
Rui Machado
 & Hélder Russa

 Analytics
Engineering with
SQL and dbt
Building Meaningful Data Models at Scale

DATA / DATA SCIENCE

“If your team is struggling
with inefficient views,
tangled stored procedures,
low analytics adoption,
or a whole host of other
problems, this book will help
you see a new way forward.”

—Jacob Frackson
Lead Data Architect, Datatonic

“With this book, you will
get the essentials on the
core principles that will
help you become a skilled
professional, delivering real
value to your organization.”

—Michal Kolacek
Analytics Engineering Lead, Slido

Analytics Engineering with SQL and dbt

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

With the shift from data warehouses to data lakes, data
now lands in repositories before it’s been transformed,
enabling engineers to model raw data into clean, well-defined
datasets. The data build tool (dbt) helps you take data further.
This practical book shows data analysts, data engineers,
BI developers, and data scientists how to create a true
self-service transformation platform through the use of
dynamic SQL.

Authors Rui Machado from Fraudio and Hélder Russa from
Jumia show you how to quickly deliver new data products
by focusing more on value delivery and less on architectural
and engineering aspects.

With this book, you’ll learn:

•	 Essentials of data modeling techniques and their role
in analytics engineering

•	 Essentials of creating and maintaining databases with SQL

•	 How SQL can be used to deliver data analytics insights
and reports

•	 The main tools and architectures for building useful,
functional data models

•	 What dbt is and how a dbt project is structured

•	 How dbt fits into the data engineering and analytics worlds

•	 How to build tests for data transformations

Rui Machado is vice president
of technology at Fraudio, with
a background in information
technologies and data science.

Hélder Russa is the head of data
engineering at Jumia, with over
10 years of hands-on experience
in computer science.

9 7 8 1 0 9 8 1 4 2 3 8 4

5 6 5 9 9

US $65.99	 CAN $82.99
ISBN: 978-1-098-14238-4

Rui Machado and Hélder Russa

Analytics Engineering
with SQL and dbt

Building Meaningful Data Models at Scale

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14238-4

[LSI]

Analytics Engineering with SQL and dbt
by Rui Machado and Hélder Russa

Copyright © 2024 Rui Pedro Machado and Hélder Russa. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Michelle Smith
Development Editor: Angela Rufino
Production Editor: Christopher Faucher
Copyeditor: Piper Editorial Consulting, LLC
Proofreader: Sharon Wilkey

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2023: First Edition

Revision History for the First Edition
2023-12-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098142384 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Analytics Engineering with SQL and
dbt, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098142384

Table of Contents

Preface. vii

1. Analytics Engineering. 1
Databases and Their Impact on Analytics Engineering 3
Cloud Computing and Its Impact on Analytics Engineering 5
The Data Analytics Lifecycle 8
The New Role of Analytics Engineer 11
Responsibilities of an Analytics Engineer 12
Enabling Analytics in a Data Mesh 13

Data Products 14
dbt as a Data Mesh Enabler 15

The Heart of Analytics Engineering 16
The Legacy Processes 17

Using SQL and Stored Procedures for ETL/ELT 18
Using ETL Tools 19

The dbt Revolution 20
Summary 22

2. Data Modeling for Analytics. 23
A Brief on Data Modeling 24

The Conceptual Phase of Modeling 25
The Logical Phase of Modeling 28
The Physical Phase of Modeling 30
The Data Normalization Process 31

Dimensional Data Modeling 35
Modeling with the Star Schema 36
Modeling with the Snowflake Schema 40
Modeling with Data Vault 42

Monolith Data Modeling 45

iii

Building Modular Data Models 47
Enabling Modular Data Models with dbt 49
Testing Your Data Models 57
Generating Data Documentation 59
Debugging and Optimizing Data Models 60

Medallion Architecture Pattern 63
Summary 66

3. SQL for Analytics. 67
The Resiliency of SQL 68
Database Fundamentals 70

Types of Databases 72
Database Management System 75
“Speaking” with a Database 77

Creating and Managing Your Data Structures with DDL 78
Manipulating Data with DML 82

Inserting Data with INSERT 83
Selecting Data with SELECT 85
Updating Data with UPDATE 96
Deleting Data with DELETE 97

Storing Queries as Views 98
Common Table Expressions 101
Window Functions 105
SQL for Distributed Data Processing 109

Data Manipulation with DuckDB 113
Data Manipulation with Polars 117
Data Manipulation with FugueSQL 122

Bonus: Training Machine Learning Models with SQL 129
Summary 133

4. Data Transformation with dbt. 135
dbt Design Philosophy 136
dbt Data Flow 138
dbt Cloud 139

Setting Up dbt Cloud with BigQuery and GitHub 140
Using the dbt Cloud UI 153
Using the dbt Cloud IDE 163

Structure of a dbt Project 165
Jaffle Shop Database 168
YAML Files 168
Models 174
Sources 184
Tests 189

iv | Table of Contents

Analyses 197
Seeds 198
Documentation 200
dbt Commands and Selection Syntax 209
Jobs and Deployment 212

Summary 221

5. dbt Advanced Topics. 223
Model Materializations 223

Tables, Views, and Ephemeral Models 224
Incremental Models 227
Materialized Views 229
Snapshots 230

Dynamic SQL with Jinja 233
Using SQL Macros 236
dbt Packages 242

Installing Packages 242
Exploring the dbt_utils Package 244
Using Packages Inside Macros and Models 244

dbt Semantic Layer 246
Summary 250

6. Building an End-to-End Analytics Engineering Use Case. 253
Problem Definition: An Omnichannel Analytics Case 254
Operational Data Modeling 254

Conceptual Model 254
Logical Model 255
Physical Model 256

High-Level Data Architecture 260
Analytical Data Modeling 265

Identify the Business Processes 266
Identify Facts and Dimensions in the Dimensional Data Model 267
Identify the Attributes for Dimensions 269
Define the Granularity for Business Facts 270

Creating Our Data Warehouse with dbt 271
Tests, Documentation, and Deployment with dbt 280
Data Analytics with SQL 291
Conclusion 296

Index. 297

Table of Contents | v

Preface

In the ever-evolving business world, a captivating concept known as analytics engi‐
neering has emerged. It quickly became the talk of the town, in demand by managers,
presented by IT companies, and admired by users who marveled at the possibilities
it offered. But amid the excitement, many didn’t know what analytics engineering
was about. They thought it was about creating data pipelines, designing stunning
visualizations, and using advanced algorithms. Oh, how wrong they were!

You can imagine this extraordinary world of analytical engineering as a cross between
the meticulous investigator Sherlock Holmes, representing the analytical side, and the
genius engineer Tony Stark, better known as Iron Man, representing the engineering
side. Imagine the remarkable problem-solving skills of Sherlock Holmes combined
with the cutting-edge technologies of Iron Man. This combination is what defines the
true power and potential of analytical technology.

But beware: if you thought analytics engineering was limited to data pipelines and
visualizations, you missed the deep deductive thinking that Sherlock Holmes, as a
representation of a data analyst or business analyst, brings to the equation. This field
is where analytical investigation crosses with the techniques of a software engineer or
data engineer, represented by Tony Stark.

Stop for a moment and think about the importance of data in your business. Why do
you seek it? The answer lies in the pursuit of knowledge. Analytic technology is used
to transform raw data into actionable insights that serve as the basis for informed
decisions. It’s a powerful support system that provides facts illuminating your busi‐
ness’s reality. However, it doesn’t make decisions for you but instead provides you
with the information you need to make your business a success.

Before you dive into creating an impressive Iron Man suit of analytics technologies,
embrace the wisdom of Sherlock Holmes. Use his keen observational skills to identify
and understand the core of your challenges. Refrain from succumbing to the lure of
visualizations and algorithms just because others are fascinated by them. Remember
that analytics engineering is more than just technology: it’s a management tool that

vii

will be successful only if it’s aligned with your organization’s strategies and goals.
Ensuring that your key performance indicators are aligned with the reality of your
business will ensure that the results of your analytics engineering efforts are accurate,
impactful, and won’t disappoint you.

The great adventure of analytics engineering doesn’t begin with building data pipe‐
lines or selecting advanced algorithms. No, my friend, it starts with a thorough
introspection of your organization’s knowledge gaps. Figure out why that knowledge
is important and how it can be leveraged to drive your business to success. Use the
transformative power of analytics as your compass, pointing the way to success amid
the vast sea of data.

In your pursuit of analytics engineering, always remember the story of Sherlock
Holmes. Avoid building an extravagant aircraft when a humble bicycle would suffice.
Let the complexity of the problem and its contextual nuances guide your efforts.
Remember that analytics isn’t just about technology; it’s a beacon of management,
an invaluable tool that must be used with purpose and precision. Let it become your
constant companion on the road to success.

Why We Wrote This Book
In today’s era of abundant information, it is not uncommon for vital knowledge,
concepts, and techniques to become obscured amid the rapid growth of technology
and the relentless pursuit of innovation. During this dynamic transformation, several
essential concepts can sometimes be inadvertently overlooked. This oversight doesn’t
stem from their diminishing relevance but rather from the swift pace of progress.

One such fundamental concept that often falls by the wayside is data modeling in
the context of data management. It’s worth noting that data modeling encompasses
various approaches, including Kimball, conceptual, logical, and physical modeling,
among others. We recognize the pressing need to emphasize the significance of data
modeling in this diverse landscape, and that’s one of the key reasons we’ve crafted
this book. Within these pages, we aim to shed light on the intricacies and various
dimensions of data modeling and how it underpins the broader field of analytics
engineering.

Over time, the importance of data modeling in guaranteeing a solid data management
system has gradually faded from general awareness. This is not because it became
outdated but rather due to a shift in the industry’s focus. New words, tools, and meth‐
ods have emerged, making the fundamental principles less important. A transition
occurred from traditional practices to modern solutions that promised quickness and
efficiency, sometimes resulting in a loss of foundational strength.

viii | Preface

The rise of analytics engineering led to a resurgence. It was not just a trend filled with
fancy words but also a return to the basics, echoing the principles of the business
intelligence sector. The difference is that modern tools, infrastructure, and techniques
are now available to implement these principles more efficiently.

So, why did we feel the need to document our thoughts? There are two primary
reasons. First and foremost, it is crucial to underscore the enduring value and signif‐
icance of well-established concepts like data modeling. While these methodologies
may have been around for a while, they provide a robust foundation for the devel‐
opment of modern techniques. Our second intention is to emphasize that analytics
engineering is not a standalone entity but rather a natural progression from the
legacy of business intelligence. By integrating the two, organizations can construct a
more resilient data value chain, ensuring that their data is not just extensive but also
actionable, ultimately enhancing its utility.

This book is not just a sentimental trip down memory lane or a commentary on the
present. It’s a blueprint for the future. Our goal is to help organizations revisit their
foundations, appreciate the advantages of old and new technologies, and integrate
them for a comprehensive data management approach. We’ll dig deeper into data
modeling and transformation details, explain its importance, and examine how it
interacts with modern analytics engineering tools. We aim to provide our readers
with a complete understanding, enabling them to strengthen their data management
processes and utilize the full potential of their data.

Who This Book Is For
This book is designed for professionals, students, and enthusiasts dealing with the
complex world of data management and analytics. Whether you’re an experienced
veteran reminiscing about the basic principles of data modeling or an aspiring analyst
keen to understand the transformation from business intelligence to contemporary
analytics engineering, our storytelling assures clearness and direction.

Organizations seeking to strengthen their data processes will discover immense value
in the combination of well-proven principles and modern tools discussed in this
book. In summary, if you wish to take full advantage of your data by combining the
strengths of the past with the innovations of the present, this book will guide you.

Preface | ix

How This Book Is Organized
We’ve structured the book into six chapters:

Chapter 1, “Analytics Engineering”
This chapter traces the evolution of data management from traditional SQL-
based systems to innovative tools such as Apache Airflow and dbt, each changing
how we handle and view data. The analytics engineer role bridges data engineer‐
ing and analytics, guaranteeing that our insights are reliable and actionable.
Despite the changes in tools and roles, the importance and value of data remain
paramount. Nevertheless, challenges endure, such as data quality and efficient
storage, as well as optimizing compute resources for tasks like load balancing on
platforms such as Redshift or designing efficient jobs with appropriately sized
warehouses on Snowflake. Data modeling, which involves structuring data to
reflect real-world scenarios, is at the core of these solutions.

Chapter 2, “Data Modeling for Analytics”
This chapter delves into the critical role of data modeling in today’s analytics-
driven landscape. We will investigate how it aids in structuring data for efficient
analysis and explore the significance of data normalization in reducing duplicity.
While we emphasize the importance of normalization, it’s worth noting that
various modeling methodologies, such as Kimball and One Big Table, advocate
for different approaches, including denormalization, depending on specific use
cases. By understanding these basic principles and considering the broader
spectrum of modeling methodologies, analysts can effectively explore the data,
ensuring substantial insights and informed decisions. Devoid of a robust data
model, whether normalized or denormalized as per the context, the analytical
process can be inconsistent and inaccurate.

Chapter 3, “SQL for Analytics”
This chapter explores the enduring strength of SQL as a premier analytics
language. We will start by outlining the basics of databases and how SQL
serves as the primary language for interacting with databases. Our journey will
cover the usefulness of views in streamlining queries, the powerful features of
window functions for advanced computations, and the flexibility of common
table expressions in refining complex queries. We will also discuss SQL’s role in
distributed data processing and conclude with an exciting application of SQL in
machine learning model training.

Chapter 4, “Data Transformation with dbt”
This chapter provides a detailed exploration of dbt beyond an initial introduc‐
tion. We will examine dbt’s crucial role in the data analytics lifecycle and demon‐
strate how it transforms raw data into structured and accessible models. Our
exploration will navigate the dbt project structure, addressing features such as

x | Preface

model building, documentation, and testing while providing insights into dbt
artifacts, including YAML files. At the end of this chapter, you will have a
comprehensive understanding of dbt, enabling you to seamlessly incorporate it
into your analytics workflows.

Chapter 5, “dbt Advanced Topics”
In this chapter, we’ll dig into the advanced aspects of dbt. Beyond just views
or tables, we’ll discuss the range of model materializations in dbt, including the
use of ephemeral models, data snapshots, and the implementation of incremen‐
tal models to sidestep constant full data loads. Additionally, we’ll elevate our
analytics code, focusing on optimizing its efficiency with techniques such as Jinja,
macros, and packages to keep it DRY (Don’t Repeat Yourself). Finally, we will
also introduce the dbt semantic layer, which plays the key role of acting as a
bridge between raw data and meaningful insights.

Chapter 6, “Building an End-to-End Analytics Engineering Use Case”
This concluding chapter consolidates everything you have learned about analyt‐
ics engineering using dbt and SQL. After deepening the concepts, techniques,
and best practices in prior chapters, we now pivot toward a hands-on approach
by crafting a complete analytics engineering use case from scratch. dbt and
SQL’s capabilities will be harnessed to design, implement, and deploy an all-
encompassing analytics solution. Data modeling for varied purposes will be in
the spotlight. The goal is to illustrate a holistic analytics workflow, spanning from
data ingestion to reporting, by merging insights from prior chapters. During this
process, we will overcome prevalent challenges and provide strategies to navigate
them effectively.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Preface | xi

This element signifies a tip or suggestion.

This element signifies a general note.

Using Code Examples
If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Analytics Engineering
with SQL and dbt by Rui Machado and Hélder Russa (O’Reilly). Copyright 2024 Rui
Pedro Machado and Hélder Russa, 978-1-098-14238-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xii | Preface

mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/analytics-engineering-SQL-dbt.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Preface | xiii

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/analytics-engineering-SQL-dbt
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Acknowledgments
I want to send a special message to my wife, Ana, and my two wonderful daughters,
Mimi and Magui. You inspire me every day to believe in myself and to pursue my
dreams unwaveringly because what I achieve for me, I achieve for us. Above all, I
want to show my daughters that anything is possible when we set our minds to it.
Lastly, I need to thank Hélder, friend and coauthor, for keeping this dream alive and
having levels of resilience I have never seen before in anyone.

— Rui Machado

I want to thank my (future) wife for always being by my side. Her patience and
words were my rock in the toughest times. Also, a special thank you to my parents.
Without them and their efforts to allow me to continue my studies and pursue my
dreams, certainly this book wouldn’t be possible. Again, my genuine thank you to
them. Finally, to all my anonymous and not-so-anonymous friend(s) and coauthor,
Rui, who stood by my side with their positivity and constructive feedback, and
substantially enriched the content of this book.

— Hélder Russa

xiv | Preface

CHAPTER 1

Analytics Engineering

The historical development of analytics includes significant milestones and technolo‐
gies that have shaped the field into what it is today. It began with the advent of data
warehousing in the 1980s, which created the foundational framework for organizing
and analyzing business data. Bill Inmon, a computer scientist who continued to
publish throughout the 1980s and 1990s, is widely regarded as providing the first
solid theoretical foundation for data warehousing.

A subsequent wave of development occurred when Ralph Kimball, another leading
contributor to data warehousing and business intelligence (BI), published his influen‐
tial work, The Data Warehouse Toolkit, in 1996. Kimball’s work laid the foundation
for dimensional modeling, marking another crucial milestone in the evolution of
analytics. Together, the contributions of Inmon and Kimball, spanning the late 20th
century, played pivotal roles in shaping the landscape of data warehousing and
analytics.

In the early 2000s, the emergence of tech giants like Google and Amazon created the
need for more advanced solutions for processing massive amounts of data, leading
to the release of the Google File System and Apache Hadoop. This marked the era of
Big Data Engineering, in which professionals used the Hadoop framework to process
large amounts of data.

The rise of public cloud providers like Amazon Web Services (AWS) revolutionized
the way software and data applications were developed and deployed. One of the pio‐
neering offerings from AWS was Amazon Redshift, introduced in 2012. It represented
an interesting blend of online analytical processing (OLAP) and traditional database
technologies. In its early days, Redshift required database administrators to manage
tasks like vacuuming and scaling to maintain optimal performance.

1

Over time, cloud native technologies have continued to evolve, and Redshift itself
has undergone significant enhancements. While retaining its core strengths, newer
versions of Redshift, along with cloud native platforms like Google BigQuery and
Snowflake, have streamlined many of these administrative tasks, offering advanced
data processing capabilities to enterprises of all sizes. This evolution highlights the
ongoing innovation within the cloud data processing ecosystem.

The modern data stack, consisting of tools like Apache Airflow, data build tool (dbt),
and Looker, further transformed data workflows. With these advances, the term “Big
Data engineer” became obsolete, making way for a data engineer’s broader and more
inclusive role. This shift was recognized in the influential articles of Maxime Beau‐
chemin—creator of Apache Superset and Airflow and one of the first data engineers
at Facebook and Airbnb—particularly in his article “The Rise of the Data Engineer”,
which highlighted the growing importance of data engineering in the industry. All
of these rapid developments in the data field have led to significant changes in the
role of data professionals. With the advent of data tools, simple tasks are becoming
strategic tasks.

Today’s data engineers have a multifaceted role that encompasses data modeling,
quality assurance, security, data management, architectural design, and orchestration.
They are increasingly adopting software engineering practices and concepts, such
as functional data engineering and declarative programming, to enhance their work‐
flows. While Python and structured query language (SQL) stand out as indispensable
languages for data engineers, it’s important to note that the choice of programming
languages can vary widely in this field. Engineers may leverage other languages such
as Java (commonly used for managing Apache Spark and Beam), Scala (also prevalent
in the Spark and Beam ecosystem), Go, and more, depending on the specific needs
and preferences of their projects. The combination of languages like Java and SQL is
also common among data engineers at large organizations.

Organizations are increasingly moving toward decentralized data teams, self-service
platforms, and alternative data storage options. As data engineers are forced to adapt
to all these market changes, we often see some taking on a more technical role,
focusing on platform enablement. Other data engineers work closer to the business,
designing, implementing, and maintaining systems that turn raw data into high-value
information as they adapt to this accelerated industry that is bringing new tools to
market every day and spawning the fantastic world of analytics engineering.

In this chapter, we provide an introduction to the field of analytics engineering
and its role in the data-driven decision-making process. We discuss the importance
of analytics engineering in today’s data-driven world and the primary roles of an
analytics engineer. In addition, we will explore how the analytics engineering lifecycle
is used to manage the analytics process and how it ensures the quality and accuracy
of the data and insights generated. We will also address the current trends and

2 | Chapter 1: Analytics Engineering

https://oreil.ly/Sc-94

technologies shaping the field of analytics engineering, from history to the present,
touching on emerging concepts like data mesh, and discussing the fundamental
choices between extract, load, and transform (ELT) and extract, transform, and load
(ETL) strategies as well as the many data modeling techniques being adopted around
the world.

Databases and Their Impact on Analytics Engineering
For a long time now, data has increasingly become the focus of interest for companies
that want to stay one step ahead of the competition, improve their internal processes,
or merely understand the behavior of their customers. With new tools, new ways
of working, and new areas of knowledge such as data science and BI, it’s becoming
increasingly difficult to fully survey and understand the data landscape these days.

The natural progress of technology has caused an oversupply of data analysis, visuali‐
zation, and storage tools, each offering unique features and capabilities. Nevertheless,
an accelerated deployment of those tools has resulted in a fragmented landscape,
requiring individuals and organizations to remain up-to-date with the most recent
technological developments while at the same time having to make prudent choices
on how to use them. Sometimes this abundance creates confusion and requires a
continuous cycle of learning and adaptation.

The evolution of work practices is accompanied by a diversification of tools.
Dynamic and Agile methodologies have replaced traditional approaches to data man‐
agement and analysis. Iterative practices and cross-functional collaboration introduce
flexibility and speed to data projects, but they also pose a challenge in harmonizing
workflows across diverse teams and roles. Effective communication and alignment
are crucial as diverse facets of the data process converge, creating a need for a
comprehensive understanding of these novel work practices.

Specialized areas such as data science and BI have increased the complexity of the
data field as well. Data scientists apply advanced statistical and machine learning
techniques to detect complex patterns, whereas BI experts extract valuable informa‐
tion from raw data to produce practical insights. Such specialized areas introduce
refined techniques that require regular skill development and learning. A successful
adoption of these practices necessitates a dedicated commitment to education and a
flexible approach to skill acquisition.

As data spreads across the digital domain, it carries with it unforeseen amounts, vari‐
eties, and speeds. The flood of data, along with the complex features of present-day
data sources, such as Internet of things (IoT) gadgets and unorganized text, makes
data management even more demanding. The details of incorporating, converting,
and assessing data precision become more apparent, emphasizing the need for strong
methods that guarantee reliable and precise insights.

Databases and Their Impact on Analytics Engineering | 3

The multifaceted nature of the data world compounds its complexity. As an outcome
of converging skills from various domains, including computer science, statistics, and
field-specific proficiency, a cooperative and communicative strategy is necessary. This
multidisciplinary interaction accentuates the significance of efficient teamwork and
knowledge sharing.

But that has not always been the case. For decades, spreadsheets were the standard
technology for storing, managing, and analyzing data at all levels, both for business
operational management and for analytics to understand it. However, as businesses
have become more complex, so has the need for data-related decision making. And
the first of these came in the form of a revolution called databases. Databases can be
defined as an organized collection of structured information or data, usually stored
electronically in a computer system. This data can be in the form of text, numbers,
images, or other types of digital information. Data is stored in a way that facilitates
access and retrieval using a set of predefined rules and structures called a schema.

Databases are an essential part of analytics because they provide a way to efficiently
store, organize, and retrieve large amounts of data, allowing analysts to easily access
the data they need to perform complex analyses to gain insights that would otherwise
be difficult or impossible to obtain. In addition, databases can be configured to
ensure data integrity, which guarantees that the data being analyzed is accurate and
consistent and thus makes the analysis more reliable and trustworthy.

One of the most common ways to use databases for analytics is the data warehousing
technique, that is, to construct and use a data warehouse. A data warehouse is a large,
centralized data store designed to simplify data use. The data in a data warehouse is
typically extracted from a variety of sources, such as transactional systems, external
data feeds, and other databases. The data is then cleansed, transformed, and integra‐
ted into a single, consistent data model that typically follows a dimensional modeling
technique such as the star schema or Data Vault.

Another important use of databases in analytics is the process of data mining. Data
mining uses statistical and machine learning techniques to uncover patterns and
relationships in large datasets. In this way, trends can be identified, future behavior
can be predicted, and other types of predictions can be made.

Database technologies and data scientists have thus played a crucial role in the emer‐
gence of data science by providing a way to efficiently store, organize, and retrieve
large amounts of data, enabling data scientists to work with large datasets and focus
on what matters: gaining knowledge from data.

The use of SQL and other programming languages, such as Python or Scala, that
allow interaction with databases has enabled data scientists to perform complex data
queries and manipulations. Also, the use of data visualization tools such as Tableau

4 | Chapter 1: Analytics Engineering

and Microsoft Power BI, which easily integrate with database engines, has made it
easier for data scientists to present their findings in a clear and intuitive way.

With the advent of Big Data and the growing demand to store and process vast data‐
sets, various database technologies have emerged to meet diverse needs. For instance,
data analysts often rely on databases for a wide range of applications, including data
warehousing, data mining, and integration with BI tools like Tableau.

However, it’s important to delve deeper into these use cases to understand the need
for analytics engineering. When connecting BI tools directly to operational databases
(online transaction processing [OLTP] replicas), performance and scalability can
be limited. This approach may work well for smaller datasets and simple queries,
but as data volumes grow and the complexity of analytics increases, it can lead to
performance bottlenecks and suboptimal query response times.

This is where analytics engineering comes into play. Analytics engineers are experts
in optimizing data workflows, transforming and aggregating data to ensure it’s in the
right format for analytical tasks. They design and maintain data pipelines that ETL
data from various sources into optimized data warehouses or data lakes. By doing
so, they help organizations overcome the limitations of direct OLTP connections,
enabling faster and more efficient data analysis with tools like Tableau. In essence,
analytics engineering bridges the gap between raw data and actionable insights,
ensuring that data analysts and scientists can work with large, complex datasets
effectively.

Cloud Computing and Its Impact on Analytics Engineering
In recent decades, the world has faced a series of complicated challenges with signif‐
icant technical implications. Economic downturns have driven innovations in finan‐
cial technologies and risk management systems. Geopolitical tensions have required
advances in cybersecurity to protect critical infrastructure and sensitive data. Global
health crises have underscored the importance of advanced data analytics and predic‐
tive modeling for disease surveillance and management. In addition, the urgent need
to combat climate change has driven the development of cutting-edge renewable
energy technologies and sustainable engineering solutions to meet climate goals.

Amid these challenges, the pursuit of profit and growth remains a key driver for
businesses worldwide. However, the value of human labor time has taken on a new
dimension, leading to significant changes in the way businesses operate and how
cloud computing accommodates them. This change is reflected in the increasing
adoption of managed and serverless offerings that reduce reliance on full-time sup‐
port staff such as database administrators.

As companies adapt to this changing landscape, innovation, differentiation, and
sustainability of business models and strategies have become essential considerations

Cloud Computing and Its Impact on Analytics Engineering | 5

for companies seeking to succeed in a rapidly changing world. The information
technology and systems industry found in this context a good opportunity to grow
its capabilities in helping organizations overcome this world of uncertainty and
pressure. The rationalization of operating models has become urgent, requiring a
re-evaluation of data centers and pricing structures. In addition, product and service
offerings must focus primarily on ease of use, lower latency, improved security, a
broader range of real-time tools, more integration, more intelligence, less code, and a
faster time to market.

Organizations have recognized the importance of investing in innovative tools, driv‐
ing digital transformation, and adopting a data-centric approach to decision making
to achieve greater agility and competitive advantage. To achieve these goals, many
are focusing on leveraging well-curated data from internal and external sources. This
carefully structured data can provide valuable insights into business performance.

In the industry, the practice of creating, visualizing, and analyzing interconnected
business data in an accessible format is commonly referred to as data analytics.
Historically, it has also been known as business intelligence, and the two terms are
closely related. While BI is a subset of analytics and focuses on business-oriented
decision making, data analytics encompasses a broader spectrum that includes prod‐
uct analytics, operational analytics, and several other specialized areas. Both BI and
data analytics play pivotal roles in helping organizations gain a competitive edge
through data-driven insights.

Although data analytics offers numerous benefits for improving and reshaping busi‐
ness strategies and monitoring performance, it requires significant financial invest‐
ment in servers, software licenses, and specialized staff such as data engineers, data
scientists, and data visualization specialists. In times of economic crisis, the high
up-front and operational costs associated with IT hardware, software, and specialists
can be perceived as impractical and unattractive.

As a result, on-premises solutions, where the infrastructure for data analytics is set up
and managed on a company’s own premises, often lose their appeal. This is especially
true for newcomers to analytics who are unfamiliar with the concept. On-premises
solutions typically require significant investment in hardware, software, and ongoing
maintenance. They are also less flexible and scalable compared to cloud-based data
analytics solutions. This shift in preferences is clearing the way for new cloud-based
data analytics solutions that meet similar business needs as traditional data analyt‐
ics. However, instead of relying on on-premises servers and software, cloud-based
solutions leverage cloud computing services to accelerate deployment and minimize
infrastructure costs.

The increasing adoption of cloud computing in various industries has led software
vendors such as Microsoft, Google, and Amazon to develop advanced tools for data
analysis and data warehousing. These tools are designed to operate in the cloud

6 | Chapter 1: Analytics Engineering

computing paradigm and leverage shared network resources to enable greater acces‐
sibility and streamlined deployment. A vivid example of this trend is Microsoft’s
comprehensive data analytics platform, Microsoft Fabric.

In parallel, dbt from dbt Labs, which we discuss in more detail later in this book,
stands out as a versatile hybrid product. dbt, like Hadoop, is an open source solution
that gives users the flexibility to deploy it according to their specific needs, whether
in the cloud or on premises. In its cloud version, dbt integrates seamlessly with
leading cloud platforms, including Microsoft Azure, Google Cloud Platform (GCP),
and AWS. This open source nature gives organizations the ability to customize their
deployment to their unique requirements and infrastructure preferences.

While cloud-based data analytics solutions and platforms are a global trend and a
central concept of the modern data platform, it’s important to recognize that cloud
computing solutions bring both benefits and risks that shouldn’t be overlooked.
These risks include potential security issues, the physical location of servers, and the
costs associated with moving away from a particular provider.

Nonetheless, cloud technologies are currently changing the way organizations deploy
and construct information systems and technology solutions, and data analytics is no
exception. That’s why it’s essential to recognize that moving to the cloud will soon no
longer be an option but a necessity. Understanding the benefits of analytics solutions
in the form of services is important. Otherwise, providing timely information to
decision-makers with on-premises solutions that lack flexibility and scalability could
become increasingly challenging if this transition isn’t addressed.

However, although cloud technologies bring several benefits, such as economies of
scale and flexibility, they also bring information security issues. The concentration of
data in cloud infrastructures makes them attractive targets for unauthorized attacks.
To succeed in the cloud in the data context, organizations must understand and
mitigate the risks associated with cloud computing. Key risks include data privacy,
loss of control, incomplete or insecure deletion of data, unauthorized internal access,
data availability, and complex costing.

Data privacy is a significant concern because it’s challenging to verify that vendors
are handling data in compliance with laws and standards, even though public audit
reports from vendors can help build trust. In nonintegrated scenarios, data security
risks multiply as data flows among various systems and data centers, increasing the
risk of interception and synchronization. Another important risk is vendor depend‐
ency, which occurs when responsibility for data management rests solely within one
service provider in such a way that it limits the ability to migrate to other solutions.
This kind of dependency ends up limiting an organization’s control over decision
making and authority over data. While these are just a few known risks, we can
already understand that organizations need to get a handle on these risks to effec‐
tively reap the benefits of cloud-based data analytics solutions. This requires careful

Cloud Computing and Its Impact on Analytics Engineering | 7

consideration, adherence to security standards and best practices, and ongoing cost
control to measure the return on investment.

If all risks are correctly addressed and mitigated in a proper data strategy that outlines
how an organization will manage its information assets, including the cloud strategy,
technology, processes, people, and rules involved, an organization can gain a substan‐
tial competitive advantage when compared to one that doesn’t have a data strategy.
By focusing on cloud computing and leveraging a cloud data platform, organizations
can transform raw data into meaningful insights, accelerating the process of building
a solid data foundation. This enables efficient sourcing, structuring, and analysis of
relevant data, and it even supports the adoption of AI technologies while driving
value in less time and at a lower cost than traditional methods.

Interestingly, the relationship between a cloud data platform, analytics, and AI
is symbiotic. Implementing a cloud data platform accelerates the adoption of an
analytics-driven architecture and enables the full operationalization of AI initiatives.
It empowers organizations to use all relevant data, gain enterprise-wide insights, and
unlock new business opportunities. By eliminating the need to manage multiple tools,
organizations can focus on data modernization, accelerate insight discovery, and
benefit from existing technology partnerships, thereby advancing their AI journey.

This is why it’s fair to say that cloud computing has been a core component of
both modern data platforms and the cloud-based analytics and AI platforms that
continuously grow in volume every day and thus contribute to the disruption of this
industry.

The Data Analytics Lifecycle
The data analytics lifecycle is a series of steps to transform raw data into valuable
and easily consumable data products. These can range from well-managed datasets to
dashboards, reports, APIs, or even web applications. In other words, it describes how
data is created, collected, processed, used, and analyzed to achieve a specific product
or business goal.

The increasing complexity in organizational dynamics directly impacts how data is
handled. Numerous people must use the same data but with different goals. While a
top executive might need to know just a few top-level key performance indicators to
track business performance, a middle manager might need a more granular report to
support daily decisions.

This highlights the need for a governed and standardized approach to creating and
maintaining data products based on the same data foundation. Given the many
decisions an organization must make regarding its data governance, technologies,
and management processes, following a structured approach is fundamental to docu‐
menting and continuously updating an organization’s data strategy.

8 | Chapter 1: Analytics Engineering

The data analytics lifecycle is, therefore, an essential framework for understanding
and mapping the phases and processes involved in creating and maintaining an
analytics solution (Figure 1-1). It is an essential concept in data science and analytics
and provides a structured approach to managing the various tasks and activities
required to create an effective analytics solution.

Figure 1-1. Data analytics lifecycle

The data analytics lifecycle typically includes the following stages:

Problem definition
The first phase of the analytics cycle is about understanding the problem that
needs to be solved. This includes identifying the business objectives, the available
data, and the resources needed to solve the problem.

Data modeling
After the business requirements are identified, and an assessment of data sources
is completed, you can begin modeling your data according to the modeling
technique that best meets your needs. You can choose a diamond strategy, a star
schema, a Data Vault, or even a fully denormalized technique. All these concepts
will be discussed in Chapter 2.

The Data Analytics Lifecycle | 9

Data ingestion and transformation
The next phase is to ingest and prepare the data that’s coming from the source
systems to match the models created. Depending on the overall information
architecture, you can opt for a schema-on-write strategy, where you put more
effort into transforming the raw data directly into your models, or a schema-on-
read strategy, where you ingest and store the data with minimal transformations
and move heavy transformations to the downstream layers of your data platform.

Data storage and structuring
Once the data pipelines are designed and potentially implemented, you need to
decide on the file formats to use—simple Apache Parquet or more advanced
formats like Delta Lake or Apache Iceberg—as well as the partitioning strategies
and storage components to use—a cloud-based object store like Amazon Simple
Storage Service (S3) or a more data warehouse–like platform like Redshift, Big‐
Query, or Snowflake.

Data visualization and analysis
Once the data is available, the next step is to explore it, visualize it, or create
dashboards that directly support decision making or enable business process
monitoring. This phase is very business oriented and should be created in close
coordination with business stakeholders.

Data quality monitoring, testing, and documentation
Although illustrated as the final phase of the analytics lifecycle, data quality
should be an end-to-end concern and ensured by design across the whole flow.
It involves implementing all quality controls to ensure that stakeholders can
trust your exposed data models, documenting all transformations and semantic
meanings, and ensuring proper testing along the pipelines as the data continues
to flow.

With dbt, several of these components are deployed more easily
and efficiently because it allows us to build them in parallel and
across the lifecycle. Documentation, testing, and quality become
common tasks performed in parallel. This will be extensively elabo‐
rated in Chapter 4.

The analytics lifecycle is a key concept that enables organizations to approach data
engineering, science, and analytics processes in a structured and consistent manner.
By following a structured process, organizations can ensure they are solving the
right problem, using the right data, and building data products that are accurate and
reliable, ultimately leading to better decision making and better business results.

10 | Chapter 1: Analytics Engineering

The New Role of Analytics Engineer
As mentioned in previous sections, data scientists and analysts can now easily access
the data they need to perform complex analyses and gain insights that would other‐
wise be difficult or impossible to obtain. However, as the amount of data stored and
analyzed continues to grow, it is becoming increasingly important for organizations
to have data specialists to help them manage that data and provide the infrastructure
needed.

The recently created branch of specialized data engineers, called analytics engineers,
plays an integral role in developing and maintaining databases and data pipelines,
allowing data scientists and analysts to focus on more advanced analytics tasks.
Analytics engineers are responsible for designing, building, and maintaining the data
architecture that enables organizations to turn data into valuable insights and make
data-driven decisions.

In addition, the move from traditional ETL processes with enforced schemas-on-
write to an ELT with schema-on-read approach means that data now ends up in
the data repositories before it has been transformed. This is an opportunity for
super-technical analysts who both know the business very well and have the technical
skills to model the raw data into clean, well-defined datasets—analytics engineers. If
you were looking for these types of skills in the world of data warehouses and the ETL
paradigm, there would need to be specialists with both software engineering and data
analytics skills—which would be much harder to find.

The analytics engineer acts as a bridge between data platform engineers, focused
on building the technical infrastructure to enable data platforms, and data analysts,
focused on converting data into insightful data products. Their job is to create well-
tested, up-to-date, and documented datasets that the rest of the organization can use
to answer their own questions. They are technically savvy enough to apply software
development best practices such as version control and continuous integration and
continuous deployment (CI/CD) but also need to be able to communicate effectively
with stakeholders.

We can draw an analogy to civil engineering: data platform engineers are the founda‐
tion of an analytics project, responsible for ensuring that the infrastructure is robust,
including plumbing, electrical systems, and the structural foundation. They lay the
groundwork for everything to come.

Analytics engineers can be likened to architects. They take the solid foundation
created by data engineers and design structures that align with the business model,
constructing everything from exceptional dashboards to valuable data models. They
bridge the gap between the technical infrastructure and the business objectives.

The New Role of Analytics Engineer | 11

Data analysts, in this analogy, serve as interior designers. They step inside the
constructed buildings, not only ensuring that the content is aligned with users
but also making it user-friendly and tailored to the specific needs of data consum‐
ers. Together, these roles collaborate to create a holistic and functional analytics
environment.

Looking at the data analytics lifecycle, data platform engineers build platforms and
ingest raw data into enterprise-wide data stores. On the other hand, analytics engi‐
neers take the raw data and transform it to match the analytical data models the
business needs to support decision making.

Responsibilities of an Analytics Engineer
The role of an analytics engineer is becoming increasingly important as both the
volume and complexity of data, as well as its diverse applications, continue to grow.
This includes everything from designing and implementing data storage and retrieval
systems, to creating and maintaining data pipelines, and developing and deploying
machine learning models. In this dynamic landscape, analytics engineers play a vital
role in harnessing the increasing data resources and maximizing their value across a
wide range of applications.

Based on the latest role trends, one of the main responsibilities is to design and
implement efficient data storage and retrieval systems. This includes working with
databases and data warehousing technologies to design data models and structures
that can handle large and complex datasets. Another immediate responsibility is
creating and maintaining data pipelines that extract data from various sources, trans‐
form it, and load it into a central repository for analysis.

For most analytics engineers, the development and use of machine learning models
is somewhat less observable but still happening. This includes working with data sci‐
entists to understand their requirements, selecting and implementing the appropriate
algorithms, and ensuring that the models are properly trained and deployed with the
correct set of training and testing data. When this is not the case, analytics engineers
collaborate on building the proper data pipelines to continuously feed data scientists
with proper training and testing data.

In addition, analytics engineers are responsible for monitoring and maintaining
the performance of machine learning models, both by helping to structure offline
evaluation and by combining model-specific metrics with business metrics for online
monitoring.

An analytics engineer is typically proficient in programming languages and tools
such as Python, R, SQL, and Spark to implement data pipelines, data models, and
machine learning models. They should also be familiar with cloud computing plat‐
forms like AWS, GCP, or Azure to deploy and scale their solutions.

12 | Chapter 1: Analytics Engineering

When observing the responsibilities analytics engineers have in several companies,
they can include the following:

• Design and implement data storage and retrieval systems, such as databases•
and data warehouses, that can handle large and complex datasets. Create and
maintain data pipelines to extract, transform, and load data from various sources
into a central repository for analysis.

• Ensure data is accurate, complete, consistent, and accessible by performing data•
quality checks, tracking data flows, and implementing data security measures.

• Leverage cloud computing platforms such as AWS, GCP, or Azure to deploy and•
scale analytics solutions, as well as scalability, security, and cost optimization of
data infrastructure.

• Optimize the performance of data storage and retrieval systems, data pipelines,•
and machine learning models to ensure they can handle the volume and com‐
plexity of data.

• Use programming languages and tools such as Python, R, SQL, and Spark to•
implement data pipelines, data models, and machine learning models.

• Collaborate with data scientists to understand their requirements, select and•
implement appropriate algorithms, and ensure machine learning models are
properly trained and deployed. Monitor and maintain the performance of
machine learning models and troubleshoot and optimize as needed.

• Keep up-to-date with the latest technologies and trends in data engineering,•
machine learning, and analytics, and continually seek opportunities to improve
the organization’s data infrastructure and analytics capabilities.

The role of an analyst is broad and requires a combination of technical skills,
problem-solving skills, and an understanding of business needs. Analytics engineers
must be comfortable with data science’s technical and business aspects and should be
able to bridge the gap between data scientists and IT.

Enabling Analytics in a Data Mesh
A data mesh is a modern framework outlining an organization’s data strategy. It
enables business domain teams to take ownership of their data and the services that
provide access to it instead of relying only on a central data team. It decomposes
a monolithic data architecture into a set of independent, autonomous data services,
enabling finer scaling, more autonomy, and better data management. It provides
more flexibility in handling different types of data and enables a culture of experi‐
mentation, innovation, and collaboration. With a data mesh, enterprises should be
able to move faster and respond more quickly to changing business needs.

Enabling Analytics in a Data Mesh | 13

The emergence of data mesh methodology as an architectural pattern has revolution‐
ized the way analysts interact with data infrastructure. By decomposing a monolithic
data architecture into a series of independent, autonomous data services that can be
developed, deployed, and operated independently, teams can address the challenges
of scalability, manageability, and autonomy of the data architecture in a more granu‐
lar and effortless way.

With this novel approach, teams can scale their data infrastructure more granularly,
reducing the risk of data silos and duplication. Each business domain team also
has more autonomy, allowing them to choose the best tools and technologies for
their specific needs but leverage centrally offered services to manage the whole data
lifecycle. This permits them to move faster, be more agile, and respond quickly to
changing business needs. In addition, a data mesh approach provides more flexibility
in handling different types of data, such as structured, semi-structured, and unstruc‐
tured data. It also enables better data governance practices by breaking down the
monolithic data architecture and enabling clear mapping of data services.

An analytics engineer can deliver value in a data mesh organization by focusing on
building and maintaining independent, autonomous data services that support the
needs of multiple teams and applications, such as shared data models, well-governed
and documented to ensure effortless data discoverability, accessibility, and security.

Another meaningful aspect of working on a data mesh is ensuring data governance
and security, which can include implementing data policies and procedures, such
as data access controls, data sequencing, and data quality checks, to ensure that
data is secure and of high quality. In addition, analytics engineers should work with
data owners and stakeholders to understand and comply with all data storage and
management regulatory requirements.

Working in a data mesh requires a different mindset than in traditional monolithic
data architectures. Analytics engineers must move away from the notion that data is
a centralized resource and consider it as distributed autonomous services that various
teams can use.

Data Products
Another concept we have been using that is important to define is that of a data prod‐
uct. These are accessible applications providing access to data-driven insights that will
support business decision-making processes or even automate them. Internally they
may contain components for retrieving, transforming, analyzing, and interpreting
data. Another important aspect is that data products should expose their data in such
a way that it can be accessed and used by other internal or external applications or
services.

14 | Chapter 1: Analytics Engineering

Some examples of data products are as follows:

• A REST API that allows users to query a specific business data model•
• A data pipeline that ingests and processes data from various sources•
• A data lake that stores and manages large amounts of structured and unstruc‐•

tured data
• A data visualization tool that helps users understand and communicate data•

insights

Data products can also consist of microservices. These are small, independent, and
focused services that can be developed, deployed, and scaled independently. They can
be accessed via an API and reused across the enterprise.

dbt as a Data Mesh Enabler
dbt is an open source tool that helps data engineers, analytics engineers, and data
analysts build a data mesh by providing a way to create, test, and manage data
services. It allows teams to define, test, and build data models and create a clear and
well-defined interface for these models so that other teams and applications can easily
use them.

The dbt features that support the creation of a data mesh include the following:

Data modeling capabilities
Data modeling capabilities allow teams to define their data models by using a
simple and familiar SQL-based syntax that makes it easy for data engineers and
data analysts to define and test data models together.

Data testing capabilities
dbt provides a testing framework that allows teams to test their data models and
ensure that they are accurate and reliable. This helps identify errors early in the
development process and ensures that data services are of high quality.

Data documentation
dbt enables data models and services to be documented so that they can be easily
understood and used by other teams and applications.

Data tracking capabilities
Data tracking capabilities allow teams to trace the origin of data models. This
makes it easy to understand how data is used and where it came from.

Data governance capabilities
Data governance capabilities make it possible to enforce data governance policies
such as data access controls, data lineage, and data quality checks, which help
ensure that data is secure and of high quality.

Enabling Analytics in a Data Mesh | 15

While the primary focus of analytics engineering is on designing and implementing
data models, it’s important to note that data tracking and governance capabilities
can significantly enhance the effectiveness of analytics engineering processes. These
capabilities can be particularly valuable in scenarios where data models need to trace
the origin of data and adhere to stringent data governance policies. Adoption of
such practices and governance models, including a data mesh, may vary depending
on the specific needs and complexity of the data environment. Many successful dbt
deployments start with simpler single-star schema data models and may explore
advanced concepts like data mesh as their data needs evolve over time.

The Heart of Analytics Engineering
Data transformation converts data from one format or structure to another to make
it more useful or suitable for a particular application or purpose. This process is
necessary because it enables organizations to transform raw, unstructured data into
valuable insights that can inform business decisions, improve operations, and drive
growth.

Data transformation is a critical step in the analytics lifecycle, and it is important that
organizations have the tools and technology to perform this task efficiently and effec‐
tively. Some examples of data transformation include cleaning and preparing data,
aggregating and summarizing data, and enriching data with additional information.
The use of dbt is widespread for data transformation because it allows organizations
to perform complex data transformation tasks quickly and easily, and it can be inte‐
grated with other tools, such as Airflow, for end-to-end data pipeline management.

dbt is the gemba for analysts and enterprise stakeholders. The value to businesses and
stakeholders comes when data is transformed and delivered in an easy-to-use form.

Gemba is a Japanese term meaning “the real place.” In the corporate
world, gemba refers to the place where value is created.

In an ETL strategy, data transformation is typically performed before the data is
loaded into a target system, such as a data warehouse or data lake. Data is extracted
from various sources, transformed to match the structure and format of the target
system, and then loaded into the target system. This process ensures that the data is
consistent and usable across systems and applications.

In contrast, an ELT strategy represents a newer and more flexible approach to data
processing. In this strategy, data is first extracted and loaded into a target system
before undergoing transformation. ELT offers several advantages, including increased

16 | Chapter 1: Analytics Engineering

flexibility and the ability to support a wider range of data applications than the
traditional ETL paradigm. One significant benefit is its versatility in accommodating
various data transformations and real-time insights directly within the target system.
This flexibility empowers organizations to derive actionable insights from their data
more rapidly and adapt to changing analytical needs.

However, it’s important to acknowledge that ELT can come with higher storage
and ingestion costs, given the storage of raw or minimally transformed data. Many
businesses find these costs justifiable because of the substantial value—in particular,
the flexibility it brings to their operations. Therefore, ELT has gained popularity,
especially with the emergence of cloud-based data warehousing solutions and the
improved data transformation and processing capabilities they offer.

Regardless of the strategy used, without proper data cleaning, transformation, and
standardization, data may end up inaccurate, incomplete, or difficult to use, resulting
in poor decision making.

The Legacy Processes
Traditionally, legacy ETL processes were often complex, time-consuming, and
required specialized skills to develop, implement, and maintain. They also typically
required significant manual coding and data manipulation, making them error-prone
and difficult to scale.

In addition, these processes were often inflexible and could not be adapted to chang‐
ing business needs or new data sources. With the growing volume, variety, and
velocity of data, legacy ETL processes are becoming increasingly inadequate and, so,
are being replaced by more modern and flexible approaches such as ELT.

In the past, ETL was usually performed using custom scripts or specialized visual-
based ETL tools. These scripts or tools extracted data from various sources, such as
flat files or databases, performed the necessary transformations on the data, and then
loaded the data into a target system, such as a data warehouse.

An example of a legacy ETL process would be using a combination of SQL scripts
and programming languages such as Java or C# to extract data from a relational
database, transforming the data using the programming language, and then loading
the transformed data into a data warehouse. Another example is using specialized
ETL tools such as Oracle Data Integrator or IBM InfoSphere DataStage to extract,
transform, and load data across systems. These legacy ETL processes can be complex,
challenging to maintain and scale, and often require a dedicated team of developers.

The Legacy Processes | 17

Using SQL and Stored Procedures for ETL/ELT
In the past, specific data platforms used stored procedures in a relational database
management system (RDBMS) such as SQL Server or Oracle for ETL purposes.
Stored procedures are prepared SQL code that you can store in your database engine
so that the code can be used repeatedly. Depending on whether it is a data inflow or
outflow, the scripts are executed either in the source or the target database.

Suppose you want to create a simple stored procedure to extract from a table, trans‐
form the data, and load it into another table, as shown in Example 1-1.

Example 1-1. SQL procedure to extract data

CREATE PROCEDURE etl_example AS
BEGIN
 -- Extract data from the source table
 SELECT * INTO #temp_table FROM source_table;

 -- Transform data
 UPDATE #temp_table
 SET column1 = UPPER(column1),
 column2 = column2 * 2;

 -- Load data into the target table
 INSERT INTO target_table
 SELECT * FROM #temp_table;
END

This stored procedure first uses the SELECT INTO statement to extract all data from
the source table and store it in a temporary table (#temp_table). Then it uses the
UPDATE statement to change the values of column1 to uppercase and double the value
of column2. Finally, the stored procedure uses the INSERT INTO statement to load the
data from the #temp_table into the target_table.

Don’t be afraid if you aren’t familiar with the SQL syntax. Chapter 3
is fully dedicated to giving you the foundations to working with it.

It is important to note that this is an elementary example and that actual ETL
processes are often much more complex and involve many more steps, such as data
validation, handling null values and errors, and logging process results.

Although it is possible to use stored procedures for ETL processes, it is essential to
note that using them may have some implications, such as the need for specialized
knowledge and expertise to write and maintain those procedures and the lack of

18 | Chapter 1: Analytics Engineering

flexibility and scalability. In addition, using stored procedures for ETL can make
it challenging to integrate with other systems and technologies and troubleshoot
problems that arise during the ETL process.

Using ETL Tools
As previously mentioned, ETL tools are software applications that accelerate the
process of building ingestion and transformation pipelines by providing a visual
interface, a software development kit (SDK), or a programming library with prepack‐
aged code and artifacts that can be used for extracting, transforming, and loading
data from various sources into a target, such as a data warehouse or data lake. They
are generally used in many organizations to automate the process of transferring data
from various systems and databases to a central data warehouse or data lake, where it
can be analyzed.

Airflow is a popular open source platform for managing and scheduling data pipe‐
lines. Developed by Airbnb, it has gained popularity in recent years because of its
flexibility and scalability. Airflow allows users to define, schedule, and monitor data
pipelines using Python code, making them easy for data engineers and scientists to
create.

Example 1-2 presents a simple Airflow DAG. A directed acyclic graph (DAG) is a
directed graph with no directed cycles.

Example 1-2. An Airflow DAG

from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta

default_args = {
 'owner': 'me',
 'start_date': datetime(2022, 1, 1),
 'depends_on_past': False,
 'retries': 1,
 'retry_delay': timedelta(minutes=5),
}

dag = DAG(
 'simple_dag',
 default_args=default_args,
 schedule_interval=timedelta(hours=1),
)

task1 = BashOperator(
 task_id='print_date',
 bash_command='date',
 dag=dag,

The Legacy Processes | 19

)

task2 = BashOperator(
 task_id='sleep',
 bash_command='sleep 5',
 retries=3,
 dag=dag,
)

task1 >> task2

This code defines a DAG named simple_dag that runs every hour. It has two tasks,
print_date and sleep. The first task executes the date command, which prints the
current date and time. The second task executes the sleep 5 command, which makes
the task sleep for five seconds. The second task has the number of retries set to 3. So
if it fails, it will retry three times before giving up. The two tasks are connected by the
operator >>. This also means task2 depends on task1 and will be executed only after
task1 completes successfully.

Airflow is a productive tool for scheduling and managing ETL pipelines, but it has
some limitations. First, Airflow can be very complex to set up and manage, especially
for large or complicated pipelines. Second, it is not explicitly designed for data
transformation and may require additional tools or custom code to perform certain
types of data manipulation.

dbt can address these Airflow limitations by providing a set of
best practices and conventions for data transformation and a sim‐
ple, straightforward interface for performing and managing data
transformation. It can also be integrated with Airflow to supply a
complete ETL/ELT solution that is easy to set up and manage while
providing high flexibility and control over data pipelines.

The dbt Revolution
dbt is an open source command-line tool that is becoming increasingly popular in the
data analytics industry because it simplifies and streamlines the process of data trans‐
formation and modeling. On the other hand, Airflow is a powerful open source plat‐
form for programmatically creating, scheduling, and monitoring workflows. When
dbt is integrated with Airflow, the data pipeline can be more efficiently managed and
automated. Airflow can be used to schedule dbt runs, and dbt can be used to perform
the data transformation tasks in the pipeline.

20 | Chapter 1: Analytics Engineering

This integration enables teams to manage the entire data pipeline from data extrac‐
tion to loading into a data warehouse, ensuring that data is always up-to-date and
accurate. The integration makes it easier to automate data pipeline tasks, schedule
and monitor the pipeline, and troubleshoot issues as they arise.

To illustrate the simplicity of building a simple dbt model, imagine that you want
to build a model that calculates a company’s total revenue by adding the revenue
for each order. The model could be defined using a dbt model file specifying the
calculation’s SQL code and any required dependencies or parameters. Example 1-3
presents what the model file could look like.

Example 1-3. A dbt model

{{ config(materialized='table') }}

select
 sum(orders.revenue) as total_revenue
from {{ ref('orders') }} as orders

One of the main advantages of dbt is that analytics engineers can write reusable,
maintainable, and testable code for data transformations in a simple high-level lan‐
guage that eliminates the complexity of writing SQL. This facilitates team collabora‐
tion on data projects and reduces the risk of errors in the data pipeline.

Another benefit of dbt is that it enables more efficient data pipeline management.
By integrating with orchestration tools like Airflow and others such as Dagster
or Prefect, as well as dbt Labs’ own dbt Cloud product, dbt empowers teams to
effectively plan, schedule, and monitor data pipelines. This ensures that data remains
consistently up-to-date and accurate. The synergy between dbt and orchestration
tools like Airflow allows for seamless data refresh and the deployment of new logic,
akin to CI/CD practices in software engineering. This integration ensures that as
new data becomes available or transformations are updated, the data pipeline can be
orchestrated and executed efficiently to deliver reliable and timely insights.

Overall, dbt is becoming widespread for organizations looking to improve their
data analytics capabilities and streamline their data pipelines. Although it is still a
relatively new technology, it is being used by many companies and is considered a
valuable tool for data professionals. Chapter 4 will provide a more in-depth view of
dbt and its capabilities and features.

The dbt Revolution | 21

Summary
In recent decades, the field of data management has undergone profound transfor‐
mations, transitioning from structured methods of data storage and access, such
as SQL-based stored procedures, to more flexible and scalable workflows. These
modern workflows are supported by powerful tools like Airflow and dbt. Airflow
facilitates dynamic orchestration, while dbt elevates analytics code to the level of
production-grade software, introducing innovative approaches to data testing and
transformation.

Amid this dynamic environment, new roles have emerged, with the analytics engi‐
neer standing at the intersection of data engineering and data analytics, ensuring the
delivery of robust insights. Despite the evolution of tools and roles, the intrinsic value
of data remains unchanged. However, data management is evolving into a discipline
that focuses not only on data itself but also on the professionals who wield it.

Even with these advancements, the core challenges persist: acquiring critical data,
maintaining the highest data-quality standards, storing data efficiently, and meeting
stakeholder expectations in data delivery. At the heart of the data value chain lies the
revitalization of data modeling. Efficient data modeling goes beyond data gathering;
it structures and organizes data to reflect real-world relationships and hierarchies.
Chapter 2 will delve into data modeling and its pivotal role in analytics engineering.

Throughout this chapter, we have explored the evolution of data management, the
emergence of the analytics engineer role, and concepts like data mesh and the distinc‐
tion between ELT and ETL strategies. This diverse set of topics aims to provide a
comprehensive overview of the data landscape.

22 | Chapter 1: Analytics Engineering

CHAPTER 2

Data Modeling for Analytics

In today’s data-driven world, organizations rely more and more on data analytics to
gain valuable insights and make informed decisions. Data modeling plays an impera‐
tive role in this process, providing a solid foundation for structuring and organizing
data to support effective analysis. In addition, understanding the concepts of data
modeling and normalization is essential to realizing the full potential of analytics and
gaining actionable insights from complex datasets.

