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want to learn more about data modeling.

I especially like Markus’s division of the book into a kind of matrix, where each of the five
main sections is divided into four chapters dealing with the same four subtopics—

understanding the data model, building a data model, examples from the real world, and
performance optimization—which become more and more complex throughout the book

so you gradually get more and more insight into the many facets of data modeling.
—Jørgen Koch, Innovate, Microsoft Power BI and Office

Enthusiast (SME), author and Microsoft Certified Trainer



Creating a fancy report and tinkering with DAX or M-Code in the times of AI is not
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Foreword

No topic in the data industry is more debated than data modeling. It is the source of
memes, T-shirts, and endless debates at conferences, and its demise has been predic‐
ted for years.

Yet here we are with a new book about data modeling. And it is sorely needed; data
modeling is a foundational skill with many applications. It makes tough problems
easier to solve, data easier to work with, and Data Analysis Expressions (DAX) easier
to write. It improves performance and eventually saves costs. However, you must be
willing to put in the work; it’s necessary to start thinking about data modeling early
in the process, whether you’re designing a data warehouse, lakehouse, or semantic
model in Power BI.

The data model is the cornerstone of your project. I have learned this from working
with customers on all variations of analysis services over the years (from Power Pivot
to SSAS and Power BI). With proper data modeling, you won’t have to resort to as
many DAX gymnastics. A good data model simplifies your calculations.

I’ve known Markus for many years and always enjoy his sessions at conferences. He
explains tough topics in a simple manner, and this book is no exception.

In Data Modeling with Microsoft Power BI, Markus explores the many facets and long
history of data modeling (who doesn’t have the Kimball data warehousing book on
the shelf?): how we need to think about data, and how we can translate requirements
into entities and attributes. Markus does a great job applying these theoretical practi‐
ces to real life.

How do these data modeling practices help you with everyday Power BI and SQL
challenges? Markus explains the basics of data modeling in Power BI by looking at
tables, relationships, and analysis of data granularity. He then shows how to translate
common requirements like role-playing dimensions, slowly changing dimensions,
binning, and translations into SQL, DAX, M, or in the model itself so you can use
them at any step of your project.

xv



The lessons in this book are very valuable, helping you simplify your day-to-day work
as a data engineer, and it all starts with the model.

— Kasper de Jonge
Principal Program Manager at Microsoft Fabric

xvi | Foreword



Preface

Welcome to this journey into data modeling concepts and practical examples for
Power BI, including DAX, Power Query and T-SQL. This book is your companion
on your journey to gain a comprehensive understanding about the steps needed to
make building reports in Power BI Desktop and Power BI Report Builder, and creat‐
ing measures in DAX, easier.

Power BI supports a wide variety of data sources (covering databases from different
vendors, like Microsoft, Oracle or Teradata; flat files, like CSV, text, or Excel; web
services like an https link to a web page, etc.). The only way to get data into Power BI
is through Power Query. It’s best practice to add calculations as (explicit) measures in
DAX (as opposed to calculated columns in DAX or as columns in Power Query or in
the data source). Creating calculated tables in DAX should be an exception; depend‐
ing on your skills and preferences, you will implement transformations to shape the
data model either in Power Query (in the user interface or by writing code in the M
language) or in the data source. For example, in the case of a relational data ware‐
house implemented in Microsoft’s relational database engines, you might use T-SQL
in the data warehouse, as laid out in Figure P-1.

The first part of this book, which is written in an agnostic way, introduces the neces‐
sary concepts in a general way: you can apply this to any analytical system. The sec‐
ond part of the book explains the properties of a data model in Power BI. The rest of
this book addresses DAX, Power Query, and SQL.

The book is designed for you, the reader, to have an individual experience based on
your knowledge. You may not know DAX, Power Query, and SQL, but you may have
familiarity with one or two of them; you can pick and choose to fill in gaps in your
knowledge. Maybe you need a refresher on the composition of a data model. Part I
has you covered. Maybe you struggle with dealing with a bunch of Excel files from
which you need to create reports? The part on Power Query will be your starting
point. Maybe your task is to build a data warehouse to which other people connect

xvii
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with Power BI Desktop? Then the part about SQL will present you with solutions to
typical problems.

Figure P-1. Power BI data-shaping architecture

Data modeling is definitely the single most underestimated task when working with
Power BI Desktop. It is a crucial part in your steps, from raw data to business intelli‐
gence and analytics. Decisions made during data modeling will influence how much
detail your reports can show, how user-friendly the database or semantic model is for
creating reports and analysis, and how easy it is to add more data and implement cal‐
culations on existing data. Wrong decisions at the start are very expensive to fix later,
as changes to the data model will break existing reports. I speak from experience: I
had to learn this the hard way—and I see also other people struggling with the reper‐
cussions almost every day in my work as a trainer and consultant. This book is your
guide to getting data modeling right from the beginning.

You will learn that it is less important how complex the steps done in the “back end”
(DAX, Power Query, or T-SQL) are, as long as the result is an easier-to-understand
and easier-to-use data model for the user who creates reports and does analytics
based on this data model: report authors, business analysts, data scientists, etc. These
steps can be as simple as changing technical names (e.g., CSTNM4711) into user-
friendly names (e.g., Customer Name) or as complicated as combining or splitting
tables into a whole new structure. You will learn how to add calculations to the data
model and enrich plain data with metadata (hierarchies, translations, etc.). This book
is full of practical examples from challenges I faced over more than 25 years in the
field. Keep in mind that the essential goal is to remove the burden from the report
creator.
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A common analogy for data transformation is a restaurant. As the restaurant’s cus‐
tomer, you expect the dishes served attractively arranged on plates so you can enjoy
the meal with only common tools (spoon, knife, fork, chopsticks, or maybe your fin‐
gers). To make this happen, the restaurant not only reserves significant space and
resources in the kitchen but also owns expensive tools (convection oven, broiler,
sous-vide cooker, blender, etc.) and employs formally trained and skilled people
(cooks) to control those devices to transform the raw ingredients into the dishes.
Think of the people using a data model to create reports and do analytics as restau‐
rant guests: they will prefer to have all information presented in an easy-to-digest
(pun intended) form, which they can consume with common tools (Power BI, Excel,
etc.). Set yourself into the role of a cook who puts all her experience together to create
a data model that invokes the appetite to consume it.

Are you a data cook? Read on!

Who Is This Book For?
Are you accessing data in Power BI Desktop and interacting with it via visuals? Did
you gather the most important data into one Power BI Desktop file so others can
build reports on it? Are you in charge of a data warehouse and want to make sure
that the data model is optimized for usage in Power BI Desktop? If you answer “Yes”
to any of these questions, then this book is for you.

The primary audience is the enthusiastic Power BI report creator who wants to apply
best practices in the data model for performant reports and easy DAX calculations.
The secondary audience is the IT Pro who wants to support report creators with a
connect-and-go data source (a data model created in Power BI Desktop). You should
be comfortable with creating reports in Power BI Desktop and have a basic under‐
standing of at least DAX, Power Query/M, or SQL, so you can follow the code exam‐
ples provided in this book.

Throughout the book, you’ll not only learn about the data modeling options in Power
BI but also about modeling options in other tools, so you can create a data model that
is optimal for Power BI. This is covered in Part V.

Why is it worth it to read (and write!) a whole book about data modeling? The next
section delivers the answer.
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What Is Data Modeling?
The challenges of storing data in different logical formats are as old as data itself.
Before electronic computers were invented, data was put into different physical files
and structured in physical folders, filling the shelves of big cabinets or even whole
rooms or basements. Optional indexes (alphabetically ordered small cards with
important terms and a reference on which shelf in which folder and file the informa‐
tion can be found) allowed you to scan the data not only by its physical order but by
different tags. This terminology remains, but data is now stored in files and folders
on hard disks, with additional indexes speeding up reading access.

Different approaches were invented and discussed over history to make for easy stor‐
age (e.g., avoiding redundancy and standardization of physical data storage) and easy
read-access (e.g., indexing and reintroducing of some redundancy to speed up access
to data). The concept of relational databases (e.g., SQL Server and Azure SQL Data‐
base) goes back to the year 1970. Dimensional modeling is even older—but neverthe‐
less still very useful today.

To master Power BI, you need to master data modeling, because Power BI is a model-
oriented analytics tool (as opposed to some other tools on the market). The next sec‐
tion gives you an overview about what parts Power BI is composed of and where you
define the data model.

What Is Power BI?
Power BI is not a single tool but a whole suite of tools that became widely available in
2015. In case you are new to Power BI, I will give you a brief overview of the different
tools:

Power BI Desktop
Power BI Desktop is the full client with which you can achieve a lot of tasks (see
Figure P-2). You connect to data sources, clean and transform data (with Power
Query), develop a data model (in the Model view), and create reports (in the
Report view). This is a tool you will spend a lot of time with when re-creating the
examples in this book. All examples and screenshots in this book covering Power
BI data modeling, DAX, and Power Query are based on Power BI Desktop. Files
created with Power BI Desktop have the extension .pbix or .pbip. Power BI
Desktop is free of charge—you need no sort of license, and you can skip the sign-
in step when the tool prompts you.
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Figure P-2. The start screen in Power BI Desktop

The Power BI service
The Power BI service is where you host files you have created with Power BI
Desktop so that others can consume a report or create a new report based on
your data model. The Power BI service offers additional features (like Metric,
Dashboard, Power BI App, Analyze in Excel, Export to Excel, etc.) not available
in Power BI Desktop. The Power BI service is hosted in Microsoft’s cloud data
centers and is available with an internet browser of your choice via the Power BI
service (see Figure P-3). You can also edit reports directly in the Power BI ser‐
vice, and Microsoft is working hard to enable editing of data models available in
the Power BI service. At the time of writing, this lacks important features (like
version control and collaborative editing)—so I’d currently recommend relying
on Power BI Desktop instead. The Power BI service comes with different
licenses.
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Figure P-3. The Power BI service says hello

Power BI Report Server
Power BI Report Server (see Figure P-4) is an alternative to the Power BI service,
which you can install on your own premises. Power BI Report Server comes with
a limited feature set, and new versions are released (only) three times a year. You
need to use a matching version of Power BI Desktop (called Power BI Desktop for
Report Server, which shows the month and year in the title of the application)
when you intend to publish a Power BI Desktop report on a Power BI Report
Server, as the monthly released version of Power BI Desktop might contain arti‐
facts not compatible (yet) with the Power BI Server you are using.
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Figure P-4. The Power BI Server says hello

Power BI Report Builder
When you need to create pixel-perfect reports, with lists of data covering several
pages, or you need to export in file formats not available for reports created with
Power BI Desktop, then Power BI Report Builder is the tool for you (see
Figure P-5). Power BI Report Builder is free of charge.

If you intend to publish paginated reports on a Power BI
Report Server (as opposed to the Power BI service) you need
to use SQL Server Report Builder instead of Power BI Report
Builder.

You cannot create data models in (any version of) Report Builder.
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Figure P-5. Create paginated reports with Power BI Report Builder

The Analysis Services tabular model
You can think of Analysis Services tabular (which is available as Azure Analysis
Services and as SQL Server Analysis Services tabular) as Power BI Desktop strip‐
ped from the report creation feature and reduced to the table view, the Model
view, and Power Query. It shares the same storage engine (VertiPaq) and model‐
ing capabilities as Power BI Desktop, and you can connect any reporting tool
(including Power BI Desktop and Power BI Report Builder) to Analysis Services
to create reports and analytics. You develop and deploy such a database with Vis‐
ual Studio (see Figure P-6). Some of my customers use Azure Analysis Services
instead of the Power BI service to host data because they can scale the costs for
data storage at a more granular level (compared to the Power BI licensing costs);
others use SQL Server Analysis Services because they cannot or do not want to
host their data in the cloud.

Microsoft’s vision is to make Power BI a super-set of Analysis Services tabular;
with the announcement of Microsoft Fabric at the Build conference in May 2023,
Microsoft made a big step toward it. Fabric will also allow scaling costs at a more
granular level, compared to Power BI’s licensing.

xxiv | Preface

https://oreil.ly/pRBhz


Figure P-6. The Analysis Services tabular database definition in Visual Studio

Let’s talk about why you should care so much about the data model you build in
Power BI Desktop.

What Is So Special About a Power BI Data Model?
Power BI is very versatile when it comes to the shapes of data models you can use
(how you spread information between the tables or if you combine everything into a
single table). But don’t step into a trap here: the storage engine behind Power BI
(called VertiPaq) and the language to define formulas for measure (DAX) are opti‐
mized for a certain shape called a star schema. This book is your guide to understand
what a star schema is, why it is so important to take the time to transform the table(s)
of your data source(s) into this shape and, most importantly, how to actually imple‐
ment these steps.

In a nutshell, star schema is a term used for a data model where you have a fact table
in the middle (forming the center of the star) surrounded by dimension tables
(Figure P-7). I know, you need a lot of imagination to see such a star—but still, this
concept is important and useful when building analytical systems in general, and
especially when it comes to Power BI.
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Figure P-7. A star schema

In a perfect world, the tables in the data source would already be in the shape of a star
schema. If this is true for all your data sources, I consider you really lucky—and you
can stop reading this book and ask for a refund. The mere mortals who are not as
lucky have several options, which I discuss in this book. You can build a data ware‐
house layer (e.g., in form of a relational database or a data lakehouse). The SQL lan‐
guage will be your tool of choice. Or you can use Power BI’s Power Query to reshape
the tables. The third option is DAX, which is discussed in the next section.

What Is DAX?
Data Analysis Expressions (DAX) is a formula expression language used to create cal‐
culated columns, measures, calculated tables, and row-level security and to write
queries. As you will learn, it’s important to master DAX, as certain types of calcula‐
tions can only be done in DAX (and not Power BI’s data source or Power Query).

To reshape a data model into a star schema, you must move information from one
table into another via calculated columns or create new tables as calculated tables.
You’ll also learn how to use DAX when you hit limits of Power BI’s data modeling
capabilities.
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Overall, DAX isn’t my first choice as a data-shaping tool if I can solve a problem with
Power Query. Whenever possible, I push transformations into Power Query or, if
available, into the data warehouse layer because it’s best practice to push transforma‐
tions as far “upstream” in the data processing pipeline as possible, to increase re-
usability of a transformation. A transformation in Power Query can be pushed into a
Power BI dataflow to re-use it in different data models. Transformations in DAX are
tightly applied to the data model they reside in. Another reason is that in Power
Query and SQL, I can shape the data before I actually load it into Power BI, while in
DAX I can only add calculated columns and tables on top of a model; any suboptimal
part still occupies resources in my data model.

If you don’t feel ready for Power Query (or the M language) or if you don’t have a
data warehouse at hand, then modeling the data in DAX is way better than not mod‐
eling your data at all. And remember, some problems can only be solved with a DAX
measure.

What Is Power Query?
As the name suggests, Power Query is a tool to create queries you send against your
data source(s). At the time of writing, Power Query has connectors to over 120 data
sources, from flat files like CSV, XLS, or JSON to relational (SQL Server, Oracle, DB2,
Teradata, etc.) and analytical databases (Analysis Services). Via a graphical user inter‐
face (GUI), you can clean and transform the original tables: renaming tables and col‐
umns to give them a more user-friendly name, removing unnecessary columns, and
adding new tables and columns based on the existing information to shape a better
data model.

All steps you apply in the GUI are added as lines of code to a Power Query script
(called M for short), similar to the macro-recorder in Excel. Through the course of
this book, you will learn how to use the GUI and when to edit the resulting query.
Any time you refresh the content of a table, this script is executed and, therefore, all
transformation steps are applied to the new data as well. That’s why I ask people to
hand me over “raw” CSV or Excel files (in cases when files are the preferred data
source). There’s no need to put effort into shaping the content manually every time
they send me the new data if I can implement transformations once and re-apply
them during the refresh of my data model.

Power Query (and therefore scripts in its mashup language, M) is not only available
in Power BI Desktop but as Power BI dataflows and mashup tasks in Azure Data Fac‐
tory as well. But maybe you want to push transformation further up the data stream
(and if you ask me, you should). That’s why there’s so much content in this book
about Azure SQL DB and T-SQL.
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What Is SQL?
SQL is an acronym for Structured Query Language. In the context of Microsoft,
“SQL” can refer to Microsoft’s relational database engines offerings as well. Azure
SQL DB is Microsoft’s cloud offering for relational databases, which is available for
on-premises’ usage under the name Microsoft SQL Server Database Engine.

In this book, Azure SQL DB is used as an example of how to model your data outside
of Power BI. I still consider this best practice: model your data in a database, and
model your data as early as possible, or in other words, in a data warehouse layer. It is
less important how you implement this layer: as a physically hosted relational data‐
base, as a data lakehouse, or in any other data store, like somewhere in Microsoft’s
Fabric.

Pushing the transformations as far as possible toward the data source makes it easier
for people down the data stream to re-use it. If you wait until the last moment (that
is, to determine the tool you use to show your data, e.g., Power BI Desktop, Power BI
Report Builder, Excel or any other tool your end users might use to access the data
and do their analytics) then you have accumulated a technical debt. The end users are
then responsible for cleaning the data and bringing it into a useful shape. Due to lack
of education, they might fail—leading to overcomplicated reports and possibly wrong
numbers (you will learn about this problem in Chapter 5). On top of that, all the
work is then redone or copied over into the next file—adding the problem of duplica‐
ted versions of these overcomplicated reports. Soon, you could end up in so-called
Excel Hell, where nobody has a complete picture of the different versions of logic
applied to the data. On the other hand, a data warehouse layer guarantees a single
version of the truth.

Part V concentrates on solutions built with SELECT statements and SQL’s procedural
extension, T-SQL. I use the SQL dialect available in Azure SQL DB and SQL Server
Database Engine. There is some chance that simple SELECT statements in this book
will also run on other relational databases, or even NO-SQL databases. There is
almost no chance that the procedural extensions (loops, functions, procedures, etc.)
will work without any change on other database management systems. You’ll have to
find a way to migrate the code to your destination system if you aren’t using Micro‐
soft’s SQL-based databases.

T-SQL as a language is quite stable in terms of how rarely new extensions are made
or what parts are deprecated. Power BI is a different beast—new versions are released
every month.
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A New Release Every Few Weeks
The team behind Power BI and its tools and services at Microsoft is very busy deliver‐
ing new versions of Power BI Desktop every month and rolling out changes in the
cloud-based services weekly. This is a challenge for everybody: the UI changes, icons
are redesigned, and buttons are moved to different places. This is also a challenge for
every book project: some of the screenshots may be outdated when you read this
book. Therefore, I include only portions of the screen, when sufficient. In many
places, I also link to Microsoft’s official documentation, which Microsoft and the
community keeps up-to-date; you can double-check it if your Power BI Desktop
looks different.

The general concepts on how to create an optimal data model for Power BI haven’t
changed much in the past, and therefore, there is hope that this knowledge is here to
stay and will help you in the future as well. Read on to learn how I divide all the nec‐
essary knowledge and skills into digestible portions.

How to Read This Book
The book is organized into five parts—five books for the price of one:

Data Modeling 101 (Part I)
The first part gently introduces all the theory and concepts and teaches you why
data modeling matters. It covers all the content in a practical but tool-agnostic
way. Look at this part as a “reader’s digest” version of Ralph Kimball and Margy
Ross’s The Data Warehouse Toolkit, Third Edition (Wiley, 2013) and Christo‐
pher Adamson’s Star Schema: The Complete Reference (McGraw Hill, 2010).

Data Modeling in Power BI (Part II)
The second part covers data modeling features of Power BI Desktop, where I
show you how to apply all the theory (from the first part) in concrete examples. I
guide you around the menu and ribbon and into the properties of a data model.

Data Modeling for Power BI with the Help of DAX (Part III)
This part shows how you can bring information from data source(s) into the nec‐
essary shape (discussed in Part II) with the help of DAX.

The advantage of using DAX is that you need to learn it anyway when you want
to master Power BI (there’s no way around writing calculated measures in DAX
for anything but very simple data models). Another is that changes in the for‐
mula will be calculated immediately after you press OK, without accessing the
data source. The disadvantage of using DAX to reshape a data model is that the
result of calculated columns and calculated tables will occupy disk space when
you save the file and memory when you open it. Another disadvantage is that
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your data model will contain both the original shape and the reshaped version of
the data model (therefore occupying an unnecessary amount of space).

DAX’s main purpose is to define measures and not to shape data, but some of the
examples still provide additional insight about what you can achieve with DAX.
Learning the full capabilities of the DAX language will also help you use complex
DAX measures when you for some reason are not able to solve the problem in
the model itself.

Data Modeling for Power BI with the Help of Power Query (Part IV)
This part shows how to bring information from data source(s) into the necessary
shape with the help of Power Query’s UI and the M language. You’ll see that you
can come a long way with the UI alone before handling code in M.

Unfortunately, M is very different from DAX. For one thing, in M you apply
transformations based on the the result of a previous step; in DAX you add con‐
tent on top of existing content of the data model. M is also case sensitive for key‐
words and the content of columns, and DAX is case insensitive. M is similar to
F#, whereas DAX is similar to Excel formulas. The two can hardly be compared
to each other. As you will see in this part, M as a language is much better suited
to the task of data shaping than DAX.

When the data I’m loading isn’t already in the desired shape, Power Query and
M are my tools of choice. Only the final result of transformations made in Power
Query are loaded into the Power BI data model, avoiding unnecessary tables and
columns. While working with Power Query, you need active access to the data
source.

Data Modeling for Power BI with the Help of SQL (Part V)
This part shows how you can bring the information from data source(s) into the
necessary shape with the help of SQL and T-SQL. Despite trends to gather data
in lakes, I still strongly believe that an enterprise organization needs a central
place where someone takes care of the data; a place where natural (and dirty)
data is cleaned and brought into the right shape. Whether this place is a physical
database or “just” views on some data store is not so important. But it is impor‐
tant that you have such a (data warehouse) layer instead of putting the burden
onto the end user and the tools they use.

If you’re eager to learn about relational databases or to make the life of Power BI
users in your organization easier, then this part of the book is especially for you.
In Microsoft Fabric you can access your data residing in a data lake.

Each part has four chapters, which cover the following topics:
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Understanding a data model
These chapters are about the basic terms and concepts. If you’re new to data
modeling, ensure you read and understand these chapters. If you already have
some background in data modeling, you might quickly check these chapters to
refresh your memory. Look out for the key takeaways at the end of each chapter.

Building a data model
These are all about the meat-and-potatoes of data modeling. These chapters dis‐
cuss problems and solutions to common problems. I’m convinced that you will
face at least some of those on your journey of refining your data into usable
information.

Real-world examples
For these chapters, I address advanced challenges. For simple data models, the
problems discussed here might not be an issue. You might enjoy a break on your
first reading here and return when you find yourself facing one of the issues.
These chapters dive deeper into data modeling, DAX, Power Query, and SQL
and cover not-so-common features you might need to solve a certain problem.
These chapters are aimed for the advanced data cook.

Performance tuning
Every part closes with a chapter on performance tuning, which is most often the
last step in the whole journey of data modeling. If you start by learning to follow
all best practices pointed out in this book, you will have plenty to do before
report performance will be an issue. For really large implementations (I’m talk‐
ing about billions of rows of data), though, even following these best practices
won’t be enough. Then it’s time to dive into the technical layer of data modeling
and learn how to tune the available storage modes (Import, DirectQuery, live
connection, and Direct Lake) to your advantage.

The whole book, and therefore also the chapters about perfor‐
mance tuning, concentrates on data modeling and not so
much on how to write performant code in DAX, Power Query
or SQL.

All the parts and topics are brought together in 20 chapters (see Figure P-8). They
progress in complexity and difficulty, allowing you to read the book cover-to-cover.
Or you could jump over DAX or ignore SQL, for example, if you intend to use Power
Query to solve your challenges. Imagine you jump to Chapter 10 and discover that
you’re not sure why you should build a date table for your Power BI data model. You
could jump to Chapter 6 to find out. You might also review the general concept of a
date table (and why it’s useful in general and for analytical systems built with other
tools) in Chapter 2. Or maybe you decide against building the date table in DAX and
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explore other solutions. You could find the same implementations done in Power
Query in Chapter 14 and in SQL in Chapter 18. Figure P-9 illustrates this journey.

Figure P-8. Chapter overview

Figure P-9. Example navigation

Ready to begin? Ensure that you have the necessary software installed.
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Installing Necessary Software
You need to install the following software to open the demo files I’ve provided and
replicate the exercises described in this book:

Power BI Desktop
To open the .pbix files, you need to either install the Windows Store version from
the Power BI Desktop Store or download the installation files from Power BI
Desktop installer. Make sure to download and install the .msi file regularly, or
install Power BI Desktop from the Microsoft Store, which will update automati‐
cally.

SQL Client
For the exercises in SQL, I use SQL Server Management Studio (SSMS), which
you can download and install from Download SQL Server Management Studio
(SSMS). Alternatively, you can use Azure Data Studio, which you get from
Download and install Azure Data Studio, or you use your preferred SQL client.

SQL Server or Azure SQL DB
For the exercises in SQL, you need access to one of the relational databases avail‐
able from Microsoft: either SQL Server (installed on your premises) or Azure
SQL DB (software-as-a-service in Microsoft’s cloud platform). You can down‐
load SQL Server from Microsoft. Use either the Express or Developer edition.
Both are free of charge and sufficient for the exercises.

Alternatively, you can sign up for an Azure SQL DB. For the exercises, a free trial
access will be sufficient.

Write access to database “AdventureWorksDW”
Most of the examples are based on a data warehouse schema of the fictitious
company I call “Adventure Works,” a sport retailer that earns the majority of its
revenue through selling bikes on three continents either via resellers or directly
over its web shop. To create the necessary database objects (tables, views, proce‐
dures, functions, schemas), you need write access to the database “Adventure‐
WorksDW” (the one with the “DW” in the suffix of the name, not:
“AdventureWorks” or “AdventureWorksLT” or “Adventure Works OLTP”).
You can find the backup file and a description of how to install it on SQL Server
here: AdventureWorks sample databases.

To install database “AdventureWorksDW” as an Azure SQL DB, you can use the
“Data-tier Application” (also known as a BACPAC file). Install this BACPAC file
via SQL Server Management Studio (SSMS). Right-click Databases and choose
“Import Data-tier Application,” as shown in Figure P-10.

Provide the folder and file names of where you downloaded it (Figure P-11).
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Figure P-10. Import Data-tier Application in SQL Server Management Studio

Figure P-11. Provide the name of the folder and file
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The smallest/cheapest edition will be sufficient (Figure P-12).

Figure P-12. Choose the smallest available database setting

If you choose to run the database serverless, you can further reduce costs, as the
database (and all costs) will hibernate if you don’t use it for one hour. Next time
you access the database, it will wake up for you, which can lead to a timeout. Just
reconnect again, and the connection will be established successfully.

Finally, run the script 001 Preparation.sql when connected to database Adven‐
tureWorksDW to create all artifacts for the demo environment.
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Additional Tools
The data community around Power BI is great. I really admire the smart people who
combine a deep knowledge of the technology behind Power BI with understanding
the needs of professional Power BI developers, and who also have the skill set to
develop useful tools. Some of these people even develop their tools as open source
and share them with the community. In this book, I refer to two such tools:

• Tabular Editor V2, the open source version of Tabular Editor V3, by Daniel
Otykier (CTO at Tabular Editor ApS)

• DAX Studio, an open source tool by Darren Gosbell (senior program manager at
Microsoft)

Demo Files
For every problem, I share one single Power BI Desktop file (.pbix) that contains the
whole data model and all the solutions in DAX and in Power Query/M, as well as a
connection to the tables in Azure SQL. This allows you to easily compare the differ‐
ent technical solutions with on another.

The majority of the examples have an educational purpose: for instance, in the file
Data multiple.pbix you’ll find the table Order Date three times with the exact same
content. Order Date (DAX) is a version completely created in DAX, Order Date
(PQ) is a version completely created in Power Query, and Order Date (SQL), as you
might guess, is a version completely created in SQL and just loaded as is into Power
BI. To avoid any misconceptions: in a practical scenario, it neither makes sense to
create a table with the same content several times in your data model nor does it
make sense to do some transformations in DAX while doing others in Power Query
and/or SQL. Stick to one tool to make it easier to find any transformation.

You can find all files in the GitHub repository for this book.

Now you’re set for the first chapter, which will give you a basic understanding of
what a data model is and what it consists of.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
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Constant width

Shows for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

For all DAX code (mostly in Part III), the following conventions also apply:

[Measure Name] :=

<definition of a measure>

'Table Name'[Column Name] =

<definition of a calculated column>

[Table Name] = /* calculated table */

<definition of a calculated table>

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.
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Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://github.com/MEhrenmueller/DataModeling.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Data Modeling with
Microsoft Power BI by Markus Ehrenmueller-Jensen (O’Reilly). Copyright 2024
Savory Data Gmbh, 978-1-098-14855-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

xxxviii | Preface

http://github.com/MEhrenmueller/DataModeling
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com


How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/DataModelingwithMicrosoft
PowerBI.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.
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PART I

Data Modeling 101

The goal of this first part of the book is to bring everybody onto the same page when
it comes to the topic of data modeling. The chapters in this part are agnostic: the con‐
tent, problems, and solutions are not specific to a particular type of database manage‐
ment system. You will be able to apply the knowledge you gain from this part to any
relational or analytical database. This includes, of course, Power BI, Analysis Services
tabular and Azure SQL DB, but is not limited to them, and you can apply all state‐
ments, information, and conclusions to database management systems from vendors
other than Microsoft—to classical cubes, to data lakehouses, and so on.



These concepts have existed for decades and are so mature that I bet they’ll be around
for decades to come. Make sure to learn of all them so you’ll understand why I insist
on applying one transformation or another when it comes to data modeling in Power
BI in the later parts of this book.

Chapter 1 introduces the following basic terms and concepts:

• Entities and tables
• Relations and their cardinality
• Primary and foreign keys

You’ll learn how to combine information spread out into different tables with the
help of Set operators and join operators, including problems you might face that, for
example, could result in missing data or duplication of data. I discuss the three core
possibilities of modeling data (combining everything into one single table, splitting
the information in a way that avoids duplicates under all circumstances, and a com‐
promise in the form of a so-called dimensional model). You’ll learn to decide which
to use under which conditions.

Based on the information in Chapter 1, Chapter 2 teaches you how to transform the
data model of your data source into a data model of the intended shape. This can be
done via transformation steps, including the following:

• Normalizing and denormalizing tables
• Adding calculations
• Transforming flags and indicators into meaningful text
• Adding a dedicated table to contain all dates and/or timestamps
• Modeling dimensions when they can play different roles (e.g., a person can be in

the role of an employee or in the role of a customer)
• Modeling dimensions when we need to track attribute changes over time
• Implementing hierarchies

In my experience, the challenges in Chapter 2 are common in most data models.
Chapter 3 talks about rarer challenges, which you won’t see in every data model. All
of them are real-world problems I’ve had to tackle for my customers. To solve them,
you’ll need to combine different techniques, which make them more advanced.

Finally, in this part’s performance tuning section, Chapter 4, I introduce what role a
data model plays when it comes to guaranteeing a fast performance of the reports and
queries based on the data model. Basically you need to decide whether you want to
persist data in the shape you need it in for your analytics or only store the code for a
query, which instead transforms the original data into the necessary shape on the fly.



CHAPTER 1

What Is a Data Model?

This chapter covers the basics of data modeling, starting with basic terms, which will
help establish the reasoning behind taking so much care of the data model. A data
model that is optimized for creating reports and doing analysis is much easier to
work with than one that is optimized for other purposes (e.g., to store data for an
application or data collected in a spreadsheet). When it comes to analytical databases
and data warehouses, you have more than one option.

The goal throughout this book is to create the data model as a star schema. By the
end of this chapter, you’ll know which characteristics of a star schema differentiate it
from other modeling approaches. Each and every chapter reinforces why a star
schema is so important when it comes to analytical databases in general and Power
BI and Analysis Services tabular in particular. You will learn how to transform any
data model into a star schema.

Transforming information of your data source(s) into a star schema is usually not an
easy task. Quite the opposite; it can be difficult. It might take several iterations. It
might take discussions with the people who you build the data model for—and the
people using the reports, as well as those who are responsible for the data sources.
You might face doubts (from others and yourself) about whether it’s really worth all
the effort instead of avoiding the struggle and pulling the data in as it is. At such a
point, it’s important to take a deep breath and evaluate whether a transformation
would make the report creator’s life easier. If so, then it’s worth the effort. Repeat the
data modeler’s mantra with me: make the report creator’s life easier.

Before I talk about transformations, I’ll introduce some basic terms and concepts:

• What is a data model?
• What is an entity? What does an entity have to do with a table?
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• Why should you care about relationships?
• Why do you need to identify different keys (primary, foreign, and surrogate) and

understand the general meaning of cardinality?
• How can you combine tables (set operators and joins)?
• What are the data modeling options?

The first stop on our journey toward the star schema is learning what a data model is
in general terms.

Data Model
A model is something that represents the real world. It does not replicate it. Think of
a map. A map replicating the real world 1:1 would be impractical: it would cover the
whole planet. Instead, maps scale down distances. Maps are created for special pur‐
poses. A hiking map contains (and omits) different types of information than a road
map does, and a nautical chart looks completely different still. All of these are maps
but with different purposes.

The same applies to a data model, which represents a certain business logic. As with a
map, a data model will look different for different use cases. Therefore, models for
different industries will not be the same. And even organizations within the same
industry will need different data models (even for basically identical business pro‐
cesses), as they will concentrate on different requirements. The challenges and solu‐
tions in this book will help you overcome obstacles when you build a data model for
your organization.

Now for the bad news: there isn’t one data model that rules them all. Also, it’s impos‐
sible to create a useful data model with technical knowledge and no domain knowl‐
edge. But there is good news: this book will guide you through the technical
knowledge necessary to successfully build data models for Power BI and/or Analysis
Services tabular.

Don’t forget to collect or record all requirements from the business before creating
the data model. Here are some examples of requirements in natural language:

• We sell goods to customers and need to know the day and the SKU of the prod‐
uct we sold

• We need to analyze the 12-month rolling average of the sold quantity for each
product

• Up to 10 employees form a project team and we need to report the working
hours per project task
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These requirements will help you determine what information you need to store in
which combinations and at which level of detail. There might be more than one
option for the design of a data model for a certain use case.

And, very importantly, you need the create the correct data model right from the
beginning. As soon as the first reports are created on a data model, every change in
the model bears the risk of breaking those reports. The later you discover inconsis‐
tences and mistakes in your data model, the more expensive it will be to correct them.
This cost hits everybody who created those reports—you yourself, but also other
users who built reports based upon your data model.

The data model’s design has a huge impact on the performance of your reports,
which query data from the data model to feed the visualizations as well. A well-
designed data model lessens the need for query tuning later. And a well-designed
data model can be used intuitively by the report creators, saving them time and effort
(and saving your organization money). From a different point of view, problems with
the performance of a report or report creators who are unsure of which tables and
columns to use to gain certain insights are a sure sign of a data model that can be
improved by a better choice of design.

In “Entity Relationship Diagrams” on page 25, I describe graphical ways to document
a data model’s shape. But first, let’s discuss the entities of a data model.

Basic Components
You need to understand a few key components of a data model before you dive in. In
this section, I explain the basic parts of a data model. In “Combining Tables” on page
11, I will walk you through different ways of combining tables with the help of set
operators and joins and which kind of problems you can face and how to solve them.

Remember that this part of the book isn’t specific to Power BI. Some concepts may
apply only when you prepare data before you connect Power Query to it (e.g., when
writing a SQL statement in a relational database).

Entity
An entity is someone or something that can be individually identified. In natural lan‐
guage, entities are nouns. Think of a real person (your favorite teacher, for example),
a product you bought recently (ice cream, anybody?), or a term (e.g., entity).

Entities can be both real and fictitious. And most have attributes: a name, value, cate‐
gory, point in time of creation, etc. These attributes are the information we are after
when it comes to data. Attributes are displayed in reports to help the reader provide
context, gain insights, and make decisions. They are used to filter displayed informa‐
tion to narrow down an analysis, too.
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How do such entities make it into a data model? They’re stored in tables.

Tables
Tables are the base of a data model. They have been part of data models since at least
1970, when Edgar F. Codd developed the relational data model for his employer,
IBM. But collecting information as lists or tables was done way before the invention
of computers, as you can see when looking at old books.

Tables host entities: every entity is represented by a row in a table. Every attribute of
an entity is represented by a column in a table. A column in a table has a name (e.g.,
birthday) and a data type (e.g., date). All rows of a single column must conform to
this data type (it isn’t possible to store the place of birth in the column “birthday” for
any row, for example). This is an important difference between a (database’s) table
and a spreadsheet’s worksheet (e.g., in Excel). A single column in a single table con‐
tains content. You can see an example in Table 1-1.

Table 1-1. A table containing the name of doctors

Doctor’s name Hire date
Smith 1993-06-03

Grey 2005-03-27

Young 2004-12-01

Stevens 2000-06-07

Karev 1998-09-19

O’Malley 2003-02-14

Entities do not exist just on their own but are related to each other.

Relationships
In most cases, relationships connect only two entities. In natural language, the rela‐
tionship is represented by a verb (e.g., bought). Between the same two entities, more
than one single relationship might exist. For example, a customer might have first
ordered a certain product, which we later shipped. It’s the same customer and the
same product but different relationships (ordered versus shipped).

Some relationships can be self-referencing. That means that there can be a relation‐
ship between one entity (one row in this table) and another entity of the same type (a
different row in the same table). Organizational hierarchies a are a typical example.
Every employee (except maybe the CEO) needs to report to a supervisor. The refer‐
ence to the boss is therefore an attribute. One column contains the identifier of the
employee (e.g., [Employee ID]) and another contains the identifier of who this
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employee reports to (e.g., [Manager ID]). The [Manager ID] in one row can be
found as the [Employee ID] of another row in the same table.

Here are a few examples of relationships expressed in natural language:

• Dr. Smith treats Mr. Jones.
• Michael attended a data modeling course.
• Mr. Gates owns Microsoft.
• Mr. Nadella is the CEO.

When you start collecting the requirements for a report (and therefore for your data
model) it makes sense to write them down as sentences in natural language, as in the
preceding list. This is the first step. In “Entity Relationship Diagrams” on page 25, you
will learn to draw tables and their relationships as entity relationship diagrams.

Sometimes the existence of a relationships alone is enough information to collect and
satisfy analysis. But some relationships might have attributes, which we collect for
more in-depth analysis:

• Dr. Smith treats Mr. Jones for the flu.
• Michael completed a data modeling course with an A grade.
• Mr. Gates owns 50% of Microsoft.
• Mr. Nadella has been CEO since February 4, 2014.

You learned that entities are represented as rows in tables. The question that remains
is how you can then connect rows with each other to represent relationships. The
first step is to find a (combination of) columns that uniquely identify a row. Such a
unique identifier is called a primary key.

Primary Keys
Both in the real world and in a data model, it’s important that you can uniquely iden‐
tify a certain entity (a row in a table). People, for example, are identified via their
names in the real world. When you know two people with the same (first) name, you
might add something to their name (e.g., their last name) or invent a nickname
(which is usually shorter than the first name and last name combined), so that you
can make clear who you are referring to (without spending too much time). If some‐
body isn’t paying attention, they might end up referring to one person while another
is referring to a different person (“Ah, you’re talking about the other John!”).
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It’s similar in a table: you can mark one column (or a combined set of columns, i.e., a 
composite key) as the primary key of the table. If you don’t do that, you might end up
with confusing reports because of duplicates (e.g., the combined sales of all Johns
might be shown for every John).

The best practice is to use a single column as a primary key (as opposed to a compo‐
site key) for the same reason we use nicknames for people: it’s shorter and, therefore,
easier to use. You can only define one primary key.

Explicitly defining a primary key on a table has several consequences. It puts a unique
constraint on the column(s) (which guarantees that no other row can have the same
value(s) as the primary key and ensures the rejection of inserts and updates that
would would result in the violation of this rule). Every relational database manage‐
ment system I know also puts an index on the primary key (to speed up the lookup
for if an insert or update would violate the primary key). All columns used as a pri‐
mary key must contain a value (nullability is disabled). I strongly believe that you
should have a primary key constraint on every table to avoid ending up with dupli‐
cate rows.

In a table, you can make sure that every row is uniquely identifiable by marking a
row, or the combination of several rows, as the primary key. To make the example
with [Employee ID] and [Manager ID] work, it is crucial that the content of column
[Employee ID] is unique for the whole table.

Typically, in a data warehouse (a database built for the sole purpose of making
reporting easier), instead of using one of the columns of the source system as a pri‐
mary key (e.g., first name and last name or social security number), you would intro‐
duce a new artificial ID, which only exists inside the data warehouse: a surrogate key.

Surrogate Keys
A surrogate key is an artificial value used only in the data warehouse or analytical
database. It’s neither an entity’s natural key nor the business key of the source system
and definitely not a composite key, but a single value. It is created solely for the pur‐
pose of having one key column, which is independent of any source system. Think of
it as a (bit weird and secret) nickname, which identifies an entity uniquely and will
only be used to join tables but never to filter the content of a table. The surrogate key
is never exposed to the report consumers and users of the analytical system.

Typically, the columns have “Key,” “ID,” “SID,” etc. as part of their names (as in
ProductKey, Customer_ID , and SID). The common relational database management
systems are able to automatically find a value for this column for you. The best prac‐
tice is to use an integer value, starting at 1. Depending on the number of rows you
expect inside the table, you should find the appropriate type of integer, which usually
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can cover something between 1 byte (= 8 bits = 28 = 256 values) and 8 bytes (= 8 × 8
bits = 64 bits = 264 = 18,446,744,073,709,551,616 values).

Sometimes global unique identifiers are used. They have their use case in scale-out
scenarios, where processes need to run independently from each other, but still gen‐
erate surrogate keys for a common table. They require more space to store (16 bytes)
compared to an integer value (max. 8 bytes). That’s why I would only use them in
cases when integer values can absolutely not be used.

The goal is to make the data warehouse function independently from the source sys‐
tem (e.g., when an enterprise planning system [ERP] is changed, when the ERP sys‐
tem re-uses IDs for new entities, or when the data type of the ERP’s business key
changes).

Surrogate keys are also necessary when you want to implement slowly changing
dimension Type 2, which I cover in “Slowly Changing Dimensions” on page 49.

The next section will explain how to represent relationships of entities. The solution
to the puzzle of how to relate entities to each other isn’t very complicated: You just
store the primary key of an entity as column in an entity who has a relationship to it.
This way, you reference another entity. You reference the primary key of a foreign
entity. That’s why this column is called a foreign key in the referencing table.

Foreign Keys
Foreign keys simply reference a primary key of a foreign entity. The primary key is
hosted in a different column, either in a different table or the same table. For exam‐
ple, the sales table will contain a column [Product ID] to identify which product was
sold. The [Product ID] is the primary key of the Product table. The [Manger ID]
column of the Employee table refers to column [Employee ID] in the very same table
(Employee).

When you explicitly define a foreign key constraint on the table, the database man‐
agement system will make sure that the value of the foreign key column for every sin‐
gle row can be found as a value in the referenced primary key. It will guarantee that
no insert or update in the referring table can change the value of the foreign key to
something invalid. And it will also guarantee that a referred primary key can not be
updated to something different or deleted in the referenced table.

The best practice is to disable nullability for a foreign key column. If the foreign key
value is (yet) not known or does not make sense in the current context, than a
replacement value should be used (typically surrogate key –1). To make this work,
you need to explicitly add a row with –1 as it’s primary key to the referenced table.
This gives you better control of what to show in case of a missing value (instead of
just showing an empty value in the report). It also allows for inner joins, which are
more performant compared to outer joins (which are necessary when a foreign key
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contains null values so those rows are not lost in the result set; read more about
“Joins” on page 13).

