others. Ongoing collaboration between all of us to continually improve identity

management practices and solutions will be essential to protect our data, privacy,

reputation, and even our physical safety with the services and devices we use.

Chapter 22 Conclusion

337

�Appendix A: Glossary

The following is a list of terms and their definitions as they are used in this book.

Access Token – In the context of OAuth 2 and OIDC, a security token used by an

application to access protected resources such as an API.

Account – A construct within a software application or service that usually contains

or is associated with identity information and optionally privileges and which is used to

access features within the application or service.

Application – A software application that issues requests to a server.

Application Programming Interface (API) – A software service interface that allows

a client program to request resources or actions from the software service.

Authorization Code – In the context of OAuth 2 and OIDC, an intermediary, opaque

code returned to an application and which represents the application’s authorization by

the user to call an API on the user’s behalf. It is used to obtain security token(s).

Authorization Server – A service which implements the OAuth 2 protocol and

enables resource owners (users) to authorize applications to access content they own at

resource servers and which issues security tokens enabling the authorized access.

B2B (Business to Business) – A business model where services are targeted to

businesses that use the services in some way to deliver a service to their customers.

B2C (Business to Consumer) – A business model where services are targeted to

consumers who typically act on their own behalf.

B2E (Business to Employee) – A business model where services are targeted to

businesses where the users are the employees of the businesses and act on their

employer’s behalf.

Back-Channel – Communication sent directly from one component, typically

a back-end server, to another back-end server, as opposed to being sent via HTTP

redirects, with a user’s browser as an enabling intermediary. Compare to front-channel.

Browser-Based Application – See the definition for single-page application.

Client – In the context of OAuth 2 and OIDC, an application that requests access to

protected resources on behalf of the owner of those resources.

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8

https://doi.org/10.1007/978-1-4842-8261-8

338

Confidential Client – In the context of OAuth 2 and OIDC, an application that runs

on a protected server which enables it to securely store confidential secrets with which

to authenticate itself to the authorization server.

Directory Server – A repository for storing, managing, and organizing information

about resources. Directory server products have often been optimized for storing

information that is frequently read but infrequently modified and used to store

information about entities such as users, access control privileges, application

configurations, and network printers. Information in directory services has been used for

authentication and authorization of users.

End User or User – A human subject using applications or services and who is

authenticated and authorized when accessing protected resources.

Front-Channel – Communication sent via HTTP redirects, with a user’s browser as

an enabling intermediary, instead of directly from one back-end server to another back-

end server. Compare to back-channel.

HS256 – Hash-based message authentication code (HMAC) using SHA256 hash

function. A symmetric cryptographic algorithm that can be used for creating and

validating a digital signature. It is one option for signing a JSON Web Token, but requires

both the issuer and validator of the token to know the same secret.

Identifier – A single identifying attribute that points to a unique individual user or

entity, within a particular context.

Identity – A set of attributes, including one or more identifiers, associated with a

specific user or entity, in a particular context.

Identity Proofing – The process of vetting a user’s identity and profile information.

Identity Provider (IdP) – (1) A general term for an entity providing an identity

service designed to authenticate users and provide assertions about an authenticated

user and the authentication event. (2) In the context of the SAML 2 cross-domain

single sign-on profile specification, a server which issues SAML 2 assertions about an

authenticated subject and authentication event.

Identity Repository – A collection of users stored in a computer storage system,

such as a database or directory service.

ID Token – In the context of OIDC, a token used to convey claims about an

authentication event and an authenticated entity to a relying party (application).

Internet of Things (IoT) Device – A network-attached device that has an IP address

and is capable of transferring information over a network without human interaction.

APPENDIX A: GLOSSARY

339

Usually refers to dedicated-purpose devices such as sensors or smart appliances as

opposed to general computing devices such as computer servers.

Least Privilege – A security principle of granting the minimum privilege level

required for a task or operating at the lowest possible privilege level for a task.

Mobile Application – An application that executes on a mobile device as a native

application.

Multitenant Application – An application deployment shared by multiple

independent customers whose data is segmented into their own area of the application’s

data storage. The separation between different customers’ data is enforced by the

application and its storage, rather than the network.

Native Application – An application installed and run natively on a

computing device.

OpenID Provider – In the context of OIDC, an OAuth 2 authorization server that

authenticates a user and returns claims about the user and authentication event to a

relying party (application) in accordance with the OIDC specification. Applications can

delegate user authentication to an OpenID Provider.

Public Client – In the context of OAuth 2 and OIDC, an application that executes

primarily on the user’s client device or in the client browser and cannot securely store

secrets with which to authenticate itself to an authorization server.

Refresh Token – In the context of OAuth 2 and OIDC, a token that can be used by

an application to request a new access token when a prior access token has expired or

become invalid. With OIDC, a refresh request can optionally return an ID Token as well.

Relying Party – An entity that delegates authentication to an Identity Provider or

OpenID Provider or delegates authorization to an authorization server and, in either

case, relies on the results, usually in the form of security tokens. With OAuth 2, an API is

a relying party, and with OIDC and SAML 2, an application is a relying party.

Resource Owner – In the context of OAuth 2, a user that authorizes access to

protected resources hosted at a resource server.

Resource Server – In the context of OAuth 2 and OIDC, an entity that contains

protected resources.

RS256 – RSA Signature with SHA256 hash algorithm. An asymmetric cryptographic

algorithm that can be used for creating and validating a digital signature. It is one option

for signing a JSON Web Token and, unlike HS256, does not require that the issuer and

validator of the token know the same secret.

APPENDIX A: GLOSSARY

340

Security Domain – A security domain is a logical construct that defines the

boundaries of one entity’s control or ownership.

Service Provider – (1) A general term for an entity providing a service, such as

an application, to a user. (2) In the context of the SAML 2 cross-domain single sign-

on profile specification, a client entity which requests SAML 2 assertions about an

authenticated subject and authentication event.

Single-Page Application (SPA) – An application with logic that executes primarily in

a browser, by dynamically altering the displayed web page, rather than making requests

to a server to render new pages to respond to user actions. A SPA is assumed to be a

public client, as defined by OAuth 2.

Tracking Prevention – A set of features implemented by browsers to limit the ability

of third parties to track users’ activity across different websites.

User – See the definition for the end user.

User Consent – In the context of provisioning an account for a user, the process

through which an end user is asked to provide their consent for the collection and

processing of their personal data. In the context of OAuth 2, the process through which a

user provides their consent to authorize an application to access protected resources on

their behalf.

Web Application or Traditional Web Application – An application with logic that

executes primarily from a protected server, by rendering new pages from the server to

respond to user actions. Traditional web applications are assumed to meet the definition

of a confidential client, as defined by OAuth 2.

APPENDIX A: GLOSSARY

341
© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8

�Appendix B: Resources for
Further Learning

This appendix lists resources which may be helpful for further learning.

�B.1. OAuth 2 – Related Specifications
OAuth 2.1 Authorization Framework (draft as of this writing) – Consolidates several

OAuth-related specifications since the original OAuth 2.0 specification:

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-06

OAuth 2.0 Authorization Framework (original specification):

https://tools.ietf.org/html/rfc6749

OAuth 2.0 Threat Model and Security Considerations:

https://tools.ietf.org/html/rfc6819

OAuth 2.0 for Browser-Based Apps (draft as of this writing):

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps

OAuth 2.0 for Native Apps:

https://tools.ietf.org/html/rfc8252

OAuth 2.0 Security Best Current Practice (draft as of this writing):

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

OAuth 2.0 Device Authorization Grant:

https://datatracker.ietf.org/doc/html/rfc8628

OAuth 2.0 Authorization Framework: Bearer Token Usage:

https://tools.ietf.org/html/rfc6750

Proof Key for Code Exchange by OAuth Public Clients:

https://tools.ietf.org/html/rfc7636

OAuth 2.0 Token Introspection:

https://tools.ietf.org/html/rfc7662

OAuth 2.0 Token Revocation:

https://tools.ietf.org/html/rfc7009

https://doi.org/10.1007/978-1-4842-8261-8
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-06
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6819
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/rfc8252
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics
https://datatracker.ietf.org/doc/html/rfc8628
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7009

342

OAuth 2.0 Pushed Authorization Requests (PAR):

https://datatracker.ietf.org/doc/html/rfc9126

OAuth 2.0 Rich Authorization Requests (RAR): (draft as of this writing)

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-rar

JWT-Secured Authorization Requests (JAR):

https://datatracker.ietf.org/doc/html/rfc9101

�B.2. JWT
JSON Web Token (JWT):

https://tools.ietf.org/html/rfc7519

JSON Web Encryption (JWE):

https://datatracker.ietf.org/doc/html/rfc7516/

JSON Web Signature (JWS):

https://datatracker.ietf.org/doc/html/rfc7515

�B.3. OIDC
OIDC Specifications:

https://openid.net/connect/

�B.4. SAML
SAML specifications. See especially the core, bindings, and profile specifications:

https://wiki.oasis-open.org/security/FrontPage

Security Assertion Markup Language (SAML) V2.0 Technical Overview:

www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-

overview-2.0-cd-02.pdf

SAML Security and Privacy Considerations for the OASIS Security Assertion Markup

Language (SAML) V2.0:

http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf

SAML 2.0 Profile for OAuth 2.0 Client Authentication and

Authorization Grants:

https://datatracker.ietf.org/doc/html/rfc7522

Appendix B: Resources for Further Learning

https://datatracker.ietf.org/doc/html/rfc9126
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-rar
https://datatracker.ietf.org/doc/html/rfc9101
https://tools.ietf.org/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7516/
https://datatracker.ietf.org/doc/html/rfc7515
https://openid.net/connect/
https://wiki.oasis-open.org/security/FrontPage
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
https://datatracker.ietf.org/doc/html/rfc7522

343

�B.5. Multi-factor Authentication
The FIDO Alliance:

https://fidoalliance.org/fido2/

WebAuthn:

www.w3.org/TR/2019/REC-webauthn-1-20190304/

�B.6. Background Information
An explanation of cookies, including security guidance:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

Explanation of Cross-Origin Resource Sharing (CORS):

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Brief outline of different approaches to authorization and access control:

https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7316.pdf

OWASP Top 10 – Critical security risks for web applications and how to avoid them:

www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

OWASP SAML Cheat Sheet:

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SAML_

Security_Cheat_Sheet.md

Two sites on open redirects:

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/

Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md

https://cwe.mitre.org/data/definitions/601.html

Checking for breached passwords – I’ve Just Launched “Pwned Passwords” V2:

www.troyhunt.com/ive-just-launched-pwned-passwords-version-2

�B.7. Privacy
A map showing the location and strength of privacy legislation around the world:

www.dlapiperdataprotection.com/

This website presents the articles of the GDPR in a convenient fashion:

https://gdpr-info.eu/

APPENDIX B: RESOURCES FOR FURTHER LEARNING

https://fidoalliance.org/fido2/
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7316.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SAML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SAML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://cwe.mitre.org/data/definitions/601.html
http://www.troyhunt.com/ive-just-launched-pwned-passwords-version-2/#cloudflareprivacyandkanonymity
https://www.dlapiperdataprotection.com/
https://gdpr-info.eu/

345
© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8

�Appendix C: SAML 2
Authentication Request
and Response

SAML 2 authentication request and response messages contain a lot of information.

