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Preface

As datasets have exploded in size with the introduction of cheap cloud storage and processing data 
in near real time has become an industry standard, many organizations have turned to the lakehouse 
architecture, which combines the fast BI speeds of a traditional data warehouse with the scalable 
ETL processing of big data in the cloud. The Databricks Data Intelligence Platform – built upon 
several open source technologies, including Apache Spark, Delta Lake, MLflow, and Unity Catalog 
– eliminates friction points and accelerates the design and deployment of modern data applications 
built for the lakehouse.

In this book, you’ll start with an overview of the Delta Lake format, cover core concepts of the 
Databricks Data Intelligence Platform, and master building data pipelines using the Delta Live Tables 
framework. We’ll dive into applying data transformations, how to implement the Databricks medallion 
architecture, and how to continuously monitor the quality of data landing in your lakehouse. You’ll learn 
how to react to incoming data using the Databricks Auto Loader feature and automate real-time data 
processing using Databricks workflows. You’ll learn how to use CI/CD tools such as Terraform and 
Databricks Asset Bundles (DABs) to deploy data pipeline changes automatically across deployment 
environments, as well as monitor, control, and optimize cloud costs along the way. By the end of 
this book, you will have mastered building a production-ready, modern data application using the 
Databricks Data Intelligence Platform.

With Databricks recently named a Leader in the 2024 Gartner Magic Quadrant for Data Science and 
Machine Learning Platforms, the demand for mastering a skillset in the Databricks Data Intelligence 
Platform is only expected to grow in the coming years.

Who this book is for
This book is for data engineers, data scientists, and data stewards tasked with enterprise data processing 
for their organizations. This book will simplify learning advanced data engineering techniques on 
Databricks, making implementing a cutting-edge lakehouse accessible to individuals with varying 
technical expertise. However, beginner-level knowledge of Apache Spark and Python is needed to 
make the most out of the code examples in this book.
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What this book covers
Chapter 1, An Introduction to Delta Live Tables, discusses building near-real-time data pipelines using 
the Delta Live Tables framework. It covers the fundamentals of pipeline design as well as the core 
concepts of the Delta Lake format. The chapter concludes with a simple example of building a Delta 
Live Table pipeline from start to finish.

Chapter 2, Applying Data Transformations Using Delta Live Tables, explores data transformations using 
Delta Live Tables, guiding you through the process of cleaning, refining, and enriching data to meet 
specific business requirements. You will learn how to use Delta Live Tables to ingest data from a variety 
of input sources, register datasets in Unity Catalog, and effectively apply changes to downstream tables.

Chapter 3, Managing Data Quality Using Delta Live Tables, introduces several techniques for enforcing 
data quality requirements on newly arriving data. You will learn how to define data quality constraints 
using Expectations in the Delta Live Tables framework, as well as monitor the data quality of a pipeline 
in near real time.

Chapter 4, Scaling DLT Pipelines, explains how to scale a Delta Live Tables (DLT) pipeline to handle 
the unpredictable demands of a typical production environment. You will take a deep dive into 
configuring pipeline settings using the DLT UI and Databricks Pipeline REST API. You will also gain 
a better understanding of the daily DLT maintenance tasks that are run in the background and how 
to optimize table layouts to improve performance.

Chapter 5, Mastering Data Governance in the Lakehouse with Unity Catalog, provides a comprehensive 
guide to enhancing data governance and compliance of your lakehouse using Unity Catalog. You will 
learn how to enable Unity Catalog on a Databricks workspace, enable data discovery using metadata 
tags, and implement fine-grained row and column-level access control of datasets.

Chapter 6, Managing Data Locations in Unity Catalog, explores how to effectively manage storage 
locations using Unity Catalog. You will learn how to govern data access across various roles and 
departments within an organization while ensuring security and auditability with the Databricks 
Data Intelligence Platform.

Chapter 7, Viewing Data Lineage using Unity Catalog, discusses tracing data origins, visualizing data 
transformations, and identifying upstream and downstream dependencies by tracing data lineage in 
Unity Catalog. By the end of the chapter, You will be equipped with the skills needed to validate that 
data is coming from trusted sources.

Chapter 8, Deploying, Maintaining, and Administrating DLT Pipelines Using Terraform, covers deploying 
DLT pipelines using the Databricks Terraform provider. You will learn how to set up a local development 
environment and automate a continuous build and deployment pipeline, along with best practices 
and future considerations.
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Chapter 9, Leveraging Databricks Asset Bundles to Streamline Data Pipeline Deployment, explores 
how DABs can be used to streamline the deployment of data analytics projects and improve cross-
team collaboration. You will gain an understanding of the practical use of DABs through several 
hands-on examples.

Chapter 10, Monitoring Data Pipelines in Production, delves into the crucial task of monitoring data 
pipelines in Databricks. You will learn various mechanisms for tracking pipeline health, performance, 
and data quality within the Databricks Data Intelligence Platform.

To get the most out of this book
While not a mandatory requirement, to get the most out of this book, it’s recommended that you have 
beginner-level knowledge of Python and Apache Spark, and at least some knowledge of navigating 
around the Databricks Data Intelligence Platform. It’s also recommended to have the following 
dependencies installed locally in order to follow along with the hands-on exercises and code examples 
throughout the book:

Software/hardware covered in the book Operating system requirements
Python 3.6+

Windows, macOS, or Linux
Databricks CLI 0.205+

Furthermore, it’s recommended that you have a Databricks account and workspace to log in, import 
notebooks, create clusters, and create new data pipelines. If you do not have a Databricks account, 
you can sign up for a free trial on the Databricks website https://www.databricks.com/
try-databricks.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-
Lakehouse. If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://www.databricks.com/try-databricks
https://www.databricks.com/try-databricks
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The result 
of the data generator notebook should be three tables in total: youtube_channels, youtube_
channel_artists, and combined_table.”

A block of code is set as follows:

@dlt.table(
    name="random_trip_data_raw",
    comment="The raw taxi trip data ingested from a landing zone.",
    table_properties={
        "quality": "bronze"
    }
)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

@dlt.table(
    name="random_trip_data_raw",
    comment="The raw taxi trip data ingested from a landing zone.",
    table_properties={
        "quality": "bronze",
        "pipelines.autoOptimize.managed": "false"
    }
)

Any command-line input or output is written as follows:

$ databricks bundle validate

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in 
menus or dialog boxes appear in bold. Here is an example: “Click the Run all button at the top right of 
the Databricks workspace to execute all the notebook cells, verifying that all cells execute successfully.”

Tips or important notes
Appear like this.
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Building Modern Data Applications Using Databricks Lakehouse, we’d love to hear 
your thoughts! Please click here to go straight to the Amazon review page for this book and share 
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07323-6
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Part 1: 
Near-Real-Time Data Pipelines 

for the Lakehouse

In this first part of the book, we’ll introduce the core concepts of the Delta Live Tables (DLT) 
framework. We’ll cover how to ingest data from a variety of input sources and apply the latest changes 
to downstream tables. We’ll also explore how to enforce requirements on incoming data so that your 
data teams can be alerted of potential data quality issues that might contaminate your lakehouse.

This part contains the following chapters:

•	 Chapter 1, An Introduction to Delta Live Tables

•	 Chapter 2, Applying Data Transformations Using Delta Live Tables

•	 Chapter 3, Managing Data Quality Using Delta Live Tables

•	 Chapter 4, Scaling DLT Pipelines





1
An Introduction to  

Delta Live Tables

In this chapter, we will examine how the data industry has evolved over the last several decades. We’ll 
also look at why real-time data processing has significant ties to how a business can react to the latest 
signals in data. We’ll address why trying to build your own streaming solution from scratch may not 
be sustainable, and why the maintenance does not easily scale over time. By the end of the chapter, 
you should completely understand the types of problems the Delta Live Tables (DLT) framework 
solves and the value the framework brings to data engineering teams.

In this chapter, we’re going to cover the following main topics:

•	 The emergence of the lakehouse

•	 The importance of real-time data in the lakehouse

•	 The maintenance predicament of a streaming application

•	 What is the Delta Live Tables framework?

•	 How are Delta Live Tables related to Delta Lake?

•	 An introduction to Delta Live Tables concepts

•	 A quick Delta Lake primer

•	 A hands-on example – creating your first Delta Live Tables pipeline
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Technical requirements
It’s recommended to have access to a Databricks premium workspace to follow along with the code 
examples at the end of the chapter. It’s also recommended to have Databricks workspace permissions 
to create an all-purpose cluster and a DLT pipeline using a cluster policy. Users will create and attach 
a notebook to a cluster and execute the notebook cells. All code samples can be downloaded from 
this chapter’s GitHub repository, located at https://github.com/PacktPublishing/
Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/
main/chapter01. This chapter will create and run a new DLT pipeline using the Core product 
edition. As a result, the pipeline is estimated to consume around 5–10 Databricks Units (DBUs).

The emergence of the lakehouse
During the early 1980s, the data warehouse was a great tool for processing structured data. Combined 
with the right indexing methods, data warehouses allowed us to serve business intelligence (BI) 
reports at blazing speeds. However, after the turn of the century, data warehouses could not keep up 
with newer data formats such as JSON, as well as new data modalities such as audio and video. Simply 
put, data warehouses struggled to process semi-structured and unstructured data that most businesses 
used. Additionally, data warehouses struggled to scale to millions or billions of rows, common in the 
new information era of the early 2000s. Overnight, batch data processing jobs soon ran into BI reports 
scheduled to refresh during the early morning business hours.

At the same time, cloud computing became a popular choice among organizations because it provided 
enterprises with an elastic computing capacity that could quickly grow or shrink, based on the current 
computing demand, without having to deal with the upfront costs of provisioning and installing 
additional hardware on-premises.

Modern extract, transform, and load (ETL) processing engines such as Apache Hadoop and Apache 
Spark™ addressed the performance problem of processing big data ETL pipelines, ushering in a new 
concept, a data lake. Conversely, data lakes were terrible for serving BI reports and oftentimes offered 
degrading performance experiences for many concurrent user sessions. Furthermore, data lakes had 
poor data governance. They were prone to sloppy data wrangling patterns, leading to many expensive 
copies of the same datasets that frequently diverged from the source of truth. As a result, these data lakes 
quickly earned the nickname of data swamps. The big data industry needed a change. The lakehouse 
pattern was this change and aimed to combine the best of both worlds – fast BI reports and fast ETL 
processing of structured, semi-structured, and unstructured data in the cloud.

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter01
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter01
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter01
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The Lambda architectural pattern

In the early 2010s, data streaming took a foothold in the data industry, and many enterprises needed 
a way to support both batch ETL processing and append-only streams of data. Furthermore, data 
architectures with many concurrent ETL processes needed to simultaneously read and change the 
underlying data. It was not uncommon for organizations to experience frequent conflicting write 
failures that led to data corruption and even data loss. As a result, in many early data architectures, a 
two-pronged Lambda architecture was built to provide a layer of isolation between these processes.

Figure 1.1 – A Lambda architecture was oftentimes created to support both real-

time streaming workloads and batch processes such as BI reports

Using the Lambda architecture, downstream processes such as BI reports or Machine Learning (ML) 
model training could execute calculations on a snapshot of data, while streaming processes could 
apply near real-time data changes in isolation. However, these Lambda architectures duplicated data to 
support concurrent batch and streaming workloads, leading to inconsistent data changes that needed 
to be reconciled at the end of each business day.

Introducing the medallion architecture

In an effort to clean up data lakes and prevent bad data practices, data lake architects needed a data 
processing pattern that would meet the high demands of modern-day ETL processing. In addition, 
organizations needed a simplified architecture for batch and streaming workloads, easy data rollbacks, 
good data auditing, and strong data isolation, while scaling to process terabytes or even petabytes of 
data daily.
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As a result, a design pattern within the lakehouse emerged, commonly referred to as the medallion 
architecture. This data processing pattern physically isolates data processing and improves data quality 
by applying business-level transformations in successive data hops, also called data layers.

Figure 1.2 – The lakehouse medallion architecture

A typical design pattern for organizing data within a lakehouse (as shown in Figure 1.2) includes three 
distinct data layers – a bronze layer, a silver layer, and finally, a gold layer:

•	 The bronze layer serves as a landing zone for raw, unprocessed data.

•	 Filtered, cleaned, and augmented data with a defined structure and enforced schema will be 
stored in the silver layer.

•	 Lastly, a refined, or gold layer, will deliver pristine, business-level aggregations ready to be 
consumed by downstream BI and ML systems.

Moreover, this simplified data architecture unifies batch and streaming workloads, by storing datasets 
in a big data format that supports concurrent batch and streaming data operations.

The Databricks lakehouse

The Databricks lakehouse combines the processing power of a new high-performance processing 
engine, called the Photon Engine, with the augmentation of Apache Spark. Combined with open 
data formats for data storage, and support for a wide range of data types, including structured, semi-
structured, and unstructured data, the Photon engine can process a wide variety of workloads using a 
single, consistent snapshot of the data in cheap and resilient cloud storage. In addition, the Databricks 
lakehouse simplifies data architecture by unifying batch and streaming processing with a single API 
– the Spark DataFrame API. Lastly, the Databricks lakehouse was built with data governance and 
data security in mind, allowing organizations to centrally define data access patterns and consistently 
apply them across their businesses.
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In this book, we’ll cover three major features that the Databricks lakehouse is anchored in:

•	 The Delta Lake format

•	 The Photon Engine

•	 Unity Catalog

While Delta Lake can be used to process both batch and streaming workloads concurrently, most data 
teams choose to implement their ETL pipelines using a batch execution model, mainly for simplicity’s 
sake. Let’s look at why that might be the case.

The maintenance predicament of a streaming application
Spark Structured Streaming provides near-real-time stream processing with fault tolerance, and 
exactly-once processing guarantees through the use of a DataFrame API that is near-identical to 
batch processing in Spark. As a result of a common DataFrame API, data engineering teams can 
convert existing batch Spark workloads to streaming with minimal effort. However, as the volume 
of data increases and the number of ingestion sources and data pipelines naturally grows over time, 
data engineering teams face the burden of augmenting existing data pipelines to keep up with new 
data transformations or changing business logic. In addition, Spark Streaming comes with additional 
configuration maintenance such as updating checkpoint locations, managing watermarks and triggers, 
and even backfilling tables when a significant data change or data correction occurs. Advanced data 
engineering teams may even be expected to build data validation and system monitoring capabilities, 
adding even more custom pipeline features to maintain. Over time, data pipeline complexity will 
grow, and data engineering teams will spend most of their time maintaining the operation of data 
pipelines in production and less time gleaning insights from their enterprise data. It’s evident that a 
framework is needed that allows data engineers to quickly declare data transformations, manage data 
quality, and rapidly deploy changes to production where they can monitor pipeline operations from 
a UI or other notification systems.

What is the DLT framework?
DLT is a declarative framework that aims to simplify the development and maintenance operations 
of a data pipeline by abstracting away a lot of the boilerplate complexities. For example, rather 
than declaring how to transform, enrich, and validate data, data engineers can declare what 
transformations to apply to newly arriving data. Furthermore, DLT provides support to enforce 
data quality, preventing a data lake from becoming a data swamp. DLT gives data teams the ability 
to choose how to handle poor-quality data, whether that means printing a warning message to the 
system logs, dropping invalid data, or failing a data pipeline run altogether. Lastly, DLT automatically 
handles the mundane data engineering tasks of maintaining optimized data file sizes of the underlying 
tables, as well as cleaning up obsolete data files that are no longer present in the Delta transaction log 
(Optimize and Vacuum operations are covered later in the A quick Delta Lake primer section).  
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DLT aims to ease the maintenance and operational burden on data engineering teams so that they 
can focus their time on uncovering business value from the data stored in their lakehouse, rather than 
spending time managing operational complexities.

How is DLT related to Delta Lake?
The DLT framework relies heavily on the Delta Lake format to incrementally process data at every 
step of the way. For example, streaming tables and materialized views defined in a DLT pipeline are 
backed by a Delta table. Features that make Delta Lake an ideal storage format for a streaming pipeline 
include support for Atomicity, Consistency, Isolation, and Durability (ACID) transactions so that 
concurrent data modifications such as inserts, updates, and deletions can be incrementally applied to 
a streaming table. Plus, Delta Lake features scalable metadata handling, allowing Delta Lake to easily 
scale to petabytes and beyond. If there is incorrect data computation, Delta Lake offers time travel – 
the ability to restore a copy of a table to a previous snapshot. Lastly, Delta Lake inherently tracks audit 
information in each table’s transaction log. Provenance information such as what type of operation 
modified the table, by what cluster, by which user, and at what precise timestamp are all captured 
alongside the data files. Let’s look at how DLT leverages Delta tables to quickly and efficiently define 
data pipelines that can scale over time.

Introducing DLT concepts
The DLT framework automatically manages task orchestration, cluster creation, and exception handling, 
allowing data engineers to focus on defining transformations, data enrichment, and data validation 
logic. Data engineers will define a data pipeline using one or more dataset types. Under the hood, 
the DLT system will determine how to keep these datasets up to date. A data pipeline using the DLT 
framework is made up of the streaming tables, materialized views, and views dataset types, which 
we’ll discuss in detail in the following sections. We’ll also briefly discuss how to visualize the pipeline, 
view its triggering method, and look at the entire pipeline data flow from a bird’s-eye view. We’ll also 
briefly understand the different types of Databricks compute and runtime, and Unity Catalog. Let’s 
go ahead and get started.

Streaming tables

Streaming tables leverage the benefits of Delta Lake and Spark Structured Streaming to incrementally 
process new data as it arrives. This dataset type is useful when data must be ingested, transformed, or 
enriched at a high throughput and low latency. Streaming tables were designed specifically for data 
sources that append new data only and do not include data modification, such as updates or deletes. 
As a result, this type of dataset can scale to large data volumes, since it can incrementally apply data 
transformations as soon as new data arrives and does not need to recompute the entire table history 
during a pipeline update.
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Materialized views

Materialized views leverage Delta Lake to compute the latest changes to a dataset and materialize the 
results in cloud storage. This dataset type is great when the data source includes data modifications 
such as updates and deletions, or a data aggregation must be performed. Under the hood, the DLT 
framework will perform the calculations to recompute the latest data changes to the dataset, using the 
full table’s history. The output of this calculation is stored in cloud storage so that future queries can 
reference the pre-computed results, as opposed to re-performing the full calculations each time the 
table is queried. As a result, this type of dataset will incur additional storage and compute costs each 
time the materialized view is updated. Furthermore, materialized views can be published to Unity 
Catalog, so the results can be queried outside of the DLT data pipeline. This is great when you need 
to share the output of a query across multiple data pipelines.

Views

Views also recompute the latest results of a particular query but do not materialize the results to 
cloud storage, which helps save on storage costs. This dataset type is great when you want to quickly 
check the intermediate result of data transformations in a data pipeline or apply other ad hoc data 
validations. Furthermore, the results of this dataset type cannot be published to Unity Catalog and 
are only available within the context of the data pipeline.

The following table summarizes the differences between the different dataset types in the DLT framework 
and when it’s appropriate to use one dataset type versus the other:

Dataset type When to use it

Streaming table Ingestion workloads, when you need to continuously append 
new data to a target table with high throughput and low latency.

Materialized view Data operations that include data modifications, such as 
updates and deletions, or you need to perform aggregations on 
the full table history.

View When you need to query intermediate data without publishing 
the results to Unity Catalog (e.g., perform data quality checks 
on intermediate transformations)

Table 1.1 – Each dataset type in DLT serves a different purpose
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Pipeline

A DLT pipeline is the logical data processing graph of one or more streaming tables, materialized views, 
or views. The DLT framework will take dataset declarations, using either the Python API or SQL API, 
and infer the dependencies between each dataset. Once a pipeline update runs, the DLT framework 
will update the datasets in the correct order using a dependency graph, called a dataflow graph.

Pipeline triggers

A pipeline will be executed based on some triggering event. DLT offers three types of triggers – manual, 
scheduled, and continuous triggers. Once triggered, the pipeline will initialize and execute the dataflow 
graph, updating each of the dataset states.

Workflow

Databricks workflows is a managed orchestration feature of the Databricks Data Intelligence Platform 
that allows data engineers to chain together one or more dependent data processing tasks. For more 
complex data processing use cases, it may be necessary to build a data pipeline using multiple, nested 
DLT pipelines. For those use cases, Databricks workflows can simplify the orchestration of these data 
processing tasks.

Types of Databricks compute

There are four types of computational resources available to Databricks users from the Databricks 
Data Intelligence Platform.

Job computes

A job compute is an ephemeral collection of virtual machines (VMs) with the Databricks Runtime 
(DBR) installed that are dynamically provisioned for the duration of a scheduled job. Once the job 
is complete, the VMs are immediately released back to the cloud provider. Since job clusters do not 
utilize the UI components of the Databricks Data Intelligence Platform (e.g., notebooks and the query 
editor), job clusters assess a lower Databricks Unit (DBU) for the entirety of their execution.

All-purpose computes

An all-purpose compute is a collection of ephemeral VMs with the DBR installed that is dynamically 
provisioned by a user, directly from the Databricks UI via a button click, or via the Databricks REST 
API (using the /api/2.0/clusters/create endpoint, for example), and they remain running 
until a user, or an expiring auto-termination timer, terminates the cluster. Upon termination, the VMs 
are returned to the cloud provider, and Databricks stops assessing additional DBUs.
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Instance pools

Instance pools are a feature in Databricks that helps reduce the time it takes to provision additional 
VMs and install the DBR. Instance pools will pre-provision VMs from the cloud provider and hold 
them in a logical container, similar to a valet keeping your car running in a valet parking lot.

For some cloud providers, it can take 15 minutes or more to provision an additional VM, leading to 
longer troubleshooting cycles or ad hoc development tasks, such as log inspection or rerunning failed 
notebook cells during the development of new features.

Additionally, instance pools improve efficiency when many jobs are scheduled to execute closely 
together or with overlapping schedules. For example, as one job finishes, rather than releasing the 
VMs back to the cloud provider, the job cluster can place the VMs into the instance pool to be reused 
by the next job.

Before returning the VMs to the instance pool, the Databricks container installed on the VM is 
destroyed, and a new container is installed on the VM containing the DBR when the next scheduled 
job requests the VM.

Important note
Databricks will not assess additional DBUs while VM(s) are up and running. However, the 
cloud provider will continue to charge for as long as the VMs are held in the instance pools.

To help control costs, instance pools provide an autoscaling feature that allows the size of the pool 
to grow and shrink, in response to demand. For example, the instance pool might grow to 10 VMs 
during peak hours but shrink back to 1 or 2 during lulls in the processing demand.

Databricks SQL warehouses

The last type of computational resource featured in the Databricks Data Intelligence Platform is 
Databricks SQL (DBSQL) warehouses. DBSQL warehouses are designed to run SQL workloads such as 
queries, reports, and dashboards. Furthermore, DBSQL warehouses are pre-configured computational 
resources designed to limit the configuration that a data analyst or SQL analyst would need to optimize 
for ad hoc data exploration and query execution. DBSQL warehouses are preconfigured with the 
latest DBRs, leverage the Databricks Photon engine, and have advanced Spark configuration settings 
preconfigured to optimize performance. A DBSQL warehouse also includes additional performance 
features such as results caching and disk caching, which can accelerate workloads by moving data 
closer to the hardware performing the query calculations. Combined with the processing speed of 
the Photon engine, the DBSQL warehouse achieves cloud warehouse speeds that Apache Spark once 
struggled to meet.
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Databricks Runtime

The Databricks Runtime is a set of libraries pre-installed on the driver and worker nodes of a 
cluster during cluster initialization. These libraries include popular Java, R, and Python libraries to 
assist end users with ad hoc data wrangling or other development tasks. The libraries include core 
components that interface with the Databricks backend services to support rich platform features, 
such as collaborative notebooks, workflows, and cluster metrics. Furthermore, DBR includes other 
performance features such as data file caching (known as disk caching), the Databricks Photon engine 
for accelerated Spark processing, and other computational speed-ups. DBR comes in two varieties, 
Standard and ML, which are tailored to assist with the workloads anticipated to be run, based on the 
end user persona. For example, DBR for ML would have popular Python libraries such as TensorFlow 
and scikit-learn pre-installed to assist end users with the training of ML models, feature engineering, 
and other ML development tasks.

Unity Catalog

As the name suggests, Unity Catalog is a centralized governance store that is intended to span multiple 
Databricks workspaces. Rather than repeatedly defining the data governance policies for users and 
groups within each Databricks workspace, Unity Catalog allows data administrators to define access 
policies once in a centralized location. As a result, Unity Catalog acts as a single source of truth for 
data governance.

In addition to data access policies, Unity Catalog also features data auditing, data lineage, data discovery, 
and data sharing capabilities, which will be covered in Chapters 5, 6, and 7.

Unity Catalog is tightly integrated into the Databricks lakehouse, making it easy to build near-real-
time data pipelines with strong data security in mind, using an open lakehouse storage format such 
as Delta Lake.

A quick Delta Lake primer
Delta Lake is a big data file protocol built around a multi-version transaction log that provides 
features such as ACID transactions, schema enforcement, time travel, data file management, and 
other performance features on top of existing data files in a lakehouse.

Originally, big data architectures had many concurrent processes that both read and modified data, 
leading to data corruption and even data loss. As previously mentioned, a two-pronged Lambda 
architecture was created, providing a layer of isolation between processes that applied streaming 
updates to data and downstream processes that needed a consistent snapshot of the data, such as BI 
workloads that generated daily reports or refreshed dashboards. However, these Lambda architectures 
duplicated data to support these batch and streaming workloads, leading to inconsistent data changes 
that needed to be reconciled at the end of each business day.
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Fortunately, the Delta Lake format provides a common storage layer for a lakehouse across disparate 
workloads and unifies both batch and streaming workloads. As such, a Delta table serves as the 
foundation for a Delta Live Table. Under the hood, a Delta Live Table is backed by a Delta table that 
is added to a dataflow graph, and whose state is updated by the DLT system whenever a DLT pipeline 
update is executed.

The architecture of a Delta table

The Delta transaction log is a key piece of the architecture for this big data format. Each Delta table 
contains a transaction log, which is a directory name, _delta_log, located at a table’s root directory. 
The transaction log is a multi-version system of records that keeps track of the table’s state over a 
linear period of time.

Figure 1.3 – The Delta transaction log sits alongside the partition directories 

and data files in a separate directory titled _delta_log
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The transaction log informs the Delta Lake engine which data files to read to answer a particular query.

Within each transaction log directory, there will be one or more files stored in the JSON format, as 
well as other metadata information to help quickly and efficiently calculate the Delta table’s state 
(covered in the following section).

As new data is appended, updated, or even deleted from a Delta table, these changes are recorded, 
or committed, to this directory as metadata information, stored as atomic JSON files. The JSON files 
are named using an ordered integer, starting with 00…0.json and incrementing by one after each 
successful transaction commit.

If a Delta table is partitioned, there will be one or more subdirectories containing the partitioning 
column information within the table’s root directory. Hive-style table partitioning is a very common 
performance technique that can speed up a query by collocating similar data within the same directory. 
The data is collocated by a particular column’s value (e.g., "date=2024-01-05"). Optionally, there 
can be even more subdirectories nested within these partition directories, depending upon how many 
columns a table is partitioned by.

Within these partition subdirectories are one or more data files, stored using the Apache Parquet 
format. Apache Parquet is a popular columnar storage format, with efficient data compression and 
encoding schemes that yield fast data storage and retrieval for big data workloads. As a result, this 
open format was chosen as a foundation to store the data files that make up a Delta table.

The contents of a transaction commit

As mentioned earlier, the transaction log is the single source of truth for a Delta table. Each committed 
transaction (the JSON file under the _delta_log directory) will contain metadata information 
about the operation, or action, being applied to a particular Delta table. These JSON files can be viewed 
as a set of actions. Although there can be many concurrent transactions, the history of transaction 
commits is replayed in a linear order by table readers, and the result is the latest state of the Delta table.

Each JSON file could contain any of the following actions, as outlined by the Delta Lake protocol:

•	 Change metadata: This type of action is used to update the name, schema, or partitioning 
information of a table.

•	 Add file: Perhaps the most frequent action applied, this action adds a new data file to a table 
along with statistical information about the first 32 columns of a Delta table.

•	 Remove file: This action will logically delete a particular data file. Note that the physical data 
file will remain in cloud storage even after this transaction is committed (there’s more about 
this topic in the Tombstoned data files section).



A quick Delta Lake primer 15

•	 Add Change Data Capture (CDC) information: This action is used to add a CDC file that will 
contain all the data that has changed as a result of a particular table transaction.

•	 Transaction identifiers: This action is used for Structured Streaming workloads and will contain 
the unique identifier for a particular stream, as well as the epoch identifier for the most recently 
committed Structured Streaming micro-batch.

•	 Protocol evolution: Provides backward compatibility and ensures that old Delta Lake table 
readers can read the metadata information within the transaction log.

•	 Commit provenance information: This type of action will contain information about the 
process of committing a particular data transaction to a table. This will include information 
including the timestamp, the operation type, cluster identifier, and user information.

•	 Domain metadata: This type of action sets the configuration for a particular domain. There 
are two types of domain metadata – system domain and user-controlled domain.

•	 Sidecar file information: This type of action will commit a separate metadata file to the 
transaction log, which contains summary information about the checkpoint file that was created 
(checkpoints are covered in the following section).

Supporting concurrent table reads and writes

There are two types of concurrency control methods in storage systems – pessimistic concurrency 
control and optimistic concurrency control. A pessimistic concurrency control will attempt to thwart 
possible table conflicts by locking an entire table until an ongoing transaction has been completed. 
Conversely, optimistic concurrency control does not lock a table and will permit potential transaction 
conflicts to happen.

The authors of the Delta Lake protocol chose to implement the Delta Lake format using optimistic 
concurrency control. The reason why this design choice was made is that most big data workloads 
will append new data to an existing table, as opposed to modifying existing data.

As an example, let’s look at how Delta Lake will deal with a concurrent write conflict between two 
table writers – Table Writer A and Table Writer B:
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Figure 1.4 – Delta Lake implements an optimistic concurrency scheme to handle concurrent write conflicts

Imagine that the two table writers modify the same data files and attempt to commit the data changes 
that conflict with one another. Let’s look at how Delta Lake handles this type of scenario.

1.	 Writer A will first record the starting version identifier of the transaction that it will attempt 
to commit to the transaction log.

2.	 Writer A will then write all the data files for the transaction that it would like to commit.

3.	 Next, Writer A will attempt to commit the transaction to the Delta transaction log.

4.	 At the same time, Writer B has already committed their transaction using the same table 
version identifier.

5.	 Writer A detects Writer B’s commit and replays the commit information to determine whether 
any of the underlying data files have changed (e.g., the data has been updated).

6.	 If no data has changed (for example, both Writer A and Writer B commit append-only operations 
to the transaction log), then Writer A will increment the version identifier by 1 and attempt to 
recommit the transaction to the transaction log.

7.	 If the data has changed, then Writer A will need to recompute the transaction from scratch, 
increment the version identifier, and attempt to recommit the transaction.
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Tombstoned data files

When an update is applied to a Delta table that requires the data within a file to be updated, a new 
file using the AddFile operation will be created. Similarly, the file containing the out-of-date data 
will be logically deleted, using a RemoveFile operation. Then, both actions will be committed to 
the transaction log.

By default, Delta Lake will retain the table metadata (transaction log data) for 30 days before being 
automatically removed from cloud storage. When a particular data file is removed from the Delta 
transaction log, this is often referred to as a tombstoned file.

To help control cloud storage costs, these tombstoned files, or files that no longer make up the latest 
Delta table state and are no longer referenced in the transaction log, can be removed from cloud storage 
altogether. A separate Delta Lake file management utility, called the Vacuum command, can be run 
as a separate process to identify all the tombstoned data files and remove them.

Furthermore, the Vacuum command is configurable, and the length of time to remove the table files 
can be specified as an optional input parameter. For example, the following code snippet will execute 
the Vacuum command on the Delta table, yellow_taxi, removing data files from the last 14 days 
of table history:

%sql
-- Vacuums the Delta table `yellow_taxi`
-- and retains 14 days of table history
VACUUM yellow_taxi RETAIN 336 HOURS

As we’ll see in the upcoming chapter, this process is automatically run and managed for DLT pipelines.

Calculating Delta table state

As alluded to in the previous section, Delta Lake will automatically compact metadata in a transaction 
log. As you can imagine, in big data workloads with thousands or even millions of transactions each 
day, a Delta table can rapidly grow in size. Similarly, the commit information in the transaction log 
will also grow comparatively.

For every 10th commit, Delta Lake will create a checkpoint file, using the Apache Parquet format, 
that contains the latest table state information.
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Figure 1.5 – For every 10th commit, Delta Lake will write a checkpoint file

Under the hood, a Delta Lake reader creates a separate Apache Spark Job to efficiently read the Delta 
table’s commit logs. For example, to calculate the latest table state, a Delta Lake reader will begin by 
reading the latest checkpoint file and applying the transaction commits that may have occurred after 
the file was created.

Storing the table state information in checkpoint files alongside the data files in cloud storage was 
another pivotal design choice for the Delta Lake format. By using this method, calculating a table’s 
state could scale much better than other methods, such as using the Hive Metastore to serve table 
metadata information. Traditional big data metastores, such as the Hive Metastore, struggle to scale 
when many large, heavily active tables are queried concurrently and the table metadata information 
needs to be retrieved to answer queries.

To further speed up queries, Delta Lake readers will also cache the table state in local memory; that 
way, table readers can calculate which data files will answer a particular table query much faster.

Time travel

Another file management utility in Delta Lake is the time travel feature that allows end users to query 
a table’s state from a previous version. Time travel offers two methods to specify table state – using 
the table version number assigned in the transaction log or by using a timestamp.
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Users can query a previous Delta table’s state directly using the SQL syntax:

%sql
SELECT *
  FROM yellow_taxi
  TIMESTAMP AS OF '2023-12-31'

Similarly, Python users on the Databricks Data Intelligence Platform can use the Python API:

%py
display(
    (spark.read
        .format("delta")
        .option("timestampAsOf", "2023-12-31")
        .load("s3a://my-data-lake/yellow_taxi/"))
)

It’s important to note that, by default, the Vacuum utility will remove all data files from a particular 
Delta table, from the last seven days of table versions.

As a result, if the Vacuum command is run and a user attempts to query table history beyond the 
last seven days, the end user will receive a runtime exception, specifying that the data referenced in 
the transaction log no longer exists.

Furthermore, Delta Lake’s time travel feature was designed to correct recent data issues, so it should 
not be used for long-term data storage requirements, such as implementing an auditing system with 
a history spanning years.

Tracking table changes using change data feed

Delta Lake’s Change Data Feed (CDF) feature tracks row-level changes that have been made to a 
Delta table, as well as metadata about those changes. For example, CDF will capture information 
about the operation type, the timestamp confirming that the change was made, and other provenance 
information such as cluster identification and user information.

For update operations, CDF will capture a snapshot of the row before an update, as well as a snapshot 
of the row after the update has been applied.
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Figure 1.6 – CDF captures the operation type, commit version, and timestamp

This feature is not enabled by default but can be configured by updating a Delta table’s properties. For 
example, CDF can be enabled on an existing table by altering the table, using a SQL ALTER statement:

%sql
ALTER TABLE yellow_taxi
SET TBLPROPERTIES (delta.enableChangeDataFeed = true)

Similarly, CDF can also be enabled when a table is created by including the table property as a part 
of the CREATE TABLE statement:

%sql
CREATE TABLE IF NOT EXISTS yellow_taxi
TBLPROPERTIES (delta.enableChangeDataFeed = true)

As we’ll see in the next chapter, this feature is important in how DLT can efficiently apply changes 
from a source table to downstream datasets and implement slowly changing dimensions (SCDs).

A hands-on example – creating your first Delta Live Tables 
pipeline
In this section, we’ll use a NYC taxi sample dataset to declare a data pipeline, using the DLT framework, 
and apply a basic transformation to enrich the data.

Important note
To get the most value out of this section, it’s recommended to have Databricks workspace 
permissions to create an all-purpose cluster and a DLT pipeline, using a cluster policy. In this 
section, you will attach a notebook to a cluster, execute notebook cells, as well as create and 
run a new DLT pipeline.

Let’s start by creating a new all-purpose cluster. Navigate to the Databricks Compute UI by selecting 
the Compute button from the sidebar navigation on the left side.
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Figure 1.7 – Navigate to the Compute UI from the left-hand sidebar

Click the button titled Create compute at the top right. Next, provide a name for the cluster. For this 
exercise, the cluster can be a small, single-node cluster. Click the Single node radio button for the 
cluster type. Select the latest DBR in the runtime dropdown. Accept the defaults and click the Create 
compute button once again.

Now that we have a cluster up and running, we can begin the development of our very first data pipeline.

Let’s first start by creating a new Databricks notebook under your workspace home directory. Create a 
new notebook by clicking the Workspace button on the left sidebar, clicking on the Add dropdown, and 
selecting Notebook. Give the notebook a meaningful name, such as My First DLT Pipeline. 
This new notebook is where we will declare the datasets and dependencies that will make up our 
Delta Live Table pipeline.

All Databricks workspaces come with a set of sample datasets, located at /databricks-datasets 
in the Databricks FileSystem. You can browse the list of available datasets by listing the directory 
contents, using the Databricks FileSystem utility:

%py
display(
    dbutils.fs.ls('/databricks-datasets')
)

Next, we need to import the dlt Python module. The dlt module contains function decorators that 
will instruct the DLT system on how to build our data pipeline, the dependencies, and an internal 
data processing graph, called a dataflow graph.

Add the following line to a new notebook cell:

import dlt
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DLT is built on top of PySpark, so we can leverage Spark DataFrames to define how to ingest data 
from cloud storage and how to apply data transformations. Let’s start by defining a function that will 
use Spark to read the NYC taxi sample dataset from the /databricks-datasets directory:

def yellow_taxi_raw():
    path = "/databricks-datasets/nyctaxi/tripdata/yellow"
    return (spark.readStream
        .schema(schema)
        .format("csv")
        .option("header", True)
        .load(path))

In this example, we’ve declared a simple function with a meaningful name, and when invoked, 
the function will use Spark to read the raw data stored in the yellow taxi dataset and return it as a 
streaming DataFrame.

Now, we need to tell the DLT framework that we should use this declared function as a part of a data 
pipeline. We can do this by adding the @dlt.table() function decorator. This function decorator 
will create a Delta Live Table from the function and add it to the pipeline’s dataflow graph. Let’s also 
add some descriptive text to the optional comment parameter of this function decorator:

@dlt.table(
    comment="The raw NYC taxi cab trip dataset located in `/
databricks-datasets/`"
)
def yellow_taxi_raw():
    path = "/databricks-datasets/nyctaxi/tripdata/yellow"
    return (spark.readStream
        .schema(schema)
        .format("csv")
        .option("header", True)
        .load(path))

After executing the notebook cell, the Databricks Data Intelligence Platform will detect a DLT table, 
print the output schema, and prompt you to create a new DLT pipeline.
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Figure 1.8 – Databricks will parse the DLT table declaration and print the output schema

Let’s click the Create Pipeline button to generate a new DLT pipeline. Give the data pipeline a 
meaningful name, such as Yellow Taxi Cab Pipeline. Select Core as the product edition 
and Triggered as the pipeline execution mode.