While creating primary key constraints will automatically put an index on the key,
creating foreign key constraints is not implemented this way in, e.g., Azure SQL DB
or SQL Server. To speed up joins between the table containing the foreign key and
the table containing the primary key, indexing the foreign key column is strongly
recommended.

How do you determine in which of the two entities involved in a relationship to store
the foreign key? Before I can answer this question, we need to discuss different types
of relationships.

Cardinality
The term cardinality has two meanings. It can be a number used to describe how
many distinct values in one column (or combinations of values for several columns)
you can find in a table. If you store a binary value in a column, e.g., either “yes” or
“no,” then the cardinality of the column will be two.

The cardinality of the primary key of a table will always be identical to the number of
rows in a table because every row of the table will have a different value. In a colum‐
nar database (like Power BI or Analysis Services tabular), the compression factor is
dependent on the cardinality of a column (the fewer distinct values, the better the
compression will be).

In the rest of the book, I mostly refer to the other meaning, which describes cardinal‐
ity as how many rows can (maximally) be found in a related table for a given row in
the referencing table. For two given tables, the cardinality can be any of the following:

One-to-many (1:m, 1–*)
For example, one customer may have many orders. One order is from exactly
one customer.

One-to-one (1:1, 1–1)
For example, this person is married to this other person.

Many-to-many (m:m, *–*)
For example, one employee works for many different projects. One project has
many employees.

The cardinality is defined by the business rules. Maybe in your organization, a single
order can be assigned to two customers simultaneously. Then the one-to-many
assumption would be wrong, and you’d need to model this relationship as many-to-
many. Finding the correct cardinalities is a crucial task when designing a data model.
Make sure you fully understand the business rules to avoid incorrect assumptions.
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If you want to be more specific, you can also describe whether a relationship can be
conditional. As all relationships on the “many” side are conditional (e.g., a specific
customer might not have ordered yet), this is usually not explicitly mentioned.
Relationships on the “one” side could be conditional (e.g., not every person is mar‐
ried). You might then change the relationship description from 1:1 to condi‐
tional:conditional (c:c) in your documentation.

Combining Tables
So far, you’ve learned that information (entities and their relationships) is stored in
tables in a data model. Before I introduce rules, such as when to split information
into different tables and when keep it together in on single table, I want to discuss
how to combine information spread throughout different tables.

Set Operators
You can imagine a “set” as the result of a query or as rows of data in a tabular shape.
Set operators allow you to combine two (or more) query results by adding or remov‐
ing rows. It’s important to keep in mind that the number of columns in the queries
involved must be the same. And the data types of the columns must be identical or
the data type conversion rules of the database management system you’re using must
be able to (implicitly) convert to the data type of the column of the first query.

The first query sets both the data types and the names of the columns of the overall
result. A set operator does not change the number or type of columns, only the num‐
ber of rows. Figure 1-1 illustrates the following explanation:

Union
Adds the rows from the second set to the rows of the first set. Depending on the
database management system you are using, duplicates may appear in the result
or be removed by the operator. For example, you want a combined list of both
customers and suppliers.

Intersect
Looks for rows that appear in both sets. Only rows appearing in both sets are
kept; all other rows are omitted. For example, you want to find out who appears
to be both a customer and a supplier in your system.

Except (or minus)
Looks for rows that appear in both sets. Only rows from the first set that do not
appear in the second set are returned. You “subtract” the rows of the second table
from the rows of the first table (hence, this operator is also called minus). For
example, you want to get a list of customers, limited to those who are not also a
supplier.
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Figure 1-1. Set operators
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To determine whether a row is identical or not, evaluate and com‐
pare the content of all columns of the row of the query. Pay atten‐
tion here: while the primary keys listed in the result set might be
identical, the names or description might differ. Rows with identi‐
cal keys but different descriptions will not be recognized as identi‐
cal by a set operator.

As you learned, set operators combine tables in a vertical fashion. They basically
append the content of one table to the content of another table. The number of col‐
umns cannot change with a set operator. If you need to combine tables in a way
where you add columns from one table to the columns of another table, you need to
work with join operators.

Joins
Joins are like set operators in the sense that they also combine two (or more) queries
(or tables). Depending on the type of the join operator, you might end up with the
same number of rows as the first table, more, or fewer rows. With joins, you can also
add columns to a query (which you can not do with a set operator).

While set operators compare all columns, joins are done on only a selected (sub)set
of columns, which you need to specify (in the so-called join predicate). For the join
predicate, you’ll usually use an equality comparison between the primary key of one
table and the foreign key in the other table (equi-join). For example, you want to
show the name of a customer for a certain order (and specify an equality comparison
between the order table’s foreign key [Customer Key] and the customer table’s pri‐
mary key [Customer Key] in the join predicate).

Only in special cases would you compare other (non-key) columns with each other to
join two tables. You will see examples of such joins in Chapters 7, 11, 15, and 19,
where I demonstrate solutions to advanced problems. There, you’ll also see examples
for non-equi-joins. Non-equi-joins use operators like between, greater than or equal
to, not equal, etc., to join the rows of two tables.

One example is about grouping values (binning). Binning is about finding the group
a certain value falls into by joining the table containing the groups with a condition
asking for values that are greater than or equal to the lower range of the bin and
lower than the upper range of the bin. While the range of values form the composite
primary key of the table containing the groups, the lookup value is not a foreign key:
it’s an arbitrary value, possibly not found as a value in the lookup table, as the lookup
table only contains a start and end value per bin, but not all the values within the bin.

Natural joins are a special case of equi-joins. In such a join, you don’t specify the col‐
umns to compare. The columns to use for the equi-joins are automatically chosen for
you: columns with the same name in the two joined tables are used. As you might
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guess, this only works if you stick to a naming convention (a very good idea in any
case) to support these joins. If the primary key and foreign key columns have differ‐
ent names, a natural join will not work properly (e.g., when the primary key in the
customer table is the column ID, while, in the order table, the foreign key is named
CustomerID). The same is true in the opposite case, when columns in both tables have
the same name but no relationship (e.g., both the Product table and the Product
Category table have a Name column, which represents the name of the Product and
the name of the Product Category, respectively, but they cannot meaningfully used
for the equi-join).

The important difference between set operators and joins is that
joins add columns to the first table, while set operators add rows.
Joins allow you to add a category column to your products, which
can be found in a lookup table. Set operators allow you to combine,
e.g., tables containing sales from different data sources into one
unified sales table.
I imagine set operators as a combination of tables arranged verti‐
cally (one table underneath another) and join operators as a hori‐
zontal combination of tables (side-by-side). This metaphor isn’t
exact in all regards (set operators INTERSECT and EXCECPT remove
rows, and joins also add or remove rows depending on the cardin‐
ality of the relationship or the join type) but it is, I think, a good
starting point to differentiate them.

Earlier in this chapter, I used Employee as a typical example, where the foreign key
([Manager Key]) references a row in the same table (via primary key [Employee
Key]). If you actually join the Employee table with itself, to find, e.g., the manager’s
name for an employee, you are implementing a self-join.

You can join two tables in the following ways:

Inner join
Looks for rows that appear in both tables. Only rows appearing in both tables are
kept; all other rows are omitted. For example, you want to get a list of customers
for whom you can find orders. You can see a graphical representation in
Figure 1-2.
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Figure 1-2. Inner join

This is similar to the INTERSECT set operator. But the result can contain the same,
more, or fewer rows than the first table. It will contain the same number of rows,
if for every row of the first table exactly one row in the second table exists (e.g.,
when every customer has placed exactly one order). It will contain more rows if
there is more than one matching row in the second table (e.g., when every cus‐
tomer has placed at least one order or some customers have so many orders that
they overcompensate for customers who didn’t place an order). It will contain
fewer rows if some rows of the first table can’t be matched to rows in the second
table (e.g., when not all customers have placed orders and these missing orders
are not compensated by other customers).

There is a “danger” of inner joins: the result may skip some
rows of one of the tables (e.g., the result will not list customers
without orders).

Outer join
Returns all the rows from one table and values for the columns of the other table
from matching rows. If no matching row can be found, the value for the columns
of the other table are null (and the row of the first table is still kept). This is
shown in Figure 1-3.

You can ask for all rows of the first table in a chain of join operators (left join),
making the values of the second table optional; the other way around is a right
join. A full outer join makes sure to return all rows from both tables (with
optional values from the other table).
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Figure 1-3. Outer join
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For example, you want a list of all customers with their order sales from the cur‐
rent year, even when the customer did not order anything in the current year
(and then you want null or 0 displayed as their order sales). To achieve this, you
would select the rows from the Customer table and left join the Orders table to it.
The first table (Customer) is considered the left table, and the joined table
(Orders) is the right table in such a query.

This is easy to understand in SQL when you write all the tables
in one single line, e.g., …FROM Customer LEFT OUTER JOIN

Order…. The Customer table is literally written to the left of
the Order table, thus it is the left table. The Order table is liter‐
ally right of the Customer table, thus it is the right table.

There is no similar set operator to achieve this. An outer join will have at least as
many rows as an inner join. It’s not possible that an outer join (with the identical
join predicated) will return fewer rows than an inner join. Depending on the car‐
dinality, it might return the same number of rows (if there is a matching row in
the second table for every row in the first table) or more (if some rows of the first
table cannot be matched with rows of the second table, which are omitted by an
inner join).

Anti-join
An anti-join is based on an outer join, where you only keep the rows not existing
in the other table. The same ideas apply here for left, right, and full, as you can
see in Figure 1-4.

Anti-joins have a very practical use. For example, you want a list of customers
who didn’t order anything in the current year (to send them an offer they can’t
resist). There is no similar set operator to achieve this. The anti-join delivers the
difference between an inner join and an outer join.
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Figure 1-4. Anti-join
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Cross join
Creates a so-called Cartesian product. Every single row of the first table is com‐
bined with each and every row from the second table. In many scenarios, this
doesn’t make sense (e.g., when combining every row of a sales table with every
customer without considering whether the row of the sales table is for that cus‐
tomer or a different one).

Practically, you can create queries, which show possible combinations. For exam‐
ple, by applying a cross join on the sizes of clothes with all the colors, you get a
list of all conceivable combinations of sizes and colors (independently of if a
product really is available in this combination of size and color). A cross join can
be a basis for a left join or anti-join, to explicitly point out combinations with no
values available. You can see an example of the result of a cross join in
Figure 1-5.

Figure 1-5. Cross join

Do you feel dizzy from all of the join options? Unfortunately, I need to add one more
layer of complexity. As you’ve learned, when joining two tables, the number of rows
in the result set might be smaller than, equal to, or higher than the number of rows of
a single table involved in the operation. The exact number depends on both the type
of the join and the cardinality of the tables. In a chain of joins involving several
tables, the combined result might lead to undesired results.
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Join Path Problems
The Power BI data model has a fail-safe to avoid the join path problems described
here. The problems can easily show up, however, when you combine tables in Power
Query, in SQL, or your data source.

When you join the rows of one table to the rows of another table, you can face several
problems, resulting in unwanted query results: loop, chasm trap, and fan trap. Let’s
take a closer look at them.

Loop
You face this problem in a data model if more than one single path exists between
two tables. It doesn’t have to be a literal loop in your entity relationship diagram
where you can “walk” a join path in a manner where you return to the first table.
You’re already talking about a loop when a data model is ambiguous. And this can
exist not only in very complex data models but also in the very simple setting of hav‐
ing just more than one direct relationship between the same two tables. Think of a
sales table containing a due date, an order date, and a ship date column (Figure 1-6).
All three date columns of the table FactResellerSales (DueDateKey, OrderDateKey,
and SalesDateKey) have a relationship to the date column of the date table.

The tables contain the following rows (Tables 1-2 and 1-3).

Table 1-2. DimDate

DateKey
2023-08-01

2023-08-02

2023-08-03

Table 1-3. FactResellerSales

DueDateKey OrderDateKey ShipDateKey SalesAmount
2023-08-01 2023-08-01 2023-08-02 10

2023-08-01 2023-08-02 2023-08-02 20

2023-08-01 2023-08-02 2023-08-03 30

2023-08-03 2023-08-03 2023-08-03 40

If you join the DimDate table with the FactResellerSales simultaneously on all three
DateKey columns by writing a join predicate like this:

DimDate.DateKey = FactResellerSales.DueDateKey AND DimDate.DateKey =
FactResellerSales.OrderDateKey AND DimDate.DateKey =
FactResellerSales.ShipDateKey
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the result would show only a single row (namely the row that—by chance—was due,
ordered, and shipped on the same day, 2023-08-03; shown in Table 1-4). We might
safely assume that many business orders are not due or shipped on the day of the
order. Such sales rows would not be part of the result. This might be an unexpected
behavior, returning too few rows.

Figure 1-6. Join path problem: loop

Table 1-4. Query result

DateKey DueDateKey OrderDateKey ShipDateKey SalesAmount
2023-08-03 2023-08-03 2023-08-03 2023-08-03 40

The solution for a loop is (physically or logically) duplicating the date table and join‐
ing one date table on the order date and the other date table on the ship date.

Chasm trap
The chasm trap describes a situation in a data model wherein you have a converging
many-to-one-to-many relationship (see Figure 1-7). For example, you could store the
sales you are making over the internet in a different table than the sales you are mak‐
ing through resellers (see Tables 1-6 and 1-7). Both tables can be filtered over a com‐
mon table, let’s say a date table (Table 1-5). The date table has a one-to-many
relationship to each of the two sales tables—creating a many-to-one-to-many rela‐
tionship between the two sales tables.
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Figure 1-7. Join path problem: chasm trap

Table 1-5. DimDate

DateKey
2023-08-01

2023-08-02

2023-08-03
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Table 1-6. FactResellerSales

OrderDateKey SalesAmount
2023-08-01 10

2023-08-02 20

2023-08-02 30

2023-08-03 40

Table 1-7. FactInternetSales

OrderDateKey SalesAmount
2023-08-01 100

2023-08-02 200

2023-08-03 300

Joining DimDate and FactResellerSales on DimDate.OrderDateKey = Fact

ResellerSales.OrderDateKey would result in four rows, where the 2023-08-02 row
of DateKey will be duplicated (due to the fact that on this day there are two reseller
sales). So far so good. The (chasm trap) problem comes when you join the Fact
Internet Sales table to this result (on DimDate.OrderDateKey = Fact

ResellerSales .OrderDateKey). As the result of the previous join duplicating the
2023-08-02 row of DimDate, the second join will also duplicate all rows of FactInter
netSales for this day. In the example, the row with SalesAmount 200 will appear
twice in the result. If you add the numbers up, you will incorrectly report an internet
sales amount of 400 for 2023-08-02 in the combined query result. This problem
appears independently of using an inner or outer join. (In Table 1-8, I abbreviate
FactResellerSales as FRS and FactInternetSales as FIS.)

Table 1-8. Query result

DateKey FRS.OrderDateKey FRS.SalesAmount FIS.OrderDateKey FIS.SalesAmount
2023-08-01 2023-08-01 10 2023-08-01 100

2023-08-02 2023-08-02 20 2023-08-02 200

2023-08-02 2023-08-02 30 2023-08-02 200

2023-08-03 2023-08-03 40 2023-08-03 300

The solution for the chasm trap problem depends on the tool you are using. Jump to
the chapters in the other parts of this book to read how you solve this in Power
Query/M and SQL.
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Fan trap
You can step into a fan trap in situations where you want to aggregate on a value on
the “one” side of a relationship, while joining a table on the “many” side of the same
relationship (see Figure 1-8). For example, you could store the freight cost in a sales
header table that holds information per order. When you join this table with the sales
detail table that holds information per ordered item of the order (which could be
multiple per order), you are duplicating the rows from the header table in the query
result, therefore duplicating the amount of freight.

Tables 1-9 and 1-10 exemplify this:

Table 1-9. SalesOrderHeader

SalesOrderID Freight
1 100

2 200

3 300

Table 1-10. SalesOrderDetail

SalesOrderID SalesOrderLineID OrderQty
1 1 10

1 2 20

2 1 30

3 1 40

Joining the tables SalesOrderHeader and SalesOrderDetail on the SalesOrderID
leads to duplicated rows of the SalesOrderHeader table; the “1” row for SalesOrder
ID has two order details and will be duplicated. When you naively sum up the
Freight, you would falsely report 200, instead of the correct number, 100.

Table 1-11. Query result

SalesOrderID Freight SalesOrderLineID OrderQty
1 100 1 10

1 100 2 20

2 200 1 30

3 300 1 40
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Figure 1-8. Join path problem: fan trap

Similar to the chasm problem, the solution for the fan problem depends on the tool
you are using. Jump to the chapters in the other parts of this book to read how you
solve this in DAX, Power Query/M and SQL.

As you can see in the screenshots, drawing the tables and the cardinality of their rela‐
tionships can help in getting an overview about potential problems. The saying “A
picture says more than a thousand words” applies to data models as well. I introduce
such entity relationship diagrams in the next section.

Entity Relationship Diagrams
An entity relationship diagram (ERD) is a graphical representation of entities and the
cardinality of their relationships. When a relationship contains an attribute, it might
be shown as a property of the relationship as well. Over the years, different notations
have been developed (Lucidchart has a nice overview about the most common
notations).

In my opinion, it’s not so important which notation you use—it’s more important to
have an ERD on hand for your whole data model. If the data model is very complex
(contains a lot of tables) it is common to split it into sections, or sub-ERDs.

Deciding on the cardinality of a relationship and documenting it (e.g., in the form of
an ERD) will help you find out in which table you need to create the foreign key. This
section explores examples of tables of different cardinality.

The cardinality of the relationship between customers and their orders should be a
one-to-many relationship. One customer could have many orders (even when some
customers only have a single order or others don’t have any order yet). On the other
hand, a particular order is associated with only one customer. This knowledge helps
you decide if we need to create a foreign key in the customer table to refer to the pri‐
mary key of the order table or the other way around. If the customer table contains
the [Order Key], it will allow each customer to refer to a single order only, and any
order could be referenced by multiple customers. So, plainly, this approach would
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not correctly reflect the reality. That’s why you need a [Customer Key] (as a foreign
key) in the order table instead, as shown in Figure 1-9. Then, every row in the order
table can only reference a single customer, and a customer can be referenced by many
orders.

Figure 1-9. ERD for customer and order tables

In a case where an order could be associated with more than a single customer, you
would face a many-to-many relationship, as a customer could still have more than
one order. Many-to-many relationships are typical if you want to find a data model
to represent employees and in which projects they are engaged or collect the reasons
for sales from your customers. The same reason will be given for more than one sale,
and a customer might give you several reasons for why they made the purchase.

Typically, you would add a foreign key to neither the sales table nor the sales reason
table but create a new table on its own consisting of a composite primary key: the
primary key of the sales table (SalesOrderNumber and SalesOrderLineNumber in our
example, shown in Figure 1-10) and the primary key of the sales reason table (Sales
ReasonKey). This new table has a many-to-one relationship to the sales table (over the
sales table’s primary key) and a many-to-one relationship to the sales reason table
(over the sales reason table’s primary key). It’s called a bridge table because it bridges
the many-to-many relationship between the two tables and converting it into two
one-to-many relationships.
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Figure 1-10. ERD for sales and sales reason tables

In later parts of this book, you will learn practical ways to create ERDs for your
(existing) data models.
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Data Modeling Options
By now, you should have a good understanding of the moving parts of a data model.
Therefore, it’s about time we talk about different options for spreading information
over tables and relationships in a data model. That’s what the next sections will teach
you.

Types of Tables
Basically, you can assign each table in your data model to one of three types:

Entity table
Rows in such a table represent events in the real world. These tables are also
referred to as business entity, data, detail, or fact tables. Examples include orders,
invoices, etc.

Lookup table
Lookup tables are used to store more detailed information that you don’t want to
repeat in every row of the entity table. These tables are also referred to as master,
main data, or dimension tables. Examples include customer, product, etc.

Bridge table
A bridge table changes a single many-to-many relationship into two one-to-
many relationships. In many database systems, two one-to-many relationships
can be handled more gracefully than one many-to-many relationship. For exam‐
ple, you might link a table containing all employees and a table containing all
projects.

Maybe you don’t want to split your data into tables but want to keep it in one table.
In the next section, I’ll describe the pros and cons of such an idea.

A Single Table to Store It All
Having all necessary information in one single table has its advantages. It’s easily read
by humans; therefore, it seems to be a natural way of storing and providing informa‐
tion. If you take a random Excel file, it will probably contain one table (or more) and
list all relevant information as columns per a single table. Excel even provides you
with functions (e.g., VLOOKUP) to fetch data from a different table to make all neces‐
sary information available at one glance. Some tools (e.g., Power BI Report Builder,
with which you create paginated reports) require you to collect all information into
one query before you can start building a report. If you have a table containing all the
necessary information, writing this query is easy, as no joins are involved.

Power BI Desktop and Analysis Services tabular are not those tools. They require you
to create a proper data model. A proper data model needs always to consist of more
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1 If you want to dig deeper, you will find books explaining the Boyce–Codd, fourth and fifth normal forms,
which I consider mainly of academic interest, and less practically relevant.

than one table, if you don’t want to encounter difficulties (as “A Single Table to Store
It All” on page 103 points out). In the next section, you will learn rules for splitting col‐
umns from one table into several tables to achieve the goal of a redundancy-free data
model.

Normal Forms
Codd, the inventor of relational databases, introduced the term normalizing in the
context of databases. Personally, I don’t like the term much. I think it’s confusing; it’s
hard to tell what’s normal and what’s not, if you think about life in general and data‐
bases in particular. But I like the idea and the concept behind this term: the ultimate
goal of normalizing a database is to remove redundancy, which is a good idea in
many situations.

If you wanted to store the name, address, email, phone, etc. of the customer for each
and every order, you could store this information in a redundant manner, requiring
you to use more storage space than necessary, due to the duplicated information.
Such a solution also makes editing the data overly complicated. You would need to
touch not just a single row for the customer but many (in the combined order table)
if the content of an attribute changes. If the address of a customer changes, you
would need to make sure to change all occurrences of this information over multiple
rows. If you want to insert a new customer who just registered in your system but
didn’t order anything yet, you have to store a placeholder value in the columns that
contain the order information until an order is placed. If you delete an order, you
have to pay attention, so as not to accidentally also remove the customer information,
in case this was the customer’s only order in the table.

To normalize a database, you apply a set of rules to bring it from one state to the
other. Here are the rules to bring a database into the third normal form, which is the
most common normal form:1

Rule of the first normal form (1NF)
You need to define a primary key and remove repeating column values.

Rule of the second normal form (2NF)
Non-key columns are fully dependent on the primary key.

Rule of the third normal form (3NF)
All normal form are directly dependent on the primary key.
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The following sentence has helped me memorize the different
rules: each attribute is placed in an entity where it is dependent on
the key, the whole key, and nothing but the key…so help me, Codd
(origin unknown).

Let’s apply those rules on a concrete example in Table 1-12.

Table 1-12. A table violating the rules of normalization

StudentNr Mentor MentorRoom Course1 Course2 Course3
1022 Jones 412 101-07 143-01 159-02

4123 Smith 216 201-01 211-02 214-01

This is one single table containing all the necessary information for our hypothetical
scenario. In some situations, such a table is very useful, as laid out in “A Single Table
to Store It All” on page 28. But this is not a good data model, when it comes to Power
BI, and it clearly violates all three rules of normalization (you need to define a pri‐
mary key and remove repeating column values; non-key columns are fully dependent
on the primary key; all attributes are directly dependent on the primary key).

In this example, you see repeating columns for the courses a student attends (col‐
umns Course1, Course2, and Course3). Such a schema limits the amount of courses
to three, and creating a report on how many students visited a certain course is over‐
complicated, as you need to look in three different columns. Sometimes information
is not split into several columns but all information is stored in a single column, sepa‐
rated by commas, or stored in a JSON or XML format (e.g., a list of phone numbers).
Again, querying will be extra hard, as the format of the input cannot be forced. Some
might delimet the list using a comma, others might use a semicolon, etc. These exam‐
ples violate the rule of the first normal form, as well. You need to deserialize the
information, and split the information into rows instead, so that you get just one col‐
umn with the content split out into separate rows. This transforms the table toward
1NF.

Here, somebody might accidentally assign a student to a given course more than
once. The database could not prohibit such a mistake. Yes, you could add a check
constraint to enforce that the three columns must have different content. But some‐
body could add a second row for student number 1022, and add course 143-01.

Here, the definition of a primary key comes into play. A primary key uniquely identi‐
fies every row of this new table. In this first step, I don’t introduce a new (surrogate)
key but can live with a composite primary key. In Table 1-13, the column headers,
which make up the primary key, are printed underlined ( StudentNr and Course).
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Table 1-13. A table in first normal form (with a composite primary key consisting of
StudentNr and Course)

StudentNr Mentor MentorRoom Course
1022 Jones 412 101-07

1022 Jones 412 143-01

1022 Jones 412 159-02

4123 Smith 216 201-01

4123 Smith 216 211-02

4123 Smith 216 214-01

To transform this table into 2NF, start at a table in 1NF and guarantee that all col‐
umns are functionally dependent on (all columns of) the primary key. A column is
functionally dependent on the primary key if a change in the content of the primary
key also requires a change in the content of the column. A look at the table makes it
clear that the column Mentor is functionally dependent on the column StudentNr,
but apparently not on the column Course. No matter which courses a student
attends, his or her mentor stays the same. Mentors are assigned to students in gen‐
eral, not on a by-course basis and the same applies to the column MentorRoom. So you
can safely state that columns Mentor and MentorRoom are functionally dependent on
only the StudentNr, but not on Course. Therefore, the current design violates the
rules for 2NF.

Keeping it like this would allow you to introduce rows with the same student num‐
ber, but different mentors or mentor rooms, which is not possible from a business
logic perspective.

To achieve the 2NF, you have to split the table into two tables. One should contain
columns StudentNr, Mentor, and MentorRoom (with StudentNr as its single primary
key) (see Table 1-14). A second one should contain StudentNr and Course only (see
Table 1-15). Both columns form the primary key of this table.

Table 1-14. Student table in 2NF (with primary key StudentNr)

StudentNr Mentor MentorRoom
1022 Jones 412

4123 Smith 216

Table 1-15. StudentCourse table in 2NF (with a composite primary key consisting of
StudentNr and Course)

StudentNr Course
1022 101-07

1022 143-01
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StudentNr Course
1022 159-02

4123 201-01

4123 211-02

4123 214-01

The rules for 3NF require that there is no functional dependency on non-key col‐
umns. In our example, the column MentorRoom is functionally dependent on the col‐
umn Mentor (which is not the primary key) but not on StudentNr (which is the
primary key). A mentor keeps using the same room, independent of the mentee. In
the current version of the data model, it would be possible to insert rows with wrong
combinations of mentor and mentor room.

Therefore, you have to split the data model into three tables (Tables 1-16, 1-17, and
1-18), carving out columns Mentor and MentorRoom into a separate table (with Mentor
as the primary key). The second table contains StudentNr (primary key) and Mentor
(foreign key to the newly created table). And finally, the third, unchanged table con‐
tains StudentNr (foreign key) and Course (which both form the primary key of this
table).

Table 1-16. Student table in 3NF (with primary key StudentNr)

StudentNr Mentor
1022 Jones

4123 Smith

Table 1-17. Mentor table in 2NF (with primary key Mentor)

Mentor MentorRoom
Jones 412

Smith 216

Table 1-18. The StudentCourse table is in 3NF as well (with a composite primary key
consisting of StudentNr and Course)

StudentNr Course
1022 101-07

1022 143-01

1022 159-02

4123 201-01

4123 211-02

4123 214-01
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Table 1-18 is free of any redundancy. Every single piece of information is only stored
once. No anomalies or violations to the business logic can happen. This is a perfect
data model to store information collected by an application.

The data model is, however, rather complex. This complexity comes with a price: it is
hard to understand. It is hard to query (because of many necessary joins). And quer‐
ies might be slow (because of many necessary joins). These characteristics make this
data model less than ideal for analytical purposes. Therefore, I will introduce you to
dimensional modeling in the next section.

Dimensional Modeling
Data models in 3NF (fully normalized) avoid any redundancy, which makes them
perfect for storing information for applications. Data maintained by applications can
rapidly change. Normalization guarantees that a change only has to happen in one
place (content of a single column in a single row in on a single table).

Unfortunately, normalized data models are hard to understand. If you look at the
ERD of a model for even a simple application, you will be easily overwhelmed by the
number of tables and relationships between them. It’s not rare that the printout will
cover the whole wall of an office and that application developers who use this data
model are only confident about a certain part of the model. If a data model is hard to
understand for IT folks, how hard will it then be for domain experts to understand?

Such data models are also hard to query. In the process of normalizing, multiple
tables get created, so querying the information in a normalized data model requires
you to join multiple tables together. Joining tables is expensive. It requires a lengthy
query to be written (and the lengthier, the higher the chance for making mistakes; if
you don’t believe me, reread “Joins” on page 13 and “Join Path Problems” on page
20), and it requires you to physically join the information spread out from different
tables by the database management system. The more joins, the slower the query.

Therefore, let’s discuss dimensional modeling. You can look at this approach as a
(very good) compromise between a single table and a fully normalized data model.
Dimensional models are sometimes referred to as denormalized models. As little as I
like the term normalized, I dislike the term denormalized even more. Denormalizing
can be easily misunderstood as the process to fully reverse all steps done during nor‐
malizing. That’s wrong. A dimensional model reintroduces redundancy for some
tables, but does not undo all the efforts of bringing a data model into third normal
form.

Remember, the ultimate goal is to create a model that’s easy for the report creators to
understand and use and allows for fast query performance. A dimensional model is
common for data warehouses (DWHs), and Online Analytical Processing (OLAP)
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2 Later I’ll introduce you to other types of tables as well.

systems—also called cubes—and is the optimal model for Power BI and Analysis
Services tabular.

In a dimensional model, most of the attributes (or tables) can be either seen as a
dimension (hence the name dimensional modeling) or as a fact.2

A dimension table contains answers to How? What? When? Where? Who? Why? The
answers are used to filter and group information in a report. This kind of table can
and will be wide (it can contain loads of columns). Compared to fact tables, dimen‐
sion tables will be relatively small in terms of the number of rows (“short”).

Dimension tables are on the “one” side of a relationship. They have a mandatory pri‐
mary key (so they can be referenced by a fact table) and contain columns of all sorts
of data types. In a pure star schema, dimension tables do not contain foreign keys,
but are fully denormalized. Think of the number of articles (dimension) a retailer
sells, compared to the number of sales transactions (fact).

A fact table tracks real-world events, sometimes called transactions, details, or meas‐
urements. It is the core of a data model, and its content is used for counting and
aggregating in a report. You should make sure you keep fact tables narrow (add col‐
umns only if really necessary), because compared to dimension tables, fact tables can
be relatively big in terms of the number of rows (“long”). You want fact tables to be
fully normalized.

Fact tables are on the “many” side of a relationship. If there isn’t a special reason,
then a fact table won’t contain a primary key because a fact table is not—and never
should be—referenced by another table. Every bit you save in each row adds up to a
lot of space when multiplied by the number of rows. Typically, you will find foreign
keys and (mostly) numeric columns. The latter can be of an additive, semiadditive, or
nonadditive nature. Some fact tables contain transactional data, others snapshots or
aggregated information.

Depending on how much you denormalize the dimension tables, you will end up
with a star schema or a snowflake schema. In a star schema, dimensional tables do not
contain foreign keys. All relevant information is already stored in the table in a fully
denormalized fashion. That’s what Power BI (and a columnstore index in Microsoft’s
relational databases) is optimized for. For certain reasons, you might keep a dimen‐
sion table (partly) normalized and split information over more than one table. Then,
some of the dimension tables will contain a foreign key. A star schema is preferred
over a snowflake schema because in comparison, a snowflake schema:
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• Has more tables (due to normalization)
• Takes longer to load (because of the bigger amount of tables)
• Makes filtering slower (due to necessary additional joins)
• Makes the model less intuitive (instead of having all information for a single

entity in a single table)
• Impedes the creation of hierarchies (in Power BI/Analysis Services tabular)

Of course, a dimension table may contain redundant data, due to denormalizing. In a
data warehouse scenario, this isn’t a big issue; there’s only one process that can add
and change rows to the dimension table (see “Extract, Transform, Load” on page 36).

The number of rows and columns for a fact table will be given by the level of granu‐
larity of the information you want or need to store within the data model. It will also
give the number of rows of your dimension tables. The next section talks about this
important part.

Granularity
Granularity refers to the level of detail of a table. On the one hand, you can define the
level of detail of a fact table by the foreign keys it contains. A fact table could track
sales per day; or it could track sales per day and product, or by day, product, and cus‐
tomer. This would be three different levels of granularity.

On the other hand, you can also look on the granularity in the following terms:

Transactional fact
The level of granularity is at the event level. All the details of the event are stored
(not aggregated values).

Aggregated fact
In an aggregated fact table, some foreign keys might be left out, or you can use a
foreign key to a dimension table of different granularity. The fact table might
contain sales per day (and reference a “day” dimension table). The aggregated
fact table sums up the sales per month (and references a “month” dimension
table). Or, you can pick a placeholder value for the existing foreign key (e.g., the
first day of the month of the dimension table on the day level) and the rows are
grouped and aggregated on the remaining foreign keys. This can make sense
when you want to save storage space and/or make queries faster.

An aggregated fact table can be part of a data model additionally related to a
transactional fact table, when the storage space is not so important but query
performance is. In the chapters about performance tuning, you will learn more
about how to improve query time with the help of aggregation tables.
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Periodic snapshot fact
When you don’t reduce the number of foreign keys but reduce the granularity of
the foreign key on the date table, you have created a periodic snapshot fact table.
For example, you keep the foreign key to the date table, but instead of storing
events for every day (or multiple events per day), you reference only the (first day
of the) month to create a periodic snapshot on the month level. This is common
with stock levels and other measures from a balance sheet. Queries are much
faster when you have the correct number of available products in stock per day
or month, instead of adding up the initial stock and all transactions until the
point in time you need to report.

Accumulated snapshot fact
In an accumulated snapshot table, aggregations are done for a whole process.
Instead of storing a row for every step of a process (and storing, e.g., the duration
of this process), you store only one row, covering all steps of a process (and
aggregating all related measures, like the duration).

No matter which kind of granularity you choose, it’s important that a table’s granu‐
larity stays constant for all rows of a table. For example, you should not store aggre‐
gated sales per day in a table that is already at the granularity level of day and
product. Instead, you would create two separate fact tables, one with the granularity
of only the day, and a second one with granularity of day and product. It would be
complicated to query a table in which some rows are on transactional level, but other
rows are aggregated. This would make the life of the report creator hard, and not
easy.

Keep also in mind that the granularity of a fact table and the referenced dimension
table must match. If you store information by product group in a fact table, it is
advised to have a dimension table with the product group as the primary key.

Now that you know how the data model should look, it is time to talk about how you
can get the information of your data source into the right shape. The process is called
extract, transform, and load, introduced in the next section. In later chapters. I’ll give
concrete tips, tricks, and scripts for using Power BI, DAX, Power Query, and SQL to
implement transformations.

Extract, Transform, Load
By now, I hope I’ve made clear that a data model that is optimized for an application
can look very different from a data model for the same data that is optimized for ana‐
lytics. The process of converting the data model from one type to another is called
extract, transform, and load (ETL):
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Extract
Extract means to get the data out of the data source. Sometimes the data source
offers an API, sometimes it is extracted as files, and sometimes you can query
tables in the application’s database.

Transform
Transforming the source data starts with easy tasks such as giving tables and col‐
umns user-friendly names (nobody wants to see, say, column EK4711 in a report),
and covers data cleaning, filtering, enriching, etc. This is where converting the
shapes of the tables into a dimensional model happens. In the “Building a Data
Model” sections of each part, you’ll learn concepts and techniques to achieve this.

Load
Because the source system might not be available 24/7 for analytical queries (or
ready for such queries at all) and transformation can be complex as well, storing
extracted and transformed data so that it can be queried quickly and easily is rec‐
ommended (e.g., in a Power BI semantic model in the Power BI service or in an
Analysis Services database). Storing it in a relational data warehouse (before
making it available to Power BI or Analysis Services) makes sense in most enter‐
prise environments.

The ETL process is sometimes compared to tasks in a restaurant kitchen. The cooks
have dedicated tools to process the food and use all their knowledge and skills to
make the food both good-looking and tasty, when served on a plate to the restau‐
rant’s customer. It’s a great analogy for what happens during ETL because we use
tools, knowledge, and skills to transform raw data into savory data that encourages an
appetite for insights (hence the name of my company). Such data can then easily be
consumed to create reports and dashboards.

Because the challenge of extracting, transforming, and loading data from one system
to another is widespread, plenty of tools are available. Common tools in Microsoft’s
Data Platform family are SQL Server Integration Services, Azure Data Factory, Power
Query, and Power BI dataflows. You should have one single ETL job (e.g., one SQL
Server Integration Services package, one Azure Data Factory pipeline, one Power
Query query or one Power BI dataflow) per entity in your data warehouse. Then it’s
straightforward to adopt the job in case the table changes. These jobs are then put
into the correct order by one additional orchestration job.

Sometimes people refer not to ETL, but to ELT or ELTLT, as the data might be first
loaded into a staging area and then transformed. I personally don’t think it so impor‐
tant if you first load the data and then transform it, or the other way around. The
order is mostly determined by which tool you are using (if you need or ought to first
persist data before you transform it, or if you can transform it “on-the-fly” when
loading the data). The most important thing is that the final result of the whole
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process must be accessible easily and quickly by the report users, to make their life
easier (as postulated in the introduction to this chapter).

Implementing all transformations before users query the data is crucial, as is applying
transformations as early as possible. If you possess a data warehouse, then implement
the transformations there (via SQL Server Integration Services, Azure Data Factory,
or simply views). If you don’t have (access to) a data warehouse, then implement and
share the transformations as Power BI dataflow or use Power Query (inside Power BI
Desktop) and share the result as a Power BI semantic model.

Only implement the transformations in the report layer as a last resort (better to
implement it there instead of not implementing it at all). The “earlier” in your archi‐
tecture you implement the transformation, the more tools can be employed, and the
more accessible your product will be for users (like data engineers, data scientists,
analysts, etc.). Something implemented only in the report is only available to the
users of the report. If you need the same logic in another report, you need to re-create
the transformation there (and face all consequences of code duplication, like a higher
maintenance effort for code changes and the risk of different implementations of the
same transformation, leading to different results).

If you do the transformation in Power Query (in Power BI or in Analysis Services),
then only users and tools with access to the Power BI semantic model or Analysis
Services tabular database benefit from them. When you implement everything in the
data warehouse layer (which might be a relational database, but could be a data lake
or delta lake as well, or anything else that can hold all the necessary data and allows
for your transformations), then a more widespread population of your organization
will have access to clean and transformed information, without transformations
needing to be repeated. You can connect Power BI to those tables and not need to
apply any transformations.

Every concept introduced so far is based on the great work of two giants of data ware‐
housing: Ralph Kimball and Bill Inmon.

Ralph Kimball and Bill Inmon
A book about data modeling would not be complete without mentioning (and refer‐
encing) Ralph Kimball and Bill Inmon. Both are the godfathers of data warehousing.
They invented many concepts and solutions for different problems you will face
when creating an analytical database. Their approaches have some things in common
but show also huge differences. Regarding their differences, they never found com‐
promises, and they “fought” about them (and against each other) in their articles and
books.
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For both, dimensional modeling (facts and dimensions) play an important role as the
access layer for the users and tools. Both call this layer a data mart. But they describe
the workflow and the architecture to achieve this quite differently.

For Kimball, the data mart comes first. A data mart contains only what is needed for
a certain problem, project, workflow, etc. A data warehouse does not exist on its own
but is just the collection of all available data marts in your organization. The data
marts are shaped in a star schema fashion. Even when “Agile project management”
wasn’t (yet) a thing, when Kimball described his concept, they clearly matched easily.
Concentrating on smaller problems and creating data marts for them allows for quick
wins. Of course, there is a risk that you won’t always keep the big picture in mind and
end up with a less consistent data warehouse, as dimensions are not as conformed as
they should be over the different data marts.

Kimball invented the concept of an Enterprise Data Bus to make all dimensions con‐
form. He retired in 2015, but you can find useful information at The Kimball Group,
and his books are still worth a read. Their references and examples to SQL are still
valid. He didn’t mention Power BI or the Analysis Services tabular model, which
were only emerging then.

On the other hand, Inmon favors a top-down approach: you need to create a consis‐
tent data warehouse in first place. He called this central database the Corporate Infor‐
mation Factory, and it is fully normalized. Data marts are then derived from the
Corporate Information Factory where needed (by denormalizing the dimensions into
a star schema). While this will guarantee a consistent database and data model, it
surely will lead to a longer project duration while you collect all requirements and
implement them in a then consistent fashion. His ideas are collected in Building the
Data Warehouse, 4th Ed. (Wiley, 2005) and are worth read as well. Inmon also sup‐
ports the Data Vault modeling approach (“Data Vaults and Other Anti-Patterns” on
page 40) and is an active publisher of books around data lake architecture.

If you want to dig deeper into the concept of a star schema (which you should!) I
strongly recommend reading Chris Adamson’s masterpiece Star Schema: The Com‐
plete Reference (McGraw Hill, 2010).

Over the years, many different data modeling concepts have been developed and
many different tools to build reports and support ad hoc analysis have been created.
In the next section, I describe them as anti-patterns. Not because they are bad in gen‐
eral, but because Power BI and Analysis Services tabular are optimized for the star
schema instead.
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Data Vaults and Other Anti-Patterns
I won’t go into many details of how you can implement a Data Vault architecture. It
is, however, important to lay out that a Data Vault is merely a data modeling
approach that makes your ETL process flexible and robust against changes in the
structure of the data source. The Data Vault’s philosophy is to postpone cleaning of
data to when it reaches the business layer. As easy as this approach makes the lives of
data warehouse/ETL developers is proportional to how difficult it will make the lives
of the business users. Remember: this book aims to describe how you can create a
data model that makes the end user’s life easier.

A Data Vault model is somewhere between a 3NF and a star schema. Proponents of
the Data Vault claim rightfully that such a data model can also be loaded into Power
BI or Analysis Service Tabular. There is a problem, though: you can load any data
model into Power BI and Analysis Services tabular—but you will pay a price when it
comes to query performance (this happened to me with the first data model I imple‐
mented with Power BI; even when the tables contained just a few hundred rows, the
reports I built were really slow). You will sooner or later suffer from overcomplicated
DAX calculations too.

That’s why I strongly recommend that you not use any of the following data model
approaches for Power BI and Analysis Services tabular:

Single table
See my reasoning in “A Single Table to Store It All” on page 28.

A table for every source file
This is a trap non-IT users easily step into. A table should contain attributes of
only one entity. Often, a flat file or an Excel spreadsheet contains a report and
not information limited to one entity. Chances are high that when you create a
data model with one table per file, the same information is spread out over differ‐
ent tables, and that many of your relationships will show a many-to-many car‐
dinality due to a lack of primary keys. Applying filters on those attributes and
writing more than just simple calculations can quickly start to be a nightmare.
Sometimes this “model” is referred to as OBT (one big table).

Fully normalized schema
Such a schema is optimized for writing, not for querying. The number of tables
and necessary joins makes it hard to use and impairs query response times.
Chances are high that query performance is less than optimal, and that you will
suffer from join path problems (see “Join Path Problems” on page 20).
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Header—detail
Separating things like the order information and the order line information into
two tables requires you to join two relatively big tables (as you will have loads of
orders and loads of order lines, representing the different goods, per order). This
additional join will make queries slow and DAX more complex than necessary,
compared to combining the header and detail table into just one fact table. The
joined table will contain as many rows as the detail table already has and as many
columns as the two tables combined, except for the join key column, but will save
the database management system from executing joins over two big tables.