Data modeling is about defining the structure, relationships, and attributes of data
entities within a system. An essential aspect of data modeling is the normalization
of the data. Data normalization is a technique for eliminating data redundancy and
improving data integrity. It involves breaking data into logical units and organizing
them into separate tables, which reduces data duplication and improves overall
database efficiency. Normalization ensures that data is stored in a structured and
consistent manner, which is critical for accurate analysis and reliable results.

Regarding analytics, data modeling provides a solid foundation for creating analytical
models. Analysts can design effective models that capture relevant information and
support the desired analytics objectives by understanding the relationships among
entities and data structures. In other words, a well-designed data model enables
analysts to perform complex queries, join tables, and aggregate data to produce
meaningful insights.

Understanding data modeling and normalization is critical to practical data analysis.
Analysts may have difficulty accessing and correctly interpreting data without an
appropriate data model, which can lead to incorrect conclusions and ineffective deci‐
sions. In addition, a lack of normalization can lead to data anomalies, inconsistencies,
and difficulty aggregating data, hindering the analysis process.

23

In this book, we highlight SQL and dbt as two core technologies to sustain an
effective analytics engineering project, and this is also applicable to designing and
implementing an effective data model. The reason behind this is that SQL equips
users with the ability to define tables, manipulate data, and retrieve information
through its robust query capabilities. Its unmatched flexibility and versatility position
it as a great tool for constructing and sustaining data models, empowering users to
articulate intricate relationships and effortlessly access specific data subsets.

Complementary to SQL, dbt plays a central role in this narrative, taking the art of
data modeling to a whole new level. It serves as a comprehensive framework for con‐
structing and orchestrating complex data pipelines. Within this framework, users can
define transformation logic, apply essential business rules, and craft reusable modular
code components known as models. It’s worth noting that dbt goes beyond standalone
functionality: it seamlessly integrates with version control systems, making collabora‐
tion a breeze and ensuring that data models maintain consistency, auditability, and
effortless reproducibility.

Another crucial aspect of SQL and dbt in data modeling is their emphasis on testing
and documentation, although with some distinctions that are worth clarifying. In
the context of data modeling, testing involves validating the data model’s accuracy,
reliability, and adherence to business rules. While it’s important to note that dbt’s
testing capabilities differ from traditional unit testing in software development, they
serve a similar purpose. Instead of traditional unit tests, dbt offers validation queries
that are comparable to what analysts are accustomed to running. These validation
queries check data quality, data integrity, and adherence to defined rules, providing
confidence in the model’s outputs. Furthermore, dbt excels in documentation, serving
as a valuable resource for analysts and stakeholders alike. This documentation simpli‐
fies the understanding of the underlying logic and assumptions that drive the data
model, which enhances transparency and fosters effective collaboration.

Together, SQL and dbt empower data professionals to create robust, scalable, and
maintainable data models that drive insightful analytics and informed decision mak‐
ing. By leveraging these tools, organizations can unlock the full potential of their data,
fueling innovation and gaining a competitive advantage in today’s data-driven land‐
scape. Combining both in the same data architecture and strategy brings significant
advantages to data modeling.

A Brief on Data Modeling
In the world of database design, creating a structured and organized environment
is vital for storing, manipulating, and leveraging data effectively. Database modeling
plays a relevant role in achieving this objective by providing the blueprint for repre‐
senting a specific reality or a business and supporting its processes and rules.

24 | Chapter 2: Data Modeling for Analytics

However, before we dive deep into creating this blueprint, we should focus on com‐
prehending the nuances of the business. Understanding the business’s operations,
terminology, and processes is essential for creating accurate and meaningful data
models. By gathering requirements through interviews, document analysis, and
process studies, we gain insights into the business’s needs and data requirements.
During this gathering process, we should focus on natural communication—written
language. By expressing business facts in unambiguous sentences, we ensure that
representations of the business are accurate and free of interpretation. Breaking
complex sentences into simple structures with subjects, verbs, and direct objects helps
concisely capture business realities.

In addition to these essential practices, it’s worth noting that experts in the field,
like Lawrence Corr in his popular book Agile Data Warehouse Design (DecisionOne
Press), advocate for further techniques such as whiteboarding and canvassing during
this initial phase of data model design. These additional strategies can add nuance to
the process, allowing for a more comprehensive exploration of business requirements
and ensuring that the resulting data models align seamlessly with the business’s
objectives and intricacies.

Once the understanding phase is complete, we move to the three basic steps of
database modeling:

• Conceptual phase•
• Logical phase•
• Physical phase•

These steps form a journey to creating a robust and well-organized database struc‐
ture. Let’s use the example of a book publisher to illustrate the process.

The Conceptual Phase of Modeling
The conceptual phase of database modeling requires several essential steps. First, it is
necessary to identify the purpose and goals of the database and clarify the specific
problems or requirements it needs to address. The next step is gathering require‐
ments by interviewing stakeholders and subject matter experts to comprehensively
understand the required data elements, relationships, and constraints. Entity analysis
and definition follow, which involves identifying the key objects or concepts to be
represented in the database and defining their attributes and relationships.

We begin with a light normalization as we design the initial sketches for the appear‐
ance of the database. This ensures integrity between the identified entities and rela‐
tionships and minimizes redundancy by organizing entities and attributes around
semantic structures that are conceptually related. Identifying keys, including primary

A Brief on Data Modeling | 25

and foreign keys, is critical to maintaining uniqueness and establishing relationships
among tables.

These database designs are often created through diagrams, textual descriptions,
or other methods that capture and effectively convey the design and concepts of
the database. One of the most commonly used tools to visually represent database
concepts is the entity-relationship diagram (ERD). The visual models created using
an ERD serve as a diagrammatic representation that effectively describes the entities
to be modeled, their relationships, and the cardinality of those relationships. By
employing the ERD model, we can visually describe the database structure, including
the entities as the main components, the connections or associations among entities,
and the quantity or extent of the relationships.

Let’s do a very simple conceptual design of a database. Imagine O’Reilly aims to track
books and authors previously published, along with launch dates for new books yet
to be published. We engage in a series of interviews with the publisher’s managers
and start to understand exactly what data needs to be stored in the database. The
main goal is to identify the entities involved, their relationships, and the attributes of
each entity. Keep in mind this exercise is illustrative and is simplified on purpose. We
identify three distinct entities in this sub-universe of book management:

Book
This entity represents a book published by O’Reilly. Attributes may include
book_id, title, publication_date, ISBN, price, and a particular category. The
interviewers said that one book may have only one category in this model.

Author
This entity represents an author who has written books for O’Reilly. Attributes
may include author_id, author_name, email, and bio.

Category
This entity represents the book category and can contain attributes such as
category_id as the unique identifier and category_name.

The next step would be to identify relationships among entities. In database design,
a few types of relationships can exist among entities, and the type of relationship
can be called the relationship’s cardinality. For example, in a one-to-one relationship,
we could have a Book entity connected to an Author entity, where each book is asso‐
ciated with a single author, and vice versa. In a one-to-many relationship, consider
a Category entity linked to a Book entity, where each book can belong to only one
category, but each category can have multiple books. Contrarily, in a many-to-one
relationship, think of a Publisher entity connected to a Book entity, where the same
publisher publishes multiple books. Finally, in a many-to-many relationship, we
could have a Book entity associated with a Reader entity, indicating that multiple

26 | Chapter 2: Data Modeling for Analytics

readers can have multiple books in their possession. Continuing our exercise, we also
identified two clear relationships:

Book-Category relationship
Establishes the connection between books and categories. A book can have one
category, and a category can have multiple books. This relationship is represented
as a one-to-many relationship.

Book-Author relationship
Establishes the connection between books and authors. A book can have multiple
authors, and an author can write multiple books. This relationship is represented
as a many-to-many relationship. It’s in this relationship that a specific book’s
publication happens.

When identifying relationships, using relationship names that represent the real
interaction between entities is common. For example, instead of calling it Book-
Category, we could say Classifies because the category classifies the book, or instead of
Book-Author, we might say Publishes because the author has books published.

Now that we have an idea of entities, attributes, and relationships, we have what is
needed to design our database with an ERD. By doing so, we can visually represent
the entities, relationships, and cardinality, as shown in Figure 2-1.

Figure 2-1. ERD example for the books database

A Brief on Data Modeling | 27

As we can observe, entities are represented as while rectangular boxes and represent
real-world objects or concepts, such as Book or Author. Relationships are represented
as diamonds and illustrate how entities are related.

Attributes are represented as shaded boxes and describe properties or characteristics
of an entity. An example could be Name or Publish date. In addition, attributes can
be classified as key attributes (underlined shaded boxes) that uniquely identify an
entity or as nonkey attributes (nonunderlined shaded boxes) that provide additional
information about an entity. More types of attributes exist when designing such
diagrams, but we will stick with the basics.

Other components in an ERD include cardinality and participation constraints. Car‐
dinality defines the number of instances in a relationship, usually represented with
symbols such as 1, M, or N to indicate a one-to-one or one-to-many relationship,
respectively. (N indicates that there is an undetermined number of relationships.)

The Logical Phase of Modeling
In the logical phase of modeling, the focus is on normalizing the data to eliminate
redundancies, improve data integrity, and optimize query performance. The result is
a normalized logical model that accurately reflects the relationships and dependencies
among entities.

This phase can be divided into two steps. First, the restructuring of the Entity-
Relationship schema focuses on optimizing the schema based on specific criteria.
This step is not tied to any particular logical model. The second step translates the
optimized ERD into a specific logical model.

Assuming we have decided to map the ERD to a relational database model (which
will be our case)—as opposed to a document or graph database—each entity from
the conceptual ERD exercise is represented as a table. The attributes of each entity
become the columns of the respective table. The primary-key constraint is indica‐
ted for the primary-key columns of each table. Additionally, the many-to-many
relationships are represented by separate junction tables that hold the foreign keys
referencing the corresponding entities.

By translating the conceptual ERD exercise into a logical schema using the relational
model, we establish a structured representation of the entities, their attributes, and
their relationships. This logical schema can be a foundation for implementing the
database in a specific database management system (DBMS) while remaining inde‐
pendent of any particular system. To achieve this translation effectively, all the nor‐
malization steps apply, but we would like to share an effective algorithm:

• Entity E is converted to table T.•
• The name of E becomes the name of T.•

28 | Chapter 2: Data Modeling for Analytics

• The primary key of E becomes the primary key of T.•
• Simple attributes of E become simple attributes of T.•

When it comes to relationships, we can also share a few steps:

N:1 relationships
A foreign key is defined in table T1 that references the primary key of table
T2. This establishes the connection between the two tables, indicating the N:1
relationship. The attributes (Attrs) associated with the relationship are mapped
and included in table T1.

N:N relationships
A specific cross-reference table is created to represent the relationship REL. The
primary key of REL is defined as the combination of the primary keys of both
tables T1 and T2, which act as foreign keys in the cross-reference table. The
attributes (Attrs) associated with the relationship are mapped and included in the
cross-reference table.

Now let’s apply these rules to our previous conceptual model; see Figure 2-2.

Figure 2-2. Logical ERD example for the books database

In our example, we have a few entities that, as our algorithm suggests, are directly
mapped to tables. Such is the case of Authors, Books, and Category.

We identified a 1:N relationship between Books and Category where one book has
one category, but one category has multiple books. To map this relationship, we create
a foreign key in the books table to reference the corresponding category.

A Brief on Data Modeling | 29

We also have an N:N relationship. In this case, we must create a new table (cross-
reference table) that stores the relationship. In our case, we create the Publishes tables
for which the primary key becomes a composite between the related entities (Book ID
and Author ID). At the same time, the attributes of the relationship become attributes
of this cross-reference table.

The Physical Phase of Modeling
We are now ready to convert the normalized logical model into a physical database
design in a step called the physical phase, or physical model creation. This step defines
storage structures, indexing strategies, and data types to ensure efficient data storage
and retrieval. While the logical model focuses on the conceptual representation,
the physical model deals with the implementation details required for smooth data
management.

In our case, let’s continue from the previous logical model and assume we would be
working with a MySQL database engine. Example 2-1 shows the physical model of
the books database.

Example 2-1. The books database in a physical model

CREATE TABLE category (
 category_id INT PRIMARY KEY,
 category_name VARCHAR(255)
);

CREATE TABLE books (
 book_id INT PRIMARY KEY,
 ISBN VARCHAR(13),
 title VARCHAR(50),
 summary VARCHAR(255)
 FOREIGN KEY (category_id) REFERENCES category(category_id),
);

CREATE TABLE authors (
 author_id INT PRIMARY KEY,
 author_name VARCHAR(255),
 date_birth DATETIME
);

CREATE TABLE publishes (
 book_id INT,
 author_id INT,
 publish_date DATE,
 planned_publish_date DATE
 FOREIGN KEY (book_id) REFERENCES books(book_id),
 FOREIGN KEY (author_id) REFERENCES author(author_id)
);

30 | Chapter 2: Data Modeling for Analytics

In Example 2-1, we’ve created four tables: category, books, authors, and publishes.
The physical design aspect fine-tunes the table structures, data types, and constraints
to align with the MySQL database system.

For example, in the category table, we could specify the data type for the category
_id column as INT, ensuring that it is suitable for storing integer values while
defining it as a primary key, given that it identifies unique records on the table. Simi‐
larly, the category_name column could be defined as VARCHAR(255) to accommodate
variable-length category names.

In the books table, appropriate data types and lengths can be assigned to columns
such as book_id (INT), ISBN (VARCHAR(13)), title (VARCHAR(50)), and summary
(VARCHAR(255)). Additionally, the category_id column can be configured as a for‐
eign key referencing the category_id column in the category table. Note that each
ISBN code is composed of 13-character-length strings. Thus, we don’t need bigger
strings than that.

Similarly, in the authors table, data types can be defined for columns such as
author_id (INT), author_name (VARCHAR(255)), and date_birth (DATETIME), all
respecting the expected domain of values.

In the publishes table, we highlight that we defined foreign-key constraints to
establish the relationships between the book_id column in the books table and
the author_id column in the authors table. At the same time, the foreign key is
composed of the primary keys of the two tables it’s relating.

After all these steps, we’ve successfully moved from requirements to concept to a
logical relational model and finished with a practical implementation of the model in
MySQL, thus building our database.

The Data Normalization Process
The data normalization technique consists of several steps, each aimed at organizing
data into logical and efficient structures. Example 2-2 illustrates the books table
containing a few relevant attributes.

Example 2-2. books table to be normalized

CREATE TABLE books (
 book_id INT PRIMARY KEY,
 title VARCHAR(100),
 author VARCHAR(100),
 publication_year INT,
 genre VARCHAR(50)
);

A Brief on Data Modeling | 31

The first step in normalization, known as the first normal form (1NF), requires
eliminating repeating groups by breaking the data into smaller atomic units. We’ll
create a table called authors that includes the author ID and author’s name. The
books table now references the author ID instead of storing the full name repeatedly,
as shown in Example 2-3.

Example 2-3. books table in 1NF

-- Table Authors
CREATE TABLE authors (
 author_id INT PRIMARY KEY,
 author_name VARCHAR(100)
);

-- Table Books
CREATE TABLE books (
 book_id INT PRIMARY KEY,
 title VARCHAR(100),
 publication_year INT,
 genre VARCHAR(50),
 author_id INT,
 FOREIGN KEY (author_id) REFERENCES authors(author_id)
);

Moving to the second normal form (2NF), we examine dependencies within the data.
We observe that the publication year functionally depends on the book ID, while the
genre depends on the author ID. To adhere to 2NF, we split the books table into three
tables:

• books, containing book ID and title•
• authors, with author ID and name•
• bookDetails, storing book ID, publication year, and genre•

This ensures that each column depends solely on the primary key, as shown in
Example 2-4.

Example 2-4. books table in 2NF

-- Table Authors
CREATE TABLE authors (
 author_id INT PRIMARY KEY,
 author_name VARCHAR(100)
);

-- Table Books
CREATE TABLE books (

32 | Chapter 2: Data Modeling for Analytics

 book_id INT PRIMARY KEY,
 title VARCHAR(100),
);

-- Table book details
CREATE TABLE bookDetails (
 book_id INT PRIMARY KEY,
 author_id INT,
 genre VARCHAR(50),
 publication_year INT,
 FOREIGN KEY (author_id) REFERENCES authors(author_id)
);

The third normal form (3NF) focuses on eliminating transitive dependencies. We
realize that the genre can be derived from the book ID through the bookDetails
table. To resolve this, we create a new table called genres with genre ID and genre
name, and the bookDetails table now references the genre ID instead of storing the
genre name directly (Example 2-5).

Example 2-5. books table in 3NF

CREATE TABLE authors (
 author_id INT PRIMARY KEY,
 author_name VARCHAR(100)
);

CREATE TABLE books (
 book_id INT PRIMARY KEY,
 title VARCHAR(100),
);

CREATE TABLE genres (
 genre_id INT PRIMARY KEY,
 genre_name VARCHAR(50)
);

CREATE TABLE bookDetails (
 book_id INT PRIMARY KEY,
 author_id INT,
 genre_id INT,
 publication_year INT,
 FOREIGN KEY (author_id) REFERENCES authors(author_id),
 FOREIGN KEY (genre_id) REFERENCES genres(genre_id)
);

These resulting normalized structures (3NF) are often used in operational systems,
also known as online transaction processing systems (OLTP), that are designed to effi‐
ciently process and store transactions and retrieve transaction data, such as customer
orders, bank transactions, or even payroll. It’s important to highlight that we can

A Brief on Data Modeling | 33

apply further normalization steps if necessary, such as the fourth normal form (4NF)
and fifth normal form (5NF), to address complex data dependencies and ensure even
higher levels of data integrity.

Data normalization is crucial to achieve efficient processing and storage of individual
transactions in an OLTP system. In this process, the data is divided into smaller, less
redundant parts to achieve this goal, bringing several advantages to OLTP systems.
Data normalization is known for its emphasis on reducing data redundancy and
improving data integrity because data is organized into multiple tables, each serving
a specific purpose. These tables are linked by primary and foreign keys to establish
their relationships, ensuring that records in each table are unique and that the same
field is not replicated in multiple tables, except for key fields or in-system fields such
as ID or creation timestamps.

Another reason data normalization is relevant is that it enhances and maximizes
performance. These normalized databases are designed to efficiently handle fast reads
and writes by minimizing data redundancy and establishing well-defined relation‐
ships among tables so that the database can handle a large number of transactions
with lightning-fast performance. This is important for transactional systems in which
the timely execution of operations is critical.

Last but not least, a normalized database focuses on storing only current data so that
the database represents the most current information available. In a table that stores
customer information, each record always reflects the customer’s up-to-date details,
such as first name, phone number, and other relevant data, ensuring that the database
accurately represents the current state of affairs.

However, the paradigm is somewhat different when it comes to an analytics project
or system. Often, users want to be able to retrieve the data they need without
having to do a lot of linking, which is a natural consequence of a normalization
process. While an OLTP system is optimized for write operations to avoid increased
latency in live systems like a web application, users of analytics systems want read
optimization to get their analytics data as quickly as possible. Unlike normalized
transactional databases that store live data, analytics databases are expected to contain
both real-time and non-real-time data and act as a historical archive for past data.
And often, an analytics database is expected to contain data from multiple OLTP
systems to provide an integrated view of business processes.

These differences are indeed critical to grasp as they underpin distinct requirements
for data organization, retention, and utilization. However, it’s important to clarify
that what we’ve just explored pertains primarily to the realm of normalization for
performance optimization and adhering to best practices in OLTP database design.
While this foundation is valuable, it represents just one facet of the broader landscape
of analytics engineering.

34 | Chapter 2: Data Modeling for Analytics

To provide a clearer roadmap, let’s establish that our journey begins with an explora‐
tion of this foundational type of data modeling, which forms the basis for OLTP sys‐
tems. Following this, we will pivot toward a discussion of data modeling approaches
optimized for OLAP environments. By making this distinction, we aim to provide a
comprehensive understanding of both aspects of data modeling, setting the stage for
a deeper dive into analytics engineering methodologies and their application in the
subsequent sections.

Dimensional Data Modeling
Data modeling is a fundamental aspect of designing and organizing databases to
store and manage data efficiently. As we previously discussed, it involves defining the
structure, relationships, and attributes of the data entities within a system.

One popular approach to data modeling is dimensional modeling, which focuses on
modeling data to support analytics and reporting requirements. Dimensional model‐
ing is particularly well suited for data warehousing and BI applications. It emphasizes
the creation of dimensional models that consist of fact tables representing measurable
data and dimension tables providing descriptive context. By using dimensional mod‐
eling techniques, such as star schemas and snowflake schemas, data can be organized
in a way that simplifies complex queries and enables efficient data analysis.

The relationship between data modeling and dimensional modeling lies in their
complementary nature. Data modeling provides the foundation for capturing and
structuring data, whereas dimensional modeling offers a specialized technique for
modeling data to support analytical and reporting needs. Jointly, these approaches
enable organizations to design robust and flexible databases that facilitate transac‐
tional processing and in-depth data analysis.

To understand dimensional modeling, we should first pay our respect to two individ‐
uals considered to be the fathers of data warehousing and dimensional modeling: Bill
Inmon and Ralph Kimball, respectively. They are recognized as pioneers in the field
of enterprise-wide information gathering, management, and analytics for decision
support.

They have contributed to a significant debate on the topic of data warehousing, each
advocating for different philosophies and approaches. Inmon proposes the creation
of a centralized data warehouse that encompasses the entire enterprise, aiming to
generate a comprehensive BI system. On the other hand, Kimball suggests creating
multiple smaller data marts focused on specific departments, enabling department-
level analysis and reporting. Their divergent viewpoints result in contrasting design
techniques and implementation strategies for data warehousing.

In addition to their differing approaches, Inmon and Kimball propose distinct meth‐
ods for structuring data in the context of data warehousing. Inmon advocates for

Dimensional Data Modeling | 35

using the relational (ERD) model, specifically the third normal form (3NF), in the
enterprise data warehouse. On the contrary, Kimball’s approach employs a multidi‐
mensional model in the dimensional data warehouse, utilizing star schemas and
snowflakes.

Inmon argues that structuring data in a relational model ensures enterprise-wide
consistency. This consistency facilitates the creation of data marts in the dimensional
model with relative ease. On the other hand, Kimball contends that organizing data
in a dimensional model facilitates the information bus, allowing users to compre‐
hend, analyze, aggregate, and explore data inconsistencies more effectively. Moreover,
Kimball’s approach enables direct access to data from analytics systems. In contrast,
Inmon’s approach restricts analytics systems from accessing data solely from the
enterprise data warehouse, necessitating interaction with data marts for retrieval.

A data mart is a specific part of a data warehouse that is meant to
fulfill the unique demands of a particular department or business
unit.

In the following sections, we will delve deep into three modeling techniques: star
schema, snowflake modeling, and the emerging Data Vault. Data Vault, introduced
by Dan Linstedt in 2000, has been gaining momentum in recent years. It follows a
more normalized structure, which is not entirely aligned with Inmon’s approach but
is similar.

Modeling with the Star Schema
The star schema is a widely used modeling approach in relational data warehouses,
especially for analysis and reporting purposes. It involves classifying tables as either
dimension tables or fact tables to effectively organize and represent business units
and related observations or events.

Dimension tables are used to describe the business entities to be modeled. These
entities can include various aspects such as products, people, places, and concepts,
including time. In a star schema, you will typically find a date dimension table that
provides a comprehensive set of dates for analysis. A dimension table usually consists
of one or more key columns that serve as unique identifiers for each entity, as well as
additional descriptive columns that provide further information about the entities.

Fact tables, on the other hand, store observations or events that occur in the business.
These include sales orders, inventory levels, exchange rates, temperatures, and other
measurable data. A fact table contains dimension key columns, which refer to the
dimension tables, and numeric measurement columns. The dimension key columns
determine the dimensionality of the fact table and specify which dimensions are

36 | Chapter 2: Data Modeling for Analytics

included in the analysis. For example, a fact table that stores sales targets may
contain dimension key columns for Date and ProductKey, indicating that the analysis
includes dimensions related to time and products.

The granularity of a fact table is determined by the values in its dimension key
columns. If the Date column in a sales target fact tables stores values representing
the first day of each month, for example, then the granularity of the table is at the
Month/Product level. This means that the fact table captures sales target data at the
monthly level, specific to each product.

By structuring data in a star schema with dimension tables representing business
units and fact tables capturing observations or events, companies can efficiently
perform complex analysis and gain meaningful insights. The star schema provides
a clear and intuitive structure for querying and aggregating data, making it easier
to analyze and understand the relationships among dimensions and facts within the
dataset.

Returning to our books table, we will follow the modeling steps to develop a simple
star schema model. The first step would be to identify the dimension tables. But first,
let’s remember our base table in Example 2-6.

Example 2-6. Base table for our star schema

-- This is our base table
CREATE TABLE books (
 book_id INT PRIMARY KEY,
 title VARCHAR(100),
 author VARCHAR(100),
 publication_year INT,
 genre VARCHAR(50)
);

We should identify all the individual dimensions (attributes related to a particular
business entity) in the books table and create separate dimension tables for each. In
our example, and just as in the normalization steps, we identify three entities: books,
authors, and genres. Let’s see the physical model with Example 2-7.

Example 2-7. Dimension tables for our star schema

-- Create the dimension tables
CREATE TABLE dimBooks (
 book_id INT PRIMARY KEY,
 title VARCHAR(100)
);

CREATE TABLE dimAuthors (
 author_id INT PRIMARY KEY,

Dimensional Data Modeling | 37

 author VARCHAR(100)
);

CREATE TABLE dimGenres (
 genre_id INT PRIMARY KEY,
 genre VARCHAR(50)
);

When it comes to naming dimension tables, it is recommended to use descriptive
and intuitive names that reflect the entities they represent. For example, if we have
a dimension table representing books, we could name it dimBook or simply books.
Similarly, relevant and self-explanatory names like dimAuthor or dimGenre can be
used for dimension tables representing authors, genres, or other entities.

For the fact tables, it is advisable to use names that indicate the measurements or
events being captured. For instance, if we have a fact table recording book sales,
we could name it factBookSales or salesFact. These names indicate that the table
contains data related to book sales.

We can now create a fact table called factBookPublish, as shown in Example 2-8, to
capture publication data.

Example 2-8. Fact table for our star schema

-- Create the fact table
CREATE TABLE factBookPublish (
 book_id INT,
 author_id INT,
 genre_id INT,
 publication_year INT,
 FOREIGN KEY (book_id) REFERENCES dimBooks (book_id),
 FOREIGN KEY (author_id) REFERENCES dimAuthors (author_id),
 FOREIGN KEY (genre_id) REFERENCES dimGenres (genre_id)
);

This code creates a new fact table factBookPublish with columns representing the
measurements or events related to the dimensions. In this case, it’s only the publica‐
tion year. The foreign-key constraints establish the relationships between the fact
table and the dimension tables.

With the star schema model representing the books dataset, we now have a strong
foundation for conducting various analytical operations and extracting valuable
insights. The dimensional structure of the star schema allows for efficient and intu‐
itive querying, enabling us to explore the data from different perspectives. Once we
finish the modeling process, we should end up with a model similar to Figure 2-3 that
resembles a star, thus its name, star schema.

38 | Chapter 2: Data Modeling for Analytics

Figure 2-3. Star schema model

Using this model, we can now easily analyze book publications by applying filters
such as genre, author, or publication year. For instance, we could quickly retrieve
the total publications for a specific genre. By joining the dimension tables with the
fact table, as represented in Example 2-9, we can effortlessly gain insights into the
relationships among books, authors, genres, and sales.

Example 2-9. Retrieving data from a star schema

-- Example for retrieving the total publications for a specific genre.
SELECT COALESCE(dg.genre, 'Not Available'), -- Or '-1'
 COUNT(*) AS total_publications
FROM factBookPublish bp
LEFT JOIN dimGenres dg ON dg.genre_id = bp.genre_id
GROUP BY g.genre;

As you can see, we used a LEFT JOIN when joining a fact table with a dimension table.
This is quite common. It ensures that all the records from the fact table are included
in the result, regardless of whether there is a matching record in the dimension table.
This consideration is important because it acknowledges that not every fact record
may necessarily have a corresponding entry in every dimension.

By using a LEFT JOIN, you retain all the data from the fact table while enriching it
with the relevant attributes from the dimension table. This allows you to perform
analysis and aggregations based on various dimensions and explore the data from
different perspectives. However, we must handle any missing correspondence. Thus
we use the COALESCE operator, which is often used to set a default value like -1 or Not
available.

A LEFT JOIN also allows for incremental dimension updates. If new records are
added to the dimension table, the LEFT JOIN will still include the existing fact
records, associating them with the available dimension data. This flexibility ensures
that your analysis and reporting remain consistent even as your dimension data
evolves over time.

Dimensional Data Modeling | 39

Overall, the star schema’s simplicity and denormalized structure make it conducive
to aggregations and summarizations. You can generate various reports, such as sales
trends over time, best-selling genres, or revenue by author. Additionally, the star
schema facilitates drill-down and roll-up operations, allowing you to drill into more
detailed information or roll up to higher levels of aggregation for a comprehensive
view of the data.

This modeling technique also aligns seamlessly with integration into data visualiza‐
tion tools and BI platforms. By connecting your model to tools such as Tableau,
Power BI, or Looker, you can craft visually captivating dashboards and interactive
reports. These resources empower stakeholders to swiftly grasp insights and make
data-driven decisions at a glance.

However, it’s worth noting that the preceding example doesn’t fully highlight the
denormalization aspect championed by star schemas. For instance, if your dataset
strictly adheres to a one-genre-per-book scenario, you have the opportunity to fur‐
ther streamline your model by consolidating the genre information directly within a
unified dimBooks table, promoting denormalization and simplifying data access.

Modeling with the Snowflake Schema
In a snowflake schema, the data model is more normalized than in a star schema. It
contains additional levels of normalization by splitting dimension tables into multiple
contiguous tables. This allows for better data integrity and reduces data redundancy.
For example, consider a snowflake schema for an ecommerce database. We have a
dimension table customers that contains customer information such as ID, name,
and address. In a snowflake schema, we could split this table into several contiguous
tables.

The customers table could be split into a customers table and a separate addresses
table. The customers table would contain customer-specific attributes such as ID and
the customer’s name. In contrast, the addresses table would contain address-related
information such as ID and the customer’s street, city, and zip code. If several
customers have the same address, we need to store the address information only once
in the addresses table and link it to the respective customers.

To retrieve data from a snowflake schema, we usually need to perform multiple
joins over the associated tables to get the desired information. For example, if we
want to query the customer name and address, we must join the customers table
with the addresses table on the ID page. While a snowflake schema provides better
data integrity, it also requires more complex queries because of the additional links.
However, this schema can be beneficial for large datasets and complex relationships
because it provides better normalization and flexibility in data management.

40 | Chapter 2: Data Modeling for Analytics

Both the star schema and snowflake schema are two common data warehouse
schema designs. In a star schema, dimension tables are denormalized, meaning they
contain redundant data. The star schema offers advantages such as more accessible
design and implementation and more efficient querying due to fewer JOIN opera‐
tions. However, it may require more storage space because of denormalized data and
can be more challenging to update and troubleshoot.

This is one of the reasons we often see hybrid models, in which companies model star
schemas and often normalize a few dimensions for different optimization strategies.
The choice depends heavily on your unique needs and requirements. A star schema
could be the ideal choice if you prioritize simplicity and efficiency in a data ware‐
house solution. This schema offers easy implementation and efficient querying, mak‐
ing it suitable for straightforward data analysis tasks. However, a snowflake schema
might be better if you anticipate frequent changes in your data requirements and
require more flexibility since it allows easier adaptation to evolving data structures.

Imagine we have a dimension that represents the location of specific customers
across the globe. One way to model it in a star schema would be to create a single
dimension table with all the location hierarchies denormalized. Example 2-10 shows
the dimLocation under a star schema paradigm.

Example 2-10. Star schema location dimension

CREATE TABLE dimLocation (
 locationID INT PRIMARY KEY,
 country VARCHAR(50),
 city VARCHAR(50),
 State VARCHAR(50)
);

Example 2-11 models the location dimension following a snowflake schema.

Example 2-11. Snowflake schema location dimension

CREATE TABLE dimLocation (
 locationID INT PRIMARY KEY,
 locationName VARCHAR(50),
 cityID INT
);

CREATE TABLE dimCity (
 cityID INT PRIMARY KEY,
 city VARCHAR(50),
 stateID INT
);

CREATE TABLE dimState (

Dimensional Data Modeling | 41

 stateID INT PRIMARY KEY,
 state VARCHAR(50),
 countryID INT
);

CREATE TABLE dimCountry (
 countryID INT PRIMARY KEY,
 country VARCHAR(50),
);

In the snowflake schema example, the location dimension is split into four tables:
dimLocation, dimCity, dimState, and dimCountry. The tables are connected using
primary and foreign keys to establish relationships among them.

One important topic is that although we have four tables to represent the location
dimension, only the table with the highest hierarchy connects to the fact table (or
fact tables) via its primary key. All the other hierarchy levels follow the lineage from
highest to lowest granularity. Figure 2-4 illustrates this case.

Figure 2-4. Snowflake schema model

Modeling with Data Vault
Data Vault 2.0 is a modeling approach that does not fall under dimensional modeling
but is still worth mentioning. Its approach combines 3NF elements and dimensional
modeling to create a logical enterprise data warehouse. It is designed to handle
various data types, including structured, semi-structured, and unstructured data, by
providing flexible and scalable patterns. One of its most highlighted characteristics
is that it focuses on building a modular and incremental Data Vault model that

42 | Chapter 2: Data Modeling for Analytics

integrates raw data based on business keys. This approach ensures that the data
warehouse can accommodate changing business requirements and evolving datasets.

Going deeper, this modeling technique provides a scalable and flexible data ware‐
housing and analytics solution. It is designed to handle large data volumes, changing
business requirements, and evolving data sources. Data Vault’s model consists of
three main components: hubs, links, and satellites.

Hubs represent business entities and serve as a central point for storing unique
identifiers called business keys. Each hub corresponds to a specific entity, such as
customers, products, or locations. The hub table contains the business-key column
along with any descriptive attributes related to the entity. By separating the business
key from the descriptive attributes, Data Vault enables easy tracking of changes to the
descriptive information without compromising the integrity of the business key.

Links capture the relationships among business entities. They are created to represent
many-to-many relationships or complex associations. The link table contains foreign
keys from the participating hubs that form a bridge between the linked entities. This
approach allows for modeling complicated relationships without duplicating data or
creating unnecessary complexity.

Satellites store the context-specific attributes related to the hubs and links. They
contain additional descriptive information that is not part of the business key but
provides valuable context about the entities. Satellites are associated with the corre‐
sponding hubs or links via foreign keys, which allows for the storage of time-varying
data and the preservation of historical records. Multiple satellites can be associated
with a hub or link, each capturing specific attributes for different points in time or
different perspectives.

Data Vault architecture promotes traceability, scalability, and auditability while pro‐
viding a solid foundation for data integration, analytics, and data governance. Using
hubs, links, and satellites, organizations can build a Data Vault that supports their
analytical needs, adapt to changing business requirements, and maintain a reliable
historical record of data changes.

Returning to our books table, let’s follow the three modeling steps to develop a simple
Data Vault model. The first step is identifying the business keys and creating the
corresponding hub and satellite tables. In this case, we have only one business entity,
so links won’t be used. Example 2-12 shows the Data Vault modeling of the books
table.

Dimensional Data Modeling | 43

Example 2-12. Modeling the books table with Data Vault 2.0

-- This is our base table
CREATE TABLE books (
 book_id INT PRIMARY KEY,
 title VARCHAR(100),
 author VARCHAR(100),
 publication_year INT,
 genre VARCHAR(50)
);

In Data Vault modeling, we begin to identify the business keys, which are unique
identifiers for each entity. In this case, the primary key of the books table, book_id,
serves as the business key.

Now it’s time to model and create our first table: the hub table, which stores the
unique business keys and their corresponding hash keys for stability. Example 2-13
creates the hub table.

Example 2-13. Hub creation

CREATE TABLE hubBooks (
 bookKey INT PRIMARY KEY,
 bookHashKey VARCHAR(50),
 Title VARCHAR(100)
);

In the hub table, we store the unique identifier for each book as the primary key
(bookKey) and a hash key (bookHashKey) for stability. The Title column contains
descriptive information about the book.

Next comes our satellite table, shown in Example 2-14, which captures additional
book details and maintains the historical changes.

Example 2-14. Satellite creation

CREATE TABLE satBooks (
 bookKey INT,
 loadDate DATETIME,
 author VARCHAR(100),
 publicationYear INT,
 genre VARCHAR(50),
 PRIMARY KEY (bookKey, loaddate),
 FOREIGN KEY (bookKey) REFERENCES hubBooks(bookKey)
);

By separating the core book information into the hub table and storing the historical
details in the satellite table, we ensure that changes to attributes like the author,

44 | Chapter 2: Data Modeling for Analytics

publication year, or genre can be captured over time without modifying existing
records.

In a Data Vault model, we may have additional tables, such as link tables to represent
relationships among entities or other satellite tables to capture historical changes in
specific attributes.

Monolith Data Modeling
Until recently, the prevailing approach to data modeling revolved around the creation
of extensive SQL scripts. In this conventional method, a single SQL file, often stretch‐
ing over thousands of lines, encapsulated the entirety of the data modeling process.
For a more sophisticated workflow, practitioners might have divided the file into
multiple SQL scripts or stored procedures, which were then executed sequentially via
Python scripts. To make the workflow more complex, these scripts typically remained
largely unknown within the organization. Consequently, even if another individual
wished to undertake data modeling in a similar fashion, they would invariably start
from scratch, eschewing the opportunity to leverage preexisting work.

This approach can aptly be described as a monolithic or traditional approach to
data modeling, where each data consumer independently reconstructed their data
transformations from the raw source data. Within this paradigm, several notable
challenges persisted, including the absence of version control for scripts, the daunting
task of managing dependencies between views, and the common practice of crafting
new views or tables from raw data sources to the final reporting stage, damaging
reusability. Moreover, the concept of idempotency was not uniformly applied to large
tables, sometimes resulting in redundancy, and backfills—which, while common,
often proved to be intricate and labor-intensive affairs.

In today’s rapidly evolving world of data engineering, monolithic data models, par‐
ticularly in the context of SQL transformations, pose a significant challenge that
engineers grapple with. Consider the following scenario: you discover that something
in your production system is broken, only to find that what initially appears to be a
simple change has set off a chain reaction of errors that propagates throughout the
entire infrastructure. This nightmarish scenario, characterized by highly interconnec‐
ted systems and a minor alteration that acts as the catalyst for a cascading domino
effect, is a hauntingly familiar problem for many data professionals.

The risks associated with monolithic data models are precisely what we seek to avoid
when designing a data model. The last thing you want is tightly coupled data models
that make debugging and implementing changes a daunting task, as each change can
potentially disrupt the entire data pipeline. The lack of modularity hinders the flexi‐
bility, scalability, and maintainability that are critical in today’s data-driven landscape.

Monolith Data Modeling | 45

In a monolithic data model, all components are tightly interconnected, rendering
the identification and isolation of problems a challenging endeavor. In essence, this
traditional approach to designing data systems tends to unify the entire system into a
single, although not always cohesive, unit.

This interconnectedness of the model means that seemingly unrelated changes can
have unintended consequences that impact the entire system. This complexity not
only makes troubleshooting more difficult but also increases the risk of introducing
errors or overlooking critical dependencies. All data and functionality are so tightly
integrated and interdependent that it becomes tough to modify or update any one
part of the system without affecting the entire system.

In addition, the lack of modularity in data models hinders the ability to adapt
to changing business requirements. In a dynamic environment of data needs with
sources constantly changing, a monolithic model becomes a bottleneck to progress.
Incorporating new data sources, scaling infrastructure, or integrating new technolo‐
gies and frameworks becomes increasingly challenging.

Also, maintenance and updates to a monolithic data model become time-consuming
and resource-intensive undertakings. Each change carries more risk due to the com‐
plicated dependencies within the system. The fear of inadvertently breaking critical
components leads to an overly cautious approach that slows development cycles and
inhibits innovation.

The challenges posed by monolithic data models in today’s data engineering land‐
scape are significant. The risks of interdependencies, lack of flexibility, and difficul‐
ties with maintenance and scalability necessitate a shift to modular data models.
By adopting modularity, data engineers can achieve greater flexibility, robustness,
and adaptability in their data infrastructure to manage the complexity of a rapidly
evolving data ecosystem. By moving away from monolithic structures, organizations
can realize the full potential of their data, drive innovation, and gain a competitive
advantage in the data-driven world we live in.

dbt has been instrumental in taking a modular approach and overcoming the chal‐
lenges of monolithic models. It allows us to improve maintainability, flexibility, and
scalability by breaking the singular data model into individual modules, each with
its own SQL code and dependencies. This modular structure allows us to work
on individual modules independently, making it easier to develop, test, and debug
specific parts of the data model. This eliminates the risk of unintended changes
affecting the entire system, which makes introducing changes and updates safer.

This topic of modularity in the dbt will receive more attention in the coming subsec‐
tions, and Chapter 4 will dive into a comprehensive exploration of dbt.

46 | Chapter 2: Data Modeling for Analytics

Building Modular Data Models
The previous example highlights how much dbt and data model modularization, in
general, can contribute to a better data development process. However, why isn’t this
a given for data engineers and scientists? The truth is that in the software develop‐
ment world, over the last few decades, engineers and architects have chosen new ways
to employ modularization as a means to simplify their coding process. Instead of
tackling one large piece of code at a time, modularization breaks the coding process
into various steps. This method offers several advantages over alternative strategies.

One major advantage of modularization is its ability to enhance manageability. When
developing a large software program, it can be challenging to stay focused on a single
piece of coding. However, the job becomes more manageable by breaking it into
individual tasks. This helps developers stay on track and prevents them from feeling
overwhelmed by the project’s magnitude.

Another advantage of modularization is its support for team programming. Instead
of assigning a large job to a single programmer, it can be divided among a team.
Each programmer is assigned specific tasks as part of the overall program. In the end,
the work from all the programmers is combined to create the final program. This
approach accelerates the development process and allows for specialization within the
team.

Modularization also contributes to improving code quality. Breaking the code into
small parts and assigning responsibility to individual programmers enhances the
quality of each section. When a programmer focuses on their assigned section
without worrying about the entire program, they can ensure the flawlessness of their
code. Consequently, the overall program is less likely to contain errors when all the
parts are integrated.

Additionally, modularization enables the reuse of code modules that have already
been proven to work effectively. By dividing the program into modules, the funda‐
mental aspects are broken down. If a particular piece of code functions well for a
specific task, there is no need to reinvent it. Instead, the same code can be reused,
saving programmers time and effort. This can be repeated throughout the program
whenever similar features are required, further streamlining development.

Furthermore, modular code is highly organized, which enhances its readability. By
organizing code based on tasks, programmers can easily find and reference specific
sections based on their organization scheme. This improves collaboration among
multiple developers, as they can follow the same organizational scheme and under‐
stand the code more efficiently.

All the advantages of modularization ultimately lead to improved reliability. Code
that is easier to read, debug, maintain, and share operates with fewer errors. This

Building Modular Data Models | 47

becomes crucial when working on large projects with numerous developers who need
to share code or interface with one another’s code in the future. Modularization
enables the creation of complex software in a reliable manner.

Although modularization is a must and a given in the software engineering world, in
the data space, it has been left behind and picked up only in the last few years. The
reason behind this is the need for more clarity between data architecture and software
engineering. Yet, recently the industry has evolved into a blend of both worlds as the
advantages mentioned before also apply to data analytics and engineering.

Just as modularization simplifies the coding process, it can also streamline the design
and development of data models. By breaking complex data structures into modular
components, data engineers can better manage and manipulate data at various levels
of granularity. This modular approach enables efficient data integration, scalability,
and flexibility, allowing for easier updates, maintenance, and enhancements to the
overall data architecture.

At the same time, modularization facilitates the reuse of data modules, ensuring
consistency and accuracy across data models and reducing redundancy. Overall,
modularization principles provide a solid foundation for effective data modeling and
engineering, enhancing the organization, accessibility, and reliability of data systems.

Thus, modular data modeling is a powerful technique for designing efficient and
scalable data systems. Developers can build more robust and maintainable systems
by breaking complex data structures into smaller reusable components. This is a
powerful technique for designing efficient and scalable data systems, and both dbt
and SQL provide efficient tools to help us implement this technique.

In summary, the core principles of modular data modeling can be defined as follows:

Decomposition
Breaking the data model into smaller, more manageable components

Abstraction
Hiding the implementation details of the data model behind interfaces

Reusability
Creating components that can be reused across multiple parts of the system

This kind of data modeling can be achieved using normalization, data warehousing,
and data virtualization techniques. For example, using the normalization technique,
the data is separated into tables based on its characteristics and relationships, leading
to a modular data model.

Another option is to leverage dbt because it helps to automate the process of creating
a modular data model, providing several features that support the principles of mod‐
ular data modeling. For example, dbt allows us to tackle decomposition by allowing

48 | Chapter 2: Data Modeling for Analytics

us to split our data model into smaller reusable components, which provides a way to
create reusable macros and modular model files. It also gives us a way to abstract the
implementation details of the data model by providing a simple, consistent interface
for working with data sources.

Furthermore, dbt encourages reusability by providing a way to define and reuse
common code across various models. Additionally, dbt helps improve maintainability
by providing a way to test and document your data models. Finally, dbt allows you to
optimize performance by defining and testing different materialization strategies for
your models, which, in the end, allows you to fine-tune the performance of individual
components of your data model.

However, it’s important to acknowledge that modularity also comes with potential
drawbacks and risks. Integrated systems can often be better optimized than modular
systems, whether it’s because of the minimization of data movement and memory
usage or the ability for the database optimizer to improve SQL behind the scenes.
Creating views to then create tables can sometimes result in suboptimal models.
However, this trade-off is often worth it for the benefits of modularity. Modularity
creates more files, which can mean more objects to own, govern, and potentially
deprecate. Without a mature data governance strategy, this can lead to a proliferation
of modular but unowned tables, which can be challenging to manage when issues
arise.

Enabling Modular Data Models with dbt
As we previously highlighted, building modular data models is an essential aspect of
developing a robust and maintainable data infrastructure. However, the process of
managing and orchestrating these models can become complex as the project grows
in size and complexity.

This is where a robust data transformation tool like dbt comes in. By combining the
principles of modular data modeling with the features of dbt, we can easily unlock a
whole new level of efficiency and scalability in our data infrastructure.

With the adoption of this modular approach, every data producer or consumer
within an organization gains the ability to build upon the foundational data modeling
work accomplished by others, eliminating the need to start from scratch with the
source data on every occasion.

Upon integrating dbt into the data modeling framework, a shift in perspective occurs,
transforming the concept of data models from a monolithic entity into a distinct
component. Every individual contributor to a model starts identifying transforma‐
tions that could be shared across various data models. These shared transformations
are extracted and organized into foundational models, allowing for their efficient
referencing in multiple contexts.

Building Modular Data Models | 49

As illustrated by Figure 2-5, using basic data models across multiple instances, rather
than starting from scratch each time, simplifies the visualization of the DAG in data
modeling. This modularized multilevel structure clarifies how the layers of data mod‐
eling logic build on one another and shows dependencies. However, it is essential to
note that simply adopting a data modeling framework like dbt does not automatically
ensure modular data models and an easy-to-understand DAG.

Figure 2-5. dbt modularity

The structure of your DAG depends on your team’s data modeling ideas and thought
processes, as well as the consistency with which they are expressed. To achieve
modular data modeling, consider principles such as naming conventions, readability,
and ease of debugging and optimization. These principles can be applied to various
models in dbt, including staging models, intermediate models, and mart models, to
improve modularity and maintain a well-structured DAG.

Let’s start this journey toward leveraging dbt for modular data models by understand‐
ing how dbt enables model reusability via the Jinja syntax through the usage of
referencing data models: {{ ref() }}.

Referencing data models
By adopting dbt’s features, such as model referencing and Jinja syntax, data engineers
and analysts can establish clear dependencies among models, enhance code reusabil‐
ity, and ensure the consistency and accuracy of their data pipelines. Jinja, in this
context, is a templating language that allows dynamic and programmatic transforma‐
tions within SQL code, offering a powerful tool for customizing and automating
data transformations. This powerful combination of modularity and dbt’s capabilities
empowers teams to build flexible and maintainable data models, accelerating the
development process and enabling seamless collaboration among stakeholders.

To leverage the full capabilities of dbt and ensure accurate model building, it is crucial
to employ model referencing using the {{ ref() }} syntax. By referencing models
this way, dbt can automatically detect and establish dependencies among models
based on upstream tables. This enables a smooth and reliable execution of the data
transformation pipeline.

On the other hand, the {{ source() }} Jinja syntax should be used sparingly, typi‐
cally limited to the initial selection of raw data from the database. It is important to

50 | Chapter 2: Data Modeling for Analytics

avoid direct references to non-dbt-created tables because they can hinder the flexibil‐
ity and modularity of the dbt workflow. Instead, the focus should be on establishing
relationships among models by using the {{ ref() }} Jinja syntax, ensuring that
changes in upstream tables are correctly propagated downstream, and maintaining a
clear and coherent data transformation process. By sticking to these best practices,
dbt enables efficient model management and promotes scalability and maintainability
in the analytics workflow.

For example, suppose we have two models: orders and customers, where the orders
table contains information about customer orders and the customers table stores
customer details. We want to perform a join between these two tables to enrich the
orders data with customer information (Example 2-15).

Example 2-15. Referencing model

-- In the orders.sql file
SELECT
 o.order_id,
 o.order_date,
 o.order_amount,
 c.customer_name,
 c.customer_email
FROM
 {{ ref('orders') }} AS o
JOIN
 {{ ref('customers') }} AS c
ON
 o.customer_id = c.customer_id

-- In the customers.sql file
-- customers.sql
SELECT
 customer_id,
 customer_name,
 customer_email
FROM
 raw_customers

This example demonstrates referencing models in a SQL query by using the ref()
function. The scenario involves two model files: orders.sql and customers.sql.

In the orders.sql file, a SELECT statement is written to retrieve order information
from the orders model. The {{ ref('orders') }} expression references the orders
model, allowing the query to use the data defined in that model. The query joins the
orders model with the customers model by using a customer_id column, retrieving
additional customer information such as name and email.

Building Modular Data Models | 51

In the customers.sql file, a SELECT statement is written to extract customer informa‐
tion from the raw_customers table. This model represents the raw customer data
before any transformations.

This referencing mechanism in dbt enables the creation of modular and intercon‐
nected models that build upon one another to generate meaningful insights and
reports. To illustrate the need for it, let’s consider a practical example: imagine you’re
dealing with a complex dataset, such as weekly product orders. Without a structured
approach, managing this data can quickly become chaotic. You might end up with a
tangled web of SQL queries, making it challenging to track dependencies, maintain
code, and ensure data accuracy.

By organizing your data transformation process into distinct layers, from source to
mart tables, you gain several benefits. This simplifies the data pipeline, making it
more understandable and manageable. It also allows for incremental improvements,
as each layer focuses on a specific transformation task. This structured approach
enhances collaboration among data engineers and analysts, reduces errors, and ulti‐
mately leads to more reliable and insightful reports.

Staging data models
The staging layer plays a crucial role in data modeling, as it serves as the basis
for the modular construction of more complex data models. Each staging model
corresponds to a source table with a 1:1 relationship to the original data source.
Keeping staging models simple and minimizing transformations within this layer is
important. Acceptable transformations include type conversion, column renaming,
basic calculations (such as unit conversion), and categorization using conditional
statements such as CASE WHEN.

Staging models usually materialize as views to preserve data timeliness and optimize
storage costs. This approach allows intermediate or mart models that reference the
staging layer to access up-to-date data while saving space and cost. It is advisable to
avoid joins in the staging layer to prevent redundant or duplicate computations. Join
operations are better suited for subsequent layers where more complex relationships
are established.

Also, aggregations in the staging layer should be avoided because they can group and
potentially limit access to valuable source data. The primary purpose of the staging
layer is to create the basic building blocks for subsequent data models, providing
flexibility and scalability in downstream transformations. Following these guidelines,
the staging layer becomes a reliable and efficient starting point for building robust
data models in a modular data architecture.

Utilizing staging models in dbt allows us to adopt the Don’t Repeat Yourself (DRY)
principle in our code. By following dbt’s modular and reusable structure, we aim

52 | Chapter 2: Data Modeling for Analytics

to push any transformations that are consistently required for a specific component
model as far upstream as possible. This approach helps us avoid duplicating code,
which reduces complexity and computational overhead.

For example, suppose we consistently need to convert monetary values from inte‐
gers in cents to floats in dollars. In that case, performing the division and type
casting early in the staging model is more efficient. This way, we can reference the
transformed values downstream without repeating the same transformation multiple
times. By leveraging staging models, we optimize code reuse and streamline the data
transformation process in a scalable and efficient manner.

Let’s say we have a source table called raw_books that contains the raw books data. We
now want to create a staging model called stg_books to transform and prepare the
data before further processing. In our dbt project, we can create a new dbt model file
named stg_books.sql and define the logic to generate the staging model, as shown in
Example 2-16.

Example 2-16. Staging model

/* This should be file stg_books.sql, and it queries the raw table to create
the new model */

SELECT
 book_id,
 title,
 author,
 publication_year,
 genre
FROM
 raw_books

A staging model, like stg_books in this example, selects relevant columns from the
raw_books table. It can include basic transformations such as renaming columns
or converting data types. By creating a staging model, you separate the initial data
transformation from the downstream processing. This ensures data quality, consis‐
tency, and compliance with standards before further use. Staging models serve as the
foundation for more complex data models in your data pipeline’s intermediate and
mart layers. They streamline transformations, maintain data integrity, and improve
the reusability and modularity of your dbt project.

Base data models
In dbt, the base models often serve as staging models, but they can also encompass
additional transformation steps depending on your project’s specific needs. These
models are typically designed to directly reference the raw data entered into your
data warehouse, and they play a crucial role in the data transformation process. Once

Building Modular Data Models | 53

you have created your staging or base models, other models in your dbt project can
reference them.

The change from “base” to “staging” models in the dbt documentation reflects a
desire not to be restrained by the name “base,” which implies the first step in building
a data model. The new terminology allows more flexibility in describing the role and
purpose of these models within the dbt framework.

Intermediate data models
The intermediate layer plays a crucial role in data modeling by combining the atomic
building blocks from the staging layer to create more complex and meaningful
models. These intermediate models represent constructs that hold significance for the
business but are typically not directly exposed to end users through dashboards or
applications.

To maintain separation and optimize performance, it is advisable to store intermedi‐
ate models as ephemeral models. Ephemeral models are not created directly on
the database or dataset, but rather their code is interpolated into the models that
reference them as common table expressions (CTEs). However, sometimes material‐
izing them as views is more suitable. Ephemeral models cannot be selected directly,
which makes troubleshooting challenging. Additionally, macros invoked through
run-operation cannot reference ephemeral models. Therefore, whether to material‐
ize a particular intermediate model as ephemeral or as a view depends on the specific
use case, but starting with ephemeral materialization is recommended.

If you choose to materialize intermediate models as views, it may be beneficial to
place them in a custom schema outside the main schema defined in your dbt profile.
This helps in organizing the models and managing permissions effectively.

The primary purpose of the intermediate layer is to bring together different entities
and absorb complexity from the final mart models. These models facilitate readability
and flexibility in the overall data model structure. It is important to consider the
frequency of referencing an intermediate model in other models. Multiple models
referencing the same intermediate model may indicate a design issue. In such cases,
transforming the intermediate model into a macro could be a suitable solution to
enhance modularity and maintain a cleaner design.

By effectively leveraging the intermediate layer, data models can be made more
modular and manageable, ensuring the absorption of complexity while maintaining
the readability and flexibility of the components.

Let’s say we have two staging models, stg_books and stg_authors, representing
the book and author data, respectively. Now we want to create an intermediate
model called int_book_authors that combines the relevant information from both
staging models. In our dbt project, we can create a new dbt model file named

54 | Chapter 2: Data Modeling for Analytics

int_book_authors.sql, as shown in Example 2-17, and define the logic to generate the
intermediate model.

Example 2-17. Intermediate model

-- This should be file int_book_authors.sql

-- Reference the staging models
WITH
 books AS (
 SELECT *
 FROM {{ ref('stg_books') }}
),
 authors AS (
 SELECT *
 FROM {{ ref('stg_authors') }}
)

-- Combine the relevant information
SELECT
 b.book_id,
 b.title,
 a.author_id,
 a.author_name
FROM
 books b
JOIN
 authors a ON b.author_id = a.author_id

In Example 2-17, the int_book_authors model references the staging models,
stg_books and stg_authors, using the {{ ref() }} Jinja syntax. This ensures that
dbt can infer the model dependencies correctly and build the intermediate model
based on the upstream tables.

Mart models
The top layer of the data pipeline consists of mart models, which are responsible
for integrating and presenting business-defined entities to end users via dashboards
or applications. These models combine all relevant data from multiple sources and
transform it into a cohesive view.

To ensure optimal performance, mart models are typically materialized as tables.
Materializing the models enables faster execution of queries and better responsive‐
ness in delivering results to end users. If the creation time or cost of materializing a
table is an issue, configuration as an incremental model can be considered, allowing
for efficient updates as new data is included.

Building Modular Data Models | 55

Simplicity is key to mart models, and excessive joins should be avoided. If you need
multiple joins in a mart model, rethink the design and consider restructuring the
intermediate layer. By keeping mart models relatively simple, you can ensure efficient
query execution and maintain the overall performance of your data pipeline.

Let’s consider the example of a data mart for book publication analysis. We have
an intermediate model called int_book_authors that contains the raw books data,
including information about the authors of each book (Example 2-18).

