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Preface

F inancial technology has been advancing steadily through much of the last 100
years, and the last 50 or so years in particular. In the 1980s, for example, the prob-
lem of implementing technology in financial companies rested squarely with the

prohibitively high cost of computers. Bloomberg and his peers helped usher in Fintech
1.0 by creating wide computer leasing networks that propelled data distribution, selected
analytics, and more into trading rooms and research. The next break, Fintech 2.0, came
in the 1990s: the Internet led the way in low-cost electronic trading, globalization of
trading desks, a new frontier for data dissemination, and much more. Today, we find
ourselves in the midst of Fintech 3.0: data and communications have been taken to the
next level thanks to their pure volume and 5G connectivity, and Artificial Intelligence
(AI) and Blockchain create meaningful advances in the way we do business.

To summarize, Fintech 3.0 spans the A, B, C, and D of modern finance:

A: Artificial Intelligence (AI)
B: Blockchain technology and its applications
C: Connectivity, including 5G
D: Data, including Alternative Data

Big Data Science in finance spans the A and the D of Fintech, while benefiting
immensely from B and C.

The intersection of just these two areas, AI and Data, comprises the field of Big Data
Science. When applied to finance, the field is brimming with possibilities. Unsupervised
learning, for example, is capable of removing the researcher’s bias by eliminating the
need to specify a hypothesis. As discussed in the classic book, How to Lie with Statistics
(Huff [1954] 1991), in the traditional statistical or econometric analysis, the outcome

vii
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viii P R E FAC E

of a statistical experiment is only as good as the question posed. In the traditional
environment, the researcher forms a hypothesis, and the data say “yes” or “no” to the
researcher’s ideas. The binary nature of the answer and the breadth of the researcher’s
question may contain all sorts of biases the researcher has.

As shown in this book, unsupervised learning, on the other hand, is hypothesis-free.
You read that correctly: in unsupervised learning, the data are asked to produce their key
drivers themselves. Such factorization enables us to abstract human biases and distill the
true data story.

As an example, consider the case of minority lending. It is no secret that most tra-
ditional statisticians and econometricians are white males, and possibly carry their race-
and gender-specific biases with them throughout their analyses. For instance, when one
looks at the now, sadly, classic problem of lending in predominantly black neighbor-
hoods, traditional modelers may pose hypotheses like “Is it worth investing our money
there?,” “Will the borrowers repay the loans?,” and other yes/no questions biased from
inception. Unsupervised learning, when given a sizable sample of the population, will
deliver, in contrast, a set of individual characteristics within the population that the data
deem important to lending without yes/no arbitration or implicit assumptions.

What if the data inputs are biased? What if the inputs are collected in a way to
intentionally dupe the machines into providing false outcomes? What if critical data are
missing or, worse, erased? The answer to this question often lies in the data quantity.
As this book shows, if your sample is large enough, in human terms, numbering in
millions of data points, even missing or intentionally distorted data are cast off by the
unsupervised learning techniques, revealing simple data relationships unencumbered by
anyone’s opinion or influence.

While many rejoice in the knowledge of unbiased outcomes, some are understand-
ably wary of the impact that artificial intelligence may have on jobs. Will AI replace
humans? Is it capable of eliminating jobs? The answers to these questions may surprise.
According to the Jevons paradox, when a new technology is convenient and simpli-
fies daily tasks, its utilization does not replace jobs, but creates many new jobs instead,
all utilizing this new invention. In finance, all previous Fintech innovations fit the bill:
Bloomberg’s terminals paved the way for the era of quants trained to work on struc-
tured data; the Internet brought in millions of individual investors. Similarly, advances in
AI and proliferation of all kinds of data will usher in a generation of new finance prac-
titioners. This book is offering a guide to the techniques that will realize the promise of
this technology.

REFERENCE

Huff, D. ([1954] 1991). How to Lie with Statistics. New York: Penguin.
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Chapter 1

Why Big Data?

Introduction

I t is the year 2032, and with a wave of your arm, your embedded chip authenticates
you to log into your trading portal. For years, Swedes have already been placing chips
above their thumb to activate their train tickets or to store their medical records.1

Privacy, Big Brother, and health concerns aside, the sheer volume of data collected by
IDs from everything from nail salons through subway stations is staggering, yet needs to
be analyzed in real time to draw competitive inferences about impending market activity.

Do you think this is an unlikely scenario? DuringWorldWar II, a passive ID technol-
ogy was developed to leave messages for one’s compatriots inside practically any object.
The messages were written in tin foil, but were virtually unnoticeable by one’s enemy.
They could last forever since they didn’t contain a battery or any other energy source,
and they were undetectable as they did not emit heat or radiation. The messages were
only accessible by the specific radio frequency for which they were written – a radio
scanner set to a specific wavelength could pick up the message from a few feet away,
without holding or touching the object.

Today, the technology behind these messages has made its way into Radio-Frequency
Identification devices, RFIDs. They are embedded into pretty much every product you
can buy in any store. They are activated at checkout and at the exit, where giant scanners
examine you for any unpaid merchandise in your possession. Most importantly, RFIDs

1 NPR, October 22, 2018, “Thousands of Swedes Are Inserting Microchips Under Their Skin.” All
Things Considered. Available at: https://www.npr.org/2018/10/22/658808705/thousands-of-swedes-are-
inserting-microchips-under-their-skin

1

https://www.npr.org/2018/10/22/658808705/thousands-of-swedes-are-inserting-microchips-under-their-skin
https://www.npr.org/2018/10/22/658808705/thousands-of-swedes-are-inserting-microchips-under-their-skin
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are used to collect data about your shopping preferences, habits, tastes, and lifestyle.
They know whether you prefer red to green, if you buy baby products, and if you drink
organic orange juice. And did you know that nine out of every ten purchases you make
end up as data transmitted through the Internet to someone’s giant private database that
is a potential source of returns for a hedge fund?

Welcome to the world of Big Data Finance (BDF), a world where all data have the
potential of ending up in a hedge fund database generating extra uncorrelated returns.
Data like aggregate demand for toothpaste may predict the near-term and long-term
returns of toothpaste manufacturers such as Procter & Gamble. A strong trend toward
gluten-free merchandise may affect the way wheat futures are traded. And retail stores
are not alone in recording consumer shopping habits: people’s activity at gas stations, hair
salons, and golf resorts is diligently tracked by credit card companies in data that may all
end up in a hedge fund manager’s toolkit for generating extra returns. Just like that, a
spike in demand for gas may influence short-term oil prices.

Moving past consumer activity, we enter the world of business-to-business (B2B)
transactions, also conducted over the Internet. How many bricks are ordered from spe-
cific suppliers this spring may be a leading indicator of new housing stock in the North-
East. And are you interested in your competitor’s supply and demand? Many years ago,
one would charter a private plane to fly over a competitor’s manufacturing facility to
count the number of trucks coming and going as a crude estimate of activity. Today, one
can buy much less expensive satellite imagery and count the number of trucks without
leaving one’s office. Oh, wait, you can also write a computer program to do just that
instead.

Many corporations, including financial organizations, are also sitting on data they
don’t even realize can be used in very productive ways. The inability to identify use-
ful internal data and harness them productively may separate tomorrow’s winners from
losers.

Whether you like it or not, Big Data is influencing finance, and we are just scratching
the surface.While the techniques for dealing with data are numerous, they are still applied
to only a limited set of the available information. The possibilities to generate returns
and reduce costs in the process are close to limitless. It is an ocean of data and whoever
has the better compass may reap the rewards.

And Big Data does not stop on the periphery of financial services. The amount
of data generated internally by financial institutions are at a record-setting number. For
instance, take exchange data. Twenty years ago, the exchange data that were stored and
distributed by the financial institutions comprised Open, High, Low, Close, and Daily
Volume for each stock and commodity futures contract. In addition, newspapers printed
the yield and price for government bonds, and occasionally, noon or daily closing rates
for foreign exchange rates. These data sets are now widely available free of charge from
companies like Google and Yahoo.

Today’s exchanges record and distribute every single infinitesimal occurrence on their
systems. An arrival of a limit order, a limit order cancellation, a hidden order update – all
of these instances are meticulously timestamped and documented in maximum detail for
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Why Big Data? 3

posterity and analysis. The data generated for one day by just one exchange can measure
in terabytes and petabytes. And the number of exchanges is growing every year. At the
time this book was written, there were 23 SEC-registered or “lit” equity exchanges in
the U.S. alone,2 in addition to 57 alternative equity trading venues, including dark pools
and order internalizers.3 The latest exchange addition, the Silicon Valley-based Long
Term Stock Exchange, was approved by the regulators on May 10, 2019.4

These data are huge and rich in observations, yet few portfolio managers today have
the necessary skills to process so much information. To that extent, eFinancialCareers
.com reported on April 6, 2017 that robots are taking over traditional portfolio man-
agement jobs, and as many as 90,000 of today’s well-paid pension-fund, mutual-fund,
and hedge-fund positions are bound to be lost over the next decade.5 On the upside,
the same article reported that investment management firms are expected to spend as
much as $7 billion on various data sources, creating Big Data jobs geared at acquiring,
processing, and deploying data for useful purposes.

Entirely new types of Big Data Finance professionals are expected to populate invest-
ment management firms. The estimated number of these new roles is 80 per every $3
billion of capital under management, according to eFinancialCareers. The employees
under consideration will comprise:

1. Data scouts or data managers, whose job already is and will continue to be to seek
the new data sources capable of delivering uncorrelated sources of revenues for the
portfolio managers.

2. Data scientists, whose job will expand into creating meaningful models capable of
grabbing the data under consideration and converting them into portfolio manage-
ment signals.

3. Specialists, who will possess a deep understanding of the data in hand, say, what the
particular shade of the wheat fields displayed in the satellite imagery means for the
crop production and respective futures prices, or what the market microstructure
patterns indicate about the health of the market.

And this trend is not something written in the sky, but is already implemented by a
host of successful companies. In March 2017, for example, BlackRock made news when
they announced the intent to automate most of their portfolio management function.
Two Sigma deploys $45 billion, employing over 1,100 workers, many of whom have data

2 U.S. Securities and Exchange Commission, Investor Information. Available at: https://www.sec.gov/fast-
answers/divisionsmarketregmrexchangesshtml.html
3 U.S. Securities and Exchange Commission, Alternative Trading System (“ATS”) List, Alternative Trading
Systems with Form ATS on File with the SEC as of November 30, 2019. Available at: https://www.sec
.gov/foia/docs/atslist.htm
4 “U.S. Regulators Approve New Silicon Valley Stock Exchange.” Reuters, May 10, 2019. Available
at: https://www.reuters.com/article/us-usa-sec-siliconvalley/u-s-regulators-approve-new-silicon-valley-
stock-exchange-idUSKCN1SG21K
5 EFinancialCareers, April 6, 2017. “The New Buy-Side Winners as Big Data Takes Over.” Available at:
http://news.efinancialcareers.com/uk-en/279725/the-new-buy-side-winners-as-big-data-takes-over/

http://efinancialcareers.com
http://efinancialcareers.com
https://www.sec.gov/fast-answers/divisionsmarketregmrexchangesshtml.html
https://www.sec.gov/fast-answers/divisionsmarketregmrexchangesshtml.html
https://www.sec.gov/foia/docs/atslist.htm
https://www.sec.gov/foia/docs/atslist.htm
https://www.reuters.com/article/us-usa-sec-siliconvalley/u-s-regulators-approve-new-silicon-valley-stock-exchange-idUSKCN1SG21K
https://www.reuters.com/article/us-usa-sec-siliconvalley/u-s-regulators-approve-new-silicon-valley-stock-exchange-idUSKCN1SG21K
http://news.efinancialcareers.com/uk-en/279725/the-new-buy-side-winners-as-big-data-takes-over/
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science backgrounds. Traditional human-driven competition is, by comparison, suffering
massive outflows and scrambling to find data talent to fill the void, theWall Street Journal
reports.

A recent Vanity Fair article by Bess Levin reported that when Steve Cohen, the
veteran of the financial markets, reopened his hedge fund in January 2018, it was to
be a leader in automation.6 According to Vanity Fair, the fund is pursuing a project
to automate trading “using analyst recommendations as an input, the effort involves
examining the DNA of trades: the size of positions; the level of risk and leverage.” This
is one of the latest innovations in Steve Cohen’s world, a fund manager whose previous
shop, SAC in Connecticut, was one of the industry’s top performers. And Cohen’s efforts
appear to be already paying off. On December 31, 2019, the New York Post called Steve
Cohen “one of the few bright spots in the bad year for hedge funds” for beating out
most peers in fund performance.7

Big Data Finance is not only opening doors to a select group of data scientists,
but also an entire industry that is developing new approaches to harness these data sets
and incorporate them into mainstream investment management. All of this change also
creates a need for data-proficient lawyers, brokers, and others. For example, along with
the increased volume and value of data come legal data battles. As another Wall Street
Journal article reported, April 2017 witnessed a legal battle between the New York Stock
Exchange (NYSE) and companies like Citigroup, KCG, and Goldman Sachs.8 At issue
was the ownership of order flow data submitted to NYSE: NYSE claims the data are
fully theirs, while the companies that send their customers’ orders to NYSE beg to differ.
Competent lawyers, steeped in data issues, are required to resolve this conundrum. And
the debates in the industry will only grow more numerous and complex as the industry
develops.

The payouts of studying Big Data Finance are not just limited to guaranteed
employment. Per eFinancialCareers, financial quants are falling increasingly out of favor
while data scientists and those proficient in artificial intelligence are earning as much as
$350,000 per year right out of school.9

Big Data scientists are in demand in hedge funds, banks, and other financial ser-
vices companies. The number of firms paying attention to and looking to recruit Big
Data specialists is growing every year, with pension funds and mutual funds realizing

6 Vanity Fair, March 15, 2017. “Steve Cohen Ramping Up Effort to Replace Idiot Humans with
Machines.” Available at: http://www.vanityfair.com/news/2017/03/steve-cohen-ramping-up-effort-to-
replace-idiot-humans-with-machines
7New York Post, December 31, 2019. “Steve Cohen One of Few Bright Spots in Bad Year for
Hedge Funds.” Available at: https://nypost.com/2019/12/31/steve-cohen-one-of-few-bright-spots-in-
bad-year-for-hedge-funds/
8Wall Street Journal, April 6, 2017. “With 125 Ph.D.s in 15 Countries, a Quant ‘Alpha Factory’ Hunts for
Investing Edge.” Available at: https://www.wsj.com/articles/data-clash-heats-up-between-banks-and-
new-york-stock-exchange-1491471000
9 EFinancialCareers, March 23, 2017, “You Should’ve Studied Data Science.” Available at: http://news
.efinancialcareers.com/us-en/276387/the-buy-side-is-having-to-sweeten-offers-to-ai-experts-data-
scientists-and-quants

http://www.vanityfair.com/news/2017/03/steve-cohen-ramping-up-effort-to-replace-idiot-humans-with-machines
http://www.vanityfair.com/news/2017/03/steve-cohen-ramping-up-effort-to-replace-idiot-humans-with-machines
https://nypost.com/2019/12/31/steve-cohen-one-of-few-bright-spots-in-bad-year-for-hedge-funds/
https://nypost.com/2019/12/31/steve-cohen-one-of-few-bright-spots-in-bad-year-for-hedge-funds/
https://www.wsj.com/articles/data-clash-heats-up-between-banks-and-new-york-stock-exchange-1491471000
https://www.wsj.com/articles/data-clash-heats-up-between-banks-and-new-york-stock-exchange-1491471000
http://news.efinancialcareers.com/us-en/276387/the-buy-side-is-having-to-sweeten-offers-to-ai-experts-data-scientists-and-quants
http://news.efinancialcareers.com/us-en/276387/the-buy-side-is-having-to-sweeten-offers-to-ai-experts-data-scientists-and-quants
http://news.efinancialcareers.com/us-en/276387/the-buy-side-is-having-to-sweeten-offers-to-ai-experts-data-scientists-and-quants
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the increasing importance of efficient Big Data operations. According to Business Insider,
U.S. bank J.P. Morgan alone has spent nearly $10 billion dollars just in 2016 on new ini-
tiatives that include Big Data science.10 Big Data science is a component of most of the
bank’s new initiatives, including end-to-end digital banking, digital investment services,
electronic trading, and much more. Big Data analytics is also a serious new player in
wealth management and investment banking. Perhaps the only area where J.P. Morgan
is trying to limit its Big Data reach is in the exploitation of retail consumer informa-
tion – the possibility of costly lawsuits is turning J.P. Morgan onto the righteous path of
a champion of consumer data protection.

According to Marty Chafez, Goldman Sachs’ Chief Financial Officer, Goldman
Sachs is also reengineering itself as a series of automated products, each accessible to
clients through an Automated Programming Interface (API). In addition, Goldman
is centralizing all its information. Goldman’s new internal “data lake” will store vast
amounts of data, including market conditions, transaction data, investment research, all
of the phone and email communication with clients, and, most importantly, client data
and risk preferences. The data lake will enable Goldman to accurately anticipate which of
its clients would like to acquire or to unload a particular source of risk in specific market
conditions, and to make this risk trade happen. According to Chafez, data lake-enabled
business is the future of Goldman, potentially replacing thousands of company jobs,
including the previously robot-immune investment banking division.11

What compels companies like J.P. Morgan and Goldman Sachs to invest billions in
financial technology and why now and not before? The answer to the question lies in the
evolution of technology. Due to the changes in the technological landscape, previously
unthinkable financial strategies across all sectors of the financial industry are now very fea-
sible. Most importantly, due to a large market demand for technology, it is mass-produced
and very inexpensive.

Take regular virtual reality video games as an example. The complexity of the 3-D
simulation, aided by multiple data points and, increasingly, sensors from the player’s
body, requires simultaneous processing of trillions of data points. The technology
is powerful, intricate, and well-defined, but also an active area of ever-improving
research.

This research easily lends itself to the analytics of modern streaming financial
data. Not processing the data leaves you akin to a helpless object in the virtual reality
game happening around you – the virtual reality you cannot escape. Regardless of
whether you are a large investor, a pension fund manager, or a small-savings individ-
ual, missing out on the latest innovations in the markets leaves you stuck in a bad
scenario.

Why not revert to the old way of doing things: calmly monitoring daily or even
monthly prices – doesn’t the market just roll off long-term investors? The answer is

10 Business Insider, April 7, 2017. “JP Morgan’s Fintech Strategy.” Available at: http://www.businessinsider
.com/jpmorgans-fintech-strategy-2017-4
11 Business Insider, April 6, 2017. “Goldman Sachs Wants to Become Google of Wall Street.” Available at:
http://www.businessinsider.com/goldman-sachs-wants-to-become-the-google-of-wall-street-2017-4

http://www.businessinsider.com/jpmorgans-fintech-strategy-2017-4
http://www.businessinsider.com/jpmorgans-fintech-strategy-2017-4
http://www.businessinsider.com/goldman-sachs-wants-to-become-the-google-of-wall-street-2017-4
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two-fold. First, as shown in this book, the new machine techniques are able to squeeze
new, nonlinear profitability from the same old daily data, putting traditional researchers
at a disadvantage. Second, as the market data show, the market no longer ebbs and flows
around long-term investment decisions, and everyone, absolutely everyone, has a way of
changing the course of the financial markets with a tiniest trading decision.

Most orders to buy and sell securities today come in the smallest sizes possible: 100
shares for equities, similar minimal amounts for futures, and even for foreign exchange.
The markets are more sensitive than ever to the smallest deviations from the status quo: a
new small order arrival, an order cancellation, even a temporary millisecond breakdown
in data delivery. All of these fluctuations are processed in real time by a bastion of ana-
lytical artillery, collectively known as Big Data Finance. As in any skirmish, those with
the latest ammunition win and those without it are lucky to be carried off the battlefield
merely wounded.

With pension funds increasingly experiencing shortfalls due to poor performance
and high fees incurred by their chosen sub-managers, many individual investors face
non-trivial risks. Will the pension fund inflows from new younger workers be enough
to cover the liabilities of pensioners? If not, what is one to do? At the current pace of
withdrawals, many retirees may be forced to skip those long-planned vacations and, yes,
invest in a much-more affordable virtual reality instead.

It turns out that the point of Big Data is not just about the size of the data that a
company manages, although data are a prerequisite. Big Data comprises a set of analytical
tools that are geared toward the processing of large data sets at high speed. “Meaningful”
is an important keyword here: Big Data analytics are used to derive meaning from data,
not just to shuffle the data from one database to another.

Big Data techniques are very different from traditional Finance, yet very complemen-
tary, allowing researchers to extend celebrated models into new lives and applications.
To contrast traditional quant analysis with machine learning techniques, Breiman (2001)
details the two “cultures” in statistical modeling. To reach conclusions about the rela-
tionships in the data, the first culture of data modeling assumes that the data are generated
by a specific stochastic process. The other culture of algorithmic modeling lets the algo-
rithmic models determine the underlying data relationships and does not make any a
priori assumptions on the data distributions. As you may have guessed, the first culture is
embedded inmuch of traditional finance and econometrics. The second culture, machine
learning, developed largely outside of finance and even statistics, for that matter, and
presents us ex antewith a much more diverse field of tools to solve problems using data.

The data observations we collect are often generated by a version of “nature’s black
box” – an opaque process that turns inputs x into outputs y (see Figure 1.1). All finance,
econometrics, statistics and Big Data professionals are concerned with finding:

1. Prediction: responses y to future input variables x.
2. Information: the intrinsic associations of x and y delivered by nature.

While the two goals of the data modeling traditionalists and the machine learning
scientists are the same, their approaches are drastically different as illustrated in Figure 1.2.
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Nature xy

Figure 1.1 Natural data relationships: inputs x correspond to responses y.

Panel a. Approach of traditional data modeling

Panel b. Approach of Data Science.

Data modeling: assume
specific data model (i.e., fit
linear or logistic regression,

etc.)

xy

Unknown xy

Data
Science

Figure 1.2 Differences in data interpretation between traditional data modeling and data science
per Breiman (2001).

The traditional data modeling assumes an a priori function of the relationship between
inputs x and outputs y:

y = f (x, random noise 𝜀, parameters 𝜃)

Following the brute-force fit of data into the chosen function, the performance
of the data fit is evaluated via model validation: a yes–no using goodness-of-fit tests and
examination of residuals.

The machine learning culture assumes that the relationships between x and y are
complex and seeks to find a function y = f (x), which is an algorithm that operates on x
and predicts y. The performance of the algorithm is measured by predictive accuracy of
the function on the data not used in the function estimation (the “out-of-sample” data
set).

And what about artificial intelligence (AI), this beast that evokes images of cyborgs
in Arnold Schwarzenegger’s most famous movies? It turns out that AI is a direct
byproduct of data science. The traditional statistical or econometric analysis is a
“supervised” approach, requiring a researcher to form a “hypothesis” by asking whether
a specific idea is true or false, given the data. The unfortunate side effect of the analysis
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has been that the output can only be as good as the input: a researcher incapable of
dreaming up a hypothesis “outside the box” would be stuck on mundane inferences.
The “unsupervised” Big Data approach clears these boundaries; it instead guides the
researcher toward the key features and factors of the data. In this sense, the unsupervised
Big Data approach explains all possible hypotheses to the researcher, without any
preconceived notions. The new, expanded frontiers of inferences are making even the
dullest accountant-type scientists into superstars capable of seeing the strangest events
appear on their respective horizons. Artificial intelligence is the result of data scientists
letting the data do the talking and the breathtaking results and business decisions
this may bring. The Big Data applications discussed in this book include fast debt
rating prediction, fast and optimal factorization, and other techniques that help risk
managers, option traders, commodity futures analysts, corporate treasurers, and, of
course, portfolio managers and other investment professionals, market makers, and prop
traders make better and faster decisions in this rapidly evolving world.

Well-programmed machines have the ability to infer ideas and identify patterns and
trends with or without human guidance. In a very basic scenario, an investment case
for the S&P 500 Index futures could switch from a “trend following” or “momentum”
approach to a “contrarian” or “market-making” approach. The first technique detects
a “trend” and follows it. It works if large investors are buying substantial quantities of
stocks, so that the algorithms could participate as prices increase or decrease. The sec-
ond strategy simply buys when others sell and sells when others buy; it works when
the market is volatile but has no “trend.” One of the expectations of artificial intelli-
gence and machine learning is that Big Data robots can “learn” how to detect trends,
counter trends – as well as periods of no trend – attempting to make profitable trades in
the different situations by nimbly switching from one strategy to another, or staying in
cash when necessary.

Big Data science refers to computational inferences about the data set being used: the
bigger the data, the better. The biggest sets of data, possibly spanning all the data available
within an enterprise in loosely connected databases or data repositories, are known as data
lakes, vast containers filled with information. The data may be dark, which is collected,
yet unexplored and unused by the firm. The data may also be structured, fitting neatly into
rows and columns of a table, for example, like numeric data. Data also can be unstructured,
as in something requiring additional processing prior to fitting into a table. Examples of
unstructured data may include recorded human speech, email messages, and the like.

The key issue surrounding the data, and, therefore, covered in this book, is data
size, or dimensionality. In the case of unstructured data that are not presented in neat
tables, how many columns would it take to accommodate all of the data’s rich features?
Traditional analyses were built for small data, often manageable with basic software, such
as Excel. Big Data applications comprise much larger sets of data that are unwieldy and
cannot even be opened in Excel-like software. Instead, Big Data applications require
their own processing engines and algorithms, often written in Python.
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Exactly what kinds of techniques do Big Data tools comprise? Neural networks, dis-
cussed in Chapter 2, have seen a spike of interest in Finance. Computationally intensive,
but benefiting from the ever-plummeting costs of computing, neural networks allow
researchers to select the most meaningful factors from a vast array of candidates and esti-
mate non-linear relationships among them. Supervised and semi-supervised methods,
discussed in Chapter 3 and 4, respectively, provide a range of additional data mining
techniques that allow for a fast parametric and nonparametric estimation of relationships
between variables. Unsupervised learning discussion begins in Chapter 5 and goes on
through the end of the book, covering dimensionality reduction, separating signals from
noise, portfolio optimization, optimal factor models, Big Data clustering and indexing,
missing data optimization, Big Data in stochastic modeling, and much more.

All the techniques in this book are supported by theoretical models as well as
practical applications and examples, all with extensive references, making it easy for
researchers to dive independently into any specific topic. Best of all, all the chapters
include Python code snippets in their Appendices and also online on the book’s website,
BigDataFinanceBook.com, making it a snap to pick a Big Data model, code it, test it,
and put it into implementation.

Happy Big Data!

Appendix 1.A Coding Big Data in Python

This book contains practical ready-to-use coding examples built on publicly available
data. All examples are programmed in Python, perhaps the most popular modeling lan-
guage for data science at the time this book was written. Since Python’s syntax is very
similar to those of other major languages, such as C++, Java, etc., all the examples pre-
sented in this book can be readily adapted to your choice of language and architecture.

To begin coding in Python, first download the Python software. One of the great
advantages of Python is that the software is free! To download and install Python, go to
https://www.python.org/downloads/, select the operating system of the computer on
which you are planning to install and run Python, and click “Download.” Fair Warning:
At the time this book was written, the latest Python software version was 3.7.2. Later
versions of Python software may have different commands or syntax. The readers may
experience some issues with different versions of the Python software.

After saving the installation file, and installing Python software, open the IDLE editor
that comes with the package. The editor typically has a white icon that can be located
in the Apps menu. The editor allows one to save Python modules as well as dynamically
check for errors and run the modules in the shell with just a click of the “F5” button.
In contrast, the black IDLE icon opens an old-school less-user-friendly Python shell
without the ability to open an editor. Figure 1.A.1 shows the Apps menu with the white
IDLE editor icon circled.

In the editor that opens, select “File -> New” to open a new instance of a Python
module. You may choose to save the module right away to avoid accidental loss of your

http://bigdatafinancebook.com
https://www.python.org/downloads/
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Figure 1.A.1 Selecting the user-friendly Python editor upon installation.

code. To save the file, select “File -> Save As,” navigate to your desired location, and
enter the name of the file, for example, “NeuralNetworkSPY_101.py.” By convention,
all Python files have “.py” extension, similar to “.cpp” of C++ files or “.m” of Matlab
files.

Opening a Data File in Python

The first step to a successful data analysis is opening a data file and correctly extracting the
content. Here, we show step-by-step instructions to opening a Yahoo! Finance historical
data file and loading the content into Python variables.

As a first exercise, we grab and open the entire Yahoo! Finance file for the S&P 500
ETF (NYSE:SPY) we downloaded previously. The file contains 10 years of daily data
with the following fields:

• Date in YYYY-MM-DD format
• Daily open
• Daily high
• Daily low
• Daily close
• Daily adjusted close (accounting for dividends and share splits, where applicable)
• Daily cumulative trading volume recorded across all the U.S. exchanges.

The first ten lines of the input data (ten years of daily data for NYSE:SPY from
Yahoo! Finance) are shown as in Figure 1.A.2.

We downloaded and saved the SPY data from Yahoo! Finance as SPY_Yahoo_2009-
2019.csv in “C:/Users/A/Documents/Data” directory. Please note the forward slashes
in the directory name. As with other computer languages, Python balks at the single
backward slashes in strings, causing errors.

To open the file and display the first ten lines, type the Python code snippet shown
in Figure 1.A.3 into the Python editor, remembering to replace the directory shown
with your own directory name.
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»
>

Date Open High Low Close Adj Close Volume
2009-03-30 79.800003 79.870003 77.959999 78.790001 64.419357 324108500
2009-03-31 79.559998 81.080002 79.050003 79.519997 65.016212 364238300
2009-04-01 78.529999 81.419998 78.330002 81.059998 66.275345 377018300
2009-04-02 83.080002 84.610001 81.129997 83.430000 68.213081 476230700
2009-04-03 83.489998 84.279999 82.669998 84.260002 68.891693 284646300
2009-04-06 83.339996 84.279999 82.290001 83.599998 68.352074 264866600
2009-04-07 82.250000 82.650002 81.510002 81.650002 66.757751 258947800
2009-04-08 82.059998 82.940002 81.540001 82.529999 67.477219 230402800
2009-04-09 84.669998 85.820000 84.330002 85.809998 70.158974 269653500
»
>

Figure 1.A.2 The first 10 lines of data input (ten years of daily data for NYSE:SPY from Yahoo!
Finance).

import numpy as np

my_data = np.genfromtxt(‘C:/Users/A/Documents/Data/SPY_Yahoo_2009-2019
.csv’, delimiter=‘,’)
print(data[:10])

Figure 1.A.3 Python code opening a Yahoo! Finance daily history data and displaying the first
ten rows.

Save the module by selecting “File -> Save” or pressing “Ctrl” and “S” keys at the
same time. Now, you can run your Python module by pressing the “F5” key or selecting
“Run -> Run Module” from the top bar menu.

If you have just installed Python and are using it for the first time, you may receive
the following error:

ModuleNotFoundError: No module named ‘numpy’

The error says that you need to install an add-on library called numpy. To do so:

1. Open a brand-new Python module (select File->New File in Python server). If
you do not see the menu at the top of your Python server window, you are in
the wrong application. Go back to the Python folder and select the first Python
server application that appears there. Once you open a new module, please type the
following commands inside the module and press F5 to run the commands to find
the location of python.exe:

import sys; print(sys.executable)
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The location will appear in the server window and may be something like
C:\Users\A\Programs\Python\Python37-32\pythonw.exe

2. Open a command prompt/shell. To do so in Microsoft Windows, search for “cmd.”
3. Navigate to the directory where pythonw.exe is installed, as shown in step 1 above.
4. Run the following command: python -m pip install numpy. If you

encounter errors again, you need to download an installing utility first: run python
-m ensurepip to do so, then run python -m pip install numpy.
You should be all set.

5. To execute other programs throughout this book, however, you will need to
install additional libraries, namely, random for advanced number generation,
matplotlib for plotting data, and scipy for scientific statistics functions
like skewness. To do so, please run python -m pip install ran-
dom, python -m pip install matplotlib, python -m pip
install scipy and python -m pip install pandas from the
command line.

Tip: during your Python programming, you may encounter the following error on
the Python server: “Subprocess startup error: IDLE’s subprocess didn’t make a connec-
tion.” Either IDLE can’t start a subprocess or personal firewall software is blocking the
connection. The error dialogue box is shown in Figure 1.A.4.

To fix the issue, simply close the existing instance of the server, but leave the Python
module open. Then, press F5 on the existing module to run it again – a new server
instance will open. This workaround is guaranteed to save you time in the programming
process! The alternative of closing all the Python windows and then restarting the server
from the start-up menu is too time-consuming.

When you run the module for the first time, a Python shell opens with potential
errors and output of the module. In our case, the output looks like the text shown in
Figure 1.A.5. Since numpy is configured to deal with numbers, the first row and the
first columns are replaced by nan, while all other numbers are presented in scientific
notation:

Let’s examine our first program, shown in Figure 1.A.3. The first line directs us to
import numpy, a Python library the name of which sounds like a cute animal, but

Figure 1.A.4 Error dialogue box.
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[[ nan nan nan nan nan
nan nan]

[ nan 7.9800003e+01 7.9870003e+01 7.7959999e+01 7.8790001e+01
6.4419357e+01 3.2410850e+08]

[ nan 7.9559998e+01 8.1080002e+01 7.9050003e+01 7.9519997e+01
6.5016212e+01 3.6423830e+08]

[ nan 7.8529999e+01 8.1419998e+01 7.8330002e+01 8.1059998e+01
6.6275345e+01 3.7701830e+08]

[ nan 8.3080002e+01 8.4610001e+01 8.1129997e+01 8.3430000e+01
6.8213081e+01 4.7623070e+08]

[ nan 8.3489998e+01 8.4279999e+01 8.2669998e+01 8.4260002e+01
6.8891693e+01 2.8464630e+08]

[ nan 8.3339996e+01 8.4279999e+01 8.2290001e+01 8.3599998e+01
6.8352074e+01 2.6486660e+08]

[ nan 8.2250000e+01 8.2650002e+01 8.1510002e+01 8.1650002e+01
6.6757751e+01 2.5894780e+08]

[ nan 8.2059998e+01 8.2940002e+01 8.1540001e+01 8.2529999e+01
6.7477219e+01 2.3040280e+08]

[ nan 8.4669998e+01 8.5820000e+01 8.4330002e+01 8.5809998e+01
7.0158974e+01 2.6965350e+08]]

Figure 1.A.5 The output of the first Python program, the code for which is shown in
Figure 1.A.3.

actually stands for NumPy – Python’s numerical manipulation library. After importing
the library and its component, the next line instructs Python to open our data file and
store it in a variable called my_data. Next, we display exactly 10 rows of the data file
and then exit the program. While 10 is an arbitrary number, the restriction on the total
lines displayed is in place to prevent Python from using too many system resources. In
particular, Python tends to struggle and “hang up” when asked to display large chunks
of data.

If you come to Python from Java, C++, or Perl, you’ll immediately notice numerous
similarities as well as differences. On the differences front, the lines do not end in a semi-
colon! Instead, the lines are terminated by a new line character. Variables are type-less,
that is, the coder does not need to tell the compiler ahead of time whether the new
variable is bound to be an integer or a string. Single-line comments are marked with #
at the beginning of a commented-out line, and with “ ” at the beginning and the end
of the comment block. On the similarity side, Python’s structure and keywords largely
follow preexisting languages’ convention: keywords like “class,” “break,” and “for” are
preserved as well as many other features, making the transition from most programming
languages into Python fairly intuitive.

If you encounter any issues successfully running your first Python program of this
book, Google is possibly your best bet as a solution finder. Just type any questions or error
codes into the Google prompt, and you may be amazed at the quantity and quality of
helpful material available online to assist you with your problem. Once our first program
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runs successfully, we will proceed with the more complicated task of actually building
our first neural network.

While techniques discussed in this book are applicable across a wide range of applica-
tions, including credit risk rating and Natural Language Processing (NLP) of documents
like financial statements, the main focus of this book remains portfolio management and
trading. As such, most of the examples in the book will be focused on predictability
of future realizations of prices, returns, and other metrics that help portfolio managers
make educated investment decisions.

Reference

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the
author). Statistical Science 16(3): 199–231.
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Chapter 2

Neural Networks in Finance

Introduction

N eural networks are an important tool for machine learning. Truly deep learn-
ing was originally designed to model the complexities of the human brain.
Neural networks typically require intensive computer power but with tech-

nology costs now at their historic low and projected to decrease further, neural networks
are a cost-efficient yet powerful methodology for discovering nonlinear relationships that
can be useful inputs into predicting future results. Here, following our paper, Aldridge
and Avellaneda (2019), we discuss the theoretical background and develop a step-by-step
implementation of a toy model for a neural network using financial data. The paper show
practical and potentially profitable application of machine learning. The Appendix pro-
vides discussion and actual coding blocks for building a simple financial neural network
in Python.

This chapter’s focus is on simple explanation and the core principles of the neural
network’s design. One class of models that has been popular across image recognition and
social media applications is Generative Adversarial Networks (GANs). The advantage of
GANs is that they introduce randomization to enable classification of variables, even if
none was previously available. Thus, Chen, Pelger, and Zhu (2019) use a deep learning
GAN framework for estimating the stochastic discount factors (SDF), the unobservable
Rosetta Stone of all pricing engines. As Chen, Pelger, and Zhu point out, SDF indeed
presents a perfect Big Data problem: SDF in theory reflects all available information,
comprising very Big Data; the functional form of SDF is unknown and the key drivers
of SDF are potentially not fully known; SDF may vary over time and have a complex

15
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dynamic structure; the available data may be highly noisy from the SDF estimation per-
spective. While simple neural networks can probably be applied to the SDF estimation as
well, here we focus on the successful and novel application to the workhorse of financial
data modeling: end-of-day stock price data.

Neural networks are relatively novel in finance since, in the past, the cost of creating
a network well outweighed the benefits of doing so. The earliest neural networks and
machine learning in general harken back to the 1950s Control Theory – a science of
feedback loops and error minimization developed with the invention and proliferation
of computer technology. In the mid-1980s, interest in machine learning led to neural
networks as a more sophisticated, human-like technology.

A neural network is an advanced optimization tool that, by trial and error, models
complex functional relationships between a set of observable inputs and outputs. Aca-
demic research on neural networks in Finance goes back at least 25 years (for a review,
see Gallo 2005). Some early work in Finance in the 1990s concerned derivatives pricing
with incomplete data (Avellaneda et al. 2000).

Neural network modeling and traditional forecasting and econometric modeling are
different yet complementary approaches to quantitative modeling, not a beauty contest.
In traditional statistics or econometrics, researchers make assumptions about data distri-
butions ahead of the analysis. Unlike traditionalists, neural networks scientists make no
assumptions about the data whatsoever and let the data (and computers) decide what
fits best, often in a black-box construct. As discussed in Aldridge and Krawciw (2017),
letting machines make autonomous decisions is a growing trend, rapidly expanding in
Finance.

Even though neural networks are the cornerstone of machine learning, neural net-
works and machine learning are not perfectly synonymous. Gu, Kelly, and Xiu (2019),
for example, define ML to encompass:

1. A wide-ranging collection of models for statistical prediction, including economet-
rics.

2. Methods for model selection and mitigation of overfit.
3. Efficient algorithms for searching among model specifications, i.e., neural networks.

Hastie et al. (2009) include the following topics in machine learning: linear regres-
sion, generalized linear models with penalization, dimension reduction via principal
components regression (PCR), partial least squares (PLS) regression trees (including
boosted trees and random forests), and, of course, neural networks. Other supervised
machine learningmethods are discussed in Chapter 3, semi-supervised learning addressed
in Chapter 4, and the unsupervised methodologies are introduced in Chapter 5 and
discussed throughout much of the book.

The key benefits of neural networks methodologies are:

1. In principle, the algorithms should be able to accommodate all available input data
at once – no need to pick and choose the potential factors ahead of the analysis.

2. The algorithms account for nonlinear relationships and complex interactions among
the variables – a superior prediction vis-à-vis traditional linearization of relationships
in Finance.
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To understand why neural networks are important in Finance, consider, for example,
prepayments on mortgages. This is a situation when the borrower chooses to pay off
the balance of the money owed ahead of schedule, potentially due to refinancing with
another lender or another reason. This kind of event creates a significant risk to the
lender or to the buyer or holder of pass-through Mortgage-Based Securities (MBS).
The expected mortgage rate is often modeled as a function of the yield curve (linearly
and nonlinearly), and modeling of prepayment rate is typically represented as an S-shape
curve based on mortgage rate expectations (see Avellaneda and Ma, 2014). The Richard
and Roll (1989) model, also known as DTCC/FICCmodel and a de-facto industry stan-
dard, relates refinance rate to monthly mortgage payments (Weighted Average Coupon,
or WAC) and mortgage rates. As detailed in Avellaneda and Ma (2014), this industry
standard for mortgage rates is determined as cointegration of 2-year and 10-year swap
rates over a one-year window.

Numerous other studies linearize the relationship between the prepayment risk
and other variables. For example, Campbell & Dietrich (1983) study variables like
payment/income and loan/value ratios and unemployment rates, as well as age and the
original loan/value ratio. Cunningham & Capone (1990) look at Caps, both periodic
and lifetime; Curley & Guttentag (1974) consider loan maturity and policy year. Deng,
Quigley & Van Order (2000) examine various factors in a proportional hazard model.
Instead of linearizing the relationship between explanatory variables and the risk of
prepayment, fitting an S-shaped curve produced better results (see Fabozzi 2016). Still,
neural networks can identify dependencies that are an even tighter fit, as shown in
Sirignano, Sadhwani, and Giesecke (2018).

Other potential applications of neural networks include index replication, where a
neural network chooses the stocks that together best mimic the performance of a given
index (Heaton, Polson, and Witte 2016). The strategy can also be applied to uncover-
ing the composition of a given hedge fund strategy. In addition, Heaton, Polson, and
Witte, (2016) show the neural network process for optimal nonlinear factor selection in
asset pricing, as well as the estimation of default probabilities in a large-scale setting that
takes creditworthiness, text data of corporate news and announcements, and accounting
data as inputs. Heaton, Polson, and Witte also develop a neural network framework for
hidden-factor event studies estimation.

In machine learning, neural networks may be referred to as reinforcement learning.
As described in the next section, a neural network trains itself on the available data,
reinforcing its own inferences in the process.

Neural Network Construction Methodology

While many variations of the neural networks exist, here we focus on the more traditional
feedforward networks.
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…
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Figure 2.1 A sample neural network.

The three layers of a traditional neural network are:

1. Input layer of raw predictor inputs.
2. Hidden layer of predictor interaction and nonlinear transformation.
3. Output layer of outputs aggregated from the results of the hidden layer.

A sample neural network is shown in Figure 2.1. The layers are computational stages.
In each layer, there are computational cells, known as neurons, which correspond to the
inputs, or columns of data, coming into the computation at that stage. The number
of neurons may or may not be the same in sequential layers. Typically, the number of
neurons decreases from one layer to the next in the direction of output. The neural
network thins out toward its end as various data columns, also known as features, drop
out, due to their lack of predictive power. In the input layer, the number of neurons
most often corresponds to the number of columns (features) in the original data set.
Some neural network designers may add an additional input layer neuron to capture
bias. Generally, however, once the shape of the data is known, the number of neurons
in the input layer is uniquely determined.

The number of neurons in the output layer depends on the neural network’s output
configuration. Traditional networks can output either a continuous number (e.g., a price
forecast), or a discrete classification (e.g., portfolio identifiers or yes/no answers). For
example, in mortgage prepayment modeling, the output neurons may be the following
states:

0 = current mortgage (up-to-date with payments)
1 = 30 days late
…
5 = paid off via prepayment
…

Following the human nervous system nomenclature, the connections between neu-
rons in neighboring layers are referred to as “synapses.” Each synapse corresponds to a
numerical value, referred to as weight, that has to be estimated. As Figure 2.1 shows, the
neurons in neighboring layers may or may not be connected.
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The graph of the synapses between two layers with number of neurons N1 and
N2 corresponds to a bipartite graph, which, if all links were allowed, would be a full
graph with N1 ×N2 edges. Some links do not exist, and the resulting graphs may not be
full. Each neuron also has an additional parameter known as the activation parameter or
activation level, discussed in the next section, along with the synapse weight estimation.

The configuration of the neural network that returns a number is referred to as the
“regression mode” while the configuration that returns a discrete value is known as the
“machine mode.” Correspondingly, the regression mode has only one output neuron
containing the output number while the machine mode may have either a single output
node returning a value or a node for each of the output “states.”

The number of neurons in the hidden layer with the most neurons is referred to as
the width of the neural network. The optimal width of the neural network, as well as
the optimal number of hidden layers, is an active area of research. Most researchers agree
that, as a rule of thumb, the optimal width of the hidden layers needs to fall between the
width of the input layer and the width of the output layer.

While each neural network has exactly one input layer and one output layer, the
number of hidden layers has varied. Intuitively, the number of hidden layers depends on
how intertwined the input parameters are. If the inputs are linearly separable, the neural
network does not need any hidden layers at all – in fact, the neural network itself is not
needed as the problem can be estimated using basic linear regression.

The three-layer depth of neural networks, comprised of the input, output, and just
one hidden layer, was a product of much research in the 1980s that showed that the three
levels are optimal from a computational perspective. Specifically, the additional hidden
layers were shown to add too much computational complexity for the machine power
available at the time while contributing little additional value. However, more recently,
computational power has experienced a significant drop in price. This ongoing trend
is due to massive computing demands from all industries. In addition, researchers like
Hinton, Osindero, and Teh (2006) have produced fast, greedy computational algorithms
that make multi–hidden layer neural networks efficient and useful. Eldan and Shamir
(2016) demonstrate that increases in depth are more valuable than increasing width in
standard feedforward neural networks. He et al. (2016) derive an easy-to-train residual
learning network, with as many as 152 layers.

Neural networks with a large number of hidden layers collectively form what is com-
monly called deep learning. Usually, subsequent hidden layers drop inputs to produce a
narrowing input funnel toward the output. Different feedforward and backpropagation
multi-layer methodologies exist to produce a spectrum of results. For instance, a GAN
creates random features and feeds them into the neural network alongside real data to
aid network training.

The Architecture of Neural Networks

A neural network is a form of a learning machine. Learning machines are designed to
find a predictor Ŷ of an output Y , given input X . Thus, like most learning machines,
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a neural network is a mapping Y = F(X), where X = (X1,X2, … Xp). The predictor is
denoted Ŷ (X):=F(X).

Formally, a deep learning neural network architecture comprises f1, f2, … , fL
univariate activation functions for each of the L layers. For each layer l, we define
a semi-affine transformation rule which defines exactly how the activation function
transforms the data inputs at layer l:

f W ,b
l :=fl

(
Nl∑
j=1

WljXj + bl

)
= fl(WlXl + bl), 1 ≤ l ≤ L (2.1)

whereWl is the weight matrix at layer l estimated during the training phase below, and
bl is the threshold or activation level for layer l.

The deep predictor Ŷ (X) then becomes a composite map, a superposition of univariate
semi-affine functions:

Ŷ (X):=F(X) = (f W1,b1
1 ∘f W2,b2

2 ∘ … ∘f WL ,bL
L )(X) (2.2)

If Z(l) is the output of the lth layer, the hidden features or factors that the algorithm
extracts at each layer l, then Z(0) = X is the input, and, recursively,

Z(1) = f (1)(W (0)X + b(0)) (2.3)

Z(2) = f (2)(W (1)Z(1) + b(1))
…

Z(l) = f (l)(W (l−1)Z(l−1) + b(l−1))
…

Z(L) = f (L)(W (L−1)Z(L−1) + b(L−1))

Ŷ (X) = Z(L+1) =W (L)Z(L) + b(L) (2.4)

To obtain the desired output, a prediction, the input data are passed through hidden
layers of abstraction. In each layer, the algorithm extracts data features into factors. A
given level’s factors become the next level’s features.

In general, in a neural network with L hidden layers, layer l = 0 is the input layer
X , layer l = L + 1 is the output forecast layer Ŷ , and each hidden layer l ∈ [1, … ,L]
is a nonlinear transformation applied to the previous layer l − 1. The number of hidden
layers, |, is known as the depth of the neural network architecture.

Each layer l contains Nl “neurons,” features or, simply, columns of data. A layer may
choose to drop a data feature (data column) based on analysis, and this feature will not
be available in the later layers of analysis. Nl needs to be explicitly specified for each layer
l by the neural network’s architect. Each layer is a nonlinear univariate transformation
that uses as inputs the outputs of the previous layer. Thus, layer l takes output of layer
l − 1 as input.

The nonlinear transformation fl that occurs at every level l is known as the activation
function. When neural networks are referred to as reinforcement learning, activation
functions are often called reward functions. If there are L layers with N neurons on each
layer, there are N ×N transformations from one layer to the next, as each neuron
or datum i in layer l connects to every neuron j in layer l + 1. The resulting weight
matrix W has dimensions of Nl ×Nl−1. Activation functions are nonlinear univariate
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transformations of weighted input data, where the weight matrices Wl ∈ RNl×Nl−1are
adjusted during the training process described in the next section. In neural network
computation, commonly used activation functions are sigmoidal (e.g., 1∕(1 + exp(−x)),
cosh(x), tanh(x)) and indicator functions I(x > 0). Functions like max{x, 0}are known
to lead to rapid dimension reduction.

In mathematical summary, a neural network is an iteration of affine vector-valued
maps. Each neural network has a certain, usually large, number of unknown parameters.
The total approximate number of unknown parameters in a neural network is of order
N ×N × L and the complexity reaches N ×N × L +N × L. In principle, any function
in the world can be approximated to great accuracy by a neural network. In reality, the
computing time and power are still an issue, and the neural network approximation is
usually restricted by the realities of computing technology.

Choosing the Activation Function

In finance, activation functions can be simple or complex, depending on the underly-
ing application. Avellaneda et al. (2020) chose linear function for modeling VIX futures
changes. Ritter (2017) used a quadratic activation function corresponding to the clas-
sic utility maximization problem of a risk-averse agent in an asset-pricing framework.
Specifically, here, we show that the tanh(x) function may work best for leptokurtic secu-
rity returns, we consider the following activation functions:

• sigmoid, or logistic, function
• hyperbolic tangent, tanh
• Rectifier Linear Unit (ReLU)
• linear

The choice of the activation function depends on the fit of the functional output
to the distribution of data. Does the output range from 0 to 1, as it would in a binary
(yes/no) classifier? An example of a binary output may be the answer to the question
“is the market in a recession?” Does the output accommodate negative numbers, which
would be suitable for financial returns? The objective of the activation function is also to
be taken into account: is its output to be used to construct trading strategies with a buy
vs sell vs hold recommendation, or is the output to create point forecasts for returns?

Sigmoid or Logistic Function

The sigmoid or logistic function

σ(x) = 1∕(1 + exp(−x)) (2.5)

has a first derivative of

d𝜎
dx

=
−exp(−x)

(1 + exp(−x))2
= −𝜎2(x)

(
1 − 𝜎(x)
𝜎(x)

)
= 𝜎(x)(1 − 𝜎(x)) (2.6)
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Sigmoid
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Figure 2.2 Sigmoid function (a) and its derivative (b).

The sigmoid, shown in Figure 2.2, varies from 0 to 1 and has large derivatives in the
middle and relatively slow changes at either end. As a result, the sigmoid is a great tool for
binary “yes/no” classification, allowing for fast segmentation of objects into the “one or
the other” categories. Sigmoids are non-negative, and are, therefore, ill-suited for mod-
eling returns. In addition, sigmoids suffer from the “vanishing gradient” problem – when
the function plateaus, the converging rates halt to nearly zero, which is often undesirable.

Rectifier Linear Unit Function (ReLU)

The rectifier linear unit function (ReLU) is

ReLU(x) = max(x, 0) (2.7)
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On the other hand, ReLU has become the most popular first-pass function for neural
networks. Originally developed for “rectifying” electric current, they are simple with a
fast derivative:

𝜕[ReLU(x)]
𝜕x

= Ix>0 (2.8)

Rectifier functions also provide “model sparsity”: they activate selectively, saving com-
putational time and power. Still, rectifiers like sigmoids are non-negative and are poor
choices for financial returns. A plot of ReLU is shown in Figure 2.3. ReLU output ranges
from 0 to infinity. Its shape is a shoe-in for pricing call options and, when appropriate
or used in combinations, other options on financial instruments.

ReLu

(a)

(b)

10

8

6

4

2

0

–10.0 10.0–7.5 7.5–5.0 5.0–2.5 2.50.0

ReLu Derivative

1.0

0.8

0.6

0.4

0.2

0.0

–10.0 10.0–7.5 7.5–5.0 5.0–2.5 2.50.0

Figure 2.3 ReLU function (a) and its derivative (b).
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Hyperbolic tangent, tanh

The tanh function varies from -1 to 1 and presents a viable choice for return modeling.
The derivative of tanh is

𝜕[tanh(x)]
𝜕x

= 1 − tanh2(x) (2.9)

A plot of tanh is shown in Figure 2.4. As Figure 2.4 shows, tanh is very similar to
sigmoid, except its output extends from -1 to 1, making it more suitable for modeling
financial returns than sigmoid, since tanh can accommodate negative returns. The -1 to
+1 restriction works particularly well in shorter-term returns where these boundaries are
unlikely to be breached. In a longer term return, most financial instruments can breach
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Figure 2.4 Tanh function (a) and its derivative (b).
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100% upside limit. On the downside, the loss may extend beyond 100% in currencies
and short-sale strategies, a possibility not captured by tanh. In equities, however, -1 is
the maximum loss corresponding to the complete loss of one’s investment: 100% in the
case of a stock-issuer’s bankruptcy.

Linear function

Linear function, f (x) = x, also known as identity function, turns a neural network into a
good old linear regression, making it a great tool to assess the usefulness of the neural net-
work modeling. With a simple derivative df

dx
= 1, the linear function is easy to program

and assess. The linear activation function and its derivative are illustrated in Figure 2.5.
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Figure 2.5 Linear function (a) and its derivative (b).
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The sample prediction output Ŷ generated by the neural network is known as the
feedforward operation. For a basic three-layer network with just one hidden layer, weights
W1 transform the inputs into the hidden layer, and weights W2 operate on the hidden
layer to derive the output. Each layer transforms the previous layer’s output with the
corresponding weights and the chosen activation function. Thus, the output of our first
layer is ŷ1 = 𝜎(W1x + b1), whereW1 and b1 are the weights and bias of the first (and, so
far, the only) hidden layer, and 𝜎(z) is the chosen function, in our case, sigmoid. The
output of the hidden layer model is the input of the final output layer, so Ŷ = 𝜎(W2ŷ1 +
b2) = 𝜎(W2𝜎(W1x + b1) + b2). For a general neural network with k total layers (k-2
hidden layers),

Ŷ = 𝜎(Wk−1ŷk−2 + bk−1) = 𝜎(Wk−1𝜎(Wk−2ŷk−3 + bk−2) + bk−1)

= 𝜎(Wk−1𝜎(Wk−2𝜎(Wk−3ŷk−4 + bk−3) + bk−2) + bk−1)

and so on, until we reach ŷ1 = x in the model.
During the first iteration, it is common to guess the weights and biases, and often

even to pick them at random. To determine the correctly fitting weights and biases, the
resulting feedforward prediction Ŷ is compared with its target or actual value Y in a
process called backpropagation. In backpropagation, the difference between the prediction
Ŷ and the actual value Y is computed in what is known as the loss function. The loss
function can be as simple as a squared error:

L = (Ŷ − Y )2 (2.10)

Once the loss with the latest set of weights and biases is computed, the loss is backprop-
agated to the beginning of the network and parameters are adjusted to minimize the
loss. The loss function is then recalculated in a recursive procedure and the weights are
adjusted again. The process repeats itself until some target error criterion is reached.

A common way to adjust the weights and biases is to rely on the derivative of the
loss function with respect to weights and biases to guide the direction of the required
adjustment. The derivative of the loss function is the slope of the loss function observed
in response to minute changes in parameters. Since we are looking to find the minimum
or minima of the loss function, we will seek to adjust the parameters in the direction
that makes the loss function smaller. This technique may be familiar to many readers as
gradient descent.

For a sigmoid
𝜎(x) = 1∕(1 + exp(−x)) (2.11)

𝜕L
𝜕W

= 𝜕L

𝜕Ŷ

𝜕Y
𝜕x

𝜕x
𝜕W

= 2(Ŷ − Y )(𝜎(x)(1 − 𝜎(x)))x (2.12)

𝜕L
𝜕b

= 𝜕L

𝜕Ŷ

𝜕Y
𝜕x

𝜕x
𝜕b

= 2(Ŷ − Y )(𝜎(x)(1 − 𝜎(x)))1 (2.13)

One piece still missing from our optimal trading neural network is the actual realized
output, given inputs X arising from downloaded daily data. In many neural networks, Y
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is the observed output of the natural system given inputs X . In the case of a trading or a
portfolio management system, Y is not given, but must be selected by a researcher. The
following section discusses possible choices for the model output.

Construction and Training of Neural Networks

Similar to traditional data modeling techniques, construction and training of deep learn-
ing algorithms are conducted on three distinct data sets split from the original data into
(1) training, (2) validation, and (3) testing.

The training set is used to adjust the weights of the network. The validation set is
used to minimize the overfitting of data. Finally, the testing data set is used to measure
the predictive power of the constructed neural network.

Training

The objective of the training stage of the neural network design is to maximize its per-
formance. Performance of a neural network is measured by the residual loss function, the
difference between the deep learning predictor, Ŷ , and the realized output Y . Better per-
formance corresponds to a tighter fit, or smaller loss function. Our objective, therefore,
is to design a neural network with the minimum residual loss function. If a loss func-
tion is denoted as L(Y , Ŷ ), the training problem comprises finding parameters (weights
Ŵ = (Ŵ0, Ŵ1, … ŴL) and activation thresholds b̂ = (b̂0, b̂1, … b̂L)) that minimize the
loss function on the training data set of input–output pairs D = {Y (i),X (i)}Ti=1. Thus, the
training problem can be written as:

arg minW ,b
1
T

T∑
i=1

L(Yi, ŶW ,b(Xi)) (2.14)

The most basic loss function is the ordinary least squares (OLS) L2−norm, mean-squared
error (MSE) of estimation over the training data set D = {Y (i),X (i)}Ti=1:

L(Yi, Ŷ (Xi)) = ||Yi − Ŷ (Xi)||22 (2.15)

If the output Y can be considered to be a random variable generated by the probabil-
ity model p(Y |YŴ ,b(X)), the corresponding probabilistic loss function can then be a
negative log likelihood:

L(Yi, Ŷ (Xi)) = −logp(Y |YŴ ,̂b(X)) (2.16)

The main drawback of machine learning has always been its computational complexity.
To accurately map or fit a function transforming inputs, X, into outputs, Y, computer
programs necessitated millions of iterations. The iterative nature of machine learning
resulted in two major issues: overfitting and (relatively) slow processing. Overfitting refers
to the situation where the output function fits the observable data X and Y closely,



Trim Size: 7in x 10in Aldridge602989 c02.tex V1 - 12/09/2020 11:26 P.M. Page 28�

� �

�

28 B I G DATA S C I E N C E I N F I N AN C E

but, perhaps, has little to do with the “true” relationship between X and Y, with many
observations not yet available. The overfitting problem has been plaguing industries like
Finance, where the data used traditionally were collected on a daily basis and, as a result,
expensive to generate and use: just 750 daily trading observations amount to three full
years of financial data!

Different models penalize fitting X to Y too closely, leaving room for the models “to
breathe” – to allow for a potential modeling error and more successful application to the
data yet unseen. Still, pure machine learning has had adoption challenges, mostly due to
the cost and inefficiency of heavy-duty processing required by an iterative approach taken
when testing these algorithms. The number of times a machine learning program needs
to run to generate a solid nonlinear prediction can number in hundreds of thousands,
which can cost a lot in terms of time and processing power required.

The processing power conundrum has been largely solved by the computing industry
via cloud technology (outsourced computation on distant and cheap server farms) and
generally, ever decreasing costs of computers due to the insatiable demand for technology
from people in all walks of life.

To avoid overfitting and to stabilize the predictive rule, it is common to add a regu-
larization penalty 𝜙(W , b). The additional parameter 𝜆 then determines the overall level
of regularization, with the minimization problem becoming:

arg minW ,b
1
T

T∑
i=1

L(Yi, ŶW ,b(Xi)) + 𝜆𝜙(W , b) (2.17)

Too little regularization 𝜆 leads to overfitting and poor out-of-sample performance.
The regularization penalty may take many functional forms, from separable

𝜙(W , b) = 𝜙(W ) + 𝜙(b) to ridge L2−norm 𝜙(W ) = ||W ||22 = ∑T
i=1W

T
i Wi to LASSO

L1−norm.
The ridge L2−norm regularization penalty is useful when the overall level of reg-

ularization, 𝜆, needs to be determined. LASSO L1−norm helps induce sparsity in the
weightsW and offsets b.

In the probabilistic models where the output is a random variable generated by
P(Y |YŴ ,b(X)), the regularization term 𝜆𝜙(W , b) can be thought of as a negative
log-prior distribution over parameters, corresponding to the Bayes learning with the
deep predictor Ŷ a regularized maximum a posteriori (MAP) estimator:

𝜆𝜙(W , b) = −log p(𝜙(W , b)) (2.18)

p(𝜙(W , b)) = C exp(𝜆𝜙(W , b)) (2.19)

Using Bayes rule, we obtain:

p(W , b|D) ∝ p(Y |YW ,b(X))p(W , b) (2.20)

and
p(W , b|D) ∝ exp(−log p(Y |YW ,b(X)) − log(p(W , b))) (2.21)
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Thus, the deep learning predictor Ŷ is:

Ŷ :=YŴ ,̂b(X) where (Ŵ , b̂):=arg minW ,b log p (W , b|D) (2.22)

Then, the log-posterior distribution over parameters given the training data
D = {Y (i),X (i)}Ti=1 is

−log p(W , b|D) = T∑
i=1

L(Y (i),YW ,b(X (i))) + 𝜆𝜙(W , b) (2.23)

Validation

In the design of neural networks, validation boils down to identifying:

1. The levels of regularization, 𝜆, that lead to the optimal prediction in a variance vs.
bias tradeoff.

2. The depth of the neural network (number of hidden layers), L.
3. The size of the hidden layers (number of neurons: data features or fields to keep at

each layer), Nl, 1 ≤ l ≤ L.

An efficient validation technique designed to reduce overfitting and increase
out-of-sample performance is known as cross-validation. Cross-validation involves
splitting the training data into complementary subsets, potentially of equal length, and
then producing comparative validation on diverse sets.

In particular, when dealing with financial time series, it may make sense to split
training data into disjoint time periods of identical length. This is particularly useful
when data are expensive to obtain and the models have to be tested extensively.

Model Selection via Dropout

When we start a neural network with many inputs, it may be desirable to reduce the size
of the inputs used in a given layer in order to do the following:

• Retain only the most significant data parameters.
• Prevent overfitting – a condition when the network appears to work in sample due to
a too-close fitting nonlinear regression, and then fails to work out-of-sample.

A popular technique for selecting features is called dropout. In a dropout, a given
hidden layer retains p fraction of inputs at random and drops off the fraction (1-p) of
inputs to a given layer. The technique then processes the neural network to see if the
loss function has increased or decreased. The random dropout is then repeated with
another set of randomly selected p fraction of inputs. The process is repeated until the
minimum-loss input selection is achieved. The fraction p is known as the dropout threshold
and is usually set by the neural network designer, and can be a number like 0.7 or 0.9.
With the dropout threshold of 0.9, for instance, 90% of inputs are retained while 10%
are dropped off in a given layer. The actual inputs or features that are retained or dropped
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off are decided upon at random by the neural network itself. The only human input is
the value of the dropout threshold and the layers to which the dropout threshold applies.

Dropout works because it trains the neural network not to rely significantly on any
particular input, since that input may be removed in the next iteration. As a result, instead
of assigning higher weights to certain features, the neural network will instead try to
spread the weights across many features, delivering better network stability out-of-sample
in the process. Still, even though the weights across many features will be smaller, some,
most significant, features may stand out with higher weights.

Econometricians may recognize dropout as a version of classic bootstrapping. Sim-
ilar to bootstrapping, dropout techniques repeatedly sample the regression dependent
variables, now known as inputs, in an effort to develop stable coefficients for all the data
inputs. Dropout is also a version of the machine-learning technique called boosting.

With h inputs, a neural network may contain up to 2h−1 permutations of inputs, based
on a binary calculation of whether a given input is included in the system and retaining
at least one input in each layer. With so many permutations, dropout requires a lot of
iterations. However, due to the smaller number of inputs in a given layer, the processing
time required for each iteration is substantially shorter than without the dropout.

The impact of dropout selection on the neural network’s performance can be quanti-
fied a priori. Heaton, Polson, and Witte (2016) quantify the impact of the dropout on the
neural network’s loss minimization function by noting that the dropout layer selection
follows a Bernoulli distribution:

D(l)
i ∼ Ber(p) (2.24)

Then, for the MSE minimization function, L(Yi, Ŷ (Xi)) = ||Yi − Ŷ (Xi)||22, the objective
function becomes

L(Yi, ŶD(Xi)) = arg minWED∼Ber(p)||Y −W (X ∗ D)|| (2.25)

where ∗ is the element-wise product and D is a matrix of independent Bernoulli D ∼
Ber(p) distributed random variables. Equation (2.25) is equivalent to:

L(Yi, ŶD(Xi)) = arg minW ||Y − pWX||22 + p(1 − p)||𝛤W ||22 (2.26)

where 𝛤 = (diag(XTX))1∕2.