Figure 1.9 – Create a new DLT pipeline using the Core product edition
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Next, under the Target Location settings, select the Unity Catalog radio button, and specify the target 
catalog and schema where you would like to store the dataset. Under the Compute settings, set Min 
workers to 1 and Max workers to 1. Then, accept the defaults by clicking the Create button. Finally, 
click the Start button to execute the data pipeline. You will be taken to a visual representation of the 
dataflow graph.

Figure 1.10 – The dataflow graph will contain the streaming table we declared in our notebook

As you can see, our dataflow graph consists of a single streaming table, which is a new dataset that 
will ingest raw NYC taxi trip data from the /databricks-datasets/ location on the Databricks 
FileSystem. While a trivial example, this example shows the declarative nature of DLT framework, as 
well as how quickly we can declare a data pipeline using the familiar PySpark API. Furthermore, you 
should now have a feel for how we can monitor and view the latest state of our data pipeline from 
the DLT UI.
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Summary
In this chapter, we examined how and why the data industry has settled on a lakehouse architecture, 
which aims to merge the scalability of ETL processing and the fast data warehousing speeds for BI 
workloads under a single, unified architecture. We learned how real-time data processing is essential 
to uncovering value from the latest data as soon as it arrives, but real-time data pipelines can halt 
the productivity of data engineering teams as complexity grows over time. Finally, we learned the 
core concepts of the Delta Live Tables framework and how, with just a few lines of PySpark code and 
function decorators, we can quickly declare a real-time data pipeline that is capable of incrementally 
processing data with high throughput and low latency.

In the next chapter, we’ll take a deep dive into the advanced settings of Delta Live Tables pipelines and 
how the framework will optimize the underlying datasets for us. Then, we’ll look at more advanced 
data transformations, using a real-world use case to develop a data pipeline.





2
Applying Data Transformations 

Using Delta Live Tables

In this chapter, we’ll dive straight into how Delta Live Tables (DLT) makes ingesting data from a variety 
of input sources simple and straightforward, whether it’s files landing in cloud storage or connecting 
to an external storage system, such as a relational database management system (RDBMS). Then, 
we’ll take a look at how we can efficiently and accurately apply changes from our input data sources 
to downstream datasets, using the APPLY CHANGES command. Lastly, we’ll conclude the chapter 
with a deep dive into the advanced data pipeline settings.

To summarize, in this chapter, we’re going to cover the following main topics:

•	 Ingesting data from input sources

•	 Applying changes to downstream tables

•	 Publishing datasets to Unity Catalog

•	 Data pipeline settings

•	 Hands-on exercise – applying SCD Type 2 changes

Technical requirements
To follow along in this chapter, it’s recommended to have Databricks workspace permissions to create 
an all-purpose cluster and a DLT pipeline, using a cluster policy. It’s also recommended to have Unity 
Catalog permissions to create and use catalogs, schemas, and tables. All code samples can be downloaded 
from the chapter’s GitHub repository, located at https://github.com/PacktPublishing/
Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/
main/chapter02. This chapter will create and run several new notebooks and a DLT pipeline 
using the Core product edition. As a result, the pipelines are estimated to consume around 10–15 
Databricks Units (DBUs).
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Ingesting data from input sources
DLT makes ingesting data from a variety of input sources simple. For example, DLT can efficiently 
process new files landing in a cloud storage location throughout the day, ingest structured data by 
connecting to an external storage system, such as a relational database, or read static reference tables 
that can be cached into memory. Let’s look at how we can use DLT to incrementally ingest new data 
that arrives in a cloud storage location.

Ingesting data using Databricks Auto Loader

One of the key features of the Databricks Data Intelligence Platform is a feature called Auto Loader, 
which is a simple yet powerful ingestion mechanism for efficiently reading input files from cloud 
storage. Auto Loader can be referenced in a DataFrame definition by using the cloudFiles data 
source. For example, the following code snippet will use the Databricks Auto Loader feature to ingest 
newly arriving JSON files from a storage container:

df = (spark.readStream
      .format("cloudFiles")
      .option("cloudFiles.format", "json")
      .option("cloudFiles.schemaLocation", schema_path)
      .load(raw_data_path))

Auto Loader can scale to process billions of files in cloud storage efficiently. Databricks Auto Loader 
supports ingesting files stored in the CSV, JSON, XML, Apache Parquet, Apache Avro, and Apache 
Orc file formats, as well as text and binary files. Furthermore, one thing that you may have noticed 
in the preceding code snippet is that a schema definition was not specified for the input stream but, 
rather, a target schema location. That is because Auto Loader will automatically infer the data source 
schema and keep track of the changes to the schema definition in a separate storage location. Behind 
the scenes, Auto Loader will sample up to the first 1,000 cloud file objects to infer the schema structure 
for a cloud file source. For semi-structured formats such as JSON, where the schema can change over 
time, this can alleviate a huge burden on data engineering teams by them not having to maintain an 
up-to-date definition of the latest schema definition.

Scalability challenge in structured streaming

Traditionally, data pipelines that used Spark Structured Streaming to ingest new files, where files were 
appended to a cloud storage location, struggled to scale as data volumes grew into GB or even TB. As 
new files were written to the cloud storage container, Structured Streaming would perform a directory 
listing. For large datasets, (i.e., datasets comprised of millions of files or more), the directory listing 
process alone would take a lengthy amount of time. In addition, the cloud provider would assess API 
fees for these directory listing calls, adding to the overall cloud provider fees. For files that have already 
been processed, this directory listing was both expensive and inefficient.
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Databricks Auto Loader supports two types of cloud file detection modes – notification mode and legacy 
directory listing mode. In notification mode, Auto Loader bypasses this expensive directory listing 
process entirely by automatically deploying a more scalable architecture under the hood. With just a 
few lines of Python code, Databricks pre-provisions backend cloud services that will automatically keep 
track of new files that have landed in cloud storage, as well as files that have already been processed.

 

Figure 2.1 – In notification mode, Databricks Auto Loader uses an event 

stream to keep track of new, unprocessed files in cloud storage

Let’s walk through an example of how the Auto Loader feature, configured in notification mode, will 
efficiently process newly arriving cloud file objects together:

1.	 The process begins with the Databricks Auto Loader listening to a particular cloud storage path 
for new file object creation events, also referred to as PUT events, named after the HTTP verb 
used to create the object.

2.	 When a new file object has been created, the metadata about this new file is persisted to a 
key-value store, which serves as a checkpoint location if there are system failures.

3.	 Next, the information pertaining to the file object, or file objects, will then be published to an 
event stream that the cloudFiles data source reads from.

4.	 Upon reading from the event stream, the Auto Loader process in Databricks will fetch the data 
pertaining only to those new, unprocessed file objects in cloud storage.

5.	 Lastly, the Auto Loader process will update the key-value store, marking the new files as 
processed in the system.
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This implementation of notification-based file processing avoids the expensive and inefficient directory 
listing process, ensuring that the process can recover from failures and that files are processed exactly once.

Using Auto Loader with DLT

Databricks Auto Loader can be used to create a streaming table in a DLT pipeline. Now that we know 
what’s going on behind the scenes, building a robust, scalable streaming table that can scale to billions 
of files can be done with just a few lines of Python code. In fact, for data sources that append new files 
to cloud storage, it’s recommended to always use Auto Loader to ingest data. Let’s take a streaming 
DataFrame definition from the preceding section and combine it with the DLT dataset annotation to 
define a new data stream in our pipeline:

@dlt.table(
    comment="Raw cloud files stream of completed taxi trips"
)
def yellow_taxi_events_raw():
    return (spark.readStream
            .format("cloudFiles")
            .option("cloudFiles.format", "json")
            .option("cloudFiles.path", schema_path)
            .load(raw_landing_zone_path))

One thing to note is that in the preceding code snippet, we’ve provided two cloud storage paths. The 
first storage path, schema_path, refers to the cloud storage path where schema information and the 
key-value store will be written. The second storage location, raw_landing_zone_path, points 
to the location where new, unprocessed files will be written by the external data source.

Important note
It’s recommended to use an external location governed by Unity Catalog so that you can enforce 
fine-grained data access across different users and groups within your Databricks workspace.

Now that we have a reliable and efficient way of ingesting raw data from cloud storage input sources, 
we’ll want to transform the data and apply the output to downstream datasets in our data pipeline. Let’s 
look at how the DLT framework makes applying downstream changes simple and straightforward.

Applying changes to downstream tables
Traditionally, Delta Lake offered a MERGE INTO command, allowing change data capture to be 
merged into target tables by matching on a particular condition. However, if the new data happened 
to be out of order, the merged changes would result in incorrect results, leading to an inaccurate and 
misleading output. To remediate this problem, data engineering teams would need to build complex 
reconciliation processes to handle out-of-order data, adding yet another layer to a data pipeline to 
manage and maintain.
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APPLY CHANGES command

DLT offers a new API to automatically apply changes to downstream tables, even handling out-of-
order data based on a set of one or more sequence columns. Slowly changing dimensions (SCDs) 
are dimensions in traditional data warehousing that allow the current and historical snapshot of data 
to be tracked over time. DLT allows data engineering teams to update downstream datasets in a data 
pipeline with changes in the upstream data source. For example, DLT allows users to capture SCD 
Type 1 (which does not preserve previous row history) and SCD Type 2 (which preserves historical 
versions of rows).

DLT offers a Python API as well as SQL syntax to apply change data captures:

•	 APPLY CHANGES – for pipelines written using SQL syntax

•	 apply_changes() – for pipelines written using Python

Let’s imagine that we have a table that will record room temperatures published from smart thermostats 
throughout the day, and it’s important to preserve a history of temperature updates. The following 
code snippet will apply SCD Type 2 changes to an output table in our data pipeline, using the 
apply_changes() API:

import dlt 
import pyspark.sql.functions as F
dlt.create_streaming_table("iot_device_temperatures")
dlt.apply_changes(
    target = "iot_device_temperatures",
    source = "smart_thermostats",
    keys = ["device_id"],
    sequence_by = F.col("sequence_num"),
    apply_as_deletes = F.expr("operation = 'DELETE'"),
    except_column_list = ["operation", "sequence_num"],
    stored_as_scd_type = "2"
)

Furthermore, DLT will capture high-level operational metrics about the data changes that are applied 
during the completion of an apply_changes() command. For instance, the DLT system will 
track the number of rows that were updated, inserted, or deleted for each execution of the apply_
changes() command.
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The DLT reconciliation process

Behind the scenes, DLT will create two dataset objects to accurately apply table changes to pipeline 
datasets. The first data object is a hidden, backend Delta table that contains the full history of changes. 
This dataset is used to perform a reconciliation process that is capable of handling out-of-order row 
updates that are processed. Furthermore, this backend table will be named using the provided name 
parameter in the APPLY CHANGES or apply_changes() function call, concatenated with the 
__apply_changes_storage_ string.

For example, if the name of the table was iot_readings, it would result in a backend table being 
created with the name __apply_changes_storage_iot_readings.

This particular table will only be visible if the DLT pipeline publishes the dataset to the legacy Hive 
Metastore. However, Unity Catalog will abstract these low-level details away from end users, and the 
dataset will not be visible from the Catalog Explorer UI. However, the table can still be queried using 
a notebook or from a query executed on a SQL warehouse.

Secondly, the DLT system will create another dataset – a view using the name provided for the 
apply_changes() function. This view will contain the latest snapshot of a table with all the changes 
applied. The view will use a column, or combination of columns, specified as table keys to uniquely 
identify each row within the backend table. Then, DLT uses the column or sequence of columns 
specified in the sequence_by parameter of the apply_changes() function to order the table 
changes for each unique row, picking out the latest row change to calculate the result set for the view.

Figure 2.2 – DLT creates a backend table to apply table changes, as well as a view to query the latest data
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As you can see, DLT makes it extremely simple to keep downstream data sources in line with the 
data changes occurring in the source. With just a few parameter changes, you can use the powerful 
apply_changes() API to apply SCD data.

Now that we understand how we can leverage the DLT framework to define data transformations and 
apply changes to downstream tables, let’s turn our attention to how we can add strong data governance 
on top of our pipeline datasets.

Publishing datasets to Unity Catalog
DLT offers two methods for storing datasets in the Databricks Data Intelligence Platform – the legacy 
Hive Metastore and Unity Catalog.

As described in Chapter 1, Unity Catalog is a centralized governance store that spans all of your 
Databricks workspaces within a particular global region. As a result, data access policies can be defined 
once in a centralized location and will be consistently applied across your organization.

However, within the context of a DLT pipeline, these two methods of storing the output datasets are 
mutually exclusive to one another – that is, a particular DLT pipeline cannot store some datasets in 
the Unity Catalog and others in the Hive Metastore. You must choose a single metastore location for 
the entire data pipeline output.

Why store datasets in Unity Catalog?

Unity Catalog is the new best-of-breed method for storing data and querying datasets in the lakehouse. 
You might choose landing data in a data pipeline into Unity Catalog over the Hive Metastore for 
several reasons, including the following:

•	 The data is secured by default.

•	 There is a consistent definition of access policies across groups and users versus defining data 
access policies for every individual workspace.

•	 Open source technology with no risk of vendor lock-in.

Furthermore, Unity Catalog offers a Hive-compatible API, allowing third-party tools to integrate with 
a Unity Catalog metastore as if it were the Hive Metastore.

Creating a new catalog

One major difference between Unity Catalog and the Hive Metastore is that the former introduces a 
three-level namespace when defining tables. The parent namespace will refer to the catalog object. A 
catalog is a logical container that will hold one to many schemas, or databases.
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One of the first steps in building a new DLT pipeline is to define a centralized location to store the 
output datasets. Creating a new catalog in Unity Catalog is simple. It can be done using a variety of 
methods, such as through the Catalog Explorer UI, using SQL statements executed from within a 
notebook, or using the Databricks REST API.

We’ll use the Databricks Catalog Explorer UI to create a new Catalog:

1.	 First, navigate to the Catalog Explorer by clicking on the Catalog Explorer tab in the 
navigation sidebar.

2.	 Next, click the Create Catalog button.

3.	 Give the catalog a meaningful name.

4.	 Select Standard as the catalog type.

5.	 Finally, click on the Create button to create the new catalog.

Assigning catalog permissions

As previously mentioned, one of the benefits of using Unity Catalog is that your data is secured by 
default. In other words, access to data stored in the Unity Catalog is denied by default unless explicitly 
permitted. To create new tables in the newly created catalog, we’ll need to grant permission to create 
and manipulate new tables.

Important note
If you are the creator and owner of a target catalog and schema objects, as well as the creator 
and owner of a DLT pipeline, then you do not need to execute the following GRANT statements. 
The GRANT statements are meant to demonstrate the types of permissions needed to share data 
assets across multiple groups and users in a typical Unity Catalog metastore.

First, let’s grant access to use the catalog. From a new notebook, execute the following SQL syntax to 
grant access to use the newly created catalog, where my_user is the name of a Databricks user and 
chp2_transforming_data is the name of the catalog created in the previous example:

%sql
GRANT USE CATALOG, CREATE SCHEMA ON CATALOG `chp2_transforming_data` 
TO `my_user`;

Next, we’ll need to create a schema that will hold the output datasets from our DLT pipeline. From 
the same notebook, execute the following SQL statement to create a new schema:

%sql
USE CATALOG `chp2_transforming_data`;
CREATE SCHEMA IF NOT EXISTS `ride_hailing`;
USE SCHEMA `ride_hailing`;
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Execute the following statement to grant permission to create materialized views within the newly 
created schema:

%sql
GRANT USE SCHEMA, CREATE TABLE, CREATE MATERIALIZED VIEW ON SCHEMA 
`ride_hailing` TO `my_user`;

By now, you should see how simple yet powerful Unity Catalog makes applying consistent data security 
to your data pipeline datasets, providing data stewards with a variety of options to enforce dataset 
permissions across their organization. Let’s turn our attention to how we can configure some of the 
advanced features and settings of a DLT pipeline.

Data pipeline settings
Up until now, we’ve only discussed how to use the DLT framework to declare tables, views, and 
transformations on the arriving data. However, the computational resources that execute a particular 
data pipeline also play a major role in landing the latest data in a lakehouse.

In this section, we’re going to discuss the different data pipeline settings and how you can control 
computational resources, such as the cluster, at runtime.

The following pipeline settings can be configured directly from the DLT UI or using the Databricks 
REST API.

The DLT product edition

The data pipeline product edition tells the DLT framework what set of features your data pipeline 
will utilize. Higher product editions will contain more features, and as a result, Databricks will assess 
a higher price (a DBU).

Databricks offers three types of product editions for DLT pipelines, ranked in order of feature set, 
from the least features to the most:

1.	 Core: Core is the base product edition. This product edition is meant for streaming workloads 
that only append new data to streaming tables. Data expectations (data quality enforcement 
is discussed in the next chapter) and utilities to apply change data capture are not available in 
this product edition.

2.	 Pro: The Pro product edition is the next edition above Core. This production edition is 
designed for streaming workloads that append new data to streaming tables and apply updates 
and deletes using APPLY CHANGES command. However, data quality expectations are not 
available in this product edition.
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3.	 Advanced: The Advanced product edition is the most feature-rich product edition. Data 
quality expectations are available in this production edition, as well as support for appending 
new data to streaming tables and applying inserts, updates, and deletes that have occurred in 
the upstream data sources.

There may be times when your requirements change over time. For example, you might require strict 
data quality enforcement to prevent downstream failures in third-party business intelligence (BI) 
reporting tools. In scenarios like these, you can update the product edition of an existing DLT pipeline 
at any time, allowing your data pipeline to adapt to changes in your feature requirements and budget.

Pipeline execution mode

DLT offers a way to inform a system that the changes to a data pipeline are experimental. This feature 
is called data pipeline environment mode. There are two available environment modes – development 
and production. The main difference is the behavior of the computational resource.

In development environment mode, a data flow task will not be automatically retried if a failure is 
encountered. This allows a data engineer to intervene and correct any programmatic errors during 
ad hoc development cycles.

Furthermore, during a failure in development mode, the cluster executing the data pipeline updates 
will remain up. This allows a data engineer to view the driver logs and cluster metrics of the cluster, 
and it also prevents a lengthy cluster re-provisioning and re-initialization of the cluster runtime for 
each pipeline execution, which, depending upon the cloud provider, could take 10 to 15 minutes to 
complete. It’s expected to have short and iterative development and testing cycles, which assist data 
engineers in their development life cycle by keeping the cluster up and running.

The data pipeline environment mode can be set from the DLT UI by clicking the environment mode 
toggle switch at the very top navigation bar of a data pipeline in the DLT UI.

Figure 2.3 – DLT pipeline execution mode can be set using the toggle switch from the UI

Alternatively, the environment mode can also be set using the Databricks REST API. In the following 
code snippet, we’ll use the Python requests library to send a PUT request to the Databricks DLT 
pipelines REST API that will set the development mode of a DLT pipeline. Note that the endpoint 
URL will change, depending on your Databricks workspace deployment, and the code snippet is just 
an example:

import requests

response = requests.put(
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    "https://<your_databricks_workspace>/api/2.0/pipelines/1234",
    headers={"Authorization": f"Bearer {api_token}"},
    json={
        "id": "1234",
        "name": "Clickstream Pipeline",
        "storage": "/Volumes/clickstream/data",
        "clusters": [{
            "label": "default",
            "autoscale": {
                "min_workers": 1,
                "max_workers": 3,
                "mode": "ENHANCED"}
        }],
        "development": True,
        "target": "clickstream_data",
        "continuous": False
    }
)

Databricks runtime

DLT is a version-less product feature on the Databricks Data Intelligence Platform. In other words, 
Databricks manages the underlying Databricks Runtime (DBR) that a data pipeline uses for its cluster.

Furthermore, Databricks will automatically upgrade a data pipeline cluster to use the latest stable 
runtime release. Runtime upgrades are important because they introduce bug fixes, new performance 
features, and other enhancements. This can mean that your data pipelines will execute faster, translating 
to less time and money spent to transform the latest data in your lakehouse.

You might even be eager to test out the latest performance features. Each DLT pipeline has a Channel 
setting that allows data engineers to select one of two channel options – Current and Preview. 
The Preview channel allows data engineers to configure a data pipeline to execute using the latest, 
experimental runtime that contains the new performance features and other enhancements. However, 
since this is an experimental runtime, it’s not recommended that data pipelines running in production 
should use a Preview channel of the Databricks runtime. Instead, it’s recommended to use the former 
option, Current, which selects the latest stable release of the Databricks runtime.

Furthermore, the DLT system will proactively catch runtime exceptions for data pipelines deployed 
in production mode. For example, if a new runtime release introduces a runtime bug, also referred 
to as a runtime regression, or a library version conflict, DLT will attempt to downgrade the cluster 
to a lower runtime that was known to execute data pipelines successfully, and it will retry executing 
the pipeline update.
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The following diagram illustrates the automatic runtime upgrade exception handling.

Figure 2.4 – In production mode, DLT will attempt to rerun a failed data 

pipeline execution using a lower Databricks runtime release

Pipeline cluster types

Each data pipeline will have two associated clusters – one to perform the dataset updates and one to 
perform the table maintenance tasks.

The settings for these two types of clusters are expressed in the pipeline settings of a pipeline, using 
a JSON cluster configuration definition. There are three types of cluster configurations that can 
be expressed in the pipeline settings – the update cluster configuration, the maintenance cluster 
configuration, and a third option that acts as a default cluster configuration, applying generalized 
settings to both update and maintenance clusters. The schema for this JSON configuration closely 
follows that of the Databricks Clusters REST API.

In addition to configuring the physical attributes of a cluster, such as the number of worker nodes and 
virtual machine instance types, the cluster configuration can also contain advanced Spark configurations. 
Let’s walk through a sample cluster configuration together.
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The following example contains two separate cluster configurations – a default cluster configuration that 
will be applied to both update and maintenance DLT clusters, as well as another cluster configuration 
that will be applied only to the update DLT cluster.

In the first cluster configuration, we’ll specify that the cluster configuration will be the default cluster 
configuration using the label attribute. This means that the cluster configuration will be applied 
to DLT clusters used to update the datasets and for clusters created to run table maintenance tasks. 
Then, we’ll enable autoscaling for our DLT clusters, specifying that all clusters will begin provisioning 
a cluster with a single virtual machine but can grow up to five virtual machines in total as processing 
demands increase. We’ll also specify that an enhanced version of the cluster autoscaling algorithm 
should be used.

In the second set of cluster configurations, we’ll specify that the cluster configuration should be applied 
only to DLT update clusters using the label attribute again. Then, we’ll specify which instance types 
to provision for the update cluster driver and worker nodes. For the driver node, which orchestrates 
tasks, we’ll specify that the i4i.2xlarge EC2 instance type should be used, while all worker nodes 
should use the i4i.xlarge EC2 instances. Lastly, we’ll also enable a Databricks Runtime performance 
feature, called Auto-Optimized Shuffle (AOS). AOS will automatically size the number of Spark 
shuffle partitions at runtime, which can improve performance during wide Spark transformations 
such as joins, aggregations, and merge operations.

Important note
In the following example, we’ve chosen to illustrate the cluster configuration settings using 
virtual machine instances for the AWS cloud. However, if your workspace is in a different cloud 
provider, we’d suggest using Delta cache accelerated VM instances of similar sizes – eight cores 
for the driver node and four cores for the worker nodes (https://docs.databricks.
com/en/optimizations/disk-cache.html):

{
    "clusters": [{
        "label": "default",
        "autoscale": {
            "min_workers": 1,
            "max_workers": 5,
            "mode": "ENHANCED"}
    },
    {
        "label": "updates",
        "node_type_id": "i4i.xlarge",
        "driver_node_type_id": "i4i.2xlarge",
        "spark_conf": {"spark.sql.suffle.partitions": "auto"}
    }]
}

https://docs.databricks.com/en/optimizations/disk-cache.html
https://docs.databricks.com/en/optimizations/disk-cache.html
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As you can see, cluster configurations are a powerful tool that provides data engineers with the ability 
to apply either generalized cluster settings, target specific cluster settings, or do a combination of 
both. This is a great way to tune clusters for specific workloads and yield additional performance for 
your DLT pipelines.

A serverless compute versus a traditional compute

Data pipelines can be executed using clusters configured with a traditional compute or a serverless compute.

A traditional compute gives a user the most control over computational resources. However, with 
a traditional compute, the user will need to manage several aspects of the underlying cluster. For 
example, data engineering teams will need to configure cluster attributes such as the auto-scaling 
behavior, whether the pipeline should be executed using the Photon engine or the legacy Catalyst 
engine in Spark, as well as optional cluster tagging. Furthermore, traditional compute allows the user 
to have full control over the VM instance types that are selected for the driver and worker nodes of the 
cluster. As we saw in the previous section, the VM instance types can be specified under the pipeline 
settings by listing specific instance types within the JSON configuration. For example, the following 
cluster configuration specifies the i4i.xlarge and i4i.2xlarge EC2 instance types for all update clusters 
within a DLT pipeline:

{
    "clusters": [{
        "label": "updates",
        "node_type_id": "i4i.xlarge",
        "driver_node_type_id": "i4i.2xlarge"
    }]
}

However, DLT pipelines configured to use a serverless compute will abstract away all the underlying 
cluster settings, such as the cluster VM instance types, the number of worker nodes, and the autoscaling 
settings. As the name serverless compute suggests, the computational resources will be provisioned 
and managed by Databricks in the Databricks cloud provider account. Behind the scenes, Databricks 
will maintain a pool of pre-provisioned computational resources so that cluster provisioning is fast. 
As soon as an update for a data pipeline is triggered, the DLT system will create a logical network 
inside of the Databricks cloud provider account and initialize a cluster to execute the pipeline’s data 
flow graph. Databricks will automatically select the VM instance type, the Photon execution engine, 
and the autoscaling behavior.

As an added layer of security, there is no communication permitted between logical networks or from 
the external internet, and the computational resources are never reused across serverless workloads. 
When the data pipeline processing has been completed and the cluster has been terminated, the 
computational resources are released back to the cloud provider and destroyed.
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You might choose a serverless compute to remove the infrastructure overhead of maintaining and 
updating multiple cluster policies, as well as to also take advantage of fast cluster provisioning when 
reacting to spikes in processing demands is critical. Plus, serverless execution enables other platform 
features, such as updating materialized views in continuous processing mode (processing modes are 
covered in the next section).

Loading external dependencies

Data pipelines may need to load external dependencies, such as helper utilities or third-party libraries. 
As such, DLT offers three ways to install runtime dependencies for a data pipeline:

•	 From a notebook cell, using the %pip magic command (https://docs.databricks.
com/en/notebooks/notebooks-code.html#mix-languages)

•	 Loading a module from a workspace file or Databricks repo

•	 Using a cluster initialization script

The popular Python package manager pip can be used to install Python modules from any notebook 
in a data pipeline’s source code, via the %pip Databricks magic command. %pip is the simplest 
method for installing library dependencies in a data pipeline. At runtime, the DLT system will detect 
all notebook cells containing %pip magic commands and execute these cells first, before performing 
any pipeline updates. Furthermore, all notebooks for a declared data pipeline’s source code will share 
a single virtual environment, so the library dependencies will be installed together in an isolated 
environment and be globally available to all notebooks in a data pipeline’s source code. Conversely, 
the notebooks for a data pipeline cannot install different versions of the same Python library. For 
example, the following code sample will use the pip package manager to install the popular libraries 
numpy, pandas, and scikit-learn, as well as a custom Python library from a Databricks 
Volumes location:

%pip install numpy pandas scikit-learn /Volumes/tradingutils/tech-
analysis-utils-v1.whl

As a best practice, these dependency installation statements should be placed at the very top of a 
notebook, so that it's easier to reference pipeline dependencies quickly.

Alternatively, library dependencies can also be installed as a Python module. In this scenario, the 
library can be installed and loaded in a DLT pipeline as either a workspace file or from a Databricks 
Repo, if the module is version-controlled using a Git provider, such as GitHub or Bitbucket.

Lastly, cluster initialization scripts can also be used to install external dependencies. These scripts are 
run after a cluster has provisioned the VMs and installed the Databricks runtime, but before the data 
pipeline begins execution. For example, this type of dependency installation might be applicable in a 
scenario where firmwide libraries need to be consistently installed across all data engineering platforms.

https://docs.databricks.com/en/notebooks/notebooks-code.html#mix-languages
https://docs.databricks.com/en/notebooks/notebooks-code.html#mix-languages
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Important note
You may have noticed that the preceding options only covered installing Python dependencies. 
DLT does not support installing JVM libraries, since it only offers the Python and SQL 
programming interfaces.

Data pipeline processing modes

The data pipeline processing mode determines how frequently the tables and materialized views within 
a pipeline are updated. DLT offers two types of pipeline processing modes – triggered processing 
mode and continuous processing mode.

Triggered processing mode will update the datasets contained within a pipeline once and then 
immediately terminate the cluster that was provisioned to run the pipeline, releasing the computational 
resources back to the cloud provider and thereby terminating additional cloud costs from being 
assessed. As the name suggests, triggered processing mode can be run in an ad hoc manner and will 
execute immediately from a triggering event, such as the event of a button clicked on the DLT UI by 
a user or an invocation to the Databricks REST API.

Figure 2.5 – A triggered data pipeline will refresh each dataset and then immediately terminate the cluster

Triggered processing mode can also be triggered to run using a cron schedule, which can be configured 
from the UI or via the REST API. As shown in Figure 2.6, a recurring schedule can be created by 
clicking on the Schedule drop-down button in the DLT UI, clicking the Add schedule button, and 
finally, selecting the desired time to trigger a pipeline update. Each day, the datasets within the pipeline 
will be refreshed at the scheduled time.
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Figure 2.6 – DLT pipelines can be scheduled to refresh datasets based on a repeating schedule

Conversely, continuous processing mode will provision computational resources to refresh datasets 
within a pipeline but will continue to execute indefinitely, processing data and refreshing the tables 
and materialized views as data arrives from the source. A continuous processing pipeline will keep 
the computational resources running and will continue to incur cloud costs, with the trade-off of 
minimal data staleness. This type of pipeline mode should be selected when data latency is prioritized 
over cloud compute costs for a particular data pipeline.

Fortunately, the pipeline processing mode and other pipeline settings can be updated throughout the 
lifecycle of a data pipeline, allowing the pipeline to be flexible around processing latency and compute 
costs. For example, an economic downturn may force an organization to prioritize cost savings over 
latency but may again emphasize latency later down the road.

Let’s use everything that we’ve learned together in this chapter and build a DLT pipeline that will apply 
SCD Type 2 changes to downstream datasets in our data pipeline.

Hands-on exercise – applying SCD Type 2 changes
In this hands-on exercise, we’ll use Databricks Auto Loader to incrementally load JSON files that are 
written to a raw landing zone in a cloud storage account. Next, we’ll transform downstream columns 
and join data ingested from an external Postgres database.
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Important note
Reading data from a remote Postgres database is optional. This step is intended to demonstrate 
the flexibility of the Databricks Data Intelligence Platform, showing you how easy it is to read 
structured data from a remote RDBMS and combine it with semi-structured data. If you do 
not have a Postgres database, a static DataFrame containing the taxi driver information is 
provided for you.

If you haven’t done so, you will need to clone the accompanying notebooks from this chapter’s GitHub 
repo, located at https://github.com/PacktPublishing/Building-Modern-Data-
Applications-Using-Databricks-Lakehouse/tree/main/chapter02.

Let’s start by importing the data generator notebook, titled Generate Mock Taxi Trip Data. 
This notebook will create a mock dataset containing fictitious information about taxi trips. Once the 
mock dataset has been generated, this notebook will store the taxi trip dataset as multiple JSON files 
in our cloud storage account, which will be later ingested by our DLT pipeline. Attach the taxi trip 
data generator notebook to an all-purpose cluster and execute all the cells to generate mock data.

Next, let’s create our DLT pipeline definition. Create a new notebook by clicking the workspace table 
on the left sidebar, clicking on the Add dropdown, and selecting Notebook. Rename the notebook 
with a meaningful name, such as Taxi Trips DLT Pipeline. We’ll declare the datasets and 
transformations for our DLT pipeline in this notebook.

Next, import the DLT Python module to access the DLT function decorators to define datasets and 
dependencies, as well as the PySpark functions module:

import dlt
import pyspark.sql.functions as F

We’ll need to create a streaming table that will ingest taxi trip JSON data that has been written to a 
landing zone on cloud storage. Let’s start by defining a new streaming table that uses the cloudFiles 
data source to listen for new file events in the raw landing zone:

# This location keeps track of schema changes
SCHEMA_LOCATION = "/tmp/chp_02/taxi_data_chkpnt"
# This location contains the raw, unprocessed trip data
RAW_DATA_LOCATION = "/tmp/chp_02/taxi_data/"

@dlt.table(
    name="raw_taxi_trip_data",
    comment="Raw taxi trip data generated by the data generator 
notebook"
)
def raw_taxi_trip_data():
    return (
        spark.readStream.format("cloudFiles")

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter02
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter02
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        .option("cloudFiles.format", "json")
        .option("cloudFiles.schemaLocation", SCHEMA_LOCATION)
        .load(RAW_DATA_LOCATION) )

As new taxi trip data arrives, our DLT pipeline will efficiently load the data using Auto Loader, fetching 
only the information pertaining to the unprocessed files.

Now that we’ve ingested the raw taxi trip data, we can begin applying the recorded changes to 
downstream tables. Let’s first define a target streaming table to apply SCD Type 2 changes that have 
been reported by the mock taxi trip data source:

# Define a new streaming table to apply SCD Type 2 changes
dlt.create_streaming_table("taxi_trip_data_merged")

Next, we’ll leverage the apply_changes() function covered earlier to instruct the DLT system 
on how changes should be applied, which columns to omit in the downstream table, and which SCD 
type to use. Add the following function call to the notebook:

dlt.apply_changes(
    target="taxi_trip_data_merged",
    source="raw_taxi_trip_data",
    keys = ["trip_id"],
    sequence_by = F.col("sequence_num"),
    apply_as_deletes = F.expr("op_type = 'D'"),
    except_column_list = ["op_type", "op_date", "sequence_num"],
    stored_as_scd_type = 2
)

For our last step, we’ll transform a few of the columns in our upstream tables, such as rounding columns 
with a float data type to two decimal places, as well as splitting the trip_distance column 
into a column with miles as the unit of measurement and another column with kilometers as the 
unit of measurement. Next, we’ll connect to a remote Postgres database and read the latest taxi driver 
information. If you have access to a Postgres database, you can import the notebook, titled Generate 
Postgres Table, and execute the cells to generate a table to test with. Our final streaming table, 
which enriches our data and joins the latest taxi driver reference data, will look like the following:

@dlt.table(
    name="raw_driver_data",
    comment="Dataset containing info about the taxi drivers"
)
def raw_driver_data():
    postgresdb_url = f"jdbc:postgresql://{POSTGRES_
HOSTNAME}:{POSTGRES_PORT}/{POSTGRES_DB}"
    conn_props = {
        "user": POSTGRES_USERNAME,
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        "password": POSTGRES_PW,
        "driver": "org.postgresql.Driver",
        "fetchsize": "1000"
    }
    return (
        spark.read
            .jdbc(postgresdb_url,
                  table=POSTGRES_TABLENAME,
                  properties=conn_props))

@dlt.table(
    name="taxi_trip_silver",
    comment="Taxi trip data with transformed columns"
)
def taxi_trip_silver():
    return (
        dlt.read("taxi_trip_data_merged")
            .withColumn("fare_amount_usd",
                        F.round(F.col("trip_amount"), 2))
            .withColumn("taxes_amount_usd",
                        F.round(F.col("trip_amount") * 0.05, 2))
            .withColumn("trip_distance_miles",
                        F.round(F.col("trip_distance"), 2))
            .withColumn("trip_distance_km",
                        F.round(F.col("trip_distance")
                        * 1.60934, 2)) # 1 mile = 1.60934 km
    ).join(
        dlt.read("raw_driver_data"),
        on="taxi_number",
        how="left"
    )

In this last function definition, we make use of the dlt.read() function to retrieve earlier dataset 
declarations. Behind the scenes, the DLT framework will add the datasets to the dataflow graph, creating 
the dependencies between the taxi_trip_data_merged and taxi_trip_silver datasets.

Now, it’s time to create our DLT pipeline. Attach the notebook in the previous step to an all-purpose 
cluster and execute the notebook cells. When prompted, click on the blue Create Pipeline button 
to open the Pipeline UI page. Give the pipeline a meaningful name, such as Taxi Trip Data 
Pipeline. Since we are leveraging the apply_changes() function, we will need to select the 
Advanced product edition. Ensure that the Triggered processing mode radio button is selected. To view 
the backend table that is created by the apply_changes() function, select the Hive Metastore for 
the storage location, and provide a target schema to store the pipeline datasets. Accept the remainder 
default values, and then click the Create button to create the pipeline.
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Finally, run the newly created pipeline by clicking the Start button in the DLT UI. Soon, you will see 
a data flow graph that ingests changes from the raw JSON data, enriches downstream columns, and 
joins the remote structured data from the Postgres database.

Figure 2.7 – A data flow graph generated by the DLT system

As data is changed in the mock taxi trip data source, the full history of DML changes is picked and 
applied to a target taxi_trip_data_merged table. The output of our data pipeline will be a 
curated streaming table that contains information about the taxi cab ride, as well as information about 
the taxi driver and taxi vehicle. Best of all, with just a few lines of code, we deployed a fully scalable, 
cost-efficient data pipeline that can easily process billions of files.

Summary
In this chapter, we looked at how DLT can simplify our data pipelines by abstracting away many of 
the low-level details of processing data in Spark. We saw how Databricks Auto Loader solves the 
scalability problem of stream processing files from cloud storage. With just a few lines of code, we 
deployed a scalable backend system to efficiently read new files as soon as they appear in a cloud 
storage location. When it came to applying data changes to downstream datasets within our pipeline, 
the DLT framework once again simplified data reconciliation when data events were published late or 
out of order. We also saw how we could apply slowly changing dimensions with just a few parameter 
changes in the apply_changes() API. Finally, we uncovered the details of data pipeline settings, 
optimizing the pipeline compute based on the computational requirements and DLT feature set that 
we needed in the data pipeline. We also saw how DLT can automatically handle pipeline failures for 
us and proactively take action and attempt to fix certain runtime exceptions.

In the next chapter, we’ll look at how we can use expectations in DLT to enforce data quality rules on 
data throughout each hop in our data pipeline, taking action whenever the data quality rules have 
been violated.





3
Managing Data Quality Using 

Delta Live Tables

This chapter introduces several techniques for managing the data quality of datasets in a data pipeline. 
We’ll introduce expectations in Delta Live Tables (DLT), which is a way to enforce certain data quality 
constraints on arriving data before merging the data into downstream tables. Later in the chapter, we’ll 
look at more advanced techniques such as quarantining bad data for human intervention. Next, we’ll 
also see how we can decouple constraints so that they can be managed separately by non-technical 
personas within your organization. By the end of the chapter, you should have a firm understanding 
of how you can take measures to ensure the data integrity of datasets in your lakehouse and how to 
take appropriate action on data not meeting the expected criteria.