Example 2-18. Mart model

-- This should be file mart_book_authors.sql

{{
 config(
 materialized='table',
 unique_key='author_id',
 sort='author_id'
)
}}

WITH book_counts AS (
 SELECT
 author_id,
 COUNT(*) AS total_books
 FROM {{ ref('int_book_authors') }}
 GROUP BY author_id
)
SELECT
 author_id,
 total_books
FROM book_counts

We start by setting the configuration for the model, specifying that it should be
materialized as a table. The unique key is set to author_id to ensure uniqueness, and
the sorting is done based on author_id as well.

Next, we use a CTE called book_counts to aggregate the book data. We select the
author_id column and count the number of books associated with each author from
the stg_books staging model. Finally, the SELECT statement retrieves the aggregated
data from the book_counts CTE, returning the author_id and the corresponding
count of books for each author. Given that it’s a materialized table, this model can be
refreshed whenever needed to reflect any changes in the original data.

56 | Chapter 2: Data Modeling for Analytics

Testing Your Data Models
Testing in dbt is a vital aspect of ensuring the accuracy and reliability of your
data models and data sources. dbt provides a comprehensive testing framework that
allows you to define and execute tests by using SQL queries. These tests are designed
to identify rows or records that do not meet the specified assertion criteria rather
than check specific conditions’ correctness.

dbt has two main types of tests: singular and generic. Singular tests are specific and
targeted tests written as SQL statements and stored in separate SQL files. They allow
you to test specific aspects of your data, such as checking for the absence of NULL
values in a fact table or validating certain data transformations. With singular tests,
we can leverage the power of Jinja to dynamically define assertions based on our
data and business requirements. Let’s look at a singular test in dbt by analyzing
Example 2-19.

Example 2-19. Singular test example in dbt

version: 2

models:
 - name: my_model
 tests:
 - not_null_columns:
 columns:
 - column1
 - column2

In this example, we define a single test called not_null_columns for the dbt model
my_model. This test checks whether specific columns in the model contain NULL
values. The columns parameter specifies the columns to check for NULL values. In this
case, column1 and column2 are specified. If any of these columns contain NULL values,
the test fails.

Generic tests, on the other hand, are more versatile and can be applied to multiple
models or data sources. They are defined in dbt project files by using a special syntax.
These tests allow us to define more comprehensive criteria for validating our data,
such as checking data consistency among tables or ensuring the integrity of specific
columns. Also, they provide a flexible and reusable way to define assertions that can
be applied across dbt models. These tests are written and stored in YAML (.yml) files,
which allows us to parameterize the queries and easily reuse them in various contexts.
The parameterization of queries in generic tests enables you to adapt the tests to
multiple scenarios quickly. For example, you can specify different column names or
condition parameters when applying the generic test to different models or datasets.

Let’s look at one of these generic tests in Example 2-20.

Building Modular Data Models | 57

Example 2-20. Generic test example in dbt

version: 2

tests:
 - name: non_negative_values
 severity: warn
 description: Check for non-negative values in specific columns
 columns:
 - column_name: amount
 assert_non_negative: {}
 - column_name: quantity
 assert_non_negative: {}

In this example, the generic test is defined with the name non_negative_values.
Here, we can observe the columns to be tested and the assertion criteria for each
column. The test checks whether the values in the amount and quantity columns are
nonnegative. Generic tests allow you to write reusable test logic that can be applied to
multiple models in your dbt project.

To reuse the generic test in multiple models, we can reference it in the tests section of
each individual model’s YAML file, as presented in Example 2-21.

Example 2-21. Reusing a generic test

version: 2

models:
 - name: my_model
 columns:
 - column_name: amount
 tests: ["my_project.non_negative_values"]
 - column_name: quantity
 tests: ["my_project.non_negative_values"]

In this example, the model my_model is defined, and the amount and quantity
columns are specified with the corresponding tests. The tests refer to the generic test
non_negative_values from the namespace my_project (assuming my_project is the
name of your dbt project).

By specifying the generic test in the tests section of each model, you can reuse
the same test logic in multiple models. This approach ensures consistency of data
validation and allows you to easily apply the generic test to specific columns in
different models without duplicating the test logic.

Note that you must ensure that the YAML file for the generic test is in the correct
directory within your dbt project structure, and you may need to modify the test
reference to match your project’s namespace and folder structure.

58 | Chapter 2: Data Modeling for Analytics

Generating Data Documentation
Another integral component of proper data modeling is documentation. Specifically,
ensuring that everyone in your organization, including business users, can easily
understand and access metrics such as ARR (annual recurring revenue), NPS (net
promoter score), or even MAU (monthly active users) is crucial for enabling data-
driven decision making.

By leveraging dbt’s features, we can document how metrics like these are defined
and the specific source data they rely on. This documentation becomes a valuable
resource anyone can access, fostering transparency and enabling self-service data
exploration.

As we remove these semantics barriers and provide accessible documentation, dbt
enables users at all levels of technical expertise to navigate and explore datasets,
ensuring that valuable insights are available to a broader audience.

Let’s assume we have a dbt project with a model called nps_metrics.sql, which calcu‐
lates the net promoter score. We can easily document this metric by using comments
within the SQL file, enhanced with Markdown syntax, as shown in Example 2-22.

Example 2-22. Documentation

/* nps_metrics.sql

-- This model calculates the Net Promoter Score (NPS)
for our product based on customer feedback.

Dependencies:
- This model relies on the "customer_feedback"
table in the "feedback" schema, which stores customer feedback data.
 - It also depends on the "customer" table in the "users"
schema, containing customer information.

Calculation:
-- The NPS is calculated by categorizing customer
feedback from Promoters, Passives, and Detractors
based on their ratings.
-- Promoters: Customers with ratings of 9 or 10.
-- Passives: Customers with ratings of 7 or 8.
-- Detractors: Customers with ratings of 0 to 6.
-- The NPS is then derived by subtracting the percentage
of Detractors from the percentage of Promoters.
*/

-- SQL Query:
WITH feedback_summary AS (
 SELECT
 CASE

Building Modular Data Models | 59

 WHEN feedback_rating >= 9 THEN 'Promoter'
 WHEN feedback_rating >= 7 THEN 'Passive'
 ELSE 'Detractor'
 END AS feedback_category
 FROM
 feedback.customer_feedback
 JOIN
 users.customer
 ON customer_feedback.customer_id = customer.customer_id
)
SELECT
 (COUNT(*) FILTER (WHERE feedback_category = 'Promoter')
 - COUNT(*) FILTER (WHERE feedback_category = 'Detractor')) AS nps
FROM
 feedback_summary;

In this example, the comments provide essential details about the NPS metric. They
specify the dependencies of the nps_metrics model, explain the calculation process,
and mention the relevant tables involved in the query.

After documenting the model, we can generate the documentation for our dbt project
by using the dbt command-line interface (CLI) to run the following command
(Example 2-23).

Example 2-23. Running documentation generation

dbt docs generate

Running the command generates HTML documentation for your entire dbt project,
including the documented NPS metric. The generated documentation can be hosted
and made accessible to users in your organization, enabling them to find and under‐
stand the NPS metric easily.

Debugging and Optimizing Data Models
A valuable optimization suggestion for improving the performance of dbt is to ana‐
lyze and optimize the queries themselves carefully. One approach is to leverage the
capabilities of the query planner, such as the PostgreSQL (Postgres) query planner.
Understanding the query planner will help you identify potential bottlenecks and
inefficiencies in query execution.

Another effective optimization technique is deconstructing complex queries by
breaking them into smaller components, such as CTEs. Depending on the complexity
and nature of the operations involved, these CTEs can then be transformed into
either views or tables. Simple queries involving light computations can be material‐
ized as views, whereas more complex and computationally intensive queries can

60 | Chapter 2: Data Modeling for Analytics

be materialized as tables. The dbt config block can be used to specify the desired
materialization approach for each query.

Significant performance improvements can be achieved by selectively using an appro‐
priate materialization technique. This can result in faster query execution times,
reduce processing delays, and improve overall data modeling efficiency. In particular,
the use of table materialization has shown impressive performance gains that can
dramatically improve the speed, depending on the scenario.

Implementing these optimization recommendations will enable a leaner and more
efficient dbt workflow. By optimizing queries and using appropriate materialization
strategies, you can optimize the performance of your dbt models, resulting in better
data processing and more efficient data transformations.

Let’s look at the complex query in Example 2-24.

Example 2-24. Complex query 1

SELECT column1, column2, SUM(column3) AS total_sum
 FROM table1
 INNER JOIN table2 ON table1.id = table2.id
 WHERE column4 = 'some_value'
 GROUP BY column1, column2
 HAVING total_sum > 1000

This query involves joining tables, applying filters, and performing aggregations. Let’s
deconstruct it into multiple CTEs before creating our final model (Example 2-25).

Example 2-25. Deconstructing complex query 1

-- Deconstructing a complex query using CTEs for optimization

-- CTE 1: Joining required data
WITH join_query AS (
 SELECT table1.column1, table1.column2, table2.column3
 FROM table1
 INNER JOIN table2 ON table1.id = table2.id
)
-- CTE 2: Filtering rows
, filter_query AS (
 SELECT column1, column2, column3
 FROM join_query
 WHERE column4 = 'some_value'
)

-- CTE 3: Aggregating and filtering results
, aggregate_query AS (
 SELECT column1, column2, SUM(column3) AS total_sum
 FROM filter_query

Building Modular Data Models | 61

 GROUP BY column1, column2
 HAVING total_sum > 1000
)

-- Final query to retrieve the optimized results, and this will be our model
SELECT *
FROM aggregate_query;

The join_query CTE focuses on joining the required tables, while the filter_query
CTE applies the filter condition to narrow down the rows. The aggregate_query
CTE then performs the aggregation and applies the final filter condition.

By splitting the complex query into individual CTEs, you can simplify and organize
the logic to optimize execution. This approach allows for better readability, maintain‐
ability, and potential performance improvements because the database engine can
optimize the execution plan for each CTE. The final query retrieves the optimized
results by selecting columns from the aggregate_query CTE.

Let’s now explore the process of debugging materialized models in dbt. This can
be a difficult task at first, as it requires thorough validation. One important aspect
is ensuring that the data model appears as expected and the values match the non-
materialized version.

To facilitate debugging and validation, it may be necessary to fully refresh the entire
table and treat it as if it were not incremental. This can be accomplished with the dbt
run --full-refresh command, which updates the table and runs the model as if it
were being executed for the first time.

In some cases, it may be helpful to perform a full update of the model and the
incremental model in parallel during the first few days. This comparative approach
allows validation of consistency between the two versions and minimizes the risk of
future data discrepancies. This technique is particularly effective when working with
a well-established, reliable data model in production, as it builds confidence in the
changes that have been made. By comparing the updated and incremental models, we
can ensure the accuracy of the changes and mitigate potential data-related issues.

Consider an example scenario with a materialized dbt model that calculates monthly
revenue based on transactional data. We want to debug and validate this model to
ensure its accuracy. We start with the suspicion that the values generated by the
materialized model may not match the expected results. To troubleshoot, we decide
to fully refresh the table as if it were not incremental. Using the dbt full-refresh
command, we trigger the process that updates the entire table and runs the model
from scratch.

In the first few days, we also run a parallel process to update the materialized and
incremental models. This allows us to compare the results between the two versions

62 | Chapter 2: Data Modeling for Analytics

and ensure they match. By checking the consistency of the updated model and the
incremental model, we gain confidence in the accuracy of the changes made.

For example, if we have a well-established revenue model that has been in production
for a while and is considered reliable, comparing the updated and incremental mod‐
els is even more meaningful. In this way, we can confirm that the changes made to
the model have not caused any unintended discrepancies in the calculated revenue
figures. Additionally, comprehensive testing is essential to ensure the accuracy and
reliability of your data models. Implementing tests throughout your workflow can
help identify issues early and provide valuable insights into the performance of your
SQL queries.

All these dbt functionalities, from building dbt models to testing
and documentation, will be discussed and reinforced in Chapters 4
and 5.

Medallion Architecture Pattern
Data warehouses have a rich history in decision support and BI, but they have limi‐
tations when it comes to handling unstructured, semi-structured, and high-variety
data. At the same time, data lakes emerged as repositories for storing diverse data
formats, but they lack critical features such as transaction support, data quality
enforcement, and consistency.

This has inhibited their ability to deliver on their promises and led to the loss of
benefits associated with data warehouses. To meet the evolving needs of companies, a
flexible and high-performance system is required to support diverse data applications
like SQL analytics, real-time monitoring, data science, and machine learning. How‐
ever, some recent advancements in AI focus on processing a wide range of data types,
including semi-structured and unstructured data, which traditional data warehouses
are not optimized for.

Consequently, organizations often use multiple systems, including data lakes, data
warehouses, and specialized databases, which introduces complexity and delays due
to data movement and copying between systems. As a natural consequence of the
need to combine all these traditional systems into something that answers all the new
market requirements, a new type of system is emerging: the data lakehouse.

The data lakehouse combines the strengths of both data lakes and data warehouses,
implementing data structures and management features similar to warehouses
directly on cost-effective cloud storage in open formats such as Apache Delta Lake,
Iceberg, or Apache Hudi. These formats offer various advantages over traditional file
formats like CSV and JSON. While CSV lacks typing for columns, JSON provides

Medallion Architecture Pattern | 63

more flexible structures but inconsistent typing. Parquet, Apache Avro, and the ORC
(optimized row columnar) file format improve on these by being column-oriented
and more strongly typed but not ACID (atomicity, consistency, isolation, durability)
compliant (except for ORC, in some cases). In contrast, Delta Lake, Iceberg, and
Hudi enhance data storage by adding ACID compliance and the ability to serve as
two-way data stores, enabling high throughput of modifications while supporting
high volumes of analytical queries. These formats are particularly well suited for
modern cloud-based data systems, unlike traditional formats like Parquet, which
were initially designed for on-premises Hadoop-based systems.

Lakehouses offer key features such as transaction support for concurrent data reading
and writing, schema enforcement and governance, direct BI tool support, decoupling
of storage and computing for scalability, openness with standardized storage formats
and APIs for efficient data access, support for diverse data types, and compatibility
with various workloads including data science, machine learning, and SQL analytics.
They also often provide end-to-end streaming capabilities, eliminating the need
for separate systems for real-time data applications. Enterprise-grade lakehouse sys‐
tems include features like security, access control, data governance, data discovery
tools, and compliance with privacy regulations. Implementing a lakehouse enables
organizations to consolidate these essential features into a single system shared by
data engineers, analytics engineers, scientists, analysts, and even machine learning
engineers, who can then collaborate to develop new data products.

It is in the context of lakehouses and the new open formats that the medallion
architecture emerges. In simple terms, this is a data modeling paradigm employed
to strategically structure data within a lakehouse environment, aiming to iteratively
enhance data quality as data transits different levels of iteration. This architectural
framework often comprises three discernible tiers, the bronze, silver, and gold layers,
each symbolizing ascending degrees of data refinement:

Bronze layer
This serves as the initial destination for data from external source systems. The
tables in this layer mirror the structures of the source system tables as they are,
including any extra metadata columns to capture information like load date/time
and process ID. This layer prioritizes efficient change data capture (CDC), main‐
taining a historical archive of the source data, ensuring data lineage, facilitating
audits, and enabling reprocessing without rereading data from the source system.

Silver layer
Within the lakehouse architecture, this layer plays an essential function in con‐
solidating and refining data sourced from the bronze layer. The silver layer
creates a holistic view that encompasses key business entities, concepts, and
transactions through processes such as matching, merging, conforming, and
cleansing. This includes master customers, stores, nonduplicated transactions,

64 | Chapter 2: Data Modeling for Analytics

and cross-reference tables. The silver layer serves as a comprehensive source
for self-service analytics, empowering users with ad hoc reporting, advanced
analytics, and machine learning capabilities. It is often observed that the silver
layer can take the form of a 3NF data model, a star schema, a Data Vault, or
even a snowflake. Similar to a traditional data warehouse, this is a valuable
resource for anyone who leverages data to undertake projects and analyses aimed
at solving business problems.

Gold layer
This layer delivers valuable insights that address business questions. It aggregates
data from the silver layer and serves it to BI ad hoc reporting tools and machine
learning applications. This layer ensures reliability, improved performance, and
ACID transactions for data lakes, while also unifying streaming and batch trans‐
actions on top of cloud data stores.

Figure 2-6 represents the medallion architecture in the context of a lakehouse and
shows where dbt can support the creation of such systems.

Figure 2-6. Representation of medallion architecture and how it relates to dbt

Through the progression from the bronze to gold layers, data undergoes several steps,
such as ingestion, cleansing, enhancement, and aggregation processes, delivering
incalculable business insights. This approach represents a significant advancement
over conventional data architectures, such as a data warehouse with a staging and
dimensional model layer or even a sole data lake, often involving more file organiza‐
tion rather than creating proper semantic layers.

Medallion Architecture Pattern | 65

The medallion architecture doesn’t replace other dimensional mod‐
eling techniques. The structure of schemas and tables in each layer
can vary based on the frequency and type of data updates, as well
as the intended uses of the data. Instead, it guides how the data
should be organized across three layers to enable a more modular
data modeling approach.

It’s valuable for analytics engineers to understand the foundations of the medallion
architecture and the concepts behind the lakehouse, because in some scenarios, this
is where they may spend a significant amount of their time. This involvement could
include modeling structures to be deployed in one of the layers of the medallion,
leveraging an interface provided by open formats, or building transformation scripts
(using tools like dbt, for example) to enable data progression across the layers of the
architecture.

However, it’s important to note that the significance of open formats and lakehouses
can vary depending on the specific data architecture in use. For example, in archi‐
tectures like Snowflake, data may primarily be ingested into native tables rather
than open formats like Iceberg, making the understanding of lakehouses more of a
nice-to-have rather than an essential requirement for analytics engineering.

Summary
Data modeling has evolved significantly in the field of analysis to suit diverse busi‐
ness insights and reporting requirements. The star schema provides a simple query
method by having a central fact table surrounded by dimension tables. The snowflake
schema allows deeper granularity by breaking down these dimensions further. In
contrast, the Data Vault approach prioritizes flexibility to deal with environments
where data sources change rapidly. The new medallion design combines all these
models, forming a complete plan for various analytical needs.

All the modeling advancements have been designed to tackle particular analytical
issues. The central goal is to efficiently provide insights that can be acted upon,
whether in the performance improvements of star and snowflake schemas or the
versatility of the Data Vault. As the requirements for analytics become more complex,
it is crucial to choose the correct modeling approach to not only make data available
but also ensure it is meaningful and provides insights.

Analytics engineers use modeling structures such as star, snowflake, Data Vault, or
medallion to create and maintain robust, scalable, and efficient data structures. Their
work ensures the optimal organization of data, making it easily accessible and helpful
to data analysts and scientists. Analytics engineers lay the foundation for accurate
insights and informed decision making by creating coherent datasets from massive
data streams through understanding and applying these models.

66 | Chapter 2: Data Modeling for Analytics

CHAPTER 3

SQL for Analytics

In the vast landscape of data and analytics, it is critical to choose the right tools
and technologies to efficiently process and manipulate data. One such tool that has
stood the test of time and remains at the forefront is Structured Query Language
(SQL). It offers a powerful and versatile approach to working with data, making it
an excellent first choice for any analytical development task. SQL is a standardized
programming language for managing and manipulating relational databases that ena‐
bles data professionals to efficiently retrieve, store, modify, and analyze data stored
in databases. Thanks to its intuitive syntax and wide acceptance in the community,
SQL has become the standard language of data specialists, who use it to interact with
databases and gain valuable insights from complex datasets.

SQL serves as the spine for data consumption and analysis in today’s data-driven
world. Businesses rely heavily on it in performing their data analytics operations
to gain a competitive advantage. SQL’s versatility and rich functionality make it an
essential tool for analytics professionals, empowering them to retrieve specific subsets
of data, perform complex aggregations, and join multiple tables to find hidden pat‐
terns and relationships within the data.

One of SQL’s key strengths is its ability to retrieve and manipulate data quickly,
which provides a wide range of query capabilities. This allows data specialists to
filter, sort, and group data based on specific criteria, retrieving only the necessary
data, and thus minimizing resource usage and improving performance. Furthermore,
SQL enables data manipulation operations, such as inserting, updating, and deleting
records, facilitating data cleaning and preparation tasks before analysis.

Another relevant benefit of using SQL is its seamless integration with various
analytics tools and ecosystems, such as Python or BI platforms, making it a prefer‐
red language for data professionals and allowing them to combine the power of
SQL with advanced statistical analysis, machine learning algorithms, and interactive

67

visualizations. Additionally, the rise of cloud-based databases and data warehouses
has further enhanced the relevance of SQL in analytics consumption, with platforms
like Google BigQuery, Amazon Redshift, and Snowflake supporting SQL as their
primary querying language.

In this chapter, we’ll discuss the resiliency of the SQL language as one of the most
commonly used analytics languages. Then we will explore the fundamentals of data‐
bases, introducing SQL as the standard language for interacting with them. We also
examine the creation and usage of views, which provide a powerful mechanism for
simplifying complex queries and abstracting data structures.

As we dig deeper into SQL, we will review the window functions that empower you to
perform advanced calculations and aggregations. Furthermore, we’ll dive into CTEs,
which provide a means to create temporary result sets and simplify complex queries.
Finally, we will also provide a glimpse into SQL for distributed data processing,
ending with a bonus section presenting SQL in action for training machine learning
models.

The Resiliency of SQL
Over time, we have seen that data engineering pipelines developed in SQL often
endure for many years and that queries and stored procedures are still the core of
several critical systems supporting financial institutions, retail companies, and even
scientific activities. What is amazing, however, is that SQL has been widely used
and continuously evolved to meet the demands of modern data processing with new
features. Also, it is fascinating that technologies such as dbt, DuckDB, and even the
new data manipulation library Polars provide their functionalities through a SQL
interface. But what is the main reason for this popularity? We believe that a few
factors can be highlighted.

First and foremost is the readability of the code. This is a crucial aspect of data
engineering. SQL’s syntax, while versatile, allows for both imperative and declarative
usage, depending on the context and specific requirements. Many queries involve
imperative tasks, such as retrieving specific data for a user or calculating results for
a given date range. However, SQL’s declarative nature shines when specifying what
data you want rather than dictating how to retrieve it. This flexibility enables a wide
range of users, including BI developers, business analysts, data engineers, and data
scientists, to understand and interpret the code. Unlike some other strictly imperative
data processing languages, SQL allows authors to focus on describing desired results.
This self-documenting feature makes SQL code more readable and understandable,
promoting effective collaboration in cross-functional teams.

68 | Chapter 3: SQL for Analytics

Another exciting factor is that although SQL as an interface has survived over
time, the reality is that the engines behind it have evolved dramatically over the
last few years. Traditional SQL engines have improved, while distributed tools like
Spark and Presto have enabled SQL to process massive datasets. In recent times,
DuckDB has emerged as a game-changer, empowering SQL with extremely fast par‐
allelized analytics queries on a single machine. With its functionality rivaling other
high-performance alternatives, DuckDB opens new possibilities for data engineering
tasks of all sizes.

However, it’s important to note that not all SQL-powered systems are the same.
While SQL Server, for example, was commonly used for warehousing, it is designed
for OLTP. On the other hand, platforms like Snowflake and Redshift are specialized
OLAP data warehouses. They excel in handling large-scale analytical workloads
and are optimized for complex queries and reporting. These distinctions highlight
the versatility of SQL, which can be adapted to various database architectures and
purposes. SQL remains a unifying language that bridges the gap between OLAP
and OLTP systems, facilitating data access and analytics across database types and
technologies.

Data typing is another notable strength of SQL, particularly in data engineering.
Seasoned data engineers understand the challenges of managing data types across
various programming languages and SQL engines, a process that can be laborious
and error-prone. However, SQL engines excel in enforcing strong data typing, guar‐
anteeing consistent handling of data types throughout the data pipeline. Moreover,
the SQL ecosystem offers valuable tools like Apache Arrow that tackle the compati‐
bility issues arising from diverse tools and databases. Arrow facilitates robust and
consistent data type handling across environments, including R, Python, and various
databases. Selecting SQL engines compatible with Arrow can effectively mitigate
many data typing challenges, simplifying maintenance efforts and reducing the bur‐
dens of dependency management, thus allowing data engineers to focus more on the
core aspects of their data engineering work.

SQL’s compatibility with software engineering best practices is a significant advantage
in the field of data engineering. Data engineers often deal with complex SQL scripts
that are important components of their organization’s data pipelines. In the past,
maintaining and modifying such scripts was a major challenge and often resulted in
code that was difficult to understand and modify. However, the development of SQL
tools has addressed these challenges and made it easier to adapt SQL code to good
technical practices. One notable advance is the advent of DuckDB, a specialized SQL
engine designed for analytical queries. DuckDB’s unique features, such as the absence
of dependencies and optimization for analytical workloads, enable data engineers
to perform unit tests and facilitate rapid iteration of SQL code. This ensures that
SQL code conforms to established technical principles, increasing its reliability and
maintainability.

The Resiliency of SQL | 69

Another helpful tool in the SQL ecosystem is CTEs, which can be used to break large
queries into smaller, more manageable, and testable pieces. By breaking complex
queries into semantically meaningful components, data engineers can easily validate
and verify each part independently, promoting a more modular and robust develop‐
ment process.

Other improvements are also helping push SQL to the forefront of analytics engineer‐
ing. Lambda functions allow data engineers to write arbitrary functions directly into
SQL statements. This capability improves the flexibility and agility of SQL code and
enables dynamic calculations and transformations during data processing.

Window functions have also long been recognized as a valuable tool in SQL because
they provide enhanced analytical capabilities by dividing data into manageable seg‐
ments. With window functions, data engineers can perform complex aggregations,
rankings, and statistical calculations over defined subsets of data, opening up new
possibilities for analysis and reporting.

Last but not least, modern SQL engines have incorporated features such as full-
text search, geodata functions, and user-defined functions, further expanding SQL’s
capabilities. These additions target specific use cases and domain-specific require‐
ments and enable data engineers to perform specialized operations within the SQL
environment.

All these and many more have contributed to the resiliency of SQL over time and
encouraged many people to invest in learning and applying it in their day-to-day
analytics activities. Now let’s step back and revisit the core concepts of SQL.

Database Fundamentals
A strong understanding of database fundamentals is crucial for analytics and data
engineers. Databases serve as the backbone for storing, organizing, and retrieving
vast amounts of data. Over time, the evolution of databases has paved the way for
the emergence and refinement of SQL as a powerful and widely adopted language
for working with relational databases. However, before we explore the specificities of
databases, it’s essential to understand the broader context of data, information, and
knowledge, as they all either live in or are derived from databases.

At the foundation of this context, we have the DIKW pyramid, shown in Figure 3-1.
This conceptual model describes the hierarchical relationships among data, informa‐
tion, knowledge, and wisdom. Through a series of iterative processes, the DIKW
pyramid provides a framework for understanding how to transform raw data into
actionable wisdom.

70 | Chapter 3: SQL for Analytics

Figure 3-1. DIKW pyramid

To better understand the DIKW pyramid, let’s decompose each layer:

Data
Raw facts and figures that lack context and meaning. Data can be considered as
the building blocks of information. Examples of data: 1989, teacher, green.

Information
Organized and structured representation of data that provides context and
answers specific questions. Examples of information:

• My math teacher was born in 1989.•
• The traffic light at the intersection of Albany Ave and Avenue J is green.•

Knowledge
Emerges when we combine information with experience, expertise, and under‐
standing. It represents the insights gained from analyzing and interpreting infor‐
mation, which enable individuals and organizations to make informed decisions
and take appropriate actions. Examples of knowledge:

• Since my math teacher was born in 1989, he is an adult.•
• The traffic light that I am driving toward is turning green.•

Wisdom
A level of deep understanding that exceeds knowledge. Wisdom occurs when
individuals and organizations can apply their knowledge and make sound
judgments, leading to positive effects and transformative insights. Examples of
wisdom:

• It might be time for my math teacher to start thinking about a retirement•
savings plan.

• With the traffic light turning green, I can move ahead.•

Database Fundamentals | 71

Databases play a vital role in the DIKW pyramid, serving as the basis for storing,
managing, and organizing data. This enables the conversion of data into meaningful
insights, which ultimately allows businesses to gain the necessary knowledge to make
educated decisions.

Types of Databases
Databases are a core component of modern data management systems, delivering
structured approaches to storing, organizing, and retrieving data. To better under‐
stand how a database achieves this, let’s first explore the two main categories of data‐
bases: relational and non-relational. By understanding the features and differences
between these two types, you will be more capable of selecting a database solution for
your specific data needs.

Figure 3-2 shows the two primary categories of databases, mapping in each the most
common types of databases.

Figure 3-2. Database categories and their types

Relational databases
In this most common and widely adopted database category, the data is organ‐
ized into tables of rows and columns. Key are used to enforce relationships
between tables, and SQL is used for querying and manipulating data. Relational
databases provide strong data integrity, transactional reliability, and support for
ACID properties, ensuring that database transactions are reliable, maintain data
integrity, and can recover from failures.

72 | Chapter 3: SQL for Analytics

Non-relational databases
Also known as NoSQL (not only SQL) databases, non-relational databases have
emerged as an alternative for managing large volumes of unstructured and
semi-structured data with scalability and flexibility. Compared to relational data‐
bases, non-relational databases do not rely on fixed schemas. They can store
data in various formats, such as key-value pairs, documents, wide-column stores,
or graphs. Non-relational databases prioritize high performance, horizontal scal‐
ability, and schema flexibility. They are well suited for scenarios like real-time
analytics, applications dealing with unstructured data, and IoT data, among
others.

In the following sections, we will primarily focus on relational
databases as a consequence of the overall goal of this chapter,
namely, to present the fundamentals of SQL.

We can imagine a database as a subset of a universe of data—built, designed, and fed
with data that has a purpose specific to your organization. Databases are an essential
component of society. Some activities, such as the ones listed, are widely distributed
across society in general, with a database in the center to store the data:

• Book a hotel•
• Book an airplane ticket•
• Buy a phone in a well-known marketplace•
• Enter your favorite social network•
• Go to the doctor•

But what does this look like in practice? Funneling into the relational databases, we
organize the data into tables with rows and columns. Tables represent an entity of
our universe, like a student in a university or a book in a library. A column describes
an attribute of the entity. For example, a student has a name or address. A book has
a title or an ISBN (International Standard Book Number). Finally, a row is the data
itself. A student’s name can be Peter Sousa or Emma Rock. For the book title, a row
can be “Analytics Engineering with SQL and dbt.” Figure 3-3 presents an example of a
table with its respective columns and rows.

Database Fundamentals | 73

Figure 3-3. Sample of a table with its rows and columns

Another topic to consider is how we establish relationships with the data and grant
consistency. This is an essential factor to highlight in relational databases, where
we can enforce connections between tables by using keys. Enforcing these relation‐
ships and connections in a relational database involves implementing mechanisms
to maintain the integrity and consistency of the data across related tables. These
mechanisms maintain the relationships among tables, preventing inconsistencies or
data anomalies.

One way to enforce relationships is by using primary and foreign keys. We will get
there, but for now, Figure 3-4 presents an interrelationship between tables. The use
case is a university in which one or more students can enroll in one or more classes.

Understanding these types of databases sets the stage for our next topic: database
management systems (DBMSs). In the next section, we will dive deeper into the
functionalities and importance of DBMSs, which serve as the software tools that
enable efficient data storage, retrieval, and management in various types of databases.

74 | Chapter 3: SQL for Analytics

Figure 3-4. Tables interrelationship

Database Management System
A DBMS is a software system that enables database creation, organization, manage‐
ment, and manipulation. It provides an interface and set of tools for users and
applications to interact with databases, allowing for efficient data storage, retrieval,
modification, and deletion.

A DBMS acts as an intermediary between users or applications and the underlying
database. It abstracts the complexities of interacting with the database, providing
a convenient and standardized way to work with data. It acts as a software layer
that handles the storage, retrieval, and management of data while also ensuring data
integrity, security, and concurrency control.

Database Fundamentals | 75

The primary functions of a DBMS include the following:

Data definition
A DBMS allows users to define the structure and organization of the data by
creating and modifying database schemas. It enables the definition of tables, col‐
umns, relationships, and constraints that govern the data stored in the database.

Data manipulation
Users can perform operations on the data stored in the database by using a
query language, typically SQL. A DBMS provides mechanisms to insert, retrieve,
update, and delete data, allowing for efficient and controlled manipulation of the
database content.

Data security and integrity
A DBMS provides mechanisms to ensure data security by enforcing access con‐
trol policies. It enables the definition of user roles and permissions, restricting
access to sensitive data. Additionally, a DBMS enforces data integrity by imple‐
menting constraints and validations to maintain the consistency and accuracy of
the data.

Data concurrency and transaction management
A DBMS handles the concurrent access to the database by multiple users or
applications, ensuring that data remains consistent and protected from conflicts.
It provides transaction management capabilities to ensure that groups of opera‐
tions are executed reliably and consistently, following the ACID properties.

Data recovery and backup
A DBMS incorporates features to ensure data durability and recoverability. It
provides data backup and restore mechanisms, allowing for data recovery in case
of system failures or disasters.

Some of the most common DBMSs for both relational and non-relational databases
can be found in Table 3-1.

Table 3-1. Common DBMSs

Relational databases Non-relational databases
Microsoft Access MongoDB

Microsoft SQL Server Apache Cassandra

Postgres Apache CouchDB

MySQL Redis

SQLite Elasticsearch

76 | Chapter 3: SQL for Analytics

“Speaking” with a Database
From an external point of view, interacting with a database through a DBMS provides
four types of language:

Data definition language (DDL)
To handle schemas, like table creation

Data manipulation language (DML)
To work with the data

Data control language (DCL)
To manage permissions to the database

Transaction control language (TCL)
To address the transactions that occur in the database

Figure 3-5 shows the main languages used while interacting with a database and their
primary commands.

Figure 3-5. Main SQL commands

For this book, our primary focus will be providing solid foundations on SQL by
learning how to query, manipulate, and define database structures, and so we will
discuss DDL and DML. The activities related to administration tasks, like the ones
performed with DCL and TCL, will not be covered.

Database Fundamentals | 77

Creating and Managing Your Data Structures with DDL
DDL, a subset of SQL, is a standardized language used to create and modify the
structure of objects in a database. It includes commands and syntax for defining
tables, indexes, sequences, aliases, etc.

The most common DDL commands are the following:

CREATE

Creates new database objects such as tables, views, indexes, or constraints. It
specifies the name of the object and its structure, including columns, data types,
and any additional properties.

DROP

Removes or deletes existing database objects. It permanently deletes the specified
object and all associated data.

ALTER

Modifies the structure of an existing database object. You can use it to add,
modify, or delete a table’s columns, constraints, or other properties. It provides
flexibility to adapt the database schema to changing requirements.

RENAME

Renames an existing database object, such as a table or a column. It provides a
way to change the name of an object without altering its structure or data.

TRUNCATE

Quickly removes all data from a table, while keeping the table structure. It is
faster than using the DELETE command to remove all rows since it deallocates the
data pages without logging individual row deletions.

CONSTRAINT

Defines constraints on table columns, ensuring the integrity and validity of the
data by specifying rules or conditions that the data must meet.

INDEX

Creates an index on one or multiple columns of a table. Usually, an index
improves the performance of data retrieval operations by creating a sorted struc‐
ture that allows faster data searching and sorting.

Before jumping into a hands-on use case, there are some topics we need to discuss in
detail and one additional topic we need to introduce. The truth is that the majority
of the DDL commands are, in a sense, self-explanatory, and as long as we see them
in the code later, they will be easy to understand. Nonetheless, the discussion of the
CONSTRAINT command should be slightly more detailed to introduce its particulari‐
ties.

78 | Chapter 3: SQL for Analytics

As mentioned earlier, constraints are rules or conditions the data must meet to grant
their integrity. Typically, these constraints are applied to a column or a table. The
most common constraints are as follows:

Primary key
A primary-key constraint ensures that a column or a combination of columns
uniquely identifies each row in a table, preventing duplicate and null values.
It is essential for data integrity and often used as a reference for foreign-key
constraints in related tables.

Foreign key
A foreign-key constraint specifies a relationship between two tables. It ensures
that values in a column or a combination of columns in one table match the
primary-key values in another table, helping maintain referential integrity and
enforcing data consistency across related tables.

Unique
A unique constraint ensures that the values in a column or a combination of
columns are unique, and does not allow duplicates. Unlike a primary key, a
unique constraint can allow null values, but only one null value is allowed if a
column has a unique constraint.

Check
A check constraint imposes a condition on the values allowed in a column.
These constraints are typically used to enforce business rules, domain-specific
requirements, or any other custom conditions on the data.

Not null
A not-null constraint guarantees that a column does not contain null values, and
so a specific column with this constraint must have a value for every row inserted
or updated. This helps enforce data completeness and avoids unexpected null
values.

Finally, there is one last point to discuss: the data types that categorize the data that
can be stored in a column or variable. These fields can vary from database engine to
engine. In our case, we will keep it simple and use the MySQL data types as reference:

Integer
A whole number without a fractional part. The most common are INT, SMALLINT,
BIGINT, TINYINT. Examples of possible values: 1, 156, 2012412, 2.

Decimal
A number with a fractional part. Some of the most common are DECIMAL,
NUMERIC, FLOAT, DOUBLE. Examples of possible values: 3.14, 94.5482, 5161.17620.

Creating and Managing Your Data Structures with DDL | 79

Boolean
A binary value. Traditionally written as BOOLEAN, BOOL, BIT, TINYINT. Used for
storing true/false or 0/1 values.

Date
Mostly self-explanatory, but it can vary in format. Declared as DATE, and a
standard format used is 2023-07-06.

Time
You can decide the format of the time data type as well. Written as TIME in the
database, one common format is 18:34:59.

Timestamp
The date and the time together. Usually, we use TIMESTAMP or DATETIME. Example:
2017-12-31 18:34:59.

Text
The most general data type. But it can only be alphabetical letters or a mix of
letters, numbers, or any other characters. Normally declared as CHAR, VARCHAR,
NVARCHAR, TEXT. Note that choosing the correct text data type is relevant since
each one has a maximum specified length. Examples of text: “hello world,”
“porto1987,” “Hélder,” “13,487*5487+588”.

We will use MySQL because of its broad adoption. You can down‐
load the MySQL Workbench through the MySQL website.

Now that you have a better idea of the DDL commands and the most common
database data types, let’s create a database for managing O’Reilly books. This aligns
with the example in Chapter 2, when we introduced a database for O’Reilly to track
books, but now let’s start with the physical model creation.

As a note, for data engineers, proficiency in all types of SQL commands is crucial as
they are responsible for both database design (DDL) and data manipulation (DML).
Analysts primarily focus on DML SQL commands, often limited to SELECT queries
for data analysis. On the other hand, analytics engineers typically work with a combi‐
nation of DML and some DDL SQL commands, although they often abstract DDL
operations through tools like dbt.

First, let’s create the database itself. In your MySQL client, execute the command in
Example 3-1.

80 | Chapter 3: SQL for Analytics

https://oreil.ly/Mzrdt

Example 3-1. Create the database

-- Create the OReillyBooks database statement
CREATE DATABASE OReillyBooks;

Now, with the database created, execute the code in Example 3-2.

Example 3-2. Create the database, part 2

-- Use the database
USE OReillyBooks;

-- Create the tables

-- Table: Authors
CREATE TABLE authors (
 author_id INT PRIMARY KEY,
 author_name VARCHAR(100)
);

-- Table: Books
CREATE TABLE books (
 book_id INT PRIMARY KEY,
 book_title VARCHAR(100),
 author_id INT,
 rating DECIMAL(10,2),
 FOREIGN KEY (author_id) REFERENCES Authors(author_id)
);

-- Table: Category
CREATE TABLE category (
 category_id INT PRIMARY KEY,
 category_name VARCHAR(50)
);

-- Table: bookCategory
CREATE TABLE book_category (
 book_id INT,
 category_id INT,
 FOREIGN KEY (book_id) REFERENCES books(book_id),
 FOREIGN KEY (category_id) REFERENCES category(category_id)
);

In summary, these two examples have created a database called OReillyBooks and
defined four tables: authors, books, category, and book_category (which represents
the many-to-many relationship between books and categories). Each table has its own
set of columns and constraints, such as primary keys and foreign keys.

Creating and Managing Your Data Structures with DDL | 81

Finally, and to also test other DDL commands, imagine that a new requirement
arises, and now we also need to store the publication_year, which refers to the year
a particular book was published. The syntax to do so is shown in Example 3-3.

Example 3-3. ALTER TABLE syntax

-- Add a new column
ALTER TABLE table_name
ADD column_name datatype [column_constraint];

-- Modify a datatype of an existing column
ALTER TABLE table_name
ALTER COLUMN column_name [new_datatype];

-- Rename a column
ALTER TABLE table_name
RENAME COLUMN old_column_name TO new_column_name;

-- Add a new constraint to a column
ALTER TABLE table_name
ADD CONSTRAINT constraint_name constraint_type (column_name);

-- Modify an existing constraint
ALTER TABLE table_name
ALTER CONSTRAINT constraint_name [new_constraint];

-- Remove an existing column
ALTER TABLE table_name
DROP COLUMN column_name;

As per the syntax shown in Example 3-3, the modification that fits our needs is
adding a new column. Let’s now add the publication_year by executing the code
snippet in Example 3-4.

Example 3-4. Add the publication year

-- Add publication_year to the books table
ALTER TABLE books
ADD publication_year INT;

Manipulating Data with DML
DML serves as an essential component in database management. This language
enables data selection, insertion, deletion, and updating within a database system. Its
primary purpose is to retrieve and manipulate data residing in a relational database
while encompassing several key commands.

82 | Chapter 3: SQL for Analytics

Inserting Data with INSERT
The INSERT command facilitates the addition of new data into a table. With this com‐
mand, users can seamlessly insert one or multiple records into a specific table within
the database. By utilizing INSERT, it becomes possible to expand the content of a table
by including additional entries. This command is instrumental in adding records to
an initially empty table but also allows for continuously augmenting existing data
within the database. Example 3-5 shows the standard syntax of this command.

Example 3-5. Syntax of an INSERT statement

INSERT INTO table_name (column1, column2, ...)
VALUES (value1, value2, ...);

The INSERT INTO statement specifies the table where the data will be inserted, where
table_name represents the name of the table itself. The component (__column1__,
__column2__, ...) is optional and allows for the specification of the columns into
which the data will be inserted. If the columns are omitted, it is assumed that values
will be provided for all columns in the table. The VALUES keyword indicates the start
of the list of values to be inserted into the specified columns. Within the VALUES
clause, (__value1__, __value2__, ...), we have the actual values to be inserted
into the respective columns. It is crucial to ensure that the number of values provided
matches the number of columns specified. This is the only way to ensure the values
are correctly mapped to the corresponding columns during the insertion process.
Most database engines raise an error if this is not respected.

Let’s now extend our use case, which we started with “Manipulating Data with DML”
on page 82, and insert data into the previously created tables. For that, execute the
command in Example 3-6.

Example 3-6. Create dummy data

-- Inserting data into the authors table
INSERT INTO authors (author_id, author_name) VALUES
(1, 'Stephanie Mitchell'),
(2, 'Paul Turner'),
(3, 'Julia Martinez'),
(4, 'Rui Machado'),
(5, 'Thomas Brown');

-- Inserting data into the books table
INSERT INTO books (book_id, book_title,

author_id, publication_year,
rating)

VALUES
(1, 'Python Crash Course', 1, 2012, 4.5),

Manipulating Data with DML | 83

(2, 'Learning React', 2, 2014, 3.7),
(3, 'Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow',
 3, 2017, 4.9),
(4, 'JavaScript: The Good Parts', 4, 2015, 2.8),
(5, 'Data Science for Business', 5, 2019, 4.2);

-- Inserting data into the category table
INSERT INTO category (category_id, category_name) VALUES
(1, 'Programming'),
(2, 'Machine Learning'),
(3, 'Data Science'),
(4, 'Software Engineering'),
(5, 'Algorithms'),
(6, 'Computer Science');

-- Inserting data into the book_category table
INSERT INTO book_category (book_id, category_id) VALUES
(1, 1),
(2, 1),
(3, 2),
(4, 1),
(5, 3);

This code creates several INSERT statements, each targeting a specific table. We
start by inserting data into the authors table. Each row represents an author, with
author_id and author_name columns indicating the author’s unique identifier and
name, respectively.

Then, we inserted data into the books table. Each row represents a book, with
book_id, book_title, and author_id columns indicating the unique identifier, title,
and author identifier of the book, respectively. The author_id column is linked to the
author_id column in the authors table to establish the relationship between books
and authors. Note that we cannot insert a book referencing a nonexistent author
because of referential integrity.

We also created a category table to correctly classify the book based on its content
type. Each row represents a category, with category_id and category_name columns
indicating the unique identifier and name of the category, respectively.

Finally, our intermediate table, book_category, stores the relationship between books
and their corresponding categories. Each row represents one occurrence of this
relationship, with book_id and category_id columns indicating the book and cate‐
gory identifiers, respectively. These columns establish the many-to-many relationship
between books and categories.

Let’s have a look at the data we’ve inserted. Execute the code in Example 3-7, line by
line. We will cover the SELECT statement in detail in the next section, but for now, it is
enough to check the data in each table.

84 | Chapter 3: SQL for Analytics

Example 3-7. A SELECT statement querying the authors, book_category, books, and
category tables

select * from authors;
select * from book_category;
select * from books;
select * from category;

Selecting Data with SELECT
SELECT is one of the most fundamental DML commands in SQL. This command
allows you to extract specific data from a database. When this statement is executed,
it retrieves the desired information and organizes it into a structured result table,
commonly referred to as the result set. This result set contains data that meets the
specified criteria, allowing users to access and analyze the selected information easily.
In Example 3-8, we can analyze the (simplest) syntax of this command.

If you are already proficient with SQL and SELECT commands and
seeking more advanced SQL statements, we recommend referring
to “Window Functions” on page 105. If you already want to jump
into the dbt world, you can find it in Chapter 4.

Example 3-8. Syntax of a SELECT statement

SELECT column1, column2, ...
FROM table_name;

The SELECT part of this structure indicates the specific columns or expressions that
are retrieved from the table. The FROM component specifies the table from which the
data will be retrieved. We have much more to elaborate on about this command, from
data filtering and respective operators to data grouping or joins. In the next sections,
we will discuss each property.

Filtering data with WHERE

The optional WHERE clause allows users to define conditions the retrieved data must
meet, effectively filtering rows based on specified criteria. It is a fundamental part of
SQL queries, allowing you to filter and retrieve specific subsets of data from tables.
Example 3-9 shows the syntax of the WHERE statement.

Example 3-9. Syntax of a SELECT statement with a WHERE clause

SELECT column1, column2, ...
FROM table_name
WHERE condition ;

Manipulating Data with DML | 85

To correctly understand how to write conditions in SQL and adequately filter the data,
we must first become familiarized with the SQL operators with single or multiple
conditions.

SQL operators. SQL operators are frequently used in the WHERE clause to establish
conditions for filtering data. These operators allow you to compare values and
expressions in SQL that meet the defined conditions. Table 3-2 summarizes the most
common operators.

Table 3-2. SQL operators

Operator Operator type Meaning

= Comparison Equal to

<> or != Comparison Not equal to

< Comparison Less than

> Comparison Greater than

< = Comparison Less than or equal to

> = Comparison Greater than or equal to

LIKE '%expression%' Comparison Contains "expression"

IN ("exp1", "exp2") Comparison Contains any of "exp1" or "exp2"

BETWEEN Logical Selects values within a given range

AND Logical Combines two or more conditions and returns true only if all the conditions
are true

OR Logical Combines two or more conditions and returns true if at least one of the
conditions is true

NOT Logical Negates a condition, returning true if the condition is false, and vice versa

UNION Set Combines the result of two SELECT statements, removing the duplicated
rows

UNION ALL Set Combines all records from two SELECT statements, yet with UNION ALL,
duplicated rows aren’t eliminated

To better understand their applications, let’s explore examples for comparison opera‐
tors and logical operators. To simplify things, since we didn’t dig into other elements
of SQL, such as joins, let’s use the books table as the source of our use cases.

As an initial example of conditional and logical operators, let’s try to find books
published earlier than 2015. Then, let’s find only the books published in 2017 and,
last, the books with “Python” in the title. Example 3-10 has the three code snippets to
help you solve this challenge.

86 | Chapter 3: SQL for Analytics

Example 3-10. Select data with conditional operators

-- Books published earlier than 2015
SELECT
 book_title,
 publication_year
FROM books
WHERE publication_year < 2015;

-- Books published in 2017
SELECT
 book_title,
 publication_year
FROM books
WHERE publication_year = 2017;

-- Books with "Python" in the title
SELECT
 book_title,
 publication_year
FROM books
WHERE book_title LIKE '%Python%';

Example 3-10 shows three examples of working with conditional operators. Feel free
to play with the code and test the others introduced previously.

Finally, to be familiarized with a logical operator, let’s search for books published in
2012 or after 2015. Example 3-11 will help with this.

Example 3-11. Select data with a logical operator

-- Books published in 2012 or after 2015
SELECT
 book_title,
 publication_year
FROM books
WHERE publication_year = 2012 OR publication_year > 2015;

It is also essential to note that these operators are not exclusive to the WHERE clause.
They can also be used along with other filtering techniques, such as the HAVING
clause, that we will introduce in the next section.

Aggregating data with GROUP BY

The GROUP BY clause is an optional feature in SQL utilized to group the result set by
one or more columns. Often used with aggregate functions, GROUP BY calculates sub‐
sets of rows that share a common value in the specified column or columns. In other
words, when using the GROUP BY clause, the result set is divided into groups, where
each group represents a unique combination of values from the given aggregated

Manipulating Data with DML | 87

column or columns. As stated, GROUP BY is typically used with aggregate functions for
these groups, providing valuable insights into the data. Some of the most common
aggregate functions are shown in Table 3-3.

Table 3-3. Aggregate functions

Aggregate
function

Meaning

COUNT() Calculates the number of rows or non-null values in a column.

SUM() Calculates the sum of numeric values in a column.

AVG() Calculates the average (mean) value of a column.

MAX() Retrieves the maximum value from a column.

MIN() Retrieves the minimum value from a column.

DISTINCT Although not an aggregate function in the rigorous sense, the DISTINCT keyword is often used with
an aggregate function, inside the SELECT statement, to calculate distinct values.

GROUP BY is typically used in trend analysis and summary reports, like monthly sales
reports and quarterly user accesses, among others. The generic syntax of the GROUP
BY clause is presented in Example 3-12.

Example 3-12. Syntax of a SELECT statement with a GROUP BY clause

SELECT column1, column2, ...
FROM table_name
GROUP BY column1, column2, ...

Let’s now apply those functions in a straightforward use case. Using the table
book_category, let’s analyze the average number of books per category. To help you
with this challenge, let’s look at Example 3-13.

Example 3-13. Select and aggregate data

SELECT
 category_id,
 COUNT(book_id) AS book_count
FROM bookCategory
GROUP BY category_id;

We’re using the COUNT() aggregate function, but others could be used, depending on
the desired use case. Finally, this is a simple example since we see only category_id,
but it could be better if we had the category name instead; however, this field is visible
only in the category table. To include it, we need to know how to use joins. We will
discuss this further in “Joining data with INNER, LEFT, RIGHT, FULL, and CROSS
JOIN” on page 90.

88 | Chapter 3: SQL for Analytics

At last, we come to the HAVING filter. An optional clause closely related to GROUP BY,
the HAVING filter applies conditions to the grouped data. Compared with the WHERE
clause, HAVING filters the rows after the aggregation, while in the WHERE clause, the
filtering occurs before the grouping operation. Yet the same operators, such as “equal”
and “greater than,” among others, are applied as in the WHERE statement.

The SQL syntax for a HAVING filter is displayed in Example 3-14.

Example 3-14. Syntax of a SELECT statement with a GROUP BY clause and HAVING filter

SELECT column1, column2, ...
FROM table_name
GROUP BY column1, column2, ...
HAVING condition

Let’s see the HAVING filter in action. Referring to Example 3-13, we now want only the
categories with at least two books published. Example 3-15 helps you with that.

Example 3-15. Select and aggregate data, applying the HAVING filter

SELECT
 category_id,
 COUNT(book_id) AS book_count
FROM bookCategory
GROUP BY category_id
HAVING COUNT(book_id) >= 2;

By leveraging the GROUP BY clause and the HAVING filter, you can effectively organize
and summarize data to perform calculations on aggregated datasets, enabling you to
uncover patterns, trends, and relationships within the data; facilitate data analysis;
and support the decision-making processes.

Sorting data with ORDER BY

The ORDER BY clause is a sorting statement within SQL generally used to organize the
query results in a specific sequence, making it simpler to analyze and interpret the
data. It sorts the result set of a query based on one or more columns, allowing you
to specify the sorting order for each column, namely, by ascending (the default) and
descending order.

The basic syntax of the ORDER BY clause is shown in Example 3-16.

Manipulating Data with DML | 89

Example 3-16. Syntax of a SELECT statement with an ORDER BY clause

SELECT column1, column2, ...
FROM table_name
ORDER BY column1 [ASC|DESC], column2 [ASC|DESC], ...

In the previous use cases, one that stands out is the books published yearly. Looking
at the table, it is difficult to determine which are the newest and the oldest books. The
ORDER BY clause substantially simplifies this analysis. To test this clause, execute the
code snippet in Example 3-17 and check the results with and without ORDER BY. As a
note, if the order ASC/DESC is not explicitly declared, SQL will use ASC by default.

Example 3-17. SELECT statement with an ORDER BY clause

SELECT
 book_title,
 publication_year
FROM books
ORDER BY publication_year DESC;

In conclusion, the ORDER BY clause allows you to arrange your result set in a desired
sequence that best suits your data exploration and analysis, simplifying the capture of
meaningful data.

Joining data with INNER, LEFT, RIGHT, FULL, and CROSS JOIN
Joins are a mechanism in SQL that combine data from multiple tables. Understanding
and working with joins can largely improve your capacity to pull valuable insights
and make more informed decisions from complex datasets. This section will guide
you through the types of joins available in SQL, their syntax, and their usage.

SQL has several types of joins. Each allows you to combine data from multiple tables
based on specified conditions. Before seeing the joins in action, let’s increment our
dataset with a new author. This author will not have any books. To do this, execute
the statement in Example 3-18.

Example 3-18. Insert an author without books

INSERT INTO authors (author_id, author_name) VALUES
(6, 'John Doe')

The reason we created an author without any books is to explore the several joins we
will introduce. Following are the most common types of SQL joins.

90 | Chapter 3: SQL for Analytics

INNER JOIN. The INNER JOIN returns only the matching rows from both tables based
on the specified join condition. If we think of a Venn diagram with circle A and circle
B representing each dataset, in an INNER JOIN we would see only the overlapping
area that contains the matching values of both tables. Let’s look at Figure 3-6 to better
visualize the Venn diagram.

Figure 3-6. Venn diagram illustrating an INNER JOIN

The code syntax for the INNER JOIN is shown in Example 3-19.

Example 3-19. Syntax of an INNER JOIN

SELECT
 columns
FROM Table_A
INNER JOIN Table_B ON join_condition;

To see the INNER JOIN in action, let’s gather only authors with books. Example 3-20
shows the required code.

Example 3-20. Gather only authors with books

SELECT
 authors.author_id,
 authors.author_name,
 books.book_title
FROM authors
INNER JOIN books ON Authors.author_id = Books.author_id

Figure 3-7 shows the query output.

Manipulating Data with DML | 91

Figure 3-7. INNER JOIN query output showing only the authors who have books

By analyzing the results, we can quickly identify the missing author John Doe. As you
may remember, we’ve created him without any books, so when using an INNER JOIN,
he was expected to be omitted.

LEFT JOIN (or LEFT OUTER JOIN). Returns all rows from the left table and the matching
rows from the right table. If there is no match, null values are included for the
columns from the right table. Similar to the previous exercise, a Venn diagram with
a circle A on the left and a circle B on the right represents each dataset. In a LEFT
JOIN, the left circle includes all rows from the left table, and the overlapping region
represents the matching rows based on the join condition. The right circle includes
the nonmatching rows from the right table, represented by null values in the result
set. Have a look at Figure 3-8 to better visualize the Venn diagram.

Figure 3-8. Venn diagram illustrating a LEFT JOIN

The code syntax for the LEFT JOIN is in Example 3-21.

Example 3-21. Syntax of a LEFT JOIN

SELECT
 columns
FROM Table_A
LEFT JOIN Table_B ON join_condition;

To test the LEFT JOIN, let’s keep the same use case of relating the authors with their
books, but now we want to list all authors and their respective books, and we must
also include the authors with any book. Execute the code snippet in Example 3-22.

92 | Chapter 3: SQL for Analytics

Example 3-22. Gather authors and their books

SELECT
 authors.author_id,
 authors.author_name,
 books.book_title
FROM authors
LEFT JOIN books ON authors.author_id = books.author_id

The query output is shown in Figure 3-9.

Figure 3-9. LEFT JOIN query output displaying the authors and their respective books

When compared with the INNER JOIN, the LEFT JOIN enables us to see the author
John Doe. This is because on a LEFT JOIN, the left table, authors, is fully shown,
while the right table, books, shows only the intersected result with authors.

RIGHT JOIN (or RIGHT OUTER JOIN). A right join returns all rows from the right table and
the matching rows from the left table. If there is no match, null values are included
for the columns from the left table. Continue thinking of a Venn diagram with circle
A (left) and circle B (right) representing each dataset. In a RIGHT JOIN, the right
circle includes all rows from the right table, and the overlapping region represents the
matching rows based on the join condition. The left circle includes the nonmatching
rows from the left table, represented by null values in the result set. Finally, have a
look at Figure 3-10 to better visualize the Venn diagram.

Figure 3-10. Venn diagram illustrating a RIGHT JOIN

The code syntax for the RIGHT JOIN is shown in Example 3-23.

Manipulating Data with DML | 93

Example 3-23. Syntax of a RIGHT JOIN

SELECT
 columns
FROM Table_A
RIGHT JOIN Table_B ON join_condition;

Let’s first contextualize our training to see the RIGHT JOIN in action. In this case, we
want to see all the books and their authors, so execute the code in Example 3-24.