Overfitting

Overfitting is a blanket term that explains why a model that worked well in-sample does
not work out-of-sample. Has a trading model worked and then stopped working? Some
blame overfitting.

The main idea of overfitting is that in a static population, if we have enough data, we
can accurately match inputs and outputs via nonlinear regressions in a neural network.
If the out-of-sample data do not work in given parameters determined in-sample, under
the overfitting hypothesis, the neural network has a high variance and cannot yet “gen-
eralize” to the new out-of-sample data set. Under one solution, a researcher can use even
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more data in an attempt to model the population even better. In another solution, the
researcher prevents the neural network from too tight a fit, measured by a loss function,
by adding a regularization penalty.

Regularization is usually accomplished in one of two ways:

• The loss function is artificially decreased by the “regularization parameter.” Such a
parameter may be a simple coefficient 𝜆 = 0.9 that is multiplied with the loss calculated
by the neural network. The artificially lower loss function results in faster convergence
and, as a result, in more straightforward functionals, avoiding too much nonlinear
complexity in the neural network.

• Feature dropout reduces the number of input parameters once again to simplify the
complexity of the network.

In reality, overfitting may not really be the culprit for the non-working data. Instead,
the neural networks may stop working because the underlying data distributions change.
Known as nonstationary, these distributions have long been studied in statistics and
econometrics. No matter how much data we have, the environment around us evolves
with time and neural networks trained on historical data may cease to provide meaningful
answers, overfitting or not.

Adding Complexity

So far, we have discussed the most basic network using multinomial nonlinear regression
with gradient descent on backpropagation, first developed by LeCun et al. (1989). A
more complex neural network is designed following Krizhevsky et al. (2012) as a multi-
nomial logistic regression using mini-batch gradient descent based on backpropagation
(LeCun et al. 1989) with momentum. Parameters like the batch size can be set to a
power of 2 to speed up computation and the momentum can be set to 0.9 to ensure a
reasonable convergence.

Big Data in Machine Learning

Much of the above discussion on neural networks has focused on pure machine learn-
ing – an iterative algorithmic approach to solving problems. The fun of data science
comes in at this point to dramatically speed up the machine learning computation, mak-
ing it efficient with a dramatic size of inputs and a large number of neurons at each of
the numerous hidden layers. For instance, market data used for high-frequency trading
are so voluminous that they require special techniques that are far beyond basic neu-
ral networks (Aldridge 2013). Various data science methodologies deliver improvements
in computational performance of loss functions used to parameterize neural networks
(Aldridge and Avellaneda 2019).

A geometric representation of a loss function is known as a loss surface. In general, loss
surfaces of dynamic neural networks can be not at all convex and depend on thousands
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of parameters. At the time this chapter was written, the loss surfaces were an active area
of research in data science. The Big Data studies of loss surfaces tend to approach the
problems of loss surface modeling from two angles:

1. Finding the local structure of minima, typically using the Stochastic Gradient
Descent methodology (SGD).

2. Examining the global loss structure.

The local structure of minima of the loss surface allows researchers to distinguish
sharp and wide local minima, found by using large and small batch sizes during the
neural network training. Wide local minima are thought to deliver productive gener-
alizations (Hochreiter and Schmidhuber 1997; Keskar et al. 2017). However, the local
minima methodology has come under criticism from Dinh et al. (2017) for its lack of
intuitiveness.

Studies of global loss structure seek to overcome poor local minima found by the
SGD. For example, Lee et al. (2016) showed that under mild conditions gradient descent
almost surely converges to a local minimizer. Freeman and Bruna (2017) theoretically
show that local minima of a neural network are connected with a curve along which the
loss is upper-bounded by a constant that depends on the number of parameters of the net-
work and the smoothness of the data. Garipov et al. (2018) further show that the optima
of the loss functions are connected by curves over which the training and test accuracy
are nearly constant. The researchers then use the property to develop a high-performing
training method that outperforms other existing methodologies. Garipov et al. (2018)
dub this methodology Fast Geometric Ensembling (FGE).

Coding a Simple Neural Network for One Instrument from
Daily Data

For an example of a very basic neural network, intended as an academic example to
illustrate the technique in view of investment management applications, consider the
S&P 500 ETF (NYSE:SPY). Using data from Yahoo! Finance for 10 years of SPY from
3/28/2009 through 3/29/2019, we construct a neural network for modeling the next
day’s return given the previously available data. As we demonstrate, the simplest neural
network on a commonly traded S&P 500 ETF is able to produce 15% per year with a
Sharpe ratio of about 1.0.

Our objective is to create a neural network in the simplest way to model the next
period’s returns in a way similar to that of technical analysts: using the previous returns’
data only. We are not yet accounting for transaction costs or other potential “trading
frictions,” such as potential inability to execute a large transaction at the end-of-the-day
price due to liquidity constraints.1

To create the basic neural network, we will utilize all the available data for SPY that
Yahoo! Finance provides: Date, Open, High, Low, Close, Adj.Close and Volume. While

1 In such cases, execution managers tend to rely on slightly earlier execution at potentially worse prices.
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Close and Adj.Close features are very similar, we will let the neural network decide
which of the two time series to keep and which to discard.

As discussed in the overview of neural network theory, our example neural network
will consist of the following items:

• “Layers” comprise input X, output Ŷ, and potentially multiple hidden layers. For sim-
plicity of exposition, we will start our programming example with just one hidden
layer. Likewise, to keep things simple, the input X will comprise just one variable, the
closing price for each day.

• Weights and biases,W and b, connecting each pair of successive layers.
• “Activation function” 𝜎 for each layer.

Defining Target Outputs

One of the critical aspects of neural networks and machine learning in general is the
specification of the output of the system, Y. This is the problem that stumps many
alternative-data-hungry fund managers: once the alternative data are purchased and
stored on our servers, what’s next? In the case of our simple neural network, we will
define the output as the next day’s return.

If we predict the return correctly, we can trade on the strategy in the following two
ways:

1. Long-only: If today the neural network expects tomorrow’s return to be positive, we
liquidate all prior positions, and buy the instrument at close today with the intention
of selling it at close tomorrow. If the neural network expects tomorrow’s return to
be negative, we liquidate all yesterday’s positions and do nothing, or zero if the price
next day goes down. Our expected trading strategy return then can be written as:

ERmax,t = max(EPt∕Pt−1 − 1, 0)

2. Long-short: If today the neural network expects tomorrow’s return to be positive
(negative), we liquidate all prior positions, and buy (sell) the instrument at close today
with the intention of selling (buying) it at close tomorrow. If the neural network
expects tomorrow’s return to be negative, we liquidate all yesterday’s positions and
do nothing, or zero if the price next day goes down. Our expected trading strategy
return then can be written as:

ERmax,t = |EPt∕Pt−1 − 1|
Testing Performance

How does the neural network’s prediction stack up against realized out-of-sample
returns? To test this, we create a rolling window estimator with 1-day-ahead forecasts.
The forecasts are then compared with the 1-day returns immediately following the
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neural network’s estimation period, yet not used in the neural network computation.
We compare the results as point estimates of returns and as directional forecasts.

The point estimates compare the values of realized 1-day returns with the neural
network’s out-of-sample prediction for the same date:

epoint,t = Rt − E[Rt|Rt−1 … Rt−1−k] (2.27)

The directional forecasts of the same neural network place less emphasis on the actual
value of the forecast, instead considering the accuracy of the forecast direction. Thus, if
the neural network’s one-day-ahead forecast predicted a positive (negative) return and the
realized out-of-sample return was indeed positive (negative), the error was recorded as
an absolute value of the realized return. However, if the neural network’s one-day-ahead
forecast predicted a positive (negative) return and the realized out-of-sample return was
indeed negative (positive), the error was recorded as the negative of the absolute value
of the realized return:

edirectional,t = Rt ∗ sign(E[Rt|Rt−1 … Rt−1−k]) (2.28)

Next, we translate the results into a trading strategy and test performance. To evaluate
the neural network modeling tool we have just created, we will proceed in the following
way:

1. Calculate the neural network’s “next day” prediction using a rolling window of train-
ing data.

2. If the prediction is positive, “buy” S&P 500 ETF, otherwise, “sell” S&P 500 ETF.
3. Use the next day’s actual returns to calculate the profit and loss of the strategy gen-

erated in point 2.

The initial weights connecting the layers are first selected at random. The weights
are then adjusted with each subsequent iteration based on gradient descent. As a result of
the initial randomization, several consecutive neural network analyses on the same sets
of data may produce slightly varying results.

We begin with a single hidden layer, single-input, single-output system: SPY returns
predicting 1-day-ahead returns of SPY. SPY is one of the most liquid and widely held
financial instruments in the world, and accurate prediction of its prices can be critical to
a broad swath of portfolio management and all sorts of investors.

One of the key metrics of single instrument predictability is the system’s performance
versus long-established time-series analyses, such as technical indicators. Specifically,
indicators such as moving average (MA) crossovers have been used by generations of
technical analysts to determine the impending direction of the prices. While different
configurations of neural networks deviate in various directions from the MA crossovers,
sometimes outperforming and sometimes underperforming the technical indicator, in
many cases the SPY vs SPY neural network matches MA crossover quite closely, as
shown in Figure 2.6.

Neural networks have proven successful in identifying features in an image: given a
set of inputs (matrices containing images) and corresponding outputs (classifiers, “dog,”
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tanh: Look-ahead performance of 1-day-ahead NN strategy (solid, 10-day training)
for NYSE:SPY vs. SPY (dashed) vs. 10/5.0-Day MA Crossover (dots)
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Figure 2.6 Performance of the neural network with one hidden layer, tanh activation function,
SPY returns as inputs, SPY returns as outputs, and 10-day training period, from May 7, 2018,
through May 6, 2019. The neural network performance (solid line) closely traces the performance
of the 10-5MA crossover (dots) in the period of high volatility, yet both NN and MA crossovers end
up underperforming the SPY (dashed line).

“cat,” etc.), a neural network can successfully recognize image features and use those in
future assessment of yet-unprocessed, out-of-sample images. The trading strategy ana-
logue would determine, on the basis of recent history, whether the next day’s, week’s or
month’s returns are likely to be positive or negative, and with what magnitude.

While the neural network results may incorporate known factors, as specified by a
researcher, a simple neural network is hardly a tool for factor identification. As a nonlinear
regression, the neural network creates a better fit of inputs to outputs, yet it fails to
independently identify the relevant factors from the range presented, at least in its simplest
iterations.

To illustrate the limitations of a neural network, consider, for example, a neural
network training SPY returns on just one previous day of SPY returns. Figure 2.7 plots
the time series of the W1 and W2 weights from May 7, 2018, through May 6, 2019. As
Figure 2.7 shows, the weights move around quite a bit between 0 and 1. Further research
into the weights’ dynamics seems warranted to uncover the dependencies of the weights
on other factors. Figures 2.8 and 2.9 show the rolling out-of-sample performance of
the corresponding trading strategy: if the neural network predicts a positive return, the
system buys SPY at that day’s close and sells at the next day’s close. If the neural network
predicts a non-positive return, the system sells at close and closes the position at the next
day’s close.

As shown in Figures 2.8 and 2.9, the neural network–based strategy significantly
underperforms the passive buy-and-hold in SPY. One improvement may be to expand
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tanh: Weights 1 (solid, 1-day training) for NYSE:SPY vs. Weights 2 (dashed)
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Figure 2.7 Weights W1 and W2 from the one-day-ahead SPY return NN prediction with a
single input of the previous day’s SPY return. Activation function: tanh.

tanh: Look-ahead performance of 1-day-ahead NN strategy (solid, 1-day training)
for NYSE:SPY vs. SPY (dashed)
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Figure 2.8 Predictability of the SPY return based on the previous day’s SPY return with a single
hidden layer neural network with activation function tanh, 2018-19.

the number of inputs. For instance, adding monthly changes in the SPY trading volume
as an input in addition to the SPY return to predict the direction of the next month’s
SPY return produces the following performance shown in Figure 2.10.

As Figure 2.11 illustrates, the choice of the activation function matters. Thus,
Figure 2.11 uses a linear activation function, and all the advantages developed in the
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tanh: Look-ahead performance of 1-day-ahead NN strategy (solid, 1-day training)
for NYSE:SPY vs. SPY (dashed)

Figure 2.9 Predictability of the SPY return based on the previous day’s SPY return with a single
hidden layer neural network with activation function tanh, 2009-19.

tanh: Look-ahead performance of 1-month-ahead NN strategy (solid, 12-Month training)
for NYSE:PFE vs. PFE (dashed) vs. 12/6.0 MA crossover (dots)

G
ai

n,
 %

Months

100

75

50

25

0

–25

–50

–75

0 50 100 150 200

Figure 2.10 A monthly neural network strategy on NYSE:PFE with input variables of PFE
returns and SPY returns; a training period of 12 months produces average annualized returns of
3.7% and a Sharpe ratio of 0.20. The neural network prediction closely tracks 12/6 month MA
crossover for PFE. The neural network strategy “buys” (“sells”) at the end of each month if the
predicted next-month return is positive (negative) and then liquidates the position at the end of the
following month.
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Linear: Look-ahead performance of 1-month-ahead NN strategy (solid, 1-Month training)
for NYSE:PFE vs. PFE (dashed)
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Figure 2.11 A monthly neural network strategy with linear activation function on NYSE:PFE
with input variables comprising PFE and SPY returns, training period of 1 month. The strategy is
significantly underperforming simple passive buy-and-hold investment in PFE from May 1999
through May 2019.
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tanh: Look-ahead performance of 1-month-ahead NN strategy (solid, 1-Month training)
for NYSE:PFE vs. PFE (dashed)

Figure 2.12 A monthly neural network strategy with tanh activation function on NYSE:PFE with
input variables comprising PFE and SPY returns, training period of 1 month. The strategy produces
annualized returns of 9.478% and a Sharpe ratio of 0.48 from May 1999 through May 2019.

tanh-activated neural network (Figure 2.12) evaporate. As Figures 2.13 and 2.15 show,
the monthly tanh neural network delivers results on other major stocks as well. Similarly,
Figure 2.14 shows that the linear activation function still underperforms when other
instruments are considered.
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tanh: Look-ahead performance of 1-month-ahead NN strategy (solid, 1-Month training)
for NYSE:IBM vs. IBM (dashed)
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Figure 2.13 A monthly neural network strategy with tanh activation function on NYSE:IBM
with input variables comprising IBM and SPY returns, training period of 1 month. The strategy
produces annualized returns of 9.987% and a Sharpe ratio of 0.396 from May 1999 through May
2019.
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Linear: Look-ahead performance of 1-month-ahead NN strategy (solid, 1-Month training)
for NYSE:IBM vs. IBM (dashed)

Figure 2.14 A monthly neural network strategy with linear activation function on NYSE:IBM
with input variables comprising IBM and SPY returns, training period of 1 month. The strategy is
significantly underperforming simple passive buy-and-hold investment in IBM from May 1999
through May 2019.
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tanh: Look-ahead performance of 1-month-ahead NN strategy (solid, 1-Month training)
for NYSE:RAD vs. RAD (dashed)

Figure 2.15 A monthly neural network strategy with tanh activation function on NYSE:RAD
with input variables comprising RAD and SPY monthly returns, training period of 1 month. The
strategy produces annualized returns of 41.81% and a Sharpe ratio of 0.628 from May 1999 through
May 2019.

To prevent overfitting, the training is “regularized” by weight decay – the loss func-
tion is assigned a penalty, where the penalty multiplier is set to something like 5 ⋅ 10−4.
In addition, the dropout regularization can be applied to the first few layers to ensure
that the number of parameters does shrink considerably. The dropout ratio can be set to
0.5.

A separate parameter, known as the learning rate, can be set to 10−2, and then
decreased by a factor of 10 when the validation set accuracy stops improving.

Adding Activation Levels

Activation levels are intercepts b in the nonlinear regressions of the neural networks. As
such, the intercepts move the given layer’s output up or down on the output vertical axis.
While potentially improving the results of linear regressions or ReLu by offsetting the
graph away from 0, the presence of activation levels often produces worse results with
sigmoid or tanh regressions by shifting the output.

Convergence

Figure 2.16 shows the convergence of a loss function of a simple return neural net-
work with one hidden layer and sigmoid activation function on the S&P 500 ETF
(NYSE:SPY) using data from April 2009 through August 2009. The input of the neural



Trim Size: 7in x 10in Aldridge602989 c02.tex V1 - 12/09/2020 11:26 P.M. Page 41�

� �

�

Neural Networks in Finance 41

Convergence to a local minimum, training size of NN = 1 day
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Figure 2.16 (a–k) Loss function convergence with increased number of iterations.
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Convergence to a local minimum, training size of NN = 4 days
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Figure 2.16 (Continued)
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Convergence to a local minimum, training size of NN = 15 days
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Convergence to a local minimum, training size of NN = 40 days
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Figure 2.16 (Continued)

network is a vector of simple daily returns X = {Rt} based on adjusted close prices: Rt =
Pt∕Pt−1 − 1. The output is a one-day-ahead return for long-only strategies: X = {Rt+1},
where Rt+1 = Pt+1∕Pt − 1. Convergence speeds up when the number of elements in X
and Y increases to about 10, and then gradually starts plateauing in the first 10–20 iter-
ations before converging. Changing the time period within the 2009–2019 date range
still produces similar results.

Due to the random starting point of the weights in the neural network, subsequent
iterations on the same data with the same parameterization deliver different investment
decisions and results. Overall, however, the results stay in the same range, fostering con-
fidence in the methodology and showing its applicability.
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Choosing Input Variables

The success of the neural networks in Figures 2.13 and 2.15 shares an important common
factor: returns of the S&P 500 ETF (NYSE:SPY). The presence of SPY as a depen-
dent variable, of course, is quite familiar to finance professionals as a good old Capital
Asset Pricing Model (CAPM), due to Sharpe (1964) and Lintner (1965). While the lin-
ear version of CAPM appears to have run its course due to its popularity in investing
as demonstrated in Figure 2.16, the nonlinear configuration we identify by the neural
network in this chapter is still very much alive.

Similar reasoning potentially applies to other model factors previously identified as
successful predictors of outcomes under consideration. Whether it is a quick ratio in the
loan pricing model per Altman (1968), the three factors of Fama and French (Fama and
French 1992, 1993) or other predictors, nonlinear structure of neural networks may help
identify new ways to analyze the financial data.

Conclusion

Machine learning and neural networks are powerful tools for identifying complex non-
linear dependencies in financial data. In many cases, the techniques serve as play-dough
modeling tools for data scientists. While the neural networks help identify patterns, many
of the patterns are already known to researchers. The nonlinear functionals produced by
the neural networks, however, deepen the typically linear relationships like monthly
momentum and market return dependency discussed in this chapter, and help design
systems that exploit more market inefficiencies.

Appendix 2.A Building a Neural Network in Python

Python is a versatile programming language with a wide selection of libraries that allow
researchers to easily program a number of tasks. Programming a neural network in
Python is also easy. Here, we will consider an approach that leverages the powerful
built-in Python library Keras, which in turn contains well-regarded libraries Theano
and TensorFlow.

For an example here, we will start with a fully connected neural network, a model
where each node in one layer is connected with every node in the next layer. Such
models are known as dense. We will further add layers sequentially until our model
reaches the desired levels of predictability. To do so, our Python code will require the
following imports:

from keras.models import Sequential
from keras.layers import Dense
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In Keras, we programmatically add layers one at a time as follows:

model = Sequential()
model.add(Dense(5, input_dim=13, activation=‘sigmoid’))
model.add(Dense(3, activation=‘sigmoid’))
model.add(Dense(1, activation=‘sigmoid’))

The first hidden layer takes 13 inputs (variables summarized in columns) and outputs
5 using sigmoid activation function. The next hidden layer converts the 5 outputs of layer
1 into 3 outputs, also using sigmoid. The final layer converts the data into the final output
for each row of data.

Next, the Keras model needs to be compiled:

model.compile(loss=‘binary_crossentropy’, optimizer=‘adam’, met-
rics=[‘accuracy’])

In the compilation function above, we need to specify a loss function, here, specific
to our binary outputs, ’binary_crossentropy’, a gradient descent optimizer
“adam,” and the prediction accuracy as the target evaluation metric.

Next, after loading our input variables into a matrix X and output variables into a
matrix Y, we fit the neural network over 300 iterations as follows:

model.fit(X, y, epochs=300)

For each epoch, the model will print out the achieved loss and in-sample accuracy.
Making out-of-sample predictions with Keras is equally easy. For a new, unused

sample of data X_new, the model can predict the out-of-sample outcomes with just one
additional line of code:

predicted_y = model.predict(X)

Comparing the predicted y with the realized y delivers the out-of-sample perfor-
mance evaluation for the neural network.

For specific code examples, please visit https://www.BigDataFinanceBook.com,
and register with password Neural (case-sensitive).
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Chapter 3

Supervised Learning

Introduction

N eural networks, discussed in Chapter 2, may fall into supervised, semi-
supervised, or unsupervised categories, depending on their design and,
thus, required researcher involvement. In this chapter, we discuss other,

non-neural, supervised models and their applications.
Supervised learning (SL) is most akin to econometrics. As such, SL models tend to

work with perfectly cleaned and organized data. Of course, financial data rarely come to
the analyst in a format perfect for econometrics. Figure 3.1 shows a snippet of trading
data logs from a BATS equities exchange. The information shown is neither neat nor
accessible, save only with the help of a thick instruction manual.

As a result, legions of quants with their advanced degrees costing billions have
been deployed in banks and funds to scrub, polish, and organize data in order to
make it presentable to their econometrics-trained portfolio managers. Companies like
Bloomberg and Reuters amassed fortunes greater than those of many sovereign funds
by processing and reselling financial data in econometrics-friendly formats to hedge
funds, pension funds, banks, and endowments.

Cleaning and organizing data are traditional pre-processing tasks required to make
decisions based on the data. The use of indexing and structured databases speeds up
algorithms that search various database languages and, increasingly, Python.

Data science evolved from a different origin than econometrics. Its appetite for cap-
turing and making sense of every available data point, however dirty or imprecise, is
characteristic of the discipline. While the raw data may be voluminous, the data columns,

49
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Figure 3.1 Raw equity data sample. The data record a limit buy order for 100 shares of Apple
(NYSE:AAPL) at 168.01.

also known as data features, are often not well-defined and some values may be missing
altogether. Known as unstructured, the raw data do not typically fit into any specific for-
mat. Such unstructured data are the opposite of structured data, parsed, scrubbed, and
organized data neatly presented in rows and columns. Driven by companies that unin-
tentionally created vast amounts of data, such as Google and Facebook, data scientists
seek to minimize the costs of cleaning and handling data while maximizing the quality
of the output. This is a business model that will prove to be competitive in the present
environment, where margins have been compressing for several years.

Fully structured or “labeled” data lend themselves easily to “supervised learning,” a
more traditional set of methodologies discussed in this chapter. Supervised learning (SL)
uses fully labeled data to teach the computer to classify objects or to predict continuous
values from a given data set. SL generates a function over variables in the data set. SL can
also be thought of as the classic analysis of hypotheses, where the researcher postulates
an idea and then asks whether the idea can be supported by the data.

By contrast, in completely unsupervised learning (UL), the computer does not have
a guide for the relationships among variables. The machine has to autonomously deter-
mine the relationships among data points. In unsupervised learning, the computer has
to learn the structure of the data to fully understand relationships embedded in the data.
In unsupervised learning, the researcher does not create a priori hypotheses about the
information in the data set; instead, the researcher asks the computer to provide the
researcher with key themes embedded in the data. Unsupervised models are discussed
throughout much of this book, beginning with Chapter 5.

Semi-supervised learning (SSL), as its name implies, is a hybrid between the super-
vised and unsupervised methods. In the semi-supervised setup, the computer deploys
techniques involving regressions and data structure methods. In SSL, a researcher may
label a portion of the data set, and then ask the computer to complete the labeling of
the entire data set given the example the researcher has provided and the structure of
the data. Presently, most common uses for SSL relate to processing documents such as
earnings reports, sentiment analysis of news articles, and the like. Whereas a traditional
researcher reading and analyzing corporate reports may take two weeks to classify a report
into a positive or a negative predictor of corporate health, the semi-supervised approach
can often accomplish the same in an hour or less. Such a speed improvement grants the
technology-enabled investors a leg up over the traditional competition, the ability of
the early bird to catch the worm in short-term trading and long-term investing alike.
Semi-supervised learning is detailed in Chapter 4.
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While the importance of structured data is not likely to change, the unsupervised
models discussed in Chapter 5 and later throughout this book suggest approaches that
involve less data structuring. Until these latter techniques become commonplace, the
costs of perfecting data structures are ultimately passed on in the form of fees charged
by hedge funds, mutual funds, ETFs, etc. Algorithms for cleaning the data and infer-
ring, or imputing, missing values traditionally discarded in econometric modeling are a
well-defined area of data science and are presented in Chapter 7 of this book.

Supervised Learning

Supervised learning techniques seek a data model that fits the relationships between data
inputs and outputs as closely as possible. To do so, most supervised learning algorithms
employ the optimization of the loss function, where loss is defined as the squared error
between model prediction Ŷ and the realized data Y :

L =
N∑
i=1

(Ŷi − Yi)2 (3.1)

For example, if predicting stock returns, Ŷ will serve as the returns prediction generated
by the model while Y is the realized value of the returns. The loss function is then a
measure of the goodness of fit of the model vis-à-vis the realized values. Of course, when
there is too close a fit, there may be a resulting “overfitting problem,” as introduced in
Chapter 2. This is a machine learning problem where the model fits closely to the intri-
cacies of past data but does not represent the future. In many cases, an overfitting penalty
is applied to mitigate the problem. For example, LASSO and ridge regressions, discussed
in this chapter, explicitly incorporate an overfitting penalty in the model optimization
function.

Supervised learning tackles both regression and classification. In a regression, the out-
put is continuous. In other words, the data estimate produced by the regression is a
variable that is a real number, for example, a return or correlation. In a classification,
the output is discrete. Classification output can be binary, answering whether a question
about the data is true or false, for example, “Is a given financial instrument an ETF?”
Classification output can also be enumerated, outputting, for example, the best match
of the given k classes as the best fit for an object at hand. An example question that a
classification problem seeks to answer is “What kind of financial instrument is this? 0
Equity, 1 Fixed Income, 2 Commodity, … ” In the context of finding missing values,
both regression and classification frameworks may be of use, depending on the content
of the missing and partially missing data.

A basic linear regression is a tried-and-true method for classification and regression.
In addition to predicting future continuous values based on the past data in the clas-
sic regression scenario, a linear regression can help separate the data into clear binary
“yes/no” classifications. This linear classifier draws the line through the data with the
majority of “yes” points falling on one side of the line and the majority of “no” hitting
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the other side. However, linear regression has many known shortcomings. For example,
it does not work well on data that are best modeled by a nonlinear function. The fol-
lowing techniques, jointly referred to as supervised machine learning, have been created
over the years to improve upon the basic linear regression setup, are used by practitioners
today, and are covered in this chapter along with their applications in finance that were
developed by the time this book was written:

• Penalized least square regressions, including ridge regression, its close cousin LASSO, and
their combination, known as elastic net

• K nearest neighbors (K-NN)
• Random decision forests and their variation, known as extra trees
• Support Vector Machines (SVMs).

These items are described hereafter in detail.

Ridge Regression, LASSO, and Elastic Nets

Ridge regression, LASSO, and elastic nets are extensions of linear regressions with
built-in regularization designed to prevent overfitting, and they deal with flawed
data sets. Specifically, the techniques estimate parameters in data that are (i) small in
length (small sample) in comparison with the number of data features or columns, or
(ii) contain correlated data features or columns, i.e., exhibit a high degree of collinearity.

A traditional linear regression, also known as Ordinary Least Squares (OLS), finds
a line that minimizes the squared distances from the data points in the data set at hand.
OLS can act as a regression predictor, estimating future values of a variable Y , or as a
classifier by separating two kinds of data points with a single line. To find the line, OLS
optimizes

Y = 𝛽X + 𝜀 (3.2)

where X is the set of data features and Y is the dependent variable, changes in which
we seek to explain with X , and 𝛽 are the resulting regression coefficients or parameters
that relate X to Y . The OLS optimization finds 𝛽 by minimizing the loss function of
Eq (3.1), equivalent to:

𝛽 = argmin𝛽
∑

(Y − X𝛽)2 (3.3)

When the data are small in length relative to the number of columns ofX , or the columns
of X are correlated, the resulting inferences may not be predictive as the 𝛽 may falsely
identify the flawed relationships. The traditional approach for dealing with the collinear-
ity in OLS is to test the columns for correlation, and remove one or more correlated
columns, discarding potentially useful data.

The ridge regression, LASSO, and elastic nets help use every piece of flawed data by
adding an extra term to the loss function. The extra term, known as the regularization
penalty, is directly dependent on the regression coefficients 𝛽. The optimization then
seeks to minimize not just the loss function itself, but the 𝛽 as well. Then, in the presence
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of collinearity, smaller 𝛽s have less importance in determining future values of Y , thus
improving the estimates.

The ridge regression, LASSO, and elastic nets differ in their regularization specifica-
tion. The ridge regression, due to Hoerl, Kannard, and Baldwin (1974), adds a penalty in
the form of the squared sum of the regression coefficients multiplied by a regularization
parameter, 𝜆Ridge:

L =
∑

(Ŷi − Yi)2 + 𝜆Ridge
∑

𝛽
2 (3.4)

or
𝛽̂ = arg min𝛽

[∑
(Y − X𝛽)2 + 𝜆Ridge

∑
𝛽
2
]

(3.5)

Essentially, the ridge regression mandates that the betas are lower, but not necessarily 0,
that is, the fit is not as close as it would be without the penalty.

It is interesting to note that the ridge regression penalty shrinks not only betas, but
also the eigenvalues of predicted data. However, while ridge regression is convex, it
does not promote degree reduction, known as sparsity, among its coefficients. Sparsity is
desirable in many financial applications, including portfolio optimization.

Least Absolute Shrinkage and Selection Operator (LASSO), due to Tibshirani
(1996), is very similar to a ridge regression, but adds a penalty based on the sum of
absolute values of the regression coefficients 𝛽:

L =
∑

(Ŷi − Yi)2 + 𝜆LASSO
∑|𝛽| (3.6)

or
𝛽 = arg min𝛽

[∑
(Y − X𝛽)2 + 𝜆LASSO

∑|𝛽|] (3.7)

While accomplishing the same thing as the ridge regression, LASSO is perhaps more
intuitive but may be harder to compute due to its lack of immediate differentiability.

While the ridge and LASSO techniques help deal with collinearity, issues persist. For
example, LASSO tends to select just one data feature out of the correlated set. To address
these concerns, elastic net linearly combines regularization imposed by ridge regression
and LASSO as follows:

L =
∑

(Ŷi − Yi)2 + 𝜆Ridge
∑

𝛽
2 + 𝜆LASSO

∑|𝛽| (3.8)

Pereira, Basto, and Ferreira da Silva (2015) use logistic LASSO and ridge regressions
to predict corporate bankruptcies in the hospitality industry. LASSO is the darling tool
of many a portfolio manager who seeks to minimize extreme weights in Markowitz
optimization, avoiding high turnover and transaction costs, all the while satisfying regula-
tory and short-selling constraints. Examples of LASSO in portfolio management include
Jagannathan and Ma (2003), Ledoit and Wolf (2008), Brodie et al. (2009), DeMiguel
et al. (2009), Fan et al. (2012), and Kolm, Tütüncü, and Fabozzi (2014). Carrasco and
Noumon (2012) show that ridge regression does not work in portfolio optimization
as it leads to portfolios with an undesirably large number of positions. Kozak, Nagel,
and Santosh (2019) use elastic nets on the U.S. stock data and economic indicators to
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shrink the contributions of low-variance principal components of candidate factors. The
resulting approach selects factors that explain variation and mean returns.

In portfolio management, the classic Markowitz (1952) framework optimizes
mean-variance tradeoff of a portfolio of financial instruments. For a full survey of
models, see Brandt (2004) and Kolm, Tütüncü, and Fabozzi (2014). For N risky assets
with random returns vector Rt+1 and a risk-free rate Rf

t , the excess return is defined
as rt+1 = Rt+1 − Rf

t with conditional means 𝜇 and covariance 𝛴. An investor allocates
fraction w of his wealth to the risky assets and the rest (1 − 1N

′w) to the risk-free asset,
such as government-issued fixed income debt. Here, 1N is an N × 1 vector of ones.
The total portfolio return is then w rt+1 + Rf

t . The mean-variance problem is then
minimizing the variance of the portfolio subject to a target portfolio return 𝜇p:

minw
1
2
Var[rp,t+1] = w′𝛴w (3.9)

s.t. E[rp,t+1] = w′𝜇 = 𝜇p (3.10)

The optimal solution is then

w∗ =
𝜇p

𝜇′𝛴−1𝜇
𝛴−1𝜇 (3.11)

Most investors, at the time this book was written, measured their investment perfor-
mance via a Sharpe ratio, after Sharpe (1966):

SR = E[rp,t+1]∕𝜎[rp,t+1] =
√
𝜇′𝛴−1 𝜇 (3.12)

that corresponds to 𝜇SR = 𝜇′𝛴−1𝜇∕1N 𝛴−1𝜇 and optimal weight

w∗
SR = 𝛴−1𝜇∕1N 𝛴−1𝜇 (3.13)

Jobson and Korkie (1983) and Britten-Jones (1999) showed that the optimal allocation
of Eq (3.13) can be expressed as

ŵ∗ = 𝛽̂∕1N ′𝛽̂ (3.14)

where 𝛽 is the OLS estimate of 𝛽 in the regression

1 = 𝛽
′rt+1 + ut+1 (3.15)

If R is a T ×N matrix composed of rt
′, then Eq (3.15) can be rewritten as

1T = R𝛽 + u (3.16)

and then 𝛽 can be found as a solution to the following OLS regression:

R𝛽 = 1T (3.17)

The optimal weights can often be extreme, especially in problems with insufficient or
highly correlated data that generate highly correlated or singular covariance matrices.
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The solutions minimizing extreme weights have also been found using supervised regu-
larization, such as ridge regression and LASSO.

Here, however, we’ll focus on finding the weights in a supervised OLS framework,
known as penalized least squares regression. The penalization term can be interpreted as
the transaction cost associated with portfolio reallocation.

Using 𝛴 = E(rt′rt) − 𝜇𝜇′, we can rewrite Eq (3.9) as

w∗ = arg minxE
[|𝜇p − w′rt|2] (3.18)

s.t. w′𝜇 = 𝜇p

With ridge regression penalization, the optimal weights of Eq (3.18) become:

w∗ = arg minx |𝜇p1T − Rw|2 + 𝜆Ridge|w|2 (3.19)

s.t. w′𝜇 = 𝜇p

With LASSO, Eq (3.18) can be rewritten as:

w∗ = arg minx |𝜇p1T − Rw|2 + 𝜆Ridge|w|2 + 𝜆LASSO|w| (3.20)

s.t. w′𝜇 = 𝜇p

And with the elastic net, Eq (3.18) becomes:

w∗ = arg minx |𝜇p1T − Rw|2 + 𝜆Ridge|w|2 + 𝜆LASSO|w| (3.21)

s.t. w′𝜇 = 𝜇p

The solution is then found by using standard optimization techniques.
As an example, consider an application of the ridge regression, LASSO, and

elastic net to predict U.S. Daily Treasury rates. The data used in this example are
taken from the U.S. Department of Treasury. According to the Department’s website
(https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/Text
View.aspx?data=yieldYear&year=2020), “The Treasury yield curve is estimated daily
using a cubic spline model. Inputs to the model are primarily indicative of bid-side
yields for on-the-run Treasury securities. Treasury reserves the option to make changes
to the yield curve as appropriate and in its sole discretion.”

By cubic spline construction, the daily changes in the Treasury yields are highly
correlated. In fact, over the 2018–2019 period, the correlation between the daily changes
in the yields of the 3-Month and 6-Month T-bills was 57.01%, the correlation between
the daily changes in the yields of the 1-Year and 2-Year T-bonds was 75.57%, and the
correlation between the daily changes in the yields of the 2-Year and 3-Year T-bonds
was 95.52%. Table 3.1 displays the complete correlation structure of daily changes of the
U.S. Treasury yields.

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldYear&year=2020
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldYear&year=2020
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Table 3.1 Correlations of daily changes of selected U.S. Treasuries.

3 Mos 6 Mos 1 Year 2 Year 3 Year 5 Year 7 Year 10 Year

3 Mos 1.000 0.570 0.368 0.271 0.243 0.231 0.215 0.190
6 Mos 0.570 1.000 0.632 0.506 0.472 0.453 0.426 0.384
1 Year 0.368 0.632 1.000 0.755 0.745 0.721 0.689 0.638
2 Year 0.271 0.506 0.755 1.000 0.952 0.926 0.889 0.842
3 Year 0.243 0.472 0.745 0.952 1.000 0.966 0.942 0.903
5 Year 0.231 0.453 0.721 0.926 0.966 1.000 0.977 0.951
7 Year 0.215 0.426 0.689 0.889 0.942 0.977 1.000 0.976
10 Year 0.190 0.384 0.638 0.842 0.903 0.951 0.976 1.000

Here, we seek to train the models on the two years of data, 2018–2019, and predict
out-of-sample the changes in the 20-Year U.S. Treasury rates using the 2018–2019
rates for 3-Month, 6-Month, 1-Year, 2-Year, 3-Year, 5-Year, 7-Year, and 10-Year
T-bonds. First, the parameters 𝛽 are calculated on the 2018–2019 training set, and
then they are applied to the January 1-10, 2020. data to predict out-of-sample t+ 1
values. Figure 3.2 illustrates the performance of different forecasts vis-à-vis the realized
out-of-sample 20-Year rates (x axis), ridge, LASSO, and elastic net using regularization
𝜆 = 0.1. As Figure 3.2 shows, linear regression and ridge regression outperform LASSO
and elastic net in the current forecasting problem. In fact, LASSO and elastic net
forecast 0% changes in the 20-Year rates, resulting in the goodness of fit measured by
R2 of -1.74% for both. In comparison, ridge regression delivers R2 of 49.45%, and
linear regression produces the best R2 of 55.37% in predicting the bond yields. When
January 2018–October 2019 training data were used to find parameters and then predict
t+ 1 daily changes in November 2019–January 2020 20-Year T-bonds, the linear
regression R2 hit 83.6% while ridge R2 was 78.1% and LASSO and elastic net were
still approximately 0. The out-of-sample predicted vs. realized changes in the 20-year
T-bonds for November 2019–January 2020 are shown in Figure 3.3.

The penalized OLS regressions are known to be very sensitive to the regularization
parameter 𝜆. In the Treasury example, when regularization decreased to 𝜆 = 0.01, the
ridge regression sprang into life and outperformed linear regression in the prediction
of the 20-Year rates. When January 2018–October 2019 training data were used to find
parameters and then predict t+ 1 daily changes in November 2019–January 2020 20-Year
T-bonds, the linear regression R2 was 83.6% as before while ridge regression–produced
R2 was 85.7% and LASSO and elastic net were still approximately 0. Table 3.2 displays
the resulting coefficients and Figure 3.4 shows the predicted values vs. realized (x-axis).
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Prediction of the January 2020 Daily Changes in the 20-Year U.S. Treasury Rates,
1 day ahead, based on 2018–19 training period
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Figure 3.2 Out-of-sample t+ 1 prediction of 20-Year U.S. Treasury rates with linear regression,
ridge regression, LASSO, and elastic net for January 1-10, 2020.

Prediction of the Nov 2019-Jan 2020 Daily Changes in the 20-Year U.S. Treasury Rates,
1 day ahead, based on Jan 2018–Oct 19 training period
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Figure 3.3 Out-of-sample t+ 1 prediction of 20-Year U.S. Treasury rates with linear regression,
ridge regression, LASSO, and elastic net for November 1, 2019–January 10, 2020. Regularization
𝜆 = 0.1.
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Table 3.2 Coefficients determined by linear regression, ridge regression, LASSO, and elastic net.

3 Mos 6 Mos 1 Year 2 Year 3 Year 5 Year 7 Year 10 Year

Linear 0.036 −0.023 0.016 −0.083 −0.090 −0.265 0.142 1.063
Ridge 0.029 −0.023 −0.027 −0.111 −0.067 0.040 0.275 0.569
LASSO 0. 0. 0. 0. 0. 0. 0. 0.
Elastic net 0. 0. 0. 0. 0. 0. 0. 0.

Prediction of the Nov 2019–Jan 2020 Daily Changes in the 20-Year U.S. Treasury Rates,
1 day ahead, based on Jan 2018–Oct 19 training period, lambda = 0.01
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Figure 3.4 Out-of-sample t+ 1 prediction of 20-Year U.S. Treasury rates with linear regression,
ridge regression, LASSO, and Elastic Net for November 1, 2019–January 10, 2020. Regularization
𝜆 = 0.01.

K Nearest Neighbors (K-NN)

In the K Nearest Neighbors (K-NN) algorithm, first developed by Fix and Hodges
(1951), the computer assumes that data points located close to each other along some
dimension evolve similarly. The algorithm then extends the properties of points based
on their proximity to each other. The algorithm is known as a “lazy algorithm”: it
assumes nothing about the data and requires no extensive training, making it suitable
for real-time applications. It is also very easy to implement, particularly with built-in
Python functionality. However, the algorithm works best with a limited number of data
features, as extensive amounts of data make K-NN computation overly complex.

K-NN is a classic data mining algorithm that assumes that historical patterns recur,
as in Technical Analysis. In time series estimation, the algorithm forecasts a future data
value, given the latest pattern of data. To do so, the algorithm searches historical data for
K patterns that are closest to the one at hand. For each of the K historical patterns, the
algorithm records their respective future values already realized in the past. Finally, the
algorithm aggregates the future values of past patterns to deliver the future value for the
most recent pattern.
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As an illustration of K-NN in time series, say, daily stock returns on a single stock,
consider the following example for K= 2.

Latest pattern of returns: +0.02, −0.04, −0.13, ?

where the question mark? stands for next day’s return we are trying to predict.
Suppose that in the historical data, K = 2 closest patterns and their respective future

values are:
+0.02, −0.04, −0.12, +0.01
+0.01, −0.04, −0.13, −0.05

The future value of interest in the most primitive version of K-NN is then the average
of the past patterns’ future values, +0.01 and −0.05. The resulting answer is −0.02.

In identifying the most similar patterns in K-NN, researchers often pick patterns
related to the minimum square distance between their respective points. The square
distance is known as Euclidean distance:

d2ij = ‖xi − xj‖22 (3.22)

The above example shows that K-NN is a technical analyst’s dream come true: an algo-
rithm that automatically sifts historical data for chart patterns.

K-NN has been successfully applied to a variety of financial problems. Meade (2002)
used K-NN to predict foreign exchange rates. Ban, Pang, Zhang, and Sarrafzadeh (2013)
apply K-NN to financial time series prediction. Yu, Sorjamaa, Miche, Séverin, and
Lendasse (2008) combine K-NN with neural networks to also make predictions for
financial time series. Alkhatib, Najadat, Hmeidi, and Shatnawi (2013) and Shi (2016) use
K-NN to predict daily closing prices. Teixeira and De Oliveira (2010) develop a stock
trading system using technical analysis andK-NN. In addition, K-NNhas often been used
for consumer credit scoring (see, e.g., Henley and Hand (1996), Paleologo, Elisseeff, and
Antonini (2010)). Mukid,Widiharih, Rusgiyono, and Prahutama (2018) applyWeighted
K-NN (WKNN) to predict borrowers’ default on Indonesian banks personal loan data.

A simple intraday example on the S&P 500 stocks illustrates the nonparametric power
of the K-NN. Consider the 30-second data recorded on January 30, 2015. We seek to
build a trading strategy by correctly predicting the next 30-second direction of one stock,
in this case, Abbott Laboratories, NYSE:ABT, based on prior (not contemporaneous)
30-second realizations of the stocks in the S&P 500. We first separate the sample into
in-sample (80% of data) and out-of-sample elements to ensure objective testing.

For in-sample, we first determine the optimal value of K. One way of doing so is
running the K-NN regression for various values of K and measuring the Root Mean
Squared Error (RMSE), the square root of the loss function in Eq (3.1). Typically, RMSE
is high for the first few Ks when the K closest neighbors patterns are not numerous
enough to be representative of the data evolution at large, then drops for several Ks, and
then rises again as the number of Ks becomes unmanageable. Figure 3.5 illustrates the
in-sample RMSE for the 30-second intraday data for the S&P 500.
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RMSE vs. Different values of K
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Figure 3.5 In-sample Root Mean Squared Error (RMSE) for 30-second NYSE:ABT price
prediction using K-NN for different values of K.

As Figure 3.5 shows, the best value of K in-sample is 8. We next apply this value of K
to the out-of-sample data and build the strategy based on the predicted sign of the next
30-second price change of NYSE:ABT. Specifically, if the algorithm predicts the next
30-second price change in ABT to be positive, the system executes a paper buy order
and nets out the position 30 seconds later. If, instead, the algorithm predicts the next
30-second price change in ABT to be negative, the system short sells the ABT stock and
buys it back 30 seconds later. Using K = 8, we obtain the out-of-sample performance of
over 1.2% with relatively little volatility in just 160 30-second intervals, or 80 minutes,
shown in Figure 3.6. The performance shown does not subtract costs, but can still be
optimal for market makers and institutional investors facing low commissions. In contrast,
a model with K = 12 delivers less optimal performance, as shown in Figure 3.7.

In addition to the basic historical time series patterns, K-NN can be used in most
settings by relying on the idea of referential next neighbors (RNN): closest neighbors
along a specific chosen axis. For example, Ban et al. (2013) determine RNNs based on
𝜌ij, the simple daily return correlation between each pair of financial instruments i and
j under consideration measured over the previous t consecutive trading days. Then, the
researchers determine the distance between any two instruments as

D(xi, xj) = 1 − 𝜌2ij (3.23)

The K instruments with the closest correlation values to the target instrument xi become
the referential nearest neighbors (RNNs). Next, the RNNs’ historical data are exam-
ined for return patterns that most closely match the latest returns sequence of the target
instrument xi. Finally, the next day’s price prediction is obtained as a simple average of
“future values” following just identified patterns in the histories of RNNs.
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Cumulative strategy gain based on 30-second K-NN prediction
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Figure 3.6 Out-of-sample performance of K-NN on intraday S&P 500 data forecasting
30-second changes in NYSE:ABT with K=8.

Cumulative strategy gain based on 30-second K-NN prediction, K = 12
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Figure 3.7 Out-of-sample performance of K-NN on intraday S&P 500 data forecasting
30-second changes in NYSE:ABT with K=12.

How well does K-NN work overall? Indyk (2004) and Pestov (2013) show that
K-NN suffers from the “curse of dimensionality” and becomes biased as the data size
increases. However, other studies like Andrada-Félix et al. (2003) and Lin, Shang, Feng,
and Zhong (2012) praise K-NN for its seamless operation in high-dimensional and pos-
sibly incomplete data.
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Decision Trees, Random Decision Forests, and Extra Trees

Decision trees, random decision forests, and extra trees are nonparametric prediction
techniques. A decision tree is a way to classify variables based on a sequence of yes/no or
greater/less questions (see, e.g., Rada and Wimmer 2017). Has the S&P 500 increased
by more than 2% in the last 5 days? If yes, then the price of a stock like AT&T (NYSE:T)
is likely to increase as well since NYSE:T exhibits strong correlation with the market.
Has the company issued a press release in the last month? If no, the company is likely
to stay under the radar for retail investors and not experience an unexpected bump
in prices. Questions like these guide typical decision tree methodologies to estimate the
final classification, albeit without human justification and explanation. Decision trees ask
binary yes/no questions of the features or columns of the dataset to make path predictions
for the variable of interest.

A decision tree methodology differs from a classical regression in that a regression
finds coefficients, also known as parameters. The coefficients are then used to predict
future values of variables based on the continuous values of the predictors. As a result,
regressions are known as parametric approaches. By contrast, a decision tree does not
operate over the entire possible continuum of predictors, instead organizing the data
provided in a map-like fashion, with one or few major changes or “path turns” for each
feature in the dataset. At these turns, also known as split nodes, the decision trees split into
binary paths, each leading to another split node or a terminal node, known as a leaf. A
leaf can be a classification, such as “this financial instrument behaves like a commodity”
or “the price of this financial instrument is likely to go up.”

The decision tree methodology traces back to Quinlan (1986). Originally called an
Iterative Dichotomizer 3 (ID3), the algorithm measures the information gain (IG) of
each feature or data column. The information gain is computed as the difference of the
entropy before the split less the average entropy after the split, where entropy is computed
as follows:

H = −
m∑
i=1

pi log2(pi) (3.24)

where pi is the proportion of time class i appears in the data set. The feature with the
highest information gain becomes the split at the given node.

An alternative approach to IG uses the probability of wrongly classifying a given
object, known as GINI Impurity, as a measure of split. The lower the GINI impurity
following the split in the given feature, the more valuable is the split.

To illustrate the construction of a decision tree based on IG, we take a “bag” of
daily foreign exchange rates spanning from January 1, 2015, through 31 December,
2019. The rates comprise 31 major currencies, all referencing EUR. In other words,
EUR is the “denominator” currency against which all the 31 currencies are priced. The
currencies are:

• Canadian Dollar, CAD
• Hong Kong Dollar, HKD
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• Singapore Dollar, SGD
• Philippine Peso, PHP
• Danish Krone, DKK
• Hungarian Forint, HU
• Czech Koruna, CZK
• Australian Dollar, AUD
• Romanian Leu, RON
• Swedish Krona, SEK
• Indonesian Rupiah, IDR
• Indian Rupee, INR
• Brazilian Real, BRL
• Russian Ruble, RUB
• Croatian Kuna, HRK
• Japanese Yen, JPY
• Thai Baht, THB
• Swiss Franc, CHF
• Polish Zloty, PLN
• Bulgarian Lev, BGN
• Turkish Lira, TRY
• Chinese Yuan, CNY
• Norwegian Krone, NOK
• New Zealand Dollar, NZD
• South African Rand, ZAR
• U.S. Dollar, USD
• Mexican Peso, MXN
• Israeli Shekel, ILS
• British Pound, GBP
• Korean Won, KRW
• Malaysian Ringgit, MYR

If we are classifying the Australian Dollar–U.S. Dollar foreign exchange rate,
AUD/EUR, into positive and negative daily changes, and AUD/EUR falls for 559 days
out of 1,266 daily observations, then the AUD/EUR has p1 of falling 44.2% and p2 of
rising or staying the same is 55.8% in our dataset, and the total entropy of the direction
of the daily changes is:

HAUD∕EUR = −0.442 log2(0.442) − 0.558 log2(0.558) = 0.990

Entropy, in physics, is a measure of uncertainty or disorder. The objective of a decision
tree is to bring as much certainty and order into the data set as possible. To understand
how splitting the data along another variable or feature can help us reduce disorder, we
deploy the Information Gain (IG) metric that measures the informational “value-added”
of having variable X in prediction or classification of variable Y:

IG = H(Y ) −H(Y |X) (3.25)
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1266 daily
return

observations

CNY/EUR >= 0:
615 days

CNY/EUR < 0:
651 days

Next day:
AUD/EUR >= 0:
365 days, 365/651
AUD/EUR<0:
286 days, 286/651

Next day:
AUD/EUR>= 0:
342 days, 342/615
AUD/EUR<0:
273 days, 273/615

Figure 3.8 A simple decision tree illustrating predictability of AUD/EUR given the return of the
CNY/EUR on the previous trading day.

IG measures the reduction in uncertainty from using X as a predictor for organizing data
for Y. A valuable feature or predictor helps increase IG and reduce entropy H of the
dataset.

To see if the AUD/EUR exchange rate is dependent, for example, on the previous
trading day’s return on the Chinese Yuan, CNY/EUR, we calculate the IG per Eq (3.25).
Then we construct a simple decision tree. In this tree, we split the CNY/EUR daily
returns into two groups, say, those that fall below 0 and those that rise or stay flat, as
shown in Figure 3.8. Next, we calculate the number of down and up-or-flat AUD/EUR
returns in the days immediately following down and up-and-flat return “buckets” for
CNY/EUR and compute information gain based on conditional entropy:

H(AUD∕EURt | CNY∕EURt−1 >= 0)

= −
(342
615

)
log2

(342
615

)
−
(273
615

)
log2

(273
615

)
= 0.702

H(AUD∕EURt | CNY∕EURt−1 < 0)

= −
(286
651

)
log2

(286
651

)
−
(365
651

)
log2

(365
651

)
= 0.691

Next, the average of entropy weighted by the total number of AUD/EUR returns in
each CNY/EUR “bucket” is:

H(AUD∕EURt | CNY∕EURt−1) = 615
1266

H(AUD∕EURt | CNY∕EURt−1 >= 0)+

651
1266

H(AUD∕EURt | CNY∕EURt−1 < 0)
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Compute IGs for
all the features,
split the tree along
the feature with
the highest IG

Compute IGs for
all the remaining
features, split the
tree along the
feature with the
highest IG

Compute IGs for
all the remaining
features, split the
tree along the
feature with the
highest IG

Figure 3.9 Single decision tree process.

H(AUD∕EURt | CNY∕EURt−1) = 0.485 ∗ 0.702 + 0.514 ∗ 0.691 = 0.696

The information gain from adding CNY/EUR direction as a predictor to AUD/EUR
returns is then

IG = H(AUD∕EUR) −H(AUD∕EUR | CNY∕EUR) = 0.990 − 0.696 = 0.294

At each decision point, known as a node, the tree is split along the feature that delivers the
highest information gain, as illustrated in Figure 3.9. Once all the obtained information
gains are the same or within a certain stopping criterion, the decision tree stops splitting.
The decision trees can be tested out-of-sample by reserving a portion of the data for
out-of-sample testing.

The main disadvantage of decision trees is their reliance on the dataset being used
as a true representation of the population of data. With one decision tree per dataset,
the binary questions or the rules are usually created to closely fit the data into various
categories. As a result, decision trees are notoriously prone to overfitting, that is, estab-
lishing the partitions that are too close to the training data set and not representative
of the out-of-sample data (see, e.g., Dietterich and Kong (1995), Breiman (1996a) and
Friedman (1997), and Lopez de Prado (2018)).

To reduce decision tree overfitting, a technique known as random decision forests ran-
domly features columns from the decision tree data set. Importantly, this method allows
for each decision forest to draw on the full set of columns. By allowing for replacement
in the process of building many decision trees, the method is similar to the econometric
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Figure 3.10 Single decision tree (left) vs. random decision forest, an illustration.

bootstrapping technique. First proposed by Mingers (1989), and extended by Ho (1998),
random forests emulate the extended population of decision trees, and then average the
outcomes, thus reducing overfitting of the data. Like decision trees, random forests are
used for both classification and inference and are a form of machine learning.

In finance, random forests have been successfully used in predicting impending price
direction in the U.S. equities by Khaidem, Saha, and Dey (2016). Tan, Yan, and Zhu
(2019) obtain Sharpe ratios of 2.5–5 by applying random forests to investing in Chinese
stocks. Creamer (2009) uses random forests to predict the performance of Latin American
ADRS and banks. Liu et al. (2015) use random forests to detect financial fraud. Kim
and Giles (2016) use random forests to automatically link records for the same financial
entity across different databases. Hunt (2018) applies random forests to predict upcoming
earnings numbers.

Having evolved from the decision tree methodology, random decision forests extend
the concept of the decision tree with an injection of stochastic procedures, as shown
in Figure 3.10. While a basic decision tree features just one tree that closely fits the
data and, as a result, poorly predicts out-of-sample outcomes, the random forest creates
many decision trees from random subsamples of the data. Thus, while the one and only
traditional decision tree considers all the features of a given data set, each tree in the
random forest takes into consideration just a handful of randomly selected features in
order to determine the features most useful for inclusion in the final output. The random
forest trees are constructed from data sets drawn from the original data with replacement,
that is, multiple trees may contain the same data. The splits in the random forests’ decision
trees are deterministic, performed on the “best” node that displays the most variance and
depends on the subset of the data at hand. As shown by Wehenkel (1997), Geurts and
Wehenkel (2000), and Geurts (2002), the selection of the “best” cut-point may still
induce significant overfitting as it fitted too closely to the random sample modeled by
the tree.

To further tighten the random forests around the true data population, researchers
proposed Bayesian averaging to reduce variance (Buntine and Weigend 1991; Buntine
1992), Stacking and boosting to reduce bias and variance (Wolpert 1992; Freund and
Schapire 1995), and bagging (Breiman 1996b) to further randomize tree selection and
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then average the outcomes to reduce variance and bias. Collectively, by using multiple
trees to make predictions, stacking, boosting, and bagging techniques are often referred
to as ensemble methods.

Bagging, short for bootstrap aggregation, is a procedure whereby a new tree is created
with data randomly sampled from the original dataset with a replacement, resulting in
a forest of randomly different trees. The individual tree inferences are then aggregated
(often, averaged) to create much more robust inferences. As a classical bootstrapping, this
technique helps create inferences from limited data samples.

Boosting is a form of gradient descent where each tree (model) gets added into
the optimization framework sequentially. The process helps avoid the optimizer getting
stuck in a local minimum. Each subsequent model helps improve the accuracy of the
optimization.

Stacking is another ensemble method, whereby the predictions of two or more trees
serve as an input to another tree or a layer of trees. Stacking is also often referred to as
blending because the output is a blended version of various models used in the process.

In practice, random forests not only provide a simple classification tool, but they also
present an easy nonparametric identification of key drivers or factors underlying changes
in a specific variable. Unlike unsupervised methods, discussed in Chapter 4 and onwards,
random forests fall short of combining various variables into optimal factors.

As an example, we deploy the random forests methodology using code from a Python
library (as described in Appendix 3.A) to predict drivers of foreign exchange rates. To
predict CAD/EUR exchange one day ahead, we convert all of the currency time series
into returns, and use their lagged values (lag = 1 only for simplicity) as variables to train
our random decision trees. The random forests model deems the following variables to
be most important to the next day’s CAD/EUR prediction: Indonesian Rupiah, IDR,
South African Rand, ZAR, and the U.S. Dollar, USD.

The U.S. Dollar presents an obvious choice as several studies have shown that the U.S.
Dollar is a major macro driver for global currencies (see, for example, Haberler 1972;
Genberg and Swoboda 1977; Ross 1983; McMichael 1996; McKinnon and Schnabl
2003; Devereux, Shi, and Xu 2007; Chunwei 2008; Bracke and Bunda 2011). Dooley,
Folkerts-Landau, and Garber (2004) even go as far as to consider the U.S. as the cen-
tral country for the international monetary system. Ehrmann, Fratzscher, and Rigobon
(2011) emphasize

the dominance of US markets as the main driver of global financial markets, an illustration
of which is that the US financial markets explain, on average, more than 25% of movements
in euro area financial markets, whereas euro area markets account only for about 8% of US
asset price changes.

The importance of the Indonesian Rupiah and South African Rand in pricing
CAD/EUR may seem like a complete surprise. Upon closer examination, however,
we notice that the South African Rand and the Canadian Dollar have long been con-
sidered “commodity currencies,” often along with Australian Dollar, AUD. These are
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Figure 3.11 Single decision tree (left) vs. Extra Trees, an illustration.

OECD countries where primary commodities constitute a meaningful share of their
exports (see, e.g., Chen and Rogoff 2003). Such commodity currencies are often sub-
ject to identical commodity shocks and move together as a result. Recent research on
Indonesian Rupiah (see, e.g., Putra and Robiyanto 2019) also designates the Rupiah as
the commodity currency, subject to fluctuations driven by commodity prices in many
cases.

However, other currencies are driven by a different set of factors. According to the
random forest analysis, the Japanese Yen/Euro exchange rate, JPY/EUR, for example, is
best predicted by past Japanese Yen realizations followed by those of KoreanWon vs. Euro
(KRW/EUR) and Czech Koruna (CZK/EUR). Danish Krone (DKK/EUR) is best pre-
dicted by the Czech Koruna (CZK/EUR) followed by the Danish Krone (DKK/EUR)
itself. While little research into the importance of the Czech Koruna (CZK/EUR) had
been done at the time this book was written, one may speculate that, located in the
middle of the European Union, the Czech Republic best proxies for regional variations
in the European economy.

Extra Trees, short for Extremely Randomized Trees, first proposed by Geurts, Ernst,
and Wehenkel (2006), take the concept of random forests further by randomizing the
splits of the decision trees and limiting repetition of the data used in the samples: Extra
Trees sample from the original data set without replacement, creating less overfitting
than random forests and reducing bias. In essence, Extra Trees sample smaller subsets of
data not only by randomly selecting features, but also by selecting only a portion of the
data within each sample of features, as shown in Figure 3.11.

With traditional decision trees, the splitting of a tree into branches of different param-
eters is based on the largest-variance parameter. That is, a parameter with the largest
variation is picked as the decision node. This process alone drives a high variance of
outcomes in the predicted values. In the Extra Trees model, the cuts are randomized by
construction and, thus, reduce the variance of the estimates.

Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are a set of models often used for classification. Orig-
inally developed by Cortes and Vapnik (1995), Vapnik (1995), Vapnik (1998a; 1998b),
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SVMs quickly became popular across a variety of applications and disciplines. For
example, Fletcher, Hussain, and Shawe-Taylor (2013) use SVMs to predict intraday
price direction in foreign exchange. Similarly, Kercheval and Zhang (2015) apply SVMs
to intraday U.S. equities data to successfully classify impending mid-price direction
into {upward, downward or stationary}. Over the years, SVMs have been deployed to
forecast financial time series by Van Gestel et al. (2001), Tay and Cao (2001; 2002),
Cao (2003) and Kim (2003). Perez-Cruz et al. (2003) find SVM useful in GARCH
model estimation. Huang, Nakamori, and Wang (2005) forecast the direction of the
stock market with SVM. Hazarika and Taylor (2002) predict bond returns. Nikolaev,
Tino, and Yao (2005) predict volatility. Min and Lee (2005) apply SVMs to predict
corporate bankruptcies. Huang and Wu (2008) add wavelet-based feature extractions
with relevance vector machines to forecast stock indexes. Ullrich (2009) forecasts and
hedges in forex with SVM.

Dai and Zhang (2013) use 3M Stock data from 9 January, 2008 to 8 November,
2013 (1,471 data points). Multiple algorithms were chosen to train the prediction sys-
tem. These algorithms include Logistic Regression, Quadratic Discriminant Analysis,
and SVM. These algorithms were applied to predict the stock price on the next trading
day as well as over the next n days. The next-day prediction model produced accuracy
results ranging from 44.52% to 58.2%. However, the long-term prediction worked bet-
ter, particularly for n around 44, or two trading months. Using SVM, the accuracy of
2-month-ahead out-of-sample return prediction was reported as 79.3%.

The theory of SVM is discussed after the following example showcasing the perfor-
mance of a SVM on intraday 30-second return data for the S&P 500. In the example,
the returns are calculated as a 30-second difference in last trade prices. If the last trade
price remained unchanged in the last 30 seconds, or if there simply were no trades in that
time period, the corresponding 30-second return is recorded as 0, resulting in sparse data
matrix. Next, the SVM is trained on 1-hour, or 120 30-second returns, for the entire
S&P 500 to predict the direction of the next 30-second return for each of the S&P 500
stocks. The prediction is accomplished through classification. As in Kercheval and Zhang
(2015), our SVM predicts that the impending return of each of the S&P 500 stocks will
fall into one of the following three classes: {negative, 0, or positive}. Figure 3.12 shows
the out-of-sample rolling window performance of individual S&P 500 stocks on January
30, 2015, traded in the following strategy:

• The SVM is trained on the previous 1-hour data, comprising 120 30-second price
changes, for all the S&P 500 stocks.

• Based on the training, an out-of-sample SVM prediction is generated for the next 30
seconds for each of the S&P 500 stocks.

• If the prediction for a given stock is positive, the stock is bought immediately, held for
30 seconds, then sold.

• Otherwise, if the prediction for the stock is negative, the stock is (short) sold imme-
diately and bought back 30 seconds later.

• If the prediction is 0, no action is taken.
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Cumulative out-of-sample SVM strategy returns, 120-30-sec Training Period, t+1 Prediction
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Figure 3.12 Cumulative performance paths for the S&P 500 constituents following the SVM
classification trading strategy described in this chapter.

This analysis shown in Figure 3.12 was obtained with a rolling window that moves
forward 30 seconds after each estimation, ensuring extensive out-of-sample prediction.
Figure 3.13 shows the distribution of the cumulative out-of-sample returns obtained at
4:00 PM. As both Figures 3.12 and 3.13 show, the strategy is quite successful, delivering
on average 1.116% return for each of the S&P 500 stocks for January 30, 2015, gross of
investment costs. Similarly positive results were obtained throughout January 2015.

Is an SVM prediction perfect? Figure 3.14 displays the histograms of predictions as
compared with their realized returns for one 30-second interval obtained on January 30,
2015, from 3:55:00 PM to 3:55:30 PM. As Figure 3.14 shows, the majority of both pre-
dicted (top panel) and realized (middle panel) returns are 0, which is consistent with the
asynchronous nature of the intraday trading. As the bottom panel of Figure 3.14 shows,
however, the prediction does not always line up with the realized returns. Figure 3.15
plots cumulative loss computed following Eq (3.1) for each constituent of the S&P 500
by estimating and predicting the direction of the next 30-second return via a rolling
window over the entire trading day of January 30, 2015, from 10:30AM to 4:00 PM.
As Figure 3.14 illustrates, the sum of squared prediction errors can be quite high, yet the
predicted classification can still deliver significant results in trading and market-making
as shown in Figures 3.12 and 3.13.