We’ve assumed that most developers are using an SDK or authentication broker rather

than implementing SAML 2 directly in their applications, and therefore their primary

need is to understand SAML 2 requests and responses for troubleshooting purposes and

to understand validation steps. As explained in Chapter 16, the best way to debug issues

with SAML 2 is to capture an HTTP trace, extract the SAML 2 request and/or response,

and examine it. In the following sections, we’ll explain which fields to examine and what

to look for.

�C.1. SAML 2 Authentication Request
When an application needs a user authenticated by a SAML 2 identity provider (IdP),

the application redirects the user's browser to the identity provider with a SAML

2 authentication request message. An authentication request message can vary

substantially as many elements are optional. A sample request without a signature might

look like the following (text in bolded italics has been substituted for the actual values):

<samlp:AuthnRequest

 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

 Destination="IDP URL"

 ID="ID"

 IssueInstant="TIME ISSUED"

 ProtocolBinding=

 "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

https://doi.org/10.1007/978-1-4842-8261-8

346

 Version="2.0"

 ProviderName="SERVICE PROVIDER"

 AssertionConsumerServiceURL="ACS URL">

 <saml:Issuer>SERVICE PROVIDER</saml:Issuer>

</samlp:AuthnRequest>

The request elements we have found most useful to check when troubleshooting

SAML 2 are shown in Table C-1, along with an explanation for each. A given request may

have more or fewer elements, depending on a particular service provider’s configuration

or implementation.

Table C-1.  Useful SAML 2 Authentication Request Elements

Name Purpose

AssertionConsumerServiceURL URL at the service provider to which the identity provider’s

authentication response message should be sent. Often called the

“ACS” URL.

AuthnRequest Type of request. In this case, a request to authenticate a user.

Destination URL for the recipient of the request, in this case, the IdP. This

element was designed to prevent forwarding of messages to

unintended recipients. This value must match the URL at which

the request was received.

ForceAuthn Can be used by requestor to indicate the IdP should prompt the

user for credentials, regardless of the state of the user’s session

at the IdP.

ID The ID is a unique identifier for each request. When an IDP

responds, the value of the InResponseTo element of the response

should match the ID for the request that triggered the response.

Issue Instant The time at which the request was issued. Identity providers

should reject requests that are outside a certain time tolerance.

Issuer Entity which generated the request, namely, the SAML 2 service

provider. The IdP should check to make sure a request’s Issuer

element matches a registered service provider.

(continued)

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

347

Table C-1.  (continued)

Name Purpose

NameIDPolicy Can be used by the service provider to specify the type of

identifier to use in identifying the authenticated user. Using

an email address is common, but can conflict with privacy

requirements.

ProtocolBinding The requested mechanism by which the SAML response message

should be sent over an underlying transport protocol. In practice,

HTTP-POST is often used to avoid issues with browser URL size

limits.

ProviderName Human-readable name of entity issuing the SAML 2 request (the

service provider).

RequestedAuthnContext Can be used by a requestor to specify requirements for the

authentication context used by IdP when authenticating the user.

Can be used to request a type or strength level of authentication,

as agreed between the service provider and IdP.

Signature Signature information if a request has been signed by the issuer.

Subject Used to specify the desired subject (user) for the requested

authentication assertion.

Version The version should be “2.0” for SAML 2.

A SAML 2 service provider (application) can send a SAML 2 request to an identity

provider using a few different bindings. These indicate the mechanism for sending

the message over underlying transport protocols. In practice, the HTTP-Redirect and

HTTP-POST bindings are commonly used because they do not require direct network

connectivity between the service provider and the identity provider. The HTTP-Redirect

binding can be used with SAML 2 requests that are not digitally signed, but production

environments are recommended to use signed requests to prevent request tampering. If

a request is digitally signed, it typically needs to be sent using the HTTP-POST binding

to avoid issues with browser URL size limits. The response or assertion from the identity

provider must be digitally signed. Due to the size of a signed response, the HTTP-POST

binding is typically used for responses.

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

348

�C.2. SAML 2 Authentication Response
When an identity provider receives an authentication request, it will authenticate the

user, if necessary, and return an authentication response to the service provider in the

form of a SAML 2 response message which contains a SAML 2 assertion. In the case of an

IdP-initiated flow, an IdP may send an unsolicited authentication response to a service

provider. The SAML 2 response is an XML message with several components. The exact

contents of the response can vary somewhat, depending on the nature of the request,

the IdP configuration, and the information returned. Figure C-1 shows the high-level

anatomy of a typical SAML 2 authentication response message to help you understand

the structure of these often lengthy messages. (Note: A Signature element can be

associated with an Assertion, the Response, or both. We have shown it in the Assertion

for this sample.)

Figure C-1.  Structure of a Sample SAML 2 Authentication Response

A sample SAML 2 authentication response is shown in the following sections. We’ve

replaced specific values with explanatory text in bolded italics and provided a table after

each snippet to indicate what’s useful to check when debugging.

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

349

�C.2.1. Response
A SAML 2 authentication response message starts off with “samlp:Response” and

includes the information shown in the snippet that follows and explained in Table C-2:

<samlp:Response

 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

 ID="ID"

 InResponseTo="ID OF CORRESPONDING REQUEST"

 Version="2.0"

 IssueInstant="TIME ISSUED"

 Destination="ACS URL of Service Provider">

 <saml:Issuer

 �xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">ISSUER OF RESPONSE –

IDENTITY PROVIDER

 </saml:Issuer>

 <samlp:Status>

 <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>

 </samlp:Status>

Table C-2.  SAML 2 Authentication Response Elements Useful for Troubleshooting

Element Description

ID

InResponseTo

A unique identifier for a response.

This response element should match the ID of the authentication request which

triggered the response (for service provider–initiated cases).

IssueInstant Time at which the response was issued. This can be checked for correct time to

detect time skew issues. Service providers should reject responses that are older

than a configured time tolerance.

Destination The Assertion Consumer Service (ACS) URL where the service provider receives

the response. Service providers should validate that the Destination URL in the

response is where they received the response.

Issuer The issuer of the response. Should match the expected identity provider.

Status The Status element contains the result of the authentication request. Successful

authentication is required for a status of “Success.”

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

350

�C.2.1.1. Authentication Assertion (Beginning)

The beginning of the assertion element of a response contains an ID, the instant at which

the assertion itself was issued, and the identity of the assertion issuer as shown in the

following snippet and explained in Table C-3:

<saml:Assertion

 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

 Version="2.0"

 ID="ID FOR ASSERTION"

 IssueInstant="TIME ASSERTION ISSUED">

 <saml:Issuer>ENTITY ISSUING ASSERTION</saml:Issuer>

Table C-3.  SAML 2 Authentication Assertion Elements Useful for Troubleshooting

Element Description

ID

IssueInstant

A unique identifier for an assertion.

Time at which the assertion was issued. This can be checked for correct time to

detect time skew issues. Service providers should reject responses that are older

than a configured time tolerance.

Issuer The issuer of the response. Should match the expected identity provider.

�C.2.1.2. Digital Signature for Authentication Assertion

The digital signature provides integrity assurance for the signed element. The IdP

must sign either the assertion or the response when the HTTP-POST or HTTP-Redirect

binding is used and can sign both. The typical elements to check are shown in Table C-4.

Portions of this element are not shown for brevity.

<Signature

 xmlns:="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 ...

 <SignatureMethod Algorithm=

 "http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>

 ...

 </SignedInfo>

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

351

 <SignatureValue>DIGITAL SIGNATURE</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>CERTIFICATE</X509Certificate>

 </X509Data>

 </KeyInfo>

</Signature>

Table C-4.  SAML 2 Assertion Signature Elements Useful for Troubleshooting

Element Description

SignatureMethod Check that the signature algorithm used by the IdP is an algorithm accepted by

the service provider implementation.

Certificate Check that the certificate shown is correct for the IdP and matches IdP

metadata configured at the service provider.

�C.2.1.3. Subject

The Subject element identifies the authenticated user. A very common issue is that an

identifier specified by the identity provider in the assertion is different from the identifier

expected by a service provider (application) for the user. The typical elements to check

are shown in Table C-5.

<saml:Subject>

 <saml:NameID

 �Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">

USER IDENTIFIER

 </saml:NameID>

 <saml:SubjectConfirmation

 Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">

 <saml:SubjectConfirmationData

 NotOnOrAfter="EXPIRATION FOR SUBJECT DATA"

 Recipient="SERVICE PROVIDER ACS URL>"

 InResponseTo="ID FROM REQUEST"/>

 </saml:SubjectConfirmation>

</saml:Subject>

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

352

Table C-5.  SAML 2 Subject Elements Useful for Troubleshooting

Element Description

NameID Contains an identifier for the authenticated user.

NotOnOrAfter Specified validity period for subject data. This time should not have already passed

when the assertion is received.

Recipient This element should match the ACS URL to which the response was delivered. Used

by a service provider to ensure it is the intended recipient of an assertion it receives.

InResponseTo This element should match the ID of the authentication request which triggered the

response (for service provider–initiated cases).

Table C-6.  SAML 2 Conditions Elements Useful for Troubleshooting

Element Description

NotBefore Start of validity period for assertion. This time should have passed when the

assertion is received.