Example 3-24. Gather books and their authors

SELECT
 authors.author_id,
 authors.author_name,
 books.book_title
FROM authors
RIGHT JOIN books ON authors.author_id = books.author_id

The query output is shown in Figure 3-11.

Figure 3-11. RIGHT JOIN query output displaying the books and their respective authors

By analyzing the query output, we see all books and their respective authors. Since
we don’t have any books without an author, we cannot see any intersection between
books and authors where a book exists without an author.

FULL JOIN (or FULL OUTER JOIN). In this join, all rows are returned from both tables. It
combines the result of the LEFT JOIN and the RIGHT JOIN. If there is no match, null
values are included for the columns from the nonmatching table. In a Venn diagram
with circle A (left) and circle B (right) representing each dataset, the diagram for a
FULL JOIN will show the overlapping region representing the matching rows based
on the join condition, while the nonoverlapping portions of each circle include the
non-matching rows from their respective tables. In the end, the result set generated
includes all rows from both tables, with null values for nonmatching rows. Let’s see
Figure 3-12 to visualize it better.

94 | Chapter 3: SQL for Analytics

Figure 3-12. Venn diagram illustrating a FULL JOIN

The code syntax for the FULL JOIN is shown in Example 3-25.

Example 3-25. Syntax of a FULL JOIN

SELECT
 columns
FROM Table_A
FULL JOIN Table_B ON join_condition;

MySQL doesn’t support the FULL JOIN natively. We must do a
UNION between a LEFT JOIN and a RIGHT JOIN statement to achieve
it. This effectively combines the data from both directions, replicat‐
ing the behavior of a FULL JOIN.

CROSS JOIN. The CROSS JOIN (or Cartesian join) returns the Cartesian product of
both tables, combining every row from the first table with every row from the second
table. It does not require a join condition. In a Venn diagram of a CROSS JOIN, we
don’t have overlapping circles since it combines each row from circle A, left, and
circle B, right. The result set includes all possible combinations of rows from both
tables, as shown in Figure 3-13.

Figure 3-13. Venn diagram illustrating a CROSS JOIN

The code syntax for the CROSS JOIN is in Example 3-26.

Manipulating Data with DML | 95

Example 3-26. Syntax of a CROSS JOIN

SELECT
 columns
FROM Table_A
CROSS JOIN Table_B;

A CROSS JOIN of the authors table and books table is shown in Example 3-27.

Example 3-27. CROSS JOIN of authors and books tables

SELECT
*
FROM authors
CROSS JOIN books;

In summary, SQL joins provide flexibility in combining data from multiple tables
based on conditions. Understanding their usage and syntax allows you to extract
the desired information and establish relationships for related data across tables.
Visualizing the joins through a Venn diagram helps explain how the tables’ data
overlaps and combines based on the join conditions by highlighting the matched
and unmatched rows in the result set, and providing a clear representation of the
relationship between tables during the join operation.

Updating Data with UPDATE
The UPDATE command allows us to modify records within an existing table in a
database. By executing this command, users can effectively update and alter the data
stored in specific records. UPDATE enables changes to be made to one or more records
within a table, ensuring that the data accurately reflects the latest information. By
utilizing this command, users can seamlessly modify the content of a table, allowing
for data refinement, corrections, or updates as needed. Example 3-28 shows the
syntax of this command.

Example 3-28. Syntax of an UPDATE statement

UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

The UPDATE keyword is used to specify the table that will be updated, and table_name
represents the name of the table to be modified. The SET keyword indicates that
columns will be updated and assigns new values to them. Within the SET clause,
column1 = value1, column2 = value2… specifies the columns to be updated and their
corresponding new values. Finally, the WHERE clause, which is optional, allows for the

96 | Chapter 3: SQL for Analytics

specification of conditions that the rows must satisfy to be updated. It filters the rows
based on the specified conditions.

To test the UPDATE statement in reality, let’s assume that we have a typo in a book title:
instead of “Learning React,” we want “Learning React Fundamentals.” Looking at the
books table, we can see that Learning React has book_id = 2. You can refer to the
code in Example 3-29 for guidance on how to achieve this update.

Example 3-29. Update the books table

UPDATE books
SET book_title = 'Learning React Fundamentals'
WHERE book_id = 2;

And that’s it. If you look at the books table data again, you can see the new name
(Figure 3-14).

Figure 3-14. Updating the books table

Deleting Data with DELETE
The DELETE command provides the ability to selectively delete certain records based
on specified criteria or delete all records within a table. DELETE plays a vital role in
data maintenance, allowing users to effectively manage and clean up the contents
of a table by removing unnecessary or outdated records. This command ensures
data integrity and helps optimize the database by eliminating redundant or irrelevant
information. Example 3-30 shows the syntax of this command.

Example 3-30. Syntax of a DELETE statement

DELETE FROM table_name
WHERE condition;

The DELETE FROM portion indicates the specific table from which data will be deleted,
and table_name indicates the table’s name. The optional WHERE clause plays an essen‐
tial function by allowing users to define conditions that must be met for rows to be

Manipulating Data with DML | 97

deleted. By utilizing this clause, rows can be filtered based on specific criteria. If we
don’t use the WHERE clause, all rows within the table will be deleted. Finally, condition
refers to the specific conditions that rows must satisfy to be eligible for deletion.

To practically apply this command, let’s imagine that we will not publish any book
from the Computer Science category. By looking into the category_id, we can see it’s
the number 6. Let’s now execute Example 3-31 and see what happens.

Example 3-31. Delete a category from the category table

DELETE FROM Category
WHERE category_id = 6

If everything went well, you should be able to select the category table and see we no
longer have the Computer Science category, as shown in Figure 3-15.

Figure 3-15. Deleted category from the category table

Finally, you can also use another data management technique, named soft delete, to
“delete” the data. This technique, instead of permanently erasing a record, sets a flag
or attribute in the database to indicate that the record should be considered deleted.
This preserves historical data, ensures easy recovery when needed, and supports
compliance by maintaining an audit trail of changes.

Storing Queries as Views
A view is a virtual table in a database defined by a query. It is similar to a regular
table, consisting of named columns and rows of data. However, unlike a table, a
view does not physically store data values in the database. Instead, it retrieves data
dynamically from the tables referenced in its query when the view is accessed.

In Example 3-32, we see the generic syntax for creating a view.

98 | Chapter 3: SQL for Analytics

Example 3-32. VIEW syntax

CREATE VIEW view_name AS
SELECT column1, column2, ...
FROM table_name
WHERE condition;

Using our OReillyBooks database, Example 3-33 creates a view for analyzing the
number of books each author has created.

Example 3-33. A view for the books database

CREATE VIEW author_book_count AS
SELECT authors.author_id,
 authors.author_name,
 COUNT(books.book_id) AS book_count
FROM authors
LEFT JOIN books ON authors.author_id = books.author_id
GROUP BY authors.author_id, authors.author_name;

We can then query the author_book_count view to analyze the number of books each
author has created; see Example 3-34.

Example 3-34. Query a view in the books database

SELECT * FROM author_book_count;

One of the primary purposes of a view is to act as a filter on the underlying tables.
The query to define a view can involve one or more tables or other views from the
same or different databases. In fact, views can be created to consolidate data from
multiple heterogeneous sources, allowing you to combine similar data from different
servers across your organization, each storing data for a specific region.

Views are commonly used to simplify and customize each user’s perception of the
database. By defining views, you can present a focused and tailored view of the data
to different users, hiding unnecessary details and providing a more intuitive interface.
Additionally, a view can serve as a security mechanism by allowing users to access
data through the view without granting them direct access to the underlying base
tables. This provides an additional layer of control and ensures that users see only the
data they are authorized to view.

In Example 3-35, we create the renamed_books view based on the books table. We
use column aliases within the SELECT statement to rename the columns to something
more familiar to a particular user without changing the table structure. We can even
have different views on top of the same data with different naming conventions
depending on the audience.

Storing Queries as Views | 99

Example 3-35. A view for renaming columns

CREATE VIEW renamed_books AS
SELECT
 id AS BookID,
 title AS BookTitle,
 rating AS BookRating
FROM books;

Furthermore, views are helpful when the schema of a table has changed. Instead of
modifying existing queries and applications, you can create a view that emulates the
old table structure, providing a backward-compatible interface for accessing the data.
This way, you can maintain compatibility while changing the underlying data model.

Although views offer numerous advantages, they also have certain limitations and
potential dangers. One limitation is the dependence on the underlying table struc‐
ture, which we previously highlighted as a benefit; however, it’s also a curse. If the
base table structure changes, the view definition must be updated accordingly, which
can lead to increased maintenance overhead. In addition, views can affect query
performance, especially for complex views that involve multiple tables or extensive
calculations.

To avoid unnecessary overhead, it is essential to continuously optimize view queries
and learn to use execution plans effectively to stop inefficiencies. Another danger
is the possibility of creating overly complex or inefficient views, leading to poor
performance and difficulty maintaining or modifying views over time. In addition,
views can provide an illusion of data security by restricting access to specific columns
or rows. However, they do not provide foolproof security, and unauthorized users can
still access the underlying data if they gain access to the view. To ensure data protec‐
tion, we must implement appropriate database-level security measures. Finally, views
can lead to potential data integrity issues if not properly maintained, as they may not
enforce constraints or referential integrity like physical tables. Overall, while views
provide valuable functionality, we should understand and minimize their limitations
and potential risks to ensure their effective and secure use.

In Example 3-36, we demonstrate that because of the extensive number of joins and
the inclusion of various columns from different tables, the complexity of the view
increases, making it challenging to read and comprehend at a glance. An interesting
way to fix this would be through the use of CTEs, which we describe in the next
section.

Example 3-36. Complex views

CREATE VIEW complex_books_view AS
SELECT
 b.book_id,

100 | Chapter 3: SQL for Analytics

 b.book_title,
 b.author_id,
 b.rating,
 b.publication_year,
 a.author_id,
 a.author_name,
 c.category_id,
 c.category_name
FROM books b
INNER JOIN authors a ON a.author_id = b.author_id
LEFT JOIN bookCategory bc ON bc.book_id = b.book_id
LEFT JOIN category c ON c.category_id = bc.category_id;

Common Table Expressions
Many data analysts and developers have faced the challenge of understanding com‐
plex SQL queries. It’s not uncommon to struggle with knowing the purpose and
dependencies of specific query components, especially when dealing with compli‐
cated business logic and multiple upstream dependencies. Add to this the frustration
of unexpected query results that leave the analyst uncertain about which section of
the query is causing the discrepancy. Common table expressions (CTEs) provide a
valuable solution in such scenarios.

CTEs offer a powerful tool for simplifying complex queries and improving query
maintainability. Acting as a temporary result set, CTEs enhance the readability of
SQL code by breaking complex queries into manageable blocks.

Example 3-37 shows the generic syntax to create a CTE in SQL. Even though it looks
complex, it follows simple patterns.

Example 3-37. CTE syntax

WITH cte_name (column1, column2, ..., columnN) AS (
 -- Query definition goes here
)
SELECT column1, column2, ..., columnN
FROM cte_name
-- Additional query operations go here

Declare the CTE by using the WITH keyword and give the expression a name. You
can also specify the columns if needed, or use the * character.

Define the CTE query after the AS keyword by writing the query that defines
the CTE. This query can be as simple or complex as needed, including filtering,
joining, aggregating, or any other SQL operations.

Common Table Expressions | 101

Use the CTE in a subsequent query, referencing the CTE by its name as if it
were an actual table. You can select columns from the CTE or perform additional
operations on the CTE’s data.

Add more query operations—pipelining CTEs along your query. This step is
optional. We can include additional query operations like filtering, sorting,
grouping, or joining to further manipulate the data retrieved from the CTE.

Example 3-38 creates a CTE using the books table as a reference.

Example 3-38. A simple CTE

WITH popular_books AS (
 SELECT title,
 author,
 rating
 FROM books
 WHERE rating >= 4.5
)
SELECT title,
 author
FROM popular_books
ORDER BY rating DESC;

Similar to derived tables and database views, CTEs provide several advantages that
make query writing and maintenance easier. By breaking complex queries into
smaller reusable blocks, CTEs enhance code readability and simplify the overall
query structure. Let’s examine the difference between using a CTE and using only
a subquery. For this exercise, we used a fictitious sales table with all book sales, as
shown in Example 3-39. This table is connected with the books table by the book_id
primary key.

Example 3-39. A query without a CTE

SELECT pb.book_id,
 pb.title,
 pb.author,
 s.total_sales
FROM (
 SELECT book_id,
 title,
 author
 FROM books
 WHERE rating >= 4.6
) AS pb
JOIN sales s ON pb.book_id = s.book_id
WHERE s.year = 2022

102 | Chapter 3: SQL for Analytics

ORDER BY s.total_sales DESC
LIMIT 5;

This code uses subqueries instead of CTEs to get the top five best-selling books in
2022. Now, let’s use CTEs and see how readability improves in Example 3-40.

Example 3-40. A query with a CTE

WITH popular_books AS (
 SELECT book_id,
 title,
 author
 FROM books
 WHERE rating >= 4.6
),
best_sellers AS (
 SELECT pb.book_id,
 pb.title,
 pb.author,
 s.total_sales
 FROM popular_books pb
 JOIN sales s ON pb.book_id = s.book_id
 WHERE s.year = 2022
 ORDER BY s.total_sales DESC
 LIMIT 5
)
SELECT *
FROM best_sellers;

We have created two levels of CTEs. popular_books is the first CTE, and it selects the
book_id, title, and author columns from the books table, filtering for books with a
rating of 4.6 or higher. Note that this CTE focuses on a clear responsibility: get only
the top-reviewed books.

Then we have best_sellers, the second CTE that builds upon the first CTE. It
selects the book_id, title, author, and total_sales columns from popular_books
and joins them with the sales table based on the book_id column. Additionally, it
filters for sales that occurred in the year 2022, orders the results by total sales in
descending order, and limits the output to the top five best-selling books. Again, this
CTE focuses on another clear responsibility: getting the top five best sellers based on
sales, but only for the books preselected with a rating = 4.6.

Finally, the main query selects all columns from best_sellers and retrieves the
combined results. We could apply additional aggregations or filters on this main
query. Still, it’s a best practice to keep the code simple and focused only on selecting
the attributes needed for the final analysis.

Common Table Expressions | 103

One common use case for CTEs is referencing a derived table multiple times within
a single query. CTEs eliminate the need for redundant code by allowing the derived
table to be defined once and referenced multiple times. This improves query clarity
and reduces the chance of errors due to code duplication. To see it in action, let’s have
a look at Example 3-41, where we will keep using our fictional sales table.

Example 3-41. Query with CTE, derived tables

WITH high_ratings AS (
 SELECT book_id,
 title,
 rating
 FROM books
 WHERE rating >= 4.5
),
high_sales AS (
 SELECT book_id,
 count(book_id) AS nbr_sales
 FROM sales
 GROUP BY book_id
)
SELECT hr.title,
 hr.rating,
 hs.sales
FROM high_ratings hr
JOIN high_sales hs ON hr.book_id = hs.book_id;

As we can see, by using CTEs in this scenario, we eliminate the need for redundant
code by defining the derived tables (high_ratings and high_sales) once. With this
strategy, we could reference these tables multiple times within the main query or any
subsequent CTE.

Another scenario in which CTEs shine is as an alternative to creating a permanent
database view. Sometimes creating a view might not be necessary or feasible. A CTE
can be used as a temporary and dynamic substitute in such cases, providing flexibility
and simplicity by allowing you to define and reference the result set within the scope
of a single query. We can see in Example 3-42 that by using a CTE in this scenario, we
avoid the need to create a permanent database view.

Example 3-42. Query with a CTE to avoid permanent creation of a view

WITH filtered_books AS (
 SELECT title,
 author
 FROM books
 WHERE rating > 4.0
)

104 | Chapter 3: SQL for Analytics

SELECT *
FROM filtered_books;

CTEs are also helpful when the same calculation must be performed across query
components. Instead of duplicating the calculation in multiple places, a CTE allows
the calculation to be defined once and reused as needed. This promotes code
reusability, reduces maintenance efforts, and enhances query performance. Let’s start
with Example 3-43.

Example 3-43. Query with a CTE to promote code reusability

WITH total_sales AS (
 SELECT customer_id,
 SUM(sales_amount) AS total_amount
 FROM sales
 GROUP BY customer_id
)
SELECT ts.customer_id,
 ts.total_amount,
 avg(total_amount) AS avg_amount
FROM total_sales ts;

We can see that by using the total_sales CTE, the calculation for total sales is
defined once in the CTE and reused in the main query for calculating an average,
showing the reusability of the first aggregation for another aggregation.

In conclusion, CTEs allow us to tackle complex problems by breaking them into
smaller, more manageable pieces. By utilizing CTEs, we can organize and structure
our queries more modularly and readably. They offer a solution for unpacking com‐
plex problems by allowing us to define intermediate result sets and reference them
multiple times within a single query. This eliminates the need for redundant code and
promotes code reusability, reducing maintenance efforts and the chance of errors due
to code duplication.

Window Functions
Window functions are a helpful tool that improves efficiency and reduces query
complexity when analyzing partitions or windows of a dataset. They provide an
alternative approach to more complicated SQL concepts, such as derived queries,
making it easier to perform advanced analysis operations.

A common use case for window functions is ranking results within a given window,
which allows ranking per group or creating relative rankings based on specific crite‐
ria. In addition, window functions allow access to data from another row within the
same window, which is useful for tasks such as generating reports over a period of
time or comparing data between adjacent rows.

Window Functions | 105

At the same time, window functions facilitate aggregation within a given window,
simplifying calculations such as running or cumulative totals. Using window func‐
tions makes queries more efficient, streamlined, and meaningful, allowing analysts
and data scientists to perform sophisticated analyses of data partitions without having
to use complicated subqueries or procedural logic. Ultimately, window functions
enhance SQL’s analytical capabilities and provide a versatile tool for data analysis.

A more practical way of seeing a window function is as a calculation performed on
a set of table rows related to the current row. It is similar to an aggregate function
but doesn’t group rows into a single output row. Instead, each row retains its separate
identity. Window functions can access more than just the current row in the query
result.

The syntax for window functions, as seen in Example 3-44, includes several compo‐
nents. First, we use the SELECT statement to specify the columns we want to include
in the result set. These columns can be any combination of the available columns in
the table. Next, we choose the window function we want to use. Standard window
functions include SUM(), COUNT(), ROW_NUMBER(), RANK(), LEAD(), LAG(), and many
more. We can use these functions to perform calculations or apply aggregate opera‐
tions to a specific column or set of columns.

Example 3-44. Window function syntax

SELECT column1,
 column2,
 ...,
 window_function() OVER (PARTITION BY column1,
 column2,
 ... ORDER BY column3, column4, ...)
FROM table_name;

To define the window frame over which the window function is calculated, use the
OVER clause. Inside the OVER clause, we have two main components: PARTITION BY
and ORDER BY.

The PARTITION BY clause divides the rows into partitions based on one or more
columns. The window function is then applied separately to each partition. This is
useful when we want to perform calculations on different data groups within the
table.

The ORDER BY clause allows you to specify one or more columns to determine the
order within each partition. The window function is applied based on this order.
It helps define the logical sequence or order of the data that the window function
will work with. Combining the PARTITION BY and ORDER BY clauses within the OVER
clause lets us control precisely how the window function acts on the data, allowing us

106 | Chapter 3: SQL for Analytics

to perform calculations or apply aggregate functions to a specific window or subset of
rows in the table without changing the entire result set.

One practical example of using window functions is the calculation of a running
total. In the given query, the running_count column displays the sequential count
of books based on their publication year. The window function ROW_NUMBER() OVER
(ORDER BY publication_year) assigns a row number to each book, ordered by the
publication year. This code can be seen in Example 3-45, and the query output is
shown in Figure 3-16.

Example 3-45. Window function example

SELECT book_id,
 book_title,
 publication_year,
 ROW_NUMBER() OVER (ORDER BY publication_year) AS running_count
FROM books;

Figure 3-16. Running count

With window functions, you can also use aggregate functions like COUNT() and AVG(),
which are introduced in “Aggregating data with GROUP BY” on page 87. These
functions can be used similarly to regular aggregations, but they operate on the
specified window.

Window functions provide additional functionalities such as ROW_NUMBER(), RANK(),
and DENSE_RANK() for numbering and ranking rows, NTILE() for determining per‐
centiles or quartiles, and LAG() and LEAD() for accessing values from previous or
subsequent rows.

Table 3-4 summarizes the multiple types of window functions.

Window Functions | 107

Table 3-4. Window functions

Type Function Example
Aggregate functions Aggregate within each window and return a single value

for each row
MAX(), MIN(), AVG(), SUM(),
COUNT()

Ranking functions Assign a rank or position to each row within the window
based on a specified criterion

ROW_NUMBER(), RANK(),
DENSE_RANK(), NTILE(), PER
CENT_RANK(), CUME_DIST()

Analytics functions Compute values based on the data in the window
without modifying the number of rows

LEAD(), LAG(),
FIRST_VALUE(),
LAST_VALUE()

To gain insight into each type of function, we’ll utilize the publication_year column
as a foundation and experiment with a range of functions.

In the first example, we want to rank the newest to the oldest book by ascending
order. Let’s have a look at the snippet in Example 3-46.

Example 3-46. Window function—RANK()

SELECT book_id,
 book_title,
 publication_year,
 RANK() OVER (ORDER BY publication_year) AS rank
FROM books;

While using the RANK() function, one important consideration is that it assigns a
unique rank to each row within the window based on the specified criteria, yet, if
multiple rows share the same value and are assigned the same rank, the subsequent
ranks are skipped. For example, if two books have the same publication_year, the
next rank will be incremented by the number of rows with the same rank. If you don’t
want repeated ranks, where distinct rows share the same rank, you might want to use
the ROW_NUMBER() instead.

In Example 3-47, we want to bucket our data by the publication_year.

Example 3-47. Window function—NTILE()

SELECT book_id,
 book_title,
 publication_year,
 NTILE(3) OVER (ORDER BY publication_year) AS running_ntile
FROM books;

NTILE() is commonly used when you want to distribute rows into a specified number
of groups evenly or when you need to divide data for further analysis or processing.

108 | Chapter 3: SQL for Analytics

This helps with tasks such as data segmentation, percentile calculations, or creating
equal-sized samples.

Finally, we want to know the publication_year of the previously published book.
For that, we use the LAG() function, as presented in Example 3-48.

Example 3-48. Window function—LAG()

SELECT book_id,
 book_title,
 publication_year,
 LAG(publication_year) OVER (ORDER BY publication_year) AS previous_year
FROM books;

The LAG() function in SQL allows you to access data from a previous row within
the window frame. It retrieves the value of a specified column from a preceding row
based on the ordering specified in the OVER clause.

SQL for Distributed Data Processing
As enterprises make their way to the cloud, they encounter a common challenge.
Their existing relational databases, which are the foundation for critical applications,
cannot fully realize the potential of the cloud and are difficult to scale effectively. It
is becoming clear that the database itself is emerging as a bottleneck, hindering the
speed and efficiency of the transition. As a result, organizations are looking for a
solution that combines the reliability of proven relational data stores such as Oracle,
SQL Server, Postgres, and MySQL with the scalability and global reach of the cloud.

In an attempt to meet these needs, some companies have turned to NoSQL databases.
While these alternatives often meet scalability requirements, they tend to be unsuit‐
able as transactional databases. The reason for this limitation lies in their design,
as they were not originally designed to provide true consistency from the ground
up. Although specific NoSQL solutions have recently introduced advances to handle
certain types of challenges, they are subject to a variety of caveats and ultimately
do not provide the necessary isolation levels for critical workloads such as banks or
hospitals.

Recognizing the shortcomings of both legacy relational databases and NoSQL stor‐
age, companies have turned to a promising solution known as distributed SQL. This
innovative approach deploys a single logical database across multiple physical nodes,
either in a single data center or distributed across multiple data centers as needed. By
leveraging the power of a distributed architecture, distributed SQL combines elastic
scalability with unwavering resilience.

SQL for Distributed Data Processing | 109

One of the key benefits of distributed SQL is its ability to scale seamlessly to meet
the evolving needs of modern cloud environments. As data volumes grow and
user demands increase, organizations can effortlessly add additional nodes to the
distributed deployment, allowing the database to expand horizontally. This elastic
scaling ensures that performance remains optimal even under heavy workloads and
eliminates the limitations often faced by traditional relational databases.

At the same time, distributed SQL provides unparalleled resilience. Because data is
distributed across multiple nodes, it is inherently fault-tolerant. If one node fails or
becomes unavailable, the system can automatically forward queries to the remaining
healthy nodes, ensuring uninterrupted access to critical data. This robust resilience
significantly reduces the risk of downtime and data loss and increases the overall
reliability of the database. Its distributed nature also enables global coverage and
data availability. Organizations can deploy nodes in different geographic regions to
strategically place them closer to end users and reduce latency. This geographically
distributed approach ensures that data can be accessed quickly from anywhere world‐
wide, facilitating efficient data delivery and enabling organizations to serve a global
user base.

The focus of this book is not on the actual distributed processing engines nor on
how they work; rather, we touch upon only the interfaces they expose for us, to
interact with. Most of them end up exposing either an API or SDK. However, a few
that are more focused on data analytics use SQL as an interface language. In reality,
distributed processing and SQL have emerged as a powerful combination, with SQL
serving as a convenient and familiar interface for leveraging distributed computing
capabilities.

Distributed processing frameworks like Spark, Hadoop, and Dask provide the infra‐
structure for processing large-scale data across multiple machines or clusters. These
frameworks distribute the workload and parallelize computations, enabling faster
and more efficient data processing. On the other hand, SQL offers a declarative and
intuitive way to express data operations. Users can leverage their SQL skills to harness
the power of distributed computing frameworks by integrating SQL as an interface
for distributed processing. This approach allows for seamless scalability, efficient data
processing, and the ability to handle complex analytics tasks on vast datasets, all while
using the familiar SQL syntax.

This combination empowers users to perform advanced data analytics and processing
tasks in a straightforward and efficient manner. Examples of this powerful combina‐
tion are DuckDB, dbt itself, and even FugueSQL. These interfaces act as a layer
on top of distributed computing engines, allowing users to write SQL queries and
leverage their familiarity with SQL syntax and semantics. DuckDB specifically aims to
enable efficient and scalable execution of SQL queries while leveraging the power of
distributed computing. It allows users to formulate their analysis and data processing

110 | Chapter 3: SQL for Analytics

workflows using SQL, while the underlying distributed processing engine handles
parallel execution on multiple clusters of machines.

However, despite the existence of these SQL interfaces, they are frequently utilized in
conjunction with Python code. Even in the Spark documentation, Python code is still
required for various tasks, such as data transformations, DataFrame loading, and post
processing after executing the SQL query. This reliance on Python code stems from
standard SQL lacking the grammatical constructs to express many of the operations
typically performed by users in distributed computing environments. Consequently,
SQL alone is often insufficient for expressing comprehensive end-to-end workflows.

Let’s dive deeper with an example. Say we need to create a SQL query to understand
all the units sold by O’Reilly authors since its inception. This would be a straightfor‐
ward consultation, as shown in Example 3-49.

Example 3-49. A basic SQL query

-- Retrieve top-selling O'Reilly books
SELECT Title,
 UnitsSold
FROM Sales
WHERE Publisher = 'O''Reilly'
ORDER BY UnitsSold DESC
LIMIT 5

At this point, the SQL query provides us with the desired aggregated results. How‐
ever, if we want to perform additional data manipulations or integrate the results
with external systems, we usually need to resort to Python or other programming
languages.

For instance, we could join the aggregated results with customer demographic data
stored in a separate dataset to gain deeper insights. This operation typically requires
writing Python code to perform the data merge and post-processing steps. Addition‐
ally, if we intend to visualize the results or export them to another format, Python
code is again necessary to accomplish these tasks.

A common use case is actually exposing data as an API, which SQL doesn’t provide
capabilities for. Example 3-50 shows how combining SQL with Python can enable an
end-to-end flow.

Example 3-50. A basic FastAPI

from fastapi import FastAPI
import duckdb

app = FastAPI()

SQL for Distributed Data Processing | 111

@app.get("/top_books")
def get_top_books():
 # Establish a connection to the DuckDB database
 conn = duckdb.connect()

 # Execute the SQL query
 query = '''
 SELECT Title, UnitsSold
 FROM sales
 WHERE Publisher = "O'Reilly"
 ORDER BY UnitsSold DESC
 LIMIT 5
 '''
 result = conn.execute(query)

 # Convert the query result to a list of dictionaries
 books = []
 for row in result:
 book = {
 "title": row[0],
 "units_sold": row[1]
 }
 books.append(book)

 # Return the result as JSON
 return {"top_books": books}

We have developed a FastAPI application and set up a single endpoint GET that is
accessible via the /top_books route. In simpler terms, an endpoint is a specific web
address (URL) that we can use to retrieve information from our application. When
someone accesses this URL in their web browser or through an application, it triggers
the execution of a specific function that we have defined, get_top_books. This func‐
tion contains the instructions on what to do when someone retrieves information
from the /top_books endpoint. Essentially, it’s as if we had a specific button that,
when pressed, causes our application to perform a specific action, such as providing a
list of the top-selling books.

Inside the function, we establish a connection to the DuckDB database by using
duckdb.connect(). Then the SQL query is executed using the execute() method on
the connection object. The query selects the titles and units sold from the sales table,
filtered by the publisher O'Reilly. The result is ordered by units sold in descending
order and limited to the top five books.

The query result is then transformed into a list of dictionaries; each dictionary
represents a book with its title and units sold. Finally, the result is returned as JSON
by wrapping it in a dictionary with the key top_books.

By leveraging both languages, we can create and manipulate data via our friendly
interface SQL and expose it as an API via the excellent FastAPI framework. In the

112 | Chapter 3: SQL for Analytics

following section, we will explore three well-known Python frameworks that abstract
access to distributed data processing with a SQL-like interface: DuckDB, FugueSQL,
and Polars.

Data Manipulation with DuckDB
When it comes to data processing libraries, most data scientists are very familiar
with pandas, the predominant data processing library in Python. Pandas is known
for its simplicity, versatility, and ability to manage multiple data formats and sizes.
It provides an intuitive user interface for data manipulation. Those who are familiar
with SQL appreciate the powerful features that allow users to perform complicated
data transformations using a concise syntax. However, in some cases a trade-off must
be made between the speed of execution and the ease of use or expressiveness of the
tools. This dilemma becomes especially difficult when dealing with large datasets that
exceed memory limits or require complex data processing operations.

In such cases, using SQL instead of pandas may be a better solution. This is where
DuckDB comes into play. DuckDB combines the strengths of pandas and SQL by
providing a fast and efficient SQL query execution engine capable of processing
complex queries on large datasets. It integrates seamlessly with pandas DataFrames
and allows queries to be executed directly on the DataFrames without the need for
frequent data transfers. With DuckDB, data scientists can harness the power of SQL
while working with pandas, balancing performance with ease of use.

In addition, we are seeing the trend of some companies deciding to replace Spark as
a data processing engine with dbt in combination with DuckDB. Of course, this has
to be judged on a case-by-case basis, but it definitely opens the door for analysts to
support more complex data transformations that can run ad hoc or automated in a
data pipeline.

Installing DuckDB
DuckDB is a remarkably lightweight database engine that works within the host
process without external dependencies. Installation is straightforward and requires
only a few simple steps.

To install DuckDB, we have several options, depending on the operating system and
the type of installation we want to do. For now, let’s look at how to install DuckDB by
using the pip package manager, as shown in Example 3-51.

Example 3-51. Installing DuckDB

pip install duckdb

SQL for Distributed Data Processing | 113

And that’s it. We can now use DuckDB in Python just like any other library. Exam‐
ple 3-52 shows how easy it is to load a pandas DataFrame into DuckDB, manipulate
the data, and store the result back as a DataFrame.

Example 3-52. Using DuckDB

import pandas as pd
import duckdb

mydf = pd.DataFrame({'a' : [1, 2, 3]})
result = duckdb.query("SELECT SUM(a) FROM mydf").to_df()

As we can observe, the code imports both the pandas library as pd and the DuckDB
library. This allows the code to access the functionalities provided by these libraries.
Next, a pandas DataFrame named mydf is created, which consists of a single column
a with three rows containing the values [1, 2, 3]. The subsequent line of code
executes a SQL query using the DuckDB interface. The query is SELECT SUM(a) FROM
mydf, which calculates the sum of values in the a column of the mydf DataFrame.
The result of the SQL query is stored in the result variable. By using the to_df()
method on the DuckDB query result, the data is converted into a pandas DataFrame.
This allows further data manipulation or analysis using the rich set of functions and
methods in pandas.

Running SQL queries with DuckDB
Now that we have seen a simple example, let’s take a closer look at some of the core
features of DuckDB. Unlike traditional systems, DuckDB works directly within the
application, eliminating the need for external processes or client/server architectures.
This paradigm is closely aligned with SQLite’s in-process model and ensures seamless
integration and efficient execution of SQL queries.

The importance of this approach also extends to the area of OLAP, a technology
that enables sophisticated analysis of large enterprise databases while minimizing
the impact on transactional systems. Just like other OLAP-oriented database manage‐
ment systems, DuckDB handles complex analytical workloads by leveraging its inno‐
vative vectorized query execution engine. Its column-oriented approach improves
performance and scalability, making it an optimal choice for processing analytical
queries.

A notable advantage of DuckDB is its self-contained design. Unlike traditional data‐
bases, DuckDB doesn’t require you to install, update, or maintain any external depen‐
dencies or server software. This streamlined, self-contained architecture simplifies
deployment and enables rapid data transfer between the application and the database.
The result is an exceptionally responsive and efficient system.

114 | Chapter 3: SQL for Analytics

Another interesting feature of DuckDB is that it owes its technical capabilities to
the hardworking and capable developers who have ensured its stability and maturity.
Rigorous testing with millions of queries from leading systems confirms DuckDB’s
performance and reliability. It adheres to the ACID property principles, supports
secondary indexes, and provides robust SQL capabilities, proving its versatility and
suitability for demanding analytical workloads.

DuckDB integrates with popular data analysis frameworks such as Python and R,
enabling seamless and efficient interactive data analysis. Moreover, it not only sup‐
ports Python and R, but also provides APIs for C, C++, and Java, which allows it to
be used in a variety of programming languages and environments. It is known for its
exceptional performance and flexibility, making it well suited for efficiently process‐
ing and querying large amounts of data. Running SQL queries with DuckDB is a
valuable skill for analysts. Analysts can leverage the power of DuckDB to effortlessly
execute complex SQL queries and gain valuable insights from the data.

Now that we’ve learned more about DuckDB, let’s do a step-by-step exercise to
illustrate some of the benefits. We’ll use the same book analysis query we used earlier.
First, import the libraries we need, pandas and DuckDB, as shown in Example 3-53.

Example 3-53. Importing libs in DuckDB

import duckdb
import pandas as pd

The next step is connecting to DuckDB’s in-memory database (Example 3-54).

Example 3-54. Connecting to DuckDB

con = duckdb.connect()

Let’s start by creating a fictitious pandas DataFrame to play with using DuckDB.
Execute the code in Example 3-55.

Example 3-55. Loading the data file

import pandas as pd

data = [
 {
 'Title': 'Python for Data Analysis',
 'Author': 'Wes McKinney',
 'Publisher': "O'Reilly",
 'Price': 39.99,
 'UnitsSold': 1000
 },
 {

SQL for Distributed Data Processing | 115

 'Title': 'Hands-On Machine Learning',
 'Author': 'Aurélien Géron',
 'Publisher': "O'Reilly",
 'Price': 49.99,
 'UnitsSold': 800
 },
 {
 'Title': 'Deep Learning',
 'Author': 'Ian Goodfellow',
 'Publisher': "O'Reilly",
 'Price': 59.99,
 'UnitsSold': 1200
 },
 {
 'Title': 'Data Science from Scratch',
 'Author': 'Joel Grus',
 'Publisher': "O'Reilly",
 'Price': 29.99,
 'UnitsSold': 600
 }
]

df = pd.DataFrame(data)

Now this is where we introduce DuckDB to our code. Specifically, we create a
DuckDB table from the DataFrame. This is done by registering the DataFrame
by using the connection and giving it a name (in this case, sales), as shown in
Example 3-56. This allows us to use SQL to query and manipulate the data.

Example 3-56. Creating a DuckDB table

con.register('sales', df)

With our table available to be queried, we can now perform whatever analytics tasks
are needed. For example, we could calculate total revenue for the O’Reilly books, as
seen in Example 3-57.

Example 3-57. Applying an analytics query

query_total_revenue = """
 SELECT SUM(Price * UnitsSold) AS total_revenue
 FROM sales
 WHERE Publisher = "O'Reilly"
"""
total_revenue = con.execute(query_total_revenue).fetchall()[0][0]

In case we are not interested in fetching the results but instead storing the result of
the execution as a DataFrame, we can easily call the duckdb df() function right after
the execution. Example 3-58 creates the DataFrame df_total_revenue that we can

116 | Chapter 3: SQL for Analytics

continue manipulating in pandas. This shows how smooth it is to transition between
DuckDB’s SQL interface and pandas.

Example 3-58. Calling the df() function

query_total_revenue = """
 SELECT SUM(price * unitsSold) AS total_revenue
 FROM sales
 WHERE publisher = "O'Reilly"
"""
df_total_revenue = con.execute(query_total_revenue).df()

Last but not least, we plot the results by using any available data visualization library
in Python, as shown in Example 3-59.

Example 3-59. Data visualization

Create a bar plot
plt.bar("O'Reilly", total_revenue)

Set the plot title and axis labels
plt.title("Total Revenue for O'Reilly Books")
plt.xlabel("Publisher")
plt.ylabel("Total Revenue")

Going back to pandas, it does provide a pandas.read_sql command, which allows
SQL queries to be executed over an existing database connection and then loaded
into pandas DataFrames. While this approach is suitable for lightweight operations,
it is not optimized for intensive data processing tasks. Traditional relational database
management systems (such as Postgres and MySQL), process rows sequentially,
which results in long execution times and significant CPU overhead. DuckDB, on
the other hand, was designed specifically for online analytical processing and uses a
column vectorized approach. This decision allows DuckDB to effectively parallelize
both disk I/O and query execution, resulting in significant performance gains.

Internally, DuckDB uses the Postgres SQL parser and provides full compatibility
with SQL functions with Postgres. This uses the SQL functions you are familiar
with while taking advantage of DuckDB’s efficient column processing. With its focus
on performance and efficiency, DuckDB is a compelling solution for running SQL
queries and resource-intensive data processing tasks, especially when compared to
traditional RDBMSs.

Data Manipulation with Polars
Like DuckDB, Polars also focuses on overcoming the low performance and ineffi‐
ciency of pandas when dealing with large datasets. Polars is a high-performance

SQL for Distributed Data Processing | 117

DataFrame library written entirely in Rust, and one of the key advantages is that it
does not use an index for the DataFrame. Unlike pandas, which relies on an index
that can often be redundant, Polars eliminates the need for an index, simplifying
DataFrame operations and making them more intuitive and efficient.

In addition, Polars utilizes Apache Arrow arrays for internal data representation. This
is in contrast to pandas, which uses NumPy arrays (pandas 2.0 might fix that). The
use of Arrow arrays provides significant benefits in terms of load time, memory
usage, and computation. Polars leverages this efficient data representation to handle
large datasets effortlessly and perform computations more efficiently.

Another advantage of Polars is its support for parallel operations. Written in Rust, a
language known for its focus on performance and concurrency, Polars can leverage
multithreading and run multiple operations in parallel. This enhanced parallelization
capability allows for faster and more scalable data processing tasks. Finally, it also
introduced a powerful optimization technique called lazy evaluation. When executing
a query in Polars, the library examines and optimizes the query and looks for oppor‐
tunities to accelerate execution or reduce memory usage. This optimization process
improves the overall performance of queries and enhances the efficiency of data
processing. In contrast, pandas supports only eager evaluation, where expressions are
immediately evaluated as soon as they are encountered.

Data manipulation with Polars is of great value to analytics engineers because of its
unique capabilities. Polars was designed with a strong focus on performance and
scalability, making it well suited for efficiently processing large amounts of data.
Analytics engineers working with large datasets can benefit from its memory-efficient
operations and parallel processing support, resulting in faster data transformations.
The integration of Polars with the Rust ecosystem also makes it a valuable tool for
analysts working with Rust-based data pipelines, providing compatibility and ease of
use. The query optimization capabilities, advanced data manipulation features, and
support for multiple data sources make Polars a valuable addition to our toolkits,
allowing them to tackle complex data tasks with efficiency and flexibility.

Installing Polars
To install Polars, we have several options depending on our operating system and the
type of installation we want to do, but let’s look at Example 3-60, which presents a
simple example of how to install Polars by using the pip package manager.

Example 3-60. Installing Polars

pip install polars

This will immediately make the Polar library available for us to use within our Python
context. Let’s test it by executing the code snippet in Example 3-61.

118 | Chapter 3: SQL for Analytics

Example 3-61. Polars DataFrame

import polars as pl

df = pl.DataFrame(
 {
 'Title': ['Python Crash Course', 'Hands-On Machine Learning',
 'Data Science for Business', 'Learning SQL',
 'JavaScript: The Good Parts', 'Clean Code'],
 'UnitsSold': [250, 180, 320, 150, 200, 280],
 'Publisher': ["O'Reilly", "O'Reilly", "O'Reilly", "O'Reilly",
 "O'Reilly", "O'Reilly"],
 }
)
df

We have a DataFrame with three columns: Title, UnitsSold, and Publisher. The
Title column represents the titles of various O’Reilly books. The UnitsSold column
indicates the number of units sold for each book, and the Publisher column specifies
that O’Reilly publishes all the books.

Running SQL queries with Polars
Using Polars, we can perform various operations on this DataFrame to gain insights
into O’Reilly’s book sales. Whether it’s calculating total revenue, analyzing sales by
book title or author, or identifying the top-selling books, as shown in Example 3-62,
Polars provides a versatile and efficient platform for data analysis.

Example 3-62. Polars DataFrame—top-selling books

Sort the DataFrame by UnitsSold column in descending order
top_selling_books = df.sort(by="UnitsSold", reverse=True)

Get the top-selling books' title and units sold
top_books_data = top_selling_books.select(["Title",
 "UnitsSold"]).limit(5).to_pandas()

print("Top-selling O'Reilly Books:")
print(top_books_data)

As you can see, we sort the DataFrame df based on the UnitsSold column in
descending order by using the sort method. Then, we select the top five books
using the limit method. Finally, we convert the resulting DataFrame to a pandas
DataFrame by using to_pandas() for easier printing and display.

Although this is interesting and shows the similarity to pandas in terms of syntax, we
did mention the capability of Polars to expose its functionalities as SQL. In reality,
Polars offers multiple approaches for utilizing SQL capabilities within its framework.

SQL for Distributed Data Processing | 119

Just like pandas, Polars seamlessly integrates with external libraries such as DuckDB,
allowing you to leverage their SQL functionalities. You can import data into Polars
from DuckDB or pandas, perform SQL queries on the imported data, and seamlessly
combine SQL operations with Polars DataFrame operations. This integration pro‐
vides a comprehensive data analysis and manipulation ecosystem, offering the best of
both SQL and Polars.

In Example 3-63, we create a DuckDB connection by using duckdb.connect(). Then,
we create a Polars DataFrame df with columns for Title, Author, Publisher, Price,
and UnitsSold, representing the O’Reilly books data. We register this DataFrame as
a table named books in DuckDB by using con.register(). Next, we execute a SQL
query on the books table by using con.execute(), selecting the Title and UnitsSold
columns and filtering by Publisher = "O'Reilly". The result is returned as a list of
tuples. We convert the result to a Polars DataFrame result_df with specified column
names.

Example 3-63. Polars DataFrame with DuckDB

import polars as pl
import duckdb

Create a DuckDB connection
con = duckdb.connect()

Create a Polars DataFrame with O'Reilly books data
df = pl.DataFrame({
 'Title': ['Python for Data Analysis'
 , 'Hands-On Machine Learning'
 , 'Deep Learning'
 , 'Data Science from Scratch'],
 'Author': ['Wes McKinney'
 , 'Aurélien Géron'
 , 'Ian Goodfellow'
 , 'Joel Grus'],
 'Publisher': ["O'Reilly"
 , "O'Reilly"
 , "O'Reilly"
 , "O'Reilly"],
 'Price': [39.99, 49.99, 59.99, 29.99],
 'UnitsSold': [1000, 800, 1200, 600]
})

Register the DataFrame as a table in DuckDB
con.register('books', df)

Execute a SQL query on the DuckDB table using Polars
result = con.execute("SELECT Title, UnitsSold FROM books WHERE Publisher =
 'O''Reilly'")

120 | Chapter 3: SQL for Analytics

Convert the result to a Polars DataFrame
result_df = pl.DataFrame(result, columns=['Title', 'UnitsSold'])

Print the result
print(result_df)

Close the DuckDB connection
con.close()

Polars also provides native support for executing SQL queries without relying on
external libraries. With Polars, you can write SQL queries directly within your code,
leveraging the SQL syntax to perform data transformations, aggregations, and filter‐
ing operations. This allows you to harness the power of SQL within the Polars
framework, thus providing a convenient and efficient approach to working with
structured data.

Using SQL in Polars is a simple and straightforward process. You can follow these
steps to perform SQL operations on a Polars DataFrame. First, create a SQL context
that sets up the environment for executing SQL queries. This context enables you to
work with SQL seamlessly within the Polars framework, as shown in Example 3-64.

Example 3-64. Create a SQL context

Create a Polars DataFrame with O'Reilly books data
df = pl.DataFrame({
 'Title': ['Python for Data Analysis'
 , 'Hands-On Machine Learning'
 , 'Deep Learning'
 , 'Data Science from Scratch'],
 'Author': ['Wes McKinney'
 , 'Aurélien Géron'
 , 'Ian Goodfellow'
 , 'Joel Grus'],
 'Publisher': ["O'Reilly"
 , "O'Reilly"
 , "O'Reilly"
 , "O'Reilly"],
 'Price': [39.99, 49.99, 59.99, 29.99],
 'UnitsSold': [1000, 800, 1200, 600]
})

Create the SQL Context
sql = pl.SQLContext()

Example 3-65 demonstrates the next step: registering the DataFrame you want to
query.

SQL for Distributed Data Processing | 121

Example 3-65. Register the DataFrame

Register the DataFrame in the context
sql.register('df', df)

By providing a name for the DataFrame, you establish a reference point for your
SQL queries. This registration step ensures that the DataFrame is associated with a
recognizable identifier.

Once the DataFrame is registered, you can execute SQL queries on it by using the
query() function provided by Polars. This function takes the SQL query as input
and returns a Polars DataFrame as the result. This DataFrame contains the data that
matches the criteria specified in the SQL query. Let’s take a look at Example 3-66.

Example 3-66. Run analytics queries

Run your SQL query
result_df = sql.execute(
 """
 select
 *
 from df
 where Title = 'Python for Data Analysis'
 """
).collect()

By integrating SQL with Polars, data professionals with deep SQL knowledge can
easily leverage the power and efficiency of Polars. They can leverage their existing
SQL skills and apply them directly to their data analysis and manipulation tasks
within the Polars framework. This seamless integration allows users to take advantage
of the library’s optimized query execution engine while using the familiar SQL syntax
they are used to.

Data Manipulation with FugueSQL
Fugue is a powerful unified interface for distributed computing that allows users to
seamlessly run Python, pandas, and SQL code on popular distributed frameworks
like Spark, Dask, and Ray. With Fugue, users can realize the full potential of these
distributed systems with minimal code changes.

The main use cases for Fugue revolve around parallelizing and scaling existing
Python and pandas code to run effortlessly across distributed frameworks. By seam‐
lessly transitioning code to Spark, Dask, or Ray, users can take advantage of these
systems’ scalability and performance benefits without having to rewrite extensive
code.

122 | Chapter 3: SQL for Analytics

Relevant to our discussion is the fact that Fugue provides a unique feature called
FugueSQL that allows users to define end-to-end workflows on pandas, Spark, and
Dask DataFrames through an advanced SQL interface. It combines familiar SQL
syntax with the ability to call Python code. This gives users a powerful tool to
streamline and automate their data processing workflows.

FugueSQL offers a variety of benefits that can be leveraged in multiple scenarios,
including parallel code execution as part of the overall goals of the Fugue project or
standalone querying on a single machine. Whether we are working with distributed
systems or performing data analysis on a local machine, it allows us to efficiently
query our DataFrames.

Installing Fugue and FugueSQL
We have several options to install Fugue, depending on our operating system and
type of installation. Example 3-67 uses pip install.

Example 3-67. Install Fugue

pip install fugue

Fugue offers various installation extras that enhance its functionality and support
different execution engines and data processing libraries. These installation extras
include the following:

sql

This extra enables FugueSQL support. While the non-SQL functionalities of
Fugue still work without this extra, installing it is necessary if you intend to use
FugueSQL. To achieve that, execute the code snippet in Example 3-68.

Example 3-68. Install FugueSQL

pip install "fugue[sql]"

spark

Installing this extra adds support for Spark as the ExecutionEngine in Fugue.
With this extra, users can leverage the capabilities of Spark to execute their Fugue
workflows. To add this extra, run the code in Example 3-69.

Example 3-69. Install FugueSpark

pip install "fugue[spark]"

SQL for Distributed Data Processing | 123

dask

This extra enables support for Dask as the ExecutionEngine in Fugue. By instal‐
ling this extra, users can take advantage of Dask’s distributed computing capabili‐
ties within the Fugue framework.

ray

Installing this extra adds support for Ray as the ExecutionEngine in Fugue. With
this extra, users can leverage Ray’s efficient task scheduling and parallel execution
capabilities in their Fugue workflows.

duckdb

This extra enables support for DuckDB as the ExecutionEngine in Fugue. By
installing this extra, users can utilize DuckDB’s blazing fast in-memory database
for efficient query execution within the Fugue framework.

polars

Installing this extra provides support for Polars DataFrames and extensions using
the Polars library. With this extra, users can leverage the features and functionali‐
ties of Polars for data processing within Fugue.

ibis

Enabling this extra allows users to integrate Ibis into Fugue workflows. Ibis
provides an expressive and powerful interface for working with SQL-like queries,
and by installing this extra, users can incorporate Ibis functionality into their
Fugue workflows.

cpp_sql_parser

Enabling this extra utilizes the CPP (C++) antlr parser for Fugue SQL, which
offers significantly faster parsing compared to the pure Python parser. While
prebuilt binaries are available for the main Python versions and platforms, this
extra may require a C++ compiler to build on-the-fly for other platforms.

We can actually install several of the previous extras in a single pip install com‐
mand. In Example 3-70, we install duckdb, polars, and spark extras with Fugue in a
single command.

Example 3-70. Install multiple Fugue extras

pip install "fugue[duckdb,spark,polars]"

Another interesting extra relates to notebooks. FugueSQL has a notebook extension
for both Jupyter Notebooks and JupyterLab. This extension provides syntax high‐
lighting. We can run another pip install to install the extension (Example 3-71).

124 | Chapter 3: SQL for Analytics

Example 3-71. Install the notebook extension

pip install fugue-jupyter

fugue-jupyter install startup

The second command, fugue-jupyter install startup, registers Fugue in the
startup script of Jupyter so that it is available for you whenever you open Jupyter
Notebooks or JupyterLab.

If you have installed Fugue and use JupyterLab, the %%fsql cell magic is automatically
registered by default. This means you can use cell magic directly in your JupyterLab
environment without any additional steps. However, if you are using Classic Jupyter
Notebooks or the %%fsql cell magic is not registered, you can enable it by using the
command in Example 3-72 in your notebook.

Example 3-72. Enable notebooks extensions

from fugue_notebook import setup
setup(is_lab=True)

Running SQL queries with FugueSQL
FugueSQL is designed specifically for SQL users who want to work with Python
DataFrames such as pandas, Spark, and Dask. FugueSQL provides a SQL interface
that parses and runs on the underlying engine of your choice. This is especially
beneficial for data scientists and analysts who prefer to focus on defining logic and
data transformations rather than dealing with execution complexity.

But it is also tailored to the needs of SQL enthusiasts, giving them the ability to
define end-to-end workflows with SQL across popular data processing engines such
as pandas, Spark, and Dask. This way, SQL enthusiasts can leverage their SQL skills
and easily orchestrate complex data pipelines without switching between different
tools or languages.

Fugue offers a practical solution for data scientists who work primarily with pandas
and want to leverage the capabilities of Spark or Dask to process large datasets. Using
Fugue, they can effortlessly scale their pandas code and seamlessly transition to Spark
or Dask, realizing the potential of distributed computing with minimal effort. For
example, if someone uses FugueSQL with Spark, the framework will use SparkSQL
and PySpark to execute the queries. Even though FugueSQL supports nonstandard
SQL commands, it is important to emphasize that Fugue remains fully compatible
with standard SQL syntax. This compatibility ensures that SQL users can seamlessly
switch to Fugue and leverage their existing SQL knowledge and skills without major
customizations or complications.

SQL for Distributed Data Processing | 125

Finally, Fugue is proving to be a valuable asset for data teams working on Big Data
projects that often face code maintenance issues. By adopting Fugue, these teams
can benefit from a unified interface that simplifies the execution of code across dis‐
tributed computing platforms, ensuring consistency, efficiency, and maintainability
throughout the development process.

Example 3-73 shows an end-to-end example using FugueSQL.

Example 3-73. FugueSQL full example

import pandas as pd
from pyspark.sql import SparkSession
from fugue.api import fugue_sql_flow

data = [
 {
 'Title': 'Python for Data Analysis',
 'Author': 'Wes McKinney',
 'Publisher': "OReilly",
 'Price': 39.99,
 'UnitsSold': 1000
 },
 {
 'Title': 'Hands-On Machine Learning',
 'Author': 'Aurélien Géron',
 'Publisher': "OReilly",
 'Price': 49.99,
 'UnitsSold': 800
 },
 {
 'Title': 'Deep Learning',
 'Author': 'Ian Goodfellow',
 'Publisher': "OReilly",
 'Price': 59.99,
 'UnitsSold': 1200
 },
 {
 'Title': 'Data Science from Scratch',
 'Author': 'Joel Grus',
 'Publisher': "OReilly",
 'Price': 29.99,
 'UnitsSold': 600
 }
]

Save the data as parquet
df = pd.DataFrame(data)
df.to_parquet("/tmp/df.parquet")

Fugue with pandas Engine
import fugue.api as fa

126 | Chapter 3: SQL for Analytics

query = """
LOAD "/tmp/df.parquet"

SELECT Author, COUNT(Title) AS NbBooks
 GROUP BY Author
 PRINT
"""

pandas_df = fa.fugue_sql(query, engine="pandas")

Fugue with Spark Engine
import fugue.api as fa

query = """
LOAD "/tmp/df.parquet"

SELECT Author, COUNT(Title) AS NbBooks
 GROUP BY Author
 PRINT
"""

spark_df = fa.fugue_sql(query, engine="spark")

Fugue with DuckDB
import fugue.api as fa
import duckdb

query = """
df = LOAD "/tmp/df.parquet"

res = SELECT *
 FROM df
 WHERE Author = 'Wes McKinney'

SAVE res OVERWRITE "/tmp/df2.parquet"
"""

fa.fugue_sql(query, engine="duckdb")

with duckdb.connect() as conn:
 df2 = conn.execute("SELECT * FROM '/tmp/df2.parquet'").fetchdf()
 print(df2.head())

This example creates a FugueSQLWorkflow instance. We register the pandas Data‐
Frame df as a table by using the workflow.df() method. Then, we write SQL queries
within the workflow.run() method to perform various operations on the data. This
FugueSQLWorkflow is a class provided by the Fugue library that serves as the entry
point for executing FugueSQL code. It allows us to define and execute SQL queries

SQL for Distributed Data Processing | 127

on various data sources, as mentioned before, without the need for explicit data
transformations or handling the underlying execution engines.

The example demonstrates three queries:

• Calculating the total revenue for O’Reilly books•
• Calculating the average price of O’Reilly books•
• Retrieving the top-selling O’Reilly books•

The results are stored in the result object, and we can access the data by using the
first() and collect() methods.

Finally, we print the results to the console. Note that we use two single quotes ('') to
escape the single quote within the SQL queries for the Publisher name "O'Reilly" to
ensure proper syntax.

One might wonder if FugueSQL is an alternative to or an evolution of pandas,
which has pandasql. We would argue that while pandasql supports only SQLite as
a backend, FugueSQL supports multiple local backends, such as pandas, DuckDB,
Spark, and SQLite. When using FugueSQL with the pandas backend, SQL queries
are directly translated into pandas operations, eliminating the need for data transfer.
Similarly, DuckDB has excellent pandas support, resulting in minimal overhead for
data transfer. Therefore, both pandas and DuckDB are recommended backends for
local data processing in FugueSQL. All in all, FugueSQL is a great framework to take
advantage of SQL syntax, with added capabilities for distributed processing and data
manipulation at scale.

In general, Fugue, DuckDB, and pandas are powerful tools that offer efficient data
processing capabilities. However, regardless of the technology used, it is crucial
to recognize that proper data modeling is fundamental for successful scalability.
Without a well-designed data model, any system will struggle to handle large-scale
data processing efficiently.

The foundation of a robust data model ensures that data is structured, organized,
and optimized for analysis and manipulation. By understanding the relationships
between data entities, defining appropriate data types, and establishing efficient
indexing strategies, we can create a scalable architecture that maximizes performance
and enables seamless data operations across platforms and tools. Therefore, while
Fugue, DuckDB, and pandas contribute to efficient data processing, the importance
of proper data modeling cannot be overstated for achieving scalability. That is also
one of the main reasons we covered data modeling in Chapter 2.

128 | Chapter 3: SQL for Analytics

Bonus: Training Machine Learning Models with SQL
This header might make you feel that we are pushing the limits with SQL-like
capabilities, but the reality is that thanks to a very specific library, dask-sql, it is
possible to use the Python machine learning ecosystem in SQL.