To classify, SVMs work with a “feature space,” a finite-dimensional vector space
where each dimension is a feature of the subject of classification. In financial time series,
the features can be any and all financial variables. In the 30-second trading example
presented above, the features are lagged 30-second trade returns for all the S&P 500
stocks. However, there are no limitations on what kind of features can be deployed in
the analysis. For example, the features used by Kercheval and Zhang (2015) are:
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End-of-Day Cumulative Out-of-sample SVM strategy returns for the S&P 500,
120-30-sec Training Period, t+1 Prediction
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Figure 3.13 Distribution of cumulative end-of-day returns for the S&P 500 recorded at 4:00 PM
ET on January 30, 2015, the paths of which are shown in Figure 3.12. The average end-of-day gross
of trading costs return for the S&P 500 stocks was 1.116%.

Histograms of prediction (top), signs of realized 30-second returns (middle), and
error = sign(realized) - predicted (bottom), as predicted by SVM
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Figure 3.14 Prediction of 30-second returns of the S&P 500 stocks using SVM. The top panel
shows the predicted return signs {-1, 0, 1}, the middle panel shows realized out-of-sample signs of
returns for the same 30 seconds {-1, 0, 1}, and the bottom panel shows the difference between the
sign of the realized and the sign of the predicted return {-2, -1, 0, 1, 2}.

• Last quote for both bid and ask, at the best bid/ask and for different ticks away from
the best bid/ask up to 10 ticks, Pbid,t,i, Pask,t,i, where i ∈ [0, 9] is the number of ticks
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End-of-Day Cumulative Squared Out-of-sample t+1 Prediction Error for SVM returns for the
S&P 500, 120-30-sec Training Period
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Figure 3.15 Cumulative error computed by Eq (3.1) for each constituent of the S&P 500 by
estimating and predicting the direction of the next 30-second return via a rolling window over the
entire trading day of January 30, 2015, from 10:30AM to 4:00 PM. The distribution shown is that
of the sum of squared errors for each S&P 500 stock. Each error was computed as the difference
between actual realized return, a continuous variable, and SVM prediction falling in {−1, 0, 1}
classification corresponding to negative, 0, and positive predicted return direction.

away from the best bid and ask. Last quotes are drawn from snapshots of the limit order
book every 1 second.

• Last quote size for both bid and ask, at the best bid/ask and for different ticks away
from the best bid/ask up to 10 ticks, Sbid,t,i, Sask,t,i, where i ∈ [0, 9] is the number of
ticks away from the best bid and ask. Last quote sizes are also drawn from snapshots of
the limit order book every 1 second.

• Changes in quote price and quote size over the most recent 1 second, that is, “deriva-
tives” with respect to time: {dPbid,t,i∕dt, dPask,t,i∕dt, dSbid,t,i∕dt, dSask,t,i∕dt}.

• Average rates of arrival of limit order additions, cancellations, and executions, com-
puted over the past second, separated by bid and ask, and expressed as Poisson inten-
sities (see Cont, Stoikov, and Talreja, 2010, for more details): {𝜆ask,a, 𝜆bid,a, 𝜆ask,c, 𝜆bid,c,
𝜆ask,e, 𝜆bid,e}.

• “Accelerations” or change of rates of order arrival: {d𝜆ask,a∕dt, d𝜆bid,a∕dt, d𝜆ask,c∕
dt, d𝜆bid,c∕dt, d𝜆ask,e∕dt, d𝜆bid,e∕dt}.

• Others.

SVMs classify inputs on the basis of features alone. In this respect, an SVM is a
non-probabilistic classifier. In the case of email spam determination, the SVM per-
forms binary classification (spam/not spam). In other applications the classification may
be more complex. Kercheval and Zhang (2015), for example, classify the impending
market movements into three categories: {up, down, no change}. In general, SVMs help
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classify inputs {xk} ∈ RN on the basis of known labeled input–output pairs {yk, xk}Nk=1.
To extend classification to multiple end-states, kernel functions, discussed next, are used
to create nonlinear boundaries among data point sets.

A sample SVM that classifies outputs {yk} into {−1, 0,+1} set consumes a training set
of N input–output data point pairs, {yk, xk}Nk=1, where xk ∈ RN is the kth input pattern
and yk ∈ R is the kth output pattern. Given the training data, the SVM constructs a
classifier of the form

y(x) = sign

[
N∑
k=1

ak yk 𝜓(x, xk) + b

]
(3.26)

where ak and b are real and ak is positive. The separation model of the SVM is specified
by 𝜓(., .). It can be, among other models,

• linear, with 𝜓(x, xk) = xTk x
• polynomial of degree d, 𝜓(x, xk) = (xTk x + 1)d
• Radial Basis Function (RBF) 𝜓(x, xk) = 𝑒𝑥𝑝(−‖x − xk‖22∕𝜎2) where 𝜎 is a constant
• even two-layer neural with 𝜓(x, xk) = 𝑡𝑎𝑛[c xTk x + 𝜃] where c and 𝜃 are constants.

Unlike the universal spectral clustering, discussed in Chapter 7, the choice of the
SVM function often depends on the underlying structure of data and the classification
objective. For example, concentric circles are best detected with RBF and SVM.

Having constructed the “rule engine” for training data, Eq (3.26), we next construct
a “classification engine” for untrained data as follows:

yk[wT𝜑(xk) + b] ≥ 1, k = 1, 2, … ,N (3.27)

where 𝜑(x)T𝜑(xk) = 𝜓(x, xk). Equation (3.27) ensures that the points yk = 1 and yk =
−1 end up on the same side of the hyperplane and at least a distance M away from
the hyperplane. In other words, we require yk = 1 when wT𝜑(xk) + b = 1, and yk = −1
when wT𝜑(xk) + b = −1.

To prevent overfitting, we now introduce the classifier of “soft margin of error,”
(1 − 𝜉k), a margin multiplier that allows the points to fall in the region close to the hyper-
plane without classifying them and hence avoiding overfitting. All the slack variables 𝜉k
are subject to the following “budget” constraint:

n∑
k=1

𝜉k ≤ C (3.28)

where C ≥ 0 is a tuning parameter, the maximum allowed total slack across all dimen-
sions of data to avoid hard classification into -1 or 1. Now, Eq (3.27) can be rewritten as:

yk[wT𝜑(xk) + b] ≥ (1 − 𝜉k) k = 1, 2, … ,N (3.29)
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Going back to our classification example, and letting yk = 0 fall into the margin between
yk = −1 and yk = 1, we use the simplest linear kernel 𝜑(x)T𝜑(xk) = 𝜓(x, xk) = xTk x.

The optimization function then reduces to:

minw,𝜉k
1
2
wTw + c

N∑
k=1

𝜉k (3.30)

The solution is then obtained via Lagrangian.
Most variations of SVMs are already built into Python libraries, making it very easy

to implement the models, as discussed in Appendix 3.A.

Supervised Learning Model Comparison

Several researchers have compared supervised models against each other to measure their
relative performance. For example, Kanas (2003) pitches a standard regime-switching
model and a Markov regime-switching model against K nearest neighbors (K-NN) and
a neural network (NN) model on the U.S. stock returns from 1872 through 1999. Kanas
found that the Markov switching model and NN outperformed vanilla regime switching
and K-NN.

Kim and Swanson (2014) compare the performance of various supervised models on
144 U.S. macroeconomic time series for the period 1960:01–2009:5, including statistics
such as the unemployment rate, personal income less transfer payments, the 10-year
Treasury bond yield, the consumer price index, the producer price index, non-farm
payroll employment, housing starts, industrial production, M2, the S&P 500 index, and
gross domestic product. Kim and Swanson find that while the models do not necessarily
dominate, using the models in tandem by feeding outputs of one model as inputs to
another increases performance.

Gu, Kelly, and Xiu (2019) also compare the performance of various methods, in this
case, to compare various machine learning methods’ ability to estimate risk premia. The
results from Gu, Kelly, and Xiu’s research favor neural networks and trees-based methods
for their ability to model nonlinearities.

Conclusion

Supervised learning spans both parametric and nonparametric estimation and can
uncover many variable relationships in finance that previously did not stand out with
linear modeling. Whether on a longer or shorter time scale, supervised learning
provides many quantitative researchers with a brand-new toolkit for new discoveries
and automation. The findings may immediately translate into investing gains, better risk
management, and lower costs of doing business.
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Appendix 3.A Python for Supervised Models

Python libraries for supervised models are also extensive. A library known as scikit-learn
alone provides built-in tools for model selection, validation, and testing of a range of
supervised learning models. In Python code, the library is referred to as sklearn. Since
this library is voluminous, researchers tend to import only the necessary components in
order to speed up processing, such as:

from sklearn.model_selection import train_test_split

The train_test_split functionality provides a built-in selector for the in-sample and
out-of-sample data. The core advantage of the train_test_split utility is in its default
configuration: the X and Y data rows are split into the train (in-sample) and test
(out-of-sample) subsets at random, and are reshuffled in the process to create robust
inferences. The only parameter that is required from the researcher is the proportion of
data rows that are to be allocated to the in-sample testing, say, 0.33:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

At the same time, train_test_split can also be configured to create replicable subsets
that avoid randomization, if desired.

The scikit-learn library further provides built-in functions for most supervised learn-
ing algorithms. To use the random forest classifier, for example, one would write the
following code:

from sklearn.ensemble import RandomForestClassifier
clf=RandomForestClassifier(n_estimators=100)
clf.fit(X_train,y_train)
y_pred=clf.predict(X_test)

where y_pred is the out-of-sample prediction based on X_test inputs, given the model
is trained on the in-sample data X_train and the corresponding y_train.

The scikit-learn library also provides convenient model prediction accuracy func-
tionality to measure how the model output stacks up against the realized values. For
example, the following code outputs the accuracy of the prediction for model-generated
y_pred as compared to the out-of-sample y_test:

from sklearn import metrics
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

The implementation is fast, seamless, and even fun!
For specific code examples, please visit https://www.BigDataFinanceBook.com,

and register with password Supervised (case-sensitive).
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Chapter 4

Modeling Human Behavior
with Semi-Supervised

Learning

Introduction

O ne of the main challenges of data science is translating the human capital
and know-how of expert professionals into computer models, often referred
to as artificial intelligence programming applications. For example, a master

trader may have a record-winning strategy, but is about to retire. How do you copy
his decision-making? Alternatively, an industry analyst may have a successful ability to
predict the content of upcoming earnings announcements. How do you immortalize his
brain in a computer program? Is that even possible?

Supervised frameworks discussed in Chapter 3 covered models that used structured
data neatly organized into rows in columns. An example of such data may be the corpo-
rate financials such as the figures in quarterly and annual regulatory filings, required and
published by the U.S. Securities and Exchange Commission (SEC). By contrast, most
of the data and news consumed by humans arrive as text. For example, news articles,
social commentary, and regulatory updates that may directly affect asset prices comprise
textual items. Traditionally, the text was read and interpreted by trained analysts, who
collected and thought about various press releases and news articles about a specific firm
and industry, alongside product and competitor information. Analysts next wrote and
published opinion pieces on the upcoming changes in the given stock or bond price,
industry forecasts, or the direction of the market as a whole. The process of evaluating a
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single company could take several weeks or more, and the industry reports were typically
published quarterly.

Analysis historically required an enormous human input: a person had to sit for
hours, days, weeks, and sometimes months and years, poring over images, news arti-
cles, and other information to reach conclusions that were later added to a table as a
single word or a number. For example, a qualitative financial analyst would spend years
developing core sector or industry expertise, studying all the players and their strengths
and weaknesses, analyzing all the relevant news, in order to issue a brief statement on
which label a given stock should be assigned, with labels comprising the following set:
“buy,” “strong buy,” “hold,” “sell,” and “strong sell,” or equivalently, “buy,” “outper-
form,” “hold,” “underperform,” and “sell.” In the Big Data lingo, the analyst took
volumes of raw unstructured data and labeled it, assigning crisp buy/hold/sell monikers to
piles of information.

Semi-supervised learning (SSL) is great for structuring data, that is, converting the
raw text or images into neat tables, with quantitative representation of data ready for
computerized evaluation. SSL gives us a toolkit of fast computer techniques built to
derive meaning from voluminous data like text.

How does one build an SSL algorithm? Observing human activity with its requisite
inputs and outputs is a good place to start. For example, many master traders watch the
observable market movements, discern specific intraday quote patterns in their brains
(unobservable to bystanders), and then make buy and sell decisions which are observable
in the traders’ immediate surroundings such as the trading floor.

Another example is financial analysis, the focus of this chapter. Many financial ana-
lysts developing stock buy/hold/sell recommendations may do so in the following stages:

1. The analyst reads the latest news articles related to the stock under consideration.
2. The analyst summarizes the news. Does the article talk about a higher volume of

sales? Has the company launched new products? Is there a new competitor to the
company? A seasoned analyst classifies each news article based on such and many
other questions.

3. Based on the news summaries, the analyst next makes an assessment of the impending
changes to the quarterly revenue forecast.

A good and thorough analyst may be hard to find, he may be overloaded with assign-
ments, or may just be too expensive for investors. With semi-supervised learning, the
computer can be tasked with replicating the analyst’s process based on the small sample
of the analyst’s work.

SSL is perhaps best understood in contrast to supervised learning, discussed in
Chapter 3. Supervised learning comprises a class of models on well-defined data. An
ordinary least squares (OLS) regression is a classic example of supervised learning: all
inferences are drawn from clean, perfectly organized data. The trusted OLS suffers
from many well-known flaws: potential model misspecification, limited inferences,
particularly in small data samples, and the like. Semi-supervised learning helps relax
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the restrictions of the supervised learning by deriving inferences from much larger
unstructured data sources, collectively known as unlabeled data.

What kind of data are we talking about? Unlabeled data may include unprocessed
tick data logs, corporate CEO interview videos, news articles, and much more. Master
traders, for example, make their decisions by observing the market movements. Some
analysts parse over related economic, financial, and other qualitative and quantitative
data points to determine a prognosis for the company’s future quarterly revenues, and,
therefore, stock price. Still others interpret aerial images of corporate warehouses to
count the number of trucks and thus estimate business activity.

Unlabeled data can occur naturally or be human-created, but contain no useful
explanation for each piece. Labeled data refer to processed unlabeled data that add a
meaningful “tag,” “label,” or “class” to each piece of data. Labels for the raw tick data
may include measurement of market volume, price changes, and much more. The audio
recording labeling may involve transcription – information on the words the recording
contains. Classification of a news article may deliver the topic of the news as well as the
overall sentiment of the story. Labels for data are often obtained by extensive modeling;
however, these are significantly more expensive to obtain than the raw unlabeled data.
Semi-supervised learning combines unlabeled and labeled data into models from which
future labeling can be devised in a Bayesian-like fashion. In comparison, deep neural
networks and unsupervised learning are areas of research that attempt to build models of
the unlabeled data alone, and then apply information from the labels to the interesting
parts of the models.

To put it another way, SSL is a set of techniques that attempt to replicate human
decision-making. To approximate the human decision-making process, SSL takes in:

1. A few of the human-generated decisions, such as buy/sell recommendations for a
given company, referred to as target or labels.

2. Raw data, from which the analyst generates his forecast, such as company-specific
news, referred to as labeled data.

3. Raw data for which the computer is requested to produce a human-like decision.
This extra set of data can be much larger than the set in 2. These data are known as
unlabeled data.

Labeled data, also sometimes referred to as the model’s dictionary, are ready for tra-
ditional econometric analysis in that they have an outcome Y associated with every data
feature or property, also known as covariate, X . For example, in the simplest case of
an OLS regression, Y = 𝛼 + 𝛽X or, formally, m(x) = E(Y |X = x). On the other hand,
unlabeled data refer to more voluminous data that contain only covariates X , without
the Y required in most econometric modeling. Semi-supervised learning allows one to
bridge the gap and use the full set of X to expand and improve the modeling of Y ,
bypassing the usually small-sample limitations of labeled data. Unlabeled data alone may
yield random classification because there is no information about the class label (Castelli
and Cover 1995). Applied together with samples of the labeled data, however, unlabeled
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data often contribute to a high degree of accuracy attained at a much lower processing
cost compared to utilization of labeled data alone.

Our objective is to use computing horsepower to automatically label untouched data
in the third point above in the same way an expert human would do it. Overall, SSL
allows us to use unlabeled data that are numerous and cheap in place of the expensive
data that are labeled. In the process, the much larger total volume of both labeled and
unlabeled data allows for much stronger inferences.

The importance of the brilliant analyst cannot be overemphasized here. The
semi-supervised learning process attempts to reproduce the thought process of the star
human, given the observable inputs and the limited observable outputs. Top-quality
outputs are required for the semi-supervised learning to create valuable approximations
of the analyst’s work. To put it another way, following the engineering truism “Garbage
in, garbage out,” poor modeling examples will not deliver solid semi-supervised
learning predictions.

The discussion presented in this chapter by no means seeks to minimize the work
and the importance of human analysis. In fact, a great financial analyst has a brilliant
mind, works extremely hard to educate himself on the latest developments, and makes
superior forecasts. The challenge is that the great analyst’s time may be fully occupied,
his stock coverage may be insufficient for the investment task at hand, or he may simply
be prohibitively expensive to employ on a given project.

One may go even farther to suggest that the cost of quality financial analysis has been
a big hurdle for masses of smaller investors. The best analysts have always been prized
hires of the top banks and hedge funds, who then walled off the analysts’ predictions and
allowed access only to a select few investors, the latter typically already in the 99.99%
wealth percentile. The ability to extend the star analyst’s work by approximating his
thinking with machine learning is bound to democratize the investment process, allowing
smaller players to benefit from the traditionally inaccessible big-money information.

Besides allowing wide access to previously paywall-sequestered information
resources and a lower cost, the SSL approximation of human decision-making process
has several advantages. First, the SSL process delivers consistency. The SSL follows a
computer script and sticks with it while a human star analyst’s decision-making process
may be a complete black box and subject to unforeseen influences, illnesses, etc. Second,
SSL is reliable, replicable, and can be deployed on hundreds of computers to ensure a
fail-safe environment with 24-hours a day, 7-days a week data processing, something
too much to ask of even the most dedicated human. Third, the output from SSL can
even be a nice starting point for star financial analysts – enabling them to benchmark
their research and save time by seeing the keywords that drive the ratings of other
contemporary analysts. Finally, the SSL process is easy to understand, unlike its neural
network and some other machine-learning models.

Since its early versions, SSL has been researched in a number of concepts, first,
as a technique for separating a mixture of distributions before finally settling into its
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most common application: parsing natural language and classifying text. The pioneer-
ing research in this area was produced by Yarowsky (1995), Blum and Mitchell (1998),
Collins and Singer (1999), Joachims (1999), Nigam et al. (2000), and others.

Most semi-supervised learning techniques deploy the knowledge of probability dis-
tribution of raw input data, p(x), to help infer probability of output data, given input,
p(y|x). For semi-supervised learning to be successful, the input data on x should carry
information that is useful for determining the output, conditional on input, p(y|x). This
condition is summarized in the assumption required for the SSL to work: the smoothness
assumption. Under the smoothness assumption, two points x1 and x2 in a high-density
region should correspond to outputs y1 and y2 that are also close. If the points x1 and x2
are separated by a low-density region, then their points do not need to be close.

The semi-supervised learning solutions proposed up to the time this book was writ-
ten fall into several categories:

1. Generative models by Nigam et al. (2000) and Nigam (2001).
2. The graph-based nonparametric approach by Zhu (2005) and Belkin, Niyogi, and

Sindhwani (2006).
3. Discriminative models by Lawrence and Jordan (2006) and Balcan and Blum (2010).
4. Adaptive estimators by Kawakita and Kanamori (2013) and Chakrabortty (2016).

This chapter focuses on the generative models and discriminative models.
Graph-based nonparametric clustering aligns better with unsupervised learning, and is
therefore discussed in detail in Chapter 9.

The SSL experiment presented here attempts to replicate the stock-rating method-
ology deployed by financial analysts. To do so, the model described in this chapter takes
a few available analyst ratings for selected companies, conditions them on a vast num-
ber of preceding news, and delivers a forecasting model for ratings for other stocks,
previously untouched by the analysis. Similar techniques can be applied to generate
portfolio strategies for illiquid instruments, i.e., the stocks that have missing data points
due to irregular trading. Mizumoto, Yanagimoto, and Yoshioka (2012), for example,
apply semi-supervised learning to sentiment analysis on the stock market news. As dis-
cussed in Aldridge and Krawciw (2017), sentiment of news has become a popular data
input into many trading strategies. Sentiment analysis involved a human who manually
mapped common words to their sentiment or polarity score, a mapping from words to
sentiment. The polarity scores of all the words in the document are later aggregated
to determine the sentiment of the entire news document. Mizumoto, Yanagimoto, and
Yoshioka (2012) use semi-supervised learning to construct a polarity dictionary. The
dictionary can then update itself automatically when it encounters new words.

As shown in Chapter 7, SSL techniques can also be used when data are incomplete or
missing. For instance, when there is simply not enough data to estimate the full covari-
ance matrix, SSL provides a way to fill in the missing data. The data may be missing
due to suspended trading in certain instruments, server outage that resulted in a failure
to capture the trading data, or simply because the data were not collected. As this book
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shows, semi-supervised learning is one of the techniques that allows the researchers to
utilize the available data to their fullest capacity.

Additional studies on semi-supervised learning can be found in Chapelle, Scholkopf,
and Zien (2006) and Zhu (2008), who provide comprehensive summaries of SSL liter-
ature. Before diving into the gritty details of SSL, we briefly discuss a popular set of
machine-learning techniques designed to reduce overfitting in situations with limited
data, like SSL. These techniques are collectively referred to as cross-validation and are
presented in the next section.

Performance Evaluation via Cross-Validation

By design, semi-supervised learning models rely on a small sample of data. As a result,
SSL models are prime candidates for overfitting – creating tight parameters fitting snugly
to the available data that do not hold up out-of-sample. To avoid overfitting and the
associated bias, researchers have devised techniques to intelligently sample and reuse the
available data.

In the traditional econometric model testing, the complete data set is divided into
two parts: the training set and the testing set. The parameters of the model are first
developed on the training set. Next, the parameters are validated on the clean testing
set, creating an “out-of-sample” verification.

In semi-supervised learning and other applications with small data, there may simply
not be enough data to do unbiased out-of-sample testing. As a result, semi-supervised
learning techniques rely extensively on a methodology for resampling the limited data
known as cross-validation (Geisser 1975; Efron 1983; Kohavi 1995). To generate mean-
ingful, population-appropriate outcomes, the cross-validation works as follows:

• Shuffle the rows of the data set randomly.
• Split the data set into k groups.
• For each unique group:
• Take that group as a hold-out or test data set.
• Take the remaining groups as a training data set.
• Fit a model on the training set and evaluate it on the test set.
• Keep the evaluation score for comparison with performance of other test groups as

well as performance of other models.
• Summarize the skill of the model using the sample of model evaluation scores. The
summary often delivers the mean, the standard deviation of the evaluation scores along
with the aggregate score.

The above process is referred to as k-fold cross-validation. It is also known as rotation
estimation. The number k can be chosen to make groups large enough to be representative
of the entire sample, as shown in Figure 4.1. Alternatively, k may be chosen to equal
the number of rows, so that each group contains just one row; such cross-validation is
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Figure 4.1 An illustration of 3-fold cross-validation. During each of the k = 3 stages, all but one
of the partitions are used to train the model on the data while the hold-out partition is used to test
the model.

known as leave-one-out-cross-validation (LOOCV). Another common “indecisive” k can
be selected to be a number around 10.

The folds themselves can be equal in size or proportional to another aspect of data.
For example, the k groups can be selected so that each target label, categorization, or
cluster is represented proportionally in each group. Such a split is known as stratification.
Alternatively, the k groups may be randomly shuffled after each k-fold cycle completion
and repeated again n times; such a process is known as repeated k-fold cross-validation.

K-fold cross-validation has been shown to reduce look-ahead or data-snooping bias
documented in Finance by Lo and McKinlay (1990), Sullivan et al. (1999), and White
(2000), among others. At the time this book was written, cross-validation was accepted
in the data mining and machine learning community as a standard procedure for perfor-
mance estimation and model selection (Refaeilzadeh, Tang, and Liu 2007). Despite its
ability to accurately estimate model performance, k-fold cross-validation is disadvantaged
by small samples of performance estimation; overlapped training data; elevated Type I
error for comparison; underestimated performance variance, or overestimated degree of
freedom for comparison (for detailed studies, see Kohavi (1995), Salzberg (1997), and
Dietterich (1998)).

Generative Models

Generative models, as their name suggests, generate extra data in order to improve their
overall forecasting power. Generative models focus on developing a joint distribution of
X and Y from the observations where Y is available, and then using the joint distribution
to generate inferences for X and Y when Y is missing. Generative models are Bayesian
in nature as they rely heavily rely on Bayes’ theorem:

p(Y |X) = p(X|Y )p(Y )∕ [
∫y
p(X|Y )p(Y )dY] (4.1)

where p(X|Y )p(Y ) = p(X ,Y ) is the joint density of data from which pairs (xi, yi) are
generated.
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Figure 4.2 Semi-supervised learning. Source: Adapted from Chakrabortty (2016).

How does semi-supervised learning work? Semi-supervised learning takes the
labeled data set L, with neat outcomes Y directly corresponding to covariates X , and
the much larger unlabeled data set U , containing only covariates X . The unlabeled
data set U , given its size, produces PX , a population distribution of X . Figure 4.2 from
Chakrabortty (2016) illustrates the idea behind semi-supervised learning. The goal of
SSL is to find the conditional distribution of Y , given X , PY ∣X .

For convenience, it is common to assume that the labeled data comprise the first n
data points of X , Xl:=(x1, x2, … xn), for which labels Yl:=(y1, y2, … yn) are provided.
The unlabeled data then are found in points n + 1 through N , Xu:=(xn+1, xn+2, … xN ).
The function of interest is m(x) = E(Y |X = x). While such a setup has become a stan-
dard in Big Data, AI, and machine learning, other forms of partial supervision exist,
distinguished primarily by their constraints.

Generative models have evolved from self-learning algorithms. Self-learning algo-
rithms were the earliest SSL methods, due to Scudder (1965), Fralick (1967), Agrawala
(1970), and others. Self-learning algorithms are also known as self-training, self-labeling,
and decision-directed learning methods. These methods work as follows:

1. Train via a supervised technique on labeled data only, obtain predictions.
2. Incorporate a portion of the predictions in the training data.
3. Repeat from 1 above with the new data set expanded by predictions in 2.

This approach is successful only if the generative model, the conditional distribution
for labeled and unlabeled data, is correct. When the Bayes generative model is highly
correlated with the classification accuracy, then the model above works sufficiently well.
When the Bayes generative model is not correlated with the output accuracy, a better
generative model needs to be developed.
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Generative models do so by recursively:

1. Applying a chosen variation of supervised learning, such as a regression, random
forests, or other method to the raw data and their expert-generated labeling.

2. Using the parameters obtained in 1 for out-of-sample prediction on reserved data,
generating machine-labeled data, known as pseudo-labeled data.

3. Sampling selected raw data: pseudo-labeled data pairs from the out-of-sample raw
values and the corresponding predicted values in 2.

4. Adding these artificially or pseudo-labeled data to the original data set.
5. Finally, returning to 1 and applying the same variation of supervised learning as

before.

The algorithm stops when it reaches the desired convergence levels. The result deliv-
ers enhanced precision in estimation. Nigam et al. (2000) show that using unlabeled data
significantly improves data classification while reducing demand for labeled data. For
example, to label text with 70% classification accuracy, a traditional supervised learning
algorithm requires 2,000 labeled examples. The generative semi-supervised algorithm
of Nigam et al. (2000) takes advantage of 10,000 unlabeled examples and requires only
600 labeled examples to achieve the same accuracy. This reduces the need for labeled
training examples by more than a factor of three, lowering the associated costs of labeled
data by the same factor.

Here, we follow Nigam et al.’s (2000) generative methodology to approximate finan-
cial analyst ratings for U.S. stocks, given wide-range news (unlabeled data) and limited
analyst recommendations on other stocks (labeled data). As such, we develop an iterative
expectation-maximization (EM) framework that maximizes the likelihood of a correct
prediction. The term “correct” cannot be emphasized enough. A generative model that
does not model the relationship between the labeled and unlabeled data correctly can
significantly worsen the performance relative to a basic supervised model.

As in Nigam et al. (2000), we treat the missing classification of news by financial
analysts as a latent variable. Our objective is to develop a model that takes in large amounts
of unlabeled data and develops a more probable model for the latent variable.

Our task here is to develop a generative model that correctly classifies
human-authored texts into the average ratings. The ratings are compiled from human
financial analysts’ classifications assigned to the texts. Nigam et al. (2000) believe that due
to its complexity, human-authored text is very difficult to completely parameterize in a
true generative model. Instead, Nigam et al. and many practitioners use a simple model
like naïve Bayes. Using naïve Bayes, each news article is represented as a bag of words.
The approach does away with any and all word ordering information, punctuation, and
even word capitalization. In this setup, phrases like “Physics of young stars” (astronomy)
and “Young Stars in Physics” (promising future star physicists) appear the same to
the model, as do phrases like “men in white-collared shirts paid for laundering dirty
money” and “men paid money for laundering dirty white-collared shirts.”

The generative model that results from the naïve Bayes approach supposes that all the
news articles are essentially created by drawing words from a multinomial distribution
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conditional on analyst ratings. This view dramatically oversimplifies the authorship of
news articles. However, as Nigam et al. (2000) show, such an approach is appropriate for
semi-supervised text classification whenever the following two conditions hold:

1. Probabilities produced by the selected generative model are correlated with the
observed values of the latent variable, in our case, mean analyst ratings.

2. The EM optimization hits the global maximum instead of being trapped in a local
one.

Even when the probabilities from the generative model are not well correlated with
the desired output, a generative model may result in a better prediction than a supervised
alternative. Furthermore, as discussed in this chapter, techniques such as deterministic
annealing help reliably to find the global maximum. As Nigam et al. (2000) show, a
bumpy expectation function is inevitable in sparse models with a very large number of
parameters in domains like text classification. EM only guarantees discovery of a local
maximum. Deterministic annealing helps overcome this issue.

Generative Models for Text Processing

The model deployed in our analysis is a naïve Bayes generative model that follows Lewis
(1998), McCallum and Nigam (1998), and Nigam et al. (2000). The key assumption
of the model is that all the news articles are generated by a mixture of multinomials,
where each mixture component corresponds to one class. In our example, each class is a
mean analyst rating for the given stock on a given day. GivenM analyst rating classes and
vocabulary of size ∣ X ∣, each news article i falling into a class cm,m ∈ M has ∣ xi ∣ words.
Each word is represented as a column in the vocabulary matrix X . Each news article may
or may not possess a specific word wj from the vocabulary X ; when a given word j is not
present in the news article i, xit = 0. If a word j occurs in the news article i exactly once,
xij = 1. Of course, the words may repeat, so the word matrix X may contain xij > 1.
The total length of each news article in terms of its word count is then ∣ xi ∣=

∑∣X∣
j=1 xij.

Each news article known to belong to class ci is labeled xi.
We further assume that each news article is generated according to a probability

distribution defined by the parameters 𝜃 of the mixture model. Thus, for the sake of
modeling, we reverse the process of news article creation. Specifically, we assume that
each news article, prior to being written, is first assigned a certain length, the number
of words ∣ xi ∣. Next, each article is assigned to a specific analyst rating class cm,m ∈ M
that is dependent on the parameters 𝜃. Thus, each new article originates from a chosen
mixture component P(cm|𝜃). Next, the selected mixture component generates its own
news article according to the parameters 𝜃 with word distribution P(xi| cm, 𝜃).

Nigam et al. (2000) intuitively explain the idea behind such a news article–generating
model as a sequence of dice rolls. First, we randomly pick a number of words that go
into the article. Next, we roll an M-sided dice, biased by parameters 𝜃, to determine
the class of the news article, cm. We obtain each mixture component cm with probability
P(cm|𝜃). Next, we roll an ∣ X ∣-sided dice to pick the words that go into the news article
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“bag of words” given the class cm and parameters 𝜃. The resulting news article occurs
with P(xi|cm, 𝜃). The ensuing likelihood of seeing the document xi is the sum of all
P(xi|cm, 𝜃) over all the classes cm:

P(xi|θ) = ∑
m∈M

P(cm|θ)P(xi|cm, θ) (4.2)

Since each mixture component corresponds to exactly one class by our original assump-
tions, we can now assign a label yk to each mixture component cm:

P(xi|θ) = ∑
m∈M

P(ym|θ)P(xi|ym, θ) (4.3)

Under the naïve Bayes assumption, the words in each news article are conditionally
independent of other words in the same document, given the class label. The probability
of generating a given news article in terms of words and the article length is then:

P(xi|ym, θ) ∝ P(|xi|) ∏
wj∈X

P(wj|ym, θ)xij (4.4)

The parameters that define the multinomial distribution over a collection of word prob-
abilities, 𝜃wj∣cm , are:

θwj∣cm ≡ P(wj|cm, θ) (4.5)

and ∑
j

θwj∣cm =
∑
j

P(wj|cm, θ) = 1 (4.6)

The parameters that define the class selection are:

θcj ≡ P(cj|θ) (4.7)

The full generative model then can be written as:

P(xi|ym, θ) ∝ P(|xi|)∑
m∈M

P(ym|θ)∏
wj∈X

P(wj|ym, θ)xij (4.8)

The set of word counts xij is hence a sufficient statistic for classification of a given news
article if we pick the right model to link the word counts with the financial analyst
classifications.

Semi-Supervised Estimation of the Generative Model

To classify the unlabeled news articles, we first find the model that best classifies the
word counts into the analysts’ ratings. To do so, we perform supervised learning using a
variety of parametric and nonparametric models discussed in Chapter 3 on the labeled
news articles we have available. We choose the model that does best in the supervised
setting.
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Next, a naïve Bayes classifier is built from the selected supervised model, i.e., we
determine the probabilities of each class given the words present in each news article.
The naïve Bayes classifier is then put to work, classifying a random selection of unlabeled
training data. The previously unlabeled news articles newly labeled with naïve Bayes
probabilities are known as pseudo-labeled data. The pseudo-labeled data are then added
to the pool of the training data. The pseudo labels, the estimated class probabilities, are
now used as true labels. The process is then repeated with a new naïve Bayes classifier
built over the expanded data set until the process converges to a stable classifier and a set
of labels.

From the perspective of semi-supervised learning, the work of the financial analyst
entails reading and then labeling the latest news for a given stock into one of the five
categories: buy, strong buy, hold, sell, and strong sell. Each of the labels comprises a
trading signal relied upon by many practitioners. The analysts’ forecasts are issued by
banks’ research departments, specialized research firms, and others. Various data firms
like Bloomberg often aggregate and redistribute the forecasts.

In our analysis, we deploy the analyst forecasts’ summary from Zacks Analyst
Research. Zacks collects analyst recommendations from various analysts, aggregates
them each day, and distributes their data on Quandl, where a limited sample of Zacks
data is offered free of charge. Those free data, updated daily, include the analyst ratings
for the following stocks: AAPL, AXP, GE, BA, CSCO, DOW, DIS, GE, IBM, JNJ,
KO, MCD, MMM, MRK, MSFT, PFE, PG, and UA. Zacks analyst ratings are in the
“strong buy, buy, hold, sell, and strong sell” formats and are aggregated into cumulative
by rating and overall mean scores. The ratings are encoded as follows:

1. represents “strong buy” recommendation
2. represents “buy”
3. represents “hold”
4. represents “sell”
5. represents “strong sell”

Zacks analyst ratings provide convenient human-generated labels to test the SSL.
The limited data available from Zacks without charge are a perfect application of SSL.
Research analysts update their ratings independently of each other, and, as a result, the
aggregate rating, such as the rating mean, may change every day. Figure 4.3 shows the
raw number of news announcements recorded for each mean analyst rating in the Zacks
sample from February 1 through 12, 2020. The mean ratings are reported with 2-decimal
precision in the range from 1 (“strong buy”) to 5 (“strong sell”), inclusive, resulting in
401 potential mean ratings or classes in the model.

Financial analysts’ ratings can be highly subjective. In addition to the mean ratings,
Zacks reports the number of financial analysts who classified a given stock into each of the
ratings categories. For example, during January–February 2020, the number of “strong
buy” recommendations for Apple, Inc. (AAPL) reported by Zacks ranged between 14
and 16, “buys” held steady at 4, “holds” ranged from 7 to 9, there were no “sells” and
only one “strong sell” position, showing a relative diversity of opinions. Mean ratings
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Number of news articles for given in-sample mean analyst ratings
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Figure 4.3 Raw number of news announcements recorded for each mean analyst rating in the
Zacks sample from February 1 through 12, 2020. The ratings are encoded as follows: ‘1’ = “strong
buy,” ‘2’ = “buy,” ‘3’ = “hold,” ‘4’ = “sell,” ‘5’ = “strong sell.”

aggregated from scores of several analysts can be even less predictable, given the range
of opinions of the analysts. The task of correctly predicting the mean score ratings,
therefore, is very difficult, even for a top-notch human analyst.

While the analysts’ stock recommendations are the labels, the unlabeled data are the
news. We obtain daily news in plain text from various sources. Online, the news articles
are searchable by stock symbol, so we can select the news pertaining to each stock. The
news articles can also be sorted by popularity and other factors. We select the news for
each stock symbol from one month prior to the analyst ratings to the day before each
analyst rating. All articles are used in their entirety and include the author’s name and
the publication venue.

First, the news articles are cleaned. All special characters and html tags are removed
to retain just text. A cleaned article from Business Insider that appeared in the search for
news on Microsoft (NYSE:MSFT) looks like this:

{id business insider name business insider} author antonio villas boas title microsofts newest internet
browser is fast and finally does the things that makes googles chrome so popular \u2014 heres how to
get it msft description microsoft released on wednesday its new edge web browser that lets users install
extensions from the google chrome web store in some important ways the new edge is just google chrome
dressed in microsoft clothing \u2014 its based on the same open [… ]

A separate cleaned article from TechCrunch discussing changes in IBM leader-
ship was pulled up by NewsApi in the search for news related to 3M Corporation
(NYSE:MMM), a competitor of IBM:
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{id techcrunch name techcrunch} author ron miller title arvind krishna will replace ginni rometty as
ibm ceo in april description ibm announced today that the board of directors has elected ibm senior vice
president for cloud and cognitive software arvind krishna to replace current ceo ginni rometty he will take
over on april 6th after a couple of months of transition time rometty wil\u2026 url http techcrunchcom
2020 01 30 arvind krishna will replace ginni rometty as ibm ceo in april urltoimage https techcrunchcom
wp content uploads 2017 10 gettyimages 503702216jpgw=548 publishedat 2020 01 30t215509z
content ibm announced today that the board of directors has elected ibm senior vice president for cloud
and cognitive software arvind krishna to replace current ceo ginni rometty he will take over on april 6th
after a couple of months of transition time rometty [… ]

Still another excerpt from a cleaned news article that is indexed as related to
Coca-Cola (NYSE:KO) stock looked like this:

{id business insider name business insider} author alan dawson title conor mcgregor has adjusted his
training as hes learned from the mistakes made before during and after his spectacular failure against
khabib nurmagomedov description conor mcgregor has learned from the mistakes he made before during
and after his spectacular failure against khabib nurmagomedov [… ]

In the above news snippet, our news search most likely misclassifies the boxing term
knock-out with the abbreviation “KO” for Coca-Cola stock symbol. As the last news
example illustrates, the news provider’s classification is not always perfect. However,
under the Law of Large Numbers, even erroneous news classifications, when included
in a large pool of news, will not do significant damage to the final output. A more thor-
ough approach might involve the researcher reading and then manually classifying several
dozen news articles before applying SSL to classify the rest of available news text.

After the news is cleaned from html tags and special characters, the news is vector-
ized: each news article is converted into a row in a news matrix where each word has its
own column. Each element of the news matrix counts the number of times the corre-
sponding word was mentioned in the news article. Just for the month of January 2020,
the summaries of the most popular articles mentioning each of the 11 first stocks in the
list contained 15,047 different words. The vectorized news matrix is naturally sparse as
some words only appear in selected documents once. For the 11 stocks we chose to use
in training, AAPL, AXP, GE, BA, CSCO, DOW, DIS, GE, IBM, JNJ, and KO, there
were 5,685 rows in the news matrix for just 7 days of analyst ratings.

Following vectorization, the news data matrix was matched with the desired output:
the average numerical rating produced by financial analysts and recorded on the day
following the month of news items. In other words, all news articles from January 2
through February 1 had a corresponding target label of the average financial returns
updated on February 2. This way, the algorithm accounted for the time it took a human
analyst to read and process the news and to summarize the news in the buy/strong
buy/hold/sell/strong sell recommendation. We are assuming that the analyst included
the most popular news for the month preceding his recommendation and up to 1 day
before his recommendation was published.
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Table 4.1 Average and standard deviation of RMSE scores deployed in optimal model selection
for news/analyst ratings pairings.

Model

Average of negative MSE
(supervised learning,
no output sampling/
bootstrapping/boosting) (%)

SD of negative MSE
(supervised learning,
no output sampling/
bootstrapping/boosting) (%)

Linear regression 26 3
Ridge regression 28 2
Bayesian ridge regression 28 1
Elastic net 37 1
Random forests 26 1
Extra trees 32 2
K nearest neighbors 39 4

Next, the algorithm split the data into the training and testing partitions, reserving
75% of rows for training and the rest for out-of-sample testing. The training data were
next further split into k-folds for model cross-validation. To keep things simple, k was
set to 3.

In the following step, the optimal supervised model was selected as a base for the
generative model. To do so, a simple supervised analysis was executed with the k = 3
cross-validation framework. The average RMSE scores and their standard deviations are
shown in Table 4.1. To ensure fair comparison of scores among different models, the
negative MSE scoring methodology was deployed for each model.

Performance of the Generative Mechanism. The generative model was created
to “grow” or generate extra training samples from prediction data. At each of the 10
iterations, the algorithm sampled values predicted by the model in the previous iteration.
The sampling occurred at random. Each time, a sample of c ∈ [0, 1] of the predicted
values was retained and added to the new iteration’s training data set. The sampling was
performed with replacement to ensure that the test set does not shrink.

Figure 4.4 shows the resulting cross-validation RMSE scores for a ridge regression
model with various sampling rates. As Figure 4.4 shows, iterative sampling to generate
additional training samples considerably improves the performance of the algorithm,
albeit increasing concerns of overfitting. As the number of iterations increases, the
training pool of data becomes increasingly saturated by inferences from what would be
out-of-sample observations. As a result, while the model has more observations to draw
conclusions, the observations become more and more mired in their own predictive
ability, potentially destroying their original predictive power. To allay these concerns,
we next run the model on the reserved test data for extra stock tickers we have not used
to date.
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Figure 4.4 SSL with ridge regression, estimation performance with various sampling rates and
number of iterations.

Out-of-Sample Performance of Generative Models

Figure 4.5 shows out-of-sample prediction of the generative SSL with ridge regression
model on previously reserved names: MCD, MMM, MRK, MSFT, PFE, PG, and UA.
The model was trained on news and ratings of AAPL, AXP, GE, BA, CSCO, DOW,
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Figure 4.5 Out-of-sample prediction of analysts’ forecasts using previous month’s stock-specific
news in a generative SSL with ridge regression, sampling rate of 30%, and 5 iterations.
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Figure 4.6 Average predictions of analysts’ forecasts based on stock-specific news developed using
generative SSL with ridge regression (30% sampling rate, 5 iterations) vs. realized means of analysts’
forecasts.
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Figure 4.7 SSL ratings forecast for seven out-of-sample stocks produced by vanilla elastic net
algorithm (pure supervised learning).
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DIS, GE, IBM, JNJ, and KO. The forecasts were estimated by applying the model trained
on the previous month’s news articles with a sampling rate of 30% and 5 iterations to
the previous month’s news about a fresh subset of stocks. As in real life, different news
articles produce different interpretations of the corporate future, resulting in a spectrum
of ratings.

As Figure 4.6 shows, the SSL-generated forecasts (y-axis) are universally lower
than those produced by human analysts (x-axis). This observation may be due to a
well-documented analysts’ optimism bias (see, for example, O’Brien, McNichols and
Hsiou-Nei 2005), whereby analysts are often pressured for various reasons to deliver
better-than-warranted forecasts. The SSL may actually turn out to be more objective,
but additional research is required to ascertain this hypothesis.

The models underlying SSL analysis may significantly differ in their performance.
Figure 4.7, for example, shows the performance of pure supervised elastic net in pre-
dicting future analyst forecasts. As Figure 4.7 shows, the elastic net SSL assigns nearly
identical ratings to all the test stocks, pulling them toward the neutral “hold” rating
encoded as 2.

Curiously, the words in the news articles that SSL deemed contributed most pos-
itively to the analyst reviews were “corporation,” “good,” “everyone,” “streaming,”
“data,” and “urltoimage,” the latter suggesting that human analysts potentially prefer arti-
cles with images or that articles bearing good news were more likely to include images.
The words that SSL deemed most decreased analyst ratings were “capital,” “bancshares,”
“company,” “transcribing,” and “articles.”

Introducing Market News. Much of modern Finance asserts (and later part of this
book proves) that the fluctuation of prices of individual stocks is inevitably driven by the
changes in the aggregate securities market. As such, news affecting ratings of individual
corporations is not just limited to that of companies themselves and their competition.
Instead, market-wide news may also significantly factor into the analysts’ forecasts.

To test this hypothesis, we add news by searching for “SPY,” a stock symbol for the
widely traded electronically traded fund (ETF) that proxies the S&P 500 index. Our
dictionary now expands to 48,350 words, and there are 10,507 news/ratings pairs in
the labeled training data and 6,063 news/ratings data points in the testing sample. As
before, we train our generative SSL model using ridge regression with a 30% sampling
rate in 5 iterations. As before, the training is performed on news and analysts’ ratings
covering AAPL, AXP, GE, BA, CSCO, DOW, DIS, GE, IBM, JNJ, and KO, with
the addition of the previous month’s news for NYSE:SPY as input for each stocks’
labeling mechanism. Also, as previously, the out-of-sample testing was performed by
applying the parameterized model to reserved symbols: MCD, MMM, MRK, MSFT,
PFE, PG, and UA. The resulting forecasts from inclusion of market-wide news, shown
in Figures 4.8 and 4.9, performed better than the model without the market news
(Figures 4.5 and 4.6).

To verify the findings on a completely clean sample, we reverse the sets of tickers. We
first train the model on the seven stocks previously used in out-of-sample forecasting,
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Figure 4.8 Out-of-sample prediction of analysts’ forecasts using previous month’s stock-specific
and market news in a generative SSL with ridge regression, sampling rate of 30%, and 5 iterations.
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Figure 4.9 Average predictions of analysts’ forecasts based on stock-specific and market news
developed using generative SSL with ridge regression (30% sampling rate, 5 iterations) vs. realized
means of analysts’ forecasts.
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Figure 4.10 SSL with Ridge regression, out-of-sample predictions of ratings based on individual
news articles vs. actual mean ratings for AAPL, AXP, GE, BA, CSCO, DOW, DIS, GE, IBM, JNJ,
and KO with the model trained on news and financial ratings of MCD, MMM, MRK, MSFT, PFE,
PG, and UA.

and then test the model on the stocks that were previously deployed in training. Thus,
we train our generative model on MCD, MMM, MRK, MSFT, PFE, PG, and UA and
test the model on AAPL, AXP, GE, BA, CSCO, DOW, DIS, GE, IBM, JNJ, and KO.
Figures 4.10 and 4.11 show the results of modeling.

As Figures 4.10 and 4.11 illustrate, generative models deliver plausible out-of-sample
predictions, positively correlated with the realized ratings.

For data spanning February 1, 2020, through March 14, 2020, out-of-sample pre-
dictions for the analyst recommendations have improved further. Top positive words
changed to: “MMM,” “Costco,” “Liquidity,” “Train,” and “Baby,” while the words
with the most negative impact have become: “Covid,” “stocks,” “Francisco,” as in
“San Francisco,” “Tech,” and “Value.” The key words seemed to reflect the reality of
the emerging Coronavirus or COVID-19 crisis and its impact, including minimized
impact on children and babies, a sell-out period at Costco, and desire for high-liquidity
stocks.

Improvements to Generative Modeling

One of the potential pitfalls of SSL is its search for the optimal solution may turn up the
local optimum only, which may significantly distort results. To overcome this issue, Rose,
Gurewitz, and Fox (1990; 1992) proposed a technique where the optimization frontier is
first approximated by a smooth convex function with an easy-to-find global maximum.



Trim Size: 7in x 10in Aldridge602989 c04.tex V1 - 12/09/2020 12:29 A.M. Page 100�

� �

�

100 B I G DATA S C I E N C E I N F I N AN C E

Average analyst ratings for out-of-sample stocks

1.900

1.875

1.850

1.825

1.800

1.775

1.750

1.725

A
ve

ra
ge

 r
at

in
gs

 p
re

di
ct

ed
 b

y 
S

S
L 

w
ith

 R
id

ge
, s

am
pl

in
g 

ra
te

: 0
.3

1.4 1.6 1.8 2.0 2.2 2.4 2.6

Figure 4.11 Average predictions of analysts; forecasts based on stock-specific and market news
developed using generative SSL with ridge regression (30% sampling rate, 5 iterations) vs. realized
means of analysts’ forecasts. The out-of-sample predictions for AAPL, AXP, GE, BA, CSCO, DOW,
DIS, GE, IBM, JNJ, and KO of ratings were based on one month of individual stock news articles
and market news preceding the ratings. The model was trained on news for each given stock and the
market only and financial ratings of MCD, MMM, MRK, MSFT, PFE, PG, and UA.

Next, in what is known as deterministic annealing, the process is changed to become more
bumpy, with lots of local minima, to resemble the actual probability surface. With such
an approach, the global maximum of the probability can be successfully found.

To further enhance generative inferences, one may use other variables within the
labeled/unlabeled data set in a process referred to as co-training. For example, ratings
provided by Zacks include mean rating on each day, but also daily sums of ratings by
category: strong buy, buy, hold, sell, and strong sell. Associating raw news text with
the additional variable, the sum of ratings per category, adds an additional parameter
in the Bayesian estimation and thus strengthens the inferences. The additional variables
X = (x(1), x(2), … ) are referred to as views on the data, and the parameters or binary
classifiers 𝛩 = (𝜃(1), 𝜃(2), …) are known as concepts. If a data subset A ⊂ X , concepts 𝛩
are compatible with A if 𝜃(1)x(1) = 𝜃(2)x(2) = … for all X = (x(1), x(2), … ) that belong
to A. Co-training is the process of jointly modeling two or more views due to Blum and
Mitchell (1998). In essence, co-training is a Bayesian inference with conditional priors
encoding the compatibility assumptions.

Zelikovitz and Hirsh (2000) proposed a refinement to the Bayes estimation in the
spirit of K-nearest-neighbors (KNN) algorithm. To find a label for a document mi,
Zelikovitz and Hirsh seek to find the labeled document mz whose k nearest neighbors
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are most similar to xi. Using the inherent unlabeled data structure as a background for
estimating the distribution can generate more sound inferences than using pure matching
of mz to the closest mi.

Other SSL Models and Enhancements

Discriminative models and graph-based models were the top alternatives to generative
modeling at the time this book was written. These models are discussed in this section.

Discriminative Models

In SSL, generative models contrast discriminative models. Generative models develop and
use joint distribution for X and Y , while discriminative models deploy extreme con-
ditional distributions: specifically, Y conditional on X , when p(Y |X) is greater than a
certain number, say, 0.5. Discriminative models are often used in support vector machines
(SVMs), discussed in Chapter 3. While SVMs are strictly supervised methods, a varia-
tion called Semi-Supervised SVMs (S3VMs) relies on partially labeled data. In Generative
Adversarial Networks (GANs), a popular class of neural networks at the time this book
was written, generative and discriminative models work together with the discriminative
part validating data produced by the generative part.

Discriminative models can be Bayesian or non-Bayesian. Non-Bayesian models
include kernel regressions (e.g., Belkin et al. 2006), support vector machines (SVMs)
discussed in Chapter 3, and AdaBoost (Shawe-Taylor and Cristianini 2004). In a
kernel regression-based approach, Belkin, Niyogi, and Sindhwani (2006), for example,
examine the geometry of the marginal distribution of p(Y |X). In a nonparametric
approach known as manifold regularization, Belkin et al. (2006) use a standard kernel
regression, a locally constant estimator, and minimize the so-called regularized empirical
risk functional, R𝛾(m):

m̂(x) = 𝑎𝑟𝑔 minm(x)R𝛾(m)

The locally constant estimate m̂(x) depends on both labeled and unlabeled data:

R𝛾(m) =
N∑
i=1

n∑
j=1

KH(XiXj)(Yj − m(Xi))2 + 𝛾
N∑
i=1

n∑
j=1

KH(XiXj)(m(Xj) − m(Xi))2

whereKH is a symmetric kernel, e.g., a heat kernel, depending on a matrix of bandwidths
H and KH(XiXj) = K(H−1∕2(Xi − Xj)).

This estimator, described by Sindhwani et al. (2005), Belkin et al. (2006), and Tsang
and Kwok (2006), is also often used in support-vector machines (SVMs), a supervised
learning classifier of data discussed in Chapter 3.

Here, we focus on Bayesian approaches to the discriminative SSL. Generative models
form posterior probabilities p(yi|xi) using Bayes’ rule from class-conditional densities
p(xi| yi = cm) and class prior probabilities p(yi = cm). In contrast, Bayesian discriminative
models focus on modeling the posterior probability p(yi|xi).
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To model p(yi|xi), Lawrence and Jordan (2006) and Lafferty and Wasserman (2007)
describe the data as (x1, y, r1), … , (xN , yN , rN ) where ri ∈ {0, 1} is an indicator of
whether yi is observed: ri = 1 if yi is observed and 0 otherwise. Then, the labeled data
set is L = {(xiyi), ri = 1} and the unlabeled data set is U = {(xiyi), ri = 0}. The variable
Ri is, of course, readily observable.

Next, Lawrence and Jordan (2006) follow the SVM-like construct and place the class
decision boundary in a low-density region. To do so, Lawrence and Jordan construct a
null category, a class for which no data is ever observed. The null category model can be
thought of as a probabilistic version of the margin region in SVM.

Lawrence and Jordan introduce a latent process variable fi that allows us to decompose
the model into a noise model, p(yi| fi), and a process model, p(fi| xi), as follows:

p(yi|xi) =
∫

p(yi| fi) p(fi| xi) dfi
The null-category noise model p(yi| fi) is next derived from the ordered categorical
models (see, e.g., Agresti 2002). If we are looking to classify the labels into just two
categories, for example, “buy” and “sell” (aggregating strong buy and buy, ignoring
hold, and joining sell and strong sell), then the null-category model will look like this:

• For yi = 1, p(yi| fi) = Φ
(
−
(
fi +

a
2

))
• For yi = 0, p(yi| fi) = Φ

(
fi +

a
2

)
− Φ

(
fi −

a
2

)
• For yi = −1, p(yi| fi) = Φ

(
fi −

a
2

)
where Φ(x) is the cumulative Gaussian distribution function, Φ(x) = ∫

x
−∞N(z|0, 1) dz,

and a is a parameter defining the width of the class yi = 0. Using the instrument variable
ri that is 1 when the variable is present and 0 when it is missing, we can impose the
following constraint: a data point cannot be from the yi = 0 category as we created that
category specifically to have no data points. In other words, the probability of observing
a data point in class yi = 0 is 0:

p(ri = 1| yi = 0) = 0

Next, Lawrence and Jordan (2006) estimate the probit model and use it to successfully
estimate out-of-sample entries.

As an alternative to probit estimation, we consider the following formulation. First,
the ratings data are discretized further into a {0, 1} framework, where 1 is the negative
rating of “sell” or “strong sell.” Such discretization may be useful if we consider which
securities we should remove from our portfolios. Unlike generative models, 0 now may
denote a “buy,” “strong buy,” “hold,” or, most importantly, “missing data.” The key idea
here is that the information on whether the data are present or missing also comprises a
valuable part of the model. The output is essentially a product of the binary rating and
the instrumental variable showing whether the data are available or missing.

Next, the chosen supervised model is then fit with the entire set of training data
comprising both available and missing ratings data. The predictions on the out-of-sample
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Figure 4.12 Discriminant analysis using ridge regression with output in {0,1}, where 1 denotes
“sell” and “strong sell” while 0 stands for “buy,” “strong buy,” “hold,” or “missing data.”
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Figure 4.13 Discriminant analysis using K-nearest neighbors with output in {0,1}, where 1
denotes “sell” and “strong sell” while 0 stands for “buy,” “strong buy,” “hold,” or “missing data.”

stocks are next made from this formulation, with the results using ridge regression and
K-nearest neighbors shown in Figures 4.12 and 4.13.

Graph-based Models

Graph-based models emerged from the image classification and are typically variants
of the unsupervised models discussed later in this book. The models further help to
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fine-tune the sampling process by effectively representing a distribution over several
variables. Specifically, graph-based models represent random variables as nodes. Directed
edges exist between nodes only if there is a functional relationship between the parent
and the child node. The resulting graph encodes conditional independence constraints
that hold for the distribution. Once all the parents of the child are known, the child node
can be sampled. Graph-based models are discussed in the context of clustering detail in
Chapter 9.

Conclusion

Semi-supervised learning encompasses several models that fit on a wide spectrum
between supervised models discussed in Chapter 3 of this book and unsupervised
models discussed from Chapters 5 onwards. While the models diverge in their spirit
and execution, they all help achieve an otherwise expensive task of classification by
attempting to mimic limited human-generated examples.

Appendix 4.A Python for Semi-Supervised Models

Semi-supervised models are extensively developed in scikit-learn. Here, we will use
semi-supervised models to classify reports.

First, about the measurement of quality of our predictions. To evaluate the accuracy
of the models, we will use confusion matrices, also built-in in scikit-learn. A confusion
matrix is a matrix C where each element Ci,j corresponds to the number of observations
known to be in the group i, but predicted to be in the group j. The confusion matrix
conveniently delivers the counts of true positives, true negatives, false positives, and false
negatives. For example, in a binary classification with only two states, 0 and 1,C0,0 counts
true negatives, C1,1 represents the number of true positives, C1,0 counts false negatives,
and C0,1 shows false positives.

Using the scikit-learn confusion matrix is easy. The following code snippet generates
a confusion matrix C from the out-of-sample prediction y_pred determined based on
X_test and the corresponding true realized values of y_test:

from sklearn.metrics import confusion_matrix
C = confusion_matrix(y_test, y_pred)

Armed with confusion matrices, we can optimize the parameters to minimize errors
and improve fit.

Now, to the semi-supervised models themselves. A scikit-learn sub-library
sklearn.semi_supervised contains out-of-the-box semi-supervised learning
algorithms accessible with simple function calls. The following example uses the “Label
Spreading” algorithm that follows the analyst rating process described in this chapter:

from sklearn.semi_supervised import LabelSpreading
lp_model = LabelSpreading()
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lp_model.fit(X_train, y_train)
y_pred = lp_model.predict(y_test)

Calculating the confusion matrix and iterating over the label spreading model to
minimize confusion helps build a robust semi-supervised framework even in the presence
of significant noise.

For specific code examples, please visit https://www.BigDataFinanceBook.com,
and register with password SSL (case-sensitive).

References

Agrawala, A.K. (1970). Learning with a probabilistic teacher. IEEE Transactions on Information Theory
16: 373–379.

Agresti, A. (2002). Categorical Data Analysis. Hoboken, NJ: Wiley.
Aldridge, I. and Krawciw, S. (2017). Real-Time Risk: What Investors Should Know About Fintech,
High-Frequency Trading and Flash Crashes. Hoboken, NJ: Wiley.

Balcan, M.F. and Blum, A. (2010). A discriminative model for semi-supervised learning. Journal of the
ACM 57(3).

Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. The Journal of Machine Learning Research 7:
2399–2434.

Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In: Pro-
ceedings of the Eleventh Annual Conference on Computational Learning Theory, 92–100.

Castelli, V. and Cover, T.M. (1995). On the exponential value of labeled samples. Pattern Recognition
Letters 16(1): 105–111.

Chakrabortty, A. (2016). Robust semi-parametric inference in semi-supervised settings. PhD thesis,
Harvard University.

Chapelle, O., Scholkopf, B., and Zien, A. (2006). Semi-Supervised Learning. Cambridge, MA: MIT
Press.

Collins, M. and Singer, Y. (1999). Unsupervised models for named entity classification. In: Proceedings
of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large
Corpora, 189–196.

Dietterich, T.G. (1998). Approximate statistical tests for comparing supervised classification learning
algorithms. Neural Computing 10(7): 1895–1923.

Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-validation.
Journal of the American Statistical Association 78: 316–331.

Fralick, S.C. (1967). Learning to recognize patterns without a teacher. IEEE Transactions on Information
Theory 13: 57–64.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American
Statistical Association 70(350): 320–328.

Joachims, T. (1999). Transductive inference for text classification using support vector machines. In:
Proceedings of the Sixteenth International Conference on Machine Learning, 200–209, Bled, Slovenia.
http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99c.ps.gz.

https://www.bigdatafinancebook.com
http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99c.ps.gz


Trim Size: 7in x 10in Aldridge602989 c04.tex V1 - 12/09/2020 12:29 A.M. Page 106�

� �

�

106 B I G DATA S C I E N C E I N F I N AN C E

Kawakita, M. and Kanamori, T. (2013). Semi-supervised learning with density-ratio estimation.
Machine Learning 91: 189–209.

Kohavi, R. (1995).A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Pro-
ceedings of International Joint Conference on AI, 1137–1145. http://citeseer.ist.psu.edu/kohavi95study
.html.

Lafferty, J.D. and Wasserman, L. (2007). Statistical analysis of semi-supervised regression. Advances in
Neural Information Processing Systems 20: 801–808.

Lawrence, N.D. and Jordan, M.I. (2006). Gaussian processes and the null-category noise model. In:
Semi-Supervised Learning (ed. O. Chapelle, B. Scholkopf, and A. Zien). Cambridge, MA: The MIT
Press.

Lewis, D.D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval.
In: Tenth European Conference on Machine Learning, 4–15.

Lo, A.W. and McKinlay, A.C. (1990). Data-snooping biases in tests of financial asset pricing models,
Review of Financial Studies 3(3): 431–467.

McCallum, A. and Nigam, K. (1998). A comparison of event models for naive Bayes text classification.
In: Learning for Text Categorization: Papers from the AAAI Workshop, 41–48. AAAI Press.

Mizumoto, K., Yanagimoto, H., and Yoshioka, M. (2012). Sentiment analysis of stock market news
with semi-supervised learning. 2012 IEEE/ACIS 11th International Conference on Computer and
Information Science.

Nigam, K. (2001). Using unlabeled data to improve text classification. PhD Thesis, Carnegie Mellon
University.

Nigam, K., McCallum, A.K., Thrun, S., and Mitchell, T. (2000). Text classification from labeled and
unlabeled documents using EM. Machine Learning 39: 103–134.

O’Brien, P.C., McNichols, M.F., and Hsiou-Nei, L. (2005). Analyst impartiality and investment bank-
ing relationships. Journal of Accounting Research 43(4).

Refaeilzadeh, P., Tang, L., and Liu, H. (2007). On comparison of feature selection algorithms.
AAAI-07 Workshop on Evaluation Methods in Machine Learning II.

Rose, K., Gurewitz, E., and Fox. G. (1990). A deterministic annealing approach to clustering. Pattern
Recognition Letters 11(9): 589–594.

Rose, K., Gurewitz, E., and Fox. G. (1992). Vector quantization by deterministic annealing. IEEE
Transactions on Information Theory 38(4): 1249–1257.

Salzberg, S. (1997). On comparing classifiers: pitfalls to avoid and a recommended approach. Data
Mining and Knowledge Discovery 1(3): 317–328.

Scudder, H.J. (1965). Probability of error of some adaptive pattern-recognition machines. IEEE Trans-
actions on Information Theory 11: 363–371.

Shawe-Taylor, J. and Cristianini, N. (2004).Kernel Methods for Pattern Analysis. Cambridge: Cambridge
University Press.

Sindhwani, V., Niyogi, P., Belkin, M., and Keerthi, S. (2005). Linear manifold regularization for
large-scale semi-supervised learning. In: Proceedings of the 22nd ICML Workshop on Learning with
Partially Classified Training Data.

Sullivan, R., Timmermann, A., and White, H. (1999). Data-snooping, technical trading rule perfor-
mance, and the bootstrap. The Journal of Finance 54: 1647–1691.

Tsang, I. and Kwok, J. (2006). Large-scale sparsified manifold regularization. Advances in Neural Infor-
mation Processing Systems (NIPS) 19.

http://citeseer.ist.psu.edu/kohavi95study.html
http://citeseer.ist.psu.edu/kohavi95study.html


Trim Size: 7in x 10in Aldridge602989 c04.tex V1 - 12/09/2020 12:29 A.M. Page 107�

� �

�

Modeling Human Behavior with Semi-Supervised Learning 107

White, H. (2000). A reality check for data snooping. Econometrica 68: 1097–1126.
Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In:Meet-
ing of the Association for Computational Linguistics, 189–196.

Zelikovitz, S. and H. Hirsh (2000). Improving short text classification using unlabeled background
knowledge to assess document similarity. In Proceedings of the Seventeenth International Confer-
ence on Machine Learning: 1183–1190.