NotOnOrAfter End of validity period for assertion. This time should not have already passed when

the assertion is received.

Audience Audience (intended recipient) of the assertion. May be specified in URN format.

Used by a service provider to ensure it is the intended recipient of an assertion it

receives.

�C.2.1.4. Conditions

The Conditions element contains conditions on the use of the assertion which should be

checked by a service provider. The typical elements to check are shown in Table C-6.

<saml:Conditions

 NotBefore="BEGIN VALIDITY TIME"

 NotOnOrAfter="END VALIDITY TIME">

 <saml:AudienceRestriction>

 <saml:Audience>INTENDED RECIPIENT</saml:Audience>

 </saml:AudienceRestriction>

</saml:Conditions>

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

353

�C.2.1.5. Authentication Statement

The AuthnStatement element indicates when authentication occurred, and the

AuthnContextClassRef can be used to return an indicator of the strength of the

authentication mechanism used. This section of the response is not typically a frequent

cause of issues. The typical elements to check are shown in Table C-7.

<saml:AuthnStatement

 AuthnInstant="2019-01-19T19:11:28.407Z"

 SessionIndex="SESSION INDEX">

 <saml:AuthnContext>

 <saml:AuthnContextClassRef>

 urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified

 </saml:AuthnContextClassRef>

 </saml:AuthnContext>

</saml:AuthnStatement>

�C.2.1.6. Attribute Statements

Attribute statements are used to convey additional user profile attributes about the user.

A frequent cause of issues is a mismatch between attributes expected by an application

and the attributes delivered in a SAML assertion. The specific attributes will vary across

different applications and identity providers. We have shown two attributes in the

following snippet, one for a user identifier and one for a user’s email address. The list of

attribute statements in an assertion should be checked to ensure all attributes required

by an application are delivered in the assertion.

<saml:AttributeStatement

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Table C-7.  SAML 2 AuthnStatement Elements Useful for Troubleshooting

Element Description

AuthnContextClassRef If a particular AuthnContextClassRef was requested, this can be checked to

see if it matches the requested value.

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

354

 <saml:Attribute

Name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">

 <saml:AttributeValue xsi:type="xs:string">

 USER IDENTIFIER

 </saml:AttributeValue>

 </saml:Attribute>

 <saml:Attribute

 Name=

"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">

 <saml:AttributeValue xsi:type="xs:string">

 USER EMAIL ADDRESS

 </saml:AttributeValue>

 </saml:Attribute>

</saml:AttributeStatement>

</saml:Assertion>

</samlp:Response>

�C.3. Validation
Applications must properly validate the SAML assertions they receive. We will focus in this

section on validation steps for applications, as this book is targeted to application developers

rather than identity provider implementers. We will further focus on validation steps that

may impact troubleshooting as there are now many good SAML 2 libraries available to

parse and validate protocol messages, and we do not recommend that new applications

implement the SAML protocol or the validation of protocol messages themselves. We

assume a simple scenario where an Identity Provider responds to a Service Provider without

any intermediate proxies, transitive relationships, or further redirection to other parties.

Assuming that responses are sent to an application using HTTP-POST, validation

steps include checking

•	 The response contains a valid, properly formatted SAML 2 response.

•	 The Destination element of the SAML response matches the Service

Provider.

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

355

•	 The Issuer of the response assertion matches the configured/

expected Identity Provider.

•	 The Status element indicates success and does not contain an

error code.

•	 The digital signature on an assertion is valid for the issuing identity

provider.

•	 The Subject element exists and contains the subject of the assertion,

using a name format for the subject that is recognizable by the

Service Provider.

•	 The AudienceRestriction in the Conditions element matches the

Service Provider.

•	 The AuthnContext element of the AuthnStatement matches

an application’s requirements, such as for the strength of the

authentication mechanism used.

•	 The AttributeStatements contain values for any attributes required by

the application.

•	 The application’s Assertion Consumer Service URL that

received a response is the same as the Recipient in the

SubjectConfirmationData element of the response received.

•	 The NotOnOrAfter time specified in the SubjectConfirmationData

and Conditions elements in the response has not passed. It is

acceptable to allow a small tolerance for clock differences between

servers, but if assertions repeatedly time out, the issue should be

fixed by configuring servers to synchronize clocks with time servers.

•	 The ID for each incoming assertion is not on a list of previously used

assertion ID values, maintained by the application for the length of

time the IDs would be valid (from NotOnOrAfter), to ensure that the

assertion has not been replayed.

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

356

Additional validations only possible with SP-initiated flow include

•	 Check that the InResponseTo element in the response matches the

unique ID of the authentication request sent.

•	 If a value was sent using the RelayState parameter, the response

should contain the same value in the RelayState parameter.

Additional validations for IdP-initiated flow include

•	 There should not be an InResponseTo element.

The RelayState element may include a URL at the Service Provider to which the

user is to be directed after a successful authentication response is received. With an

IdP-initiated flow, such use of RelayState is often undertaken with a mutual agreement

between the Service Provider and the Identity Provider. If no RelayState is specified, a

Service Provider should have a designated default URL to which a user will be redirected

after a response is received. If RelayState is used, the contents must be protected against

tampering with a mechanism that supports size restrictions for this field. It should be

noted, however, that the protocol does not provide a way to ensure the integrity of a

SAML message and RelayState pairing. In other words, an attacker could potentially

recombine a SAML message from one response with a RelayState from another

response. With IdP-initiated flows, especially with the use of RelayState, it may be

difficult for a Service Provider to validate that a response is legitimate and hasn’t been

tampered with, making IdP-initiated flows vulnerable to additional risks.

Our discussion in this section has assumed the use of general security measures such

as the use of a suitably up-to-date version of TLS and secure cipher suite for the protocol

communications, along with secure key management for cryptographic keys, and

trusted certificate authorities for trusted bindings between public keys and identities.

APPENDIX C: SAML 2 AUTHENTICATION REQUEST AND RESPONSE

357
© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8

�Appendix D: Public Key
Cryptography

This appendix provides a brief description of how public and private keys are used to

encrypt and sign tokens in a public key cryptography scheme.

With public key cryptography, there is a private key and a public key. The private

key is a long string of random characters. A public key is generated from the private key.

The two keys are called a key pair. The owner of a key pair should keep the private key a

secret, but the public key is designed to be distributed to others and used as described in

the following.

To encrypt a message or object, the sender uses the public key of the intended

recipient to encrypt the message. Once it is encrypted, only the recipient, who holds the

matching private key, can decipher the message.

To digitally sign a message or object, the signer uses its private key to digitally sign

the message. The recipient of the message uses the sender’s public key to verify the

signature on the message.

https://doi.org/10.1007/978-1-4842-8261-8

359
© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8

�Appendix E: Troubleshooting Tools

The following sections contain tools the authors have found useful for troubleshooting

issues with applications using identity protocols.

�E.1. Capture an HTTP Trace
An HTTP trace is essential for troubleshooting many scenarios. The following

instructions indicate how to access trace features in different browsers, at the time of

writing. A search for “How to capture an HTTP trace in <name of browser>” should

provide current instructions if the following instructions no longer apply:

Chrome

•	 Open Developer Tools.

•	 Click the Network tab.

•	 Check the “Preserve Log” option, if not already checked.

•	 After capturing a trace, click the Export HAR arrow button to save the

trace in a .har file.

Firefox

•	 There is a nice extension called Live HTTP Headers that is handy

with Firefox.

•	 Alternatively, you can open a new tab in Firefox and select “Tools”

➤ “Browser Tools” ➤ “Web Developer Tools” and then click the

Network tab.

•	 Reproduce the issue.

•	 Right-click in the trace window and select “Save All As HAR.”

https://doi.org/10.1007/978-1-4842-8261-8

360

Edge

•	 Press F12 to bring up Developer Tools.

•	 Click the Network tab. Make sure the “Preserve log” option is checked.

•	 Reproduce the issue.

•	 Click the Export HAR button.

Safari

•	 In Safari Preferences, Advanced, turn on “Show Develop Menu in

Menu bar.”

•	 When viewing a site, use the Develop ➤ Show Web Inspector to view.

•	 Click the Network tab.

•	 Turn on Preserve Log. Reproduce the issue.

•	 Use “Export” to save the HTTP trace to a .har file.

�E.2. View a HAR File
If you can reproduce an authentication/authorization issue, you can view the HTTP

trace of the issue in your own browser. However, if you need to view an HTTP Archive file

captured by someone else, the following tools will be useful.

Caution  Remember that HTTP trace files may contain sensitive information such
as passwords or security tokens. You should remove sensitive content such as
passwords before sharing or uploading trace files, as well as reset credentials and
revoke any tokens, as appropriate.

If the tools listed as follows are no longer available, you should be able to find new

ones by searching for “HTTP Archive View” or “How to view a .har file.”

Chrome
The Chrome browser supports the ability to import a .har file.

•	 Open the Chrome Developer Tools Network tab.

•	 Drag and drop your .har file onto the tab.

APPENDIX E: TROUBLESHOOTING TOOLS

361

Google .har file analyzer
Google provides a website which can be used to view HTTP Archive (.har) files:

https://toolbox.googleapps.com/apps/har_analyzer/

Fiddler
Fiddler, another useful network trace tool, can also be used to view .har files:

https://docs.telerik.com/fiddler/configure-fiddler/tasks/configurefiddler

�E.3. Capture a Network Trace
To capture API traffic originating from a back-end application component or native

application, you can rely on your favorite debugger or a network trace tool such as the

following:

Fiddler
https://docs.telerik.com/fiddler

Charles Proxy
www.charlesproxy.com/

�E.4. View Security Tokens
The ability to view security tokens issued by identity providers greatly aids the debugging

process. Table E-1 contains some of our favorites.

Table E-1.  Useful Tools for Viewing Security Tokens

Tool Purpose

https://jwt.io Tool provided by Auth0 for viewing JWT tokens.

https://samltool.com Tool provided by OneLogin for viewing SAML tokens.

https://samltool.io Tool provided by Auth0 for viewing SAML tokens.