Key-value
A key-value table is a table with basically just two columns: a key column (con‐
taining, e.g., the string Sales) and a value column (containing, e.g., 100). Such a
table is very flexible to maintain (for new information, you just add a new row
with a new key, e.g., “Quantity”), but it is very hard to query. In Chapter 3, I
write at length about the challenges key-value-pair tables bring, and how to over‐
come them in order to transform them into a meaningful table.

The reason I describe these as anti-patterns is not that these modeling approaches,
from an objective point of view, are worse than star schema. The only reason is that
many reporting tools benefit from a star schema so much that it is worthwhile to
transform your data model into one. The only exceptions are tools like Power BI 
paginated reports, which benefit from (physical or virtual) single tables containing all
the necessary information.

The VertiPaq engine (which is the storage engine behind Power BI, Analysis Services
tabular, Excel’s Power Pivot and SQL Server’s columnstore index) is fully optimized
for star schemas with every single fiber. You should not ignore this fact.

While you can write a letter in Excel and do some simple calculations in a table in a
Word document, there are good reasons why you would write a letter with Word and
create the table and its calculations in Excel. You would not start complaining about
how hard it is to write a letter in Excel or that many features to do your table calcula‐
tions are missing in Word. Your mindset toward Power BI should be similar: you can
use any data model in Power BI, but you should not start complaining about the
product unless you have your data modeled as star schema.
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Key Takeaways
Congratulations on finishing the first chapter of this book. I am convinced that all the
described concepts are crucial for your understanding of data models in general, and
for all the transformations and advanced concepts coming up in the rest of the book.
Here is a short refresher of what you’ve learned so far:

• The basic parts of a data model: tables, columns, relationships, primary keys, and
foreign keys.

• Different ways of combining tables with the help of set operators and joins, and
which kind of problems you can face when joining tables.

• Normalized data models are optimized for write operations, and that’s why they
are the preferred data model for application databases. Dimensional modeling
re-introduces some redundancy to make them easier to understand and to allow
for faster queries (because fewer joins are necessary).

• Transforming of the data model (and much more) during the ETL process,
which extracts, transforms, and loads data from data sources into the data
warehouse.

• A rough overview about the contrary ideas of the two godfathers of data ware‐
houses, Ralph Kimball and Bill Inmon.

• Why it is so important to stick to a star schema when it comes to Power BI and
Analysis Services tabular.
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CHAPTER 2

Building a Data Model

Traditionally, we speak of Online Transactional Processing (OLTP) databases on one
hand and Online Analytical Processing (OLAP) databases on the other. The term
online isn’t related to the internet here; it means that you query a database directly
instead of triggering and waiting for an asynchronous batch job, which runs in the
background—something you might only have seen if you’re my age (or older); asyn‐
chronous queries were commonly used until the 1990s (and might still exist in main‐
frame computers). Transactional means that the purpose of the database is to store
real-world events (transactions). This is typical for databases behind any application
you can think of, such as the software your bank uses to track the movement of
money or the retailer that keeps track of your orders and delivery. Databases for such
use cases should avoid redundancy under all circumstances. A change of your name
should not require updating only in a single place, rather than necessitating a compli‐
cated query to persist the new name through several tables in the database.

This book concentrates on analytical queries in general and on Power BI and Analy‐
sis Services in particular. Therefore, when I speak of a data model, I mean data mod‐
els built for analytical purposes, OLAP databases. For Power BI and Analysis
Services, the optimal shape of the data model is the dimensional model. Such data‐
bases hold data for the sole purpose of making analytical queries and reports easy,
convenient, and fast (make the report creator’s life easier).

Building an analytical database (and transforming data from data sources that were
built with other goals in mind into a dimensional model) can be a challenge. This
chapter will help you understand those challenges and how to overcome them.

As “Dimensional Modeling” on page 33 mentions, you need to normalize the fact
tables and denormalize the dimension tables; more on this in the next section. You
should also add calculations and transform flags and indicators into meaningful
information to make the data model ready to use for reports. I recommend building a
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dedicated date (and maybe an additional time) dimension so that the report creator
doesn’t need to fumble with a date column and extract the year, month, etc. for filters
and groupings. Some dimensions may play more than one role within a data model,
and you will learn how to model such cases. We’ll discuss the concepts of slowly
changing dimensions and how to bring hierarchies into the right shape so they can be
used in Power BI.

Remember from “Dimensional Modeling” on page 33: normalizing and denormaliz‐
ing are terms to describe removing or adding redundancy to a data model. A database
for the purpose of storing information for an application should be fully normalized.
Analytical databases, on the other hand, should contain redundant information,
where appropriate. In the next two sections, you will learn where to avoid redun‐
dancy in an analytical database as well, and where to make information explicitly
redundant.

Normalizing
Normalizing means applying rules to the data model with the ultimate goal of avoid‐
ing redundancy. In “Dimensional Modeling” on page 33, you learned about the
importance of normalizing a data model and why this is so important for OLTP data‐
bases. Normalizing is important for every table in an OLTP, but should be only done
for specific tables (fact tables) in an analytical data model.

Normalizing is also necessary for fact tables in a dimensional model. As we’ve dis‐
cussed, fact tables are the biggest tables in a data warehouse in terms of numbers of
rows, and more rows constantly get added. Every bit and byte we can save within a
single row by optimizing the amount and type of columns we have is more than wel‐
come. Think about this: if you save a single byte per row in a table containing one
million rows, you save one megabyte of data. If you save 10 bytes in a table contain‐
ing one billion rows, you save 10 gigabytes of data for this table. Reducing data will
lessen pressure on the given infrastructure. And scanning less data will also lead to
faster reports.

Typically, if your data source is a flat file (e.g., an Excel spreadsheet someone created
or extracted from a database system) chances are high that a model created as one
table per Excel worksheet will be too denormalized; hence, the worksheets need to be
normalized. The extreme case is that of a data model consisting of one big table
(OBT), where all the information resides in one single table. You should avoid this;
you don’t want to have any tables in the model that are long (many rows) and wide
(many columns) simultaneously.

You will also face situations where details for an entity are spread over different sour‐
ces, tables, or files. That’s where you need to denormalize.
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Denormalizing
Denormalizing means that you intentionally introduce redundancy into a table. The
same piece of information is repeated over several rows within a table, because sev‐
eral rows share the same information (e.g., as several customers reside in the same
country or several products are part of the same product category). This happens
every time you add a column to a table that contains information not unique to the
primary key of the table.

When you model a natural hierarchy within one table, you will face redundancy. For
example, one product category can consist of more than one product. If you store the
product name together with the category name in a single table, the name of a cate‐
gory will appear in several rows.

Or think of a table containing a row for each day of a year with a column containing
the date. Adding a column for the year or the month will introduce redundancy, as a
given year or a given month will appear in several rows. On top of that, storing the
year and month in addition to the date is redundant from the point of view that the
year and the month can always be calculated by applying a function on the date col‐
umn. In an OLTP database, such a redundancy is undesirable and should be avoided
under all circumstances. In an analytical database, this type of redundancy is desira‐
ble and recommended for several reasons:

• Having all information about an entity in one place (table) is user-friendly. Alter‐
natively, e.g., product-related information would be spread out over several
tables, like Product, Product Subcategory, and Product Category.

• Additionally, having all information pre-calculated at hand as needed is more
user-friendly (instead of putting the burden onto the report user and the used
report tool used to calculate the year from a date, for example).

• Joining information over several tables is expensive (in terms of query perfor‐
mance and pressure on the resources). Reducing the number of joins to satisfy a
query will improve the performance of the report.

• The relatively small size of dimensions allows for added columns without a huge
impact onto overall size of the model. (In the case of Power BI and Analysis Serv‐
ices, this problem is ameliorated, as the storage engine’s automatic compression
algorithm is optimized for such scenarios.) Therefore, the drawback of denorm‐
alizing is not as huge of a problem when it comes to storage space as you might
think.

• Power BI Desktop and Analysis Services tabular are optimized for a fully denor‐
malized star schema.
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Long story short: all dimension tables should be fully denormalized, to form a star
schema. Furthermore, you should enrich the source’s data by adding all sorts of cal‐
culations (again, to remove the burden of creating these from the report user).

Calculations
It’s a good idea to add calculations as early as possible in your stream of data. Keep in
mind, though, that only additive calculations can be (pre-)calculated in the data
source. Semi- and non-additive calculations must be calculated as measures (in the
cases of Power BI and Analysis Services, this means in the DAX language):

Additive
Many calculations can be calculated on top of results of finer granularity. The
given quantity sold in a day can be added up to monthly and yearly results. The
sales amount (calculated as the quantity multiplied by the appropriate price) can
be added over several products.

Semi-additive
The result of a semi-additive calculation can be aggregated over all dimensions,
except the date dimension. Stock levels are a typical example. Stock levels are
stored as the number of products available on a certain day. If you look at a cer‐
tain day, you can add the stock levels over several warehouses for a product: you
can safely say that we have 5 kg of vanilla ice cream if there is 3 kg in one freezer
and another 2 kg in a second freezer. But it does not make sense to add up the
individual stock level for different days: if we had 5 kg yesterday and today only 1
kg is left, then adding these two numbers up to 6 kg gives a meaningless number.
Thus, the calculation formula needs to make sure to use only the data from the
most current day within the selected time frame.

Non-additive
Some calculations cannot be aggregated at all. This covers distinct counts and all
calculations containing a division operator in their formulas (e.g., average, per‐
centage, ratio). Adding up the results of such a calculation doesn’t make any
sense. Instead of aggregating the results, the formula must be executed upon the
aggregated data: counting the distinct customers over all days of the month
(instead of adding up the number of distinct customers per day) or dividing the
sum of the margin by the sum of the sales amount (instead of dividing the mar‐
gin by the sales amount of each individual sales row and then adding up those
results).

Formulas can also be applied to nonnumeric values. Chapter 3 discusses why and
how this should be done.
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Flags and Indicators
In most cases, reports showing rows of Yes and No values or abbreviations like S or
M are hard to read. To avoid this, you need to convert all flags and indicators deliv‐
ered by the source system into meaningful text. For example:

• FinishedGoodFlag with content 0 or 1 should be transformed accordingly into
the text “not salable” or “salable.”

• Productlines R, M, T, or S should be transformed accordingly into the text
Road, Mountain, Touring, or Standard.

• Class column entries with values H, M, or L should be transformed accordingly
into High, Medium, or Low.

• Styles containing W, M, or U should be transformed accordingly into
Women’s, Men’s, or Unisex.

• In general, avoid blank cells (or null) for texts, and replaced with meaningful
text: “unknown”, N/A, “other”, etc. Depending on the context, a blank value
could be transformed to different text (to distinguish an “unknown” value from
“other”) within the same column.

Do you create reports on data that is not related to any point in time? Writing this
book, I thought hard about it and could not remember a single report I created that
didn’t either filter or aggregate on dates, or even both. Of course, this does not mean
that such report does not exist. But it makes me confident that such reports are not so
common. Therefore, you should prepare your data model to make handling date and
time easy for the end user. The next section is exactly about this.

Time and Date
It’s very rare to build a data model upon data that doesn’t bear any relation to a point
in time. Therefore, a date dimension is common in the majority of data models. The
date dimension can be handled in a couple of ways.

Create columns for all variants of date information that will be later used in reports.
Year, month number, month name, name of the weekday, week number, etc. are
common examples. The report tool need not cover this, but the variant should show
the pre-calculated columns. Therefore, add a column for every variation needed in
the report (e.g., December 2023, 2023-12, Dec, …). Sometimes a numeric column to
reference the date table is used, instead of a column of data type Date. This can be
derived by a simple formula: Year × 10,000 + Month number × 100 + Day number.
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Create a table with one row per day of a calendar year. This allows you to calculate a
duration in days and is mandatory if you want to use the built-in time intelligence
functions in DAX (which we will cover in “Time and Date” on page 203).

There is no year 0000 in the Gregorian calendar; the first year is
0001 (AD = Anno Domini or CE = Common Era. Before year 0001
comes year –0001 (or: 0001 BC = Before Christ or AC = Ante
Christum or BCE = Before Common Era). This makes calculations
into the past easy (as the same rules apply to AD and AC), but it
sometimes confuses people that the second millennium ended in
the year 2001 (as it started in year 0001) and not in 2000.

Calendar week numbers can be tricky, by the way. Apart from the fact that about half
of the population of this planet start their weeks on Sundays, while the others start on
Mondays, there are basically two definitions of how to calculate the calendar week
numbers. These definitions deviate from each other only in certain years, which
could be the reason that you do not discover a possible mistake. If you don’t pay
attention to the calculation of the calendar week, you might end up with a sudden
surprise in one year. Wikipedia’s got you covered in case you need to find out which
definition is the one the report users expect (ISO week date).

A time dimension (having rows for hours and minutes within a day), on the other
hand, is in fact rare in my experience. It’s important that you separate the time
dimension from the date dimension, so both can be filtered independently from each
other. Furthermore, splitting a timestamp into a date and a time portion minimizes
the number of distinct rows: to cover a full calendar year, you need 365 (or 366 for
leap years) rows in the date dimension, and 1,440 (24 hours multiplied by 60
minutes) rows for a time dimension to cover every minute. For every new year, you
add another 365 (or 366) rows in the date table. If you stored this information
together in one single datetime table, you would end up with 525,600 (365 days times
24 hours times 60 minutes) rows. For every year, you would add another 525,600
rows in the datetime table.

Talk to your end users to find out on which granularity level of time they need to
filter and group information. If the finest granularity is, for example, only by hour,
make sure to round (or trim) the timestamp in your fact table to the hour and create
a time dimension with only 24 rows.

Role-Playing Dimensions
Sometimes one entity can play different roles in a data model. A person could simul‐
taneously be an employee and a customer as well. A year could refer to the date of an
order and/or of the order’s ship date. These are examples of role-playing dimensions.
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You can assign different roles by loading the table only once, and then assigning dif‐
ferent roles by creating several relationships between the dimension table and the fact
table, according to the roles. For example, if you create two filter relationships
between the Date dimension and the Sales fact table, one where you connect the
Date’s date column first with the Sales’ order date and a second with the Sales’ ship
date, then the report creator will need a way to specify which role the dimension
should play in a visualization.

You can also assign different roles by loading the table twice into the data model,
under two different names. For example, you would load the Date table first as an
Order Date and second as a Ship Date table. (Make sure that the column names are
unique throughout the data model, by, for example, adding the Order or Ship prefix
to the column names as well: Year becomes Order Year, etc.) You would then create
filter relationships between the Sales fact and those two tables. The report creator
chooses either the Order Date or the Ship Date table according to their needs.

Slowly Changing Dimensions
The value for a column of a row in a dimension table may not be carved in stone but
could change over time. The question we need to clarify with the business users is if
it’s important to track changes, or if we can just overwrite old information with new
information. A decision needs to be made per column of a dimension table (maybe
the business wants to overwrite any changes in the customer’s name but keep a his‐
toric track of the changes of the customer’s address).

We talk about slowly changing dimensions when attribute changes happen only once
in a while. If the information for a dimension changes often (e.g., every day), you
might capture the changes of this attribute not in the dimension table, but in a fact
table instead. Unfortunately, there isn’t a clear line here on how to distinguish slowly
changing dimensions from rapidly changing dimensions.

While Ralph Kimball was very creative with creating new terms for the challenges of
analytical databases, he came up with a rather boring way of naming the different
types of slowly changing dimensions—he just numbered them: Type 0, Type 1, etc.

Type 0: Retain Original
Usually only a small set of dimensions (and their columns) will never change. For
example, August 1, 2023 will always be a Tuesday and will always be part of the
month of August and the year 2023. This will never change—it’s not necessary to
implement a way to update this information.
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Type 1: Overwrite
When the name of a customer changes, we want to make sure to correct it and dis‐
play the new name in all reports—even in reports referring to the past (where an old
version of the report may show the old name; re-creating the same report now will
show the new name). Maybe we want to store some additional columns in the table,
like when the change happened and who (or which ETL process) input the change. In
Table 2-1, you see a table containing three rows, enriched with a ChangedAt and a
DeletedAt column, which represent the day of modification (or creation) and inva‐
lidation, respectively.

Table 2-1. SCD Type 1 before the change

AlternateKey Region ChangedAt DeletedAt
0 NA 2023-01-01

1 Northwest 2023-01-01

10 United Kingdom 2023-01-01

Let’s assume that we get the new data, as laid out in Table 2-2: the row for region
“NA” was removed from the data source, the name of the region “Northwest” was
translated to German-language “Nordwest,” the row for “United Kingdom” stayed
unchanged, and a new row for “Austria” was added.

Table 2-2. SCD Type 1 changed rows

AlternateKey Region
1 Nordwest

10 United Kingdom

11 Austria

As you can see in Table 2-3, in a Type 1 solution, the row for “NA” will not be
removed but marked as deleted by setting the DeletedAt column to the timestamp of
removal. The row for “Northwest” will be changed to “Nordwest” and the ChangedAt
timestamp will be updated. “United Kingdom” will stay unchanged. And the new row
for “Austria” is added, with a ChangedAt set to the current day.

Table 2-3. SCD Type 1 after the changes

AlternateKey Region ChangedAt DeletedAt
0 NA 2023-01-01 2023-08-15

1 Nordwest 2023-08-15

10 United Kingdom 2023-01-01

11 Austria 2023-08-15
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This is a very common type of slowly changing dimension.

Type 2: Add New Row
If you want to update a column but need to guarantee that a report made for the past
does not reflect the change (but stays the same, even if created today), then we need
to store two versions: one version reflecting the status before the change, and a new
version reflecting the status after the change. An example could be the address (and
region) of a customer. If the customer moves, maybe we only want to assign sales
made after the customer moved to the new region but want to keep all previous sales
in the old region.

Slowly changing dimension Type 2 achieves this by creating a new row in the dimen‐
sion table for every change we want to keep track of. It is important to mention that
for this solution, we need to have a surrogate key as the primary key in place, as the
business key will not be unique after the first change. Customer “John Dow” will have
two rows in the customer table. One row before the change, one row after the change
(and several further rows after more changes happen). All sales before the change use
the old version’s surrogate key as the foreign key. All sales after the change use the
new version’s surrogate key as the foreign key.

Querying is therefore not that big of an issue (as long as the report users don’t need
to select a certain version of the customer to be used for a report for a given point in
time; “Slowly Changing Dimensions” on page 207 covers how to implement this
request). In Table 2-4, you see a table that contains the additional columns to
describe the timespan when the row is/was valid (ValidFrom and ValidUntil). This
looks somewhat similar to the Type 1 solution. In the example, I kept ValidUntil
empty for rows without a invalidation. Alternatively, you could also use a timestamp
far in the future (e.g., December 31 9999).

Table 2-4. SCD Type 2 before the change

AlternateKey Region ValidFrom ValidUntil
0 NA 2023-01-01

1 Northwest 2023-01-01

10 United Kingdom 2023-01-01

Let’s assume we get the same new data, as laid out in Table 2-5: the row for region
“NA” was removed from the data source, the name of region “Northwest” was trans‐
lated to German-language “Nordwest,” the row for “United Kingdom” stayed
unchanged, and a new row for “Austria” was added.

Slowly Changing Dimensions | 51



Table 2-5. SCD Type 2 changed rows

AlternateKey Region
1 Nordwest

10 United Kingdom

11 Austria

As you can see in Table 2-6, in a Type 2 solution as well, the row for “NA” will not be
removed, but marked as deleted by setting the ValidUntilAt column to the time‐
stamp of removal. For the row containing “Northwest,” the ValidUntil timestamp
will be updated and a new version created for the same AlternateKey, but region
“Nordwest” will be inserted into the row. “United Kingdom” will stay unchanged.
And the new row for “Austria” is added, with a ValidFrom set to the current day.

Table 2-6. SCD Type 2 after the changes

AlternateKey Region ValidFrom ValidUntil
0 NA 2023-01-01 2023-08-15

1 Northwest 2023-01-01 2023-08-15

10 United Kingdom 2023-01-01

1 Nordwest 2023-08-15

11 Austria 2023-08-15

You need to keep an eye on how many changes are to be expected
for the dimension on average in a certain period of time, as this
approach will let the dimension table grow in terms of rows.

This is a very common type of slowly changing dimension as well.

Type 3: Add New Attributes
Instead of creating a new row for every change, Type 3 keeps a dedicated column per
version. Obviously, you need to decide up front of how many versions you want to
keep track of, as you need to provide one column per version.

New versions will therefore not let the table grow, but the number of versions you
can keep per entity is limited. Querying can be a bit of an issue, as you need to query
different columns, depending on if you want to display the most current value of an
attribute or one of the previous versions.

I’ve never implemented this type of slowly changing dimension for one of my cus‐
tomers. But it may still be a useful approach for your use case.
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Type 4: Add Mini-Dimensions
This approach keeps track of the changes in new rows, but in a separate table. The
original table shows the most current version (as Type 1 does) and the older versions
are archived in a separate table (which can hold as many older versions as you need).
Querying the most current version is easy. Showing older versions involves a more
complex query for joining a fact table to the correct row of the archive table. Or you
would store both the foreign key to the original table and a second foreign key to the
matching rows in the mini-dimension. New versions do not change the number of
rows in the original table but will certainly do so in the extra table.

Again, I have never implemented this type of slowly changing dimension for one of
my customers, but you may still find it useful.

Types 5, 6, and 7
The rest of the types are more or less combinations of the previous versions. I’m sure
they have their use cases, but I never had to implement them; Type 1 and Type 2 have
been sufficient for my client’s needs so far. That’s why I just give you a short overview
here instead of an in-depth description:

• Type 5: add mini-dimension and Type 1 outrigger
• Type 6: add Type 1 attributes to Type 2 dimension
• Type 7: dual Type 1 and Type 2 dimensions

You can find more about these types in Margy Ross’s article, “Design Tip #152:
Slowly Changing Dimension Types 0, 4, 5, 6 and 7,” at the Kimball Group.

Hierarchies
Hierarchical relationships can be found in real life in many situations:

• Product categories (and their main and subcategories)
• Geographical information (like continents, regions, countries, districts, etc.)
• Time and date (year, month, day, hour, minute, second, etc.)
• Organization tree (every employee reports to another, up to the CEO)

I’m convinced that you’ll have some hierarchical structures in your data model(s) as
well. From a technical perspective, the latter example (organization tree) is different
from the other examples. Typically, you store year, month, day, etc. in separate col‐
umns of a dimension table to represent such a natural hierarchy. This doesn’t neces‐
sarily apply to an organization tree, which is a so-called parent-child hierarchy.
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There are plenty of ways to store parent-child relationships in a table. One is that an
employee references another employee (which is a different row within the same
table) over a simple foreign key relationship. This is called a self-referencing relation‐
ship because the Employee table contains both the primary key and the foreign key
used in this relationship. The employee’s Manager ID references another employee’s
Employee ID. This is a very efficient way of storing this information, but it’s hard to
query because you need to traverse the organization tree from one row to the other.

You can either use a recursive common table expression (CTE) written in SQL to col‐
lect information from different levels or write a recursive function in T-SQL (I
demonstrate both in “Hierarchies” on page 395). You can also solve this in DAX
(“Hierarchies” on page 210) and Power Query (“Hierarchies” on page 286). Either way,
Power BI asks you to create a so-called materialized path per row in the employees
table. Figure 2-1 shows an example of what the materialized path could look like for a
bunch of nodes in a hierarchy.

Figure 2-1. A materialized path

The materialized path is simply a string containing a reference to the current node
and all its parent nodes. This example uses the names of the employees, concatenated
with a pipe (|) as the delimiter. I used the full names for better readabilty, but in real‐
ity you should use the primary keys of the nodes (e.g., EmployeeKey) instead, of
course. The delimiter is necessary, otherwise a materialized path of “123” could be
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interpreted as node 1 and 23 or as node 12 and 3. Make sure that the delimiter will
never be used in the actual values.

A materialized path is a rather convenient way to query. This string can be split into
separated columns containing, e.g., the name of the managers as one column per
level. In this flattened table, the CEO’s name will then appear in the column repre‐
senting level one of all employees. Level two will contain the next management level,
and so on. You could easily count the number of keys in the materialized path (by
counting the number of separators and adding one) to know on which level the
employee is within the hierarchy. See an example for employee “Amy Alberts” in
Table 2-7.

Table 2-7. Materialized path and columns per level

EmployeeKey ParentEmployeeKey FullName PathKey Level 1 Level 2 Level 3
290 277 Amy Alberts 112|277|290 Ken Sánchez Brian Welcker Amy Alberts

You made it through Chapter 2, and now it’s time to wrap it up.

Key Takeaways
This chapter guided you through typical tasks when building a data model:

• Denormalize your fact tables and fully normalize your dimension tables to form
a star schema.

• Push transformations upstream as far as possible and delay calculations as long
as possible, preferably at runtime if performance allows, and still in a centralized
semantic model (not duplicated in every report). The more upstream you put
definitions, the more people and tools can use it, which avoids having calcula‐
tions defined on many places.

• Avoid keeping flags and indicators as they are but transform them into meaning‐
ful texts instead.

• Create time and date in the granularity needed in your reports (e.g., a date
dimension with a row for every single day of the year or a time dimension for
every single hour of a day); they play a crucial role in many data models.

• A single dimension may play more than one role within the data model. You can
either create the table several times in your data model (once per role) or create
several relationships from the dimension to the fact table and activate the rela‐
tionship as needed.

• Model slowly changing dimensions when you want to keep track of changes in
the attributes of a dimension. The most common type is the one where you cre‐
ate a new row for every new version of the entity, Type 2.
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• Use two different types of hierarchies. In one, you have one column per level
(either within one table in the case of a denormalized table or every column in a
different table in the case of a normalized model; this first kind is called a natural
hierarchy). In the other type, a child row references its parent row, both stored in
the same table, called a parent-child hierarchy.
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CHAPTER 3

Real-World Examples

Chapters 1 and 2 introduce the basics of a data model and which steps you need to
take to build a data model optimized for analytics. This chapter builds upon those
steps. Ensure that your data model is built upon these steps before you dive into this
chapter’s use cases.

If you didn’t take all the steps in Chapters 1 and 2, applying the
concepts of this chapter might be frustrating because the best basis
for advanced concepts is the star schema I describe in those earlier
chapters. There is no shortcut to the advanced topics.

In this chapter, I describe five use cases that I encounter when working with many of
my customers; I therefore assume that there’s a high likelihood you’ll face them as
well sooner or later. The list is, of course, a personal selection; every new project
comes with its own challenges, and I can’t predict every unique circumstance you’ll
run into.

“Binning” on page 58 describes the challenge of not showing the actual value, but a
category the value falls into instead. In “Budget” on page 60, I use the case of budget
values to introduce a data model containing more than a single fact table (which still
conforms with the rules of a star schema). I’m excited (and proud of) “Multi-
Language Model” on page 63, which describes the problem of giving the report user
full control over the display language of the report (i.e., headlines and content) and
my solution. It’s similar to “Key-Value Pair Tables” on page 65. A data source for a
data model of one of my customers contained all needed information in a single,
unpivoted table, and I describe the problems I encountered and (semi-)automatic
solutions to pivot the table, which I could not find a predefined method for.
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Finally, “Combining Self-Service and Enterprise BI” on page 67 describes the basis for
what can be done in Power BI and Analysis Services in a composite model. In the first
use case, I describe different approaches to solving the same problem—all of them
forcing you to think a bit out of the box.

Binning
The term binning in this context means that you don’t want to show the actual values
(like a quantity of four) but a category instead (like “medium” or “between one and
five”). Basically, we have the options in the following sections to model this require‐
ment, all of them with different disadvantages and advantages.

Adding a Column to a Fact Table
You might add a new column to a table containing the value and make sure to fill it
with the correct description of the bin as in Table 3-1. This is the simplest of the
options but not recommended because you would make the fact table (containing the
value to be binned) wider. Also, if the range of the bin or its descriptive text changed,
you would need to update the fact table. In some implementations, this won’t be pos‐
sible because of the fact table’s size and the update statement’s runtime.

Table 3-1. Adding a column to a fact table

Date Product Quantity Bin
2023-08-01 A 3 Middle

2023-08-01 B 1 Low

2023-08-02 B 4 Middle

2023-08-03 C 5 High

Creating a Lookup Table
You can create a lookup table like Table 3-2, which consists of two columns. One
contains a distinct list of all possible values. The second column contains the value to
show for the bin. This is identical to the approach I describe in Chapter 2, when we
apply a lookup table to transform a flag or code into meaningful text.

You then create an equi-join between the table containing the values to be binned
and this lookup table. This looks a bit unusual; we’re used to joining primary keys
and foreign keys and not, e.g., a quantity. But this solution is easy to implement and
performs very well.
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Table 3-2. Adding a lookup table containing distinct quantities and their bins

Quantity Bin
1 Low

2 Low

3 Middle

4 Middle

5 High

6 High

Another advantage is that such a table is usually easy to create. Maintaining the table
is easy, in principle, as well. The only catch is if somebody needs to maintain the table
by hand and makes typos (then a value of three might be assigned to “medum”
instead of “medium” and would be shown as a unique category for itself). Or, if the
categories can get mixed up by accident (say a value of four is “medium”, but a value
of five is set to “small”). Usually such a problem is easy to spot and fix manually.
Alternatively, you can use a script to create and maintain the table.

A real drawback is that this idea only works if we can generate a distinct list of all
possible values, though. Yes, you can add some extra lines for outliers (quantities
beyond a thousand, maybe), but if we aren’t talking about pieces, but about pounds
or kilograms, then an unknown amount of decimal digits can be involved as well.
Rounding (to the nearest whole number or thousand or million) could, however,
help to overcome this problem.

Describing the Ranges of the Bins
The other option is to create a table containing three columns: one defining the low‐
est value per category, another one to define the upper value per category, and finally
a value to show when a value falls in between the lower and upper range. You can see
an example in Table 3-3.

Table 3-3. Adding a lookup table containing ranges of quantities and their bins

Bin Low (incl.) High (excl.)
Low 3

Middle 3 5

High 5
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Such a table is even easier to create. It’s less prone to mistakes but involves some extra
logic when assigning the actual values to the category.

I strongly recommend making one range’s assigned value (e.g., the lower value)
inclusive, and the other one (e.g., the upper value) exclusive. That means that a value
falls into a category if it is greater than or equal to the lower bound, but lower than
the upper bound. This has the advantage that you can use the exact same number as
the upper bound for one category and as the lower bound for the next category.
There will be no gaps; a value is either lower than the upper bound (and therefore
falls into this category), or greater than or equal to the upper bound (which matches
the lower bound of the next category) and therefore falls into the next category.

Another challenge I often see in models I build for customers is combining informa‐
tion of different granularity in a single data model. This is the case when you com‐
bine actual values and their budget, as I discuss next.

Budget
I call this section Budget, but budget is only one of plenty use cases with the exact
same problem. The problem I’ll address here is multi-fact models. A multi-fact model
is a data model containing more than one fact table. Such models are sometimes
called “galaxies” or “universes.” They contain more than a single “star.” This only
makes sense if those stars have at least one common dimension. If not, I recommend
creating two independent data models instead.

The definitive goal of a star schema is to add new information to only the existing
tables, if possible, and to avoid creating a new table for every extra piece of informa‐
tion. Joining tables is an expensive operation in terms of report/query runtime. That
said, you should first evaluate if the granularity of the new information matches the
granularity of an existing table.

Identifying the Granularity
Let’s first look at cases, where you can add information without further changes.
Maybe you want to add the information about a product’s category to the reports
(and therefore to the data model). If you already have a table of the same or lower
granularity than the product category (e.g., a dimension table Product that contains
information about individual products), you can simply add a Product Category
column to that dimension table. The granularity of the Product table won’t change,
as you can see in Table 3-4.
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Table 3-4. Product table with main product category

Product Key Product Name Product Category
100 A Group 1

110 B Group 1

120 C Group 2

130 C Group 3

If the new information you want to add to a fact table is of the same granularity, you
can simply add it as a new column. For example, in a table containing Sales amounts
in EUR, you can add a column containing the Quantity in pieces. As long as both the
amount in EUR and the quantity in pieces are of the same granularity, this is no
problem. The granularity of a fact table is given by the foreign keys in the table (e.g.,
date, product, customer, etc.), which did not change in the example shown in
Table 3-5.

Table 3-5. Adding quantity to a fact table

Date Product Sales Quantity
2023-08-01 A 30 3

2023-08-01 B 20 1

2023-08-02 B 120 4

2023-08-03 C 500 5

In the next section, we’ll look at more challenging cases.

Handling Fact Tables of Different Cardinality
If the table you start with is on the level of granularity of product category (e.g., with
Product Category Key as its primary key as shown in Table 3-6), then adding the
product’s key would change the granularity of the table. Product Category Key
would not be the primary key anymore. It’s expected that there are several products
(with individual rows) per Product Category Key. The cardinality of relationships
from (fact) tables applied to the dimension table would suddenly change from one-
to-many to many-to-many: for each row in the fact table, there’d be several rows in
the dimension table. This is best avoided (see “Relationships” on page 6). Instead,
keep the existing dimension table at its current granularity and introduce a new
dimension table with the different granularity.
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Table 3-6. Table for product categories

Product category key Product category
10 Group 1

20 Group 2

Something similar happens if you want to add facts of a coarser granularity. While we
collect actual sales information at the level of granularity of day, product, customer,
etc., values for a budget are typically available only on a coarser level: per month, per
product group, not per customer, etc.

One solution is to find an algorithm to split the budget value down to the finer gran‐
ularity (e.g., dividing the month’s budget over the days of the month). Another solu‐
tion is to create a fact table of its own for the budget (Table 11-3), hence creating a
multi-fact data model. Then, the relationship between the Budget fact table and the
Product dimension table can only be created on Product Group level, which has a
cardinality of many-to-many (in neither table is the Product Group the primary key).

Table 3-7. A budget is typically of a different granularity than the actual values

Month Product Group Budget
2023-08 Group 2 20,000

2023-08 Group 3 7,000

2023-09 Group 2 25,000

2023-09 Group 3 8,000

No matter the reason for a many-to-many cardinality, it’s best practice to introduce a
table in between to bridge the many-to-many cardinality and create two one-to-many
relationships. For example, you create a table consisting of the distinct product
groups. The product group’s names (or their keys) would be the primary key of this
new table. The relationship of this table to the Budget table then has a one-to-many
relationship. Likewise, the relationship from this table to the Product table is one-to-
many as well (Figure 3-1).

Figure 3-1. Bridge table

62 | Chapter 3: Real-World Examples



In the end, the relationship between tables Budget and Product still has a cardinality
of many-to-many but is split into two one-to-many relationships, which makes han‐
dling in many tools easier.

Multi-Language Model
In a global context, your users might expect to get reports in a language of their
choice. Let’s look at a data model that allows for such. It will take extra care to local‐
ize the content of the report’s data model and software. These are the moving parts of
a multi-language solution:

Text-based content (e.g., product names)
In my opinion, the most robust solution is to introduce translations of dimen‐
sional values as additional columns to the dimension table, as laid out in
Table 3-8. New languages can then be introduced by adding rows to the tables—
no change to the data model or report is necessary. The challenge is that the
tables’ primary key is then not unique anymore. In our example, we can see that
for a Dim1 ID of value 11, we have now several rows in the table (with different
content for the description, and an additional Language ID). The primary key
becomes a composite key (Dim1 ID and Language ID), which comes with several
consequences we will discuss in the other parts of this book.

Table 3-8. Every dimensional entity per language
Language ID Dim1 ID Dim1 Desc
EN 11 house

EN 12 chair

DE 11 Hause

DE 12 Stuhl

Visual elements (e.g., report headlines)
Because I don’t want to create and maintain several versions of the same report
(one for each and every language), I store all the text for visual elements in the
database as well (in a table like Table 3-9). This can be done via a very simple
table, containing three columns: the Language ID, a text identifier (which is
independent of the language), and the display text (which is different per lan‐
guage and text identifier). The user’s selection of the language will also be applied
as a filter on this table. Instead of just typing the headline, I show the Display
Text for a specific text identifier.
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Table 3-9. Dsplay texts for different parts of the report
Language ID Textcomponent DisplayText
EN SalesOverview Sales Overview

EN SalesDetails Sales Details

DE SalesOverview Verkaufsübersicht

DE SalesDetails Verkaufsdetails

Numerical content (e.g., values in different currencies)
Numbers aren’t strictly translated, but localizing in a broader sense requires con‐
verting between currencies. There are a wide variety of solutions when it comes
to finding the correct exchange rate. In a simple model, you’d have one exchange
rate per currency (see Table 3-10). In more complex scenarios, you’d have differ‐
ent exchange rates over time and an algorithm to select the correct exchange rate.

Table 3-10. Exchange rates
Currency code Currency Spot
EUR Euro 1.0000

USD US dollar 1.1224

JPY Japanese yen 120.6800

Data model’s metadata (e.g., the names of tables and columns)
Analytical databases allow you to translate the names of all artifacts of a data
model (names of tables, columns, measures, hierarchies, etc.). When a user con‐
nects to the data model, the preferred language can be specified in the connec‐
tion string. Usually, only power users, who create queries and reports from the
data model, care about this metadata. And usually, they understand terms in
English (or in the language the data model was created in). Report consumers
won’t directly see any part of the data model but what the report exposes to
them. And a report can expose text via translated visual elements. Therefore, in
my experience, the use case for metadata translation is only narrowly applicable.

User interface (e.g., Power BI Desktop)
You need to check the user documentation on how to change the UI’s language.
In “Multi-Language Model” on page 139 I will describe the settings for Power BI
Desktop, the Power BI service and Power BI Report Server.

Some data sources expose their information in a way that looks like a table on first
sight, but which—after a closer look—turns out not to be a classical table with infor‐
mation spread out over columns. You’ll learn how to handle such tables next.
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Key-Value Pair Tables
You can see an example for a key-value pair table in Table 3-11. Such a table basically
consists of only a key column and a value-column (hence the name):

Key

This is the attribute. For example, city.

Value

This is the attribute’s value. For example, Seattle.

Typically, you will find two extra columns:

ID

Common rows share the same ID. For example, for ID = 1 there would be two
rows, one for key = name and another one for key = city.

Type

This column contains a data type descriptor for the value column. As column
Value entries must be of a string data type (as a string is the common denomina‐
tor for all data types; a value of any data type can be converted into a string),
Type tells you what kind of content to expect in the Value column.

Table 3-11. Key-value pairs of rows

ID Key Value Type
1 name Bill text

1 city Seattle text

1 revenue 20000 integer

1 firstPurchase 1980-01-01 date

2 name Jeff text

2 city Seattle text

2 revenue 19000 integer

2 firstPurchase 2000-01-01 date

3 name Markus text

3 city Alkoven text

3 revenue 5 integer

3 firstPurchase 2021-01-01 date

Such a table is extremely flexible when it comes to adding new information. New
information is simply added via an additional row (containing a new value for a Key
and its Value). There’s no need to change the actual schema (column definition of
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such a table). This makes it very likable for application developers. Its flexibility is
like storing information in flat files (JSON, XML, CSV, …).

On the other hand, it is very hard to build reports on top of such a table. Usually, you
need to pivot the content of the Key column and explicitly specify the correct data
type (e.g., to allow for calculation on numeric values).

However, there’s one use case where the table in its original state can make for very
flexible reports. If the goal is to count the IDs on aggregations of different combina‐
tion of keys to look for correlations, you can self-join the key-value pair table on the
ID column. Then, you filter the two Key columns individually (e.g., one on “name”
and another on the “city”). This will show one Value on the rows and the other on
the columns of the pivot table (or a matrix visual in Power BI, for that matter) as well
as the count of the ID in the value’s section. You get a quick insight into the existing
combinations (e.g., that we have people with three different names living in two dif‐
ferent cities and in which city how many people of each name live). If you allow the
report user to change the values for the two Key columns, she can easily grasp the
correlations of combinations of any attribute. You will see this in action in “Key-
Value Pair Tables” on page 149.

Most reports you need to build are probably of a different nature: you need to group
and filter some of the attributes and aggregate others. Therefore, you need to pivot all
the keys and assign them to dedicated columns (with a proper data type), as shown in
Table 3-12. Some reporting tools/visuals can do that for you, most prominently,
Excel’s pivot table or Power BI’s matrix visual. They can pivot the key column for
you, but they’re not capable of changing the data type of the Value column. Aggrega‐
tions will not be done at all, or at least, not in the proper way. Therefore, the best
solution is one wherein you prepare the pivoted table in the data model.

Table 3-12. The key-value pairs table pivoted on the key column

ID name city revenue firstPurchase
1 Bill Seattle 20,000 1980-01-01

2 Jeff Seattle 19,000 2000-01-01

3 Markus Alkoven 5 2021-01-01

Who typically builds the data models in your organization: the domain experts or a
dedicated (IT) department? Both concepts have their advantages and disadvantages.
The next section is dedicated to laying out the possibilities.
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Combining Self-Service and Enterprise BI
We speak of self-service BI when a domain expert (with no or little IT background)
solves a data-related problem on her own. This includes connecting to the data
source(s), cleaning and transforming the data as necessary, and building the data
model, with no or just a little code. The advantage is that involvement of IT is not
necessary, which usually speeds up the whole process: all the requirements are clear
to the person who implements the solution on her own. No infrastructure needs to be
installed (everything runs on the client machine or uses no-code/low-code services in
the cloud).

Everything available in an enterprise BI solution, on the other hand, is built with
heavy involvement of an IT department. Servers are set up. Services are deployed or
configured. Code is developed. Automation is key. The advantage is that such a solu‐
tion is ready to be scaled up and scaled out. All the requirements are implemented in
one single place (on one of the servers running the necessary services). But this takes
time to build. Sometimes, collecting all the requirements and writing down the user
stories for the engineers to implement will take longer than it would take for the
domain expert to build a solution on her own.

No serious organization will trust business intelligence to be run on a client machine
(self-service BI), only. No serious domain expert is always patient enough to set up a
project to implement a database and the reports (enterprise BI). Therefore, the solu‐
tion is to play both cards to the benefit of everybody.

Data needed for the daily tasks of information workers to be transformed into reports
and ad hoc analysis should be available in a centralized data warehouse. Only here,
one version of the truth can be made available. But there will always be extra data that
hasn’t made it into the data warehouse (yet). That’s where self-service BI comes in.

The question is, how to combine both worlds, so that the centralized data can be
enriched with the extra data by the domain experts themselves. “Key-Value Pair
Tables” on page 149 describes how this can be done in Power BI in a convenient way.

Key Takeaways
In this chapter, I described real-world use cases. You learned about business prob‐
lems and different concepts for how to solve them:

• Bin values with either a simple lookup table (which contains all possible values
and their bins) and physical relationships between the values and the lookup
table, or describe the ranges per bin and apply a non-equi-join between the val‐
ues and the lookup table.
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• Add new tables to a data model only if the information can’t be added to an
existing table. As a budget is usually on a different granularity level than the
actual data, I cover this as a use case for a multi-fact data model.

• Cover content of textual columns, text on the report, currency exchange rates,
the names in the data model, and the language of the UI of the application you’re
working with when you want to implement localized reports.

• Combine self-service and enterprise BI carefully. They will always exist side-by-
side, and this chapter covered some of the challenges that presents. In Chapter 8,
you will see how both worlds can live together in Power BI.

You’ll learn how to implement the solutions in DAX, Power Query, and SQL later.
First, I introduce ideas and concepts that allow you to optimize a data model for per‐
formance in Chapter 4.
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CHAPTER 4

Performance Tuning

You are very blessed if performance tuning has never been a topic in a report you
built. Usually it’s not a question of if, but when the performance of a business solu‐
tion becomes a priority.