Zhu, X. (2005). Semi-supervised learning through graphs. Ph.D. thesis, Carnegie Mellon University,
USA. CMU-LTI-05-192.

Zhu, X. (2008). Semi-supervised learning literature survey. Computer Sciences, University of
Wisconsin-Madison, USA, technical report no. 1530.



Trim Size: 7in x 10in Aldridge602989 c05.tex V1 - 12/09/2020 11:02 P.M. Page 108�

� �

�

Chapter 5

Letting the Data Speak with
Unsupervised Learning

Introduction

T he supervised learning discussed in Chapter 3 typically requires a hypothesis
and a neatly matching set of inputs and outputs. The semi-supervised learning
covered in Chapter 4 relaxes some assumptions about data. The unsupervised

learning (UL) discussed here and in the rest of this book does away with hypotheses,
instead allowing the data to drive the analytical process.

In econometrics, a researcher dreams up a question to ask the data. The resulting
question may be subjective, incomplete, outright irrelevant, or even severely biased by
the researcher’s own prejudice. Unsupervised learning eliminates the trickling of the
researcher’s personal opinions and beliefs into the analysis. Instead of waiting for the
researcher’s question, unsupervised learning tells the researcher what the data know.
Specifically, unsupervised methods explain to the researcher the major trends in the data,
the main factors driving observed behavior and the like, all at the stroke of a key on a
computer keyboard.

UL is taking the industry by storm. Traditional disciplines like risk management can
be improved by switching to a fast hypothesis-less environment, trusting the data to speak
for themselves.

UL also comes with computational benefits: unsupervised techniques deliver results
of complex mathematical analyses in a flash, all with existing computing power. The

108
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implementation of UL can reach most areas, saving corporations millions of dollars in
the process. For example, one application that is waiting to benefit from unsupervised
learning is modern risk management, where at present most financial decisions are made
with at least a few days of risk horizon. Such a view ignores short-term risk events.
The classic 10-day value at risk (VAR), a standard for banks, for example, misses many
short-term risk events that end up costing financial institutions a pretty penny. The dura-
tion of the traditional risk measures was chosen as a balance between the application and
the computational complexity. Many traditional models require extensive Monte-Carlo
simulations that may take a very long time. This chapter and the following chapters in
this book discuss the details of implementation of the fast hypothesis-less paradigm in Big
Data Science.

The core unsupervised learning techniques have existed for over a century. However,
most were shelved as toy models until the technology became powerful yet inexpensive.
The advances in technology, however, are only part of the story of UL development.
The state-of-the art improvements in data science are due to developments in mathe-
matical aspects of computation. Most of the newest approaches are still waiting to be
implemented in Finance. This book provides brand-new groundbreaking examples of
the application of the latest techniques to facilitate financial strategies.

How does unsupervised learning work? From a high-level viewpoint, UL deploys
a set of techniques known as principal component analysis (PCA) or singular value
decomposition (SVD). These techniques identify the core characteristics of the data
at hand. The characteristics can often be summarized by what has long been known as
characteristic values, or alternatively, singular values, eigenvalues from German, or principal
components. These data descriptors capture statistical properties of the data in a succinct
and computer-friendly way, elucidating the key drivers of data in the process. Armed
with the key drivers or factors, the researchers’ problem data set shrinks instantly into
a manageable smaller-scale optimization problem. Best of all, the characteristic values
are able to capture the “feel” of the entire data population, mathematically stretching
beyond the observable X and Y. State-of-the-art inferences emerge.

What kinds of inferences are we talking about? Inferences that made billions of dollars
for companies like Google and Facebook, of course! And while Google and Facebook
focused on modeling of online human behavior, the data of other industries, and espe-
cially in Finance, can bring their own pots of gold to the capable hands.

We can loosely separate all data into three categories: Small, Medium, and Big:

• Small Data possess low dimensionality. Small Data have their own advantages: the
computation is transparent and inexpensive and often can be done by hand. On the
other hand, Small Data may not at all be descriptive of the actual phenomenon they
are trying to summarize – a sample may not represent the broader data population.

• Big Data are described by high dimensionality. An example of high-dimensional data
may be a table with thousands, if not millions, of columns, and even more rows.
Big Data are leveraging their size to their full potential. Large data size is great for
describing the entire universe of events, taking into consideration inherent randomness
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and statistical properties of the Law of Large Numbers and measuring concentration
to deliver solid inferences about events.

• Medium Data have neither the advantage of Small Data nor of Big Data.

The Law of Large Numbers, one of the pillars of statistics, states that as the data
sample increases in size, the data overcome potentially inherent noise and distortions
to converge on the true data distribution. In other words, to obtain truly descriptive
inferences about the world, one does not need to have every single point of the data
in the world, although taking as large a sample of data as possible definitely helps make
inferences more precise. Big Data help achieve stable inferences by taking into account
large data populations.

Concentration of measure is another critical concept that states that a measured
variable that depends on many independent variables, and not too much on any
one variable in particular, is stable. Specifically, the measured variable’s distribution
concentrates around its median, hence the term “concentration of measure.” Big Data
provide sought-after measure concentration for output variables by considering massive
dependencies.

Dimensionality Reduction in Finance

Fan, Fan, and Lv (2008) show that dimensionality reduction, in any form, significantly
reduces the error of the estimation. Fan, Fan and Lv’s main argument is that the amount
of daily data in Finance is just insufficient to meaningfully draw inferences about things
like covariance matrices. To overcome the problem, they expand the number of available
observations by considering multiple factors in a Ross-like decomposition (Ross 1976;
1977):

Yi = bi1f1 + bi2f2 + … + biK fK + 𝜀i, i = 1, … , p

where Yi is the decomposed variable, most often the excess return of a financial instru-
ment i over the risk-free rate, f1, … , fK are the excessive returns of K factors relative
to their means, bij are factor loadings (i = 1, … , p, j = 1, … ,K), and 𝜀1, … , 𝜀p are p
idiosyncratic errors uncorrelated given the excessive returns of K factors f1, … , fK .

Fan, Fan, and Lv (2008) begin by examining covariance matrices with and without
factor decomposition of the underlying instruments. Thus, in a data sample comprising p
stocks, a sample covariance matrix without any factorization has p(p + 1)∕2 parameters to
be estimated.When all p stocks are factorized using the famous Fama-French three-factor
model (Fama and French 1992; 1993), then the number of parameters to be estimated
reduces to just 4p, as each stock return is now correlated with the factor return instead of
other stock returns, as shown in Tables 5.1 and 5.2. An example of a three-factor model
is the Fama-French model (Fama and French 1992; 1993).

The factors in the Fama-French model are contemporaneous returns on three port-
folios:

• A market portfolio in excess of the risk-free rate: f1 = Rm − rf .
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Table 5.1 Traditional covariance matrix of security
returns.

R1 R2 … Rp

R1 𝜎11 𝜎12 = 𝜎21 … 𝜎1p = 𝜎p1
R2 𝜎21 𝜎22 … 𝜎p2 = 𝜎2p
…
Rp 𝜎p1 𝜎p2 … 𝜎pp

Table 5.2 Factorized covariance matrix of security
returns.

f1 f2 f3 Ri

R1 𝜎11 𝜎12 𝜎13 𝜎21
R2 𝜎21 𝜎22 𝜎23 𝜎22
… … … … …
Rp 𝜎p1 𝜎p2 𝜎p3 𝜎2p

• A “size” portfolio, also known as “small minus big” stock returns, that subtracts
large-cap stock returns from small-cap returns, recognizing small-cap ability to out-
perform large cap: f2 = RSmall−Cap − RLarge−Cap. The “cap” is the capitalization of the
company as reflected in its total market valuation (number of stocks issued × price of
each stock). Small-cap stocks have historically outperformed large-cap stocks.

• A “book-to-market” portfolio, also known as “High Minus Low” in reference to the
return difference between high book-to-market stocks versus low book-to-market
stocks: f3 = RHigh Book to Market − RLow Book to Market. The book-to-market ratio is calculated
as the fraction of accounting value to market value, the latter measured by the stock
valuation. Higher book-to-market stocks have been shown to outperform lower
book-to-market stocks.

To construct the size and book-to-market portfolios, Fama and French (1992, 1993)
sort all the stocks into deciles based on size and book-to-market, respectively. Then,
Fama and French create equally weighted size portfolios adding long positions in the
smallest by capitalization decile of stocks and shorting the largest decile by capitalization.
Similarly, they create the book-to-market portfolios by going long on the highest decile
of book-to-market stocks and shorting the lowest decile.

Factorized covariances à la Fan, Fan, and Lv (2008) provide immediate reduction
in dimensionality, making the sample covariance matrices suitable for modeling those of
the population. Further inversion of factorized, low-dimensional, covariance matrices
delivers a sound alternative to the unstable high-dimensional covariance matrices.

Fan, Fan, and Lv’s factors are known and may or may not be fully uncorrelated,
i.e., orthogonal. In contrast, as shown later in this book, SVD and PCA deliver fully
orthogonal factors that arise from the data. These factors, however, may or may not be
known to the researchers.
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Dimensionality Reduction with Unsupervised Learning

The methodology of Fan, Fan, and Lv (2008) calls on the researchers to determine the
factors that are then used to create appropriate portfolios. The resulting factors may not at
all represent the optimal factorization. For one, working with large data sets can be very
time-consuming. Next, vast computing power may be required to handle the challenge
of analyzing all possible factor combinations.

Advances in data processing technology help a bit. For example, researchers may rent
powerful servers operated in parallel, hosted in remote locations and accessible online,
collectively referred to as being located in a cloud and cloud computing. The servers in a
cloud may be organized into interdependent and interoperating groups known as clusters.
Each cluster may contain several independent processing nodes (servers, server partitions,
or even just processes) capable of handling specific loads. Cluster management systems then
may allow the computing load to be dynamically distributed among several nodes, all
the while appearing seamless to the end user.

Still, even when equipped with state-of-the-art computing, manually searching for
orthogonal factors explaining the data can be a daunting task taking weeks, months, and
even years. For example, the best-known factor in Finance, such as Sharpe’s (1964) and
Lintner’s (1965) CAPM, took years to develop and was even awarded a Nobel Memorial
Prize in Economics!

UL techniques offer the promise of a fast factor development independent of the
researchers. Armed with the latest technology, the factor selection becomes almost
instantaneous.

What does UL actually do? By identifying key structural dependencies in the data,
unsupervised learning techniques identify latent, unspecified, or previously unknown
factors, or combinations of thereof. Furthermore, the factors presented by the UL are
orthogonal to each other by construction, freeing the researchers’ time from verifica-
tion of the factors. Further still, the UL factors come ordered from the most globally
significant to the least, simplifying the researchers’ work even further.

The factors are known as principal components, characteristic values, eigenvalues, or
singular values. The corresponding process of distilling the factors is known as principal
component analysis (PCA), or singular value decomposition (SVD). Both PCA and SVD
work with purely numerical data. Any data containing other-than-numeric values, say,
text, have to be converted to the numeric format prior to the analysis.

The key idea behind factorization in either PCA or SVD is to find the dimensions
of the data along which the data vary the most and the least. The factors that account
for most variation in the data are typically critical to the reconstruction of the entire data
set while the factors along which the data vary the least are the ones providing the final
touches of detail, and, quite often, noise.
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Figure 5.1 Original sample image.

Unsupervised Learning: Intuition via Image Factorization

Many Big Data techniques, such as spectral decomposition, first appeared in the eigh-
teenth century when researchers grappled with solutions to differential equations in the
context of wave mechanics and vibration physics. Fourier furthered the field of eigen-
value applications extensively with partial differential equations and other work.

At the heart of many Big Data models is the idea that the properties of every data
set can be uniquely summarized by a set of values, called eigenvalues. An eigenvalue is a
total amount of variance in the data set explained by the common factor. The bigger the
eigenvalue, the higher the proportion of the data set dynamics that eigenvalue captures.

Eigenvalues are obtained via one of the techniques, principal component analysis
(PCA) or singular value decomposition (SVD), discussed below. The eigenvalues and
related eigenvectors describe and optimize the composition of the data set, perhaps best
illustrated with an example of an image.

The intuition on which the technique is based is illustrated with the example from
image processing. Consider the black-and-white image shown in Figure 5.1. It is a set
of data points, “pixels” in computer lingo, whereby each data point describes the color
of that point on a 0–255 scale, where 0 corresponds to pure black, 255 to pure white,
and all other shades of gray lie in between. This particular image contains 460 rows and
318 columns.

To perform spectral decomposition on the image, we utilize SVD, a technique orig-
inally developed by Beltrami in 1873. For a detailed history of SVD, see Stewart (1993).
Principal component analysis (PCA) is a related technique that produces eigenvalues and
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eigenvectors identical to those produced by SVD, when PCA eigenvalues are normal-
ized. Raw, non-normalized, PCA eigenvalues can be negative as well as positive and do
not equal the singular values produced by SVD. For the purposes of the analysis presented
here, we assume that all the eigenvalues are normalized and equal to singular values. Later
in this chapter, we show why and how PCA and SVD are related and can be converted
from one to another.

Singular Value Decomposition

In SVD, a matrix X is decomposed into three matrices: U, S, and V,

X = USV ′ (5.1)

where

X is the original n x m matrix;
S is an m × m diagonal matrix of singular values or eigenvalues sorted from the highest

to the lowest on the diagonal;
V’ is the transpose of the m x m matrix of so-called singular vectors, sorted according to

the sorting of S;
U is an n × n “user” matrix containing characteristics of rows vis-à-vis singular values.

SVD delivers singular values sorted from the largest to the smallest. The plot of the
singular values corresponding to the image in Figure 5.1 is shown in Figure 5.2. The
plot of singular values is known as a “scree plot” since it resembles a real-life scree, a
rocky mountain slope.

A scree plot is a simple line segment plot that shows the fraction of total variance
in the data as explained or represented by each singular value (eigenvalue). The singular
values are ordered and assigned a number label, by decreasing order of contribution to
total variance.

To reduce the dimensionality of a data set, we select k singular values. If we were
to use the most significant of the singular values, typically containing macro informa-
tion common to the data set, we would select the first k values. However, in applica-
tions involving idiosyncratic data details, we may be interested in the last k values, for
example, when we need to evaluate the noise in the system. A rule of thumb dictates
breaking the eigenvalues into sets before the “elbow” and after the elbow sets in the
scree plot.

What is the perfect number of singular values to keep in the image of Figure 5.1? An
experiment presented in Figures 5.3–5.9 shows the evolution of the data with varying
numbers of eigenvalues included. The eigenvalues and the corresponding eigenvectors
comprised of linear combinations of the original data create new “dimensions” of data.
As Figures 5.3–5.9 show, as few as 10 eigenvalues allow the human eye to identify the
content of the image, effectively reducing dimensionality of the image from 318 columns
to 10.
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Figure 5.2 Scree plot corresponding to the image in Figure 5.1.
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Figure 5.3 Reconstruction of the image of Figure 5.1 with just the first singular value.

However, the guesswork is not at all needed, as numerous methods of selecting the
right cut-off value for the eigenvalues have already been researched. Chapter 7 discusses
the methodologies for optimal scree plot “elbow” selection using the Marcenko-Pastur
theorem.

To create the reduced data set, we restrict the number of columns in the S and V
matrices to k by selecting k first elements, determined by the spectral cut-off method.
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Figure 5.4 Reconstruction of the image in Figure 5.1 with the first 2 singular values.
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Figure 5.5 Reconstruction of the image of Figure 5.1 with the first 5 singular values. The
outlines of the figure are beginning to appear.

The resulting matrix Xreduced has dimensions n rows and k columns, where

Xreduced, n × k = Un × n Sn × k V
T
k x k (5.2)

and the unwanted or “cut-off” eigenvalues are replaced by zeros on the diagonal of
the Sn x k matrix.



Trim Size: 7in x 10in Aldridge602989 c05.tex V1 - 12/09/2020 11:02 P.M. Page 117�

� �

�

Letting the Data Speak with Unsupervised Learning 117

image with 10 singular vectors
0

100

200

300

400

0 100 200 300

Figure 5.6 Reconstruction of the image in Figure 5.1 with the first 10 singular values.
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Figure 5.7 Reconstruction of the image in Figure 5.1 with the first 20 singular values.

The process of reducing the dimensionality of data by essentially wiping out a portion
of eigenvalues and the associated eigenvectors is referred to as “whitening.”

As the images above illustrated, Big Data techniques like SVD and PCA masterfully
reduce the dimension of the data without sacrificing data quality and the following
inferences.
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Figure 5.8 Reconstruction of the image in Figure 5.1 with the first 50 singular values.
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Figure 5.9 Reconstruction of the image in Figure 5.1 with the first 200 singular values.

Why reduce dimensions? Why not use the entire data set available? Many financial
applications use daily data. Daily data suffer from relatively small sample size. Take three
years of data and you are already counting 750 daily observations, corresponding to
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750 rows in a matrix. If you are dealing with, say, 10 or even 50 stocks in portfolio
allocation, organized in columns, then traditional covariance-based models will work just
fine. However, if your mandate is to optimize a portfolio of the instruments comprising
the S&P 500, S&P 1500, Russell 3000, or the entire trading universe, the covariance
computation fails. Seminal studies like Johnstone (2001) showed that when the data
dimensionality (the number of columns) approaches, not to mention exceeds, the sample
size (the number of rows), the sample covariance matrix suffers considerably and is no
longer a good estimator for the true population covariance.

Dimensionality reduction, however obvious and easy to grasp an application, is only
a small subset of applications of SVD discussed in this book along with applications
of PCA and other Big Data tools. Understanding the mechanics of SVD, therefore, is
desirable and allows researchers to produce new innovative ideas. SVD, PCA, and several
other key tools, like norms, are discussed in detail in the rest of this chapter.

Deconstructing Financial Returns

What do the U, S, and V matrices represent in practice? Consider the case of financial
returns.

UL techniques distill the data down to a spectrum of influencing factors. The result-
ing factors are dependent on the specifics of the problem under consideration. Some of
the frequent factors can be movements of the larger markets, others are characteristics of
the financial instruments under consideration, and some may even turn out to be returns
of other securities.

To determine significant factors driving the data, we rely on a technique known as
principal component regression. In a principal component regression, the dependent variable
is regressed not on other variables in the data set, but on linear combinations of these vari-
ables as determined by top eigenvalues and eigenvectors. Eigenvalues and eigenvectors
can be thought of as the core representation of the data, or its most important character-
istics. The motivation behind the principal component regression then is to elucidate the
dependent variable’s characteristics vis-à-vis these powerful singular value-driven factors.

What drives the U.S. equities markets? Here we present a toy example of dimension-
ality reduction for portfolio allocation and illustrate its performance. To assess, we start
with the entire U.S. equities and Electronically Traded Funds (ETFs) universe, which
on February 1, 2020, comprised 8,315 names, according to NASDAQ. To ensure a
multi-year analysis, we restrict the sample to securities with a three-year or longer history,
even though doing so potentially induces a survivorship bias à la Brown, Goetzmann,
Ibbotson, and Ross (1992). Removing the names with less than three years of daily data
left a sample of 5,983 observations.

Breaking up the sample into 100-stock groups, we perform an in-sample decompo-
sition of returns via SVD on each group over the entire 2018, comprising 251 daily
observations. The returns for each security i are computed as simple daily returns,
Ri,t = Pi,t∕Pi,t−1 − 1, where Pi,t is a closing price for a stock i on day t. The returns
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for every 100 stocks are arranged in an n × m matrix with n = 251 days in rows and m
= 100 stocks in columns.

Each 251 × 100 matrix, representing a group of 251 daily returns for 100 stocks, was
decomposed using SVD into matrices U251 × 251, S251 × 100, and V100 × 100. The matrix
S is diagonal, that is, it is zeros everywhere except on the diagonal. The diagonal of S
contains the singular values of the matrix, ordered from the largest to the smallest. The
100 × 1 vectors comprising the V matrix are known as the singular vectors and are the
factors driving each given set of returns. All the columns of V , the singular vectors, are
completely uncorrelated with each other, or orthogonal to each other, by construction,
as discussed later in this chapter. The singular vectors, like their corresponding singular
values, are ordered from the most impactful on the global return scale to the least impact-
ful. The least important singular vectors are often considered to represent the qualities
pertaining to the individual stocks, known as idiosyncratic properties.

The first singular vector is the most impactful across all the securities in the group.
It is a linear combination of the returns series in the original returns matrix. Each value
of the 100 within the first singular vector corresponds to the coefficient with which the
given stock’s returns vector is included in the singular vector. To illustrate the output of
SVD, Table 5.3 shows the most positive and the most negative return contributions, as
determined by SVD, in a portfolio composed from the first 100 stocks.

It is interesting to note that ETFs and pharmaceutical companies dominate the pos-
itive and the negative ends of the first singular vector. Similar results can be observed in
the other 100-share groups. For example, Table 5.3 shows the most common securities
that appeared as the top influencers in the singular value decomposition when all the
traded securities were randomly drawn into groups of 200 with replacement. Here, the
process of random 200-stock portfolio construction was repeated 1,000 times.

What are the top drivers of the random portfolios? Table 5.4 shows the names of
securities that appeared at least twice as the highest coefficient in the first singular vec-
tor in 1,000 randomly picked portfolios. The portfolios were chosen randomly with
replacement from the universe of all the securities traded in the United States over the
2018–2019 period.

As Table 5.4 shows, 12 out of 31 security names that appear at least in two portfolios
as the top influencer in the top singular vector are ETFs or ETNs. In other words, even
in a perfectly random portfolio, we have a decent chance of finding an ETF that well
represents the underlying returns.

Why is this significant? As shown in Avellaneda and Lee (2010), in times of down-
ward volatility, many investors would like to sell their portfolio holdings at the same time.
In many cases, this results in severe liquidity shortages. To overcome the issue, investors
sell the most liquid security available, such as NYSE:SPY. Next, the investors gradually
rebalance their portfolios to buy back the liquid security and sell their actual portfolio
holdings. The resulting approach allows investors to lock in the effects of the down-
ward volatility and mitigate their losses. As Aldridge (2016) shows, the approach has
been growing in popularity, as demonstrated by the ever increasing correlations between
downward volatility and traded volume of NYSE:SPY (Figure 5.10). Identifying the
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Table 5.3 Proportions of individual stock returns in the A-AEF Group (100 stocks) included in
the first singular vector, as determined by SVD.

Stock
symbol Description

Proportion
in the first
singular vector

Most positive
ACWI The iShares MSCI ACWI ETF seeks to track the investment

results of an index composed of large and
mid-capitalization developed and emerging market
equities

0.3718

ACRX AcelRx Pharmaceuticals, Inc., a specialty manufacturer of
treatments for acute pain

0.3367

ADME Aptus Drawdown Managed Equity ETF, that seeks out US
stocks exhibiting strong yield plus growth characteristics,
and includes market hedges

0.2706

ADMP Adamis Pharmaceuticals Corporation, a specialty
manufacturer of treatments for respiratory disease and
allergies

0.2076

ACNB ACNB Corporation, a parent holding company for Russell
Insurance Group, Inc., ACNB Bank, Bankersre Insurance
Group, Spc

0.2034

ACRS Aclaris Therapeutics, Inc., manufacturer of specialty
treatments in dermatology, both medical and aesthetic,
and immunology

0.1116

ADSK Autodesk, Inc., a maker of software for the architecture,
engineering, construction, manufacturing, media,
education, and entertainment industries

0.1107

ACN Accenture plc, a Fortune 500 professional services company
that provides services in strategy, consulting, digital,
technology, and operations.

0.1013

ACSI American Customer Satisfaction ETF, that seeks to track the
performance, before fees and expenses, of the American
Customer Satisfaction Investable Index

0.0987

ACU Acme United Corporation, a supplier of cutting, measuring,
and safety products for the school, home, office, hardware,
and industrial markets

0.0972

Most negative
ACST Acasti Pharma, a specialty manufacturer of cardiovascular

treatments
-0.3473

ACT AdvisorShares Vice ETF, tracking select alcohol and tobacco
companies

-0.2409

ADMS Adamas Pharmaceuticals, a specialty manufacturer of
treatment for chronic neurological diseases

-0.2226

ACOR Acorda Therapeutics, Inc., a specialty manufacturer of
neurology therapies for Parkinson’s disease, migraine, and
multiple sclerosis

-0.2057

ACWX iShares MSCI ACWI ex U.S. ETF, tracking large and
mid-cap equities outside of the U.S.

-0.1903
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Table 5.3 continued

Stock
symbol Description

Proportion
in the first
singular vector

ADES Advanced Emissions Solutions, Inc., a holding company for
a family of companies that provide emissions solutions to
customers in the coal-fired power generation, industrial
boiler, and cement industries

-0.1485

ADNT Adient PLC, a manufacturer of automotive seating for
customers worldwide

-0.1368

ACH Aluminum Corporation of China Limited, the world’s
second-largest alumina producer and third-largest primary
aluminum producer at the time this book was written

-0.1331

ACP Aberdeen Income Credit Strategies Fund, a non-diversified,
closed-end management investment company

-0.1265

ADRE Invesco BLDRS Emerging Markets 50 ADR Index Fund -0.1054
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Figure 5.10 Rolling 250-day correlations between intraday downward volatility and volume of
NYSE:SPY. Based on Aldridge (2016).

exact ETF driving the portfolio may deliver more precise outcomes in times of down-
ward volatility than a blanket sell-off of NYSE:SPY.

For instance, in the initial days of the COVID-19 crisis emergence in the United
States, investment professionals struggled to unload investments quickly in a rapidly
declining market. The example below illustrates a practical way to hedge the sell-off
by selecting and selling the most appropriate ETF, and then gradually rebalancing the
portfolio to their desired composition.



Trim Size: 7in x 10in Aldridge602989 c05.tex V1 - 12/09/2020 11:02 P.M. Page 123�

� �

�

Letting the Data Speak with Unsupervised Learning 123

Table 5.4 The most common top positive factors in the first singular value out of 10,000
portfolios of 200 stocks each selected randomly with replacement from the entire universe of
securities traded in the U.S. for the 2018 calendar year.

Symbol Name Sector

ICOL iShares MSCI Colombia ETF (ICOL) ETF
CHD Church & Dwight Co., Inc. (CHD) Consumer Defensive, Household &

Personal Products
DJP iPath Bloomberg Commodity Index Total

Return (SM) ETN (DJP)
ETN

AGEN Agenus, Inc. (AGEN) Healthcare, Biotechnology
EDU New Oriental Education & Technology

Group, Inc. (EDU)
Consumer Defensive, Education &
Training Services

VER VEREIT, Inc. (VER) Real Estate, REIT—Diversified
ECH iShares MSCI Chile Capped ETF (ECH) ETF
KEP Korea Electric Power Corporation (KEP) Utilities, Utilities—Regulated Electric
NEOS Neos Therapeutics, Inc. (NEOS) Healthcare, Drug

Manufacturers—Specialty & Generic
XWEB SPDR S&P Internet ETF (XWEB) ETF
EEMV iShares Edge MSCI Min Vol Emerging

Markets ETF (EEMV)
ETF

PSMB Invesco Balanced Multi-Asset Allocation
ETF (PSMB)

ETF

TDW Tidewater, Inc. (TDW) Energy, Oil & Gas Equipment & Services
OII iPath Series B S&P GSCI Crude Oil Total

Return Index ETN (OIL)
ETN

DLX Deluxe Corporation (DLX) Communication Services, Advertising
Agencies

ADRO Aduro BioTech, Inc. (ADRO) Healthcare, Biotechnology
PNI PIMCO New York Municipal Income

Fund II (PNI)
ETF

MPB Mid Penn Bancorp, Inc. (MPB) Financial Services, Banks—Regional
NAT Nordic American Tankers Limited (NAT) Industrials, Marine Shipping
FLTR VanEck Vectors Investment Grade

Floating Rate ETF (FLTR)
ETF

BKI Black Knight, Inc. (BKI) Technology, Software—Infrastructure
NMRK Newmark Group, Inc. (NMRK) Real Estate, Real Estate Services
VRTV Veritiv Corporation (VRTV) Industrials, Business Equipment &

Supplies
JAN JanOne, Inc. (JAN) Industrials, Waste Management
IAT iShares U.S. Regional Banks ETF (IAT) ETF
DCP DCP Midstream, LP (DCP) Energy, Oil & Gas Midstream
DEUR Citigroup ETNs linked to the

VelocityShares Daily 4X Long USD vs.
EUR Index (DEUR)

ETN

ZEUS Olympic Steel, Inc. (ZEUS) Basic Materials, Steel
BOXL Boxlight Corporation (BOXL) Technology, Communication Equipment
REDU RISE Education Cayman Ltd (REDU) Consumer Defensive, Education &

Training Services
RVRS Reverse Cap Weighted U.S. Large Cap

ETF (RVRS)
ETF
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Table 5.5 Correlation of the top-ten eigenvectors of the Russell 3000 stocks with ETFs (highest
and lowest ETF correlation shown) and Fama-French factors in 2018 (Fama and French 1992,
1993).

#
Eigenvector

Maximum
Correlation
ETF (%)

Minimum
Correlation
ETF (%)

Correlation
with Excess
Market R (%)

Correlation
with SMB
(%)

Correlation
with HML
(%)

1 18.1, ACH −19.1, AACG 6.6 −2.2 2.4
2 44.0, AFB −25.1, ABEV 12.8 1.2 −1.5
3 21.0, AGG −49.4, ADRA −11.6 0.0 −1.7
4 58.5, AGGE −47.7, AGT −2.0 −3.0 2.5
5 24.4, AGZ −24.0, AZUL 2.9 15.3 −5.9
6 17.1, BSCM −20.6, EDEN 2.3 7.9 1.3
7 25.6, GDO −19.7, EZT 4.9 5.0 4.2
8 15.6, AB −18.2, WPP 1.1 −1.3 −1.8
9 22.5, ABEV −21.2, AACG 7.8 −8.3 −2.8
10 26.8, ACT −24.5, AAXJ 4.6 2.9 −2.6

Why is selection of the best-fit ETF a problem warranting its own solution? As
discussed earlier in this chapter, selling SPY in times of downward volatility has become a
go-to strategy for portfolio managers. In times of crises, when most of the investors rush
over to short SPY, doing so becomes unreasonably expensive. Separately, the number
of ETFs has exploded in recent years. As of January 2020, for example, the Boston
Stock Exchange has traded 5,179 stocks and 4,176 non-stock issues, including ETFs,
electronically-traded notes (ETNs), and American Depository Receipts (ADRs), the
latter being proxies for the foreign-traded shares. With the number of non-corporate
securities rapidly approaching and even threatening to exceed the number of publicly
traded shares, there may be a reasonably-priced SPY alternative for pretty much most
equity portfolios!

As Table 5.5 shows, ETFs dominated Russell 3000 in 2018. Returns on certain ETFs
like AGGE, ADRA, and AGT were highly positively and negatively correlated with
returns composed of eigenvector allocations based on dimensionality reduction of Rus-
sell 3000 returns. The highest positive correlation was due to AGGE (IQ Enhanced Core
Bond U.S. ETF that ceased trading on February 4, 2020, according to ET.com), followed
by AFB (AllianceBernstein National Municipal Income Fund). AGGE showed 58.5%
correlation with the fourth eigenvector-portfolio of Russell 3000 returns in 2018 while
AFB registered 44% correlation with the second eigenvector of the Russell 3000 returns.
The funds most negatively correlated with the Russell 3000 eigenvectors were ADRA
(Invesco BLDRS Asia 50 ADR Index Fund, ceased trading on February 14, 2020) and
AGT (iShares MSCI Argentina and Global Exposure ETF). ADRA showed -49.4% cor-
relation with the third eigenvector of Russell 3000, and AGT delivered -47.7% with the
fourth eigenvector.

http://et.com
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Figure 5.11 2018 returns’ eigenvectors’ correlation with contemporaneous Fama-French factors
and all contemporaneous ETFs.

To benchmark the factor correlations, we compare that with the correlations of the
Fama and French factors. According to the Fama and French classic three-factor model
(Fama and French 1992, 1993), financial returns can be explained by:

• excess market return (Rm - Rf )
• growth: HML (“High Book-to-Value Minus Low Book-to-Value” portfolio returns)
• size: SML (“Small Minus Large” portfolio returns).

As shown in Table 5.5 and Figure 5.11, the highest Fama-French factor correlations
were reached by the excess market return with the second eigenvector portfolio of the
Russell 3000 returns (12.8%), SMB with the fifth eigenvector portfolio (15.3%), and
HML with the seventh eigenvector portfolio (just 4.2%). Potentially, the dominance
of ETFs can explain the increasingly poor performance of the Fama-French factors,
documented on the Kenneth French website (https://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html).

Why did AGGE and ADRA shut down? The coronavirus COVID-19 crisis was
sweeping the world in February 2020. AGGE and ADRA perhaps wisely stopped oper-
ating to avoid catastrophic losses. However, AFB only lost 22% while the S&P 500 was
down 33% of its pre-crisis high. AGT, on the other hand, lost 45% of value in a span of a
few days. Also, while the sell-off in SPY and AGT began on February 20, 2020, AFB held
strong through March 6. All three securities reached the bottom on March 23, 2020.

Table 5.5 further compares COVID-crisis performance of the top-five ETFs most
positively and negatively correlated with the top eigenvectors of the Russell 3000 index.
As Table 5.5 shows, the most positively correlated ETFs have largely retained their value

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 5.6 Covid crisis performance of the ETFs most correlated with the top-ten eigenvectors of
the Russell 3000.

# Eigenvector Maximum Correlation ETF Minimum Correlation ETF

1 ACH Jan. 6–Mar. 26, 2020, -48.05% AACG Oct. 2019–Mar. 23, 2020, -60.0%
2 AFB Mar. 6–Mar. 23, 2020, -23% ABEV Jan. 2–Mar. 16, 2020, -55.39%
3 AGG March 9–18, 2020, -8.6% ADRA Stopped trading Feb. 14, 2020
4 AGGE Stopped trading Feb. 4, 2020 AGT Feb. 20–Mar. 20, 2020, -45.08%
5 AGZ Feb. 6–Mar. 9, 2020, +4.3% AZUL Feb. 5–Mar. 18, 2020, -86.16%

through the crisis while the most negatively correlated ETFs lost an extreme proportion
of their equity, often way in excess of the -32.10% drop in the S&P 500 over Feb. 20–Mar.
23, 2020. It is likely that the top positively correlated ETFs indeed will capture the core
structure of the Russell 3000 and retain a higher proportion of their values in crises.

Interestingly, the top positively correlated issue was an ADR for Aluminum Cor-
poration of China Limited (ACH), which understandably performed poorly due to the
economic devastation in China. At the same time, the next top issues were all bond
funds: AllianceBernstein National Municipal Income Fund (AFB), iShares Core U.S.
Aggregate Bond ETF (AGG), IQ Enhanced Core Bond U.S. ETF (AGGE), and iShares
Agency Bond ETF (AGZ).

On the negative correlation side, the top funds covered emerging markets, in a sense,
the antithesis of Russell 3000: ATA Creativity Global (AACG), a Chinese education
company, Ambev S.A. (ABEV), a Brazilian beverage manufacturer, Invesco BLDRS Asia
50 ADR Index Fund (ADRA), iShares MSCI Argentina and Global Exposure ETF
(AGT), and Azul S.A. (AZUL), a Brazilian airline. Figures illustrate the performance of
the top issues positively correlated (“good”) and negatively correlated (“bad”) with the
top-five eigenvectors of the Russell 3000 returns (Table 5.6) (Figures 5.12 and 5.13).

The application of the principal component regression presented here illustrates an
investment strategy that dives into the “surrogate” core structure issues of financial data.
Instead of investing in the Russell 3000 itself, we consider the proxies for the drivers of
the Russell 3000 returns. Investing in the core drivers delivered relative stability in the
COVID-19 crisis. Overall, issues like China Aluminum have delivered growth (until the
crash) while the bond funds buoyed the portfolio. Avoiding issues negatively correlated
with the top eigenvectors helps to further bullet-proof the portfolio against the crises.

Figures 5.14 and 5.15 further show performance of the “good” and “bad” ETFs
selected based on 2018 data through 2019 and the COVID crisis. As Figures 5.14 and
5.15 show, ACH indeed led SPY throughout 2019 and early 2020.

Using Singular Vectors as Portfolio Weights

Since singular vectors represent the core of the data, it is natural to ask whether they can
be used in portfolio construction. Can the weights of the individual securities forming
the first singular vector or vectors in proxying their respective 100-stock groups be used
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Figure 5.12 January–April 2020 Performance of the issues most positively correlated with the
top-five eigenvectors of the Russell 3000. Except for Aluminum Corporation of China Limited
(ACH), most outperformed the S&P 500 during the COVID crisis.
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Figure 5.13 January–April 2020 Performance of the issues most negatively correlated with the
top-five eigenvectors of the Russell 3000. All underperformed the S&P 500 during the COVID
crisis.

to form portfolios of stocks that outperform the market? Since these weights represent
the dominant drivers of the returns of the 100 stocks, shouldn’t the portfolio with these
weights outperform the equally weighted portfolio?
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Figure 5.14 January 2019-April 2020 Performance of the issues most positively correlated with
the top five eigenvectors of the Russell 3000.
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Figure 5.15 January 2019-April 2020 Performance of the issues most negatively correlated with
the top five eigenvectors of the Russell 3000.
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Sharpe Ratios of Eigenvector Portfolios Less SR of Equally Weighted (EW) Portfolios for Different 200-Stock Allocations
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Figure 5.16 Distribution of Excess Sharpe ratios (SR of Portfolio less SR of the Equally
Weighted Portfolio) of 1,000 random portfolios allocated according to the coefficients of their
returns’ first 5 singular vectors and the very last singular vector. All the portfolio Sharpe ratios are
adjusted by their Equally Weighted Sharpe ratio.

As Figure 5.16 shows, the portfolios based on top singular vectors of their returns
have a bimodal distribution and do not necessarily outperform equally weighted allo-
cation on the respective securities. Specifically, portfolios in Figures 5.10–5.13 were
constructed by drawing 200 random names from the entire universe of securities traded
in the United States. The instruments that were not traded for the entire 2018–2019 span
were next removed from the portfolios. For each of the resulting portfolios, the singular
vectors were calculated over the 2018 returns. The performance shown was determined
in-sample over the 2018 data, with the weights of the top-5 singular vectors as well as
the very last singular vector serving as the weights of the portfolios under consideration.

As Figures 5.17 and 5.18 show, positive and negative singular vectors deliver port-
folios that are positively and negatively correlated with the benchmarks, such as the
equally weighted portfolio. Long-only portfolios consisting of just positive elements of
the first 5 and the very last singular vectors are positively correlated with the equally
weighted portfolios made up of the same elements. Short-only portfolios that include
just negative elements of the first 5 and the last singular vectors are negatively correlated
with the equally weighted portfolios.

Factorized portfolios show that, as the number of singular vectors comprising the
portfolios increases, the average returns decrease. At the same time, the return variances
decrease as well, resulting in stable, slightly positive Sharpe ratios (Figure 5.19).

Of course, the classic portfolio management theory relates the optimal portfolio
construction to the covariance and correlations of returns, not returns themselves. The
technique of eigenportfolios, discussed in detail in Chapter 6, applies dimensionality
reduction to large correlation matrices. The key idea there is that the correlation data
may not be driven by all the correlations in the matrices. Preserving the most important
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Performance of Portfolios Formed by Positive Components of Singular Vectors

0
–2
–4
–6
–8

–10
–12

0.08

0.06

0.04

0.02

0.00

0

A
ve

ra
ge

 M
ea

n 
R

et
ur

ns
A

ve
ra

ge
 S

ha
rp

e 
R

at
io

s

20 40 60 80 100

0 20 40
Number of Top Eigenvectors in Portfolio Composition

60 80 100

Figure 5.17 Average performance of 1,000 of positive-only components of 1–50 singular vectors.
Portfolios consisting of only positive components around 40 singular vectors outperform as
measured by mean Sharpe ratios.

correlations and removing some of the less important correlations allow us to overcome
the dimensionality curse as well as produce stable results. As a result of such an appli-
cation, the computational time required for trading, portfolio management, and risk
management applications may be substantially reduced.

Principal Component Regression

Another application of dimensionality reduction is principal component regression, also
known as eigenregression. In a principal component regression, the dependent variable
is regressed not on other variables in the data set, but on linear combinations of these
variables as determined by top eigenvalues and eigenvectors. This approach is particularly
useful when the sample is short, relative to its number of features, that is, when the sample
has a low rank. Traditional econometric modeling stumbles in this situation, but principal
component analysis allows the key relationships in the features (columns of the data) to
be condensed into a tightly packed wad of information.

Eigenvalues and eigenvectors can be thought of as the core representation of the
data, or its most important characteristics. The motivation behind the principal com-
ponent regression then is to elucidate the dependent variable’s characteristics vis-à-vis
these powerful eigenvalue-driven factors.

As an example of an application of the principal component regression, consider
financial data analysis that covers the entire healthcare industry (665 stocks), but only
over the past quarter (63 trading days). A traditional econometrician would insist that
no such analysis can be performed on data with fewer than 665 daily observations. The
principal component regression, however, allows us to intelligently compress the number
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Performance of Portfolios Formed by Negative Components of Singular Vectors
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Figure 5.18 Average performance of 1,000 of negative-only components of 1–100 singular
vectors. Portfolios consisting of only positive components around 40 singular vectors outperform as
measured by mean Sharpe ratios.

of stocks into its most meaningful portfolios and analyze the latter over a much shorter
time interval.

Key Big Data Tools: SVD and PCA in Detail

Singular value decomposition (SVD) was briefly introduced in the previous section.
Here, we dive in depth into some of the key tools and techniques that will be used
throughout much of the book. To showcase the usefulness of the tools, they are presented
in the context of a meaningful application: dimensionality reduction.

The power of dimensionality reduction via SVD was graphically illustrated in the
previous section. In non-graphical data, dimensionality reduction involves finding a new,
smaller set of columns, all of which are some linear combination of the original columns,
such that the new column set retains as much data variability and information from
the original set as possible. Mathematically, dimensionality reduction is a projection of
high-dimensional data onto lower-dimensional data. Given n data points x1, x2, … xn
in Rp, we would like to project the data onto a smaller data set of d dimensions, d < p.
This is very useful when dealing with large unwieldy portfolios like the S&P 500 or
Russell 3000. Our objective is to find a d-dimensional projection that preserves as much
variance of x1, x2, … xn as possible.

Most PCA- and SVD-based methods operate on the second-moment conditions:
they seek to find the orthogonal axes that explain the most data variation.
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Performance of Portfolios Formed by All the Components of Singular Vectors
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Figure 5.19 Average performance of 1,000 of positive and negative components of 1–100
singular vectors. Portfolios comprising securities weighted by the coefficients of 3 and 4 singular
vectors outperform the rest as measured by both the average mean return and the mean Sharpe ratio
of the 1,000 random portfolios under consideration. After the fourth singular vector, the portfolio
performance drops off sharply in either the mean return, mean Sharpe ratio, or both.

SVD. The SVD of a matrix A is the factorization of A into three matrices: A = USVT

where the columns of U and V are orthonormal, and the matrix S is diagonal with
positive real entries. The SVD is an important technique for the Big Data Science used
extensively throughout this book.

The singular value decomposition (SVD) of a matrix A is the factorization of the
matrix into the product of three matrices:

A = USVT (5.3)

where all the columns ofU andV are orthogonal to each other and normalized to be unit
vectors, or orthonormal for short, and where the singular value matrix S is diagonal with
real positive values (a diagonal matrix may have non-zero values only on its diagonal, and
has zeros everywhere else). The columns of V are known as the right singular vectors of
A and always form an orthogonal set with no assumptions on A. Similarly, the columns
of V are known as the left singular vectors of A and also always form an orthogonal set
with no assumptions on A. Due to the orthogonality of U and V , whenever the matrix
A is square and invertible, the inverse of A is:

A−1 = VS−1UT

This property becomes very useful in finance applications dealing with matrix inverses,
like portfolio management.
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Figure 5.20 An illustration of the relationship between distance of point to line and length of the
projection.

In general, however, the matrix A does not need to be square – unlike PCA that
requires the input data to be strictly square, SVD happily takes on rectangular matrices.
If A is n × d, its rows are n points in a d-dimensional space. SVD then can be thought
of as the algorithm finding the best k-dimensional (k < d) subspace with respect to the
points of A. This can be done via best least squares fit by minimizing the sum of the squares
of the perpendicular distances of the points to the subspace. An alternative is to find the
function to minimize the y axis distance to the subspace of the xi.

When k = 1, the subspace is a line through the origin. To project the point xi =
[xi1 xi2 … xid] onto the line via the best least squares fit, we need to minimize the per-
pendicular distance of point to line, shown in Figure 5.20. By Pythagoras Theorem,

(Distance of point to line)2 = (xi12 + xi2
2 + … + xid

2) − (length of projection)2

Since (xi12 + xi2
2 + … + xid

2) is independent of the line, minimizing (Distance of point
to line)2 is equivalent to maximizing the (length of projection)2.

The singular vectors of an n × d matrix A are unit vectors v on the lines through
the origin that maximize the lengths of projection for different dimensions. If xi is the
ith row of A, ai, then the length of the projection of ai on v is |ai ⋅ v|. The sum of the
lengths squared of all projections is then |Av|2. The best fit line maximizes |Av|2. The
Greedy SVD algorithm then works as follows.

The first singular vector, v1, of A is the best fit line through the origin for the n points
in the d-dimensional space that are rows of A:

v1 = 𝑎𝑟𝑔 𝑚𝑎𝑥|v|=1|Av|
The value of 𝜎1(A) = |Av1| is known as the first singular value of A; 𝜎1

2(A) is the
sum of the squares of the projections to the line determined by v1.

The second singular vector, v2, is defined by the best fit line perpendicular to the first
singular vector, v1:

v2 = 𝑎𝑟𝑔 𝑚𝑎𝑥v⟂v1,|v|=1|Av|
and the value 𝜎2(A) = |Av2| is known as the second singular value of A.
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The third singular vector, v3, is defined by the best fit line perpendicular to the first
two singular vectors, v1 and v2:

v2 = 𝑎𝑟𝑔 𝑚𝑎𝑥v⟂v1,v2,|v|=1|Av|
And the value 𝜎3(A) = |Av3| is known as the third singular value of A.

The process is repeated until the rth singular vector, vr , is found. It can be shown
that the number of orthogonal singular vectors of the matrix A equals the rank of A, r.

Next, we can define the left singular vectors as ui =
1
𝜎i
Avi, also orthogonal to each

other for i = 1, 2, … , r, and formalize the SVD as A =
∑r

i=1 𝜎iuiv
T
i . From now on, we’ll

refer to vi as right-singular vector.

PCA. SVD is a close cousin of PCA. PCA was introduced well over 100 years ago by
Pearson (1901). Given the data set x1, x2, … xn with the sample mean, 𝜇n, and sample
covariance, 𝛴n shown in Eqs. (5.4) and (5.5), respectively:

𝜇n =
1
n

n∑
k=1

xk (5.4)

𝛴n =
1

n − 1

n∑
k=1

(xk − 𝜇n)(xk − 𝜇n) (5.5)

Even though the data set x1, x2, … xn may only be a subset of some larger data distribu-
tion, if x1, x2, … xn are sampled independently from that larger distribution, it can be
shown that 𝜇n and 𝛴n are unbiased estimators of the mean and covariance of the larger
distribution.

Formally, PCA’s objective is to find the d-dimensional orthonormal basis
V = [v1, … , vd],VTV = Id × d, such that the projection of X = [x1, … xn] on V has
the most variance. This is equivalent to seeking the most variance for VTX . Hence,
our PCA optimization problem becomes:

𝑚𝑎𝑥VTV=I

n∑
k=1

|||||
|||||VTxk −

1
n

n∑
r=1

VTxr
|||||
|||||
2

= 𝑚𝑎𝑥VTV=I

n∑
k=1

||VT (xk − 𝜇n)||2 (5.6)

= 𝑚𝑎𝑥VTV=ITr(VT𝛴nV ) (5.7)

=
d∑
i=1

vi𝜆i, (5.8)

where 𝜆i are the leading eigenvalues of the sample covariance of x1, x2, … xn, 𝛴n, and
V = [v1, … , vd] are the associated eigenvectors.
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PCA vs. SVD. PCA requires finding the eigenvalues of the covariance of data, 𝛴n. To
do PCA, therefore, one first needs to construct the covariance matrix 𝛴n, which takes
(np2) computational time, and then find the eigenvalues of the covariance matrix in
(p3) time. The resulting computational complexity of the process is (𝑚𝑎𝑥{np2, p3})
(see, e.g., Horn and Johnson (1985) and Golub (1996)).

SVD, on the other hand, seeks eigenvalues of demeaned data, instead of the covari-
ance matrix. That is, SVD decomposes X − 𝜇nIT into the Unitary vectors U , a diagonal
matrix of singular values S, and singular vectorsV, which are identical to the eigenvectors
generated by PCA:

X − μnIT = USVT (5.9)

To convert from SVD to PCA is as easy as to observe that, by Eqs. (5.5) and (5.9), the
covariance matrix of X is

𝛴 = 1
n − 1

(X − μnIT )(X − μnIT )T = 1
n − 1

(USVT )(USVT )T = 1
n − 1

VSUTUSVT

(5.10)

= V
S2

n − 1
VT = V𝛬VT

where 𝛬 are the eigenvalues computed by PCA.
From Eq (5.10), eigenvalues computed by PCA are 𝛬 = S2

n−1
.

While we obtain the same result with PCA and SVD, the computational load of
SVD, O(𝑚𝑖𝑛(np2, n2p)), is a lot lighter than PCA. An added advantage of SVD vs. PCA
is the unitary matrix U, which describes how each row relates to each eigenvector – an
added informational dimension.

In addition to being comparatively computationally complex, PCA may cause a loss
of precision as well as the outright inability to compute the result. Classic examples like
the Läuchli matrix (Läuchli 1967) showcases where PCA fails to converge altogether
while SVD delivers solid computation.

Norms. Two important matrix norms, the Frobenius norm, ||A||F , and the 2-norm,||A||2, are also often used throughout this book. The 2-norm, ||A||2, is formally defined
as ||A||2 = 𝑚𝑎𝑥|v|=1|Av|
and is thus equal to the largest eigenvalue of A.

It can also be shown that the sum of squares of the singular values equals the Frobenius
norm squared, ∑

𝜎2i (A) = ||A||2F
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Computing PCA and SVD

Techniques like PCA and SVD are central to data science and help speed up processes
and quickly infer meaning by retrieving the structure of the data. Even though PCA
and SVD are critical to data scientists today, they originated in the twentieth century.
Today, researchers are looking for ways to improve on the traditional PCA and SVD: (i)
to speed up the computation further; (ii) to take advantage of the developments in other
fields, like RandomMatrix Theory, that did not exist when PCA and SVDwere created;
and (iii) to make PCA and SVD work even more efficiently with today’s computational
technology that has drastically improved since PCA and SVD first came to light.

Most off-the-shelf programming packages offered built-in PCA and SVD function-
ality at the time this book was written. However, in many cases, off-the-shelf PCA and
SVD calculations take up a significant portion of the programming resources. In some
programs, while still drastically outperforming traditional non–Big Data methods, PCA
and SVD create bottlenecks, accounting for a disproportionately large calculation time
compared to the rest of the data logic.

The computational efficiency of PCA and SVD can be measured by the speed of
processing an arbitrarily large data set. After all, isn’t this what Big Data is all about?
However, in the current advanced, but still growing, power of computing technology,
extremely large data sets may still be hard to process. Instead, researchers deploy stochastic
techniques to randomly sample the data. These online methods grab a random slice of
data, thereby creating a smaller data set that is still representative of the original big data
set. Next, PCA or SVD is applied to the smaller data sample, and the sampling process is
repeated until a certain stopping condition is met and the results are aggregated. In this
approach, the algorithm may process the entire data set or only a portion thereof.

Another metric of the algorithm efficiency is the iteration complexity. Iteration com-
plexity measures the number of loops taken by the algorithm; the fewer the loops, the
more efficient the computation. Breaking up the sample and iterating over each piece
generates a large number of loops, something that takes up potentially large computa-
tional time.

The computational time required to produce SVD estimates depends on the algo-
rithm. The most popular algorithms for SVD over the years have been the power
algorithm (Hotelling 1933) and the Lanczos algorithm (Lanczos 1958).

Over the years, researchers have strived to improve the efficiency of PCA and SVD
calculations. As a result, several powerful “Golden standard” algorithms emerged and are
presented in this section that may or may not be part of the off-the-shelf solutions and
may warrant in-house implementation. These algorithms include the power algorithm
and its extensions, including a range of Lanczos algorithms, various stochastic approaches,
and Fast SVD, discussed in this chapter.

The Power Algorithm for SVD and PCA Estimation. The power algorithm
is simple, yet robust and has been extended in many forms over the years and is the
basis for many SVD and PCA algorithms. The name “power” refers to the process of
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self-multiplying matrices, or raising them to a power, in order to determine the singu-
lar values and vectors. Here, we first consider a sketch of the case of the power method
applied to a square symmetric matrix, and then generalize the result to any n × mmatrix.

When matrixA is square symmetric, under certain assumptions, it can be represented
as it has the same right and left singular vectors vi:

A =
m∑
i=1
𝜎ivivi

T

Next,

A2 =

(
m∑
i=1
𝜎ivivi

T

)(
m∑
j=1
𝜎jvjvj

T

)
=

m∑
i,j=1

𝜎i𝜎jvivi
Tvjvj

T

Since the inner product vi
Tvj = 0 whenever i ≠ j by orthogonality (the outer product

vivj
T is not 0),

A2 =
m∑

i,j=1
𝜎i𝜎jvivi

Tvjvj
T =

m∑
i=1
𝜎i

2vivi
T

In general, if we raised A to the power k,

Ak =
m∑
i=1
𝜎i
kvivi

T

With 𝜎1 > 𝜎2 > … > 𝜎k,
1
𝜎k1

Ak → v1v1
T

Since 𝜎1 is unknown at this point, we cannot compute Ak directly. However, dividing

Ak by its Frobenius norm ||Ak||F =
√∑m

j=1
∑m

i=1 |ai,j|2 results in matrix A converging

to the rank 1 matrix v1v1
T . From the latter, we can compute v1.

In general, the assumption of a square and symmetric matrix A having the same left
and right eigenvectors is too strong. However, we can always find B = AAT that satisfies
our original assumptions. If A can be decomposed, say, via SVD, into A =

∑
i𝜎iuivi

T ,
then the spectral decomposition of B is:

B = AAT =

(∑
i

𝜎iuivi
T

)(∑
i

𝜎iuivi
T

)
=
∑
i,j

𝜎i𝜎juivi
Tvjuj

T =
∑
i,j

𝜎i
2uiui

T

since vi
Tvj = 0 for all i ≠ j due to orthogonality. Furthermore, powering up B produces

Bk =
∑

i,j𝜎i
2kuiui

T if 𝜎i < 𝜎1

As k increases, for i > 1 and 𝜎i(A) < 𝜎1(A), 𝜎2i ∕𝜎
2
1 → 0, and so

Bk → 𝜎i
2kuiui

T
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Thus, the power method involves powering up the data in order to determine the asso-
ciated eigenvalues. The convergence of the power method can be shown to be achieved
quickly if there is a significant gap 𝛥 between the first and the second eigenvalues. Known
as the eigen-gap, 𝛥 is a common determinant of the speed of SVD and PCA algorithms as
it determines the speed with which eigenvalues can be separated from each other. The
higher the gap, the easier it is to separate the eigenvalues and reach decomposition.

Computing Bk costs k matrix multiplications, or O(k), if matrices are multiplied by
B once per iteration. To reduce the complexity, successively squaring Bk lowers the com-
plexity to O(log(k)). Computing Bkx, where x is a randomly chosen unit vector, lowers
the complexity further toO(1∕𝛥) iterations and can operate in a stochastic sample-driven
fashion. The Lanczos method, due to Lanczos (1958), optimizes the power method in
the direction of the extreme highest and lowest eigenvalues and typically takesO(1∕

√
𝛥)

iterations. Due to its directionality, the Lanczos method needs to work with a full sample,
i.e., it cannot work in the online environment.

Optimization of the performance of PCA and SVD calculations was an active area of
research at the time this book was written. The algorithm by Liberty, Woolfe, Martins-
son, Rokhlin, and Tygert (2007), dubbed Fast SVD, uses Fast Fourier Transform to speed
up the computation. Musco and Musco (2015) use bootstrapping via the block Krylov
method to derive convergence independent of the eigen-gap 𝛥. Bhojanapalli, Jain, and
Sanghavi (2015) use alternating minimization to achieve a low-complexity performance
in sub-sampling of the matrix. Shamir (2016) proposes a stochastic variance-reduction
PCA. Xu, He, De Sa, Mitliagkas, and Ré (2018) propose an extension of the power
method, power iteration with momentum, that works online and achieves Lanczos per-
formance of O(1∕

√
𝛥) iterations.

Fast SVD. Fast SVD due to Liberty, Woolfe, Martinsson, Rokhlin, and Tygert (2007),
discussed in this section, is one of the recent improvements of the technique. Liberty
et al. apply the randomization and Fast Fourier Transform (FFT) to traditional SVD to
dramatically increase its computational speed. Due to the application of FFT to ran-
domization, their algorithm also has a finite probability of failure; however, Liberty et al.
estimate that this probability is on the order of 10−17.

To create the fast version of SVD, Liberty et al. first create interpolative decom-
positions (IDs), described in this section, and then convert IDs into SVD. An ID is
an approximate decomposition of any matrix Am × n of rank k into a product of two
matrices:

• a subset of matrix A, Bm × k, and
• matrix Pk × n, such that, by Lemma (1) in Liberty et al. (2007):
• Some set of the columns of P makes up an identity matrix k × k.
• The absolute values of all entries of P are less than or equal to 1
• ||Pk × n||2 ≤ √

k(n − k) + 1
• The least, same as the kth greatest singular value of P is at least 1
• When k = m or k = n, Bm × k Pk × n = Am × n
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• When k < m or k < n, ||Bm × k Pk × n − Am × n||2 ≤ (
√
k(n − k) + 1)𝜎k+1, where

𝜎k+1 is the (k + 1)st greatest singular value of A.

The approximation Bm × k Pk × n ≈ Am × n is then numerically stable and is referred
to as the interpolative decomposition (ID) of A.

At the core of Liberty et al.’s research is a speedy randomized Discrete Fourier Trans-
form. The transform is a uniform random sampler S of a Discrete Fourier Transform F
of diagonal matrices D to use in the fast computation of the IDs, following Ailon and
Chazelle (2006):

• D is a diagonal m × m matrix with complex independent and identically distributed
random-variable entries d1, d2, … , dm, distributed uniformly on the unit circle.

• F is the m × m Discrete Fourier Transform with Fi,j = 𝑒𝑥𝑝(−2𝜋
√
−1 (i − 1)(j −

1)∕m).
• S is a real l × m matrix, an operator that uniformly randomly selects rows from the
product of F and D. As such, all of the entries of S are 0 except for one 1 in the
diagonal in each of the randomly selected columns j, with j uniformly drawn with
replacement from j = {1, 2 … m}.

The resulting speedy randomized Discrete Fourier Transform is an operator

𝛷l × m = Sl × mFm × mDm × m

with the cost of applying 𝛷 to any arbitrary vector via Sorrensen and Burrus (1993)
being

Cm,l = O(m log(l))

Armed with the speedy randomized Discrete Fourier Transform, Liberty et al. (2007)
describe two algorithms for Interpolative Decomposition (ID), followed by an algorithm
of converting ID into SVD.

Conclusion

PCA and SVD are powerful techniques that allow researchers to distill the structure of
the data, identifying key drivers. The drivers let the data speak for themselves, without
requiring the researchers to provide traditional hypotheses. The techniques are poten-
tially game-changers in modern finance.

These Big Data methods allow us to process large data sets quickly, without adding
computing power, saving corporations millions of dollars by timely short-term identifi-
cation of impending risk events. The Big Data Science hypothesis-less paradigm further
allows more reliable and efficient conclusions to be drawn by removing researchers’ sub-
jectivity in posing the research question.
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Appendix 5.A PCA and SVD in Python

Both PCA and SVD are easy to program in Python.
To obtain the first five principal components of a dataset X, all one needs to write

is the following code:

from sklearn.decomposition import PCA
pca = PCA(n_components=5)
PCs = pca.fit_transform(X)

Of course, PCA is based on analyzing variance of the data, so it helps when all the
columns of the data are standardized to approximate the N(0,1) distribution. Luckily
for us, the standardization of data is also taken care of in Python and is done with the
following code:

from sklearn.preprocessing import StandardScaler
X = StandardScaler().fit_transform(X)

Such pre-processing of data is now a standard feature in many applications and produces
better predictions than relying on raw data as inputs.

PCA’s cousin, SVD, is equally easy to build in Python. The matrices U, S, and V of
SVD decomposition of matrix X can be obtained with the following two lines of code:

from scipy import linalg
U, s, Vh = linalg.svd(X)

The simplicity and elegance of the Python code make the analysis fast, simple, and even
very enjoyable!

For specific code examples, please visit https://www.BigDataFinanceBook.com,
and register with password SVD (case-sensitive).
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Chapter 6

Big Data Factor Models

A s shown in Chapter 5, unsupervised learning delivers essential cleansing of the
data, separating “macro” signal components common to all the dataset elements
from the idiosyncratic noise of individual data constituents. The singular vectors

produced by SVD are orthogonal by design and also serve as data factors.
Factoring financial data has been widely accepted and practiced. Sharpe’s (1964)

and Lintner’s (1965) Capital Asset Pricing Model (CAPM) factorizes returns of finan-
cial instruments vis-à-vis market returns. Ross’s (1976; 1977) Arbitrage Pricing Theory
(APT) factors financial returns over a wide spectrum of diverse explanatory variables. The
famed Fama-French factors (Fama and French 1992) explain securities returns by stock
characteristics. Harvey, Liu, and Zhu (2016) point out that, over the years, researchers
in finance have come up with over 300 factors capable of explaining various aspects of
financial returns, all published in the financial research literature. The sheer number of
proposed financial factors led Cochrane (2011) to refer to the multitude of variables as a
“factor zoo” and to question various factors’ validity and relative importance.

As this chapter shows, unsupervised learning techniques deliver the optimal factor-
ization. As such, SVD and PCA are also perfectly positioned to sort through the “zoo”
in a fast and efficient manner, extracting most meaningful factors from the explanatory
variables proposed to date.

142
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Why PCA and SVD Deliver Optimal Factorization

Consider again our objective of finding a d-dimensional projection that preserves as much
variance of x1, x2, … xn as possible. Finance practitioners will quickly recognize the idea
as factoring. Dating back to Ross’s (1976; 1977) Arbitrage Pricing Theory, returns on
assets were expressed as linear combinations of other, fewer, returns or macroeconomic
variables. The key difference of Big Data dimensionality reduction versus traditional
factor models of Finance is factor identification. In traditional Finance, all factors are
well known in advance, while in Data Science, the projection process discerns the best
factors available for the job to be done. In other words, in Finance, the factoring begins
with factor selection by a researcher, and proceeds with the researcher validating or
disputing his hypothesis. In Big Data, the factoring process itself uncovers the optimal
factors from a large data set. This section mathematically shows how factoring of any
data into the d < n factors that capture the most variance is indeed PCA and, referencing
Chapter 5, SVD.

Once again, given n data points x1, x2, … xn in R
p, we would like to project the

data onto a smaller dataset of d dimensions, d < p. Our data factorization problem then
becomes:

xk ≈ 𝜇 + 𝛽
d∑
i=1

(𝛽k)ivi (6.1)

where we are trying to approximate each xk with d < n factors. Here, 𝛽k are familiar
factor coefficients of the d new factors, v1, v2, … vd. Ideally, the factors are not at all
correlated, and thus form, once again, an orthonormal basis for a d-dimensional subspace.
If the factors are indeed uncorrelated, that is, orthogonal to each other, they can be
collectively represented by a vector V = [v1, v2, … vd] ∈ Rp× d, such that

VTV = Id× d (6.2)

Then, Eq (6.1) becomes:
xk ≈ 𝜇 + V𝛽k (6.3)

To measure how well the factors V fit the data x1, x2, … xn we can use least squares:

minV ,𝜇,𝛽k

n∑
k=1

||||xk − (𝜇 + V𝛽k) |||| 22 (6.4)

To optimize for 𝜇, we solve the first-order conditions with respect to 𝜇 to find the
optimal value of 𝜇, 𝜇∗:

n∑
k=1

(xk − (𝜇∗ + V𝛽k)) = 0 (6.5)
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which expands into
n∑
k=1

(xk) − n𝜇∗ + V
n∑
k=1

(𝛽k) = 0 (6.6)

Since
∑n

k=1(𝛽k) = 0, we obtain that the optimal value of 𝜇∗ is the sample mean:

𝜇∗ = 1
n

n∑
k=1

(xk) = 𝜇n (6.7)

The optimization of Eq (6.4) can be decoupled for each k and becomes:

min𝛽k
||||xk − 𝜇n − V𝛽k||||22 = min𝛽k

||||xk − 𝜇n −
d∑
i=1

(𝛽k)ivi||||22 (6.8)

Carrying on and optimizing the first-order condition of Eq (6.8) with respect to 𝛽k we
obtain:

(𝛽k)i = vTi (xk − 𝜇n) (6.9)

or, more generally:
𝛽k = VT (xk − 𝜇n) (6.10)

Now, the optimization of Eq (6.10) can be rewritten as:

minVTV=I ||(xk − 𝜇n) − VVT (xk − 𝜇n)||22 (6.11)

which is equivalent to

𝑚𝑖𝑛VTV=I (xk − 𝜇n)T (xk − 𝜇n) − 2(xk − 𝜇n)TVVT (xk − 𝜇n)

+(xk − 𝜇n)TV (VTV )VT (xk − 𝜇n)

= 𝑚𝑖𝑛VTV=I (xk − 𝜇n)T (xk − 𝜇n) − (xk − 𝜇n)TVVT (xk − 𝜇n)
= maxVTV=I (xk − 𝜇n)TVVT (xk − 𝜇n) (6.12)

since (xk − 𝜇n)T (xk − 𝜇n) does not depend on V . Using properties of Tr, such as Tr(A +
B) = Tr(A) + Tr(B), the optimization of Eq (6.12) can be rewritten as

maxVTV=I

n∑
k=1

(xk − 𝜇n)TVVT (xk − 𝜇n)

= maxVTV=ITr

[
n∑
k=1

(xk − 𝜇n)TVVT (xk − 𝜇n)

]

= maxVTV=I

n∑
k=1

Tr[(xk − 𝜇n)TVVT (xk − 𝜇n)]

= maxVTV=ITr[VT (xk − 𝜇n)(xk − 𝜇n)TV ]

= maxVTV=I (n − 1)Tr[VTΣnV ]

= maxVTV=ITr[VTΣnV ] =
d∑
i=1

viλi
(6.13)
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where 𝜆i are the leading eigenvalues of the sample covariance of x1, x2, … xn, 𝛴n. The
latter expression is, of course, PCA, showing that the optimal factoring is indeed PCA
itself!