APPENDIX E: TROUBLESHOOTING TOOLS

https://toolbox.googleapps.com/apps/har_analyzer/
https://docs.telerik.com/fiddler/configure-fiddler/tasks/configurefiddler
https://docs.telerik.com/fiddler/KnowledgeBase/ImportExportFormats
https://www.charlesproxy.com/
https://jwt.io
https://samltool.com
https://samltool.io

362

�E.5. Test APIs
A tool for testing API calls, without the added complexity of a client application, can aid

debugging. Table E-2 contains tools we’ve found helpful for testing calls to APIs.

Table E-2.  API Debugging Tools

Tool Purpose

https://getpostman.com Tool for learning, debugging, and testing API calls.

https://insomnia.rest/ Tool for learning, debugging, and testing API calls.

APPENDIX E: TROUBLESHOOTING TOOLS

https://getpostman.com
https://insomnia.rest/

363
© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8

�Appendix F: Privacy Legislation

This section contains information on privacy-related legislation. Countries around the

world are recognizing the need to enact legislation to protect personal information. It

is beyond the scope of this book to provide a comprehensive list of privacy legislation

as the list is long and new legislation is being introduced on an ongoing basis. In fact, at

the time of writing, the privacy legislation in several countries is undergoing significant

revision, in some cases to align more closely with the GDPR.

We will provide selected resources for learning more about the primary privacy

legislation applicable to the EU, namely, the GDPR, and legislation in the United States,

which takes a sectoral approach to privacy legislation. We’ve also provided resources

to help you find legislation applicable to other countries and to stay on top of privacy

changes around the world.

The information provided in the following does not constitute legal guidance, and

we recommend that organizations consult with legal and privacy professionals in the

development of any privacy compliance efforts.

�F.1. European Union
The European Union updated its 1996 Data Protection Directive with comprehensive

privacy legislation known as the EU GDPR, General Data Protection Regulation.i The

GDPR took effect in 2018 and applies to any entity that receives, stores, or processes data

about persons in the EU and includes stiff fines for noncompliance.

Note that individual countries within the EU may enact additional country-specific

legislation for implementation of the GDPR.

https://doi.org/10.1007/978-1-4842-8261-8

364

�F.2. United States
In the United States, there are several privacy-related laws rather than one single federal

privacy law. Privacy legislation in the United States uses a sectoral approach with

different laws for different industry sectors and for several individual states:

•	 GLBA (Gramm-Leach-Bliley Act)ii – Specifies privacy and security

requirements for the financial industry governing the handling and

protection of NPI (nonpublic personal information).

•	 HIPAA (Health Insurance Portability and Accountability Act)iii –

Specifies privacy and security requirements for the healthcare

industry, governing personal data as well as information about a

person’s healthcare, health status, and payment for healthcare.

•	 FTCA (Federal Trade Commission Act)iv – Protects consumers

against deceptive or unfair business practices, which may include

uses of personal data that do not conform to published privacy

notices. See in particular the FTC Privacy Rule.

•	 FCRA (Fair Credit Reporting Act)v and FACTA (Fair and Accurate
Credit Transactions Act)vi – Governs protection of personal data,

including a person’s credit score, capacity for credit, and any

personal characteristics related to credit worthiness. It also obligates

financial institutions to implement measures to detect and respond

to suspected instances of identity theft, via the Identity Theft Red

Flags Rule.

•	 CAN-SPAM (Controlling the Assault of Non-Solicited Pornography
and Marketing)vii – Governs the use of unsolicited commercial

emails whose primary purpose is advertisement or promotion of

commercial products or services.

•	 TCPA (Telephone Consumer Protection Act)viii – Governs

telemarketing calls and the use of automated calls, otherwise known

as robocalls.

•	 COPPA (Children’s Online Privacy Protection Act)ix – Governs

the collection, use, and disclosure of information about children

under the age of 13 for protection from unfair or deceptive practices.

APPENDIX F: PRIVACY LEGISLATION

365

It places requirements on websites or online services targeted to

children under 13 or which knowingly have personal data about

children under 13.

•	 VPPA (Video Privacy Protection Act)x – Originally established in

1988 and amended in 2012, it governs the protection of personal data

related to rental or sales of videos.

In addition, a patchwork of different privacy laws is being enacted by individual

states in the absence of national legislation in the United States. Examples are

•	 California Consumer Privacy Act (CCPA)xi – California enacted the

California Consumer Privacy Act (CCPA) which took effect in January

2020. The CCPA entitles California residents to know what personal

data is being collected, whether it’s sold or shared, the right to opt out

to the sale or sharing of their personal data, access to their data, and

equal service and price even if they exercise their opt-out choice. The

CCPA was the first comprehensive data privacy law enacted by a state

in the United States.

•	 California Privacy Rights Act (CPRA)xii – This act takes effect on

July 1, 2023, and expands upon the CCPA. It enlarges the definition

of “personal information” to include things like cookies, browser

history, IP addresses, geolocation data, and device identifiers. It

defines a new category of data to be considered sensitive personal

information, adds measures designed to prevent users’ geolocation

from being tracked, adds further protections for minors, and provides

greater legal rights for users, including private right of action such

as the ability to sue providers after a data breach. The CPRA also

establishes the California Privacy Protection Agency to serve as an

advocate for users and to oversee and enforce privacy requirements.

•	 Virginia Consumer Data Protection Act (CDPA)xiii – The Virginia

CDPA was signed on March 2, 2021, and becomes effective on

January 1, 2023. It is the second comprehensive data privacy

law at the state level in the United States and establishes several

requirements similar to the GDPR and the CCPA. The CDPA requires

organizations to provide privacy notices and disclose if personal

data is sold or used for targeted advertising and provide an opt-out

APPENDIX F: PRIVACY LEGISLATION

366

mechanism. It gives users the right to view, correct, and request

the deletion of their personal data held and the right to opt out

of certain processing of their data. The Virginia CDPA applies to

individuals who conduct business in Virginia or target services to

Virginia residents as well as meet thresholds related to the number of

consumers whose personal data is processed and the percent of gross

revenue gained from the sale of personal data.

•	 Colorado Privacy Act (CPA)xiv – The Colorado CPA was signed into

law on July 7, 2021, and becomes effective on July 1, 2023. It is the

third comprehensive, state-level data privacy legislation in the United

States and contains elements similar to the GDPR, CCPA, CPRA,

and the Virginia CDPA. It applies to data controllers who conduct

business in Colorado or target services to Colorado residents and

meet thresholds related to the number of consumers whose personal

data is processed and whether any revenue or discounts are gained

from the sale of personal data.

•	 Vermont Data Broker Privacy Lawxv – Vermont has enacted

legislation that applies to data brokers that collect, store, aggregate,

and sell data about data subjects. This legislation applies to brokers

who don’t have a direct relationship with the data subjects. The

law requires data brokers to be transparent about their practices by

registering with the state, secure the data they hold, and to not use

personal data to harass or discriminate against data subjects. The

Vermont law also requires free credit freezes to protect consumers

whose identity has been stolen.

For information on other states, the International Association of Privacy

Professionals has prepared a chart comparing US states’ passage of comprehensive

privacy legislation.xvi With individual states each passing their own different legislation,

businesses will need to devote time to understanding how to be compliant with different

states’ legislation in an efficient manner.

APPENDIX F: PRIVACY LEGISLATION

367

�F.3. Other Countries
For information on privacy legislation in other countries, we have found the following

sites useful for identifying privacy laws in each location and tracking news on privacy

changes:

•	 DLA Piper – Data Protection Laws of the Worldxvii

•	 United Nations Conference on Trade and Development – Data

Protection and Privacy Legislationxviii

•	 International Association of Privacy Professionals (IAPP) – (Some

content for members only)xix

In reviewing privacy legislation, it is worth noting that in some countries, there is

different legislation for private sector businesses vs. public sector entities, and there may

be additional legislation enacted by regional governments or for specific industries. For

example, in Canada, the Personal Information Protection and Electronic Documents

Act (PIPEDA)xx applies to private sector businesses in Canada, whereas the Privacy Actxxi

applies to federally regulated public bodies in Canada. In addition, some Canadian

provinces have enacted additional privacy legislation.

�F.4. Notes

	 i.	 https://gdpr.eu/what-is-gdpr/

	 ii.	 www.ftc.gov/tips-advice/business-center/privacy-and-

security/gramm-leach-bliley-act

	 iii.	 www.hhs.gov/hipaa/index.html

	 iv.	 https://www.ftc.gov/legal-library/browse/rules/

financial-privacy-rule

	 v.	 www.ftc.gov/enforcement/rules/rulemaking-regulatory-

reform-proceedings/fair-credit-reporting-act

	 vi.	 www.ftc.gov/enforcement/statutes/fair-accurate-credit-

transactions-act-2003

APPENDIX F: PRIVACY LEGISLATION

https://gdpr.eu/what-is-gdpr/
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://www.hhs.gov/hipaa/index.html
https://www.ftc.gov/legal-library/browse/rules/financial-privacy-rule
https://www.ftc.gov/legal-library/browse/rules/financial-privacy-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/fair-credit-reporting-act
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/fair-credit-reporting-act
https://www.ftc.gov/enforcement/statutes/fair-accurate-credit-transactions-act-2003
https://www.ftc.gov/enforcement/statutes/fair-accurate-credit-transactions-act-2003

368

	 vii.	 www.ftc.gov/tips-advice/business-center/guidance/can-

spam-act-compliance-guide-busines

	viii.	 www.fdic.gov/resources/supervision-and-examinations/

consumer-compliance-examination-manual/documents/8/

viii-5-1.pdf

	 ix.	 www.ftc.gov/enforcement/rules/rulemaking-regulatory-

reform-proceedings/childrens-online-privacy-

protection-rule

	 x.	 https://www.congress.gov/bill/100th-congress/senate-

bill/2361

	 xi.	 https://leginfo.legislature.ca.gov/faces/billTextClient.