In this chapter, we’re going to cover the following topics:

•	 Defining data constraints in Delta Lake

•	 Using temporary datasets to validate data processing

•	 An introduction to expectations

•	 Hands-on exercise: writing your first data quality expectation

•	 Taking action on failed expectations

•	 Applying multiple data quality expectations

•	 Decoupling expectations from a DLT pipeline

•	 Hands-on exercise – quarantining poor-quality data for correction
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Technical requirements
To follow along with this chapter, it’s recommended to have Databricks workspace permissions to create 
an all-purpose cluster and a DLT pipeline using a cluster policy. It’s also recommended to have Unity 
Catalog permissions to create and use catalogs, schemas, and tables. All code samples can be downloaded 
from this chapter’s GitHub repository, located at https://github.com/PacktPublishing/
Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/
main/chapter03. We’ll be using the NYC yellow taxi dataset, which can be found on the Databricks 
FileSystem at /databricks-datasets/nyctaxi/tripdata/yellow. This chapter will 
create and run several new notebooks and DLT pipelines using the Advanced product edition. As a 
result, the pipelines are estimated to consume around 10-20 Databricks Units (DBUs).

Defining data constraints in Delta Lake
Data constraints are an effective way of defining criteria that incoming data must satisfy before being 
inserted into a Delta table. Constraints are defined per column in a Delta table and are stored as 
additional table metadata.

There are four different types of constraints available within the Databricks Data Intelligence Platform:

•	 NOT NULL: Ensures that the data for a particular column in a table is not null. The NOT 
NULL constraint was first introduced in the StructField class definition of Apache Spark.

•	 CHECK: A Boolean expression that must evaluate to True for each row before being inserted. 
Check constraints allow data engineers to enforce complex validation logic that a particular 
column must satisfy.

•	 PRIMARY KEY: Establishes uniqueness for a particular column across all the rows in a table. 
The PRIMARY KEY constraint is a special kind of constraint as it is purely informative and 
is not enforced on the incoming data. As we’ll see in the following example, a NOT NULL 
constraint must accompany a PRIMARY KEY constraint.

•	 FOREIGN KEY: Establishes a relationship between a particular column and another table. 
Like the PRIMARY KEY constraint, a FOREIGN KEY constraint is also purely informative.

In addition, only the NOT NULL and CHECK constraints are enforced on the incoming data.

Constraint Enforced Informative
NOT NULL ✔️ ✖️
CHECK ✔️ ✖️
PRIMARY KEY ✖️ ✔️
FOREIGN KEY ✖️ ✔️

Table 3.1 – Data quality constraints can either be enforced or not 

enforced on the Databricks Data Intelligence Platform

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter03
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter03
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter03
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Important note
The PRIMARY KEY constraint and the FOREIGN KEY constraint require the Delta tables to 
be stored in Unity Catalog, otherwise a runtime error will be thrown.

Let’s look at how we can use constraints to define a hierarchical relationship between two Delta tables in 
our lakehouse. First, create a new SQL-based notebook within your Databricks notebook. Let’s start by 
defining a child table that will contain data about the taxicab drivers, called drivers, with a primary 
key defined on the driver_id column. Add the following code snippet to a new notebook cell:

%sql
CREATE CATALOG IF NOT EXISTS yellow_taxi_catalog;
CREATE SCHEMA IF NOT EXISTS yellow_taxi_catalog.yellow_taxi;
CREATE TABLE yellow_taxi_catalog.yellow_taxi.drivers(
    driver_id INTEGER NOT NULL,
    first_name STRING,
    last_name STRING,
    CONSTRAINT drivers_pk PRIMARY KEY(driver_id));

Next, let’s define a parent table, rides, having a primary key defined for the ride_id column 
and a foreign key that references the drivers table. Add the following code snippet below the first 
notebook cell:

%sql
CREATE TABLE yellow_taxi_catalog.yellow_taxi.rides(
    ride_id INTEGER NOT NULL,
    driver_id INTEGER,
    passenger_count INTEGER,
    total_amount DOUBLE,
    CONSTRAINT rides_pk PRIMARY KEY (ride_id),
    CONSTRAINT drivers_fk FOREIGN KEY (driver_id)
    REFERENCES yellow_taxi_catalog.yellow_taxi.drivers);

Attach the newly created notebook to an all-purpose cluster and execute the notebook cells to create 
the parent and child tables. Finally, let’s navigate to the newly defined tables in Catalog Explorer to 
generate an Entity Relationship Diagram (ERD) directly from the Databricks Data Intelligence 
Platform. From our Databricks workspace, click on Catalog Explorer on the left sidebar. Navigate 
to the yellow_taxi_catalog catalog in Unity Catalog, in the preceding example. Click on the 
defined schema and, finally, click on the parent table. A side pane will expand, displaying metadata 
about our Delta table. Click on the button titled View Relationships to view the ERD.
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Figure 3.1 – Data constraints can be used to define primary key 

and foreign key relationships between Delta tables

As previously mentioned, the primary key and foreign key constraints are purely informative and are 
not enforced on the incoming data. Instead, it’s recommended to implement additional safeguards to 
ensure the data integrity of a primary key column in a Delta table. Let’s look at a few effective strategies 
we can employ to maintain the integrity of primary key columns defined in our lakehouse tables.

Using temporary datasets to validate data processing
As we’ll see in this section, creating a view is an effective method for validating the uniqueness of 
a primary key column. Additionally, we can also define alerts in the Databricks Data Intelligence 
Platform to notify the data stewards of potential data quality issues so that they can take appropriate 
measures to correct the data integrity.

We can leverage a view to validate the uniqueness of the primary key column. Recall the rides and 
drivers tables we defined in the previous section. In this example, we’re going to define a view on 
the incoming data to ensure the uniqueness of a primary key column across the rides Delta table. 
Create a new query in Databricks by navigating back to your workspace and right-clicking to open 
a dialog box. Select New | Query to open a new query in the editor. Next, rename the query with a 
meaningful name, such as rides_pk_validation_vw. Finally, add the following query text to 
the open query and click the Run button to validate that the query runs as expected:

CREATE VIEW yellow_taxi_catalog.yellow_taxi.rides_pk_validation_vw AS
SELECT *
FROM (
    SELECT count(*) AS num_occurrences
    FROM  yellow_taxi_catalog.yellow_taxi.rides
    GROUP BY ride_id
) WHERE num_occurrences > 1
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As it turns out, primary key uniqueness is essential in downstream reports for the Yellow Taxi 
Corporation. Let’s create a new alert in the Databricks Data Intelligence Platform to alert our data 
stewards of possible data corruption so that they can take appropriate action when a duplicate primary 
key is inserted.

First, let’s create a query that will be run by our alert. From the sidebar, click on the Queries button 
and click the Create query button, which will take us to the query editor in the Databricks Data 
Intelligence Platform. Rename the query to something meaningful, such as Rides Primary Key 
Uniqueness. Enter the following SQL text as the query body, click the Save button, and select a 
workspace folder to save the query. Click the Run button and ensure that the query runs successfully:

SELECT count(*) AS num_invalid_pks
  FROM yellow_taxi_catalog.yellow_taxi.rides_pk_validation_vw;

Next, from the sidebar, click on the Alerts button to navigate to the Alerts UI. Then, click on the Create 
alert button to begin creating a new alert and enter a descriptive name in the Alert name textbox, 
such as Invalid Primary Key on Rides Table. In the Query dropdown, select the query 
we just created. Click the Send notification checkbox and accept the default settings by clicking the 
Create alert button. In a real-world scenario, this could be an email chain for on-call data engineers 
or other popular notification destinations such as Slack or Microsoft Teams.

This example is quite practical in real-world data pipelines. However, views require the latest table 
state to be calculated each time a pipeline is run, as well as the maintenance overhead of having to 
configure the notification alerts. That’s a lot of configuration to maintain, which simply won’t scale 
as we add more tables to our pipelines. What if there’s an easier way to declare data quality as a part 
of our DLT pipeline declaration?

An introduction to expectations
Expectations are data quality rules defined alongside a dataset definition in a DLT pipeline. The 
data quality rule is a Boolean expression applied to each record passing through a particular dataset 
definition. The expression must evaluate to True for the record to be marked as passing, else it will 
result in a failed record indicating that the record has not passed data quality validation.

Furthermore, the DLT pipeline will record data quality metrics for each row that gets processed in 
a data pipeline. For example, DLT will record the number of records that have passed data quality 
validation, as well as the number of records that have not.

Expectation composition

Each expectation is comprised of three major components: a description, a Boolean expression, and 
an action to take.
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Figure 3.2 – The main components of a DLT expectation

An expectation is declared using a DLT function decorator. The function decorator specifies the 
type of action that should be taken whenever a particular constraint or set of constraints evaluates to 
False. Additionally, the function decorator accepts two input parameters, a short description that 
describes the data quality constraint and a Boolean expression that must evaluate to True for a row 
to be marked as passing validation.

Hands-on exercise – writing your first data quality expectation

To get a feel for the DLT syntax, let’s work through a real-world example of writing a data pipeline for 
a New York City cab company called the Yellow Taxi Corporation. We’ll write a simple data pipeline, 
enforcing a data quality constraint that can be applied to our incoming NYC Taxi data and warn us 
when there are records that don’t adhere to our data quality specifications. In this scenario, we want 
to ensure that the incoming trip data does not have any trips with a negative total amount, since it 
would not be possible for our cab drivers to owe the riders any money.

Generating taxi trip data

Let’s begin by logging into our Databricks workspace. For this exercise, you will need to use the 
accompanying NYC Yellow Taxi trip data generator, which can be downloaded from the chapter’s 
GitHub repo. Either import the data generator notebook into your Databricks workspace or create a 
new Python notebook with the following code snippet.

First, we’ll need to download the dbldatagen Python library, which will help us randomly generate 
new taxi trip data. Add the following code snippet to your notebook, which uses the %pip magic 
command to download the library:

%pip install dbldatagen==0.4.0
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Now that the library has been installed, let’s define a Python function for generating new taxi trip data 
according to our schema. We’ll specify columns for typical taxi trip details, including the number of 
passengers, the fare amount, the trip distance, and more:

def generate_taxi_trip_data():
    """Generates random taxi trip data"""
    import dbldatagen as dg
    from pyspark.sql.types import (
        IntegerType, StringType, FloatType, DateType
    )
    ds = (
        dg.DataGenerator(spark, name="random_taxi_trip_dataset",
                         rows=100000, partitions=8)
        .withColumn("trip_id", IntegerType(),
                    minValue=1000000, maxValue=2000000)
        .withColumn("taxi_number", IntegerType(),
                    uniqueValues=10000, random=True)
        .withColumn("passenger_count", IntegerType(),
                    minValue=1, maxValue=4)
        .withColumn("trip_amount", FloatType(), minValue=-100.0,
                    maxValue=1000.0, random=True)
        .withColumn("trip_distance", FloatType(),
                    minValue=0.1, maxValue=1000.0)
        .withColumn("trip_date", DateType(),
                    uniqueValues=300, random=True))

    return ds.build()

Now that we’ve defined a way to randomly generate new trip data, we’ll need to define a location to 
store the new data so that it can be processed by a DLT pipeline. In a new notebook cell, let’s create 
an empty directory on the Databricks File System (DBFS) for storing our trip data:

dbutils.fs.mkdirs("/tmp/chp_03/taxi_data")

Lastly, we’ll need a way to tie everything together. In a new notebook cell, add the following for loop, 
which will call the generate_taxi_trip_data function and write the data to the DBFS location:

import random
max_num_files = 100
for i in range(int(max_num_files)):
    df = generate_taxi_trip_data()
    file_name = f"/tmp/chp_03/taxi_data/taxi_data_{random.randint(1, 
1000000)}.json"
    df.write.mode("append").json(file_name)
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Next, create an all-purpose cluster to execute the trip data generator notebook. Once the all-purpose 
cluster has been created, navigate to the new notebook and click the cluster dropdown in the top 
navigation bar of the Databricks Data Intelligence Platform. Select the name of the cluster you created 
and select Attach to attach the trip data generator notebook to the cluster and execute all the cells. 
The taxi trip data generator will append several new JSON files containing the randomly generated 
trip data to the DBFS location.

Creating a new DLT pipeline definition

Now that we’ve generated new data, let’s create another new notebook for our DLT pipeline definition. 
Navigate to the workspace tab on the sidebar, drill down to your user’s home directory, and create a 
new notebook by right-clicking and selecting Add Notebook.

Give the new notebook a meaningful name such as Chapter 3 – Enforcing Data Quality. 
Begin by importing the DLT Python module as well as the PySpark functions:

import dlt
from pyspark.sql.functions import *

Next, let’s define a bronze table, yellow_taxi_raw, that will ingest the taxi trip data that was 
written to the DBFS location by our taxi trip data generator:

@dlt.table(
    comment="The randomly generated taxi trip dataset"
)
def yellow_taxi_raw():
    path = "/tmp/chp_03/taxi_data"
    schema = "trip_id INT, taxi_number INT, passenger_count INT, trip_
amount FLOAT, trip_distance FLOAT, trip_date DATE"
    return (spark.readStream
                 .schema(schema)
                 .format("json")
                 .load(path))

For the next layer of our data pipeline, the stakeholders within our organization have asked us to 
provide a way for their business to report real-time financial analytics of our incoming trip data. As 
a result, let’s add a silver table that will transform the incoming stream of trip data, calculating the 
expected profits and losses of our cab company, Yellow Taxi Corporation. In this example, we’re going 
to take the total amount that was paid by the passengers and begin to calculate how that money is 
allocated to fund different parts of the business and calculate potential profits.

Let’s define our silver table definition, trip_data_financials. The table definition begins just 
like any normal streaming table definition. We begin by defining a Python function that returns a 
streaming table. Next, we use the DLT function annotations to declare this function as a streaming 
table with an optional name, trip_data_financials, as well as a comment with descriptive text 
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about the streaming table. Create a new notebook cell, adding the following DLT dataset definition 
for the silver table:

@dlt.table(name="trip_data_financials",
           comment="Financial information from incoming taxi trips.")
@dlt.expect("valid_total_amount", "trip_amount > 0.0")
def trip_data_financials():
    return (dlt.readStream("yellow_taxi_raw")
               .withColumn("driver_payment",
                           expr("trip_amount * 0.40"))
               .withColumn("vehicle_maintenance_fee",
                           expr("trip_amount * 0.05"))
               .withColumn("adminstrative_fee",
                           expr("trip_amount * 0.1"))
               .withColumn("potential_profits",
                           expr("trip_amount * 0.45")))

One thing that you may have noticed in our silver table declaration is a new function decorator for 
enforcing a data quality constraint. In this case, we want to ensure that the total amount reported in 
our trip data is greater than zero.

When our data pipeline is triggered to run and update the bronze and silver datasets, the DLT system 
will inspect each row that is processed and evaluate whether the Boolean expression for our data 
quality constraint evaluates to True for the row:

@dlt.expect("valid_total_amount", "trip_amount > 0.0")

Within the body of the function definition, we are using the built-in PySpark withColumn() and 
expr() functions to add four new columns to the output of our bronze table – driver_payment, 
vehicle_maintenance_fee, adminstrative_fee, and potential_profits. These 
columns are calculated by taking a percentage of the original trip_amount column. In business 
terms, we are splitting the total amount that was collected from the passengers into the driver’s payment, 
fees collected to run the company, and potential profits for the company.

In the following section, we’ll look at the different types of actions that the DLT system will take if 
an expectation Boolean expression is evaluated to False. By default, the DLT system will simply 
record that the row failed the Boolean expression for a particular row in the system logs and record 
the data quality metrics in the system. In our silver table declaration, let’s assume the default behavior 
of logging a warning message.

Running the data pipeline

Let’s create a new data pipeline from our dataset declarations in our notebook. Execute the notebook 
cells and ensure that there are no syntax errors. Next, the Databricks Data Intelligence Platform will 
prompt you to create a new data pipeline. Click the Create pipeline button to create a new DLT data 
pipeline. Next, under the Destination settings, select a catalog and schema in Unity Catalog where 
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you would like to store the pipeline datasets. Under the Compute settings, set Min workers to 1 and 
Max workers to 2. Accept the defaults by clicking the Create button. Finally, click the Start button to 
execute the data pipeline. You will be taken to a visual representation of the dataflow graph.

Figure 3.3 – The dataflow graph for our NYC Yellow Taxi Corp. pipeline

Behind the scenes, the DLT system will begin by creating and initializing a new Databricks cluster and 
begin parsing the dataset definitions in our notebook into a dataflow graph. As you can see, the DLT 
system will ingest the raw trip data files from our DBFS location into the streaming table, yellow_
taxi_raw. Next, the system detects the dependency of our silver table, trip_data_financials, 
and will immediately begin calculating our additional four columns in our silver table. Along the way, 
our data quality constraint is being evaluated on the incoming data in real time.

Let’s look at the data quality in real time. Click on the silver table, and the DLT UI will expand a 
pane on the right-hand side summarizing the silver table. Click on the Data quality tab to view the 
data quality metrics. Notice that the graph is being updated in real time as our data is processed. Of 
all the data that has been processed by the data pipeline, you’ll notice that around 10% has failed 
the valid_total_amount expectation – which is expected. The data generator notebook will 
purposely publish records with a negative total amount to our cloud storage location. We can easily 
see how much of our data is validating against our defined data quality criteria and how much is not.

Figure 3.4 – The DLT UI will summarize the data quality metrics of our data pipeline in real time
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Congratulations! You’ve written your first data quality constraint in Delta Live Tables. By now, you 
should see just how easy yet powerful the DLT framework is. In just a few lines of code, we’re able to 
enforce data quality constraints on our incoming data, as well as to monitor the data quality in real 
time. This gives data engineering teams more control over their data pipelines.

In the next section, we’ll see how data engineering teams can leverage DLT expectations to react to 
potential data quality issues before leading to potential data corruption.

Acting on failed expectations

There are three types of actions that DLT can take when a particular record violates the data constraints 
defined on a DLT dataset:

•	 Warn: When DLT encounters an expression violation, the record will be recorded as a metric 
and will continue to be written to the downstream target dataset.

•	 Drop: When DLT encounters an expression violation, the record will be recorded as a metric 
and will be prevented from entering the downstream target dataset.

•	 Fail: When DLT encounters an expression violation, the pipeline update will fail entirely until 
a data engineering team member can investigate and correct the data violation or possible 
data corruption.

You should always choose one of the actions based on the individual use case and on how you want 
to handle data that does not meet data quality rules. For example, there may be times when data does 
not meet the defined data quality constraints but logging the violating rows in the DLT system and 
monitoring the data quality meets the requirements for a particular use case. On the other hand, there 
may be scenarios where specific data quality constraints must be met, otherwise the incoming data 
will break downstream processes. In that scenario, more aggressive action such as failing the data 
pipeline run and rolling back transactions is the appropriate behavior. In either scenario, the Delta 
Live Tables framework gives data engineering teams full control to decide the fate of violating rows 
and the power to define how the system should react.

Hands-on example – failing a pipeline run due to poor data 
quality

There may be scenarios when you want to immediately halt the execution of a data pipeline update 
to intervene and correct the data, for example. In this case, DLT expectations offer the ability to 
immediately fail a data pipeline run using the @dlt.expect_or_fail() function decorator.

If the operation is a table update, the transaction is immediately rolled back to prevent contamination 
of bad data. Furthermore, DLT will track additional metadata about processed records so that data 
engineering teams can pinpoint which record in the dataset caused the failure.
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Let’s look at how we can update the earlier example of our Yellow Taxi Corporation data pipeline. In 
this scenario, having a negative total amount would break downstream financial reports. In this case, 
rather than simply record the rows that violate the expectation, we’d like to fail the pipeline run, so 
that our data engineering team can investigate potential issues in the data and take appropriate action 
such as the manual correction of the data.

In the Delta Live Tables framework, adjusting the behavior of our data pipeline is as simple as 
updating the function decorator of our silver table definition. Let’s update the expectation with the 
expect_or_fail action:

@dlt.expect_or_fail("valid_total_amount", "trip_amount > 0.0")

The full dataset definition for the silver table, trip_data_financials, should look like the 
following code snippet:

@dlt.table(
    name="trip_data_financials",
    comment="Financial information from completed taxi trips."
)
@dlt.expect_or_fail("valid_total_amount", "trip_amount > 0.0")
def trip_data_financials():
    return (
        dlt.readStream("yellow_taxi_raw")
           .withColumn("driver_payment",
                       expr("trip_amount*0.40"))
           .withColumn("vehicle_maintenance_fee",
                       expr("trip_amount*0.05"))
           .withColumn("adminstrative_fee",
                       expr("trip_amount*0.1"))
           .withColumn("potential_profits",
                       expr("trip_amount*0.45")))

Next, let’s rerun the trip data generator to append additional files to the raw landing zone in the 
Databricks file system. Once the trip data generator has finished, navigate back to the Yellow Taxi 
Corporation data pipeline created earlier and click the Start button to trigger another execution of 
the data pipeline. For this chapter’s examples, the trip data generator will randomly generate trip data 
with negative total amounts.
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You should observe for this run of the data pipeline that the data pipeline update failed with an 
error status.

Figure 3.5 – The dataflow graph will update to display an error when the data quality constraint is violated

Expanding the failure message, you can see that the cause of the pipeline failure was a violation of 
the expectation constraint.

Figure 3.6 – The data pipeline logs will display the failed update due to a violated expectation check

Applying multiple data quality expectations

There may be times when a dataset author may want to apply more than one business rule or data 
quality constraint on each row of a dataset. In that event, DLT provides a special set of function 
decorators for specifying multiple data quality constraint definitions.

The @dlt.expect_all() function decorator can be used to combine more than one data quality 
constraint for a particular dataset. Similarly, expect_all_or_drop() can be specified when 
incoming data should be dropped from entering a target table unless all the criteria in the set of data 
quality constraints are satisfied. Lastly, expect_all_or_fail() will fail a run of a data pipeline 
if any of the criteria in a set of data quality constraints are not met by the incoming data.
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Let’s look at how we might drop invalid taxicab trip data entries from entering downstream datasets 
in our pipeline when the values don’t pass the validation criteria:

assertions = {
    "total_amount_constraint": "trip_amount > 0.0",
    "passenger_count": "passenger_count >= 1"
}

@dlt.table(
    name="yellow_taxi_validated",
    comment="A dataset containing trip data that has been validated.")
@dlt.expect_all_or_drop(assertions)
def yellow_taxi_validated():
    return (
        dlt.readStream("yellow_taxi_raw")
           .withColumn("nyc_congestion_tax",
                       expr("trip_amount * 0.05")))

In the preceding example, we’ve defined a set of data constraints using the expectations function 
decorators and we are applying them collectively to the incoming data. Let’s imagine that losing a 
few records of the taxicab trip data will not pose a threat to downstream processes. As a result, we’ve 
decided to drop records that don’t pass the validation step in our expectation declaration. With just a 
few extra lines of configuration, our data pipeline can enforce data quality constraints on the incoming 
data and automatically react to data that doesn’t pass the defined criteria.

While we’ve only looked at data within the context of our DLT data pipeline, let’s see how the DLT 
framework can validate data across multiple systems of data.

Decoupling expectations from a DLT pipeline
Up until now, we’ve only worked with defining data quality constraints within the table definition. 
However, there may be scenarios when you’d like to decouple the data quality constraints from data 
pipeline definitions, allowing the data engineering teams to work separately from the data analyst 
teams. This is especially useful when a group of non-technical individuals determine the data quality 
criteria. Furthermore, this design also provides even more flexibility to maintain and change business 
rules as the business changes. For example, a real-world example would be validating seasonal discount 
codes that change over time.

Let’s imagine that we have a group of non-technical business analysts who would like to interact with 
the data quality constraints using a UI such as a web portal in a browser window. In that case, we can 
load and save our data quality constraints into a separate Delta table and then dynamically load the 
data quality constraints at runtime.
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Let’s begin by defining a data quality rules table. We’ll introduce three columns: a column for the 
rule name, a column defining the data quality rule expression, and a column identifying the dataset 
name – everything needed to create an expectation using DLT:

%sql
CREATE TABLE IF NOT EXISTS<catalog_name>.<schema_name>.data_quality_
rules
(rule_name STRING, rule_expression STRING, dataset_name STRING)
USING DELTA

Let’s revisit the previous example for specifying multiple expectations using a Python dictionary. In 
that example, we defined a dict data structure called assertions. In this example, let’s convert 
it into a tabular format, inserting the entries into our Delta table. Add the following SQL statement 
to a new notebook cell:

%sql
INSERT INTO
    data_quality_rules
VALUES
    (
        'valid_total_amount',
        'trip_amount > 0.0',
        'yellow_taxi_raw'
    ),(
        'valid_passenger_count',
        'passenger_count > 0',
        'yellow_taxi_raw'
    );

Next, within the data pipeline notebook, we can create a helper function that will read directly from 
our data quality rules table and translate each row to a format that the DLT Expectation can interpret:

def compile_data_quality_rules(rules_table_name, dataset_name):
    """A helper function that reads from the data_quality_rules table 
and coverts to a format interpreted by a DLT Expectation."""
    rules = spark.sql(f"""SELECT * FROM {rules_table_name} WHERE 
dataset_name='{dataset_name}'""").collect()
    rules_dict = {}
    # Short circuit if there are no rules found
    if len(rules) == 0:
        raise Exception(f"No rules found for dataset '{dataset_
name}'")
    for rule in rules:
        rules_dict[rule.rule_name] = rule.rule_expression
    return rules_dict
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We now have a Delta table that our non-technical data analysts can update using a UI separate from 
our data pipeline, and we also have a helper function that can read from the Delta table and translate 
the entries into a format that a DLT expectation can interpret. Let’s see how these pieces tie together 
to create a new dataset in our pipeline that dynamically loads the data quality requirements:

import dlt
from pyspark.sql.functions import *

RULES_TABLE = "<catalog_name>.<schema_name>.data_quality_rules"
DATASET_NAME = "yellow_taxi_raw"

@dlt.table(
    comment="Randomly generated taxi trip data."
)
def yellow_taxi_raw():
    path = "/tmp/chp_03/taxi_data"
    schema = "trip_id INT, taxi_number INT, passenger_count INT, trip_
amount FLOAT, trip_distance FLOAT, trip_date DATE"
    return (spark.readStream
                 .schema(schema)
                 .format("json")
                 .load(path))

@dlt.table(
    name="yellow_taxi_validated",
    comment="A dataset containing trip data that has been validated.")
@dlt.expect_all(compile_data_quality_rules(RULES_TABLE, DATASET_NAME))
def yellow_taxi_validated():
    return (
        dlt.readStream("yellow_taxi_raw")
           .withColumn("nyc_congestion_tax",
                       expr("trip_amount * 0.05"))
    )

This design pattern provides the flexibility to maintain the data quality rules separately from the 
data pipeline definition so that non-technical individuals determine the data quality criteria. But 
what if we have a technical group of individuals who want to stay involved in the quality of the data 
passing through our data pipeline? Moreover, what if this group of individuals needs to be notified of 
poor-quality data so that they can intervene and even manually correct the data for the downstream 
processes to function? Let’s take a look at how we might implement such a recovery process in the 
next hands-on exercise.
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Hands-on exercise – quarantining bad data for correction
In this example, we’re going to build a conditional data flow for data that doesn’t meet our data quality 
requirements. This will allow us to isolate the data that violates our data quality rules so that we can 
take appropriate action later or even report on the data that violates the data quality constraints.

We’ll use the same Yellow Taxi Corporation example to illustrate building a data quarantine zone 
concept. Let’s start off with a bronze table that ingests the raw JSON data written to the DBFS location 
by the trip data generator:

%py

import dlt
from pyspark.sql.functions import *

@dlt.table(
    name="yellow_taxi_raw",
    comment="The randomly generated taxi trip dataset"
)
def yellow_taxi_raw():
    path = "/tmp/chp_03/taxi_data"
    schema = "trip_id INT, taxi_number INT, passenger_count INT, trip_
amount FLOAT, trip_distance FLOAT, trip_date DATE"
    return (spark.readStream
                 .schema(schema)
                 .format("json")
                 .load(path))

Next, let’s begin by defining a few data quality rules on incoming data. Let’s make sure that the trip data 
published to our DBFS location is sensible. We’ll ensure that the total fare amount is greater than $0 
and that the ride has at least 1 passenger, otherwise, we’ll quarantine the trip data for further review:

data_quality_rules = {
    "total_amount_assertion": "trip_amount > 0.0",
    "passenger_count": "passenger_count >= 1"
}

Now, let’s apply the two data quality rules to the incoming data by creating another dataset with a 
calculated column, is_valid. This column will contain the results of the data quality rules evaluated 
for each row:

@dlt.table(
    name="yellow_taxi_validated",
    comment="Validation table that applies data quality rules to the 
incoming data"
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)
def yellow_taxi_validated():
    return (
        dlt.readStream("yellow_taxi_raw")
           .withColumn("is_valid",
                when(expr(" AND ".join(data_quality_rules.values())),
                lit(True)).otherwise(lit(False)))
    )

Finally, we can use the is_valid calculated column to split the streaming table into two data flows 
– a data flow for all incoming data that has passed the data quality assertions and a separate data flow 
for the incoming data that has not.

Let’s define a quarantine table in our data pipeline that will route the data according to the evaluated 
data quality rules:

@dlt.table(
    name="yellow_taxi_quarantine",
    comment="A quarantine table for incoming data that has not met the 
validation criteria"
)
def yellow_taxi_quarantine():
    return (
        dlt.readStream("yellow_taxi_validated")
           .where(expr("is_valid == False"))
    )

@dlt.table(
    name="yellow_taxi_passing"
)
def yellow_taxi_passing():
    return (
        dlt.readStream("yellow_taxi_validated")
           .where(expr("is_valid == True"))
    )

Finally, create a new DLT pipeline using the new notebook as the source. Provide a meaningful name 
for the pipeline, such as Chapter 3 Quarantining Invalid Data. Select Core as the 
product edition and Triggered as the execution mode. Next, select a target catalog and schema in 
Unity Catalog to store the pipeline datasets. Accept the remaining default values and click the Create 
button to create the new DLT pipeline. Finally, click on the Start button to trigger a new pipeline 
execution run. Notice how the data is split into two downstream tables – one table containing the 
rows that passed the data quality rules, and a quarantine table containing the rows that have failed 
the data quality rules.
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Figure 3.7 – Data that fails data quality rules is split into a quarantine table

By implementing a quarantine table, we can report on the real-time metrics so that stakeholders within 
our organization can be kept up to date on the quality of our incoming data. Furthermore, the data 
stewards of our lakehouse can review the data that has not passed the validation logic and even take 
appropriate action, such as manually correcting the invalid data.

Summary
In this chapter, we covered a lot of topics surrounding the data quality of the data in our lakehouse. 
We learned how the integrity of a table can be enforced using NOT NULL and CHECK constraints 
in Delta Lake. We also defined relationships between the tables in our lakehouse using PRIMARY 
KEY and FOREIGN KEY constraints. Next, we saw how we could enforce primary key uniqueness 
across our Delta tables using views to validate the data in our tables. We also saw just how easy it was 
to update the behavior of our data pipeline when incoming rows violated data quality constraints, 
allowing data engineering teams to react to downstream processes that have the potential to break 
from poor-quality data. Finally, we saw a practical example of how we can use expectations to create 
a conditional data flow in our pipeline, allowing our data stewards to quarantine and correct data that 
doesn’t meet the expected data quality.

In the next chapter, we’re going to get into more advanced topics of maintaining data pipelines in 
production. We’ll see how we can tune many different aspects of data pipelines to scale to large volumes 
of data and meet real-time stream processing demands such as high throughput and low latency.





4
Scaling DLT Pipelines

In this chapter, we’re going to look at several methods for scaling your Delta Live Tables (DLT) 
pipelines to handle the processing demands of a typical production environment. We’ll cover several 
aspects of tuning your DLT pipelines, from optimizing the DLT cluster settings so that your pipelines 
can quickly scale to handle the spikes of heavy processing demand to looking at ways we can optimize 
the data layout of the underlying tables in cloud storage. By the end of this chapter, you should have 
mastered how DLT clusters can automatically scale out to handle demand. You should also have a 
good understanding of the impact that table maintenance tasks, which are automatically run in the 
background by the DLT system, have on the performance of your data pipelines. Lastly, you should 
understand how to leverage Delta Lake optimization techniques to further improve the execution 
performance of your DLT pipelines.

We’re going to cover the following main topics in this chapter:

•	 Scaling compute to handle demand

•	 Hands-on example – setting autoscaling properties using the Databricks REST API

•	 Automated table maintenance tasks

•	 Optimizing table layouts for faster table updates

•	 Serverless DLT pipelines

•	 Introducing Enzyme, a performance optimization layer

Technical requirements
To follow along with this chapter, you will need Databricks workspace permissions to create and start 
an all-purpose cluster, as well as access to create a new DLT pipeline using at least a cluster policy. 
All code samples can be downloaded from this chapter’s GitHub repository located at https://
github.com/PacktPublishing/Building-Modern-Data-Applications-Using-
Databricks-Lakehouse/tree/main/chapter04. This chapter will create and run several 
new notebooks, as well as a new DLT pipeline using the Core product edition. As a result, the code 
samples in this chapter are estimated to consume around 10-15 Databricks Units (DBUs).

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter04
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter04
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter04
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Scaling compute to handle demand
Different portions of a data pipeline may involve heavy computation as calculations are performed, while 
other sections of the pipeline don’t require as much processing power. To yield the best performance 
while simultaneously optimizing costs, it’s important for any data pipeline to be able to add additional 
processing power when needed, as well as release computational resources when processing demands 
shrink over time. Fortunately, Databricks features a built-in autoscaling feature for DLT pipelines, 
so that virtual machines (VMs) can be added to and removed from a pipeline cluster to match the 
processing demands of a data pipeline during its execution period.

In fact, Databricks offers two types of cluster autoscaling modes for DLT pipelines: legacy and 
enhanced. Both autoscaling modes will automatically add or remove VMs as processing demands 
increase or decrease throughout a pipeline run. However, when the VMs are added and removed 
differs between the two.

With legacy autoscaling mode, a pipeline cluster will add additional VMs when there has been an 
increase in processing demand over a sustained period of time. Furthermore, in legacy autoscaling 
mode, a pipeline cluster will scale down only when VMs are left idle for a period of time and they 
have no currently executing Spark tasks.

On the other hand, with enhanced autoscaling mode, the DLT system will only add additional VMs 
if the system predicts that adding additional compute resources would speed up the execution of the 
pipeline update – for example, if the Spark jobs are limited by the number of available CPU cores 
and would benefit from having additional CPUs to execute a large amount of Spark tasks in parallel. 
In addition, the enhanced autoscaling feature will proactively look for opportunities for the pipeline 
cluster to scale down, evicting running Spark tasks and reducing cloud operational costs. During the 
eviction process, the enhanced autoscaling mode will ensure that evicted Spark tasks are recovered 
successfully on the remaining, running VMs before terminating the over-provisioned VMs.

Lastly, enhanced autoscaling is only available for clusters used in pipeline update tasks, while the 
legacy autoscaling mode is used by the DLT system to execute maintenance tasks.

The following table outlines the differences between the two types of autoscaling modes available 
for DLT pipeline clusters, as well as which DLT tasks are available for each of the autoscaling modes.

Autoscaling Mode Predictive  
Autoscaling

Proactive 
Down Scaling

Update Tasks Maintenance Tasks

Legacy ✖️ ✖️ ✔️ ✔️

Enhanced ✔️ ✔️ ✔️ ✖️

Table 4.1 – The differences between autoscaling modes available on DLT pipeline clusters
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You can configure the cluster autoscaling mode from either the DLT UI or the Databricks REST API. 
In the next section, let’s use the Databricks REST API to update the autoscaling mode of an existing 
data pipeline cluster.

Hands-on example – setting autoscaling properties using 
the Databricks REST API
In this section, you’ll need to download the code samples from this chapter’s GitHub repository located at 
https://github.com/PacktPublishing/Building-Modern-Data-Applications-
Using-Databricks-Lakehouse/tree/main/chapter04. Within the chapter’s GitHub 
repository is a helper notebook titled Random Taxi Trip Data Generator.py, which we’ll 
use to generate random bursts of data to a cloud storage landing zone, simulating the unpredictable 
behavior you could expect in a production environment.

First, let’s begin by importing this chapter’s pipeline definition notebook, titled Taxi Trip Data 
Pipeline.py, into your Databricks workspace and opening the notebook.

You will notice that we’ve defined two datasets within our data pipeline. The first dataset uses the 
Databricks Auto Loader feature to ingest new JSON files as they arrive in our raw landing zone. Once 
the data has been ingested, a second dataset – our silver table – will contain the result of the transformed 
taxi trip data with additional columns containing the financial analytics of the taxi trip data:

@dlt.table(
    name="random_trip_data_raw",
    comment="The raw taxi trip data ingested from a landing zone.",
    table_properties={
        "quality": "bronze"
    }
)
def random_trip_data_raw():
    raw_trip_data_schema = StructType([
        StructField('Id', IntegerType(), True),
        StructField('driver_id', IntegerType(), True),
        StructField('Trip_Pickup_DateTime',
                    TimestampType(), True),
        StructField('Trip_Dropoff_DateTime',
                    TimestampType(), True),
        StructField('Passenger_Count', IntegerType(), True),
        StructField('Trip_Distance', DoubleType(), True),
        StructField('Start_Lon', DoubleType(), True),
        StructField('Start_Lat', DoubleType(), True),

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter04
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter04
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        StructField('Rate_Code', StringType(), True),
        StructField('store_and_forward', IntegerType(), True),
        StructField('End_Lon', DoubleType(), True),
        StructField('End_Lat', DoubleType(), True),
        StructField('Payment_Type', StringType(), True),
        StructField('Fare_Amt', DoubleType(), True),
        StructField('surcharge', DoubleType(), True),
        StructField('mta_tax', StringType(), True),
        StructField('Tip_Amt', DoubleType(), True),
        StructField('Tolls_Amt', DoubleType(), True),
        StructField('Total_Amt', DoubleType(), True)
    ])
    return (spark.readStream
        .format("cloudFiles")
        .option("cloudFiles.format", "json")
        .schema(raw_trip_data_schema)
        .load(raw_landing_zone))

Next, attach the notebook to an all-purpose cluster and execute all the notebook cells. Ensure that all 
the notebook cells are executed successfully. When prompted, create a new DLT pipeline using the 
Core product edition. Select Continuous processing mode as the pipeline execution mode. (If you 
need a refresher, please consult the Data pipeline settings section of Chapter 2 in this book.) Next, 
select a target Unity Catalog destination to store the output of the data pipeline datasets and accept 
all the remaining default values. Finally, note the pipeline ID of the newly created data DLT pipeline.