Eigenportfolios

While PCA delivers the optimal linear factor structure with given factors, the factors
themselves may in principle be nonlinear functions of observed or latent variables outside
of the scope of the original data set. For example, the best factors identified by PCA and
SVD in the stock return data may be economic indicators outside of the scope of the
original data set.

Following the optimal portfolio theory dating back to Markowitz (1952), the port-
folio optimization problem further relies on the interaction of returns, factors, and other
variables impacting the financial markets. The key idea of a successful portfolio compo-
sition is diversification. The diversification simply states that an optimal portfolio should
withstand all states: the downturns, severe crises, and periods of sunny growth. To do
so, the optimal portfolio should contain instruments, the returns of which may move in
the opposite directions to offset losses on some with gains on others. The interaction
between returns can be measured using covariances, and, in more detail, correlations.
The more uncorrelated the returns in a portfolio, the higher is the portfolio’s likelihood
of withstanding potential shocks.

With the number of financial securities traded in the United States. easily hitting
8,000 at the time this book was written, the problem of portfolio selection becomes too
big to manage in conventional ways. The Big Data analysis comes in extremely handy
in managing portfolio optimization.

To determine the optimal factors of returns in portfolio composition, we observe
that the first eigenvector is the solution of the variational problem

V (1) = argmax{VtR V ; ||V || = 1} (6.14)

where N is the number of assets and ||⋅|| is the Euclidean norm in RN . Various candidates
for R have been proposed, as discussed throughout this chapter. Equation (6.14) shows
that the principal eigenvector is the vector which captures the most variance of matrix R.

The principal eigenvector satisfies

R V (1) = λ(1)V (1) (6.15)

The other eigenvectors and eigenvalues are computed in the same way, but restricting the
maximization over the sub-space of vectors which are orthogonal to the space spanned
by the ones computed previously, i.e.,

V (k) = argmax{VtR V ; ||V || = 1, V ⋅ Vl = 0, l < k }, (6.16)

R V (k) = λ(k)V (k) (6.17)
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The eigenvalues satisfy 𝜆(1) > 𝜆(2) ≥ … ≥ 𝜆(N).
The Karhunen-Loève representation (see, for example, Watanabe 1965) of the stan-

dardized asset returns Xj is

Xj =
N∑
k=1

√
𝜆(k) V (k)

j F(k)

with

F(k) = 1√
λ(k)

N∑
j=1

V (k)
i Xi (6.18)

By construction, F(k) are uncorrelated and have variance = 1. Since these random vari-
ables are linear combinations of the standardized returns of the assets, we call them
“eigenportfolios” (Avellaneda and Lee 2010), with the caveat that the “weights” should
be divided by the volatility of each asset, in order to convert to economic, portfolio-
theoretic, units.

The PCA is a way of learning about the system of asset returns in terms of its
variability and the determination of common factors affecting the returns. The first
eigenportfolio, associated with the r.v. F(1), is a common factor which explains the max-
imum variability, and we have

Xj = 𝛽jF
(1) + 𝜀j

where 𝛽j is the regression coefficient of the standardized return on the first EP. The
“residuals” 𝜀j are uncorrelated with F(1), which is nice, but they are generally correlated
for two different stocks.

The second EP is extracted from the 𝜀j, j=1,… ,N.
In the following discussions relating PCA factorization, we will often refer to factors

and factor loadings. The factors, often referred to as eigenportfolios, are defined as

F(k) = 1√
λ(k)

N∑
j=1

V (k)
i Xi

Factor loadings 𝛽 are the coefficients relating the dependent variable to the factors:

Xj = 𝛽j,kF
(k) + εj

An important consideration is whether all EPS should be used in the Karhunen-Loève
representation. In the case of economic data, which is noisy, the idea is to disregard
EPs which correspond to low eigenvalues. In a celebrated paper, Laloux et al. (2000)
proposed using RMT to model the standardized returns as:

Xj =
m∑
k=1

𝛽
(k)
j F(k) + εj

where 𝛽(k)j are “factor loadings” and 𝜀j are uncorrelated, m is a cutoff which is to be
determined from the context.
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While the original Big Data factorization of market data, which has become known
as the approximate factor model, is due to Connor and Korajczyk (1986; 1998), the
ideas have been extended in many different directions. Despite the optimality of the
spectral factorization shown in the previous section, some data and models require more
management. Methodologies tweaking basic spectral analysis discussed in this Chapter
include Fan, Fan, and Lv (2008), Doz, Giannone, and Reichlin (2011), Fan, Liao, and
Mincheva (2013), and Avellaneda (2019).

Using Factors to Predict Returns

Stock and Watson (2002) consider a universe of known candidate predictors, an
N-dimensional time series matrix Xt. The objective is to find the best predictors
for future realizations of another time series yt+h. Thus, Xt may represent economic
variables and yt+h forward-looking market returns, h steps ahead. Stock and Watson’s
(2002) method first decomposes the economic variable series into orthogonal factors
using PCA, Xt = 𝛬Ft + et, where Ft are r latent factors common to the predictor set
Xt. Next, Stock and Watson build a common-factor predictive regression for yt+h,
where the right-hand side includes factors Ft as well as autoregressive components
{yt, … , yt+h}:

yt+h = 𝛽FFt + 𝛾1yt+h−1 + 𝛾2yt+h−2 + … + 𝛾hyt

Factor Discovery

While Stock and Watson’s (2002) goal was successful prediction of yt+h, in other situa-
tions, the main objective may be identification of the factors Ft themselves. To uniquely
identify the factors, Bai and Ng (2013) point out that for the PCA-based factors to
identify uniquely, the corresponding eigenvalues must be distinct.

In discussion of both methodologies below, we will follow the common notation. At
the core of both Doz, Giannone, and Reichlin’s (2011) and Fan, Liao, and Mincheva’s
(2013) methodologies is an approximate factor model that has been used by Chamberlain
and Rothschild (1983), Fama and French (1993), Bai and Ng (2002), and others:

yit = 𝛽i1ft1 + 𝛽i2ft2 + … + 𝛽iK ftK + uit

where yit is the time-t return on the ith asset, or more generally, yit is the time-t response
of the ith variable, t = 1, 2, … ,T ; 𝛽ij is the factor loading corresponding to the jth factor
and ith return, i = i, 2, … p, j = 1, 2, … K , and ftj is the value of the jth factor or prin-
cipal component at time t. The returns yit depend only on the contemporaneous values
of ftj, and not the lagged values with t-1, t-2, etc. To accommodate large dimensionality,
both p and T are assumed to diverge to infinity, but the number of factors K remains
fixed. Furthermore, to model realistic data conditions, p is assumed to be potentially
much larger than T, p≫ T .
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In the model, only yit is observable. The reliability of inferring the unknown com-
mon factors increases as the number of variable increases, with p→ ∞. In matrix nota-
tion,

Yt = BFt + Ut

where Yt = (y1t, y2t, … ypt)′, B is a p × K matrix of factor loadings for instruments Yt,
Ft = (f1t, f2t, … fKt), and Ut is a vector of errors, Ut = (u1t, u2t, … upt)′.

Assuming that the p × p covariance matrix of returns Yt, 𝛴, is time-invariant, we
obtain

𝛴 = B 𝑐𝑜𝑣(Ft) B′ + 𝛴U

where 𝛴U = (𝜎u,ij)p×p is the covariance of Ut.

Unknown Factors: Creating Factor Approximations

Traditional econometric modeling of the latent factors involves regressing the data on
a set of potential factor candidates or even a vector of ones to proxy for the unknown
factor. Stock and Watson (2006), Bai and Ng (2002; 2008; 2013), Ludvigson and Ng
(2009), Onatski (2010, 2012), Doz, Giannone, and Reichlin (2011), Aït-Sahalia and
Xiu (2017), and Lettau and Pelger (2018) consider factor estimation using PCA and its
variants. Since the factors are not known and are constructed from PCA inferences, the
models have become known as approximate factor models.

Doz, Giannone, and Reichlin (2011) approximate unknown factors in time series
data with the following methodology:

1. Run Singular Value Decomposition (SVD) on the raw data, with dates in rows and
features in columns.

2. Assume that the first K principal components are the true factors.
3. Run Ordinary Least Squares (OLS), regressing the raw data on the K principal com-

ponents to find factor loadings.

The key idea here is that the observable variables Yt can be decomposed into two
orthogonal unobserved processes:

1. The common component driven by a few common shocks. The common compo-
nent captures much of the covariation between the time series.

2. Idiosyncratic component driven by time-series-specific dynamics.

The first K principal components represent the common components or factors. To
investigate the idiosyncratic components, Doz, Giannone, and Reichlin (2011) further
apply Kalman filtering to the tail principal components.

Unknown Factors: The POET Method

Fan, Liao, and Mincheva (2013) account for the unobservable factors influencing the
covariance structure.
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The decomposition Yt = BFt + Ut is considered to be asymptotically identified as
p→ ∞ if all of the eigenvalues of 𝛴U are bounded as p→ ∞ and the first K eigen-
values of B 𝑐𝑜𝑣(Ft) B′ diverge at rate O(p). Per Fan, Liao, and Mincheva (2013), the
assumption holds whenever a considerable fraction of factor loadings are non-vanishing.
Furthermore, Fan, Liao, and Mincheva (2013) assume that 𝛴U is approximately sparse
in the sense of Bickel and Levina (2008) and Rothman et al. (2009):

mp = 𝑚𝑎𝑥i≤p

∑
j≤p

|𝜎u,ij|q for some q ∈ [0, 1)

A condition q = 0 defines the exact sparsity assumption, under which the maximum
number of non-zero elements in each row is mp = 𝑚𝑎𝑥i≤p 𝛴j≤p I𝜎u,ij≠0.

When the factors are observable, one can use regression analysis to estimate {Ut}Tt=1
following Fan, Liao, and Mincheva (2011).

When the factors are not observable, Fan, Liao, and Mincheva (2013) develop a
thresholding optimization-free procedure for inferring the factors using only the data
from the sample covariance matrix 𝛴sam of Yt.

The estimator, dubbed POET for Principal Orthogonal ComplEment Thresholding,
is computed in the following steps:

1. Run the Singular Value Decomposition (SVD) on the sample covariance matrix𝛴sam

of Yt.
2. Keep the covariance matrix formed by the first K singular values (if K is unknown,

it can be estimated from data).
3. Apply the thresholding procedure to the remaining covariance matrix.

The thresholding of the “rest” of the covariance matrix, not captured by the first K
principal components, is applied following Rothman et al. (2009) and Cai and Liu (2011)
and can be summarized as follows:

• If the elements of the sample covariance matrix not captured by the first K eigenvalues
exceed a certain entry-dependent threshold 𝜏ij > 0, then they remain intact.

• The elements of the sample covariance matrix not captured by the first K eigenvalues
that fall below the threshold, however, are transformed. A common transfor-
mation is sij(), a generalized shrinkage function of Antoniadis and Fan (2001),
employed by Rothman et al. (2009) and Cai and Liu (2011), and 𝜏ij > 0 is an
entry-dependent threshold. The simplest version of the shrinkage function is known
as hard-thresholding and was used by Bickel and Levina (2008): sij(x) = x I(|x| ≥ 𝜏ij),
whereby all entries the absolute values of which are not meeting the threshold are set
to 0.

Fan, Liao, andMicheva (2013) show that the rate of convergence for the POET estimator
for 𝛴U achieves the optimal rate in Cai and Zhou (2012).

Following Fan, Liao, and Micheva (2013), we perform SVD on the covariance of
returns of the S&P 500, then reconstruct the factor from the data by taking into account
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Betas, Intercepts and Rsq in Regression of the S&P 500 daily returns on V[0], 1250 days
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Figure 6.1 In-sample explanatory power of the first “eigenfactor” or principal component for the
S&P 500 daily returns, 2013–2017.

only the first singular value and the associated eigenvector. Next, we perform a linear
regression analysis to evaluate the explanatory performance of the factor on the S&P 500
returns in sample. Figure 6.1 shows the regression coefficient beta, the intercept, and the
explanatory power, R2, of the regression of returns of the stocks comprising the S&P
500 on the daily realizations of our newly created factor Rf 0,t:

Ri,t = 𝛼i + 𝛽iRf 0,t + 𝜀i,t

As Figure 6.1 shows, the first eigenfactor performs rather well. The betas tend to hover
around 1, indicating a solid correspondence between the returns of the individual S&P
500 constituents and the eigenfactor. The intercept is practically nonexistent, registering
on the scale of 10−18. The explanatory power of the factor model is also quite high as
measured by R2: it often reaches 40% and above, indicating that a significant portion of
daily returns find correspondence in the daily factor variation.

How does this factor perform relative to the established factor models, for example,
the famed Capital Asset Pricing Model (CAPM)? To establish this frame of reference,
we perform a similar factor analysis on the market “factor,” which we take to be the
average daily S&P 500 returns for the purpose of this exercise:

Ri,t = 𝛼i + 𝛽iRM ,t + 𝜀i,t

RM ,t =
1
N

N∑
i=1

Ri,t

Figure 6.2 shows the slope 𝛽i, the intercept 𝛼i, and the explanatory power R2 of the
regression.
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Betas, Intercepts and Rsq in Regression of the S&P 500 daily returns on the EW S&P 500 Portfolio, 1250 days
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Figure 6.2 In-sample explanatory power of the market portfolio (here, the daily equally weighted
average return of the S&P 500) for the S&P 500 daily returns, 2013–2017.

Comparing the performance of the first eigenfactor in Figure 6.1 and the market
portfolio in Figure 6.2, we notice considerable similarities. The regression coefficients
𝛽i, the intercept 𝛼i, and even the explanatory power R

2 of the two models appear similar.
To ascertain the relationship between the two models, we next plot the betas of the two
models against each other. The results are shown in Figure 6.3.

2.00

2.00 2.25

1.75

1.75

1.50

1.50

1.25

1.25

V[0] Betas

E
W

 B
et

as

1.00

1.00

0.75

0.75

0.50

0.50

0.25

0.25

Betas of V0 via Betas of EW S&P 500 Portfolio, 1250 days

Figure 6.3 In-sample regression coefficients 𝛽i of the Equally Weighted S&P 500 portfolio
plotted versus those of the first eigenfactor for each of the S&P 500 constituents, 2013–2017.
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0.04

Top SVD Factor of the S&P 500 daily returns vs. Market Excess Return, 1250 days
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Figure 6.4 First principal component vs. daily average return on the S&P 500 and the excess
market return, 2013–2017. The daily average return is proving to be a better fit for the first factor
identified by the PCA than excess market returns.

What does this say about the first eigenfactor vis-à-vis the market portfolio? In
Figure 6.4, the two time series are plotted against one another. As Figure 6.4 shows,
the two produce nearly identical results. SVD says that the first and most important
optimal factor for the S&P daily returns is market returns! In other words, CAPM still
rules, but with a caveat: the “market” returns are best represented by the average returns
on the S&P 500 portfolio, and not the traditional excess returns on the market.

To illustrate the point, Figure 6.4 compares the top eigenportfolio with the aver-
age returns on the S&P 500 portfolio and the traditional excess returns on the market
obtained from the website of Kenneth French (https://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html). As Figure 6.4 shows, the average daily S&P 500
returns provide a much tighter fit to the top eigenvector than does the excess market
return.

Interestingly, the nice and orderly relationship shown in Figure 6.4 breaks down
when the analysis is carried out on Russell 3000, approaching the results discussed in
Chapter 5 instead.

Instrumented PCA

Kelly, Pruitt, and Su (2017) follow Connor, Hagmann, and Linton (2012) to produce
Instrumented PCA to address typical time invariance of the factor loadings, a.k.a. eigen-
values or singular components generated by PCA or SVD. In their model, Kelly, Pruitt,
and Su allow factor loadings 𝛽

′

n,t−1 to vary with time by introducing time dependencies

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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via instrumental variables z
′

n,t−1 as follows:

yn,t = 𝛽
′

n,t−1 ft + 𝜀n,t

𝛽
′

n,t−1 = z
′

n,t−1𝛤 + 𝜈′

n,t−1

where K is the total number of latent factors f , L is the number of instruments z, 𝛤
is an L × K mapping from instruments to loadings, and 𝜈

′

n,t−1 allows for unobservable
time variation of factor loadings, which may or may not capture the true variation.
Whenever the number of instruments is greater than or equal to the number of latent
factors, L ≥ K , the Instrumented PCA applies PCA to a transformed problem where y
depends on the observed instrumental variables z.

The Three-Pass Model

The three-pass model of Giglio and Xiu (2019) combines PCA with two-pass
cross-sectional regressions to provide consistent estimates for risk premia for unobserved
factors. To do so, Giglio and Xiu first run PCA on a large panel of return data to
extract the optimal factors and their loadings. Next, the researchers find the risk premia
of the principal components identified in the previous step by regressing the principal
components on the returns. Finally, they regress candidate factors of interest, like eco-
nomic indexes hypothesized to explain returns, on the principal components to find the
identifiable traditional factors that best fit the PCA-discovered principal components.

Risk-Premium PCA

Lettau and Pelger (2019) argue that the traditional PCA is not adequate in factor identi-
fication as it only focuses on the second moments by seeking the dimensions that capture
the most variation in the data. Instead, Lettau and Pelger propose a Risk-Premium PCA
(RP-PCA) that takes into account and optimizes over the levels of returns and indexes in
addition to their variability. Lettau and Pelger apply RP-PCA and show that the approach
yields higher Sharpe ratios and lower pricing errors than traditional PCA factorization.

Nonlinear Factorization

While PCA delivers optimal linear factorization, it leaves some researchers questioning
its true potential. These questions arise in particular with respect to the PCA/SVD
performance versus machine learning techniques that can deliver a lot more nonlinear
estimates. In response, a number of nonlinear PCA models have been developed.
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Projected PCA

While PCA provides the optimal factorization for linear factoring problems, the vari-
able relationships may not always be best approximated by linear models. Fan, Liao, and
Wang (2016) develop a methodology whereby PCA can be applied to select the optimal
underlying functional form, away from basic linear relation. Specifically, the researchers
include B-spline, Fourier series, polynomial series, and wavelets in the set of feasible
functionals, over which they subsequently optimize with PCA.

Fan, Liao, and Wang (2016) consider a situation where the factor loadings of the
factorized data X are themselves functions of the underlying data X , specifically to deter-
mine the semi-parametric model

yit =
K∑
k=1

gk(Xi) ftk + uit

Fan, Liao, and Wang (2016) propose representing gk(Xi) as a projection

𝛽ik = gk(Xi) + 𝛾ik, i = 1, … p, k = 1, … ,K

where E[𝛾ik] = 0, and 𝛾ik is independent of uit and Xi. This technique is closely following
the supervised singular value decomposition model of Li, Yang, Nobel, and Shen (2015).

Next, each component gk(Xi) =
∑d

l=1 gkl(Xil), d = 𝑑𝑖𝑚(Xi) is estimated by the
sieve method (see, for example, Chen (2007)). We define a set of basic functions
𝛷 = {𝜙1, 𝜙2, …}, that can comprise B-spline, Fourier series, polynomial series, and
wavelets. Here, 𝛷 spans a dense linear space of the functional space for gkl. For each
l ≤ d,

gkl(Xil) =
J∑
j=1

bj,kl𝜙j(Xil) + Rkl(Xil)

where R(X) is the remainder function not captured by
∑J

j=1 bj,kl𝜙j(Xil) and representing
the approximation error, J is the number of sieve terms that grows slowly as p→ ∞ with
𝑠𝑢𝑝x|Rkl(X)| → 0 as J → 0.

In the special case of constant 𝜙j(Xil), gk(Xi) = 𝛽, the model reduces to the traditional
factor model:

yit =
K∑
k=1

gk(Xi) ftk + uit =
K∑
k=1

[gk(Xi) + 𝛾ik] ftk + uit = 𝛽 ft + 𝛾i ft + uit

The Projected PCA of Fan, Liao, and Wang (2016) allows us to determine the optimal
nonlinear functional for the underlying data X , potentially enabling us to detect latent
variables with nonlinear relationships where linear aggregation may fail.

Correlation-Based Factors

Laloux et al. (2000), Cizeau, Potters, and Bouchaud (2000), and Avellaneda and
Lee (2010) show that the decomposition of the covariance of the returns results in
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potentially highly correlated covariance structure. Since all financial instruments gain
volatility along with the market during high-risk events, covariance-based factors
reflect common volatility and produce highly correlated residuals. In other words,
when returns on the jth instrument, Rj =

∑m
k=1 𝛽

(k)
j F(k) + 𝜀j, where F(k) is the kth

eigenportfolio based on the singular vector generated in the covariance decomposition,
E[𝜀j𝜀i] ≠ 0. To overcome this issue, Laloux et al. (2000), Cizeau, Potters, and Bouchaud
(2000), and Avellaneda and Lee (2010) and Avellaneda (2019) use the returns correlation
as the basis for portfolio weights calculation, instead of covariance.

How do correlation-based eigenportfolios stack up against covariance-based
factorization in practice? Figures 6.5–6.10 show the performance of correlation-based
and covariance-based factorization when the factor analysis is conducted within all
U.S. traded stocks comprising individual industries. The correlation and covariance
matrices for each month t are first decomposed into eigenfactors. Next, predictive factor
loadings are determined by regressing returns of the month t+1 on the factors from
month t. Subsequently, out-of-sample portfolios are formed at the end of month t+1,
and the strategy performance for each industry is measured at the end of month t+2.
Finally, the results of different intra-industry portfolios are aggregated using a simple
average for each month and compared with the “naïve” equally weighted portfolio
across all stocks. As Figures 6.5–6.10 show, correlation-based factorization outperforms
covariance-based methodology for various numbers of top eigenvectors. Although
volatile, the correlation-based methodology also outperforms the equally weighted
portfolio of all the U.S.-traded stocks.

Interestingly, eigenportfolios of individual industries may not fare as well. Eigenport-
folios of high-growth industries like biotechnology, in particular, appear to lag behind
vanilla equally weighted industry portfolios, as shown in Figures 6.11–6.14. A possible
explanation for this is that high-growth industries are followed by a large number of ana-
lysts who essentially raise awareness and, in a way, promote the industries to investors. In
contrast, boring old industries toil in relative obscurity and that is where eigenportfolios
strike gold.

Hierarchical PCA (HPCA)

To further reduce the correlation of the residuals of the factor models, Avellaneda (2019)
proposes splitting the securities into their natural groups, industry sectors, with the
two-fold intention:

1. Taking advantage of the fact that different sectors will have little inter-sector correla-
tion outside of broad market influences, since different sectors face different business
models, supply chains, and shocks.

2. Sectors form natural factors and can be used to factorize returns for all traded instru-
ments.



Trim Size: 7in x 10in Aldridge602989 c06.tex V1 - 12/09/2020 12:45 A.M. Page 156�

� �

�

156 B I G DATA S C I E N C E I N F I N AN C E

The hierarchical PCA is designed to combine the power of PCA to select explanatory
factors with the natural structure of a market, which is always divided into asset classes.

Consider first an abstract model, in which the data matrix of dimensions T ×N ,
can be partitioned into blocks M1,M2, … ,Mb. These blocks have dimensions T ×Ni

with i = 1, 2, … b. For simplicity, we assume that the blocks are adjacent. The blocks
represent the classification of the data into sectors, or sub-classes of the full universe of
securities. There are two cases that we have in mind:

• The blocks represent data of industry sectors for equities in the same economy (e.g.,
GIC sectors associated with the 500 or so stocks in the S&P 500 index). In this case,
the columns of a block Mi correspond to the historical standardized returns of one of
the stocks in sector i, observed on T consecutive dates.

• Each block represents a stock or index and all of the derivatives written on it. In this
case, the columns represent the returns of the stock, or the returns of options written
on the stock with different strikes and tenors.1

The hierarchical PCA algorithm for the matrix consisting of b blocks is:

Cumulative Monthly Performance of EW, Cov EP and Corr EP, 2012-19
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Figure 6.5 Comparison of aggregate industry-based portfolios constructed with correlation-based
eigenportfolios, covariance-based eigenportfolios, and plain equally weighted portfolios, the first
eigenvector only.

1 In the case of options, one should consider a standardized set of strikes and tenors (usually in terms of Deltas
and time to maturity). The returns of the corresponding implied volatilities and equities are observed. Based
on these observations, one can deduct returns on select option contracts for each date and for a constant set
of strikes/maturities. This information is then used to fill the columns of the corresponding block matrix.
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Cumulative Monthly Performance of EW, Cov EP and Corr EP, 2012-19
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Figure 6.6 Comparison of aggregate industry-based portfolios constructed with correlation-based
eigenportfolios, covariance-based eigenportfolios, and plain equally weighted portfolios, first two
eigenvectors.

Cumulative Monthly Performance of EW, Cov EP and Corr EP, 2012-19
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Figure 6.7 Comparison of aggregate industry-based portfolios constructed with correlation-based
eigenportfolios, covariance-based eigenportfolios, and plain equally weighted portfolios, first three
eigenvectors.
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Cumulative Monthly Performance of EW, Cov EP and Corr EP, 2012-19
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Figure 6.8 Comparison of aggregate industry-based portfolios constructed with correlation-based
eigenportfolios, covariance-based eigenportfolios, and plain equally weighted portfolios, first four
eigenvectors.

Cumulative Monthly Performance of EW, Cov EP and Corr EP, 2012-19
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Figure 6.9 Comparison of aggregate industry-based portfolios constructed with correlation-based
eigenportfolios, covariance-based eigenportfolios, and plain equally weighted portfolios, first five
eigenvectors.
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Cumulative Monthly Performance of EW, Cov EP and Corr EP, 2012-19
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Figure 6.10 Comparison of aggregate industry-based portfolios constructed with
correlation-based eigenportfolios, covariance-based eigenportfolios, and plain equally weighted
portfolios, first six eigenvectors.

• Step 1: Perform PCA for the correlation matrix Ri for each block separately.
• Step 2: For each block, consider the normalized eigenportfolio EP(1) and the cor-
responding factor F(1)

i , i = 1, 2, … , b. The definition of the first factor is given in
Eq (6.19).

• Step 3: Consider the b × b correlation matrix R of the factors, i.e.,

Ri i′ = Corr(F(1)
i ,F

(1)
i′
) (6.19)

• Step 4: Perform the PCA of the matrix R and extract the principal eigenvalue end
EP.

Simplified correlation structure of hierarchical PCA
Consider the function

I(j) = i ⇐⇒ asset j is in block i.

According to Eq (6.19) we can write, for each asset in the “big universe,”

Xj = 𝛽j,I(j) F
(1)
I(j) + εj (6.20)

where 𝛽j,I(j) is the regression coefficient of the returns of asset j on the first factor of block
I(j) and 𝜀j is the residual – consisting of the additional terms in the KL decomposition
of the block containing j.
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Auto & Truck Dealerships, EW, Cov EP and Corr EP, 2012-19
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Figure 6.11 Auto and truck dealerships, industry eigenportfolios, first eigenvector.

Rental & Leasing Services, EW, Cov EP and Corr EP, 2012-19
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Figure 6.12 Rental and leasing, industry eigenportfolios, first three eigenvectors.
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Biotechnology, EW, Cov EP and Corr EP, 2012-19
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Figure 6.13 Biotechnology, industry eigenportfolios, first three eigenvectors.

Diagnostics & Research, EW, Cov EP and Corr EP, 2012-19
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Figure 6.14 Diagnostics and research, industry eigenportfolios, first eigenvector.
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Avellaneda (2019) makes the following assumption:

If I(i) ≠ I(j), then Corr (𝜀i, 𝜀j) = 0

This assumption states that the residuals not explained by the first EPs are uncorrelated for
assets in different sectors. Notice that this is a mathematically consistent model, because
it is tantamount to postulating that Eq (6.20) defined the asset statistics in each block and
the model is complete by specifying the joint statistics of the factors F(1)

i , i = 1, 2, … , b.
If we restrict ourselves to second-order statistics, this means specifying the correlation
structure of the factors.

This assumption can be called a “Level-1 model.” A “Level-2 model” would cor-
respond to using F(1)

i and F(2)
i in the KL representation and declaring that the residuals

after removing 2 factors are uncorrelated, and so on. The “Level-m” where m is the
largest number of columns that a block may have, is identical to the full model.

Notice that the assumptions say nothing regarding the intra-block correlations,
which are set equal to the empirical correlations between asset returns within the same
sector or block. Of course, the intra-block correlations could be further cleaned, using
RMT if necessary.

Using the Level 1 simplification and the inter-factor correlation matrix we find that
the proposed model corresponds to the following correlation structure:

Cor(Xj,Xj′ ) = Rj j′ if I(j) = I(j′ )

Corr(Xj,Xj′ ) = 𝛽j,I(j) 𝛽j′ ,I(j′) RI(j) I(j′ ) if I(j) ≠ I(j′ ) (6.21)

Avellaneda (2019) calls it a hierarchical model because it corresponds to a “tree structure.”

• In the industry sector example, the tree structure consists of the market as top vertex,
having 11 branches (corresponding to the GIC classification) and each branch having
its branches corresponding to stocks.

• In the example with equity options, each “stock branch” gives rise to a lower level,
namely, the options written on the stock (as well as the stock itself). In this case,
the leaves of the tree correspond to option contracts and the low-level blocks to the
correlation of delta-hedged options among themselves and with the stock return.

• Each of these blocks has a first-EP, corresponding to an “investment”’ in the stock
and options which explains the most variance for the group. The collection of these
EPs can now be used to determine the correlation structure within the same industry
sector. Going one more level up, we can calculate the EPs for each industry sector and
the correlation matrix for it, arriving at a renormalized correlation for sectors, etc.

• A similar approach can be used to consider debt instruments and credit-default swaps.
In this case, the issuer (company, sovereign) would constitute a sector or sub-block.

In summary, given a set of financial data for multiple instruments and multiple
underlying assets, such as those used in real asset-management, Avellaneda (2019) con-
siders a tree-like structure which corresponds to the classification of the asset as (sector,



Table 6.1 Results of the first stage of the HPCA analysis.

Healthcare
Basic
Materials Industrials

Financial
Services Technology

Consumer
Cyclical

Real
Estate

Consumer
Defensive Energy Utilities

Communi-
cation
Services

Intercept 0.8802
(1.35)

0.0850
(1.08)

0.9751
(2.66)

0.1316
(0.84)

0.4151
(1.25)

0.2963
(1.70)

0.0745
(0.90)

0.049
(0.93)

0.3585
(1.60)

0.0310
(1.39)

0.0969
(1.01)

F0 −241.4235
(−2.57)

−1.8688
(−0.11)

232.2829
(3.05)

705.5903
(4.16)

109.9657
(0.88)

−129.9175
(−3.09)

−241.7586
(−4.05)

−6.2144
(−0.42)

213.3460
(9.56)

−48.3064
(3.88)

−6.3906
(−0.65)

F1 −164.6974
(−4.59)

36.4079
(2.83)

46.0217
(2.60)

731.0591
(16.61)

−99.3723
(−2.72)

197.4760
(7.69)

34.9561
(1.52)

−15.8554
(−2.28)

29.6652
(6.72)

−112.8166
(−21.74)

31.3266
(7.77)

F2 −164.7381
(−6.96)

26.5013
(5.93)

−91.2643
(−5.67)

−25.8717
(−0.48)

50.9290
(3.54)

21.2409
(1.19)

83.9814
(5.61)

−16.7242
(−3.24)

48.1496
(3.93)

−8.9227
(−2.18)

−38.1535
(−12.27)

F3 −62.3181
(−3.00)

−19.1737
(−4.91)

−111.1623
(−4.79)

106.5968
(−3.94)

−11.4743
(−0.909)

−26.3030
(−2.52)

40.7652
(3.81)

−4.3134
(−1.04)

66.6766
(5.48)

22.9279
(9.31)

19.3820
(7.10)

F4 24.1889
(1.93)

17.5990
(5.22)

−20.5373
(−1.44)

−15.5658
(−0.59)

68.3160
(3.90)

−53.7733
(−3.52)

56.4778
(7.09)

25.2631
(6.84)

42.0036
(6.89(

16.6108
(6.74)

17.6909
(3.18)

F5 −7.8210
(−0.31)

−31.9622
(−6.23)

−64.7140
(−3.58)

−116.8665
(−5.50)

42.7252
(2.29)

73.1057
(4.27)

70.6603
(6.71)

−11.4593
(−3.61)

−48.2129
(−5.11)

9.0183
(2.70)

26.6004
(7.56)

F6 65.4992
(3.26)

14.6064
(3.52)

19.3985
(1.70)

−41.7389
(2.64)

−50.4022
(−2.44)

−49.9090
(−3.76)

35.2966
(4.14)

11.3922
(2.77)

−37.6872
(−5.95)

9.0183
(0.55)

−9.3366
(−3.41)

F7 9.7958
(0.95)

−7.7734
(−2.46)

−35.1914
(−2.29)

86.3708
(3.40)

−35.6631
(−1.29)

−23.4493
(−9.14)

10.0887
(1.15)

20.0368
(4.95)

−29.6658
(−5.11)

4.2486
(1.44)

32.0731
(7.21)

F8 −53.8676
(−3.14)

24.4860
(−8.96)

43.4272
(2.66)

70.9843
(3.54)

−4.9601
(−0.39)

−36.5815
(−3.11)

−1.9270
(−0.18)

−4.6251
(−1.19)

38.2474
(6.57)

16.4594
(9.34)

−24.6570
(−6.35)

F9 27.1939
(2.64)

−27.8352
(−8.40)

−20.1762
(−2.01)

−109.4950
(−4.45)

−13.6018
(−0.75)

−105.5101
(−7.84)

53.1448
(5.54)

−26.8894
(−7.90)

30.8181
(10.15)

−13.9294
(−8.386)

15.4918
(5.67)

Adj. R-sq
(%)

31.2 86.6 31.0 85.7 61.2 75.6 69.3 61.1 87.4 86.3 86.8
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stock, debt, options). The hierarchical approach to correlations modeling gives rise to
a mathematically sound framework which combines the details of the security with the
explanatory power of PCA.

Table 6.1 shows the results of the first stage of the HPCA analysis: the out-of-sample
intra-sector regression of 2016 daily returns on the first ten eigenfactors generated from
the correlation matrix of the 2016 daily returns in each industry. The t-statistic for
each industry is shown in parentheses. As Table 6.1 shows, the factors offer tremendous
explanatory power, often reaching 80 percent.

As shown in Table 6.1, the intercept is generally not statistically significant. This
implies that the factors capture substantial variability of returns of individual securities.
The vast majority of the industry factors based on the 2016 returns earn 99 percent
statistical significance in-sample in each given industry (all t-ratios greater than 2 are
shown in bold in Table 6.1). Finally, Adjusted R2 of the intra-industry regressions is also
extremely powerful, ranging from 31% to 87%. With the exception of Industrials, the
sectors’ intrinsic eigenportfolios explain the majority of return variation in the sectors.
Similar in-sample results hold for 2017 and 2018.

Interestingly, the top eigenvalues representing the core structure of the data change
little from one year to the next. Figures 6.15–6.25 show the annual changes in the top
10 eigenfactors across the industries.

Figures 6.26–6.36 show out-of-sample performance of annual in-sector returns com-
puted with the previous year’s top eigenfactors and factor loadings. In every year t, the
top 10 eigenportfolios were calculated by performing the SVD on the return correlation
matrix for all the stocks traded that were identified in the given sector. Next, factor load-
ings 𝛽 were calculated by regressing the annual returns realized in year t of all the securities
in a given sector on the top-10 eigenportfolios calculated in the year t. For the following
year t+1, the portfolios were formed by matrix multiplying 𝛽 and the top-10 eigenfactors

Distribution of Year-to-Year Changes in Top-10 Eigenfactors, Basic Materials

10

8

6

4

2

0
–1.00 –0.75 –0.50 –0.25 0.00 0.25 0.50 0.75

Figure 6.15 Distribution of year-to-year changes in top-10 eigenfactors, Basic Materials.
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Distribution of Year-to-Year Changes in Top-10 Eigenfactors,
Communication Services
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Figure 6.16 Distribution of year-to-year changes in top-10 eigenfactors, Communication
Services.

Distribution of Year-to-Year Changes in Top-10 Eigenfactors,
Consumer Cyclical

–7.5 –5.0 –2.5 0.0 2.5 5.0 7.5 10.0

10

8

6

4

2

0

Figure 6.17 Distribution of year-to-year changes in top-10 eigenfactors, Communication
Cyclical.

identified in year t. The resulting portfolio weights based on year t data can be positive
(long) or negative (short). The out-of-sample results were next calculated by applying
these portfolios to the annual returns for year t+1 of each stock in the sector. The eigen-
factors and factor loadings were next recomputed for year t+1 to be applied for the
out-of-sample return computation for year t+2 and so on in a rolling window fashion.
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Distribution of Year-to-Year Changes in Top-10 Eigenfactors,
Consumer Defensive

–3 –2 –1 0 1 2

10

8

6

4

2

0

Figure 6.18 Distribution of year-to-year changes in top-10 eigenfactors, Consumer Defensive.

Distribution of Year-to-Year Changes in Top-10 Eigenfactors, Energy
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Figure 6.19 Distribution of year-to-year changes in top-10 eigenfactors, Energy.
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Distribution of Year-to-Year Changes in Top-10 Eigenfactors,
Financial Services
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Figure 6.20 Distribution of year-to-year changes in top-10 eigenfactors, Financial Services.

Distribution of Year-to-Year Changes in Top-10 Eigenfactors, Healthcare
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Figure 6.21 Distribution of year-to-year changes in top-10 eigenfactors, Healthcare.
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Distribution of Year-to-Year Changes in Top-10 Eigenfactors, Industrials
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Figure 6.22 Distribution of year-to-year changes in top-10 eigenfactors, Industrials.

Distribution of Year-to-Year Changes in Top-10 Eigenfactors, Real Estate
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Figure 6.23 Distribution of year-to-year changes in top-10 eigenfactors, Real Estate.
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Distribution of Year-to-Year Changes in Top-10 Eigenfactors, Technology
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Figure 6.24 Distribution of year-to-year changes in top-10 eigenfactors, Technology.

Distribution of Year-to-Year Changes in Top-10 Eigenfactors, Utilities
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Figure 6.25 Distribution of year-to-year changes in top-10 eigenfactors, Utilities.
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OOS Cumulative Performance, Basic Materials
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Figure 6.26 OOS cumulative performance, Basic Materials.

OOS Cumulative Performance, Communication Services
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Figure 6.27 OOS cumulative performance, Communication Services.
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OOS Cumulative Performance, Consumer Cyclical

Abs Allocation
Net Allocation
EW Allocation
Long-Only Allocation

2006

C
um

ul
at

iv
e 

R
et

ur
ns

0

100

200

300

400

500

200720082009201020112012
Years

2013201420152016201720182019

Figure 6.28 OOS cumulative performance, Consumer Cyclical.

OOS Cumulative Performance, Consumer Defensive
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Figure 6.29 OOS cumulative performance, Consumer Defensive.
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OOS Cumulative Performance, Energy
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Figure 6.30 OOS cumulative performance, Energy.

OOS Cumulative Performance, Financial Services
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Figure 6.31 OOS cumulative performance, Financial Services.
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OOS Cumulative Performance, Healthcare
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Figure 6.32 OOS cumulative performance, Healthcare.

OOS Cumulative Performance, Industrials
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Figure 6.33 OOS cumulative performance, Industrials.
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OOS Cumulative Performance, Real Estate
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Figure 6.34 OOS cumulative performance, Real Estate.

OOS Cumulative Performance, Technology
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Figure 6.35 OOS cumulative performance, Technology.
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OOS Cumulative Performance, Utilities
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Figure 6.36 OOS cumulative performance, Utilities.

While the results shown in Table 6.1 are highly significant, they are not sufficient to
predict out-of-sample returns, at least not on the year-ahead basis.

The out-of-sample results reported in Figures 6.26–6.36 contain several types of
portfolio computations. The EW portfolio is a simple in-sector equally weighted return,
a “baseline” scenario included for performance comparison.

The net portfolios are computed by netting out positive and negative portfolio allo-
cations, effectively using the money from shorted portfolio positions to finance the
long positions. Netting out portfolios reduces the total capital deployed and produces
potentially higher overall returns, but may be misleading about the risk engaged in the
portfolio.

Absolute portfolios, reported as “Abs Allocation” in Figures 6.26–6.36, compute the
capital based as a total amount of portfolio funds deployed. Under the absolute allocation,
negative (short) portfolio funds are calculated as cash-at-risk, just like the long portfolio
funds. The resulting Absolute Allocation return is computed by dividing the obtained
out-of-sample portfolio return by the total amount of funds used.

Long-only allocations ignore the negative portfolio positions altogether. The money
is invested in the long (positive) portfolio positions only. As Figures 6.26–6.36 show,
long-only allocations prove to be the winning intra-sector strategies based on eigenport-
folios. The long-only allocations are also the most desired strategies for many institutional
investors, like pension funds and insurance companies.
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Disadvantages of PCA and SVD

The main disadvantage of PCA is that it makes no use of information that we have about
assets and that is fundamental. Therefore, in many cases, we find that the PCA of finan-
cial correlation matrices gives us information we already expected. Most studies tend to
justify the PCA approach by recognizing that it produces factors that have a “traditional”
economic explanation, such as equating EP(1) with Sharpe’s Market Portfolio, or assign-
ing interpretations in terms of industry sectors for higher-order EPs. In the case of fixed
income, the EPs are identified with parallel shifts of rates, long-term vs. short-term vari-
ations, i.e., changes in the slope of the yield curve, and so forth. Therefore, most papers
in the field tend to focus on the identification of the factors F(k) and the corresponding
eigenportfolios.

Interestingly enough, the PCA/RMT approach does not consider the nature of the
securities that it examines or, if I can put it another way, it applies to relatively narrow sets
of securities (like yield curves for a single credit) or, at the other end of the spectrum,
runs into the problem of identification of the factors, and the worrisome question of
the stability across different market regimes, such as recession, contraction, or different
monetary regimes.

It could be argued that if the asset universe is broad, the correlations of assets which
are not economically related (a tech stock and an energy stock, or a foreign stock) are
probably difficult to measure precisely, due to the fact that prices are not sampled simul-
taneously. Only highly liquid instruments are available to trade in different time zones.
The empirical correlation of the prices of out-of-the money options written on different
underlying assets may not be reliable in practice.

All this suggests that a description of common factors affecting asset returns should
recognize the economic function of the assets and perform PCA only on homogeneous
groups, or sectors of the market. This analysis has the advantage that the systems to
be analyzed are homogeneous and require less explanatory factors. In fact, it is very
natural, if we pause to think that it is easier and more reasonable to perform small-scale
variance-covariance analysis of small universes of assets. The question then becomes
how to “integrate” them into the big picture. Techniques like HPCA allow researchers
to retail the handle on the data and their economic interpretation.

Conclusion

Unsupervised learning produces optimal factorization. The resulting factors eliminate
the guesswork of which factors are dominant and deliver superior performance in pre-
dicting future returns.
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Appendix 6.A Python for Big Data Factor Models

To find the Karhunen-Loève eigenportfolio factorization, we can use the following code
on standardized data X (code for data standardization was discussed in Appendix 5.A in
Chapter 5):

import numpy as np
corr = np.corrcoef(X)
s, V = np.linalg.eig(corr)
F0 = 1/(np.sqrt(s[0]))*np.dot(V[:,0], X)

Here, we decompose the correlation matrix of X with PCA using linalg.eig, and
determine the first eigenportfolio F0 based on the first eigenvector.

Next, we can use the factor as an explanatory variable in a linear regression to explain
variation in X as follows:

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(F0, X)
beta = regressor.coef_ #betas are portfolio factors

With a built-in LinearRegression library from scikit-learn, we obtain the portfolio
factors as betas in the regression.

A POET model runs PCA on the covariance matrix of X, instead of its variance:

import numpy as np
cov = np.cov(X)

Once again, the simplicity of the Python code delivers the easy optimization of data
inferences.

For specific code examples, please visit https://www.BigDataFinanceBook.com,
and register with password DataFactors (case-sensitive).
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Chapter 7

Data as a Signal versus Noise

Introduction

A recent Business Insider article reported that the data spending by financial com-
panies reached a record $7 billion, and is expected to grow further. Even so,
the financial firms find themselves struggling to figure out what to do with

this data, or even if the data they are buying has much meaning. To address the issue,
firms like hedge funds and banks turn to pricey data scientists, employees, and consul-
tants to help them figure out the value of data and data applications. Anecdotally, often
the newly hired highly paid data scientist is handed a “bag of data stuff” the company
has previously paid to acquire and is asked to tell the firm how to make money from
all that.

To someone trained in classical econometrics, the question of “how to make money
from all that” can be daunting. Econometrics teaches students how to select a proper
distribution and estimation model for the yes/no questions the researcher may have.
Econometrics does not, however, work well with open-ended questions of “how” and
“why.”

This is where data science comes in quite handy. In particular, Big Data tech-
niques discussed in this chapter can help quickly answer if “the bag of data” is valuable
or not.

180
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Random Data Shows in Eigenvalue Distribution

To begin our examination of the data bag, we require several concepts. An n × n sym-
metric matrix A (i.e., a Hermitian matrix) with real independent, identically distributed
(i.i.d.) elements Xij satisfying

E[Xij2] <∞, 1 ≤ j ≤ i ≤ ∞, Xij = Xji (7.1)

is known as the Wigner Matrix. Eugene Wigner originally developed Wigner matrices
to model the nuclei of heavy atoms. A Wigner matrix with real Gaussian (0,1) entries is
known as a Gaussian Orthogonal Ensemble (GOE), although GOEs in general do not
need to be symmetric. Formally, GOEs are data tables containing i.i.d. Gaussian (0,1) data
elements. Wigner matrices work well for modeling correlation matrices with random
entries, while non-symmetric GOEs work well for representing normally distributed
random Gaussian (0,1) returns and other data.

The interesting feature of the Wigner matrices and GOEs is that the distribution of
eigenvalues of both, when scaled by the squared root of n, is a perfect semicircle! A sample
semicircular distribution of eigenvalues is shown in Figure 7.1. This phenomenon is
known as the Wigner Semicircle Law after Wigner (1955, 1958).

The Wigner Semicircle Law, the Central Limit Theorem for Wigner matrices, states
that for all n × n Wigner matrices and GOEs, the distribution of eigenvalues is a semi-
circle. There are n random eigenvalues which we will denote by 𝜆1 ≤ 𝜆2 ≤ . . . 𝜆n.

40

30

20

10

0
–30 –20 –10 0

32.0 bins

10 20 30

Figure 7.1 Wigner Semicircle Law: the distribution of eigenvalues of a Gaussian Orthogonal
Ensemble (GOE) – a Wigner matrix with Gaussian (0,1) elements. The matrix in the image was
generated by populating a 600×600 matrix with random numbers, then taking the covariance of the
matrix, then finding the eigenvalues of the covariance, dividing each eigenvalue by the square root
of n, and finally plotting the eigenvalue distribution.
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The eigenvalues happen to be continuous functions of the n × n Wigner matrix Mn,
hence they are random variables themselves. The empirical cumulative distribution of
eigenvalues is

l(x):=1
n

n∑
i=1

X(𝜆i < x) (7.2)

and the corresponding empirical density function is

l′(x):=1
n

n∑
i=1

𝛿(x − 𝜆i). (7.3)

When the matrix is normalized to have all eigenvalues lie on [-1, 1], then the Wigner
Semicircle Law says that with probability 1 as n→ ∞, the empirical density function of
eigenvalues of any Wigner and GOE matrix converges to the function

l′(x) = 1
n

n∑
i=1

𝛿

(
x −

li

2
√
n

)
→ P(x) = 2

𝜋

√
1 − x2 (7.4)

Technically, the Wigner Semicircle Law holds not just for real-valued matrices, but also
for complex representations. In finance, all mathematics tend to work solely with real
numbers, so we will focus our discussion solely on real numbers.

Application: What’s in the Data Bag?

Both real Wigner matrices and GOEs, by definition, contain random data, also known
as noise. The natural application of the Wigner Semicircle Law then is to test a data table
to find out if the data elements contained within are pure random noise, or if some other
structure, a signal, can be detected.

How would you go about testing your data? You may do it in two different ways,
whichever closer matches your target application.

1. Normalize data to the required mean 0, variance 1 format: compute the mean and
standard deviation of the data, subtract the mean from the data, then divide the data
by the standard deviation.

2. Take the covariance of the data matrix.
3. Compute the eigenvalues of the covariance and divide them by the square root of n,

the number of rows or columns in the matrix.
4. Plot the histogram of the resulting eigenvalues.

If you have a large number of eigenvalues (a prerequisite) and their distribution
resembles the semicircle in Figure 7.1, then you have a high probability of data being
simply random, a Gaussian noise, also known as white noise, or, less euphemistically,
garbage.

If your histogram of eigenvalues is mostly a semicircle, but with a few histogram
bins “spiking up” from the semicircle profile, you probably have a spike model on your
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hands, where the spike indicates a clear valuable data feature, also known as a signal. Such
occurrences are tracked in the so-called “spike models.”

However, for the data to look like a nice semicircle, it does have to be a Wigner
matrix. What if your data is not? Luckily for us, the Marčenko-Pastur Theorem provides
the answer.

The Marčenko-Pastur Theorem

TheMarčenko-Pastur result, due to Marčenko and Pastur (1967), is a generalized version
of theWigner Semicircle Law. It applies to random data with any underlying distribution.
For any such data, Marčenko and Pastur (1967) showed that the distribution of eigen-
values of sample covariances weakly converges to a specific distribution, now known
as the Marčenko-Pastur function. If the data is not completely random, the “spike”
signal breaking through the Marčenko-Pastur envelope can be seen on the eigenvalue
distribution plot.

Formally, the empirical density function for the eigenvalue distribution of a sample
covariance matrix S of an n × p matrix with independent identically distributed (i.i.d.)
entries {X} with mean 0 and variance 1, S = 1

n
X ′X , when p, n → ∞ in such a way that

p∕n→ 𝛾 ∈ [0, 1], is

l′(x):=1
n

n∑
i=1

𝛿

(
x −

𝜆i

2
√
n

)
→ G′(x) = 1

2𝜋x𝛾

√
(b − x)(x − a), b ≤ x ≤ a (7.5)

The convergence occurs almost certainly as p
n
→ 𝛾 , with the smallest eigenvalue a and

the largest eigenvalue b satisfying

a = (1 − 𝛾1∕2)2 (7.6)

b = (1 + 𝛾1∕2)2 (7.7)

For a proof of Marčenko-Pastur, the reader may refer to Bai (1999), among many other
sources.

Just like the Wigner Semicircle Law, the Marčenko-Pastur theorem describes the
distribution of the eigenvalues of a covariance matrix of normalized data (with the mean
subtracted and divided by the standard deviation of the data set to present the i.i.d. entries
with mean 0 and variance 1). Unlike the Wigner Semicircle Law, the Marčenko-Pastur
theorem relaxes the assumptions on the size and the actual distribution of data. Under
the Marčenko-Pastur theorem, the matrices can be rectangular n × p, and no longer have
to be square n × n as in the Wigner Semicircle Law. Equally, if not more, importantly,
the underlying distribution of data under the Marčenko-Pastur theorem no longer has
to be Gaussian – it can be anything, as long as it is i.i.d.

Figures 7.2–7.5 show the distribution of eigenvalues for covariances of ran-
dom matrices normalized to have mean 0 and variance of 1 and the associated
Marčenko-Pastur distributions for matrices of different sizes.

If 𝛾 > 1, as in the case when the return covariance is estimated on a much smaller
number of sequential data points than the number of instruments, given the rank of the



Trim Size: 7in x 10in Aldridge602989 c07.tex V1 - 12/09/2020 4:58 P.M. Page 184�

� �

�

184 B I G DATA S C I E N C E I N F I N AN C E

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Marcenko-Pastur distribution and empirical histogram of eigenvalues of the covariance
of a random 1000 × 500 matrix.
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Figure 7.2 Distribution of eigenvalues of covariance of a randomly generated 1000 × 500 matrix
(y = 𝟎.𝟓). The data matrix was normalized to have mean 0 and variance 1.
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Marcenko-Pastur distribution and empirical histogram of eigenvalues of the covariance
of a random 10000 × 500 matrix.
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Figure 7.3 Distribution of eigenvalues of covariance of a randomly generated 10000 × 500
matrix (𝜸=𝟎.𝟎𝟓). The data matrix was normalized to have mean 0 and variance 1.

covariance matrix 𝑟𝑎𝑛𝑘(S) = p ∧ n, approximately n(1 − 𝛾) eigenvalues will be zero. The
resulting eigenvalue distribution of the sample covariance will have a mass of (1 − 𝛾−1)
at 0 and a Marčenko-Pastur set of eigenvalues as shown in Figure 7.4.

When n = p, 𝛾 = 1, a = 0 and b = 4. Thus,

G′(x) = 1
2𝜋x𝛾

√
(4 − x)x, 4 ≤ x ≤ 0 (7.8)

as shown in Figure 7.5.
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Marcenko-Pastur distribution and empirical histogram of eigenvalues of the covariance
of a random 100 × 500 matrix.
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Figure 7.4 Distribution of eigenvalues of covariance of a randomly generated 100 × 500 matrix
(𝜸=𝟓). The data matrix was normalized to have mean 0 and variance 1. The figure shows a large
mass at 0 corresponding to the zero-eigenvalues resulting from a reduced rank of the matrix.

Marcenko-Pastur distribution and empirical histogram of eigenvalues of the covariance
of a random 500 × 500 matrix.
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Figure 7.5 Theoretical and empirical distribution of eigenvalues of the covariance of a randomly
generated 500 × 500 matrix (𝜸=𝟏). The resulting eigenvalues are distributed between 0 and 4. The
underlying random data matrix was normalized to have mean 0 and variance 1.
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Spike Model: Which Value to Pick on the “Elbow”?

Eigenvalue distributions play an important role in Data Science. Identifying the signal in
the data via distribution outliers known as spikes is a useful tool. In addition, spike models
can be used to pinpoint the optimal number of significant eigenvalues to be retained in
models involving dimensionality reduction, optimal factorization like POET, discussed
in Chapter 5, and many others.

To determine the optimal number of significant eigenvalues, one needs to pinpoint
the optimal “elbow” cut-off in the corresponding scree plot – the plot of sorted eigenval-
ues. Doing so by eyeballing the data can be challenging and, more importantly, difficult
to objectively justify the results. Why not let Big Data handle this aspect of modeling as
well?

Several ideas have been put forth over the years to automate the “eyeballing” of the
scree plot. Researchers following Kaiser (1960) choose to fix the number of significant
values used in analysis before commencing the analysis. The scree test, first developed by
Cattell (1966), seeks a gap between significant and insignificant eigenvalues on the scree
plot. Horn (1965), Buja and Eyuboglu (1992), Dobriban and Owen (2019), and others
explore parallel analysis, whereby the given distribution of eigenvalues is compared to a
randomly generated distribution with the same variances, but 0 covariances. Then, the
eigenvalues in the original sample distribution are deemed significant if they exceed a
certain threshold, say, 95 percentile of all the eigenvalues of the generated random dis-
tribution. In the finance literature, Connor and Korajczyk (1993) propose an alternative
method based on finding the k+1 factor that explains asymptotically zero cross-sectional
asset variability.

A method based on Marčenko-Pastur (1967), which has become the standard in the
statistical literature and is discussed here, considers the eigenvalues significant if they lie
above the theoretical Marčenko-Pastur eigenvalue distribution support [a, b], where a
and b are given by Eqs. (7.6) and (7.7). To determine the significant eigenvalues, con-
sider the eigenvalue distribution. The spikes in the histogram represent the signal-driven
outliers that are the significant eigenvalues. Counting the outlier spikes falling outside of
the parameterized eigenvalue distribution envelope delivers the answer for the optimal
eigenvalue cut-off.

While “eyeballing” the distribution has been a traditional process to determine the
“elbow” cut-off for many years, Marčenko-Pastur gifts us a fully automated ability to
do the same, ensuring maximum transparency and objectivity in the model-selection
process. To find the elbow, one may use the key property of Marčenko-Pastur: discerning
the signal from the noise. A signal immersed in the otherwise noisy data corresponds to
a “spike” that “pops out” of the Marčenko-Pastur support of the eigenvalue distribution
(Figures 7.6a and 7.6b).

To understand the power of the concept better, consider the following example. We
create a data set X with vectors{x1, x2, … , xn} to be a mixture of two distributions: a
pure Gaussian noise g ∼ N(0, 1) and a signal s. The signal consists of a diagonal M × M
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Figure 7.6a These eigenvalues “pop out” from the Marčenko-Pastur distribution.

0 1 2 3 4 5 6 7 8 9 10

Histogram, Log Scale

(b)

Figure 7.6b Log scale of the histogram in Figure 7.6. Here, the log scale shows the spiked
eigenvalues more clearly.

matrix with diagonal elements represented by a Gaussian variation g0 ∼ N(0, 𝛽), with g0
being independent of g (E[gg0] = 0). The data elements x then are

x = g + s = g +
√
𝛽v (7.9)

with distribution
x ∼ N(0, I + 𝛽vvT ) (7.10)
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Can Marčenko-Pastur help us to separate the signal part of x? Different signal-versus-
noise properties have a varying ability to separate the signal from the noise, as illustrated
in Figures 7.7 and 7.8.

What is the “critical” value of 𝛽 that allows us to separate the noise from the signal?
The 𝛽 above which eigenvalues pop up from the distribution support, and below which
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Marcenko-Pastur distribution and empirical histogram of eigenvalues of the covariance
of signal beta = 3 + noise 1000 × 500 matrix

ˇ
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Figure 7.7 Marčenko-Pastur for a signal of Eq (7.10) with 𝜷 =𝟑.𝟎 for N = 1000 and M = 500
matrix (y=𝟎.𝟕𝟎𝟕𝟏𝟏 , 𝟏∕y=𝟏.𝟒𝟏𝟒𝟐𝟏), 𝜷 > 𝟏∕y. The signal “pops out” from the distribution.
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Marcenko-Pastur distribution and empirical histogram of eigenvalues of the covariance
of signal beta = 0.6 + noise 1000 × 500 matrix
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Figure 7.8 Marčenko-Pastur for a signal of Eq (7.10) with 𝜷 =𝟎.𝟔 for N = 1000 and M = 500
matrix (𝜸=𝟎.𝟕𝟎𝟕𝟏𝟏, 𝟏∕𝜸=𝟏.𝟒𝟏𝟒𝟐𝟏), 𝜷 < 𝟏∕𝜸. The signal is “lost” in the noise distribution.



Trim Size: 7in x 10in Aldridge602989 c07.tex V1 - 12/09/2020 4:58 P.M. Page 189�

� �

�

Data as a Signal versus Noise 189

the noise absorbs the signal, is known as the BBP transition after Baik, Ben-Arous, and
Peche (2005). It is possible to show that

𝛽 = 1∕
√
𝛾 (7.11)

where 𝛾 = p∕n, is such a transition point.
For derivation and related inferences, see Johnstone (2001), Baik, Ben-Arous, and

Peche (2005), Karoui (2005), Baik and Silverstein (2005), Paul (2007), Benaych-Georges
and Nadakuditi (2011), and Benaych-Georges and Nadakuditi (2012).

The BBP transition delineates the break between no significant eigenvalues out-
side of Marčenko-Pastur support and at least one significant eigenvalue (“spike”) in the
eigenvalue distribution past theMarčenko-Pastur maximum. As a result, the stream of lit-
erature studying spikes is known as the “spike modeling” or “spiked covariance models.”

Spiked covariance models aid our ability to predict the location of significant eigen-
values based on the data shape. Typically, the data considered has to be voluminous
as the models are studying the asymptotic properties of eigenvalues, true to a large data
population. In general, spiked covariance models involve covariance matrices of the type

𝛴 = 𝑑𝑖𝑎𝑔(s1, s2, … , sk, 1, 1, … 1) (7.12)

with s1 ≥ s2 ≥ … ≥ sk > 1 for some 1 ≤ k < p.
In other words, the data under consideration is uncorrelated. In contrast, most of the

daily, monthly, quarterly, and annual data in finance exhibits high correlation, with daily
stock time series often correlating as much as 50 percent and higher. The spiked covari-
ance matrices are not suitable for such data examination. The intraday data, however,
is mostly uncorrelated. Epps (1979) was the first to notice that securities correlations
broke down as the data frequency increased from daily to hourly, to minutes to seconds
and milliseconds. The intraday market data are also massive in comparison with daily or
lower frequency data, both in length and breadth. The length of the data is driven by how
frequently the data are sampled: in just one trading day, there are 390 1-minute data rows
during the “regular” trading hours from 9:30AM ET to 4 PM ET, which can be sampled
as 23,400 1-second data rows, 23,400,000 1-millisecond data rows, or 23,400,000,000
1-microsecond data rows. Some financial instruments like Foreign Exchange and selected
futures trade around the clock, generating a lot more observations. The breadth of intra-
day data is also unparalleled. The data for just one security includes the traditional Open,
High, Low, and Close prices for each time period, in addition to a multitude of limit
orders of different sizes placed at different price levels, limit order revisions, and limit
order cancellations. Due to the highly asynchronous nature of intraday trading, most of
the trading data is largely uncorrelated among different securities and, in a larger context,
financial instruments. For the intraday data, the spiked covariance model is very relevant
and is discussed next.

A well-known property of eigenvalue decomposition in the uncorrelated data is
that the eigenvalues of data with a diagonal matrix are the diagonal elements them-
selves while the eigenvectors are the unit vectors. In other words, a diagonal matrix
C = 𝑑𝑖𝑎𝑔(c11, c22, … , cpp) (where off-diagonal elements cij = 0 for all i ≠ j) satisfies:

CE = 𝛬E (7.13)



Trim Size: 7in x 10in Aldridge602989 c07.tex V1 - 12/09/2020 4:58 P.M. Page 190�

� �

�

190 B I G DATA S C I E N C E I N F I N AN C E

where 𝛬 is a vector of eigenvalues 𝛬 = [𝜆1, 𝜆2, … , 𝜆p] and E is the matrix of eigenvec-
tors with

𝜆1 = c11, e1 = [1, 0, 0… 0]T
𝜆2 = c22, e2 = [0, 1, 0… 0]T

…

𝜆p = cpp, ep = [0, 0, 0… 1]T

However, Ahn, Marron, Muller, and Chi (2007), among others, have shown that as
dimensionality (number of features or columns) in the data increases relative to the num-
ber of observations, the eigenvalues estimated by PCA are likely to blur and become
indistinguishable from those of an identity covariance matrix. In other words, as the
number of columns in the data increases or the number of observations decreases, the
signal disappears in the noise entirely. However, Johnstone (2001) and Ahn, Marron,
Muller, and Chi (2007) also show that the first eigenvalue can still be estimated by PCA
reliably in uncorrelated or weakly correlated data when the signal is dominant. In this
case, the covariance is said to be “extremely spiked,” that is,

𝛴 = 𝑑𝑖𝑎𝑔(p𝛼, 1, 1, … 1), 𝛼 > 1 (7.14)

where p is the dimension of data, i.e., the number of columns.
In this extremely spiked setup, Ahn, Marron, Muller, and Chi (2007) show that

the first eigenvalue of the data, 𝜆1, is indeed 𝜆1 = p𝛼, with the rest of the eigenvalues
𝜆2 = 𝜆2 = … = 𝜆p = 1, and eigenvectors being the p-dimensional unit vectors. Jung
and Marron (2009) showed that in data with a diagonal covariance matrix, the largest k
eigenvalues can also be reliably estimated under specific conditions.

Dealing with Highly Correlated Data

While the Marčenko-Pastur and spike models apply to the largely uncorrelated intraday
data, they are not well suited to daily and longer-term financial returns that are known to
exhibit high correlations since Marčenko-Pastur assumes the underlying data to be i.i.d.
To address the issue, we apply PCA to correlation instead of covariance of correlated data.
While the process is identical except that PCA is performed on normalized correlation
data, it is known then as the Karhunen-Loève Transform (KLT).