Dask-sql is a recently developed SQL query engine, in the experimental phase, that
builds upon the Python-based Dask distributed library. It offers the unique capability
to seamlessly integrate Python and SQL, which gives users the ability to perform dis‐
tributed and scalable computations. This innovative library opens up opportunities to
leverage the strengths of both Python and SQL for data analysis and processing.

We can run a pip install to install the extension, as shown in Example 3-74.

Example 3-74. Install dask-sql

pip install dask-sql

In Example 3-75, we are creating an instance of a Context class with the line c =
Context(). With it, we are initializing a new execution context for SQL queries.
This context can be used to execute SQL queries against our data and perform
operations like filtering, aggregating, and joining, but it can also apply a special type
of command provided by Dask to train and test machine learning models.

Example 3-75. Import the context from dask_sql

from dask_sql import Context

c = Context()

We now have all the tools to load a dataset to work with. In Example 3-76, we use the
read_csv() function from Dask and employ it to read the Iris dataset. Once the data
is loaded, we can access and manipulate the data as a Dask DataFrame.

The next step is registering the loaded Dask DataFrame (df) as a table named iris
in the dask-sql Context. The create_table method of the Context class is used to
register the table. Once this step is completed, we are able to query the data by using
SQL syntax.

Example 3-76. Load the data as a Dask DataFrame and register it as a table

Load data: Download the iris dataset
df = dd.read_csv('https://datahub.io/machine-learning/iris/r/iris.csv')

Register a Dask table
c.create_table("iris", df)

Bonus: Training Machine Learning Models with SQL | 129

https://oreil.ly/vt4-s

Let’s run a simple select using the sql() function of our dask-sql Context object, in
Example 3-77, and write our SQL query as a parameter.

Example 3-77. Access the dask-sql table

Test accessing the data
c.sql("""
 select * from iris
""")

With the data ready, we can now use the training components to train a machine
learning model. For that, we start by using the CREATE OR REPLACE MODEL statement,
which is a dask-sql extension that allows you to define and train machine learning
models within a SQL context.

In this case, the clustering model is named clustering, and the model is created
using the KMeans algorithm from the scikit-learn library, which is a popular unsuper‐
vised learning algorithm for clustering data points. Interestingly enough, dask-sql
allows us to use model classes from third-party libraries such as scikit-learn. The
n_clusters parameter is set to 3, indicating that the algorithm should identify three
clusters in the data.

In Example 3-78, we show that the training data for the model is obtained from the
iris table registered in the c context. The SELECT statement specifies the features
used for training, which include the sepallength, sepalwidth, petallength, and
petalwidth columns from the iris table.

Example 3-78. Create our clustering model

Train: Create our clustering model using sklearn.cluster.KMeans algorithm
c.sql("""
 CREATE OR REPLACE MODEL clustering WITH (
 model_class = 'sklearn.cluster.KMeans',
 wrap_predict = True,
 n_clusters = 3
) AS (
 SELECT sepallength, sepalwidth, petallength, petalwidth
 FROM iris
)
""")

130 | Chapter 3: SQL for Analytics

We can now validate that our model was actually created by running a SHOW MODELS
command (Example 3-79), which resembles the often-used SHOW TABLES from tradi‐
tional SQL engines. While the latter shows all tables in a certain schema of a database,
the former lists all models created and available to be used in a dask-sql context.

Example 3-79. Show the list of models

Show the list of models which are trained and stored in the context.
c.sql("""
 SHOW MODELS
""")

Another interesting command is DESCRIBE MODEL MODEL_NAME (Example 3-80),
which shows all the hyperparameters used to train this model.

Example 3-80. Get all hyperparameters of a certain model

To get the hyperparameters of the trained MODEL
c.sql("""
 DESCRIBE MODEL clustering
""")

In Example 3-81, we demonstrate one of the most captivating commands within
dask-sql—the PREDICT command. It uses the recently created clustering model to
predict the cluster classes for the rows of the df DataFrame. The SELECT statement
with PREDICT applies trained machine learning models to new data points from a
certain table, within a SQL context.

In this case, the PREDICT command is used to apply the clustering model to the
first 100 rows of the iris table. The MODEL clause specifies the name of the model to
be used, which is clustering. The SELECT statement within the PREDICT command
specifies the features to be used for prediction, which are the same features used
during the model training step, as demonstrated in Example 3-81.

Example 3-81. Make predictions

''' Predict: Test the recently created model by applying
the predictions to the rows of the df—
in this case assign each observation to a cluster'''
c.sql("""
 SELECT * FROM PREDICT (
 MODEL clustering,
 SELECT sepallength, sepalwidth, petallength, petalwidth FROM iris
 LIMIT 100
)
""")

Bonus: Training Machine Learning Models with SQL | 131

Another interesting capability of dask-sql is its experiments component. It runs an
experiment to attempt different hyperparameter values for the clustering model by
using the CREATE EXPERIMENT statement.

In Example 3-82, the experiment is named first_experiment. It uses the Grid
SearchCV class from scikit-learn, which is a popular technique for hyperparameter
tuning. The hyperparameter being tuned in this case is the number of clusters
(n_clusters), and this is only for showing the capability. The tune_parameters
parameter specifies the range of values to try for the n_clusters hyperparameter. In
this example, the experiment will try three values (2, 3, and 4), meaning the number
of clusters we expect to obtain.

In a real-world scenario of a machine learning project, we should focus on selecting
the most relevant hyperparameters of our model. This depends on the problem being
a classification or regression task and the types of algorithms used.

Example 3-82. Hyperparameter tuning

Hyperparameter tuning: Run an experiment to try different parameters
c.sql("""
 CREATE EXPERIMENT first_experiment WITH (
 model_class = 'sklearn.cluster.KMeans',
 experiment_class = 'GridSearchCV',
 tune_parameters = (n_clusters = ARRAY [2, 3, 4]),
 experiment_kwargs = (n_jobs = -1),
 target_column = 'target'
) AS (
 SELECT sepallength, sepalwidth, petallength, petalwidth, class AS target
 FROM iris
 LIMIT 100
)
""")

Last but not least, we have an EXPORT MODEL statement, as seen in Example 3-83. In
this case, the model is exported in the pickle format by using the format parameter
set to pickle. Pickle is a Python-specific binary serialization format that allows you
to save and load Python objects.

The location parameter specifies the path and filename where the exported model
file should be saved. In this example, the model is saved in the current directory with
the filename clustering.pkl.

Example 3-83. Export the model as a pickle file

Export the model: Export as a pickle file to be used in other contexts
c.sql("""
 -- for pickle model serialization

132 | Chapter 3: SQL for Analytics

 EXPORT MODEL clustering WITH (
 format ='pickle',
 location = './clustering.pkl'
)
""")

Overall, dask-sql is a powerful and promising tool for machine learning purposes,
offering a SQL interface for data manipulation and machine learning operations
on large datasets. With dask-sql, we can leverage the familiar SQL syntax to query
and transform data, as well as train and evaluate machine learning models by using
popular libraries like scikit-learn. It allows us to register data tables, apply SQL queries
for data preprocessing, and create and train machine learning models within a SQL
context.

However, we must highlight that dask-sql is still in an experimental phase, and
although it’s a fascinating tool for SQL lovers who want to explore the machine
learning space, it must be used with caution as it grows and matures.

Summary
As we conclude this chapter, let’s consider the significant journey of databases and
SQL and their undeniable influence on our past and future. SQL remains a reliable
and steadfast component in the constantly advancing data landscape, combining
proven techniques with modern analytical insights, and thus ensuring an optimistic
future.

Our exploration has shown that from clear table structures to sophisticated models
that cater to pressing business requirements, SQL’s significance continues to endure,
with databases experiencing ongoing innovation.

However, it is worth acknowledging that the effectiveness of these tools depends on
the skill of those using them. Ongoing education and flexibility are crucial for ana‐
lytics engineers. SQL, database management, and data analysis fields are constantly
evolving. To succeed, we must stay updated, maintain inquisitiveness, and face chal‐
lenges confidently.

As the data landscape continues to expand rapidly, the distinctions among roles in
data engineering, analysis, and data science are becoming more pronounced. While
there are certainly areas where these roles overlap and blend, data’s sheer volume
and complexity drive the need for specialized skills and expertise. This chapter’s
conclusion is a reminder that the field of analytics engineering is both extensive
and captivating. In every query and database, there lies a fresh opportunity for
exploration and innovation, driven by the growing demand for specialized roles to
navigate the complexities of today’s data landscape.

Summary | 133

CHAPTER 4

Data Transformation with dbt

The primary purpose of dbt is to help you transform the data of your data platforms
in an easy and integrated way by simply writing SQL statements. When we place
dbt in an ELT workflow, it matches the activities during the transformation stage,
providing you with additional components—such as version control, documentation,
tests, or automated deployment—that simplify the overall work of a data specialist.
Does this remind you of the actual activities of an analytics engineer? Well, that’s
because dbt is one of the modern tools that defines what analytics engineers do,
giving them the instruments integrated with the platform, which reduces the need
to set up additional services to answer specific problems and decreases the overall
system complexity.

dbt supports the tasks described for an analytics engineer, empowering them to run
the code in their data platform collaboratively for a single source of truth for metrics
and business definitions. It promotes central and modular analytics code, leveraging
DRY code with Jinja templating language, macros, or packages. In parallel, dbt also
provides the security that we typically find in software engineering best practices,
such as collaborate on data models, version them, and test and document your queries
before safely deploying them to production, with monitoring and visibility.

We’ve provided a thorough introduction to dbt. However, within this chapter, we will
delve even deeper into the specifics of dbt and clarify its importance in the world of
data analytics. We will discuss the dbt design philosophy, the principles behind this
transformation tool, and the data lifecycle with dbt at its core, presenting how dbt
transforms raw data into structured models for easy consumption. We will explore
the dbt project structure by outlining its various features, such as building models,
documentation, and tests, as well as detailing other dbt artifacts, such as YAML files.
By the end of this chapter, you will have a comprehensive understanding of dbt and

135

its capabilities, which will enable you to implement it effectively in your data analytics
workflow.

dbt Design Philosophy
As data engineering and analytics workflows become increasingly complex, tools that
streamline the process while maintaining data quality and reliability are essential. dbt
has emerged as a concentrated solution with a well-defined design philosophy that
underpins its approach to data modeling and analytics engineering.

In summary, dbt design philosophy relies on the following points:

Code-centric approach
At the core of dbt’s design philosophy is a code-centric approach to data model‐
ing and transformation. Instead of relying on GUI-based interfaces or manual
SQL scripts, dbt encourages users to define data transformations using code. This
shift to code-driven development promotes collaboration, version control, and
automation.

Modularity for reusability
dbt promotes modularity, allowing data practitioners to create reusable code
components. Models, macros, and tests can be organized into packages, which
facilitates code maintenance and scalability. This modular approach aligns with
best practices and enhances code reusability.

Transformations as SQL SELECT statements
dbt models are defined as SQL SELECT statements, making them accessible to
analysts and engineers with SQL skills. This design choice simplifies develop‐
ment and ensures that data modeling closely follows SQL best practices.

Declarative language
dbt uses a declarative language for defining data transformations. Analysts spec‐
ify the desired outcome, and dbt handles the underlying implementation. This
abstraction reduces the complexity of writing complex SQL code and enhances
readability.

Incremental builds
Efficiency is a key focus of dbt’s design. It supports incremental builds, which
allows data engineers to update only the affected pieces of the data pipeline rather
than reprocessing the entire dataset. This accelerates development and reduces
processing time.

136 | Chapter 4: Data Transformation with dbt

Documentation as code
dbt advocates for documenting data models and transformations as code.
Descriptions, explanations, and metadata are stored alongside the project code,
making it easier for team members to understand and collaborate effectively.

Data quality, testing, and validation
dbt places a significant emphasis on data testing. It provides a testing framework
that enables analysts to define data quality checks and validation rules. This
includes data reliability and quality throughout the pipeline, thus ensuring that
data meets predefined criteria and adheres to business rules.

Version control integration
Seamless integration with version control systems like Git is a fundamental
aspect of dbt. This feature enables collaborative development, change tracking,
and the ability to roll back changes, ensuring that data pipelines remain under
version control.

Native integration with data platforms
dbt is designed to work seamlessly with popular data platforms such as Snow‐
flake, BigQuery, and Redshift. It leverages the native capabilities of these plat‐
forms for scalability and performance.

Open source and extensible
dbt is an open source tool with a thriving community. Users can extend its
functionality by creating custom macros and packages. This extensibility allows
organizations to tailor dbt to their specific data needs.

Separation of transformation and loading
dbt separates the transformation and loading steps in the data pipeline. Data is
transformed within dbt and then loaded into the data platform.

In essence, dbt’s design philosophy is rooted in creating a collaborative, code-centric,
and modular environment for data engineers, analysts, and data scientists to effi‐
ciently transform data, ensure data quality, and generate valuable insights. dbt
empowers organizations to harness the full potential of their data by simplifying
the complexities of data modeling and analytics engineering.

dbt Design Philosophy | 137

dbt Data Flow
Figure 4-1 shows the big picture of a data flow. It identifies where dbt and its features
fit in the overall data landscape.

Figure 4-1. Typical data flow with dbt that helps you transform your data from Big‐
Query, Snowflake, Databricks, and Redshift, among others (see the dbt documentation
for supported data platforms)

As mentioned, the primary purpose of dbt is to help you transform the data of your
data platforms, and for that, dbt offers two tools for achieving that goal:

• dbt Cloud•
• dbt Core, an open source CLI tool, maintained by dbt Labs, that you can set up•

on your managed environments or run locally

Let’s look at an example to see how dbt works in real life and what it can do. Imagine
that we are working on a pipeline that periodically extracts data from a data platform
such as BigQuery. Then, it transforms the data by combining tables (Figure 4-2).

We’ll combine the first two tables into one, applying several transformation tech‐
niques, such as data cleaning or consolidation. This phase takes place in dbt, so we’ll
need to create a dbt project to accomplish this merge. We will get there, but let’s first
get familiar with dbt Cloud and how to set up our working environment.

For this book, we will use dbt Cloud to write our code since it is the
fastest and most reliable way to start with dbt, from development
to writing tests, scheduling, deployments, and investigating data
models. Also, dbt Cloud runs on top of dbt Core, so while we work
on dbt Cloud, we will become familiar with the same commands
used in dbt Core’s CLI tool.

138 | Chapter 4: Data Transformation with dbt

https://oreil.ly/9b8dG
https://oreil.ly/9b8dG

Figure 4-2. Data pipeline use case with dbt

dbt Cloud
dbt Cloud is a cloud-based version of dbt that offers a wide range of features and
services to write and productize your analytics code. dbt Cloud allows you to sched‐
ule your dbt jobs, monitor their progress, and view logs and metrics in real time.
dbt Cloud also provides advanced collaboration features, including version control,
testing, and documentation. Moreover, dbt Cloud integrates with various cloud data
warehouses, such as Snowflake, BigQuery, and Redshift, which allows you to easily
transform your data.

You can use dbt Core with the majority of the stated features, but it will require
configuration and setup on your infrastructure, similar to running your own server
or an Amazon Elastic Compute Cloud (EC2) instance for tools like Airflow. This
means you’ll need to maintain and manage it autonomously, similar to managing a
virtual machine (VM) on EC2.

dbt Cloud | 139

In contrast, dbt Cloud operates like a managed service, similar to Amazon Managed
Workflows for Apache Airflow (MWAA). It offers convenience and ease of use, as
many operational aspects are handled for you, allowing you to focus more on your
analytics tasks and less on infrastructure management.

Setting Up dbt Cloud with BigQuery and GitHub
There is nothing better than learning a specific technology by practicing it, so let’s set
up the environment we will use to apply our knowledge. To start, let’s first register for
a dbt account.

After registering, we will land on the Complete Project Setup page (Figure 4-3).

Figure 4-3. dbt landing page to complete the project setup

This page has multiple sections to properly configure our dbt project, including
connections to our desired data platform and to our code repository. We will use
BigQuery as the data platform and GitHub to store our code.

The first step in BigQuery is to set up a new project. In GCP, search for Create a
Project in the search bar and click it (Figure 4-4).

140 | Chapter 4: Data Transformation with dbt

https://oreil.ly/OGGji
https://oreil.ly/EQBXK

Figure 4-4. BigQuery project setup, step 1

A screen similar to Figure 4-5 is presented, where you can set up the project. We’ve
named it dbt-analytics-engineer.

Figure 4-5. BigQuery project setup, step 2

dbt Cloud | 141

After configuration, go into your BigQuery IDE—you can use the search bar again. It
should look similar to Figure 4-6.

Figure 4-6. BigQuery IDE

Finally, test the dbt public dataset to ensure that BigQuery is working correctly. For
that, copy the code in Example 4-1 into BigQuery and then click Run.

Example 4-1. dbt public datasets in BigQuery

select * from `dbt-tutorial.jaffle_shop.customers`;
select * from `dbt-tutorial.jaffle_shop.orders`;
select * from `dbt-tutorial.stripe.payment`;

If you see the page in Figure 4-7, then you did it!

Since we’ve executed three queries simultaneously, we won’t see the
output results. For that, click View Results to inspect the query
output individually.

142 | Chapter 4: Data Transformation with dbt

Figure 4-7. BigQuery dataset output

Now let’s connect dbt with BigQuery and execute these queries inside the dbt IDE.
To let dbt connect to your data platform, you’ll need to generate a keyfile, similar to
using a database username and password in most other data platforms.

Go to the BigQuery console. Before proceeding with the next steps, make sure you
select the new project in the header. If you do not see your account or project,
click your profile picture to the right and verify that you are using the correct email
account:

1. Go to IAM & Admin and select Service Accounts.1.
2. Click Create Service Account.2.
3. In the name field, type dbt-user and then click Create and Continue.3.
4. On “Grant this service account access to project” select BigQuery Admin in the4.

role field. Click Continue.
5. Leave fields blank in the “Grant users access to this service account” section and5.

click Done.

dbt Cloud | 143

https://oreil.ly/EQBXK

The screen should look like Figure 4-8.

Figure 4-8. BigQuery Service Accounts screen

Moving on, proceed with the remaining steps:

6. Click the service account that you just created.6.
7. Select Keys.7.
8. Click Add Key; then select “Create new key.”8.
9. Select JSON as the key type; then click Create.9.

10. You should be prompted to download the JSON file. Save it locally to an easy-10.
to-remember spot with a clear filename—for example, dbt-analytics-engineer-
keys.json.

Now let’s get back into the dbt Cloud for the final setup:

11. On the project setup screen, give a more verbose name to your project. In our11.
case, we chose dbt-analytics-engineer.

12. On the “Choose a warehouse” screen, click the BigQuery icon and Next.12.
13. Upload the JSON file generated previously. To do this, click the “Upload a Service13.

Account JSON file” button, visible in Figure 4-9.

Last but not least, after you upload the file, apply the remaining step:

14. Go to the bottom and click “test.” If you see “Your test completed successfully,” as14.
Figure 4-10 shows, you’re good to go! Now click Next. On the other hand, if the
test fails, there’s a good chance you’ve encountered an issue with your BigQuery
credentials. Try to regenerate them again.

144 | Chapter 4: Data Transformation with dbt

Figure 4-9. dbt Cloud, submit BigQuery Service Account screen

Figure 4-10. dbt and BigQuery connection test

dbt Cloud | 145

The final step is setting up GitHub, but first, let’s understand what we are discussing
here. GitHub is a popular version control platform that hosts Git repositories that
allow you to track changes in your code and collaborate with others effectively. To
correctly use Git, sticking to these principles and best practices is essential:

Commit often, commit early
Make frequent commits, even for small changes. This helps in tracking your pro‐
gress and simplifies debugging. Each commit should represent a logical change
or feature.

Use meaningful commit messages
Write concise and descriptive commit messages. A good commit message should
explain what was changed and why it was changed.

Follow a branching strategy
Use branches for different features, bug fixes, or development tasks.

Pull before push
Always pull the latest changes from the remote repository (e.g., git pull) before
pushing your changes. This reduces conflicts and ensures that your changes are
based on the latest code.

Review code before committing
If your team practices code reviews, make sure to review and test your changes
before committing. It helps maintain code quality.

Use .gitignore
Create a .gitignore file to specify files and directories that should be excluded
from version control (e.g., build artifacts, temporary files).

Use atomic commits
Keep commits focused on a single, specific change. Avoid mixing unrelated
changes in the same commit.

Rebase instead of merge
Use git rebase to integrate changes from a feature branch into the main branch
instead of traditional merging. This results in a cleaner commit history.

Keep commit history clean
Avoid committing “work in progress” or debugging statements. Use tools like git
stash to temporarily save unfinished work.

Use tags
Create tags, such as version tags, to mark important points in your project’s
history, like releases or major milestones.

146 | Chapter 4: Data Transformation with dbt

Collaborate and communicate
Communicate with your team about Git workflows and conventions. Establish
guidelines for handling issues, pull requests, and conflict resolution.

Know how to undo changes
Learn how to revert commits (git revert), reset branches (git reset), and
recover lost work (git reflog) when needed.

Document
Document your project’s Git workflow and conventions in a README or contri‐
buting guidelines to effectively onboard new team members.

Use backup and remote repositories
Regularly back up your Git repositories and use remote repositories like GitHub
for collaboration and redundancy.

Continue learning
Git is a great tool with many features. Keep learning and exploring advanced Git
concepts like cherry-picking, interactive rebasing, and custom hooks to improve
your workflow.

To better understand in practice some of the common Git terms and commands, let’s
have a look at Table 4-1.

Table 4-1. Git terms and commands

Term/command Definition Git command (if applicable)
Repository (repo) This is similar to a project folder and contains all the files, history,

and branches of your project.
-

Branch A branch is a separate line of development. It allows you to work
on new features or fixes without affecting the main codebase.

git branch <branch_name>

Pull request (PR) A pull request is a proposed change that you want to merge
into the main branch. It’s a way to collaborate and review code
changes with your team.

-

Stash git stash is a command that temporarily saves changes you
have made in your working directory but do not want to commit
yet.

git stash save "Your
stash message here"

Commit A commit is a snapshot of your code at a specific point in time. It
represents a set of changes you’ve made to your files.

git commit -m "Commit
message here"

Add git add is used to stage changes for the next commit. When
you modify your files, Git doesn’t automatically include them in
the next commit. You need to explicitly tell Git which changes to
include.

To stage all changes, the git
command is git add ., but you
also specify a file or directory: git
add <path/to/directory/>

Fork Forking a repository means creating your copy of someone
else’s project on GitHub. You can make changes to your forked
repository without affecting the original.

-

dbt Cloud | 147

Term/command Definition Git command (if applicable)
Clone Cloning a repository means making a local copy of a remote

repository. You can work on your code locally and push changes to
the remote repository.

git clone <reposi
tory_url>

Push git push uploads your local changes to a remote repository. git push <origin
branch_name>

Pull git pull updates your local repository with changes from a
remote repository.

git pull

Status git status shows the current state of your working directory
and staging area.

git status

Log git log displays a chronological list of commits in the
repository and commits messages, authors, and commit IDs.

git log

Diff The gitdiff command shows the differences between two sets
of code.

git diff

Merge The git merge command combines changes from one branch
with another.

git checkout <tar
get_branch> or git merge
<source_branch>

Rebase Rebase allows you to move or combine a sequence of commits to
a new base commit.

git rebase base_branch

Checkout The checkout command is used for switching between
branches or commits.

git checkout
<branch_name>

These Git commands and terms provide the foundation for version control in your
projects. Nevertheless, Git commands often have many additional arguments and
options, allowing for fine-tuned control over your version control tasks. While we’ve
covered some essential commands here, it’s essential to note that Git’s versatility
extends far beyond what we’ve outlined.

For a more comprehensive list of Git commands and the diverse array of arguments
they can accept, we recommend referring to the official Git documentation.

Now that you understand what Git and GitHub are and their role within the project,
let’s establish a connection to GitHub. For that, you need to do the following:

1. Register for a GitHub account if you don’t already have one.1.
2. Click New to create a new repository, which is where you will version your2.

analytics code. On the “Create a new repository screen,” give your repository a
name; then click “Create repository.”

148 | Chapter 4: Data Transformation with dbt

https://oreil.ly/kmUcc

3. With the repository created, let’s get back to dbt. In the Setup a Repository3.
section, select GitHub and then connect the GitHub account.

4. Click Configure GitHub Integration to open a new window where you can select4.
the location to install the dbt Cloud. Then choose the repository you want to
install.

Now click “Start developing in the IDE.” Figure 4-11 is what you should expect to see.

Figure 4-11. dbt IDE

We will give an overview of the dbt Cloud Integrated Development Environment
(IDE) in “Using the dbt Cloud IDE” on page 163 and cover it in more detail in
“Structure of a dbt Project” on page 165.

Click “Initialize dbt project” on the top left. Now, you should be able to see the screen
as it looks in Figure 4-12.

dbt Cloud | 149

Figure 4-12. dbt after project initialization

We will detail each folder and file in “Structure of a dbt Project” on page 165. For
now, let’s see if the queries work. Run them again by copying the Example 4-2 code
and click Preview.

Example 4-2. dbt public datasets in BigQuery, dbt test

--select * from `dbt-tutorial.jaffle_shop.customers`;
--select * from `dbt-tutorial.jaffle_shop.orders`;
select * from `dbt-tutorial.stripe.payment`;

If the output looks similar to Figure 4-13, that means your connection works. You
can then submit queries to your data platform, which in our case is BigQuery.

The steps provided here are part of the documentation for the
BigQuery adapter in dbt. As technologies evolve and improve,
these steps and configurations may also change. To ensure that
you have the most up-to-date information, refer to the latest dbt
documentation for BigQuery. This resource will provide you with
the most current guidance and instructions for working with dbt
and BigQuery.

150 | Chapter 4: Data Transformation with dbt

https://oreil.ly/og-M8
https://oreil.ly/og-M8

Figure 4-13. dbt output of BigQuery public dataset

Finally, let’s test whether your GitHub integration is working as expected by carrying
out your first “Commit and push.” Click the button with the same description, visible
in Figure 4-14, at the left. A popup screen, the image to the right in Figure 4-14, will
appear where you can write your commit message. Click Commit Changes.

Figure 4-14. Commit and push to GitHub

Since we didn’t create a Git branch, it will version our code inside the main branch.
Go into the GitHub repository you made during this setup and see if your dbt project
exists. Figure 4-15 should be similar to what you see on your GitHub repository.

dbt Cloud | 151

Figure 4-15. dbt GitHub repository, first commit check

152 | Chapter 4: Data Transformation with dbt

Using the dbt Cloud UI
When you sign in to dbt Cloud, the initial page displays a welcome message and a
summary of your job’s execution history. As Figure 4-16 shows, the page is empty at
first but once we create and run our first jobs, we will start seeing information. In
“Jobs and Deployment” on page 212, we detail a job’s execution in more detail.

Figure 4-16. dbt landing page

On the top bar, you will see several options. Starting from the left, you can access the
Develop page, where you will develop all your analytics code and create your models,
tests, and documentation. It is the core of dbt development, and we will give you
more insights into this section in “Using the dbt Cloud IDE” on page 163, and deep
dive into each component in “Structure of a dbt Project” on page 165.

Right next to the Develop option is the Deploy menu, as shown in Figure 4-17. From
this menu, you can configure jobs and monitor their execution via Run History,
configure the development environments, and verify the source freshness of your
snapshots via Data Sources.

dbt Cloud | 153

Figure 4-17. dbt Deploy menu

The Deploy menu’s first option is Run History, which opens the page shown in
Figure 4-18. Here you can see your job’s run history. In the context of dbt, jobs are
automated tasks or processes that you configure to perform specific actions, such
as running models, tests, or generating documentation. These jobs are an integral
part of orchestrating dbt, which involves managing and automating various data
transformation and analytics tasks.

Figure 4-18. dbt Run History page

154 | Chapter 4: Data Transformation with dbt

Suppose you have jobs configured that had executions already in this section. In that
case, you can inspect each job’s invocation and status. A wealth of information is
available in the job’s run history, including its status, duration, the environment in
which the job executed, and other useful details. You can access information about
the steps the job went through, including respective logs for each step. Additionally,
you can find artifacts generated by the job, such as models, tests, or documentation.

The Deploy menu’s next option is Jobs. This opens a page for configuring all your
automation, including CI/CD pipelines, run tests, and other exciting behaviors,
without running dbt commands manually from the command line.

Figure 4-19 shows the empty Jobs landing page. We have a whole section dedicated to
Jobs in “Jobs and Deployment” on page 212.

Figure 4-19. dbt Jobs page

dbt Cloud | 155

The third Deploy menu option is Environments. Inside dbt, we have two main types
of environment: development and deployment. Out of the box, dbt configures the
development environment for you, which is visible right after you set up your dbt
project. Figure 4-20 shows you the Environments landing page, which should be
similar to yours if you followed the steps in “Setting Up dbt Cloud with BigQuery and
GitHub” on page 140.

Figure 4-20. dbt Environments page

156 | Chapter 4: Data Transformation with dbt

Finally, we have the Data Sources option. This page, shown in Figure 4-21, is popu‐
lated automatically by dbt Cloud once you configure a job to snapshot source-data
freshness. Here you will see the state of the most recent snapshots, allowing you to
analyze if your source data freshness is meeting the service-level agreements (SLAs)
you’ve defined with your organization. We will give you a better idea of data freshness
in “Source freshness” on page 187 and how to test it in “Testing sources” on page 195.

Figure 4-21. dbt Data Sources page

dbt Cloud | 157

Next is the Documentation option, and as long as you and your team create routines
to ensure that your dbt project is correctly documented, this step will have a particu‐
lar level of significance. Proper documentation can answer questions like these:

• What does this data mean?•
• Where does this data come from?•

• How are these metrics calculated?•

Figure 4-22 shows the Documentation page for your project. We will explain how to
leverage and write documentation inside your dbt project while writing your code in
“Documentation” on page 200.

Figure 4-22. dbt Documentation page

The top-right menu allows you to select your dbt project (Figure 4-23). This short
menu makes it simple to move around between dbt projects.

Figure 4-23. dbt Select Account menu

158 | Chapter 4: Data Transformation with dbt

The dbt Help menu (Figure 4-24) can be found by clicking the question mark symbol.
Here you can speak directly with the dbt team through chat, provide feedback, and
access dbt documentation. Finally, via the Help menu, you can join the Slack dbt
community or GitHub dbt discussions.

Figure 4-24. dbt Help menu

The Settings menu, Figure 4-25, is where you can configure everything related to
your account, profile, or even notifications.

Figure 4-25. dbt Settings menu

dbt Cloud | 159

Once you click one of the three options, you will land on the Settings page, similar
to Figure 4-26. On the first page, Account Settings, you can edit and create new
dbt projects, manage users and their access control level (if you are an owner), and
manage the billing.

Figure 4-26. dbt Account Settings page

160 | Chapter 4: Data Transformation with dbt

The second menu option, Profile Settings, accesses the Your Profile page (Fig‐
ure 4-27). On this page, you can review all your personal information and manage
linked accounts, such as GitHub or GitLab, Slack, and single sign-on (SSO) tools. You
can also review and edit the credentials you defined for your data platform and the
API access key.

Figure 4-27. dbt Your Profile page

dbt Cloud | 161

Finally, the Notification Settings option accesses the Notifications center (Fig‐
ure 4-28), where you can configure alerts to be received in a chosen Slack channel or
email when a job run succeeds, fails, or is canceled.

Figure 4-28. dbt Notifications center

162 | Chapter 4: Data Transformation with dbt

Using the dbt Cloud IDE
One of the essential parts of the dbt Cloud is the IDE, where all your analytics code
can be written, along with tests and documentation. Figure 4-29 shows the main
sections of the dbt IDE.

Figure 4-29. dbt IDE—annotated

Next, you can find a detailed explanation of what each section represents and its
relevance inside the integrated development environment:

1. Git controls and documentation1.
This menu is where you interact with Git. Here you can see what changed since
your previous commit and what’s new. All Git commands in the IDE are here,
and you can decide whether to commit and push or revert your code. Also,
in the top right of this window, you can see the documentation icon. Once
documentation is generated, you can click this shortcut to access your project
documentation.

dbt Cloud | 163

2. File Explorer2.
The File Explorer gives you the main overview of your dbt project. Here you can
check how your dbt project is built—generally in the form of .sql, .yml, and other
compatible file types.

3. Text editor3.
This section of the IDE is where your analytics code is written and becomes
mature. Here you can also edit and create other relevant files for your project,
such as the YAML files. If you select those files from File Explorer, they will pop
up here. Multiple files can be opened simultaneously.

4. Information window and code Preview, Compile, and Build4.
This menu will show your results once you click the Preview or Compile buttons.
Preview will compile and run your query against your data platform and display
the results in the Results tab at the bottom of your screen. On the other hand,
Compile will convert any Jinja into pure SQL. This will be displayed in the
information window in the Compiled Code tab at the bottom of your screen.
Preview or Compile buttons apply to statements and SQL files.
Build is a special button that pops up only in specific files. Depending on what
type of build you choose, the run results will include information about all
models, tests, seeds, and snapshots that were selected to build, combined into one
file.
The information window is also helpful for troubleshooting errors during devel‐
opment or using the Lineage tab to check the data lineage of the model currently
open in the text editor and its ancestors and dependencies.

5. Command line5.
The command line is where you can execute specific dbt commands such as dbt
run or dbt test. During or after the execution of the command, it also displays a
pop-up screen to show the results as they are processed—for that, click the arrow
at the beginning of the command line. Logs can also be viewed here. Figure 4-30
shows the command line expanded; the command to be executed is at the top,
and the log of the execution follows.

164 | Chapter 4: Data Transformation with dbt

Figure 4-30. dbt command line expanded

Structure of a dbt Project
A dbt project is a directory composed of folders and files, programming patterns, and
naming conventions. All your analytics code, tests, documentation, and parametriza‐
tions that will tell dbt how to operate will be in those files and folders. It will use those
naming conventions and programming patterns. The way you organize your folders
and file directory is your dbt project structure.

Building a proper dbt project takes effort. To be well implemented, it needs to
bring together the company domains and departments, leveraging their particular
expertise to map the goals and needs of the whole company. As such, defining a set
of conventions and patterns that are clear, comprehensive, and consistent is relevant.
Accomplishing that will ensure that the project remains accessible and maintainable
as your company scales, while using dbt to empower and benefit as many people as
possible.

How you organize your dbt project can vary and might be subject to changes defined
by you or company guidelines. That’s not a problem. What’s important is that you
explicitly declare those changes in a rigorous and accessible way for all contributors
and, above all, stay consistent with it. For the sake of this book, we will keep the basic
structure of the dbt project that you encounter once you initialize (Example 4-3).

Example 4-3. Initial structure of a dbt project

root/
├─ analyses/
├─ dbt_packages/
├─ logs/
├─ macros/
├─ models/
│ ├─ example/
│ │ ├─ schema.yml

Structure of a dbt Project | 165

│ │ ├─ my_second_dbt_model.sql
│ │ ├─ my_first_dbt_model.sql
├─ seeds/
├─ snapshots/
├─ target/
├─ tests/
├─ .gitignore
├─ dbt_project.yml
├─ README.md

Each folder and file will be explained in the subsequent sections in this chapter and
Chapter 5. Some will have more emphasis and will be used more regularly than
others. Yet, it is essential to have a broader idea of their purpose:

analyses folder
Detailed in “Analyses” on page 197, this folder is commonly used to store queries
for auditing purposes. For example, you may want to find discrepancies during
logic migration from another system into dbt and still leverage the capabilities of
dbt, such as the use of Jinja and version control, without including it in your built
models inside your data platform.

dbt_packages folder
Is where you will install your dbt packages. We will cover the concept of packages
in “dbt Packages” on page 242. Still, the idea is that packages are standalone
dbt projects that tackle specific problems and can be reused and shared across
organizations. This promotes a DRY-er code since you aren’t implementing the
same logic over and over.

logs folder
Is where all your project logs will be written by default, unless you configure
them differently in your dbt_project.yml.

macros folder
Is where your DRY-ing up transformations code will be stored. Macros, analo‐
gous to functions in other programming languages, are pieces of Jinja code that
can be reused multiple times. We will devote an entire section in “Using SQL
Macros” on page 236 to detailing them.

models folder
Is one of the mandatory folders in dbt. Generally speaking, a model is a SQL
file that contains a SELECT statement with a modular piece of logic that will take
your raw data and build it into the final transformed data. In dbt, the model’s
name indicates the name of a future table or view, or neither if configured as an
ephemeral model. This subject will be detailed in “Models” on page 174.

166 | Chapter 4: Data Transformation with dbt

seeds folder
Is where our lookup tables will be stored. We will discuss this in “Seeds” on page
198. The general idea is that seeds are CSV files that change infrequently, and
are used for modeling data that doesn’t exist in any source system. Some helpful
use cases could be mapping zip codes to states or a list of test emails we need to
exclude from the analysis.

snapshots folder
Contains all snapshot models for your project, which must be separated from the
models folder. The dbt snapshot feature records change to a mutable table over
time. It applies the type 2 slowly changing dimension (SCDs), which identifies
how a row in a table changes during the time. This is covered in detail in
“Snapshots” on page 230.

target folder
Contains the compiled SQL files that will be written when you run the dbt
run, dbt compile, or dbt test commands. You can optionally configure in
dbt_project.yml to be written into another folder.

tests folder
Serves the purpose of testing multiple specific tables simultaneously. This will not
be the solo folder where your tests will be written. A good number will still be
under your model’s folder inside the YAML files, or through macros. Yet, the tests
folder is more suited for singular tests, which report the results of how several
specific models interact or relate to one another. We will cover this topic in depth
in “Tests” on page 189.

dbt_project.yml
Is the core of every dbt project. This is how dbt knows a directory is a dbt
project, and it contains important information that tells dbt how to operate on
your project. We will cover this file throughout the course of this book. It’s also
covered in “dbt_project.yml” on page 170.

.gitignore and README.md
Are files typically used for your Git projects. While gitignore specifies intentional
files that Git should ignore during your commit and push, the README file is
an essential guide that gives other developers a detailed description of your Git
project.

We’ll cover these folders in more detail in this chapter and Chapter 5 while going
deeper into the dbt project and features.

Structure of a dbt Project | 167

Jaffle Shop Database
In this book, we will give a set of practical examples of how to work with the
components and features of dbt. In most cases, we will need to develop SQL queries
to give you the best idea of what we want to show. So, it is essential to have a database
that we can work with. That database is the Jaffle Shop.

The Jaffle Shop database is a simple database composed of two tables, for customers
and orders. To give more context, we will have a side database, from Stripe, with the
payments connected with the orders. All three tables will be our raw data.

The reason we use this database is that it is already publicly available, in BigQuery, by
dbt Labs. It is one of the main databases used for their documentation and courses, so
we hope it will simplify the overall learning curve of the dbt platform at this stage of
the book.

Figure 4-31 shows you the ERD representing our raw data with customers, orders,
and payments.

Figure 4-31. A Jaffle Shop raw data ERD, which we read as follows: single customer
(1) can have multiple orders (N), and a single order (1) can have multiple processing
payments (N)

YAML Files
YAML is a human-readable data-serialization language commonly used for configu‐
ration files and in applications where data is being stored or transmitted. In dbt,
YAML is used to define properties and some configurations of the components of
your dbt project: models, snapshots, seeds, tests, sources, or even the actual dbt
project, dbt_project.yml.

168 | Chapter 4: Data Transformation with dbt

Apart from the top-level YAML files, such as dbt_project.yml and packages.yml, that
need to be specifically named and in specific locations, the way you organize the
other YAML files inside your dbt project is up to you. Remember that, as with other
aspects of structuring your dbt project, the most important guidelines are to keep
consistent, be clear on your intentions, and document how and why it is organized
that way. It is important to balance centralization and file size to make specific
configurations as easy to find as possible. Following are a set of recommendations on
how to organize, structure, and name your YAML files:

• As mentioned, balancing the configuration’s centralization and file size is par‐•
ticularly relevant. Having all configurations within a single file might make it
challenging to find a specific one as your project scales (though you technically
can use one file). Change management with Git will also be complicated because
of the repetitive nature of the file.

• As per the previous point, if we follow a config per folder approach, it is better to•
maintain all your configurations in the long run. In other words, in each model’s
folder directory, it is recommended to have a YAML file that will facilitate the
configurations of all the models in that directory. Extend this rule by separating
the model’s configuration file, having a specific file for your sources configura‐
tions inside the same directory (Example 4-4).
In this structure, we’ve used the staging models to represent what’s being dis‐
cussed, since it covers most cases, such as sources, YAML files. Here you can see
the config per folder system, where source and model configurations are divided.
It also introduces the Markdown files for documentation, which we will discuss
in more detail in “Documentation” on page 200. Finally, the underscore at the
beginning puts all these files at the top of their respective directory so they are
easier to find.

Example 4-4. dbt YAML files in the model directory

root/
├─ models/
│ ├─ staging/
│ │ ├─ jaffle_shop/
│ │ │ ├─ _jaffle_shop_docs.md
│ │ │ ├─ _jaffle_shop_models.yml
│ │ │ ├─ _jaffle_shop_sources.yml
│ │ │ ├─ stg_jaffle_shop_customers.sql
│ │ │ ├─ stg_jaffle_shop_orders.sql
│ │ ├─ stripe/
│ │ │ ├─ _stripe_docs.md
│ │ │ ├─ _stripe_models.yml
│ │ │ ├─ _stripe_sources.yml

Structure of a dbt Project | 169

│ │ │ ├─ stg_stripe_order_payments.sql
├─ dbt_project.yml

• When using documentation blocks, also follow the same approach by creating•
one Markdown file (.md) per models directory. In “Documentation” on page 200,
we will get to know this type of file better.

It is recommended that you set up default configurations of your dbt project in
your dbt_project.yml file at the directory level and use the cascading scope priority
to define variations of these configurations. This can help you streamline your dbt
project management and ensure that your configurations are consistent and easily
maintainable. For example, leveraging Example 4-4, imagine that all our staging
models would be configured to be materialized as a view by default. That would be
in your dbt_project.yml. But if you have a specific use case where you need to change
the materialization configuration for your jaffle_shop staging models, you can do
so by modifying the _jaffle_shop_models.yml file. This way, you can customize the
materialization configuration for this specific set of models while keeping the rest of
your project configurations unchanged.

The ability to override the default configurations for specific models is made possible
by the cascading scope priority used in the dbt project build. While all staging models
would be materialized as views because this is the default configuration, the staging
jaffle_shop models would be materialized as tables because we overrode the default
by updating the specific _jaffle_shop_models.yml YAML file.

dbt_project.yml
One of the most critical files in dbt is dbt_project.yml. This file must be in the root of
the project and it is the main configuration file for your project, containing pertinent
information for dbt to properly operate.

The dbt_project.yml file also has some relevancy while writing your DRY-er analytics
code. Generally speaking, your project default configurations will be stored here, and
all objects will inherit from it unless overridden at the model level.

Here are some of the most important fields that you will encounter in this file:

name
(Mandatory.) The name of the dbt project. We recommend changing this config‐
uration to your project name. Also, remember to change it in the model’s section
and the dbt_project.yml file. In our case, we name it dbt_analytics_engineer_book.

version
(Mandatory.) Core version of your project. Different from dbt version.

170 | Chapter 4: Data Transformation with dbt

config-version
(Mandatory.) Version 2 is the currently available version.

profile
(Mandatory.) Profile within dbt is used to connect to your data platform.

[folder]-paths
(Optional.) Where [folder] is the list of folders in the dbt project. It can be
a model, seed, test, analysis, macro, snapshot, log, etc. For example, the model-
paths will state the directory of your models and sources. The macro-paths is
where your macros code lives, and so on.

target-path
(Optional.) This path will store the compiled SQL file.

clean-targets
(Optional.) List of directories containing artifacts to be removed by the dbt
clean command.

models
(Optional.) Default configuration of the models. In Example 4-5, we want all
models inside the staging folder to be materialized as views.

Example 4-5. dbt_project.yml, model configuration

models:
 dbt_analytics_engineer_book:
 staging:
 materialized: view

packages.yml
Packages are standalone dbt projects that tackle specific problems and can be reused
and shared across organizations. They are projects with models and macros; by
adding them to your project, those models and macros will become part of it.

To access those packages, you first need to define them in the packages.yml file. The
detailed steps are as follows:

1. You must ensure that the packages.yml file is in your dbt project. If not, please1.
create it at the same level as your dbt_project.yml file.

2. Inside the dbt packages.yml file, define the packages you want to have available2.
for use inside your dbt project. You can install packages from sources like the
dbt Hub; Git repositories, such as GitHub or GitLab; or even packages you have
stored locally. Example 4-6 shows you the syntax required for each of these
scenarios.

Structure of a dbt Project | 171

https://hub.getdbt.com

3. Run dbt deps to install the defined packages. Unless you configure differently,3.
by default those packages get installed in the dbt_packages directory.

Example 4-6. Syntax to install packages from the dbt hub, Git, or locally

packages:
 - package: dbt-labs/dbt_utils
 version: 1.1.1

 - git: "https://github.com/dbt-labs/dbt-utils.git"
 revision: 1.1.1

 - local: /opt/dbt/bigquery

profiles.yml
If you decide to use the dbt CLI and run your dbt project locally, you will need to
set up a profiles.yml, which is not needed if you use dbt Cloud. This file contains
the database connection that dbt will use to connect to the data platform. Because
of its sensitive content, this file lives outside the project to avoid credentials being
versioned into your code repository. You can safely use code versioning if your
credentials are stored under environment variables.

Once you invoke dbt from your local environment, dbt parses your dbt_project.yml
file and gets the profile name, which dbt needs to connect to your data platform. You
can have multiple profiles as needed, yet it is common to have one profile per dbt
project or per data platform. even using dbt Cloud for this book, and the profiles
configuration not being necessary. We’re showing a sample of the profiles.yml if you
are curious or prefer to use dbt CLI with BigQuery.

The typical YAML schema file for profiles.yml is shown in Example 4-7. We are
using dbt Cloud for this book, meaning the profiles configuration is not necessary.
However, we’re showing a sample of profiles.yml if you are curious or prefer to use the
dbt CLI with BigQuery.

Example 4-7. profiles.yml

dbt_analytics_engineer_book:
 target: dev
 outputs:
 dev:
 type: bigquery
 method: service-account
 project: [GCP project id]
 dataset: [the name of your dbt dataset]
 threads: [1 or more]

172 | Chapter 4: Data Transformation with dbt

 keyfile: [/path/to/bigquery/keyfile.json]
 <optional_config>: <value>

The most common structure of profiles.yaml has the following components:

profile_name
The profile’s name must be equal to the name found in your dbt_project.yml. In
our case, we’ve named it dbt_analytics_engineer_book.

target
This is how you have different configurations for different environments. For
instance, you would want separate datasets/databases to work on when develop‐
ing locally. But when deploying to production, it is best to have all tables in a
single dataset/database. By default, the target is set up to be dev.

type
The type of data platform you want to connect: BigQuery, Snowflake, Redshift,
among others.

database-specific connection details
Example 4-7 includes attributes like method, project, dataset, and keyfile that
are required to set up a connection to BigQuery, using this approach.

threads
Number of threads the dbt project will run on. It creates a DAG of links between
models. The number of threads represents the maximum number of paths
through the graph that dbt may work in parallel. For example, if you specify
threads: 1, dbt will start building only one resource (models, tests, etc.) and
finish it before moving on to the next. On the other hand, if you have threads:
4, dbt will work on up to four models at once without violating dependencies.

The overall idea of the profiles.yml file is presented here. We will
not go further than this nor give a detailed setup guide on con‐
figuring your dbt local project with BigQuery. Most of the tasks
were already described, such as keyfile generation in “Setting Up
dbt Cloud with BigQuery and GitHub” on page 140, but there
might be some nuances. If you want to learn more, dbt provides a
comprehensive guide.

Structure of a dbt Project | 173

https://oreil.ly/BeMDc

Models
Models are where you, as a data specialist, will spend most of your time inside the dbt
ecosystem. They are typically written as select statements, saved as .sql, and are one
of the most important pieces in dbt that will help you transform your data inside your
data platform.

To properly build your models and create a clear and consistent project structure, you
need to be comfortable with the data modeling concept and techniques. This is core
knowledge if your goal is to become an analytics engineer or, generically speaking,
someone who wants to work with data.

As we saw in Chapter 2, data modeling is the process that, by analyzing and defining
the data requirements, creates data models that support the business processes in
your organization. It shapes your source data, the data your company collects and
produces, into transformed data, answering the data needs of your company domains
and departments and generating added value.

In line with data modeling, and also as introduced in Chapter 2, modularity is
another concept that is vital to properly structuring your dbt project and organizing
your models while keeping your code DRY-er. Conceptually speaking, modularity is
the process of decomposing a problem into a set of modules that can be separated
and recombined, which reduces the overall complexity of the system, often with
the benefit of flexibility and variety of use. In analytics, this is no different. While
building a data product, we don’t write the code all at once. Instead, we make it piece
by piece until we reach the final data artifacts.

Since we will try to have modularity present from the beginning, our initial models
will also be built with modularity in mind and in accordance with what we’ve dis‐
cussed in Chapter 2. Following a typical dbt data transformation flow, there will be
three layers in our model’s directory:

Staging layer
Our initial modular building blocks are within the staging layer of our dbt
project. In this layer, we establish an interface with our source systems, similar to
how an API interacts with external data sources. Here, data is reordered, cleaned
up, and prepared for downstream processing. This includes tasks like data stand‐
ardization and minor transformations that set the stage for more advanced data
processing further downstream.

Intermediate layer
This layer consists of models between the staging layer and the marts layer. These
models are built on top of our staging models and are used to conduct extensive
data transformations, as well as data consolidation from multiple sources, which
creates varied intermediate tables that will serve distinct purposes.

174 | Chapter 4: Data Transformation with dbt

Marts layer
Depending on your data modeling technique, marts bring together all modular
pieces to give a broader vision of the entities your company cares about. If, for
example, we choose a dimensional modeling technique, the marts layer contains
your fact and dimension tables. In this context, facts are occurrences that keep
happening over time, such as orders, page clicks, or inventory changes, with their
respective measures. Dimensions are attributes, such as customers, products, and
geography, that can describe those facts. Marts can be described as subsets of data
inside your data platform that are oriented to specific domains or departments,
such as finance, marketing, logistics, customer service, etc. It can also be a good
practice to have a mart called “core,” for example, that isn’t oriented to a specific
domain but is instead the core business facts and dimensions.

With the introductions made, let’s now build our first models, initially only on our
staging layer. Create a new folder inside your models folder, named staging, and the
respective folders per source, jaffle_shop and stripe, inside the staging folder. Then
create the necessary SQL files, one for stg_stripe_order_payments.sql (Example 4-8),
another for stg_jaffle_shop_customers.sql (Example 4-9), and finally one for stg_jaf‐
fle_shop_orders.sql (Example 4-10). In the end, delete the example folder inside your
models. It is unnecessary, so it would create unneeded visual noise while coding. The
folder structure should be similar to Example 4-11.

Example 4-8. stg_stripe_order_payments.sql

select
 id as payment_id,
 orderid as order_id,
 paymentmethod as payment_method,
 case
 when paymentmethod in ('stripe'
 , 'paypal'
 , 'credit_card'
 , 'gift_card')
 then 'credit'
 else 'cash'
 end as payment_type,
 status,
 amount,
 case
 when status = 'success'
 then true
 else false
 end as is_completed_payment,
 created as created_date
from `dbt-tutorial.stripe.payment`

Structure of a dbt Project | 175

Example 4-9. stg_jaffle_shop_customers.sql

select
 id as customer_id,
 first_name,
 last_name
from `dbt-tutorial.jaffle_shop.customers`

Example 4-10. stg_jaffle_shop_orders.sql

select
 id as order_id,
 user_id as customer_id,
 order_date,
 status,
 _etl_loaded_at
from `dbt-tutorial.jaffle_shop.orders`

Example 4-11. Staging models’ folder structure

root/
├─ models/
│ ├─ staging/
│ │ ├─ jaffle_shop/
│ │ │ ├─ stg_jaffle_shop_customers.sql
│ │ │ ├─ stg_jaffle_shop_orders.sql
│ │ ├─ stripe/
│ │ │ ├─ stg_stripe_order_payments.sql
├─ dbt_project.yml

Now let’s execute and validate what we did. Typically, typing dbt run in your
command line is enough, but at BigQuery, you may need to type dbt run --full-
refresh. After, look at your logs by using the arrow to the left of your command line.
The logs should look similar to Figure 4-32.

176 | Chapter 4: Data Transformation with dbt

Figure 4-32. dbt system logs

Your logs should also give you a good idea of the issue if something
goes wrong. In Figure 4-32, we present a logs summary, but you
can also check the detailed logs for more verbosity.

Expecting that you have received the “Completed successfully” message, let’s now
take a look at BigQuery, where you should see all three models materialized, as
Figure 4-33 shows.

Structure of a dbt Project | 177

Figure 4-33. dbt BigQuery models

By default, dbt materializes your models inside your data platform as views. Still,
you can easily configure this in the configuration block at the top of the model file
(Example 4-12).

Example 4-12. Materialization config inside the model file

{{
 config(
 materialized='table'
)
}}

SELECT
 id as customer_id,
 first_name,
 last_name
FROM `dbt-tutorial.jaffle_shop.customers`

Now that we have created our first models, let’s move to the next steps. Rearrange
the code using the YAML files, and follow the best practices recommended in
“YAML Files” on page 168. Let’s take the code block from there and configure our
materializations inside our YAML files (Example 4-12). The first file we will change
is dbt_project.yml. This should be the core YAML file for default configurations.
As such, let’s change the model’s configuration inside with the code presented in
Example 4-13 and then execute dbt run again.

178 | Chapter 4: Data Transformation with dbt

Example 4-13. Materialize models as views and as tables

models:
 dbt_analytics_engineer_book:
 staging:
 jaffle_shop:
 +materialized: view
 stripe:
 +materialized: table

The + prefix is a dbt syntax enhancement, introduced with dbt
v0.17.0, designed to clarify resource paths and configurations
within dbt_project.yml files.

Since Example 4-13 forced all staging Stripe models to be materialized as a table,
BigQuery should look like Figure 4-34.

Figure 4-34. dbt BigQuery models with materialized table

Example 4-13 shows how to configure, per folder, the specific desired materializations
inside dbt_project.yml. Your staging models will be kept by default as views, so
overriding this configuration can be done at the model’s folder level, leveraging the
cascading scope priority on the project build. First, let’s change our dbt_project.yml to
set all staging models to be materialized as views, as Example 4-14 shows.

Example 4-14. Staging models to be materialized as views

models:
 dbt_analytics_engineer_book:

Structure of a dbt Project | 179

 staging:
 +materialized: view

Now let’s create the separate YAML file for stg_jaffle_shop_customers, stating that
it needs to be materialized as a table. For that, create the respective YAML file, with
the name _jaffle_shop_models.yml, inside the staging/jaffle_shop directory and copy
the code in Example 4-15.

Example 4-15. Defining that the model will be materialized as a table

version: 2

models:
 - name: stg_jaffle_shop_customers
 config:
 materialized: table

After you rerun dbt, take a look at BigQuery. It should be similar to Figure 4-35.

Figure 4-35. dbt BigQuery customers model materialized into a table

This is a simple example of using the YAML files, playing with table materializations,
and seeing what the cascading scope priority means in practice. There is still a
lot to do and see, and some of what we’re discussing will have even more applicabil‐
ity as we move onward. For now, we would just ask you to change your model
inside _jaffle_shop_models.yml to be materialized as a view. This will be your default
configuration.

Hopefully, at this stage, you’ve developed your first models and understand roughly
the overall purpose of the YAML files and the cascading scope priority. The following

180 | Chapter 4: Data Transformation with dbt

steps will be to create our intermediate and mart models while learning about ref()
functions. This will be our first use of Jinja, which we will cover in more detail in
“Dynamic SQL with Jinja” on page 233.

First things first: our use case. With our models inside our staging area, we need to
know what we want to do with them. As we mentioned at the start of this section,
you need to define the data requirements that support the business processes in your
organization. As a business user, multiple streams can be taken from our data. One
of them, which will be our use case, is to analyze our orders per customer, presenting
the total amount paid per successful order and the total amount per successful order
type (cash and credit).

Since we have some transformations here that require a granularity change from
payment type level to order grain, it justifies isolating this complex operation before
we reach the marts layer. This is where the intermediate layer lands. In your models
folder, create a new folder named intermediate. Inside, create a new SQL file named
int_payment_type_amount_per_order.sql and copy the code in Example 4-16.

Example 4-16. int_payment_type_amount_per_order.sql

with order_payments as (
 select * from {{ ref('stg_stripe_order_payments') }}
)

select
 order_id,
 sum(
 case
 when payment_type = 'cash' and
 status = 'success'
 then amount
 else 0
 end
) as cash_amount,
 sum(
 case
 when payment_type = 'credit' and
 status = 'success'
 then amount
 else 0
 end
) as credit_amount,
 sum(case
 when status = 'success'
 then amount
 end
) as total_amount
from order_payments
group by 1

Structure of a dbt Project | 181

As you can see while creating the order_payments CTE, we gather the data from
stg_stripe_order_payments by using the ref() function. This function references
the upstream tables and views that were building your data platform. We’ll use this
function as a standard while we implement our analytics code due to the benefits,
such as:

• It allows you to build dependencies among models in a flexible way that can•
be shared in a common codebase since it compiles the name of the database
object during the dbt run, gathering it from the environment configuration
when you create the project. This means that in your environment, the code
will be compiled considering your environment configurations, available in your
particular development environment, but different from that of your teammate
who is using a different development environment but shares the same codebase.

• You can build lineage graphs in which you can visualize a specific model’s data•
flow and dependencies. We will discuss this later in this chapter, and it’s also
covered in “Documentation” on page 200.