xhtml?bill_id=201720180AB375

	 xii.	 https://thecpra.org/

	xiii.	 https://law.lis.virginia.gov/vacode/title59.1/chapter53/

	 xiv.	 https://leg.colorado.gov/bills/sb21-190

	 xv.	 https://legislature.vermont.gov/statutes/chapter/09/062

	xvi.	 https://iapp.org/resources/article/state-

comparison-table/

	xvii.	 www.dlapiperdataprotection.com/

	xviii.	 https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-

Legislation/eCom-Data-Protection-Laws.aspx

	xix.	 https://iapp.org/

	 xx.	 www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/

the-personal-information-protection-and-electronic-

documents-act-pipeda/

	xxi.	 www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/

the-privacy-act/

APPENDIX F: PRIVACY LEGISLATION

https://www.ftc.gov/tips-advice/business-center/guidance/can-spam-act-compliance-guide-busines
https://www.ftc.gov/tips-advice/business-center/guidance/can-spam-act-compliance-guide-busines
https://www.fdic.gov/resources/supervision-and-examinations/consumer-compliance-examination-manual/documents/8/viii-5-1.pdf
https://www.fdic.gov/resources/supervision-and-examinations/consumer-compliance-examination-manual/documents/8/viii-5-1.pdf
https://www.fdic.gov/resources/supervision-and-examinations/consumer-compliance-examination-manual/documents/8/viii-5-1.pdf
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.congress.gov/bill/100th-congress/senate-bill/2361
https://www.congress.gov/bill/100th-congress/senate-bill/2361
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://thecpra.org/
https://law.lis.virginia.gov/vacode/title59.1/chapter53/
https://leg.colorado.gov/bills/sb21-190
https://legislature.vermont.gov/statutes/chapter/09/062
https://iapp.org/resources/article/state-comparison-table/
https://iapp.org/resources/article/state-comparison-table/
http://www.dlapiperdataprotection.com/
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://iapp.org/
http://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
http://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
http://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
http://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-privacy-act/
http://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-privacy-act/

369
© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8

�Appendix G: Security Compliance
Frameworks

Security frameworks provide a list of controls that represent requirements that would

reasonably be expected of an organization to adequately secure systems and information

under its control. We list here some security frameworks we have had occasion to review,

in two sections. The first section contains general security frameworks that are not

specific to an individual country or government. The second section presents several

security requirements or frameworks that are specific to the United States.

�G.1. General Security Frameworks
The following is a list of security frameworks, in alphabetical order.

�G.1.1. Center for Internet Security – Top 20 Controls
The CIS Controlsi are a series of 20 foundational cybersecurity controls intended to

eliminate the most common attacks.

�G.1.2. Cloud Security Alliance
The Cloud Security Allianceii has a mission to promote best practices for security

assurance for cloud providers. CSA has a three-level certification program called CSA

STAR based on a published framework of security controls known as the Cloud Controls

Matrix (CCM).

https://doi.org/10.1007/978-1-4842-8261-8

370

�G.1.3. ISO 27000
ISO 27000iii is a family of standards published by the ISO (International Organization for

Standardization) for information security management systems. Figure G-1 shows the

ISO/IEC 27000 family of requirements, guidelines, and standards.

Each of the standards/guidelines in the diagram may be purchased from ISO. A

certified, independent auditor is required to verify compliance with the framework

controls. After an audit of an organization’s evidence of compliance, a report is issued for

the audit period stating if the controls were met. Organizations that pass the audit can

place a certificate seal on their website.

�G.1.4. PCI DSS
The PCI DSS (Payment Card Industry Data Security Standard)iv was created by the

payment card industry. Any vendor processing credit card data is expected to be

compliant with the PCI DSS standard. It also applies to other systems that can impact the

security of systems subject to PCI DSS.

Figure G-1.  ISO/IEC 27000 ISMS Standards Family

APPENDIX G: SECURITY COMPLIANCE FRAMEWORKS

371

�G.2. US Frameworks
The following frameworks are applicable to the United States. They may be applicable

to private sector organizations or applicable to government agencies and those doing

business with them. Even if they are not mandatory for your project, a lot can be learned

about best practices by studying the requirements, which may be useful in preparing for

an audit or future requirements.

�G.2.1. CJIS Security Policyv – Criminal Justice Information
Services Security Policy
In the United States, the Criminal Justice Information Services (CJIS) Security Policy

governs the protections which must be provided for the handling of personal data

related to criminal justice, including fingerprints and criminal background records.

�G.2.2. FFIEC Information Technology Examination Hand-
book and Cybersecurity Assessment Toolvi

The US Federal Financial Institutions Examination Council (FFIEC) unifies standards

and principles and provides security guidance for financial institutions. The FFIEC has

published the Information Technology Examination Handbook which consists of 11

booklets including one on Information Security. It has also published the Cybersecurity

Assessment Tool which includes principles and standards in the Examination

Handbook. The Cybersecurity Assessment Tool can be used as a self-assessment tool to

prepare for an examination or audit.

�G.2.3. FISMA – Federal Information Security
Management Actvii

FISMA requires each US federal agency to develop, document, and implement

an agency-wide program to provide information security for the information and

information systems that support the operations and assets of the agency, including

those provided or managed by another agency, contractor, or other sources. The FISMA

standards include NIST publications FIPS-199, FIPS-200, and the NIST 800 series.

APPENDIX G: SECURITY COMPLIANCE FRAMEWORKS

372

�G.2.4. FedRAMP – Federal Risk and Authorization
Management Programviii

FedRAMP defines a process for the evaluation, authorization, and monitoring of the

security of cloud service providers used by US federal agencies. FedRAMP approval is

required before a cloud service can be used by a federal agency (with a few very limited

exceptions).

�G.2.5. GLBA Safeguards Ruleix

This portion of GLBA (Gramm-Leach-Bliley Act) requires financial institutions to have

measures in place to protect personal data, including names, addresses, social security

numbers, bank account, and credit card information, as well as credit and income

history.

�G.2.6. HIPAAx

In the United States, the Health Insurance Portability and Accountability Act has a

security component known as the HIPAA Security Rule. This rule establishes standards

for the protection of electronic personal health information. This includes personal data

related to healthcare, health status, and payment for healthcare.

�G.2.7. HITECH Actxi

In the United States, the HITECH (Health Information Technology for Economic and Clinical

Health) Act governs the adoption of technology for managing electronic health records.

Subtitle D of this act covers the security and privacy of electronic health information.

�G.2.8. NISTxii

The National Institute for Standards and Technology in the United States is a

government body that publishes standards. The NIST cybersecurity framework is a

voluntary framework of standards, guidelines, and best practices for cybersecurity. This

framework references the NIST 800 series of publications which provide guidelines and

technical specifications for cybersecurity.

APPENDIX G: SECURITY COMPLIANCE FRAMEWORKS

373

�G.3. SOC(Service Organization Control)
�G.3.1. SOC1
A SOC1 report focuses on a service organization’s controls that are likely to be relevant

to an audit of the entity’s financial statements. Control objectives are related to both

business process and information technology. SOC1 reports follow the Statement on

Standards for Attestation Engagements (SSAE) 18 standard.

�G.3.2. SOC2
Service Organization Control 2 is a set of controls against which a company is audited,

related to security, privacy, confidentiality, processing integrity, and/or availability. The

specific set of controls for SOC2 is defined by each company. As the SOC2 assessment

is not based on an open standard set of controls, information on the company-specific

controls is included in the SOC2 report, prepared by an auditor, after a SOC2 compliance

audit. The SOC2 report was created in part because of the rise of cloud computing and

business outsourcing of functions to service organizations. These are called user entities

in the SOC reports. Liability concerns have caused an increase in demand in assurance

of confidentiality and privacy of information processed by companies and organizations.

�G.4. Notes

	 i.	 www.cisecurity.org/controls/

	 ii.	 https://cloudsecurityalliance.org/star/#_overview

	 iii.	 www.iso.org/isoiec-27001-information-security.html

	 iv.	 https://www.pcisecuritystandards.org/

	 v.	 www.fbi.gov/services/cjis/cjis-security-policy-

resource-center

	 vi.	 www.ffiec.gov/cybersecurity.htm

	 vii.	 www.dhs.gov/cisa/federal-information-security-

modernization-act

APPENDIX G: SECURITY COMPLIANCE FRAMEWORKS

http://www.cisecurity.org/controls/
https://cloudsecurityalliance.org/star/#_overview
http://www.iso.org/isoiec-27001-information-security.html
https://www.pcisecuritystandards.org/
http://www.fbi.gov/services/cjis/cjis-security-policy-resource-center
http://www.fbi.gov/services/cjis/cjis-security-policy-resource-center
https://www.ffiec.gov/cybersecurity.htm
http://www.dhs.gov/cisa/federal-information-security-modernization-act
http://www.dhs.gov/cisa/federal-information-security-modernization-act

374

	viii.	 www.fedramp.gov/

	 ix.	 https://www.ftc.gov/business-guidance/resources/ftc-

safeguards-rule-what-your-business-needs-know

	 x.	 www.hhs.gov/hipaa/for-professionals/security/index.html

	 xi.	 www.hhs.gov/hipaa/for-professionals/special-topics/

hitech-act-enforcement-interim-final-rule/index.html

	 xii.	 www.nist.gov/cyberframework

APPENDIX G: SECURITY COMPLIANCE FRAMEWORKS

http://www.fedramp.gov/
https://www.ftc.gov/business-guidance/resources/ftc-safeguards-rule-what-your-business-needs-know
https://www.ftc.gov/business-guidance/resources/ftc-safeguards-rule-what-your-business-needs-know
http://www.hhs.gov/hipaa/for-professionals/security/index.html
http://www.hhs.gov/hipaa/for-professionals/special-topics/hitech-act-enforcement-interim-final-rule/index.html
http://www.hhs.gov/hipaa/for-professionals/special-topics/hitech-act-enforcement-interim-final-rule/index.html
http://www.nist.gov/cyberframework

375

Index

A
Access control list (ACL), 147, 149
Access policy enforcement, 16, 17, 22,

143–146, 150–152, 155, 157–159
Account requirements

account linking, 281–283
delegation, 283, 284
impersonation, 283
mergers and acquisitions, 279, 280
progressive profiling, 282

Anti-Money Laundering (AML), 52
Apple Face ID, 209, 294
Apple Touch ID, 209
Application Programming Interface (API)

authorizations, 7, 29, 63–99, 145, 146,
150–155, 159, 177, 186, 188–190,
224, 258, 262, 337

back-end API, 146, 151, 171, 252
client applications, 8, 65, 96, 152,

186, 362
custom claims, 196
extensibility, 155
front-end application, 173
front-end functions, 179
front ends, 146, 173, 187, 190
helper functions, 187, 188
introspection specification, 79
JWT-formatted access, 150, 185, 187
OAuth 2 scopes, 189, 190
OpenID Providers, 8, 113, 122, 124,