For the next part of this exercise, we’ll use a popular Python library, requests, to interact with 
the Databricks REST API. Create a new notebook within your Databricks workspace and begin by 
importing the requests library in the first cell of our notebook:

import requests

Next, let’s create a new request to the Databricks REST API for updating the cluster settings of our 
data pipeline. Within the request payload, we’ll specify the autoscaling mode, the minimum number 
of worker nodes for our pipeline cluster, as well as the maximum number of worker nodes. As per the 
public Databricks documentation, we’ll also need to use the PUT verb for updating the settings of our 
DLT pipeline. Add the following code snippet to the newly created notebook, updating the variables 
with your environment-specific values:

databricks_workspace_url = "<your_databricks_workspace>"
pipeline_id = "<your_pipeline_id>"
pat_token = "<your_api_token>"
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response = requests.put(
    f"{databricks_workspace_url}/api/2.0/pipelines/{pipeline_id}",
    headers={"Authentication": pat_token},
    json={
        ...
        "clusters":[{
            "autoscale": {
                "min_workers": 2,
                "max_workers": 5,
                "mode": "ENHANCED"
            }
        }]
        ...
    }
)
print(response.json())

Alternatively, you can update the autoscaling mode to ENHANCED for the pipeline by navigating to 
the pipeline settings from the DLT UI. Now that we’ve updated our DLT pipeline to use enhanced 
autoscaling, let’s execute a pipeline update. Navigate to the data pipeline UI of the newly created data 
pipeline. At the top right, select the Start button to trigger a pipeline update.

Meanwhile, let’s also simulate spikes in processing demand using a random data generator. Import the 
data generator notebook, titled Random Taxi Trip Data Generator.py, from the chapter’s 
GitHub repository. As the name suggests, Random Taxi Trip Data Generator.py will 
randomly generate new taxi trip data with varying degrees of volume and frequency, simulating a typical 
workload in a production environment. Attach the notebook to an all-purpose cluster and click the 
Run all button to execute all the cells. Ensure that the notebook cells have all completed successfully.

Next, switch back to the DLT UI for the pipeline we created. We’ll monitor the event log of our pipeline 
to ensure that our DLT cluster will automatically increase the number of worker instances.
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Figure 4.1 – Autoscaling events will be recorded in the event log from the DLT UI

Similarly, monitor the event log to ensure that the DLT update cluster scales back down after the flow 
of additional data terminates and processing demand dwindles.

By now, you should have a strong foundation in understanding how DLT clusters scale up and down to 
accommodate the peaks and valleys in processing demands. As you can see, our DLT pipeline will only 
provision the compute it needs to efficiently keep our datasets up to date and then release additional 
compute instances to minimize our operational costs. Let’s turn our attention to other efficiencies that 
the DLT system does automatically for us, such as how the DLT system will automatically maintain 
the optimal state of our underlying Delta tables.

Automated table maintenance tasks
As mentioned in previous chapters, each DLT pipeline will be associated with two clusters – one cluster 
for performing updates to each of the datasets in a pipeline definition, as well as another cluster for 
performing maintenance activities to each dataset. These maintenance tasks include executing the Delta 
VACUUM and OPTIMIZE operations for each Delta table contained within a data pipeline definition. 
Previously, data engineers would be responsible for creating and maintaining a separate Databricks 
workflow that would execute the VACUUM and OPTIMIZE commands for each Delta table, typically 
scheduled to run nightly. As you can imagine, as you begin to add more and more tables to a pipeline, 
this can turn out to be quite a cumbersome task. Fortunately, the DLT framework does this heavy 
lifting for us right out of the box. Furthermore, each VACUUM and OPTIMIZE maintenance activity 
is executed within 24 hours of the last pipeline execution run.
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Let’s look at each operation individually to understand what overall benefit the maintenance tasks 
have on the underlying datasets.

Why auto compaction is important

During each new update run for a particular DLT pipeline, the DLT pipeline will initialize a dataflow 
graph and perform the underlying calculations spelled out in each dataset definition. As a result, new 
data is either appended or merged into a particular Delta table. Each time the data is written, Apache 
Spark will distribute the write operation out to the executors, potentially generating many small files 
as a result. As more updates are executed, more of these small files are created on cloud storage. As 
downstream processes read these Delta tables, they will need to expend a single Spark task for each 
unique file that answers a particular table query. More files will result in more Spark tasks – or better 
put, more work that needs to be done by the Spark engine. This is commonly referred to as the “small 
files problem,” as tables that experience heavy volumes of new data result in many small files, slowing 
down overall query performance. As a remediation, it would be better to consolidate these small files 
into larger ones, a process referred to as file compaction.

Fortunately, as data engineers, we don’t need to write our own utility for combining smaller files 
into larger ones. In fact, Delta Lake features a helpful command called OPTIMIZE for doing such 
maintenance tasks. By default, the Delta Lake OPTIMIZE command will attempt to coalesce smaller 
files into larger, 1 Gigabyte files.

Figure 4.2 – DLT will automatically run the OPTIMIZE command on 

Delta tables, coalescing smaller files into larger 1 GB files



Scaling DLT Pipelines76

Of course, you could choose to disable the auto-optimize feature by disabling the autoOptimize 
table property in the table definition of the DLT pipeline:

@dlt.table(
    name="random_trip_data_raw",
    comment="The raw taxi trip data ingested from a landing zone.",
    table_properties={
        "quality": "bronze",
        "pipelines.autoOptimize.managed": "false"
    }
)

There might be certain scenarios when you would want to override the default behavior, such as 
implementing your own table optimization workflow.

As each OPTIMIZE maintenance activity is performed, it too will generate additional files for each 
Delta table. To prevent cloud storage costs from ballooning out of control, we must also take care of 
removing obsolete table files so that as an organization, we aren’t paying for unnecessary cloud storage.

Vacuuming obsolete table files

The VACUUM operation is designed to remove table files from previous versions of a Delta table that are 
no longer in the latest table snapshot and are older than the retention threshold property. By default, 
the retention threshold for all Delta tables is seven days, meaning that the VACUUM operation will 
remove obsolete table files that are older than seven days from the current snapshot date. At runtime, 
the VACUUM utility will search the Delta table’s root directory as well as all of the subdirectories, 
removing table files older than the retention threshold from cloud storage.

This is a great way to balance both cloud storage costs with the ability to maintain and view older 
snapshots of a particular Delta table. As mentioned in Chapter 1, the time travel feature of Delta Lake 
relies upon the table history to query previous versions of a Delta table. However, this feature was 
not designed to support long-term archival use cases, but rather shorter-term table history. So, it’s 
reasonable to expect that we don’t need to store all the history of a Delta table and pay the associated 
storage costs, which could become quite expensive.

Like the auto-optimize feature, a Delta table’s history retention threshold is determined by a table 
property and can be specified in the table definition using the deletedFileRetentionDuration 
table property:

@dlt.table(
    name="random_trip_data_silver",
    comment="Taxi trip data transformed with financial data.",
    table_properties={
        "quality": "silver",
        "pipelines.autoOptimize.zOrderCols": "driver_id",
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        "delta.deletedFileRetentionDuration": "INTERVAL 14 days"
    }
)

Similarly, the Delta transaction logs – the metadata files that record details about each committed table 
transaction (covered in Chapter 1) – can also lead to unnecessary storage costs. However, these log 
files are automatically removed during log checkpoint operations (every tenth transaction commit). 
By default, Delta Lake will retain a maximum of 30 days’ worth of table history in the transaction logs.

Figure 4.3 – DLT will automatically run a VACUUM operation on all Delta tables

Since the transaction log files contain only metadata information, they are small, containing only a 
few megabytes of information. However, this history retention can also be configured by setting the 
logRetentionDuration table property:

@dlt.table(
    name="random_trip_data_silver",
    comment="Taxi trip data transformed with financial data.",
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    table_properties={
        "quality": "silver",
        "pipelines.autoOptimize.zOrderCols": "driver_id",
        "delta.deletedFileRetentionDuration": "INTERVAL 9 days",
        "delta.logRetentionDuration": "INTERVAL 35 days"
    }
)

Removing obsolete cloud files is a great way to control cloud costs and prevent your organization 
from paying for unnecessary cloud storage charges. Let’s look at how we might be able to optimize 
other aspects of our DLT pipelines to improve operating efficiency while continuing to drive down 
operating costs.

Moving compute closer to the data

One of the simplest methods for ensuring that your data pipelines will execute efficiently is to ensure 
that the DLT pipeline clusters are launched within the same global region as the data that is being 
processed. This is an age-old tuning concept of moving the hardware closer to the data to minimize 
network latencies during data processing. For example, you wouldn’t want your DLT pipeline cluster to 
execute in, say, the US West Region of a cloud provider, yet the data is stored in a completely different 
geographical location, such as the US East Region of the same cloud provider. As a result, this will 
introduce a considerable amount of network latency to transfer the data across geographical regions, 
process the data transformations or other calculations, and then store the result back in the original 
geographical region. Furthermore, most cloud providers will assess data egress and ingress charges 
associated with the geographical data transfer.

Figure 4.4 – The geographical locations of your DLT cluster and storage 

container can introduce significant network latencies
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The geographical region of a DLT cluster can be set by defining the cloud zone location in the pipeline 
cluster policy definition. For example, the following code snippet defines a cluster policy that could be 
used to configure DLT pipeline clusters to launch in the US East Region of the AWS cloud provider:

{
    ...
    "aws_attributes.zone_id": "us-east-1",
    "custom_tags.lob": {
        "type": "fixed",
        "value": "ad analytics team"
    }
}

By ensuring that your DLT clusters are provisioned in the same geographical region as your organization 
data, you can make certain that you will be getting the best operating performance out of your pipeline 
clusters. At the same time, since your pipelines run faster and utilize cloud resources for less time, this 
translates to dollars saved for your organization. Along with optimizing the computational resources of 
our data pipelines, we can also organize our table data efficiently to further improve the performance of 
our data pipeline updates. Let’s look at a few other techniques for improving the processing efficiency 
of our DLT pipelines by optimizing the data layouts of our tables.

Optimizing table layouts for faster table updates
A typical DLT pipeline might include one or more datasets that append new data and update existing 
data with either new values or even delete rows altogether. Let’s take an in-depth look into this latter 
scenario and analyze what happens “under the hood” so that we can optimize our DLT datasets for 
faster performance as we add new data to our DLT tables.

Rewriting table files during updates

During a table update, the DLT engine will perform two scans to identify all the rows that match a 
particular update condition and rewrite the changed table data accordingly. During the first table 
scan, the DLT engine will identify all table files that contain rows that match a predicate clause in an 
apply_changes() (or APPLY CHANGES if using SQL) expression, for example.
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Figure 4.5 – DLT will apply changes to the target DLT table by 

identifying matching rows using a matching operation

Next, the DLT engine will compile a list of all table files that contain these rows. Using this list of table 
files, the DLT engine will rewrite each of these files containing the newly updated row(s) in a second 
table scanning operation. As you can imagine, as you add more data to a DLT table, the process of 
locating these matching rows and identifying the list of files to rewrite can get quite expensive over 
time. Fortunately, Delta Lake has a few features up its sleeves that we can use to optimize this search 
process and speed up the matching process.

Data skipping using table partitioning

One way to speed up this search process is to limit the search space for the DLT engine. One such 
technique is to use Hive-style table partitioning. Table partitioning organizes related data into physically 
separate subdirectories within a table’s root storage location. The subdirectories correspond to one 
or more table columns.

During the matching process, the DLT engine can eliminate entire subdirectories that don’t match 
the predicate condition, removing the need to scan unnecessary data.
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Partitioning a table with MERGE columns, the columns used to apply data changes to the table, can 
dramatically boost the performance of the update process. On the other hand, since table partitioning 
creates physically separate directories, table partitioning can be difficult to get correct and expensive 
to change, requiring the entire table to be rewritten to adjust the partitioning scheme.

Another challenge is identifying a table partitioning scheme that will result in partition directories 
that are evenly balanced with the same amount of data. It’s quite easy to end up partitioning a table 
by MERGE columns, but then end up in a scenario where some partition directories contain small 
amounts of data, while other partition directories contain massive amounts of data. This is commonly 
referred to as data skew. Still, table partitioning is a powerful tool in your data pipeline tuning arsenal. 
Let’s look at how we might be able to combine table partitioning with another table optimization 
technique to further boost our pipeline performance.

Delta Lake Z-ordering on MERGE columns

One way to optimize the table layout of a Delta table is to organize the data within each of the table 
files so that it can be read efficiently during file-scanning operations. This is commonly referred to 
as data clustering. Fortunately, Delta Lake features a data clustering algorithm known as Z-order 
clustering. Z-order clustering will write the table data by clustering relevant data together, forming a 
“Z”-shaped pattern. Storing the table data according to this pattern will improve the probability that 
the DLT engine will skip past irrelevant data within a table file and only read data that matches merge 
conditions during the update matching process.

Traditionally, without Z-order clustering, Delta Lake will store the data in a linear pattern. As a result, 
during the update matching process, Delta Lake will need to open each file of the table and scan each 
of the rows in a linear sorting order. Sometimes, only a single row might match the merge condition. 
In turn, the DLT engine will read all the unnecessary rows that do not match, only to find maybe 1 
or 2 rows that do match the update condition.

By clustering the data within a file using the Z-order clustering technique, the DLT engine can pinpoint 
where in a particular file the relevant data exists, limiting the amount of data that it must scan. For large 
tables that require a lot of scanning, this can improve the update process of a DLT pipeline dramatically.

Figure 4.6 – Z-order clustering data within table files can be visualized as data clusters forming “Z” shapes
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Z-order clustering can be enabled on DLT datasets by setting the appropriate table property within 
the dataset definition. Let’s look at how we might configure the Z-order clustering for our silver table, 
yellow_taxi_transformed, which receives many updates throughout the day.

We first begin by defining the dataset like any dataset within our DLT pipelines. You’ll notice that 
we’ve included a name for the dataset, yellow_taxi_transormed, as well as a comment, which 
adds some descriptive text about the table. However, within the DLT function annotation, we’ve 
added a couple more parameters where we can set the table properties for this dataset. In the table 
properties parameter, we’ve added a couple of attributes that will describe our dataset to the DLT 
engine. First, we’ve added a table property describing the quality of this dataset, which is a silver table 
in our medallion architecture. Next, we’ve also added another table property that specifies which table 
columns we would like to apply a Z-order clustering:

import dlt

@dlt.table(
    name="yellow_taxi_transformed",
    comment="Taxi cab trip data containing additional columns about 
the financial data.",
    table_properties={
        "quality": "silver",
        "pipelines.autoOptimize.zOrderCols": "zip_code, driver_id"
    }
)

During the execution of our daily maintenance tasks, the maintenance task will dynamically parse 
these Z-order columns and will run the following Z-order command on the underlying Delta table 
behind this DLT dataset:

OPTIMIZE yellow_taxi_transformed
    ZORDER BY (zip_code, driver_id)

So, which table columns should you Z-order your DLT tables by and how many columns should you 
specify? A good range is anywhere from 1 to 3 columns, but no more than 5 columns. As you add 
more columns, it will complicate the data clustering within the table files, diminishing the returns on 
any possible data skipping that could occur.

Furthermore, you should strive to choose columns that are numerical in data type. The reason for 
this is that whenever new data is written to a Delta table, the Delta engine will capture statistical 
information about the first 32 columns – column information such as the minimum value, maximum 
value, and number of nulls. This statistical information will be used during the update searching 
process to effectively locate which rows match the update predicate. For data types such as strings, 
this statistical information does not provide very useful information, since there cannot be an average 
string, for example. However, there can be an average for a column with a float data type, for instance.
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In addition, columns that are used in APPLY CHANGES predicates, join columns, and columns where 
aggregations are performed all serve as ideal Z-order candidates. Lastly, these columns should have 
a higher cardinality than the columns used to create a table partitioning scheme.

Important note
There may be times when you may want to experiment with different columns or a different 
set of columns to Z-order your table by. Changing this Z-order scheme is trivial – it’s as simple 
as updating the table_properties parameter in the DLT pipeline definition. However, 
it’s important to note that the new Z-order clustering will take effect only on new data that is 
written to the table. To apply the new Z-order clustering to existing data, the entire table would 
need to be fully refreshed so that the table files can be reorganized according to the clustering 
pattern. As a result, you may want to balance the time and cost it will take to rewrite the table 
data with the performance benefits that you may get from the table Z-order optimization.

As you can see by now, Z-order optimization is a great way to optimize the layout of your DLT tables 
to boost the performance of your data pipelines. Having an effective data layout can improve the data 
skipping of the DLT engine and limit the amount of data that the DLT engine needs to scan to apply 
updates to target tables within your pipelines. Combined with Hive-style table partitioning, this is 
a great way to ensure you are squeezing the best performance out of your data pipelines, leading to 
shorter execution times and less time and money spent keeping update clusters up and running.

However, what if you are only updating a small amount of data within a particular table file? That 
translates to rewriting an entire file for the sake of updating maybe 1 or 2 rows, for example. Let’s 
look at how we might be able to optimize the performance of our DLT pipelines further to avoid this 
costly operation.

Improving write performance using deletion vectors

During a table update, the DLT engine applies the update by rewriting the matched file with the newly 
changed rows in the new, target file. In this type of table update strategy, known as Copy-on-Write 
(COW), the rows not receiving any updates need to be copied over to the new file, as the name suggests. 
For table updates that require only a few rows to change across many files, this can be largely inefficient.

A better optimization technique would be to keep track of all the rows that have changed in a separate 
data structure and write the newly updated rows into separate file(s). Then, during a table query, the 
table client can use this data structure to filter out any of the updated rows. This technique is called 
Merge-on-Read (MOR) and is implemented in Delta Lake using a feature called deletion vectors.
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Deletion vectors are a special data structure that keeps track of all the row IDs that are updated 
during an UPDATE or MERGE operation on a Delta table. Deletion vectors can be enabled by setting 
a table property of the underlying Delta table. Like the statistical information regarding the Delta 
table columns, deletion vectors are stored alongside the table data on cloud storage.

Figure 4.7 – Delta Lake tables will keep track of the row IDs of each row in a separate data structure

Furthermore, deletion vectors can be automatically enabled by default for all new tables created 
within a Databricks workspace. A workspace administrator can enable or disable this behavior from 
the Advanced tab of the workspace admin settings UI.

Figure 4.8 – Deletion vectors can be automatically enabled in the Databricks Data Intelligence Platform

Deletion vectors can be explicitly set on a dataset by setting the enableDeletionVectors table 
property in the DLT table definition:

@dlt.table(
    name="random_trip_data_silver",
    comment="Taxi trip data transformed with financial data.",



Serverless DLT pipelines 85

    table_properties={
        "quality": "silver",
        "pipelines.autoOptimize.zOrderCols": "driver_id",
        "delta.enableDeletionVectors": "true"
    }
)

In addition, deletion vectors unlock a new class of update performance features on the Databricks Data 
Intelligence Platform, collectively referred to as Predictive I/O. Predictive I/O uses deep learning and 
file statistics to accurately predict the location of rows within files that match an update condition. As 
a result, the time it takes to scan matching files and rewrite data during updates, merges, and deletes 
is drastically reduced.

Hive-style table partitioning, Z-order data clustering, and deletion vectors are all great optimization 
techniques for efficiently storing our table data and improving the speed of our pipeline updates. Let’s 
turn our attention back to the computational resources of our data pipelines and analyze yet another 
technique for improving the performance of our DLT pipelines in production, particularly in times 
when the processing demands may spike and become unpredictable.

Serverless DLT pipelines
In Chapter 2, we briefly described what serverless DLT clusters were and how they can quickly and 
efficiently scale computational resources up to handle spikes in demand, as well as scale down to 
save cloud costs. While we won’t cover the architecture of serverless clusters again, we will cover 
how serverless DLT clusters can help organizations scale their data pipelines as more and more data 
pipelines are added.

With serverless DLT clusters, the cluster infrastructure and settings are automatically handled by the 
Databricks cloud provider account. This translates to removing the burden of having to select VM 
instance types to balance performance with costs. The costs for serverless compute are at a fixed, flat 
rate, making the costs predictable. In addition, since the computational resources are managed by 
the Databricks cloud provider account, Databricks can reserve a large amount of VM instances at a 
discounted price by each cloud provider. These discounted rates can then be passed along to the DLT 
serverless consumers.

Furthermore, serverless DLT clusters simplify data pipeline maintenance by reducing the amount of 
configuration that’s needed per data pipeline. With less configuration, data engineer teams can focus 
less on the maintenance of their data pipelines and more on what matters to the business, such as 
changing business logic, data validation, and adding more data pipelines to name a few. In addition, 
as your data pipelines grow over time and dataset volumes increase over time, you may need to 
provision more VM instances. Eventually, you may hit the cloud provider limits for certain instance 
types, which requires an additional process to have these limits increased by the cloud provider. With 
serverless DLT compute, these limits have already been negotiated with the cloud provider, meaning 
that the DLT serverless consumers need not be concerned with this burden.
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Serverless data pipelines can also help reduce costs for data pipelines. For example, with traditional, 
customer-managed compute, a cluster can only add additional VM instances as quickly as the 
cloud provider can provision additional instances and routinely run the diagnostic checks. Plus, the 
Databricks runtime container and user libraries need to be installed on the additional instances, 
which takes even more time. This can translate to many minutes – sometimes 15 minutes or more 
depending on the cloud provider – before a DLT cluster can scale out to handle the unpredictable 
spikes in computational demand. As a result, DLT pipelines running on traditional compute will take 
much longer to execute as compared to the serverless DLT clusters. With serverless DLT clusters, the 
VM instances are pre-provisioned with the latest Databricks runtime container already installed and 
started in a pre-allocated instance pool. During spikes in processing demand, the DLT pipeline can 
respond with additional resources to meet the demand on the order of seconds rather than minutes. 
These minutes can add up over many data pipeline runs and over the course of a cloud billing cycle. 
By driving down the time it takes to scale out with additional resources and being able to aggressively 
scale down with enhanced autoscaling, serverless DLT pipelines can drastically reduce operational 
costs while simultaneously improving the efficiency of the ETL processing in your lakehouse.

Removing the infrastructure burden of managing compute settings for data pipelines as well as controlling 
cloud costs are great motivating factors behind choosing serverless DLT pipelines over traditional, 
customer-managed compute. However, let’s look at another motivation for selecting serverless DLT 
clusters, such as the performance features that come with this type of computational resource.

Introducing Enzyme, a performance optimization layer
There may be certain scenarios where a data pipeline has been deployed into a production environment. 
However, down the road, there may be significant changes in the business requirements, requiring the 
datasets to be recomputed from scratch. In these scenarios, recomputing the historical data of these 
datasets could be cost prohibitive.

Enzyme, a brand-new optimization layer that is only available for serverless DLT pipelines, aims 
to reduce ETL costs by dynamically calculating a cost model for keeping the materialized results of 
a dataset up to date. Like the cost model in Spark query planning, Enzyme calculates a cost model 
between several ETL techniques from a traditional materialized view in DLT to a Delta streaming 
table to another Delta streaming table, or a manual ETL technique. For example, the Enzyme engine 
might model the cost to refresh a dataset using a materialization technique, translating to 10 Spark 
jobs, each with 200 Spark tasks. This cost model might save two Spark jobs and shave five minutes off 
the overall execution time as predicted by another modeled ETL technique, so the Enzyme engine 
will choose the first technique instead.
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Figure 4.9 – The Enzyme optimization layer will automatically select the 

most cost-efficient ETL refresh technique using a cost model

The Enzyme layer will dynamically choose the most efficient and cost-effective method for recomputing 
the results for a given dataset at runtime. Since Enzyme is a serverless DLT feature, it is already enabled 
by default, removing the need for DLT admins to manage pipeline cluster settings.

By now, you should understand the powerful features that come with serverless DLT pipelines, such 
as the Enzyme optimization layer, as well as the infrastructure management and cost-saving benefits.

Summary
In this chapter, we looked at various methods for scaling our data pipelines to handle large volumes 
of data and perform well under periods of high and unpredictable processing demand. We looked at 
two attributes of scaling our DLT pipelines – compute and data layout. We examined the enhanced 
autoscaling feature of the Databricks Data Intelligence Platform to automatically scale the computational 
resources that the data pipelines execute on. We also looked at optimizing how the underlying table 
data was stored, clustering relevant data within table files and leading to faster table queries and shorter 
pipeline processing times. Furthermore, we also looked at regular maintenance activities to maintain 
high-performing table queries, as well as prevent ballooning cloud storage costs from obsolete data files.

Data security is of the utmost importance and is often overlooked until the end of a lakehouse 
implementation. However, this could mean the difference between a successful lakehouse and making 
the front page of a newspaper – and not for a good reason. In the next chapter, we’ll be taking a look 
at how we can effectively implement strong data governance across our lakehouse, whether it’s within 
a single geographical region or across a fail-over region on a different part of the globe.





Part 2: 
Securing the Lakehouse  
Using the Unity Catalog

In this part, we’ll explore how to implement an effective data governance strategy using the Unity 
Catalog in the Databricks Data Intelligence Platform. We’ll look at how you can enforce fine-grained 
data access policies across various roles and departments in your organization. Lastly, we’ll look at how 
you trace the origins of data assets in Unity Catalog, ensuring that data is coming from trusted sources.

This part contains the following chapters:

•	 Chapter 5, Mastering Data Governance in the Lakehouse with Unity Catalog

•	 Chapter 6, Managing Data Locations in Unity Catalog

•	 Chapter 7, Viewing Data Lineage Using Unity Catalog





5
Mastering Data Governance  

in the Lakehouse with  
Unity Catalog

In this chapter, we’ll dive into the implementation of effective data governance for the lakehouse using 
Unity Catalog. We’ll cover enabling Unity Catalog on an existing Databricks workspace, implementing 
data cataloging for data discovery, enforcing fine-grained data access at the table, row and column 
levels, as well as tracking data lineage. By the end of the chapter, you’ll be armed with industry best 
practices around data governance and will have gained real-world insights for enhancing data security 
and compliance.

In this chapter, we’re going to cover the following main topics:

•	 Understanding data governance in the lakehouse

•	 Enabling Unity Catalog on an existing Databricks workspace

•	 Identity federation in Unity Catalog

•	 Data discovery and cataloging

•	 Hands-on lab – data masking healthcare datasets
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Technical requirements
To follow along in this chapter, you’ll need Databricks workspace permissions to create and start 
an all-purpose cluster so that you can execute the chapter’s accompanying notebooks. It’s also 
recommended that your Databricks user be elevated to an account admin and a metastore admin so 
that you can deploy a new Unity Catalog metastore and attach it to your existing Databricks workspace. 
All code samples can be downloaded from this chapter’s GitHub repository located at https://
github.com/PacktPublishing/Building-Modern-Data-Applications-Using-
Databricks-Lakehouse/tree/main/chapter05. This chapter will create and run several 
new notebooks, estimated to consume around 5–10 Databricks units (DBUs).

Understanding data governance in a lakehouse
It’s quite common for a lakehouse implementation to leverage multiple processing engines for different 
use cases. However, each processing engine comes with its own data security implementation and, 
often, these different data security solutions don’t integrate with one another. Where most lakehouses 
fall short is that due to these multiple security layers, implementing consistent, global data security 
policies is nearly impossible. Ensuring that the data in your lakehouse is completely and consistently 
secured and private and that access is only granted to the correct set of users is of the utmost importance 
when building a data lakehouse. Therefore, having a simple data governance solution that covers all 
the data in your organization’s lakehouse is critical for your organization’s success.

Introducing the Databricks Unity Catalog

Unity Catalog is a centralized data governance solution that simplifies securing the data in your 
lakehouse by organizing workspace object access policies into a single administrative “pane of glass.” 
In addition to access policies, Unity Catalog was designed with strong auditing in mind, allowing 
administrators to capture all user access patterns to workspace objects so that administrators can observe 
access patterns, workspace usage, and billing patterns across all Databricks workspaces. Furthermore, 
Unity Catalog was designed to allow data professionals to discover datasets across your organization, 
track data lineage, view entity relationship diagrams, share curated datasets, and monitor the health of 
systems. One of the major strong suites of Unity Catalog is that once your organization’s data is in Unity 
Catalog, it’s secured by default – no process, whether it’s internal within the Databricks workspace or 
an external process that interacts with data from outside of the Databricks Data Intelligence Platform, 
has access to the data unless access has been explicitly granted by a data administrator. Unity Catalog 
was designed to span across the perimeter of your lakehouse from workspace to workspace and beyond 
the Databricks workspace, sitting on top of your organization’s data so that a single governance model 
can be simply and consistently applied to all parties accessing your organization’s data in the lakehouse.

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter05
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter05
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter05
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Figure 5.1 – Unity Catalog provides a single, unified governance 

layer on top of your organization’s cloud data

However, having a global data and workspace object security layer wasn’t always as seamless as it is in 
Unity Catalog today. Let’s travel back in time to the lessons learned from the previous security model 
in Databricks and how Unity Catalog came to fruition today.

A problem worth solving

Previously, data access control policies were defined per workspace using a mechanism known as table 
access control lists (ACLs). When these were enforced properly, table ACLs provided a powerful 
data governance solution. Administrators could define data access policies for different users and 
groups within a workspace and those access policies could be enforced by the Databricks cluster when 
executing Spark code that accessed the underlying datasets registered in the Hive Metastore (HMS).

However, four major problems quickly arose from the table ACL security model. The first problem 
was that data access policies defined using the table ACL security model needed to be repeated for 
each unique Databricks workspace. Most organizations prefer to have separate workspaces for each 
logical work environment – for example, a single workspace for development, another workspace for 
acceptance testing, and finally, a workspace dedicated to running production workloads. Aside from 
the repetition of the same shared data access policies, if a data access policy happened to change in 
one workspace, it often meant that the data access policies across all workspaces needed to be changed 
as well. This led to unnecessary maintenance overhead, as there was not a single location where these 
data access patterns could be easily defined within the Databricks Data Intelligence Platform.
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Secondly, table ACLs were only enforced on the underlying data when interactive notebooks or automated 
jobs were executed on a table ACL-enabled cluster. A cluster without the table ACL security model 
enabled could directly access the underlying dataset, bypassing the security model entirely! While 
cluster policies (covered in Chapter 1) could be used to mitigate this issue and prevent any potential 
nefarious access to privileged datasets, cluster policies are complex to write. They require knowledge 
of the cluster policy schema as well as experience expressing configuration as JSON, making it difficult 
to scale across an organization. More often than not, it was quite common for a user to complain to 
their organization’s leaders that they needed administrative workspace access to spin up a cluster of 
their own liking and complete their day-to-day activities. Once the user was granted administrator 
workspace access, they too could grant administrator access to other users, and, like a snowball effect, 
there would be an unreasonable number of administrators for a workspace. This type of bad practice 
can easily lead to a data leak by side-stepping the table ACL security model using a cluster without 
table ACLs enabled.

Furthermore, due to the isolation issues of running Java Virtual Machine (JVM) languages on a shared 
computational resource, table ACL-enabled clusters limited end users to only running workloads 
using either the SQL or Python programming languages. Users wanting to execute workloads using 
the Scala, Java, or R programming languages would need to be granted an exception to use a non-table 
ACL-enabled cluster, opening a huge hole in the organization’s data governance solution.

The fourth major problem that arose had to do with the ability of the HMS to scale. The Databricks 
Data Intelligence Platform leveraged the HMS to register datasets across a workspace, which allowed 
users to create new datasets from scratch, organize them in schemas, and even share access to users 
and groups across an organization. However, as a workspace onboarded thousands of users, those 
users would need to execute ad hoc queries concurrently, while also executing hundreds or even 
thousands of scheduled jobs. Eventually, the HMS struggled to keep up with the level of concurrency 
needed for the most demanding workspaces.

It was clear that there needed to be a huge change and so Databricks set out to completely redesign a 
data governance solution from scratch.

An overview of the Unity Catalog architecture

One of the primary pain points that Unity Catalog aimed to solve was to implement a complete end-to-
end data governance solution that spans all of an organization’s workspaces, removing the redundancy 
of having to redefine data access policies for each Databricks workspace. Instead, with Unity Catalog, 
data administrators can define data access controls once in a centralized location and have the peace 
of mind that they will be consistently applied across an organization no matter what computational 
resource or processing engine is used to interact with datasets in Unity Catalog.
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Figure 5.2 – Unity Catalog centralizes data access policies that are then 

consistently applied across multiple Databricks workspaces

In addition to centralized data governance, Unity Catalog has several other key motivating factors 
that make it an ideal data governance solution for the modern-day lakehouse:

•	 Secure by default: Users will not have access to read data from any form of compute without 
using a Unity Catalog-enabled cluster (Unity Catalog clusters are covered in the following 
section) and having been granted specific access to use and select data from a particular dataset.

•	 Comfortable administrator interfaces: Data access policies in Unity Catalog are tightly 
integrated with American National Standards Institute (ANSI) SQL, allowing administrators 
to express data access permissions on familiar database objects such as catalogs, databases, 
tables, functions, and views. Data access permissions can also be set using the administrator 
UI from the Databricks web app, or automated deployment tools such as Terraform.

•	 Data discovery: Unity Catalog makes it easy for data stewards to tag datasets with descriptive 
metadata, allowing users across your organization to search and discover datasets available 
to them.

•	 Strong auditing: Unity Catalog automatically captures user-level access patterns and data 
operations, allowing administrators to view and audit user behavior as they interact with the 
data in your lakehouse.

•	 Data lineage tracking: Tracing how tables and columns are generated from upstream sources 
is important in ensuring that downstream datasets are formed using trusted sources. Unity 
Catalog makes tracking data and workspace assets simple through its strong data lineage APIs 
and system tables.
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•	 Observability: Because Unity Catalog spans multiple Databricks workspaces, it can aggregate 
system metrics and auditing events into a centralized set of read-only tables for monitoring 
and system observability called system tables (covered in greater detail in the Observability 
with system tables section).

To implement a security model where the data is secured by default and there is no ability to access 
the data externally without going through Unity Catalog, Databricks needed to design different 
clusters based on the user’s persona. Let’s look at the different cluster types available to users in a 
Unity Catalog-enabled workspace.

Unity Catalog-enabled cluster types

There are three major types of clusters for a workspace with Unity Catalog enabled:

•	 Single-user cluster: Only a single user or service principal will have permission to execute 
notebook cells or workflows on this type of cluster. Workloads containing a mixture of Scala, 
Java, R, Python, and SQL languages can be executed on this type of cluster only. Datasets 
registered in Unity Catalog can be queried from this type of cluster.

•	 Shared cluster: Multiple users or service principals can have permission to execute notebook cells 
or workflows on this type of cluster. This type of cluster is restricted to only Python, SQL, and 
Scala workloads. Datasets registered in Unity Catalog can be queried from this type of cluster.

•	 Standalone cluster: A single user or multiple users can attach a notebook and execute notebook 
cells to this type of cluster. However, datasets registered within the Unity Catalog cannot be 
queried by this type of cluster and will result in a runtime exception if a user attempts to query 
a dataset registered in Unity Catalog. This type of cluster can be used for reading datasets 
registered in the legacy HMS.

Now that we’ve outlined the different types of computational resources you can use to interact with 
the data in Unity Catalog, let’s now turn our attention to how the data and other assets are organized 
within the Unity Catalog, mainly understanding the Unity Catalog object model.

Unity Catalog object model

It’s important to understand the object model within Unity Catalog as it will help users understand 
the types of objects that can be secured and governed by Unity Catalog. Furthermore, it will also help 
metastore administrators architect data access policies.

One of the major changes that Unity Catalog introduced is the concept of a three-level namespace. 
Traditionally, in the HMS, users interacting with the data could reference datasets using a combination 
of a schema (or database) and a table name. However, Unity Catalog adds a third logical container, 
called the catalog, which can hold one or more schemas. To reference a fully qualified dataset in Unity 
Catalog, data practitioners will need to provide the name of the catalog, schema, and table.
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Figure 5.3 – Unity Catalog consists of many different securable objects beyond just a dataset

Let’s dive more into the Unity Catalog object model starting with the objects related to organizing 
physical datasets:

•	 Metastore: The “physical” implementation of Unity Catalog. A particular cloud region can at 
most contain a single metastore.

•	 Catalog: The top-level container for datasets in Unity Catalog. A catalog can contain a collection 
of one or more schema objects.

•	 Schema: Serves as the second tier in Unity Catalog. A schema can contain a collection of one 
or more tables, views, functions, models, and volumes.

•	 Table: The representation of a dataset containing a defined schema and organized into rows 
and columns.

•	 View: A calculated dataset that can be the result of joining together tables, filtering columns, 
or applying complex business logic. Furthermore, views are read-only and cannot have data 
written to them or data updated using data manipulation language (DML) statements.

•	 Model: A machine learning model that has been registered to the tracking server using MLflow.

•	 Function: A custom, user-defined function that often contains complex business logic that 
typically cannot be implemented using the built-in Spark functions alone.

•	 Volume: A data storage location designed for storing structured, semi-structured, or unstructured 
data (we will cover volumes in greater detail in the following chapter, Mastering Data Locations 
in Unity Catalog).
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Next, let’s turn our attention to the objects within Unity Catalog that are used to interact with data 
outside of the Databricks Data Intelligence Platform:

•	 Connection: Represents a read-only connection containing the credentials to access data in a 
foreign relational database management system (RDBMS) or data warehouse.

•	 Storage credential: Represents the authentication credential for accessing a cloud storage location.

•	 External location: Represents a cloud storage location outside of the Databricks-managed 
root storage location.

Lastly, let’s look at the elements of the Unity Catalog object model for sharing and receiving datasets 
using the Delta Sharing protocol:

•	 Provider: Represents a data provider. This entity creates a collection of one or more curated 
datasets into a logical grouping, called a share. The data provider can revoke access to a shared 
dataset at any moment.

•	 Share: A logical grouping of one or more shared datasets that can be shared with a data recipient.

•	 Recipient: Represents a data recipient. This entity receives access to a data share and can query 
the datasets within their workspace.

Now that we’ve outlined the major building blocks of Unity Catalog, let’s look at how we can enable 
Unity Catalog on an existing Databricks workspace so that administrators can begin taking full 
advantage of the strong data governance solution.

Enabling Unity Catalog on an existing Databricks 
workspace
Beginning in early November 2023, all new Databricks workspaces created on Amazon Web Services 
(AWS) or Azure are enabled with Unity Catalog by default, so there is no extra configuration needed 
if your workspace was created after this date on these two cloud providers. Similarly, at the time of the 
creation of a new Databricks workspace, a single regional Unity Catalog metastore will be provisioned 
for your workspace to use. Within the regional metastore is a default catalog having the same name 
as the workspace and is bound to that workspace only (we’ll cover catalog binding in the following 
section). Furthermore, all users of a newly created workspace will have read and write access to a 
schema called default within this workspace catalog.

Important note
Workspace administrators cannot disable Unity Catalog on a workspace once a Databricks 
workspace has been enabled for Unity Catalog. However, datasets can always be migrated 
back to the HMS implementation, but the workspace will always be enabled with a Unity 
Catalog metastore.
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The first step in upgrading an existing Databricks workspace with Unity Catalog is to deploy a new 
metastore. A metastore is the “physical” implementation of a Unity Catalog. Administrators will 
need to deploy a single metastore per cloud region for an organization. A metastore can be deployed 
through a variety of methods, but for simplicity’s sake, we’ll cover deploying a new metastore using 
the Databricks UI:

1.	 First, ensure that you are logged in to the account console located at https://accounts.
cloud.databricks.com.

2.	 From the account console, click on the Catalog menu item in the sidebar and click the Create 
metastore button to begin deploying a new metastore.

3.	 Enter a meaningful name for your metastore, choose the appropriate region, and, optionally, 
select a default storage path where managed datasets should be stored in.