Finally, while acknowledging that the preceding code may seem like an antipattern,
because of the sense of repetitiveness of CASE WHEN conditions, it’s essential to clarify
that the entire dataset includes all orders, regardless of their payment status. However,
for this example, we chose to conduct financial analysis only on payments associated
with orders that have reached the “success” status.

With the intermediate table built, let’s move to the final layer. Considering the use
case described, we need to analyze the orders from the customer’s perspective. This
means we must create a customer dimension that connects with our fact table. Since
the current use case can fulfill multiple departments, we will not create a specific
department folder but one named core. So, to start, let’s create, in our models folder,
the marts/core directory. Then copy Example 4-17 into a new file named dim_custom‐
ers.sql and Example 4-18 into a new file named fct_orders.sql.

Example 4-17. dim_customers.sql

with customers as (
 select * from {{ ref('stg_jaffle_shop_customers')}}
)

select
 customers.customer_id,
 customers.first_name,
 customers.last_name
from customers

182 | Chapter 4: Data Transformation with dbt

Example 4-18. fct_orders.sql

with orders as (
 select * from {{ ref('stg_jaffle_shop_orders')}}
),

payment_type_orders as (
 select * from {{ ref('int_payment_type_amount_per_order')}}
)

select
 ord.order_id,
 ord.customer_id,
 ord.order_date,
 pto.cash_amount,
 pto.credit_amount,
 pto.total_amount,
 case
 when status = 'completed'
 then 1
 else 0
 end as is_order_completed

from orders as ord
left join payment_type_orders as pto ON ord.order_id = pto.order_id

With all files created, let’s just set our default configurations inside dbt_project.yml, as
shown in Example 4-19, and then execute dbt run, or potentially dbt run --full-
refresh on BigQuery.

Example 4-19. Model configuration, per layer, inside dbt_project.yml

models:
 dbt_analytics_engineer_book:
 staging:
 +materialized: view
 intermediate:
 +materialized: view
 marts:
 +materialized: table

If you are receiving an error message similar to “Compila‐
tion Error in rpc request…depends on a node named int_pay‐
ment_type_amount_per_order which was not found,” this means
that you have a model, dependent on the one that you are trying
to preview, that is not yet inside your data platform—in our case
int_payment_type_amount_per_order. To solve this, go to that
particular model and execute the dbt run --select MODEL_NAME
command, replacing MODEL_NAME with the respective model name.

Structure of a dbt Project | 183

If everything ran successfully, your data platform should be fully updated with all dbt
models. Just look at BigQuery, which should be similar to Figure 4-36.

Figure 4-36. dbt BigQuery with all models

Finally, open fct_orders.sql and look at the Lineage option inside the information win‐
dow (Figure 4-37). This is one of the great features we will cover in “Documentation”
on page 200, giving us a good idea of the data flow that feeds a specific model and its
upstream and downstream dependencies.

Figure 4-37. dbt fct_orders data lineage

Sources
In dbt, sources are the raw data available in your data platform, captured using a
generic extract-and-load (EL) tool. It is essential to distinguish dbt sources from
traditional data sources. A traditional data source can be either internal or external.
Internal data sources provide the transactional data that supports the daily business
operations inside your organization. Customer, sales, and product data are examples
of potential content from an internal data source. On the other hand, external data
sources provide data that originated outside your organization, such as data collected

184 | Chapter 4: Data Transformation with dbt

from your business partners, the internet, and market research, among others. Often
this is data related to competitors, economics, customer demographics, etc.

dbt sources rely on internal and external data upon business demand but differ in
definition. As mentioned, dbt sources are the raw data inside your data platform. This
raw data is typically brought by the data engineering teams, using an EL tool, into
your data platform and will be the foundation that allows your analytical platform to
operate.

In our models, from “Models” on page 174, we’ve referred to our sources by using
hardcoded strings such as dbt-tutorial.stripe.payment or dbt-tutorial.jaffle
_shop.customers. Even if this works, consider that if your raw data changes, such
as its location or the table name to follow specific naming conventions, making the
changes across multiple files can be difficult and time-consuming. This is where dbt
sources come in. They allow you to document those source tables inside a YAML file,
where you can reference your source database, the schema, and tables.

Let’s put this into practice. By following the recommended best practices in “YAML
Files” on page 168, let’s now create a new YAML file in the models/staging/jaffle_shop
directory, named _jaffle_shop_sources.yml, and copy the code from Example 4-20.
Then create another YAML file, now in the models/staging/stripe directory, named
_stripe_sources.yml, copying the code in Example 4-21.

Example 4-20. _jaffle_shop_sources.yml—sources parametrization file for all tables
under the Jaffle Shop schema

version: 2

sources:
 - name: jaffle_shop
 database: dbt-tutorial
 schema: jaffle_shop
 tables:
 - name: customers
 - name: orders

Example 4-21. _stripe_sources.yml—sources parametrization file for all tables under the
stripe schema

version: 2

sources:
 - name: stripe
 database: dbt-tutorial
 schema: stripe
 tables:
 - name: payment

Structure of a dbt Project | 185

With our YAML files configured, we need to make a final change inside our mod‐
els. Instead of having our sources hardcoded, we will use a new function named
source(). This works like the ref() function that we introduced in “Referencing
data models” on page 50, but instead of {{ ref("stg_stripe_order_payments") }},
to configure a source we now pass something like {{ source("stripe", "pay

ment") }}, which, in this particular case, will reference the YAML file that we’ve
created in Example 4-21.

Let’s now get our hands dirty. Take all the SQL staging model code you created earlier,
and replace it with the respective code in Example 4-22.

Example 4-22. Payments, orders, and customers staging models with the source()
function

-- REPLACE IT IN stg_stripe_order_payments.sql
select
 id as payment_id,
 orderid as order_id,
 paymentmethod as payment_method,
 case
 when paymentmethod in ('stripe'
 ,'paypal'
 , 'credit_card'
 , 'gift_card')
 then 'credit'
 else 'cash'
 end as payment_type,
 status,
 amount,
 case
 when status = 'success'
 then true
 else false
 end as is_completed_payment,
 created as created_date
from {{ source('stripe', 'payment') }}

-- REPLACE IT IN stg_jaffle_shop_customers.sql file
select
 id as customer_id,
 first_name,
 last_name
from {{ source('jaffle_shop', 'customers') }}

-- REPLACE IT IN stg_jaffle_shop_orders.sql
select
 id as order_id,
 user_id as customer_id,
 order_date,
 status,

186 | Chapter 4: Data Transformation with dbt

 _etl_loaded_at
from {{ source('jaffle_shop', 'orders') }}

After you switch your models with our source() function, you can check how
your code executes in your data platform by running dbt compile or clicking the
Compile button in your IDE. In the backend, dbt will look to the referenced YAML
file and replace the source() function with the direct table reference, as shown in
Figure 4-38.

Figure 4-38. dbt customers staging model with source() function and respective code
compiled. The compiled code is what will run inside your data platform.

Another benefit of using the source() function is that now you can see the sources in
the lineage graph. Just take a look, for example, at the fct_orders.sql lineage. The same
lineage shown in Figure 4-37 should now look like Figure 4-39.

Figure 4-39. dbt fct_orders data lineage with sources

Source freshness
The freshness of your data is an essential aspect of data quality. If the data isn’t
up-to-date, it is obsolete, which could cause significant issues in your company’s
decision-making process since it could lead to inaccurate insights.

Structure of a dbt Project | 187

dbt allows you to mitigate this situation with the source freshness test. For that, we
need to have an audit field that states the loaded timestamp of a specific data artifact
in your data platform. With it, dbt will be able to test how old the data is and trigger a
warning or an error, depending on the specified conditions.

To achieve this, let’s get back to our source YAML files. For this particular example,
we will use the orders data in our data platform, so by inference, we will replace the
code in _jaffle_shop_sources.yml with the code in Example 4-23.

Example 4-23. _jaffle_shop_sources.yml—sources parametrization file for all tables
under Jaffle Shop schema, with source freshness test

version: 2

sources:
 - name: jaffle_shop
 database: dbt-tutorial
 schema: jaffle_shop
 tables:
 - name: customers
 - name: orders
 loaded_at_field: _etl_loaded_at
 freshness:
 warn_after: {count: 12, period: hour}
 error_after: {count: 24, period: hour}

As you can see, we’ve used the _etl_loaded_at field in our data platform. We
didn’t have to bring it to our transformation process since it had no added value
for forward models. This isn’t an issue because we are testing our upstream data,
which in our case is our raw data. In the YAML file, we’ve created two additional
properties: loaded_at_field, which represents the field to be monitored under the
source freshness test, and freshness, with the actual rules to monitor the source
freshness. Inside the freshness property, we’ve configured it to raise a warning if the
data is 12 hours outdated with the warn_after property and raise an actual error if
the data wasn’t refreshed in the past 24 hours with the error_after property.

Finally, let’s see what happens if we execute the command dbt source freshness. In
our case, we got a warning, as you can see in Figure 4-40.

188 | Chapter 4: Data Transformation with dbt

Figure 4-40. dbt orders raw data and source freshness test logs

If you check the log details, you can see the query executed in your data platform
and troubleshoot. This particular warning was expected. The _etl_loaded_at was
built to take 16 hours from the current time, so anything lower than that will raise a
warning. If you want to keep playing around, change your warn_after to something
higher, like 17 hours. All your tests should pass.

Hopefully, the source freshness concept is now clear. We will get back to it later in the
book and show you how to automate and snapshot the source freshness tests. In the
meantime, it is essential to understand its purpose in the overall test landscape, how
to configure it, and how important this test could be to mitigate data quality issues.

Tests
As an analytics engineer, you must ensure that data is accurate and reliable to build
trust in the analytics you deliver and provide objective insights for your organization.
Everyone agrees with this, yet even if you follow all the engineering state-of-the-art
best practices, there will always be exceptions—even more so when you have to deal
with the volatility that is working with data, its variations, type, structure, etc.

Structure of a dbt Project | 189

There are many ways to capture those exceptions. Nonetheless, when you work with
significant amounts of data, you need to think of a scalable approach to analyzing
large datasets and quickly identifying those exceptions. This is where dbt comes in.

dbt allows you to rapidly and easily scale tests across your data workflow so that
you can identify when things break before anyone else does. In a development
environment, you can use tests to ensure that your analytics code produces the
desired output. In a deployment/production environment, you can automate tests
and set up an alert to tell you when a specific test fails so you can quickly react to it
and fix it before it generates a more extreme consequence.

As a data practitioner, it’s important to understand that tests in dbt can be summar‐
ized as assertions about your data. When you run tests on top of your data models,
you assert that those data models produce the expected output, which is a crucial step
in ensuring data quality and reliability. These tests are a form of verification similar to
confirming that your data follows specific patterns and meets predefined criteria.

However, it’s essential to note that dbt tests are just one type of testing within the
broader landscape of data testing. In software testing, tests are often differentiated
between verification and validation. dbt tests primarily focus on verification by
confirming that data adheres to established patterns and structures. They are not
designed for testing the finer details of logic within your data transformations, com‐
parable to what unit tests do in software development.

Furthermore, dbt tests can assist with the integration of data components to some
extent, particularly when multiple components are run together. Nevertheless, it’s
crucial to recognize that dbt tests have their limitations and may not cover all testing
use cases. For comprehensive testing in data projects, you may need to employ other
testing methods and tools tailored to specific validation and verification needs.

With this in mind, let’s focus on which tests can be employed with dbt. There are two
main classifications of tests in dbt: singular and generic. Let’s get to know a bit more
about both types, their purpose, and how we can leverage them.

Generic tests
The simplest yet highly scalable tests in dbt are generic tests. With these tests, you
usually don’t need to write any new logic, yet custom generic tests are also an option.
Nevertheless, you typically write a couple of YAML lines of code and then test a
particular model or column, depending on the test. dbt comes with four built-in
generic tests:

190 | Chapter 4: Data Transformation with dbt

unique test
Verifies that every value in a specific column is unique

not_null test
Verifies that every value in a specific column is not null

accepted_values test
Ensures that every value in a specific column exists in a given predefined list

relationships test
Ensures that every value in a specific column exists in a column in another
model, and so we grant referential integrity

Now that we have some context about the generic tests, let’s try them. We can choose
the model we want, but to simplify, let’s pick one to which we can apply all the
tests. For that, we’ve chosen the stg_jaffle_shop_orders.sql model. Here we will be
able to test unique and not_null in fields like customer_id and order_id. We can
use accepted_values to check whether all orders status are in a predefined list.
Finally, we will use the relationships test to check whether all values from the
customer_id are in the stg_jaffle_shop_customers.sql model. Let’s start by replacing
our _jaffle_shop_models.yml with the code in Example 4-24.

Example 4-24. _jaffle_shop_models.yml parametrizations with generic tests

version: 2

models:
 - name: stg_jaffle_shop_customers
 config:
 materialized: view
 columns:
 - name: customer_id
 tests:
 - unique
 - not_null

 - name: stg_jaffle_shop_orders
 config:
 materialized: view
 columns:
 - name: order_id
 tests:
 - unique
 - not_null
 - name: status
 tests:
 - accepted_values:
 values:

Structure of a dbt Project | 191

 - completed
 - shipped
 - returned
 - placed
 - name: customer_id
 tests:
 - relationships:
 to: ref('stg_jaffle_shop_customers')
 field: customer_id

Now, in your command line, type dbt test and take a look at the logs. If the test
failed in the accepted_values, you did everything right. It was supposed to fail. Let’s
debug to understand the potential root cause of the failure. Open the logs and expand
the test that failed. Then click Details. You’ll see the query executed to test the data, as
Figure 4-41 shows.

Figure 4-41. Generic test, dbt logs with accepted_values failed test

Let’s copy this query to your text editor—keep only the inner query and then execute
it. You should have a similar output as in Figure 4-42.

192 | Chapter 4: Data Transformation with dbt

Figure 4-42. Generic test debug

And voilá. We found the issue. The additional status return_pending is missing from
our test list. Let’s add it and rerun our dbt test command. All the tests should pass
now, as shown in Figure 4-43.

Figure 4-43. Generic test with all tests being successfully executed

Structure of a dbt Project | 193

In addition to the generic tests within dbt Core, a lot more are in
the dbt ecosystem. These tests are found in dbt packages because
they are an extension of the generic tests built inside dbt. “dbt
Packages” on page 242 will detail the concept of packages and how
to install them, but for extended testing capabilities, packages such
as dbt_utils from the dbt team, or dbt_expectations from the Python
library Great Expectations, are clear examples of the excellent usage
of packages and a must-have in any dbt project. Finally, custom
generic tests are another dbt feature that enables you to define
your own data validation rules and checks, tailored to your specific
project requirements.

Singular tests
Unlike the generic tests, singular tests are defined in .sql files under the tests directory.
Typically, these tests are helpful when you want to test a specific attribute inside a
particular model, but the traditional tests built inside dbt don’t fit your needs.

Looking into our data model, a good test is to check that no order has a neg‐
ative total amount. We could perform this test in one of the three layers—stag‐
ing, intermediate, or marts. We’ve chosen the intermediate layer since we did
some transformations that could influence the data. To start, create a file named
assert_total_payment_amount_is_positive.sql in the tests directory and copy the code
in Example 4-25.

Example 4-25. assert_total_payment_amount_is_positive.sql singular test to check if
the total_amount attribute inside int_payment_type_amount_per_order has only non-
negative values

select
 order_id,
 sum(total_amount) as total_amount
from {{ ref('int_payment_type_amount_per_order') }}
group by 1
having total_amount < 0

Now you can execute one of the following commands to run your test, which should
pass:

dbt test

Executes all your tests

dbt test --select test_type:singular

Executes only singular tests

dbt test --select int_payment_type_amount_per_order

Executes all tests for the int_payment_type_amount_per_order model

194 | Chapter 4: Data Transformation with dbt

https://oreil.ly/MwqgC
https://oreil.ly/bmrqJ

dbt test --select assert_total_payment_amount_is_positive

Executes only the specific test we created

These commands offer the ability to selectively run tests according to your require‐
ments. Whether you need to run all tests, tests of a specific type, tests for a particular
model, or even a single specific test, dbt allows you to leverage various selection
syntax options within your commands. This variety of choices ensures that you can
precisely target the tests, along with other dbt resources, that you wish to execute. In
“dbt Commands and Selection Syntax” on page 209, we’ll provide a comprehensive
overview of the available dbt commands and investigate how to efficiently use selec‐
tion syntax to specify resources.

Testing sources
To test your models in your dbt project, you can also extend those tests to your
sources. You already did this with the source freshness test in “Source freshness” on
page 187. Still, you can also potentiate generic and singular tests for that purpose.
Using the test capabilities in your sources will give us confidence that the raw data is
built to fit our expectations.

In the same way that you configure tests in your models, you can also do so for your
sources. Either in YAML files for generic tests, or .sql files for singular tests, the norm
remains the same. Let’s take a look at one example for each type of test.

Starting with generic tests, you will need to edit the specific YAML file of the sources.
Let’s keep the same unique, not_null, and accepted_values tests as we have for
the customers and orders staging tables, but now you will test their sources. So,
to make this happen, replace the _jaffle_shop_sources.yml code with the code from
Example 4-26.

Example 4-26. _jaffle_shop_sources.yml—parametrizations with generic tests

version: 2

sources:
 - name: jaffle_shop
 database: dbt-tutorial
 schema: jaffle_shop
 tables:
 - name: customers
 columns:
 - name: id
 tests:
 - unique
 - not_null
 - name: orders
 loaded_at_field: _etl_loaded_at

Structure of a dbt Project | 195

 freshness:
 warn_after: {count: 17, period: hour}
 error_after: {count: 24, period: hour}
 columns:
 - name: id
 tests:
 - unique
 - not_null
 - name: status
 tests:
 - accepted_values:
 values:
 - completed
 - shipped
 - returned
 - placed
 - return_pending

Once you have your new code in the YAML file, you can run dbt test or, to be more
exact, execute the command that will test only the source for which we’ve created
these tests, dbt test --select source:jaffle_shop. All your tests should pass.

Finally, you can also implement singular tests as you did before. Let’s replicate
the singular test we performed earlier in Example 4-25. Create a new file named
assert_source_total_payment_amount_is_positive.sql in your tests directory and copy
the code from Example 4-27. This test checks whether the sum of the amount
attribute, per order, inside the payment source table has only nonnegative values.

Example 4-27. assert_source_total_payment_amount_is_positive.sql singular test

select
 orderid as order_id,
 sum(amount) as total_amount
from {{ source('stripe', 'payment') }}
group by 1
having total_amount < 0

Execute dbt test or dbt test --select source:stripe, since we look into the
Stripe source in this case. Everything should pass as well.

196 | Chapter 4: Data Transformation with dbt

Analyses
The analyses folder can store your ad hoc queries, audit queries, training queries,
or refactoring queries, used, for example, to check how your code will look before
affecting your models.

Analyses are templated SQL files that you can’t execute during dbt run, but since you
can use Jinja on your analyses, you can still use dbt compile to see how your code
will look while preserving your code under version control. Considering its purpose,
let’s look into one use case where we can leverage the analyses folder.

Imagine that you don’t want to build a whole new model but still want to keep a piece
of information for future needs by leveraging the code versioning. With analyses, you
can do just that. For our use case, let’s analyze the top 10 most valuable customers
in terms of the total amount paid, considering only orders “completed” status. To
see this, inside the analyses directory, create a new file named most_valuable_custom‐
ers.sql and copy the code from Example 4-28.

Example 4-28. most_valuable_customers.sql analyses, which output the top 10 most
valuable customers based on completed orders

with fct_orders as (
 select * from {{ ref('fct_orders')}}
),

dim_customers as (
 select * from {{ ref('dim_customers')}}
)

select
 cust.customer_id,
 cust.first_name,
 SUM(total_amount) as global_paid_amount
from fct_orders as ord
left join dim_customers as cust ON ord.customer_id = cust.customer_id
where ord.is_order_completed = 1
group by cust.customer_id, first_name
order by 3 desc
limit 10

Now execute the code and check the results. It will give you the top 10 most valuable
customers if everything goes well, as Figure 4-44 shows.

Structure of a dbt Project | 197

Figure 4-44. Top 10 most valuable customers, based on the total global amount paid
with completed orders

Seeds
Seeds are CSV files within your dbt platform with a small amount of nonvolatile data
to be materialized as a table inside your data platform. By simply typing dbt seed in
your command line, seeds can be used in your models in the standard way, like all the
other models, using the ref() function.

We can find multiple applications for seeds, from mapping country codes (for exam‐
ple, PT to Portugal or US to United States), zip codes to states, dummy email
addresses to be excluded from our analyses, or even other complex analyses, like
price range classification. What’s important is to remember that seeds shouldn’t have
large or frequently changing data. If that is the case, rethink your data capture
approach—for example, using an SFTP (SSH File Transfer Protocol) or an API.

To better understand how to use seeds, let’s follow the next use case. Taking
into account what we did in “Analyses” on page 197, we want to not only see
the top 10 most valuable customers, based on paid orders completed, but also
classify all customers with orders as regular, bronze, silver, or gold, considering
the total_amount paid. As a start, let’s create our seed. For that, create a new

198 | Chapter 4: Data Transformation with dbt

file named customer_range_per_paid_amount.csv in your seeds folder and copy the
Example 4-29 data.

Example 4-29. seed_customer_range_per_paid_amount.csv with ranges mapping

min_range,max_range,classification
0,9.999,Regular
10,29.999,Bronze
30,49.999,Silver
50,9999999,Gold

After you complete this, execute dbt seed. It will materialize your CSV file into
a table in your data platform. Finally, in the analyses directory, let’s make a new
file named customer_range_based_on_total_paid_amount.sql and copy the code from
Example 4-30.

Example 4-30. customer_range_based_on_total_paid_amount.sql shows you, based on
the completed orders and the total amount paid, the customer classification range

with fct_orders as (
 select * from {{ ref('fct_orders')}}
),

dim_customers as (
 select * from {{ ref('dim_customers')}}
),

total_amount_per_customer_on_orders_complete as (
 select
 cust.customer_id,
 cust.first_name,
 SUM(total_amount) as global_paid_amount
 from fct_orders as ord
 left join dim_customers as cust ON ord.customer_id = cust.customer_id
 where ord.is_order_completed = 1
 group by cust.customer_id, first_name
),

customer_range_per_paid_amount as (
 select * from {{ ref('seed_customer_range_per_paid_amount')}}
)

select
 tac.customer_id,
 tac.first_name,
 tac.global_paid_amount,
 crp.classification
from total_amount_per_customer_on_orders_complete as tac
left join customer_range_per_paid_amount as crp

Structure of a dbt Project | 199

on tac.global_paid_amount >= crp.min_range
and tac.global_paid_amount <= crp.max_range

Let’s now execute our code and see the results. It will give each customer the total
amount paid and its corresponding range (Figure 4-45).

Figure 4-45. Customers’ range, based on the total global amount paid with completed
orders

Documentation
Documentation is critical in the global software engineering landscape, yet it seems
like a taboo. Some teams do it, others don’t, or it is incomplete. It can become too
bureaucratic or complex, or be seen as an overhead to the developer’s to-do list,
and thus avoided at all costs. You might hear a giant list of reasons to justify not
creating documentation or postponing it to a less demanding time. No one says

200 | Chapter 4: Data Transformation with dbt

documentation is nonessential. It’s just that “we won’t do it,” “not now,” or “we don’t
have time.”

Here are several reasons to justify creating and using documentation:

• Facilitates the onboarding, handover, and hiring processes. With proper docu‐•
mentation, any new team member will have the safeguard that they are not being
“thrown to the wolves.” The new colleague will have the onboarding process and
technical documentation in writing, which reduces their learning curve on the
current team processes, concepts, standards, and technological developments.
The same applies to employee turnover and the knowledge-sharing transition.

• It will empower a single source of the truth. From business definitions, processes,•
and how-to articles, to letting users answer self-service questions, having docu‐
mentation will save your team time and energy trying to reach that information.

• Sharing knowledge through documentation will mitigate duplicate or redundant•
work. If the documentation was done already, it could be reused without the need
to start from scratch.

• It promotes a sense of shared responsibility, ensuring that critical knowledge is•
not confined to a single individual. This shared ownership is crucial in prevent‐
ing disruptions when key team members are unavailable.

• It is essential when you want to establish quality, process control, and meet•
compliance regulations. Having documentation will enable your team to work
toward cohesion and alignment across the company.

One reason that justifies the lack of motivation to create documentation is that it is a
parallel stream from the actual development flow, like using one tool for development
and another for the documentation. With dbt, this is different. You build your
project documentation while developing your analytics code, tests, and connecting to
sources, among other tasks. Everything is inside dbt, not in a separate interface.

The way dbt handles documentation enables you to create it while building your
code. Typically, a good part of the documentation is already dynamically generated,
such as the lineage graphs we’ve introduced before, requiring only that you configure
your ref() and source() functions appropriately. The other part is partially automa‐
ted, needing you to give your manual inputs of what a particular model or column
represents. Yet, once again, everything is done inside dbt, directly in the YAML or
Markdown files.

Let’s get started with our documentation. The use case we want to achieve is to
document our models and respective columns of fct_orders and dim_customers.
We will use the models’ YAML files, and for richer documentation, we will use doc
blocks inside the Markdown files. Since we still need to create a YAML file for the
core models inside the marts directory, let’s do so with the name _core_models.yml.

Structure of a dbt Project | 201

Copy Example 4-31. Then, create a Markdown file in the same directory folder
named _code_docs.md, copying Example 4-32.

Example 4-31. _core_models.yml—YAML file with description parameter

version: 2

models:
 - name: fct_orders
 description: Analytical orders data.
 columns:
 - name: order_id
 description: Primary key of the orders.
 - name: customer_id
 description: Foreign key of customers_id at dim_customers.
 - name: order_date
 description: Date that order was placed by the customer.
 - name: cash_amount
 description: Total amount paid in cash by the customer with "success" payment
 status.
 - name: credit_amount
 description: Total amount paid in credit by the customer with "success"
 payment status.
 - name: total_amount
 description: Total amount paid by the customer with "success" payment status.
 - name: is_order_completed
 description: "{{ doc('is_order_completed_docblock') }}"

 - name: dim_customers
 description: Customer data. It allows you to analyze customers perspective linked
 facts.
 columns:
 - name: customer_id
 description: Primary key of the customers.
 - name: first_name
 description: Customer first name.
 - name: last_name
 description: Customer last name.

202 | Chapter 4: Data Transformation with dbt

Example 4-32. _core_doc.md—markdown file with a doc block

{% docs is_order_completed_docblock %}

Binary data which states if the order is completed or not, considering the order
status. It can contain one of the following values:

is_order_completed	definition
0	An order that is not completed yet, based on its status
1	An order which was completed already, based on its status

{% enddocs %}

Before generating the documentation, let’s try to understand what we did. By ana‐
lyzing the YAML file _core_models.yml, you can see we’ve added a new property:
description. This basic property allows you to complement the documentation with
your manual inputs. These manual inputs can be text, as we used in most cases,
but can also reference doc blocks inside Markdown files, as done in fct_orders,
column is_order_completed. We first created the doc block inside the Markdown
file _code_docs.md and named it is_order_completed_docblock. This name is
the one that we’ve used to reference the doc block inside the description field:
"{{ doc('is_order_completed_docblock') }}".

Let’s generate our documentation by typing dbt docs generate in your command
line. After it finishes successfully, you can navigate through the documentation page.

Reaching the documentation page is simple. After you execute dbt docs generate
successfully, inside the IDE, at the top left of the screen, you can click the Documen‐
tation site book icon right next to the Git branch information (Figure 4-46).

Figure 4-46. View documentation

Structure of a dbt Project | 203

Once you enter the documentation page, you will see the overview page, similar to
Figure 4-47. For now, you have the default information provided by dbt, but this page
is also fully customizable.

Figure 4-47. Documentation landing page

204 | Chapter 4: Data Transformation with dbt

Looking on the overview page, you can see your project structure to the left (Fig‐
ure 4-48) with tests, seeds, and models, among others, that you can navigate freely.

Figure 4-48. dbt project structure inside the documentation

Now choose one of our developed models and look at its respective documentation.
We’ve selected the fct_orders model. Once we click its file, the screen will show you
several layers of information on the model, as shown in Figure 4-49.

Structure of a dbt Project | 205

Figure 4-49. fct_orders documentation page

At the top, the Details section gives you information about table metadata, such as the
table type (also known as materialization). The language used, the number of rows,
and the approximate table size are other available details.

Right after, we have the Description of the model. As you may recall, it was the one
we configured in the _core_models.yml file for the fct_orders table.

Finally, we have the Columns information related to fct_orders. This documenta‐
tion is partially automated (for example, the column type), but also receives manual
inputs (such as the column descriptions). We gave those inputs already filling the
description properties and provided comprehensive information using doc blocks for
the is_order_completed attribute. To see the written doc block on the documenta‐
tion page, click in the is_order_completed field, which should expand and present
the desired information (Figure 4-50).

206 | Chapter 4: Data Transformation with dbt

Figure 4-50. is_order_completed column showing the configured doc block

After the Columns information, we have the downstream and upstream dependen‐
cies of the model, with the Referenced By and Depends On sections, respectively.
These dependencies are also shown in Figure 4-51.

Figure 4-51. fct_orders dependencies in the documentation

Structure of a dbt Project | 207

At the bottom of the fct_orders documentation page is the Code that generated the
specific model. You can visualize the source code in a raw format, with Jinja, or the
compiled code. Figure 4-52 shows its raw form.

Figure 4-52. fct_orders source code

Finally, if you look at the bottom right of your documentation page, you’ll see a blue
button. Clicking this button accesses the lineage graph for the respective model you
are visualizing. We have selected the fct_orders lineage graph, where you can see the
upstream dependencies, such as the source tables or the intermediate tables, as well
as the downstream dependencies, like the analysis files shown in Figure 4-53. The
lineage graph is powerful since it provides a holistic view of how data moves from the
moment you consume it until you transform and serve it.

Another interesting aspect of dbt documentation worth mentioning is the ability to
persist column- and table-level descriptions directly to the database by using the per
sist_docs configuration. This feature is valuable for all users of your data warehouse,

208 | Chapter 4: Data Transformation with dbt

including those who may not have access to dbt Cloud. It ensures that essential
metadata and descriptions are readily available to data consumers, facilitating better
understanding and utilization of your data assets.

Figure 4-53. fct_orders lineage graph

dbt Commands and Selection Syntax
We’ve already introduced several dbt commands, such as dbt run and dbt test,
and how we interact with the CLI to execute them. In this section, we’ll explore
the essential dbt commands and selection syntax that allow you to execute, manage,
and control various aspects of your dbt project. Whether running transformations,
executing tests, or generating documentation, these commands are your toolkit for
effective project management.

Let’s start at the beginning. At its core, dbt is a command-line tool designed to
streamline your data transformation workflows. It provides a set of commands that
enable you to interact with your dbt project efficiently. Let’s explore each of these
commands in more detail.

dbt run

The dbt run command is your go-to tool for executing data transformations
defined in your dbt models. It works with your project’s configuration files, such
as dbt_project.yml, to understand which models to run and in what order. This
command will identify the models that must be executed based on their dependencies
and run them in the appropriate order.

dbt test

Ensuring the quality and reliability of your data is essential. The dbt test command
lets you define and execute tests on your data models, verifying that they meet your
business rules and expectations.

dbt docs

Adequate documentation is essential for collaborative data projects. dbt docs auto‐
mates the documentation generation for your dbt project, including model descrip‐
tions, column descriptions, and relationships between models. To generate the
documentation, you need to execute dbt docs generate.

Structure of a dbt Project | 209

dbt build

Before running your dbt project, compiling it is often necessary. The dbt build
command performs this task, creating the required artifacts for execution. This step
is essential for optimizing the execution process and ensuring everything is in its
proper place. Once your project compiles successfully, you can proceed with other
commands like dbt run with more confidence.

Other commands
Although the preceding commands may be the most used, you should be aware of
other dbt commands, such as these:

dbt seed

Loads raw data or reference data into your project

dbt clean

Deletes artifacts generated by dbt build

dbt snapshot

Takes a snapshot of your data for versioning

dbt archive

Archives tables or models to cold storage

dbt deps

Installs project dependencies defined in packages.yml

dbt run-operation

Runs a custom operation defined in your project

dbt source snapshot-freshness

Checks the freshness of your source data

dbt ls

Lists resources defined in a dbt project

dbt retry

Re-runs the last run dbt command from the point of failure

dbt debug

Runs dbt in debug mode, providing detailed debugging information

dbt parse

Parses dbt models without running them, which is helpful for syntax checking

dbt clone

Clones selected models from the specified state

210 | Chapter 4: Data Transformation with dbt

dbt init

Creates a new dbt project in the current directory

Selection syntax
As your dbt projects grow, you’ll need to target specific models, tests, or other
resources for execution, testing, or documentation generation instead of running
them all every time. This is where selection syntax comes into play.

Selection syntax allows you to precisely specify which resources to include or exclude
when running dbt commands. Selection syntax includes various elements and tech‐
niques, such as the following.

Wildcard *. The asterisk (*) represents any character or sequence of characters. Let’s
have a look at Example 4-33.

Example 4-33. Selection syntax with * wildcard

dbt run --select models/marts/core/*

Here, we’re using the * wildcard along with the --select flag to target all resources
or models within the core directory. This command will execute all models, tests, or
other resources located within that directory.

Tags. Tags are labels you can assign to models, macros, or other resources in your
dbt project—in particular, inside the YAML files. You can use selection syntax to
target resources with specific tags. For instance, Example 4-34 shows how to select
resources based on the marketing tag.

Example 4-34. Selection syntax with a tag

dbt run --select tag:marketing

Model name. You can precisely select a single model by using its name in the selec‐
tion syntax, as shown in Example 4-35.

Example 4-35. Selection syntax with a model

dbt run --select fct_orders

Dependencies. Use the + and - symbols to select models that depend on or are
depended upon by others. For example, fct_orders+ selects models that depend
on fct_orders, while +fct_orders selects models that fct_orders depends on
(Example 4-36).

Structure of a dbt Project | 211

Example 4-36. Selection syntax with dependencies

run fct_orders upstream dependencies
dbt run --select +fct_orders

run fct_orders downstream dependencies
dbt run --select fct_orders+

run fct_orders both up and downstream dependencies
dbt run --select +fct_orders+

Packages. If you organize your dbt project into packages, you can use package syntax
to select all resources within a specific package, as shown in Example 4-37.

Example 4-37. Selection syntax with a package

dbt run --select my_package.some_model

Multiple selections. You can combine elements of selection syntax to create complex
selections, as shown in Example 4-38.

Example 4-38. Selection syntax with multiple elements

dbt run --select tag:marketing fct_orders

In this example, we combined elements such as tagging and model selection. It will
run the dbt model named fct_orders only if it has the tag marketing.

Selection syntax allows you to control which dbt resources run based on various
criteria, including model names, tags, and dependencies. You can use selection syntax
with the --select flag to tailor your dbt operations to specific subsets of your
project.

Additionally, dbt offers several other selection-related flags and options, such as
--selector, --exclude, --defer, and more, which provide even more fine-grained
control over how you interact with your dbt project. These options make it easier to
manage and execute dbt models and resources in a way that aligns with your project’s
requirements and workflows.

Jobs and Deployment
Until now, we’ve been covering how to develop using dbt. We’ve learned about
models and how to implement tests and write documentation, among other relevant
components that dbt provides. We accomplished and tested all of this by utilizing our
development environment and manually executing our dbt commands.

212 | Chapter 4: Data Transformation with dbt

Using a development environment shouldn’t be minimized. It allows you to continue
building your dbt project without affecting the deployment/production environment
until you are ready. But now we have reached the stage where we need to produc‐
tionize and automate our code. For that, we need to deploy our analytics code
into a production branch, typically named the main branch, and into a dedicated
production schema, such as dbt_analytics_engineering.core in BigQuery, or the
equivalent production target in your data platform.

Finally, we need to configure and schedule a job to automate what we want to roll
into production. Configuring a job is an essential part of the CI/CD process. It allows
you to automate the execution of your commands in a cadence that fits your business
needs.

To begin, let’s commit and sync everything we did until now into our development
branch and then merge with the main branch. Click the “Commit and sync” button
(Figure 4-54). Don’t forget to write a comprehensive message.

Figure 4-54. “Commit and sync” button

You may need to make a pull request. As explained briefly in “Setting Up dbt Cloud
with BigQuery and GitHub” on page 140, pull requests (PRs) play an essential role
in collaborative development. They serve as a fundamental mechanism for communi‐
cating your proposed changes to your team. However, it’s crucial to understand that
PRs are not just about notifying your colleagues of your work; they are a critical step
in the review and integration process.

When you create a PR, you are essentially inviting your team to review your code,
provide feedback, and collectively decide whether these changes align with the proj‐
ect’s goals and quality standards.

Getting back to our code, after your PR, merge it with your main branch in GitHub.
Your final screen in GitHub should be similar to Figure 4-55.

Structure of a dbt Project | 213

Figure 4-55. Pull request screen after merging with the main branch

At this stage, your main branch should equal your development branch. Now it is
time to deploy it into your data platform. Before creating a job, you need to set up
your deployment environment:

1. From the Deploy menu, click the Environments option and then click the Create1.
Environment button. A screen will pop up where you can configure your deploy‐
ment environment.

2. Keep the latest dbt Version, and don’t check the option to run on a custom2.
branch since we’ve merged our code into the main branch.

3. Name the environment “Deployment.”3.
4. In the Deployment Credentials section, write the dataset that will link4.

your deployment/production environment. We’ve named it dbt_analytics_engi
neer_prod, but you can use the name that best suits your needs.

214 | Chapter 4: Data Transformation with dbt

If everything goes well, you should have a deployment environment set up with
configurations similar to those in Figure 4-56.

Figure 4-56. Deployment environment settings

Structure of a dbt Project | 215

Now it is time to configure your job. Inside the dbt Cloud UI, click the Jobs option
in your Deploy menu and then click the Create New Job button. Creating a job can
range from simple concepts to more complex ones. Let’s set up a job that will cover
the main ideas that we’ve discussed:

1. Name the job (Figure 4-57).1.

Figure 4-57. Defining the job name

2. In the Environment section, we will point to the Deployment environment.2.
Configure the dbt version to inherit from the version defined in the Deployment
environment. Then leave the Target Name set as default. This is helpful if you
would like to define conditions based on your work environment (for example: if
in the deployment environment, do this; if in development, do that). Finally, we
covered the Threads in “profiles.yml” on page 172. Let’s keep it set to the default
configuration. We didn’t create any Environment Variables, so this section will be
left empty. Figure 4-58 presents the overall Environment section configuration.

216 | Chapter 4: Data Transformation with dbt

Figure 4-58. Defining the job environment

3. Figure 4-59 shows the global configurations of the Execution Settings. We’ve set3.
Run Timeout to 0, so dbt will never kill the job if it runs for more than a certain
amount of time. Then we’ve also chosen “do not defer to another run.” Finally,
we’ve selected the “Generate docs on run” and “Run source freshness” boxes. This
configuration will reduce the number of commands you need to write in the
Commands section. For this use case, we kept the default dbt build only.

Structure of a dbt Project | 217

Figure 4-59. Defining job settings

4. The last configuration setting is Triggers, in which you configure how to launch4.
the job. There are three options to trigger a job:
• A configured schedule inside dbt•
• Through Webhooks•
• Through an API call•

218 | Chapter 4: Data Transformation with dbt

For this use case, we’ve chosen the Schedule option and set the schedule to run on an
hourly basis, as shown in Figure 4-60.

Figure 4-60. Defining the job trigger

It’s time to execute and see what happens. Save your job; then select Run Now or wait
for the job to be automatically triggered after it hits the configured schedule.

While the job runs, or after it finishes, you can always inspect the status and what was
executed. From the Deploy menu, select the Run History option. You will see your
job executions. Select one and take a look at the Run Overview. Figure 4-61 is what
you should expect to see.

Structure of a dbt Project | 219

Figure 4-61. The job’s Run Overview screen

Once inside the Run Overview, you have relevant information about the specific job
execution, which could be helpful with potential troubleshooting issues. At the top is
a summary of the job execution status, the person or system who triggered the job,
the Git commit indexed to this job execution, the generated documentation, sources,
and the environment where this job ran.

Right after the job summary, you can find the execution details, such as the time it
took to execute the job and when it started and finished. Finally, one of the essential
pieces of information that the Run Overview gives you is the Run Steps, which detail
all the commands executed during the job execution and allow you to inspect each
isolated step and its logs, as shown in Figure 4-62. Exploring each step’s logs will
enable you to understand what ran in each and look up issues during its execution.

220 | Chapter 4: Data Transformation with dbt

Figure 4-62. The job’s Run Steps details

By using dbt jobs, you can easily automate your transformations and deploy your
projects to production in an efficient and scalable way. Whether you are a data
analyst, data engineer, or analytics engineer, dbt can help you address the complexity
of your data transformations and ensure that your data models are always accurate
and up-to-date.

Summary
This chapter demonstrates that analytics engineering is an ever-evolving field that is
always influenced by innovations. dbt is not just one aspect of this story; it is a crucial
tool in the field.

The primary objective of analytics engineering is to convert raw data into valuable
insights, and this tool plays a crucial role in simplifying the complexities of data
transformation and promoting cooperation among a wide range of stakeholders. dbt
ensures that data transformation is not just a technical change but also places great
emphasis on openness, inclusivity, and knowledge sharing.

dbt is renowned for its capacity to streamline complicated processes by effortlessly
integrating with large data warehouses. It also promotes a collaborative approach to

Summary | 221

data transformation by ensuring optimal traceability and accuracy. Furthermore, it
highlights the significance of thoroughly testing data processes to guarantee dependa‐
bility. Its user-friendly interface reinforces the notion that analytics engineering is an
inclusive field, welcoming contributions from individuals of all competency levels.

To conclude, we strongly encourage analytics engineers who want to stay at the
forefront of the industry to take a deep dive into this transformational tool. As dbt is
increasingly important and unequivocally beneficial, being proficient in this tool can
not only improve your skill set but also facilitate smoother and more cooperative data
transformations in the future.

222 | Chapter 4: Data Transformation with dbt

CHAPTER 5

dbt Advanced Topics

dbt is a tool that focuses on the transformation part of the ELT process. With only
SQL experience, we can develop all our analytical code with this tool. At the same
time, in parallel, we can still encapsulate it under a set of best practices and standards
typically found in software engineering, such as test development, automatic deploy‐
ment, or even documentation built side by side while we develop.

In this chapter, our journey through dbt takes a more advanced and subtle turn.
We will dig into the diverse collection of model materializations in dbt. Beyond
the traditional views and tables, we’ll explore the potential of ephemeral models,
leverage materialized views, capture data snapshots at precise moments, and even
use incremental models, which free you from recurrent, resource-intensive full data
loads.

But that’s not all. We’ll elevate your analytics code to the next level with Jinja, macros,
and packages. We’re on a mission to transform your codebase, making it more effi‐
cient and DRY-er. By the end of this chapter, you’ll be supplied with the knowledge
and tools to level up your analytics workflow, enabling you to deliver insights faster
and with even greater precision.

Model Materializations
Materializations are strategies for persisting dbt models in a data platform. In dbt,
materializations can be used to improve the performance and scalability of a data
model by reducing the need to compute queries and views on the fly.

In dbt, various types of materializations can be used, depending on the needs and
requirements of the project. For example, you might use incremental materializations
to store the results of queries that need to be updated only incrementally. Addition‐
ally, you might use snapshots, which are similar to materializations in dbt, but with

223

distinct characteristics. Snapshots are used to store the results of a query or view at
a specific point in time, yet snapshots are not models in dbt. They are intentionally
designed to be non-idempotent, which sets them apart from most other aspects of
dbt.

We’ve used materialization strategies already in Chapter 4, such as views and tables.
However, it is important to be familiar with all types of materializations available,
from ephemeral models to incremental data loads or even materialized views, so
you can take advantage of them while optimizing your analytics code and provide
accurate and prompt responses to your company’s data consumers.

Tables, Views, and Ephemeral Models
We’ve been using view or table materializations to implement our models. This
chapter aims to dig into both types of materializations and introduce the ephem‐
eral models. But let’s first look at Figure 5-1, which presents the current lineage
of dim_customers already built earlier. In this use case, we will test the various
materialization strategies—in particular, by changing the materialization type of the
stg_jaffle_shop_customers.sql model.

Figure 5-1. dim_customers data lineage

Let’s start with the tables’ materialization type. In dbt, tables are structures used to
store and organize data, and consist of rows and columns; each row represents a
record or piece of data, while each column represents a specific attribute or field
of the data. When you choose this type of materialization, internally, you are param‐
eterizing dbt to render the referenced model to be physically created in your data
platform, with data stored on disk; therefore, it will be slow to build. Typically, these
materializations are used downstream on the marts layer and are recommended
when we deal with huge amounts of data and multiple queries to our models that
require fast response times.

To test the table materialization, let’s change your YAML file _jaffle_shop_models.yml,
setting the materialization to table for the stg_jaffle_shop_customers model. If
you run your code, it should be similar to Figure 5-2 in BigQuery.

224 | Chapter 5: dbt Advanced Topics

Figure 5-2. stg_jaffle_shop_customers materialized as a table

Views are virtual tables created by selecting and combining data from one or more
upstream models. A view does not store any data on its own but instead retrieves
data from the underlying tables when accessed. Typically, we will use views in dbt
to simplify complex queries and facilitate the overall transformation process or to
provide security by hiding specific columns or rows of data from users. When we
set a model as a view, it will be built as a view in your data platform. It is the query
itself that is stored in the disk, so only in runtime is the data captured and the
transformations implemented, which can lead to slower query response times.

To test the usage of views, let’s change your YAML file _jaffle_shop_models.yml, set‐
ting the materialization to view for the stg_jaffle_shop_customers model. Again,
run your code. It should be similar to Figure 5-3 in BigQuery.

Model Materializations | 225

Figure 5-3. stg_jaffle_shop_customers materialized as a view

Finally, we have the ephemeral models. dbt builds these temporary data models on the
fly, not persisting them in a database. It’s best to use ephemeral models for lightweight
data manipulation or analysis tasks that do not require the data to be permanently
stored. When we go with this strategy, it is essential to remember that dbt will
interpret this as CTEs in downstream models, which could also increase the overall
building time of those models. Also, it could bring some complexity while debugging
your code if we overuse ephemeral models because you cannot query them directly in
your data platform since they will not exist there.

To test the ephemeral model, and following the previous examples, change your
YAML file _jaffle_shop_models.yml, setting the materialization to ephemeral for
the stg_jaffle_shop_customers model. Since, in this case, you will not have an
actual materialization in your data platform, look at the dim_product compiled
code. Figure 5-4 shows the difference between your code compiled with the stg_
jaffle_shop_customers model as a view and as an ephemeral model.

226 | Chapter 5: dbt Advanced Topics

Figure 5-4. dim_customer code compiled with the stg_jaffle_shop_customers model
using a view (top) and an ephemeral model (bottom)

Incremental Models
In a dbt project, an incremental model is designed to process only new or changed
data rather than all the data in a source. These models can be used to improve the
efficiency and speed of a data pipeline, especially when working with large datasets
that are updated frequently.

To test incremental models, first you need to configure your model’s YAML
file, setting the desired model as incremental. We will use an already created
model, stg_jaffle_shop_orders, for our test case. Looking into its YAML file
_jaffle_shop_models, we see it is materialized as view, as earlier configured. Since we
want to make it incremental, the change is straightforward, yet we will also embed it
with additional capacities, such as the incremental_type. So, let’s update our model’s
YAML file with the code in Example 5-1.

Model Materializations | 227

Example 5-1. Incremental model, YAML file configuration

version: 2

models:
 - name: stg_jaffle_shop_orders
 config:
 materialized: incremental
 incremental_strategy: merge
 unique_key: order_id

First, we changed the model materialization type to incremental. This is the core
of the incremental models and a mandatory configuration to make an incremen‐
tal model work. In parallel, we’ve included two additional configurations: incremen
tal_strategy: merge and unique_key: order_id. These configurations help you
optimize and enhance your incremental loads. The incremental strategy is defined
as merge (yet in dbt, you have more options, such as append or insert_overwrite),
where each incremental run merges new rows with existing rows based on the
identified unique key. In this case, if there’s a match for order_id, the existing rows
will be updated with the new information. Otherwise, if there is no match, new rows
are created. In a standard incremental load, both scenarios occur in parallel.

The final step is to arrange the model code to make it compatible with incre‐
mental loads. In Example 5-2, you can see how we implement this in our stg_
jaffle_shop_orders model.

Example 5-2. Incremental model, sample code

select
 id as order_id,
 user_id as customer_id,
 order_date,
 status,
 _etl_loaded_at
from {{ source('jaffle_shop', 'orders') }}

{% if is_incremental() %}

 where _etl_loaded_at >= (select max(_etl_loaded_at) from {{ this }})

{% endif %}

By analyzing the query, we leverage Jinja to make our incremental models. Moving
directly to the if statement, we see the usage of the is_incremental() macro.
This macro will return true if the running model is configured with materialized=
'incremental', the dbt model already exists, and the dbt is not running in full-
refresh mode. With is_incremental() returning true, inside the if code block,

228 | Chapter 5: dbt Advanced Topics

we have the where condition that filters rows based on the timestamp column
_etl_loaded_at. It compares this timestamp to the maximum _etl_loaded_at time‐
stamp from the current table ({{ this }}), which effectively checks whether the
row’s load timestamp is greater than or equal to the maximum load timestamp in the
current table.

Incremental models play an essential role in optimizing data pipelines within a dbt
project. One of their standout advantages is cost efficiency. By adopting incremental
models, you can significantly reduce the computational resources required to process
data. This efficiency not only speeds up your data transformation processes but also
leads to cost savings, as you don’t need to redo unnecessary work.

Moreover, incremental models ensure that your dbt project always operates with the
most up-to-date data. This type of synchronization with data sources enhances the
reliability and accuracy of your analytics. Whether you’re dealing with streaming data
or periodic updates, incremental models keep your analytical insights in sync with
the evolving data landscape.

Materialized Views
Materialized views, at their core, are specialized database objects designed to store the
results of a query as a physically materialized table. Their dynamic nature sets them
apart from regular tables; the data within a materialized view is periodically refreshed
to reflect the latest changes in the underlying dataset. This refreshing process ensures
that materialized views remain up-to-date without the need for reprocessing, which
makes them ideal when low-latency data access is critical.

Interestingly, materialized views share some common ground with dbt’s incremen‐
tal models, and this resemblance is no coincidence. In many ways, materialized
views can be considered as successors to incremental models, offering an alternative
approach to data optimization. Depending on your project’s requirements and your
chosen data platform, you might even consider replacing all your incremental dbt
models with materialized view models. This shift simplifies your workflow, eliminat‐
ing the need for manual incremental strategies that detail how dbt should update the
base table—the data platform handles these tasks seamlessly.

However, it’s essential to acknowledge the trade-offs that come with this transition.
While materialized views offer efficiency, they might result in less fine-grained con‐
trol over your incremental logic and orchestration. By entrusting the data platform
with defining the logic and execution of updates, you gain convenience but may lose
some of the specific control that incremental models can provide.

The way you test a dbt materialized view may vary depending on your data
platform. The following method applies if you are using Postgres, Redshift, Data‐
bricks, or BigQuery (in dbt 1.7) and assumes you want to keep testing the

Model Materializations | 229

stg_jaffle_shop_customers model. In the _jaffle_shop_models.yml file, change the
materialization to materialized_view, as shown in Example 5-3.

Example 5-3. Materialized view, YAML file configuration

models:
 - name: stg_jaffle_shop_customers
 config:
 materialized: materialized_view

However, if you are using Snowflake instead, the concept varies slightly. Instead
of materialized views, Snowflake has a distinct concept: dynamic tables. The basic
configuration to use a dynamic table is presented in Example 5-4.

Example 5-4. Dynamic table, YAML file configuration

models:
 - name: stg_jaffle_shop_customers
 config:
 materialized: dynamic_table

In summary, materialized views are an integral part of data optimization, offering
the benefits of performance improvement and data currency. Their role intersects
with that of incremental models in dbt, presenting a choice for data engineers who
want to simplify their workflows while considering the trade-offs in control and
customization.

Snapshots
A snapshot is a copy of a dataset saved at a specific point in time. Typically, we
use these snapshots when our analysis needs to look at the previous data states in
continually updated tables. For example, you can use a snapshot to track the history
of a dataset, allowing you to see how it has evolved over time. In addition, snapshots
can be helpful for testing and debugging, as they enable you to compare the current
state of a dataset to a previous state to identify any changes or discrepancies.

dbt snapshots are implemented by applying type 2 slowly changing dimensions
(SCDs) over mutable source tables. These SCDs identify how a row in a table changes
over time. Let’s take a look at an example. Using the jaffle_shop database, imagine
that you want to keep a record of the status transition of your orders so that you can
monitor and inspect the lead times and identify potential bottlenecks in a particular
status. By looking at the stg_jaffle_shop_orders model, we can see in Figure 5-5
that we already have the order status, but we need visibility of all statuses that the
order moved through until it reached the current status.

230 | Chapter 5: dbt Advanced Topics

Figure 5-5. stg_jaffle_shop_orders transactional dataset

To allow us to track the status transition, we first need to retain the snapshots,
which in dbt are select statements defined within a snapshot block inside a .sql, in
our snapshot folder. So to start, let’s create, in the snapshots directory, a file named
snap_order_status_transition.sql, and copy the code from Example 5-5.

Example 5-5. snap_order_status_transition.sql snapshot creation

{% snapshot orders_status_snapshot %}

{{
 config(
 target_schema='snapshots',
 unique_key='id',

 strategy='timestamp',
 updated_at='_etl_loaded_at',
)
}}

select * from {{ source('jaffle_shop', 'orders') }}

{% endsnapshot %}

Model Materializations | 231

Before executing the code, let’s outline what those configurations mean:

target_schema

This is the schema that dbt should render the snapshot table into. In other
words, dbt allows you to store your snapshots in a different schema in your
data platform, separate from the actual production environment. It gives you
the flexibility to take them out and back them up in another place. You can
also leverage this field with the complement of target_database to store those
snapshots not only in a different schema but also in a different database.

unique_key

Typically, this is the record’s primary-key column or expression. It must point to
a key that is unique.

strategy

This indicates the snapshot strategy to use, either timestamp or check. In the
preceding example, we’ve used the timestamp strategy. It is the recommended
strategy since it is scalable for new column addition. Sometimes the timestamp is
unreliable, and in that case, we can use the check strategy to compare the current
and historical values of a list of columns.

updated_at

When using the timestamp strategy, we need to declare which column we need to
look at in the dataset.

check_cols

Used only with the check strategy, this is the columns that dbt will need to check
to generate the snapshot.

Now that we understand what those configurations represent, let’s execute the snap‐
shot and see its output. For that, in the CLI, run dbt snapshot. After it finishes
successfully, take a look at BigQuery. A new schema was created, named snapshots,
with the actual snapshot materialized, as shown in Figure 5-6.

Figure 5-6. snap_order_status_transition snapshot table inside BigQuery

As you can see, dbt created the snapshot orders_status_snapshot inside your data
platform, producing four additional columns:

232 | Chapter 5: dbt Advanced Topics

dbt_scd_id

Used internally by dbt, a unique key is generated for each record snapshotted.

dbt_updated_at

Also used internally by dbt, this field was the updated_at timestamp of the
source record when this snapshot row was inserted.

dbt_valid_from

The timestamp when this snapshot row was first inserted. It can be used to order
the different “versions” of a record.

dbt_valid_to

The timestamp when this row became invalidated. It will show null if the record
is still the most recent/valid record.

Suppose you want to keep exploring the concept of a snapshot. In
that case, dbt provides comprehensive documentation that covers
what we’ve mentioned here and additional content, such as best
practices and how to handle hard deletes from source systems. Just
search Snapshots in the dbt Developer Hub.

Dynamic SQL with Jinja
Jinja is a templating language for Python widely used in web development. It allows
you to create dynamic HTML pages by using variables and expressions and easily
customize your website’s appearance and behavior. You can also leverage it to level up
your SQL code with dbt.

One of the key features of Jinja is its ability to insert variables and expressions into
templates, allowing you to create customized templates for different users or contexts
without hardcoding the values into the template itself. For example, you might want
to define some behaviors based on your working environment, like limiting the
amount of data while working in the development environment. For this case, we use
the target name property in dbt, and then in our SQL code, and by leveraging Jinja,
we can define the rule to handle it, as shown in Example 5-6.

Example 5-6. Jinja sample with the target name property

select *
from {{ ref('fct_orders')}}

-- limit the amount of data queried in dev
{% if target.name != 'prod' %}
where order_date > DATE_SUB(CURRENT_DATE(), INTERVAL 3 MONTH)
{% endif %}

Dynamic SQL with Jinja | 233

https://oreil.ly/541Xm
https://docs.getdbt.com

Note that we are using BigQuery and BigQuery syntax. Some functions and syntax
may differ if you use a different data platform. Now, looking at the preceding code, we
can see some Jinja notation already being used:

{% … %}

Used for statements, these perform any function programming, such as setting
a variable or starting a for loop. In this particular example, we are using an if
statement that checks if the property name is different (!=) from the prod field.

Jinja also provides a range of control structures, such as loops and conditional state‐
ments, that allow you to create more complex templates that can adapt to different
data and contexts. You might use a loop to iterate over a list of items and dynamically
generate your SQL code instead of manually doing it, field by field.

An ideal example can be demonstrated using the int_payment_type_
amount_per_order.sql model you created earlier in Example 4-16. Instead of manually
writing the amount metrics per type, you could generate them automatically and
make them scalable, handling the current and future payment types. Look at Exam‐
ple 5-7 and see how we can leverage Jinja to do that.