Generally, if you’ve taken the previous chapters seriously and transformed all data
into a star schema data model, you’ve made an important step toward well-
performing reports. The shape of the data model plays an important role when it
comes to performant reports. But, of course, many more pieces help determine how
quickly reports return data or react to filters. Because this book is about data model‐
ing, I limit myself to discussing performance-tuning topics only as they relate data
modeling.

My first computer had a Turbo button on the front of its case, next to the power but‐
ton. I used it rarely in the first weeks, but sooner or later, I asked myself, why I should
run everything at a lower speed? The same applies to the data model you build. Why
build a model that doesn’t run as quickly as possible? You should always keep perfor‐
mance in mind when building your data models.

Unfortunately, there’s no Turbo button in Power BI to hit after powering on. But
there are concepts you can apply.

If you’re about my age, you may have had a paper list of phone numbers for your
family, friends, and neighbors in your youth. Mine had the most important people
first, and I added more and more people to it later. When the list got to a decent
length, scanning it every time I needed a number frustrated me. So I started a new list
and split the names and numbers onto different pages: one page per letter in the
alphabet in alphabetical order by first name.

This principle applies to databases as well. You can create simple tables, where new
data is (chronologically) added at the end of the table (or in between rows after a row
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is deleted). Adding data to the table takes very little time because there’s no need to
find the right place; you can just use the next empty space. But you pay a penalty
when you read from the table because its full content has to be scanned for every
query. Filters will only reduce the result set, not the process.

The alternative is to store all the rows in a table in a certain order. As long as your
filter refers to the order key, finding the right rows can be faster: you ignore all the
rows that don’t fulfill the search condition, return all matching rows, and stop as
soon as non-matching rows appear in the table. In reality, this can be even faster;
databases store metadata for the sake of speeding up queries. But writing data into
such a table will be a bit slower: the right position for the new rows has to be found.
New space may need to be made available at this position. Metadata must be
maintained.

These examples should make a very important principle clear: you can exchange
query speed for space on disk or in memory. Speeding up queries this way will likely
slow down write operations. In analytics, reading data is most often done frequently
and quickly, while refreshes (write operations) can be done only at scheduled points
in time and are fewer in number. Optimizing for read operations is therefore a good
idea, even when it slows down the write operations.

You can choose one of the following options for storing data in tables:

Storing only queries
You could opt to not physically store (duplicate) data, but keep the data in the
original tables. Instead of the data, you store only the query that will return the
data in the desired shape. The advantage is that no extra space is needed to store
the (shaped) data and no steps to update the data have to be scheduled. The
query result will always be fresh. Depending on the type of transformations and
the way the source tables are stored, the query will need some time to run.

Storing query results
Instead of running the queries against the data source every single time you need
the data, you could store the result in a table and schedule a refresh. This will
occupy space on disk or in memory, but speed up the queries because the result
of the transformations is already persisted. The challenge is to schedule the
refresh often enough so that the reports do not show stale data.

Adding metadata
You can distinguish between metadata automatically added by the database sys‐
tem (like descriptive statistics) and metadata explicitly added (like indexes). A
database index is like the index at the end of this book. Instead of scanning the
whole book for the term “foreign key,” you can jump to the index, where impor‐
tant terms are ordered alphabetically. In the index, you can quickly discover
whether the book covers this term and find page references where you can find
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more information about it. While the book itself is ordered by its chapters, the
index is ordered by an additional key. For tables, it is not uncommon to have
more than one index.

Adding data of different granularity to the data model
Querying a table by its sort order or over an additional index will be faster than
querying by a sort order that doesn’t match the table’s, or without a covering
index. But still, a query needs to collect the necessary information and calculate
the aggregated values for the report (which typically does not show single trans‐
actions, but data grouped by dimensions). Of course, it would be faster if those
aggregated values were already stored (persisted) in a table. This is what aggrega‐
tion tables are about: they store the identical information as the base table, but on
different levels of granularity. For the report, the table with the right level of
aggregation will be used.

No matter which solution you want to implement, all of them employ a strategy to
exchange disk space for query runtime, and therefore increase the duration of time to
process the transformation and refresh the user-facing data model.

Key Takeaways
A good data model takes query performance into account. By following the principles
of the earlier chapters, you’ve already created a a data model with good query perfor‐
mance. No matter which data model you design or which tools you use, you have a
wide variety of possibilities to control the performance by applying a taste of three
options:

• Directly querying the data source will always return the freshest information, but
query time might not be acceptable (due to complex transformation or a data
source not designed for these ad hoc queries).

• We can speed up queries by pre-computing all or parts of the data needed.
Transformations can be persisted; statistics and indexes will help to find infor‐
mation faster and we can pre-aggregate data on different levels of granularity.
This takes up extra space in the database and needs to be maintained regularly,
so it does not contain stale data.

• By cleverly trading off query time and space used for the persisted data, you can
achieve a balanced system, which satisfies the needs for fast reports and available
storage resources.

In Part II, we leave the world of concepts and dive into Power BI Desktop and its
possibilities for creating the data model, which will make the lives of your report cre‐
ators easier.
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PART II

Data Modeling in Power BI

This second part of the book concentrates on the specialties of Power BI’s features
when it comes to data modeling. I will walk you through the basic concepts, prob‐
lems, and solutions. Part II keeps DAX, Power Query, and SQL out of the game as
much as possible—their specialties are discussed in later parts of this book.



First, I will introduce you to the Model view and its parts in Chapter 5:

• Tables
• Columns
• Relationships

You will learn that Power BI doesn’t use the terms primary key and foreign key, but
they still play an important role when it comes to relationships and their cardinality.

In the Model view, you won’t combine tables, only define their relationships. Still, it’s
important to understand how to build a data model, which is easy to understand and
allows for performant queries later.

Chapter 6 is all about building a data model, which works optimally in Power BI:

• Finding the right way to normalize and denormalize tables
• Telling Power BI the formulas of your calculations
• Providing Power BI with a date (and optionally a time) table
• Implementing a solution for tables, which play more than one role inside the

data model
• Taking care of slowly changing dimensions
• Combining columns into a hierarchy

I pick up the real-world use cases discussed in Chapter 3 and go over some important
concepts that you’ll use in Power BI’s Model view (Chapter 7):

• Binning values
• Multi-fact data model (a data model that contains more than one fact table)
• Multi-language data models
• Key-value pair tables

The last chapter in this part (Chapter 8) will talk about the Model view’s options to
achieve good query performance with your data model: basically, you can decide if
you want to store a copy of all the data in Power BI and refresh it regularly, or query
the data source every time a visual is shown. You will learn about the advantages and
disadvantages of these storage modes.



CHAPTER 5

Understanding a Power BI Data Model

In this chapter, you will learn how to create a useful data model in Power BI (and the
Analysis Services tabular model). This chapter concentrates on the features of the
Model view. The following parts of this book discuss options for bringing data of any
shape into the desired shape in Power BI (see Chapter 1 for a general description).
You will learn that Power BI needs a data model to work.

I will detail the properties tables can have and how to put them into relationships
with each other. You’ll find out there’s no need to explicitly mark primary and for‐
eign keys, but you still must be able to identify them to create appropriate relation‐
ships. The cardinality of the relationships plays an important role in Power BI.
Luckily enough, you don’t need to think about the joins and join path problems too
much. You only need to create relationships for your data model. Power BI will auto‐
matically use these relationships to join the tables appropriately when the data is
queried for a visual. Power BI will also make sure to execute requests against the data
in a way that the join path problems do not occur (see “Join Path Problems” on page
20).

In this chapter, I reiterate why a single table is not a data model fit for Power BI and
that a dimensional model is the go-to solution. Remember: the ultimate goal is to cre‐
ate a data model that makes the report creator’s life easy.

Data Model
To get a visual overview and most of the options needed to create and modify the
data model, select the Model view in Power BI (or the diagram view in Visual Studio
in the case of the Analysis Services tabular model). This view looks much like an
entity relationship diagram (ERD) but has subtle differences we discuss in “Entity
Relationship Diagrams” on page 100.
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The “All tables” tab shows each and every table in the data model, as shown in
Figure 5-1. For bigger data models (those with a lot of tables), it makes sense to create
separate layouts for only selected tables of your data model. This will give you a more
manageable view for different parts of your data model. For example, if your data
model contains several fact tables, it might be wise to create a separated view per fact
table (and all the connected dimension tables) as an alternative to the “All tables”
view. While in the “All tables” view, all tables might not fit on your screen (or only if
you zoom out so much that you can’t read their names). A separated layout with less
content can be helpful.

Figure 5-1. Model view

You can create a separate layout by clicking the + symbol to the right of “All tables.”
Then, you can add individual tables from the fields pane (on the right of the screen)
via drag-and-drop. Alternatively, you can right-click a table’s name in the model’s
canvas or in the fields pane and select “Add related tables” to add not only the table
itself, but all the tables with a relationship to it, as well.

The Model view has three properties (see Figure 5-2):
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Show the database in the header when applicable
This is applicable in data models in DirectQuery and Dual modes. You can learn
about the different storage modes in Chapter 8. This setting is turned off by
default.

Expand or collapse tables
Each table can either be expanded or collapsed. When a table is collapsed, no col‐
umns are shown unless you select “Show related fields when card is collapsed.”
Related fields are columns, which are used in relationships. This property is
enabled by default.

Pin related fields to the top of the card
As you might guess, pinning related fields to top of the card will result in col‐
umns that are part of a relationship being shown on the top of the field list. By
default, this setting is disabled and all fields are shown in alphabetical order
(measures are listed after the columns, again in alphabetical order).

Figure 5-2. Properties in Model view

Tables play an important part in the data model. Let’s look on their properties in the
next section.
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Basic Concepts
This section introduces the basic concepts of a data model:

• Tables and columns
• Relationships
• Primary keys

• Surrogate keys
• Foreign keys
• Cardinality

Tables and Columns
Every rectangle in the Model view represents one table in the data model. In the
header, you can read the table’s name. Below the table name, the columns (fields) are
listed in alphabetical order.

A table offers a list of functionalities, which you can access either by right-clicking
the table name or left-clicking the ellipses (…), as in Figure 5-3:

Add related tables
This option will add all tables that have a filter relationship with the chosen table
to the Model view. This option is only available when the table has relationships
to other columns, and only in a layout view (not in “All tables”).

Select New measure or New column
You can create these within the selected table. In “Calculations” on page 190, you
can learn more about these two options.

Refresh data
You can refresh the content of the whole table. The data source has to be avail‐
able at this point in time.

Edit query
“Edit query” will open the Power Query window. In Chapter 13, I introduce the
capabilities of Power Query.

Manage relationships
In “Relationships” on page 88, you will learn everything about the options avail‐
able via the “Manage relationships” dialog.

Incremental refresh and Manage aggregations
See Chapter 8 for details on incremental refresh and “Manage aggregations.”

Select columns
You can select all columns in this table and then change the properties for all of
them in one go.
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Select measures
This will select all measures in this table. You can then change the properties for
all of them in one go.

Delete from model
If you choose this, the whole table will be removed not only from the layout view,
but from the whole file (incl. Power Query).

Be careful because “Delete from model” cannot be undone.
Make sure to save intermediate versions of your changes to
have a backup.

Figure 5-3. Model view context menu
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Hide in report view
With this option, the table (and all its columns) are hidden. The goal is to avoid
overwhelming the report creators with tables (or columns) holding intermediate
results not intended to be shown in a report.

A hidden table (or column) can still be seen by the user if the
user enables “View hidden.” Therefore, this is not a security
feature: don’t use it to hide tables with sensitive content. Use it
to hide tables that are only helping to build the data model and
don’t contain any content that should be used in a report (e.g.,
to show the value, filter on it, etc.).

Remove table from diagram
This option is only available in layouts not in tab “All tables.” This does not
remove the table from the whole file but just from the current layout.

Unhide all
With this option you can disable the property Hidden for all elements within this
table. Again, this step cannot be undone. In case of a mistake, you need to hide
the individual columns again.

Collapse all
This collapses the height of the table to only show column which are used in rela‐
tionships (or no column at all, depending on the overall settings).

Expand all
This option expands the height of the table to its original size.

In Power BI and Analysis Services tabular, a table can contain not only columns, but
measures and hierarchies as well. Measures are written in the DAX language. Chap‐
ters 9 through 12 show many capabilities of the DAX language, and you can find
more information about measures in “Calculations” on page 190. Hierarchies group
several columns into one entity. “Hierarchies” on page 129 in Chapter 6 is dedicated to
hierarchies.

Tables have properties in Power BI, as you can see in Figure 5-4:

Name
This is the name of the table. You can change the name either here or by renam‐
ing the Power Query associated with this table in the Power Query windows
(which I discuss in “Tables or Queries” on page 244).
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Figure 5-4. Model view table properties
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Description
The description is shown in a tooltip when you (or the report creator) move the
mouse cursor over the table’s name in the Data list. Typically, I use this field to
include a few sentences to describe the content of the table.

Synonyms
This field is automatically propagated by Power BI as a comma-separated list.
You can add your own synonyms as well. You should add alternate terms your
organization uses (e.g., if revenue is an alternative for sales, enter “revenue” as a
synonym for “sales”).

The list of synonyms helps the Q&A visual to answer your questions. Visuals are
out of scope for this book, but you can find an in-depth description of the Q&A
visual in my book Self-Service AI with Power BI Desktop (Apress, 2020).

Row label
This field helps in the Q&A visual when you reference a table. It will then show
the content of the column you specify here. Select the column containing the
name of the entity as the row label of the table. It helps in Excel in a similar way
too. (See “Set Featured Tables in Power BI Desktop to Appear in Excel”.)

Key column
Again, this feature helps in Excel. Select the column containing the primary key
as the key column of a table. You can only select a column that doesn’t contain
any duplicate values.

Is hidden
Enabled means that the table is hidden by default; disabled means that the table is
shown by default. You should hide all tables that do not contain content relevant
for the reports, but that are needed to create the data model in the right shape,
e.g., bridge tables.

Technically, tables can’t be hidden in Power BI or the Analysis Services tabular
model; only columns can. If a table contains only hidden columns, then the table
is hidden as well. Hiding a table changes the “Is hidden” property of all columns
within the table. If you unhide a table, all columns will be visible no matter
whether they were hidden before you changed the setting on the table level.

The user can still “View hidden” elements. Therefore, keep in
mind that this is not a security feature.
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Is featured table
This makes the table easier to find in Excel. It’ll show up in the “Excel Data Types
Gallery”. Tables where this setting is disabled can still be found via Analyze in
Excel (see Microsoft’s documentation).

Storage Mode (Advanced)
The storage mode of a table can be either Import, DirectQuery, or Dual. You will
learn more about using the storage mode to your advantage in Chapter 8.

Columns reside in tables and have properties as well, as you can see in Figure 5-5. In
the Model view, you set the following properties:

Name
This is the name of the column. You can change the name either here or in the
Power Query window. You will learn about Power Query in “Tables or Queries”
on page 244.

Description
The description is shown as a tooltip, when you hover over the column in the
fields list in the Data pane. Typically, I add a few sentences to describe the con‐
tent of the column or the formula of a DAX measure.

Synonyms
The Q&A visual uses the provided synonyms to find columns not directly refer‐
enced by their (technical) names, but by alternative names and versions as well
(e.g., if a user might query Q&A for revenue and the column is called Sales
Amount, add revenue to the list of synonyms for the column Sales Amount).

Display folder
In tables with a lot of elements (measures, columns, hierarchies, etc.), browsing
the list can be tedious. Putting a column (or a measure) into a folder provides
some structure. To put the column Sales Amount into a folder called Sales, just
enter “Sales” into the “Display folder” field. You can even create subfolders by
using the backslash (\) in this field. For example, “KPI\Sales” puts the column
into a folders KPIs and a subfolders Sales.

Is hidden
This hides the column. You should hide all columns needed for the data model
only (e.g., all keys), but that should/will never be shown in a report.

The user can still “View hidden” elements, so keep in mind
that this is not a security feature.

Basic Concepts | 83

https://oreil.ly/RRawX
https://oreil.ly/RRawX
https://oreil.ly/x3H4v


Figure 5-5. Model view column properties

Data type (formatting)
Every column has a dedicated data type. I discuss the available data types later in
this section.

Format (formatting)
You can choose the format in which the value of the column is shown. The
options are dependent on the data type, of course: “Percentage format,” “Thou‐
sands separator,” “Decimal places,” “Currency format,” etc.

84 | Chapter 5: Understanding a Power BI Data Model



Changes to the format do not change the data type (internal
storage) of the column. For example, if you want to get rid of
the time portion of a timestamp, you could change the format
to one only showing the date. The time portion is still stored
in the data model (which is expensive in terms of storage; see
“Tables” on page 6, and might break filters if the dimension
table doesn’t contain the time portion, but the fact table does).
If nobody will ever report on the time portion, it’s a good idea
to change the data type to Date instead.

Sort by column (Advanced)
By default, every column is sorted by the value it contains. In some situations,
this can be impractical. Typically, you don’t want a list of months sorted alpha‐
betically. To use this property, you would select column Month Number as the
“Sort by column” of Month Name. You can also use this option to show names of
categories or countries in a specific order.

For every value of the column, only a single value of the “Sort by column” must
be available; you cannot sort the Month Name by the Date or by a month key,
which contains both the year and the month number. In other terms, the rela‐
tionship between the column and the “Sort by column” must be of a one-to-one
or a many-to-one cardinality; it can’t be a one-to-many or many-to-many.

Data category (Advanced)
Assigning a data category to a column allows Power BI to default to a certain vis‐
ual when this column is used. For example, if you mark a column as a Place,
Power BI will suggest showing the content on a map visual. It also gives Power BI
information about what the content means (e.g., if a two-letter code is identifying
a US state or an ISO country code).

Summarize by (Advanced)
While this setting appears in the Advanced section of the UI, I consider it ideal
for newcomers to Power BI’s data modeling capabilities. It allows you to specify a
default aggregation function that should be applied when you add a numerical
column into a visual. For example, if you add the SalesAmount column to a vis‐
ual, you usually don’t want to get a (long) list of rows of the Sales table showing
individual SalesAmount values. You want a total. You can override the data
model’s default aggregation setting per visual (e.g., showing the average of the
SalesAmount). “Summarize by” allows you to specify how the values are aggrega‐
ted: Sum, Average, Min, Max, Count, and Distinct Count. For numeric values
that you don’t want to aggregate (e.g., a year or date), you must specify None.

Any setting besides None will create a so-called implicit measure containing the
chosen aggregate function. Unfortunately, implicit measures do not work with all
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client tools (they have worked in Excel since 2023). Implicit measures are auto‐
matically disabled as soon as you create calculation groups (you can learn about
them in Chapter 10 in the section about calculations in DAX), breaking existing
reports, which depend on those implicit measures.

My strong recommendation, therefore, is to explicitly create measures for col‐
umns for which you need to apply aggregations and set “Is hidden” to Yes for
such columns. (You can learn more about explicit measures in “Calculations” on
page 190 as well.)

Is nullable (Advanced)
This specifies if the column may contain blank cells (or null cells, as termed in
relational databases). If you consider blanks in this column to be a data quality
issue, then you should turn this setting to No. Doing so will result in errors dur‐
ing refreshes whenever a row contains blank cells for this column. Every row of a
column must conform to the column’s data type in Power BI.

Let’s take a closer look at the different data types Power BI allows you to choose from:

Binary
This data type is not supported and exists only for legacy reasons. You should
remove columns of this data type before loading data into Power BI and Analysis
Services or just delete instances from the model in the Model view.

True/false
A column of this type can contain Boolean values: true or false. But this data type
is no exception in the sense that it can also contain blank values, which represent
an unknown value.

For databases, it’s typical that every data type also supports an
“unknown” value. In relational databases and in Power Query,
this is represented by null, and in DAX by blank. It is impor‐
tant to understand that this unknown value is different from
an empty string, the numeric value zero (0), or a date (January
1, 1900).
That something is unknown might be important (and should
not be set as equal to some default value). In a user-friendly
data model, an unknown value should be replaced by some‐
thing that explicitly tells users that the value is unknown (e.g.,
string “N/A” or “Not available”), as described in “Tables” on
page 6.
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Fixed decimal number
This data type can contain numbers with up to four decimals and up to 19 digits
of significance. You can store values between –922,337,203,685,477.5807 and
+922,337,203,685,477.5807. These 19 digits are identical to the whole number, as
a fixed decimal number is stored in the same internal format, but with the extra
information that the last four digits are decimals. For example, the whole num‐
ber 12345 and the fixed decimal number 1.2345 are stored with the exact same
internal representation with the only difference being that the fixed decimal
number is automatically divided by 1,000 before it is shown. Due to the limit to
four decimal places, you can face rounding errors when values are aggregated.

Decimal number
This is a 64-bit floating point number that can handle very small and very big
numbers, both in the positive and negative spectrum. Because it is only precise to
up to 15 digits, you may face rounding errors when values are aggregated.

Date/Time
This represents a precise point in time (to 3.33 milliseconds). Internally in a
database, all date- and time-related data is stored as a decimal number counting
the days since a specific point in time. (In the case of Power BI, this point in time
is midnight of December 30, 1899). The decimal portion represents the parts of
the day (e.g., 0.5 represents 12 P.M.). I point this out to make sure that you do
not make the mistake of thinking that a date/time is stored in a certain format
(e.g., “August 01 2023 01:15:00 P.M.” or “2023-08-01 13:15:00”).

The “format properties” task is used to put a value into a user-friendly format
humans can read, but it does not change the internal representation (which is
45,139.55 in Power BI for the given example—and would obviously not be very
user-friendly in a report).

Date
This represents a point in time without the time portion. Everything mentioned
for data type Date/Time also applies here. Internally, this data type is represented
as a whole number (e.g., 45,139 represents August 1, 2023).

Time
This represents a point in time, without the date portion. Everything mentioned
for data type Date/Time also applies here. Internally this data type is represented
as a decimal number with only the decimal portion (e.g., 0.55 represents
1:15 P.M.).

Text
This holds Unicode character strings. Columns of this type can hold up to
268,435,456 characters.
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Whole number
Values of this data type are stored as a 64-bit integer value. This data type doesn’t
have decimal places and allows for 19 digits. It covers the spectrum between
–9,223,372,036,854,775,807 and +9,223,372,036,854,775,806.

In many data models, tables don’t live by themselves, but contain information that is
somehow related to information in other tables. Let’s talk more about these kinds of
relationships.

Relationships
In Power BI, relationships connect tables with each other and look like foreign key
constraints in a relational database, but they work differently. While foreign key con‐
straints limit possibilities (they prohibit values in foreign key columns that can’t be
found in the related primary key columns), relationships in Power BI exist solely to
propagate filters from one table to another. If you filter the Date table to a certain
year, the filter relationship will propagate the filter to the Sales table, so queries will
only show sales for the specified year.

Their effect enables what we usually perceive as something very natural. But for this
natural thing to happen, we must help Power BI by correctly setting the relationships.

Creating filter relationships is rather easy. Power BI offers three methods (automatic
creation, drag and drop, and a dialog box), which all lead to the same result:

Automatic creation
Power BI can automatically create and maintain filter relationships for you when
loading new tables. Under File → “Options and Settings” → Options → Current
File → Data Load, you can find three options related to Relationships (see
Figure 5-6).

You can let Power BI import relationships from a data source on first load (when
the data source is a relational database and the foreign key constraints are avail‐
able). You can let Power BI maintain those relationships when refreshing data.
And Power BI can also autodetect new relationships after data is loaded. It does
this by applying a set of rules: the column names must be the same, the data types
of these columns must be the same, and the column’s value must be unique in at
least one of the two tables.

If your source system follows the rule of giving all primary
keys the same name (e.g., “ID”), then automating relationship
detection will end in chaos; Power BI will most likely start cre‐
ating relationships between all those columns. Either turn this
feature off or change your naming convention to add the
table’s name to the key fields (e.g., “ProductID” instead of just
“ID”).
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Figure 5-6. Options → Curent File → Data Load

Drag and drop
A very simple way to create a relationship is to drag one column over another
(from a different table) in the Model view. In theory, it doesn’t matter which col‐
umn you drag over. The cardinality and filter direction are automatically set for
you.

It is, however, always a good idea to double-check whether all properties of the
created relationship are as they should be. More than once, I’ve seen Power BI
create a many-to-many relationship (due to unintended duplicates in a table) or
a one-to-one relationship (due to incomplete test data with only, e.g., one order
per customer), where it should have been a one-to-many cardinality instead.
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Dialog box
Via the ribbon, you can choose Home → “Manage relationship” to open a dialog
box from which you can “Create a new relationship,” start Autodetect to trigger
Automatic creation, or Edit or Delete an existing relationship (see Figure 5-7). By
clicking the checkbox Active, you can (de-)activate a relationship.

Figure 5-7. Modeling → “Manage relationships”

The order the relationships are shown in looks unpredictable to
me: a relationship between the Date and the Sales tables might
show up with the Date table first (and ordered by it) or with the
Sales tables first (and ordered by that). If you cannot find the rela‐
tionship you are looking for, double-check if can find it listed with
the other table first in this dialog box.

Figure 5-8 shows you the properties pane in the Model view and the “Edit relation‐
ship” dialog for the same relationship.
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Figure 5-8. Model view relationship properties

As filter relationships are so important, I would not rely (only) on
automatic creation. Even if you let Power BI create the relation‐
ships for you in first place, I would make sure to review every sin‐
gle one, to ensure that no relationship is defined in a wrong way
(read: check the cardinality), that no relationship is missing, and
that no unnecessary relationship is created.

A filter relationship in Power BI consists of the following properties:

First table
This is sometimes described as the left table. It’s one of the two tables for which
you create a relationship. Which table is the first/left table isn’t important, as any
one-to-many relationship can also be seen as a many-to-one relationship—they
are identical.
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Column in the first table
You can click on the column name shown for the first table to select one or
choose from the list box. The “Edit relationship” dialog windows shows a pre‐
view of the values of the first three rows. Selecting more than one column is not
possible; Power BI doesn’t allow the use of composite keys.

When you must work with composite keys, simply concatenate the values of
those columns (as a DAX calculated column, in Power Query, SQL, or the data
source) before creating the relationship. I strongly recommend adding a separa‐
tor character in between the column values to avoid false twins. For example, if
you concatenate “12” and “34” for one row, and “1” and “234” for a different
row, the resulting concatenated string would be “1234” for both examples. If you
put a separator character in between, you’ll get “12|34” in one case and “1|234” in
the other.

Second table
This is sometimes also described as the right table. It is one of the two tables for
which you create a relationship.

Column in the second table
You can click on the column name shown for the second table to select one. The
“Edit relationship” dialog window shows a preview of the values of the first three
rows. Selecting more than one column is not possible.

Cardinality
Cardinality describes how many rows in the other table can maximally be found
for a single row of a given table. “Cardinality” on page 10 reviews this topic.

Cross-filter direction
As explained, the sole purpose of a relationship in Power BI is to propagate a fil‐
ter from one table to another. A filter can go in either direction, or even in both
directions. I strongly advise sticking to the best practice of only using single-
direction filters. These filters are propagated from the one-side of relationship to
the “many” side of a relationship. Other filter directions (especially the bi-
directional filter) might lead to ambiguous data models, which Power BI will
prohibit and/or poor report performance.

Bi-directional filters are sometimes used to create cascading
filters (where a selection of a year limits the list of products in
another filter to only those where there have been sales in the
selected year). I strongly advise you to solve this problem
through a filter in the slicer visual instead: just add, e.g., the
Sales Amount measure as a filter to the slicer visual and set the
filter to “Is not blank.” Now any filter’s result will cascade into
this slicer. Repeat this for every slicer visual.
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Make this relationship active
A maximum of one active relationship can exist between the same set of two
tables in Power BI. The first created relationship between two tables is active by
default. If you create additional relationships between these two tables, they can
only be marked as inactive.

In the Model view, you can distinguish active and inactive relationships by how
the line is drawn: active relationships are represented by a continuous line, while
inactive relationships are drawn as a dashed line. In Chapter 9, you’ll learn to
make use of inactive relationships with the help of DAX. In “Role-Playing
Dimensions” on page 48, I show alternatives to having more than one relation‐
ship between two tables.

Apply security filter in both directions
This setting is only relevant if you have implemented row-level security (RLS) in
the data model and use bi-directional filters (which is not recommended; see
“Cross-filter direction” in the previous list). Propagation of RLS is always single-
directed (from the table on the one-side to the table on the “many” side), unless
you activate this setting. Learn more about RLS in Microsoft’s online
documentation.

Assume referential integrity
This property is only available when using DirectQuery (DirectQuery is covered
in Chapter 8). Activating this checkbox will let Power BI assume that the col‐
umns used for this relationship have a foreign key constraint in the relational
database. Therefore, Power BI can use inner joins (instead of outer joins) when
querying the two tables in a single query. Inner joins have a performance benefit
over outer joins. But with inner joins, rows could be unintentionally filtered out,
when referential integrity is violated by some rows, as you learned in “Joins” on
page 13.

Independent of these relationship settings, joins in Power BI are always outer joins
(except for DirectQuery, when “Assume referential integrity” is enabled). This guar‐
antees under all circumstances that no rows are unintentionally lost (even when ref‐
erential integrity in the data is not guaranteed). Missing values are represented as
Blank.

The Power BI data model does not allow for non-equi-joins. In “Binning” on page 216,
I show ways of implementing non-equi-joins with the help of DAX.

Many, but not all, relationships are built on a primary key in one table and a foreign
key in the other table. Let’s start looking into how Power BI handles primary keys in
the next section.
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Primary Keys
In Power BI, you don’t explicitly mark primary keys (except when using DirectQuery
to benefit from a better report performance). Implicitly, any column used in relation‐
ships on the one-side is a primary key. If the column on the one-side contains dupli‐
cated values, then the refresh will fail. Empty or blank values for a column on the
one-side are not allowed. I strongly encourage you to make sure during the ETL pro‐
cess to have no blank values anywhere, neither in key columns nor other columns,
but to replace them with a meaningful value or description (like “not available”). In
the “Flags and Indicators” sections of Chapters 10, 14, and 18, you’ll learn different
ways to achieve this.

Power BI’s data model doesn’t allow composite keys. If you decide to use a composite
key, you need to concatenate all the columns participating in the key into just one
column (usually of type Text). Make sure to add a separator character between the
values. Look for a (special) character that won’t ever be part of the column’s values
(e.g., a pipe symbol, |, when concatenating names). This ensures that the result of
concatenating “ABC” and “XYZ” will be different from concatenating “ABCX” and
“YZ.”

With the separator, you get “ABC|XYZ” in one case and “ABCX|YZ” in the other.
Without the separator, you’d end up with the identical primary key “ABCXYZ” for
both rows, which is problematic because Power BI can’t then distinguish those two
rows from each other.

Surrogate Keys
In Power BI, a relationship can only be created on two single columns in two separate
tables; Power BI does not allow the use of composite keys. I strongly advise using col‐
umns of type Whole number for the relationships because they can be stored more
efficiently (compared to the other data types, e.g., Text) and will therefore make filter
propagation happen faster (which leads to faster response time in the reports). While
the key of the source system could be of any type, a surrogate key is usually a Whole
number type. This makes them perfect keys for Power BI. Learn more about creating
surrogate keys in “Surrogate Keys” on page 339.

An important reason to have primary keys is to reference a single row in this table.
The column in the referencing table is called a foreign key.

Foreign Keys
You do not explicitly define foreign keys in Power BI. They’re implicitly defined
when you create relationships. A column on the “many” side of a relationship is the
foreign key.

94 | Chapter 5: Understanding a Power BI Data Model



If you decide to use a composite key as a primary key, you need to concatenate all the
columns participating in the foreign key as well. Make sure to concatenate the col‐
umns in the very same order as you did for the primary key and use the same separa‐
tor character.

When it comes to primary and foreign keys, you should be prepared to know how
many rows in the table containing the primary key are available for a single foreign
key, and the other way around. This is called cardinality.

Cardinality
For every relationship, you also need to specify its cardinality. Power BI offers three
types of cardinalities:

• One-to-many (1:m, 1 – *)
• One-to-one (1:1, 1 – 1)
• Many-to-many (m:m, * – *)

All relationships in Power BI are automatically conditional. A corresponding row in
another table is allowed to be unavailable; for Power BI, it’s OK when there is no row
in the Sales table for a specific Customer. This is also OK in the real world; a brand-
new customer might not have ordered yet.

But it is also OK for Power BI if no customer can be found for a CustomerID in the
Sales table. In the real world, this would be an issue in most cases: it would mean
that no CustomerID was stored for a sale. Then, you need to clarify with the business
if this is indeed possible (for edge cases). Or the CustomerID provided in the Sales
table might be invalid. That would be a data quality issue you would need to dig
deeper into. Because if the CustomerID is invalid for a row, who knows if the
CustomerIDs for the other rows are just valid by chance, but contain the wrong
information?

Keep in mind that Power BI will create a many-to-many relation‐
ship not only for the classical many-to-many relationships (e.g.,
one employee works on many different projects, one project has
many employees), but in all cases where neither of the two col‐
umns used for creating the relationship only contain unique values.
In case of data quality issues (e.g., duplicated customer rows or
multiple rows with a blank CustomerID), Power BI won’t let you
change the relationship to a one-to-many.

Relationships of many-to-many cardinality are called weak or limited relationships
because they come with two special effects, which are reasons why you should avoid
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this type of relationship (use a bridge table instead, as discussed in “Types of Tables”
on page 101). The two effects are as follows:

• When there are missing values in the dimension table or wrong foreign keys in
the fact table, no blank rows are shown in the reports to represent the values for
the missing/wrong keys. Instead, these values aren’t shown at all. Reports and the
totals might show incomplete numbers. This effect only hits you in case of data
quality issues. Avoiding missing rows in the dimension table and invalid foreign
keys in the fact table is a good idea anyway.

• Calculations in DAX that use the function ALL (or REMOVEFILTERS) to remove fil‐
ters won’t remove filters on tables connected over a limited relationship. This can
be a trap when you ask to “Show value as” → “Percent of grand total” or when
creating more complex measures in DAX. As report creators can create measures
(containing the function ALL in their expression), this problem can appear any‐
time and can be avoided only by avoiding many-to-many relationships.

I try to avoid many-to-many relationships. For very large tables, many-to-many rela‐
tions might have better performance than the solution with a bridge table, though.

In the Model view, you can easily spot such problematic relationships: they’re repre‐
sented with parenthesis-like marks after the cardinality indicators (as you can see in
Figure 5-9). To avoid all these effects, model a many-to-many relationship via a
bridge table. You can learn this technique in “Types of Tables” on page 101.

Figure 5-9. Many-to-many relationships are limited relationships, drawn with gaps at
both ends

Always ensure that you understand the relationship between two
entities in the real world. When you can’t set the configuration for
a relationship in Power BI accordingly, double-check why. Don’t
just carry on; clarify the business’s requirement and the data
quality.
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Combining Tables
A data model usually contains more then one table. This sections discusses how you
can recombine the information of several tables.

Set Operators
Set operators are only available in the Power BI data model when querying data.
Jump to the other parts of this book to learn if and how to implement set operators in
DAX (“Set Operators” on page 180), Power Query/M (“Set Operators” on page 251),
and SQL (“Set Operators” on page 341).

Joins, however, are a regular thing when working with data models in Power BI. Read
on, to learn more about that.

Joins
Joins are implemented implicitly over the data model’s relationships. Power BI’s stor‐
age engine automatically implements the filter relationships stored in the data model
to perform necessary joins. That means if you create reports or write queries in DAX,
there’s no need to (explicitly) specify a join operator; the storage engine does this
implicitly for you (and the report user).

The filter relationship defines the join predicate (in which two columns are involved).
The predicate is always done as an equi-join (the values of the two columns must
match). You can’t define non-equi-joins in Power BI’s data model. In Chapter 9,
you’ll learn how to implement queries for non-equi-joins with DAX. You can also
perform non-equi-joins in Power Query/M and SQL to join queries and load the
result as one table into Power BI.

The natural join is simulated by Power BI’s ability to create the relationships in the
data model automatically for you. If the filter relationship is not explicitly defined in
the data model, then no natural join will happen when creating reports.

Unfortunately, you can’t create self-joins at all. In the sections about hierarchies in
Chapters 10, 14, and 18, you’ll learn how to flatten parent-child hierarchies so you’re
able to report on such hierarchies.

By default, all joins in Power BI are implemented as outer joins. This guarantees that
no rows are lost, even when the referential integrity of the model isn’t guaranteed. In
relational databases, outer joins come with a performance penalty (compared to
inner joins). The storage engine behind Power BI was built with outer joins in mind,
so there’s no performance penalty to be expected. There is also no way of
comparing—you can’t execute inner joins on data imported into Power BI.
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When you don’t import data but use DirectQuery (on relational data sources), I rec‐
ommend you first guarantee that referential integrity is in place in the data source
and then tell Power BI so (with the table’s property in the Model view). Then the
storage engine will use inner joins instead of outer joins when querying the data
source (and thus make use of the performance advantage).

Joins are necessary to bring information, spread over several tables, back into the
result of a single query. Combining the tables in a query can be tricky, but Power BI
covers the usual problems for you, as you can see in the next section.

Join Path Problems
No worries, Power BI’s got you covered on all join path problems: none of the three
problems discussed in “Join Path Problems” on page 20 (loop, chasm trap, and fan
trap) are an issue in Power BI:

Loop
You can’t create a loop directly or indirectly (via intermediate tables); Power BI
won’t allow you to create multiple active paths. It forces you to declare such a
relationship as inactive.

Chasm trap
Power BI has implemented logic to avoid the negative effects of a chasm trap.
Figure 5-10 shows a report with three table visuals.1 The table on top left shows
the reseller sales per day. Internet sales per day are on the lower left. On the right,
the results of both tables are combined per day. The two tables each have a one-
to-many relationship to the Date table (and therefore a many-to-many relation‐
ship between themselves). The DateKey column is always taken from the Date
table. As you can see, none of the sales amounts for a day (or for the total) are
wrongly duplicated, but match the numbers shown for the individual results.
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Figure 5-10. Chasm trap isn’t a problem in Power BI

Fan trap
Power BI has a fail-safe against the fan trap. In Figure 5-11, you see the Freight
per day (stored in the SalesOrderHeader table) and the OrderQty per day (stored
in the SalesOrderDetail table, which has a many-to-one relationship to the
SalesOrderHeader table). In the table on the right, you see that the Freight isn’t
wrongly duplicated per day, but shows the same values as in the SalesOrder
Header visual.
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Figure 5-11. Fan trap isn’t a problem in Power BI

A good way to document the relationship, and therefore the possible join paths, is to
show the data model as an entity relationship diagram, as you’ll learn next.

Entity Relationship Diagrams
The Model view in Power BI (and the diagram view for Analysis Services projects in
Visual Studio) is exactly what you would draw in an ERD if you wanted to document
the tables and their relations. In the Model view, you see “1” for the one-side and “*”
to represent the “many” side of a relationship.

Because the Model view isn’t about foreign keys but filters, it also shows the direction
of a filter, which can go either in one direction or both directions, represented by a
small triangle (for single-directed filters) and two small triangles (for bi-directional
filters).

Figure 5-12 shows a single-directed, many-to-one relationship between Account
Customer and Customer and a bi-directional, one-to-one relationship between
Customer and CustomerDetail, shown in Power BI’s Model view.
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Figure 5-12. Power BI’s Model view

Data Modeling Options
As usual, you have a bunch of options when it comes to data modeling. The most
important part is to find out what kind of data you want to store to determine the
type of table. I share many reasons not to put all the data into a single table when
creating a data model for Power BI. You’ll also learn how to apply the concepts of
normal forms, dimensional modeling, granularity, and ETL to Power BI as well.

Types of Tables
There is no explicit property for a table to indicate the usage of the table (e.g., entity
table, lookup table, bridge table). I strongly believe that the type of a (unhidden) table
should not be indicated by hints in its name (e.g., Fact_Sales or Dim_Customer). I
recommend that table names be user-friendly (report creators usually don’t care
about what role a table plays in the data model, as long as it’s returning the expected
results).

The role of a table is simply given by its relation to other tables. Fact tables are always
on the “many” side of a filter relationship. Dimension tables are always on the one-
side in a star schema. In a snowflake schema, they might as well be on the “many”
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side in relation to another dimension table. For example, the Product table will be on
the one-side of the relationship to the Sales table (which is on the “many” side, as
each order line contains one product, but the same product will be ordered several
times over time). The Product table will be on the “many” side in a relationship to
the Product Subcategory table, as many products might share the same subcategory.

Recall the many-to-many relationship between tables Budget and Product in
Figure 5-9. This relationship has a many-to-many cardinality because the budget
wasn’t created on the Product table’s level of granularity, but per Product Group
instead. The Budget table’s foreign key Product Group is not referencing the Product
table’s primary key (Product Key). In the Product table, the Product Group column
isn’t unique: the same Product Group will be found in several rows. As the join key is
not unique in either table, Power BI restricts a direct relationship to many-to-many
cardinality. See Tables 5-1 and 5-2.

Table 5-1. Product table with main product category

Product Key Product Name Product Category
100 A Group 1

110 B Group 1

120 C Group 2

130 C Group 3

Table 5-2. A budget is typically of a different granularity than the actual values

Month Product Group Budget
2023-08 Group 2 20,000

2023-08 Group 3 7,000

2023-09 Group 2 25,000

2023-09 Group 3 8,000

Relationships have some disadvantages in Power BI, as described in “Cardinality” on
page 95. A bridge table resolves a many-to-many relationship and is put between two
tables that are logically connected by a many-to-many relationship. The bridge table
replaces a many-to-many relationship with two one-to-many relationships. It’s
always on the one-side of the two relationships. The bridge table contains a distinct
list of key(s) used to join the two original tables.

Because the content is relevant only for creating the relationship, but not for building
a report, the bridge table should be hidden from the user. I usually put the suffix
“BRIDGE” in the name of a bridge table. It makes it easier for me to spot the bridge
tables and, therefore, many-to-many relationships in my data model (see Table 5-3).
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Table 5-3. Bridge table for product categories

Product Category
Group 1

Group 2

Group 3

Figure 5-13 shows the Model view of three tables of different types. The table on the
far left is a fact table (Budget) on the “many” side of the relationship. To the right of
that, you see a bridge table (Product Group BRIDGE), which bridges the many-to-
many relationship between the Budget and Product tables. The bridge table is on the
one-side of both relationships. The table on the far right is a dimension table
(Product). It’s on the “many” side of the relationship—the Budget table isn’t refer‐
encing the Product table’s primary key (Product Desc), but the non-unique column
Product Group.

Figure 5-13. Tables of different types

You’ll learn more about the specifics of this data model in “Budget” on page 135. Here, I
just used it to demonstrate different table types.

Why should you bother with different (kinds of) tables when you can just just store
everything in a singe table? The next section explains why that’s a bad idea when it
comes to Power BI and the Analysis Services tabular model.

A Single Table to Store It All
While putting all information into a single table is common and allowed even in
Power BI, I strongly discourage you from doing that. If you think in terms of a star
schema, a single table means that the information of all dimension tables is stored
inside the fact table. There are plenty of reasons to split the information in at least
two separate tables:

Size of model
Because Power BI’s storage engine stores imported data in memory, Microsoft
makes sure to compress the data. The compression algorithm works very well for
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a star schema, but replicated dimensional information in every single row of a
fact table does not compress very well.

In a scenario I built to try this out, the single table used almost three times the
space of a star schema. That means that you can store only a third of the data in a
single table compared to a star schema on a given infrastructure. And the more
memory the storage engine has to scan, the longer it will take and the more pres‐
sure it will put on your CPU.

Transforming a single table into a star schema will help you fully benefit from
the storage engine. The model size will be smaller; the reports will be faster.