4.	 Finally, click the Create button. After a few minutes, your new metastore will be provisioned 
in the cloud region of your choosing.

Note
In Databricks, global configurations such as catalog binding, network configurations, or user 
provisioning are centralized in a single administrative console, sometimes shortened to the 
“account console.”

Now that the metastore has been deployed, the only thing left is to choose which Databricks workspaces 
you’d like to link the metastore to, enabling Unity Catalog:

1.	 From the account console, again choose the Catalog menu item from the sidebar.

2.	 Next, click the name of the newly created metastore, followed by the Assign to workspaces button.

3.	 Lastly, click the workspace you would like to enable Unity Catalog on and confirm your selection 
by clicking the Assign button.

Congratulations! You’ve now enabled Unity Catalog for your existing Databricks workspace, and 
you can begin to enjoy the peace of mind that your lakehouse data will be governed by a complete 
data security solution. Equally as important, once you have attached a Unity Catalog metastore to a 
Databricks workspace, you have now enabled your workspace for identity federation.

Identity federation in Unity Catalog
Whether you’ve deployed a brand new Databricks workspace or you’ve manually upgraded an existing 
workspace to use Unity Catalog, the natural next step is to set up new users so that they log in to the 
Databricks workspace and take advantage of the benefits of Unity Catalog.

https://accounts.cloud.databricks.com
https://accounts.cloud.databricks.com


Mastering Data Governance in the Lakehouse with Unity Catalog100

Previously, user management in Databricks was managed within each workspace. Unity Catalog 
consolidates user management into a single centralized governance pane – the account console. Rather 
than manage the workspace identities at a workspace level, which can get repetitive if the same users 
have access to more than one workspace in a Databricks account, identity management is managed 
at the account level. This allows administrators to define users and their privileges once, and easily 
manage identity roles and permissions at a global level.

Prior to Unity Catalog, workspace administrators would need to sync organizational identities from 
the identity provider, such as Okta, Ping, or Azure Active Directory (AAD). With Unity Catalog, 
the identities are synced across at the account level once using the System for Cross-domain 
Identity Management (SCIM). Unity Catalog will then take care of syncing across the identities to 
the appropriate workspace in a process known as identity federation. This allows an organization 
to continue to manage the identities within their organization’s identity provider while ensuring that 
changes are automatically propagated to the individual Databricks workspaces.

Figure 5.4 – Identities are managed at the account console and will 

automatically get federated across multiple Databricks workspaces



Identity federation in Unity Catalog 101

In fact, the word administrator is quite an overloaded term in the context of the Databricks Data 
Intelligence Platform. Let’s take a look at the different administrative roles and the level of entitlement 
each persona has in a Unity Catalog-enabled workspace:

•	 Account owner: The individual who originally opened the Databricks account. By default, 
this user will have access to the account console and will be added as both an account admin 
as well as a workspace admin.

•	 Account admin: A power user who has the privileges to access the account console and make 
account-level changes, such as deploying a new Unity Catalog metastore, making network 
configuration changes, or adding users, groups, and service principals to workspaces. This user 
has the power to grant additional account admins and metastore admins.

•	 Metastore admin: An administrative user who has privileges to make metastore-level changes, 
such as changing catalog ownership, granting access to users to create or delete new catalogs, 
or configuring new datasets shared through the Delta Sharing protocol, to name a few. This 
user does not have access to the account console.

•	 Workspace admin: An administrative user who has privileges to make workspace-level 
configuration changes, including creating cluster policies and instance pools, creating new 
clusters and DBSQL warehouses, or configuring workspace appearance settings, to name a 
few. This user does not have access to the account console.

Figure 5.5 – Administrator-level privileges in the Databricks Data Intelligence Platform
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To begin provisioning new workspace users, you will need to log in to the account console, located 
at https://accounts.cloud.databricks.com/login. However, only account owners, 
the individual who originally opened the Databricks organization, or account admins will have access 
to the admin console.

The first step to begin onboarding new workspace users is to enable single sign-on (SSO) in the 
account console. This can be done by navigating to the Settings menu of the account console and 
providing the details of your organization’s identity provider. Once you’ve entered the configuration 
details, click on the Test SSO button to verify connectivity is successful.

Figure 5.6 – SSO is required for identity federation to sync with your identity provider

https://accounts.cloud.databricks.com/login
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After the identity provider integration has been verified successfully, the next step is to assign users 
and groups to the appropriate Databricks workspace. If you have a single Databricks workspace, then 
this is a trivial exercise. However, if there is more than one Databricks workspace, then it will be up to 
your organization to determine who has access to a particular workspace. You can assign individual 
users and groups to a Databricks workspace by navigating to the account console, then clicking on 
the User Management tab from the menu item, and assigning users to the appropriate workspace 
either at the user level or at the group level.

Let’s look at how you can promote secure data exploration across your organization.

Data discovery and cataloging
Data tags are useful data cataloging constructs that permit data stewards to link descriptive metadata 
with datasets and other securable objects, such as catalogs, volumes, or machine learning models, 
within Unity Catalog. By attaching descriptive tags to datasets and other securable objects, users across 
your organization can search and discover data assets that may be helpful in their day-to-day activities. 
This helps to promote collaboration across teams, saving time and resources by not having to recreate 
similar data assets to reach the completion of a particular activity. Unity Catalog supports tags on 
the following data objects: catalogs, databases, tables, volumes, views, and machine learning models.

Let’s look at an example of how we can apply descriptive tags to our existing taxi trip datasets that will 
make it easier for users across our organization to search, discover, and use our published datasets in 
Unity Catalog. Tags can be easily added to a table in Unity Catalog from a variety of methods. The 
easiest method is directly from the UI using Catalog Explorer in the Databricks Data Intelligence 
platform. Starting from Catalog Explorer, search for the catalog created in a previous chapter’s hands-on 
exercise that stored data from our DLT pipeline into our yellow_taxi_raw dataset. Next, expand 
the schema and select the yellow_taxi_raw dataset to bring up the dataset details. Finally, click 
on the Add tags button to begin adding tag data.
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Figure 5.7 – Tags can be added to datasets directly from Catalog Explorer

Tags are added as key-value pairs, with the key serving as a unique identifier, such as a category, and 
the value containing the contents that you’d like to assign to the securable object. In this case, we’d like 
to add a few tags to mark the data sensitivity of our dataset as well as a tag for the dataset owner. Add 
a few tags of your own choosing and click the Save tags button to persist your changes to the dataset.

Figure 5.8 – Tags are key-value pairs that help distinguish the dataset from others in Unity Catalog
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Similarly, tag data can be added, changed, or removed using SQL syntax as well. In the next example, 
create a new notebook within your workspace home directory in Databricks, and in the first cell of 
the notebook, add the following SQL statement. In this example, we’ll update the dataset description 
tag of our dataset:

ALTER TABLE yellow_taxi_raw
SET TAGS ('description'='Unprocessed taxi trip data')

Lastly, tags support finer granularity and can be added down to the column level for datasets in Unity 
Catalog. This is useful in scenarios when you might want to distinguish the data sensitivity of a column 
so that you can dynamically apply a data mask for a view in Unity Catalog.

Figure 5.9 – Tags can be added at the column level for datasets in Unity Catalog

Conversely, users can search for views, tables, or columns that have tags applied by using the following 
syntax in the Search text field of Catalog Explorer: tag:<case_sensitive_name_of_tag>.

As you can see, tags are extremely useful in helping promote the discoverability of datasets across your 
organization and help users distinguish datasets in Unity Catalog from one another.

In addition to discovering datasets across your organization, it’s also imperative to know how a dataset 
is formed and whether upstream sources are trusted. Data lineage is one such method for users to 
know exactly how the datasets they discover in Unity Catalog are formed and where the different 
columns originate from.
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Tracking dataset relationships using lineage

As data is transformed in your lakehouse by data pipelines, the contents of your organization’s datasets 
can go through a series of evolutions by a variety of processes. This can include processes such as 
data cleansing, data type casting, column transformation, or data enrichment, to name a few. As you 
can imagine, the data can deviate quite far from when it was originally ingested from its originating 
source. It’s important for downstream consumers of the data in your lakehouse to be able to verify the 
validity of your datasets. Data lineage is one mechanism for such validation by allowing users to trace 
the origin of tables and columns so that you can ensure that you are using data from trusted sources.

Figure 5.10 – A lakehouse table may be the result of a combination of multiple upstream tables

Data lineage can be viewed from a variety of mechanisms in the Databricks Data Intelligence Platform:

•	 Directly from Catalog Explorer by viewing the lineage graph

•	 Retrieved using the Lineage Tracking REST API

•	 Querying the Lineage Tracking system tables in Unity Catalog

Let’s look at how we might be able to trace the origin of a few columns in our downstream table to the 
upstream sources in Databricks. If you haven’t already done so, you can clone this chapter’s sample 
notebooks from the GitHub repository located at https://github.com/PacktPublishing/
Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/
main/chapter05. Begin by importing the sample notebook titled Data Lineage Demo.sql 
into your Databricks workspace. Attach the notebook to a running all-purpose cluster and execute all 
of the notebook cells. The notebook will generate two tables – a parent table and a child table whose 
columns are constructed from the upstream parent table.

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter05
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter05
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter05
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Once the notebook has been executed and the tables have been saved to Unity Catalog, navigate to 
Catalog Explorer by clicking the Catalog menu item from the left-hand navigation menu. From Catalog 
Explorer, search for the child table by entering the table name in the Search text field. Click on the child 
table to reveal the table details. Finally, click on the blue button titled See lineage graph to generate a 
lineage diagram. You’ll notice that the diagram clearly depicts the relationship between the two data 
assets – the parent table and the child table. Next, click on the column titled car_description 
in the child table. You’ll notice that the lineage diagram is updated, clearly illustrating which columns 
from the parent table are used to construct this column in the downstream child table.

Figure 5.11 – The table lineage graph can be viewed directly from Catalog Explorer

In fact, thanks to the unification nature of Unity Catalog, data lineage can be used to trace data 
relationships across multiple workspaces. Furthermore, data lineage will capture relationship information 
in near-real time, so that users can always have an up-to-date view of dataset relationships no matter 
the Databricks workspace they are using.

Observability with system tables

Strong auditing and system observability is another core strength of Unity Catalog and is implemented 
in Databricks using system tables. System tables are a set of read-only tables in a Databricks workspace 
that capture the operational data about activities within your Databricks workspaces. Furthermore, 
systems tables record data across all workspaces within a Databricks account, serving as a single source 
of truth to retrieve operational data pertaining to your Databricks workspaces.
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System tables record observability information about the following aspects of your Databricks workspaces 
(the latest list of available system tables can be found at https://docs.databricks.com/en/
admin/system-tables/index.html#which-system-tables-are-available):

Category Service Description

System billing Billable usage Captures billing information about utilized 
computational resources such as warehouses 
and clusters

Pricing Captures historical changes to system service 
pricing (or stock-keeping unit (SKU))

System access System audit Contains event data from workspace services 
including jobs, workflows, clusters, notebooks, 
repos, secrets, and more

Table lineage Captures data about reads/writes to and from a 
table in Unity Catalog

Column 
lineage information

Captures data about reads/writes to and from a 
column within a Unity Catalog table

Compute Clusters Captures information about clusters – for 
example, configuration changes over time

Node type information Includes hardware information about cluster 
node types

SQL warehouse events Captures changes made to SQL warehousing such 
as scaling events

System storage Predictive optimizations Captures predicative I/O optimizations as they 
occur during data processing

Marketplace Marketplace 
funnel events

Captures marketplace analytical information such 
as number of impressions and funnel data about 
dataset listing

Marketplace 
listing events

Records marketplace consumer information 
about dataset listings

Table 5.1 – System tables will record operational information across 

various parts of the Databricks Data Intelligence Platform

https://docs.databricks.com/en/admin/system-tables/index.html#which-system-tables-are-available
https://docs.databricks.com/en/admin/system-tables/index.html#which-system-tables-are-available
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Like all tables in Unity Catalog, there is no access to the system tables by default. Instead, a metastore 
administrator will need to grant read access (SELECT permissions) to these tables to the appropriate 
users and groups. For example, to grant permissions for department leaders to track their warehouse 
scaling events throughout the workday, a metastore admin would need to explicitly grant permissions 
for the group, dept_leads, to query the SQL warehouse system table:

GRANT SELECT ON system.compute.warehouse_events TO dept_leads

As you can imagine, very active Databricks workspaces will record many events throughout the day, 
and over time, these tables can grow to be quite large. To prevent observability information from 
accumulating to the point of creating a large cloud storage bill, instead, the system information will 
only be retained for a maximum of one year within your Databricks account.

For use cases where the auditing information is required to be retained in the order of many years, 
you will need to set up a secondary process to copy the system information into a long-term archival 
system, for example. Tracking changes to datasets is critical to ensuring strong observability in your 
lakehouse. Another strong suite of Unity Catalog is that observability extends beyond just datasets 
and covers all objects that can be secured under Unity Catalog governance.

Tracing the lineage of other assets

As previously mentioned, Unity Catalog implements a single governance solution over your organization’s 
data assets, which extends beyond just tables. With Unity Catalog, you can trace the lineage of other 
data assets such as workflows, notebooks, and machine learning models, to name a few.

Let’s turn our attention to how Unity Catalog can dynamically generate different result sets to queries 
by evaluating the user and group permissions of a given Databricks user.

Fine-grained data access

Dynamic views are a special type of view within the Databricks Data Intelligence Platform that 
provides data administrators with the ability to control fine-grained access to data within a dataset. 
For example, administrators can specify which rows and columns a particular individual may have 
access to depending upon their group membership. The Databricks Data Intelligence Platform 
introduces several built-in functions for dynamically evaluating group membership when a particular 
user queries the contents of a view:

•	 current_user() returns the email address of the user querying the view

•	 is_member() returns a Boolean (True or False) of whether the user querying a view is 
a member of a Databricks workspace-level group

•	 is_account_group_member() returns a Boolean (True or False) of whether the 
user querying a view is a member of a Databricks account-level group (as opposed to a 
workspace-level group)
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Important note
For dynamic views created against tables and views in Unity Catalog, it’s recommended to 
use the is_account_group_member() function to evaluate a user’s membership to a 
group as it will evaluate group membership at the Databricks account level. On the other hand, 
the is_member() function will evaluate a user’s membership to a group that is local to a 
particular workspace and may provide false or unintended results.

Furthermore, dynamic views also enable data administrators to obfuscate specific column values so that 
sensitive data is not exfiltrated by accident. Using built-in Spark SQL functions such as concat(), 
regexp_extract(), or even lit() is a simple yet powerful tool for protecting the contents of 
the most sensitive datasets on the Databricks platform.

In the next section, we’ll look at how we can leverage dynamic views to permit members of a data 
science team to perform ad hoc data wrangling of a sensitive dataset while simultaneously protecting 
the contents of columns with personally identifiable information (PII) data.

Hands-on example – data masking healthcare datasets
In this example, we’ll be creating a dynamic view to restrict data access to certain rows and columns 
within a dataset. We’ll be using the COVID sample dataset located within the Databricks datasets 
at /databricks-datasets/COVID/covid-19-data/us-counties.csv. The dataset 
contains COVID-19 infection data for US counties during the 2020 global pandemic. Since this 
dataset can contain sensitive data, we’ll apply a simple data mask to prevent the exposure of sensitive 
data to non-privileged users.

Let’s start by defining a few global variables, as well as the catalog and schema that will hold our 
dynamic views:

CATALOG_NAME = "building_modern_dapps"
SCHEMA_NAME = "dynamic_views_demo"
PERSISTENT_TABLE_NAME = "covid_us_counties"
COVID_DATASET_PATH = "/databricks-datasets/COVID/covid-19-data/us-
counties.csv"

spark.sql(f"CREATE CATALOG IF NOT EXISTS {CATALOG_NAME}")
spark.sql(f"USE CATALOG {CATALOG_NAME}")
spark.sql(f"CREATE SCHEMA IF NOT EXISTS {SCHEMA_NAME}")
spark.sql(f"USE SCHEMA {SCHEMA_NAME}")



Hands-on example – data masking healthcare datasets 111

Next, we’ll need to define a persistent table object in Unity Catalog that we will use to create views. 
Let’s start by creating a new table using the sample US Counties COVID dataset:

covid_df = (spark.read
            .option("header", True)
            .option("inferSchema", True)
            .csv(COVID_DATASET_PATH))
(covid_df.write
    .mode("overwrite")
    .saveAsTable(f"{CATALOG_NAME}.{SCHEMA_NAME}.{PERSISTENT_TABLE_
NAME}"));

Next, let’s query the newly created table in Unity Catalog. Note that all columns and rows are returned 
since we didn’t specify any qualifying criteria that would filter the data:

spark.table(f"{CATALOG_NAME}.{SCHEMA_NAME}.{PERSISTENT_TABLE_NAME}").
display()

Let’s create a view that will dynamically evaluate the querying user’s group membership in Unity 
Catalog. In this case, we want to restrict access to certain columns if the user is not a member of the 
admins group. Based upon the group membership, we can give access to a user or we could limit 
access to the data.

Let’s also leverage a built-in Spark SQL function to apply a simple yet powerful data mask to sensitive 
data columns, allowing only privileged members of the admins group access to view the text:

RESTRICTED_VIEW_NAME = "covid_us_counties_restricted_vw"
spark.sql(f"""
CREATE OR REPLACE VIEW {RESTRICTED_VIEW_NAME} AS
SELECT
    date,
    county,
    state,
    CASE WHEN is_account_group_member('admins')
        THEN fips
        ELSE concat('***', substring(fips, length(fips)-1,
                                     length(fips)))
    END AS fips_id,
    cases,
    CASE WHEN is_account_group_member('admins')
        THEN deaths
        ELSE 'UNKNOWN'
    END AS mortality_cases
FROM {CATALOG_NAME}.{SCHEMA_NAME}.{PERSISTENT_TABLE_NAME}
""")
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In the previous view definition, we’ve limited data access to a particular set of columns within the US 
Counties COVID dataset. Using dynamic views, we can also limit access to a particular set of rows 
using a query predicate. In the final view definition, we’ll limit which US states a particular user can 
view based on a user’s membership to the admins group:

COL_AND_ROW_RESTRICTED_VIEW_NAME = "covid_us_counties_final_vw"
spark.sql(f"""
CREATE OR REPLACE VIEW {COL_AND_ROW_RESTRICTED_VIEW_NAME} AS
SELECT
    date,
    county,
    state,
    CASE WHEN is_account_group_member('admins')
        THEN fips
        ELSE concat('***', substring(fips, length(fips)-1,
                                     length(fips)))
    END AS fips_id,
    cases,
    CASE WHEN is_account_group_member('admins')
        THEN deaths
        ELSE 'UNKNOWN'
    END AS mortality_cases
FROM {CATALOG_NAME}.{SCHEMA_NAME}.{PERSISTENT_TABLE_NAME}
WHERE
    CASE WHEN is_account_group_member('admins')
        THEN 1=1
        ELSE state IN ('Alabamba', 'Colorado', 'California',
                       'Delaware', 'New York', 'Texas', 'Florida')
    END
""")

Now, members of other groups can perform ad hoc data exploration and other data experimentation. 
However, we won’t inadvertently expose any sensitive healthcare data. For example, let’s imagine that 
there is another group called data-science. This group can query the dynamic view, but the 
results will be different from if a member of the admins group queried the view. For example, the 
following aggregation will return different result sets depending on whether a user is in the admins 
group or the data-science group:

(spark.table(COL_AND_ROW_RESTRICTED_VIEW_NAME)
    .groupBy("state", "county")
    .agg({"cases": "count"})
    .orderBy("state", "county")
).withColumnRenamed("count(cases)", "total_covid_cases").display()
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We get the following results:

Figure 5.12 – Dynamic views can generate customized results based on group membership

By now, you should be able to realize the power of dynamic views within the Databricks Data Intelligence 
Platform. With just a few built-in functions, we can implement strong data governance across various 
users and groups interacting with your organization’s data in the lakehouse.

Summary
In this chapter, we covered the challenges specific to lakehouse data governance and how Unity Catalog 
solves these challenges. We also covered how to enable Unity Catalog within an existing Databricks 
workspace and how metastore admins can establish connections with external data sources. Lastly, 
we covered techniques for discovering and cataloging data assets within the lakehouse and how 
annotating data assets with metadata tags can create a searchable and well-organized data catalog.

In the next chapter, we’ll explore how to effectively manage input and output data locations using 
Unity Catalog. You’ll learn how to govern data access across various roles and departments within 
an organization, ensuring security and auditability within the Databricks Data Intelligence Platform.





6
Managing Data Locations in 

Unity Catalog

In this chapter, we’ll explore how to effectively manage data storage locations using securable objects in 
Unity Catalog – objects that allow administrators to grant fine-grained permissions to users, groups, 
and service principals . We’ll cover six types of securable objects for storing data in Unity Catalog: 
catalogs, schemas, tables, volumes, external locations, and connections. We’ll also look at how you 
can effectively govern storage access across various roles and departments within your organization, 
ensuring data security and auditability within the Databricks Data Intelligence Platform. Lastly, we’ll 
outline how to organize and structure data across different storage locations within Unity Catalog.

In this chapter, we’re going to cover the following main topics:

•	 Creating and managing data catalogs in Unity Catalog

•	 Setting default storage locations for data within Unity Catalog

•	 Creating and managing external storage locations in Unity Catalog

•	 Hands-on lab – extracting document text for a generative AI pipeline

Technical requirements
To follow along with the examples provided in this chapter, you’ll need Databricks workspace 
permissions to create and start an all-purpose cluster so that you can import and execute the chapter’s 
accompanying notebooks. All code samples can be downloaded from this chapter’s GitHub repository 
located at https://github.com/PacktPublishing/Building-Modern-Data-
Applications-Using-Databricks-Lakehouse/tree/main/chapter06. It’s also 
recommended that your Databricks user be elevated to a metastore admin (covered in Chapter 5) so 
that you can add and remove external locations, security credentials, foreign connections, and bind 
catalogs to a Databricks workspace. This chapter will create and run several new notebooks, estimated 
to consume around 5-10 Databricks Units (DBUs).

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter06
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter06
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Creating and managing data catalogs in Unity Catalog
A catalog is the topmost container in the Unity Catalog object model hierarchy for storing data assets. 
A catalog will contain one or more schemas (or databases), which can contain one or many tables, 
views, models, functions, or volumes.

Figure 6.1 – Data is isolated in Unity Catalog using catalogs

A common question is “How many catalogs should my workspace have?” While there is no right 
or wrong answer to the exact number of catalogs one should create for their workspace, a good rule 
of thumb would be to break your workspace catalogs up by natural dividing factors such as lines 
of business, logical work environments, teams, or use cases, for example. Furthermore, you should 
consider the subset of groups and users who will have permission to use the data assets as a factor in 
deciding how to create your catalog isolation.

Important note
It is a best practice to not have too few catalogs where you cannot logically divide datasets 
from one another. Similarly, it’s also a best practice to not have too many catalogs within a 
workspace as it makes it difficult for users to navigate and discover datasets. You should aim 
to find somewhere in between.



Creating and managing data catalogs in Unity Catalog 117

Metastore administrators, or privileged users within Unity Catalog, can grant other users the entitlement 
to create additional catalogs within a metastore. For example, the following grant statement executed by 
a metastore administrator will grant the Databricks user, jane.smith@example.com, permission 
to create new catalogs within the metastore attached to their Databricks workspace:

GRANT CREATE CATALOG ON METASTORE TO `jane.smith@example.com`;

Furthermore, for Databricks workspaces created after November 8th, 2023, a default workspace catalog 
is created within the Unity Catalog metastore, <workspace_name>_catalog. By default, all 
users in the workspace will have access to this catalog and can create data assets.

Managed data versus external data

When you deploy a Unity Catalog metastore, part of the deployment process includes setting up a 
new, default cloud storage container at the metastore level. This cloud storage container serves as the 
default location for all data assets created on the Databricks Data Intelligence Platform. For example, 
when a user creates a new table and they do not specify a LOCATION attribute in the data definition 
language (DDL) statement, then the Databricks Data Intelligence Platform will store the table data in 
the default storage container. As a result, the platform will take care of managing the life cycle of this 
table, including the data files, metadata, and even characteristics of the table, such as tuning the table 
layout and file sizes. This type of data asset is referred to as a managed table because the Databricks 
Data Intelligence Platform will manage the life cycle. Furthermore, if the table is dropped, the platform 
will take care of removing all the table metadata and data files.

However, if the user provides a LOCATION attribute in the DDL statement, they will override the 
default behavior. Instead, the user is explicitly directing the Databricks Data Intelligence Platform 
to store the data in a location external to the default storage container for Unity Catalog. As a result, 
this type of data asset is referred to as an external table. Databricks will not manage the performance 
characteristics of the table, such as the size of the files or the layout of the files. Unlike managed tables, 
if an external table is dropped, only the entry of the table is removed from Unity Catalog and none 
of the table metadata and data files will be removed from their external location. Instead, the table 
owner will need to take care of deleting the table files from the cloud location, since they’ve taken 
over managing the table life cycle.

Generally speaking, managed refers to the Databricks platform managing the life cycle and data will be 
stored in the default storage container, while on the other hand, external means that the object owner 
is taking control of the object life cycle and the data should be stored in an external storage location.
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In fact, there may be good reasons when you wish to create data assets in a different storage location 
than metastore default location. For example, for privileged datasets containing sensitive data, such as 
personally identifiable information (PII) / protected health information (PHI) data, you may wish 
to store these datasets in a separate storage account. Or perhaps you have a contractual obligation that 
requires data to be stored separately in an isolated storage account. In any event, it’s quite common 
to have requirements for data isolation. In the next section, let’s look at another securable object in 
Unity Catalog that allows data admins to securely store arbitrary types of data while maintaining 
strong isolation from traditional tables and views.

Saving data to storage volumes in Unity Catalog

A volume, short for a storage volume, can be used to store files of various format types. Furthermore, 
volumes can be stored alongside tables and views in a schema in Unity Catalog. While tables and 
views are used to store structured data, volumes can be used to store structured, semi-structured, or 
unstructured data.

Figure 6.2 – Storage volumes are stored alongside tables and views within a schema in Unity Catalog

Volumes can be managed by the Databricks Data Intelligence Platform, where, once dropped, the 
storage container, including the entire contents of the storage container, is removed entirely. On the 
other hand, volumes can be external volumes, meaning the volume owner manages the storage location 
of the storage volume, and once dropped, the contents of the storage container are not removed.

Storage volumes simplify the storage of files in Unity Catalog by removing the overhead of creating 
and managing external storage locations and storage credential objects within Unity Catalog. Whereas, 
external locations would need to be created with an accompanying storage credential, making 
provisioning and deprovisioning slightly more complex.
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Storage volumes provide users of a particular schema the flexibility of storing arbitrary files in a safe 
and secure storage location that is managed by the Databricks Data Intelligence Platform. By default, 
storage volumes will persist data in the default storage location of the parent schema. For example, if 
there was no storage location provided at the time of the schema creation, then the data in a storage 
volume will be stored in the default storage account for the Unity Catalog metastore. Whereas if the 
schemas were created with an explicit storage location, then by default the storage volume will store 
its contents in this cloud location.

A metastore administrator or a privileged user with explicit permission to create a volume within a 
catalog can create or drop a volume. The following example grants explicit permission for a Databricks 
user to create volumes on the development catalog:

GRANT CREATE VOLUME
    ON CATALOG development_catalog
    TO `jane.smith@example.com`;

A fully qualified volume path is constructed using /Volumes/ followed by the catalog, schema, 
and volume names. For example, an arbitrary text file can be referenced using the following path:

/Volumes/catalog_name/schema_name/volume_name/subdirectory_name/
arbitrary_file.txt

In the previous examples, we’ve let the Databricks Data Intelligence Platform decide how data is 
stored using schemas, tables, views, and volumes. However, we can set a prescribed cloud location for 
certain securable objects as well. Let’s look at how we can control the storage location using several 
techniques in Unity Catalog.

Setting default locations for data within Unity Catalog
You can control the storage location of data using several techniques in Unity Catalog:

•	 Default location at the catalog level: When creating a new catalog, data administrators can 
prescribe a storage location. When creating a data asset, such as a table, and no location is 
specified, then the data will be stored in the catalog location.

•	 Default location at the schema level: Similarly, you can specify a default location at the schema 
level. The schema location will override any default location specified at the catalog level. When 
creating a data asset, such as a table, and no location is specified, then the data will be stored 
in the schema location.

•	 An external location at the table level: This is the finest-grained control data stewards have 
over their datasets. The table location will override any default location specified at either the 
catalog or the schema level.
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•	 Volume location: Closely related to external locations (covered in the Creating and managing 
external storage locations in Unity Catalog section), volumes allow control over where the table 
data gets stored in your cloud storage location.

Isolating catalogs to specific workspaces
By default, when you create a catalog in Unity Catalog, the catalog will be available for metastore 
admins to grant permissions for users to access across all Databricks workspaces using that metastore. 
However, in certain scenarios, you may want to override this behavior and enforce stronger isolation of 
datasets residing within a particular catalog. For example, sensitive datasets may only be available for 
data pipeline processing in a production workspace but should not be available in lower environments 
such as a development workspace. A feature of Unity Catalog called catalog binding helps address 
this type of scenario. With catalog binding, catalog administrators, such as a metastore administrator 
or a catalog owner, can control which workspaces have access to a particular catalog. For Databricks 
workspaces that are not bound to a particular catalog, the catalog will not appear in the search results 
of the Catalog Explorer UI.

Figure 6.3 – Catalog binding allows data administrators to control 

data isolation and isolation levels per workspace
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Furthermore, data administrators can prescribe the type of actions that are available to datasets bound 
to a particular workspace. For example, say that you want to limit the access to read-only for datasets 
residing within a catalog for a testing environment. Data administrators can change the binding 
settings of a catalog either from the UI, using the Catalog Explorer in the Databricks Data Intelligence 
Platform, or using automated tools such as Terraform or the REST API. Let’s look at an example of 
how we could leverage the Databricks REST API to bind our testing catalog, which contains PII data 
to our production workspace.

First, let’s start off by updating the default settings of our catalog so that the catalog is not accessible 
from all workspaces that use our Unity Catalog metastore. By default, this attribute is set to OPEN, 
and we would like to isolate our catalog to a prescribed workspace only:

import requests
catalog = "testing_catalog"
response = requests.patch(
    f"https://{workspace_name}/api/2.1/unity-catalog/catalogs/
{catalog}",
    headers = {"Authorization": f"Bearer {api_token}"},
    json = {"isolation_mode": "ISOLATED"}
)
print(response.json())

We can also use the Catalog Explorer to verify that the isolation mode of our catalog has been updated 
with our previous request. From the Databricks workspace, navigate to the Catalog Explorer from 
the left sidebar menu. Next, type in the name of your catalog in the search box to filter the catalogs 
and click on the name of your catalog. From the Catalog Explorer UI, verify in the details that the 
checkbox titled All workspaces have access is no longer checked.

Figure 6.4 – Catalog binding information can be configured from the Databricks UI
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Now that our catalog is no longer open for metastore administrators to grant access from all workspaces 
that use our Unity Catalog metastore, we want to bind the catalog to only the workspaces that we’d 
like users to have access to.

In the next example, we’ll again use the Databricks REST API to allow data administrators in the 
production workspace to assign read-only access to the datasets in our catalog:

response = requests.patch(
    f"https://{workspace_name}/api/2.1/unity-catalog/bindings/catalog/
{catalog}",
    headers = {"Authorization": f"Bearer {api_token}"},
    json = {"add": [{
        "workspace_id": <production_workspace_id>,
        "binding_type": "BINDING_TYPE_READ_ONLY"}]
    }
)
print(response.json())

Important note
In the preceding example, we provide the workspace identifier in the payload request for 
binding a catalog to a workspace in Unity Catalog. If you aren’t sure what your workspace 
identifier is, you can quickly find it by inspecting the URL of your Databricks workspace. The 
workspace identifier can be found in the first URI segment of the URL to your Databricks 
workspace and follows the https://<workspace_name>.cloud.databricks.
com/o=<workspace_id> pattern. The workspace identifier will be the numerical value 
immediately following the o= URL parameter.

By now, you should understand the impact that catalog binding has in allowing data administrators 
the ability to control how our data is accessible and further isolate datasets in the Databricks Data 
Intelligence Platform. However, there may be certain scenarios in which data administrators need 
to control the cloud storage location, such as meeting contractual obligations of no co-location of 
datasets during pipeline processing. In the next section, let’s look at how data administrators can 
assign specific cloud locations for datasets.

Creating and managing external storage locations in 
Unity Catalog
One of the strong suits of Databricks is the openness of data, meaning users can connect to data 
stored in a variety of cloud-native storage systems. For example, users can connect to data stored 
in Amazon’s S3 service and join that data with another dataset stored in an Azure Data Lake 
Storage (ADLS) Gen2 storage container. However, one of the downsides is that integration with 
these cloud-native storage services needs complex configuration settings to be set typically at the 
beginning of a notebook execution, or perhaps in an initialization script when a cluster starts up.  
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These configuration settings are complex, and at the very minimum need to be stored in a Databricks 
secret, and authentication tokens would need to be rotated by cloud admins – a very complex maintenance 
life cycle for an otherwise simple task – loading remote data using Spark’s DataFrameReader. One 
of the key benefits that Unity Catalog brings is a securable object called a storage credential, which 
aims to simplify this maintenance task, while also allowing end users the ability to store and connect 
to datasets that are external to the Databricks Data Intelligence Platform. Cloud admins or metastore 
admins can store cloud service authentication details in a single place and save end users, who may 
not be technical, from having to configure complex details of cloud authentication, such as an IAM 
role identifier. As an example of how complex these configuration details can be, the following code 
snippet can be used to configure authentication to an ADLS Gen2 container using the configuration 
that gets set during the code execution:

# Connect to data stored in an ADLS Gen2 container
account_name = "some_storage_account"
spark.conf.set(f"fs.azure.account.auth.type.{account_name}.dfs.core.
windows.net", "SAS")
spark.conf.set(f"fs.azure.sas.token.provider.type.{account_name}.
dfs.core.windows.net", "org.apache.hadoop.fs.azurebfs.sas.
FixedSASTokenProvider")

# Use a Databricks Secret to safely store and retrieve a SAS key for 
authenticating with ADLS service
spark.conf.set(
    f"fs.azure.sas.fixed.token.{account_name}.dfs.core.windows.net",
    dbutils.secrets.get(scope="sas_token_scope", 
    key="sas_ token_key"))

Storing cloud service authentication using storage credentials

A storage credential is a securable object within Unity Catalog that abstracts away a cloud-native 
credential for access to a cloud storage account. For example, a storage credential may represent an 
Identity and Access Management (IAM) role on the Amazon Web Services (AWS) cloud. A storage 
credential may also represent a managed identity or service principal in the Azure cloud. Once a 
storage credential has been created, access to the storage credential can be granted to users and groups 
in Unity Catalog using an explicit grant statement. Like other securable objects in Unity Catalog, there 
are various methods for creating a new security credential on the Databricks Data Intelligence Platform. 
For example, a metastore admin may choose to use American National Standards Institute Structured 
Query Language (ANSI SQL) to create the storage credential, or they might use the Databricks UI.
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Figure 6.5 – Storage credentials can be created using Databricks UI

Storage credentials are paired with another securable object in Unity Catalog called an external 
location, and the combination is used to store and access data in a specific cloud storage account.

Figure 6.6 – A storage credential encapsulates a cloud identity and is 

used by Unity Catalog to access an external storage location
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You must be either a Databricks account administrator or a metastore administrator for a Unity Catalog 
metastore, which will include the CREATE STORAGE CREDENTIAL entitlement. The following 
example uses the Databricks command-line interface (CLI) tool to create a new storage credential 
in Unity Catalog using an IAM role in AWS:

databricks storage-credentials create \
  --json '{"name": "my_storage_cred", ' \
  '"aws_iam_role": {"role_arn": ' \
  '"arn:aws:iam::<role_identifier>:role/<account_name>"}}'

Let’s use the SQL API this time to grant permission to the data-science group to use the credential 
for accessing cloud storage:

-- Grant access to create an external location using the storage cred
GRANT CREATE EXTERNAL LOCATION
    ON STORAGE CREDENTIAL my_s3_bucket_cred
    TO `data-science`;

However, storage containers external to the Databricks Data Intelligence Platform may not be the only 
source of data that you wish to connect to from your lakehouse. For instance, there may be scenarios 
in which you may need to connect to an external system, such as an existing data warehouse or a 
relational database, to cross-reference data. Let’s turn our attention to Lakehouse Federation, which 
allows lakehouse users to query datasets outside of the Databricks Data Intelligence Platform.

Querying external systems using Lakehouse Federation

Lakehouse Federation is a feature in the Databricks Data Intelligence Platform that permits users to 
execute queries on storage systems external to Databricks without needing to migrate the data to the 
lakehouse. Another securable object in Unity Catalog, called a connection, can be used to federate 
queries to external systems. A connection represents a read-only connection to an external system, such 
as a relational database management system (RDBMS), such as Postgres or MySQL, or a cloud data 
warehouse such as Amazon Redshift. This is a great way to query external data to quickly prototype 
new pipelines in your lakehouse. Perhaps, even, you need to cross-reference an external dataset and 
don’t want to go through the lengthy process of creating another extract, transform, and load (ETL) 
pipeline to ingest a new data source just yet.

A list of all connections can be easily viewed in the Databricks Data Intelligence Platform by navigating 
to the Catalog Explorer, expanding the Connections pane, and clicking a Foreign Connection to 
view the details about a previously created connection.
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Let’s look at an example of how we can use the SQL connection API in Databricks to create a new 
foreign connection to the MySQL database. Databricks recommends that all credential information 
be stored in a Databricks secret, which can be easily retrieved from SQL using the secret() SQL 
function and providing the secret scope and secret key:

CREATE CONNECTION my_mysql_connection TYPE mysql
OPTIONS (
    host '<fully_qualified_hostname>',
    port '3306',
    user secret('mysql_scope', 'mysql_username'),
    password secret('mysql_scope', 'mysql_password')
)

Next, navigate to the Connections UI by clicking on the Catalog Explorer in the left-hand side 
navigation bar, expanding the External Data pane, and clicking on the Connections menu item. You 
should now see the newly created connection to the MySQL database and clicking on it will reveal 
details about the connection.

Figure 6.7 – Connections to foreign storage systems can be viewed from the Catalog Explorer

Let’s connect everything we’ve learned in the previous sections to build a modern data pipeline capable 
of powering generative AI use cases.
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Hands-on lab – extracting document text for a generative 
AI pipeline
In this example, we’ll look at a typical pipeline used to extract text from documents for the purposes 
of generative AI. This is a very common architectural pattern, especially for real-world use cases 
such as training a chatbot over a text corpus. Along the way, we’ll see how storage volumes on the 
Databricks Data Intelligence Platform are a great fit for processing arbitrary files from an external 
cloud storage location. All code samples can be downloaded from this chapter’s GitHub repository 
located at https://github.com/PacktPublishing/Building-Modern-Data-
Applications-Using-Databricks-Lakehouse/tree/main/chapter06.