152, 196, 339
processing request, 95

tests, 186, 252, 254, 263
user authorization, 66, 147, 148

Attribute-based access control (ABAC),
148, 149, 158

Authentication
biometric factors, 19, 208, 209, 216, 326
deployments, 210, 211, 214, 216
identity provider request, 50, 51
knowledge-based authentication, 209
MFA, 209, 210
OIDC, 7, 8, 30, 51, 67, 103–105, 107,

108, 112, 113, 115, 118, 121–124,
135, 136, 139, 150, 167, 169, 199,
202, 213, 217, 218, 229, 338, 339

private cryptographic key, 208,
215, 357

SAML 2, 6, 8, 27, 29, 30, 51, 124, 127,
150, 167, 199, 212, 218, 229,
338–340, 342, 345, 346, 348–350

session timeouts, 165, 169, 211,
213, 217

static passwords, 207–210, 214, 326
step-down, 213
step-up, 19, 211, 229
stronger forms, 19, 22, 131, 203, 207,

208, 210, 211, 217, 325, 326, 331
Authorization

client applications
attributes, 11, 15, 58, 95, 145,

148–150, 153, 188
delivery, 58, 147, 150
enforcement, 144, 152

© Yvonne Wilson, Abhishek Hingnikar 2023
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-8261-8

https://doi.org/10.1007/978-1-4842-8261-8

376

OAuth 2 request, 153
policy enforcement

application access, 144, 145
data access, 145
functional access, 145

user authorization
delivery, 150
enforcement, 95, 140, 143, 147, 148,

151, 152, 155, 156, 158, 159
profile attributes, 35, 58, 95,

148–151, 155, 156
transactional attributes, 149

user vs. client application, 146, 147
Authorization code flow, 196
Authorization code grant, 71–73, 75, 78,

81, 83, 85, 86, 100, 109

B
Browser-based application, 69

C
California Consumer Privacy Act (CCPA),

5, 245, 304, 305, 365, 366
California Privacy Rights Act (CPRA), 304,

305, 365, 366
Center for Internet Security (CIS), 369
Centralized user repository, 25
Certificate of deletion, 246, 249
Client credentials grant, 80, 81, 94,

100, 154
Client-Initiated Backchannel

Communication (CIBA), 123, 125
Cloud Controls Matrix (CCM), 306, 311,

314, 369
Cloud Security Alliance (CSA), 306, 311,

314, 369

Colorado Privacy Act (CPA), 245, 305, 366
Compliance

assessment and certification, 311
competitive advantage, 306
data protection, 309
definition, 303
efficiency, 308, 309
elective compliance frameworks, 306
GDPR, 309
industries, 303, 306, 309, 310, 313
list of activities, 311
privacy compliance, 243, 363
reduce penalties, 313
security compliance, 309, 369
security/privacy standards, 309, 310

Confirmation notifications, 239
Consent management, 58–61, 193
Criminal Justice Information

Services (CJIS) Security Policy, 371
Cross-Site Request Forgery (CSRF), 75, 98,

112, 121
Cross-Site Scripting (CSS), 98

D
Delegation, 283, 284
Demonstrating Proof-of-Possession

(DPoP), 97
Deprovisioning

account termination, 241
certificate of deletion, 246
data transfer, 244, 245
delete account, 242, 244
preserve account record, 243
preserve identities, 243
reprovision requirements, 247
right to erasure, 245, 246
secure deletion, 242

Authorization (cont.)

INDEX

377

Device Authorization Grant,
86–88, 341

Document-writing app
code-sharing web sites, 173
compliance requirements, 174
features and services, 172
frameworks, 175
identity provider service, 175
management requirements

access controls, 173
anonymous document

creation, 173
API calls, 173
provisioning options, 173
sensitive data, 173
session timeout, 174
single sign-on, 174
user logs out, 174
users log in, 174
web-based single-page

application, 173
platform, 175

E
Environment requirements

identity provider discovery, 285
multitenant applications, 285, 286
shared workstations, 284, 285

Exceptions
accounts

data restore, 266
decommission, 266, 267
orphaned account, 267
takeover, 267, 268

compromised security information
credentials, 265
personal data, 272, 273

secrets, 274
identity provider

account recovery requests, 268, 269
breached passwords, 270
brute force attack, 269, 270

system outage
administrative access, 271
authentications, 118, 121
provisioning process, 271

External identity service
characteristics, 48
customer types, 51, 52
factors, 47
government-issued online

identity, 49, 50
industry consortium, 50
organization-controlled identity, 51
organizations, 49
self-registered identity, 48, 49
social provider accounts, 48

F
Failures

cleartext passwords, 294
encrypt sensitive data, 293, 294
insiders threat, 296, 297
MFA, 291, 292
pay attention to process, 290
phishy emails, 291
secure coding practices, 294
security vulnerability, 292
target’s HVAC, 295

Fast Identity Online (FIDO), 209, 343
Fast Identity Online v2 (FIDO2),

209, 215
Federal Financial Institutions

Examination Council (FFIEC), 371

INDEX

378

Federal Information Security
Management Act (FISMA),
309, 371

Federal Risk and Authorization
Management Program
(FedRAMP), 309, 372

Form_post response mode, 118
Front-end functions

API calls, 119, 173
helper functions, 188
logout, 179
OpenID Connect, 119, 178
sessions, 179
token management, 184
tokens, 179
user authentication, 180, 182

G
General Data Protection Regulation

(GDPR), 5, 233, 245, 273, 304, 307,
310, 343, 363, 365, 366

Gramm-Leach-Bliley Act (GLBA), 364, 372

H
Hashing algorithms, 39–41
Health Information Technology for

Economic and Clinical Health
(HITECH), 305, 309, 372

Health Insurance Portability and
Accountability Act (HIPAA), 305,
309, 364, 372

HTTP Archive View (HAR file)
Chrome, 360
Fiddler, 361
Google, 361

HTTP trace

Chrome, 253
Edge, 253
Firefox, 253
Safari, 253

I
Identifiers, 11, 12, 14, 16, 17, 35, 42, 48,

54–57, 59, 75, 78, 89, 92, 107, 114,
122, 128, 134, 135, 137, 140, 149,
161–163, 166, 187, 188, 191, 192,
212, 213, 227, 235, 236, 239, 243,
248, 262, 266, 278–282, 338, 346,
347, 349–353, 365

Identities
access policy enforcement, 16, 17, 21,

144, 149, 159
account management and

recovery, 20, 21
authentications, 4, 6, 8, 11, 13, 16, 21,

23, 24, 26–32, 35, 41–43, 45, 47, 49,
51, 60, 105, 124, 127–140, 144, 149,
157, 163–169, 171, 179, 180, 182,
194, 196, 199–205, 211, 212,
217–220, 229, 234–236, 238, 248,
251, 255, 256, 262, 263, 268,
280–282, 286, 317, 325, 326, 335,
338, 339, 346, 356

authorizations, 6, 8, 11, 13, 15, 21, 23,
24, 27, 29, 30, 32, 35, 58, 86, 103,
124, 139, 143, 144, 147–149, 151,
156, 157, 168, 171, 176, 180, 181,
187, 196, 202, 217, 224, 248, 251,
258, 260, 261, 263, 317, 327,
335, 339

autonomous vehicles, 324, 331
definitions, 11, 12, 147, 212, 293
deprovisioning, 6, 21, 22, 239, 242, 335

INDEX

379

events in life of, 7
evolution of, 23–32
IoT devices, 324, 325, 331
logout, 19, 20, 124, 164, 169, 185, 201,

203, 217, 219–224, 227–231
MFA, 19
personal agents, 331
provisioning, 14, 15, 21, 22, 32, 35, 37,

44–47, 60, 61, 193, 331, 335
robots, 317, 325, 331
sessions, 6, 17, 18, 25, 26, 46, 124,

130–133, 135, 161–164, 166–169,
174, 179, 184, 185, 194, 195,
199–205, 211, 217, 220–224,
227–231, 234, 280, 286

SSO, 26, 28, 127, 131, 195, 199–203,
220, 222, 229, 258, 263

step-up authentication, 19
Identity and access management (IAM)

System, 26, 144, 178
Identity attributes

account recovery, 236, 237
advantages/disadvantages, 47
credentials reset, 236
enterprise provider, 234
helpdesk reset, 238
password guidance, 237, 238
SCIM protocol, 235
social providers, 235
user profile data, 233
validations, 49

Identity defederation, 279
Identity management

centralized user repository, 25
design questions, 9
easier adoption, 328
e-identity initiatives, 325, 326

federated identity and SAML 2, 27
identity challenges, 2
OAuth 2, 6, 9, 196
OAuth 2.1, 30, 31
OIDC, 6, 9, 196
OpenID protocol, 28
per-application identity silo, 24
sample application, 9, 172, 196
smaller devices, 327
SSO servers, 26
standard protocols, 31
stronger authentication, 19
WS-Fed, 28

Identity migration, 39, 40, 43
Identity proofing, 15, 22, 52, 53, 60, 338
Identity Provider Initiated SSO, 132
Identity provisioning

administrative account creation
automated account, 44
cross-domain account, 45, 46
manual account, 44

approaches, 32, 35
invite-only registration flow, 37–39
leverage external identity

service, 46, 47
migration

bulk migration, 40, 41
gradual migration approach, 41–43
supporting legacy hashing

algorithms, 40
progressive profiling, 37
self-registration, 36

Impersonation, 283, 287
Implicit grant, 82, 83, 116
Internet of Things (IoTs), 71, 86, 324, 325,

327, 331, 338
Invite-only registration, 37–39

INDEX

380

J
JWT-secured Authorization

Request (JAR), 153, 155, 158, 342

K
Knowledge-based

authentication (KBA), 209
Know Your Customer (KYC), 52

L
Logout

applications, 98, 164, 185, 201, 203,
217, 219, 221–228, 230

application sessions, 223, 224
authentication brokers, 164, 222–224
in designing, 203, 222
identity provider session, 185, 201, 223,