Adding new information may be difficult
To extend the data model with additional information, you would need to imple‐
ment a transformation to add the data to the existing table—which can be dread‐
ful (you need to align the different granularities of the existing and the new
information)—increasing the problems you face with the single table. Or, you
could add the new information as a separated table. This will only work if you
join the two tables on one single dimensional column because you can’t have
more than one active relationship.

Joining two fact tables directly isn’t recommended due to the size of the tables.
Transforming the single table into a star schema will make extending the model
easier. You would just add new dimension tables, re-use existing dimension
tables, and connect new fact tables to the existing dimensions.

Wrong calculations
All clients want correctly reported numbers. Due to some optimization in the
storage engine, queries on a single table might result in incorrect results, as
Table 5-4 shows.2

Table 5-4. A simple table containing some sales
Date ProductID Price Quantity
2023-02-01 100 10 3

2023-02-01 110 20 1

2023-02-02 110 30 4

2023-03-03 120 100 5

Next, we’ll look at three measures: one to count all rows of the Sales table (# Sales
= COUNTROWS('Sales')) and two others where I assume that I want to count the rows
of the Sales table independently of any filter on the Date colum. One version
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removes all filters from the 'Date'[Date] column and the other removes the filter
from the 'Sales'[Date] column (by applying function REMOVEFILTERS()).

Figure 5-14 shows the formula of [# Sales] and a card visual next to it, which shows
the value of 1. This number is correct: there was only one sale for the filtered date of
February 2, 2023.

Figure 5-14. A report showing the count of rows of the Sales table

Figure 5-15 shows the formula and the content of [# Sales ALL('Date'[Date])], a
value of 3. There is one slicer per dimension: Date (with the second of the month
selected) and Product (with ProductIDs 100 and 110 selected). Measure [# Sales
ALL('Date'[Date])] calculates the expected value of 3 because, if we remove the fil‐
ter on the Date (for the second of the month), we’re left with only a filter on
ProductID. For the two selected products (100 and 110) there are three rows available
in the Sales table.

Figure 5-15. A report showing the count of rows of the Sales table for all dates

The third section in the report shows similar content, but for measure [# Sales
ALL('Sales'[Date])], and it filters on two columns of the Sales table (Date and
Product ID) with the identical selection as on the dimensions. Unfortunately, [#
Sales ALL('Sales;'[Date])] shows an unexpected value of 2. Removing the filter
from the 'Sales'[Date] column should lead to a result of 3.

Figure 5-16. A report showing the wrong count of rows of the Sales table for all dates
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This measure shows an unexpected value because of an optimization in the storage
engine of Power BI/Analysis Services tabular. When the REMOVEFILTERS() function
kicks in, the Sales rows with ProductID of 100 are already filtered out to speed up
the queries (as there are no Sales for this ProductID on the second of the month),
leaving only rows for ProductID 110.

Removing the filter on the 'Sales'[Date] column doesn’t recover the rows for
ProductID 100. That’s why this measure only counts the rows for ProductID 110.
This effect is not limited to counting. It affects all kinds of measures as soon as you
start manipulating the filter context, which is very common even for rather simple
calculations. This optimization (and the negative effect) only happens when filters
applied directly on the fact table are in place; filters via dimension tables aren’t affec‐
ted by this optimization.

That’s the long answer for why you shouldn’t create a single table data model in
Power BI or Analysis Services tabular, if you care about performance, an easy-to-
understand data model, and correct numbers. The short version is this: always create
a dimensional model—never put all columns into a single table. And never filter
directly on the fact table (but hide those columns from the users).

And don’t forget: if you start with a single table and discover that you want to change
it to a star schema later, doing so would break all of your existing reports based on
the model.

On the other extreme, don’t put everything into a single table, but fully normalize the
data model to avoid redundancy. This isn’t such a great idea for a data model in
Power BI, which I explain next.

Normal Forms
Power BI is rather flexible about what kinds of data models it allows you to build.
Unfortunately, a normalized data model comes with a lot of tables and relationships.
Such a model will be hard for the report users to understand because information
from even the same entity is spread out over multiple tables. And all the different
tables need to be joined according to their filter relationships. Joins are expensive,
leading to slower reports. Normalized data models are optimal for application data‐
bases, but not for analytical databases.

Again: if you start with a normalized data model and later discover that you want to
change it to a star schema, it would break all the existing reports based on this model.
Better start with a dimensional model up front.
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Dimensional Modeling
You don’t need to believe that dimensional data modeling is way better than all the
other data modeling approaches. But, please, trust me that Power BI and Analysis
Services tabular (to be more precise: their storage engine, called VertiPaq) is opti‐
mized for dimensional data models on every level. That’s why it is the goal not to just
load the data as it is into Power BI but to transform the tables you get from the data
source into a dimensional data model.

There’s no need to actually store the data in a dimensional model form in the data
source. For example, Bill Inmon (mentioned in Chapter 1) recommends storing all
analytical data in a fully normalized schema (which he calls the Corporate Informa‐
tion Factory). Only the data mart layer is a dimensional model. This layer can either
be derived from a normalized schema with the help of DAX, Power Query, or SQL.
In this book, I teach all the necessary steps in all three languages—so no excuses any‐
more!

There are some important questions to ask your report users. How much detail is
really necessary in the reports? Does the report need to cover every single transaction
or are aggregates enough? Is it necessary to store the time portion, or will the report
only be generated on a monthly basis? The answers to these questions define the data
model’s granularity.

Granularity
It’s important that your fact table’s granularity matches the primary keys of your
dimension tables so you can create a filter relationship between them with a one-to-
many cardinality. “Budget” on page 135 gives an example of a case where new
information needs to be added to an existing data model (the budget) that has a dif‐
ferent level of detail: the budget is available only per product group, not per product.
The actual sales data, on the other hand, is on the product level.

The solution is to add the budget as a fact table on its own. “Budget” on page 135 will
also explain how to create a filter relationship between the product table and the
budget table, despite the different granularity.

No matter which kind of data source you need to do analytics on, the shape of it will
probably not fit directly into a dimensional model. Luckily, we have tools available to
first extract and transform, and then load the data into Power BI. The next section
covers on these challenges.
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Extract, Transform, Load
ETL isn’t done via the Model view; you can use DAX, Power Query/M, or SQL to
achieve this. Parts III, IV, and V dive into those languages and makes them your tools
to extract and transform the data as needed.

Read on to learn about a special kind of transformation necessary to implement
slowly changing dimensions, which isn’t done in the Model view.

Key Takeaways
In this chapter, I matched the basic concepts of data modeling with features available
in Power BI and Analysis Services tabular. You learned some key concepts:

• The Model view (in Power BI) and the Diagram view (in Visual Studio) give you
a graphical representation of the tables and their relationships in the data model
and allow you to set plenty of properties for both the tables and their columns.

• The purpose of the filter relationship is to propagate filters from one table to
another. The propagation works only via one column and is implemented as an
equi-join.

• The filter relationship between two tables is represented by a continuous line (for
active relationships) or a dashed line (for inactive relationship). The latter can be
activated in a DAX measure, which is discussed in Chapter 10.

• The cardinality of a relationship is represented by “1” or “*” (many). You can
create filter relationships of the types one-to-many (the most common), one-to-
one, and many-to-many. Many-to-many relationships can be created uninten‐
tionally when columns contain duplicates by mistake. One-to-one relationships
can be created unintentionally when both columns contain only unique values.
Double-check those cases.

• A filter relationship has a direction. A filter can either be propagated from one
table to another or in both directions. Bi-directional filters risk making a data
model slow. Situations could arise in which you can’t add another table with a bi-
directional filter when it would lead to an ambiguous model.

You now know how important a data model is in Power BI. Chapter 6 shares practi‐
cal knowledge of how to shape it into a dimensional model.
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CHAPTER 6

Building a Data Model in Power BI

Because Power BI is a data model-driven tool, it’s important to ensure the informa‐
tion you display and interact with is modeled correctly. In this chapter, you will learn
pros and cons of building a data model in Power BI. You will learn “how-to” tech‐
niques in DAX, Power Query, and SQL in Parts III, IV, and V. Here, I talk about the
principles and options in the Model view of Power BI Desktop.

I begin with a short recap on normalizing and denormalizing before broaching calcu‐
lation writing. As you will see, certain types of calculations can’t be done before load‐
ing the data into Power BI but only by defining the formula inside of Power BI.

Power BI can do common calculations for you without a specified formula. It’s not a
good idea to depend on this behavior, though. Always explicitly write even simple
formulas.

I recap the importance of having a dedicated Date (and maybe Time) dimension in
your Power BI data model. You will learn two ways of modeling role-playing dimen‐
sions and that slowly changing dimensions need to be modeled outside of Power BI
(in a physical data warehouse layer). I end this chapter with a description of how to
define and use hierarchies.

Let’s begin with the most important part: normalizing and denormalizing.

Normalizing and Denormalizing
I introduce normalizing fact tables and denormalizing dimension tables to transform
any given data model into a star schema in “Data Model” on page 75. In the “Nor‐
malizing” and “Denormalizing” sections of Chapters 10, 14, and 18, I cover actual
techniques for achieving this task in DAX, Power Query/M, and SQL. But in this
chapter, I demonstrate different modeling approaches and their effects in Power BI.
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1 The examples in this section use files Single Table.pbix, Snowflake.pbix, and Star.pbix from the book’s GitHub
repository.

I want to introduce Adventure Works, a fictitious sports article retailer that makes
the majority of its revenue selling bikes on three continents both via resellers and
directly through its web shop. Many examples in this book are based on this com‐
pany’s data warehouse (database AdventureWorksDW), mainly the tables
FactResellerSales, DimDate, DimSalesTerritory, and DimProduct:

FactResellerSales

A table with sales made via resellers

DimDate

A table containing one row per day of a calendar

DimSalesTerritory

A table containing the sales regions, grouped into countries and continents

DimProduct

A table containing the goods, whose rows are assigned to DimProduct Sub

category and DimProductCategory, to shape a product category hierarchy

For the following demonstration, I inflate the FactResellerSales table of the data‐
base AdventureWorksDW so it contains 18m rows (instead of the original 60,000 rows),
and then I added this table and DimDate, DimProduct, DimSubcategory, DimProduct
Category, and DimSalesTerritory and created three models:1

• The model where I merge all information into one single table containing all the
information has a size of 200 MB (OBT).

• If I keep the tables as they are to form a snowflake schema, the model size is 84
MB, including 704 KB for relationships.

• When I denormalize the three product-related tables into one, but keep all the
other tables to form a star schema, the model size is, again, 84 MB with only 656
KB for relationships.

You might think that 200 MB is nothing to worry about, and I’d agree. Any laptop
(and server, of course) will easily handle a 200 MB database. Any report on such a
model will be fast enough. But that isn’t the point. The point is that, by bringing the
Adventure Works data model into a proper shape, you can reduce the size by half or
two-thirds without losing information. That means you can use your existing hard‐
ware for hosting double or three times the information. Opening the .pbix file on
your local machine will be faster. You can keep your premium subscription almost
three times as long before you need to upgrade to the next bigger one. And so forth.
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2 This section’s examples use the files Financials Dimensional Model Surrogate Key.pbix, Financials Dimen‐
sional Model.pbix, Financials Filter Dimension Surrogate Key Measures.pbix, Financials Filter Dimension Sur‐
rogate Key.pbix, Financials Filter Dimension.pbix, Financials OBT Measures.pbix, and Financials OBT.pbix
from the book’s GitHub repository.

The single-table model doesn’t spend any bytes on storing information about rela‐
tionships because there are no relationships. The difference between the star and the
snowflake schema is only a few kilobytes. While this difference is not impressive in
this example, it again shows that reports built on a snowflake schema tend to be
slower than reports built upon a star schema; some filters will need to traverse a
longer distance over more tables.

Long story short: it’s important to find the optimal compromise between normalizing
and denormalizing your data model. The good news is that you don’t have to invent
something new. You can rely on a concept that has proved its usefulness over the past
decades: a star schema, where you normalize all your fact tables and denormalize all
your dimension tables.

The other example I like to use is a single Excel file provided by Power BI as a demo:
Financials.2 It contains the following columns:

• Segment
• Country
• Product & Manufacturing Price
• Discount Band
• Units Sold, Sale Price, Gross Sales, Discounts, Sales, COGS, Profit
• Date, Month Number, Month Name, Year

This is the classic example of OBT: all information is joined into a single table—
which is less than optimal when it comes to Power BI (see “A Single Table to Store It
All” on page 103). Again, I took the time to transform this table into different models.
Here are some different approaches and their outcomes:

• Keeping the single table as it is results in 5.5 MB of total model size.
• Adding dimension tables (for Segment, Country, Product, Discount Band, and

Date). The added tables occupy 5 MB, resulting in a 10 MB total model size.
• I add just one table (which contains all combinations of dimensional values) and

a combined business key (where I concatenated all business keys, but could
remove the single business keys from the original table). This two-table version
of the data model occupies only 319 KB! Many thanks to Ana María Bisbé York
for bringing my attention to this solution.
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This two-table version is what Ralph Kimball calls a Junk Dimension. As happens so
often, I like Mr. Kimball’s ideas but not their names. I don’t think report users would
be eager to add a column to a report that comes from a table named Junk Dimension
or just Junk for that matter. I therefore name a table that contains the combination of
dimensions just Filter instead. This concept works very well for dimension tables,
which don’t really have a lot attributes (like in the case of the Financials example,
where every dimension, except for the product table, which also contains the Manu‐
facturing Price, only has one attribute, which is simultaneously the table’s key).

Again, look at this approach as another tool when it comes to finding the optimal
data model. Build different proofs-of-concepts, before you head into one direction.
The mileage for every concrete data model may vary, due to the characteristics of the
database engine behind Power BI. What works well in one situation does not neces‐
sarily work well with different data.

Calculations
Calculations can be done in either DAX, Power Query, SQL, or any data source. If
the result of a calculation is not additive (see the following list), then the calculation
must be done as an explicit measure in DAX in order to achieve a meaningful result.

You (or your colleagues) can add calculations at several possible steps:

Adding a column in the data source
Using a formula in an Excel file, adding a column to a table or view in a database,
etc.; you’ll learn how to add calculations in relational databases in “Calculations”
on page 376. The result of such a calculation is available to everybody with access to
the data source.

Adding a custom column in Power Query
If I need to persist the result of a calculation and cannot do so in the data source,
then Power Query is my next best option. The result will only be available inside
this Power BI data model (and to everybody with access to the data model), and
you will learn how to in “Calculations” on page 273.

Adding a calculated column in DAX
If you feel more confident in creating a column in DAX instead of Power Query,
than you will choose this option.

Creating a measure in DAX
For semi-additive and non-additive calculations, a calculated measure written in
DAX is the only option.

It’s a good idea to add a calculation as early as possible in your stream of data (as far
upstream as possible). If you create a calculation in Power Query or DAX, the result
can only be used within the report (or reports built on top of this Power BI semantic
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model). If you add the calculation in the data warehouse, other reports, models, and
tools (and therefore a broader range of users) will benefit from the calculation as well.

Keep in mind, though, that only additive calculations can be calculated in the data
source, Power Query, or as a calculated column. Semi- and non-additive calculations
must be calculated as measures (and therefore in DAX, as laid out in “Calculations”
on page 190).

But there is another option: numeric columns in a data model have a property called
default summarization, as shown in Figure 6-1. There, you choose one of the follow‐
ing options:

• Don’t summarize
• Sum
• Average
• Minimum

• Maximum
• Count
• Count (distinct)

Figure 6-1. Default summarization

A similar list of options is available within visuals, as well (see Figure 6-2), allowing
you to keep the default or define a different calculation for the scope of this visual. It
allows the same options, plus standard deviation, variance, and median as well.
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Figure 6-2. Visual summarization

This property is clearly aimed toward Power BI beginners: even without learning
DAX, Power Query, or SQL, you can create (simple) calculations. Through this set‐
ting, Power BI creates an (implicit) measure for you, by applying the chosen calcula‐
tion on top of the column. This implicit measure is not visible anywhere—you can
neither view nor edit it.

But first, you, dear humble reader, are not a beginner anymore. And second, this fea‐
ture has certain drawbacks:

• Default summarization doesn’t work in all tools consuming a data model created
in Power BI (in Excel, this was first added in 2023, for example). In general, tools
accessing the semantic model with the MDX query language will ignore this set‐
ting. As a consequence, you won’t be able to show the aggregated value of a
numeric column, even when with default summarization switched to something
besides “Don’t summarize.”

• If you start using calculation groups, all implicit measures are voided. Visuals in
which you used an implicit measure, will show an error message. You need to
manually fix those visuals by first explicitly creating the measures and then
exchanging the columns with the measures.

You never can be sure if your data model’s users will use Excel (or any client that uses
MDX instead of DAX to query), or if you’ll want to introduce a feature in the future
that might prohibit implicit measures (e.g., calculation groups). It’s best to hide
numeric columns and define explicit measures instead. “Calculations” on page 190
covers how to do this.
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On top of that, Power BI automatically sets a default summarization mode for every
numeric column, either by setting it to Default (which sums the value) or Count (for
the primary and foreign key columns used in filter relationships). The Default can
lead to confusing numbers in your report for columns like Year or Month number; it
doesn’t make sense to add such numbers. The Count can be meaningful, but I’d pre‐
fer to create an explicit measure with a good name like Count of Customers instead.

Therefore, it’s important to take the time to scan through all numeric columns in
your data model and perform some assessments:

• Columns whose values should be aggregated should be hidden. Create an explicit
measure. In some cases, it might make sense to create more than one explicit
measure (one for the sum, another for the average, for example).

• For columns whose values should not be aggregated, default summarization
must be set to “Don’t summarize.”

While you’re scanning through your columns, use the opportunity to take a look at
other properties as well. The following are not directly connected to calculations, but
influence the behavior of the column’s values in a visual:

Data type
Data type defines what kind of values can be stored in this column (and, there‐
fore, influences the storage format).

Format sets
Format sets how the value is shown. You can choose one of the variety of options
or use a custom format string.

The Format property doesn’t change the data type. This can be
a problem for columns of any data type, but especially with
columns of data type Date/Time. If you change the (display)
format to only show the date portion but keep the data type as
Date/Time (instead of Date), then the time portion will still be
stored in the model. The column will occupy unnecessary
space in memory and on disk.
You might get into trouble when you create a filter relation‐
ship between columns with Date/Time and Date properties
when the former indeed contains timestamps. When the filter‐
ing is propagated, the Date column’s time will be midnight,
while the Date/Time-type column’s time will be the actual
timestamp—and no related columns will be found.
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3 The examples in this section use the Auto date-time.zip file from the book’s GitHub repository.

Data category
Some visuals will react to the “data category” property and show the content in a
certain way. For example, if you categorize something as an address or city, then
Power BI will choose a map visualization by default.

Sort by column
Typically, you want the month names not ordered alphabetically (which would
show “April” first and “September” last) but ordered by month number. The
option “Sort by column” enables exactly this: by choosing column Month Number
as the “Sort by column” of Month Name, all requests to order by Month Name will
automatically be changed to order by Month Number instead—and “January” will
be the first and “December” the last month, as is usually desired.

Time and Date
Having a Date dimension is crucial for many data models; therefore, you need to take
extra care of this dimension table.

Turning off Auto Date/Time
Power BI can automatically create a date table for you.3 It will contain four columns:
Year, Quarter, Month, and Day, which are grouped nicely in a hierarchy. In
Figure 6-3, you can see that I added a Date column with the option Date Hierarchy
enabled. You can choose Date instead, to remove the hierarchy and show a single col‐
umn containing the date instead. If you do not want to show the Quarter for exam‐
ple, you can just remove it by clicking on the X to the right of Quarter.

Figure 6-3. Auto-generated date hierarchy

In Figure 6-4 you see the content of the four hierarchy levels of the auto-generated
date table (and column Amount).
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Figure 6-4. Auto-generated date hierarchy shown in a table visual

Unfortunately, this auto-generated date table comes with a bunch of disadvantages:

• You can’t add, change, or remove columns from the hierarchy.
• Power BI will create such a table for every column of data type Date or Date/Time

in your data model. This sounds like an advantage but is not: the memory foot‐
print of your data model will increase unnecessarily.

• If you later turn this feature off or create a relationship between this column and
your date table, it will change your visuals or even break them.

If your report creators won’t ever use the Quarter column in reports, they need to
add the hierarchy and remove the column Quarter from the visual every single time.
If they need the Month in a different format (like Sep, 09, or September 2023) or
expect the Day column to contain the full date or include the weekday, you can’t use
the auto-generated date table but need to create your own date table (which you will
learn in the “Time and Date” sections in Chapters 10, 14, and 18).

Power BI will automatically detect a date range by looking at the earliest and most
recent entry and then create a (hidden) date table, covering the beginning of the first
year (January 1) until the end of the last year (December 31) for each and every
column of data types Date and Date/Time, even when you don’t intend to use this
hierarchy for this column. This can lead to multiple huge tables in your data model
with a widespread range of dates. For example, if you load the birth date of people
into your data model, the date table created for just this column will easily cover
many decades; if your data source uses placeholders like January 1, 1900, December
31, 9999, or January 1, 0000, the automatically created date tables will easily occupy a
remarkable amount of space in your Power BI file and in memory. These auto-
generated date tables are hidden in Power BI Desktop; you need third-party tools to
see them. Figure 6-5 was created with DAX Studio and shows a list of these tables
(with prefix LocalDateTable).
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Figure 6-5. Auto-generated date tables shown in DAX Studio

According to the official documentation, Power BI supports date
ranges from January 1, 1900 to December 31, 9999. I could, how‐
ever, successfully create calculated columns in DAX starting in the
year 0100 (not that I ever need to, but I was curious). Values with a
year earlier than 0100 (or subtracting days from 0100-01-01) are
automatically moved into the 20th century in DAX: 0000 is inter‐
preted as 1900 and 0099 as 1999. You can’t create negative years
(e.g., for years in the BC era).

VertiPaq Analyzer, available in DAX Studio, can also show you the size of these
tables. As you can see in Figure 6-6, the five tables with prefix LocalDateTable con‐
tain between 365 and 3,615,900 (!) rows, occupying something between 60 KB and
269 MB. The biggest table was created for a column containing dates between Janu‐
ary 1 of year 100 and December 31, 9999. This might be an extreme example, but
demonstrates what can happen below your radar when you do not turn the auto date/
time setting off.
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Figure 6-6. VertiPaq Analyzer exposes the size of the auto-generated date tables

If you turn the auto date/time setting off after somebody has included the hierarchy
in a visual, the visual will change. Figure 6-7 shows how Figure 6-4 changed.

Figure 6-7. The same visual, but with auto date/time turned off

On top of that, referencing one of the four parts of the auto-generated hierarchy
(Year, Quarter, Month, and Day) in a DAX calculation has a special syntax, like
Sales[OrderDate].Year. The Year isn’t referenced as a column but as a variation of
the Date column.

If you change your mind and create your own Date table, it will void all measures that
use this special syntax, which can easily happen if you implement time-intelligence
calculations (see “Calculations” on page 190). Working measures are suddenly voided,
displaying an error message like this: “Column Reference to Date in table Sales can‐
not be used with a variation Year because it does not have any.” Your data model’s
users will see a gray box with an error message instead of the visual they’re expecting
(Figure 6-8), announcing a problem with a measure. This might not only be the case
with measures defined in the data model (which you have under control and can fix).
Measure definitions inside reports and queries can also be affected outside your data
model, created by users or their tools.
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Figure 6-8. The same visual, but with auto date/time turned off, containing a voided
measure

Do not click “Fix this” because it will “fix” the visual by removing all voided columns
or measures. That’ll get rid of the error message but make it difficult to find which
measure to add back after it’s corrected. Correcting the measure isn’t too hard: you
need to change parts of the code from something like Sales[OrderDate].Year
(which references the variation of the fact table’s date column) to something like
Date[Year] (which references the Year column of your Date table).

I consider it dangerous not to disable auto date/time from the beginning, when you
start creating a data model. Turn this feature off for individual files via File →
Options → “Options and Settings” → Current File → Data Load → Time Intelligence,
as shown in Figure 6-9.
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Figure 6-9. Current file’s data load options for time intelligence

To make sure this feature is turned off by default on your computer (which I strongly
recommend), go to File → Options → “Options and Settings” → Global → Data Load
→ Time Intelligence. Figure 6-10 shows this setting.

Figure 6-10. General data load options for time intelligence

In Chapters 10, 14, and 18, you’ll find scripts to create your own date table. These
scripts give you full control over the columns and their format.

Marking the Date Table
Another thing you shouldn’t overlook is explicitly marking your date table as a date
table. I recommend getting into the habit of doing this for all your date tables, even
though it’s not always necessary, because it won’t do any harm and it’ll be easier to
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remember if you do it all the time. You must mark the date table when both of the
following conditions are met:

• You (or your report creators) want to use DAX’s built-in time intelligence
functions.

• You aren’t using a column of data type Date or Date/Time to create the filter
relationship. (In data warehouses, it’s best practice to use a column of data type
integer as the primary key of the date table, for example.)

If both conditions are met, DAX’s time intelligence calculations won’t work properly
unless you explicitly mark your date table. Luckily, it’s very easy to do:

1. Select the date table.
2. Choose “Table tools” → “Mark as date table” in the ribbon.
3. Select the date column from the list box in the dialog box.

The “Date column” dropbox will only list columns of data type Date or Date/Time.

Figure 6-11. Marking the date column of your date table

Now you’ve made sure that your data model has an explicit date table. In some data
models, however, more than one meaning is possible for the shown or selected date.
The report consumer might filter on dates when the goods have been ordered or on
dates when the goods have been shipped. In this case, the Date table might play more
than one role. The next sections cover two different solutions for this problem: role-
playing dimensions and slowly changing dimensions.
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4 The examples in this section use the Date role-playing.pbix and Datemultiplepbix files from the book’s GitHub
repository.

Role-Playing Dimensions
A dimension in a data model can play more than one role. It’s most typically seen
with the date dimension, although multiple roles are seen elsewhere as well. Let’s
assume that the Sales table stores both an Order Date and a Ship Date column.4

You have two options to make this work in the data model:

Create two relationships between the Date table and the Sales table
One filter relationship uses the Ship Date column of the Sales table. The second
one uses the Order Date column. This is shown in Figure 6-12. You’ll need to
use DAX to create dedicated measures per relationship in which you activate the
inactive relationship because only one of the two relationships can be marked
active. “Role-Playing Dimensions” on page 206 goes over all the details. You’ll
end up with only one dimension table, but several measures.

Duplicate the Date table and create two relationships from there
Name one copy of the Date table Order Date and the other Ship Date. Create
one relationship between the Order Date table and the Sales table and another
between the Ship Date table and the Sales table (shown in Figure 6-14). You
don’t need to build additional versions of measures because you have only active
relationships. In the end, you’ll have several versions of the dimension table, but
only single versions of the measures.

Let’s explore the differences between the two options. Both options cover slightly dif‐
ferent use cases and requirements:

Figure 6-12 shows a model with two tables, Date and Sales, and the two relation‐
ships between them. One is based on the Sales table’s Ship Date column and one is
based on the Order Date column. One of the two lines representing the filter rela‐
tionship is continuous and the other is dashed. The continuous one is an active rela‐
tionship and the dashed lined represents an inactive relationship.

Only one relationship (filter path) between two tables can be active. You can only add
inactive relationships because, if you had two active relationships, the model would
be ambiguous. Should a filter on the Date table’s Year column filter all the sales that
took place this year or that were shipped this year? Should the filter be applied to both
so we only get to see sales that were ordered and shipped in the same year? To avoid
ambiguity, Power BI will only respect the active relationship—you need to choose
which relationship should be active. If you want to make a different relationship
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active, then you first have to deactivate the active one. At one point in time, only one
relationship path can be active.

Figure 6-12. The Date table and the Sales table have two relationships

Why would you create additional relationships in the data model if they can’t be
active? There are a few reasons:

• Creating inactive relationships will make it transparent that this is a valid way of
propagating a filter from one table to the other.

• The storage engine inside Power BI will add extra (hidden) structures/informa‐
tion to the data model to make filter propagation based on this relationship faster
(compared to when you don’t define a relationship at all)

• You can also activate an inactive relationship inside a calculation done in DAX.

The USERELATIONSHIP function can be used to activate an inactive relationship. One
of the solutions described in “Role-Playing Dimensions” on page 206 adds only one
generic Date table to the data model. You then decide inside the formula of a mea‐
sure if one or the other relationship should be used for the calculation of this mea‐
sure. USERELATIONSHIP will temporarily activate the chosen relationship (and
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temporarily inactivate the existing active relationship). For example, you can create
one measure for the default relationship and name it [Order Quantity] and then
create another measure with the same formula where you activate the relationship on
the Ship Date column to calculate the [Ship Quantity].

The advantages of this approach are that you only load one version of the dimension
table (e.g., Date) and that you can use this dimension in visuals where you can then
compare the same value/measure side-by-side based on each of the two role-playing
options. For instance, in the USERELATIONSHIP example, you can compare the [Order
Quantity] against the [Ship Quantity] side-by-side based on dates, as shown in
Figure 6-13.

I intentionally used USERELATIONSHIP in both of the measures, although it would be
sufficient to use it only to activate the inactive relationship (the one on [Ship Date]
in my example). I do this as a fail-safe in case somebody changes which of the rela‐
tionships are (in)active.

Figure 6-13. A single Date table and two measures

Alternatively, you can implement a solution that works without DAX. Then you need
to duplicate the Date table under different names (you can learn how to do this in
Chapters 10, 14, and 18).

In Figure 6-14, you see this implemented for the previous example. You’ll end up
with several dimension tables (one per role, e.g., Order Date and Ship Date) that
have each an active relationship with the Sales table. For example, the Order Date
table’s Order Date column will have a filter relationship to the Sales table’s Order
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Date column. Similarly, the Ship Date table’s Ship Date column will have a filter
relationship to the Sales table’s Ship Date column.

Figure 6-14. A model with two dedicated date tables

Following this approach, the report user can choose from two filters for each, the
Order Date and Ship Date, and use one single measure. You can also create a matrix
visual showing when goods have been ordered and compare that to when goods have
been shipped. Both dimensions filter the identical measure, as shown in Figure 6-15.

Now you’ve learned that the difference isn’t only whether you use DAX but that the
two solutions give you different options in the reports. If you want to cover all use
cases, you can, of course, build a model with three date tables (Date, Order Date, and
Ship Date), four filter relationships to the Sales table (two from the Date table and
one each from tables Order Date and Ship Date), and three measures to calculate
the different versions of quantity.

In this section, I talked about when dimensions play different roles within a data
model. Next, you’ll learn how to keep track of changes for a dimension.
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Figure 6-15. Two independent dimensions/filters and one measure

Slowly Changing Dimensions
To implement a solution for slowly changing dimensions, you need the possibility to
discover changes and selectively update information in your analytical database.
There is no way to compare the existing data with the new data during a data refresh
in Power BI. You can only refresh a whole table, but not selectively certain rows in
the table. Therefore, you need to implement slowly changing dimensions in a (physi‐
cal) data warehouse.

If slowly changing dimensions were implemented correctly in the data source, there
is nothing special to do in the Model view, except for creating the filter relationships.
All the dimension tables will already track the historic changes. And the fact tables
will refer to the primary key of the dimension’s row matching the point in time of the
fact table.

Your task in Power BI is just to create a filter relationship between the fact table and
the dimension table on the dimension table’s (surrogate) key column (like in
Figure 6-16, where the Product table and the Reseller Sales table are connected
simply via the Product Key column).5 All rows in the fact table will always contain
the surrogate key of the dimension’s row version that was active at the point in time
when the fact occurred. So, there’s no need for a complicated logic to find the right
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version of the dimension table’s row when joining with the fact table. An ordinary
filter relationship will be sufficient.

Figure 6-16. Filter relationship between the table Product and the table Reseller
Sales

If your report users ask you to let them choose which version of a dimension to use, I
have a solution for you. By default, the numbers for the actual year are displayed
according to the dimension’s current version, and the numbers for the previous year
are displayed for the dimension’s previous year’s version. By introducing a detached
table (see Product Version in Figure 6-16) containing dates or version numbers and
some logic in a DAX measure, you can implement a model where the user can choose
a version and override the relationship between the fact table and the dimension
table. You’ll learn to implement this case in “Slowly Changing Dimensions” on page
207.

Many data models contain some sort of hierarchical data. This is not so true for
Power BI, but it can be convenient for the report user if they can find predefined
hierarchies in the data model.
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Hierarchies
In multi-dimensional cubes, defining hierarchies is a very crucial step. Analysis Serv‐
ices Multidimensional (the predecessor of tabular models like Power BI) uses this
information to (automatically) calculate and store aggregations of the fact table’s data
to speed up the queries. Lack of definitions (or mistakes) can result in slow queries.

In Power BI and the Analysis Services tabular model, the definition of hierarchies
plays a more secondary role. They make creating reports easier because a user can
add several columns with just one click—but the lack of definitions of hierarchies
doesn’t influence the size of the data model or the speed of the reports (at least not at
the time of writing this book).

Nevertheless, the goal of data modeling is indeed making report creating easier.
Therefore, you should still check your data model for hierarchies. In natural hierar‐
chies, something is part of something bigger: a day is part of a month, which is part of
a year. Upper Austria is part of Austria, which is part of the European Union.

An organigram shows who is reporting to who within an organization (and is an
example for a parent-child hierarchy). Sometimes reports show things like the avail‐
able colors per T-shirt size—this is not a natural hierarchy (most colors are available
in all T-shirt sizes), but if this is a common request, I’d also define a hierarchy within
Power BI for this case.

Power BI and Analysis Services tabular don’t directly support parent-child hierar‐
chies. You can add columns from within one table as a part of a hierarchy, but Power
BI can’t automatically find its way through, e.g., the Manager ID column of one row
to get to the Employee ID column of another row and grab the information. The way
around this is that we, the data modelers, have to dissolve the parent-child hierarchy
by adding all information of the ascendant levels to every single row. We need to add
a column with the CEO, a column for the VP level, and so forth, to the employee
table. In the “Hierarchies” sections of Chapters 10, 14, and 18, I demonstrate how to
create the content for those columns.

To make the report user’s life easier (the ultimate goal of a data model), you can
group columns together to form a hierarchy. This saves the user from finding every
single column to add to a visual—they can instead add the hierarchy (and thus all
columns within it). This feature is independent of the type of the hierarchy. The
important part is that all levels that should form the hierarchy be separate columns
within the same table. If the columns are spread out over several tables, you can’t
define a hierarchy. You must first denormalize the columns into a single table. If you
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decide against denormalizing, the user can still add individual columns to a single
visual to show hierarchical information.6

You define a hierarchy in the Model view:

1. Right-click a column to Create Hierarchy.
2. Choose “Select a column to add level,” as shown in Figure 6-17.
3. Click “Apply Level Changes” when you’re finished to ensure that you don’t lose

the whole definition.

Figure 6-17. Definition of hierarchy “Product Hierarchy”

Key Takeaways
In this chapter, I laid out typical tasks that I’ve found I need to complete in almost
every single Power BI data model I build. You learned the following:

• Bringing your data model into a star schema by denormalizing all dimensions
and normalizing all your fact tables is the most optimal way to leverage data
compression and report performance.

• Relying on implicit measures (via the default summarization property of
numeric columns) is considered bad practice and limits the capabilities of your
data model in some tools. It might compromise reports when you introduce cal‐
culation groups later.

• Taking care of the properties of your numeric columns is important (e.g., setting
the default summarization to “Don’t summarize” or hiding the numeric columns
for which you created an explicit measure). You also want to take care of the
“Sort by column” option for some text columns (like month names).
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• Auto date/time is turned on by default in Power BI Desktop, but it’s considered
bad practice to enable it because of its inflexibility and the potential size of the
date dimensions created for you. Turning this setting off later might break the
syntax of your measures or change the look and feel of existing visuals. That’s
why you should turn it off from the beginning.

• Make sure to understand both role-playing dimensions and apply one or the
other (or both concepts) in your data model.

• Usually, you don’t need to pay attention to slowly changing dimensions in your
data model; all the logic is implemented in a persisted data warehouse. Only in
rare situations will you face the requirement that the report user needs to choose
the version of the dimension to show data based on that version.

• Hierarchies are of great importance in many data models. Natural hierarchies are
easy to implement by fully denormalizing a dimension (which you should do
anyway). Parent-child hierarchies need to be persisted into one column per level.
As soon as you have the different levels as dedicated columns within one table,
it’s easy to add them to a hierarchy.

Now that you know how to build the basic parts of a data model in Power BI, it’s time
to dig into real-world use cases and how to solve them via the data model.
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CHAPTER 7

Real-World Examples Using Power BI

In Chapters 5 and 6, I introduce the basic data modeling features of Power BI and
typical tasks to transform your data into a useful, performant, and easy-to-
understand data model. Now it’s time to take the next step and look at challenges that
more advanced data models must face.

This chapter makes clear why Microsoft’s decision to make Power BI a data model–
driven tool (as opposed to a report-driven tool) was a brilliant decision. Instead of
building transformations specific to the report you need to create, Power BI enables
you to build a more generic solution, which can solve very complex challenges. All
problems discussed in this chapter would be harder to solve in a report-driven tool.

This chapter’s use cases are independent of each other. All demonstrate different
advanced functionalities in Power BI. Mastering them will allow you to solve others
problems as well. Here’s a quick overview:

• The first use case (binning) demonstrates how to show a higher-level grouping of
a value (e.g., small, medium, large) instead of the actual value, which is some‐
times more helpful.

• In “Budget” on page 135, you’ll learn about multi-fact data models and their chal‐
lenges. The data model in this example will contain more than one fact table, as a
budget is usually created on a different granularity level than the actual values.

• The available solutions to implement multi-language models didn’t satisfy one of
my customer’s needs, so I designed and implemented one myself. I describe it in
“Multi-Language Model” on page 139.

• In another case, I was faced with a problem—key-value pair tables—during one
of my projects and developed a solution to handle them gracefully, which I share
here.
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• DirectQuery for Power BI semantic models and Analysis Services finally became
generally available in April 2023. DirectQuery basically means that you don’t
import data into Power BI; Power BI directly queries the data source whenever a
report page is shown or has a filter changed by a user. This feature helps tremen‐
dously in combining self-service BI and enterprise BI, as you will learn in “Com‐
bining Self-Service and Enterprise BI” on page 150.

Keep in mind that you still need to start from a star schema to solve advanced or
challenging use cases. It can be difficult, even impossible, to solve challenging use
cases in which you start from a data model that violates the principles of a star
schema.

Binning
In this section, I discuss two options that should be familiar from “Binning” on page
58, and use the Binning.pbix file to demonstrate:

• A lookup table with all possible values
• A lookup table describing the value ranges of a bin

Lookup Table
If you have a lookup table containing a row for every possible row of the value plus
the value to show as the bin, you only need to create a single-directed, one-to-many
filter relationship to the value of the fact table. In Figure 7-1, the Bin Table’s primary
key Quantity has a filter relationship with the Quantity column of the Sales table.
Quantity here has the dual role of the actual quantity and the foreign key to the Bin
Table. The latter role may look a bit unusual but has a good performance and is
therefore more than acceptable.

Figure 7-1. Relationship between the fact and the bin table
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Range Table
If your lookup table contains not all distinct values, but the lower and upper range of
the bin instead, you can’t create the proper filter relationship in the Model view—
Power BI only allows for equi-joins. You can (and need to) solve this with the help of
DAX instead. Figure 7-2 shows two unrelated tables. (See “Binning” on page 216 for
more about this.)

Figure 7-2. Relationship between the fact and the bin range table

In both cases, make sure to add a column that contains the sort order to the table
containing the bins. Usually, people expect the bins to be ordered in a certain way
(which might not be alphabetical). For example, low, average, high (instead of in
alphabetical order—average, high, low). Click the bin’s text column and select “Col‐
umn tools” → “Sort by column” from the ribbon and select the column that contains
the values for the proper order.

The next section is about when you need more than one fact table in your data
model. It is a generic use case, and I will demonstrate it on the basis of a budget.

Budget
As a model-driven tool, Power BI allows for as many tables of any type to be added to
the data model as you need to solve your business problem. Therefore, creating a
multi-fact data model (with, e.g., one fact table for the actual values and another fact
table for the budget) is no problem at all. The challenge is to find the best way to
bring the budget table (which has a different granularity level than the table for the
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actual values) into a relationship with the rest of the tables. So the budget use case is
only a model for how to implement any multi-fact data model.1

To solve this challenge, you have to chose between three potential solutions available
in Power BI, which have their own advantages and disadvantages:

Keep Budget and Product tables
Because the budget is on, e.g., the product category level, but not that of the indi‐
vidual product, you don’t create a relationship between the Budget table and the
Product table at all (see Figure 7-3). You keep the Budget table and Product table
disconnected. The solutions from “Binning” on page 134 can be applied here too:
using DAX to create the relationship on the fly where needed (see “Binning” on
page 216).

Figure 7-3. No relationship between tables Budget and Product

Create a relationship between the Budget and Product tables
Alternatively, you can create a relationship between tables Budget and Product
(see Figure 7-4).

136 | Chapter 7: Real-World Examples Using Power BI

https://oreil.ly/Budgetpbix


Figure 7-4. A many-to-many relationship between tables Budget and Product

After doing so, you’ll receive the following message (see Figure 7-5):

This relationship has cardinality Many-Many. This should only be used if it is
expected that neither column (Product Group and Product Group) contains
unique values, and that the significantly different behavior of Many-Many rela‐
tionships is understood. Learn more

It’s only a warning, so you can successfully create such a relationship by clicking
OK. It’s important, though, that you fully understand (and accept) the conse‐
quences of such a limited relationship (see “Relationships” on page 88). One is
that no blank row is shown to represent missing values—they’re just skipped.
When you follow all best practices, there should be no missing values anyway.
Another consequence is that the function ALL in DAX won’t remove a filter from
related tables. In this example, that means that removing filters from the Budget
table won’t remove the filter on the Product Group column of the Budget table.

Make sure to make this relationship single-directed (Product filters Budget) to
avoid an unnecessary bi-directional filter.
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2 A full-sized screenshot is available online.

Figure 7-5. Create a relationship between tables Budget and Product2

Use a bridge table
You can use a bridge table (see the “Budget” sections of Chapters 11, 15, and 19
for how to build such a table) and create two one-to-many relationships between
the bridge table and the two tables (as shown in Figure 7-6). If Power BI should
propagate a filter from the Product table to the Budget table, you need to set the
relationship between the Product table and the bridge table to Both. This is one
of the rare cases where the option of a bi-directional filter is good (you shouldn’t
use it as your default filter direction). The two one-to-many relationships over
the bridge table won’t have the disadvantages described for the many-to-many
relationship. That’s why a bridge table is usually my preferred solution.
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Figure 7-6. Using a bridge table between tables Budget and Product

In the next section, I demonstrate the solution I built for a customer that gives con‐
trol over the display language to the report user.

Multi-Language Model
To build a data-driven multilingual data model as described in “Multi-Language
Model” on page 63, you need to take care of the following things in Power BI:

• A dimension table for the available languages
• Visual elements (e.g., the report headline)
• Text-based content (e.g., product names)
• Numerical content (e.g., values in different currencies)
• Metadata (e.g., the names of tables and columns)
• The Power BI Desktop’s UI (both the standalone and Windows Store versions)
• The Power BI service UI
• The Power BI Report server UI

This section’s examples use Multilanguage.pbix from GitHub.

Dimension Table for the Available Languages
You need to create a table that contains a key and a display name for the available
languages. I recommend setting the slicer/filter to single-select on all reports; it
doesn’t make sense to select more than one language.