The KLT premise is that PCA performed on the correlation matrix, instead of a
covariance matrix, factors out a lot of variation in the correlation structure into the
singular values. Indeed, the largest eigenvalue of the correlation matrix always happens
to be the average correlation of the data while the other singular values capture the
other dimensions of the largest correlation variability in decreasing order. Reconstruct-
ing the correlation matrix under Karhunen-Loève follows an identical process to that
under PCA. Marčenko-Pastur cut-offs now apply even when the data are highly corre-
lated because PCA on the correlation data decoupled or defactored the correlations into
orthogonal components.

In portfolio management applications, the use of Karhunen-Loève is readily
apparent. The portfolios with reduced dimensions are constructed with the principal



Trim Size: 7in x 10in Aldridge602989 c07.tex V1 - 12/09/2020 4:58 P.M. Page 191�

� �

�

Data as a Signal versus Noise 191

components of the correlation matrix. Marčenko-Pastur applies and delivers sound
results.

Deconstructing the Mona Lisa

To illustrate the concepts discussed in this chapter, consider once again the image of the
Mona Lisa, repeated for convenience in Figure 7.9.

The image measures 250 pixels across and 360 pixels vertically. As before, each pixel
in grayscale is actually represented by a number in [0,255], with 0 rendering as black,
255 as white, and everything else in darker or whiter shades of gray. The colors of
the image change slowly with many columns showing similar coloring. As a result, the
image data are highly correlated. The histogram of the Mona Lisa’s correlation is shown
in Figure 7.10.

As Figure 7.10 shows, the Mona Lisa correlation mass is well in excess of the 50
percent reached by the daily returns of the U.S. S&P 500 stocks. From this perspective,
it is interesting to demonstrate the techniques discussed in this chapter on the Mona Lisa
image.

If we detrend and descale the image data column-by-column, and then run
Marčenko-Pastur, the Mona Lisa scree plot shows only 6 significant eigenvalues
(Figure 7.11). This number is close to what a human researcher is likely to pick as the
“elbow” of the scree plot just by eyeballing the plot. While the result delivers a compact
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Figure 7.9 Mona Lisa, grayscale.
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Figure 7.10 Histogram of correlations of the Mona Lisa’s columns.
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Figure 7.11 The Marčenko-Pastur “elbow” of the detrended and descaled covariance of the
columns of the Mona Lisa image.

representation of the image – we just reduced 250 columns down to 6 – the image
reconstruction with just six eigenvalues may not be fully satisfying to a human viewer,
as shown in Figure 7.12.

In contrast, applying Marčenko-Pastur to the covariance of the unnormalized, raw
image produces a much higher significant eigenvalue cut-off value, 120 (Figure 7.13).
This in turn delivers a much clearer image reconstruction, shown in Figure 7.14.
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Mona Lisa reconstruction with 6 most significant eigenvalues, selected by Marčenko-Pastur

Figure 7.12 Mona Lisa reconstruction with just six significant eigenvalues.
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Figure 7.13 Marčenko-Pastur cut-off on the unnormalized (raw) Mona Lisa image. The
Marčenko-Pastur value comes in at 120.
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Mona Lisa reconstruction with 119 most significant eigenvalues, selected by Marcenko-Pasturˇ

Figure 7.14 Subsequent SVD reconstruction of the image with 120 significant eigenvalues
delivers the image nearly identical to the original from a human eye perspective.

What’s in the Data Bag?

We have constructed the data distribution and identified the number of eigenvalues to
keep via Marčenko-Pastur. What kind of inferences can we make from the data?

Applications

1. Determining the “Cut-off” of Significant Eigenvalues in i.i.d. Processes

While theoretical exercises involving random matrices are very informative, the focus
of this book is on financial applications of the Big Data models. Application of
Marčenko-Pastur to the actual S&P 500 returns is shown in Figures 7.15–7.22. Indeed,
the financial returns differ considerably from the random data dynamics shown in
Figures 7.2–7.5.

Figure 7.15 shows the distribution of eigenvalues of covariances of daily returns of
the S&P 500 computed over 750 trading days spanning 2013–2015. The narrower shape
of the distribution is driven by the significant outliers of the eigenvalue distribution.
The largest theoretical eigenvalue of the covariance of pure noise (Marčenko-Pastur) is
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Marcenko-Pastur distribution and empirical histogram of eigenvalues of daily returns of the
S&P 500, 750-days covariance computation.
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Figure 7.15 Marčenko-Pastur and the empirical distribution of the eigenvalues of the covariances
of the daily normalized S&P 500 returns. 750 trading day returns (three trading years) were used in
the computation shown.

b =3.13695 computed for 𝛾= 1.5 (𝛾 = p∕n, n = 750, p = 500). In the empirical eigen-
value distribution of the covariance of the 750 daily S&P 500 returns for 2013–2015,
18 eigenvalues exceed the “b threshold.” These “popping-out of the distribution” or
“spiking” eigenvalues are: 137.62393, 20.36657, 13.07877, 9.12688, 6.05041, 5.83210,
5.33807, 4.73916, 4.64517, 4.53902, 4.30116, 4.02740, 3.83986, 3.70290, 3.50262,
3.31965, 3.19999, and 3.14793.

A cut-off in the eigenvalues is the elbow in the scree plot first discussed in Chapter 5
of this book. The original approach to dealing with the selection of significant eigen-
values involved a researcher’s subjective judgment to discern the tilting point of the
elbow in the scree plot. Needless to say, such an approach was fraught with instabil-
ity, error, and complications in replication. Marčenko-Pastur provides us a relief from
subjectivity by delivering a cut-off of eigenvalues where they fall outside of the support
of Marčenko-Pastur distribution. Specifically, we are interested in the largest eigenvalues
that exceed the largest eigenvalue considered to be random by Marčenko-Pastur, b in
Eq (7.7), repeated here for convenience:

b = (1 + 𝛾1∕2)2 (7.15)

where 𝛾 is the ratio of the number of columns to the number of rows in the underlying
data matrix, 𝛾 = p∕n. Additionally, more precise tools for determining the distribution
of the largest eigenvalue of random data are discussed in Chapter 4.

Figure 7.16 shows the Marčenko-Pastur cut-off of the significant eigenvalues on a
scree plot. As Figure 7.16 illustrates, the “elbow” chosen by Marčenko-Pastur falls lower,
that is, includes more significant eigenvalues, than one may naively pick by eyeballing
the scree plot. Figures 7.18, 7.20, 7.22, 7.24, 7.26, and 7.28 similarly show the sig-
nificant eigenvalues picked by Marčenko-Pastur for various numbers of daily S&P 500
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Figure 7.16 The scree plot of the singular values corresponding to the data shown in Figure 7.15
delineating eigenvalues greater than the largest Marčenko-Pastur eigenvalue. 18 eigenvalues “spiked”
after the Marčenko-Pastur cut-off.

Marcenko-Pastur distribution and empirical histogram of eigenvalues of daily returns of the
S&P 500, 1250-days covariance computation.
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Figure 7.17 Marčenko-Pastur and the empirical distribution of the eigenvalues of the covariances
of the daily normalized S&P 500 returns. 1,250 trading day returns (five trading years) were used in
the computation shown.
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Figure 7.18 The scree plot of the singular values corresponding to the data shown in Figure 7.17
delineating eigenvalues greater than the largest Marčenko-Pastur eigenvalue. 22 eigenvalues “spiked”
after the Marčenko-Pastur cut-off.
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Marcenko-Pastur distribution and empirical histogram of eigenvalues of daily returns of the
S&P 500, 250-days covariance computation.
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Figure 7.19 Marčenko-Pastur and the empirical distribution of the eigenvalues of the covariances
of the normalized S&P 500 returns. 250 trading day returns (one trading year) were used in the
computation shown.
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Scree Plot of Eigenvalues of covariance of 250 × 500 daily S&P 500 returns
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Figure 7.20 The scree plot of the singular values corresponding to the data shown in Figure 7.19
delineating eigenvalues greater than the largest Marčenko-Pastur eigenvalue. Only 12 eigenvalues
“spiked” after the Marčenko-Pastur cut-off.

Marcenko-Pastur distribution and empirical histogram of eigenvalues of daily returns of the
S&P 500, 50-days covariance computation.
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Figure 7.21 Marčenko-Pastur and the empirical distribution of the eigenvalues of the covariances
of the daily normalized S&P 500 returns. 50 trading day returns were used in the computation
shown.
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Figure 7.22 The scree plot of the singular values corresponding to the data shown in Figure 7.21
delineating eigenvalues greater than the largest Marčenko-Pastur eigenvalue. Only three eigenvalues
“spiked” after the Marčenko-Pastur cut-off.

0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80

Marcenko-Pastur distribution and empirical histogram of eigenvalues of daily returns of the
S&P 500, 20-days covariance computation.
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Figure 7.23 Marčenko-Pastur and the empirical distribution of the eigenvalues of the covariances
of the normalized S&P 500 returns. Twenty trading day returns were used in the computation
shown.
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Scree Plot of Eigenvalues of covariance of 20 × 500 daily S&P 500 returns
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Figure 7.24 The scree plot of the singular values corresponding to the data shown in Figure 7.23
delineating eigenvalues greater than the largest Marčenko-Pastur eigenvalue. Four eigenvalues
“spiked” after the Marčenko-Pastur cut-off.
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Marcenko-Pastur distribution and empirical histogram of eigenvalues of daily returns of the
S&P 500, 10-days covariance computation.
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Figure 7.25 Marčenko-Pastur and the empirical distribution of the eigenvalues of the covariances
of the normalized S&P 500 returns. Ten trading day returns were used in the computation shown.
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Figure 7.26 The scree plot of the singular values corresponding to the data shown in Figure 7.25
delineating eigenvalues greater than the largest Marčenko-Pastur eigenvalue. Just two eigenvalues
“spiked” after the Marčenko-Pastur cut-off.
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Figure 7.27 Marčenko-Pastur and the empirical distribution of the eigenvalues of the covariances
of the 30-second normalized S&P 500 returns recorded on March 31, 2017, 780 × 500 matrix.
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Figure 7.28 The scree plot of the singular values corresponding to the data shown in Figure 7.27
delineating eigenvalues greater than the largest Marčenko-Pastur eigenvalue. Twenty-eight
eigenvalues “spiked” after the Marčenko-Pastur cut-off.

returns. Figures 7.17, 7.19, 7.21, 7.23. 7.25, and 7.27 show the Marčenko-Pastur and
the empirical distribution of the eigenvalues of the covariances of the normalized S&P
500 returns for various daily returns. A trend appears: fewer rows in matrices result in
fewer significant eigenvalues picked out by Marčenko-Pastur.

While a few eigenvalues “pop out” of the Marčenko-Pastur distributions when
the S&P 500 is considered, on an intraday basis, the number of eigenvalues exceed-
ing the Marčenko-Pastur envelope is a lot more numerous, as shown in Figures 7.27
and 7.28. According to the Marčenko-Pastur interpretation, the more outliers out-
side the Marčenko-Pastur envelope, the stronger and more varied the signal the eigen-
value/principal component framework is picking up.

2. Determining the “Cut-off” of Significant Eigenvalues in Non-i.i.d.
Heteroscedastic Processes

In many cases, the assumption of independent identically distributed processes is just too
strong. Figure 7.29 shows the histogram of correlations of the daily S&P 500 returns,
computed over the 2013–2017 period. As shown in Figures 7.29–7.31, the S&P 500 daily
return data are highly correlated. In addition, stock returns, in particular those computed
over several years, are subject to changing market environments and other structural
changes that may drastically affect their distribution. Regime switches from high market
volatility periods to low volatility and back are all too common and have a significant
impact on the underlying stock distributions. This section discusses determination of the
optimal number of significant eigenvalues when the underlying processes X are non-i.i.d.
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Figure 7.29 Histogram of correlations of daily returns of the S&P 500, 1,250 observations,
2013–2017.
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Figure 7.30 Histogram of correlations of daily returns of the S&P 500, T = 20 days.
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Histogram of intraday correlations of the S&P 500, 30-minute return sample
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Figure 7.31 Histogram of correlations of intraday 30-minute returns of the S&P 500, 1 day
corresponds to T = 780 30-minute observations.

and have variance that changes over time. Such processes X are known in econometrics
as the heteroscedastic processes.

The Karhunen-Loève Transform

The Karhunen-Loève Transform (KLT) is often used to draw inferences from highly
correlated data, like the long-term U.S. stock market returns. Marčenko-Pastur on PCA
assumes that the underlying data is independent identically distributed (i.i.d.), implying
that the correlations of the data studies are all 0. In practice, however, this is often not
the case and is seldom the case in finance, in particular.

The Karhunen-Loève Transform takes care of the correlations by extracting the cor-
relation variance into the eigenvalues (see, for example, Friedman and Weisberg, 1981).
Projecting the data onto the eigenvectors produces “decoupled” data with diminished
correlation structure. This data can then be assumed to approximate the no-correlation
data required by many models (Figures 7.32–7.35).

A method proposed by Laloux, Cizeau, Bouchaud, and Potters (1999) performs
eigenvalue decomposition on the correlation matrix instead of the covariance. In this
setup, the variances are removed from consideration altogether. Eigenvalue decomposi-
tion of the correlation coefficients on the intraday data corresponding to Figures 7.34 and
7.35 is shown in Figures 7.36 and 7.37. The correlation method produces fewer signifi-
cant eigenvalues than the covariance method: 20 significant eigenvalues in the correlation
coefficients of the intraday data versus 28 in the covariance. Similarly, Figures 7.38
and 7.39 show eigenvalues of the correlation matrix of 750 daily returns on the S&P
500 corresponding to the eigenvalues of covariances shown in Figures 7.38 and 7.39
Marčenko-Pastur produced only 11 significant eigenvalues in the correlation matrix,
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Figure 7.32 Histogram of errors of intraday returns and predicted returns decomposed and then
reconstructed by KLT.
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S&P 500, 30-minute return sample

Figure 7.33 Histogram of correlations of KLT prediction, all eigenvectors present in KLT
reconstruction.
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Histogram of correlations of the residuals of KLT intraday on the correlations of the
S&P 500, 30-minute return sample
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Figure 7.34 Histogram of correlations of residuals, all eigenvectors present in KLT reconstruction.
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Figure 7.35 Scree plot of errors between the intraday 30-second S&P 500 returns and the KLT
reconstruction of those returns.
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Marcenko-Pastur distribution and empirical histogram of eigenvalues of the correlation
coefficients of 30-second returns, S&P 500.
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Figure 7.36 Marčenko-Pastur and the empirical distribution of the eigenvalues of the correlations
of the 30-second normalized S&P 500 returns recorded on March 31, 2017, 780 × 500 matrix.
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Figure 7.37 The scree plot of the singular values corresponding to the correlation data shown in
Figure 7.35 delineating eigenvalues greater than the largest Marčenko-Pastur eigenvalue. 20
eigenvalues “spiked” after the Marčenko-Pastur cut-off.
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Marcenko-Pastur distribution and empirical histogram of eigenvalues of daily returns of the
S&P 500, 750-days correlation coefficients
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Figure 7.38 Marčenko-Pastur and the empirical distribution of the eigenvalues of the correlation
coefficients of the daily normalized S&P 500 returns. 750 trading day returns (three trading years,
2013–2015) were used in the computation shown.
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Figure 7.39 The scree plot of the singular values corresponding to the data shown in Figure 7.38
delineating eigenvalues greater than the largest Marčenko-Pastur eigenvalue. 11 eigenvalues “spiked”
after the Marčenko-Pastur cut-off.
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as compared to the 18 significant eigenvalues in covariance decomposition shown in
Figure 7.35.

The Laloux, Cizeau, Bouchaud, and Potters (1999) method goes even further than
the correlation analysis. In order to find a reliable cut-off, the researchers propose taking
off the most significant individual eigenvalues one by one until the remaining data fits
into the Marčenko-Pastur distribution:

1. Distribution of eigenvalues of Gaussian (0,1) noise (Wigner) (Figure 7.40).
2. Identifying signal: spike models (Figure 7.41).
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Marcenko-Pastur distribution and empirical histogram of eigenvalues of daily returns of the
S&P 500, 1390-days covariance computation.
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Figure 7.40 Theoretical Marčenko-Pastur distribution for the eigenvalues of the covariance of
daily S&P 500 returns 2013–2018 and the realized distribution.
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Log scale: Marcenko-Pastur distribution and empirical histogram of eigenvalues of daily
returns of the S&P 500, 1390-days covariance computation.

ˇ

Figure 7.41 Log scale of the distribution of the eigenvalues of the covariance of daily S&P 500
returns 2013–2018 shows “spikes” or outliers more clearly.
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Figure 7.42 Theoretical Marčenko-Pastur distribution for the eigenvalues of the covariance of
daily S&P 500 returns 2013–2015 and the realized distribution.

3. Distribution of eigenvalues of i.i.d. (0,1) noise (Marčenko-Pastur).
4. Signal identification in the presence of i.i.d. noise.

Changing the number of daily observations that feeds into the covariance matrix
computation changes the distribution of eigenvalues (Figure 7.42).

Data Imputation

Financial data have traditionally suffered from biases and computational complications
that arose frommissing or small-sample data. The rigidity of econometrics has demanded
that all the data be perfect, aligned in precisely spaced intervals in neat rows and columns
with all the i’s dotted and the t’s crossed.

The main idea behind the Data Science approach is that very large quantities
of imperfect data allow for much stronger population inferences than the perfectly
structured and scrubbed, yet comparatively small, samples of econometric data. To
compare scales, Data Science observations number in billions and trillions while
econometric models survive on data points often numbering in just hundreds.

And financial data numbering in billions and larger quantities is widely available:
exchanges alone generate trillions of data points every second. More and more exchanges
are gearing to stay open 24 hours a day, 5 days a week, following the successes of
around-the-clock trading in foreign exchange and futures. Most U.S. equity exchanges
offer extended trading hours that begin at 4 AM ET and end at 8 PM. With trading
approaching the true 24×5 model, the amount of data from trading alone is extremely
large.

In many financial data applications, the problem of limited data arises. For example,
many financial instruments, such as small stocks, options, and futures with far-out
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maturities, are highly illiquid. The challenge of correctly estimating their true price is,
therefore, critical in these applications. Knowing the true price may directly lead to
profitable trading decisions. The ability to accurately price illiquid securities potentially
expands the investing and trading universe. The possibly superior mark-to-market
techniques may enable extra profitability in fixed income and options spaces.

Another set of applications of imputation of missing data is in intraday and real-time
data streaming. A large share of today’s data quotations is conducted over the public
Internet networks. As such, the data are prone to bottlenecks, missing information, and
more. Furthermore, the majority of real-time quote data are presently distributed in
a way to lighten the network load and, therefore, avoid data receipt confirmation and
resubmission. Unlike trade executions data that are delivered like email with a guarantee
and resubmission using the TCP/IP protocol, quote data are streamed like video data
with the so-called UDP protocol. The idea of the UDP is that a new quote rapidly
replaces the lost quote, just like a new movie frame takes the place of the missing frame
without sacrificing the viewer’s quality. However, traders, market makers, and execution
managers relying on the accurate and timely quotes to run on-the-go data analysis may
be at a disadvantage as the data they relied on in the backtest to build their models failed
to materialize. Sophisticated data imputation may once again come to the rescue and
accurately fill in the data lost en route.

Of course, intraday trading and quote data are also notoriously asynchronous, which
presents potential estimation problems to the classically trained finance empiricists. Data
imputation may once again usefully estimate the missing data, thus providing researchers
with an accurate data set to draw inferences.

One of the key advantages of the powerful Big Data imputation models is their speed.
A fair amount of research in the space was developed in real-time image recognition,
for example, with the aim of joining several poor-quality video cameras to obtain a
decent image of the perpetrators. Also, state-of-the-art research into data imputation has
been developed in cryogenic microscopy, where the researchers determine the shape of a
molecule by freezing it to limit its movement and then combine various angles to attain
the 3-D shape of the molecule. Data imputation has also been extensively developed and
used in genomics, where it helps to estimate genetic sequences.

Naturally, Data Science concerns itself with missing data values. Unlike economet-
rics, the discipline that rigorously discards data points with partially missing values in
most models, Data Science attempts to utilize all available data. With that, Data Science
distinguishes among several categories of missing data:

1. Missing at random: the likelihood of a data point being missing may be related to
the observed (non-missing) data, but is not related to the missing data themselves.
Thus, an illiquid security may be missing a trade, even though the security’s intrinsic
value has changed along with the price fluctuations of the market or other liquid
securities.

2. Missing completely at random: the likelihood of a data point being missing is indepen-
dent of the values of both the missing data and the observed data. An example of a
variable missing completely at random may be an event announcement that may go
completely unnoticed and not make it into the researchers’ databases.
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3. Missing not at random: the missing data are related to the value of the missing
data, a phenomenon well known as self-selection in econometrics. Examples of
self-selection in financial data may include hedge fund performance numbers that
are reported only when the hedge fund beats the benchmark, and omitted when
the performance of the hedge fund is less appealing.

Traditional econometric removal of the data points does not distort the first two
models, but will produce severely biased results in the third case. Instead of econometric
deletion, Data Science aims for imputation: utilization of all available data. Even though
tossing partially missing data may be possible, it can be undesirable, particularly in cases
when the remaining sample is just too small to create meaningful inferences. This chapter
examines the methods created to circumvent the missing data dilemma and utilize as
much of available data (missing or not) as possible.

Imputation techniques have evolved largely in Computer Science, outside of
Finance and econometrics. Imputation methods come from both statistics and machine
learning. The machine learning imputation, known as semi-supervised learning dis-
cussed in Chapter 4, trains an algorithm to assign values and data labels where they are
missing. Statistical approaches utilize data properties to create distributions of possible
locations of the missing variables. Both approaches can be complementary to one
another.

Both Data Science and machine learning approaches are highly technical, but man-
ageable with the right researchers and tools in place. Data are the key ingredient: large
raw data samples are required to create solid inferences. Large amounts of data call for
advanced data storage and efficient processing software. Thanks to social media com-
panies, both data storage and software costs can be negligible due to cloud technolo-
gies. Python and other efficient and highly popular statistical software packages are free
and open-sourced, ensuring software stability and fast elimination of defects, known as
“bugs.”

In today’s world of Internet-of-Things (IoT) and razor-thin margins, imputation
becomes a competitive advantage. Suppose a sensor of truck traffic is sending you a con-
tinuous data stream that all of a sudden goes blank for 30 minutes due to an Internet
outage. While your competitors and traditional econometricians may completely forget
about the missing data, you can boost your profits by statistically and algorithmically
reconstructing the missing data sample. The same ideas apply to illiquid trading data,
whether in intraday, daily, monthly, or even quarterly time scales – correctly imputed
values provide a strong advantage for investors, risk managers, and traders over the
competition. For example, imputing the missing daily prices for illiquid securities can
significantly broaden a hedge fund’s investing universe. Similarly, imputing intraday prices
during quiet or illiquid times helps execution managers and traders make better decisions
about short-term actions.

Missing values can be imputed using techniques from supervised, semi-supervised,
and unsupervised learning. Bertsimas, Pawlowski, and Zhou (2018) provide a convenient
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summary of references for existing methodologies. Repeated here for the reader’s conve-
nience, the methodologies highlighted by Bertsimas, Pawlowski, and Zhou (2018) are:

• Mean impute due to Little and Rubin (1987).
• Expectation Maximization (EM) by Dempster, Laird, and Rubin (1977).
• EM with mixture of Gaussians and multinomials (Ghahramani and Jordan 1994).
• EM with bootstrapping (Honaker et al. 2011).
• K-Nearest Neighbors (KNN) K-NN impute (Troyanskaya et al. 2001).
• Sequential K-Nearest Neighbors (K-NN) (Kim et al. 2005).
• Iterative K-Nearest Neighbors (K-NN) (Caruana 2001; Bras and Menezes 2007).
• Support Vector Regression (SVR) (Wang et al. 2006).
• Predictive-Mean Matching (PMM) LS MICE (Buuren and Groothuis-Oudshoorn
2011).

• Least Squares (LS) (Bø et al. 2004).
• Sequential Regression Multivariate Imputation LS (Raghunathan et al. 2001).
• Local-Least Squares (LS) (Kim et al. 2005).
• Sequential Local-Least Squares (LS) (Zhang et al. 2008).
• Iterative Local-Least Squares (LS) (Cai et al. 2006).
• Sequential Regression Trees Tree MICE (Burgette and Reiter 2010).
• Sequential Random Forest Tree miss (Stekhoven and Bühlmann 2012).
• Singular Value Decomposition (SVD) (Troyanskaya et al. 2001).
• Bayesian Principal Component Analysis (SVD PCA) Methods (Oba et al. 2003;
Mohamed et al. 2009).

• Factor Analysis Model for Mixed Data (FA) (Khan et al. 2010).

Supervised learning can be used for data imputation, but the available data typically
needs to be perfectly precise. Figure 7.43 illustrates the famous example of the impu-
tation of faces under different supervised learning models. The model is trained on the
database known as Olivetti faces. The bottom half of each true face is erased and then
reconstructed using extra trees, K-NN, linear regression, and ridge regression from the
top portion of the face relative to the Olivetti training set.

As Figure 7.43 shows, the models do an okay job in predicting the missing portion
of the faces. Ridge regression appears to perform the best. Figures 7.44 and 7.45 do the
same for the Mona Lisa.

The Mona Lisa image is first altered in the following way: black dots replace
randomly-chosen pixels in the original image. In the grayscale world, the color black
is denoted as 0. Blacking-out random points in the image is, therefore, equivalent to
setting random elements of the matrix to 0.

The eigenvalues of the resulting image are analyzed and compared with those of
the original, non-edited, picture. Notably, the eigenvalues of the original and the edited
images remain the same whenever 200 or fewer image pixels are replaced at random. The
original image contained 460 rows and 318 columns, or 460 × 318 = 146,280 matrix
elements. Blacking out 200 pixels out of 146,280 represents an effective white out of
just over 0.1% of the dataset.
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Face completion with multi-output estimators

True faces Extra trees K-nn Linear regression Ridge

Figure 7.43 Face completion with various supervised methods (“Olivetti Faces”). Python code
source: https://ndownloader.figshare.com/files/5976027.

Figure 7.45 shows the distribution of the eigenvalues for levels of blackout ranging
from 0 to 200 pixels. As the Figure shows, the eigenvalues hardly move. Figure 7.47
confirms this finding by displaying the top eigenvalues side-by-side for different levels
of data blackout.

Similar findings are obtained whenever a random sample of the image pixels were
replaced with white color, that is assigned the value of 255. Figures 7.46 and 7.48 show
that the eigenvalues hardly moved from one level of whiteout to the next. The eigenvalue
comparisons illustrate an important fact: the eigenvalues do not move even when a small
portion of the data is corrupted or missing at random, regardless of the point replacement
values.

The Marčenko-Pastur cut-off of Karhunen-Loève Transform remains fixed at 7 with
varying degrees of blackout up to 200 data points (Figures 7.45 and 7.47).

A very close look at the differences in the eigenvalues, however, shows that very small
discrepancies between eigenvalues do in fact exist, as shown in Figures 7.49 and 7.53.

https://ndownloader.figshare.com/files/5976027
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Figure 7.44 Original Mona Lisa image.
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Figure 7.45 Distribution of eigenvalues for Mona Lisa with 0, 50, 100, and 200 data points set to
0 at random.
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50-point whiteout, 100-point whiteout, 150-point whiteout, and
200-point whiteout
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1.00E + 04

5.00E + 03

0.00E + 00

50-point whiteout 100-point whiteout 150-point whiteout 200-point whiteout

Figure 7.46 Eigenvalue changes for various whiteout regimes. Eigenvalues hardly change.
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8.24E + 02

0 blackout, 50-point blackout, 100-point blackout, 150-point blackout, and 200-point blackout

Figure 7.47 Distribution of eigenvalues for Mona Lisa with 0, 50, 100, and 200 data points set to
0 at random.

Figure 7.49 shows absolute differences in corresponding eigenvalues for different
levels of black out. Figure 7.50 shows the relative change in the eigenvalues among dif-
ferent blackout levels. Figure 7.51 shows the relative eigenvalue changes for for different
level of whiteout, and Figure 7.52 evaluates the relative changes in eigenvalues follow-
ing introduction of random [0,255] values to the randomly selected pixels. Figure 7.53
displays the impact of noise sampled from [0,127].

As Figures 7.50–7.53 show, the most variation in eigenvalues occurs not in the dom-
inant (top) set, and not in the idiosyncratic tail, but in the middle of the eigenvalue
spectrum.
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Figure 7.48 Eigenvalues for different whiteout regimes. The eigenvalues hardly change.
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50-point blackout, 100-point blackout, 150-point blackout, and 200-point blackout

Figure 7.49 Absolute differences in eigenvalues between 50-point blackout and the original
image, 100-point blackout and the original image, 150-point blackout and the original image, and
200-point blackout and the original image.
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50-point blackout 100-point blackout 150-point blackout 200-point blackout

1.00E + 00

7.50E – 01
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–2.50E – 01

Relative change in eigenvalues

Figure 7.50 Relative changes in the eigenvalues for different blackout levels of the Mona Lisa
image.
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Relative changes in eigenvalues for different levels of random whiteout
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Figure 7.51 Differences in sequential eigenvalues between whiteout Mona Lisa image and the
original image for different levels of random whiteout.
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50-point random values 100-point random values 150-point random values
200-point random values
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Relative changes in eigenvalues with random values

Figure 7.52 Relative changes in eigenvalues from random data replacement in the original Mona
Lisa image. The random values inserted in the original Mona Lisa image are in the range [0,255].
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Differences in eigenvalues with random values [0,127] replacement

Figure 7.53 Relative changes in eigenvalues from random data replacement in the original Mona
Lisa image. The random values inserted in the original Mona Lisa image are in the range [0,127].



Trim Size: 7in x 10in Aldridge602989 c07.tex V1 - 12/09/2020 4:58 P.M. Page 220�

� �

�

220 B I G DATA S C I E N C E I N F I N AN C E

Furthermore, a closer comparison of images in Figures 7.49–7.53 shows that the
change in the mid-range eigenvalues is proportional to the following:

1. The number of data points replaced.
2. The mean of the replacement distribution.

From the perspective of unsupervised learning, where the objective is to retain the
top eigenvalues, the key eigenvalues hardly move when the data is missing at random.
Even when the objective is to retain the most idiosyncratic components at the tail of the
eigenvalue spectrum, noise again does not cause much distortion.

In the context of financial modeling, these observations lead to an interesting per-
spective in financial data analysis: even when a healthy proportion of the financial data set
is missing at random, the unsupervised learning inferences remain strong. Figures 7.54
and 7.55 show the eigenvalues of the S&P 500 in the original daily data and when 20%
of the data were set to 0 at random. As Figures 7.55 and 7.55 illustrate, the eigenvalues
of the data barely changed from Figure 7.54 to Figure 7.55, indicating that the structure
of data is preserved even when a fair proportion of data is lost. These findings are very
different from the expectations of the traditional econometric analysis where rows with
partially missing data would simply be discarded. Unsupervised learning can be useful to
take advantage of every small morsel of data.
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Top singular values of 20-day correlation matrices, S&P 500, rolling window January 2013–July 2018

Top Singular Value
Second Singular Value
Third Singular Value
Fourth Singular Value
Fifth Singular Value

Figure 7.54 Top 5 eigenvalues of the S&P 500 correlation matrix (20-day non-overlapping
rolling windows, 2013–2018).
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Figure 7.55 Top 5 eigenvalues of the S&P 500 correlation matrix (20-day non-overlapping
rolling windows, 2013–2018) where 20% of the underlying returns were randomly set to 0 in each
time period.

Missing Eigenvalues

When computing eigenvalues via PCA or SVD is too time-consuming or plain difficult
due to missing data, the Tracy-Widom distribution discussed in detail in the next section
provides a numerical alternative.

The problem of missing values can particularly cause portfolio managers to stumble
when the securities under consideration are not liquid enough to generate the required
data for the sample return covariance matrix. The Tracy-Widom distribution comes to
the rescue then (Figure 7.56).

0

left
large deviation

right
large deviation

N–1/6

Tracy-Widom

2N

N( )

2N–

Figure 7.56 Relationship between Wigner and Tracy-Widom distributions. Source: Nadal and
Majumdar (2011).
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Implementing the Tracy-Widom distribution in code can be difficult. Tracy and
Widom derived the distribution based on the theory of Fredholm determinants. Nadal
and Majumdar (2011), for example, derive the distribution as the partition function of
a two-dimensional Coulomb gas constrained to a line and placed in a harmonic trap.

Bai, Yin, and Krishnaiah (1986) showed that the largest eigenvalue of an n × p
covariance matrix of the form

(
1
n
XX ′

)
with p∕n→ y ∈ (0,∞) tends almost surely to

(1 +
√
y)2 as n → ∞. Subsequently, Bai and Yin (1993) showed that the smallest eigen-

value of the same matrix tends almost surely to (1 −
√
y)2 as n→ ∞.

Johnstone (2001) showed that Tracy-Widom applies to Gaussian covariance
(
1
n
XX ′

)
matrices of n × p sizes, when the data are centered by 𝜇p = (

√
n − 1 +

√
p)2 and scaled

by 𝜎p = (
√
n − 1 +

√
p)(1∕

√
n − 1 + 1∕

√
p)1∕3.

Lee and Schnelli (2014) examined the Tracy-Widom distribution of the covariance
matrices. Lee and Schnelli (2014) show that for any mean-zero random variable
y = (y1, … , yM )′ ∈ M with the population covariance 𝛴 = Eyy′, the Tracy-Widom
distribution works under the following conditions. Given sample N independent
measurements (y1, … , yN ) with sample covariance 1

N

∑N
i=1 yiyi

′, and representing
yi = (N𝛴)1∕2xi, Q:=(𝛴1∕2X)(𝛴1∕2X)∗, where X = (x1, … , xN ), Q almost surely
converges to 𝛴 as N tends to infinity. Per Lee and Schnelli (2014), the Tracy-Widom
distribution of eigenvalues of Q then holds if either of the following holds:

1. The entries of X are independent identically distributed Gaussians, or
2. The general population’s covariance matrix 𝛴 is diagonal and the entries of X have

heavy tails, further validating applicability to financial time series.

In general, Tracy-Widom has found applications in:

1. Speedy computation of eigenvalues of covariance matrices. Johnstone (2001) lists
Value-at-Risk computation via covariance decomposition as an application of
Tracy-Widom.

2. Portfolio management of illiquid securities.
3. Portfolio management at high frequencies.

Thus, even when there are gaps in trading that induce sample correlations to be
potentially “out-of-tune” due to the partially missing return data, the Tracy-Widom
distribution can provide eigenvalues that can be used in portfolio optimization. The
results apply not only to the infrequently traded securities, but also to all financial instru-
ments on the intraday basis when the trading is asynchronous and correlations break
down, a phenomenon known as the Epps Effect, first documented by Epps (1979).

While Tracy-Widom does not enable us to reconstruct missing values yi in the data
sample, it does allow us to find the missing eigenvalues. The missing eigenvalues are
then used as inputs into a portfolio optimization framework. For empirical applications
of Tracy-Widom to portfolio optimization, see Chapter 3.
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The Tracy-Widom Distribution

The Tracy-Widom distribution is developed for various cases of real and complex data.
As in Chapter 2, we hereby restrict the discussion to Gaussian Orthogonal Ensembles
(GOE). A GOE is a random matrix model (RMM) that is a probability space (𝛺,ℙ, )
where the sample space 𝛺 is a set of N ×N real symmetric matrices, and ℙ is a unique
(up to a choice of the mean and variance) measure that is invariant under orthogo-
nal transformations and the algebraically independent matrix elements are i.i.d. random
variables.

For the largest eigenvalues of such a data set, the distribution function of the largest
eigenvalue can be defined as:

FN (t):=ℙN (𝜆max < t)

Then, per Tracy and Widom (1993, 1994, 1996), the limit of N → ∞ exists,

F(x):=𝑙𝑖𝑚N→∞FN
(
2𝜎

√
N + 𝜎x

N1∕6

)
where 𝜎 is the standard deviation of the Gaussian distribution of the off-diagonal matrix
elements. F(x) can be derived for GOEs explicitly as a unique solution to the Painlevé
II equation:

F(x) = 𝑒𝑥𝑝

(
−1
2 ∫

∞

x
q(y)dy

)(
𝑒𝑥𝑝

(
−
∫

∞

x
(y − x)q2(y)dy

))1∕2

Tracy and Widom (2002) report distributional statistics for F(x) for GOEs, shown in
Table 7.1.

Tracy and Widom (2002) also describe tail asymptotics for the largest eigenvalue
density, F(x). As x → +∞,

F(x) =

[
1 −

𝑒𝑥𝑝(− 4
3
x3∕2)

32𝜋x3∕2
(
1 +O

(
x−3∕2

))] ⎡⎢⎢⎢⎣1 −
𝑒𝑥𝑝

(
− 2

3
x3∕2

)
4
√
𝜋x3∕2

(
1 +O

(
x−3∕2

))⎤⎥⎥⎥⎦
Table 7.1 The high-precision mean (𝝁), variance (𝝈𝟐),
skewness (S), and kurtosis (K) of the distribution function of
the largest eigenvalue F(x) for GOEs reported in Tracy and
Widom (2002) for Gaussian zero-mean data normalized
with standard deviation of the off-diagonal elements 𝝈= 𝟏√

𝟐
.

𝜇 −1.206533574
𝜎2 1.607781034
S 0.293464524
K 0.165242938
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As x→ −∞, Baik, Buckingham, and Di Franco (2008) showed that for GOE:

F(x) = 𝜏|x|−1∕16(𝑒𝑥𝑝(− 1
24

|x|3 − 1

3
√
2
|x|3∕2))(

1 − 1

24
√
2|x|3∕2 +O(|x|−3))

where the constant 𝜏 = 2−11∕48𝑒𝑥𝑝
(
1
2
𝜁 ′(−1)

)
and 𝜁 ′(−1) is the derivative of the Rie-

mann zeta function evaluated at -1, 𝜁 ′(−1) = −0.1654211437.
The above results were developed for distributions of the largest eigenvalue, 𝜆N ,

and for GOEs only. Dieng (2005) developed distribution functions for the next largest,
next-next largest, etc. eigenvalues 𝜆N−1, 𝜆N−2, … . Tracy and Widom (2002) look to
relax the restrictions on the data properties.

Identifying (and Replacing) Missing Values in Streaming Data
(the Johnson-Lindenstrauss Lemma)

The innovation of unsupervised learning extends well beyond the applications discussed
in this book up to now. Its intelligent sampling is extremely useful in all applications
involving lots of data: take multi-asset portfolios with the number of instruments in
excess of Russell 1500, or something like high-frequency trading where the number of
intraday data points reaches billions for one instrument in just one day. All the data points
are typically not equal in their information content: some are packed with value, whereas
others are just place fillers. Strategic Big Data sampling allows us to discriminate between
content and noise on the fly, and estimate the price trends and distributions with high
speed and without processing every possible byte of information.

An important result in Big Data is the Johnson-Lindenstrauss Lemma. The Lemma
says that any n data points in high-dimensional Euclidean space can be mapped onto k
dimensions with k ≥ O(log n∕𝜀2) without distorting the Euclidean distances between
the points by more than 1 ± 𝜀. Furthermore, the probability of the distance between a
pair of data points falling out of the 1 ± 𝜀 boundary during a mapping to the k dimensions
is P(E) ≤ 1 − 1

n
. For proof and additional applications, see Berry, Drmac, and Jessup

(2001), Achlioptas (2003), and Dasgupta and Gupta (2003).
When data are streaming, as in the case of high-frequency exchange data, a natural

question arises as to how to capture andmake the most use of it in real time. The Johnson-
Lindenstrauss Lemma has answers for this as well. In the streaming data model, we assume
that we can only capture the data as they arrive and have no time to search for the data
on a storage medium. In the process, we may miss some data. An interpretation of the
Johnson-Lindenstrauss Lemma assures us that the main structure of the data up to a small
perturbation.
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How often do data go missing? In the intraday setting, the data may be missing
repeatedly. Some data may disappear due to the Internet issues: the bottlenecks and
outages in the computer networks may physically inhibit data delivery. Other issues with
streaming financial data may include the data architecture itself.

All financial message traffic today floats through two underlying communication
protocols: TCP/IP (Transmission Control Protocol/Internet Protocol) or UDP (User
Datagram Protocol). The TCP/IP protocol, also used for much of email, counts the
number of message packets sent and resends the message stream if the entire package did
not reach its destination. TCP/IP guarantees delivery of a message, making it a must in
areas like order communication and confirmations. However, the reliability of TCP/IP
makes it sacrifice its speed, as every resend takes up time.

TCP/IP itself runs on a protocol known as UDP. UDP is one of the most basic
communication tools in the Internet domain. UDP broadcasts messages, and if some are
lost, it does not retransmit them. By its function, UDP is most suitable to applications
such as quote dissemination – lost market quotes are immediately rendered stale by new
quotes, so losing a packet of data occasionally does not deprive the receiving party of
observing the current market dynamics. As a result, data losses are quite common.

A natural solution to data loss from UDP is positioning the data receiving and
processing servers as close to the exchange data-distributing servers as possible, and, opti-
mally avoiding UDP altogether by relying on direct exchange cable connection instead.
The practice of direct data acquisition is known as co-location; many exchanges enable
co-location by subletting portions of their server hangars to those interested in the best
data quality possible.

Still, Big Data solutions also exist and may work just as well for many applications.
In the Big Data solution, the received data is acquired and processed in samples – batches
of data – with the explicit understanding that some of the data could potentially have
been lost.

Treating streaming data formally as an exercise in sampling allows us to develop
and keep track of statistics of the likelihood of captured data elements reflecting the
true values. The probabilities in turn allow us to perform complicated mathematical
operations, such as matrix multiplication, on the fly, all the time taking into account
data probabilities.

For example, suppose we are receiving streaming tick data and collecting the values in
vectors: vector A = {ai} captures the best offer quotes or asks of the financial instrument
i, vector B = {bi} captures the best bid quotes of the financial instrument i, and other
similarly constructed vectors capture other relevant information, such as prices, trade
sizes, limit orders away from the market, and, possibly, much more. Suppose further
that in the sample we are observing, the value for a particular quote item is stored in
a vector X = {xi}. We are interested in finding out the probability that the value xi
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we are observing while reading the sample is indeed the true value xi
∗. According to

Drineas, Kannan, and Mahoney (2006), the probability of a data item pertaining to a
financial instrument i∗appearing in the sample decreases with the number of times n that
xi appears in the sample, particularly if all financial instruments are assumed to appear in
the data uniformly:

P(i = i∗) = xi,n∕

(
n∑
𝛾=1

xi,𝛾

)
In other words, while we take the last arriving value for variable xi to be the true value xi

∗,
the probability of observing another data point x belonging to the financial instrument
i decreases as the number of past observations within the sample increases.

Why is this interesting? For two reasons:

1. We may need to predict the probability of near-term arrival of a specific data point
for a particular financial instrument.

2. The probability P(i = i∗) helps us perform matrix multiplication on the fly.

When the data arrives in a two-dimensional matrix format xij, perhaps like options with
expiration dates indexed by j, the on-the-fly probability of seeing another observation is
determined using the Frobenius norm:

P({i, j} = {i∗, j∗}) = xij,n∕||X||F
where

||A||F =

√√√√ n∑
i=1

m∑
j=1

A2
ij

If we are receiving data for two vectors A and B, and we sample c rows from vector A
and c columns from vector B, thn the probabilities are deployed in determining a fast
matrix product from the respective samples of A and B:

• Sample of A, Lt = Ai,t∕
√
cPi,t

• Sample of B, Rt = Bi,t∕
√
cPi,t

And the matrix multiplication of the samples of A and B is:

LR =
c∑
t=1

LtRt =
c∑
t=1

(Ai,t∕
√
cPi,t)(Bi,t∕

√
cPi,t) =

c∑
t=1

Ai,tBi,t
cPi,t

≈
n∑
t=1

AtPt

At the core, the streaming data sampling process works as follows:

1. Input a sample of data.
2. Return output based on the sample of data.
3. When all the data are similar, uniform random sampling should suffice.
4. When the data are not similar, non-uniform sampling is required.
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5. To ensure that we receive the desired results, we need to keep comparative perfor-
mance statistics to determine how the uniform and non-uniform sampling stack up
against each other as well as against the solution involving the full data sample.

Conclusion

Big Data reframes data analysis into utilizing every piece of information, no matter how
fractured or incomplete. In doing so, Big Data techniques produce stronger, more aware
inferences than those based on extensively cleaned subsamples.

Appendix 7 Finding the Optimal Number of Eigenvectors
in Python

The Python implementation of the Karhunen-Loève Transform is discussed in the
Appendix to Chapter 6 of this book. Here, we cover the code for the Marčenko-Pastur
cut-off – an approach to determine the optimal number of eigenvectors of data X to
consider in a model.

The native Python attribute shape returns the number of rows N and columns M in
the data X:

[N, M] = X.shape

The Marčenko-Pastur cut-offs are next determined as follows, rounded to the next
integer value:

#compute Marcenko-Pastur
y = M/N
a = (1-y**(0.5))**2
b = (1+y**(0.5))**2

For specific code examples, please visit https://www.BigDataFinanceBook.com,
and register with password MP (case-sensitive).
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Chapter 8

Applications: Unsupervised
Learning in Option Pricing
and Stochastic Modeling

Introduction

T his chapter presents two applications for unsupervised learning: optimization of
option pricing and, separately, optimization of Markov Chains. Perhaps two of
the most popular financial applications, both inferences of options pricing and

various Markov Chains components, can be dramatically sped up and improved with
unsupervised learning, as this chapter illustrates.

Application 1: Unsupervised Learning in Options Pricing

The options data comprise trillions of data points per day. The options on the U.S. stocks
alone number in millions, each with a different strike price, expiration, and action. In
addition to the U.S. securities, there are options on commodity futures, currencies, and
fixed income. All of the options have the capacity to be traded and, thus, convey public
information about someone’s belief about the markets.

Despite the richness of the options data, traditionally, these data have been aggregated
into a handful of indicators, like

231
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• call-put implied volatility spread (Bali and Hovakimian 2009; Cremers and Weinbaum
2010; and Yan 2011).

• risk-neutral skewness (Xing, Zhang, and Zhao 2010; Rehman and Vilkov 2012; Con-
rad, Dittmar, and Ghysels 2013; Stilger, Kostakis, and Poon 2016; and Bali, Hu, and
Murray 2016).

• option to stock volume ratio (Roll, Schwartz, and Subrahmanyam 2010; and Johnson
and So 2012).

• volatility of implied volatility (Baltussen, Van Bekkum, and Van der Grient 2018).

Most of the indicators are related to the famous Black-Scholes model (Black and Scholes
1972; 1973; Merton 1973), which allows the researchers to backtrack the unobserved
volatility 𝜎 “implied” by the Black-Scholes equations for call and put options:

C(s, t) = S N(d1) − K 𝑒𝑥𝑝(−r(T − t)) N(d2)

P(s, t) = K exp(−r(T − t)) N(−d2) − S N(−d1) (8.1)

where S is the current price of the instrument on which the option is written (the
underlying), K is the option exercise price, N is the cumulative distribution function
of the standard normal (0,1), r is the prevailing risk-free interest rate, T is the option
expiration date, and d1 and d2 are defined as follows:

d1 = [𝑙𝑛(S∕E) + (r + 𝜎2∕2)(T − t)]∕(𝜎
√
T − t)

d2 = d1 − 𝜎
√
T − t (8.2)

The implied volatility is computed numerically from the Black-Scholes formula given
realized put and call option prices observed in the market with different expiration dates
and exercise prices.

The implied volatility changes with strike prices and times to expiration, forming
what has become known as volatility surface, a function 𝜎t(K ,T). An implied volatility
surface for call options on SPX for December 12, 2008, is shown in Figure 8.1.

The volatility surface continuously changes with time, directly depending on the
prevailing market option prices, which in turn reflect economic regimes and other vari-
ables (Xu and Taylor 1994; Campa and Chang 1995). Figure 8.2 shows the implied
volatility surface for options on SPX computed for several days in December 2008–2012
from Avellaneda and Dobi (2014).

As Figure 8.2 illustrates, the volatility surface is not flat, instead possessing a smile or a
skew, and highlighting the market inefficiency at pricing options vis-à-vis Black-Scholes.
The time instability and a high degree of nonlinearity make the volatility surface esti-
mation and, especially, out-of-sample prediction into very much of a Big Data problem,
as shown in Avellaneda and Cont (2002).

Even options data aggregated into indicators like implied volatilities are numerous.
For example, Muravyev, Vasquez, and Wang (2018) study the entire set of optionable
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SPX Implied Volatility Surface for 12/12/2008 using Call Options
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Figure 8.1 Implied volatility surface for SPX using call options, December 12 2008.
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U.S. stocks for the 1996–2014 period. They find that daily data for each stock com-
prise 112 implied volatilities for each stock. These volatilities vary across puts and calls,
option maturities of 30–365 days, and different moneyness, i.e., deltas, from 0.2–0.8. The
implied volatilities alone make the option data a Big Data problem across 6,000–8,000
publicly traded U.S. stocks per year, especially in comparison with just five daily data
points available for each underlying security: Open, High, Low, and Closing prices and
daily volume.

Historically, the volatility surface has been modeled in various ways: stochastic
volatility, deterministic volatility functions, mean-reverting diffusion, data fit using
parametric and nonparametric regressions, and more. Many models not mentioned here
are discussed in Gatheral and Taleb (2011).

Stochastic volatility model due to Hull and White (1987) treats volatility as a random
variable. While such an approach reflects the fact that volatility changes with time, the
approach fails to model the actual dynamics inherent in volatility fluctuations. Further-
more, the approach depends on calibrating the volatility distribution parameters to the
price of volatility risk, which cannot be readily observed in the market. Heston (1993)
developed a now classic, improved stochastic volatility model that varies with moneyness
of the option, or absolute value of delta, the derivative of the option price relative to
the price of the underlying, ∣ 𝛥 ∣=∣ 𝑙𝑛(S 𝑒𝑥𝑝(r(T − t))∕K)∕

√
T − t ∣. Heston’s (1993)

model was verified empirically by Derman, Miller, and Park (1996). However, factors
other than moneyness may dominate the volatility parameters and are not included in
the model.

The deterministic volatility functions (Dupire 1994; Derman and Kani 1998) assume
that the volatility function is entirely predictable from time to expiration. Dumas, Flem-
ing, and Whaley (1998), among others, have shown that these approaches fail to accu-
rately price derivatives out-of-sample as the functional dependencies of the implied
volatility also change continuously.

Cont, Fonseca, and Durrleman (2002) and others model implied volatility as a
mean-reverting Ornstein-Uhlenbeck process, which also requires fitting of parameters to
the arbitrage bounds of Lee (2004). Carmona and Nadtochiy (2008) consider the volatil-
ity surface as a mixture of several processes, each parameterized locally. Schweizer and
Wissel (2008) also argue for local volatility parameterization. Stable parameterization,
however, may be difficult to accomplish in the ever-changing environment.

Empirical data fitting using parametric and nonparametric regressions is the most
popular approach to modeling implied volatility surface, see, for example, Cont and
Fonseca (2002). The use of implied volatility differentials is frequent in the options liter-
ature. Mixon (2007) and Vasquez (2017) use IV differentials to determine term structure
slopes. Bates (2000) and Hafner and Wallmeiery (2000) use IV differentials to quan-
tify shapes of the smiles. The empirical fit approach suffers from poor out-of-sample
predictability, given the ever-changing nature of the volatility.

An additional issue in modeling options is the discrete nature of expiration dates.
In order to achieve a smooth implied volatility surface ripe for functional analysis, some



Trim Size: 7in x 10in Aldridge602989 c08.tex V1 - 12/09/2020 11:34 P.M. Page 235�

� �

�

Applications: Unsupervised Learning in Option Pricing and Stochastic Modeling 235

researchers approximate the expiration date–induced discontinuities in the volatility sur-
face. Carr and Wu (2008), for example, propose a multivariate interpolation approach
to compute daily IV values at any given maturity or moneyness level.

The Big Data approach has also been on the radar of the options researchers
and traders (Skiadopoulos, Hodges, and Clewlow 1999; Avellaneda and Cont 2002;
Bouchaud, Laloux, and Potters 2005; Bouchaud and Potters 2009; Avellaneda and Dobi
2014; Dobi 2014). The advantage of the Big Data method is that it helps discern the
main factors of the changes in the volatility surface structure, regardless of whether
the data are discrete or what functional form may fit the data best. The structural data
factors may prove to be more persistent over time than functions formed by pure data
mining and fitting. Skiadopoulos, Hodges, and Clewlow (1999) decompose volatility
surface and extend it to principal components using GARCH (Bollerslev 1986) to
predict future realizations.

Big Data Options Factors

Whereas traditional finance scholars attempt to identify the factors a priori to examine
their effect and influence on the data, the Big Data approach is, as usual, to tease out the
factors from the data themselves. The key advantage of the traditional factors is imme-
diate human interpretability. For example, Benzoni, Collin-Dufresne, and Goldstein
(2011) use a general equilibrium framework to show that when a threat of an abnor-
mally low economic growth (or economic expansion) is present, the implied volatility
of out-of-the-money put options becomes higher (or lower) than that of at-the-money
and in-the-money puts. Bollen and Whaley (2004) find that the supply and demand for
options significantly influence the skew of the implied volatility.

The ability of the factors to foretell the variables under consideration is known as the
explanatory power of the factors. The explanatory power for each principal component is
the corresponding eigenvalue. Each eigenvalue measures the proportion of the variation
in the variable explained by the associated principal component.

The Big Data analysis is proactive and precise on delivering factors driving the
structural changes in the data. The SVD/PCA framework delivers ready recipes for the
orthogonal factors ranked sequentially from the critically important to fully idiosyncratic.
As always, however, challenges arise as to the interpretation of Big Data factors in human
terms. Solutions have been developed, however, to account for maturity and moneyness
by analyzing the structure of the options data by different maturity-moneyness cate-
gories. For example, Skiadopoulos, Hodges, and Clewlow (1999) perform PCA on the
options data separated by maturity and find that the first three principal components
explain the majority of variance for the shortest-expiry options, while just the first prin-
cipal component explains most variation in the longer-expiry options data.

Christoffersen, Fournier, and Jacobs (2017) run PCA on the levels of the implied
volatility and its slope vis-à-vis moneyness and, separately, term structure measured
by days to maturity, DTM . To do so, they first run the following regression on the
cross-section of options on the U.S. equities as follows:

IVj,l,t = aj,t + bj,t ⋅ (S
j
t∕Kj,l) + cj,t ⋅ (DTMj,l) + 𝜀j,l,t (8.3)
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where l is an option available on day t for firm j. In PCA on the levels of implied volatil-
ity, aj,t, Christoffersen, Fournier, and Jacobs report that the first principal component
explains 77% of variation in implied volatilities and is 92% correlated with the implied
volatility levels of the options on the S&P 500 Index. The explanatory power of the
second principal component of aj,t drops to 13%. The first principal component of the
moneyness slope bj,t explains 77% of variation and has 64% correlation with the money-
ness slope of the S&P 500 index. Finally, the term structure slope cj,t captures just 60%
of the variation in cj,t and displays 80% correlation with the term slope of the S&P 500
Index options. By doing so, Christoffersen, Fournier, and Jacobs further confirm that
the results of the principal component analysis are consistent with the traditional finance
literature that stipulates that the market drives much of the variation in the financial
securities.

Muravyev, Vasquez, and Wang (2018) use the entire set of optionable U.S. stocks for
the 1996–2014 period to study demeaned daily correlations of implied volatility surfaces
using PCA. They first reduce the data set to weekly, by taking a Tuesday to Monday
average for each stock and week to obtain a weekly volatility surface. This results in 936
weekly periods from 1996–2014. Furthermore, the authors remove stocks that traded
fewer than 50 calls and 50 puts on any given day, potentially introducing a large stock
bias into the analysis. Still, even with the imposed restrictions, their sample results in
936 weeks and 1,982 unique firms that tally up to 1,897,536 firm-week observations.
Muravyev, Vasquez, and Wang next compute a correlation matrix of the 112 demeaned
implied volatilities for the 1,982 securities, and perform PCA on the resulting correla-
tions.

Muravyev, Vasquez, and Wang find that the first five principal components capture
78% of variation in the volatility surfaces, allowing a substantial dimensionality reduction
from 112 to 5 linear combinations of the 112 columns. The first principal component
alone explains only 32% of data variation, with the second through the fifth explaining
21%, 13%, 8%, and 4%, respectively.

The researchers note that the first principal component can be interpreted in the
framework of established finance literature. Specifically, they find that the first principal
component has a 66% correlation with the call–put volatility spread defined in Cremers
and Weinbaum (2010). They also find that the first principal component has a -39%
correlation with the option skew defined in Xing, Zhang, and Zhao (2010). In this
sense, Muravyev, Vasquez, and Wang (2018) interpret the first principal component as
an index combining the put–call volatility spread and the option skew.

Muravyev, Vasquez, and Wang (2018) further find that the second principal com-
ponent is not significantly correlated with any established variables, but changes sign
with the option maturity: the second principal component is positively correlated with
shorter-maturity put and call options, and negatively correlated with those with longer
maturity. The researchers estimate that the sign changes at maturity of about 150 days
to expiration.

Finally, Muravyev, Vasquez, and Wang examine the third, fourth, and fifth principal
components. They find that the third principal component has 28% correlation with the
option skew and a correlation of -22% with risk-neutral skewness. The fourth principal
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component is -15% correlated with risk-neutral skewness. The fifth principal component
is -26% correlated with the implied volatility spread.

The correlation of principal components with existing indicators humanizes Big
Data analysis and introduces a certain degree of comfort with the technology. At the same
time, the technique presents new challenges, such as creating an intuitive explanation for
the maturity-sensitive second principal component discussed above.

To assess the predictive power of the principal components on the future stock
returns, Muravyev, Vasquez, and Wang recompute weekly and monthly principal com-
ponents and perform tried-and-true Fama and MacBeth (1973) regressions on step-
ahead weekly and monthly stock returns:

ri,t+1 = 𝛼t + 𝛽1,t PC1i,t + 𝛽2,t PC2i,t + 𝛽3,t PC3i,t
+ 𝛽4,t PC4i,t + 𝛽5,t PC5i,t + 𝜑tZi,t + ei,t+1 (8.4)

where Zi,t is a vector of characteristics observed for the firm i at the end of week or
month t. Muravyev, Vasquez, and Wang (2018) find that the first three components pre-
dict future stock returns with 99% confidence. When traditional variables like implied
volatility skew and spread are included in the regression, the principal components domi-
nate and retain their 99% significance while the traditional factors appear non-significant
in comparison. Muravyev, Vasquez, and Wang (2018) also report that the principal com-
ponents predict returns as far ahead as 15 weeks, all the while driving out traditional
indicators like the option smirk and skew.

In a nutshell, the Big Data factors deliver a better, more precise factorization, yet
related to the factors previously known to researchers. More work can be done to explain
the factors in traditional terms to deepen our understanding of the options-underlying
dynamics. The Big Data analysis inverts the traditional research process: instead of
researchers first hypothesizing the factors and then testing their performance, the Big
Data approach delivers the factors which are to be related to the real-world observations
by the researchers. Since the Big Data factors are typically optimal, as shown in Chapter
5 of this book, the Big Data process in turn optimizes the research process by saving
researchers a lot of time on finding the factors, instead focusing their time on factor
interpretation.

The Optimal Number of Principal Components

Muravyev, Vasquez, andWang (2018) hand-pick the first five principal components based
on the variation the components explain. Many studies (Litterman and Scheinkman
1991; Cont and Fonseca 2002; Bouchaud, Laloux, and Potters 2005; and Bouchaud and
Potters 2009) have considered the optimal number of top principal components to retain
in the financial analysis. Litterman and Scheinkman (1991) analyze returns on Treasury
bonds and find that 82% of variation can be explained with only three factors that are
principal components. Cont and Fonseca (2002) study the returns correlation matrix of
the DAX options and find that the variance can be explained with just three principal
components.
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Number of eigenvalues above λ, for correlation matrix of coupled stock with
implied volatilities log-returns, Aug ′08 - Aug ′13
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Figure 8.3 The number of significant top eigenvalues as determined by the Marcenko-Pastur
threshold 𝜆+ for selected stocks. By projecting along these corresponding eigenvectors we may
distinguish signal from noise in the correlation matrix.

Avellaneda and Dobi (2014) apply the Marcenko-Pastur framework to determine the
optimal number of factors in the implied volatility surfaces for the U.S. equities. They
find that the optimal number of principal components to be retained varies by security.
Thus, according to Marcenko-Pastur, implied volatility data for AAPL, GLD, and HD,
among others, can be explained by the three top principal components, while the data
for BIIB, CVS, and NFLX require four principal components, as shown in Figure 8.3.
SPX can be summarized with only two principal components.

For the options on the top-20 most liquid ETFs, Avellaneda and Dobi (2014) find
that the top-three principal components often explain over 90% of variation in the
implied volatility surface (Figure 8.4). The first principal component alone explains as
much as 70–90% of variance for those ETFs, as shown in Figure 8.5.

Estimating Systematic Risk

Avellaneda and Dobi (2014) propose using Big Data analysis to measure the financial
instruments’ systematic and idiosyncratic risks. To do so, the researchers take into con-
sideration the top eigenvalue as a measure of the level of systemic risk exposure. The
higher the first eigenvalue, the stronger the shift in the implied volatility surface across
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Figure 8.4 Percent of variation explained by the first three components for the 20 most liquid
ETFs by market volume. Data from August 2004 (or creation of asset) until August 2013. Source:
Avellaneda and Dobi (2014).

all the options for a given underlying, indicating systematic risk. Avellaneda and Dobi
argue that the second and the third eigenvalues correspond to the variation in time-skew
and delta-skew, and, therefore, are the metrics of idiosyncratic risk of each underlying.

When considering the options on all the constituents of the S&P 500, Avellaneda
and Dobi find that, when sorted by the top eigenvalue, the stocks with the highest first
eigenvalues of the implied volatility surfaces are the largest widely held stocks (Table 8.1).
At the same time, the stocks with the smallest eigenvalues were the small-size stocks.
The largest 15 stocks indeed exhibit the most systematic risk, displaying 63% correlation
with the market, the average daily volatility of 2.8%, and the average Marcenko-Pastur
cut-off at 3 eigenvalues. The smallest 15 stocks show the least systematic risk and the
most idiosyncratic risk instead, with market correlation of 47%, average daily volatility of
just 1.5% and the average Marcenko-Pastur cut-off at 7.3 eigenvalues. For comparison,
within the entire S&P 500, the average correlation with the market is 60%, the average
daily volatility is 2.3%, and the average Marcenko-Pastur cut-off is at 4.3 eigenvalues.
Thus, the first eigenvalue of the implied volatility surface is inversely correlated with the
idiosyncratic risk of an instrument.
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Figure 8.5 Percent of variation explained by the first component for the 20 most liquid ETFs by
market volume. Data from August 2004 (or creation of asset) until August 2013 in order of
increasing systemic risk. Source: Avellaneda and Dobi (2014, p. 14).

Table 8.1 Top 15 underlying constituents and bottom 15 underlying constituents by first
eigenvalue.

Bottom 15 constituents EV1 Top 15 constituents EV1

KMI 0.27272 GS 0.87176
POM 0.31406 JPM 0.87092
WEC 0.34958 BAC 0.85115
PNW 0.35611 SLB 0.84669
HCBK 0.35995 CAT 0.84219
NLSN 0.36338 AAPL 0.84126
TE 0.36342 XOM 0.84109
NU 0.3667 NOV 0.83737
BMS 0.37675 CME 0.83639
XEL 0.3828 MA 0.8358
WIN 0.38664 MS 0.83471
RSG 0.39779 APA 0.83081
FTR 0.40043 GOOG 0.83011
MKC 0.40475 HIG 0.8301
XYL 0.40596 HES 0.82965

Source: Avellaneda and Dobi (2014).
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Next, Avellaneda and Dobi (2014) test their findings on the entire OptionMetrics
universe of 3,300 optionable stocks. To do so, they separate the top 1% and the
bottom 1% of stocks by volume traded and estimate the following eigenvalue (EV)
statistics:

• average EV1, EV2, EV3 and EV4
• number of eigenvalues above the Marcenko-Pastur cut-off
• average daily volatility
• average correlation with the market
• average volume traded

The results are presented in Table 8.2.
Avellaneda and Dobi (2014) also find that the top eigenvalues of implied volatility

surfaces of the entire cross-section of stocks tend to increase in times of crises and high
market volatility, such as Lehman Brothers’ bankruptcy (October 2008), the Flash Crash
of May 6, 2010, and the U.S. federal government credit rating downgrades in November
2011. The universal increase in the top eigenvalue corresponds to the rise in systematic
risk across all equities, whereby all stocks exhibit rising correlation with the market when
the market collapses, as documented by Ang, Chen, and Xing (2006).

The top eigenvalue of a correlation matrix indeed approximates the aver-
age correlation 𝜌 in the correlation matrix under consideration. To prove this,
consider the correlation matrix C with the eigenvectors V generated by spectral
decomposition

C = V𝛬VT (8.5)

where 𝛬 is a diagonal matrix of eigenvalues. Considering the first eigenvalue 𝜆1 and
the first eigenvector V 1, the first column of the matrix V , we can rewrite Eq (8.5) as
follows:

𝜆1 = (V 1)TCV 1 =
N∑
i=1

(Vi1)2 +
∑
i≠j

V 1
i V

1
j 𝜌ij (8.6)

Table 8.2 Average values across all remaining assets (around 3,300) and those of the bottom and
top 1 percent.