228, 231
multilevel authentication, 229
multiple user sessions, 219, 220
OAuth 2.0, 224, 225
OIDC

back-channel, 226, 229
front-channel, 226, 229
specifications, 98, 224–226, 229, 231

redirects, 185, 228, 230
relying party client application,

221, 222
SAML 2, 217, 227–229, 231
session termination, 185, 223, 330
SSO, 223
triggers, 221, 223, 224
user sessions, 230

M
Multi-factor authentication (MFA), 1, 12,

19, 22, 27, 51, 52, 85, 86, 207,
209–211, 214, 216–218, 229, 268,
269, 291, 298, 319, 335, 343

Mutual-TLS, 97

N
National Institute of Standards and

Technology (NIST), 53, 209, 210,
237, 247, 371, 372

Network trace tool, 361
No email address, 278

O
OAuth 2

access tokens, 66, 67, 70, 93, 98, 104,
105, 109, 113, 116, 122, 151, 153,
224, 337, 339

API calls, 63, 67, 224
with authorization, 30, 66
authorization code grant

authorization requests, 8
+ PKCE, 71, 73
responses, 8, 92, 113, 195
token endpoints, 109

client credentials, 80
client profiles, 69
confidential clients, 338
implicit grant

authorization request, 82
URL hash fragment, 82

overview, 63, 124

INDEX

381

public clients, 97, 339
refresh token, 70, 93, 94, 96
refresh token rotation, 97, 195
resource owner password credentials

authorization requests, 29,
66, 93, 153

resource servers, 29, 97, 337, 339
roles, 68
sender-constrained token, 97
tokens and authorization code, 70

OAuth 2.0, 30–32, 63–65, 70, 73, 76, 79, 82,
83, 85, 86, 89, 95–99, 105, 113, 118,
187, 225, 274, 327, 341, 342

OAuth 2.1, 8, 30–32, 63–65, 70, 71, 73, 76,
81–85, 93, 97–100, 116, 341

One-time password (OTP), 3, 19, 203,
208–211, 215

OpenID Connect (OIDC) protocol
authentication, 104
authorization code and tokens, 105
authorization code flow

authentication request, 111
authentication response, 114
token requests, 114

client types, 105
endpoints, 106
ID Tokens, 106
implicit flow

authentication request, 118
authentication response, 119
parameters, 118

roles, 105
session management, 195, 225
UserInfo endpoint, 122

OpenID Connect RP-Initiated
Logout, 225

OpenID protocol, 28

P, Q
Payment Card Industry Data Security

Standard (PCI DSS), 305–307,
309, 370

People requirements
family account, 277
temporary accounts, 278

Per-application identity silo, 24
Privacy legislation

CCPA, 5, 245, 304, 305, 365, 366
CPA, 245, 305, 366
CPRA, 304, 305, 365, 366
European Union, 363
other countries, 304, 363, 367
United States, 304, 310, 363, 364, 366
VCDPA, 245, 305, 365

Private keys, 97, 208, 215, 274, 275, 357
Progressive profiling, 37, 60, 61, 282, 287
Proof Key for Code Exchange (PKCE),

71–75, 78, 83, 85, 86, 100, 109, 111,
112, 115, 118, 119, 121, 196, 341

Provisioning phase, 14–16, 35
Pushed Authorization Request (PAR), 154,

155, 158, 342

R
Refresh token rotation, 96, 97, 100, 168,

183, 184, 235
Refresh tokens, 70, 72, 79, 84, 87, 88,

92–94, 96–98, 100, 105, 109, 110,
116, 119, 121, 125, 163, 168, 183,
184, 195, 196, 224, 225, 235, 339

Resource owner client credentials
grant, 80, 81

Response modes, 113, 114, 116, 118, 121,
122, 125, 195, 196

INDEX

382

Rich Authorization Request (RAR), 153,
154, 158, 190, 342

Role-based access control (RBAC),
147–149, 158

S
SAML Profile for OAuth 2.0 Authorization

Grants, 342
Security Assertion Markup Language

(SAML) 2.0 protocol
assertions, 27, 127, 150–152, 212, 262,

338, 340, 347, 348, 350, 351
attribute statements, 150
authentication brokers, 345
authentication requests, 212, 345,

346, 348
authentication responses, 212, 348, 349
AuthnStatement, 353
conditions, 352
configurations, 274, 346, 348
digital signature, 138, 350
federated identity, 27
identity federation, 27, 127
identity providers, 8, 27–30, 127, 193,

212, 217, 218, 229, 338, 345, 347,
348, 354

IdP-initiated flow, 348
overview, 6, 27
protocol binding, 129
SAML assertions, 354
SAML profile, 128
service providers, 8, 212, 340,

346–348, 354
SP-initiated flow, 130, 131, 356
SSO, 130, 131
subjects, 338, 340, 352

trust relationship, 129
working principles, 129, 130

Security challenges
diversifying motives, 319, 320
evolving targets, 318, 319
ongoing breaches, 318

Security frameworks
CIS controls, 369
CJIS Security Policy, 371
CSA, 369
FedRAMP, 372
FFIEC, 371
FISMA, 309, 371
GLBA, 364, 372
HIPAA, 305, 309, 364, 372
HITECH, 305, 309, 372
ISO 27000, 306, 311, 370
NIST, 53, 209, 210, 237, 247, 371, 372
PCI DSS, 305–307, 309, 370
SOC, 373
US Frameworks, 371

Sender-constrained, 96, 97, 100, 168
Service Organization Control (SOC), 373
Service provider (SP)-initiated SSO, 130
Sessions

application sessions, 19, 108, 113, 162,
163, 165–168, 174, 194, 195, 203,
219, 229, 234

authentication brokers, 203, 219,
220, 222

continuous authentication, 169
duration, 162, 165, 202–204, 229
identity providers, 46, 130–133,

162–169, 174, 179, 184, 194, 195,
199–205, 211, 219–224, 227–231,
234, 280

INDEX

383

multiple sessions, 19, 164, 166, 169,
195, 219, 222, 332

relying parties, 108, 195, 221, 222,
224–229, 231

renewal, 17, 166
token renewal, 167, 168

SIM-swapping attack, 214
Single sign-on (SSO)

authentication mechanisms, 203
benefits, 200
consumer-facing environments, 199
definition, 199
login page branding, 202, 203
multiple identity providers, 203, 204
servers, 26
session attributes, 199–204
session duration, 202, 203
trade-offs, 200
working principles, 200–202

Soft delete, 242, 243, 248, 266
Status transitions, 278
Step-up authentication, 19, 22, 207, 210,

211, 216, 217, 244
System for Cross-domain Identity

Management (SCIM)
protocol, 45, 235

T
Targets

cars, 320
homes and businesses, 320
medical implants and monitoring,

321, 322
perimeter protections, 323
robots, 320

Token endpoints, 71–73, 77–79, 81, 82, 84,
91, 94, 98, 106, 111, 114, 119–122

Tracking Protections, 168, 184
Troubleshooting

API calls, 252, 254
application issue, 256
applications impact, 256
authentication/authorization, 257, 258
capture HTTP traces, 253
cross checking, 255
environmental factors, 256
HTTP status code, 260, 261
identity protocols, 251, 359
independent browser windows, 253
intermittent problem, 257
JWTs and SAML tokens, 254
parameters in a request, 260
problem replication, 258
sequence of interaction, 251
symptoms and issues, 258, 259
test environment, 252
token contents, 261, 262
tools, 263, 359, 360
trace of HTTP and API calls, 258
users impacted, 256
validation errors, 262
view HTTP traces, 254

U
Universal Second Factor (U2F), 209
User consents, 29, 36, 58–61, 66, 85,

310, 340
UserInfo endpoint, 104, 106, 110, 113, 116,

120, 122–125
User Managed Access (UMA), 327

INDEX

384

V
View security tokens, 361
Virginia Consumer Data Protection Act

(VCDPA), 245, 305, 365

W, X, Y
WebAuthn, 326, 343

Web Services Federation Language
(WS-Fed), 28, 29, 32, 140

WriteAPaper
application, 64, 65, 76

Z
Zero Trust, 317, 323

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: The Hydra of Modern Identity
	Identity Challenges
	Who Are Your Users? And Will They Authenticate?
	Level of Authentication Strength
	Simplifying Access for Users
	Migrating Users from Legacy Applications
	Regulatory Requirements
	User Experience Constraints

	Objective
	Sample Application
	Design Questions
	Summary
	Key Points

	Notes

	Chapter 2: The Life of an Identity
	Terminology
	Events in the Life of an Identity
	Provisioning
	Authorization
	Authentication
	Access Policy Enforcement
	Sessions
	Single Sign-On (SSO)
	Stronger Authentication
	Logout
	Account Management and Recovery
	Deprovisioning

	Summary
	Key Points

	Chapter 3: Evolution of Identity
	Identity Management Approaches
	Per-Application Identity Silo
	Centralized User Repository
	Early SSO Servers
	Federated Identity and SAML 2
	WS-Fed
	OpenID
	OAuth 2
	OpenID Connect (OIDC)
	OAuth 2.1

	Standard Protocols
	Summary
	Key Points

	Notes

	Chapter 4: Identity Provisioning
	Provisioning Options
	Self-Registration
	Progressive Profiling
	Invite-Only Registration

	Identity Migration
	Support Legacy Hashing Algorithm
	Bulk Identity Migration
	Gradual Migration of Users

	Administrative Account Creation
	Manual Account Creation
	Automated Account Creation
	Cross-Domain Account Creation

	Leverage Existing Identity Service

	Selecting an External Identity Service
	Self-Registered Identities
	Organization Identities
	Government Identities
	Industry Consortium Identities

	Identity Provider Selection
	Identity Proofing
	Choosing and Validating Identity Attributes
	Attribute Usage
	Validating Critical Attributes

	Consent Management
	Summary
	Key Points

	Notes

	Chapter 5: OAuth 2 and API Authorization
	API Authorization
	OAuth 2
	Terminology
	Roles
	Confidential and Public Clients
	Client Profiles
	Tokens and Authorization Code

	How It Works
	Authorization Code Grant
	Authorization Code Grant Type + PKCE
	The Authorization Request
	Response
	Calling the Token Endpoint