Table 7-1 has two languages: English and Klingon. You can use any value for column
Language ID. I use the short names used by Azure Cognitive Services because I
demonstrate its usage in “Multi-Language Model” on page 313 to automatically trans‐
late texts into different languages.
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Table 7-1. A language table

Language ID Language Desc
en English

thl-Latin Klingon

Visual Elements
You create a plain vanilla relationship between the Language table and the table con‐
taining the texts for the visual elements for all languages (see Figure 7-7).

Figure 7-7. The Language table has a filter relationship with the Textcomponent table

I prefer having the table with the texts for the visual elements pivoted. That way, I
have one column per visual element with one row per language. Because both the
Textcomponent and Language tables have one row per language, the cardinality is
one-to-one (see Figure 7-9). Table 7-2 shows what this might look like.

Table 7-2. A (pivoted) table containing the texts for the visual elements

Language ID SalesOverview SalesDetails
en Sales Overview Sales Details

thl-Latin QI’yaH qeylIS belHa’

If you don’t pivot this table, the cardinality of the relationship between tables
Language and Textcomponent would be one-to-many instead, and you’d need to add
a filter for the text box where you show the display name to filter on the right text
identifier (see Figure 7-8).
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Figure 7-8. Filter on unpivoted table for visual elements

Text-Based Content
Now comes the complex part, which is the heart of my data-driven solution. In my
solution, all dimension tables end up having a composite key composed of the
dimension’s key plus the language key. In order to identify a single row of a dimen‐
sion table, it must be filtered on both the dimension key and the language key. The
fact table references the dimension table only on the dimension key through a regular
one-to-many relationship.

The language (key), on the other hand, is chosen by the report user via a slicer. To
model this relationship is tricky. Of course, you can add a one-to-many relationship
between the language table and the dimension table. But it turns out that this works
only for the first dimension table. As soon as you add the relationship from the lan‐
guage table to the next dimension table, Power BI will complain about ambiguity.
Adding another relationship of this kind would create more than one path from the
language table to the fact table (one path is over the first dimension, the other path
over the next dimension).

Power BI won’t allow you to create an ambiguous model. It forces you to apply the
tricks we learned when binning: leaving the dimension tables and the language table
disconnected (as shown in Figure 7-9) and using DAX to create the relationship via
function TREATAS, as you will learn in “Multi-Language Model” on page 222.
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Figure 7-9. The Language table is disconnected from the dimension tables

Numerical Content
The table containing the exchange rates is usually disconnected (shown in
Figure 7-10). Finding the correct row in this table can be accomplished with a non-
equi-join (e.g., most current available exchange rate on or before the date the fact
occurred). Again, we move the complexity over to DAX.
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Figure 7-10. Tables CurrencyExchangeRates and Fact are disconnected

Data Model’s Metadata
To add translations of the metadata, you need to export a JSON file, which will con‐
tain all artifacts of the data model. In this file, you add the translations and import it
again.

Exporting the file for an Analysis Services tabular database is done via Visual Studio.
At the time of this writing, Power BI Desktop has no feature to export the JSON file
via the UI. The recommended tool to create the JSON file is Tabular Editor. It’s not
directly supported by Microsoft, but strongly recommended (you’ll find references to
Tabular Editor in all of Microsoft’s official documentation, certification exams, etc.).

Tabular Editor was developed by Data Platform MVP Daniel Otyk‐
ier and comes in two flavors; Version 2 is open source and free. For
version 3 you need to buy a license. Find more about both versions
at Tabular Editor. Metadata export for Power BI (and Analysis
Services tabular definition, for that matter) does work in both
versions.
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In Tabular Editor’s TOM Explorer you will find Translations on the bottom of the list
(see Figure 7-11). By right-clicking, you can export, and later reimport the JSON defi‐
nition containing translations for all the data model’s metadata.

Figure 7-11. Tabular Editor’s TOM Explorer lets you maintain translations

You can either edit the JSON file with a plain text editor or Tabular Translator, an
open source and free tool by Kasper de Jonge (principal program manager at
Microsoft).
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In the JSON file, you can ignore the first half of the content and directly scroll down
the section cultures. Tag name defines the culture you translate to. Afterward, you
look for pair of lines containing name (the name the artifact has in the model) and
translatedCaption (the name of the artifact in the new culture):

"cultures": [
    {
      "name": "de-AT",
      "translations": {
        "model": {
          "name": "Model",
          "translatedCaption": "Modell",
          "tables": [
            {
              "name": "Language",
              "translatedCaption": "Sprache",
              "columns": [
                {
                  "name": "Language ID",
                  "translatedCaption": "Sprache ID"
                },
... (cut off for brevity)

Tabular Translator makes entering the translations a bit more convenient, as you can
see in Figure 7-12. On top left, you see the culture. The first two columns of the grid
in the middle show the table (e.g., Language, Fact, Dim1, etc.) and object type (e.g.,
Model, Table, Column, Measure, etc.). Then the original name, description, and dis‐
play folder are displayed. Only the last three columns are editable. There you (or the
translator) enter the translated versions of the name, description, and display folder.
If you leave something empty, it will fall back to the original language of the model
(English, in this case).

Multi-Language Model | 145



Figure 7-12. Tabular Translator is a convenient tool to maintain translations of
metadata

UI of Power BI Desktop (Standalone)
Not matter in which language you initially installed Power BI Desktop, you can select
from a long list of supported languages via File → Options → “Options and Settings”
→ Global → Regional Settings (see Figure 7-13). The “Application language” is lan‐
guage in which the Power BI Desktop displays the menu or messages and in which
the data model (in the Data pane on the far right) is displayed. To activate this
change, you need to close Power BI Desktop and start it again.
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Figure 7-13. You can change the Application language and the Model language
separately

UI of Power BI Desktop (Windows Store)
If Power BI Desktop isn’t installed as a full application, but via the Windows store
(which updates to the newest version automatically), then the setting from the oper‐
ating system is used by the app and you can’t change it separately. Look for “Time &
language”—“Language & region” in the Windows settings if you need to change the
display language (see Figure 7-14).

Figure 7-14. The Windows store version of Power BI Desktop respects the OS’s display
language
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UI of the Power BI Service
Via the gear icon on the top right corner of the Power BI service, you will find Gen‐
eral → Language (see Figure 7-15). There, you can change the display language by
clicking “Select display language.”

Figure 7-15. Selecting the display language in the Power BI service

UI of Power BI Report Server
The on-premises Power BI server respects the settings of your internet browser to
choose the language of the user interface. In the case of Edge, you’ll find this setting
via Settings → Languages → “Preferred language”). Figure 7-16 shows the setting in
the Edge browser.

Figure 7-16. Selecting the display language in Edge

Next I show an interesting way to model key-value pair models to reports so that the
the report-user has a maximum flexibility to analyze correlations in the data.
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Key-Value Pair Tables
In the Model view of Power BI, a key-value pair table is just a single table without any
special relationships. To transform it into a proper model, you need to pivot the table
(which you can learn in the “Key-Value Pair Tables” sections in Chapters 11, 15, and
19) and then split it into fact tables and dimension tables, as discussed in Chapter 6.

But there’s one interesting use case for a very flexible kind of report, where you not
only keep the key-value pair table in its unpivoted state but load it twice into Power
BI. Figure 7-17 shows the key-value table Source twice in Power BI’s data model.3

The filter relationship is created on the ID column. The cardinality is many-to-many
(as the same ID can appear multiple times in the key-value pair table) and the filter
direction is single-directed from Source 2 to Source.

Figure 7-17. The key-value pair table loaded twice into the data model

Modeling the key-value pair this way enables you to create a report like Figure 7-18.
The two slicer visuals filter the Key column of table Source once and table Source 2
once. The matrix in the center shows the Value column of table Source in the rows
and of table Source 2 in the columns. In the Values section of the matrix visual, I put
a measure counting the rows of the Source table:

[Count of rows] := COUNTROWS('Source')
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Figure 7-18. A flexible report build on top of the duplicated key-value pair table

Now the report user has full flexibility on what (key) to display on the rows and on
the columns of the matrix visual. As a result, you see how many entries you can find
in the key-value pair table for the different combinations of values. For example,
there is one Bill, one Jeff, and one Markus in the table. Bill and Jeff live both in Seat‐
tle, while Markus lives in Alkoven. In total, we’re talking about three different IDs in
the key-value pair table.

Independently of the shape of your data model, you’ll face situations where you want
to enrich an existing data model with local data or combine two models with each
other. This problem is usually described as the combination of self-service and enter‐
prise business intelligence. Power BI comes with an very interesting approach, as you
will learn next.

Combining Self-Service and Enterprise BI
Power BI Desktop was born as a self-service BI tool in 2015 and comes with plenty of
features to make the lives of information workers easy. Most importantly, you can
import data from a wide variety of data sources into Power BI Desktop. But it also
allows you to connect to a relational data warehouse or an analytic database (e.g.,
hosted on an Analysis Services tabular, or a Power BI semantic model, hosted in the
Power BI service). These data sources are usually created, or at least curated, by IT
departments.
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The catch with a connection to a Power BI semantic model or Analysis Services,
though, is that this is considered a live connection. And a live connection comes with
limitations. For example, you can only create a connection to one single data source;
that is, only one Power BI semantic model or one single Analysis Services database. It
doesn’t allow you to add data from any other data source (e.g., an Excel spreadsheet,
relational data warehouse, etc.). As you can see in Figure 7-19, you can create a New
measure but not add new columns.

Figure 7-19. Limited functionalities in live connection mode

Since April 2023, an alternative has generally been available: a DirectQuery connec‐
tion to a Power BI semantic model or Analysis Services tabular (not multi-
dimensional, though). Don’t misinterpret live connection and DirectQuery as being
similar. Despite the names, under the hood these are very different technologies. (In
both, the data is only queried as needed by the report consumer and not loaded into
Power BI Desktop).

The most important difference is that you can create a data model that mixes the two
storage modes Import and DirectQuery. You can load the data for some of the tables
but keep other tables in DirectQuery mode. This is called a composite model (two
storage modes are combined in the model). Both the imported tables and the Direct‐
Query tables can come from different data sources. (A live connection cannot be part
of a composite model.)

This option allows you to create a model that reuses all the centralized and prede‐
fined logic of your enterprise model but adds information (e.g., an Excel spreadsheet
containing the first draft of your budget or a CSV file containing a custom definition
of sales regions or data from a different enterprise data model) into the same model.
Based on this (composite) model, you can then create a report containing both self-
service and enterprise information.
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The only thing you have to keep in mind is finding the right relationships between
tables from the different data sources (because, for example, the products might have
different key values in the data warehouse than they have in the Excel spreadsheet). If
you add fact tables from different sources, then you will face the problems of multi-
fact models. You can then apply the solutions discussed in “Budget” on page 135.

Key Takeaways
In this chapter, you took a deep dive into advanced data modeling concepts. Basi‐
cally, all of these advanced challenges can be solved only with Power BI because it is a
model-driven tool. I don’t want to imagine solving these problems in one big table
(in Excel) or by writing the SQL code for a fully normalized data model in my report‐
ing tool. I hope that these challenges and solutions make clear why having a model-
driven tool is an advantage, even if it might have looked overly complex at first. Here
is what you’ve learned:

• A lookup table for the bins must be connected as a regular one-to-many relation‐
ship to the fact table.

• To connect a fact table that’s of a coarser granularity than the primary key of the
dimension table, you have three options: use DAX, create a many-to-many rela‐
tionship, or introduce a bridge table to the model.

• Setting the language for the text in the report, the names in the data model, and
the language of the application UI you’re working with is relatively straightfor‐
ward.

• The lookup tables for the language must stay disconnected from the dimension
tables because Power BI doesn’t allow ambiguous data models.

• The lookup table for the currency exchange rates stays disconnected for a differ‐
ent reason: finding the correct date of the exchange rate involves an non-equi-
join (which only can be solved with DAX).

• Power BI allows you to create composite models where tables can have inde‐
pendent data sources and can be in different storage modes (Import or
DirectQuery). This bridges the gap between pure self-service and pure enterprise
BI solutions.

The next chapter elaborates on the different storage modes: Import, live connection,
and DirectQuery.
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CHAPTER 8

Performance Tuning in the
Power BI Data Model

Performance tuning in Power BI is a complex topic with several components
involved. Every storage mode has different performance implications, and optimizing
the report runtime must be done with approaches specific to the storage mode. You
have more than one option for implementing the same calculation in DAX. You can
pre-calculate values and physically store them in the data model, or first let calcula‐
tions be done ad hoc via explicit measures. The in-memory compression is highly
dependent on the cardinality of a column—and, therefore, can’t be predicted in a
general way.

Performance tuning in Power BI could easily fill a book on its own. All the optimiza‐
tions have one thing in common, though: scanning less data will speed up query time.
Because this book is about data modeling, I limit this chapter to the storage modes
and how the variants can be combined in a data model to speed up query time. You
can use the Performance Tuning.pbix file to follow along with the examples in this
chapter.

Storage Mode
The VertiPaq engine offers different storage modes. Some of them can be set under
the Advanced settings in the Properties pane for a table (Figure 8-1).
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Figure 8-1. Storage mode of tables

The storage modes in VertiPaq engine include the following:

Import mode
When you import data, the complete table is physically loaded into the data
model. The data gets compressed and stored in an in-memory columnar data‐
base. This offers the best query performance by far. Therefore, this should be the
mode of choice in many scenarios. This mode works for all data sources (from
flat files over Excel worksheets to all kinds of databases). A regular refresh needs
to be scheduled to keep the stored data up-to-date.

DirectQuery mode
In this mode, only data connection information (like server name and database
name) and metadata (like names of tables and columns) get stored in the data
model. Every query against the VertiPaq engine (like a DAX statement generated
by a visual inside Power BI) is sent to the data source instead of any data being
stored locally. If necessary, the DAX query will automatically be converted into a
SQL query.

This mode is available only for some data sources (namely relational databases,
which can be queried in SQL, and analytical databases like Power BI semantic
models hosted in the Power BI service or Analysis Services tabular, which can be
queried in DAX).

Performance, especially for relational databases, is slower compared to Import
mode. There’s some overhead involved when running a query that combines
information from different data sources. The SQL statement (derived from the
DAX query) is less than optimal, and the performance of the query is fully
dependent on the data source. It’s a challenge for any data source to compete
with the query performance of the VertiPaq engine, even when tuned properly. If
you don’t have the knowledge or opportunity to invest in performance tuning of
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the data source, then DirectQuery mode isn’t for you. Some limitations apply to
DirectQuery mode, which Microsoft documents.

No data refresh needs to be scheduled in this mode, as no data is stored inside of
Power BI. When your data model is in DirectQuery mode, you see a hint in the
status bar on the bottom of the window, as shown in Figure 8-2.

Figure 8-2. DirectQuery mode

Dual mode
A table in Dual mode covers both features: it’s imported into the data model and
all connection metadata are kept in the data model, so it can be used in Direct‐
Query mode as well. In “Dual Mode” on page 169, I explain in which scenarios it
makes sense to set a table to this storage mode.

Live connection mode
Live connection is similar to DirectQuery in the sense that no data is loaded into
the VertiPaq engine. But it is completely different if you look at the technology
under the hood. You can’t set storage mode to live connection on a table-by-table
basis (as you can with the other storage modes, see Figure 8-1). Live connection
mode is possible only for analytical databases, which can be queried in DAX (as a
Power BI semantic model, in Azure Analysis Services, or in SQL Server Analysis
Services tabular). The whole data model is then in live connection mode (unless
you choose to import all necessary tables or choose DirectQuery mode when you
make the first connection to the data source database).

In live connection mode you can create explicit measures, but many other data
modeling features are not available (like using the Power Query editor to trans‐
form the date or add calculated columns or calculated tables). If you need such
features, switch to DirectQuery mode instead.

Live connection is the default mode when connecting to a Power BI semantic model
or Analysis Services tabular databases. You can convert such a live connection with
just a few clicks into a DirectQuery connection, by clicking on “Make changes to this
model” on the bottom of the screen, as shown in Figure 8-3.

Figure 8-3. Live connection mode

Power BI asks you for confirmation before it executes the conversion (Figure 8-4).
You do this by clicking “Add local model.”
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1 A full-sized screenshot is available online.

Figure 8-4. Converting to a DirectQuery connection1

In the next step, you need to decide which parts of the remote data model should be
made available to the current data model (Figure 8-5). Under Settings, you can decide
if Power BI should add tables that are added later automatically to the model (which
is the default), or not.

Figure 8-5. Choosing the tables
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2 A full-sized screenshot is available online.

Click Submit to actually convert the data model and load its metadata (see
Figure 8-6).

Figure 8-6. Loading the (meta) data

The status bar on the bottom of the window will change to “Storage mode: Direct‐
Query,” as you saw in Figure 8-2).

Converting from live connection to DirectQuery cannot be
undone. Therefore, I recommend making a backup of the PBIX file
before you convert the type of connection, just in case.

While your data model is in DirectQuery mode, you can still decide to import addi‐
tional tables into the Power BI data model or add another DirectQuery data source. If
you do so, Power BI will warn you about a Potential security risk (Figure 8-7).

Figure 8-7. Warning about a potential security risk2

This potential security risk becomes a real security risk under two circumstances:

• You or any consumer of the data model combines information from both data
sources in a single visual. In that case, Power BI doesn’t even temporarily load
the data from both DirectQuery data sources to combine it into a single query
result. Instead, it pushes the join key’s values as hardcoded values into the query
sent to one of both DirectQuery data sources.
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• The join key for both tables contains sensitive information that must not be
potentially seen by anybody with access to the query code. An administrator of a
database, for example, has access to the queries running against the database she
is responsible for. In a man-in-the-middle attack, someone would be able to cap‐
ture the code of the queries sent to a database.

In the following example, you’ll see the portion of a SQL query generated by Power
BI in order to join information from a date table in “Import mode” (with alias semi
join1) with a fact table in DirectQuery mode (with alias basetable0). The whole list
of values of the date table’s date column becomes part of the query sent to the Direct‐
Query data source. This code can be seen by the database administrators or attackers
who can capture the query code. I don’t consider the list of dates as sensitive, so I
don’t see a problem for this concrete query:

...
INNER JOIN
(
(SELECT 368 AS [c42],CAST('20230101 00:00:00' AS datetime) AS [c16]) UNION ALL
(SELECT 369 AS [c42],CAST('20230102 00:00:00' AS datetime) AS [c16]) UNION ALL
(SELECT 370 AS [c42],CAST('20230103 00:00:00' AS datetime) AS [c16]) UNION ALL
...
(SELECT 730 AS [c42],CAST('20231229 00:00:00' AS datetime) AS [c16]) UNION ALL
(SELECT 731 AS [c42],CAST('20231230 00:00:00' AS datetime) AS [c16]) UNION ALL
(SELECT 732 AS [c42],CAST('20231231 00:00:00' AS datetime) AS [c16])
)
 AS [semijoin1] on
(
([semijoin1].[c16] = [basetable0].[c16])
...

As soon as you combine tables with different storage modes in one data model, we
speak of a composite model, and the status bar shows Storage Mode: Mixed (see
Figure 8-8).

Figure 8-8. A composite model has a mixed storage mode

It’s common to speak of islands or source groups when someone refers to data in dif‐
ferent storage modes and/or from different DirectQuery data sources. In this sense,
imported data always belongs to the same island, no matter which data source it was
imported from. Data in DirectQuery mode belongs to the same island only if the
tables are from the same data source.

This concept is important when it comes to performance: the potential security risk
for cross-island queries is also a potential performance risk. Executing queries with
long code (due to the injection of filters as hardcoded filter values into the query
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code) will put more pressure on the source system, similar to when a filter is applied
as an inner join between two physical (and indexed) tables inside one database.

All relationships across different islands, independent of their car‐
dinality (like one-to-many, one-to-one, or many-to-many), are
limited relationships. You learned about this in “Relationships” on
page 88 and can find more in Microsoft’s documentation). In the
Model view, such relationships are represented with parenthesis-
like marks after the cardinality indicators. Tables are joined with
an inner join (as opposed to an outer join for regular relationships),
and no blank rows are shown for rows violating the referential
integrity.

Maybe you’re wondering when to choose which storage mode. I suggest going
through the following list before you make your decision:

• When your data source is a Power BI semantic model or an Analysis Services
database, choose live connection. Performance for reports will be very good.

• When you need to enrich the data model provided as a Power BI semantic model
or an Analysis Services database, migrate to DirectQuery mode and import the
additional information. Pay special attention to the performance of cross-island
queries.

• When your data source is not a Power BI semantic model, you should consider
importing all the data into the data model. It will give you a superior report per‐
formance.

• After at least one of the following criteria is met, evaluate if you can live with all
the limitations of DirectQuery and a less-than-optimal query performance:
— Use DirectQuery when the amount of data is too big to load into Power BI.

“Too big” in this case means it exceeds either the physical limitations or those
of your budget. Keep in mind that Power BI Premium and Microsoft Fabric
always store data in a compressed format and that a dataset can contain up to
100 TB. 100 TB of compressed data can easily hold uncompressed informa‐
tion of beyond 1 petaybyte (= 1,000 TB).

— Use DirectQuery when the data source has complex data source has complex
row-level security in place, which can’t be replicated in Power BI or Analysis
Services tabular. Keep in mind that row-level security can either be imple‐
mented over (Azure Active Directory) roles or in a dynamic fashion inside the
data model.

— Another reason for using DirectQuery could be that refreshing the data model
takes too long. It’s “too long” if the refresh time puts too much pressure on
the data source or renders the data stale again by the time the refresh finally
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finishes. In a (near-)real-time scenario, the latter can even be a very short
period of time (like a couple minutes or seconds). Keep in mind that with
incremental refresh or your own partition strategy, you can speed up data
refresh so that the imported data stays fresh (see “Partitioning” on page 160).
Make sure to compare the query-runtime between a model over the same data
in Import mode and in DirectQuery mode to ensure that the DirectQuery
mode doesn’t sabotage your real-time goals with too-long runtimes (which
can be minutes or even run into a timeout).

Performance Analyzer
Chose View → Performance Analyzer to collect information about the runtime of vis‐
uals built in Power BI Desktop. These collections will tell you how much time was
spent on running the DAX query (executed locally) and/or direct query (executed on
a remote database), how long it took Power BI Desktop to “draw” the visuals (“Visual
display”) or how much time a visual waited for Other visuals to finish.

Via “Copy query,” you get access to the actual DAX (or SQL) queries executed. Paste
this to either DAX Studio, an open source tool by Darren Gosbell (senior program
manager at Microsoft), or SQL Server Management Studio to further investigate the
query plans or optimizations.

Optimization of DAX queries and SQL queries is beyond the scope of this book.

Independently from the available storage modes, you can decide to partition a table
into easier-to-manage subentities.

Partitioning
Partitioning is a way to split a table into smaller parts (partitions). Instead of one big
storage entity covering all rows, you end up with several smaller storage entities with
fewer rows each. This can improve query time, because scanning for data can be limi‐
ted to the partitions whose metadata indicate that they might contain necessary
information. But more importantly, you can schedule a refresh on the partition level.

Instead of always triggering a full refresh (for the full content of a table), you can set
the trigger to only update certain partitions; for example, those containing data from
the last few days, where a change in the data source could have happened. That said,
it makes sense to partition your big tables by a timestamp related to a transaction.
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At the time of writing, creating partitions is only available through
the XMLA endpoint, which is a a premium feature in Power BI/
Fabric.

Choosing the Partition Key
Don’t partition data on metadata like creation date or modification date. First, such a
timestamp probably won’t be used for filtering in most of your reports. Only a
minority of users are interested in when a fact is created; more people are interested
in the day a fact is related (when the fact takes place). A fact might be created in the
past or future. For the best performance, the partition key must be the first column of
every index (so that the index is aligned with the partitions). If the partition key isn’t
part of the filter, then the index won’t be used.

Secondly, the modification date of a row can be changed (with every modification)
and will then move a row between partitions. If the old and the new partition are both
not refreshed, you end up with duplicates of this row in your data model (as the row
will load into the new partition but still be in the old partition as well, as long as the
old partition is not refreshed).

If you don’t know what the previous value of the modification date was, you need to
update all partitions. This would defeat the purpose of creating partitions.

Use a fact-related timestamp instead: the booking date or the
day of order, which will not change at a later point in time.

In one project, I was confronted with the requirement that a change in the data
source be available in a Power BI report within 10 minutes. It turned out that even
with heavy performance tuning in the data source, these complex queries would take
longer than 10 minutes on average in a DirectQuery setup to finish. (So much for
“real-time” and DirectQuery.)

To solve it, I partitioned the table. As a partition key, I used a special column created
for the sole purpose of partitioning. Every time the source table changed, the row’s
partition key was logged in a separate table. Every five minutes, a job was triggered to
read this separate logging table and trigger a data refresh for those partitions where
changes had happened since the last run of this job. After we found the right number
of partitions (i.e., not containing too many rows so the refresh is fast enough, but also
not having so many partitions as to refresh all the time), the regular refreshes took
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only a couple of minutes. And the report response time with the imported data was
under a second (compared to over 10 minutes with the DirectQuery approach).

Power BI Desktop allows you to define partitions only over the feature incremental
refresh. As the name suggests, it enables you to refresh the data of a table in incre‐
ments. You need to follow three steps if you want to enable this feature for a table.
First, you need to define two Power Query parameters with the mandatory name
RangeStart and RangeEnd. In Power Query, select Home → Manage Parameters and
create them via New. As you can see in Figure 8-9, these parameters must be of type
Date/Time.

Figure 8-9. Power Query parameter for the start of the time range of an incremental
refresh

Second, you need to use both parameters in the Power Query of the fact table (for
which you want to turn incremental refresh on) as a filter. Figure 8-10 shows how
you create a Between filter on the OrderDate column, which is the partition key in
this example.

The filter itself references the two parameters, making sure that only rows where the
OrderDate is after or equal to RangeStart and is before RangeEnd are loaded from the
data source, as shown in Figure 8-11.
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Figure 8-10. Creating a filter on the partition key

Figure 8-11. Filtering the partition key with the parameters
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In the Model view, you need then to right-click the table and choose incremental
refresh. Next, take these four steps (as shown in Figure 8-12):

1. Select table
The table is already pre-selected, but you can choose any table of the data model.

2. Set import and refresh ranges
Turn on “Incrementally refresh this table.” This is only possible if you’ve already
defined the RangeStart and RangeEnd parameters in Power Query. You then
decide how many periods of data you want to keep in the table. I discard any‐
thing older than 5 years in this example. Additionally, I set “Incrementally
refresh data starting” to 1 month before refresh date.

3. Chose optional parameters
I keep “Get the latest data in real time with DirectQuery (Premium only)” dis‐
abled for this example. In “Hybrid Tables” on page 170, you can learn about this
option. I enable “Only refresh complete month.” If you choose to “Incrementally
refresh data starting” in days or years, this setting will offer accordingly complete
days or years as well. If you enable “Detect data changes,” a refresh will not run
by a fixed cadence, but only when data changes. Refer to the Microsoft documen‐
tation to learn more about this feature.

4. Review and apply
Here you see a graphical representation of the settings you enabled.

Partitioning splits existing data into smaller parts. In the next section, you’ll learn
how you can optimize query runtime by intentionally introducing duplication of data
in an pre-aggregated form.

At the time of writing, enabling incremental refresh will disable the
option to download a Power BI file from the Power BI service.
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Figure 8-12. The dialog box guides you through the steps necessary to turn incremental
refresh on for a table
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Pre-Aggregating
There’s no reason you couldn’t load the same piece of information several times into
a data model. For example, you can load a transaction table on the finest necessary
granularity (so that even very detailed analytic requests are satisfied) and load it once
again on an aggregated level (e.g., one row per day and product). This enables your
data model to satisfy detailed information (from the transaction table) and do fast
calculations (from the aggregation table) as well.

This concept works for both imported data or tables in DirectQuery mode. Detailed
data may be needed only very rarely. If this is the case, then you could keep the trans‐
action table in DirectQuery mode to save storage and refresh time and import only
the aggregated version of this table to enable fast reports for the majority of analysis.
Reports on the detailed data will take longer to execute, but that’s sometimes
acceptable.

For rather simple requirements, Power BI does fully support such a performance
optimization. You can specify the granularity level for which the aggregation table
aggregates data, which is then available in the detailed table. The detailed table must
be in DirectQuery storage mode. In Chapters 12, 16, and 20, you’ll learn how to cre‐
ate a aggregation table. Here I show you how to tell Power BI in which cases it should
use the aggregation table instead of the detailed table to satisfy queries.

Figure 8-13 has two tables: Reseller Sales (DirectQuery – Agg), which contains
all rows in the most detailed granularity (date and product), and Reseller Sales
(Agg Table PQ), which contains the same information, but aggregated only by date
(with the product key omitted).

There is no filter relationship between these two tables. If you right-click Reseller
Sales (Agg Table PQ) and choose “Manage aggregations” (Figure 8-13), the
selected table is already pre-selected (but you could chose a different one via the list
box “Aggregation table”). If more than one aggregation table could satisfy a query,
then the Precedence is used to decide which one to choose. The aggregation table
with the higher value in Precedence is preferred.

The aggregation table in Figure 8-13 contains three columns. For each, you need to
tell Power BI how it relates to the detailed table or the rest of the model. In my exam‐
ple, the column OrderDate is used to GroupBy column Date of table Date (Direct
Query). Column SalesAmount is the Sum of my detail table’s (Reseller Sales

(DirectQuery – Agg)) column SalesAmount. And column SalesCount calculates a
“Count table rows” again over the detail table (Reseller Sales (DirectQuery –
Agg)). Based on this information, Power BI makes informed decisions when an
aggregation on column SalesAmount of the detail table (Reseller Sales (Direct
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Query – Agg)) can be satisfied with an aggregation on the aggregation table
(Reseller Sales (Agg Table PQ)) instead.

Figure 8-13. Managing aggregations in your data model

To prove that Power BI uses the aggregation table correctly, I created a report with
two table visuals: both contain the same measure, Sales Amount (DirectQuery →
Agg) (which is defined as the sum of column SalesAmount of the detail table, SUM(
'Reseller Sales (DirectQuery → Agg)'[Sales Amount])) and the CalendarYear
column (from table Date (DirectQuery)). One additionally contains column Style
from the Product table. Because the aggregation table doesn’t contain product spe‐
cific information, but is aggregated only on the day, Power BI is expected to use the
aggregation table to calculate the measure in only the first visual. Only the detailed
table contains product-specific information; therefore, the second visual is expected
to use the detailed table.

In the Performance Analyzer pane on the of Figure 8-14, you can see that for the first
visual (named “Date only”), only a DAX query is available. Obviously, the aggrega‐
tion table was used, which is in Import mode. DirectQuery is mentioned in the sec‐
ond visual (named Date & Product). That’s the sign that the detailed table (which is
in DirectQuery mode) was used to satisfy the query.

In more advanced scenarios (e.g., when the detailed table is in Import mode), you
can’t use Power BI’s “Manage aggregations.” You need to add logic to your measures
instead. The code in the measure decides from which table it can satisfy a calculation
in order to achieve the best possible performance. Chapter 12 explains how you can
create such special measures in DAX.
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Figure 8-14. Analyzing the performance of reports of different granularity

Composite Models
Recall from “Storage Mode” on page 153 that Power BI allows you to set the storage
mode per table. You can build a data model where some of the tables are imported,
while others are in DirectQuery mode. (Composite models aren’t possible in live con‐
nection mode.)

This feature helps to design performant data models. For example, you can import all
the (small) dimension tables into the data model but keep the big dimension tables
and the fact tables in DirectQuery mode. You can also create aggregation tables (see
“Pre-Aggregating” on page 166) for those big tables, which you either import (to give
queries on the granularity level of the aggregation table the best possible perfor‐
mance) or keep in DirectQuery mode (to save storage space and refresh time and still
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give a better performance, if the query to get the aggregated data is properly tuned for
performance on the data source’s side).

Composite models are common when you build reports based on analytical databases
(like a Power BI semantic model or an Analysis Services tabular database). These
databases already contain an optimized model, calculations in the form of measures,
and all sorts of metadata (like hierarchies or translations), which you don’t want to
rebuild from scratch. Instead, you can connect to such a data source in DirectQuery
mode and enrich it by importing other important data sources—and thereby create a
composite model.

Not only can a data model have a mixed storage mode, so can a table. Read on to
learn more about Dual mode tables.

Dual Mode
When a single query references data from both a table in Import mode and a table in
DirectQuery mode, there are two possible ways to resolve this. One way is when, for
the sake of the query, all the necessary rows from the table in DirectQuery mode are
temporarily loaded into the current model and the joins are resolved inside the
model. If you choose DirectQuery mode for a table because of its size, then transfer‐
ring a large amount of rows from this table into the data model might not be a good
idea. It might take time and put pressure on Power BI’s resources—that means your
computer or the Power BI service.

Therefore, VertiPaq chooses the other option: it pushes all filters to the data source
by adding all necessary filters in the query text. This leads to long (and, therefore,
probably less performant) queries and potential security risk (see “Storage Mode” on
page 153).

A special storage mode I haven’t yet elaborated is a solution here: a table can be set to
Dual mode. A table in Dual mode gets refreshed with all other tables that are in
Import mode and take up physical space in the data model. Combining information
from this table with other tables imported into the data model takes full advantage of
the in-memory engine.

At the same time, all necessary meta information is stored in the data model to allow
you to reference it in DirectQuery queries. When columns from this table are com‐
bined with columns from DirectQuery tables of the same island, the generated SQL
statement can make use of ordinary joins, instead of injecting filters into the query
code. You can expect the query to run faster because all necessary data to satisfy the
query is stored in the data source; access to it can be fully optimized (e.g., via
indexes).

You change the storage mode in the Model view in the table’s properties pane.

Dual Mode | 169



Hybrid Tables
Combining imported data and DirectQuery is not only possible within one data
model, but also within one table. The idea is to import all the “old” data, which won’t
change anymore, but keep all the recent data in DirectQuery mode so it will be
shown on reports as it is imported into the data source. Basically, you change the
mode per partition of the table.

At the time of writing, you can activate this setting in Power BI Desktop only in the
Model view via incremental refresh by enabling “Get the latest data in real-time with
DirectQuery (Premium only),” as shown in Figure 8-12. It will automatically keep the
latest partition in DirectQuery mode, and the “older” partitions in Import mode.

The concept could also be turned around; you could only load the data for the cur‐
rent reporting period into the data model, but keep the old data, which is just rarely
queried, in DirectQuery. Reports covering the standard periods will be fast, but the
data model won’t be inflated in terms of size by loading older periods.

In the rare case, when someone needs to report on the old data, the report will work
as usual but take more time to execute. This can be a good compromise because peo‐
ple tend to appreciate the fast response for standard use cases and accept that the data
for special periods of time aren’t cached. To implement such a flexible concept, you
need to run XMLA scripts against the Power BI service.

At the time of writing, hybrid tables are only available in a pre‐
mium workspaces. As soon as you

Key Takeaways
In this chapter, you learned that there are many options for storing either the data or
metadata in Power BI. Combining these options in a smart way can increase the
overall performance of the data model by optimizing the trade-off between refresh
time and query time. Here are some key takeaways from the chapter:

• Power BI offers three basic storage modes: Import, DirectQuery, and live
connection.
— Imported data offers the best report response time, but the data needs to be

refreshed periodically.
— Neither DirectQuery not live connection require refreshing the data model,

but the queries might run for a longer period of time.
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— Live connection is available only for Power BI semantic models and Analysis
Services databases. They come with a lot restrictions in terms of data model‐
ing options.

— DirectQuery is available only for relational databases, Power BI semantic
models, and Analysis Services databases. Tables in DirectQuery mode can be
combined with tables in Import mode in one data model, forming a compo‐
site model.

• Partitioning allows you to split a table into smaller parts, which can be refreshed
independently. By refreshing partitions only where a change in data has hap‐
pened, you speed up the overall refresh time of your data model.

• Tables with pre-aggregated contents exchange storage for query runtime, as
some queries can be satisfied with the (smaller) table containing the pre-
aggregated values. Only if data from a finer granular level is needed is the bigger
table queried.

• Composite model describes a data model in which storage modes are mixed.
Some tables are in Import mode, while others are in DirectQuery mode. (Live
connection doesn’t allow for a composite model.) Choosing such a model can
require a trade-off between storage size and query runtime.

• Dual tables store both the imported data and the metadata to allow for Direct‐
Query. Such tables allow Power BI to facilitate the full power of the in-memory
engine when combined with other imported tables, or inject all logic and join
operators into the SQL query when combined with other DirectQuery tables.

• Hybrid tables apply the idea of a composite model to a single table: partitions of a
table can be in different storage modes. When real-time access is the goal, you
import old data but keep the most recent partitions in DirectQuery mode. If you
need to optimize model size, then you load only the most recent data, keeping
the old partitions in DirectQuery mode.

Now that you’re equipped with all the theoretical concepts and their uses in Power
BI, it’s time to get you to actively transform your data to fit into the desired data
model. Chapter 9 introduces you to DAX as a data transformation tool. Later chap‐
ters explain how to achieve the same results with the help of Power Query/M and
SQL.
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PART III

Data Modeling for Power BI
with the Help of DAX

Welcome to the DAX part of this book! DAX stands for data analysis expressions and
is the language used to create calculated tables, calculated columns, and measures;
define row-level security; and query the data inside of Power BI. The latter is done for
you by Power BI’s visuals—so most users will have no need to write a DAX query.



If you have read this book from the start, you should now have a good understanding
of the importance of the shape of a data model and the need in many situations (if
not all!) to reshape what you get from your data source.

This part is not an introduction to the DAX language, but you will learn that data
modeling and DAX align very closely. I’ll introduce you to the moving parts of the
language in Chapter 9:

• Calculated tables
• Actively changing relationships for the sake of a calculation
• Creating a single primary key
• Combining tables in DAX

In Chapter 10, I’ll show you how you can use DAX to reshape your data model:

• Normalizing
• Denormalizing
• Adding calculated columns and measures
• Transforming flags and indicators into meaningful text
• Building your own date and time tables
• Implementing role-playing dimensions
• Making the best out of slowly changing dimensions
• Flattening parent-child hierarchies

DAX plays an important role in the real-world use cases, discussed in the first two
parts of this book, as well. Chapter 11 will introduce you to DAX solutions for the
following use cases:

• Binning
• Multi-fact data models
• Multi-language data models
• Key-value pair tables

Finally, Chapter 12 establishes what you can do with DAX to find a good trade-off
between loading data into Power BI or directly querying the data source instead.



CHAPTER 9

Understanding a Data Model
from the DAX Point of View

When it comes to Power BI, not all data modeling challenges can be solved in Power
Query or the data source. Some data modeling solutions can only be implemented
inside a DAX measure. I will point out such solutions in detail where appropriate. It’s
also important to understand that the data model and DAX work hand-in-hand. This
means that in some situations, you can exchange complexity in the Model view for
complexity in a DAX measure, or the other way around. You have already seen such
situations in Chapter 7. I will point out such situations in this and the following three
chapters as well.

But before I dive into the complex examples, I want you to understand how DAX
“sees” the data model.

Data Model
The relationship between DAX and the data model is twofold. You can use DAX to
add calculated columns to a table and even create whole tables. In addition, DAX
uses the information provided by the data model (read: filter relationships) to navi‐
gate through the model and access the data needed for the calculation.

To be more precise: whenever you write a formula (or a query) in DAX, it’s passed
forward to the formula engine, which takes the appropriate steps (requesting values
from the storage engine and doing its own calculations in case the storage engine
cannot execute the calculations due to complexity). Both the formula and storage
engines use all the information available from the data model to do their jobs.
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1 The examples in this section use the DAX table.pbix file from the book’s GitHub repository.

Look at a simple formula: SUM(Sales[SalesAmount]). It’ll aggregate the SalesAmount
column of the table Sales by adding up all available values. In an unfiltered context
(like during evaluation inside a calculated column or in a report where no filter is
provided), this will result in the grand total over the content of the whole table. The
same calculation will show a different (smaller) number when you provide a filter
context, e.g., by adding a slicer on the report and selecting a certain year or product.
This will be no surprise because this is the expected, and quite intuitive, behavior.

In “Data Model” on page 75, you learned that you shouldn’t put a filter directly on a
fact table (the Sales table, for example) but on the dimension tables, like Date or
Product. If you have correctly defined the filter relationships between the dimension
tables and the fact table, these filters are automatically propagated from the dimen‐
sion table to the fact table for you. The information defined in the model helps to
write rather simple DAX formulas—we don’t need to repeatedly specify that the
Sales table needs to be filtered by the other tables in every single formula but must
define this only once in the data model in the Model view.

A data model consists of tables and relations between them. Let’s first look at how
you can use and create tables in DAX.

Basic Components
The following basic components are important to understand as you learn more
about DAX: tables, relationships, and primary keys.

Tables
In DAX, you can refer to a table by just mentioning its name. If the table’s name is a
reserved keyword, matches a DAX function’s name, or contains special characters
(like a space or an umlaut), then you must specify the table’s name within single
quotes. Common table names that require single quotes are 'Date' and 'Product'. I
tend to specify single quotes every time I remember to do so, to make my code con‐
form better. That means I refer to 'Sales' (including the single quotes, even when
optional) instead of just Sales (which would syntactically be no problem). Look up
DAX syntax if in doubt about the need for single quotes or other syntax-related
questions.

To create a table in DAX, choose Modeling → “New table.” Then, you have several
options to specify a DAX code, which must be a table expression. Examples 9-1, 9-2,
9-3, 9-4, and 9-5 give you an idea.1
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By just looking at a piece of DAX code, it can be difficult to recog‐
nize whether it’s the definition of a calculated column, a measure,
or a calculated table. I use the following conventions:

[Measure Name] :=

<definition of a measure>

'Table Name'[Column Name] =

<definition of a calculated column>

[Table Name] = /* calculated table */

<definition of a calculated table>

Example 9-1. Use braces (“{}”) to specify a table expression, returning a row.

My 1st table = /* calculated table */
{
    1,
    "one"
}

Value
1

one

Example 9-2. Use parentheses (“()”) inside of braces (“{}”) to specify a table expression,
containing several rows.

My 2nd table =  /* calculated table */
{
    (20, "twenty"),
    (21, "twentyone")
}

Value1 Value2
20 twenty

21 twentyone

Example 9-3. The function ROW() allows you to specify pairs of column names and
expressions. This creates one row.

My 3rd table =  /* calculated table */
ROW(
    "My first column", 3,
    "My second column", "three"
    )
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My first column My second column
3 three

Example 9-4. For function DATATABLE(), you can pass parameters to specify both the
data type and the names of the columns in one go.

My 4th table =  /* calculated table */
DATATABLE(
    "MyNumber", INTEGER,
    "MyText", STRING,
    {
        {40,"forty"},
        {41,"fortyone"}
    }
)

MyNumber MyText
40 forty

41 fortyone

Example 9-5. The simplest table expression is created by typing the name of another
existing table. This way, you duplicate the full content of the table under a new name.

Referenced table = 'My 1st table'

Value
1

one

I use the table expression Measure = {BLANK()} as a shortcut to create a dedicated
(calculated) table that contains all my measures (if the report creators request to have
measures collected in one place in the data model, as opposed to them being spread
out across the data model’s different tables). This expression creates a table with one
column (with the name Value) and one row (containing blank). You can achieve the
same by providing only the name of the calculated table and an equal sign but omit‐
ting the expression Measure =.

Don’t forget to hide the only column of this table after you create your first measure.
When a table contains only measures and all columns are hidden, the table becomes
listed on the top of Power BI’s field list in the Power BI Desktop’s Data pane.

References to columns should always mention the table name where the column
resides. The column’s name must be enclosed in brackets ([]), whether or not it
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2 The examples in this section use the Relationship.pbix file from the book’s GitHub repository.

contains special characters. For example, SUM(Sales[SalesAmount]) passes the refer‐
ence to column SalesAmount of table Sales as the parameter for function SUM.