Generating mock documents

The first step in a data pipeline will be a process for generating arbitrary text files to extract text from. 
Let’s begin by creating a new notebook in our Databricks workspace which will be used to train 
our organization’s chatbot. The following code example uses the popular faker Python library, 
to randomly generate the content within our documents, and the reportlab Python library, for 
generating PDF files.

Begin by installing the library dependencies in the first notebook cell using the %pip magic command:

%pip install faker reportlab

Defining helper functions

Let’s define a few helper functions that will take a randomly generated paragraph of text and save 
the text as a document. We’ll define three helper functions – one helper function for each document 
format type – plain text, Portable Document Format (PDF), and comma-separated values (CSV):

1.	 Let’s define the helper function for a plain text file:

from shutil import copyfile

def save_doc_as_text(file_name, save_path, paragraph):
    """Helper function that saves a paragraph of text as a text 
file"""
    tmp_path = f"/local_disk0/tmp/{file_name}"
    volume_path = f"{save_path}/{file_name}"
    print(f"Saving text file at : {tmp_path}")
    txtfile = open(tmp_path, "a")
    txtfile.write(paragraph)
    txtfile.close()
    copyfile(tmp_path, volume_path)

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter06
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter06
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2.	 Next, we define the helper function for a PDF file:

def save_doc_as_pdf(file_name, save_path, paragraph):
    """Helper function that saves a paragraph of text as a PDF 
file"""
    from reportlab.pdfgen.canvas import Canvas
    from reportlab.lib.pagesizes import letter
    from reportlab.lib.units import cm
    tmp_path = f"/local_disk0/tmp/{file_name}"
    volume_path = f"{save_path}/{file_name}"
    canvas = Canvas(tmp_path, pagesize=letter)
    lines = paragraph.split(".")
    textobject = canvas.beginText(5*cm, 25*cm)
    for line in lines:
        textobject.textLine(line)
        canvas.drawText(textobject)
    canvas.save()
    print(f"Saving PDF file at : {tmp_path}")
    copyfile(tmp_path, volume_path)

3.	 Lastly, we define the helper function for a CSV file:

def save_doc_as_csv(file_name, save_path, paragraph):
    """Helper function that saves a paragraph of text as a CSV 
file"""
    import csv
    tmp_path = f"/local_disk0/tmp/{file_name}"
    volume_path = f"{save_path}/{file_name}"
    print(f"Saving CSV file at : {tmp_path}")
    with open(tmp_path, 'w', newline='') as file:
        writer = csv.writer(file)
        writer.writerow(["Id", "Sentence"])
        i = 1
        for line in paragraph.split("."):
            writer.writerow([i, line])
            i = i + 1
    copyfile(tmp_path, volume_path)

This is a great way to simulate a variety of documents you might expect your organization to accumulate 
over time.
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Choosing a file format randomly

Next, we will need to randomly choose the file format to save the generated documents. Let’s begin by 
importing the faker library and a few Python utility libraries that we’ll use to create unpredictable 
behavior. We’ll also define a few global variables that will be used to determine the characteristics of 
our randomly generated documents, such as the number of documents to generate, the number of 
sentences to generate per document, and the types of file formats to store the documents in. Add the 
following code snippet to the notebook:

from faker import Faker
import time
import random

Faker.seed(631)
fake = Faker()

# Randomly generate documents
num_docs = 5
num_sentences_per_doc = 100
doc_types = ["txt", "pdf", "csv"]
volume_path = f"/Volumes/{catalog_name}/{schema_name}/{volume_name}"

Next, let’s create a simple for loop that will serve as the backbone for our random document generator. 
Within the for loop, we’ll use the faker library to create a paragraph of random text having the 
number of sentences equal to the number set by our num_sentences_per_doc global variable:

for _ in range(num_docs):
    paragraph = fake.paragraph(nb_sentences=num_sentences_per_doc)

After the paragraph of random text has been generated, it’s time to choose what file format to store 
the text in. We’ll leverage the random Python library to randomly select a file format type from the 
list of file formats defined in the doc_types global variable. Add the following code snippet to the 
body of the for-loop:

    # Randomly choose a document format type
    doc_type = doc_types[random.randrange(2)]
    print(doc_type)
    if doc_type == "txt":
        doc_name = f"{fake.pystr()}.txt"
        save_doc_as_text(doc_name, volume_path, paragraph)
    elif doc_type == "pdf":
        doc_name = f"{fake.pystr()}.pdf"
        save_doc_as_pdf(doc_name, volume_path, paragraph)
    elif doc_type == "csv":
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        doc_name = f"{fake.pystr()}.csv"
        save_doc_as_csv(doc_name, volume_path, paragraph)

Lastly, we’ll add a sleep timer to simulate unpredictable peaks and lulls in the generation of text 
documents – something that you could expect in a typical production environment. Add the following 
code snippet to the bottom of the for-loop body:

    # Sleep for a random interval
    sleep_time = random.randint(3, 30)
    print(f"Sleeping for {sleep_time} seconds...\n\n")
    time.sleep(sleep_time)

You’ll also notice in the global variables section of the notebook, we’ve defined a volume path for our 
process to save the randomly generated documents:

volume_path = f"/Volumes/{catalog_name}/{schema_name}/{volume_name}"

This is a convenient way to reference a cloud storage location as though it were a local storage path. 
Plus, we have all the benefits of strong data governance that come with a storage volume in Unity 
Catalog. For example, all the data is secured by default, and other users or processes cannot read these 
documents until we have permission to access the data in the storage volume. Finally, let’s attach the 
new notebook to a running all-purpose cluster in the Databricks Data Intelligence Platform and click 
the Run all button at the top of the notebook to begin generating and saving new documents to our 
storage volume location.

Creating/assembling the DLT pipeline

Now that we’ve generated some text documents, let’s go ahead a create a new DLT pipeline that 
will stream the randomly generated documents and perform a simple text extraction. Import the 
notebook titled Preprocess Text Documents.py from the chapter’s GitHub repository into 
your Databricks workspace. You’ll notice that we define three new streaming tables, all of which are 
responsible for ingesting the randomly generated text, PDF, and CSV documents. After doing minimal 
preprocessing, the text field from each of these data sources is extracted and joined in a fourth table, 
text_docs_silver. This fourth table will serve as the input into our chatbot training:

@dlt.table(
    name="text_docs_silver",
    comment="Combined textual documents for Generative AI pipeline."
)
def text_docs_silver():
    text_docs_df = dlt.read("text_docs_raw").withColumn(
        "type", F.lit("text"))
    csv_docs_df = dlt.read("csv_docs_raw").withColumn(
        "type", F.lit("csv"))
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    pdf_docs_df = dlt.read("pdf_docs_raw").withColumn(
        "type", F.lit("pdf"))
    combined_df = text_docs_df.union(csv_docs_df).union(
        pdf_docs_df)
    return combined_df

After attaching the notebook to a running cluster, you will be prompted to create a new DLT pipeline. 
Go ahead and create a brand new DLT pipeline (covered in Chapter 2), titling the pipeline with a 
meaningful name, such as doc_ingestion_pipeline. Select Triggered for the processing mode 
and Core for the product edition, and accept the remaining defaults. Finally, click Start to begin an 
update execution of the newly created DLT pipeline.

Figure 6.8 – An overview of a DLT pipeline extracting text from arbitrary 

documents saved to a volume location in Unity Catalog

You should see the DLT pipeline incrementally processing the randomly generated text documents, 
extracting the text from each of the different file types, and merging them into a consolidated dataset 
downstream. This is a simple, yet powerful example of how DLT can be combined with a storage 
volume in Unity Catalog to process arbitrary file formats in a real-world use case.
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Summary
In this chapter, we covered a variety of methods for storing data while also maintaining fine-grained 
access control using different securable objects in Unity Catalog. We covered how data could be stored 
using catalogs, schemas, tables, views, volumes, and external locations in Unity Catalog. We also saw 
how organizations could bind catalogs to individual Databricks workspaces to isolate datasets and 
even set the level of access to read-only. We covered the differences between managed datasets in the 
Databricks Data Intelligence Platform, as well as how we could set prescribed storage locations for 
storing data using catalogs, schemas, tables, volumes, and external locations. We covered how external 
data sources, such as data warehouses, could be queried in place without having to migrate the data 
using Lakehouse Federation. Lastly, we concluded with a hands-on exercise implementing the start 
of a generative AI pipeline for extracting text from documents using volumes in Unity Catalog.

Now that we have a solid foundation for storing our data and other assets, in the next chapter, we’ll 
be covering tracking lineage across various objects in the Databricks Data Intelligence Platform.



7
Viewing Data Lineage Using 

Unity Catalog

In this chapter, we’ll dive into the critical role that data lineage plays within the Databricks Data 
Intelligence Platform. You’ll learn how to trace data origins, visualize dataset transformations, identify 
upstream and downstream dependencies, and document lineage using the lineage graph capabilities 
of the Catalog Explorer. By the end of the chapter, you’ll be equipped with the skills needed to ensure 
data is coming from trusted sources, and spot breaking changes before they happen.

In this chapter, we’re going to cover the following main topics:

•	 Introducing data lineage in Unity Catalog

•	 Tracing data origins using the Data Lineage REST API

•	 Visualizing upstream and downstream data transformations

•	 Identifying dependencies and impacts

•	 Hands-on lab – documenting data lineage across an organization

Technical requirements
To follow along with the examples provided in this chapter, you’ll need Databricks workspace 
permissions to create and start an all-purpose cluster so that you can import and execute the chapter’s 
accompanying notebooks. All code samples can be downloaded from this chapter’s GitHub repository, 
located at https://github.com/PacktPublishing/Building-Modern-Data-
Applications-Using-Databricks-Lakehouse/tree/main/chapter07. This chapter 
will create and run several new notebooks using an all-purpose cluster and is estimated to consume 
around 5-10 Databricks units (DBUs).

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter07
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter07
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Introducing data lineage in Unity Catalog
Data lineage refers to the ability to trace relationships across securable objects, such as tables, in 
Unity Catalog (UC) so that users can view how data assets are formed from upstream sources and 
verify downstream dependencies.

Figure 7.1 – Data lineage traces the flow of data and how it gets 

transformed over time by internal processes
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In Databricks, users can trace the lineage of data assets in near real time so that data stewards can ensure 
that they are working with the latest assets. Furthermore, data lineage in Unity Catalog spans across 
multiple workspaces that are attached to the same Unity Catalog metastore, allowing data professionals 
to get a complete, holistic view into how datasets are transformed and are related to one another.

Data lineage can be traced across a variety of securable objects in the Databricks Data Intelligence 
Platform, including the following objects:

•	 Queries

•	 Tables

•	 Table columns

•	 Notebooks

•	 Workflows

•	 Machine learning models

•	 Delta Live Tables (DLT) pipelines

•	 Dashboards

Like many objects within the Databricks Data Intelligence Platform, you can trace the lineage through 
a variety of mechanisms, including the Databricks UI, using Catalog Explorer, or by consuming 
the Data Lineage REST API. In fact, data lineage is automatically captured by the Databricks Data 
Intelligence Platform and recorded in the system tables (covered in Chapter 5). Like other system 
information that gets preserved in the Databricks system tables, lineage information can accumulate 
quite a bit. To preserve storage costs, this information is retained for one year by default. For longer 
lineage storage requirements, it’s recommended to set up an alternate process that will append the 
lineage information to longer-term archival storage. For example, say that an organization needs to 
retain system auditing information on the order of years, then a long-term archival ETL pipeline 
would be needed to copy the lineage data into archival storage.

In the coming sections, we’ll cover all varieties for viewing lineage across data assets in Databricks.
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Tracing data origins using the Data Lineage REST API
Like many securable objects in the Databricks Data Intelligence Platform, there are a variety of ways 
to retrieve detailed lineage information pertaining to the object. One common pattern for retrieving 
lineage information about a particular object in Databricks is through the Data Lineage REST API. 
At the moment, the Data Lineage REST API is limited to retrieving a read-only view of table lineage 
information as well as column lineage information.

UC Object HTTP Verb Endpoint Description

Table GET /api/2.0/lineage-
tracking/table-
lineage

Given a UC table name, retrieves a list 
of upstream and downstream table 
connections, as well as information 
about their related notebook connections

Column GET /api/2.0/lineage-
tracking/column-
lineage

Given a UC table name and column 
name, retrieves a list of upstream and 
downstream column connections

Table 7.1 – Data Lineage REST API fetches information pertaining to upstream 

and downstream connections for UC table and column objects

However, it’s expected that the Data Lineage REST API will evolve over time, adding additional 
capabilities for data stewards to retrieve information and even manipulate the end-to-end lineage of 
data assets within the platform.

Let’s look at how we might use the Lineage Tracking API to retrieve information about the upstream 
and downstream connections for a table created by the dataset generator notebook in this chapter’s 
accompanying GitHub repository, located at https://github.com/PacktPublishing/
Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/
main/chapter07.

First, we’ll begin by creating a brand-new notebook in our Databricks workspace and importing the 
requests Python library. We’ll be exclusively using the Python requests library to send data 
lineage requests to the Databricks REST API and parse the response from the Databricks control plane:

import requests

Create and start an all-purpose cluster to attach the notebook to and run the notebook cells. You’ll 
need to generate a personal access token (PAT) to authenticate with the Databricks REST endpoints 
and send Data Lineage API requests. It’s strongly recommended to store the PAT in a Databricks secret 
object (https://docs.databricks.com/en/security/secrets/secrets.html) to 
avoid accidentally leaking the authentication details to your Databricks workspace.

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter07
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter07
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter07
https://docs.databricks.com/en/security/secrets/secrets.html
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Important note
The following code snippets are for illustration purposes only. You’ll need to update the workspace 
name to match the name of your Databricks workspace, as well as the value for the API token.

Let’s use the requests library to send a request to the Data Lineage API by specifying the fully 
qualified endpoint:

response = requests.get(
    f"https://{WORKSPACE_NAME}.cloud.databricks.com/api/2.0/lineage-
tracking/table-lineage",
    headers={
        "Authorization": f"Bearer {API_TOKEN}"
    },
    json={
        "table_name": FULLY_QUALIFIED_TABLE_NAME,
        "include_entity_lineage": "true"
    }
)
print(response.json())

Next, let’s include a few helper functions for parsing the response from the Data Lineage API and 
printing the connection information in a nicely formatted manner that’s easy to understand. Add a 
new cell to your notebook and paste the following helper functions:

def print_table_info(conn_type, table_info_json):
    info = table_info_json["tableInfo"]
    print(f"""
        +---------------------------------------------+
        | {conn_type.upper()} Table Connection Info
        |---------------------------------------------|
        | Table name: {info['name']}
        |---------------------------------------------|
        | Catalog name: {info['catalog_name']}
        |---------------------------------------------|
        | Table type: {info['table_type']}
        |---------------------------------------------|
        | Lineage timestamp: {info['lineage_timestamp']}
        +---------------------------------------------+
    """)
    if conn_type.upper() == "UPSTREAMS":
        print(f"""
                                |
                               \|/
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        """)

def print_notebook_info(conn_type, notebook_info):
    print(f"""
        +---------------------------------------------+
        | {conn_type.upper()} Notebook Connection Info:
        |---------------------------------------------|
        | Workspace id: {str(notebook_info['workspace_id'])}
        |---------------------------------------------|
        | Notebook id: {str(notebook_info['notebook_id'])}
        |---------------------------------------------|
        | Timestamp: {notebook_info['lineage_timestamp']}
        +---------------------------------------------+
    """)

Now, let’s update the response section of our previous code snippet for fetching table lineage information, 
but this time, we’ll invoke these helper functions:

if response.status_code == 200:
    connection_flows = ["upstreams", "downstreams"]
    for flow in connection_flows:
        if flow in response.json():
            connections = response.json()[flow]
            for conn in connections:
                if "tableInfo" in conn:
                    print_table_info(flow, conn)
                elif "notebookInfos" in conn:
                    for notebook_info in conn["notebookInfos"]:
                        print_notebook_info(flow, notebook_info)

The output should now be a much more legible response from our Data Lineage API, allowing us to 
clearly view the upstream and downstream table connections from our table in Unity Catalog.
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Figure 7.2 – Table lineage response output from the Databricks Data Lineage REST API
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The Data Lineage API is great for tracing connections between datasets in Unity Catalog. However, we 
can also retrieve finer-grained lineage information about the columns of our table as well. In the next 
example, let’s retrieve information about the description column of our table. Let’s also define 
another helper function to nicely display the column connection information:

def print_column_info(conn_type, column_info):
    print(f"""
        Connection flow: {conn_type.upper()}
        Column name: {column_info['name']}
        Catalog name: {column_info['catalog_name']}
        Schema name: {column_info['schema_name']}
        Table name: {column_info['table_name']}
        Table type: {column_info['table_type']}
        Lineage timestamp: {column_info['lineage_timestamp']}
    """)

column_name = "description"
response = requests.get(
    f"https://{WORKSPACE_NAME}.cloud.databricks.com/api/2.0/lineage-
tracking/column-lineage",
    headers={
        "Authorization": f"Bearer {API_TOKEN}"
    },
    json={
        "table_name": FULLY_QUALIFIED_TABLE_NAME,
        "column_name": column_name
    }
)
if response.status_code == 200:
    if "upstream_cols" in response.json():
        print("| Upstream cols:")
        for column_info in response.json()['upstream_cols']:
            print_column_info("Upstream", column_info)
    if "downstream_cols" in response.json():
        print("| Downstream cols:")
        for column_info in response.json()['downstream_cols']:
            print_column_info("Downstream", column_info)

In this scenario, the description column in our table is particularly interesting, as it’s the result 
of a concatenation of a text string with two different columns. If you update the previous column 
lineage requests with a different column name, you’ll notice that the number of upstream sources will 
change to reflect the number of connections specific to that column.
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Figure 7.3 – Column lineage response output from the Databricks Lineage API

By now, you should feel comfortable working with the Databricks Data Lineage API to trace connections 
between datasets and even fine-grained data transformations, such as column connections. As you’ve 
seen, the requests and responses from the Data Lineage API require experience working with JSON 
payloads. For some responses, we needed to create helper functions to parse the response into a more 
readable form.

In the next section, we’ll look at using the Databricks UI for tracing dataset relationships, allowing 
non-technical data stewards the ability to view upstream and downstream sources with just the click 
of a button.

Visualizing upstream and downstream transformations
In this section, we’ll be leveraging the dataset generator notebook to create several datasets in Unity 
Catalog for working with the Databricks UI to trace dataset lineage. If you haven’t done so already, 
clone this chapter’s accompanying GitHub repository, which is located at https://github.com/
PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-
Lakehouse/tree/main/chapter07. Next, either start an existing all-purpose cluster or create 
a new cluster and begin by attaching the data generator notebook to the cluster. Click the Run all 
button in the top-right corner of the Databricks workspace to execute all the notebook cells, verifying 
that all cells execute successfully. If you encounter runtime errors, verify that you have the correct 
metastore permissions to create new catalogs, schemas, and tables in your Unity Catalog metastore.

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter07
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter07
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter07
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Important note
You will need to be granted permission to create a new catalog and schema in your Unity 
Catalog metastore. If this isn’t possible, feel free to reuse an existing catalog and schema to 
generate the sample tables. You will need to update the DDL and DML statements accordingly 
to match the value within your own Databricks workspace.

The result of the data generator notebook should be three tables in total: youtube_channels, 
youtube_channel_artists, and combined_table. Data lineage can easily be traced in 
the Databricks Data Intelligence Platform in a variety of ways. In this example, let’s trace the data 
lineage of a data asset, the combined_table table, using the Databricks UI. From your Databricks 
workspace, click on the Catalog Explorer menu tab from the left-hand side navigation menu of the 
Databricks Data Intelligence Platform. Next, either drill down to the catalog and schema to locate 
the combined_table table, or simply type combined_table into the search box at the top 
of the Catalog Explorer, which will filter the list of data assets matching the text string. Click on the 
combined_table table, which will open the data asset Overview details in a separate pane on 
the right-hand side of the UI.

Figure 7.4 – The data lineage can be traced directly from the Catalog Explorer in Databricks

From the UI pane, click on the Lineage tab to expose the details of the data lineage for our table. 
After navigating to the Lineage tab, you should see a summary of all connections related to the 
combined_table dataset, clearly identifying all the upstream sources that are used to construct 
this table, as well as any downstream dependencies that leverage this table.
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Figure 7.5 – The Lineage tab in the Catalog Explorer contains lineage information about a table

In this case, there should be two rows containing information about the upstream sources – the 
youtube_channels parent table and the youtube_channel_artists table. Since we’ve 
only recently created this table using our data generator notebook, there shouldn’t be any rows with 
downstream dependencies. As you can imagine, this table will be updated in near real time with a 
list of all objects that use the dataset in some fashion, clearly identifying any downstream dependents 
of the data.

Lastly, let’s visualize what our table lineage relationships look like. Click on the blue button labeled 
See lineage graph to open the lineage visualization.
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You should now clearly see that two upstream tables join to form the combined_table table.

Figure 7.6 – Lineage connection information can be generated by 

clicking on connection links on a lineage graph

Next, click on the arrow connecting the upstream table with the downstream table, combined_table, 
to reveal more details about the lineage connection. You will notice that a side pane will open displaying 
information about the lineage connection, such as the source and target tables, but it will also display 
how these data assets are used across various other objects in the Databricks Data Intelligence Platform. 
For instance, the UI pane will list how these datasets are currently being leveraged across notebooks, 
workflows, DLT pipelines, and DBSQL queries. In this case, we’ve only generated these tables using 
our data generator notebook, so it is the only object listed in the lineage connection information.



Visualizing upstream and downstream transformations 145

Figure 7.7 – Connection details between datasets can be viewed from the lineage graph

Column lineage can also be traced using the Catalog Explorer. In the same lineage graph, click on 
various columns in the combined_table table to reveal lineage information. For example, by clicking 
on the description table column, the lineage graph will be updated to clearly visualize how the 
description column is calculated. In this case, the column is calculated by concatenating a string 
of text with the category column from our parent table as well as the artist’s name from the child table.

Figure 7.8 – Column lineage can be traced by clicking the column to expose upstream lineage connections
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As you can see, generating a lineage graph from the Catalog Explorer provides an accurate snapshot of 
the latest relationships between datasets in Unity Catalog. These relationships can help us identify the 
impact data changes have on downstream dependencies, such as changing the data type of a column 
or dropping a dataset, for example.

In the next section, we’ll look at how data lineage can help us identify relationships between our 
datasets, spot dependent notebooks that leverage these datasets, and avoid introducing breaking 
changes across our organization.

Identifying dependencies and impacts
In this section, we’ll leverage the lineage graph UI from the Catalog Explorer again to better understand 
how changing the data type and value of a particular column will impact downstream datasets and 
downstream processes, such as notebooks and workflows, across our Databricks workspaces.

Let’s first begin by creating a new notebook in our Databricks workspace that will contain the definition 
of a new DLT pipeline. The first dataset in our DLT pipeline will ingest raw CSV files containing 
commercial airline flight information stored in the default Databricks Filesystem (DBFS) under the 
/databricks-datasets directory. Every Databricks workspace will have access to this dataset. 
Create a new notebook cell and add the following code snippet for the definition of a bronze table in 
our data pipeline:

import dlt
@dlt.table(
    name="commercial_airliner_flights_bronze",
    comment="The commercial airliner flight data dataset located in `/
databricks-datasets/`"
)
def commercial_airliner_flights_bronze():
    path = "/databricks-datasets/airlines/"
    return (spark.readStream
            .format("csv")
            .schema(schema)
            .option("header", True)
            .load(path))

We’d like to augment the flight data with information about the commercial airliner jet. Create a 
new notebook cell and add the following code snippet, which defines a static reference table with 
information about popular commercial airline jets, including the manufacturer name, airplane model, 
country of origin, and fuel capacity, to name a few:

commercial_airliners = [
    ("Airbus A220", "Canada", 2, 2013, 2016, 287, 287, 5790),
    ("Airbus A330neo", "Multinational", 2, 2017, 2018, 123,
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     123, 36744 ),
    ("Airbus A350 XWB", "Multinational", 2, 2013, 2014, 557,
     556, 44000),
    ("Antonov An-148/An-158", "Ukraine", 2, 2004, 2009, 37,
     8, 98567 ),
    ("Boeing 737", "United States", 2, 1967, 1968, 11513, 7649,
     6875),
    ("Boeing 767", "United States", 2, 1981, 1982, 1283, 764,
     23980),
    ("Boeing 777", "United States", 2, 1994, 1995, 1713, 1483,
     47890),
    ("Boeing 787 Dreamliner", "United States", 2, 2009, 2011,
     1072, 1069, 33340),
    ("Embraer E-Jet family", "Brazil", 2, 2002, 2004, 1671,
     1443, 3071),
    ("Embraer E-Jet E2 family", "Brazil", 2, 2016, 2018, 81,
     23, 3071)
]
commercial_airliners_schema = "jet_model string, Country_of_Origin 
string, Engines int, First_Flight int, Airline_Service_Entry int, 
Number_Built int, Currently_In_Service int, Fuel_Capacity int"
airliners_df = spark.createDataFrame(
    data=commercial_airpliners,
    schema=commercial_airliners_schema
)

Next, we’ll save the airline jet reference table to the schema created earlier in Unity Catalog:

airliners_table_name = f"{catalog_name}.{schema_name}.{table_name}"
(airliners_df.write
    .format("delta")
    .mode("overwrite")
    .option("mergeSchema", True)
    .saveAsTable(airliners_table_name))

Let’s add another step to our data pipeline, which will join our static, commercial jet airline reference 
table with our stream of airline flight data. In a new notebook cell, create the following user-defined 
function (UDF), which will generate a tail number for each entry in the commercial airline dataset:

from pyspark.sql.types import StringType
from pyspark.sql.functions import udf

@udf(returnType=StringType())
def generate_jet_model():
    import random
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    commercial_jets = [
        "Airbus A220",
        "Airbus A320",
        "Airbus A330",
        "Airbus A330neo",
        "Airbus A350 XWB",
        "Antonov An-148/An-158",
        "Boeing 737",
        "Boeing 767",
        "Boeing 777",
        "Boeing 787 Dreamliner",
        "Comac ARJ21 Xiangfeng",
        "Comac C919",
        "Embraer E-Jet family",
        "Embraer E-Jet E2 family",
        "Ilyushin Il-96",
        "Sukhoi Superjet SSJ100",
        "Tupolev Tu-204/Tu-214"
    ]
    random_index = random.randint(0, 16)
    return commercial_jets[random_index]

Lastly, create one more notebook cell and add the following DLT dataset definition for our silver table:

@dlt.table(
    name="commercial_airliner_flights_silver",
    comment="The commercial airliner flight data augmented with 
randomly generated jet model and used fuel amount."
)
def commercial_airliner_flights_silver():
    return (dlt.read_stream(
            "commercial_airliner_flights_bronze")
            .withColumn("jet_model", generate_jet_model())
            .join(spark.table(airliners_table_name),
                  ["jet_model"], "left"))

When prompted, let’s create a new DLT pipeline by clicking on the blue button at the bottom of the 
notebook cell output titled Create pipeline. Give the pipeline a meaningful name, such as Commercial 
Airliner Flights Pipeline. Select Triggered as the execution mode and Core for the 
product edition. Next, select the target catalog and schema in the previous code sample as a target 
dataset location for our DLT pipeline. Finally, click the Start button to trigger a pipeline update.
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Figure 7.9 – The DLT pipeline created for ingesting commercial airline flight data

Let’s imagine for a second that there’s an external process that aims to calculate the carbon footprint 
for each commercial flight. In this example, the process is another Databricks notebook that reads 
the output of our silver table and calculates the carbon dioxide emission for each flight taken across 
the United States.

Create another notebook within your Databricks workspace and give the notebook a meaningful 
name, such as Calculating Commercial Airliner Carbon Footprint. Next, let’s 
add a new notebook cell that reads the silver table and calculates the carbon dioxide output using a 
simple formula:

Carbon footprint = amount of fuel burned * coefficient / number of passengers

In this case, we are only interested in calculating the carbon footprint per airliner jet; so, we will avoid 
dividing by the number of passengers. Add the following code snippet to the newly created notebook, 
which will assign a calculated carbon footprint per flight entry:

# 3.1kg of CO2 is created for every 1kg of fuel used.
# So we multiply the fuel mass above by 3.1 to estimate the CO2 
emitted
# Source: https://ecotree.green/en/calculate-flight-co2
# 1 gallon of jet fuel weighs approximately 3.03907 kilograms
def calc_carbon_footprint(fuel_consumed_gallons):
    return (fuel_consumed_gallons * 3.03907) * 3.1
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Let’s imagine again that the fuel capacity amount in the silver table of our DLT pipeline is currently 
measured in gallons. However, our European business partners want to work with the dataset using liters 
instead. Let’s use the Catalog Explorer to explore the lineage graph of our silver table to better understand 
what type of impact, converting the unit of measure for the fuel_capacity column, would have 
on the consumers of the dataset. Navigate to the lineage graph by clicking on the Catalog Explorer in 
the left-hand side navigation bar, filtering the catalogs by entering the name of the catalog in the search 
text field, and finally clicking on the silver table, commercial_airliner_flights_silver.

Figure 7.10 – Column lineage can help us understand how changing 

columns will impact downstream dependencies – an overview
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By generating the lineage graph, we were able to see in near real time all the downstream columns that 
might depend on this column. Furthermore, we can also see a real-time list of all the Unity Catalog 
objects that depend on this column, such as notebooks, workflows, DLT pipelines, and machine-
learning models. So, in effect, we can quickly understand what type of impact changing the unit of 
measure could have across our organization sharing this dataset.

In the next section, we’ll continue with this example to determine an alternative way for updating this 
dataset to include fuel capacity, distance travel, and arrival times to be European-friendly without 
impacting any existing consumers of our data.

Hands-on lab – documenting data lineage across an 
organization
In this section, we’ll look at how the system tables in Databricks automatically document how the 
relationships between our datasets and other data assets change over time. As previously mentioned, 
Unity Catalog will preserve data lineage across all workspaces that attach to the same Unity Catalog 
metastore. This is particularly useful in scenarios when organizations need to have strong end-to-end 
auditing of their data assets.

Let’s again begin by creating a new notebook within our Databricks workspace and giving it a meaningful 
title, such as Viewing Documented Data Lineage. Next, let’s create a new all-purpose cluster 
or attach the notebook to an already running cluster to begin executing notebook cells.

Like the Data Lineage API, there are two system tables that provide a read-only view of lineage 
information in Unity Catalog – the system.access.table_lineage table and the system.
access.column_lineage table. Data lineage system tables automatically document information 
pertaining to upstream and downstream connections for UC table and column objects.

UC Object Table Name Description

Table system.access.table_
lineage

Contains a list of upstream and downstream table 
connections, as well as information about their related 
notebook connections

Column system.access.
column_lineage

Contains a list of upstream and downstream 
column connections

Table 7.2 – Data lineage system tables capture connections info about tables and columns
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Let’s query the upstream and downstream lineage information in the previous example. In a new 
notebook cell, add the following query and execute the cell:

SELECT *
  FROM system.access.table_lineage
  WHERE source_table_name LIKE '%commercial_airliners_silver%';

We get the following output:

Figure 7.11 – Lineage information can be queried from the system tables

As you can see from the output, the system table automatically documents connection information 
about the upstream and downstream sources. In addition, the system tables will automatically capture 
auditing information, including information about the dataset’s creator and the event timestamp of 
the object creation. This is a great way to document, review, or even report on data lineage across 
your organization’s datasets.

Summary
In this chapter, we covered the various ways that data lineage can be traced across datasets in the 
Databricks Data Intelligence Platform. We saw how the Data Lineage REST API allowed us to quickly 
view the upstream and downstream connections of a particular table or column in Unity Catalog. Next, 
we look at how easy it was to generate a lineage graph using the Catalog Explorer in Unity Catalog. 
The lineage graph was essential for enabling greater insight into how changes to datasets could impact 
downstream consumers of the dataset. Lastly, we looked at how the system tables in Unity Catalog 
provided a way for our organization to document the evolving flow of data asset relationships.

In the next chapter, we’ll turn our attention to deploying our data pipelines and all their dependencies 
in an automated fashion using tools such as Terraform.



Part 3: 
Continuous Integration, 

Continuous Deployment, and 
Continuous Monitoring

In the final part of this book, we’ll look at how we can automate the deployment of pipeline changes 
using popular automation tools such as Terraform and Databricks Asset Bundles (DABs). We 
conclude the book with a lesson on how you can continuously monitor your DLT pipelines using a 
variety of tools in the Databricks Data Intelligence Platform.

This part contains the following chapters:

•	 Chapter 8, Deploying, Maintaining, and Administrating DLT Pipelines Using Terraform

•	 Chapter 9, Leveraging Databricks Asset Bundles to Streamline Data Pipeline Deployment

•	 Chapter 10, Monitoring Data Pipelines in Production





8
Deploying, Maintaining, and 

Administrating DLT Pipelines 
Using Terraform

In this chapter, we’re going to explore how an automation tool such as Terraform can be used to express 
data pipelines as code, commonly referred to as Infrastructure as Code (IAC), in Databricks. We’ll 
look at how to set up a local Terraform development environment using popular code editors such 
as VS Code so that we can experiment with deploying different resources to a Databricks workspace. 
Next, we’ll dive into how to represent data pipelines using Terraform and how to configure different 
aspects of a Delta Live Tables (DLT) pipeline. We’ll also look at how we can automate the validation 
and deployment of IaC to different Databricks workspaces, including a production workspace. Lastly, 
we’ll examine industry best practices and future considerations along the way.

In this chapter, we’re going to cover the following main topics:

•	 Introducing the Databricks provider for Terraform

•	 Setting up a local environment

•	 Configuring DLT pipelines using Terraform

•	 Automating DLT pipeline deployment

•	 Hands-on exercise – deploying a DLT pipeline using VS Code
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Technical requirements
To follow along with the examples provided in this chapter, you’ll need Databricks workspace permissions 
to create and start an all-purpose cluster so that you can import and execute the chapter’s accompanying 
notebooks. All code samples can be downloaded from this chapter’s GitHub repository located at 
https://github.com/PacktPublishing/Building-Modern-Data-Applications-
Using-Databricks-Lakehouse/tree/main/chapter08. This chapter will create and 
run several new notebooks, as well as run a new DLT pipeline using the product’s Advanced edition, 
estimated to consume around 10—15 Databricks Units (DBUs).

Introducing the Databricks provider for Terraform
Terraform is an open source deployment automation tool that can be used to automate the deployment 
of cloud infrastructure in a repeatable and predictable manner. One reason Terraform is such a popular 
deployment tool is that it supports deploying infrastructure to the three major cloud providers: Amazon 
Web Services (AWS), Azure, and Google Cloud Platform (GCP). Terraform is centered around the 
concept of defining IaC where, rather than manually deploying cloud components such as network 
objects, virtual machines, or storage containers, they are expressed using code files. Furthermore, 
Terraform files are configuration-driven. Rather than expressing how to deploy the infrastructure, 
cloud administrators focus on expressing what changes between environments through configuration. 
Lastly, Terraform maintains the state of your architecture, meaning that the tool will keep track of the 
state of cloud resources and will update the state accordingly for each new execution of a Terraform 
configuration file.

Lastly, Terraform files can be executed directly from your local machine, allowing you to interact 
with cloud resources remotely.

Figure 8.1 – Terraform will reflect environment changes using configuration files

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter08
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter08
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Terraform configuration files define the cloud infrastructure that is applied in the cloud provider, and 
the infrastructure state is synced back to the local environment. Furthermore, Databricks provides 
a Terraform provider for deploying Databricks workspaces and workspace objects to the major 
cloud providers.

A Terraform provider is a plugin for the Terraform tool that enables users to interact with specific 
APIs. In this case, the Terraform provider interacts with the Databricks REST API, allowing workspace 
administrators to automate the deployment of even the most complex data processing environments.

There are many advantages to using Terraform to automate the deployment of data pipelines within 
your organization, including the following:

•	 It is easy to deploy infrastructure between the major cloud providers, making it trivial to migrate 
between clouds if need be.

•	 It is easy to scale to hundreds of data pipelines by focusing on defining configuration rather 
than manually deploying and maintaining data pipelines.

•	 Pipeline definition is concise, allowing cloud administrators to focus on expressing what should 
change, rather than how to deploy infrastructure.

Let’s look at how easy it is to get started defining Databricks resources and applying them to 
targeted workspaces.

Setting up a local Terraform environment
Before we can begin deploying data pipeline objects to our Databricks workspace, we need to install 
the Terraform command-line interface (CLI) tool. If you haven’t already done so, you will need to 
download the Terraform CLI, which can be downloaded for free from the HashiCorp website (https://
developer.hashicorp.com/terraform/install).

Next, we want to organize the Terraform configuration files into a single directory. Let’s create a new 
directory called chp8_databricks_terraform.

Within the newly created directory, let’s create a brand new Terraform configuration file where we will 
define our data pipeline and other related workspace objects. Create a new file, naming it main.tf.

Important note
Terraform configuration files use the Terraform language and end with the .tf extension.

https://developer.hashicorp.com/terraform/install
https://developer.hashicorp.com/terraform/install
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Importing the Databricks Terraform provider

The first step to using Terraform to deploy Databricks workspace objects is to import the Databricks 
Terraform provider. If it’s your first time using the Terraform provider, Terraform will take care of 
downloading the Databricks provider from the Terraform Registry. The Terraform Registry is a public 
hub for downloading third-party providers, modules, and security policies that aid in developing 
Terraform configuration files to deploy your cloud infrastructure.

Add the following code snippet at the top of the new Terraform configuration file, main.tf:

terraform {
  required_providers {
    databricks = {
    source = "databricks/databricks"
    }
  }
}

This code snippet will instruct the Terraform CLI tool to download and import a Terraform provider 
called databricks that has been published to the Terraform Registry by the Databricks organization.

Now that we’ve imported the Databricks Terraform provider, we can begin deploying data pipeline 
objects to our Databricks workspace. But before we can do that, we must first authenticate with our 
Databricks workspace to make changes, such as creating a new DLT pipeline.

Configuring workspace authentication

If you recall, the Databricks Terraform provider will interact with the Databricks REST API behind 
the scenes. As a result, the same authentication mechanisms that are used to authenticate with the 
Databricks REST API and make workspace changes can be applied using Terraform.

In total, there are about nine supported methods for authenticating with a Databricks workspace using 
the Terraform provider (the latest list can be found here: https://registry.terraform.
io/providers/databricks/databricks/latest/docs#authentication). A few 
of the popular authentication methods include the following:

•	 Using a workspace administrator username and password

•	 Using a Databricks Personal Access Token (PAT)

•	 Using the Azure CLI or Google Cloud CLI

•	 If using the Azure cloud provider, using a service principal or managed service identity

•	 Using the Databricks CLI (user-to-machine authentication)

https://registry.terraform.io/providers/databricks/databricks/latest/docs#authentication
https://registry.terraform.io/providers/databricks/databricks/latest/docs#authentication
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Important note
Since we are doing local development and testing, in the following example, we’ll be generating 
an OAuth token using the Databricks CLI and logging in to our Databricks workspace manually. 
However, for production deployments, it’s recommended to securely store workspace credentials 
in a secrets manager such as Azure Key Vault, AWS Secrets Manager, or HashiCorp Vault, to 
name a few.