EV1 EV2 EV3 EV4 # EVs > MP Vol. Corr. Volume

Top 1% 0.921 0.031 0.017 0.012 1.617 0.030 0.208 168M
Bottom 1% 0.322 0.166 0.114 0.074 7.30 0.023 0.159 .65M
Mrkt Avg. 0.590 0.115 0.077 0.042 5.08 0.031 0.278 4.5M

Source: Avellaneda and Dobi (2014).
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Since

V 1
i ≈

1√
N

(8.7)

N∑
i=1

(Vi1)2 ≈ 1 (8.8)∑
i≠j

V 1
i V

1
j ≈N(N − 1)∕N = N − 1 (8.9)

and Eq (8.6) can be rewritten as follows:

𝜆1 = 1 +
∑
i≠j

V 1
i V

1
j

[(∑
i≠j

V 1
i V

1
j 𝜌ij

)
∕

(∑
i≠j

V 1
i V

1
j

)]
(8.10)

then, rearranging Eq (8.10), we obtain:

(𝜆1 − 1)∕

(∑
i≠j

V 1
i V

1
j

)
=

(∑
i≠j

V 1
i V

1
j 𝜌ij

)
∕

(∑
i≠j

V 1
i V

1
j

)
(8.11)

Hence, (𝜆1 − 1)∕(N − 1) ≈ 𝜌 and

𝜌 ≈
𝜆1

N
(8.12)

Avellaneda and Dobi (2014) next use the magnitude of the top-three eigenvalues as a
basis for classification of securities into two classes, those carrying a higher proportion
of systematic risk and those dominated by the idiosyncratic risk. The stocks with large
first eigenvalue are deemed the ones carrying the systematic risk. The stocks dominated
by the systematic risk may warrant a different risk management treatment compared to
the idiosyncratic-risk stocks.

Extracting Granular Data from Dimensionally Reduced Matrices

The Big Data techniques allow us to significantly compress the voluminous options data
at hand. In the case of options, for example, Avellaneda and Dobi (2014) and Muravyev,
Vasquez, and Wang (2018), among others, show that three to five principal components
are sufficient to represent the universe of as many as 130 eigenvectors. In other words, the
size of the options data sets can be reduced by a factor of 30 or 40 via PCA, an operation
that can be performed almost instantaneously on a reasonably powerful computer.

One of the key questions that arises relative to the dimensionality reduction is the
ability to retrieve highly granular data from the PCA-compressed data set. Avellaneda
and Dobi (2014) show that a linear smoothing kernel that interpolates the available data
points that surround the location of the sought data works well in the case of options’
implied volatility surfaces.
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Application 2: Optimizing Markov Chains with the
Perron-Frobenius Theorem

The application of Big Data to stochastic modeling is the cornerstone of success of many
social media companies. The ability to predict the changes in browsing patterns, shifts
in interests and associates has helped companies like Google and Facebook to accurately
assess advertising responses and much more.

An application of a fast Big Data steady-state inference technique, known as the
Perron-Frobenius Theorem and discussed in this chapter, launched Google founders
into their present circle of billionaire unicorns. By sampling the paths of the Internet
and then applying Perron-Frobenius to the sample matrices, Sergey Brin and Larry Page
were able to generalize the distribution of the Internet links and select the most popular
links in each category in record-breaking time and attract billions of advertising revenue
dollars to Google’s search engine. The underlying sampling technology, on which Google
founders Sergey Brin and Larry Page were working during their PhD studies at Stanford,
is directly applicable to many traditionally time-consuming financial applications.

Google’s approach to automatically and efficiently rank the web content works as
follows: Google web spider starts at a random web page, from where it scans all the
links to other web pages and randomly selects one to follow. Once on the next page,
the Google web spider repeats its activity, identifying and randomly following addi-
tional links until it reaches a page with no outbound links, and goes back “home” to
start the process from the beginning. There, the Google web spider once again selects
a new web page at random, identifies all the links presented on the page, selects one
link at random, follows it and repeats the process until another “dead-end” web page is
reached. While the spider crawls the Internet, it records and transmits its activity back to
Google databases.

By randomly sampling the links, Google imitates the web-surfing activity of ran-
dom individuals surfing at their leisure or for another purpose. Once Google performs
the surfing operation a sufficient number of times, Google creates the “transition
probabilities” of the web universe. In general, such transitions are known as Markov
Chains. From the sample Markov Chain transitions, Google perfected a fast Big Data
technique for extrapolating the transitions for the entire web-browsing population,
allowing Google to efficiently rank the entire universe of websites in a very short space
of time.

What does any of this has to do with Finance? Markov Chains occur quite often.
The most obvious application is transitions among credit ratings of a borrower. Here,
the borrower may stay in the same rating bucket, as well as move up or move down
the ladder. Markov Chains are also the foundation of the Poisson process, a model
that is used to approximate information diffusion in the markets (e.g., Babus and
Kondor 2018), the long memory of disruptive events like economic crises and news
announcements (e.g., Schennach 2018), jumps in prices of instruments underlying
derivatives (e.g., Glasserman and Kou 2003), and other applications. The traditional
approach to dealing with Markov Chains calls for lengthy and computationally expensive
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multiplication of matrices. The Big Data approach, on the other hand, provides a speedy
and computationally efficient solution discussed in this chapter that makes Markov
Chain estimation a breeze. Another application of Markov Chains discussed in this
chapter is optimization of option pricing.

The innovation of the Google method, however, extends even further. Its intelligent
sampling is extremely useful in all applications involving lots of data: take multi-asset
portfolios with the number of instruments in excess of Russell 1500, or something like
high-frequency trading where the number of intraday data points reaches billions for one
instrument in just one day. All the data points are typically not equal in their informa-
tion content: some are packed with value, whereas others are just place fillers. Strategic
Big Data sampling allows us to discriminate between content and noise on the fly, and
estimate the price trends and distributions with high speed and without processing every
possible byte of information.

Fast Steady-State Inferences with the Perron-Frobenius Theorem. The
Perron-Frobenius Theorem was proved for strictly positive matrices in 1907 by Oskar
Perron (1880–1975), and was extended in 1912 for non-negative irreducible matrices
by Ferdinand Georg Frobenius (1849–1917) in Frobenius (1912). Despite its age,
Perron-Frobenius is a theorem that keeps giving, literally, improvements in asset pricing,
including that of options, intraday trading dynamics, investment methodologies, and
many other topics in Finance involving Markov Chains and Poisson processes.

Any non-negative irreducible n × nmatrix A has a positive real eigenvalue 𝜆max, such
that all other eigenvalues 𝜆 of A satisfy|𝜆| ≤ 𝜆max (8.13)

Furthermore, if elements of another non-negative irreducible matrix B are smaller than
those of A, 0 ≤ B ≤ A, B ≠ A, then every eigenvalue 𝜈 of B satisfies|𝜈| < 𝜆max (8.14)

𝜆maxis known as Perron-Frobenius eigenvalue.
A review of the proof of the Perron-Frobenius Theorem can be found in MacCluer

(2020).
The Perron-Frobenius eigenvalue’s 𝜆max has associated nonnegative (left and

right) eigenvectors that are called (left and right) Perron-Frobenius eigenvectors. The
Perron-Frobenius eigenvectors need not be unique or positive.

Markov Chains

Markov Chains occur in multiple financial applications ranging from loan pricing to
market microstructure to options pricing. The most inconvenient part of Markov Chains
is their computational complexity. Computations of potential outcomes of loan default
scenarios or prices of the instruments underlying the options contracts often take days.
The computational delays in turn slow down trading and risk management functions,
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often causing practitioners to react too late to critical events. As a result, investors leave
billions of dollars on the table every year. The Perron-Frobenius Theorem comes to the
rescue and helps speed up the required computations by a significant margin.

A Markov Chain is a probabilistic model of switching among many deterministic
outcomes. It is often described by an n × n matrix of transition probabilities between
n states. A corporate credit default matrix is a perfect example of a Markov Chain:
all borrowers are assigned a rating from a set of 27 states, ranging from AAA (most
sound) to D (in default). From the creditor’s perspective, borrowers transition between
various credit ratings every so often, depending on the borrower’s financial stability and
prevailing market conditions. The credit rating is estimated by credit rating agencies like
Moody’s, S&P, and Fitch. Transition from one credit rating to the next occurs with
certain probabilities that may depend on the borrower’s industry, contemporary market
conditions, and the rating agency’s methodology.

Figures 8.6–e show the distribution of ratings of corporate and sovereign debt gener-
ated by Egan-Jones Ratings Company, Morningstar Credit Ratings, LLC, Fitch Ratings,
Japan Credit Rating Agency, Ltd., and Standard & Poor’s Ratings Services, as reported
in the open credit rating database.1 As Figures 8.6a–e show, different rating agencies have
structurally different approaches to credit ratings. The samples of credit ratings include
millions of observations, yet different credit rating firms choose their own credit metrics.
Egan-Jones, for instance, conservatively errs on ranking issues on the lower end of A.
At the same time, Fitch and Morningstar’s ratings more resemble a bimodal distribution
with lots of AAA and D ratings. Japan Credit Rating Agency, Ltd. also gives out quite a
few D’s, but few, if any, B’s and C’s. Perhaps S&P strives for a balanced approach with a
significant mass of ratings from C to AAA-, in addition to spikes at D and AAA.

A popular approach to estimating credit risk involves determining steady-state transi-
tion probabilities from one rating to another. A steady-state transition probability answers
the question of what is the likelihood of an issuer changing its credit rating from the
present to the next assessment, and which way is the rating most likely to go?

Table 8.3 shows realized transition probabilities determined from Morningstar credit
rating data. The dataset covers 2010–2016 and contains 19,749 credit ratings for over 108
companies. To find the probabilities, Morningstar ratings for each entity were lined up
in ascending order and then counted. For every transition, the corresponding cell in the
transition matrix was incremented. A transition from A to AA, for example, incremented
cell (21, 24), with the 21st row being the starting point of the transition and the 24th
row representing the end point. Once all the transitions were accounted for, each row of
the matrix was divided by the sum of all the transitions in that row to find the statistical
distribution of the transitions.

The result, the transition probability matrix, is a rule book for determining possible
moves between credit ratings. While it is often assumed that the ratings upgrade or
downgrade only to their closest neighbors (e.g., AA to either AA- or AA+), in reality,
the ratings can jump all over the place. As Table 8.3 shows, an issue rated by Morningstar

1 See https://public.opendatasoft.com/explore/dataset/ratings-history/table/?sort=par_valuehttps://
public.opendatasoft.com/explore/dataset/ratings-history/table/?sort=par_value

https://public.opendatasoft.com/explore/dataset/ratings-history/table/?sort=par_valuehttps://public.opendatasoft.com/explore/dataset/ratings-history/table/?sort=par_value
https://public.opendatasoft.com/explore/dataset/ratings-history/table/?sort=par_valuehttps://public.opendatasoft.com/explore/dataset/ratings-history/table/?sort=par_value
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Figure 8.6a-e Distribution of ratings of different corporate credit rating agencies.
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Table 8.3 Morningstar realized transition probabilities, 2010–2016.
D C-C C+CC-CCCC+CCC-CCCCCC+B-B B+BB-BBBB+BBB-BBBBBB+A-A A+AA-AAAA+AAA-AAA

D 50 0 0 0 0 0 0 15 0 1 2 1 1 2 2 3 3 1 2 1 2 1 2 3 2 0 6
C- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CC- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0% 0% 0% 0% 0%
CC+ 0% 0%0%0% 0% 0% 0% 0% 0% 0% 0%0%0% 0% 0% 0% 0% 0% 0% 0%0% 0% 0% 0% 0% 0% 0%
CCC- 32%0%0%0% 0% 0% 0% 25% 1% 1% 3%1%3% 2% 3% 2% 3% 3% 2% 2%2% 1% 3% 2% 3% 0% 5%
CCC 27%0%0%0% 0% 0% 0% 2% 8% 6% 4%0%2% 4% 6% 2% 8% 2% 8% 2%0% 0% 0% 0% 6% 0% 12%
CCC+16%0%0%0% 0% 0% 0% 18% 1% 13% 3%2%3% 7% 5% 4% 2% 4% 2% 0%4% 1% 2% 3% 2% 0% 4%
B- 18%0%0%0% 0% 0% 0% 9% 0% 2% 5%1%2% 5% 4% 4% 5% 2% 2% 6%2% 1% 4% 2% 3% 0% 21%
B 7% 0%0%0% 0% 0% 0% 6% 1% 2% 2%8%1% 4% 5% 3% 9% 6% 3% 5%3% 1% 4% 4% 4% 0% 26%
B+ 9% 0%0%0% 0% 0% 0% 11% 2% 2% 5%1%10%2% 5% 5% 5% 4% 2% 5%2% 2% 1% 2% 0% 0% 27%
BB- 8% 0%0%0% 0% 0% 0% 4% 0% 2% 8%4%1% 8% 3% 5% 6% 3% 3% 6%4% 2% 4% 3% 1% 0% 25%
BB 10%0%0%0% 0% 0% 0% 8% 1% 1% 1%3%2% 2% 7% 3% 5% 5% 2% 4%3% 2% 3% 4% 1% 0% 32%
BB+ 14%0%0%0% 0% 0% 0% 10% 2% 1% 2%2%2% 3% 3% 10% 5% 5% 4% 4%2% 1% 3% 4% 3% 0% 18%
BBB- 10%0%0%0% 0% 0% 0% 4% 1% 1% 1%2%2% 4% 3% 2% 11% 2% 3% 5%5% 2% 5% 4% 2% 0% 30%
BBB 7% 0%0%0% 0% 0% 0% 5% 1% 1% 3%2%1% 2% 4% 3% 6% 8% 6% 4%8% 3% 2% 9% 4% 0% 23%
BBB+ 10%0%0%0% 0% 0% 0% 4% 0% 0% 1%2%1% 1% 3% 3% 8% 4% 9% 3%5% 4% 3% 5% 4% 0% 29%
A- 4% 0%0%0% 0% 0% 0% 3% 0% 0% 3%2%2% 3% 4% 1% 8% 5% 2% 9%2% 2% 7% 4% 1% 0% 38%
A 9% 0%0%0% 0% 0% 0% 3% 0% 0% 1%1%2% 4% 4% 4% 6% 8% 3% 2%12%2% 2% 6% 4% 0% 28%
A+ 8% 0%0%0% 0% 0% 0% 4% 0% 1% 1%1%2% 1% 4% 3% 3% 7% 6% 6%4% 9% 2% 5% 9% 0% 23%
AA- 10%0%0%0% 0% 0% 0% 2% 0% 0% 3%2%2% 5% 4% 3% 6% 4% 2% 7%2% 0% 10% 1% 2% 0% 34%
AA 10%0%0%0% 0% 0% 0% 5% 0% 0% 1%2%1% 1% 5% 2% 5% 5% 6% 4%8% 2% 1% 11%2% 0% 28%
AA+ 15%0%0%0% 0% 0% 0% 6% 1% 0% 2%2%0% 2% 3% 3% 3% 2% 4% 2%4% 5% 2% 4% 14% 0% 25%
AAA- 0% 0%0%0% 0% 0% 0% 0% 0% 0% 0%0%0% 0% 0% 0% 0% 0% 0% 0%0% 0% 0% 0% 0% 0% 0%
AAA 2% 0%0%0% 0% 0% 0% 1% 0% 0% 1%2%1% 2% 2% 1% 5% 2% 2% 4%3% 2% 4% 3% 2% 0 61

Source: https://public.opendatasoft.com/explore/dataset/ratings-history/table/?sort=par_value
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https://public.opendatasoft.com/explore/dataset/ratings-history/table/?sort=par_value
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as B- has a 21% chance of ending up as a AAA, a 3% chance moving to AA+, 2% to AA,
4% to AA-, 1% to A+, 2% to A, 6% to A-, 2% to BBB+, 2% to BBB, 5% to BBB-, 4%
to BB+, 4% to BB, 5% to BB-, 2% to B+, 1% to B, 5% remaining at B-, 2% moving to
CCC+, 9% moving to CCC-, and 18% of defaulting (obtaining rating D). Also, contrary
to many academic studies, the default state is not absorbing; that is, once in default, an
entity has a 50% chance of getting back on track, including the 15% chance of landing
on CCC-, and even a 6% chance landing on AAA, as shown in Table 8.3.

The credit-rating matrix contains probabilities of moving from one credit rating to
another in one period, say, one month or one year, but most typically, until the next
credit review. In practice, most credit rating agencies review corporate and sovereign
debt at least once a year, and often seek to incorporate changes to corporate outlook
every quarter. Consumer credit, on the other hand, is evaluated more frequently, once
a month or even more often. Amazon is said to measure its customers’ credit score in
near real time based on their cell phone usage and shopping activity, opening new credit
accounts to previously underserved markets that were traditionally difficult to rank for
companies like Equifax.

In Table 8.3, the probability of staying in D (default) state for one period is the ele-
ment (1,1) – the probability of moving from state 1 to state 1. According to Morningstar
rating, the probability of remaining in default is 50%. The probability of moving from D
to CCC- is 15%, as shown in the element (1,8). The probability of moving from D to
AAA is a surprising 6%. In general, the row defines the “origin” state, and the column
represents the “destination” state.

By matrix construction, the sum of elements in each row is necessarily 1: a bor-
rower starting in any state will necessarily end in the same or another state with 100%
probability. Since the borrower may only end up in one state at a time, the transition
probabilities are additive.

The objective of a lender is to estimate the probability of default of the borrower
over the lifetime of the loan. The price of the loan, the spread between the risk-free
rate, and the rate charged by the borrower are then estimated on the basis of the said
long-term probability of default.

The transition probabilities in Table 8.3 address a specific number of “states”: the
credit ratings can migrate only within these states. While the credit ratings may move
around randomly, or stochastically, their motion from one state or rating to another is
guided by the transition probability matrix. The literal definition of “stochastic” in the
Oxford English Dictionary is “randomly determined; having a random probability distri-
bution or pattern that may be analyzed statistically but may not be predicted precisely.”
Thus, a company starting in the AA+ rating may have its rating change at random from
the data point of view, but still be five times more likely to end up in the AAA rating
(transition probability from AA+ to AAA of 25% in Table 8.3) than A+ rating (transition
probability from AA+ to A+ is 5% in Table 8.3).

Overall, the states in the rating system and the transition probabilities form a Markov
Chain. A Markov Chain, first devised by Andrey Markov in 1903, is a stochastic process
where the given state of a variable is only dependent on its previous state. Since the
process is independent of its earlier realizations, it is said to be memoryless.
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When dealing with a basket of loans, it is common to find the steady-state probability
distribution of the entire loan portfolio. The steady-state probability distribution is effec-
tively the steady-state histogram of distribution of ratings of a portfolio of loans, devel-
oped from the transition probability matrix. This steady-state histogram is similar to those
shown in Figures 8.6a-e, but only in format: the actual steady-state “end states” of the
loans can be quite different from their historical realizations depicted in Figures 8.6a-e.
In Markov Chain notation, a probability distribution 𝜋 contains steady-state probabilities
and is called a stationary distribution of the Markov Chain with transition matrix P and
state space 𝛺 if 𝜋 satisfies 𝜋 = 𝜋P.

The steady-state distribution estimates the probability of ending up in each given
state after countless steps through the Markov Chain, independent of the start. As with
any Markov process, we can compute steady-state ratings probabilities by multiplying
the rating transition matrix by itself enough times to reach the end of the loan lives.
Each round of transition matrix multiplication extends transition probabilities by one
time period. Thus, if credit rating changes quarterly (4 times per year), and the loan
under consideration is extended for 25 years, then the lifetime default probabilities are
computed as a product of the credit rating transitionmatrix with itself taken 25 × 4 = 100
times. In standard notation, if matrix P is the one-transition probability matrix, and the
total estimation horizon is n periods, the long-term transition probability matrix 𝜋 is
computed as

𝜋 = (P)n (8.15)

While it may appear that 𝜋 is quite similar to P, a simple test shows otherwise. Consider
a primitive 2×2 sample probability transition matrix P:

P =
[0.8
0.4

0.2
0.6

]
(8.16)

Multiplying the matrix P by itself results in matrices increasingly converging to the
matrix’s steady state of Pss, quite different from the original matrix:

Pss =
[0.66
0.66

0.33
0.33

]
(8.17)

Figure 8.7 shows the convergence of the matrix elements to their steady state. While
a 2×2 matrix convergence is quite fast, the convergence of a larger transition proba-
bility matrix can take many more iterations and the multiplication itself takes a lot of
computational time.

The challenge with estimating 𝜋 is that as the number of elements of P grows, the
matrix multiplication of P takes too long, even with superior computing power. In some
cases, the estimation procedure takes so long that when the results are obtained, they are
no longer useful from the business point of view. Once again, the Big Data approach
comes to the rescue. Specifically, the Perron-Frobenius Theorem allows us to estimate
the steady-state probabilities fast.

By the Perron-Frobenius Theorem, the right-hand eigenvector of the 1-period tran-
sition probability matrix happens to be the steady-state transition probability matrix.
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Sample 2x2 probability matrix convergence to steady state 
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Figure 8.7 Convergence of a sample 2×2 transition probability matrix.

More rigorously, for all Markovian transition probability matrices A, with x>0 being
the right-handed eigenvector corresponding to the A’s eigenvalue r, Ax = rx, we choose
a row vector y>0 with Ay = ry so that y ⋅ x = 1. The rank one matrix H:=x⊗ yThas
image space R, the one-dimensional space spanned by x and H2 = H, so H is a projec-
tion. The operator I −H is then also a projection whose image is the null space N of
H. Also, AH = Ax⊗ y = rx⊗ y = x⊗ ry = HA. This is a direct sum decomposition of
our space as R⊕N which is invariant under A.

The restriction of A toN has all its eigenvalues 𝜆 slightly less than r in absolute value:|𝜆| < r. The restriction of A to the one-dimensional space R is multiplication by r.
If we set P:=1

r
A, then the restriction of P to N has all its eigenvalues less than one

in absolute values. The above decomposition is invariant under all powers of P and the
restriction of Pk to N tends to 0 as k → ∞. The restriction of P to R is the identity.
Hence,

𝑙𝑖𝑚k→∞

(1
r
A
)k

= H

Going back to the toy 2×2 matrix example of Eq (8.16) and convergence shown
in Figure 8.7, the Big Data technique produces the desired results quickly and reliably.
The first eigenvector of the matrix of Eq (8.16), once normalized, delivers the exact
[0.6666 0.3334] convergence values. In general, Big Data calculations produce a fast
and efficient way to find the steady-state default probabilities and more. Using PCA on
the Morningstar realized transition probabilities shown in Table 8.3, and examining the
first resulting singular vector, we obtain the normalized steady-state ratings probabilities
shown in Figure 8.8.
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Figure 8.8 Steady-state ratings distribution in Morningstar ratings as predicted by
Perron-Frobenius Theorem.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.40

0.35

D C– B– BB– BBB– BBBBBB B+ BB+ BBB+ A– AA– AAA– AAAAAA A+ AA+CC– CCC–CCCCCC+CCC C+ CC+

Normalized histogram of raw ratings, Morningstar

Figure 8.9 Normalized empirical distribution of actual Morningstar ratings. This is a normalized
version of the distribution appearing in Figure 8.6d.

It is interesting to compare the steady-state distribution of credit ratings shown in
Figure 8.6d with the normalized empirical sample distribution of credit scores for Morn-
ingstar shown in Figure 8.9. The empirical distribution of Figure 8.9 projects a large
number of defaulting borrowers and a relatively small number of AAA-borrowers. In
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contrast, the steady-state distribution shown in Figure 8.9 has a much lower rate of default
and a much higher incidence of AAA rating vis-à-vis the original layout in Figure 8.6d.

How do these models help us measure credit risk in practice? Being able to quickly
compute the percentage of borrowers in default allows us to more reliably estimate the
expected loss. In the case of Morningstar, the steady-state number of borrowers in default
is significantly smaller than that in the empirical distribution. As a result, the reduced
default values diminish the expected loss. This can be particularly useful in calculation
of risk capital as required by Basel I, II, and III regulations. Specifically, Basel requires
that all financial institutions proactively manage their Expected Loss (EL), defined as the
product of Probability of Default (PD), Loss Given Default (LGD), and Exposure at Default
(EAD):

EL = LGD × PD × EAD (8.18)

LGD measures the portion of the loan that is not recoverable in the event of a bor-
rower’s default; e.g., loans secured by collateral, such as mortgages, have a higher default
recovery rate (lower loss given default) than unsecured loans such as credit card debt and
working capital loans. EAD refers to the total loan amount outstanding at the time of
default. PD is the probability of default – the expected steady-state rate of collapse of
loan agreements. It is the PD metric that can be more accurately estimated using the Big
Data methodology, often leading to the lower rates of default and lower EL computations
as a result. In turn, lower expected rate of default means lower risk capital requirements,
and the lower the cash the institution is required to keep on hand, allowing for higher
reinvested amounts and higher returns.

In addition to the statistics contained in the top eigenvector, the top several eigen-
values are also of importance to data scientists. The largest eigenvalue is known as the
Perron-Frobenius eigenvalue, 𝜆pf ≥ |𝜆| for any eigenvalue 𝜆. For any real and nonneg-
ative matrix A ∈ Rn×n, the Perron-Frobenius eigenvalue 𝜆pf is real and nonnegative.
For a special case of any Markov Chain transition probability matrix, the respective 𝜆pf
is dominant and always 1. In other applications considered in Chapter 9, 𝜆pf delivers
the overall rate at which the transition matrix converges to the steady-state values. In
the Markov Chain transition probability matrices, it is the top eigenvalue by magnitude
with 𝜆pf removed, 𝜇 = 𝑚𝑎𝑥{|𝜆2|, |𝜆3|, … |𝜆n|}, that indicates the convergence rate to
steady state. Specifically, the approximate number of time periods, T, over which the
transition probability matrix approaches convergence is:

T = 1∕ log(1∕𝜇) (8.19)

In the traditional Markov Chain literature, T is often referred to as a mixing time.
For the Morningstar example, the sorted raw and absolute eigenvalues are plotted in

Figure 8.10. The largest eigenvalue by magnitude with the top eigenvalue removed is 𝜇 =
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Raw eigenvalues (top) and sorted absolute values of eigenvalues (bottom), Morningstar
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Figure 8.10 The raw eigenvalues of the Morningstar empirical credit rating transition
probabilities (top panel) and the sorted absolute values of those eigenvalues (bottom panel).

0.6011. This asymptotic convergence rate indicates that the ratings converge monoton-
ically to their steady-state values in approximately T = 1∕log(1∕𝜇) = 1.9611 ∼ 2 time
periods.

In addition to examining the Perron-Frobenius eigenvalue and associated eigenvec-
tor, the latter known as the right eigenvector in SVD, the researchers may be interested
in considering the left eigenvectors generated by SVD. The left eigenvectors, ui, show
the relative values of ratings i to the steady-state computation. As such, they may be
interesting to researchers looking to quantitatively analyze and improve the accuracy of
the rankings.

Aside from the regulatory capital, how does the model help predict near-term credit
ratings? The Markovian model delivers the steady-state probability of default for all the
ratings within a given group of borrowers, given a specific rating methodology. Thus,
all borrowers rated by Morningstar, in the steady state many periods ahead, may expect
to end up in the 15% default pool as predicted by the Markov model and optimized by
Perron-Frobenius.

The accuracy of the Markov Chain credit rating result is questionable, particularly on
long-term horizons. By construction, the Markovian model assumes that future transi-
tion probabilities remain the same as they are today – possibly an unrealistic assumption.
For example, Figures 8.11a–f show Markov-Perron-Frobenius predicted and realized
Morningstar ratings for different years. As Figures 8.11a–f illustrate, in some years, the
model comes close to realized out-of-sample ratings, whereas in other years, the past
ratings serve as much better predictors of the next year’s rating distribution.
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Figure 8.11a 2010 prediction of 2011 Morningstar ratings distribution and realized 2011
distribution.
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Figure 8.11b 2011 prediction of 2012 Morningstar ratings distribution and realized 2012
distribution.
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Figure 8.11c 2012 prediction of 2013 Morningstar ratings distribution and realized 2013
distribution.
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Figure 8.11d 2013 prediction of 2014 Morningstar ratings distribution and realized 2014
distribution.
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Figure 8.11e 2014 prediction of 2015 Morningstar ratings distribution and realized 2015
distribution.
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Figure 8.11f 2015 prediction of 2016 Morningstar ratings distribution and realized 2016
distribution.
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Conclusion

The Big Data technique provides concise approaches to estimation of voluminous
stochastic data, such as options data. The Perron-Frobenius Theorem dramatically
improves computational speed in many Markov Chain applications.

Appendix 8.A Determining the Percentage of Variation
Explained by the Top Principal Components in Python

Even though the Marcenko-Pastur Theorem provides a ready out-of-the-box approach
to estimate the number of significant principal components, researchers may still be
interested in assessing the percent of variation captured by the vectors. Once again,
Python provides a handy way to extract this information.

For a standardized matrix X (see Appendix 5.A in Chapter 5 in this book for Python
data standardization methods), finding the proportion of variation explained by the top-
three eigenvalues is as easy as calling the PCA method e">explained_variance_ratio_:

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(x)
explained_variation = pca.explained_variance_ratio_

For specific code examples, please visit https://www.BigDataFinanceBook.com, and
register with password explained_variance (case-sensitive).
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Chapter 9

Data Clustering

Introduction

D ata clustering has long preoccupied researchers determined to categorize data
sets using observable characteristics that can drive investment decisions. One
may argue that the idea behind traditional portfolio analysis is a form of clus-

tering as it answers the question of how to compose baskets of securities for optimal
global portfolio performance. Today’s Data Science delivers advanced methods for clas-
sifying data based on distributional characteristics, geometry, and other factors. In fact,
data clustering is one of the prominent aspects of today’s Data Science and is poised to
make a deep impact in finance in the near future.

Data clustering is just beginning to take root in Finance; current applications are few
and far between. However, the potential of clustering is enormous as these applications
to solve open problems illustrate:

• Pre-hedging in execution: find the most similar instrument.
• Selling in crisis: again, sell the most similar liquid instrument.
• Loan ratings: have ratings for public companies, quickly find most similar ones for
target private loans.

• Consumer ratings: based on online behavior, match consumers into credit buckets
with known credit ratings.

In this chapter, we will consider clustering in a novel context for portfolio management
to create sound portfolios with illiquid instruments, alleviating traditional hurdles for

262
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illiquid instruments and expanding the range of instruments used in investments. We
show that the results apply to cryptocurrencies, commodities, and equities.

Here, clustering produces very useful results that are different from traditional
Markowitz portfolio optimization or established techniques like eigenportfolio con-
struction. While the well-established science of eigenportfolios focuses on finding the
optimal combination of financial instruments that best describes the core of a given
large portfolio, the eigenportfolio theory may cast aside illiquid financial instruments.
Portfolio allocation using clustering incorporates all of the financial instruments under
consideration. In doing so, clustered portfolios produce better results than eigenport-
folios through higher risk premia of assets typically discarded during eigenportfolio
construction.

Illiquid financial instruments tend to trade infrequently, resulting in sparse returns
and muted correlation structures. These less prominent correlations often fail to show up
in the main eigenvectors of eigenportfolios, and are ignored by portfolio managers, as a
result. However, many illiquid instruments carry higher returns to compensate investors
for the risk of illiquidity, and can be desirable additions to investor portfolios.

Clustering overcomes the challenges of illiquid instruments by reconstructing their
full correlations. Correlation reconstruction is achieved by matching the illiquid instru-
ments with their closest neighbors via graph theory. As this chapter shows, when armed
with a full cluster-based correlation picture, investors are able to incorporate the full cor-
relation information in their portfolios and achieve excess returns on their investments.

Clustering Methodology

Formally, data clustering refers to organizing the data into meaningful groups, according
to their similarities. In the Big Data context, clustering allows for grouping of data, some
of which may be missing, making the inferences all that much more powerful and harder
to obtain with traditional econometric analysis.

The clustering techniques discussed are cousins of Gaussian mixtures, a traditional
econometric clustering technique. The Gaussian mixtures technique is one of the sim-
plest and most established examples of clustering, which works by separating the data
into Gaussian clusters. A mixture of two Gaussians, for example, can be separated by
identifying the points forming one Gaussian cluster, removing one Gaussian cluster,
and then ending up with the second Gaussian cluster. This algorithm is well known
in econometrics as maximum likelihood estimation (MLE).

While MLE is widely accepted and used in Economics and Finance, it is considerably
limited. The technique seeks to find the minimum-distance vertex from each data point.
When the number of clusters exceeds two or three, the problem becomes NP hard and
difficult to solve in polynomial time. The application of MLE, therefore, has been limited
to well-defined mixtures of two or three distributions.
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As the range of available information explodes, so is the necessity to process multiple
sources of data at once, the task that proves too complex for traditional econometric
techniques. This is where the Big Data technique comes to the rescue.

The two most popular Big Data clustering techniques are K-means clustering and
spectral clustering. Here, we consider the techniques in the context of portfolio con-
struction with potentially illiquid instruments.

Generic K-Means Clustering

K-means is perhaps the most popular and widely used clustering algorithm in unsu-
pervised learning. The K-means algorithm breaks the data set into K clusters, each
containing points in maximum proximity to each respective cluster’s mean.

An algorithm for K-means clustering takes three variables as inputs:

1. k, the number of clusters;
2. the set of starting centers for each of the k clusters, cj;
3. the algorithm stopping condition.

At the heart of the K-means algorithm is the observation that the K-means criterion
based on centroids presents the most optimal cluster centers.

Formally:

Minimize d (S1, S2,… , Sk) =
k∑
j=1

∑
ai∈Sj

(cj − ai)2

where cj is the center of cluster j.
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Figure 9.1 An illustration of K-means algorithm with K-4 on four convex data sets.
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Lloyd’s Algorithm for K-means

Generic K-means is NP-hard to solve and does not recognize patterns. Specifically,
non-convex patterns like circles are divided among vertices, not clustered as a whole
object. The performance of K-means is limited by two factors:

1. The K-means’ objective function is non-convex and makes it computationally diffi-
cult to find the actual minimum.

2. K-means assumes the clusters to be convex and have similar properties along all
dimensions, a condition known as isotropy.

Lloyd’s algorithm (Lloyd 1982), also known as Voronoi iteration or relaxation, does not
help with pattern recognition, but tends to make the computation more efficient, mit-
igating factor 1 above, the non-convexity of the K-means’ objective function. Lloyd’s
algorithm tends to converge to a computational minimum, although the obtained min-
imum is most often local, not global.

Lloyd’s algorithm starts with a random set of cluster “centers” or means, finds the
points closest to these centers, then recomputes the new cluster centers. The algorithm
next iterates K-means computation with a recomputed set of starting cluster centers,
known as centroids, as follows:

1. Guess cluster centers.
2. Run K-means.
3. Recompute cluster centers as the means of all points belonging to the cluster.
4. Repeat steps 2–4 using cluster centers computed in step 3 above as a starting condi-

tion for step 2.

K-means clustering does not distinguish between “more” and “less” important clusters,
separating the data set into proximity-based groups. While such separation is fast,
its efficiency varies from application to application. In a statistical arbitrage sense
where the objective is to identify clusters of securities to buy versus clusters to sell,
K-means produces groups that are not uniquely identified as buy vs. sell. Figure 9.2, for
example, shows K-means clustering of the lower left part of the correlation matrix of
the 2017 S&P 500 stock returns based on correlation proximity with just two clusters
(K = 2). The correlations of all the S&P 500 stocks are computed using daily returns,
and then the correlations are broken into two groups, each with the highest inter-cluster
correlations.

Spectral Clustering

To resolve the second problem with K-means, the algorithm’s failure to recognize
non-convex clusters, the researchers have devised a methodology known as spectral
clustering. The original spectral clustering models date back to Donath and Hoffman
(1973) and Fiedler (1973), and, more recently, to Ng, Jordan, and Weiss (2002), Belkin
and Niyogi (2003), among others. Spectral clustering allows researchers to identify
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Figure 9.2 Clustering of the lower-left triangular correlation matrix of the S&P 500 returns. The
correlations are computed using daily data over a 1-year span.

non-convex sets of data, for example, concentric circles and other complex data
structures. In general, it has become a go-to technique for identifying clusters that are
not convex or directionally dependent, also known as anisotropic.

The challenge with non-convex clusters is that they often are a result of low-
dimensional data embedded on a high-dimensional data structure. Think of a thinly
bordered circle with hollow center, instead of a fully shaded circle: the data structure,
a two-dimensional table in this case, can support a lot of shading inside the circle, but
instead contains just the empty space.

Spectral clustering is based on matrix perturbation theory, and the Davis-Kahan
theorem in particular (Davis and Kahan 1970; Yu, Wang, and Samworth 2014). The
Davis-Kahan theorem posits that if a sample matrix is representative of the population at
large, then the eigenvectors of the sample matrix lie within a certain distance of the popu-
lation vectors. The idea of clustering then seeks to isolate clusters by seeking eigenvectors
that lie sufficiently far from one another.

Data as a Graph. At the core of any clustering algorithm is the idea that any data
set can be represented as a graph. A graph is a set of vertices and edges connecting the
vertices. Each vertex in a dataset is a data point, and each edge is a relationship between
two data points.

In a black-and-white grayscale image, a matrix where all data points range from 0
(black) to 255 (white) of rank n, each data point i, j can be thought of as a weight of
an edge between vertices i and j. In financial data, a correlation matrix can be used
to measure the relationships between returns of any two instruments. Each data point
i, j within the return correlation matrix can then measure a strength of the relationship
between financial instruments i and j.
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An adjacency matrix describes the “firmness” of connections or the number of paths
between any two data points or nodes. The stronger the bond between any two data
points i and j, the larger is the element Aij in the adjacency matrix A.

A data graph can further be directed or undirected. In directed graphs, the path
from element i to element j may only exist in one direction, or may be stronger in one
direction than in the other direction. The direction is reflected in the adjacency matrix:
in a directed graph,Aij ≠ Aji. When the path from element i to element j is only one-way
(there is no direct way to access data point i from point j), the corresponding adjacency
matrix element Aji = 0. An adjacency matrix can also be referred to as a weight matrix
W with elements wij ≥ 0. In financial data, the correlation matrix is symmetric, so the
resulting graph will always be undirected.

An adjacency matrix is often normalized with a kernel for each edge weight wij. A
popular kernel is a Gaussian:

wij = 𝑒𝑥𝑝(−‖vi − vj‖2∕𝜎2)
where

0 ≤ wmin ≤ wij ≤ wmax ≤ 1

Such a weighting system encodes the complex geometric structure of the data in a fairly
simple way.

In the case of applications related to financial data and specifically those using corre-
lation matrices, the correlation function itself may be thought of as a kernel transforming
the data into a weight graph.

In addition to the adjacency matrices, graph theory uses degree matrices. A degree
matrix D is a matrix of the cumulative weight of each data point. Specifically, the
degree of a vertex vi ∈ V is defined as

degi =
∑
j

wij (9.1)

wij = 0 for all vertices non-adjacent to vertex i.

What Is a Spectral Cluster? There are many different variations of the meaning of
a cluster. However, some common characteristics apply to most clusters. For example,
the points within the clusters are typically connected, i.e., there is a path from one point
belonging to a given cluster to any other point within the same cluster. On the other
hand, when any two points are not connected, they should most likely not be clustered
together. Schaeffer (2007) measures the “goodness” of a cluster by comparing cluster
densities, defined as the sum of the number of edges the points within a given cluster
share with each other:

𝛿int(C) =
1|C|(|C| − 1)

∑
v∈C

degint(v,C) (9.2)
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To measure the overall clustering process, we can further define the average inter-cluster
density as:

𝛿int(G|C1,…,Ck) =
1
k

k∑
i=1
𝛿int(Ci) (9.3)

The intra-cluster densities for different clusters can then be compared with each other
and with the inter-cluster density, the sum of the edges shared between clusters. The
K-means clustering algorithm is based essentially on this approach.

In addition to numerical comparisons based on respective cluster densities, the
clusters can be further divided into well-defined and somewhat fuzzy, based on the
definition of their respective “borders.” Well-defined and isolated clusters are known as
hard and those overlapping with other clusters are referred to as soft.

The clusters can also be split according to their structure. Clusters that have no
particular structure are referred to as flat. Clusters that contain other clusters within
are known as hierarchical. The hierarchical clustering most often arises when the cluster
structure is not known in advance. Flat clustering produces a clearer definition of clusters
and is therefore preferred to hierarchical clustering.

In any clustering approach, we need to break up the clusters based on a specific
variable. Clustering approaches include:

• Finding sub-clusters based on the highest density of edges within each cluster, known
as density-based clustering.

• Finding the lowest edge density boundaries between clusters, known as cut-based
clustering.

• Finding the edge density that exceeds that of a random graph, known as modularity
clustering.

The degree distribution of edges in a random graph can be modeled as a Poisson process,
as shown by Erdos and Renyi ([1960] 2011). In practice, degree distribution of edges has
been shown to be heavy-tailed, violating Poisson assumptions. Based on this observation,
Sorensen (2016) proposes power law modeling for the distribution of edges.

The partitions between clusters are known as graph cuts. The clusters are partitioned
by graph cuts in the graph’s adjacency/similarity matrix (see, for example, Ling and
Strohmer, 2018). In many financial applications, it is preferable to find the clusters of
equal size. For example, in stat-arb, it may be advantageous to create baskets of compa-
rable sizes to mitigate potential liquidity shortages in any small cluster of instruments.1

A stream of literature known as normalized cuts or minimal ratio cuts focuses on
the creation of balanced clusters in the data. Minimal ratio cuts were well described by
Hagen and Kahng (1992) and von Luxburg (2007) while notable research on normalized
cuts includes Dhillon, Guan, and Kulis (2004) and Shi and Malik (2000).

Spectral clustering seeks to separate the clusters based on their intrinsic densities,
using eigenvalues of the adjacency matrix of the data. The results are accomplished with
the Davis-Kahan theorem applied to data Laplacians, discussed in the following sections.

1 A trader may encounter liquidity shortage when executing a stat-arb position, as some stocks may simply
not be available to trade, i.e., not have enough liquidity or market depth.
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Distance between Eigenvectors: The Davis-Kahan Theorem. The Davis-Kahan
theorem states that the eigenvalues of the sample matrix differ from the eigenvalues of the
population by a number with a well-defined maximum. In other words, the divergence
between the eigenvalues of the sample and the eigenvalues of the true population can
only be so great, and the sample eigenvalues may well be used to proxy the eigenvalues
of the population.

The divergence between the eigenvectors of the sample and the population is mea-
sured by the angle a projection of the matrix makes on the population subspace and the
sample subspace. The angle created by the eigenvectors of the sample and the population
is known as the canonical angle.

Formally, if E and F are d-dimensional linear subspaces in Rp(d is the smaller dimen-
sion), then for 1-dimensional E and F that are spanned by respective eigenvectors vE and
vF ∈ Sp−1, the distance between E and F can be measured by the angle between vE and vF :

∠(vE, vF) = cos−1(|vE, vF|) (9.4)

The angle is normalized to the unit norm and contains the absolute value since we are
only interested in the acute angles.

For general p × d matrices E and F, PE and PF are orthogonal projection matrices
onto E and F, respectively:

PE = EET (9.5)

PF = FFT (9.6)

The kth canonical angle between E and F for k = 1,…, d is then defined as:

cos−1(maxx∈E,||x||=1 maxy∈F,||y||=1) = cos−1(|xTk yk|), xTi xi = yTi yi = 0, i = 1,…, k − 1
(9.7)

Furthermore, if 𝜎1 ≥ 𝜎2 … ≥ 𝜎d ∈ [0,1] are the singular values of ETF = FTE obtained
with SVD, the canonical angles between E and F are:

𝜃1 = cos−1(𝜎1), … 𝜃d = cos−1(𝜎d) (9.8)

Knowing 𝜃1,…, 𝜃d, we can express singular values of ETF or FTE as:

si = cos(𝜃i) (9.9)

and
ETF = FTE = USvT = U cos𝛩 vT (9.10)

where
𝛩 = 𝜃1 0 … 0

0 𝜃2 0 … (9.11)

0 0 … 𝜃d
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Alternatively, canonical angles can be defined as:

𝜃k = sin−1(sk), k = 1,…, d (9.12)

where sk is the kth singular value of PE(1 − PF) = U sin𝛩 vT (see Stewart and Sun 1990).
The actual distance between E and F is then defined as a metric between

d-dimensional subspaces, known as the Frobenius measure: ‖sin𝛩 (E,F)‖F .
The Davis-Kahan Sin𝛉 Theorem. Let Σ and Σ ̂ be p × p symmetric matrices with
eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆p and 𝜆̂ 1 ≥ 𝜆̂ 2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆̂ p respectively. Let 1 ≤

r < s ≤ p and d = s − r + 1. Let V and V̂ be p × d matrices with columns given by
eigenvectors of Σ and Σ ̂ corresponding to 𝜆j and 𝜆̂ j , j = r, ⋅ ⋅ ⋅ , s. By construction,
V and V̂ have orthonormal columns.

Let 𝛿 = {inf |𝜆𝜆̂|, 𝜆 ∈ [𝜆s, 𝜆r], 𝜆̂ ∈ (−∞, 𝜆ŝ+1] ∪ [𝜆r̂−1, ∞)} 𝜆0̂ = −∞, 𝜆p̂+1 =
∞ by convention. If 𝛿 > 0 (meaning there is an eigengap), then:

‖sinΘ (E,F)‖F ≤
‖𝛴∧ − 𝛴‖F

𝛿
(9.13)

where E = range(v), and F = range(V̂ ).
The Davis-Kahan inequality holds for the operator norm || ⋅ ||op as well as for any

unitarily invariant matrix norm: |||A||| = |||OAUT |||.
To use Davis-Kahan, assume that ||Σ − Σ̂||op ≤ 𝛾n with high probability and:

|𝜆∧s+1 − 𝜆s| ≥ 𝜆s − 𝜆s+1 − 𝛾n > 0

|𝜆∧r−1 − 𝜆r| ≥ 𝜆r−1 − 𝜆r − 𝛾n > 0

Then, by Davis-Kahan:

‖sinΘ‖ ≤ ‖Σ − Σ∧‖∕(𝛿∗ − 𝛾n) (9.14)

where 𝛿∗ = min{𝜆s − 𝜆s+1, 𝜆r−1 − 𝜆r}. Typically, r = 1, s = d < p, which gives the
eigengap:

𝛿∗ = 𝜆d − 𝜆d+1 (9.15)

𝜆d+1 is the first eigenvalue we are not interested in. If it is too close to the ones we are
interested in, it will contaminate them and we cannot tell them apart.

Furthermore, if 𝛾n→ 0, 𝛿∗ − 𝛾n ≥ 𝛿/2 for large n. Yu, Wang, and Samworth (2014)
developed an improvement over Davis-Kahan that removes eigengap dependency on the
sample population:

‖sinΘ (E, F)‖F ≤ 2min
{√

d‖Σ∧ − Σ‖op, ‖Σ∧ − Σ‖F} ∕min
{
𝜆s − 𝜆s+1, 𝜆r−1 − 𝜆r

}
(9.16)
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Determining the Structure of the Data with Laplacians. Laplacians have long
been deployed in graph theory to create discrete approximations to a local neighborhood
structure of graphs. In spectral clustering, a Laplacian is used to synthesize neighborhood
data relationships. After a Laplacian is created, its eigenvectors indicate the location of
clusters, based on the distance between vectors per the Davis-Kahan theorem discussed
in the previous section. The resulting eigenmapping thus makes it more transparent for
the subsequent K-means processing, which finishes the job by delineating the distinct
clusters.

Clustering comes in very useful in financial data. In addition to applications such as
determination of clusters of similar assets in stat-arb cluster trading, the data clustering
helps with compressing and speeding up processing of data. It has been shown that any
sort of data, financial or otherwise, are non-uniform (Belkin and Niyogi 2003). In other
words, when we look at a table of data, say, that of financial asset correlations, the data
are not distributed in a uniform way. Instead, we see concentrations of data points along
several major clusters with fewer dimensions than the original number of data columns,
often referred to as features.

Laplace operator is a fundamental geometric object that helps us identify smooth
functions in the data, like the relationships of data points:

𝛥f = −
k∑
i=1

𝜕2f

𝜕x2i
(9.17)

A Laplace operator is also the only operator that is invariant under translations and rota-
tions. It is used in heat, wave, or Schroedinger equations, as well as Fourier analysis.

Using a Laplacian, we substantially reduce the dimensionality of the entire data set
while preserving the local characteristics of the data. This in turn allows us to make the
subsequent K-means processing muchmore efficient, as follows: (1) Laplacian eigenmaps:
construct a similarity graph from the data and the eigenvectors of the associated graph
Laplacian are used to embed the data set into the feature space; (2) rounding procedure:
K-means is applied to the embedded data set to obtain the clustering:

a. The data set is embedded in the eigenvectors of the associated Laplacian.
b. K-means clustering is applied to the data set in (a) to retrieve the labels.

Spectral clustering of data comprises three main steps:

1. Compute a similarity graph among the data points to cluster;
• A simple similarity graph of n financial instruments can be a correlation matrix,

with similarities represented by correlations.
2. Compute the Laplacian of 1 (next page).
3. Compute the first k eigenvectors of its Laplacian matrix to define a feature vector of

each object:
• Select k based on the “elbow” in the eigenvalues or spike model.

4. Run K-means algorithm to separate objects into k classes.
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Computing Laplacians. While Eq (9.17) looks elegant and simple, its application
to the discrete data requires approximations. Several computational solutions have been
deployed to compute Laplacians in practice. Most computational approximations are
derived from the heat equation. In Rn, Eq (9.18) describes the heat distribution at time
t, u(x, t), with initial distribution u(x, 0) = f (x), x ∈ Rn, t ∈ R:

𝛥Rnu(x, t) =
du
dt
(x, t) (9.18)

The solution is convolution with the heat kernel:

u(x, t) = (4𝜋t)−n∕2
∫Rn

f (y) e−(||x−y||2)∕4tdy (9.19)

The solution presented in Eq (9.19) can in turn be approximated with the following
functional (Eq (9.20)) and empirical (Eq (9.21)) results. To obtain a functional result, we
differentiate Eq (9.19) in the limit of t → 0:

𝛥Rnf (x) =
d
dt

[
(4𝜋t)−n∕2

∫Rn
f (y) e−(‖x−y‖2)∕4tdy

]
0

𝛥Rnf (x) ≈ −1
t
(4𝜋t)−n∕2

(
f (x) −

∫Rn
f (y) e−(‖x−y‖2)∕4tdy

)
(9.20)

An empirical approximation is then obtained by discretizing Eq (9.20) and applying it
to the data:

𝛥Rnf (x) ≈ −1
t
(4𝜋t)−n∕2

(
f (x) −

∑
xi
f (xi) e−(‖x−xi‖2)∕4t

)
(9.21)

The main idea of clustering is to separate data points based on some similarity
criteria. The points with similar properties fall into clusters separated from other,
dissimilar, points. A tool used in spectral clustering is a map of local similarities, known
as a similarity graph or similarity matrix. A similarity graph S comprises a set of data
points referred to as vertices and a matrix of relationships between the data points,
referred to as a weighted adjacency matrix W = (wij)i,j=1,…,N , wij ≥ 0. When wij = 0, the
elements i and j are not connected.

The similarity matrix identifies regions of points within a certain neighborhood and
considers whether the points are similar or dissimilar. The neighborhood or vicinity can
be defined in several ways:

• The k nearest neighbors graph identifies similarities among the closest k points. The
nearest-k methodology may create non-symmetric similarity graphs, where similarity
from i to j is not the same as similarity from j to i, depending on the k closest neighbors
of each element.
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• The 𝜀-neighborhood graph considers similarities among all points that lie within 𝜀
distance from each other.

• The kernel graphs deploy a non-negative even kernel function𝛷𝜎(x, y) where 𝜎 is the
size of the neighborhood, also known as bandwidth. Two common kernel functions
are:
• 𝛷(t) = 1{|t|≤1} connects points if the distance between them is less than 𝜎; this

function produces the 𝜀-neighborhood graph.
• 𝛷(t) = e−t

2∕2 is known as the heat kernel or Gaussian kernel.

The heat or Gaussian kernel is presently the most popular similarity graph construction
methodology deployed in spectral clustering (per Ling and Strohmer, 2018) and we will
primarily focus on it in going forward.

Given N data points with certain properties measured by x, the similarity graph
constructed using the heat kernel is an n × n matrix S with elements of the adjacency
matrixW specified as:

wij = s(xi, xj) = e−
(||xi−xj||)2∕(2𝜎2),W ∈ RN×N (9.22)

From the similarity graph adjacency matrixW, we compute a degree matrix D, where the
degree of each element or vertex i is determined as follows:

di =
N∑
i=1

wij (9.23)

The associated degree matrix D is then an N × N diagonal matrix with {di}Ni=1 on the
diagonal:

D: = diag(W1N ) (9.24)

Next, we are ready to compute Laplacians required for spectral clustering.

Algorithms for Laplacian Approximations. Various researchers identify different
approximations to Laplacians, comprising their own field of study known as spectral
graph theory. A Laplacian is computed from the similarity matrix of a graph discussed
above. Here, we consider three categories of Laplacians: unnormalized, normalized for
symmetric similarity graphs, and random-walk Laplacians for special computation cases.
In all cases, the underlying similarity graphs used in the analysis are created with all the
weights non-negative, wij ≥ 0. Either unnormalized or normalized Laplacian is sufficient
for spectral clustering, but leads to slightly different algorithms discussed below.

The unnormalized Laplacian is computed as follows:

L: = D −W (9.25)
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Per Chung (1997), the symmetric normalized Laplacian is computed as:

Lsym: = In −D−1∕2WD−1∕2 (9.26)

SinceD is diagonal and positive, its reciprocal square rootD−1∕2 is a diagonal matrix with
diagonal entries comprising the reciprocal square roots of the diagonal entries of D.

L is real symmetric and positive semidefinite, and, therefore, diagonalizable:

L = USU’, where S is the diagonal matrix containing L’s sorted eigenvalues.

Another type of Laplacian is a random-walk Laplacian, Lrw, that embeds the probability
Pij =

wij
di
of a random walk starting from vertex i and moving to the vertex j in the next

step:
Lrw: = In − P,where P: = D−1W (9.27)

Von Luxburg (2006, pp. 5–6) proposes the following algorithm for unnormalized spectral
clustering:

Unnormalized Spectral Clustering

Inputs: Similarity graph adjacency matrixW ∈ RN × N , number k of clusters to construct

• Construct a similarity graph by one of the ways described above.
LetW be its weighted adjacency matrix.

• Compute the unnormalized Laplacian L: = D −W
• Compute the first k eigenvectors v1, … , vk of L.
• Let V ∈ Rn × k be the matrix containing the vectors v1, … vk as columns.
• For i = 1, … , n, let yi ∈ Rk be the vector corresponding to the ith row of V.
• Cluster the points (yi), i = 1,… ,n in Rk with the K-means algorithm into clusters
C1, … , Ck. Output: Clusters A1, … , Ak with Ai = {j| yj ∈ Ci}.

Shi and Malik (2000) develop an alternative Normalized Spectral Clustering algorithm:

Normalized Spectral Clustering

Input: Similarity matrix S ∈ Rn × n, number k of clusters to construct

• Construct a similarity graph by one of the ways described above.
Let W be its weighted adjacency matrix.

• Compute the unnormalized Laplacian L.
• Compute the first k eigenvectors v1, … , vk of the generalized eigenproblem
Lv = 𝜆Dv.

• Let V ∈ Rn × k be the matrix containing the vectors v1, … , vk as columns.
• For i = 1, … , n, let yi ∈ Rk be the vector corresponding to the ith row of V.
• Cluster the points (yi), i = 1,… ,n in Rk with the k-means algorithm into clusters C1,
… ,Ck. Output: Clusters A1, … ,Ak with Ai = {j| yj ∈ Ci}.

Still alternative spectral clustering variations were developed by Ng, Jordan andWeiss
(2002) and Ling and Strohmer (2018).
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Spectral Clustering with Stochastic Block Models

When the adjacency matrix is readily observable, the spectral clustering classification
models are referred to as discriminative. As such, they create relationship maps conditional
on existing data. An alternative to discriminative models is the field of generative models,
where the adjacency matrix is not observable, but is instead probabilistically developed
and derived from conditional relationships between individual network elements.

One of the most popular generative models, known as the Stochastic Block Model,
was first introduced by Holland, Laskey, and Leinhardt (1983). Rohe, Chatterjee, and
Yu (2011) outline the classification methodology and Lei and Rinaldo (2015) derive the
performance bounds, including misclassification rates, for the procedure.

Spectral clustering with stochastic block modeling is one of the “state-of-the-art”
areas of active research. Among the latest directions of the stochastic block models is the
research into how the models allow relaxation of convexity requirement in the K-means
clustering (see Abbe, Bandeira, and Hall 2016; Abbe 2017; Agarwal et al. 2017; and
Bandeira 2018).

Clustering Financial Data

Clustering in financial data has been studied since at least Boginski, Butenko, and Parda-
los (2003). Boginski, Butenko, and Pardalos proposed clustering financial data based on
their correlation structures. The highest-correlated instruments are thought to fall into
the same cluster.

In Finance, how does one create an adjacency from the sample covariance or cor-
relation matrix? One approach can be thresholding. In a manner similar to that of
Principal Orthogonal ComplEment Thresholding (a.k.a., POET) by Fan, Liao, and
Micheva (2013), the adjacency matrix can be created on the basis of a threshold. In
a thresholding example, the covariance or correlation values that fall below the thresh-
old can be set to 0 while the other values remain intact. Alternative solutions may include
a shrinkage function of Antoniadis and Fan (2001), employed by Rothman et al. (2009)
and Cai and Liu (2011). The hard-thresholding shrinkage by Bickel and Levina (2008),
for example, is sij(x) = x I(|x| ≥ 𝜏ij).

Spectral clustering with stochastic models may be the new exciting frontier in model-
ing of financial applications, such as microstructure activity, options pricing, and beyond.

Clustering Illiquid Instruments

Most of the clustering research in Finance to date preconditioned the data by eliminating
irregularly traded names, known as illiquid instruments. In this chapter, we specifically
include illiquid instruments in our clustering analysis to show an efficient application of
clustering in financial data.

While illiquid instruments may not trade often, they still possess intrinsic value that
changes with the ebbs and flows in the market environment. The intrinsic value is not
publicly discoverable, however, until the instrument changes hands in a market. On the
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days when an illiquid instrument trades, returns are generated. On the days when it does
not, the returns are recorded as zeros, even though the instrument’s intrinsic value may
still change.

Clustering helps uncover the true intrinsic values of illiquid instruments in a port-
folio setting. Since their return data are sparse, the correlations produced by illiquid
instruments may or may not be meaningful. When an illiquid instrument is corre-
lated with a frequently traded instrument, their correlation may reflect some of the true
co-movement of the instrument returns. When an illiquid instrument is correlated with
another illiquid instrument, however, the times when the two instruments trade at the
same time may be limited, and the resulting correlation may be approximately zero.
Clustering liquid and illiquid instruments into joint baskets establishes correlation links
between liquid and illiquid names, and helps relate illiquid instruments to each other.

The resulting clusters are highly correlated within, but weakly correlated with each
other. The clusters can then be aggregated into diversified portfolios, producing sizable
investment gains, as this section illustrates.

In a nutshell, our algorithm works as follows:

1. Cluster liquid and illiquid instruments based on their correlations. The clustering
process implicitly matches illiquid instruments with their closest liquid cousins. This
in turn creates groups of instruments that may show no explicit correlation due to
illiquidity.

2. Within each cluster, form an equally weighted intra-cluster portfolio from the highly
correlated instruments within each cluster:

Rintra,C = 1
NC

∑
i

Ri∈C (9.28)

3. Form equally weighted inter-cluster portfolios from the weakly correlated intra-
cluster portfolios created in step 2 above:

Rinter =
1
C

∑
C

Rintra,C

Step 2 above averages the returns of the highly correlated returns in each portfo-
lio. Step 3 takes advantage of the weak correlations between every two clusters, deliv-
ered by the clustering algorithm. Equally weighing weakly correlated intra-cluster
portfolios results in diversified frameworks consistent with Markowitz seminal ideas
of allocation.

Empirical Results

Here, we apply spectral clustering portfolio formation to the returns of cryptocurrencies
and, separately, commodities. Using data for the January 2017–April 2020 period, we
cluster the crypto and commodities returns on all traded instruments into different num-
bers of clusters. We show that as the number of clusters increases, the resulting portfolios
created from the clusters become increasingly diversified and better performing.
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Crypto Spectral Cluster Portfolios

Cryptocurrencies have become popular instruments for many investors. And while many
investors have put their money into individual cryptocurrencies, few have thought about
managing portfolios of cryptocurrencies to improve returns and diversify risks. At the
time this book was written, much of the advice for portfolio management in cryptocur-
rencies amounted to selecting a threshold of one’s total investment portfolio to allocate to
cryptocurrencies and related instruments. An October 17, 2019, article inCoin Telegraph,
for example, recommended that investors allocate between 2–10% of their total portfolio
to cryptocurrencies: “2% for everyday investors, rising to 5% to 10% for enthusiasts.”2

The article made no mention of potential diversification within the crypto portfolios
themselves.

However, cryptocurrencies have been extremely volatile instruments that could cer-
tainly benefit from portfolio diversification techniques. As the same Coin Telegraph article
noted, 2017 saw a 4,500% increase in the market capitalization of digital currencies. In
the first 8 months of 2018, however, crypto markets lost 80% of their value.

The digital currency markets are, of course, very new. Only 21 cryptocurrencies
have history dating to 2017: ARDR, BTC, BTS, DASH, DCR, DGB, DGD, DOGE,
ETC, ETH, LTC, MCO, MONA, REP, SC, STEEM, XMR, XRP, XVG, XZC, and
ZEC. Their cumulative returns over the 2017–2020 period are shown in Figure 9.3.
In an equally weighted portfolio, over the January 2017–May 2020 period, the cryp-
tocurrencies would have together returned 679.5%, with average annualized return of

20170101 20170809 20180317 20181023 20190531 20200106

0

5

10

15

20

Individual Cryptocurrency Performance, 2017–2020

Figure 9.3 Cumulative January 2017–May 2020 returns per cryptocurrency trading on or before
January 1, 2017.

2 Source: https://cointelegraph.com/news/how-to-manage-and-understand-risk-tolerance-in-crypto-
investing.

https://cointelegraph.com/news/how-to-manage-and-understand-risk-tolerance-in-crypto-investing
https://cointelegraph.com/news/how-to-manage-and-understand-risk-tolerance-in-crypto-investing
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Figure 9.4 K-means clustering of cryptocurrency returns, January 2017–May 2020, number of
clusters K = 2.

139.6%, but high volatility resulting in a Sharpe ratio of 0.89. As Figure 9.3 shows, the
cryptocurrencies delivered outstanding returns in 2017, but thereafter their performance
slowed, in part due to many new cryptocurrencies coming online and diluting the overall
pool of offerings.

Intra-Cluster Portfolios

To construct the intra-cluster portfolios, we first create correlation matrices. In this
section, we only cover the highly liquid cryptocurrencies that were trading on or
before January 1, 2017, and continued trading through April 2020. The K-means and
spectral clustering of the correlation matrix of returns of these instruments for the
entire 2017–2020 period are shown in Figures 9.4–9.9. In the case of two clusters,
highly correlated instruments are clustered into one cluster while low-correlation
instruments separate into another cluster. This complexity increases with the number
of clusters.

Results shown are for clustering into 2, 3, and 4 clusters. Table 9.1 shows in-sample
returns for each cluster, computed as equally weighted returns within each cluster. As
Table 9.1 shows, in the case of cryptocurrency clustering, both K-means and spectral
approaches produce comparable results. As Figures 9.4–9.9 show, both K-means and
spectral clustering produce comparable results.

Table 9.1 shows portfolio returns formed by the clusters, and Figures 9.10 and 9.11
show the cumulative portfolio returns of individual clusters versus an equally weighted
portfolio for K-means and spectral clustering, respectively. Again, K-means and spectral
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Figure 9.5 Spectral clustering of cryptocurrency returns, January 2017–May 2020, number of
clusters K = 2.
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Figure 9.6 K-means clustering of cryptocurrency returns, January 2017–May 2020, number of
clusters K = 3.

clustering produce similar in-sample performance. The equally weighted portfolio out-
performs individual clusters when 2017 is taken into account. When 2017 is removed,
the equally weighted portfolio reflects the sharp turmoil in the crypto markets and its
performance suffers considerably while the cluster portfolios manage to hang on.
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Figure 9.7 Spectral clustering of cryptocurrency returns, January 2017–May 2020, number of
clusters K = 3.
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Figure 9.8 K-means clustering of cryptocurrency returns, January 2017–May 2020, number of
clusters K = 4.

Table 9.1 summarizes the average (equally weighted) returns within each cluster
observed in the highly liquid crypto market. As Table 9.1 and Figure 9.9 show, K-means
and spectral clustering may or may not deliver different returns, depending on the cluster
allocation. What Figure 9.9 also shows is that each of the clusters individually underper-
form the simple equally weighted allocation in the liquid crypto market.
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Figure 9.9 Spectral clustering of cryptocurrency returns, January 2017–May 2020, number of
clusters K = 4.

Table 9.1 In-sample highly liquid January 2017–May 2020 returns for various cluster portfolios
for cryptocurrencies that were trading in January 2017.