Example 5-7. int_payment_type_amount_per_order model with dynamic Jinja

{# declaration of payment_type variable. Add here if a new one appears #}
{%- set payment_types= ['cash','credit'] -%}

with

payments as (

 select * from {{ ref('stg_stripe_order_payments') }}

),

pivot_and_aggregate_payments_to_order_grain as (

 select
 order_id,
 {% for payment_type in payment_types -%}

 sum(
 case
 when payment_type = '{{ payment_type }}' and
 status = 'success'
 then amount
 else 0
 end
) as {{ payment_type }}_amount,

 {%- endfor %}

234 | Chapter 5: dbt Advanced Topics

 sum(case when status = 'success' then amount end) as total_amount

 from payments

 group by 1

)

select * from pivot_and_aggregate_payments_to_order_grain

The preceding code is a more complex usage of Jinja, with loops and declaration of
variables, yet once compiled, it will look quite similar to the result of the code in
Example 5-6. Now, if we want to consider a new payment type, instead of manually
creating a new metric, we need to add it to the payment_types list, declared at the top
of the code.

Let’s discuss the Jinja nuances that we can find in Example 5-7:

{% … %}

As a recap, this is used for statements. In this case, we’ve used it in two distinct
places, different from Example 5-6:

set payment_types= ['cash','credit']

This declares the payment_types variable, to be used later in the code. In this
case, it’s a list with two elements, cash and credit.

for payment_type in payment_types

Here, we iterate the different payment_types declared at the top. Row by row,
we will start building our code dynamically.

{{ … }}

This is used for expressions to print to the template output. In our exam‐
ple, we’ve used it for {{ payment_type }}, namely, to concatenate with the
amount string to generate the final metric name per payment type. Also, we’ve
used the actual metric computation on the expression: when payment_type =
'{{ payment_type }}' and status = 'success'.

{# … #}

Used for comments, this allows you to document your code inline.

Whitespaces
This is another small but important detail in the code. You can control them by
using a hyphen on either side of the Jinja delimiter {%- … -%}, which will trim
the whitespace between the Jinja delimiter on that side of the expression.

Dynamic SQL with Jinja | 235

We recommend exploring dedicated courses or referring to the
official Jinja template design documentation for a comprehensive
understanding of Jinja. These resources can provide valuable
insights and help you deepen your knowledge of Jinja’s capabilities.

Using SQL Macros
Macros are reusable pieces of code used to automate tasks and processes in a dbt
project. They increase productivity by allowing you to automate repetitive or com‐
plex tasks, such as queries, data manipulation, and data visualization. After you
develop your macros, you can call and trigger them in various ways, including
manually, automatically, or in response to user input.

In a dbt project, a macro is typically defined in a separate file, inside the macros
directory, and written using Jinja syntax. Separating macros from your models allows
your macros to be utilized in multiple models and other files within the project. It
also allows macros to be customized using variables and expressions, enabling your
macro to adapt based on the arguments sent from the specific model.

To use a macro in a dbt project, you will typically call the macro and pass any
necessary arguments or options using Jinja syntax. Macros can also interact with
other dbt features, such as views, and other macros, to create more complex and
robust solutions. For example, you might use a macro to automate refreshing a data
model, to filter or transform data in specific ways, or to generate reports or charts
based on the data.

Let’s try to create our first macro. Our initial use case is simple: create a macro that
sums two numbers. Remember, your macro needs to use Jinja syntax. First, create
a macro file in your dbt project in the macros directory, named macro_sum_two_val‐
ues.sql. Example 5-8 shows what your code should look like.

Example 5-8. macro_sum_two_values.sql

{% macro sum(x, y) -%}
 select {{ x + y }}
{%- endmacro %}

Let’s test it now. Then, in a new file inside your dbt project, you can use the macro by
calling it with the desired values for x and y, as shown in Example 5-9.

Example 5-9. Trigger the macro inside macro_sum_two_values.sql

{{ sum(13, 89) }}

236 | Chapter 5: dbt Advanced Topics

https://oreil.ly/U2gye

Example 5-9 will present the result of the macro (102) into the output window at the
point where the macro is being triggered. You can also pass variables or expressions
as arguments to the macro rather than hardcoded values. Look at Example 5-10,
which must produce the same output as the previous example.

Example 5-10. Trigger the macro inside macro_sum_two_values.sql, defining the
variables on top

{% set x = 13 %}
{% set y = 89 %}
{{ sum(x, y) }}

Using macros in a dbt project with Jinja allows you to reuse code and customize your
models flexibly and powerfully. But now, let’s use macros in an example. Using the
jaffle_shop database, the first use case we want to deal with is a macro to centralize
the payment types configuration to avoid defining it in every model, as we did earlier
in the new version of int_payment_type_amount_per_order.sql. To accomplish that,
in the macros directory, create a new file named get_payment_types.sql and copy the
Example 5-11 code.

Example 5-11. get_payment_types.sql macro

{% macro get_payment_types() %}
 {{ return(["cash", "credit"]) }}
{% endmacro %}

Then, in your int_payment_type_amount_per_order.sql model, replace the
payment_types variable being declared at the top with the code from Example 5-12.

Example 5-12. int_payment_type_amount_per_order.sql payment_types variable
declaration calling the get_payment_types() macro

{%- set payment_types= get_payment_types() -%}

Now you can use your macro for other use cases, but consider the following:

• Typically, macros take arguments, so although Example 5-11 is a macro, it doesn’t•
represent a typical one that you will build. Arguments refer to the values passed
to a macro when it is called or executed. These arguments can be used to modify
the behavior of the macro, such as by specifying input data sources, defining
custom configuration settings, or setting certain parameters or flags.

• In Example 5-11, we’ve used the return function to return a list—without this•
function, the macro would return a string.

Using SQL Macros | 237

Looking at what you did, the macro in Example 5-11 doesn’t seems to be very
powerful or static. How could we optimize it so we avoid relying on manual inputs?
We can do the following to overcome these issues:

• Understand the source data where we can dynamically pull the payment types.•
• Rethink the macro with a modular mindset.•

We can use the following query from Example 5-13 to overcome the first point.

Example 5-13. Get distinct payment types query

 select
 distinct payment_type
 from {{ ref('stg_stripe_order_payments') }}
 order by 1

As you can see, if you run the query, it has distinct payment types, so to make a
macro from it, copy the code from Example 5-14 into your get_payment_types.sql file.

Example 5-14. New version to make get_payment_types more dynamic and scalable

{% macro get_payment_types() %}
 {% set payment_type_query %}
 select
 distinct payment_type
 from {{ ref('stg_stripe_order_payments') }}
 order by 1
 {% endset %}

 {% set results = run_query(payment_type_query) %}

 {% if execute %}
 {# Return the first column #}
 {% set results_list = results.columns[0].values() %}
 {% else %}
 {% set results_list = [] %}
 {% endif %}

 {{ return(results_list) }}

{% endmacro %}

Let’s see what we did:

1. At the top we declared the query payment_type_query.1.
2. Right after that, we executed using the run_query function and stored the output2.

inside the results variable.

238 | Chapter 5: dbt Advanced Topics

3. Then, we checked whether Jinja is in the execute mode—meaning SQL is being3.
executed—and if so, we stored the results of the first column of the dataset in
results_list. This first column is the one that will have the distinct values.

4. Finally, we returned the results_list variable to be used in our models.4.

Now, if we compile the int_payment_type_amount_per_order.sql model again, noth‐
ing should change. However, you have implemented a more scalable code. At this
time, no manual input is required once a new payment type arises. But we can do
even more with modularity. Imagine that you want to use a similar pattern elsewhere
in your dbt project (for example, payment methods). In that case, we could do
something like Example 5-15.

Example 5-15. Reusing our code multiple times for different scenarios

{# Generic macro to give a column name and table, outputs
the distinct fields of the given column name #}
{% macro get_column_values(column_name, table_name) %}

{% set relation_query %}
 select distinct
 {{ column_name }}
 from {{ table_name }}
 order by 1
{% endset %}

{% set results = run_query(relation_query) %}

{% if execute %}
{# Return the first column #}
{% set results_list = results.columns[0].values() %}
{% else %}
{% set results_list = [] %}
{% endif %}

{{ return(results_list) }}

{% endmacro %}

{# Macro to get the distinct payment_types #}
{% macro get_payment_types() %}

{{ return(get_column_values('payment_type', ref('stg_stripe_order_payments'))) }}

{% endmacro %}

{# Macro to get the distinct payment_methods #}
{% macro get_payment_methods() %}

{{ return(get_column_values('payment_method', ref('stg_stripe_order_payments'))) }}

Using SQL Macros | 239

{% endmacro %}

By analyzing this code, we can see three macros. The first, get_column_values(),
receives the column_name and table_name as arguments and will dynamically gener‐
ate a query to execute it, returning the distinct values of the column_name provided.
Next, we’ve implemented two separate calls to that macro that will retrieve the
distinct payment_types with the get_payment_types() macro, and the distinct pay
ment_methods with the get_payment_methods() macro. Note also that the macro
filename was changed to get_distinct_by_column.sql to make it more transparent,
considering its purpose.

The preceding example presents an interesting demonstration of how to use macros,
but they can be useful in many more instances. Another good example is to have
a macro that dynamically validates that we are in a development or deployment
environment and then automatically filters our dataset. To do that, in the macros
directory, create a new macro named limit_dataset_if_not_deploy_env.sql and copy
the code from Example 5-16.

Example 5-16. limit_dataset_if_not_deploy_env macro

{# Macro that considering the target name,
limits the amount of data queried for the nbr_months_of_data defined #}
{% macro limit_dataset_if_not_deploy_env(column_name, nbr_months_of_data) %}
-- limit the amount of data queried if not in the deploy environment.
{% if target.name != 'deploy' %}
where {{ column_name }} > DATE_SUB(CURRENT_DATE(), INTERVAL {{ nbr_months_of_data }}
 MONTH)
{% endif %}
{% endmacro %}

Then, in the fct_orders model, include the code from Example 5-17 at the bottom
after the left join.

Example 5-17. Call limit_dataset_if_not_deploy_env macro from fct_orders

with orders as (
 select * from {{ ref('stg_jaffle_shop_orders')}}
),

payment_type_orders as (
 select * from {{ ref('int_payment_type_amount_per_order')}}
)

select
 ord.order_id,
 ord.customer_id,

240 | Chapter 5: dbt Advanced Topics

 ord.order_date,
 pto.cash_amount,
 pto.credit_amount,
 pto.total_amount,
 case
 when status = 'completed'
 then 1
 else 0
 end as is_order_completed

from orders as ord
left join payment_type_orders as pto ON ord.order_id = pto.order_id
-- Add macro here
{{- limit_dataset_if_not_deploy_env('order_date', 3) }}

Now compile the code. If you are in the development environment, your
fct_orders.sql model should show a new filter, where order_date > DATE_SUB

(CURRENT_DATE(), INTERVAL 3 MONTH). In other words, the filter allows your code
to distinguish between the environments: if not the deployment environment, work
only with the last three months of data; otherwise, gather the whole dataset. Looking
at only N months in your development environment will substantially reduce the
overhead in your data platform, while at the same time, you still have a good subset of
data to work with while developing and testing your code. If this is not the case, you
can increase for 12, 24, or even 36 months.

Finally, it’s important to mention dbt’s adaptability in the ability to customize its core
macros. These macros serve some of dbt’s core functionalities, offering predefined
templates for common tasks. One standout example is the generate_schema_name
macro. This macro is responsible for crafting schema names for your dbt models.
What’s truly remarkable is that you can arrange it to align seamlessly with your
project’s unique naming conventions. Imagine effortlessly generating schema names
that mirror your organization’s data structure.

Customizing these core macros isn’t just a technical feat. It’s a game-changer in how
you exert dbt’s capabilities, unlocking the potential to craft a data transformation
process that aligns precisely with your project’s needs.

In conclusion, using macros in a dbt project can be a robust and efficient way to
automate and customize your data models and processes. Macros allow you to easily
reuse code and adapt your models to different contexts and requirements. Using Jinja
syntax, you can create flexible and easy-to-maintain macros that can be called and
triggered in various ways. Overall, macros can help you increase your productivity
and create more robust and scalable data models.

Using SQL Macros | 241

dbt Packages
Packages are a way to organize and share code and resources, such as models and
macros, that have already been written, within a dbt project. They allow you to
structure your project into logical units and to reuse code and resources across
multiple models and files.

In a dbt project, packages are defined inside the packages.yml file, installed inside the
dbt_packages directory, and are structured using a hierarchy of directories and files.
Each package can contain models, tests, macros, and other resources that are related
to a specific topic or functionality.

Packages can be used in many ways in a dbt project. For example, you might use
packages to do the following:

Organize your project into logical units
Packages can help you structure your project in an intuitive and easy way to
understand grouping together related models, tests, and other resources.

Reuse code and resources
Packages allow you to reuse code and resources across multiple models and files,
saving time and reducing maintenance overhead.

Encapsulate functionality
Packages can help you encapsulate specific functionality and hide the implemen‐
tation details from other parts of the project, making your project more modular
and easier to understand.

Share code and resources with others
Packages can be shared with other users or projects, which allows you to leverage
the work of others and be part of the community by contributing your own code.

Overall, packages are a valuable feature of dbt that can help you to organize, reuse,
and share code and resources in your project. You can install dbt packages from three
distinct places: a public packages hub, Git, or a local directory. In this section, we
will cover how to install packages and show some examples of their usage. We will
use one of the most common packages, dbt_utils, but note that there are a lot of
great packages out there. You can find plenty of them at the dbt Hub or import them
directly from GitHub.

Installing Packages
Installing a package in a dbt project is a straightforward process that can help you
leverage the work of others and add new functionalities to your project. We already
gave an overview earlier, but let’s discuss installing packages further.

242 | Chapter 5: dbt Advanced Topics

https://hub.getdbt.com

The step-by-step guide to installing a package is as follows:

1. Create a packages.yml file if you don’t already have it. This file is where you will1.
configure the dbt packages that need to be installed in your dbt project.

2. Add the package to your packages.yml file: in your dbt project, open the file2.
and add an entry for the package you want to install. Keep in mind that before
installing a package, it is important to ensure that your dbt project meets any
requirements or dependencies that the package may have. These may include
specific versions of dbt or other packages, and system or software requirements.

3. Install the package by running the dbt deps command in your terminal. This3.
will install the package and its dependencies in your dbt project.

4. Test the package to ensure it is working correctly. You can run the dbt test4.
command and verify that the package’s models and tests pass.

Let’s try installing one of the most common packages available: dbt_utils, which you
can find at the dbt Hub. Typically, using the public packages hub will give you all the
configurations that need to be inside your packages.yml file for a specific dbt package,
resulting in a smoother installation. So, to install dbt_utils, copy the config from
Example 5-18 into your packages.yml file.

Example 5-18. dbt_utils package configuration

packages:
 - package: dbt-labs/dbt_utils
 version: 1.1.1

Save your YAML file and run dbt deps in your CLI. Everything should be fine if
you get a success message, as shown in Figure 5-7. Later in the chapter, we will use
dbt_utils to see if everything is running as expected.

Figure 5-7. Success message on logs, after dbt_utils installation

dbt Packages | 243

https://oreil.ly/W-rZN
https://hub.getdbt.com

If you receive a package incompatibility issue with your dbt ver‐
sion, ensure you’re running a version of dbt that’s compatible with
the package you want to use. Check the package’s documentation
or repository for information on the supported dbt versions. You
can also update the package version to be compatible with your dbt
version. Finally, alternative packages that provide similar function‐
ality and are compatible with your dbt version can be a solution.

Exploring the dbt_utils Package
First things first, let’s meet the package that we will use for our examples: dbt_utils.
This package is developed and maintained by dbt Labs, the creators of the dbt. It
contains a collection of utility functions, macros, and other resources that are useful
to extend and enhance the functionality of a dbt project.

Here are some examples of the types of resources included in the dbt_utils package:

• Helper functions used to perform common tasks, such as generating lists of•
columns, formatting dates and timestamps, and handling null values

• Custom data types used to represent data more expressively and flexibly, such as•
arrays, ranges, and intervals

• Debugging and testing tools for your dbt projects, such as logging functions and•
test frameworks

• Macros and models for performing a wide range of tasks, such as data manipula‐•
tion, visualization, and testing

In conclusion, dbt_utils is a helpful package for dbt users who want to extend and
customize their projects in various ways. It is constantly being updated and expanded
to include new features and resources.

Using Packages Inside Macros and Models
In a dbt project, you can use packages inside macros to access other macros, models,
tests, and other resources defined in the package. This allows you to reuse code and
resources across multiple models and files, modularize your project, and, therefore,
have DRY-er code.

Once the package is installed, as we outlined in “Installing Packages” on page 242,
you can access its macros by using the package name as a prefix, following a specific
syntax, as shown in Example 5-19.

244 | Chapter 5: dbt Advanced Topics

Example 5-19. Sample macro call

{{ package.my_macro() }}

Using dbt_utils, we can generate a series of numbers or dates in a database that
can be useful for various use cases. But let’s take a look at a practical example. Let’s
experiment with the date_spine() macro. Copy the code from Example 5-20 and
execute it.

Example 5-20. date_spine macro inside dbt_utils

{{ dbt_utils.date_spine(
 datepart="day",
 start_date="cast('2023-01-01' as date)",
 end_date="cast('2023-02-01' as date)"
)
}}

The output expected is a list of dates between January 1, 2023 and, but not including,
February 1, 2023. The date_spine macro is an effective and flexible function that can
help you work with dates, generate sequences of dates, or perform other tasks that
involve dates, such as creating a dim_date dimension in your analytics model.

Another use case is to use your installed packages directly in your developed models.
For example, suppose you want to compute the percentage that the cash_amount has
in a specific order, yet you need to ensure that for orders when the total_amount is 0,
your code will not break, reporting a division-by-zero error. You can certainly do this
logic by yourself, but dbt_utils already has a built-in function that handles it. Let’s
take a look at the code in Example 5-21.

Example 5-21. safe_divide macro inside dbt_utils

select
 order_id,
 customer_id,
 cash_amount,
 total_amount,
 {{ dbt_utils.safe_divide('cash_amount', 'total_amount') }}
from {{ ref('fct_orders') }}

This code uses the safe_divide macro to divide the numerator, cash_amount, by the
denominator, total_amount, and to store the result in a variable called result. If the
denominator is 0 or null, the safe_divide macro will return null instead of raising
an error.

dbt Packages | 245

The safe_divide macro is great for performing division operations in a dbt project,
especially when working with data that may contain null or 0 values. It can save time
and reduce maintenance overhead by eliminating the need to manually check for null
or 0 values.

dbt packages are a versatile tool to help you build better and more efficient data
transformation pipelines. In this chapter, we’ve covered dbt_utils, which offers a
collection of useful macros and functions that streamline common data modeling
tasks, making it a valuable addition to your toolkit. Another interesting package is
dbt_expectations, which empowers you to define, document, and test your data
expectations, ensuring data quality and reliability. Additionally, dbt_date simplifies
date-related calculations and manipulations in your data models. By leveraging these
packages and others, you can simplify your code sharing and collaboration, reduce
duplication of effort, and create more scalable and maintainable data models.

dbt Semantic Layer
In data analytics, a semantic layer plays a key role, acting as a bridge between raw data
and meaningful insights. This logical abstraction is a decisive translator, simplifying
complex data structures and facilitating a common understanding of data throughout
an organization. Doing so transforms complex database setups into a user-friendly
language that empowers a diverse audience, from data analysts to business leaders, to
access and understand data effortlessly. Beyond simplification, the semantic layer also
provides data integrity and reliability, guaranteeing that data is understandable and
trustworthy.

The essence of the dbt semantic layer distinguishes it fundamentally from conven‐
tional semantic layers. In many semantic layers, users delineate connections within
the data by explicitly specifying the left and right join keys. However, the dbt seman‐
tic layer specification adopts a unique approach by introducing entities. These entities
enable us to automatically infer data connections, the graph’s edges, within the layer.
For instance, consider a customer table with a customer_id as its primary key and an
orders table with a customer_id entity as a foreign key—this can form a relationship,
or, more precisely, an edge in our data graph. This innovation significantly reduces
the need for manual logic maintenance, as a graph usually has fewer nodes than
edges.

The beauty of this approach lies in its simplicity and efficiency. It encapsulates
semantic logic in an exceptionally DRY manner, facilitates a broader array of metric
and dimension combinations, and results in cleaner SQL. These advantages make it
easier for data teams to oversee, evolve, and leverage their data models.

At the core of the dbt semantic layer lie two essential components: semantic models
and metrics. Semantic models are the foundational building blocks, comprising three

246 | Chapter 5: dbt Advanced Topics

https://oreil.ly/p0Gmi
https://oreil.ly/LFm4q

key elements: entities, dimensions, and measures for creating a metric. These compo‐
nents empower MetricFlow, the framework powering our semantic layer, to construct
queries for defining metrics.

Metrics, on the other hand, are the tools we employ to measure and analyze our data.
They operate atop the semantic models, enabling the creation of sophisticated and
elaborate definitions built upon reusable components.

As previously mentioned, the semantic layer relies on three fundamental concepts to
create metrics: entities, dimensions, and measures.

An entity refers to an independent and identifiable object within a specific context. In
the language of databases, entities typically correspond to tables, serving as the core
subjects of our data collection efforts. Entities represent real-world concepts within
a business, containing, for example, customers or orders. In our semantic models,
entities are represented using ID columns, which function as join keys to connect
with other semantic models in the semantic graph.

Entities are essential in helping the Semantic Engine understand the relationships
among tables or datasets. This enables the engine to comprehend how data is inter‐
connected, ensuring that when a query is made concerning a specific entity, the
engine knows where to retrieve the relevant information.

On the other hand, dimensions provide context to measures by serving as categorical
attributes that allow the breakdown of the data in different ways during the analy‐
sis. Dimensions typically describe the characteristics associated with other elements
within the model.

Dimensions are configured to empower users to explore and analyze data from
diverse perspectives. The Semantic Engine utilizes these dimensions to tailor queries
according to user preferences.

Finally, measures are the quantifiable data points that are the primary focus of anal‐
ysis, representing the metrics we intend to examine. Measures are often subject to
aggregation, and in many cases, a fundamental role of a BI tool is to aggregate these
measures across various dimensions. The definition of measures ensures that calcula‐
tions maintain consistency across all queries and reports, eliminating any semantic
ambiguity.

Let’s illustrate how to build a dbt semantic layer. We’ll keep using the example
of customers and orders entities. We want to measure the total amount paid
(total_amount) and have a split for what was paid in cash (cash_amount) and what
was paid in credit (credit_amount). Finally, we also want to have the total number
of orders made (order_count) and the number of customers with orders (custom
ers_with_orders). We also want to know the capacity to slide per day (order_date)
and whether orders completed or not (is_order_completed).

dbt Semantic Layer | 247

Considering these requirements, the full semantic model is shown in Example 5-22.
You can add it to the respective YAML file previously created, _core_models.yml, or
create a new one for the semantic model.

Example 5-22. YAML file configuration for the semantic model

semantic_models:
 - name: orders
 description: |
 Order fact table. This table is at the order grain with one row per order.
 model: ref('fct_orders')

 entities:
 - name: order_id
 type: primary
 - name: customer
 type: foreign
 expr: customer_id
 dimensions:
 - name: order_date
 type: time
 type_params:
 time_granularity: day
 - name: is_order_completed
 type: categorical
 measures:
 - name: total_amount
 description: Total amount paid by the customer with successful payment
 status.
 agg: sum
 - name: order_count
 expr: 1
 agg: sum
 - name: cash_amount
 description: Total amount paid in cash by the customer with successful
 payment status.
 agg: sum
 - name: credit_amount
 description: Total amount paid in credit by the customer with successful
 payment status.
 agg: sum
 - name: customers_with_orders
 description: Distinct count of customers placing orders
 agg: count_distinct
 expr: customer_id

Moving to the last stage, all the components covered previously require the involve‐
ment of a Semantic Engine to operationalize them. This engine plays a fundamental
role in interpreting the provided data and constructing analytical queries in accord‐
ance with those definitions. For example, even after meticulously specifying all the

248 | Chapter 5: dbt Advanced Topics

aspects of customer orders, we still depend on an engine to parse the semantic model
and generate a query that calculates the desired metrics. Within the domain of dbt,
this function is fulfilled by MetricFlow.

The Semantic Engine concept is analogous to a dbt Documentation Engine. When
you create a YAML file for a model, it remains inert by itself, lacking significant func‐
tionality. However, the dbt Documentation Engine transforms this data into practical
tools, including a documentation website, dbt tests, alert systems, data contracts, and
more. Similarly, MetricFlow operates as a dbt Semantic Engine, leveraging its capacity
to interpret semantic data and generate valuable outcomes, particularly standardized
and reusable analytical queries.

To use MetricFlow for the generation of analytical queries, the initial step consists of
establishing metrics based on the semantic model you’ve meticulously constructed.
You can define metrics in the same YAML files as your semantic models or create a
new file.

To illustrate the process of metrics creation, let’s first clarify the specific metrics we
intend to develop. To maintain simplicity while retaining interest, it’s worthwhile
to include a metric that calculates the total amount of orders (order_total). Fur‐
thermore, we can create another metric that tracks the count of orders placed
(order_count). Finally, we’ll explore a metric that, based on the number count of
orders placed, filters the metric itself, revealing what portion of the orders placed
were completed. Example 5-23 provides a YAML file demonstrating the proper con‐
figuration of these metrics.

Example 5-23. Metrics YAML file configuration

metrics:
 - name: order_total
 description: Sum of total order amount.
 type: simple
 label: Order Total
 type_params:
 measure: total_amount
 - name: order_count
 description: Count of orders.
 label: Orders
 type: simple
 type_params:
 measure: order_count
 - name: completed_orders
 description: Count of orders that were delivered
 label: Delivered Orders
 type: simple
 type_params:
 measure: order_count

dbt Semantic Layer | 249

 filter: |
 {{ Dimension('order_id__is_order_completed') }} = true

As an example, to get MetricFlow working on order_total, use the CLI command
mf query --metric order_total. MetricFlow will interpret this definition alongside
the measure’s definition (outlined in the semantic model) to produce the query in
Example 5-24.

Example 5-24. Order total query

SELECT SUM(total_amount) as order_total
FROM fct_orders

While this chapter aims to showcase the workings of the seman‐
tic layer within dbt, note that there may be better choices for
organization-wide deployment than mf query. For broader and
more robust usage across your organization, consider utilizing the
APIs provided by dbt. Additionally, we recommend referring to
the “Set Up the dbt Semantic Layer” page for the most up-to-date
and accurate installation instructions for the semantic layer and
MetricFlow, as it is regularly updated with the latest information
and developments.

Having established a dbt semantic layer, you’ve effectively created an abstraction
layer over your data. Regardless of any modifications made to the orders dataset,
anyone seeking the total order amount can easily access the order_total metric. This
empowers users to analyze the orders data according to their specific requirements.

Summary
In this chapter, we’ve dug into advanced topics in the world of dbt, expanding our
understanding of this transformative tool. We explored the power of dbt models and
materializations, uncovering how they enable us to manage complex data transfor‐
mations while ensuring efficient performance optimization. Using dynamic SQL with
Jinja has allowed us to create dynamic and reusable queries that adapt to changing
requirements, thus enhancing the agility of our data processes.

Moving beyond the fundamentals, we presented SQL macros, unlocking a new level
of automation and reusability in our codebase. Through insightful examples, we saw
how SQL macros can drastically streamline our code and bring consistency to our
data transformations.

Moreover, the concept of dbt packages emerged as a cornerstone of collaboration
and knowledge sharing in our data ecosystem. We discussed how dbt packages allow

250 | Chapter 5: dbt Advanced Topics

https://oreil.ly/UaZbt

us to encapsulate logic, best practices, and reusable code, fostering a culture of
collaboration and accelerating development cycles.

Finally, we’ve demonstrated how the dbt semantic layer can enhance your analytics
solution by providing an abstraction layer over your data. This layer ensures consis‐
tency and exactness across all reports and analyses because the business logic is cen‐
tralized and verified within the semantic layer, minimizing the risk of disparities or
mistakes. Furthermore, as the database expands or undergoes modifications, having
a semantic layer allows you to make adjustments in a single location, eliminating the
need to update numerous reports or queries individually.

As we conclude this chapter, we’ve embarked on a journey through various advanced
dbt topics, equipping ourselves with the knowledge and tools required to optimize
our data processes. These advanced concepts elevate our data transformations and
empower us to elevate our data analytics to unprecedented heights. Armed with
these insights, we’ve competently navigated the complexities of data challenges while
promoting innovation in our data-driven endeavors.

However, it’s important to note that while this has been a comprehensive guide to
dbt, the dbt universe is vast and continually evolving. Several additional topics are
worth exploring, such as advanced deployment techniques like blue/green, canary,
or shadow deployments. Additionally, digging into the usage of Write-Audit-Process
(WAP) patterns can provide teams with greater control over data quality and tracea‐
bility. Also, exploring how dbt interfaces with other tools in the data ecosystem would
be valuable, as well as understanding how to work with multiproject organizations.
Indeed, dbt is a dynamic and expansive world; there’s always more to learn and
discover on this exciting data journey.

Summary | 251

CHAPTER 6

Building an End-to-End Analytics
Engineering Use Case

Welcome to the last chapter of our book on analytics engineering with dbt and SQL.
In the previous chapters, we have covered various concepts, techniques, and best
practices for turning raw data into actionable insights using analytics engineering.
Now it’s time to pull these topics all together and embark on a practical journey to
construct an end-to-end analytics engineering use case.

In this chapter, we will look at designing, implementing, and deploying a comprehen‐
sive analytics solution from start to finish. We will leverage the full potential of dbt
and SQL to build a robust and scalable analytics infrastructure and also use data
modeling for both operational and analytical purposes.

Our main goal is to show how the principles and methods covered in this book can
be practically applied to solve real-world data problems. By combining the knowledge
acquired in the previous chapters, we will build an analytics engine that spans all
phases of the data lifecycle, from data ingestion and transformation to modeling
and reporting. Throughout the chapter, we’ll address common challenges that arise
during implementation and provide guidance on how to effectively overcome them.

253

Problem Definition: An Omnichannel Analytics Case
In this challenge, our goal is to enhance the customer experience by providing
seamless and personalized interactions across multiple channels. To achieve this, we
need a comprehensive dataset that captures valuable customer insights. We require
customer information, including names, email addresses, and phone numbers, to
build a robust customer profile. It is essential to track customer interactions across
channels, such as our website, mobile app, and customer support, to understand their
preferences and needs.

We also need to gather order details, including order dates, total amounts, and pay‐
ment methods, to analyze order patterns and identify opportunities for cross-selling
or upselling. Furthermore, including product information like product names, cate‐
gories, and prices will enable us to tailor our marketing efforts and promotions
effectively. By analyzing this dataset, we can uncover valuable insights, optimize our
omnichannel strategy, enhance customer satisfaction, and drive business growth.

Operational Data Modeling
In our pursuit of a holistic approach we begin our journey with the operational step.
In this way, we aim to create a solid foundation for subsequent steps. Our approach
involves using the carefully documented requirements for a management database,
which will guide us. In line with industry best practices, we will diligently follow the
three essential steps—conceptual, logical, and physical modeling—to meticulously
build our database.

Keep in mind, we are opting for a breadth-first strategy that covers all the steps but
does not go deep in terms of detail. Thus, consider this an academic exercise with
simplified requirements, intended to equip you with a better understanding of the
processes of building an operational database, and not a comprehensive one.

Conceptual Model
As we previously described, the first step, consisting of the conceptual modeling
phase, allows us to conceptualize and define the overall structure and relationships
within the database. This involves identifying the key entities, their attributes, and
their associations. Through careful analysis and collaboration with stakeholders, we
will capture the essence of the management system and translate it into a concise and
comprehensive conceptual model (Figure 6-1).

254 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Figure 6-1. Conceptual diagram for our operational database

In the conceptual model in Figure 6-1, we can observe three entities, Customer,
Channel, and Products, with two key relationships, Buy and Visit. The first relation‐
ship enables us to track purchases of customers of certain products in certain chan‐
nels. (Keep in mind, we need the channels for understanding performance across
them.) The second relationship allows us to track interactions across channels. For
each entity and relationship, we have defined a few attributes to make it a richer
database.

Logical Model
As we previously mentioned, to convert the conceptual ERD exercise into a logical
schema, we create a structured representation of entities, attributes, and their rela‐
tionships. This schema acts as a foundation for implementing the database in a
specific system. We turn the entities into tables, with their attributes becoming table
columns. Relationships are handled differently based on the type: for N:1 relation‐
ships, we use foreign keys to connect tables, and for M:N relationships, we create a
separate table to represent the connection. By following these steps, we ensure data
integrity and efficient management of the database, almost normalizing implicitly our
conceptual model.

Operational Data Modeling | 255

If we apply the previous rules to our concept, we should be able to come up with
something similar to Figure 6-2.

Figure 6-2. Logical schema for our operational database

As you can see, we now have five tables: three of them represent the primary entities
(Customers, Products, and Channels), while the remaining two tables represent the
relationships. However, for the sake of simplicity, we have renamed the two relation
tables from Buy and Visit to Purchase history and Visit history, respectively.

Physical Model
While the logical model primarily deals with the conceptual representation of the
database, the physical model delves into the practical aspects of data management,
assuming we have chosen a certain database engine. In our case, it will be MySQL.
Thus, we need to translate the logical model into specific storage configurations, as
per MySQL best practices and limitations.

256 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Figure 6-3 shows our ERD diagram, representing a MySQL data types and
constraints.

Figure 6-3. Physical diagram for our operational database in MySQL

Operational Data Modeling | 257

Now we can translate the previous model to a set of DDL scripts, starting by creating
a new MySQL database to store our table structures (Example 6-1).

Example 6-1. Creating the primary tables

CREATE DATABASE IF NOT EXISTS OMNI_MANAGEMENT;
USE OMNI_MANAGEMENT;

In Example 6-2, we now handle the DDL code to create the three primary tables:
customers, products, and channels.

Example 6-2. Creating our operational database

CREATE TABLE IF NOT EXISTS customers (
 customer_id INT PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(150),
 date_birth DATE,
 email_address VARCHAR(150),
 phone_number VARCHAR(30),
 country VARCHAR(100),
 CREATED_AT TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 UPDATED_AT TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

CREATE TABLE IF NOT EXISTS products (
 product_sku INTEGER PRIMARY KEY AUTO_INCREMENT,
 product_name VARCHAR(150),
 unit_price DOUBLE,
 CREATED_AT TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 UPDATED_AT TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

CREATE TABLE IF NOT EXISTS channels (
 channel_id INTEGER PRIMARY KEY AUTO_INCREMENT,
 channel_name VARCHAR(150),
 CREATED_AT TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 UPDATED_AT TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

The customers table has columns such as customer_id, name, date_birth,
email_address, phone_number, and country. The customer_id column acts as the
primary key, uniquely identifying each customer. It is set to automatically increment
its value for every new customer added. The other columns store relevant informa‐
tion about the customer.

The products and channels tables follow a similar approach. However, products
consists of columns such as product_sku, product_name, and unit_price, whereas
channels contains only channel_id and channel_name.

258 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

All tables’ creation code includes the IF NOT EXISTS clause available in MySQL,
which ensures that the tables are created only if they do not already exist in the
database. This helps prevent any errors or conflicts when executing the code multiple
times.

We are using both CREATED_AT and UPDATED_AT columns in all our tables as this is
a best practice. By adding these, often called audit columns, we make our database
ready for incremental extractions of data in the future. This is also required for many
CDC tools that handle this incremental extraction for us.

We can now create the relationship tables, as seen in Example 6-3.

Example 6-3. Creating the relationship tables

CREATE TABLE IF NOT EXISTS purchaseHistory (
 customer_id INTEGER,
 product_sku INTEGER,
 channel_id INTEGER,
 quantity INT,
 discount DOUBLE DEFAULT 0,
 order_date DATETIME NOT NULL,
 CREATED_AT TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 UPDATED_AT TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 FOREIGN KEY (channel_id) REFERENCES channels(channel_id),
 FOREIGN KEY (product_sku) REFERENCES products(product_sku),
 FOREIGN KEY (customer_id) REFERENCES customers(customer_id)
);

CREATE TABLE IF NOT EXISTS visitHistory (
 customer_id INTEGER,
 channel_id INTEGER,
 visit_timestamp TIMESTAMP NOT NULL,
 bounce_timestamp TIMESTAMP NULL,
 CREATED_AT TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 UPDATED_AT TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 FOREIGN KEY (channel_id) REFERENCES channels(channel_id),
 FOREIGN KEY (customer_id) REFERENCES customers(customer_id)
);

The purchaseHistory table, which is probably the heart of our purchase relationship,
has columns such as customer_id, product_sku, channel_id, quantity, discount,
and order_date. The customer_id, product_sku, and channel_id columns represent
the foreign keys referencing the respective primary keys in the customers, products,
and channels tables. These foreign keys establish relationships among the tables.
The quantity column stores the quantity of products purchased, while the discount
column holds the discount applied to the purchase (with a default value of 0 if not
specified, assuming this is the norm). The order_date column records the date and
time of the purchase and is marked NOT NULL, meaning it must always have a value.

Operational Data Modeling | 259

The visitHistory table is similar to PurchaseHistory and contains columns
such as customer_id, channel_id, visit_timestamp, and bounce_timestamp. The
customer_id and channel_id columns serve as foreign keys referencing the primary
keys of the customers and channels tables. The visit_timestamp column captures
the timestamp indicating when a customer visited a particular channel, while the
bounce_timestamp records the timestamp if the visit resulted in a bounce (departure
from the channel without any further action).

The FOREIGN KEY constraints enforce referential integrity, ensuring that the values
in the foreign-key columns correspond to existing values in the referenced tables
(customers, products, and channels). This helps maintain the integrity and consis‐
tency of the data within the database.

Modeling an operational database is a valuable aspect of an analyst’s skill set, even
if they are not always directly responsible for designing the raw database structures.
Understanding the principles and considerations underlying operational database
modeling gives analysts a holistic perspective on the entire data pipeline. This knowl‐
edge helps them understand the origin and structure of the data they are working
with, which in turn enables them to work more effectively with the data engineers
responsible for the operational layer.

While it is not the job of analysts and analytics engineers to design these databases
from scratch, with knowledge of operational modeling, they can navigate the intri‐
cacies of the data sources and ensure that the data is structured and organized to
meet their analytical needs. In addition, this understanding aids in troubleshooting
and optimizing data pipelines, as analytics engineers can identify potential problems
or opportunities for improvement within the operational database layer. In essence,
familiarity with operational database modeling improves analytical skills and contrib‐
utes to more efficient and collaborative data-driven workflows.

High-Level Data Architecture
We have designed a lean data architecture to support the initial requirements of our
omnichannel use case. We will start by developing a Python script to extract the data
from MySQL, clean a few data types, and then send the data to our BigQuery project.
Figure 6-4 illustrates our target solution.

260 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Figure 6-4. Diagram for our lean data architecture to support our use case

Once the data lands on the raw environment, we will leverage dbt to transform our
data and build the required models that will compose our star schema. Last but
not least, we will analyze data in BigQuery by running SQL queries against our star
schema data model.

To extract the data from MySQL and load it to BigQuery, we have decided to simulate
an ETL job (Example 6-4). The orchestrator code block containing a single function,
data_pipeline_mysql_to_bq, performs a few steps: extracting data from a MySQL
database, transforming it, and loading it into our target dataset in BigQuery. The
code starts by importing the necessary modules, including mysql.connector for
MySQL database connectivity and pandas for data manipulation. Another key library,
pandas_bq, is also used later in our code structure.

The data_pipeline_mysql_to_bq function takes keyword arguments (**kwargs) to
receive configuration details required for the pipeline. In Python, **kwargs is a
special syntax used to pass a variable number of keyword arguments to a function
as a dictionary-like object Inside the function, a connection is established with the
MySQL database using the provided connection details.

To automate the table extraction, given that we want all the tables in our source
database, we create a simple routine using the information_schema of MySQL. This
is a virtual database that provides access to metadata about the database server,
databases, tables, columns, indexes, privileges, and other important information. It
is a system schema that is automatically created and maintained by MySQL. We
leverage the information_schema to get all the table names in our database, and the
result is stored in a DataFrame named df_tables.

After this step, we initiate the core of our pipeline, calling an extraction, a transfor‐
mation, and a load function to simulate the three steps in an ETL job. The code
snippets in Example 6-4 illustrate how we create these functions.

High-Level Data Architecture | 261

Example 6-4. Loading data into BigQuery

import mysql.connector as connection
import pandas as pd

def data_pipeline_mysql_to_bq(**kwargs):

 mysql_host = kwargs.get('mysql_host')
 mysql_database = kwargs.get('mysql_database')
 mysql_user = kwargs.get('mysql_user')
 mysql_password = kwargs.get('mysql_password')
 bq_project_id = kwargs.get('bq_project_id')
 dataset = kwargs.get('dataset')

 try:
 mydb = connection.connect(host=mysql_host\
 , database = mysql_database\
 , user=mysql_user\
 , passwd=mysql_password\
 ,use_pure=True)

 all_tables = "Select table_name from information_schema.tables
 where table_schema = '{}'".format(mysql_database)
 df_tables = pd.read_sql(all_tables,mydb,
 parse_dates={'Date': {'format': '%Y-%m-%d'}})

 for table in df_tables.TABLE_NAME:
 table_name = table

 # Extract table data from MySQL
 df_table_data = extract_table_from_mysql(table_name, mydb)

 # Transform table data from MySQL
 df_table_data = transform_data_from_table(df_table_data)

 # Load data to BigQuery
 load_data_into_bigquery(bq_project_id,
 dataset,table_name,df_table_data)

 # Show confirmation message
 print("Ingested table {}".format(table_name))

 mydb.close() #close the connection
 except Exception as e:
 mydb.close()
 print(str(e))

In Example 6-5, we define the extract_table_from_mysql function that simulates
the extraction step in an ETL job. This function is responsible for retrieving data
from a specified table in a MySQL database. It takes two parameters: table_name,
which represents the name of the table to be extracted, and my_sql_connection,

262 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

which represents the connection object or connection details for the MySQL
database.

To perform the extraction, the function constructs a SQL query by concatenating the
table name with the select * from statement. This is a very simple way to extract all
the rows and works well in our example; however, you might want to extract this data
incrementally by filtering records where updated_at or created_at are greater than
the last extraction date (which you can store in a metadata table).

Next, the function utilizes the pd.read_sql function from the pandas library to
execute the extraction query. It passes the query and the MySQL connection object
(my_sql_connection) as arguments. The function reads the data from the specified
table and loads it into a pandas DataFrame named df_table_data. Finally, it returns
the extracted DataFrame, which contains the data retrieved from the MySQL table.

Example 6-5. Loading data into BigQuery—extraction

'''
 Simulate the extraction step in an ETL job
'''
def extract_table_from_mysql(table_name, my_sql_connection):
 # Extract data from mysql table
 extraction_query = 'select * from ' + table_name
 df_table_data = pd.read_sql(extraction_query,my_sql_connection)
 return df_table_data

In Example 6-6, we define the transform_data_from_table function that represents
the transformation step in an ETL job. This function is responsible for performing
a specific transformation on a DataFrame called df_table_data. In this case, we do
something simple: clean the dates in the DataFrame by converting them to strings
to avoid conflicts with the pandas_bq library. To achieve this, the function identifies
the columns with an object data type (string columns) by using the select_dtypes
method. It then iterates over these columns and checks the data type of the first value
in each column by converting it to a string representation.

If the data type is identified as <class datetime.date>, indicating that the column
contains date values, the function proceeds to convert each date value to a string
format. This is done by mapping each value to its string representation by using
a lambda function. After performing the transformation, the function returns the
modified DataFrame with the cleaned dates.

Example 6-6. Loading data into BigQuery—transformation

'''
 Simulate the transformation step in an ETL job
'''

High-Level Data Architecture | 263

def transform_data_from_table(df_table_data):
 # Clean dates - convert to string
 object_cols = df_table_data.select_dtypes(include=['object']).columns
 for column in object_cols:
 dtype = str(type(df_table_data[column].values[0]))
 if dtype == "<class 'datetime.date'>":
 df_table_data[column] = df_table_data[column].map(lambda x: str(x))
 return df_table_data

In Example 6-7, we define the load_data_into_bigquery method, which provides
a convenient way to load data from a pandas DataFrame into a specified BigQuery
table by using the pandas_gbq library. It ensures that the existing table is replaced
with the new data, allowing seamless data transfer and update within the BigQuery
environment.

The function takes four parameters: bq_project_id represents the project ID of the
BigQuery project, while dataset and table_name specify the target dataset and table
in BigQuery, respectively. The df_table_data parameter is a pandas DataFrame that
contains the data to be loaded.

Example 6-7. Loading data into BigQuery—load

'''
 Simulate the load step in an ETL job
'''
def load_data_into_bigquery(bq_project_id, dataset,table_name,df_table_data):
 import pandas_gbq as pdbq
 full_table_name_bg = "{}.{}".format(dataset,table_name)
 pdbq.to_gbq(df_table_data,full_table_name_bg,project_id=bq_project_id,
 if_exists='replace')

In Example 6-8, we execute the data pipeline by calling the data_pipe

line_mysql_to_bq function with the specified keyword arguments. The code creates
a dictionary named kwargs that holds the required keyword arguments for the func‐
tion. This is a convenient way to pass multiple parameters in Python without having
to add them all to the method signature. The kwargs dictionary includes values
such as the BigQuery project ID, dataset name, MySQL connection details (host,
username, password), and the name of the MySQL database containing the data
to be transferred. However, the actual values for the BigQuery project ID, MySQL
host information, username, and password need to be replaced with the appropriate
values.

We call the function data_pipeline_mysql_to_bq by providing the kwargs dictio‐
nary contents as keyword arguments. This triggers the data pipeline that moves data
from the specified MySQL database to the target BigQuery table.

264 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Example 6-8. Loading data into BigQuery—call orchestrator

Call main function

kwargs = {
 # BigQuery connection details
 'bq_project_id': <ADD_YOUR_BQ_PROJECT_ID>,
 'dataset': 'omnichannel_raw',
 # MySQL connection details
 'mysql_host': <ADD_YOUR_HOST_INFO>,
 'mysql_user': <ADD_YOUR_MYSQL_USER>,
 'mysql_password': <ADD_YOUR_MYSQL_PASSWORD>,
 'mysql_database': 'OMNI_MANAGEMENT'
}

data_pipeline_mysql_to_bq(**kwargs)

We should now have our raw data loaded into our target dataset on BigQuery, ready
to be transformed into a dimensional model, using dbt as a tool to do so.

Analytical Data Modeling
As we saw earlier in this book, analytical data modeling uses a systematic approach
encompassing several crucial steps to create a compelling and meaningful represen‐
tation of your business processes. The first step is identifying and understanding
the business processes driving your organization. This involves mapping out the key
operational activities, data flows, and interdependencies among departments. By fully
understanding your business processes, you can pinpoint the critical touchpoints
where data is generated, transformed, and utilized.

Once you have a clear picture of your business processes, the next step is identify‐
ing the facts and dimensions in your dimensional data model. Facts represent the
measurable and quantifiable data points you want to analyze, such as sales figures,
customer orders, or website traffic. On the other hand, dimensions provide the neces‐
sary context for these facts. They define the various attributes and characteristics that
describe the facts. Identifying these facts and dimensions is essential for structuring
your data model effectively.

Once you have identified the facts and dimensions, the next step is to identify
the attributes for each dimension. Attributes provide additional detail and enable a
more profound analysis of the data. They describe specific characteristics or proper‐
ties associated with each dimension. Using an example of the product dimension,
attributes could include product color, size, weight, and price. Similarly, if we want a
customer dimension, attributes might encompass demographic information such as
age, gender, and location. By identifying relevant attributes, you enhance the richness
and depth of your data model, enabling more insightful analysis.

Analytical Data Modeling | 265

Defining the granularity of business facts is the final step in analytical data modeling.
Granularity refers to the level of detail at which you capture and analyze your busi‐
ness facts. Balancing capturing enough detail for meaningful analysis and avoiding
unnecessary data complexity is essential. For instance, in retail sales analysis, the
granularity could be defined at the transaction level, capturing individual customer
purchases. In the alternative, we can have other higher-level granularities, such as
daily, weekly, or monthly aggregates. The choice of granularity depends on your ana‐
lytical objectives, data availability, and the level of detail necessary to derive valuable
insights.

By following these steps in analytical data modeling, you establish a solid foundation
for creating a data model that accurately represents your business, captures the essen‐
tial facts and dimensions, includes relevant attributes, and defines an appropriate
level of granularity. A well-designed data model allows you to unlock the power of
your data, gain valuable insights, and make informed decisions to drive business
growth and success.

Identify the Business Processes
In the search to develop an effective analytical data model, the initial phase is to
identify the business processes within the organization. After engaging in discussions
with key stakeholders and conducting in-depth interviews, it becomes clear that one
of the primary objectives is to track sales performance across channels. This critical
piece of information will provide valuable insights into revenue generation and the
effectiveness of various sales channels.

Exploring the organization’s goals, another significant requirement is also discovered:
tracking visits and bounce rates per channel. This objective aims to shed light on
customer engagement and website performance across channels. By measuring the
number of visits and bounce rates, the organization could identify which channels are
driving traffic, as well as areas for improvement to reduce bounce rates and increase
user engagement.

Understanding the importance of these metrics, we recognize a need to focus on
two distinct business processes: sales tracking and website performance analysis.
The sales tracking process would capture and analyze sales data generated through
various channels, such as mobile, mobile app, or Instagram. This process would
provide a comprehensive view of sales performance, enabling the organization to
make data-driven decisions regarding channel optimization and sales forecasting.

Simultaneously, the website performance analysis process would gather data on web‐
site visits and bounce rates across various channels. This would require implementing
robust tracking mechanisms, such as web analytics tools, to monitor and measure
user behavior on the organization’s website. By examining channel-specific visit

266 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

patterns and bounce rates, the organization could identify trends, optimize user expe‐
rience, and enhance website performance to improve overall customer engagement.

Thus, identifying these two vital business processes—sales tracking and website
performance analysis—emerged as a key milestone in the analytical data modeling
journey. With this knowledge, we will become adequately equipped to proceed to
the next phase, where we will dive deeper into understanding the data flows, inter‐
dependencies, and specific data points associated with these processes, shaping a
comprehensive dimensional data model that aligns with the organization’s objectives
and requirements.

Identify Facts and Dimensions in the Dimensional Data Model
Based on the identified business processes of sales tracking and website performance
analysis, we have inferred the need for four dimensions and two corresponding fact
tables. Let’s detail each of them.

The first dimension is channels (dim_channels). This dimension represents the var‐
ious sales and marketing channels through which the organization operates. The
common channels identified are website, Instagram, and mobile app channels. By
analyzing sales data across channels, the organization gains insights into the perfor‐
mance and effectiveness of each channel in generating revenue.

The second dimension is products (dim_products). This dimension focuses on the
organization’s product offerings. By including the product dimension, the organiza‐
tion is able to analyze sales patterns across product categories and identify top-selling
products or areas for improvement.

The third dimension is customers (dim_customers). This dimension captures infor‐
mation about the organization’s customer base. The organization can gain insights
into customer preferences, behavior, and purchasing patterns by analyzing sales data
based on customer attributes.

The fourth and final dimension is the date (dim_date). This dimension allows for the
analysis of sales and website performance over time. Analyzing data based on the date
dimension allows the organization to identify trends, seasonality, and any temporal
patterns that may impact sales or website performance.

Now let’s move on to the fact tables. The first fact table identified is the purchase
history (fct_purchase_history). This table serves as the central point where the
purchase transactions are captured and associated with the relevant dimensions—
channels, products, customers, and date. It allows for detailed sales data analysis,
enabling the organization to understand the correlation between sales and the dimen‐
sions. With the purchase history fact table, the organization gains insights into
sales performance across channels, product categories, customer segments, and time
periods.

Analytical Data Modeling | 267

The second fact table is the visits history table (fct_visit_history). Unlike the
purchase history, this table focuses on website performance analysis. It captures data
related to website visits and is primarily associated with the dimensions of channels,
customers, and date. By analyzing visit history, the organization can understand
customer engagement, track traffic patterns across channels, and measure the effec‐
tiveness of different marketing campaigns or website features.

With these dimensions and fact tables identified, we have established the foundation
for your dimensional data model. This model allows you to efficiently analyze and
derive insights from sales data across various dimensions, as well as track website
performance metrics associated with different channels, customers, and time periods.
As you proceed with the data modeling process, we will further refine and define
the attributes within each dimension and establish the relationships and hierarchies
necessary for comprehensive analysis, but for now, we already have conditions to
design our star schema (Figure 6-5).

Figure 6-5. Use case star schema model

The star schema incorporates four primary dimensions: channels, products, custom‐
ers, and date. These dimensions serve as the pillars of analysis, providing valuable
context to the data.

Three of the dimensions—dim_channels, dim_customers, and
dim_date—are conformed dimensions. Conformed dimensions are
shared across multiple fact tables, ensuring consistency and facili‐
tating seamless integration among various analytical perspectives.

268 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Identify the Attributes for Dimensions
With the dimensions identified, it is time to detail each identified attribute within
the dimension. The data model gains depth and completeness by incorporating
these attributes with their respective dimensions. These attributes enrich the analysis
and enable more granular insights, empowering decision-makers to derive valuable
information from the data.

When considering the channels dimension (dim_channels), several attributes were
identified. First, the channel surrogate key (sk_channel) provides a unique identi‐
fier within the data model for each channel. Alongside it, the channel natural key
(nk_channel_id), which represents the key from the source system, ensures seam‐
less integration with external data sources. Additionally, the channel name attribute
(dsc_channel_name) captures the descriptive name of each channel, enabling easy
identification and understanding within the data model. This last one is potentially
the most interesting for analytics.

Moving on to the products dimension (dim_products), multiple key attributes were
identified. The product surrogate key (sk_product) serves as a unique identifier
for each product within the data model. Similarly, the product natural key (nk_
product_sku) captures the key from the source system, allowing for consistent link‐
ing of product-related data. The product name attribute (dsc_product_name) pro‐
vides a descriptive name for each product, helping with clarity and comprehension.
Finally, the product unit price attribute (mtr_unit_price) records the price of each
product, facilitating price analysis and revenue calculations.

In the customers dimension (dim_customers), different attributes help provide a
wide view of customer-related information. The customer surrogate key (sk_cus
tomer) is a unique identifier for each customer within the data model. The customer
natural key (nk_customer_id) keeps the key from the source system, allowing seam‐
less integration with external data sources. Additionally, attributes such as customer
name (dsc_name), birth date (dt_date_birth), email address (dsc_email_address),
phone number (dsc_phone_number), and country (dsc_country) capture important
details related to individual customers. These attributes enable customer segmenta‐
tion, personalized marketing, and in-depth customer behavior and demographics
analysis.

Finally, the date dimension (dim_date) includes a range of date-related attributes.
These attributes enhance the understanding and analysis of temporal data. The date
attribute itself captures the specific date. Attributes such as month, quarter, and
year provide higher-level temporal information, facilitating aggregated analysis. By
including these attributes, the data model enables comprehensive time-based analysis
and pattern recognition.

Analytical Data Modeling | 269

Surrogate keys are artificial identifiers assigned to records within
a database table. They provide uniqueness, stability, and improved
performance in data operations. Surrogate keys are independent of
the data itself, ensuring that each record has a unique identifier
and remains stable even if natural key values change. They simplify
joins between tables, enhance data integration, and facilitate effi‐
cient indexing and querying.

Define the Granularity for Business Facts
Having completed the earlier phases of analytical data modeling, we now move on to
the last vital step, namely, identifying the granularity of our future business facts. The
granularity refers to the level of detail at which data is captured and analyzed within
the dimensional data model. Determining the appropriate granularity is essential to
ensuring that the data model effectively supports the analytical requirements and
objectives of the organization.

To define the granularity of our business facts, it is necessary to consider the
specific needs of the analysis and strike a balance between capturing sufficient
detail and avoiding excessive complexity. The chosen granularity should provide
enough information for meaningful analysis while maintaining data manageability
and performance.

In the context of sales data, the granularity identified is determined at the transaction
level, capturing individual customer purchases: fct_purchase_history. This level of
granularity allows for detailed analysis of sales patterns, such as examining individual
transactions, identifying trends in customer behavior, and conducting product-level
analysis.

For the other requirement, website performance analysis, the granularity is selected at
the visit level, gathering individual customer visits and the channel from which they
came into the platform: fct_visit_history. With this detail, the organization can
understand customer engagement, track traffic patterns across channels, and measure
the effectiveness of distinct marketing campaigns or website features.

Alternatively, with the level of granularities defined, other units of analysis that
are less granular can be determined, such as daily, weekly, or monthly aggregates.
Aggregating the data allows for a more concise representation while providing val‐
uable insights. This approach reduces data volume and simplifies analysis, making
identifying broader trends, seasonal patterns, or overall performance across multiple
dimensions easier.

By carefully defining the granularity of our business facts, the organization can
ensure that the dimensional data model hits the right balance between capturing
sufficient detail and maintaining data manageability and performance. This step sets

270 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

the stage for meaningful analysis, enabling stakeholders to derive valuable insights
and make informed decisions based on the data.

As we conclude this phase, we have successfully navigated the essential stages of
analytical data modeling, including identifying business processes, facts, dimensions,
and attributes, as well as defining the granularity of business facts. These founda‐
tional steps provide a solid framework for developing a comprehensive and effective
dimensional data model that empowers data-driven decision making within the
organization. In the next section, we will get our hands dirty and develop our models
using dbt, but always with the foundation defined by analytical data modeling.

Creating Our Data Warehouse with dbt
With the analytical data modeling phase complete, it is time to venture into develop‐
ing our data warehouse. The data warehouse serves as the central repository for
structured and integrated data, supporting robust reporting, analysis, and decision-
making processes within the organization.

Overall, data warehouse development begins by establishing the necessary infrastruc‐
ture. Long story short, we already did that earlier, in “High-Level Data Architecture”
on page 260, by setting up our BigQuery. At this stage, we only need to set up our
dbt project and connect it to BigQuery and GitHub. In “Setting Up dbt Cloud with
BigQuery and GitHub” on page 140, we present a comprehensive step-by-step guide
explaining how to do all the initial setup, so we will skip this phase in this section.