There are a couple of options for storing authentication tokens that are used with Terraform – directly 
within the Terraform configuration file as a part of the Databricks provider import, or on the local 
machine within a configuration file. We would recommend the latter option to avoid accidental 
exposure of credentials when checking in code artifacts to your code repository. The easiest method 
for populating this configuration file is by using the Databricks CLI.

The Databricks CLI supports Windows, Linux, or macOS operating systems, making it a cross-platform-
compatible and versatile tool. If your local machine uses macOS or Linux operating systems, you can 
download the Databricks CLI using the Homebrew package manager using a shell prompt. Or you 
can easily upgrade the version of an existing Databricks CLI installation. For example, the following 
commands will install or upgrade an existing Databricks CLI installation using Homebrew on a Mac:

$ brew tap databricks/tap
$ brew install databricks

On a Windows machine, you can install the Databricks CLI using the popular package manager, 
winget (https://learn.microsoft.com/windows/package-manager/winget/). 
The following commands will download and install the Databricks CLI using the winget utility:

$ winget search databricks
$ winget install Databricks.DatabricksCLI

Once downloaded, you can configure authentication by executing the configure command in 
the Databricks CLI:

$ databricks configure

When applying a Terraform configuration file to a target environment, the Terraform CLI will first check 
to see whether authentication details are provided directly within the configuration file. Otherwise, 
the Terraform CLI will look for the local Databricks configuration file, which gets stored in a special 
hidden file called .databrickscfg under your user’s home folder.

You can also specify a profile name, which is helpful when you have multiple Databricks workspaces 
and you need to deploy infrastructure components between the different workspaces. Using the 
profiles, you can store authentication details separately and easily reference them during deployment. 
You can learn more about creating/testing a profile here: https://docs.databricks.com/
dev-tools/cli/profiles.html.

https://learn.microsoft.com/windows/package-manager/winget/
https://docs.databricks.com/dev-tools/cli/profiles.html
https://docs.databricks.com/dev-tools/cli/profiles.html
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Defining a DLT pipeline source notebook

In the next example, we’re going to define a notebook that will contain the start of a simple DLT 
pipeline and deploy the notebook to your user’s workspace directory in a target Databricks workspace.

To construct the workspace location of where to deploy the notebook, we’ll need to get your current 
user in Databricks. Rather than hardcoding this value, we can use the databricks_current_
user data source, which retrieves the current user’s Databricks username at deployment time. Add 
the following configuration block to the main.tf file:

data "databricks_current_user" "my_user" {}

Next, we’ll use the databricks_notebook resource to define a new Python notebook, using the 
previous data source to construct the notebook path. Since the notebook is fairly simple, containing 
only a single DLT dataset definition, we’ll define the notebook contents inline. Add the following 
configuration block to the main.tf file:

resource "databricks_notebook" "dlt_pipeline_notebook" {
  path = "${data.databricks_current_user.my_user.home}/chp_8_
terraform/my_simple_dlt_pipeline.py"
  language = "PYTHON"
  content_base64 = base64encode(<<-EOT
    import dlt

    @dlt.table(
        comment="The raw NYC taxi cab trip dataset located in `/
databricks-datasets/`"
    )
    def yellow_taxi_raw():
        path = "/databricks-datasets/nyctaxi/tripdata/yellow"
        schema = "vendor_id string, pickup_datetime timestamp, 
dropoff_datetime timestamp, passenger_count integer, trip_distance 
float, pickup_longitude float, pickup_latitude float, rate_code 
integer, store_and_fwd_flag integer, dropoff_longitude float, dropoff_
lattitude float, payment_type string, fare_amount float, surcharge 
float, mta_tax float, tip_amount float, tolls_amount float, total_
amount float"
        return (spark.readStream
                    .schema(schema)
                    .format("csv")
                    .option("header", True)
                    .load(path))
    EOT
  )
}
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Finally, let’s add one last block to the main.tf configuration that prints the URL to the deployed notebook:

output "notebook_url" {
  value = databricks_notebook.dlt_pipeline_notebook.url
}

Click Save to save the configuration file. In a terminal window, navigate to the directory containing 
the main.tf configuration file.

Applying workspace changes

The first command that should be run is the terraform init command, which executes several 
initialization steps to prepare the current working directory to deploy cloud resources using Terraform. 
Execute the following command from a terminal window or shell prompt:

terraform init

Next, the Terraform CLI provides a way for us to validate the effects of a Terraform configuration file 
before applying the changes. Execute the validate command:

terraform validate

Lastly, we can view the proposed infrastructure changes by listing all of the planned changes in the 
Terraform plan. Execute the following command to view the proposed Terraform plan:

terraform plan

You’ll notice that there will be a single resource defined in the plan. In this case, it will be the new 
Databricks notebook containing our DLT dataset definition.

Once we validate that the plan looks good, we can then apply the changes to the target Databricks 
workspace. Apply the Terraform plan by executing the apply command:

terraform apply

The output will be the full notebook URL to the newly created notebook. Copy the output URL 
and paste it into a browser window. Verify that there is a new notebook with Python set as the 
default programming language, containing a single notebook cell with the definition of a single DLT 
dataset, yellow_taxi_raw.

Congratulations! You’ve written your first Terraform configuration file and you are well on your way 
to automating the deployment of your Databricks assets across environments. In the next section, 
we’ll expand on the previous example to see how the Databricks Terraform provider can be used to 
deploy DLT pipelines to workspaces.
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Configuring DLT pipelines using Terraform
We will use the databricks_pipeline resource in the Databricks Terraform provider to deploy a 
DLT pipeline to a target Databricks workspace. The databricks_pipeline resource is the main 
building block for our Terraform configuration files. Within this Terraform resource, we can specify 
many different configuration options that will affect the deployment of our DLT pipeline. For example, 
we can configure the DLT production edition, a target Unity Catalog location, library dependencies, 
update cluster sizes, and more. Let’s dive into the exact configurations to get a better idea of the type 
of control you have over the DLT pipeline that gets deployed.

There are several arguments used to define the configuration and behavior of a DLT pipeline using 
the Databricks provider for Terraform. To get a better picture of the types of arguments, the following 
sections cover all the available arguments in the Databricks provider for Terraform (the latest version 
can be found here: https://registry.terraform.io/providers/databricks/
databricks/latest/docs/resources/pipeline).

Generally speaking, the databricks_pipeline arguments can be thought about as falling into 
one of three possible categories:

•	 Runtime configuration: name, channel, development, continuous, edition, 
photon, configuration, and library

•	 Pipeline compute configuration: cluster

•	 Pipeline dataset storage configuration: catalog, target, and storage

Let’s go through each argument in greater detail to get a better understanding of the effect that our 
Terraform configuration can have on a target DLT pipeline.

name

The name argument assigns an alphanumeric name to identify a DLT pipeline. The name argument 
should be a String that can contain mixed-case characters, numbers, spaces, and special characters 
(including emoji characters). Furthermore, the pipeline name argument doesn’t necessarily need to 
be unique; name uniqueness is not enforced by the Databricks Terraform provider. Upon creation of a 
DLT pipeline, the Databricks Data Intelligence Platform will assign a unique pipeline identifier to each 
pipeline, so the name argument is solely used as a convenient way for data engineers to distinguish 
their DLT pipelines from other pipelines from the DLT UI.

https://registry.terraform.io/providers/databricks/databricks/latest/docs/resources/pipeline
https://registry.terraform.io/providers/databricks/databricks/latest/docs/resources/pipeline
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notification

The notification argument is used to specify a list of email recipients who will receive an email 
notification during specific pipeline events. The types of DLT pipeline events that will trigger a 
notification include on-update-success, on-update-failure, on-update-fatal-
failure, and on-flow-failure.

channel

The channel argument controls the type of Databricks runtime a DLT pipeline update cluster should 
use. There are only two options to choose from: CURRENT and PREVIEW. CURRENT selects the 
latest stable Databricks runtime release and is the default option. You may want to choose PREVIEW 
if your DLT pipeline is operating in a development environment, and you’d like to experiment with 
upcoming performance features and optimizations that haven’t made their way into the current 
Databricks runtime yet.

development

The development argument is a Boolean flag that controls whether you want to execute your DLT 
pipeline in Development mode or not. When set to true, Terraform will deploy a DLT pipeline, with 
the pipeline mode set to Development. This will also be reflected on the DLT UI by a toggle button 
at the top right of the DLT UI.

Figure 8.2 – Development mode is visible from the DLT UI as a toggle button

Similarly, when this argument is set to false, Terraform will set the pipeline mode to Production. 
If you recall from Chapter 2, we mentioned that in Development mode, DLT will not retry pipeline 
updates in the event of a runtime exception and will also keep the update cluster up and running to 
help data engineers triage and fix bugs, thereby shortening debugging cycles.

continuous

The continuous argument is a Boolean flag that controls the frequency of pipeline update executions. 
When set to true, Terraform will deploy a DLT pipeline that will continuously update datasets within 
a DLT pipeline. Similarly, when set to false, the DLT pipeline will be deployed with a triggered 
execution mode. In this type of execution mode, a data engineer will need to trigger the start of a 
pipeline update either by clicking the Start button on the DLT UI or by invoking the Pipelines REST 
API to start a pipeline update.
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edition

The edition argument selects which product edition you would like to use when deploying a DLT 
pipeline. There are only three options to choose from: CORE, PRO, and ADVANCED. If you recall from 
Chapter 2, the product edition selects the feature set that you would like to enable when running a 
DLT pipeline. As a result, the pipeline pricing is reflected in the number of features enabled with an 
edition. For example, the PRO product edition will enable data engineers to use expectations to enforce 
data quality but will also incur the highest operational pricing. On the other hand, the CORE product 
edition may be used to append incoming data to streaming tables and will incur the least amount of 
operation charges to update.

photon

The photon argument is a Boolean flag that controls whether to use a Photon processing engine 
to update a DLT pipeline. When set to true, Terraform will deploy a DLT pipeline with an update 
cluster having the Photon engine enabled. During the dataset updates, your DLT pipeline can take 
advantage of this fast, vectorized processing engine that makes joins, aggregations, windows, and 
sorting much faster than the default cluster. When set to false, DLT will create an update cluster 
using the traditional Catalyst engine in Spark. Due to faster processing and improved performance, 
enabling Photon execution will incur higher DBU pricing.

configuration

The configuration argument allows data engineers to deploy a DLT pipeline with optional runtime 
configuration. The configuration argument is an optional list of key-value pairs. This argument can 
be used to populate environment variables, cloud storage locations, or cluster shutdown settings, 
for example.

library

The library argument can be used to install cluster libraries that a DLT pipeline update might 
depend on in order to apply updates to a pipeline. The library argument also adds support for 
referencing local notebook or arbitrary file dependencies, if data engineers wish to include dependent 
code artifacts using local files as opposed to build artifacts. For example, the following library block 
could be used to include a custom date utility defined as a Python file in the user’s home directory 
in their workspace:

library {
  notebook {
    path = "/Users/<username>/common/utils/date_utils.py"
  }
}
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cluster

The cluster argument controls what cluster is used by the pipeline during an update, maintenance 
activities, or the default cluster type to use in both update and maintenance tasks. If no cluster 
block is specified, DLT will create a default cluster to use to apply updates to a pipeline’s datasets. 
Furthermore, the cluster argument will also contain a mode parameter where you can specify 
what type of autoscaling to use. If you recall, in Chapter 2, we described two autoscaling modes in 
DLT: LEGACY and ENHANCED. For example, the following configuration will create an update cluster 
that will autoscale from a minimum of three worker nodes to a maximum of eight nodes using the 
ENHANCED autoscaling algorithm:

cluster {
  node_type_id = "i3.xlarge"
  autoscale {
    min_workers = 3
    max_workers = 8
    mode = "ENHANCED"
  }
}

catalog

The catalog argument determines the catalog to store the output datasets of a DLT pipeline in 
Unity Catalog. As a DLT pipeline executes the definitions for datasets outlined in a DLT pipeline, these 
datasets need to have some destination location specified. You can specify a combination of a catalog 
and a schema (covered in the next section, target) or you can specify a cloud storage location – but 
not both. This argument is mutually exclusive to the following argument, the storage argument. 
Alternatively, data engineers can continue to store a DLT pipeline’s datasets in the legacy Hive Metastore 
specifying the following configuration:

catalog {
  name = "hive_metastore"
}

Important note
If either the catalog or storage arguments are changed in a Terraform configuration 
file and the changes are applied, Terraform will recreate the entire DLT pipeline with the new 
changes. These values cannot be updated in the original DLT pipeline once deployed.



Deploying, Maintaining, and Administrating DLT Pipelines Using Terraform166

target

The target argument specifies the schema in which to store the output datasets defined in a DLT 
pipeline. This argument, combined with the previous catalog argument, specifies a fully qualified 
schema in Unity Catalog or the legacy Hive Metastore. Data engineers may choose to use the values 
set in the catalog and target arguments as a convenient means for querying the intermediate 
datasets of a DLT pipeline. This may be for common tasks such as data validation, debugging, or 
general data wrangling.

storage

The storage argument can be used to specify a cloud storage location to store the output datasets 
and other related metadata for a DLT pipeline. It’s important to keep in mind that this argument is 
mutually exclusive to the preceding argument, the catalog argument. The storage argument may 
contain a fully qualified storage location path, a volumes location, or a location in the Databricks File 
System (DBFS). For example, the following configuration block would create a DLT pipeline whose 
output datasets would be stored in the DBFS:

storage {
  path = "/pipelines/my-dlt-pipeline-output/"
}

Important note
The storage and catalog arguments are mutually exclusive to one another. You may only 
specify one when authoring a Terraform configuration file.

By now, you should feel confident in using the databricks_pipeline resource to declare DLT 
pipelines using the Databricks provider for Terraform. You should also have a greater understanding 
of the different types of configuration options available to customize a target DLT pipeline. In the next 
section, we’ll look at how we can automate the deployment of DLT pipelines using existing version 
control systems so that the latest changes are synchronized across target workspaces as soon as they 
are made available.

Automating DLT pipeline deployment
Terraform can be combined with automated Continuous Integration/Continuous Deployment (CI/
CD) tools, such as GitHub Actions or Azure DevOps Pipelines to automatically deploy code changes 
to your Databricks workspaces. Since Terraform is cross-platform, the target Databricks workspace 
can be in one of the major cloud providers: GCP, AWS, or Azure. This allows your development team 
to maintain infrastructure in a single set of code artifacts while also being agile enough to apply the 
same resources to alternate cloud providers.
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Let’s walk through a typical CI/CD process that uses the Databricks provider for Terraform to deploy 
Databricks resources to target workspaces. The CI/CD process will contain two automated build 
pipelines – one that will be used to validate changes made in feature branches, and a second that 
will be used to deploy changes that have been approved and merged into the main code branch to 
Databricks workspaces.

First, a team member creates a new feature branch to track changes to their organization’s IaC code 
base. Once finished, the engineer will open a pull request, requesting one or more peers from their 
team to review the changes, leave feedback, and approve or reject the changes. Upon opening a pull 
request, the build pipeline will be triggered to run, which will check out the feature branch, initialize 
the current working directory using the Terraform init command, validate the Terraform plan 
using the Terraform validate command, and generate an output in the form of a Terraform plan. 
Optionally, this Terraform plan can be automatically included in the pull request as a comment for 
peers to review.

When the pull request has been approved by their team members, the feature branch can be merged 
into the main code repository branch – or the main branch, for short.

Once the feature branch has been merged into the main branch, the build release pipeline is triggered 
to run. The build release pipeline will check out the latest copy of the main branch and apply the 
changes using the Terraform apply command. Upon applying the Terraform plan, new changes to 
the organization’s infrastructure will be reflected in the target Databricks workspace.

Figure 8.3 – Automatic deployment of Databricks resources using build tools
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By now, you should have a complete understanding of how to design an automatic Databricks deployment 
using tools such as Azure DevOps to synchronize infrastructure changes through Terraform. Let’s 
combine everything that we’ve learned in the preceding sections to deploy our very own DLT pipeline 
to a target Databricks workspace using a typical development environment.

Hands-on exercise – deploying a DLT pipeline using VS 
Code
In this hands-on exercise, we’ll be using the popular code editor, Visual Studio Code (VS Code), to 
author new Terraform configuration files for deploying a DLT pipeline to a target Databricks workspace. 
VS Code has gained immense popularity over the years due to its ease of use, light memory footprint, 
friendly code navigation, syntax highlighting, and code refactoring, as well as a great community of 
extensions. Plus, VS Code is built around an open source community, meaning it’s free to download 
and use. Furthermore, VS Code is a cross-platform code editor, supporting Windows, macOS, and 
Linux operating systems. In this hands-on exercise, we’ll be using one of the community extensions, 
the Terraform plugin for VS Code, which is authored by HashiCorp to help assist in the development 
of Terraform configuration files. For example, the Terraform plugin for VS Code features Terraform 
syntax highlighting, auto-completion, code formatting, access to Terraform commands from the VS 
Code command palette, and overall, provides an easy experience navigating Terraform configuration 
files for deploying Databricks workspace objects.

Setting up VS Code

VS Code can be downloaded from its website located at https://code.visualstudio.com/
download. If you haven’t installed VS Code yet, select the installer download for the operating system 
that matches your local machine. The installer may take a few minutes to download, depending on 
your network connection speed. Once the installer has been downloaded, unzip the ZIP file to reveal 
the downloaded contents. Next, double-click the application file, Visual Studio Code, to launch 
the code editor. Alternatively, you can move the application file to the Applications directory of 
your local operating system.

Next, let’s install the Terraform extension by HashiCorp. In a web browser window, navigate to the 
Terraform extension in the Visual Studio Marketplace website located at https://marketplace.
visualstudio.com/items?itemName=HashiCorp.terraform. Or you can search for 
the extension in the Marketplace search box in VS Code. Click the Install button to download and 
install the Terraform extension for VS Code.

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=HashiCorp.terraform
https://marketplace.visualstudio.com/items?itemName=HashiCorp.terraform
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Figure 8.4 – The Terraform extension for VS Code by HashiCorp can 

be installed from the Visual Studio Marketplace

You may be prompted to allow your web browser to open the VS Code application on your local 
machine. If so, click the Allow button to open VS Code and install the extension. The extension will 
be downloaded and installed in just a few minutes. Once the installation has been completed, you 
should now see menu items for HashiCorp Terraform on the left-hand side navigation bar of VS Code.

Figure 8.5 – The HashiCorp Terraform extension will create new 

menu items in the left-hand side navigation bar

Now that the Terraform extension has been successfully installed, the extension will automatically be 
activated when the code editor detects a Terraform file. You can verify that the extension is activated 
by a Terraform logo, which will appear in the bottom right-hand corner of the opened Terraform file.

Creating a new Terraform project

Let’s create a new directory for our hands-on exercise:

$ mkdir chapter_8_hands_on
$ cd chapter_8_hands_on
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Create an empty Terraform configuration file, titled main.tf, either from a shell prompt or using 
VS Code:

$ touch main.tf

Optionally, you can clone the sample project from this chapter’s GitHub repo, located at https://
github.com/PacktPublishing/Building-Modern-Data-Applications-Using-
Databricks-Lakehouse/tree/main/chapter08. Next, open the directory in VS Code by 
selecting File | Open Folder and navigating to the directory’s location.

Defining the Terraform resources

Let’s start by expanding the Terraform example introduced in the Setting up a local Terraform environment 
section at the beginning of this chapter. Either copy the existing main.tf file or feel free to directly 
edit the body of the existing main.tf configuration file.

First, let’s begin by adding a second dataset to the DLT pipeline definition in the databricks_
notebook resource definition (the code from the Defining a DLT pipeline source notebook section has 
been truncated for brevity in the following code block). We will now have a data pipeline containing 
two datasets – a bronze layer followed by a silver layer. Update the databricks_notebook 
resource definition in the main.tf file with the following definition:

resource "databricks_notebook" "dlt_pipeline_notebook" {
  path = "${data.databricks_current_user.my_user.home}/chp_8_
terraform/taxi_trips_pipeline.py"
...
                    .load(path))

    @dlt.table(
        name="yellow_taxi_silver",
        comment="Financial information from incoming taxi trips."
    )
    @dlt.expect_or_fail("valid_total_amount", "total_amount > 0.0")
    def yellow_taxi_silver():
        return (dlt.readStream("yellow_taxi_bronze")
                    .withColumn("driver_payment",
                                F.expr("total_amount * 0.40"))
                    .withColumn("vehicle_maintenance_fee",
                                F.expr("total_amount * 0.05"))
                    .withColumn("adminstrative_fee",
                                F.expr("total_amount * 0.1"))
                    .withColumn("potential_profits",
                                F.expr("total_amount * 0.45")))
    EOT

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter08
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter08
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter08
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  )
}

Next, before we can create a new DLT pipeline, we’ll want to define a location in Unity Catalog in 
which to store the pipeline datasets. Add the following catalog and schema resource definitions to 
the bottom of the main.tf file:

resource "databricks_catalog" "dlt_target_catalog" {
  name = "chp8_deploying_pipelines_w_terraform"
  comment = "The target catalog for Taxi Trips DLT pipeline"
}

resource "databricks_schema" "dlt_target_schema" {
  catalog_name = databricks_catalog.dlt_target_catalog.id
  name = "terraform_demo"
  comment = "The target schema for Taxi Trips DLT pipeline"
}

Now that we have an updated source notebook containing the definition of our DLT pipeline, as well 
as a location to store the pipeline datasets, we can define a DLT pipeline. Add the following pipeline 
definition to the main.tf file:

resource "databricks_pipeline" "taxi_trips_pipeline" {
  name = "Taxi Trips Pipeline"
  library {
    notebook {
      path = "${data.databricks_current_user.my_user.home}/chp_8_
terraform/taxi_trips_pipeline.py"
    }
  }
  cluster {
    label = "default"
    num_workers = 2
    autoscale {
      min_workers = 2
      max_workers = 4
      mode = "ENHANCED"
    }
    driver_node_type_id = "i3.2xlarge"
    node_type_id = "i3.xlarge"
  }
  continuous = false
  development = true
  photon = false
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  serverless = false
  catalog = databricks_catalog.dlt_target_catalog.name
  target = databricks_schema.dlt_target_schema.name
  edition = "ADVANCED"
  channel = "CURRENT"
}

You’ll notice that we’ve defined the location for the notebook containing the DLT pipeline definition, 
a default cluster to use for pipeline updates and maintenance tasks, as well as other runtime settings 
such as the Development mode, product edition, channel, and more.

Next, we’ll want to orchestrate the updates to our DLT pipeline so that we can trigger runs on a 
repeated schedule, configure alert notifications, or set timeout thresholds. Add the following workflow 
definition to the bottom of the main.tf file:

resource "databricks_job" "taxi_trips_pipeline_job" {
  name = "Taxi Trips Pipeline Update Job"
  description = "Databricks Workflow that executes a pipeline update 
of the Taxi Trips DLT pipeline."
  job_cluster {
    job_cluster_key = "taxi_trips_pipeline_update_job_cluster"
    new_cluster {
      num_workers = 2
      spark_version = "15.4.x-scala2.12"
      node_type_id  = "i3.xlarge"
      driver_node_type_id = "i3.2xlarge"
    }
  }
  task {
    task_key = "update_taxi_trips_pipeline"
    pipeline_task {
      pipeline_id = databricks_pipeline.taxi_trips_pipeline.id
    }
  }
  trigger {
    pause_status = "PAUSED"
    periodic {
      interval = "1"
      unit = "HOURS"
    }
  }
}
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Lastly, we’ll want to output the workflow URL of the deployed resource so that we can open the 
workflow UI easily from a browser. Add the following output definition to the main.tf file:

output "workflow_url" {
  value = databricks_job.taxi_trips_pipeline_job.url
}

Deploying the Terraform project

Before we can begin deploying new resources, the first step is to initialize the Terraform project. 
Execute the Terraform init command in the parent directory either from the VS Code command 
palette or from a shell prompt:

$ terraform init

Next, preview the changes in the Terraform file by executing the Terraform plan command to view 
the proposed infrastructure changes:

$ terraform plan

In total, there should be five new resources created, including the databricks_notebook 
resource, which represents the notebook containing the DLT pipeline definition, the target Unity 
Catalog’s catalog, the target Unity Catalog schema, the databricks_pipeline resource, which 
represents our DLT pipeline, and the databricks_job resource, which represents the workflow 
that will trigger pipeline updates.

After we’ve validated the plan, we can now deploy our DLT pipeline to a Databricks workspace. Next, 
execute the Terraform apply command to deploy the new infrastructure changes to our workspace:

$ terraform apply

Once all resource changes have been applied, you should expect Terraform to output the URL to the 
Databricks workflow.
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Copy and paste the workflow URL into a browser window and ensure that the address resolves to the 
newly created workflow in the target workspace. You’ll notice that the new workflow contains a single 
task for updating the DLT pipeline. The workflow is paused, as outlined in the Terraform configuration. 
Optionally, you can click the blue Run now button to trigger a new, immediate run of the workflow.

Figure 8.6 – Terraform will output the workflow URL for updating the DLT pipeline

As simple as it was to deploy our changes to the target Databricks workspace, it’s just as easy to 
undeploy the changes. Execute the following command to remove all the resource changes from the 
target Databricks workspace:

$ terraform destroy

Confirm the decision by entering the word yes. It may take a few minutes to fully undeploy all of 
the resources from your Databricks workspace.
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As you saw, with just a few keystrokes and a few clicks of the button, it was fast and easy to provision 
and deprovision resources in a Databricks workspace using the Databricks Terraform provider. 
Rather than instructing Terraform how to deploy the resources to our target Databricks workspace, 
we focused on what changes to make through configuration and let the Terraform tool handle the 
heavy lifting for us.

Summary
In this chapter, we covered how to use the Databricks provider for Terraform to implement a CI/
CD process for deploying data pipelines across workspaces. We saw how easy it was to set up a 
local development environment for working with Terraform configuration files and how easy it 
was to test our Terraform plans before applying them to a target environment. We also installed the 
Databricks Terraform provider from the Terraform Registry and imported the provider into Terraform 
configuration files. Next, we dove into the details of the databricks_pipeline resource, which 
is used by the Databricks Terraform provider to deploy a DLT pipeline to a target workspace. We 
inspected each argument in the resource specification and saw how we could control the DLT pipeline 
runtime configuration, the compute settings, and even the location of the output datasets from our 
pipeline. Lastly, we saw how easy it was to automate our Terraform configuration files by storing 
them in a version control system such as GitHub and automating the deployment using a build tool 
such as Azure DevOps Pipelines. We concluded the chapter with a hands-on example of using the 
Terraform extension with the popular code editor VS Code to deploy a DLT pipeline from your local 
development environment.

However, Terraform isn’t for everyone and it may be the case that it’s too complex or too difficult to 
use for your use case. In the next chapter, we’ll dive into Databricks Asset Bundles (DABs), which 
is another CI/CD tool that makes it simple to package and deploy Databricks code artifacts for data 
and machine learning workloads.
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Leveraging Databricks Asset 

Bundles to Streamline Data 
Pipeline Deployment

This chapter explores a relatively new continuous integration and continuous deployment (CI/CD) 
tool called Databricks Asset Bundles (DABs), which can be leveraged to streamline the development 
and deployment of data analytical projects across various Databricks workspaces. In this chapter, we’ll 
dive into the core concept of DABs. We’ll demonstrate the practical use of DABs through several 
hands-on exercises so that you feel comfortable developing your next data analytics projects as a 
DAB. Lastly, we’ll cover how DABs can be used to increase cross-team collaboration through version 
control systems such as GitHub, and how DABs can be used to simplify even the most complex data 
analytical deployments.

In this chapter, we’re going to cover the following main topics:

•	 Introduction to Databricks Asset Bundles

•	 Databricks Asset Bundles in action

•	 Simplifying cross-team collaboration

•	 Versioning and maintenance
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Technical requirements
To follow the examples in this chapter, it’s recommended that you have Databricks workspace 
administrative privileges so that you can deploy DABs to target workspaces. You’ll also need to download 
and install version 0.218.0 or higher of the Databricks CLI. All the code samples can be downloaded 
from this chapter’s GitHub repository at https://github.com/PacktPublishing/
Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/
main/chapter09. In this chapter, we will deploy several new workflows, DLT pipelines, notebooks, 
and clusters. It’s estimated that this will consume around 5-10 Databricks Units (DBUs).

Introduction to Databricks Asset Bundles
DABs provide an easy and convenient way to develop your data and artificial intelligence (AI) 
projects together with YAML metadata for declaring the infrastructure that goes along with it – just 
like a bundle. DABs provide data engineers with a way to programmatically validate, deploy, and test 
Databricks resources in target workspaces. This may include deploying workspace assets such as Delta 
Live Tables (DLT) pipelines, workflows, notebooks, and more. DABs also provide a convenient way 
to develop, package, and deploy machine learning workloads using reusable templates (we’ll cover 
DAB templates later in the Initializing an asset bundle using templates section), called MLOps Stacks.

DABs were designed around the principles of expressing Infrastructure as Code (IaC) and benefit from 
using configuration to drive the deployment of architectural components of your data applications. 
DABs provide a way to check in IaC configuration along with data assets such as Python files, 
Notebooks, and other dependencies. DABs can also be an alternative if you feel Terraform (covered 
in Chapter 8) is too advanced for your organization’s needs within the context of the Databricks Data 
Intelligence Platform.

DABs share some similarities with Terraform in that both are IaC tools that give users the ability to 
define cloud resources and deploy those resources in a cloud-agnostic manner. However, there are many 
differences as well. Let’s compare a few of the similarities and differences between DABs and Terraform 
to get a better feeling of when to choose which tool over the other for your organization’s needs:

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter09
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter09
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter09
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Figure 9.1 – DABs and Terraform are both IaC tools, but they meet very different needs

Before we start writing our very first DAB, let’s spend some time getting to know the major building 
blocks of what makes up a DAB configuration file.

Elements of a DAB configuration file

At the center of a DAB is a YAML configuration file, named databricks.yml. This configuration 
file provides engineers with an entry point for configuring the deployment of their project’s resources. 
The file consists of many composable building blocks that tell the Databricks command-line interface 
(CLI) what to deploy to a target Databricks workspace and how to configure each resource. Each 
building block accepts different parameters for configuring that component.

Later in this chapter, we’ll cover how to decompose the configuration file into many YAML files, but 
for simplicity’s sake, we’ll start with a single YAML file. Within this YAML configuration file, we’ll 
declare our Databricks resources, as well as other metadata. These building blocks, or mappings, tell 
the DAB tool what Databricks resource to create, and more importantly, what Databricks REST API 
to manipulate to create and configure a Databricks resource. 
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These mappings can be a variety of Databricks resources. For example, a DAB configuration file can 
contain any combination of the following mappings:

Mapping Name Required? Description

bundle Yes Contains top-level information about the current asset 
bundle, including the Databricks CLI version, existing 
cluster identifier, and git settings.

variables No Contains global variables that will be dynamically populated 
during the execution of a DAB deployment.

workspace No Used to specify non-default workspace locations, such as 
the root storage, artifact storage, and file paths.

permissions No Contains information about what permissions to grant to 
the deployed resources.

resources Yes Specifies what Databricks resources to deploy and how 
to configure them.

artifacts No Specifies deployment artifacts, such as Python .whl files, 
that will be generated during the deployment process.

include No Specifies a list of relative file path globs to additional 
configuration files. This is a great way to separate a DAB 
configuration file into several child configuration files.

sync No Specifies a list of relative file path globs to include or 
exclude in the deployment process.

targets Yes Specifies information about the context in addition to the 
Databricks workspace and details about the workflow, 
pipeline, and artifacts.

Table 9.1 – Mappings in a databricks.yml file

Let’s look at a simple DAB configuration file so that we’re familiar with some of the basics. The following 
example will create a new Databricks workflow called Hello, World! that will run a notebook 
that prints the simple yet popular expression Hello, World!:

bundle:
  name: hello_dab_world

resources:
  jobs:
    hello_dab_world_job:
      name: hello_dab_world_job
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      tasks:
        - task_key: notebook_task
          existing_cluster_id: <cluster_id>
          notebook_task:
            notebook_path: ./src/hello_dab_world.py

targets:
  dev:
    default: true
    workspace:
      host: https://<workspace_name>.cloud.databricks.com

In this simple example, our DAB configuration file consists of three main sections:

•	 bundle: This section contains high-level information about the current DAB – in this case, 
its name.

•	 resources: This defines a new Databricks workflow with a single notebook task that should 
be run on an existing cluster.

•	 targets: This specifies information about the target Databricks workspace the workflow and 
notebook should be deployed to.

Now that we have a strong understanding of the basics of a DAB configuration file, let’s look at how 
we can deploy our Databricks resources under different deployment scenarios.

Specifying a deployment mode

One attribute that’s available from within a DAB configuration file is a deployment mode, which allows 
us to specify an operating mode when we’re deploying resources. There are two types of deployment 
modes available: development and production.

In development mode, all resources are marked with a special prefix, [dev <username>], to indicate 
that the resources are in development. Furthermore, all resources, when available, are deployed with 
the dev metadata tag, to also indicate that the resources are in development. As you may recall from 
Chapter 2, DLT also has a development mode available. When DLT pipelines are deployed using DABs 
in development mode, all deployed DLT pipelines will be deployed to the target workspace with this 
development mode enabled.
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During the development life cycle, it’s also expected that engineers will want to experiment with changes 
and quickly iterate on design changes. As a result, development mode will also pause all Databricks 
workflow schedules and enable concurrent runs of the same workflow, allowing engineers to run the 
workflow in an ad hoc fashion directly from the Databricks CLI. Similarly, development mode gives 
you the option to specify an existing all-purpose cluster to use for the deployment process, either by 
specifying the cluster ID as an argument from the Databricks CLI via --compute-id <cluster_
id> or by adding the cluster ID to the top-level bundle mapping of the YAML configuration file.

Let’s look at how we might be able to specify a target workspace so that it can be used as a development 
environment and override all clusters with a default, existing all-purpose cluster:

targets:
  dev:
    default: true
    mode: development
    compute_id: <cluster_id>
    workspace:
      host: https://<workspace_name>.cloud.databricks.com

Conversely, you can also specify a production mode. In production mode, resources won’t be prepended 
with a special naming prefix and no tags will be applied. However, production mode will validate 
the resources before they’re deployed to the target workspace. For example, it will be ensured that all 
DLT pipelines have been set to production mode and resources that specify cloud storage locations 
or workspace paths don’t point to user-specific locations.

In the next section, we’ll roll up our sleeves and dive into using the Databricks CLI to experiment 
with asset bundles and see them in action.

Databricks Asset Bundles in action
DABs depend entirely on the Databricks CLI tool (see Chapter 8 for installation instructions) to 
create new bundles from templates, deploy bundles to target workspaces, and even remove previously 
deployed resource bundles from workspaces. For this section, you’ll need version 0.218.0 or higher 
of the Databricks CLI. You can quickly check the version of your local Databricks CLI by passing the 
--version argument:

databricks –-version

You should get a similar output as shown in the following Figure 9.2:
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Figure 9.2 - Checking the version of a previously installed Databricks CLI

Once you’ve successfully installed the recommended version of the Databricks CLI, you can test that 
the installation was successful by displaying the manual page for the bundle command. Enter the 
following command to display the available arguments and descriptions from the CLI:

$ databricks bundle --help

We’ll get the following manual page:

Figure 9.3 – The manual page for the bundle command in the Databricks CLI

Before we can begin authoring DABs and deploying resources to Databricks workspaces, we will need 
to authenticate with the target Databricks workspaces so that we can deploy resources. DABs leverage 
OAuth tokens to authenticate with Databricks workspaces. Two types of OAuth authentication can be used 
with DABs – user-to-machine (U2M) authentication and machine-to-machine (M2M) authentication.
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User-to-machine authentication

U2M authentication involves a human in the loop generating an OAuth token that can be used when 
you’re deploying new resources to a target workspace. This type of authentication involves a user 
who will log in via a web browser when prompted by the CLI tool. This type of authentication is 
good for development scenarios where users want to experiment with DABs and deploy resources in 
non-critical development workspaces.

U2M is the easiest way to authenticate with your Databricks workspace and can be done directly 
from the Databricks CLI:

$ databricks auth login --host <workspace-url>

Workspace information such as the workspace’s URL, nickname, and authentication details are stored in 
a hidden file under your user directory on your local machine. For example, on Mac and Linux systems, 
this information will be written to a local ~/.databrickscfg file under the user’s home directory:

Figure 9.4 – Example of multiple Databricks profiles saved to a local configuration file

You can quickly switch between different Databricks workspaces by passing the --profile 
<profile_nickname> argument using CLI commands. For example, the following command 
will apply a DAB to a workspace saved under the TEST_ENV profile:

$ databricks bundle deploy –-profile TEST_ENV



Databricks Asset Bundles in action 185

U2M authentication was designed strictly for development purposes. For production scenarios, this 
type of authentication is not recommended as it can’t be automated and doesn’t restrict access to the 
least set of privileges necessary. In these cases, M2M authentication is recommended.

Let’s take a look at this alternative authentication type for when you’re automating your DAB deployment 
in production scenarios.

Machine-to-machine authentication

M2M authentication doesn’t involve a human, per se. This type of authentication was designed for 
fully automated CI/CD workflows. Furthermore, this type of authentication pairs well with version 
control systems such as GitHub, Bitbucket, and Azure DevOps.

M2M requires the use of service principals to abstract the generation of OAuth tokens. Furthermore, 
service principals give automated tools and scripts API-only access to Databricks resources, providing 
greater security than using users or groups. For this reason, service principals are an ideal scenario 
for production environments.

M2M requires a Databricks account admin to create a service principal and generate an OAuth token 
from the Databricks account console. Once an OAuth token has been generated under the service 
principal’s identity, the token can be used to populate environment variables such as DATABRICKS_
HOST, DATABRICKS_CLIENT_ID, and DATABRICKS_CLIENT_SECRET, which are used in 
automated build and deployment tools such as GitHub Actions or Azure DevOps.

Initializing an asset bundle using templates

DABs also come with project templates, which allow developers to quickly create a new bundle using 
predefined settings. DAB templates contain predefined artifacts and settings for commonly deployed 
Databricks projects. For example, the following command will initialize a local DAB project:

$ databricks bundle init

From the CLI, the user is prompted to choose a DAB template:

Figure 9.5 – Initializing a new DAB project using templates from the Databricks CLI

At the time of writing, DABs come with four templates to choose from: default-python, 
default-sql, dbt-sql, and mlops-stacks (https://docs.databricks.com/
en/dev-tools/bundles/templates.html). However, you also have the option to create 
organization templates and generate artifacts as a reusable project bundle.

https://docs.databricks.com/en/dev-tools/bundles/templates.html
https://docs.databricks.com/en/dev-tools/bundles/templates.html
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Now that we have a good understanding of the basics of DABs, let’s put together everything that we’ve 
learned so far and deploy a few resources to a Databricks workspace.

Hands-on exercise – deploying your first DAB
In this hands-on exercise, we’re going to create a Python-based asset bundle and deploy a simple 
Databricks workflow that runs a DLT pipeline in a target workspace.