	Client Credentials Grant
	The Authorization Request

	Implicit Grant (Removed in OAuth 2.1)
	Resource Owner Password Credentials Grant (Removed from OAuth 2.1)
	Device Authorization Grant
	The Authorization Request
	Authorization Response
	Polling the Authorization Server

	Calling an API
	Refresh Tokens

	Token Usage Guidance
	Access Tokens
	Refresh Tokens
	Confidentiality and Integrity
	Token Revocation

	Further Learning
	Advanced Use Cases

	Summary
	Key Points

	Notes

	Chapter 6: OpenID Connect
	Problem to Solve
	Terminology
	Roles
	Client Types
	Tokens and Authorization Code
	Endpoints
	ID Token

	How It Works
	OIDC Flows
	OIDC Authorization Code Flow
	Authentication Request
	Authentication Response
	Token Request

	OIDC Implicit Flow
	Authentication Request
	Authentication Response

	OIDC Hybrid Flow
	Authentication Request
	Authentication Response

	UserInfo Endpoint
	Further Learning
	Summary
	Key Points

	Notes

	Chapter 7: SAML 2
	Problem to Solve
	Terminology
	How It Works
	SP-Initiated SSO
	Single Sign-On
	IdP-Initiated Flow

	Identity Federation
	Authentication Brokers
	Configuration
	Summary
	Key Points

	Notes

	Chapter 8: Authorization and Policy Enforcement
	Authorization vs. Policy Enforcement
	Levels of Authorization and Access Policy Enforcement
	Level 1 – Application or API Access
	Level 2 – Functional Access
	Level 3 – Data Access

	User vs. Application Authorization
	User Authorization
	User Profile Attributes
	Transactional User Attributes

	Delivery
	Enforcement

	Application Authorization
	Application Attributes
	Authorization
	Delivery
	Enforcement

	Authorization and Enforcement Extensions
	Summary
	Key Points

	Notes

	Chapter 9: Sessions
	Application Sessions
	Identity Provider Sessions
	Multiple Sessions
	Session Duration
	Session Renewal
	Token Renewal
	Reconstituted Sessions
	Summary
	Key Points

	Notes

	Chapter 10: Using Modern Identity to Build Applications
	Sample Application: Collaborative Text Editor
	Discovery
	Who Are Your Users: Employees or Consumers?
	How Will Users Authenticate?
	Can Your App Be Used Anonymously?
	Web-Based or Native App Format or Both?
	Does Your Application Call APIs?
	Does Your Application Store Sensitive Data?
	What Access Control Requirements Exist?
	How Long Should a User Session Last?
	Will Users Need Single Sign-On (If More Than One Application)?
	What Should Happen When a User Logs Out?
	Are There Any Compliance Requirements?
	Platform, Framework, and Identity Provider

	Design
	Buy vs. Build
	Industry Standard Protocols
	Architecture

	Implementation: Front End
	login() and handleCallback()
	getToken() and getProfile()
	A Detailed Note on Token Management in SPAs

	.logout()
	Closing Note

	Implementation: Back-End API
	.getUserId()
	.canPerform()
	Using OAuth 2 Scopes – for API Authorization

	Linking Accounts
	Anonymous Access
	Granting Access Based on Domains

	Other Applications
	Additional Note on Sessions
	Browsers, Trackers, and OAuth 2
	Summary
	Key Points

	Notes

	Chapter 11: Single Sign-On
	What Is SSO?
	How SSO Works
	SSO Configuration
	SSO Session Duration
	Authentication Mechanisms
	Login Page Branding
	Multiple Identity Providers

	Summary
	Key Points

	Notes

	Chapter 12: Stronger Authentication
	The Problem with Passwords
	Stronger Forms of Authentication
	Multi-factor Authentication
	Step-Up Authentication
	Multi-factor Authentication and SSO

	Session Timeouts
	Requesting Authentication Mechanisms
	SAML 2
	OIDC

	Step-Down Authentication
	Deployment
	Summary
	Key Points

	Notes

	Chapter 13: Logout
	Multiple Sessions
	Logout Triggers
	Logout Options
	Application Logout
	OAuth 2
	OIDC
	SAML 2
	Session Termination
	Logout and Multilevel Authentication
	Redirect After Logout
	Summary
	Key Points

	Notes

	Chapter 14: Account Management
	Identity Attributes
	User Profile Attributes
	Update Process
	Cached Identity Attributes
	Updated Identifiers

	Credential Reset
	Account Recovery
	Password Guidance
	Helpdesk Reset
	Notification
	Summary
	Key Points

	Notes

	Chapter 15: Deprovisioning
	Account Termination
	Best Practices
	Just Do It
	Provide a Soft Delete Technique
	Reserve Deprovisioned Identities
	Preserve Account Record
	Data Transfer
	Privacy Right to Erasure
	Certificate of Deletion
	Secure Delete
	Consider Reprovisioning Requirements

	Summary
	Key Points

	Notes

	Chapter 16: Troubleshooting
	Get Familiar with the Protocols
	Prepare Your Tools
	Test Environment
	Independent Browser Windows
	Capture HTTP Traces
	View HTTP Traces
	Make API Calls
	View API Calls
	View JWT and SAML 2 Tokens

	Check the Simple Things
	Gather Information
	How Many Users Impacted?
	Contributing Environmental Factors?
	Which Applications Impacted?
	Consistent or Intermittent Issue?
	Worked Previously?
	Where Does Failure Occur?
	Replicate the Problem

	Analyzing an HTTP/Network Trace
	Capture a Trace
	Check Sequence of Interaction
	Check Parameters in Requests
	Check HTTP Status Codes
	Check Security Token Contents
	Check for Security Token Validation Errors

	Collaborating with Others
	Summary
	Key Points

	Note

	Chapter 17: Exceptions
	Accounts
	Data Restore
	Account Decommission
	Orphaned Account
	Account Takeover
	Phone Lost, Damaged, or Stolen

	Identity Providers
	Account Recovery Requests
	Brute Force Attacks
	Breached Passwords

	System Outages
	Authentication System Outage
	Admin Access
	Provisioning Systems

	Cybersecurity Threats
	Compromised Personal Data
	Compromised Credentials
	Compromised Secrets

	Summary
	Key Points

	Notes

	Chapter 18: Less Common Requirements
	People
	Family Accounts
	Temporary Positions
	Status Transition
	No Email Address
	Identity Defederation

	Accounts
	Mergers and Acquisitions
	Account Linking
	Progressive Profiling
	Impersonation
	Delegation

	Environment
	Shared Workstations
	Identity Provider Discovery
	Multitenant Applications

	Summary
	Key Points

	Chapter 19: Failures
	Pay Attention to Process
	Beware of Phishy Emails
	Use Multi-factor Authentication
	Stay on Top of Patches
	Secure Your Cloud Storage
	Encrypt Sensitive Data
	Do Not Store Cleartext Passwords
	Provide Security Training to Developers
	Vet Your Partners
	Insider Threat
	Summary
	Key Points

	Notes

	Chapter 20: Compliance
	What Is Compliance?
	Government-Mandated Compliance
	Industry Compliance
	Elective Compliance Frameworks

	Why Compliance
	Data Protection
	Competitive Advantage
	Reduce Penalties
	Efficiency

	Compliance Landscape
	Security Compliance
	Privacy Compliance
	Assessment and Certification

	How to Proceed
	Summary
	Key Points

	Notes

	Chapter 21: Looking into the Crystal Ball
	Continued Security Challenges
	Ongoing Breaches
	Evolving Targets
	Increasing Complexity
	Diversifying Motives

	More Targets
	Homes and Businesses
	Cars
	Medical Implants and Monitoring
	Robots
	Erosion of Perimeter Protection

	Identity – Not Just for Humans
	Personal Agents
	Autonomous Vehicles
	IoT Devices
	Robots

	On the Horizon
	e-Identity
	Stronger Authentication
	Solutions for Smaller Devices
	Asynchronous Online Interaction
	Easier Adoption

	Lessons Learned
	Always Look Forward
	Usability Is Important
	Validation Is Critical
	Logout Takes Time
	Monitor Trends and Vulnerabilities

	Summary
	Key Points

	Notes

	Chapter 22: Conclusion
	Appendix A: Glossary
	Appendix B: Resources for Further Learning
	B.1. OAuth 2 – Related Specifications
	B.2. JWT
	B.3. OIDC
	B.4. SAML
	B.5. Multi-factor Authentication
	B.6. Background Information
	B.7. Privacy

	Appendix C: SAML 2 Authentication Request and Response
	C.1. SAML 2 Authentication Request
	C.2. SAML 2 Authentication Response
	C.2.1. Response
	C.2.1.1. Authentication Assertion (Beginning)
	C.2.1.2. Digital Signature for Authentication Assertion
	C.2.1.3. Subject
	C.2.1.4. Conditions
	C.2.1.5. Authentication Statement
	C.2.1.6. Attribute Statements

	C.3. Validation

	Appendix D: Public Key Cryptography
	Appendix E: Troubleshooting Tools
	E.1. Capture an HTTP Trace
	E.2. View a HAR File
	E.3. Capture a Network Trace
	E.4. View Security Tokens
	E.5. Test APIs

	Appendix F: Privacy Legislation
	F.1. European Union
	F.2. United States
	F.3. Other Countries
	F.4. Notes

	Appendix G: Security Compliance Frameworks
	G.1. General Security Frameworks
	G.1.1. Center for Internet Security – Top 20 Controls
	G.1.2. Cloud Security Alliance
	G.1.3. ISO 27000
	G.1.4. PCI DSS

	G.2. US Frameworks
	G.2.1. CJIS Security Policyv – Criminal Justice Information Services Security Policy
	G.2.2. FFIEC Information Technology Examination Handbook and Cybersecurity Assessment Toolvi
	G.2.3. FISMA – Federal Information Security Management Actvii
	G.2.4. FedRAMP – Federal Risk and Authorization Management Programviii
	G.2.5. GLBA Safeguards Ruleix
	G.2.6. HIPAAx
	G.2.7. HITECH Actxi
	G.2.8. NISTxii

	G.3. SOC(Service Organization Control)
	G.3.1. SOC1
	G.3.2. SOC2

	G.4. Notes

	Index