Our main goal in this section is to develop all the dbt models crafted during the
analytical data modeling phase, which serves as the blueprint for the design and
construction of our data warehouse. In parallel with the models, we will also develop
all the parametrization YAML files to ensure we leverage the ref() and source()
functions and ultimately make our code DRY-er. In line with the stated goal, another
step needs to be performed along with developing the YAML files: building our
staging models area. These will be the seed for our dimensions and facts.

In addition to developing the data models, it is essential to establish consistent
naming conventions within the data warehouse. These naming conventions provide
a standardized approach to naming tables, columns, and other database objects,
ensuring clarity and consistency across the data infrastructure. Table 6-1 presents the
naming conventions used to build the data warehouse with dbt.

Table 6-1. Naming conventions

Convention Field type Description
stg Table/CTE Staging tables or CTE

dim Table Dimension tables

fct Table Fact tables

Creating Our Data Warehouse with dbt | 271

Convention Field type Description
nk Column Natural keys

sk Column Surrogate keys

mtr Column Metric columns (numeric values)

dsc Column Description columns (text values)

dt Column Date and time columns

To build our first models, we must ensure that our dbt project is set up and that
we have the proper folder structure. During this part of the use case, we will keep
it simple and build only staging and marts directories. So once you have your dbt
project initialized, create the specified folders. The models folders directory should
look like Example 6-9.

Example 6-9. Omnichannel data warehouse, models directory

root/
├─ models/
│ ├─ staging/
│ ├─ marts/
├─ dbt_project.yml

Now that we have built our initial project and folders, the next step is creating our
staging YAML files. As per the segregation of YAML files best practices we discussed
in “YAML Files” on page 168, we will have one YAML file for sources and another for
models. For building our staging layer, let’s, for now, focus only on our source YAML
file. This file must be inside the staging directory and should look like Example 6-10.

Example 6-10. _omnichannel_raw_sources.yml file configuration

version: 2

sources:
 - name: omnichannel
 database: analytics-engineering-book
 schema: omnichannel_raw
 tables:
 - name: Channels
 - name: Customers
 - name: Products
 - name: VisitHistory
 - name: PurchaseHistory

The use of this file will allow you to leverage the source() function to work with
the raw data available in your data platform. Five tables were specified under
the omnichannel_raw schema: Channels, Customers, Products, VisitHistory, and

272 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

PurchaseHistory. These correspond to the relevant source tables used to make our
staging layer, and dbt will interact with these to build the staging data models.

Let’s kick off construction of our staging models. The primary idea here is to have one
staging model for each source table—Channels, Customers, Products, VisitHistory,
and PurchaseHistory. Keep in mind that each new staging model needs to be created
inside the staging directory.

Examples 6-11 through 6-15 show the code snippets to build each one of our staging
models.

Example 6-11. stg_channels

with raw_channels AS
(
 SELECT
 channel_id,
 channel_name,
 CREATED_AT,
 UPDATED_AT
 FROM {{ source("omnichannel","Channels")}}
)

SELECT
 *
FROM raw_channels

Example 6-12. stg_customers

with raw_customers AS
(
 SELECT
 customer_id,
 name,
 date_birth,
 email_address,
 phone_number,
 country,
 CREATED_AT,
 UPDATED_AT
 FROM {{ source("omnichannel","Customers")}}
)

SELECT
 *
FROM raw_customers

Creating Our Data Warehouse with dbt | 273

Example 6-13. stg_products

with raw_products AS
(
 SELECT
 product_sku,
 product_name,
 unit_price,
 CREATED_AT,
 UPDATED_AT
 FROM {{ source("omnichannel","Products")}}
)

SELECT
 *
FROM raw_products

Example 6-14. stg_purchase_history

with raw_purchase_history AS
(
 SELECT
 customer_id,
 product_sku,
 channel_id,
 quantity,
 discount,
 order_date
 FROM {{ source("omnichannel","PurchaseHistory")}}
)

SELECT
 *
FROM raw_purchase_history

Example 6-15. stg_visit_history

with raw_visit_history AS
(
 SELECT
 customer_id,
 channel_id,
 visit_timestamp,
 bounce_timestamp,
 created_at,
 updated_at
 FROM {{ source("omnichannel","VisitHistory")}}
)

SELECT

274 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

 *
FROM raw_visit_history

In summary, each of these dbt models extracts data from the respective source tables
and stages it in separate CTEs. These staging tables serve as intermediate storage for
further data transformations before loading the data into the final destination tables
of the data warehouse.

After successfully creating the staging models, the next phase is to set the YAML file
for the staging layer. The staging layer YAML file will serve as a configuration file that
references the staging models and specifies their execution order and dependencies.
This file provides a clear and structured view of the staging layer’s setup, allowing
for consistent integration and management of the staging models within the overall
data modeling process. Example 6-16 shows how the YAML file should look in your
staging layer.

Example 6-16. _omnichannel_raw_models.yml file configuration

version: 2

models:
 - name: stg_customers
 - name: stg_channels
 - name: stg_products
 - name: stg_purchase_history
 - name: stg_visit_history

Once the staging layer YAML file is in place, it’s time to move forward with building
the dimension models. Dimension models are an essential component of the data
warehouse, representing the business entities and their attributes. These models cap‐
ture the descriptive information that provides context to the fact data and allows for
deeper analysis. Dimension tables, such as channels, products, customers, and date,
will be constructed based on the previously defined dimensions and their attributes,
derived from “Identify Facts and Dimensions in the Dimensional Data Model” on
page 267 and “Identify the Attributes for Dimensions” on page 269. These tables are
populated with the relevant data from the staging layer, which ensures consistency
and accuracy.

Let’s proceed with our dimension model creation. Create the respective models in
Examples 6-17 through 6-20 in your marts directory.

Example 6-17. dim_channels

with stg_dim_channels AS
(
 SELECT

Creating Our Data Warehouse with dbt | 275

 channel_id AS nk_channel_id,
 channel_name AS dsc_channel_name,
 created_at AS dt_created_at,
 updated_at AS dt_updated_at
 FROM {{ ref("stg_channels")}}
)

SELECT
 {{ dbt_utils.generate_surrogate_key(["nk_channel_id"])}} AS sk_channel,
 *
FROM stg_dim_channels

Example 6-18. dim_customers

with stg_dim_customers AS
(
 SELECT
 customer_id AS nk_customer_id,
 name AS dsc_name,
 date_birth AS dt_date_birth,
 email_address AS dsc_email_address,
 phone_number AS dsc_phone_number,
 country AS dsc_country,
 created_at AS dt_created_at,
 updated_at AS dt_updated_at
 FROM {{ ref("stg_customers")}}
)

SELECT
 {{ dbt_utils.generate_surrogate_key(["nk_customer_id"])}} AS sk_customer,
 *
FROM stg_dim_customers

Example 6-19. dim_products

with stg_dim_products AS
(
 SELECT
 product_sku AS nk_product_sku,
 product_name AS dsc_product_name,
 unit_price AS mtr_unit_price,
 created_at AS dt_created_at,
 updated_at AS dt_updated_at
 FROM {{ ref("stg_products")}}
)

SELECT
 {{ dbt_utils.generate_surrogate_key(["nk_product_sku"])}} AS sk_product,
 *
FROM stg_dim_products

276 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Example 6-20. dim_date

{{ dbt_date.get_date_dimension("2022-01-01", "2024-12-31") }}

In summary, each code block defines a dbt model for a specific dimension table. The
first three models, dim_channels, dim_customers, and dim_products, retrieve data
from the corresponding staging tables and transform it into the desired structure for
the dimension tables. In each one of the models, we’ve included the surrogate keys
generation from the natural key. To do that, we’ve resorted to the dbt_utils package,
specifically the generate_surrogate_key() function. This function takes an array of
column names as an argument, representing the dimension table’s natural keys (or
business keys), and generates a surrogate key column based on those columns.

The last dimension, dim_date, is different since it doesn’t arrive from the staging
layer. Instead, it is entirely produced using the get_date_dimension() function from
the dbt_date package. The get_date_dimension() function handles the generation
of the date dimension table, including creating all the necessary columns and the data
for each based on the specified date range. In our case, we choose the data range from
2022-01-01 to 2024-12-31.

Finally, remember that we are now using packages. To successfully build our project
at this stage, we need to install them, so add the Example 6-21 configurations to your
dbt_packages.yml file. Then execute dbt deps and dbt build commands and look at
your data platform to check that we have the new dimensions created.

Example 6-21. packages.yml file configuration

packages:
 - package: dbt-labs/dbt_utils
 version: 1.1.1
 - package: calogica/dbt_date
 version: [">=0.7.0", "<0.8.0"]

The final step is the creation of the models from fact tables that were earlier identified
as necessary to analyze the new business processes. These tables are an integral part
of a data warehouse and represent the measurable, numerical data that captures the
business events or transactions.

Examples 6-22 and 6-23 represent the new fact tables to be developed. Create them
inside the marts directory.

Example 6-22. fct_purchase_history

with stg_fct_purchase_history AS
(
 SELECT

Creating Our Data Warehouse with dbt | 277

 customer_id AS nk_customer_id,
 product_sku AS nk_product_sku,
 channel_id AS nk_channel_id,
 quantity AS mtr_quantity,
 discount AS mtr_discount,
 CAST(order_date AS DATE) AS dt_order_date
 FROM {{ ref("stg_purchase_history")}}
)

SELECT
 COALESCE(dcust.sk_customer, '-1') AS sk_customer,
 COALESCE(dchan.sk_channel, '-1') AS sk_channel,
 COALESCE(dprod.sk_product, '-1') AS sk_product,
 fct.dt_order_date AS sk_order_date,
 fct.mtr_quantity,
 fct.mtr_discount,
 dprod.mtr_unit_price,
 ROUND(fct.mtr_quantity * dprod.mtr_unit_price,2) AS mtr_total_amount_gross,
 ROUND(fct.mtr_quantity *
 dprod.mtr_unit_price *
 (1 - fct.mtr_discount),2) AS mtr_total_amount_net
FROM stg_fct_purchase_history AS fct
LEFT JOIN {{ ref("dim_customers")}} AS dcust
 ON fct.nk_customer_id = dcust.nk_customer_id
LEFT JOIN {{ ref("dim_channels")}} AS dchan
 ON fct.nk_channel_id = dchan.nk_channel_id
LEFT JOIN {{ ref("dim_products")}} AS dprod
 ON fct.nk_product_sku = dprod.nk_product_sku

fct_purchase_history aims to answer to the first business process identified,
namely, to track sales performance across channels. Next, we gather sales data
from the stg_purchase_history model and join it with the respective channel,
customer, and product dimensions to capture the respective surrogate key, using the
COALESCE() function to handle cases where the natural key does not match a dimen‐
sion table entry. By including the relationship between this fact and the respective
dimensions, the organization would be equipped with valuable insights from revenue
generation and the effectiveness of various sales channels per customer and product.

To fully meet the requirements, two additional calculated metrics, mtr_total
_amount_gross and mtr_total_amount_net, are computed based on the product
quantity bought (mtr_quantity), the unit price of each product (mtr_unit_price),
and the applied discount (mtr_discount).

In summary, Example 6-22 demonstrates the process of transforming the staging
data into a structured fact table that captures relevant purchase history information.
By joining dimension tables and performing calculations, the fact table provides a
consolidated view of purchase data, enabling valuable insights and analysis.

Moving to the last fact table, let’s have a look at Example 6-23.

278 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Example 6-23. fct_visit_history

with stg_fct_visit_history AS
(
 SELECT
 customer_id AS nk_customer_id,
 channel_id AS nk_channel_id,
 CAST(visit_timestamp AS DATE) AS sk_date_visit,
 CAST(bounce_timestamp AS DATE) AS sk_date_bounce,
 CAST(visit_timestamp AS DATETIME) AS dt_visit_timestamp,
 CAST(bounce_timestamp AS DATETIME) AS dt_bounce_timestamp
 FROM {{ ref("stg_visit_history")}}
)

SELECT
 COALESCE(dcust.sk_customer, '-1') AS sk_customer,
 COALESCE(dchan.sk_channel, '-1') AS sk_channel,
 fct.sk_date_visit,
 fct.sk_date_bounce,
 fct.dt_visit_timestamp,
 fct.dt_bounce_timestamp,
 DATE_DIFF(dt_bounce_timestamp,dt_visit_timestamp
 , MINUTE) AS mtr_length_of_stay_minutes
FROM stg_fct_visit_history AS fct
LEFT JOIN {{ ref("dim_customers")}} AS dcust
 ON fct.nk_customer_id = dcust.nk_customer_id
LEFT JOIN {{ ref("dim_channels")}} AS dchan
 ON fct.nk_channel_id = dchan.nk_channel_id

fct_visit_history answers to the other business process identified: tracking visits
and bounce rates per channel to shed light on customer engagement and website
performance across channels. To create it, we gather visit data from the stg_visit
_history model and join it with the customers and channels dimensions to catch
the respective surrogate key, using the COALESCE() function to handle cases where
the natural key does not match with a dimension table entry. With this fact and
dimension relationship established, the organization will be able to identify the
channels that are driving more traffic. An additional calculated metric was added,
mtr_length_of_stay_minutes, to understand the length of stay of a particular visit.
This calculated metric leverages the DATE_DIFF() function to compute the difference
between the bounce and visit date, aiming to support the organization in identifying
areas for improvement to reduce bounce rates and increase user engagement.

In conclusion, the fct_visit_history fact table transforms the staging data into
a structured fact table that captures relevant visit history information. By joining
with dimension tables and performing calculations, as we did for both facts, the
fct_visit_history table provides a compact view of visit data, enabling valuable
insights and analysis.

Creating Our Data Warehouse with dbt | 279

In the next section, we will continue our journey and develop tests and documenta‐
tion and finally deploy to production. These will be the last steps inside dbt, aiming to
guarantee the data model’s reliability, usability, and ongoing availability and support
data-driven decision making within the organization.

Tests, Documentation, and Deployment with dbt
As the development of our data warehouse nears completion, it’s crucial to ensure
the accuracy, reliability, and usability of the implemented data models. This section
focuses on testing, documentation, and going live with your data warehouse.

As previously noted, when using dbt, tests and documentation should be created
while developing models. We took that approach, but opted to split it into two
parts for clarity. This division allows for a clearer understanding of what we accom‐
plished within dbt for model development, as well as our processes for testing and
documentation.

As a brief summary, testing is essential in validating the data model’s functionality
and integrity. Testing verifies the relationships between dimension and fact tables,
checking data consistency, and validating the accuracy of calculated metrics. By
conducting tests, you can identify and rectify any issues or discrepancies in the data,
thus ensuring the reliability of your analytical outputs.

It is important to perform both singular and generic tests. Singular tests target
specific aspects of the data models, such as verifying the accuracy of a specific metric
calculation or validating the relationships between a particular dimension and fact
table. These tests provide focused insights into individual components of the data
models.

On the other hand, generic tests cover a broader range of scenarios and monitor the
overall behavior of the data models. These tests aim to ensure that the data models
function correctly across various dimensions, time periods, and user interactions.
Generic tests help uncover potential issues that might arise during real-world usage
and provide confidence in the data models’ ability to handle various scenarios.

Simultaneously, documenting the data models and related processes is required for
knowledge transfer, collaboration, and future maintenance. Documenting the data
models involves capturing information about the purpose, structure, relationships,
and assumptions underlying the models. It includes details on the source systems,
transformation logic, business rules applied, and any other relevant information.

280 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

To document the data models, it is recommended to update the corresponding
YAML files with comprehensive explanations and metadata. YAML files serve as a
centralized location for the configuration and documentation of dbt models, making
it easier to track changes and understand the purpose and usage of each model.
Documenting the YAML files ensures that future team members and stakeholders
have a clear understanding of the data models and can effectively work with them.

Once testing and documentation are complete, the final step in this section is to
prepare for the go-live of your data warehouse. This involves deploying the data
models to the production environment, ensuring data pipelines are established, and
setting up scheduled data updates. It’s important to monitor the data warehouse’s
performance, availability, and data quality during this phase. Conducting thorough
testing in a production-like environment and obtaining end-user feedback can help
identify any remaining issues before the data warehouse is fully operational.

Let’s start with the tests. Our first batch of tests will focus on generic tests. The first
use case is to ensure for all dimensions that the surrogate key is unique and doesn’t
have null values. For the second use case, we must also grant that every surrogate key
in a fact table exists in the specified dimension. Let’s first create the respective YAML
file in the marts layer, using the Example 6-24 code block to achieve all we’ve stated.

Example 6-24. _omnichannel_marts.yml file configuration

version: 2

models:
 - name: dim_customers
 columns:
 - name: sk_customer
 tests:
 - unique
 - not_null

 - name: dim_channels
 columns:
 - name: sk_channel
 tests:
 - unique
 - not_null

 - name: dim_date
 columns:
 - name: date_day
 tests:
 - unique
 - not_null

 - name: dim_products

Tests, Documentation, and Deployment with dbt | 281

 columns:
 - name: sk_product
 tests:
 - unique
 - not_null

 - name: fct_purchase_history
 columns:
 - name: sk_customer
 tests:
 - relationships:
 to: ref('dim_customers')
 field: sk_customer
 - name: sk_channel
 tests:
 - relationships:
 to: ref('dim_channels')
 field: sk_channel
 - name: sk_product
 tests:
 - relationships:
 to: ref('dim_products')
 field: sk_product

 - name: fct_visit_history
 columns:
 - name: sk_customer
 tests:
 - relationships:
 to: ref('dim_customers')
 field: sk_customer
 - name: sk_channel
 tests:
 - relationships:
 to: ref('dim_channels')
 field: sk_channel

282 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Let’s now execute our dbt test command to see if all tests executed successfully.
Everything went well if logs are as shown in Figure 6-6.

Figure 6-6. Logs for generic tests

Now let’s go to our second iteration of tests and develop some singular tests. Here
we will focus on our fact table metrics. The first singular use case is to make sure
our mtr_total_amount_gross metric from fct_purchase_history has only positive
values. For that, let’s create a new test, assert_mtr_total_amount_gross_is_positive.sql,
in the tests folder with the code in Example 6-25.

Tests, Documentation, and Deployment with dbt | 283

Example 6-25. assert_mtr_total_amount_gross_is_positive.sql

select
 sk_customer,
 sk_channel,
 sk_product,
 sum(mtr_total_amount_gross) as mtr_total_amount_gross
from {{ ref('fct_purchase_history') }}
group by 1, 2, 3
having mtr_total_amount_gross < 0

The next test we want to do is to confirm that mtr_unit_price is always
lower or equal to mtr_total_amount_gross. Note that the same test could
not be applied to mtr_total_amount_net since a discount was also applied.
To develop this test, first, create the file assert_mtr_unit_price_is_equal_or_
lower_than_mtr_total_amount_gross.sql and paste the code in Example 6-26.

Example 6-26.
assert_mtr_unit_price_is_equal_or_lower_than_mtr_total_amount_gross.sql

select
 sk_customer,
 sk_channel,
 sk_product,
 sum(mtr_total_amount_gross) AS mtr_total_amount_gross,
 sum(mtr_unit_price) AS mtr_unit_price
from {{ ref('fct_purchase_history') }}
group by 1, 2, 3
having mtr_unit_price > mtr_total_amount_gross

With all the singular tests created, we can now execute them and check the out‐
put. To avoid executing all the tests, including the generic ones, execute the dbt
test --select test_type:singular command. This command will execute the
tests from the type singular, ignoring any that are generic. Figure 6-7 shows the
expected log output.

284 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Figure 6-7. Logs for singular tests

The last singular test we want to do is to confirm that, in fct_visit_history, the
mtr_length_of_stay_minutes metric is always positive. This test will tell us if we
have records with a bouncing date that is earlier than the visit date, which can never
happen. To perform it, create the assert_mtr_length_of_stay_is_positive.sql file with
the code in Example 6-27.

Example 6-27. assert_mtr_length_of_stay_is_positive.sql

select
 sk_customer,
 sk_channel,
 sum(mtr_length_of_stay_minutes) as mtr_length_of_stay_minutes
from {{ ref('fct_visit_history') }}
group by 1, 2
having mtr_length_of_stay_minutes < 0

By implementing tests, you can validate the integrity of the data, verify calculations
and transformations, and ensure compliance to defined business rules. dbt offers a
complete testing framework that allows you to conduct both singular and generic
tests, covering various aspects of your data models.

Tests, Documentation, and Deployment with dbt | 285

With all the tests successfully executed, we now move on to the next vital aspect
of the data warehouse development process: documentation. In dbt, a good portion
of the documentation is done using the same YAML files we use to configure our
models or do our tests. Let’s use the marts layer to document all the tables and
columns. Let’s refer to the _omnichannel_marts.yml file and replace it with the code
in Example 6-28. As a note, we document only the columns used for the generic tests
to make the example cleaner, yet the premise is the same for all other columns.

Example 6-28. _omnichannel_marts.yml file configuration with documentation

version: 2

models:
 - name: dim_customers
 description: All customers' details. Includes anonymous users who used guest
 checkout.
 columns:
 - name: sk_customer
 description: Surrogate key of the customer dimension.
 tests:
 - unique
 - not_null

 - name: dim_channels
 description: Channels data. Allows you to analyze linked facts from the channels
 perspective.
 columns:
 - name: sk_channel
 description: Surrogate key of the channel dimension.
 tests:
 - unique
 - not_null

 - name: dim_date
 description: Date data. Allows you to analyze linked facts from the date
 perspective.
 columns:
 - name: date_day
 description: Surrogate key of the date dimension. The naming convention
 wasn't added here.
 tests:
 - unique
 - not_null

 - name: dim_products
 description: Products data. Allows you to analyze linked facts from the products
 perspective.
 columns:
 - name: sk_product
 description: Surrogate key of the product dimension.

286 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

 tests:
 - unique
 - not_null

 - name: fct_purchase_history
 description: Customer orders history.
 columns:
 - name: sk_customer
 description: Surrogate key for the customer dimension.
 tests:
 - relationships:
 to: ref('dim_customers')
 field: sk_customer
 - name: sk_channel
 description: Surrogate key for the channel dimension.
 tests:
 - relationships:
 to: ref('dim_channels')
 field: sk_channel
 - name: sk_product
 description: Surrogate key for the product dimension.
 tests:
 - relationships:
 to: ref('dim_products')
 field: sk_product

 - name: fct_visit_history
 description: Customer visits history.
 columns:
 - name: sk_customer
 description: Surrogate key for the customer dimension.
 tests:
 - relationships:
 to: ref('dim_customers')
 field: sk_customer
 - name: sk_channel
 description: Surrogate key for the channel dimension.
 tests:
 - relationships:
 to: ref('dim_channels')
 field: sk_channel

Tests, Documentation, and Deployment with dbt | 287

With the YAML file updated, execute dbt docs generate, and let’s have a look at
the new documentation available. For example, if your fct_purchase_history page
looks similar to Figure 6-8, you are good to go.

Figure 6-8. fct_purchase_history documentation page

288 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

And that’s it. The final step is deploying what we’ve been doing into the production
environment. For that, we need to create an environment in dbt, similar to the one
presented in Figure 6-9.

Figure 6-9. Creating a production environment

Tests, Documentation, and Deployment with dbt | 289

Note that we named our production dataset omnichannel_analytics. We’ll use this
dataset in “Data Analytics with SQL” on page 291. After creating the environment, it
is time to configure our job. To make it straightforward, in Create Job, provide the
Job name, set the environment to Production (the one that you’ve just created), check
the box “Generate docs on run,” and finally, in the Commands section, include the
command dbt test below the dbt build command. Leave all the rest by default.

After the job creation, manually execute the job, and let’s check the logs. It is a good
indicator if they are similar to Figure 6-10.

Figure 6-10. Job execution log

290 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Let’s have a look at our data platform, which in our case is BigQuery, and check if
everything ran successfully. The models in BigQuery should be the ones presented in
Figure 6-11.

Figure 6-11. Models in BigQuery

In conclusion, the final part of building a data warehouse focused on testing, docu‐
mentation, and the go-live process. You could ensure your data warehouse’s accuracy,
reliability, and usability by conducting extensive tests, documenting the data models,
and preparing for production deployment. In the next section, we will dive into data
analytics with SQL, taking our data warehouse to the next level.

Data Analytics with SQL
With our star schema model completed, we can now start the analytics discovery
phase and develop queries to answer specific business questions. As previously men‐
tioned, this type of data modeling technique makes it easy to select specific metrics
from fact tables and enrich them with attributes that come from dimensions.

In Example 6-29, we start by creating a query for “Total amount sold per quarter
with discount.” In it, we fetch data from two tables, fct_purchase_history and

Data Analytics with SQL | 291

dim_date, and perform calculations on the retrieved data. This query aims to obtain
information about the sum of total amounts for each quarter of the year.

Example 6-29. Total amount sold per quarter with discount

SELECT dd.year_number,
 dd.quarter_of_year,
 ROUND(SUM(fct.mtr_total_amount_net),2) as sum_total_amount_with_discount
FROM `omnichannel_analytics`.`fct_purchase_history` fct
LEFT JOIN `omnichannel_analytics`.`dim_date` dd
 on dd.date_day = fct.sk_order_date
GROUP BY dd.year_number,dd.quarter_of_year

By analyzing the results of running this query (Figure 6-12), we could conclude that
the second quarter of 2023 was the best, while the worst was the first quarter of 2024.

Figure 6-12. Analytical query for obtaining total amount sold per quarter with discount

In Example 6-30, we calculate the average length of stay (in minutes) for each channel
by using our star schema model. It selects the channel name (dc.dsc_channel_name)
and the average length of stay in minutes, which is calculated with the function
ROUND(AVG(mtr_length_of_stay_minutes),2). The dc.dsc_channel_name refers to
the channel_name attribute from the dim_channels dimension table.

The ROUND(AVG(mtr_length_of_stay_minutes),2) calculates the average length of
stay in minutes by using the AVG function on the mtr_length_of_stay_minutes
column from the fct_visit_history fact table. The ROUND() function is used to
round the result to two decimal places. The alias avg_length_of_stay_minutes is
assigned to the calculated average value.

292 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Example 6-30. Average time spent per visit on each channel

SELECT dc.dsc_channel_name,
 ROUND(AVG(mtr_length_of_stay_minutes),2) as avg_length_of_stay_minutes
FROM `omnichannel_analytics.fct_visit_history` fct
LEFT JOIN `omnichannel_analytics.dim_channels` dc
on fct.sk_channel = dc.sk_channel
GROUP BY dc.dsc_channel_name

By analyzing the results of running this query (Figure 6-13), we could conclude that
users spend more time on the website than on the mobile app or the company’s
Instagram account.

Figure 6-13. Analytical query for obtaining average time spent per visit on each channel

In Example 6-31, we take our model to an advanced use case. We are now interested
in getting the top three products per channel. As we have three distinct channels,
namely mobile app, website, and Instagram, we are interested in obtaining nine rows,
three for each of the top three best sellers per channel.

To do so, we leverage the structural benefits of CTEs and start with a base query
that will return the sum_total_amount per product and channel. With it, we can
now create a second CTE, starting from the previous one, and rank the total amount
descending per channel, which means the performance order of each product across
channels. To obtain this rank, we default to window functions, specifically the RANK()
function, which will score the rows based on the previously mentioned rule.

Example 6-31. Top three products per channel

WITH base_cte AS (
 SELECT dp.dsc_product_name,
 dc.dsc_channel_name,
 ROUND(SUM(fct.mtr_total_amount_net),2) as sum_total_amount
 FROM `omnichannel_analytics`.`fct_purchase_history` fct
 LEFT JOIN `omnichannel_analytics`.`dim_products` dp
 on dp.sk_product = fct.sk_product
 LEFT JOIN `omnichannel_analytics`.`dim_channels` dc
 on dc.sk_channel = fct.sk_channel
 GROUP BY dc.dsc_channel_name, dp.dsc_product_name
),
ranked_cte AS(

Data Analytics with SQL | 293

 SELECT base_cte.dsc_product_name,
 base_cte.dsc_channel_name,
 base_cte.sum_total_amount,
 RANK() OVER(PARTITION BY dsc_channel_name
 ORDER BY sum_total_amount DESC) AS rank_total_amount
 FROM base_cte
)
SELECT *
FROM ranked_cte
WHERE rank_total_amount <= 3

By analyzing the results of running this query (Figure 6-14), we conclude that our
top performer for mobile app is the Men Bomber Jacket with Detachable Hood with
€389.97 in sales, for website it’s Leather Crossbody Handbag with €449.97 in sales,
and for Instagram it’s Unisex Running Sneakers with €271.97 in sales.

Figure 6-14. Analytical query for obtaining the top three products per channel

In Example 6-32, we conclude our roadshow through supporting business questions
with SQL by leveraging our recently created star schema data model to perform an
analysis of the top customers in 2023 on our mobile app. Once again, we leverage
CTEs to structure our query correctly, but instead of window functions, this time we
combine the ORDER BY clause with the LIMIT modifier to get the top three buyers in
terms of money spent on purchases.

Example 6-32. Top three customers in 2023 on the mobile app

WITH base_cte AS (
 SELECT dcu.dsc_name,
 dcu.dsc_email_address,
 dc.dsc_channel_name,
 ROUND(SUM(fct.mtr_total_amount_net),2) as sum_total_amount
 FROM `omnichannel_analytics`.`fct_purchase_history` fct
 LEFT JOIN `omnichannel_analytics`.`dim_customers` dcu
 on dcu.sk_customer = fct.sk_customer

294 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

 LEFT JOIN `omnichannel_analytics`.`dim_channels` dc
 on dc.sk_channel = fct.sk_channel
 WHERE dc.dsc_channel_name = 'Mobile App'
 GROUP BY dc.dsc_channel_name, dcu.dsc_name, dcu.dsc_email_address
 ORDER BY sum_total_amount DESC
)
SELECT *
FROM base_cte
LIMIT 3

By analyzing the results of running this query (Figure 6-15), we conclude that our
top buyer is Sophia Garcia with €389.97 spent. We can send an email to her at
sophia.garcia@emailaddress.com, thanking her for being such a special customer.

Figure 6-15. Analytical query for obtaining the top customers for a mobile app

By demonstrating these queries, we aim to highlight the inherent simplicity and
effectiveness of using a star schema to answer complex business questions. By using
this schema design, organizations can gain valuable insights and make data-driven
decisions more efficiently.

While the preceding queries demonstrate the simplicity of each query, the real power
lies in the ability to combine them with CTEs. This strategic use of CTEs allows quer‐
ies to be optimized and organized in a structured and easy-to-understand manner. By
using CTEs, analysts can streamline their workflows, improve code readability, and
facilitate the reuse of intermediate results.

Also, implementing window functions brings an extra layer of efficiency to data
analysis. Using window functions, analysts can efficiently calculate aggregated results
across specific data partitions or windows, providing valuable insights into trends,
rankings, and comparative analyzes. Analysts can efficiently derive meaningful
conclusions from large datasets by using these functions, accelerating the decision-
making process.

By writing this section, we intend to encapsulate the significance of the topics covered
in this book. It emphasizes the importance of having a solid command of SQL,
proficient data modeling skills, and a comprehensive understanding of the technical
landscape surrounding data technologies like dbt to grow your analytics engineering
skills. Acquiring these competencies enables professionals to effectively navigate the
vast quantities of data generated within businesses or personal projects.

Data Analytics with SQL | 295

Conclusion
The landscape of analytics engineering is as vast and varied as the limits of human
imagination. Just as Tony Stark harnessed cutting-edge technology to transform into
Iron Man, we are empowered by databases, SQL, and dbt that make us not just
spectators but active heroes in the data-driven age. Like Stark’s array of armor, these
tools provide us with the flexibility, strength, and precision to face the most intricate
of challenges head-on.

Databases and SQL have always been our foundational pillars in data-driven strate‐
gies, providing stability and reliability. However, as the demands and complexities
have grown, analytics has expanded to integrate complex data modeling practices.
This transition goes beyond just mechanics, emphasizing crafting business narratives,
anticipating analytical trends, and forward planning for future requirements.

dbt has emerged as a transformative element in this dynamic landscape. More than
just a complement to SQL, it redefines how we approach collaboration, testing, and
documentation. With dbt, the processing of raw and fragmented data becomes more
refined, leading to actionable models that support informed decision making.

Analytical engineering blends both traditional practices and innovative advance‐
ments. While there are established principles of data modeling, rigorous testing, and
transparent documentation, tools like dbt introduce fresh approaches and possibili‐
ties. Every challenge faced is a learning opportunity for both those stepping into this
field and those with experience. Each database and query offers a unique perspective
and a potential solution.

Just as Holmes weaves labyrinthine stories from fragmentary evidence, analytics engi‐
neers can create compelling data models from highly fragmented data points. The
tools at their disposal aren’t just mechanical, but empower them to anticipate analytic
trends, align data models with business needs, and, like Holmes, become storytellers
of the data-driven age. In this context, dbt is their Watson, fostering collaboration
and efficiency, much like the famous detective’s trusty companion. The parallels to
Holmes are striking, as both have made it their mission to uncover secrets hidden
in cryptic cases or complex datasets. It’s our hope that through this book’s chapters,
you’ve gained insights and a clearer understanding of this evolving discipline.

296 | Chapter 6: Building an End-to-End Analytics Engineering Use Case

Index

Symbols
1NF (first normal form), 32
2NF (second normal form), 32
3NF (third normal form), 33
4NF (fourth normal form), 34
5NF (fifth normal form), 34

A
abstraction, modularization and, 48
ACID (atomicity, consistency, isolation, dura‐

bility)
relational databases and, 72

Airflow, 2, 19
ALTER command (DDL), 78
Amazon Redshift, 1
Amazon Web Services (AWS), 1
analyses folder, dbt, 197-200
analytic engineering

cloud computing and, 5-8
databases and, 3-5

analytics engineer, 11
data analysts and, 11
data platform engineers and, 11
responsibilities, 12-13

Apache Airflow, 2
Apache Arrows, 118
Apache Spark, 110
Apache Superset, 2
AWS (Amazon Web Services), 1

B
backup and recovery, DBMS and, 76
Beauchemin, Maxime, 2
BI (Business Intelligence), 6

Tableau, 5
Big Data, 5
Big Data engineer, 2
BigQuery

dbt Cloud and, 140
Jinja and, 234
omnichannel analytics case, 261-265

Boolean data type, 80
Bronze layer, Medallion architecture, 64
Business Intelligence (BI), 6

C
check constraints, 79
cloud computing, 1

analytic engineering and, 5-8
dbt Cloud, 139

setup, 140-151
common table expressions (CTEs) (see CTEs

(common table expressions))
conceptual model, omnichannel analytics case,

254
conceptual phase of data modeling, 25-28
CONSTRAINT command (DDL), 78
CREATE command (DDL), 78
CROSS JOIN, 95-96
CTEs (common table expressions), 54, 101, 105

aggregate_query, 62
AS keyword, 101
filter_query, 62
join_query, 62
SQL and, 70
WITH keyword, 101

297

D
DAG (directed acyclic graph), 19, 50
Dask, 110
Dask-SQL, 129-133
data analysis, 10
data analysts, analytic engineers and, 11
data analytics lifecycle, 8

data analysis, 10
data ingestion and transformation, 10
data modeling, 9
data quality, 10
data storage and structuring, 10
data visualization, 10
problem definition, 9

data architecture
omnichannel analytics case, 260

BigQuery, 261-265
data build tool (dbt) (see dbt (data build tool))
Data Definition Language (DDL) (see DDL

(Data Definition Language))
data documentation, dbt, 15
data flow, dbt and, 138
data governance, dbt, 15
data ingestion and transformation, 10
data lake, 15
data lakehouses, 63
Data Manipulation Language (DML) (see DML

(Data Manipulation Language))
data mesh

analytics, enabling, 13-15
as architectural pattern, 14
data products, 14
dbt and, 15-16

data mining, 4
data modeling, 9, 23, 24, 174

conceptual phase, 25-28
dbt, 15
dbt and, 24
debugging, 60-63
dimensional, 35-36

Data Vault, 42-45
dimension tables, 36
fact tables, 36
hybrid models, 41
snowflake schema, 40-42
star schema, 36-40

documentation, 59-60
logical phase, 28-30
Medallion architecture, 63

bronze layer, 64
gold layer, 65
silver layer, 64

modularization, 47-49
abstraction, 48
dbt and, 49-56
debugging, 60-63
decomposition, 48
documentation, 59-60
optimization, 60-63
reusability, 48
testing, 57-58

monolithic, 45-46
omnichannel analytics case

conceptual model, 254
logical model, 255
physical model, 256-260

optimization, 60-63
physical phase, 30-31
SQL and, 24

data modeling, analytical
omnichannel analytics case, 265

business processes, 266-267
dimensional data model, 265, 267-271
granularity, 266

data models
base, 53
intermediate, 54-55
mart models, 55-56
referencing, 50-52
staging, 52-53

data normalization, 23, 31
1NF (first normal form), 32
2NF (second normal form), 32
3NF (third normal form), 33
4NF (fourth normal form), 34
5NF (fifth normal form), 34
conceptual phase, 25

data pipelines, 15
incremental models, 229

data quality, 10
data storage and structuring, 10
data testing, dbt, 15
data tracking, dbt, 15
data transformation, 16
data types

Boolean, 80
date, 80
decimals, 79

298 | Index

integers, 79
text, 80
time, 80
timestamp, 80

data typing, SQL, 69
Data Vault, 4, 42-45
data visualization, 10, 15
data warehouses, 63
data warehousing, 4, 271-280

deployment, 280-291
dimension model, 275
documentation, 280-291
marts directory, 272
naming conventions, 271
staging directory, 272
staging model, 272-275
testing, 280-291

database management system (DBMS) (see
DBMS (database management system))

databases, 75
(see also DBMS (database management sys‐

tem))
analytic engineering and, 3-5
CTEs, 101-105
entities, 247
Jaffle Shop, 168
non-relational, 73
relational, 72
relationships, 74

enforcing, 74
tables, 73
uses, 73

date data type, 80
DBMS (database management system), 75

data backups, 76
data concurrency, 76
data definition, 76
data integrity, 76
data manipulation, 76
data recovery, 76
data security, 76
DCL (Data Control Language), 77
DDL (Data Definition Language), 77
DML (Data Manipulation Language), 77
TCL (Transaction Control Language), 77
transaction management, 76

dbt (data build tool), 2
analyses folder, 197-200
commands, 210

dbt build, 210
dbt docs, 209
dbt run, 209
dbt test, 209

data documentation, 15
data flow, 138
data governance, 15
data mesh and, 15-16
data modeling, 15, 24
data quality, 137
data testing, 15
data tracking, 15
data warehouse

creating, 271-280
deployment, 280-291
dimension model, 275
documentation, 280-291
naming conventions, 271
staging model, 272-275
tests, 280-291

declarative language, 136
deploy, 212-221
design, code-centric approach, 136
dimensions, 175
documentation, 200

justification for, 201
navigating, 203-209
YAML files, 201

documentation as code, 137
ELT (Extract-Load-Transform), 135
extensibility, 137
facts, 175
incremental builds, 136
Jaffle Shop database, 168
jobs, 212-221
materializations, 223

ephemeral models, 226
incremental, 227-229
tables, 224
views, 225, 229-230

models, 174
dependencies, 182
intermediate layer, 174
lineage graphs, 182
marts layer, 175
materialized, 178
staging layer, 174

modularity, 136
modularization and, 49

Index | 299

base data models, 53
data model referencing, 50-52
intermediate data models, 54-55
mart models, 55-56
staging data models, 52-53

native integration with data platforms, 137
omnichannel analytics case

deployment, 280-291
documentation, 280-291
tests, 280-291

open source, 137
packages

dbt_packages directory, 242
dbt_utils, 243, 244
in macros, 244-246
in models, 244-246
installing, 242-244
packages.yml file, 242
uses, 242

projects
.gitignore folder, 167
analyses folder, 166
dbt_packages folder, 166
dbt_project.yml folder, 167
logs folder, 166
macros folder, 166
models folder, 166
README.md folder, 167
seeds folder, 167
snapshots folder, 167
target folder, 167
tests folder, 167

reusability, 136
seeds, 198-200
selection syntax, 211

dependencies, 211
model name, 211
multiple selections, 212
packages, 212
tags, 211
wildcard, 211

semantic layer, 246
building, 247
dimensions, 247
Documentation Engine, 249
entities, 246, 247
measures, 247
MetricFlow, 249
metrics, 246

Semantic Engine, 248
semantic models, 246

snapshots, 230
check_cols, 232
output, 232
SCDs (slowly changing dimensions), 230
status transition, 231
strategy, 232
target_schema, 232
unique_key, 232
updated_at, 232

sources, 184-187
freshness, 187-189

SQL macros, 236-241
core macro customization, 241
use cases, 237-240

testing, 137
tests, 189

generic tests, 190-194
singular tests, 194-195
sources, 195-196

transform and load separation, 137
transformations as SQL SELECT statement,

136
validation, 137
version control, 137
YAML files, 168

config per folder, 169
dbt_project.yml, 169, 170
markdown files, 169
packages.yml, 169, 171
profiles.yml, 172-173

dbt Cloud, 139
BigQuery, 140-151
GitHub, 140-151
IDE, 163

command line, 164
Compile button, 164
File Explorer, 164
Git controls, 163
Git documentation, 163
Information window, 164
Preview button, 164
Text editor, 164

UI, 153
Data Sources section, 157
Deploy menu, 153
Develop section, 153
Documentation section, 158

300 | Index

Help menu, 159
Jobs section, 155
Notifications center, 162
Profile settings, 161
Settings menu, 159, 160

dbt_packages directory, 242
DCL (Data Control Language), 77
DDL (Data Definition Language), 77

ALTER command, 78
CONSTRAINT command, 78
CREATE command, 78
DROP command, 78
INDEX command, 78
omnichannel analytics case, 258

tables, 258-260
RENAME command, 78
TRUNCATE command, 78

debugging data models, 60-63
decimal data type, 79
decomposition, modularization and, 48
DELETE command, 97-98
DIKW pyramid, 70

data, 71
information, 71
knowledge, 71
wisdom, 71

dimension tables, 36
dimensional modeling, 35-36

Data Vault, 42-45
hybrid models, 41
omnichannel analytics case, 265, 267-268

dimension attributes, 269-270
granularity, 270-271

snowflake schema, 40-42
star schema, 36-40

dimension tables, 36
fact tables, 36

dimensions, 175
dbt semantic layer, 247

dim_channels dimension, 267
dim_customers dimension, 267
dim_date dimension, 267
dim_products dimension, 267
distributed SQL, 109

Apache Hadoop, 110
Apache Spark, 110
Dask, 110
DuckDB, 110, 113

connecting to, 112

installing, 113
queries, running, 114-117

Fugue, installing, 123-125
FugueSQL, 122

installing, 123-125
SQL queries, running, 125-128

Polars, 117
Apache Arrow arrays, 118
installing, 118
parallel operations, 118
SQL queries, running, 119-122

resilience, 110
DML (Data Manipulation Language), 77

DELETE command, 97-98
INSERT command, 83-84
INSERT INTO command, 83
joins, 90

CROSS JOIN, 95-96
FULL JOIN, 94
INNER JOIN, 91
LEFT JOIN, 92-93
RIGHT JOIN, 93-94

SELECT command, 85
GROUP BY clause, 87-89
ORDER BY clause, 89-90
WHERE clause, 85-87

UPDATE command, 96-97
documentation, 59-60

dbt, 200, 280-291
justifications for, 201
navigating, 203-209
YAML files, 201

Documentation Engine, dbt semantic layer, 249
Don't Repeat Yourself (DRY), 52
DROP command (DDL), 78
DRY (don't repeat yourself), 52
DuckDB, 69, 110, 113

connecting to, 112
installing, 113
OLAP and, 114
SQL queries, running, 114-117

dynamic SQL, Jinja and, 233
BigQuery and, 234
conditional statements, 234
loops, 234
target name property, 233
whitespaces, 235

dynamic tables, 230

Index | 301

E
ELT (Extract-Load-Transform) pipelines

dbt and, 135
entities, dbt semantic layer, 246, 247
ephemeral models, 226

testing, 226
ETL (extract, transform, and load), 3, 5, 16

legacy, 17-21
RDBMS and, 18
tools, 19

Airflow, 19

F
fact tables, 36
facts, 175
fifth normal form (5NF), 34
first normal form (1NF), 32
foreign keys, DBMS, 79
fourth normal form (4NF), 34
Fugue, 123-125
FugueSQL, 122

installing, 123-125
SQL queries, running, 125-128

FULL JOIN, 94

G
gemba, 16
generic tests

dbt, 190-194
Git

commands, 147-148
terms, 147-148

GitHub, dbt Cloud and, 140
Go, 2
gold layer, Medallion architecture, 65
Google File System, 1

H
Hadoop, 1, 110

I
incremental models, 227

data pipelines, 229
model code, 228
testing, 227

INDEX command (DDL), 78
information, DIKW pyramid, 71
Inmon, Bill, 1

INNER JOIN, 91
integer data type, 79

J
Java, 2
Jinja, 233

BigQuery and, 234
conditional statements, 234
loops, 234
target name property, 233
whitespaces, 235

joins
CROSS JOIN, 95-96
FULL JOIN, 94
INNER JOIN, 91
LEFT JOIN, 92-93
RIGHT JOIN, 93-94

K
Kimball, Ralph, 1
knowledge, DIKW pyramid, 71

L
lambda functions, 70
languages

Go, 2
Java, 2
Scala, 2

LEFT JOIN, 92-93
logical model, omnichannel analytics case, 255
logical phase of data modeling, 28-30
Looker, 2

M
macros (SQL), 236-241

core macro customization, 241
dbt packages, 244-246
use cases, 237-240

materializations, 223
ephemeral models, 226

testing, 226
incremental models, 227

data pipelines, 229
model code, 228
testing, 227

tables, 224
testing, 224

views, 225, 229

302 | Index

dynamic tables, 230
Snowflake, 230
testing, 225, 229

measures, dbt semantic layer, 247
Medallion architecture, 63

Bronze layer, 64
gold layer, 65
silver layer, 64

MetricFlow, dbt semantic layer, 249
microservices, 15
Microsoft Fabric, 7
ML (machine learning)

model training, 129-133
models

dbt, 174
dependencies, 182
intermediate layer, 174
lineage graphs, 182
marts layer, 175
materialized, 178
staging layer, 174

dbt packages, 244-246
materialization (see materializations)

modularity, 174
modularization, 47-49

abstraction, 48
data documentation, 59-60
dbt and, 49

base data models, 53
data model referencing, 50-52
intermediate data models, 54-55
mart models, 55-56
staging data models, 52-53

debugging, 60-63
decomposition, 48
optimization, 60-63
reusability, 48
testing models, 57-58

monolithic data modeling, 45-46

N
N:1 relationships, 29
N:N relationships, 29
non-relational databases, 73
NoSQL, 109
not null constraints, 79

O
OLAP (online analytical processing), 114

SQL Server and, 69
OLTP (online transaction processing)

replicas, 5
SQL Server, 69

omnichannel analytics case, 254
analytical data modeling, 265

business processes, 266-267
dimensional data model, 265, 267-271
granularity, 266

data architecture, 260
BigQuery, 261-265

data modeling
conceptual model, 254
logical model, 255
physical model, 256-260

dbt
data warehouse creation, 271-280
deployment, 280-291
documentation, 280-291
tests, 280-291

DDL scripts, 258
tables, 258-260

SQL, 291-295
on-premises solutions, 6
Oracle, ETL and, 18

P
packages, dbt

dbt_packages directory, 242
dbt_utils, 243, 244
in macros, 244-246
in models, 244-246
installing, 242-244
packages.yml file, 242
uses, 242

packages.yml file, 242
pandas_bq, 261-264
physical model, omnichannel analytics case,

256-260
physical phase of data modeling, 30-31
Polars, 117

Apache Arrow arrays, 118
installing, 118
parallel operations, 118
SQL queries, running, 119-122

Presto, 69
primary keys, DBMS and, 79
privacy, 7
problem definition, 9

Index | 303

Q
queries

CTEs, 101-105
SQL, storing as views, 98-100

R
RDBMS (relational database management sys‐

tem), 18
relational databases, 72

ACID and, 72
relationships, 74

enforcing, 74
RENAME command (DDL), 78
REST API, 15
reusability, modularization and, 48
RIGHT JOIN, 93-94

S
Scala, 2
second normal form (2NF), 32
seeds, dbt, 198-200
SELECT command, 85

GROUP BY clause, 87-89
ORDER BY clause, 89-90
WHERE clause, 85-87

Semantic Engine, dbt semantic layer, 248
semantic layer, dbt, 246

building, 247
dimensions, 247
Documentation Engine, 249
entities, 246, 247
measures, 247
MetricFlow, 249
metrics, 246
Semantic Engine, 248
semantic models, 246

silver layer, Medallion architecture, 64
singular tests, dbt, 194-195
snapshots, 230

check_cols, 232
output, 232
SCDs (slowly changing dimensions), 230
status transition, 231
strategy, 232
target_schema, 232
unique_key, 232
updated_at, 232

Snowflake, 230

snowflake schema, 40-42
hybrid models, 41

sources, dbt, 184-187
freshness, 187-189

Spark, 69
SQL (Structured Query Language), 4

code readability, 68
constraints

check, 79
foreign keys, 79
not null, 79
primary keys, 79
unique, 79

CTEs, 101-105
CTEs and, 70
data modeling and, 24
data types

Boolean, 80
date, 80
decimals, 79
integers, 79
text, 80
time, 80
timestamp, 80

data typing, 69
DBMS and, 77
DDL (Data Definition Language)

ALTER command, 78
CONSTRAINT command, 78
CREATE command, 78
DROP command, 78
INDEX command, 78
RENAME command, 78
TRUNCATE command, 78

distributed, 109
Apache Hadoop, 110
Apache Spark, 110
Dask, 110
DuckDB, 110, 113-117
FugueSQL, 122
Polars, 117-122
resilience, 110

DML (Data Manipulation Language)
DELETE command, 97-98
INSERT command, 83-84
INSERT INTO command, 83
SELECT command, 85-96
UPDATE command, 96-97

engines, evolution, 69

304 | Index

joins, 90
CROSS JOIN, 95-96
FULL JOIN, 94
INNER JOIN, 91
LEFT JOIN, 92-93
RIGHT JOIN, 93-94

lambda functions, 70
macros, 236-241

core macro customization, 241
use cases, 237-240

NoSQL, 109
omnichannel analytics case, 291-295
operators, 86
queries, storing as views, 98-100
ref() function, 51
resiliency, 68-70
SELECT statement, 51
strengths and benefits, 67
window functions, 70, 105-109

SQL Server, 69
ETL and, 18
OLAP and, 69
OLTP and, 69

star schema, 4, 36-40
dimension tables, 36
fact tables, 36
hybrid models, 41

T
table materializations, 224

testing, 224
Tableau, 5
tables

columns, 73
dimension tables, 36
extraction, automating, 261
fact tables, 36
rows, 73
views, 225, 229

dynamic tables, 230
Snowflake, 230
testing, 225, 229

TCL (Transaction Control Language), 77

testing
data models, 57-58
dbt, 189

generic tests, 190-194
singular tests, 194-195
sources, 195-196

dbt and, 280-291
ephemeral models, 226
incremental models, 227
table materializations, 224
views, 225, 229

text data type, 80
third normal form (3NF), 33
time data type, 80
timestamp data type, 80
TRUNCATE command (DDL), 78

U
unique constraints, 79
UPDATE command, 96-97
use case (see omnichannel analytics case)

V
views, 225, 229

dynamic tables, 230
Snowflake, 230
testing, 225, 229

W
whitespaces, Jinja, 235
window functions, SQL, 105-109
wisdom, DIKW pyramid, 71

Y
YAML files, 57, 168

config per folder, 169
dbt_project.yml, 169, 170
documentation, 201
incremental model testing, 227
markdown files, 169
packages.yml, 169, 171, 242
profiles.yml, 172-173

Index | 305

About the Authors
Rui Machado is the vice president of technology at Fraudio and has a background in
information technologies and data science. He has over a decade of experience in the
architecture and implementation of data warehouses, data lakes, and decision support
systems in industries such as retail, ecommerce, supply chain, healthcare, and social
networks. He has led engineering and analytics teams at companies including Jumia,
Nike, Facebook, Talkdesk, and Feedzai, while advising others on technology, data
platforms, and strategies. He is also the cofounder and CEO of ShopAI. He has previ‐
ously collaborated with Synfusion in publishing three technical books on Powershell,
SSIS, and BizTalk Server.

LinkedIn profile: https://www.linkedin.com/in/rpmachado

Hélder Russa is a data engineering lead with a background in information technolo‐
gies and data science. He has over 10 years of professional experience in computer
science, with an emphasis on evolving and maintaining data solutions applied to
decision making. Nowadays, he works as the head of data engineering at Jumia,
contributing to the strategy definition, design, and implementation of multiple Jumia
data platforms. Since 2018, he has been a cofounder, managing partner, and data
architect of ShopAI, a company specializing in deep learning that uses images to
optimize webshop searches.

LinkedIn profile: https://www.linkedin.com/in/hrussa

https://www.linkedin.com/in/rpmachado
https://www.linkedin.com/in/hrussa

Colophon
The animal on the cover of Analytics Engineering with SQL and dbt is a sperm whale
(Physeter macrocephalus), the largest toothed predator on earth. They are found in
all of the world’s oceans, but tend to prefer deep, offshore waters, inhabiting regions
from the icy Arctic and Antarctic to tropical and temperate zones.

The sperm whale’s most prominent feature is its enormous, block-shaped head, which
can account for up to a third of its dark gray or brownish body. Stretching to lengths
of up to 60 feet and weighing around 50 tons, sperm whales are often covered with
scars and scratches earned from battles over their 70-year lifespan.

Sperm whales hold the record for the deepest and longest dives of any mammal,
descending to astonishing depths of over 10,000 feet and staying submerged for up
to 90 minutes. Their ability to collapse their lungs to avoid nitrogen absorption and
their unique blood composition aids in tolerating extreme pressure. Sperm whales
have a unique and complex social structure, living in family groups called pods led by
a dominant female and communicating through a series of clicks, which are believed
to be among the loudest sounds produced by any animal.

This whale gets its name from the spermaceti organ within its large head that con‐
tains a waxy substance—spermaceti oil—that was historically used in cosmetics, tex‐
tiles, and candles. While they were historically targets of whaling, today, conservation
efforts strive to protect and understand these creatures, recognizing their vital role in
the marine ecosystem. Many of the animals on O’Reilly covers are endangered; all of
them are important to the world.

The color illustration is by Karen Montgomery, based on an antique line engraving
from British Quadrupeds. The series design is by Edie Freedman, Ellie Volckhausen,
and Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Why We Wrote This Book
	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Analytics Engineering
	Databases and Their Impact on Analytics Engineering
	Cloud Computing and Its Impact on Analytics Engineering
	The Data Analytics Lifecycle
	The New Role of Analytics Engineer
	Responsibilities of an Analytics Engineer
	Enabling Analytics in a Data Mesh
	Data Products
	dbt as a Data Mesh Enabler

	The Heart of Analytics Engineering
	The Legacy Processes
	Using SQL and Stored Procedures for ETL/ELT
	Using ETL Tools

	The dbt Revolution
	Summary

	Chapter 2. Data Modeling for Analytics
	A Brief on Data Modeling
	The Conceptual Phase of Modeling
	The Logical Phase of Modeling
	The Physical Phase of Modeling
	The Data Normalization Process

	Dimensional Data Modeling
	Modeling with the Star Schema
	Modeling with the Snowflake Schema
	Modeling with Data Vault

	Monolith Data Modeling
	Building Modular Data Models
	Enabling Modular Data Models with dbt
	Testing Your Data Models
	Generating Data Documentation
	Debugging and Optimizing Data Models

	Medallion Architecture Pattern
	Summary

	Chapter 3. SQL for Analytics
	The Resiliency of SQL
	Database Fundamentals
	Types of Databases
	Database Management System
	“Speaking” with a Database

	Creating and Managing Your Data Structures with DDL
	Manipulating Data with DML
	Inserting Data with INSERT
	Selecting Data with SELECT
	Updating Data with UPDATE
	Deleting Data with DELETE

	Storing Queries as Views
	Common Table Expressions
	Window Functions
	SQL for Distributed Data Processing
	Data Manipulation with DuckDB
	Data Manipulation with Polars
	Data Manipulation with FugueSQL

	Bonus: Training Machine Learning Models with SQL
	Summary

	Chapter 4. Data Transformation with dbt
	dbt Design Philosophy
	dbt Data Flow
	dbt Cloud
	Setting Up dbt Cloud with BigQuery and GitHub
	Using the dbt Cloud UI
	Using the dbt Cloud IDE

	Structure of a dbt Project
	Jaffle Shop Database
	YAML Files
	Models
	Sources
	Tests
	Analyses
	Seeds
	Documentation
	dbt Commands and Selection Syntax
	Jobs and Deployment

	Summary

	Chapter 5. dbt Advanced Topics
	Model Materializations
	Tables, Views, and Ephemeral Models
	Incremental Models
	Materialized Views
	Snapshots

	Dynamic SQL with Jinja
	Using SQL Macros
	dbt Packages
	Installing Packages
	Exploring the dbt_utils Package
	Using Packages Inside Macros and Models

	dbt Semantic Layer
	Summary

	Chapter 6. Building an End-to-End Analytics Engineering Use Case
	Problem Definition: An Omnichannel Analytics Case
	Operational Data Modeling
	Conceptual Model
	Logical Model
	Physical Model

	High-Level Data Architecture
	Analytical Data Modeling
	Identify the Business Processes
	Identify Facts and Dimensions in the Dimensional Data Model
	Identify the Attributes for Dimensions
	Define the Granularity for Business Facts

	Creating Our Data Warehouse with dbt
	Tests, Documentation, and Deployment with dbt
	Data Analytics with SQL
	Conclusion

	Index
	About the Authors
	Colophon