K-means clustering Spectral clustering

Two clusters
Cluster 1 0.16779904582780514 0.13051036897718177
Cluster 2 1.0691191322957037 6.301072430346291
Three clusters
Cluster 1 0.293648330198659 0.2349186641589272
Cluster 2 6.301072430346291 6.301072430346291
Cluster 3 0.7483833926069926 0.9492149396563305
Four clusters
Cluster 1 0.293648330198659 0.293648330198659
Cluster 2 9.451608645519435 9.451608645519435
Cluster 3 1.8709584815174816 1.8709584815174816
Cluster 4 0.6576028751218467 1.0848170738929492

The clusters individually underperformed the EW portfolio during the crypto boom
of 2017. Subsequently, however, the clusters held up much better during the 2018–2019
crypto crash, as Figure 9.10 illustrates.

Inter-Cluster Portfolios and Out-of-Sample Results

To create aggregate inter-cluster portfolios, we average the intra-cluster results for each
number of clusters. We measure the performance of these equally weighted global clus-
ter portfolios out-of-sample monthly on all the cryptocurrencies trading in a given
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Figure 9.10 Spectral clustering of cryptocurrency returns, January 2017-May 2020, number of
clusters K = 2.
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Figure 9.11 Spectral clustering of cryptocurrency returns, detail, January 2018–May 2020,
number of clusters K = 2.

month, and not just on the major names. For example, to measure the performance
of the cluster portfolios in April 2018, we examine returns of all the cryptocurrencies
in March 2018. We assume the return of 0 if no trades were recorded on a given day
for a specific cryptocurrency. After computing the daily returns for each cryptocurrency
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Figure 9.12 K-means clustering of cryptocurrencies, 2 clusters.

trading in March 2018, we create a return correlation matrix. We next apply K-means
and, separately, spectral clustering to the correlation matrix. Subsequently, we form
equally weighted portfolios from the cryptocurrencies in each cluster. Next, we compute
out-of-sample returns of each cluster averaging April 2018 returns for each cryptocur-
rency in its respective cluster. Finally, we average the resulting out-of-sample intra-cluster
returns into a global cluster portfolio.

Figures 9.12–9.25 show K-means and spectral cryptocurrency clustering for different
numbers of clusters for March 2018. As Figures 9.12–9.25 show, the separation for a low
number of clusters is easy to perform even visually. As the number of clusters increases,
however, the clustering process becomes more complex.

As a result of the selected allocation scheme, the final allocation to each instrument
is always positive or long. Its exact value for each cryptocurrency is:

xi =
1
C

1
NCi

where C is the number of clusters and NCi is the number of instruments falling into the
same cluster as the cryptocurrency i. The bigger the cluster, the lower the allocation to
an individual instrument within the cluster.

Table 9.2 shows out-of-sample performance comparison; it includes all cryptocur-
rencies traded in a given month, with missing returns replaced by zeros. As Table 9.2
shows, when the number of clusters increases, so does the performance of the resulting
strategies. Figures 9.26–9.32 show the out-of-sample K-means and spectral clustering
for cryptocurrency portfolios monthly, with different clusters.
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Figure 9.13 K-means clustering of cryptocurrencies, 3 clusters, March 2018.
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Figure 9.14 K-means clustering of cryptocurrencies, 5 clusters, March 2018.
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Figure 9.15 K-means clustering of cryptocurrencies, 7 clusters, March 2018.
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Figure 9.16 K-means clustering of cryptocurrencies, 10 clusters, March 2018.
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Figure 9.17 K-means clustering of cryptocurrencies, 15 clusters, March 2018.
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Figure 9.18 K-means clustering of cryptocurrencies, 20 clusters.
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Figure 9.19 Spectral clustering of cryptocurrencies, 2 clusters.
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Figure 9.20 Spectral clustering of cryptocurrencies, 3 clusters.
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Figure 9.21 Spectral clustering of cryptocurrencies, 5 clusters, March 2018.

–0.2

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Spectral Clustering, 7 clusters

Figure 9.22 Spectral clustering of cryptocurrencies, 7 clusters.
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Figure 9.23 Spectral clustering of cryptocurrencies, 10 clusters, March 2018.
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Figure 9.24 Spectral clustering of cryptocurrencies, 15 clusters.
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Figure 9.25 Spectral clustering of cryptocurrencies, 20 clusters.

Table 9.2 Annualized mean returns and Sharpe ratios of out-of-sample performance of
investment strategies based on monthly clustering, cryptocurrencies, January 2017–April 2020.

Instrument
Class

Number
of
Clusters

K-Means
Annual
Return

K-Means
Sharpe
Ratio

Spectral
Annual
Return

Spectral
Sharpe
Ratio

EW
Annual
Return

EW
Sharpe
Ratio

Crypto 2 0.7074 1.2489 0.4643 1.2861 1.8752 1.2269
Crypto 3 0.6811 1.2042 0.9623 0.9267 1.8752 1.2269
Crypto 5 1.3089 1.2315 0.9546 1.1663 1.8752 1.2269
Crypto 7 1.2955 1.3104 0.9732 1.1855 1.8752 1.2269
Crypto 10 1.4108 1.4070 1.2426 1.4186 1.8752 1.2269
Crypto 15 1.4613 1.2959 1.4744 1.3356 1.8752 1.2269
Crypto 20 1.7249 1.2944 1.8961 1.4525 1.8752 1.2269

Strategy Robustness

To check the versatility of the strategy, we perform a similar out-of-sample analysis on
commodities. Utilizing all commodities trading in a given month, we follow the same
portfolio formation process as in the preceding cryptocurrency analysis:

1. Compute daily returns; assign returns of 0 to days where no trades occur or infor-
mation is unavailable.

2. In each month, create return correlation matrix for the month’s daily returns.
3. Cluster returns based on their correlations.
4. Average the following month’s returns within each cluster.
5. Average the clusters’ returns into a global portfolio.
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Figure 9.26 Monthly out-of-sample K-means and spectral clustering for cryptocurrency
portfolios, 2 clusters.

Figure 9.27 Monthly out-of-sample K-means and spectral clustering for cryptocurrency
portfolios, 3 clusters.

Figures 9.33–9.52 show commodities clustering for March 2018. Table 9.3 summa-
rizes the performance of commodity clustering. Figures 9.33–9.52 show cumulative out-
of-sample returns. As Table 9.3 shows, commodity clustering significantly outperforms
plain equally weighted portfolios. While spectral and K-means clustering produced
nearly identical results in cryptocurrencies, in commodities, spectral clustering further
outperforms K-means results.
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Figure 9.28 Monthly out-of-sample K-means and spectral clustering for cryptocurrency
portfolios, 5 clusters.

Figure 9.29 Monthly out-of-sample K-means and spectral clustering for cryptocurrency
portfolios, 7 clusters.
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Figure 9.30 Monthly out-of-sample K-means and spectral clustering for cryptocurrency
portfolios, 10 clusters.

Figure 9.31 Monthly out-of-sample K-means and spectral clustering for cryptocurrency
portfolios, 15 clusters.
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Figure 9.32 Monthly out-of-sample K-means and spectral clustering for cryptocurrency
portfolios, 20 clusters.

–0.50
–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

–0.25 0.00 0.25 0.50 0.75 1.00

Commodities KMeans Clustering, 2 clusters

Figure 9.33 K-means clustering for commodities, 2 clusters.
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Figure 9.34 K-means clustering for commodities, 3 clusters.
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Figure 9.35 K-means clustering for commodities, 5 clusters.
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Figure 9.36 K-means clustering for commodities, 7 clusters.
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Figure 9.37 K-means clustering for commodities, 10 clusters.
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Figure 9.38 K-means clustering for commodities, 15 clusters.
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Figure 9.39 K-means clustering for commodities, 20 clusters.
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Figure 9.40 K-means clustering for commodities, 25 clusters.
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Figure 9.41 K-means clustering for commodities, 35 clusters.
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Figure 9.42 K-means clustering for commodities, 50 clusters.
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Figure 9.43 Spectral clustering for commodities, 2 clusters.
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Figure 9.44 Spectral clustering for commodities, 3 clusters.
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Figure 9.45 Spectral clustering for commodities, 5 clusters.
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Figure 9.46 Spectral clustering for commodities, 7 clusters.
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Figure 9.47 Spectral clustering for commodities, 10 clusters.



Trim Size: 7in x 10in Aldridge602989 c09.tex V1 - 12/09/2020 12:55 A.M. Page 302�

� �

�

302 B I G DATA S C I E N C E I N F I N AN C E

–0.50
–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

–0.25 0.00 0.25 0.50 0.75 1.00

Spectral Clustering, 15 clusters

Figure 9.48 Spectral clustering for commodities, 15 clusters.
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Figure 9.49 Spectral clustering for commodities, 20 clusters.
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Figure 9.50 Spectral clustering for commodities, 25 clusters.
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Figure 9.51 Spectral clustering for commodities, 35 clusters.

Figures 9.53–9.62 show the monthly out-of-sample K-means and spectral clustering
for commodities portfolios for different clusters.

The clustering policy increases the returns, increasing the Sharpe ratios as well. The
policy can, therefore, be used to up the returns without increasing the risks or leverage.
Instead of borrowing large sums of money to invest, the investors can turn to clustering
and obtain the same performance as a levered portfolio without taking on additional
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Figure 9.52 Spectral clustering for commodities, 50 clusters.

Table 9.3 Annualized mean returns and Sharpe ratios of out-of-sample performance of
investment strategies based on monthly clustering, commodities, January 2017–April 2020.

Instrument
Class

Number
of
Clusters

K-Means
Annual
Return

K-Means
Sharpe
Ratio

Spectral
Annual
Return

Spectral
Sharpe
Ratio

EW
Annual
Return

EW
Sharpe
Ratio

Commodities 2 0.00028 0.46985 −0.01836 −0.54710 0.00513 0.06385
Commodities 3 −0.00009 −0.06592 −0.02252 −0.94430 0.00513 0.06385
Commodities 5 −0.00227 −0.69594 −0.00948 −0.55252 0.00513 0.06385
Commodities 7 −0.00042 −0.11691 −0.00341 −0.19283 0.00513 0.06385
Commodities 10 −0.00022 −0.05245 0.00116 0.06255 0.00513 0.06385
Commodities 15 0.00059 0.10457 0.00759 0.43387 0.00513 0.06385
Commodities 20 0.00379 0.51757 0.02038 0.83556 0.00513 0.06385
Commodities 25 0.00230 0.22629 0.01726 0.74049 0.00513 0.06385
Commodities 35 0.00615 0.62358 0.03237 1.37612 0.00513 0.06385
Commodities 50 0.01238 0.87829 0.02334 0.89600 0.00513 0.06385

capital. This can prove to be a real benefit to investors who have obtained their target risk
allocations and are seeking to maximize returns without additional credit risk exposure.

How does this method work? The clusters are created based on their correlations.
The graph theory gives us the ability to connect financial instruments that are indirectly
correlated. For instance, when one financial instrument is correlated with the second
financial instrument, and the second financial instrument is correlated with the first and
third financial instrument, the traditional correlation matrix may or may not show a cor-
relation between the first and the third instruments. This is especially the case whenever
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OOS of Monthly KMeans and Spectral Commodities Portfolios, 2 Clusters
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Figure 9.53 Monthly out-of-sample K-means and spectral clustering for commodities portfolios,
2 clusters.
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Figure 9.54 Monthly out-of-sample K-means and spectral clustering for commodities portfolios,
3 clusters.

the first and the third instruments are illiquid, i.e., trade infrequently. Clustering allows
a different view of the correlation matrix, where the correlation matrix is filled in for
instruments whose regular trading values are missing.

Because the returns of cluster portfolios are uncorrelated or weakly correlated with
each other, the resulting global portfolio is diversified. The more clusters there are in the
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Figure 9.55 Monthly out-of-sample K-means and spectral clustering for commodities portfolios,
5 clusters.

201702 201802 201902 202002

EW
Spectral Clustering
K-Means Clustering

OOS of Monthly KMeans and Spectral Commodities Portfolios, 7 Clusters
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Figure 9.56 Monthly out-of-sample K-means and spectral clustering for commodities portfolios,
7 clusters.

system design, the more uncorrelated cluster portfolios are in the global portfolio, the
higher is the achieved diversification of the global portfolio.

A high number of highly correlated instruments in an equally weighted portfolio
reduces to just one cluster-portfolio component in the final portfolio. For portfolio
managers charged with a specific stock selection, for example, as part of an ESGmandate,
the strategy allows incorporation of all the issues. At the same time, the portfolio manager
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OOS of Monthly KMeans and Spectral Commodities Portfolios, 10 Clusters
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Figure 9.57 Monthly out-of-sample K-means and spectral clustering for commodities portfolios,
10 clusters.

OOS of Monthly KMeans and Spectral Commodities Portfolios, 15 Clusters
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Figure 9.58 Monthly out-of-sample K-means and spectral clustering for commodities portfolios,
15 clusters

increases returns on his strategy without significantly affecting the Sharpe ratio, all with
the original capital base.

Optimal Number of Clusters

As the out-of-sample performance shows, the higher number of clusters delivers more
precision and produces better results out-of-sample. The number of clusters, is, of
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OOS of Monthly KMeans and Spectral Commodities Portfolios, 20 Clusters
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Figure 9.59 Monthly out-of-sample K-means and spectral clustering for commodities portfolios,
20 clusters.

OOS of Monthly KMeans and Spectral Commodities Portfolios, 25 Clusters

K-Means Clustering
Spectral Clustering
EW

201702

0%

50%

100%

150%

200%

201802 201902 202002

Figure 9.60 Monthly out-of-sample K-means and spectral clustering for commodities portfolios,
25 clusters

course, constrained by the number of financial instruments in the portfolio. As soon as
the number of instruments increases past its optimal point, the clusters contain fewer
and fewer instruments and the portfolio begins to approximate the equally weighted
portfolio.
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OOS of Monthly KMeans and Spectral Commodities Portfolios, 35 Clusters
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Figure 9.61 Monthly out-of-sample K-means and spectral clustering for commodities portfolios,
35 clusters.

OOS of Monthly KMeans and Spectral Commodities Portfolios, 50 Clusters
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Figure 9.62 Monthly out-of-sample K-means and spectral clustering for commodities portfolios,
50 clusters

Beyond Equally Weighted Portfolios

Instead of equally weighing intra-cluster and inter-cluster portfolios, researchers may
choose to deploy various existing portfolio construction methodologies to fine-tune the
weights of the individual clusters. For example, mean-variance portfolio optimization
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may produce even more tailored results. Another alternative is eigenportfolios, applied
to intra-cluster portfolios by Akansu, Avellaneda, and Xiong (2020). As Akansu, Avel-
laneda, and Xiong state, fine-tuning cluster portfolios via eigenportfolio selection fur-
ther increases intra-cluster portfolio performance. Better intra-cluster performance will
invariably turn into better global portfolios.

Conclusion

Clustering presents a powerful new way of thinking about portfolio allocation, all fitting
nicely into the traditional Markowitz diversification model. Delivering significant per-
formance improvements over vanilla portfolios, clustering can add benefit to portfolio
managers across a wide spectrum of mandates, including cryptocurrencies, commodities
and beyond.

Appendix 9.A Clustering with Python

To program the K-means clustering algorithm in Python, we can use the built-in
scikit-learn K-means library, aptly named kmeans. With that, in two lines of code, we
have an iterative prediction for which cluster each variable of X should fall into:

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=5, init=‘k-means++’, max_iter=500, n_init=10,
random_state=0)
pred_y = kmeans.fit_predict(X)

The above example separates elements of X into five clusters, iterating at most 500
times (or fewer, if convergence is reached earlier) over the data.

Similarly, spectral clustering in Python can be performed in a few lines of code, with
a built-in parameter label, delivering the cluster enumeration:

from sklearn.cluster import SpectralClustering
clustering = SpectralClustering(n_clusters=2,

assign_labels="discretize",
random_state=0).fit(X)

output_clusters = clustering.labels_

For specific code examples, please visit https://www.BigDataFinanceBook.com,
and register with password clustering (case-sensitive).
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Conclusion

B ig Data in Finance has enormous potential. The applications covered in this book
alone deliver high-performance results, when executed with precision and care.
The number of open problems, however, is vast, and many of these are listed in

this book.
As this book illustrates, the applications of Big Data extend into all areas of Finance

from trading to credit risk to back office management. Big Data technologies help
companies break down traditional barriers between departments and organizations, by
allowing them to agglomerate the data from various sources often without data standard-
ization that traditionally was one of the biggest roadblocks to successful data sharing inside
large organizations. As described in Chapter 7 of this book, for example, even missing
data fields are no longer a barrier to extracting precise and meaningful inferences from
all the available data. In fact, as this book illustrates, more data, not cleaner data, lead to
higher-quality inferences. Higher amounts of data allow for the population properties
to emerge. This contrasts with traditional econometrics, which relies on extracting data
properties from pristine yet limited samples that often are not even representative of the
entire population.

This book also illustrates techniques and results completely novel to Finance and in
many cases original altogether. For example, the study of how noise and missing data
impact the error in eigenvalue estimation, again in Chapter 7, is one of the first of its kind.
Similarly, many applications, including clustering in commodities and cryptocurrencies,
supervised learning in high-frequency data, semi-supervised learning in analysts’ ratings
forecasts, and many more, are all firsts to be published in this book. Please cite our book
when mentioning the results!

Altogether, this book adds a number of benefits to quantitative researchers and
those aspiring to be quant analysts and Big Data modelers. From better grounding

313
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in supervised and semi-supervised models, to improving large data set processing, to
fine-tuning unsupervised learning, this book presents readers a toolbox brimming with
concrete actionable ideas. Furthermore, code snippets and additional resources avail-
able at https://www.BigDataFinanceBook.com present ready-to-use code
snippets simplifying, streamlining, and speeding up the implementation of the models
discussed in this book.

Last, but not least, we love our readers and their feedback. We hope to receive the
love back via positive reviews on Amazon.com. Please take a minute to appreciate all
the hard work spanning many years we’ve put into researching and writing this book
and leave us a nice review. Also, please remember to recommend this book to your
colleagues, friends, and acquaintances in real and virtual lives.

With gratitude,
Irene Aldridge and Marco Avellaneda

https://www.BigDataFinanceBook.com
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2-norm, 135
3-D simulation, complexity, 5

Abbott Laboratories (ABT), 58
in-sample RMSE, 59f
K-NN, out-of-sample performance, 60f

Accelerations, 71
Activation function, 20–21, 33

selection, 21–27
types, 21

Activation levels, 19
addition, 40

Activation parameter, 19
Adaptive estimators, 83
Adjacency matrix, 224, 266–267, 272–273
Adjacency/similarity matrix, 268
Aggregate industry-based portfolios, comparison,

156f–159f
Algorithmic modeling culture, impact, 6
American Depository Receipts (ADRs), Boston Stock

Exchange trading activity, 124
Analyst forecasts, market-wide news (impact), 95
Analyst forecasts, stock-specific news

basis (development), generative SSL (usage), 96f, 99f,
101f

usage, out-of-sample prediction, 95f, 101f
Analysts

average predictions, 101f
decision-making process, 82
forecasts (market news development), generative

SSL (usage), 99f
human input requirement, 80
importance, 82

Annualized mean returns, 291t, 305t
Arbitrage Pricing Theory (APT), 142

Articles. See News articles
Artificial intelligence

data science by-product, 7–8
understanding, 4

Assets
average values, 241t
returns, regression coefficient, 159
volatility, weight division, 146

Australian Dollar-U.S. Dollar foreign exchange rate
(AUD/EUR)

predictability, decision tree (usage), 63f
Australian Dollar-U.S. Dollar foreign exchange rate

(AUD/EUR), classification, 62–63
Auto/Truck dealerships, industry eigenportfolios, 160f

Backpropagation, 26
Back-propagation multi-layer methodologies, usage, 19
Bagging. See Bootstrap aggregation
Baik, Ben-Arous, and Peche (BBP) transition, 189
Basel regulations, 253
Basic Materials, eigenfactor year-to-year changes

(distribution), 164f
Bayes generative model, output accuracy

(noncorrelation), 86
Bayesian averaging, proposal, 65–66
Bayesian inference, 97
Bayesian PCA, 213
Bayes rule, usage, 28–29
Bayes theorem, generative model reliance, 85
BBP. See Baik, Ben-Arous, and Peche
Best least squares fit, usage, 133
Better Alternative Trading System (BATS) equities

exchange, trading data logs, 48, 49f
Bias/variance (reduction), stacking/boosting (usage),

66–67

315
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Big Data, 109–110
analysis, 145, 237
analytical tools, 6
application, 243
clustering, 9

techniques, 264
coding, Python (usage), 9–14
dimensionality reduction, factor models (contrast), 143
factor models, 142

Python, usage, 177
impact, 2
imputation models, advantages, 211
indexing, 9
operations efficiency, importance (increase), 5
options factors, 235–237
potential, 314–315
professionals, searches (outcome), 6
robots, learning ability, 8
sampling, 224
science, J.P. Morgan usage, 5
techniques, 251

SVD/PCA, relationship, 117
traditional finance, contrast, 6

tools, techniques, 9, 131–135
unsupervised Big Data approach, impact, 8
usage, 1, 31–32

Big Data Finance (BDF), 2
professionals, types (increase), 3

Biotechnology, industry eigenportfolios, 161f
Black-and-white image. See Image
Black-box construct, 16
Blackout regimes, eigenvalue changes, 216f
BlackRock, portfolio management automation, 3
Black-Scholes model, 232
Book-to-market portfolio (High Minus Low),

Fama-French factor, 111
Boosted trees, 16
Boosting technique, usage, 65–66
Bootstrap aggregation (bagging) technique, 66
Bootstrapping, dropout (comparison), 30
Brin, Sergey, 243
B-spline, 154
Budget constraint, 72
Business-to-business (B2B) transactions, 2

Canadian Dollar (CAD/EUR) exchange, prediction,
66–67

Canonical angle, 268–269
Capital Asset Pricing Model (CAPM), 142, 150

development, 112
non-linear version, usage, 45

Central Limit Theorem, usage, 181–182
Centroids, 265
Chafez, Marty, 5
Characteristic values, 109
Chinese Yuan (CNY/EUR), return buckets,

63–64
Class-conditional densities, impact, 99
Classification, 69

engine, construction, 72

output, defining, 50
supervised learning, impact, 50–51

Cloud/cloud computing, 112
Clustering. See Data

empirical results, 277
methodology, 263–276
Python, usage, 311

Clusters
centers, 265
densities, 267
management, 112
number, optimum, 309–310

Coefficients, determination, 57t
Cohen, Steve, 4
Commodities

K-means clustering, 296f–300f
portfolios, monthly out-of-sample K-means/spectral

clustering, 306f–311f
spectral clustering, 300f–305f

Common-factor predictive regression, building, 147
Communication Cyclical, eigenfactor year-to-year

changes (distribution), 165f
Communication Services

eigenfactors, year-to-year changes (distribution), 165f
OOS cumulative performance, 170f

Compatibility assumptions (encoding), conditional priors
(usage), 97

Complexity, addition, 31
Composite map, 20
Concentration of measure, 110
Conditional entropy, 63
Conditional independence constraints, graph encoding,

103–104
Conditional priors, usage, 97
Confusion matrix, calculation, 105
Connections, firmness, 266
Consumer Cyclical, OOS cumulative performance, 171f
Consumer data, J.P. Morgan protection, 5
Consumer Defensive

eigenfactors, year-to-year changes (distribution), 166f
OOS cumulative performance, 171f

Consumer ratings, 262
Contrarian approach, usage, 8
Convergence, 40–44

acceleration, 44
Corporate bankruptcies, logistic LASSO/ridge

regressions (usage), 52–53
Corporate credit rating agencies, ratings (distribution),

246f–247f
Correlation-based eigenportfolios, usage, 156f–159f
Correlation-based factorization, performance, 155,

156f–159f
Correlation-based factors, 154–155
Correlation matrix

eigenvalues
decomposition, 204
Marčenko-Pastur production, 204, 209
ranking, 241

S&P500 correlation matrix, eigenvalues, 221f
Cosh(x) functions, 21
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Co-training, 97
Covariance

computation, failure, 119
covariance-based eigenportfolios, usage, 156f–159f
covariance-based factorization, performance, 155,

156f–159f
covariance-based models, usage, 119
eigenvalues

computation, 182
distribution, 184f, 185f

Covariance matrix, 184
factorization, absence, 110
factorized covariance matrix, 111t
involvement, 189
traditional covariance matrix, 111t
usage, 149

COVID-19 crisis
ETF performance, 126t
impact, 122, 125–126

Credit ratings
matrix, probabilities, 249
movement, 249

Credit risk rating, 14
Cross-validation

RMSE scores, 93, 94f
three-fold cross-validation, example, 85f
usage, 84–85

Cryptocurrencies
clustering, 279
cluster portfolios, in-sample liquidity, 282t
K-means clustering, 285f–291f
portfolios

management, 278
monthly out-of-sample K-means/spectral

clustering, 292f–295f
returns

K-means clustering, 279f–281f, 284f
spectral clustering, 280f–283f

strategy, robustness, 291–311
trading, 278f

Crypto spectral cluster portfolios, 278–279
Currencies, list, 61–62
Cut-off

determination, 194–204
value, Marčenko-Pastur (application),

192, 193f
Cut-put implied volatility spread, 232

Data. See Labeled data; Missing data; Pseudo-labeled
data; Unlabeled data

applications, 194–204
arrival, two-dimensional matrix format, 226
categories, 109–110
classification, improvement, 87
cleaning/organizing, 48, 142
clustering, 262
columns, 20
core representation, 119
dimensionality, reduction process, 117
discretization, 101

feature, 49
dropping, 20

file (opening), Python (usage), 10–14
fit, parametric/non-parametric regressions (usage),

234
granular data, extraction, 242
graph function, 266–267
imputation, 210–220
inputs (transformation), activation function (usage), 20
interpretation, differences, 7f
joint density, 85
lakes, 8
matrix, covariance, 182
mining algorithm (K-NN), 57–58
near-term arrival, probability (prediction), 226
normalization, 182
observations, collection/generation, 6–7
parameters, retention, 29
random data, usage, 181–182
raw input data, probability distribution (knowledge),

83
scientists, role, 3
scouts/managers, role, 3
separation, linear regression (usage), 50–51
signal, noise (contrast), 180
size/dimensionality, issues, 8
specialists, popularity (increase), 4–5
structured data, 49
structure (determination), Laplacians (usage),

270–271
structuring, 8
unstructured data, 8, 49
unsupervised learning, usage, 108
untrained data, classification engine (construction), 72

Data modeling
culture, assumptions, 6
a priori function, assumption, 7
traditionalists, goals, 6–7

Data Science, 262
concerns, 212
evolution, 48–49
traditional data modeling, data interpretation

(differences), 7f
Davis-Kahan Sinθ Theorem, 269–270
Davis-Kahan Theorem, 268–271
DAX options, returns correlation matrix, 237
Days to maturity (DTM), 235
D-dimensional orthonormal basis (determination), PCA

(usage), 134
D-dimensional subspace, orthonormal basis, 143
Debt rating prediction, 8
Decision trees, 61–67

concept, extension, 65
construction, IG basis, 61–62
disadvantage, 64
extra trees, contrast, 67f
methodology, origins, 61
process, 64f
random decision forest, contrast, 65f
usage, 63f
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Deep learning
algorithms, data sets, 27–29
generative adversarial network (GAN) framework,

usage, 15
neural network architecture, univariate activation

functions, 20
predictor, realized output (difference), 27

Deep predictor, 20
Degree matrices, usage, 267
Delta-hedged options, correlation, 162
Delta-skew, 239
Derivatives, out-of-sample pricing, 234
Deterministic annealing, 97
Deterministic outcomes, switching, 245
Deterministic volatility functions, 234
Diagnostics/Research, industry eigenportfolios, 161f
Dimensionality curse, 60
Dimensionality reduction, 110, 131

involvement, 186
providing, factorized covariances (impact),

111
unsupervised learning (UL), usage, 112

Dimensionally reduced matrices, granular data
(extraction), 242

Dimension reduction, PCR (usage), 16
Direct sum decomposition, 251
Discrete Fourier Transform, 139
Discriminant analysis

K-nearest neighbors, usage, 104f
ridge regression, usage, 103f

Discriminative spectral clustering, 275
Discriminative SSL models, 83, 98–101
Diversification, meaning, 145
Dropout

bootstrapping, comparison, 30
feature dropout, impact, 31
regularization, application, 40
threshold, 29–30
usage, 29–30

Econometric modeling
differences, 16
usage, 130

Econometric model testing, 84
Econometrics, 16, 180

rigidity, demands, 210
searches, outcome, 6

Economic data, noise, 146
Economic indicators (factors), PCA/SVD identification,

145
Edge density boundaries, location, 268
Egan-Jones Ratings Company, 245
Eigenfactor

in-sample explanatory power, 150f
year-to-year changes, distribution, 164f–169f

Eigenmapping, 270
Eigenportfolios (EPs), 145–147

construction, 263
extraction, 146
industry eigenportfolios, 160f–161f

Eigenvalues (EVs), 109
30-second normalized S&P returns (errors),

eigenvalues (Marčenko-Pastur/empirical
distribution), 207f

appearance, 187f
computation, 135, 145
constituent ranking, 240t
cut-off, determination, 194–204
cut-off value, Marčenko-Pastur (application), 192,

193f
decomposition, 189–190, 204, 209
delineation, 195f–202f
determination, Marčenko-Pastur threshold (usage),

238f
distribution, 184f, 185f, 209

display, random data (usage), 181–182
empirical density function, 183
function, 223t

estimation, PCA (usage), 190
histogram, plotting, 182
Marčenko-Pastur/empirical distribution, 195f–201f,

207f
missing eigenvalues, 221–222
normalization, 114
normalized S&P500 returns (correlation coefficients),

eigenvalues (Marcenko-Pastur/empirical
distribution), 208f

spiked eigenvalues, 196f–202f
log scale, 187f

Tracy-Widom distribution, 222
understanding, 130
unwanted eigenvalues (cut-off eigenvalues),

replacement, 116
usage, 119
variation, occurrence, 214

Eigenvectors
computation, 145, 271
correlation, 124t
distance, 268–269
number (determination), Python (usage), 227
understanding, 131
usage, 119, 156f–159f

Elastic nets, 51–57
regularization specification, differences, 52

Electronically Traded Funds (ETFs)
Covid crisis performance, 126t
performance, 126, 128f
universe, study, 119
variation, percent (explanation), 239f–240f

Electronically Traded Notes (ETNs), Boston Stock
Exchange trading activity, 124

Emerging markets, issues (correlation), 126
Empirical density function, 182, 183
Energy

eigenfactors, year-to-year changes (distribution), 166f
OOS cumulative performance, 172f

Ensemble methods, 66
Entropy

average, 63–64
computation, 61
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conditional entropy, 63
defining, 62

Epps Effect, 222
Equally weighted inter-cluster portfolios, 277
Equally weighted portfolio, excess Sharpe ratios

(distribution), 129f
Equally weighted portfolios, 311
Equally weighted S&P500 portfolio, in-sample regression

coefficients, 151f
Euclidean norm, 145
Euclidean space, data point mapping, 224–225
EUR (denominator currency), 61
Excess return, defining, 53
Exchanges, data generation, 2–3
Expectation-maximization (EM), 213

framework, development, 87
optimization, maximum, 88

Expected Loss (EL), 253
Exposure at Default (EAD), 253
Extra Trees, usage, 213
Extremely Randomized Trees (extra trees), 51, 61–67

decision trees, contrast, 67
Extreme weights, minimization, 54

Faces
completion, supervised methods (usage), 214f
imputation, 213

Factor
approximations, creation, 148
correlation-based factors, 154–155
discovery, 147–152
identification, neural network (avoidance), 35
loadings, 146
models, Big Data dimensionality reduction (contrast),

143
Principal Orthogonal ComplEment Thresholding

(POET) Method, 149–152
usage, 147
zoo, 142

Factor Analysis Model, 213
Factorization

nonlinear factorization, 153–154
optimum, PCA/SVD delivery (reasons),

143–145
Factorized covariances, impact, 111
Factorized portfolios, usage, 129
Fama-French factors, 142

returns, eigenvectors (correlation), 125f
Fama-French three-factor model, 110–111
Fast Geometric Ensembling (FGE) methodology, 32
Fast steady-state inferences, Perron-Frobenius theorem

(usage), 244–257
Fast SVD, 136, 138–139
Features, 18

data features, 20, 49
feature dropout, impact, 31
feature space, 69

Feedforward function, 26
Feed-forward multi-layer methodologies, usage, 19
Feed-forward neural networks, width (increase), 19

Finance
Big Data, impact, 2
dimensionality reduction, 110
neural networks

importance, understanding, 17
usage, 15–16

searches, outcome, 6
Financial analysis, 80
Financial data

analysis, observations, 220
availability/applications, 211
clustering, 276–277

Financial instruments, upside limit breach, 24–25
Financial markets, course changes, 6
Financial quants, popularity (decline), 4
Financial returns

deconstruction, 119–126
explanation, factors (availability), 142

Financial Services
eigenfactors, year-to-year changes (distribution), 167f
OOS cumulative performance, 172f

Financial time series (forecast), SVM (deployment), 68
Finite-dimensional vector space, 69
First-order conditions

optimization, 144
solutions, 143–144

First principal components, daily average return
(contrast), 152f

Fitch Ratings, 245
Fitting

overfitting, 27–28
penalization, 28

Flash Crash (2010), 2412
Flat clusters, 267
Fourier series, 154
Free data, components, 90
French, Kenneth, 152
Frobenius, Ferdinand Georg, 244
Frobenius norm, 135

usage, 226

Gaussian distribution function, 100–101
Gaussian kernel, 266–267
Gaussian mixtures, 263
Gaussian noise (white noise), 182

distribution, 186–187
Gaussian Orthogonal Ensemble (GOE), 181–182,

223–224
Gaussian zero-mean data, GOEs, 223t
Generalized Autoregressive Conditional

Heteroskedasticity (GARCH)
model estimation, SVM (usage), 68
usage, 235

Generalized linear models, penalization (inclusion), 16
Generative Adversarial Networks (GANs), 15

generative/discriminative models, interaction, 98
random features/feeds creation, 19

Generative inferences, enhancement, 97
Generative mechanism, performance, 93
Generative modeling, improvements, 96–97
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Generative models, 83, 85–98, 275
development, 87
naïve Bayes approach, impact, 87–88
out-of-sample performance, 94–96
semi-supervised estimation, 89–93
usage, 88–93

Generative SSL
out-of-sample prediction, 94, 95f
usage, ridge regression (inclusion), 96f, 98f, 99f, 101f

Generic K-means clustering, 264
GIC classification, 162
GINI impurity, 61
Global loss structure, examination, 32
Golden standard algorithms, 136–139
Goldman Sachs, automated products usage, 5
Goodness-of-fit tests, usage, 7
Google ranking, 243–244
Gradient descent, 26
Granular data, extraction, 242
Graph-based non-parametric approach, 83
Graph-based SSL models, 102–104
Graph cuts, 268

Hard classification, avoidance, 72
Healthcare

eigenfactors, year-to-year changes (distribution), 167f
OOS cumulative performance, 173f

Heat kernel, 99
Hidden layer

inclusion, 35f
presence, 20
size, identification, 29
weights/biases, 26

Hierarchical cluster, 267
Hierarchical model, tree structure (correspondence),

162
Hierarchical PCA (HPCA), 155–175

algorithm, 156f
analysis, results, 163t

High Book-to-Value Minus Low Book-to-Value (HML)
portfolio returns, 125

High-dimensional data
example, 109
projection, 131
structure, 266

High-dimensional Euclidean space, data point mapping,
224–225

High Minus Low, Fama-French factor, 111
High-precision mean, 223t
Histogram, plotting, 182
Human behavior (modeling), semi-supervised learning

(usage), 79
Human decision making

process, approximation, 81
replication, SSL (usage), 81

Human-driven competition, outflows (problems), 4
Hyperbolic tangent [tanh(x)] activation function, 21,

24–25
derivative, 24f
inclusion (IBM), 39f

inclusion (Pfizer), 38f
inclusion (Rite Aid), 40f

Hypothesis, formation, 7–8

IBM, neural network strategy
linear activation function, inclusion, 39f
tanh activation function, inclusion, 39f

Idiosyncratic properties, 120
Idiosyncratic risks, 238, 239

impact, 242
Illiquid instruments

clustering, 276–277
intrinsic values, location, 277

Image, black-and-white image (Mona Lisa)
blackout images, absolute differences, 217f
blackout levels, eigenvalues (relative changes), 218f
blackout regimes, eigenvalue changes, 216f
columns, correlations (histogram), 192f
correlation

histogram, 191, 192f
mass, 191f

detrending/descaling, 191, 192f
eigenvalue cut-off value, Marčenko-Pastur

(application), 192, 193f
eigenvalues, distribution, 215f, 216f
original, 113f, 215f

absolute differences, 217f
sequential eigenvalues, differences, 218f

random data replacement, eigenvalues (relative
changes), 219f

reconstruction
eigenvalues, usage, 193f
singular values, usage, 115f–118f

scree plot, 115f
SVD reconstruction, 194
unnormalized image, Marčenko-Pastur cut-off, 193f
whiteout image, sequential eigenvalues (differences),

218f
whiteout regimes, eigenvalues, 217f

Image features (identification), neural networks (usage),
34–35

Imperfect data, advantages, 210–211
Implied volatility

differentials, usage, 234
surface, 232

shift, 238–239
Imputation, Data Science aim, 212
Incentive to refinance, 17
Independent identically-distributed (i.i.d.) eigenvalues,

distribution, 210
Independent identically-distributed (i.i.d.) entries, usage,

183
Independent identically-distributed (i.i.d.) Gaussians,

entries, 222
Independent identically-distributed (i.i.d.) noise, signal

identification, 210
Independent identically-distributed (i.i.d.) processes,

eigenvalue cut-off (determination), 194–202
Index replication, neural network application, 17
Indicator functions, 21
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Individual investors, non-trivial risks, 6
Industrials

eigenfactors, year-to-year changes (distribution), 168f
OOS cumulative performance, 173f

Inferences, impact, 109
Information Gain (IG)

approaches, 61
calculation, 62, 64
deployment, 62

Information, goals, 6
Input

data, algorithmic accommodation, 16
layer, 20
SVM classification, 71–72
variables, selection, 45

Input-output pairs, training data set (loss function
minimization), 27

In-sample RMSE (ABT), 59f
Instrumented PCA, 152–153
Inter-cluster portfolios, 282
Internet-of-Things (IoT), 212
Interperiod transitions, 9
Interpolative decompositions (IDs), creation,

138–139
Intra-block correlations, cleaning, 162
Intra-cluster portfolios, 279–282
Intraday 30-second S&P returns, errors (scree

plot), 306f
Intraday data, correlation (absence), 189
Intraday downward volatility, NYSE:SPY volume

(rolling 250-day correlations), 122f
Intraday returns, errors (histogram), 205f
Intraday trading, asynchronous characteristics, 189
Intra-industry regressions, adjusted R2, 164
Invariant matrix norm, 270
Investment strategies, out-of-sample performance

(annualized mean returns/Sharpe ratios), 291t,
305f

Isotropy, 264
Iterative Dichotomiser 3 (ID3), 61
Iterative EM framework, development, 87
Iterative K-NN, 213
Iterative Local-Least Squares, 213
IV differentials, usage, 234

Japan Credit Rating Agency, 245
Johnson-Lindenstrauss Lemma, 224–227
J.P. Morgan, Big Data science usage, 5

Karhunen-Loève (KL) representation, 146, 162
Karhunen-Loève Transform (KLT), 190, 204–210

Marčenko-Pastur cut-off, 214
prediction, correlations (histogram), 205f
Python implementation, 227
reconstruction, 205f–206f

Keras, usage, 45–46
Kernel graphs, non-negative even kernel function

(usage), 273
K-fold cross-validation, 85

K-means
clustering, 279f, 296f–300f

application, 271
library, usage, 311
Lloyd’s algorithm, 264–265
monthly out-of-sample K-means, 292f–295f,

306f–311f
objective function, 264
running, 265

K Nearest Neighbor (K-NN), 51, 57–60, 213
algorithm, 97
comparison, 73
dimensionality, curse, 60
example, 58
graph, 272–273
historical time series patterns, 59
nonparametric power, 58
out-of-sample performance (ABT), 60f
usage, 104f
weighted K-NN (WKNN), 58

K principal components, factor assumptions, 148
Kurtosis, 223t

Labeled data (model’s dictionary), 81–82
data points, assumption, 86
impact, 99

Label spreading model, confusion matrix
(calculation/iteration), 105

Lanczos algorithms, 136
Laplacian approximations, algorithms, 273–276
Laplacian eigenmaps, 271
Laplacian matrix, 224
Laplacians

computation, 271–273
usage, 270–271

LASSO. See Least Absolute Shrinkage and Selection
Operator

Law of Large Numbers, 92, 110
Layers

components, 33
connection, initial weights (impact), 34

Lazy algorithm, 57
Leaf (split node/terminal node), 61
Learning rate, 40
Least Absolute Shrinkage and Selection Operator

(LASSO), 51–57
linear regression/ridge regression performance,

contrast, 55
logistic LASSO, usage, 52–53
overfitting penalty, usage, 50
regularization specification, differences, 52

Least Squares (LS), 213
Leave-One-Out-Cross-Validation (LOOCV), 85
Lehman Brothers, bankruptcy, 241
Level-1 model, 162
Levered portfolio, 304–305
Levin, Bess, 4
Limit order, processing, 2–3
Linear activation function, 21, 25–27

derivative, 25f
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Linear activation function (Continued)
inclusion (IBM), 39f
inclusion (Pfizer), 38f

Linear regression, 16, 17
LASSO, performance contrast, 55
shortcomings, 51
usage, 50

Lit equity exchanges, growth, 3
Lloyd’s algorithm, 264–265
Loan

default scenarios, outcomes (computations),
244–245

ratings, 262
Local-Least Squares, 213
Locally constant estimate, labeled/unlabeled data

reliance, 99
Logistic activation function. See Sigmoid activation

function
Logistic regression, 68
Long-term investors, daily monitoring

(changes), 5–6
Long-term transition probability matrix, 250
LOOCV. See Leave-One-Out-Cross-Validation
Loss function, 27

convergence, iterations (increase), 41f–44f
decrease, regularization parameter (impact), 31
derivative, 26
geometric representation, 31–32
optimization, 50

Loss Given Default (LGD), 253
Loss surface, 31–32
Low-dimensional data, high-dimensional data

projection, 131

Machine learning (ML)
Big Data, usage, 31–32
drawback, 27–28
neural networks

contrast, 16
importance, 16

scientists, goals, 6–7
Machine mode, 19
Machine techniques, nonlinear profitability, 6
Manifold regularization, 98
Marčenko-Pastur cut-off, 195–196f, 198f, 201f, 202, 214

average, 239
coding, 227

Marčenko-Pastur distribution, 188f, 195f–197f
eigenvalues, appearance, 187f

Marčenko-Pastur eigenvalue, 201f
distribution support, 186

Marčenko-Pastur elbow, 192f
Marčenko-Pastur function, 183
Marčenko-Pastur model, application, 190
Marčenko-Pastur theorem, 183–185

usage, 115
Marčenko-Pastur threshold, usage, 238f
Market

market-wide news, impact, 95
news, usage, 95–96

portfolio
Fama-French factor, 110
in-sample explanatory power, 151

return, excess, 125
Market making approach, usage, 8
Markov chains, 244–254

optimization, Perron-Frobenius Theorem (usage),
243–257

transitions, 243
probability matrices, 253

usage, 250
Markovian transition probability matrices, 251
Markov-Perron-Frobenius prediction, 254
Markov switching model, 73
Matrix

decomposition, 114
factorization, 132–134
multiplication, 243–244

result, 138, 226
norms, 135
perturbation theory, 266

Maximum a posteriori (MAP) estimator, 28
Maximum likelihood estimation (MLE), 263
Mean-reverting diffusion, 234
Mean-reverting Ornstein-Uhlenbeck process, 234
Mean-squared error (MSE), 27

minimization function, 30
Mean-variance tradeoff, optimization, 53
Mean-zero random variable, usage, 222
Medium Data, 110
Minima, local structure (determination), 32
Missing data

categories, 212
content, impact, 50
imputation, 211
optimization, 9

Missing eigenvalues, 221–222
Missing values

identification/replacement, 224–227
imputation, 213
reconstruction, 222

Mixing time, 253
Model’s dictionary, 81
Model selection, dropout (usage), 29–30
Model sparsity (providing), rectifier functions

(usage), 23
Model validation, 7
Momentum approach, switch, 8
Mona Lisa. See Image
Monte-Carlo technique, usage, 8
Monthly out-of-sample K-means, 292f–295f, 306f–311f
Morningstar Credit Ratings, 245

distribution, prediction, 255f–257f
empirical credit rating transition probabilities, raw

eigenvalues, 254f
normalized empirical distribution, 252f
steady-state ratings distribution, 252f

Morningstar realized transition probabilities, 248t
Mortgage rate, market rate (difference), 17
Moving average (MA) crossovers, usage, 34
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M-sided dice, usage, 88–89
Multinomial distribution, defining, 89

Naïve Bayes approach, impact, 87
Naïve Bayes assumption, usage, 89
Naïve Bayes generative model, usage, 88
Naïve equally weighted portfolio, comparison, 155
Natural Language Processing (NLP), 14
Neural Network (NN)

architecture, 19–21
categories, 48
coding, 32–33
complexity, addition, 31
construction, 27–29

methodology, 17–19
Python, usage, 45–46

continuous number/discrete classification, 18
conversion, 25
creation, 32–33
depth, identification, 29
design, 15
directional forecasts, 34
hidden layers

presence, 20
size, identification, 29

input/output layers, 17–19
layers, 17
limitations, 35–36
machine learning, contrast, 16
methodologies, benefits, 16–17
model, comparison, 73
modeling, contrast, 16
next day prediction (calculation), training data rolling

window (usage), 34
performance

hidden layer, inclusion, 35f
measurement, 27

prediction, ability (comparison), 33–40
programming, ease, 45
regularization levels, identification, 29
sample, 18f
strategy (IBM), 39f
strategy (Pfizer), 37f–38f
strategy (Rite Aid), 39f
three-layer depth, 19
training, 27–29
usage, 16
validation, 29

Neurons, 18–19
presence, 20

News
analyst rating pairings (optimal model selection),

RMSE scores (average/standard deviation), 93t
announcements, mean analyst rating (raw numbers),

91f
data matrix, output (matching), 92
market-wide news, impact, 95
vectorization, 92

News articles
analyst readings/interpretations, 79–80

cleaning, appearance, 91, 92
words, SSL analysis, 94–95

New York Stock Exchange (NYSE)
Abbott Laboratories (ABT), 58

in-sample RMSE, 59f
neural network strategy (IBM), 39f
neural network strategy (Pfizer), 37f–38f
neural network strategy (Rite Aid), 40f
neural network strategy (SPY), 37f
order flow data, ownership (legal battle), 4

Nodes. See Processing
Noise

Gaussian noise (white noise), 182
independent identically-distributed (i.i.d.) noise, signal

identification, 210
model, 100
presence, 105
random data, equivalence, 182
separation, 188–189
signal, contrast, 180

Non-convex clusters, challenge, 266
Non-corporate securities, publicly traded shares (size

contrast), 124
Non-independent identically-distributed (non-i.i.d.)

heteroscedastic processes, eigenvalues (cut-off
determination), 202–204

Nonlinear factorization, 153–154
Nonlinear profitability, 6
Nonlinear relationships, 17
Nonlinear transformation

hidden layer, 17
occurrence, 20–21

Nonlinear univariate transformations, 20–21
Non-negative irreducible n x n matrix, eigenvalue, 244
Non-parametric regressions, usage, 234
Normalized S&P500 returns

correlation coefficients, eigenvalues
(Marcenko-Pastur/empirical distribution), 208f

covariances, eigenvalues (Marčenko-Pastur/empirical
distribution), 195f–201f

Null category, construction, 100
Numerical Python (NumPy)

add-on library, installation, 11–12
importing, 12–13

Objects, fast segmentation, 21
Off-diagnoal matrix elements, Gaussian distribution,

223
Olivetti faces, 213
Olivetti training set, 213
OOS cumulative performance, 170f–175f
Optimism bias, documentation, 94
Optimization function, reduction, 73
Option pricing, UL application, 231–242
Option skew, put-call volatility spread (combination),

236
Ordinary Least Squares (OLS), 51

estimation, 53
penalized OLS regressions, sensitivity, 55
regression, 80–81
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Ordinary Least Squares (OLS) (Continued)
running, 148
supervised OLS framework, usage, 54

Ornstein-Uhlenbeck process, 234
Orthogonal factors, delivery, 111
Orthonormal vectors, 132
Out-of-sample

data, problems, 30–31
entries, estimation, 101
performance

comparison, 284
generative models usage, 94–96
obtaining, 59

performance (ABT), 60f
predictions, 95f, 100f, 232

making, Keras (usage), 46
stock news article/market news basis, 101f

realized out-of-sample returns, comparison,
33–40

results, 282
stocks

predictions (results), ridge regression/K-nearest
neighbors (usage), 103f, 104f

stocks (production), vanilla elastic net algorithm usage
(SSL ratings forecast), 97f

t+1 prediction, 56f–57f
verification, creation, 84
working, failure, 29

Out-of-the-box SSL algorithms, access, 105
Output

classification output, 50
classification, SVM (usage), 72
forecast layer, 20
layer, neuron number (factors), 18
output layer, 17
states, 19
target outputs, defining, 33

Overfitting, 27–31
avoidance, regularization penalty (addition), 28
penalty, usage, 50
prevention, 29

training (regulaization), weight decay (usage), 40
problem, 50
reduction, 29

Page, Larry, 243
Parallel analysis, 186
Parametric regressions, usage, 234
Partial least squares (PLS) regression trees, 16
Partially-missing data, impact, 50
Passive ID technology, development, 1
Paywall-sequestered information resources, access, 82
Penalized least square regressions, 51
Penalized OLS regressions, sensitivity, 55
Penalty multiplier, setting, 40
Pension funds, shortfalls, 6
Performance valuation, cross-validation (usage), 84–85
Perron-Frobenius eigenvalue, 244
Perron-Frobenius eigenvector, 244
Perron-Frobenius Theorem, usage, 243–257

Perron, Oskar, 244
Pfizer (PFE), neural network strategy, 37f

linear activation function, inclusion, 38f
tanh activation function, inclusion, 38f

Plain equally weighted portfolios, usage, 156f–159f
POET. See Principal Orthogonal ComplEment

Thresholding
Point to line distance, minimization, 133
Poisson process, 243–244
Polarity dictionary, construction, 83
Polynomial series, 154
Portfolio. See Market

allocation, stock watching (covariance-based model
usage), 119

composition, returns (optimal factors determination),
145

eigenportfolios, 145–147
factorized portfolios, usage, 129
holdings, investor sales, 120, 122
levered portfolio, 304–305
management

applications, 190–191
LASSO, usage, 52–53

mean-variance tradeoff, optimization, 53
rebalancing, 120
weights, singular vectors (usage), 126–130

Power algorithm, usage, 136–138
Prediction

goals, 6
output (generation), neural network (usage), 26

Predictive-Mean Matching (PMM), 213
Predictive rule (stabilization), regularization penalty

(addition), 28
Predictor

inputs, input layer, 17
interaction, hidden layer, 17

Pre-hedging, 262
Principal component analysis (PCA), 109, 111

Big Data tool, 131–135
calculations, performance (optimization), 138
computation, 136–139
computational efficiency, measurement, 136
disadvantages, 176
eigenvalues, normalization, 114
estimation, power algorithm (usage), 136–138
factorization, 146

delivery, 143–145
hierarchical PCA (HPCA), 155–175
instrumented PCA, 152–153
numerical data usage, 112
objective, 134
performing, 159, 236
projection, 154
Python, usage, 140
results, 236
risk-premium PCA, 153
SVD, contrast, 135
usage, 190

Principal component regression, 119, 130–131
application, 126, 130
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Principal components, 109, 112
Principal components regression (PCR), 16
Principal Orthogonal ComplEment Thresholding

(POET) Method, 148–152, 186, 276
Probabilities (production), generative model (impact), 88
Probability of Default (PD), 253
Processing

nodes, 112
slowness, 27–28

Process model, 100
Projection length, maximization, 133
Pseudo-labeled data, 87, 90
Put-call volatility spread, option skew (combination),

236
Pythagoras Theorem, distance relationship, 133, 133f
Python

Big Data factor model usage, 177
clustering usage, 311
code, impact, 11f
coding, 9–14
data file opening, 10–14
data input lines, example, 11f
editor, selection, 10f
error dialogue box, 12f
installation, error message, 11
Java/C++/Perl, contrast, 13
library code, usage, 66
neural network construction, 45–46
numpy, add-on library (installation), 11–12
PCA/SVD usage, 140
principal components, usage, 258
program, output, 13f
semi-supervised model usage, 104–105
server, closing, 12
shell, opening, 12
subprocess startup error, 12f
supervised model usage, 74

Quadratic discriminant analysis, 68
Quote price/size, changes, 71

Radial Basis Function (RBF), 72
Radio-Frequency Identification (RFID) devices, usage,

1–2
Random data

noise, equivalence, 182
usage, 181–182

Random decision forests, 51, 61–67
decision tree, contrast, 65f
technique, 64–65

Random forests, 16
methodology (deployment), Python library code

(usage), 66
tightening, 65–66

Random matrix model (RMM), 223
Random Matrix Theory, 136
Random-walk Laplacians, 273, 274
Raw input data, probability distribution (knowledge),

83

Raw unstructured data, analyst processing, 80
Real Estate

eigenfactors, year-to-year changes (distribution),
168f

OOS cumulative performance, 174f
Realized out-of-sample returns

comparison, 33–40
positive value, 34

Reciprocal square root, diagnoal matrix, 274
Rectifier Linear Unit (ReLU) activation function, 21,

22–23
derivative, 23f

Recursive procedure, usage, 26
Referential nearest neighbors (RNNs), 59
Regression

linear regression, 16, 17
logistic regression, 68
mode, 19
OLS estimate, 53
output, continuousness, 50
ridge regression, 50–57

Regularization
accomplishment, 31
levels, identification, 29
parameter, impact, 31
penalty, addition, 28

Regularized empirical risk functional, 98–99
Rental/Leasing, industry eigenportfolios, 160f
Repeated k-fold cross validation, 85
Reserved data, out-of-sample prediction, 87
Residual loss function, 27
Residuals

correlation
absence, 146
histogram, 206f

examination, 7
Return. See Financial returns; Standard & Poor’s 500

returns
correlation matrix, 266
covariance, SVD (usage), 149–150
eigenvectors, Fama-French factors (correlation),

125f
excess return, defining, 53
increase, clustering policy (usage), 304
long-only/long-short predictions, ability, 33
prediction, factors (usage), 147

Ridge regressions, 51–57
inclusion, 94f, 98f–101f
LASSO, performance contrast, 55
model, cross-validation RMSE scores, 93, 94f
overfitting penalty, usage, 50
penalization, 54
regularization specification, differences, 52
usage, 52–53, 103f

Risk capital requirements, reduction, 253
Risk-neutral skewness, 232, 236–237
Risk-premium PCA (RP-PCA), 153
RMT

approach, 176
usage, 146, 162
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Root Mean Squared Error (RMSE), 58
ABT price prediction, 59f
scores, average/standard deviation, 93t

Ross-like decomposition, 110
Rotation estimation, 84–85
Rounding procedure, 271
Rule engine, 72
Russell 3000 stocks

eigenvector, issues correlation, 127f
ETFs, eigenvector correlation, 124t

Schroedinger equations, 271
Scikit-learn confusion matrix, usage, 105
Scree plot, 114, 115f

eigenvalues, delineation, 196f–199f, 202f
elbow cut-off, 186, 195
elbow selection, 115
intraday 30-second S&P returns, errors (scree plot),

206f
Mona Lisa scree plot, 191, 192f
normalized S&P500 returns (correlation coefficients),

eigenvalues (Marčenko-Pastur/empirical
distribution), 208f

Scree test, development, 186
Securities

purchase/sale, order sizes, 6
returns

factorized covariance matrix, 111t
traditional covariance matrix, 111t

Self-learning algorithms, evolution, 86
Semi-affine transformation rule, definition, 20
Semi-parametric model, determination, 154
Semi-supervised estimation, usage, 89–93
Semi-supervised learning (SSL), 49, 86f

algorithm, building, 80
discriminative models, 98–101
enhancements, 98–104
graph-based models, 102–104
models, 98–104

overfitting, impact, 84
pitfalls, 96–97
ratings forecast, usage, 97f
raw input data, probability distribution (knowledge),

83
ridge regression, inclusion, 94f, 98f–100f
solutions, categories, 83
usage, 79

Semi-supervised models, Python (usage), 104–105
Semi-supervised neural networks, 48
Semi-supervised SVMs (S3VMs), partially labeled data

reliance, 98
Sequential K-NN, 213
Sequential Local-Least Squares, 213
Sequential Random Forest Tree miss, 213
Sequential Regression Multivariate Imputation LS, 213
Sequential Regression Trees Tree MICE, 213
Sharpe ratio (SR), 291t, 305f

excess Sharpe ratio, distribution, 129f
usage, 53

Short-term risk events, VAR detection problems, 109

Sigmoid activation function (logistic activation function),
21–22, 26

derivative, 22f
Sigmoidal activation function, 21
Signal

absorption, 189
identification, 210
identifying signal, value, 209
noise, contrast, 180

Similarity graph adjacency matrix, 273
Singular value decomposition (SVD), 109, 111,

114–119, 213
Big Data tool, 131–135
calculations, performance (optimization), 138
computation, 136–139
computational efficiency, measurement, 136
disadvantages, 176
estimation, power algorithm (usage), 136–138
factorization delivery, 143–145
fast SVD, 136, 138–139
matrix factorization, 132–134
numerical data usage, 112
PCA, contrast, 135
performing, 164–165
Python, usage, 140
running, 148, 149
usage, 120

Singular values, 109
Singular vectors

best fit lines, 133–134
negative only components, performance (average),

131f
positive/negative components, performance (average),

132f
positive only components, performance (average), 130f
usage, 126–130

Size portfolio (small minus big stock returns),
Fama-French factor, 111

Skewness, 223t
Sklearn, 74
Small Data, 109
Small minus big stock returns, Fama-French factor, 111
Small Minus Large (SML) portfolio returns, 125
Smoothness assumption, 83
Soft clusters, 267
Sparsity (induction), LASSO L1-norm (usage), 28
Specialists

data specialists, popularity (increase), 4–5
role, 3

Spectral cluster, defining, 267–268
Spectral clustering, 265–274

normalized spectral clustering, 274–275
stochastic block models, usage, 275–276
unnormalized spectral clustering, 274, 275
usage, 292f–295f, 300f–311f

Spectral cut-off method, usage, 115
Spectral decomposition, 137

usage, 113–114
Spiked covariance models, covariance matrices

(involvement), 189
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Spiked eigenvalues, 196f–202f
log scale, 187f

Spike model, 186–190
application, 190

Spike modeling, 189
Spike signal, 183
Split nodes, 61
SPX

computation, 232
implied volatility surface, call options

(usage), 233f
Square symmetric matrix, power method (application),

137
Stacking technique, usage, 65–66
Standard and Poor’s 500 (S&P 500)

constituents
cumulative error, computation, 71f
cumulative performance paths, 69f

correlation matrix, eigenvalues, 220f
cumulative end-of-day returns, distribution, 70f
data forecasting (ABT), 60f
first principal components, daily average return

(contrast), 152f
stocks

30-second returns (prediction), SVM (usage), 70f
out-of-sample rolling window performance, SVM

(usage), 68–69
Standard and Poor’s 500 (S&P 500) ETF (SPY)

data, neural network construction, 32–33
loss function convergence, iterations (increase),

41f–44f
one-day ahead SPY return NN prediction, weights,

36f
returns, 34

predictability, 36f, 37f
Standard and Poor’s 500 (S&P 500) returns

30-second normalized S&P returns (errors),
eigenvalues (Marčenko-Pastur/empirical
distribution), 207f

correlation matrix, clustering, 265f
correlations, histogram, 202, 203f–204f
covariance

eigenvalues, distribution (log scale), 209f
eigenvalues, Marčenko-Pastur distribution, 209f,

210f
SVD, usage, 149–150

intraday 30-second S&P returns, errors (scree plot),
206f

normalized S&P500 returns (covariances), eigenvalues
(Marčenko-Pastur/empirical distribution),
195f–201f

Standard and Poor’s Ratings Services, 245
Stat-arb cluster trading, 270–271
Statistics, searches (outcome), 6
Steady-state end states, 250
Steady-state probability

distribution, 250
estimation, 250

Stochastic block models, usage, 275–276
Stochastic, definition, 249
Stochastic discount factor (SDF), estimation, 15–16

Stochastic Gradient Descent (SGD) methodology, usage,
32

Stochastic modeling, 9
Big Data, application, 243
UL, usage, 231

Stochastic volatility, 234
Stocks

eigenvalues, ranking, 239, 240t
EV statistics, estimation, 241t
portfolios, positive factors, 123t
production, vanilla elastic net algorithm usage (SSL

ratings forecast), 97f
rating methodology, SSL replication, 83
returns

components, predictive power (assessment), 237
proportions, SVD (usage), 121t–122t

Stock-specific news
development, generative SSL (usage), 96f
usage, out-of-sample prediction, 95

Stock volume ratio, option, 232
Stratification, 85
Streaming data

formal treatment, 225
missing values, identification/replacement, 224–227

Structured data, 49
Sub-clusters, location, 268
Supervised learning (SL), 48

model, comparison, 73
Supervised models, Python (usage), 74
Supervised neural networks, 48
Supervised OLS framework, usage, 54
Supervised regularization, usage, 54
Support Vector Machines (SVMs), 51, 67–73

classification, 69–72
discriminative models, usage, 98
prediction, ability, 69
separation model, 72
theory, 68

Support Vector Regression (SVR), 213
Survivorship bias, induction, 119
Symmetric kernel, 99
Symmetric matrix, power method (application), 137
Synapses, 18–19

bipartite graph, 18–19
Systematic risk

display, 239
estimation, 238–242
proportion, increase, 242

Tanh(x) activation function. See Hyperbolic tangent
activation function

Target outputs, defining, 33
Technical analysis, 57
Technology

eigenfactors, year-to-year changes (distribution), 169f
OOS cumulative performance, 174f

Terminal node, 61
Text processing, generative models (usage), 88–93
Three-fold cross-validation, example, 85f
Three-pass model, 153
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Thresholding procedure, application, 149
Tickers, set (reversal), 95–96
Time-skew, 239
Tracy-Widom distribution, 221–224

Wigner distributions, relationship, 221f
Traditional data modeling, data science (data

interpretation differences), 7f
Traditional forecasting, contrast, 16
Training data

rolling window, usage, 34
rule engine, 72
split, 29
supervised model, fitting, 101

Training data set
estimation, mean-squared error, 27
loss function, minimization, 27

Train_test_split functionality, 74
Transformation rule. See Semi-affine transformation rule
Transition probability matrix, 245

convergence, 251f
Transmission Control Protocol/Internet Protocol

(TCP/IP) protocol, usage, 211, 225
Tree structure, hierarchical model (correspondence),

162
Trend following, switch, 8
Two Sigma, deployment amount, 3–4

Underlying, 232
Unitary vectors, 135
Unit vectors (orthonormal vectors), 132
Univariate activation function, 20
Unlabeled data

components/occurrence, 81–82
impact, 99
structure, usage, 97
usage, 87

Unnormalized Laplacian, computation, 273
Unnormalized spectral clustering, 274
Unstructured data, 8, 49
Unsupervised Big Data approach, impact, 8
Unsupervised Learning (UL), 49

usage, 108, 112, 231
Unsupervised neural networks, 48
Untrained data, classification engine (construction), 72
Unwanted eigenvalues (cut-off eigenvalues),

replacement, 116
U.S. Daily Treasury rates, prediction, 54
U.S. equities, price direction (prediction), 65
User Datagram Protocol (UDP) protocol, usage, 211,

225
U.S. Federal Government downgrades, 241

U.S. Treasuries
coefficients, determination, 57t
daily changes, correlations, 55
rates, out-of-sample t+1 prediction, 56f–57f

Utilities
eigenfactors, year-to-year changes (distribution), 169f
OOS cumulative performance, 175f

Validation, 29
Value at risk (VAR), short-term risk event detection

problems, 109
Vanilla elastic net algorithm, usage, 97f
Vanishing gradient problem, 22
Variables, complex interactions, 17
Vectorization, 92
Virtual reality video games, 3-D simulation

(complexity), 5
Vocabulary matrix, usage, 88
Volatility

daily volatility, average, 241
implied volatility surface, shift, 238–239
local volatility parameterization, 234
portfolio holdings sale, 120, 122
put-call volatility spread, option skew (combination),

236
surface, 232

structure, changes, 235
variation, 236

Volume traded, average, 241
Voronoi iteration/relaxation, 264

Wavelets, 154
Web content, Google ranking, 243–244
Weight decay, usage, 40
Weighted input data, nonlinear univariate

transformations, 20–21
Weighted K-NN (WKNN), 58
Weight matrix, 20
Weights (determination), supervised OLS framework

(usage), 54
Whitening, 117
White noise, 182
Whiteout regimes, eigenvalues, 217f
Wigner distributions, Tracy-Widom distributions

(relationship), 221f
Wigner, Eugene, 181
Wigner matrices, Central Limit Theorem (usage),

181–182
Wigner Matrix, 181
Wigner Semicircle Law, 181–182, 181f

generalized version, 183
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