Let’s begin by creating a local directory that we’ll be using to create the project scaffolding for our DAB. 
For example, the following command will create a new directory under the user’s home directory:

$ mkdir –p ~/chapter9/dabs/

Next, navigate to the newly created project directory:

$ cd ~/chapter9/dabs

Generate a new OAuth token using U2M authentication by entering the following command and 
completing the single sign-on (SSO) login when you’re redirected to a browser window:

$ databricks auth login

Now that our directory has been created and we’ve authenticated with our target workspace, let’s use 
the Databricks CLI to initialize an empty DAB project. Enter the following command to bring up the 
prompt for choosing a DAB template:

$ databricks bundle init

Next, choose default-python from the template chooser prompt. Enter a meaningful name for 
your project, such as my_first_dab. When prompted to select a notebook stub, select No. Select 
Yes when you’re prompted to include a sample DLT pipeline. Finally, select No when you’re prompted 
to add a sample Python library. The project scaffolding will be created, at which point you can list the 
directory’s contents so that you can have a glance at the generated artifacts:

$ cd ./my_first_dab  # a new dir will be created
$ ls -la             # list the project artifacts

To navigate to the newly created project files more easily, open the project directory using your favorite 
code editor, such as VS Code:
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Figure 9.6 – Generated DAB project scaffolding using the default-python template, viewed from VS Code

Go ahead and explore the subdirectories of the generated DAB project for yourself. You should notice 
a couple of important directories and files:

•	 src: This directory contains the DLT pipeline definition as a notebook file.

•	 resources: DABs can be decomposed into multiple YAML files that pertain to a single 
resource or a subset of resources. This directory contains the resource definitions for a DLT 
pipeline and a workflow definition for running the pipeline, including the schedule, notebook 
task definition, and job cluster attributes.

•	 databricks.yml: This is the main entry point and definition of our DAB. This tells 
the Databricks CLI what resources to deploy and how to deploy them, and specifies target 
workspace information.

•	 README.md: This is the project README file and contains helpful information on the different 
sections of the project, as well as instructions on how to deploy or undeploy the resources.

Open the dlt_pipeline.ipynb notebook contained under the src directory. Notice that the 
notebook defines two datasets – a view that reads raw, unprocessed JSON files from the NYC Taxi 
dataset and a table that filters the view based on rows with a fare_amount value of less than 30.

Next, open the databricks.yml file. You’ll notice that this file has three main sections: bundle, 
include, and targets.
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For simplicity’s sake, under the targets mapping, remove all sections except for the dev section. 
We’ll only be deploying to a development environment for this exercise.

Finally, ensure that the dev target is pointing to the correct development workspace. Your databricks.
yml file should look similar to this:

bundle:
  name: my_first_dab
include:
  -resources/*.yml
targets:
  mode: development
  default: true
  workspace:
    host: https://<workspace_name>.cloud.databricks.com

Save the changes to the databricks.yml file and return to your Terminal window. Let’s validate 
the changes to our DAB project by executing the validate command from the Databricks CLI:

$ databricks bundle validate

Now that our project has been modified to our liking, it’s time to deploy the bundle to our development 
workspace. Execute the following command from your Databricks CLI:

$ databricks bundle deploy 

The Databricks CLI will parse our DAB definition and deploy the resources to our development target. 
Log in to the development workspace and verify that a new workflow titled [dev <username>] 
my_first_dab_job has been created and your Databricks user is listed as the owner.

Congratulations! You’ve just created your first DAB and deployed it to a development workspace. You’re 
well on your way to automating the deployment of data pipelines and other Databricks resources.

Let’s test that the deployment was successful by executing a new run of the deployed workflow. From 
the same Databricks CLI, enter the following command. This will start an execution run of the newly 
created workflow and trigger an update of the DLT pipeline:

$ databricks bundle run

You may be prompted to select which resource to run. For this, select my_first_dab_job. If 
successful, you should see a confirmation message from the CLI that the workflow is currently running. 
Return to your Databricks workspace and verify that an execution run has indeed been started.
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There may be certain scenarios where you need to undeploy resources from a target workspace. To 
undeploy the workflow and DLT pipeline definitions that were created earlier, we can use the destroy 
command in the Databricks CLI. Enter the following command to revert all changes that were created 
in this hands-on exercise. You’ll need to confirm that you would like to permanently delete all resources:

$ databricks bundle destroy

So far, we’ve created a simple workflow and DLT pipeline defined in a source notebook in a target 
Databricks workspace. We’ve used a local code editor to author the DAB project and deployed the 
changes from our local machine. However, in production scenarios, you’ll be collaborating with 
teams within your organization to author data pipelines and other Databricks resources that all work 
together to generate data products for your organization.

In the next section, we’ll look at how we expand upon this simple exercise and work with team members 
to deploy Databricks resources such as workflows, notebooks, or DLT pipelines using automation tools.

Hands-on exercise – simplifying cross-team collaboration 
with GitHub Actions
Often, you’ll be working across a team of data engineers working to deploy Databricks assets such 
as DLT pipelines, all-purpose clusters, or workflows, to name a few. In these scenarios, you’ll likely 
be using a version control system such as GitHub, Bitbucket, or Azure DevOps to collaborate with 
members of a team.

DABs can be easily incorporated into your CI/CD pipelines. Let’s look at how we can use GitHub Actions 
to automatically deploy changes made to our main branch of the code repository and automatically 
deploy the resource changes to our production Databricks workspace.

GitHub Actions is a feature in GitHub that allows users to implement a CI/CD workflow directly from 
a GitHub repository, making it simple to declare a workflow of actions to perform based on some 
triggering event, such as merging a feature branch into a master branch. Together with DABs, we can 
implement a robust, fully automated CI/CD pipeline that deploys changes that have been made to 
our Databricks code base. This enables our teams to be more agile, deploying changes as soon as they 
are available, allowing them to speed up the iterative development life cycle and quickly test changes.

Setting up the environment

In this hands-on exercise, we’ll be creating a GitHub Action to automatically deploy changes to our 
Databricks workspace as soon as a branch is merged in our GitHub repository. Let’s return to the 
example from earlier in this chapter. If you haven’t already done so, you can clone the example from 
this chapter’s GitHub repository: https://github.com/PacktPublishing/Building-
Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/
chapter09.

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter09
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter09
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter09
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First, let’s create a new private folder in the root of our repository – that is, .github. Within this 
folder, let’s create another child folder called workflows. This nested directory structure is a special 
pattern whose presence will be automatically picked up by the GitHub repository and parsed as a 
GitHub Actions workflow. Within this folder, we’ll define our GitHub Actions workflow, which also 
uses a YAML configuration file to declare a CI/CD workflow. Create a new YAML file called dab_
deployment_workflow.yml within the .github/workflows folder.

Next, we’ll open the workflow file in our favorite code editor so that it’s easier to manipulate.

Configuring the GitHub Action

Let’s begin by adding the basic structure to our GitHub Actions workflow file. Within the YAML file, 
we’ll give the GitHub Actions workflow a user-friendly name, such as DABs in Action. Within 
this file, we’ll also specify that whenever an approved pull request is merged into the main branch of 
our code repository, our CI/CD pipeline should be run. Copy and paste the following contents into 
the newly created file, dab_deployment_workflow.yml:

name: "DABs in Action"
on:
  push:
    branches:
         - main

Next, let’s define a job within our GitHub Actions YAML file that will clone the GitHub repository, 
download the Databricks CLI, and deploy our DAB to our target Databricks workspace. Add the 
following job definition to the workflow file:

jobs:
  bundle-and-deploy:
    name: "DAB Deployment Job"
    runs-on: ubuntu-latest

    steps:
      - uses: actions/checkout@v3
      - uses: databricks/setup-cli@main
      - run: databricks bundle deploy --target prod
        working-directory: ./dabs
        env:
          DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_SERVICE_PRINCIPAL_
TOKEN }}
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You’ll also notice that we’ve used the same Databricks CLI bundle command to deploy our Databricks 
resources as we did in the earlier example, using our local installation to deploy resources. Furthermore, 
under the working-directory parameter, we’ve specified that our DAB configuration file will 
be found at the root of our GitHub repository under the dabs folder. We’ve also leveraged GitHub 
Secrets (https://docs.github.com/en/actions/security-for-github-actions/
security-guides/using-secrets-in-github-actions#creating-secrets-
for-a-repository) to securely store the API token for authenticating with our target Databricks 
workspace, as well as followed the best practice of using a service principal (see the User-to-machine 
authentication section) to automate the deployment of our resources.

You’ll recall that service principals are restricted to a subset of API calls and follow the best practice of 
least privilege, whereas a user account would provide more privileges than are necessary. Furthermore, 
our users can come and go from our organization, making maintenance activities such as user 
deprovisioning a headache.

Testing the workflow

Now that we’ve defined when our CI/CD pipeline should be triggered and the workflow job responsible 
for deploying our DAB to our target workspace, we can test the GitHub Actions workflow.

Let’s add a section to our existing GitHub Actions workflow file that will trigger the my_first_
dab_job Databricks workflow that we created in the previous example. You’ll also notice that, 
under the needs parameter, we declare a dependency on DAB Deployment Job, which must 
be completed before we can execute a run of the Databricks workflow. In other words, we can’t test 
the changes without deploying them first. Add the following job definition below the bundle-and-
deploy job in the workflow file:

run-workflow:
  name: "Test the deployed pipeline workflow"
  runs-on: ubuntu-latest
  needs:
    - bundle-and-deploy
  steps:
    - uses: actions/checkout@v3
    - uses: databricks/setup-cli@main
    - run: databricks bundle run my_first_dab_job
      working-directory: ./dabs
      env:
        DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_SERVICE_PRINCIPAL_
TOKEN }}

Save the GitHub Actions workflow file. Now, let’s test the changes by opening a new pull request on 
our GitHub repository and merging the pull request into the main branch of the repository.

https://docs.github.com/en/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions#creating-secrets-for-a-repository
https://docs.github.com/en/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions#creating-secrets-for-a-repository
https://docs.github.com/en/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions#creating-secrets-for-a-repository
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First, create a new feature branch using git:

$ git checkout –b increaseAutoScaling

Next, open the DAB configuration file for the Databricks workflow in a code editor. Update the 
autoscaling size of our job cluster from four worker nodes to five. Save the file and commit the changes 
to the branch. Finally, push the changes to the remote repository. Using a web browser, navigate to 
the GitHub repository and create a new pull request in GitHub. Approve the changes and merge the 
branch into the main branch. Ensure that the GitHub Actions workflow is triggered and that the code 
changes have been deployed to the target Databricks workspace. You should also see that a new run of 
the my_first_dab_job Databricks workflow has been executed by the GitHub Actions workflow.

Now that we’ve seen how easy it is to incorporate our DABs into a CI/CD pipeline, let’s expand on 
this example to see how DABs can assist us when we want to deploy different versions of our code 
base to a Databricks workspace.

Versioning and maintenance
DABs make it simple to deploy changes to different environments iteratively. There may be scenarios 
where you might want to experiment with different changes and document that those changes come 
from a particular version of your repository. The top-level bundle mapping permits users to specify 
a repository URL and branch name to annotate different versions of your code base that are deployed 
to target Databricks workspaces. This is a great way to document that a bundle deployment comes 
from a particular repository and feature branch. For example, the following code annotates that an 
asset bundle uses an experimental feature branch as the project source:

bundle:
  name: new-feature-dab
  git:
    origin_url: https://github.com/<username>/<repo_name>
    branch: my_experimental_feature_br

As another example, DABs make it simple to automate and document regular maintenance activities 
such as upgrading Databricks runtimes to the latest release. This is a great way to experiment with 
beta versions of the runtime and test compatibility with existing Databricks workflows. DABs can be 
used to automate the manual deployment and testing process, and even roll back changes if workflows 
begin to fail, for example.
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Summary
In this chapter, we covered how to automate the deployment of your Databricks resources using DABs. 
We saw how integral the Databricks CLI was in creating new bundles from preconfigured templates, 
authenticating the CLI tool with target Databricks workspaces, triggering Databricks workflow runs, 
and managing the end-to-end bundle life cycle. We also saw how we can quickly iterate on design 
and testing by using a development mode inside of our DAB configuration file.

In the next chapter, we’ll conclude with the skills necessary to monitor your data applications in a 
production environment. We’ll touch on key features in the Databricks Data Intelligence Platform, including 
alerting, viewing the pipeline event log, and measuring statistical metrics using Lakehouse Monitoring.
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Monitoring Data Pipelines in 

Production

In the previous chapters, we learned how to build, configure, and deploy data pipelines using the 
Databricks Data Intelligence Platform. To round off managing data pipelines for the lakehouse, in this 
final chapter of the book, we’ll dive into the crucial task of monitoring data pipelines in production. 
We’ll learn how to leverage comprehensive monitoring techniques directly from the Databricks Data 
Intelligence Platform to track pipeline health, pipeline performance, and data quality, to name a few. 
We will also implement a few real-world examples through hands-on exercises. Lastly, we’ll look at the 
best practices for ensuring that your data pipelines run smoothly, enabling timely issue detection and 
resolution, and ensuring the delivery of reliable and accurate data for your analytics and business needs.

In this chapter, we’re going to cover the following main topics:

•	 Introduction to data pipeline monitoring

•	 Pipeline health and performance monitoring

•	 Data quality monitoring

•	 Best practices for production failure resolution

•	 Hands-on exercise – setting up a webhook alert when a job runs longer than expected
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Technical requirements
To follow along with the examples provided in this chapter, you’ll need Databricks workspace 
permissions to create and start an all-purpose cluster so that you can import and execute the chapter’s 
accompanying notebooks. It’s also recommended that your Databricks user be elevated to a workspace 
administrator so that you can create and edit alert destinations. All code samples can be downloaded 
from this chapter’s GitHub repository at https://github.com/PacktPublishing/
Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/
main/chapter10. This chapter will create and run several new notebooks, estimated to consume 
around 10-15 Databricks Units (DBUs).

Introduction to data pipeline monitoring
As data teams deploy data pipelines into production environments, being able to detect processing 
errors, delays, or data quality issues as soon as they happen can make a huge impact on catching and 
correcting issues before they have a chance to cascade to downstream systems and processes. As such, 
the environment that data teams build and deploy their pipelines in should be able to monitor them 
and alert them when problems arise.

Exploring ways to monitor data pipelines

There are several ways that data teams can monitor their data pipelines in production from within 
the Databricks Data Intelligence Platform. For example, data teams can manually observe updates 
regarding their data pipeline by doing the following:

•	 Viewing pipeline status from the Delta Live Tables (DLT) UI

•	 Querying pipeline information from the DLT event log

While these manual means provide a way to quickly view the latest status of a data pipeline in an ad 
hoc manner, it’s certainly not a scalable solution, particularly as your data team adds more and more 
pipelines. Instead, organizations turn to more automated mechanisms. For instance, many organizations 
choose to leverage the built-in notification system in the Databricks Data Intelligence Platform. 
Notifications are prevalent in many objects within the platform. For example, data administrators 
can configure notifications in the following scenarios to alert data teams about a change in status 
pertaining to a particular Databricks resource:

•	 DLT pipeline (either on update or on flow)

•	 Databricks workflow (at the top-most job level)

•	 Databricks workflow task (finer-grained notification than the preceding option)

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter10
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter10
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter10
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While these notifications can be helpful to alert teams about events or status changes during data 
processing, data teams also need mechanisms for alerting each other about issues in the contents of 
the data landing into the enterprise lakehouse.

Using DBSQL Alerts to notify data validity

The Databricks Data Intelligence Platform can create alert notifications driven by a query within the 
DBSQL portion of the platform called DBSQL Alerts. DBSQL Alerts can be a useful tool to alert 
data teams about the data landing in their enterprise lakehouse. DBSQL Alerts operate by specifying 
a particular query outcome condition that must be met for the data to be considered valid. However, 
if a particular condition in an Alert is violated, such as an order amount crossing above a certain 
dollar amount threshold, for example, then the system will trigger a notification to send to an alert 
destination. The following diagram depicts a DBSQL Alert that notifies recipients via email when there 
are sales orders exceeding a specific dollar amount – in this case, that’s $10,000. In this example, the 
query is a max aggregation, the triggering condition is when the max aggregation exceeds $10,000, 
and the alert destination is an email address.

Figure 10.1 – Configuration of a DBSQL Alert notifying recipients via email

Furthermore, DBSQL Alerts can be scheduled to execute on a repeated schedule, for example once 
every hour. This is an excellent way to automate data validation checks on the contents of your datasets 
using the built-in mechanism from within the Databricks Data Intelligence Platform. The following 
screenshot is an example of how alerts can be used to schedule a data validation query on a repeated 
schedule and notify data teams when a particular condition or set of conditions has been violated.
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Figure 10.2 – Configuration of an Alert triggering condition

Another mechanism for monitoring data pipelines in production is through workflow notifications. 
Within the Databricks Data Intelligence Platform, notification messages can be delivered to enterprise 
messaging platforms, such as Slack or Microsoft Teams, or to incident management systems such as 
PagerDuty. Later in the chapter, we’ll explore how to implement an HTTP webhook-based delivery 
destination, which is popular in web services architecture environments.

There are two types of notifications that can be sent from within a particular workflow – job status 
and task status. Job status notifications are high-level statuses about the overall success or failure of a 
particular workflow. However, you can also configure notifications to be sent to monitoring destinations 
at the task level, such as if you’d like to monitor when tasks within a workflow are retried.
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Figure 10.3 – Configuring job- and task-level notifications

While alert notifications are a great way to automate the notification of team members when problems 
arise, data teams also need to monitor the health of data pipelines in a periodic and ad hoc manner. 
We will discuss this in the next section.

Pipeline health and performance monitoring
The Databricks Data Intelligence Platform provides a location for data teams to query the status of data 
pipelines called the event log. The event log contains a history of all events that pertain to a particular 
DLT pipeline. In particular, the event log will contain an event feed with a list of event objects with 
recorded metadata about the following:

•	 What type of event occurred

•	 A unique identifier of the event

•	 Timestamps of when the event occurred

•	 A high-level description of the event

•	 Fine-grained details about the event

•	 An event-level indication (INFO, WARN, ERROR, or METRICS)

•	 The origin source of the event
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Unlike scalar functions, which return a single value, Table Valued Functions (TVFs) are functions 
that return a table as the result. For DLT pipelines that publish to a catalog and schema within Unity 
Catalog, the Databricks Data Intelligence Platform offers a special TVF called event_log() to 
query comprehensive information regarding a given DLT pipeline. The event_log() function 
can take one of two arguments as input: a fully qualified table name of a pipeline dataset or a pipeline 
ID as an argument.

Figure 10.4 – The event_log() TVF returns a list of events that occurred

The event_log() function will retrieve information about a given DLT pipeline, including 
the following:

•	 Outcomes of data quality checks (expectations)

•	 Auditing information

•	 Pipeline update status

•	 Data lineage information

A common approach to make it easier for data stewards to query events for a particular DLT pipeline 
is to register a view alongside the datasets for a particular pipeline. This allows users to conveniently 
reference the event log results in subsequent queries. The following SQL Data Definition Language 
(DDL) statement will create a view that retrieves the event log for a DLT pipeline with the my_dlt_
pipeline_id ID:

CREATE VIEW my_pipeline_event_log_vw AS
SELECT
  *
FROM
  event_log('<my_dlt_pipeline_id>');
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Sometimes, the event log for a particular pipeline can grow too large, making it difficult for data 
stewards to quickly summarize the latest status updates. Instead, data teams can narrow the event log 
feed even further to a particular dataset within a DLT pipeline. For example, data teams can create a 
view on top of a specific dataset to capture all the events using the table() function and provide 
a fully-qualified table name as an argument to the function. The following SQL DDL statement will 
create a view that retrieves the event log for a dataset called my_gold_table:

CREATE VIEW my_gold_table_event_log_vw AS
SELECT
  *
FROM
  event_log(table(my_catalog.my_schema.my_gold_table));

The event_log() TVF function provides data teams with great visibility into the actions performed 
on a particular DLT pipeline and dataset making it easy to implement end-to-end observability 
and auditability.

Important note
Presently, if a DLT pipeline is configured to publish output datasets to Unity Catalog, then 
only the owner of a particular DLT pipeline can query the views. To share access to the event 
logs, the pipeline owner must save a copy of the event log feed to another table within Unity 
Catalog and grant access to other users or groups.

Let’s look at how we might leverage the event_log() function to query the data quality events for 
a particular DLT pipeline.

Hands-on exercise – querying data quality events for a 
dataset

Important note
For the following exercise, you will need to use a shared, all-purpose cluster or a Databricks 
SQL warehouse to query the event log. Furthermore, the event log is only available to query 
DLT pipelines that have been configured to store datasets in Unity Catalog. The event log 
will not be found for DLT pipelines that have been configured to store datasets in the legacy 
Hive Metastore.
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Data quality metrics are stored in the event log as a serialized JSON string. We’ll need to parse the 
JSON string into a different data structure so that we can easily query data quality events from the 
event log. Let’s use the from_json() SQL function to parse the serialized JSON string for our 
data quality expectations. We’ll need to specify a schema as an argument to instruct Spark how to 
parse the JSON string into a deserialized data structure – specifically, an array of structs that contain 
information about the expectation name, dataset name, number of passing records, and number of 
failing records. Lastly, we’ll use the explode() SQL function to transform the array of expectation 
structs into a new row for each expectation.

We can leverage the previously defined views to monitor the ongoing data quality of the datasets 
within our DLT pipeline. Let’s create another view pertaining to the data quality of our DLT pipeline:

CREATE OR REPLACE TEMPORARY VIEW taxi_trip_pipeline_data_quality_vw AS
SELECT
  timestamp,
  event_type,
  message,
  data_quality.dataset,
  data_quality.name AS expectation_name,
  data_quality.passed_records AS num_passed_records,
  data_quality.failed_records AS num_failed_records
FROM
  (
    SELECT
      event_type,
      message,
      timestamp,
      explode(
        from_json(
          details :flow_progress.data_quality.expectations,
          "ARRAY<
            STRUCT<
              name: STRING,
              dataset: STRING,
              passed_records: INT,
              failed_records: INT
            >
          >"
        )
      ) AS data_quality
    FROM
      my_table_event_log_vw
  );
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Several common questions that are posed by data teams include: “How many records were processed?”, 
“How many records failed data quality validation?”, or “What was the percentage of passing records 
versus failing records?”. Let’s take the previous example a step further and summarize the high-level 
data quality metrics per dataset in our pipeline. Let’s count the total number of rows having an 
expectation applied, as well as the percentage of passing records versus failing records for each of the 
datasets in our DLT pipeline:

SELECT
  timestamp,
  dataset,
  sum(num_passed_records + num_failed_records)
    AS total_expectations_evaluated,
  avg(
    num_passed_records /
    (num_passed_records + num_failed_records)
  ) * 100 AS avg_pass_rate,
  avg(
    num_failed_records /
    (num_passed_records + num_failed_records)
  ) * 100 AS avg_fail_rate
FROM
  taxi_trip_pipeline_data_quality_vw
GROUP BY
  timestamp,
  dataset;

We get the following output:

Figure 10.5 – Events captured in the DLT event log

As you can see, the event_log() function makes it simple for data teams to query comprehensive 
information regarding a given DLT pipeline. Not only can data teams query the status of a pipeline 
update but they can also query the status of the quality data landing into their lakehouse. Still, data 
teams need a way to automate the notification of failing data quality checks at runtime, as is the 
scenario when the data accuracy of downstream reports is critical to the business. Let’s look closer at 
this in the following section.
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Data quality monitoring
Ongoing monitoring of the data quality of datasets within your lakehouse is critical for the success 
of business-critical data applications deployed to production. Take, for example, the impact that a 
sudden ingestion of null values on a joined column might have on downstream reports that rely on 
joining together upstream datasets. Suddenly, business intelligence (BI) reports might refresh, but 
the data may appear stale or outdated. By automatically detecting data quality issues as soon as they 
arise, your data team can be alerted of potential issues and take immediate action to intervene and 
correct possible data corruption or even data loss.

Figure 10.6 – Detecting issues early is important to ensure the quality of downstream processes

Introducing Lakehouse Monitoring

Lakehouse Monitoring, a recent feature of the Databricks Data Intelligence Platform, gives data 
teams the ability to track and monitor the data quality of data and other assets in the lakehouse. Data 
teams can automatically measure the statistical distribution of data across columns, number of null 
values, minimum, maximum, median column values, and other statistical properties. With Lakehouse 
Monitoring, data teams can automatically detect major problems in datasets such as data skews or 
missing values, and alert team members of issues so that they can take appropriate action.
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Lakehouse Monitoring is most useful when used to monitor the data quality of Delta tables, views, 
materialized views, and streaming tables. It can even be used in Machine Learning (ML) pipelines, 
measuring the statistical summaries of datasets and triggering alert notifications as soon as data drift 
is detected. Furthermore, Lakehouse Monitoring can be customized to be fine- or coarse-grained in 
the monitoring metrics.

Lakehouse Monitoring begins with the creation of a monitor object, which is then attached to a data 
asset such as a Delta table in your lakehouse. Behind the scenes, the monitor object will create two 
additional tables inside your lakehouse to capture statistical measures of the corresponding Delta 
table or other data assets.

The monitoring tables are then used to power a Dashboard, which can be used by data teams and other 
stakeholders to get a view into the real-time data insights of the quality of your data in the lakehouse.

Figure 10.7 – A lakehouse monitor will create two metrics tables for the monitored data asset
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A lakehouse monitor can be configured to measure different aspects of a data asset, which is also 
referred to as a profile type. There are three monitor profile types that can be created:

•	 Snapshot: This is a generic, yet robust monitor. It’s useful to monitor data quality and other 
metrics of a table.

•	 Time series: It’s useful for time series datasets. It’s used to monitor the data quality over time 
period windows.

•	 Inference: It’s useful to compare the quality of an ML model inference versus the input over 
a window of time periods.

In this chapter, we’ll only be covering the time series and snapshot types. Discussing inference is out of 
the scope of this book, but you are encouraged to explore how Lakehouse Monitoring can be helpful 
for ML use cases (https://docs.databricks.com/en/lakehouse-monitoring/
fairness-bias.html).

Monitors can also be created that compare the statistical metrics of a table versus a baseline table. 
This can be useful in scenarios such as comparing the relative humidity of smart thermostat devices 
for this week as compared to last week, or comparing the number of recorded sales in a particular 
dataset for a monthly sales report versus last month’s report, for example.

Let’s look at a practical example of using a lakehouse monitor in a lakehouse.

Hands-on exercise – creating a lakehouse monitor

In this hands-on exercise, we’re going to create a lakehouse monitor for measuring the data quality 
of a target Delta table. Although our Delta table does contain timestamp information, we’ll choose 
a snapshot profile to monitor the data quality of a target Delta table in our lakehouse. Recall that the 
snapshot profile is a generic lakehouse monitor that also proves to be quite versatile, as mentioned 
earlier. The snapshot profiler will allow us to measure standard summary metrics about our dataset 
or insert custom business calculations around the data quality.

Like many resources in the Databricks Data Intelligence Platform, there are a variety of ways that 
you can create a new lakehouse monitor. For example, you can use the Databricks UI, the Databricks 
REST API, the Databricks CLI (covered in Chapter 9), or automation tools such as Terraform, to 
name a few. Perhaps the simplest mechanism for creating a new monitor is through the UI. In this 
hands-on exercise, we’re going to use the Databricks UI to create the lakehouse monitor. This is a 
great way to get started experimenting with Lakehouse Monitoring and with different data quality 
metrics to measure your datasets. However, it’s recommended in production scenarios to migrate your 
lakehouse monitors to an automated build tool such as Databricks Asset Bundles (DABs) (covered 
in Chapter 9) or Terraform (covered in Chapter 8).

https://docs.databricks.com/en/lakehouse-monitoring/fairness-bias.html
https://docs.databricks.com/en/lakehouse-monitoring/fairness-bias.html
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If you haven’t done so already, you can clone the accompanying code resources for this chapter 
at https://github.com/PacktPublishing/Building-Modern-Data-Applications-
Using-Databricks-Lakehouse/tree/main/chapter10.

The first step is to generate a target Delta table, which we would like to monitor the data quality. Clone 
or import the data generator notebook or create a new notebook with the following code generator 
source code.

In the first cell of the notebook, we’ll leverage the %pip magic command to download and install the 
dbldatagen Python library, which is used to generate sample data:

%pip install dbldatagen==0.4.0

Next, we’ll define a helper function for generating a synthetic dataset containing smart thermostat 
readings over time:

import dbldatagen as dg
from pyspark.sql.types import IntegerType, FloatType, TimestampType

def generate_smart_thermostat_readings():
    """Generates synthetics thermostat readings"""
    ds = (
        dg.DataGenerator(
            spark,
            name="smart_thermostat_dataset",
            rows=10000,
            partitions=4)
        .withColumn("device_id", IntegerType(),
                    minValue=1000000, maxValue=2000000)
        .withColumn("temperature", FloatType(),
                    minValue=10.0, maxValue=1000.0)
        .withColumn("humidity", FloatType(),
                    minValue=0.1, maxValue=1000.0)
        .withColumn("battery_level", FloatType(),
                    minValue=-50.0, maxValue=150.0)
        .withColumn("reading_ts", TimestampType(), random=False)
    )
    return ds.build()

# Generate the data using dbldatagen
df = generate_smart_thermostat_readings()
df.display()

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter10
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter10
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Finally, we’ll save the newly created dataset as a Delta table in Unity Catalog:

(df.write
    .format("delta")
    .mode("overwrite")
    .saveAsTable(FULLY_QUALIFIED_TABLE_NAME))

Now that our Delta table has been created in our lakehouse, let’s use the UI in the Catalog Explorer 
to create a new monitor.

From the left-side navigation bar, click on the Catalog Explorer icon. Next, navigate to the catalog 
created for this chapter by expanding the list of catalogs or using the Search field to filter the results. 
Click on the schema that was created for this chapter. Finally, click on the Delta table that was created 
earlier by our data generator notebook. Click on the data quality tab that is appropriately titled Quality.

Figure 10.8 – A new monitor can be created directly from the Databricks UI

Next, click on the Get started button to begin creating a new monitor. A pop-up dialog will open, 
prompting you to select the profile type for the monitor, as well as advanced configuration options such 
as the schedule, notification delivery, and workspace directory for storing the generated dashboard.

Click the dropdown for the profile type and select the option for generating a snapshot profile.

Next, click on the Advanced Options section to expand the dialog form. The UI will allow users to 
capture dataset metrics, either manually or by defining a cron schedule for executing the metrics 
calculations on a repeated schedule. You’ll notice that the dialog provides the flexibility to define the 
schedule using a traditional cron syntax, or by selecting the date and time drop-down menus in the 
dialog form. For this hands-on exercise, we’ll choose the former option and refresh the monitoring 
metrics manually through the click of a button.

Optionally, you can choose to have notifications about the success or failure of monitoring metrics 
calculations sent via email to a list of email recipients. You can add up to five email addresses for 
notifications to be delivered to. Ensure that your user email address is listed in the Notifications section 
and that the checkbox is checked to receive a notification for failures during the metrics collection.
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If you recall from earlier, a lakehouse monitor will create two metrics tables. We’ll need to provide a 
location in Unity Catalog to store these metrics tables. Under the Metrics section, add the catalog and 
schema name created for this chapter’s hands-on exercise. For example, enter chp10.monitor_demo.

The last item that we need to specify is a workspace location for storing the generated dashboard for 
our lakehouse monitor. By default, the generated assets will be stored under the user’s home directory, 
for example, /Users/<user_email_address>/databricks_lakehouse_monitoring. 
For this hands-on exercise, we’ll accept the default location.

We’re ready to create our monitor! Click the Create button to create the lakehouse monitor for our 
Delta table.

Since we haven’t configured a schedule for our lakehouse monitor, we’ll need to manually execute a 
metrics collection. Back in the Catalog Explorer, under the Quality tab of our Delta table, click on 
the Refresh metrics button to manually trigger a metrics collection.

Figure 10.9 – Monitoring metrics can be manually triggered from the Catalog Explorer UI

An update of the table metrics will be triggered to execute and will take up to a few minutes to 
complete. Once the update has completed, click the View dashboard button to view the metrics 
captured. Congratulations! You’ve created your first lakehouse monitor and you’re well on your way 
to implementing robust and automated data quality observability for your data team.

Now that we have an idea of how to alert our team members when production issues arise, let’s turn 
our attention to a few approaches to resolve failures in production deployments.

Best practices for production failure resolution
The DLT framework was designed with failure resolution in mind. For example, DLT will automatically 
respond to three types of common pipeline failures:

•	 Databricks Runtime regressions (covered in Chapter 2)

•	 Update processing failures

•	 Data transaction failure
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Let’s look at update failures and data transaction failures in greater detail.

Handling pipeline update failures

The DLT framework was designed with robust error handling in mind. During a pipeline update, 
the framework will attempt to apply the most recent updates to tables defined in the dataflow graph. 
If a processing error occurs, the framework will classify the error as either a retriable error or a 
non-retriable error. A retriable error means that the framework has classified the runtime error as 
likely an issue caused by the current set of conditions. For example, a system error would not be 
considered a retriable error, since it relates to the runtime environment that execution retries will 
not solve. However, a network timeout would be a retriable error, since it could be impacted by the 
temporary set of network environment conditions. By default, the DLT framework retries a pipeline 
update twice if it detects a retriable error.

Recovering from table transaction failure

Due to the nature of the Delta Lake transaction log, changes to a dataset are atomic, meaning that they 
can only happen if a table transaction (such as a Data Manipulation Language (DML) statement) is 
committed to the transaction log. As a result, if a transaction fails in the middle of its execution, then 
the entire transaction is abandoned, thereby preventing the dataset from entering a non-deterministic 
state requiring data teams to intervene and manually reverse the data changes.

Now that we understand how to handle pipeline failures in production, let’s cement the topics from 
this chapter through a real-world example.

Hands-on exercise – setting up a webhook alert when a 
job runs longer than expected
In this hands-on exercise, we’ll be creating a custom HTTP webhook that will notify an HTTP endpoint 
about the timeout status of a scheduled job in Databricks.

A webhook alert is a notification mechanism in the Databricks Data Intelligence Platform that enables 
data teams to monitor their data pipeline by automatically publishing the outcome of a particular job 
execution run. For example, you can receive notifications about the successful run, execution state, 
and run failures.

Why are we using a workflow rather than a DLT pipeline directly?
In practice, a DLT pipeline will often be just one of many dependencies in a complete data 
product. Databricks workflows are a popular orchestration tool that can prepare dependencies, 
run one or more DLT pipelines, and execute downstream tasks as well. In this exercise, we’ll 
be configuring notifications from a Databricks workflow, as opposed to notifications directly 
from a DLT pipeline, to simulate a typical production scenario.
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Let’s start by navigating to your Databricks workspace and logging into your workspace. Next, let’s 
create a new workflow. We’ll start by navigating to the Workflow UI by clicking on the workflows icon 
from the workspace navigation bar on the left-hand side. Give the workflow a meaningful name, such 
as Production Monitoring Demo.

If you haven’t done so already, you can download the sample notebooks for this chapter’s exercise at 
https://github.com/PacktPublishing/Building-Modern-Data-Applications-
Using-Databricks-Lakehouse/tree/main/chapter10. We’ll be using the IoT device 
data generator notebook, titled 04a-IoT Device Data Generator.py, and the IoT Device 
DLT pipeline definition notebook, which is titled 04b-IoT Device Data Pipeline.py.

In the Workflow UI, create a new workflow with two tasks. The first task will prepare an input dataset 
using the 04a-IoT Device Data Generator.py notebook; the second task will execute 
a DLT pipeline that reads the generated data using the 04b-IoT Device Data Pipeline.
py notebook.

Figure 10.10 – The workflow will generate IoT device data and execute a DLT pipeline update

Now that our workflow has been created, let’s imagine, for example, that our pipeline is taking longer 
than expected to execute. Wouldn’t it be helpful to be notified if there are potential processing delays, 
so that your data team can investigate immediately or prevent a long-running job from running up 
a large cloud bill due to a processing mishap?

Fortunately, the Databricks Data Intelligence Platform makes it simple to configure this type of 
notification. Let’s create a timeout threshold for our workflow. This will automatically notify our HTTP 
webhook endpoint that our workflow is taking longer than expected to execute. Once our workflow 
has exceeded this timeout threshold, the current execution run is stopped, and the run is marked as 
failed. We would like to be notified of this type of failure scenario.

https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter10
https://github.com/PacktPublishing/Building-Modern-Data-Applications-Using-Databricks-Lakehouse/tree/main/chapter10
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From the Workflow UI, click on the newly created workflow, Production Monitoring Demo, to reveal 
the details. Under the Job notifications section, click on the Add metric thresholds button to add a 
new run duration threshold. Let’s add a maximum duration of 120 minutes to the maximum threshold. 
Click the Save button. Next, click on the + Add notification button to add a new notification. Expand 
the Destination drop-down menu to reveal the choices and select + Add new system destination. 
A new browser tab will open, presenting the workspace administration settings for your Databricks 
workspace. Under the Notifications section, click on the Manage button. Click the Add destination 
button. Select Webhook for the destination type, provide a meaningful name for the destination, enter 
the endpoint URL for which the notifications should be sent, and enter the username and password 
information if your endpoint uses basic HTTP authentication. Click the Create button to create the 
Webhook destination.

Figure 10.11 – Creating a new Webhook destination
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Finally, click the Save button to finalize the metric threshold notification.

Figure 10.12 – Execution duration thresholds can be set on a workflow’s tasks

Now that we’ve established a run duration threshold, whenever our workflow runs for longer than 
120 minutes, our workflow will be stopped and a notification message with a status message of Timed 
Out will be sent to our HTTP webhook destination.

Congratulations! You’ve now automated the monitoring of your data pipelines in production, allowing 
your team to be automatically notified whenever failure conditions arise. This means that your teams 
can step in and correct data processing issues as soon as they happen and minimize potential downtime.

Summary
In this chapter, we covered several techniques for implementing pipeline and data quality observability 
so that data teams can react as soon as problems arise and thwart major downstream disruptions. 
One of the major keys to becoming a successful data team is being able to react to issues quickly. We 
saw how alert notifications are built into many aspects of the Databricks Data Intelligence Platform 
and how we can configure different types of alert destinations to send notifications when conditions 
are not met.

We covered monitoring capabilities built into the Databricks platform, such as the pipeline event log 
that makes it easy for pipeline owners to query the data pipeline’s health, auditability, and performance, 
as well as data quality, in real time. We also saw how Lakehouse Monitoring is a robust and versatile 
feature that allows data teams to automatically monitor the statistical metrics of datasets and notify 
team members when thresholds have been crossed. We also covered techniques to evaluate data quality 
throughout the pipeline, preventing downstream errors and inaccuracies.

Lastly, we concluded the chapter with a real-world exercise for automatically alerting data teams in the 
event of a real and all-too-common problem – when a scheduled job runs for longer than expected.
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Congratulations on reaching the end of this book! Thank you for taking this journey with me through 
each chapter. We’ve covered a lot of topics, but you should feel proud of your accomplishments thus 
far. By now, you should have a well-rounded foundation of the lakehouse on which you can continue 
to build. In fact, I hope that this book has filled you with inspiration to continue your lakehouse 
journey and to build modern data applications that do great things. I wish you the best of luck and 
encourage you to keep learning!
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