Tables don’t exist by themselves; they exist in relation to other tables (see “Tables” on
page 6).

Relationships
In most cases, you will not specify any relationships in DAX but rather rely on what
you already configured in the Model view of Power BI. This is because you should
create all relationships in the Model view so that Power BI can index these relation‐
ships. In Chapters 10 and 11, I explain situations in which creating a relationship
inside a DAX measure instead is necessary.

One of these use cases occurs when you have inactive relationships (see “Relation‐
ships” on page 88). DAX allows you to activate an inactive relationship just for the
sake of the current measure. To achieve this, you need to wrap the expression inside
the CALCULATE function and add USERELATIONSHIP (pronounced use relationship) as
the second parameter.2 USERELATIONSHIP itself is a function as well. Via the two
parameters, you can specify the names of the columns used in the inactive
relationship:

'Sales'[Ship Quantity] :=
   CALCULATE(
      SUM('Sales'[Quantity]),
      USERELATIONSHIP('Sales'[Ship Date], 'Date'[Date])
   )

DAX is smart enough to then deactivate the active relationship implicitly, so only one
relationship is active during the evaluation of the calculation.

With function TREATAS (pronounced treat as), you can create a relationship inside a
DAX formula that isn’t available in the Model view. Such a relationship is called a 
virtual relationship. This can be helpful in certain use cases but can incur a perfor‐
mance penalty—the engine can’t rely on pre-calculated information about how to
join the tables (as it can do with explicitly defined relationships in the Model view).
Therefore, use TREATAS with care, and instead, rely as much as possible on (physical)
relationships in the data model. (I use TREATAS in real-world scenarios in “Budget” on
page 220.)

The only way to avoid the need to use USERELATIONSHIP and TREATAS is to build your
data model in a different way, so DAX can rely on active physical relationships. If you
decide against such active physical relationships, one or the other function can be
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very helpful. Both functions are useful for situations in which you need to write your
DAX measures in a certain way; this can’t be substituted for Power Query or SQL
(unless you use Power Query or SQL to create a data model that can fully rely on
active physical relationships).

Relationships in a data model are based on primary and foreign keys. DAX is no
exception.

Primary Keys
In DAX, there’s no explicit concept of primary keys. As described in the previous sec‐
tion, you should define all relationships in the Model view. Then, you can explore the
the relationships between the tables (which preferably have a one-to-many cardinal‐
ity and, therefore, implicitly describe a relationship between a primary key on the
“one” side and a foreign key on the “many” side). These relationships can be created
on only a single column; composite keys are not supported in Power BI.

Composite primary (and foreign) keys must be converted into one key with the help
of the CONCATENATE function or the & operator. CONCATENATE only allows for a pair of
parameters, so you need to wrap multiple calls to this function to achieve what you
can do with a shorter piece of code with the & operator:

CustomerKey =
    CONCATENATE(
            Customer[Firstname],
            CONCATENATE(
                    "|",
                    Customer[LastName]
            )
    )
CustomerKey = Customer[Firstname] & "|" & Customer[LastName]

One way to combine tables is to append one table to another. This is the basic idea of
set operators.

Combining Queries
Combining queries can be accomplished in two ways: either you use set operators or
you use join operators. You can use the Functions Relational.pbix file to follow along
with the examples in this section.

Set Operators
DAX offers functions for the usual set operations (see “Set Operators” on page 11).
For the examples in this section, I use the Product table, which contains a List
Price column, and the Sales table, which contains a Price column, as shown in
Tables 9-1 and 9-2.
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Table 9-1. Product

Product ID List Price
100 10

110 30

120 110

130 200

Table 9-2. Sales

Date Product ID Price
2023-08-01 100 10

2023-08-01 110 20

2023-08-02 110 30

2023-08-03 120 100

UNION

The UNION function allows for multiple parameters. Duplicated rows are not
removed. To keep only unique rows, you would need to wrap UNION into DISTINCT.

In Table 9-3, you can see the result of an example where I apply the function to the
available VALUEs of the product’s List Price and the Sales table’s Price column
inside the definition of a calculated table. The List Price of 10 appears twice in the
result:

UNION = /* calculated table */
UNION(
   VALUES('Product'[List Price]),
   VALUES(Sales[Price])
)

Table 9-3. UNION

List Price
10

30

110

200

10

20

30

100
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INTERSECT

INTERSECT returns only rows, which appear in both tables. The following example
results in the rows shown in Table 9-4:

INTERSECT = /* calculated table */
INTERSECT(
   VALUES('Product'[List Price]),
   VALUES(Sales[Price])
)

Table 9-4. INTERSECT

List Price
10

30

EXCEPT

EXCEPT returns only rows, which appear in the first table but not in the second. The
result of the following code is shown in Table 9-5:

EXCEPT = /* calculated table */
EXCEPT(
   VALUES('Product'[List Price]),
   VALUES(Sales[Price])
)

Table 9-5. EXCEPT

List Price
110

200

A different way of combining tables is to synchronize their rows and create a query
result, which consists of the combined list of columns for both of the tables.

Joins
In most scenarios, you’ll rely on the existing tables (and their relationships) in the
data model. In certain use cases, it could make sense to create a calculated table (to
persist the result in the data model to speed up queries) or use a table expression
inside a measure (to solve advanced use cases by explicitly joining tables and iterating
over the result).

I use the two tables, Product and Sales (Tables 9-1 and 9-2), from the previous sec‐
tion here to look at the DAX functions you can use.
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NATURALLEFTOUTERJOIN

NATURALLEFTOUTERJOIN applies a left outer join to the specified two tables. This func‐
tion comes in handy when you decide against creating an active relationship in the
Model view. Usually, as mentioned previously, you’d explicitly create an active rela‐
tionship between those two tables in the data model.

If a relationship does exist, you can still join the two tables with NATURALLEFTOUTER
JOIN but must first break the data lineage of the tables by manipulating the key col‐
umns (e.g., adding 0 or concatenating an empty string to the key columns). Keep in
mind that you can’t specify the join predicate (the names of the columns to use for
the join operation) in a natural join—therefore, the key columns have to have the
exact same name in both tables. Left outer means that all the rows from the first (left)
table are kept, and information from matching rows of the second table are added.
This join is implemented as an equi-join.

Here, I put the Sales table as the first (left) table. I need to wrap the reference to the
Product table inside ALLEXCEPT to get rid of its Product ID column because the result
would otherwise contain two Product ID columns, which is not allowed:

NATURALLEFTOUTERJOIN Sales = /* calculated table */
NATURALLEFTOUTERJOIN(
    'Sales',
    ALLEXCEPT('Product', 'Product'[Product ID])
)

And Table 9-6 shows the result.

Table 9-6. NATURALLEFTOUTERJOIN Sales

Date Product ID Price List Price
2023-08-01 100 10 10

2023-08-01 110 20 30

2023-08-02 110 30 30

2023-08-03 120 100 200

If I exchange the order of the two tables inside NATURALLEFTOUTERJOIN, the result will
be slightly different. First, the orders of the columns in the result are exchanged. And
second, because the Product table contains a Product ID for which there are no
entries in the Sales table, the number of rows changes. When the Product table is on
the right side of a left outer join, this row is omitted from the result. When the
Product table is on the left side of a left outer join, then this row is kept and shown in
the final result:

NATURALLEFTOUTERJOIN Product = /* calculated table */
NATURALLEFTOUTERJOIN(
    ALLEXCEPT('Product', 'Product'[Product ID]),
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    'Sales'
)

And Table 9-7 shows the result.

Table 9-7. NATURALLEFTOUTERJOIN Product

List Price Date Product ID Price
10 2023-08-01 100 10

30 2023-08-01 110 20

30 2023-08-02 110 30

200 2023-08-03 120 100

NATURALINNERJOIN

NATURALINNERJOIN applies a natural inner join on the specified two tables. All the
rules about relationships and data lineage apply here as well. As this is an inner join,
only rows with matching keys in both tables are kept. This join is implemented as an
equi-join.

In our example, the result of the inner join matches the result of the left outer join
when the sales table was on the left side, as you can see:

NATURALINNERJOIN = /* calculated table */
NATURALINNERJOIN(
    'Sales',
    ALLEXCEPT('Product', 'Product'[Product ID])
)

And Table 9-8 shows the result.

Table 9-8. NATURALINNERJOIN

Date Product ID Price List Price
2023-08-01 100 10 10

2023-08-01 110 20 30

2023-08-02 110 30 30

2023-08-03 120 100 200

CROSSJOIN

CROSSJOIN creates the Cartesian product of the two specified tables (Table 9-9). This
also works in a table (expression) where no physical relationship was created in the
data model:

CROSSJOIN = /* calculated table */
CROSSJOIN(
    DISTINCT('Sales'[Date]),
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    DISTINCT('Product'[Product ID])
)

Table 9-9. CROSSJOIN

Date Product ID
2023-08-01 100

2023-08-02 100

2023-08-03 100

2023-08-01 110

2023-08-02 110

2023-08-03 110

2023-08-01 120

2023-08-02 120

2023-08-03 120

2023-08-01 130

2023-08-02 130

2023-08-03 130

I return to these functions in “Denormalizing” on page 190 and show how to use them
to denormalize a data model.

The whole idea of combining tables in this book is to bring them into a different
shape to create the perfect data model (a star schema). But there’s much more you
will need to do (namely, ETL).

Extract, Transform, Load
All the necessary ETL steps are ideally done before the data is loaded into Power BI
(see the “Extract, Transform, Load” sections of Chapters 13 and 17). DAX is less ideal
for implementing the ETL process because it can only build on top of tables that are
already loaded into the data model. If you use DAX to model the data, then your
model will contain both the un-modeled data and the modeled data, thus unnecessa‐
rily increasing the size of your data model.

You can find the size of a model by checking the size of the .pbix file, but it also has to
do with how much memory the data model will occupy when you open .pbix in
Power BI Desktop or when an Analysis Services tabular database is refreshed.

But cleaning, transforming, and modeling your data in DAX (see Chapter 10) is bet‐
ter than not modeling the data at all.
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Key Takeaways
In this chapter, you learned about important moving parts for creating a data model
in the DAX language. Specifically, you now know the following things:

• DAX can handle tables as expressions and parameters. You can create a calcula‐
ted table in DAX if needed.

• With DAX, you can create not only calculated tables but calculated columns as
well.

• Relationships are usually not explicitly maintained in a DAX expression, but the
definition of the filter relationships (created in the Model view) is implicitly in
effect in every DAX expression. Functions like USERELATIONSHIP or TREATAS
allow you to explicitly change relationships inside a DAX expression.

• Set operators UNION, INTERSECT, and EXCEPT are available as DAX functions.
• DAX offers functions to implement a natural join (NATURALINNERJOIN and
NATURALLEFTOUTERJOIN) and a cross join (CROSSJOIN).

• You should push the ETL process to earlier stages in your data platform architec‐
ture. DAX should be used only as a last resort to clean and transform data (it
can’t substitute the uncleaned and untransformed data but only add the cleaned
and transformed version to the data model). The only thing you can’t do in the
previous stages without using DAX are non-additive calculations—that’s where
we need DAX and where it shows its true power.

Now that you have a basic understanding of how the data model and DAX interact
with each other, it is time to learn how you can actively shape the data model with the
help of the DAX language in the next chapter of this book.
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1 The examples in this section use the Normalize Facts DAX.pbix file from the book’s GitHub repository.

CHAPTER 10

Building a Data Model with DAX

With DAX you are writing data analysis expressions, which allow you to create calcu‐
lated tables, calculated columns, and, most importantly, measures (and row-level
security and queries, which aren’t in the scope of this book). Everything you can
achieve with calculated tables and columns, you can also achieve with solutions in
Power Query/M and with SQL. If you just started with Power BI, then you need to
learn DAX anyway; some problems can only be solved with measures written
in DAX—and you might implement the transformations to build your data model in
DAX as well.

Normalizing
As Chapters 1 and 2 detail, normalizing is important for fact tables and means that
you strip the table of replicated information. You only keep foreign keys to one or
more tables, which contain DISTINCT lists of the otherwise redundant information.
These other tables are the dimension tables.

With that said, normalizing is as easy as removing all columns with repeated infor‐
mation that don’t comprise the (primary) key of the information and putting them
into a table of their own. To find out which columns contain repeated information, I
create a table visual in Power BI with a single column or a combination of columns
that might have one-to-one relationships with each other.1 Power BI will automati‐
cally show only the distinct values.
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In Figure 10-1, the combinations of columns listed here are candidates for
dimensions:

• Country
• Discount Band
• Product, Manufacturing Price
• Date, Month Name, Month Number, Year
• Segment

Figure 10-1. Dimension candidates

Always also use your domain knowledge and discuss with the domain experts to
decide if the candidates you select are indeed good choices. Especially if you only
work with demo or test data (and not production data), the true relationships among
the columns might not be clear from just looking at the available data.

When you have agreement that your candidates are the true dimensions, you can cre‐
ate a calculated table and use DISTINCT with either a single column reference (which
will work for Country, Discount Band, and Segment in our example) or in combina‐
tion with SELECTCOLUMNS (for columns Product and Manufacturing Price).
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Maybe you’re asking yourself if it’s really worth it to create such dimensions. The
clear answer is yes! Remember when we talked about all the disadvantages and prob‐
lems you get with a single-table model back in Chapter 5? You must avoid direct fil‐
ters on the fact table under all circumstances.

Adding attributes directly into the fact table is sometimes recom‐
mended. Order numbers are a typical example where it isn’t a good
idea to create a dedicated dimension table. The cardinality of the
dimension table would be close to the fact table, and the size of the
fact table wouldn’t be reduced because, instead of the order num‐
ber, you’d need to add the foreign key to the fact table.
Be aware that adding such information to the data model comes at
a price: the size of the Power BI semantic model will increase dra‐
matically as a column of a high cardinality compresses badly. Prop‐
agating a slicer with the column values will take a while, and
applying the filter in a visual won’t be fast. On top of all this, you
could suffer from the problem pointed out in “A Single Table to
Store It All” on page 103.

You should overcome the temptation to create the Date table in the same manner (by
applying DISTINCT over the fact table’s columns), as the date values in the fact table
usually have gaps (e.g., weekends, bank holidays, etc.), which you can clearly see in
Figure 10-1. I show how to create a fully functional date table later in “Time and
Date” on page 203.

We can’t, however, physically remove any column from the fact table, but only hide
those columns (so that the report creators are not unintentionally using them)—
otherwise, creating the calculated tables (referencing those columns) would fail.

There’s a big disadvantage to using DAX to model your data: you
can only add columns and tables to form a star schema, but you
still need to keep all the information in its original (un-modeled,
non-star) shape.

You can’t truly transform the data into the intended model, but that shouldn’t keep
you from applying these best practices. It’s better to shape your data with DAX then
not shape it at all. Just remember that when the size of the data model (in memory—
but you can also just take a look at the size of the .pbix file on disk to get a rough
impression how small or big your data model is) is starting to become a problem for
your resources, then it’s time to refactor your DAX into Power Query (or SQL).
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2 This example uses the Denormalize Dimension DAX.pbix file.

Denormalizing
I’m sure, by now, you’re aware that we need to denormalize dimension tables. To
denormalize, we need to add columns with information from a related table into the
main dimension table. The DAX function that achieves this is called RELATED. It can
traverse from the “many” side of a relationship to the “one” side, even over several
tables, and fetch the content of a column.

In this next example, a product’s information is split into three tables: DimProduct,
DimProductSubcategory, and DimProductCategory.2 Simply create two new calcula‐
ted columns in table DimProduct:

DimProduct[Subcategory] =
  RELATED(DimProductSubcategory[EnglishProductSubcategoryName])
DimProduct[Category] =
  RELATED(DimProductCategory[EnglishProductCategoryName])

Because there’s a direct relationship in the data model between DimProduct and
DimProductSubcategory, it makes sense that we can reference a value from there. But
DAX is smart enough to traverse from DimProduct over DimProductSubcategory to
DimProductCategory as well. Therefore, the second example works as expected. Be
reminded that RELATED can only reference from a table on the “many” side to a table
on the “one” side. (To traverse the other direction, you can use RELATEDTABLE, which
returns a table with all the values from the “many” side.)

Again, we can (and definitely should) hide the two tables DimProductSubcategory
and DimProductCategory to avoid report creators using these columns unintention‐
ally, but we cannot actually delete the two tables from the model (because then, the
newly created calculated columns would throw an error).

Calculations
Calculations are the home game for DAX. DAX is built for creating formulas for even
very complex challenges. And by “calculations,” I mostly mean explicit measures;
that’s the core competence of a data analytic expression. Creating calculated tables
and calculated columns is possible as well, but I see the value of these functions only
historically, as a workaround from the early days of Excel’s Power Pivot, when Power
Query wasn’t available yet. In many scenarios, you’re better off with explicit measures
as opposed to using calculated columns or adding columns in Power Query or SQL.

Before I dive into kinds of calculations, let’s see how many resources you can save by
replacing redundant columns (those whose value can be calculated by using other
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existing columns) with a DAX measure. In the Financials Filter Dimension Surrogate
Key Measures.pbix file, you’ll find the following three redundant columns:

• Gross Sales can be calculated from the Sale Price and Units Sold, as follows:
Gross Sales :=
SUMX(
    financials,
    financials[Sale Price] * financials[Units Sold]
)

• Sales can be calculated from the Gross Sales and Discounts, as follows:
Sales := [Gross Sales] - SUM(financials[Discounts])

• Profit can be derived from Sales and COGS (“cost of goods”), as shown here:
Profit := [Sales] - SUM(financials[COGS])

In DAX, every use of the SUM function can be rewritten as SUMX—
that’s what the storage engine does. There’s no difference in perfor‐
mance, only in the syntax. If you want to add up the value of a col‐
umn, use SUM (e.g., SUM(financials[Discounts])). If you need to
add the result of an expression, you need to use SUMX:

SUMX(financials,
  financials[Sale Price] * financials[Units Sold])

SUM doesn’t allow you to provide an expression, only a column
reference.

If you replace the existing columns in the Financials table with the explicit DAX
measures, you will recognize a remarkable difference in the sizes of the data models:

• A model with the Financials table as is uses 5.5 MB of RAM (see Financials
OBT.pbix).

• A model where I replaced the three columns Gross Sales, Sales, and Profit
with the aforementioned DAX measures only occupies 253 KB of RAM (see
Financials OBT Measures.pbix).

Getting rid of the columns by replacing them with mathematically identical DAX
measures reduced the size of the model to a 20th of its size—without losing any infor‐
mation or features in the data model. Instead of persisting the results of these calcula‐
tions (and occupying space), they’re replaced with their formula, which will be
calculated as needed when queried.

But what about query performance, you ask? Turns out that the query plan for the
two models isn’t as different as you might expect. To measure it, I create a visual with
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the three columns/measures organized by date in each of the two Power BI files. The
two reports look very similar: they show the same numbers, although I keep the
default names for the headers (“Sum of …”) to make it easy to distinguish the two
reports (Figures 10-2 and 10-3).

For each file, I then switch on View → Performance Analyzer, then hit “Start record‐
ing” and “Refresh visuals.” If you then expand Table, you can click “Copy query.”
Next, I start DAX Studio (via “External tools”), paste the query, and switch on
“Query plan,” “Server timings,” and “Clear on Run” via the ribbon. Then, you can
run the query.

Because both data models are very small, the queries will finish in no time. But I want
to point out that the storage engine query is almost identical. Here, you see the
xmSQL representation (choose Server Timings below the query and click the only
line to display the query) of what the storage engine needs to do to deliver the rows
for the report for the data model where all columns are persisted. It simply sums up
the stored values for the columns Profit, Gross Sales, and Sales:

SET DC_KIND="AUTO";
SELECT
    'LocalDateTable'[Year],
    'LocalDateTable'[MonthNo],
    'LocalDateTable'[Month],
    'LocalDateTable'[QuarterNo],
    'LocalDateTable'[Quarter],
    'LocalDateTable'[Day],
    SUM ( 'financials'[Profit] ),
    SUM ( 'financials'[Gross Sales] ),
    SUM ( 'financials'[ Sales] )
FROM 'financials'
    LEFT OUTER JOIN 'LocalDateTable'
        ON 'financials'[Date]='LocalDateTable'[Date];

Estimated size: rows = 16  bytes = 576
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Figure 10-2. Report based on persisted columns

Figure 10-3. Report based on measures to calculate the values on the fly

When I remove those three columns and add explicit measures to the data model, the
xmSQL query is slightly changed: the result for the three KPIs (Gross Sales, Sales,
and Profit) cannot be obtained from the data. Instead, the values for columns
Discount and COGS are summed up, an expression to multiply the Sales Price

Calculations | 193



column by the Units Sold column is added, and its result is summed up (to satisfy
the calculations for the three measures; it’s performed by the formula engine):

SET DC_KIND="AUTO";
WITH
    $Expr0 := ( CAST ( PFCAST ( 'financials'[Sale Price] AS INT ) AS REAL )
      * PFCAST ( 'financials'[Units Sold] AS REAL ) )
SELECT
    'LocalDateTable'[Year],
    'LocalDateTable'[MonthNo],
    'LocalDateTable'[Month],
    'LocalDateTable'[QuarterNo],
    'LocalDateTable'[Quarter],
    'LocalDateTable'[Day],
    SUM ( 'financials'[Discounts] ),
    SUM ( 'financials'[COGS] ),
    SUM ( @$Expr0 )
FROM 'financials'
    LEFT OUTER JOIN 'LocalDateTable'
        ON 'financials'[Date]='LocalDateTable'[Date];

Estimated size: rows = 16  bytes = 576

In the end, the query performance is identical (and the random differences with every
execution are bigger than the differences between the two queries measured with only
one run). Your mileage may vary with more complex calculations.

The difference in storage space is not so much about the three decimal values but the
cardinality of these three columns:

• Gross Sales contains 550 distinct values.
• Sales contains 545 distinct values.
• Profit contains 557 distinct values.

Power BI’s in-memory compression algorithm is highly dependent on the cardinality
of a column. As the whole fact table has 700 rows, we can derive that almost every
row has a different Gross Sales, Sales, and Profit. The high cardinality of these
columns leads to the high amount of space these columns occupy in RAM, even after
compression.

Conversely, refresh time might improve in the model wherein you don’t add the
three columns to the data model (it doesn’t have to be calculated in the data source
and less data has to be moved when loaded into the data model).

Overall, you should consider explicitly creating measures for all types of calculations
(including the aforementioned columns Discount and COGS, which I wrapped in
DAX’s SUM function).

194 | Chapter 10: Building a Data Model with DAX



Simple Aggregations for Additive Calculations
Simple aggregations for additive calculations could also be calculated through
Default Summarization. Part II explains why you should explicitly create DAX
measures instead of relying on Default Summarization. I usually rename the
numeric column (e.g., add an underscore [_] as a prefix), hide the column, and then
create a simple measure by applying the SUM function (or whatever aggregation makes
sense). When the calculation is more complex (e.g., because you need to multiply the
quantity with a price), you need the SUMX function (or a comparable iterator func‐
tion), where you can provide the formula for the multiplication. SUMX calculates this
formula for each and every row of the table you provided as the first parameter of the
function and sums these results up:

[Units Sold] :=
    SUM(Financials[Units Sold])

[Gross Sales] :=
    SUMX(
        'Financials',
        'Financials'[Units Sold] * Financials[Sale Price]
    )

Semi-Additive Calculations
Semi-additive calculations require you to specify for which date the value should be
calculated. Usually, it’s the first or the last date of the current time range:

[First Value] :=
/* based on a blog post by Alberto Ferrari
   https://www.sqlbi.com/articles/semi-additive-measures-in-dax/
 */
VAR FirstDatesPerProduct =
    ADDCOLUMNS (
        VALUES ( 'Product'[Product ID] ),
        "MyDay", CALCULATE ( MIN ( 'Sales'[Date] )
        )
    )
VAR FirstDatesPerProductApplied =
    TREATAS (
        FirstDatesPerProduct,
        'Product'[Product ID],
        'Date'[Date]
    )
VAR Result =
    CALCULATE (
        SUM ( 'Sales'[Quantity] ),
        FirstDatesPerProductApplied
    )
RETURN Result
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[Last Value] :=
/* based on a blog post by Alberto Ferrari
   https://www.sqlbi.com/articles/semi-additive-measures-in-dax/
 */
VAR LastDateInContext = MAX ( 'Date'[Date] )
VAR LastDatesPerProduct =
    ADDCOLUMNS (
        CALCULATETABLE (
            VALUES ( 'Product'[Product ID] ),
            ALL ( 'Date' )
        ),
        "MyDate", CALCULATE (
            MAX ( 'Sales'[Date] ),
            ALL ( 'Date' ),
            'Date'[Date] <= LastDateInContext
        )
    )
VAR LastDatesPerProductApplied =
    TREATAS (
        LastDatesPerProduct,
        'Product'[Product ID],
        'Date'[Date]
    )
VAR Result =
    CALCULATE (
        SUM ( 'Sales'[Quantity] ),
        LastDatesPerProductApplied
    )
RETURN Result

Non-additive calculations must be done in the form of a DAX
measure. You can’t achieve the correct results with any other tech‐
nique (e.g., calculated column, Power Query, SQL, etc.)

Re-create the Calculation as a DAX Measure
Results of non-additive calculations simply can’t be aggregated in a meaningful way.
Therefore, you need re-create the calculation as a DAX measure based on the aggre‐
gated parts of the formula. You need to sum up the elements of the formula (instead
of summing up the results). The Margin in Percentage of the Sales is calculated
by dividing the margin by the sales amount, which works perfectly on the level of one
row in the sales table. But a report barely shows the individual sales rows, instead
showing aggregated values. Calculating the sum or even the average of the result of
the division would show the wrong value. Therefore, it needs to be calculated as
shown:

[Margin %] := DIVIDE(SUM('Sales'[Margin]), SUM('Sales'[Sales]))
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This measure also works on the level of individual sales, where only a single sale
event is available (because the sum of the margin of a single row in the sales table is
just the margin of the row).

Counts over DISTINCT entities are another example of non-additive calculations. The
DISTINCT count of customers who bought something in the first quarter of a year is
not the sum of the DISTINCT counts of customers in January plus the DISTINCT
counts of customers in February plus the DISTINCT customers in March. Some cus‐
tomers might have bought something in more than one month. You should ensure
that those customers aren’t counted twice when calculating the DISTINCT count for
the quarter. But creating such a measure is not a big deal:

[DISTINCT Count of Products] := DISTINCTCOUNT('Sales'[Product ID])

You can see in Figure 10-4 that two products were sold on the first of the month (A
and B), and a single product each on the second (B) and third (C) of the month. But
in total, there’ve been only three different products (A, B, and C) sold during those
three days (product B was sold on both the first and second of the month).

The column Count of Products adds up to 4 products, while Distinct Count of
Products shows the correct total of 3 (different) products. Sometimes I see people
complain on social media that the table visual in Power BI is buggy because it doesn’t
always add up the individual numbers in the total. It clearly depends on the context
of a calculation, whether the individual numbers need to be aggregated or if the cal‐
culation has to be done on the aggregated level (see Part I).

Figure 10-4. Visual showing measures Count of Products and Distinct Count of
Products

Non-additive calculations, like a distinct count, must be done in
the form of a DAX measure. You cannot achieve the correct results
with any other technique (e.g., calculated column, Power Query,
SQL, etc.)

Calculations | 197



Time-Intelligence Calculations
Time-intelligence calculations are another use case that can only be solved with DAX
measures. The trick is basically to use CALCULATE to change the time period
accordingly (e.g., from the current day to all days since the beginning of the year to
calculate the year-to-date value), similar to the logic for the semi-additive measures.

Explicit measures

You can use DAX’s built-in functions either to directly calculate the value (e.g., TOTAL
YTD) or as filter parameters for CALCULATE (e.g., DATESYTD). Those functions hide
some complexity from you, but you can always come up with a formula that achieves
the same result (even with the same performance) by, e.g., calculating the first day of
the year and then changing the filter context accordingly. See three implementations
of a year-to-date calculation for Sales Amount in the following code snippets:

[TOTALYTD Sales Amount] :=
TOTALYTD(
    [Sales Amount],
    'Date'[Date]
)

[TOTALYTD Sales Amount 2] :=
CALCULATE(
    [Sales Amount],
    DATESYTD('Date'[Date])
)

[TOTALYTD Sales Amount 3] :=
CALCULATE(
    [Sales Amount],
    DATESBETWEEN(
        'Date'[Date],
        STARTOFYEAR(LASTDATE('Date'[Date])),
        LASTDATE('Date'[Date])
    )
)

All three have the same semantics, and their different syntax generates the identical
execution plan. Therefore, their performance is identical. They are just using more or
less syntax sugar to write the code.

Figure 10-5 shows the identical result of the three different approaches in DAX to
calculate the year-to-date (YTD) total.
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Figure 10-5. Results of the three measures to calculate the year-to-date value for Sales
Amount

Time-intelligence calculations must be done in the form of a DAX
measure. You can’t achieve the correct results with any other tech‐
nique (e.g., calculated column, Power Query, SQL, etc.)

Calculation groups
Requirements for time intelligence, especially, can easily lead to many variations of a
single measure (e.g., year-to-date, previous month, previous year, differences in abso‐
lute numbers, differences in percentage, comparison to budget, etc.). It can be tedious
to create (and maintain) all the variations for each measure. Here, calculation groups
come in handy. Calculation groups add a layer above all measures and are explicitly
activated as filters within visuals or via CALCULATE within other measures. The advan‐
tage is that you only need to specify the logic of how to calculate, e.g., YTD for a mea‐
sure as one item in the calculation group. When you create a calculation item, you
can simply copy and paste an existing definition of a measure but replace the base
measure’s name (e.g., [Sales Amount]) with the function SELECTEDMEASURE:

[Actual] := SELECTEDMEASURE()

[YTD] := TOTALYTD(SELECTEDMEASURE(), 'Date'[Date])

This logic can then be activated for every measure when you need it. If the logic
changes, you need only change it in a single place (the calculation item) instead of
changing it per measure.

Calculation groups are fully supported in Power BI—but, at the time of writing,
Power BI Desktop’s UI doesn’t expose its definitions. Therefore, you need to use a
third-party tool to create and maintain calculation groups in your .pbix file. If you’re
working with Analysis Services tabular, you have full access to the definition of calcu‐
lation groups in, for example, Visual Studio.

Figure 10-6 shows Tabular Editor 3, but you could use the free version of Tabular
Editor (version 2) to maintain calculation groups. In the first step, you would need to
create a new calculation group by right-clicking Tables inside TOM Explorer. I
renamed both the table and column, from “Name” to “Time Intelligence.” Then, add
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Calculation Items per variance. Here, I added one for Actual and one for YTD as
described.

Figure 10-6. Defining a calculation group in Tabular Editor 3

Flags and Indicators
Replacing abbreviations and technical identifiers with meaningful text can easily be
achieved with DAX. I intentionally used a different syntax for each of the following
examples to demonstrate different possibilities. Use the Flag.pbix file to follow along
with this section’s examples.

IF Function
Every replacement logic can be implemented by writing a bunch of nested IF func‐
tions. Always make sure to use a new line for each of the parameters and indent the
parameters. Otherwise, a formula, especially one with nested functions, can be really
hard to read. If the first parameter of IF evaluates to TRUE, then the second parameter
is returned. If the first parameter does not evaluate to TRUE, the third parameter is
returned. Calculated column Class Description shows three nested IF functions:

'DimProduct'[Class Description] =
IF(
    DimProduct[Class] = "H",
    "High",
    IF(
        DimProduct[Class] = "M",
        "Medium",
        IF (
            DimProduct[Class] = "L",
            "Low",
            "other"
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        )
    )
)

SWITCH Function
SWITCH can be used with a simple list of values, which I prefer over nested IFs due to
the better readability. For calculated column Product Line Description, I did pro‐
vide a column name as the first parameter (DimProduct[ProductLine]) and different
literals for the even (second, fourth, etc.) parameters ("R", "M", "T", and "S").

If the first parameter matches one of these literals, then one of the odd (third, fifth,
etc.) parameter values is returned (either "Road", "Mountain", "Touring", or
"Standard"). I provide a last parameter ("other") for cases where a new Product
Line might be added after I write the formula. If I omit the last parameter, then for
such a new ProductLine, a blank value would be shown as the Product Line

Description. I prefer “other” (or something similar) over a blank text:

'DimProduct'[Product Line Description] =
SWITCH(
    DimProduct[ProductLine],
    "R", "Road",
    "M", "Mountain",
    "T", "Touring",
    "S", "Standard",
    "other"
)

SWITCH TRUE Function
Finished Good Description works with the SWITCH function, but in a different way.
For the first parameter, I use TRUE, and the even parameters each contain each a con‐
dition (which evaluates to TRUE or not) instead of a literal value. If the first parameter
and the second parameter are equal (which means that the condition provided in the
second parameter evaluates to TRUE), then the third parameter is returned. If that’s
not the case, then the first parameter is compared with the fourth parameter, and so
forth.

You should provide a last parameter that’s returned when all the comparisons fail:

'DimProduct'[Finished Goods Description] =
SWITCH(
    TRUE(),
    DimProduct[FinishedGoodsFlag] = 0, "not salable",
    DimProduct[FinishedGoodsFlag] = 1, "salable",
    "unknown"
)
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Lookup Table
Generally, I prefer to have a lookup table for the replacement values. I find it easier to
maintain the content of a table than to rewrite a formula when new values need to be
added or existing replacements have to be updated. If you need the replacements in
more than one language, a lookup has benefits as well (as we discuss in “Multi-
Language Model” on page 63). Creating the lookup table in DAX is clearly not my
favorite method (because changing the content of the table means a change to the
formula of the calculated table), but it can be done with the DATATABLE function. The
following code shows how to use function DATATABLE to create a table called Styles
(DAX):

[Styles (DAX)] = /* calculated table */
DATATABLE(
    "Style", STRING,
    "Style Description", STRING,
    {
        {"W", "Womens"},
        {"M", "Mens"},
        {"U", "Universal"}
    }
)

Then, you create a filter relationship between the table’s Styles (DAX) column Style
and the table’s DimProduct column Style. This enables you to use RELATED to look up
the values. In case a value for Style that is present in DimProduct isn’t (yet) available
in table Styles (DAX), I check for BLANK and return unknown:

'DimProduct'[Style Description] =
VAR StyleDescription = RELATED('Styles (DAX)'[Style Description])
VAR Result =
IF(
    ISBLANK(StyleDescription),
    "unknown",
    StyleDescription
)
RETURN Result

Treating BLANK values
Sometimes you don’t need to develop a complex transformation but only make sure
to replace empty strings. DAX distinguishes two kinds of empty strings. A string can
indeed contain just an empty string. This can be checked by comparing an expression
against two double quotes (“”). Additionally, a string (or a column or expression of
any data type) can also be blank. Blank means that the string is not just an empty
string, but that there was no value provided at all. Relational databases call those
missing values NULL.
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3 See Date.pbix in the book’s GitHub repository to follow along with the examples in this section.

You can either compare an expression against BLANK() or explicitly check if an
expression is blank by passing the expression into function ISBLANK. In calculated
column WeightUnitMeasureCode, I replace empty and blank values with N/A:

'DimProduct'[WeightUnitMeasureCode cleaned] =
IF(
    ISBLANK(DimProduct[WeightUnitMeasureCode]) ||
      DimProduct[WeightUnitMeasureCode] = "",
    "N/A",
    DimProduct[WeightUnitMeasureCode]
)

Time and Date
As Chapter 6 points out, you should create your own time-related table(s) when it
comes to Power BI and Analysis Services tabular. You can use the DAX code in this
section as a template, which you then change and adapt to the needs of your report
users.3 The number of rows in a Date or Time table is usually negligible—so you don’t
have to limit yourself in terms of the amount and variations of columns you want to
add.

First, let’s create a Date table. The starting point is to create a list of dates for the time
ranges your fact tables contain. Basically, you have two options: CALENDARAUTO and
CALENDAR:

CALENDARAUTO

Function CALENDARAUTO scans all your tables for columns of data type Date and
will then create a list of dates for January 1 of the earliest year until December 31
of the most recent year. This will work as long as you don’t import columns with
“exotic” dates (like birth dates or placeholders like January 1, 1900 or December
31, 9999). In case of fiscal years (which do not start with January 1), you can pass
in an optional parameter to CALENDARAUTO to move the start month by x months:

[Date (CALENDARAUTO)] = CALENDARAUTO() /* calculated table */

CALENDAR

The CALENDAR function gives you more control; you have to provide two parame‐
ters: the first date and the last date of your Date table. These parameters can
either be hardcoded (e.g., DATE(2023, 01, 01)), which isn’t very flexible (and
requires you to remember to change the value once a year to add the dates for the
new year), or you can write an expression where you calculate the two dates from
your fact table’s date column. Unless your fact table is huge, the calculation will
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be fast enough and give you peace of mind—you’ll know that the date table will
always contain all necessary entries with every refresh:

[Date (CALENDAR)] = /* calculated table */
    CALENDAR(
        DATE(
            YEAR(MIN('Fact Reseller Sales'[OrderDate])),
            01, /* January */
            01  /* 1st */
        ),
        DATE(
            YEAR(MAX('Fact Reseller Sales'[OrderDate])),
            12, /* December */
            31  /* 31st */
        )
    )

After creating the calculated table, you can add new columns over Power BI Desk‐
top’s UI. However, I recommend that you nest CALENDARAUTO or CALENDAR into ADD
COLUMNS and then specify pairs of names and expressions for the additional columns.
With that approach, you’ll have everything in one place (the expression for the calcu‐
lated table) and not spread out over separated calculated columns. This allows you
also to easily copy and paste this full definition of the calculated table to the next data
model:

[Date (CALENDAR)] = /* calculated table */
ADDCOLUMNS(
    CALENDAR(
        DATE(
            YEAR(MIN('Fact Reseller Sales'[OrderDate])),
            01, /* January */
            01  /* 1st */
        ),
        DATE(
            YEAR(MAX('Fact Reseller Sales'[OrderDate])),
            12, /* December */
            31  /* 31st */
        )
    ),
    "Year", YEAR([Date]),
    "MonthKey", YEAR([Date]) * 12 + MONTH([Date]),
    "Month Number", MONTH([Date]),
    "Month", FORMAT([Date], "MMMM"),
    "YYYY-MM", FORMAT([Date], "YYYY-MM"),
    "Weeknumber (ISO)", WEEKNUM([Date], 21),
    "Current Year", IF(YEAR([Date])=YEAR(TODAY()), "Current Year", YEAR([Date]))
)

There are several additional columns typically used for a date table:
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DateKey as a whole number representing the date in the format YYYYMMDD
You can calculate this whole number by extracting the year from the date, which
you multiply by 10,000, add the number of the month multiplied by 100, and
then add the day. In a data warehouse, it’s best practice to also have the keys for
dates in the form of a whole number. In Power BI and Analysis Services tabular,
this isn’t as important.

Year as the year portion of the date
The DAX function YEAR has you covered here.

MonthKey, Month Number, Month, YYYY-MM

Variations of the month, like the month number of the year, the month name,
the year and month combined in different formats. Most of the variations can be
calculated by using function FORMAT and passing in a format string.

Weeknumber (ISO)
You pass the date as the first parameter for function WEEKNUM. The second param‐
eter allows you to specify whether your week starts on Sundays or Mondays, or if
the week number should be calculated according to the ISO standard.

Current Year

Users expect that a report shows the most recent data. Pre-selecting the right
year and month can be challenging unless you have a column containing
Current Year or Current Month, which dissolves to the right year or month.

There are no functions similar to CALENDARAUTO or CALENDAR to get the range for a
time table. But we can use GENERATESERIES to request a table containing a list of val‐
ues for the specified range of integers. To create a table for every minute of the day,
we need to CROSSJOIN a table containing values 0 to 23 (for the hours of a day) and a
second table containing values 0 to 59 (representing the minutes of an hour).

Again, by using ADDCOLUMNS, you can add additional columns to this expression, so
we have the full definition of this calculated table in one place:

• The TIME function can convert the pairs of hours and minutes into a proper col‐
umn of datatype Time .

• The FORMAT function can also do wonders with time-related content:
[Time (DAX)] = /* calculated table */
VAR Hours = SELECTCOLUMNS(GENERATESERIES(0, 23), "Hour", [Value])
VAR Minutes = SELECTCOLUMNS(GENERATESERIES(0, 59), "Minute", [Value])
VAR HoursMinutes = CROSSJOIN(Hours, Minutes)
RETURN
    ADDCOLUMNS(
        HoursMinutes,
        "Time", TIME([Hour], [Minute], 0),
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4 The examples in this section use the Date role-playing.pbix file from the book’s GitHub repository.

        "Time Description", FORMAT(TIME([Hour], [Minute], 0), "HH:MM")
    )

Role-Playing Dimensions
If you opt to load a role-playing dimension into a data model only once, you need to
make sure that you add as many relationships as foreign keys from one table to the
existing role-playing dimension. A maximum of one of those relationships can be
active; the others can only be inactive but can be activated in measures. That means
that you need to create one variation of each measure per role.

Instead of having just a Quantity measure, you can create individual measures like
Order Quantity, Sales Quantity, etc. Each of these measures uses CALCULATE and
USERELATIONSHIP to explicitly activate one of the relationships. DAX is smart enough
to (implicitly) deactivate the active relationship for the sake of the context inside
CALCULATE so that only one relationship remains active at a given point in time:4

[Order Quantity] :=
CALCULATE(
    SUM(Sales[Quantity]),
    USERELATIONSHIP(Sales[OrderDate], 'Date'[Date])
)

[Ship Quantity] :=
CALCULATE(
    SUM(Sales[Quantity]),
    USERELATIONSHIP(Sales[ShipDate], 'Date'[Date])
)

Calculation groups can help with role-playing dimensions. You can
create calculation group items per role of the dimension, instead of
duplicating all your measures as many times as you have roles.

The alternative approach is to physically load the role-playing dimensions several
times. Instead of living with just one Date table, you create calculated tables in DAX
to duplicate the table (with all its content). This has the disadvantage of increasing
the size of your model, but if the size of the role-playing dimension isn’t huge, the
increase should be negligible. The advantage is that you don’t need to create varia‐
tions of your measures (by applying CALCULATE and USERELATIONSHIP). The report
creator chooses one copy of the dimension table over the other—or even combines
both.
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Creating a copy of a table in DAX is rather easy. You just create a calculated table and
use solely the name of the other table as the expression. But I strongly recommend
renaming all columns to add, e.g., the table name as the prefix, so it is clear which
(e.g., Date column) is referred to (the one from the newly created Order Date or the
Sales Date). You can do this by either manually renaming all columns or changing
the expression referring to just the base table and use SELECTCOLUMNS, which allows
you to specify which columns (or expressions) you want to return under which col‐
umn name:

[Order Date (DAX)] = /* calculated table */
SELECTCOLUMNS(
    'Date',
    "Order Date", [Date],
    "Order Year", [Year],
    "Order Month", [Month]
)

[Sales Date (DAX)] = /* calculated table */
SELECTCOLUMNS(
    'Date',
    "Sales Date", [Date],
    "Sales Year", [Year],
    "Sales Month", [Month]
)

This approach allows you to again have all the logic (renaming) in one place (namely,
the expression for the calculated table). In Parts IV and V, I show how you can auto‐
matically rename all columns without specifying each and every column, as we need
to do in DAX.

Slowly Changing Dimensions
Slowly changing dimensions must be implemented in a physically implemented data
warehouse. In DAX, you can’t update rows to keep track of changes and different
versions, only load the results of such updates.

Usually, a slowly changing dimension doesn’t require extra effort in the world of
DAX; the rows in the fact table already reference the right version of the dimension
table. Only if your report user needs to override the default version (the version that
was valid at the point in time the fact was collected) would you need to reach out to
DAX and implement the logic via CALCULATE in your measures.
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5 See Slowly Changing Dimensions.pbix from the book’s GitHub repository for the examples in this section.

Figure 10-7 shows a report page with the following content:5

• A slicer to choose the product.
• A slicer to choose the year, month, or day when the product has to be valid. If a

time range is selected (e.g., a year) then the version valid at the end of this period
will be taken into account.

• Two card visuals at the top of the screen:
— Selected Product Version shows the latest available date for the year selected

in the Product Version slicer. For the year 2023, this is 2023-12-31.
— Just beneath that is the Product Version’s Standard Cost for the product on

that day. On December 31, 2023, the standard cost was €39.2589.
• A table visual showing columns:

— Date

— Product name
— StartDate, EndDate, and StandardCost of the version of the product valid at

the Date
— Quantity sold on that date
— Cost as the result of the shown StandardCost times the shown Quantity
— Cost (Product Version) calculated as Product Version’s Standard Cost,

as shown at the top of the screen times the Quantity sold on that day

For Product Sport-100 Helmet, Black a StandardCost of 12.0278 was valid in years
2020 and 2021 (StartDate 2020-01-01 and EndDate 2022-01-01). At the beginning of
2022, the StandardCost rose to 13.7882. In the individual lines of the table visual, the
Cost is calculated by multiplying Quantity by either of those two values (e.g., 27 ×
12.0278 = 324.7506). In contrast, the value in column Cost (Product Version) is
calculated as the individual Quantity times 13.7882 in all rows; this is the standard
cost valid for the selected version of the product (e.g., 27 × 13.7882 = 374.7114).
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Figure 10-7. A report page that gives the choice of the StandardCost of each product’s
version, which can be used to calculate the Cost (Product Version)

To implement this, you need the following parts:

Product version
A table containing the versions, where the report user makes their selection. As
new versions can be created at any point in time, it’s probably a good idea to use
the date dimension (and possibly the time dimension) here:

[Product Version] = 'Date' /* calculated table */

Alternatively, you could also create a table containing all distinct EndDate values
from the fact table. I decided against it here, as in a real-world scenario there
could be a long list of those versions, which could be spread very unevenly over
time, making scrolling down the list a bit awkward. But it’s totally up to you if
you want to exchange the reference to the Date table with DISTINCT('Product'
[EndDate]).

Resist creating a relationship from this table to, e.g., the StartDate or EndDate of
the Product table. Such a filter would not work as expected, as someone could
select a date that isn’t a StartDate or EndDate. Therefore, we will apply the filter
over DAX in the measure where we are calculating Cost (Product Version).
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Selected product version
A measure for the selected product version:

[Selected Product Version] := MAX('Product Version'[Date])

Standard cost for the selected product version
A measure to find the standard cost for the selected version, independent of the
selected date. All the versions of the same product have the identical business key
(ProductAlternateKey). Therefore, you need to remove any filters on the prod‐
uct table (a filter on, e.g., the name would be problematic, if the name changes
over the versions) and add a filter on the ProductAlternateKey and find the
product for which the selected product version falls into the timespan of Start
Date and EndDate. We need also take into account that StartDate or EndDate
could be empty, as the product’s version might have always been valid, or might
still be valid:

[Standard Cost (Product Version)] :=
VAR ProductVersion = [Selected Product Version]
RETURN
SUMX(
    'Product',
    VAR AlternateKey = 'Product'[ProductAlternateKey]
    VAR Result =
    CALCULATE(
        MIN('Product'[StandardCost]),
        ALL('Product'),
        'Product'[ProductAlternateKey] = AlternateKey,
        ProductVersion >= 'Product'[StartDate] ||
          ISBLANK('Product'[StartDate]),
        ProductVersion <= 'Product'[EndDate] ||
          ISBLANK('Product'[EndDate])
    )
    RETURN Result
)

[Cost (Product Version)] :=
SUMX(
    'Product',
    [Order Quantity] * [Standard Cost (Product Version)]
)

Hierarchies
If you’ve followed all the best practices described in this book so far, then you already
have denormalized all natural hierarchies in the dimension tables (see “Denormaliz‐
ing” on page 190). With the natural hierarchy denormalized, you have all levels of the
hierarchy represented as columns in one table. Adding these columns to a hierarchy
is very easy.
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6 And see Hierarchies.pbix to follow along.

Here, let’s concentrate on parent-child hierarchies. They’re very common, and you
also need to store the names of all parents in dedicated columns. Read on to learn
how you can achieve this with DAX.6

First, create the materialized path. Luckily, there is a function in DAX available:

'Employee (DAX)'[Path] = PATH('Employee (DAX)'[EmployeeKey], 'Employee (DAX)'
  [ParentEmployeeKey])

Then, you need to dissect the Path and create a calculated column per (expected)
level. Add calculated columns for some extra levels in case the depth of the organi‐
gram (and therefore the path length of some of the employees) will increase in the
future. To make creating these columns as convenient as possible, I put the level
number (which should correspond with the name of the calculated column) into a
variable. Then, you can just copy and paste this definition for each level and only
change the name and the content of variable LevelNumber.

LevelNumber is used as a parameter for PATHITEM to find the nth entry in the path. The
found string represents the key of the employee and is stored in variable LevelKey.
This key is then passed into LOOKUPVALUE to extract the full name of this employee
and stored in variable LevelName. The latter is returned:

'Employee (DAX)'[Level 1] =
VAR LevelNumber = 1
VAR LevelKey = PATHITEM ( 'Employee (DAX)'[Path], LevelNumber, INTEGER )
VAR LevelName = LOOKUPVALUE ( 'Employee (DAX)'[FullName], 'Employee (DAX)'
  [EmployeeKey], LevelKey )
RETURN LevelName

You can already add all Level columns to a common hierarchy if you want. I created
a matrix visual, shown in Figure 10-8, with the hierarchy on the rows and the mea‐
sure Sales Amount in the value section. So far so good. As soon as you start expand‐
ing the upper levels, you’ll see that the Sales Measure is available for all (in my case
seven) levels of the hierarchy, even when there is no employee related to the level
shown. The result for the last available level is repeated for all sublevels when they do
not have their “own” values.

A good data model should take care of this problem. You need to add another col‐
umn (to calculate the level an employee is on), a measure to aggregate this column
with MAX, another measure to calculate on which level the measure is actually
displayed, and you also must tweak the existing measures to return blank in case an
employee is shown in an unnecessary level (by returning blank in case the level the
measure is displayed on is higher than that of the employee). The unnecessary level
won’t be displayed if all measures only return blank.
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Figure 10-8. The hierarchy expands to unnecessary levels with empty names and
repeating Sales Amounts

You can calculate the level of an employee by counting the levels the path contains
(by basically counting the separator character plus one). This gives you the position
of an employee within the organigram. The lower the path length, the higher the
position in the organigram, with the CEO having a path length of 1. Calculating this
is much easier than you might think, thanks to the function PATHLENGTH. Calculating
the maximum as a measure is then no real challenge, I guess:

'Employee (DAX)'[PathLength] = PATHLENGTH('Employee (DAX)'[Path])

[MaxPathLength] := MAX('Employee (DAX)'[PathLength])

You need also to determine the level of the measure. Here, you need to check if the
column representing a certain level is in the current scope of the visual. If it is,
INSCOPE will return TRUE, which is implicitly converted to 1 in an arithmetic calcula‐
tion. If it isn’t in scope, then INSCOPE will return FALSE, which is implicitly converted
to 0 in an arithmetic calculation:

[CurrentLevel (DAX)] :=
ISINSCOPE('Employee (DAX)'[Level 1]) +
ISINSCOPE('Employee (DAX)'[Level 2]) +
ISINSCOPE('Employee (DAX)'[Level 3]) +
ISINSCOPE('Employee (DAX)'[Level 4]) +
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ISINSCOPE('Employee (DAX)'[Level 5]) +
ISINSCOPE('Employee (DAX)'[Level 6]) +
ISINSCOPE('Employee (DAX)'[Level 7])

If you add columns for additional levels, remember to add them in the calculation of
this measure as well.

Finally, add a measure in which you decide whether a value has to be displayed:

Sales Amount (DAX) =
VAR Val = [Sales Amount]
VAR ShowVal = [CurrentLevel (DAX)] <= [MaxPathLength (DAX)]
VAR Result =
    IF ( ShowVal, Val )
RETURN
    Result

If you now exchange the Sales Amount measure with the newly created Sales
Amount (DAX) measure, you get rid of the unnecessary empty levels of the hierarchy,
as you can see in Figure 10-9.

Figure 10-9. The hierarchy no longer has unnecessary empty levels
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Again, calculation groups can be of help, now with hierarchies.
You can create two calculation groups items. One to just return the
plain measure (SELECTEDMEASURE()), and another where you copy
and paste the code from measure Sales Amount (DAX) and replace
[Sales Amount] with SELECTEDMEASURE().

Key Takeaways
In this chapter, you learned that DAX is a very powerful language in which you can
do every transformation. It is especially useful when it comes to semi- and non-
additive calculations, as they can’t be implemented outside of DAX (neither with
Power Query nor in the data source). Take a look at what you learned in this chapter:

• Normalizing your fact tables involves taking steps to find candidates for dimen‐
sions, creating dimension tables as calculated tables via SELECTCOLUMNS, and hid‐
ing those columns in the fact table. Unfortunately, we can’t actually remove those
columns from the fact table because it would break the DAX code of the dimen‐
sion tables.

• Denormalizing in DAX means using RELATED to move columns over to the main
dimension. Again, we can’t remove the referenced tables without breaking the
DAX code. Therefore, we just hide these tables.

• I recommend creating all calculations as DAX measures as a starting point (and
not as DAX calculated columns or as columns in Power Query or SQL). Carefully
analyze the formula if it involves multiplication; if it does, you may need to use
an iterator function to achieve the correct result.

• You can solve the problem of role-playing dimensions in two ways. You can add
(inactive) relationships to the data model and activate them via USERELATIONSHIP
in the measures where you don’t want to use the active relationship. Or add the
dimension several times under different names and create standard relationships.
Then, no special treatment of your DAX code is necessary.

• Natural hierarchies will have already been denormalized in a star schema.
• Parent-child hierarchies need some extra love before we can use them conven‐

iently in reports. You need to create some extra columns and measures.

Now it’s time to learn about more advanced challenges, derived from real-world use
cases, and how to solve them in DAX.
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CHAPTER 11

Real-World Examples Using DAX

DAX and the data model go hand-in-hand. You can solve some challenging use cases
directly in the model, so there’s no need to write a single line of a DAX formula (this
applies to most one-to-many relationships—but there are exceptions, as you will
learn in this chapter). Other solutions involve a cooperation between the data model
and DAX (like activating an inactive relationship). In rare cases, tables have no rela‐
tionship defined at all in the data model, but you create a relationship with the
TREATAS function in DAX, which will only exist during evaluation of the DAX
expression.

This chapter covers the following use cases in DAX:

• How DAX can help you to implement binning based on a table that defines the
ranges of each bucket. Binning is the idea of not showing the actual values but
the bucket a value falls into (like small, medium, or large).

• I use a budget as an example of a data model with more than one fact table. Here,
you need to overcome the challenge that the granularity of one of the fact tables
might not be on the primary key level of a dimension table. This leads to a many-
to-many cardinality between the fact and dimensions table. DAX can help here.

• No single button in Power BI Desktop creates multi-language reports; you need
to work around several problems. I prefer a workaround that’s solely data-driven
and doesn’t need any changes in the data model if new translations or new lan‐
guages are added. To achieve this, I need to add logic to all of my measures.

• Key-value pair tables don’t have attributes stored in dedicated columns but as
individual rows. To make such a table useful for typical reports, you need to pivot
the table (transforming the information from rows per attribute into columns
per attribute).
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Binning
In Chapter 3, I introduced you to three different solutions to assign values into bins,
and there, I recommended only two: creating a lookup table with a row per each dis‐
tinct value you want to bin or creating a lookup table containing one row per bin and
its lower and upper range value. You can use the Binning.pbix file to follow along
with the examples in this section.

Lookup Table
To create the lookup table with the distinct values, you can create a calculated table.
The following code starts with a variable, _Bins, containing the distinct values of the
Sales table’s quantity and adds a column containing the bin (with the help of SWITCH
to check for the given quantity). The second variable, _BinsWithSortOrder, builds on
the previous one and adds another column, using the minimum quantity for a given
bin as the _SortOrder column:

Bin Table (DAX) = /* calculated table */
VAR _Bins =
    ADDCOLUMNS(
        DISTINCT('Sales'[Quantity]),
        "Bin",
            SWITCH(
                TRUE(),
                Sales[Quantity] < 3, "Low",
                Sales[Quantity] < 5, "Middle",
                "High"
            )
    )
VAR _BinsWithSortOrder=
ADDCOLUMNS(
    _Bins,
    "_SortOrder",
        VAR _CurrentBin = [Bin]
        RETURN
        MINX(
            FILTER(
                _Bins,
                [Bin]=_CurrentBin
            ),
            [Quantity]
        )
)
RETURN
    _BinsWithSortOrder

You can see the content of the resulting table in Table 11-1. The content of the table
appears unordered. This is because the formula derives the content from the Sales
table; therefore, the rows in the Bin Table are in the same order as in the Sales table.
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Table 11-1. Bin table (DAX)

Quantity Bin _SortOrder
3 Middle 3

1 Low 1

4 Middle 3

5 High 5

Don’t forget to sort column Bin by column _SortOrder. You can easily achieve this
by selecting the Bin column, the fields list of Power BI Desktop, choosing “Column
tools” → “Sort by column,” and selecting the _SortOrder column, as shown in
Figure 11-1.

Figure 11-1. Sort the Bin column by the _SortOrder column

Range Table
The other solution, which is discussed in “Binning” on page 58, is implemented via
non-equi-joins from the fact table, which contains the value to be binned to the
lookup table, which contains the lower and the upper value of the bin. This table can
also be created as a calculated table in DAX.

The first set of parameters of function DATATABLE expects pairs of column names and
their datatypes. The second set of parameters must be the data for this table. As in
“Tables” on page 176, you have several options to specify a table in the DAX lan‐
guage. I prefer the {} operator here for brevity. The outer {} defines the whole table.
The inner {}s define the content for the individual (three) rows. Here, you don’t need
an explicit column to order the Bin column. You can just use the existing column Low
(incl.) (or High (excl.), for that matter) to achieve this instead.
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Here’s the code to create the Bin Range table:

Bin Range (DAX) = /* calculated table */
DATATABLE(
    // Schema defintion
    "Bin",          STRING,
    "Low (incl.)",  INTEGER,
    "High (excl.)", INTEGER,
    // Rows of data
    {
    {"Low",    BLANK(), 3      },
    {"Medium", 3,       5      },
    {"High",   5,       BLANK()}
    }
)

The result of the DAX formula is shown in Table 11-2. Pay attention to the blank
entries for column Low (incl.) in row Low and for column High (excl.) in row
High (created by the BLANK() function in the code).

Table 11-2. Bin Range (DAX)

Bin Low (incl.) High (excl.)
Low 3

Medium 3 5

High 5

The data model in Power BI doesn’t allow you to define non-equi-joins, but in DAX
we can implement them. The following is important to point out here:

• The bin for the lowest value has an empty Low value. This indicates that we don’t
care how low the value might be; as long as the value is lower than the specified
High value, it will fall into the first bin.

• Similarly, the bin for the highest value has an empty High value. This indicates
that we don’t care how high the value might be; as long as the value is greater
than or equal to the specified Low value, it will fall into the last bin.

• I used the exact same value for the High value of one bin and the Low value of
the next bin. This usually makes the table easier to maintain and guarantees that
there are no gaps between the bins. Later, you’ll implement the lookup so that a
value must be greater than or equal to the Low value to fall into a bin but lower
than the High value.

To make use of the Bin Range table, you need to create a DAX measure that imple‐
ments the lookup between the 'Sales'[Quantity] and the Bin Range table, like this:
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[Bin Count] :=
SUMX (
  FILTER(
      'Sales',
      VAR Quantity = 'Sales'[Quantity]
      VAR Bin =
              FILTER(
                  'Bin Range',
                  NOT ISBLANK(Quantity) &&
                  (Quantity >= 'Bin Range'[Low (incl.)]   ||
                  ISBLANK('Bin Range'[Low (incl.)] )) &&
                  (Quantity <  'Bin Range'[High (excl.)]  ||
                  ISBLANK('Bin Range'[High (excl.)]))
              )
      VAR IsInBin = NOT ISEMPTY( Bin )
      RETURN IsInBin
  ),
  1
)

The DAX measure consists of three important parts:

A SUMX over the value of 1
Could be easily replaced by a COUNTROWS. I used a SUMX in this example for two
reasons: to point out that you could also aggregate facts like quantity, sales
amount, etc. instead of just counting rows, and as a reminder that a
SUMX(<table>, 1) sometimes performs better than a COUNTROWS(<table>).
Always stay flexible in terms of achieving the same result with different DAX for‐
mulas, to have something up your sleeve for when performance is not up to
expectations.

An outer FILTER
Iterates over the fact table (Sales) and only returns a row if it falls into the bin
available in the current filter context.

An inner FILTER
Iterates over the lookup table (Bin Range) and only returns a row when the
quantity falls in between the lower and upper range of a bin available in the cur‐
rent filter context. Blank quantities are ignored (NOT ISBLANK(Quantity)), as
they fall into none of the bins. The quantity must fulfill the condition of being
greater than or equal to the lower bound or lower than the higher bound or the
boundary is blank (e.g., ISBLANK('Bin Range'[Low (incl.)])).

If you like the bin range table solution, remember that the non-
equi-join implemented in DAX with the two filtered iterations can
only be realized in DAX, not directly in the data model or in Power
Query or SQL.
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1 The examples in this section use the Budget.pbix file on from GitHub.

Let’s turn toward the next use case: multi-fact data models, explained on the example
of adding a budget table to a model already containing actual values.

Budget
In “Budget” on page 60, I lay out that a budget works as a typical example in this
book, in which you’ll end up with a data model with more than one fact table. And
when you create the filter relationship between the Budget table and some of the
dimensions, you’ll discover that it has a many-to-many relationship, as the relation‐
ship is based on neither of the primary keys of the two tables.

One of the three solutions discussed in “Budget” on page 135 involves DAX and its
function TREATAS. This function applies a list of values as a filter on a column—and
therefore takes over the task you would usually achieve with a filter relationship.

Be aware that creating a relationship in the data model (active or
inactive) will create sort of an index on the two columns involved
in the filter relationship. The size of the model will increase a bit
due to this index but joining the two tables will be sped up. The
function TREATAS cannot benefit from such an index and is there‐
fore potentially slower. That’s why it is important that TREATAS
shouldn’t be your go-to; use it only when a solution with relation‐
ships cannot be implemented for good reasons.

In the following code, I use TREATAS to manipulate the filter context with the help of
CALCULATE. I pass in the current filter context’s distinct list of VALUES of the product’s
product group as the first parameter and ask to apply this as a filter onto the budget’s
product group:1

[Budget TREATAS] :=
CALCULATE (
    SUM ( Budget[Budget] ),
    TREATAS (
        VALUES ( 'Product'[Product Group] ),
        Budget[Product Group]
    )
)

I create this measure in a Power BI Desktop file containing the following tables:

• A Date table with a row for every day for the years of data of the fact tables
• A Product table with four rows:
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Product ID Product desc Product group
100 A Group 1

110 B Group 1

120 C Group 2

130 D Group 2

• The Sales table, again with four rows (with sales for three different days), on the
granularity level of a single day and a single product:

Date Product ID Amount
2023-08-01 100 3,000

2023-08-01 110 20,000

2023-08-02 110 10,000

2023-08-03 120 15,000

• And a Budget table (Table 11-3) with the planned sales amount per day (the first
of the month for two different months) and per product group (not per product)

Table 11-3. Budget
Date Product group Budget
2023-08-01 Group 2 20,000

2023-08-01 Group 3 7,000

2023-09-01 Group 2 25,000

2023-09-01 Group 3 8,000

The measure Budget TREATAS in Figure 11-2 shows the correct budget per month
and product group. The total is calculated as the sum over all product groups avail‐
able in the Product table (and matches the values displayed in the table visual).
Unfortunately, in the example we also have a budget for product groups, which are
not available in the Product table (as no products for these groups are defined yet).

Figure 11-2. Budget TREATAS per day and product group
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If you want to solve the problem of foreign keys in the fact table, which arn’t available
in the dimension table, then you need a different approach. You need to create a table
that contains all product groups, by combining the product groups from both the
product and the budget table. No duplicated product groups are allowed in this table.
Afterward, you can use this table as a bridge table, as described in “Budget” on page
135, to create two one-to-many relationships from this table, to the product table and
to the budget table.

Find the DAX code for the bridge table created as a calculated table here:

Product Group BRIDGE = /* calculated table */
DISTINCT (
    UNION (
        DISTINCT ( 'Budget'[Product Group] ),
        DISTINCT ( 'Product'[Product Group] )
    )
)

The next challenge is to create the necessary logic in DAX to supply the multi-
language model.

Multi-Language Model
In this section, you’ll use DAX to apply the selected language (row in the Language
table) to the (other) dimension tables, using the Multilanguage.pbix file. In “Multi-
Language Model” on page 139, you learned that Power BI doesn’t allow you to create
active filter relationships between the language table and more than one dimension
table (and complains about an ambiguous model instead).

Therefore, you need to find a way to apply the filter for a language within the DAX
measure that calculates, e.g., the sales amount. You need to make sure that a non-
blank value is only available for dimension rows with the correct language. For the
other languages, it should return BLANK. Power BI’s default behavior will make sure
such blank values aren’t displayed, and therefore omit dimension rows in the
“wrong” (not selected) language.

As a fail-safe, always make sure to use the function SELECTEDVALUE
when accessing the selected language to display the language or use
the language to filter the dimension table. This function will return
the selected value. In case no or multiple selections have been
made, you can provide a fallback value (e.g., English). In a perfect
world, this wouldn’t be necessary; every report creator would make
sure to set the slicer properties or filter for the language selection to
force single selection. But as a model creator, you have no control
over this. It’s better to be safe than sorry.
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Before I show my preferred solution, I want to contemplate four options:

Use USERELATIONSHIP
Power BI allows you to create the relationships between the language table and
the dimension tables as inactive relationships. An inactive relationship is not part
of the filter context, unless it is explicitly activated in a measure. Activating is
done via function USERELATIONSHIP, as “Relationships” on page 179 describes:

Sales (USERELATIONSHIP) =
CALCULATE(
    SUM('Fact'[Amount]),
    USERELATIONSHIP('Language'[Language ID], Dim1[Language ID])
)

This works very well when you only activate a single non-active relationship,
because DAX will automatically de-activate the active relationship (to avoid
more than a single relationship being active). Unfortunately, this does not work
at all in the use case of the Language table and relationships to two dimension
tables, as the proper solution needs to activate more than one of the inactive rela‐
tionships (all relationships between the Language table and the dimension
tables), to propagate the filter from the Language table to the dimension tables:

Sales (USERELATIONSHIP) =
CALCULATE(
    SUM('Fact'[Amount]),
    USERELATIONSHIP('Language'[Language ID], Dim1[Language ID]),
    USERELATIONSHIP('Language'[Language ID], Dim2[Language ID])
)

This formula leads to the confusing error message: USERELATIONSHIP function
can only use the two columns references participating in relationship, which just
means that you can’t activate both inactive relationships. This idea can’t be
implemented successfully.

Use USERCULTURE
Another solution could ignore the filter on the language table for the case of dis‐
playing the dimension’s names, and therefore avoid all problems of ambiguous
relationships in the data model. You could use the USERCULTURE function to
access the user’s language. USERCULTURE returns a string in the format
<language>-<CULTURE>. For example, en-US for the language English and US/
American formatting. (Make sure to use lowercase and uppercase as in the exam‐
ple, as this string is case sensitive.)

You can set the preferred language in Power BI Desktop (File → “Options and
settings” → Options → GLOBAL → Regional Settings) for reports opened in
Power BI Desktop and in the browser’s settings in the case of the Power BI ser‐
vice. You can always explicitly override the browser’s settings by adding a
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parameter to the URL. For example, add ?language=en-US to set the language
explicitly to English and all formatting options to US.

The following example uses TREATAS to set the dimension’s Language ID

obtained from these settings. In the DAX formula, I first set the content of vari‐
able LanguageID to the first two characters of the result of USERCULTURE (which
represents the language). I wrap the expression into {} to convert the scalar value
into a table (which contains only one column and one row), as TREATAS expects a
table expression as its first parameter. As in the solution with USERELATIONSHIP, I
then use CALCULATE to change the filter context for the expression; this time I
apply the variable LanguageID as filters to the dimension’s Language ID

columns:

[Sales (USERCULTURE)] =
VAR _LanguageID = {LEFT(USERCULTURE(), 2)}
RETURN
CALCULATE(
    SUM('Fact'[Amount])
    ,TREATAS(_LanguageID, Dim1[Language ID])
    ,TREATAS(_LanguageID, Dim2[Language ID])
)

This can be beneficial when you want to tie the display language to the browser’s
settings (instead of offering a slicer to change the language ad hoc in the report). 
The drawback is that you need to apply the logic in CALCULATE to each and every
measure. To make maintenance easy, you could create one calculation group,
which takes care of the filtering, as shown here:

VAR _LanguageID = {LEFT(USERCULTURE(), 2)}
RETURN
CALCULATE(
    SELECTEDMEASURE()
    ,TREATAS(_LanguageID, Dim1[Language ID])
    ,TREATAS(_LanguageID, Dim2[Language ID])
)

Create one slicer per dimension on the dimension’s language key
Another approach to ensure all dimensions are filtered by the selected language
is to create one slicer per dimension on the dimension’s language key (not on the
Language table). These slicers can be synchronized with each other, by choosing
View → “Sync slicers” → “Advanced options” from the ribbon. Make sure to
input the same string for all to-be-synced slicers under “Enter a group name to
sync selection to any other visuals with that group name” (see Figure 11-3).

224 | Chapter 11: Real-World Examples Using DAX



Figure 11-3. Advanced options allows to keep slicers on different fields in sync

There are drawbacks, though. First, filters on the lookup table (Language) might
be more performant than filters created on the foreign keys (the Language ID
columns of the dimension tables). Second, the content of foreign key might not
be user-friendly (e.g., “en” instead of “English”)—so you need to store the full
language’s name in every dimension if you want to keep the slicers content easy
to use. Finally, and I think most importantly, this solution must be implemented
in the report tool (and is not covered by the data model). If somebody else is
using your report’s dataset as a data source, they need to reimplement the syn‐
chronization of the slicers (to not suffer from duplicated dimension rows and
duplicated values). Some tools (like Excel) may not allow synchronizing filters.

Statically assign users to roles or use dynamic row-level security
The problem with propagating the language’s filter on several dimensions can
also be solved via row-level security. A filter based on row-level security is activa‐
ted on a different layer, so to speak, than the usual filter context. If a security role
filters multiple tables with the same filter, you do not receive the “ambiguous
model” error message (as in the case when I tried to have several active relation‐
ships from the Language table to the dimension tables). You can either statically
assign users to a role matching their preferred language or you can implement
dynamic row-level security through a lookup table that provides the user’s uni‐
versal principal name and the language. I implemented the latter in Table 11-4.

Table 11-4. A table containing users and their preferred languages
User name Language ID
James@savorydata.com EN

Fritz@savorydata.com DE

Jens@savorydata.com DA

Koloth@savorydata.com tlh-Latn
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First, you need the lookup table, which provides the security context per user.
For example, user James@savorydata.com has Language ID EN assigned.

Make sure that an active filter relationship between the Users and Language
tables is created on the basis of the Language ID column. The relationship must
have a one-to-many cardinality (with table Languages on the “one” side). In this
example, Power BI will suggest a one-to-one cardinality because the Users table
only contains one row per language. But in reality, of course, there could be
many rows for the same language in Users; multiple users will want to consume
the report in the same language. As a filter direction, choose Both, as you want
the Users table to filter the Language table (and not the other way around), as
shown in Figure 11-4.

Figure 11-4. One-to-many bi-directional relationship between tables Language and
Users

Then choose Modeling → “Manage roles” → Create to create a new role. I name
the role USERNAME because it facilitates the USERNAME function to create the right
filters. In this role, you must create a filter for every dimension table (e.g., Dim1
and Dim2) where you let Power BI look up the Language ID column from the
Users table, where the User Name column contains the name of the currently
signed-in user (returned by function USERNAME).
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[Language ID] =
  LOOKUPVALUE('Users'[Language ID], 'Users'[User Name],
  USERNAME())

I recommend creating a filter on the Users table as well:

[User Name] = USERNAME()

Test to see if the role assignment works by clicking Modeling → “View as,”
selecting first “Other user,” and entering the user for whom you want to simulate
the experience. Then, select the newly created role (USERNAME, in this case).
Figure 11-5 shows the dialog box in the foreground and the resulting filtered
report in the background.

Figure 11-5. User Fritz@savorydata.com will be presented with the German ver‐
sion of the report
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However, I see drawbacks to using row-level security to filter for a language.
First, the user can’t change the language dynamically, but needs to either have
write permission on the Users table (to change the content of the Language ID
for their entry) or ask someone to change their role assignment there.

Row-level security works only for users with a Reader role in the Power BI ser‐
vice. If you’re a member, contributor, or admin in the workspace (or the admin
of the Analysis Services database), any other role assignment is ignored. There‐
fore, no filter on the language will be in place for you, and you’ll see instead all
the values for all dimensions multiple times, for each existing language. Every
report author would need a second read-only user so he can develop and test
reports. To tell you the truth, I personally find using row-level security as a work‐
around for language selection to be like using a sledgehammer to crack a nut.

For myself, I’d prefer to let the user decide on the display language. Instead of USER
CULTURE, you can, with the exact same effort, also apply the selected language (of the
Language table) to the dimension tables. The only difference is the expression for the
_LanguageID variable. It uses SELECTEDVALUE to return the selected Language ID. If
no selection is made, or more than one value is selected, the function will return the
content of the optional second parameter (EN in this case):

[Sales] :=
VAR _LanguageID = {SELECTEDVALUE('Language'[Language ID], "EN")}
RETURN
CALCULATE(
    SUM('Fact'[Amount])
    ,TREATAS(_LanguageID, Dim1[Language ID])
    ,TREATAS(_LanguageID, Dim2[Language ID])
)

Again, you need to apply this to each and every measure—or create a calculation
group, as shown here:

VAR _LanguageID = {SELECTEDVALUE('Language'[Language ID], "EN")}
RETURN
CALCULATE(
    SELECTEDMEASURE()
    ,TREATAS(_LanguageID, Dim1[Language ID])
    ,TREATAS(_LanguageID, Dim2[Language ID])
)

In an ideal world, you could create a filter that the user can change interactively, but
can be applied to all (dimension) tables, similarly to how row-level security works,
and without the annoying hint about the ambiguity of the data model. I proposed this
as an idea a couple of years ago. You can vote it up in the Microsoft Fabric
Community.

Now it’s time to face the next challenge: pivoting key-value pair tables with the help
of DAX.
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2 This section’s examples use the Key Value.pbix file on GitHub.

Key-Value Pair Tables
Key-value pair tables have attributes stored row-by-row (see “Key-Value Pair Tables”
on page 65). Many reporting tools (Power BI included) benefit when such a table is
pivoted and each key-value pair (row) is transformed into an explicit column. For
this solution, you need to first distinguish between aggregable columns (typically
numeric) for which you want to calculate and show a total (e.g., a customer’s reve‐
nue), and those for which showing information in a totaled form doesn’t make sense
(e.g., a customer’s city of residence).

Let’s start with the nonaggregable columns.2 The very inner part of the following
measure calculates the minimum value for column Value. In the context of a mea‐
sure, you always need to apply an aggregate function when referencing a table’s col‐
umn. Practically, there will be only one value available at the point in time when MIN
is executed because it’s embedded into an IF with a condition that only one ID is
available in the current filter context (HASONEVALUE). This safeguard keeps the total (a
filter context where more than a single ID is available) blank. Theoretically, there
could be multiple cities for one ID, and then you’d select the (alphabetically) first
value. The whole expression is wrapped inside a CALCULATE, which manipulates the
filter context to only a Key of city. That’s because the measure should only return the
value for a city:

[City] :=
CALCULATE(
    IF(
        HASONEVALUE('Source'[ID]),
        MIN('Source'[Value])
    ),
    KEEPFILTERS('Source'[Key] = "city")
)

For aggregable values, you use one of the fitting iterator functions (in this example,
it’s SUMX) to iterate over the key-value pair table, where the Key is “revenue” (function
FILTER) and aggregate the content of Value. As the column Value is of a “string” data
type (so it can contain data of any data type), I use the VALUE function to convert its
content explicitly to a numeric value:

[Revenue] :=
SUMX(
    FILTER(
        'Source',
        [Key] = "revenue"
    ),
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    VALUE([Value])
)

In this static approach, you need to take one or the other pattern (aggregable or non‐
aggregable columns) and create measures for every single key of the key-value pair
table. By now, you might know that I’m not a huge fan of such static solutions. I don’t
think it’s a good idea to have a solution in place where you need to involve a devel‐
oper every time data changes.

New keys can be added at any time to the key-value pair table. That’s why I devel‐
oped the following generic measure. It contains two variables, one for each approach
(NumericValue for the aggregable cases, NonNumericValue when the column should
be treated as a string). For NonNumericValue, I remove the CALCULATE and filter; for
NumericValue, I still need the filter to avoid error messages indicating that some
Value (e.g., “Seattle”) could not be successfully converted to a numeric value.

At the very beginning of the code, I create another variable (NumericColumns), which
is a table containing all those keys that should be treated as numeric (aggregable).
This table variable is used in variable NumericValue (instead of the static value dis‐
cussed in the static solution) and in variable GenericValue to decide which of the two
variables (NumericValue or NonNumericValue) should be returned as the result of this
measure:

[Generic Value] :=
VAR NumericColumns = {"revenue"}
VAR NumericValue =
    SUMX(
        FILTER(
            'Source',
            [Key] IN NumericColumns
        ),
        VALUE([Value])
    )
VAR NonNumericValue =
    IF(
        HASONEVALUE('Source'[ID]),
        MIN('Source'[Value])
    )
VAR GenericValue =
    IF (
        ISBLANK(NumericValue),
        NonNumericValue,
        NumericValue
    )
RETURN GenericValue

Instead of creating a new measure for every key, you only need to maintain the list of
numeric columns within one measure. What an improvement in maintenance!
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If you’re as lucky as I am with the given example, the key-value pair table contains a
column to specify the key’s data type. In the following code example, I trust that the
names of Power Query’s numeric data types are used to describe the actual data type
of a key’s value ("Number", "Currency", "Percentage", "Int64.Type"). But you
can easily change the code to look for 1 or for integer or any value that the key-value
pair table’s creator used to identify numeric keys:

[Generic Value (type)] :=
VAR NumericColumns =
DISTINCT(
    SELECTCOLUMNS(
        FILTER('Source', 'Source'[Type] IN
           {"Number", "Currency", "Percentage", "Int64.Type"}),
        "Key", [Key]
    )
)
VAR NumericValue =
    SUMX(
        FILTER(
            'Source',
            [Key] IN NumericColumns
        ),
        VALUE([Value])
    )
VAR NonNumericValue =
    IF(
        HASONEVALUE('Source'[ID]),
        MIN('Source'[Value])
    )
VAR GenericValue =
    IF (
        ISBLANK(NumericValue),
        NonNumericValue,
        NumericValue
    )
RETURN GenericValue

With this version of the generic measure, you don’t need to change anything when
new data arrives, as long as the Type column delivers the correct content. Mainte‐
nance went down to zero.

As a bonus, here’s another version of the generic measure. The following code con‐
catenates the content of NonNumericValues instead of picking the alphabetical first
row:

[Generic Value (type, concatenated)] :=
VAR NumericColumns =
DISTINCT(
    SELECTCOLUMNS(
        FILTER('Source', 'Source'[Type] IN
           {"Number", "Currency", "Percentage", "Int64.Type"}),
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        "Key", [Key]
    )
)
VAR NumericValue =
    SUMX(
        FILTER(
            'Source',
            [Key] IN NumericColumns
        ),
        VALUE([Value])
    )
VAR NonNumericValue =
IF(
    HASONEVALUE('Source'[ID]),
    CONCATENATEX(
        VALUES('Source'[Value]),
        [Value]
    )
)
VAR GenericValue =
    IF (
        ISBLANK(NumericValue),
        NonNumericValue,
        NumericValue
    )
RETURN GenericValue

Combining Self-Service and Enterprise BI
Creating calculated columns and calculated tables is prohibited in live connection
mode. If you need to add such artifacts, you need to convert a live connection into
DirectQuery mode. Independent of the data source and the storage mode (import,
DirectQuery or live connection) you can always add measures written in DAX to the
data model.

I strongly recommend that you only store calculations for ad hoc analysis in a local
data model. Before you start publishing the report (including the calculation), you
should make sure that the calculation is moved into the central (enterprise) data
model, so everybody can benefit from it. You only need to copy the DAX formula
and paste it into an email to the data engineer responsible for the centralized analytic
database.
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Key Takeaways
This is the last chapter about modeling data with DAX. You learned how to use DAX
in the following use cases:

• Create the lookup tables containing the definitions of the buckets of each value
for the binning problem. You can also use DAX to create a measure implement‐
ing a non-equi-join if the bins are specified via ranges of values instead.

• Propogate filters with the TREATAS function when you can’t or don’t want to cre‐
ate a relationship in the Model view. Examples in this chapter covered the case of
non-equi-joins, an alternative to implement many-to-many relationships and
avoid ambiguous data models.

• Add TREATAS to either every measure or create a calculation group item to propa‐
gate the user’s language into the dimension tables.

• Apply the appropriate filter to create a DAX measure per Key of a key-value pair
table, and thereby pivot the content. If you want to avoid creating (over and over
again) a DAX measure per (new) key, you can use the generic approach
described in this chapter. A column describing the true data type of the content
of the value column is very useful.

• Use DAX in both self-service BI and enterprise BI to enrich the data available.
Keep in mind, though, that the best place for standard calculations is always the
centralized data store and not the report layer. Therefore, move calculations
from a Power BI Desktop file to the centralized data model, as soon as you have
verified its correctness.

And remember, when it comes to non-additive and semi-additive calculations, there
is no way around explicit DAX measures. For additive calculations, I recommend
DAX measures as well. For general transformations of a data model, Power Query
and SQL are the better choice. Part IV introduces you to the role Power Query plays
when you model your data for Power BI.
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CHAPTER 12

Performance Tuning with DAX

In this chapter, I show how to create the necessary tables in DAX to support the per‐
formance tuning concepts from Chapter 8. The idea is to create additional tables that
contain the data in an aggregated way. These additional tables increase your semantic
model’s memory consumption in exchange for faster reports (less data has to be read
to create the result of a query). For simpler aggregation tables, you can configure
Power BI to automatically use the aggregation tables. For more complex scenarios,
you need to add logic to your measures so they use the detailed or the aggregated
table instead for their calculations. You can use the Performance Tuning.pbix file to
follow along with the examples in this chapter.

Storage Mode
Analogously to calculated columns, calculated tables are always persisted in the data
model and re-calculated during the refresh of the data model. With that said, calcula‐
ted tables (written in DAX) are always in Import mode—independently of whether
the source of the table expression is in DirectQuery or Import mode. You cannot add
calculated tables in live connection mode.

Pre-Aggregating
You can group by one or more dimension columns and create aggregations on this
aggregation level with the SUMMARIZECOLUMNS function’s help. In the first parame‐
ter(s), you provide column names for the dimensional values you want to group on.

For the combination of the values of these columns, the aggregation table is gener‐
ated. These columns specify the granularity of your aggregation table. Then you pro‐
vide pairs of parameters. The first of these pairs is a string and specifies the name of
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the resulting column. The second member of this pair is a DAX expression (to calcu‐
late the aggregated value).

Keep in mind that SUMMARIZECOLUMNS iterates over the virtual table
generated from the first parameters. Therefore, the DAX expres‐
sion for the value is calculated in a row context. Make sure to wrap
the expression in CALCULATE when you need a filter context instead.

The table generated from the following code is aggregated on only the OrderDate
column. For every available OrderDate of the Reseller Sales (DirectQuery –
Agg) table, the Sales Count (number of transactions), and the Sales Amount are
calculated:

Reseller Sales (Agg Table DAX) = /* calculated table */
SUMMARIZECOLUMNS(
    'Reseller Sales (DirectQuery - Agg)'[OrderDate],
    "Sales Count", CALCULATE(COUNT('Reseller Sales (DirectQuery - Agg)'
      [SalesAmount])),
    "Sales Amount", CALCULATE(SUM('Reseller Sales (DirectQuery - Agg)'
      [SalesAmount]))
    )

Reports requesting any of the two numbers calculated per day can be directly satisfied
(as a single row) from this table. Reports requesting these numbers on, e.g., a
monthly basis can also be satisfied; only about 30 rows would have to be aggregated.

Queries that ask for numbers per product (or day and product) can’t be satisfied
from this table. You need to make sure that either Power BI is aware of how to use
this aggregation table (as explained in “Pre-Aggregating” on page 166) or that you
add logic to your measures accordingly. The latter is explained in the next section.

Aggregation-Aware Measures
In cases where the out-of-the box features of Power BI’s “Manage aggregations” don’t
match all the necessary requirements (see Chapter 8), you can make any measure
aggregation aware by adding a condition to return an expression based either on the
original transaction table or on the aggregation table. The task of the condition is to
find out if the current filter context contains only dimension tables referenced by the
aggregation table. If this is the case, then the calculation can be safely based on the
aggregation table. If the current filter context also contains other dimension tables,
you need to base the calculation on the transaction table. Shoutout to Marco Russo,
who helped me to write this condition in a way where I list the dimension tables used
in the aggregation table (instead of checking all the other dimensions).
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The aggregation table Reseller Sales (Agg Table DAX), created in the previous
section, is aggregated on the Date level. Therefore, this table can be used to satisfy
calculations that have no filter at all or filter on the date dimension. It can’t be used if
a filter on the Product table is present in the current filter context. In this case, the
transaction table Reseller Sales (DirectQuery - Agg) has to be used. You see an
example of such an expression in the following code:

[Sales Amount] :=
IF(
    CALCULATE ( NOT ISCROSSFILTERED ( 'Reseller Sales (DirectQuery)' ),
    REMOVEFILTERS ( 'Date (Dual)' ) ), // Kudos to Marco Russo
    [Sales Amount (Agg Table)],
    [Sales Amount (DirectQuery)]
)

The first parameter of the IF function is a condition to check if the (non-aggregated)
transaction table is (still) cross-filtered after the filter on the Date (Dual) table is
removed. If there are other filters in the current context, then this condition returns
FALSE and the expression needs to return the sales amount calculated over the trans‐
action table ([Sales Amount (DirectQuery)]). If the transaction table is only fil‐
tered by the Date (Dual) table or is not filtered at all, the expression can safely
calculate the sales amount from the aggregated table ([Sales Amount (Agg

Table)]).

You could also write the IF condition the other way around: not checking for filters
on the dimensions the aggregation table is based on, but on the dimensions the
aggregation table is not based on. If ISCROSSFILTERED('Product') is true, then the
sales amount cannot be safely calculated from the aggregation table, but must be cal‐
culated from the transaction table.

The problem I see, though, is that if you add another dimension to the data model at
a later point in time (referenced by the transaction table), then you’ll need to change
the measure and add ISCROSSFILTERED(<New Dimension>) because you need to con‐
tinue to check for filters on dimensions the aggregation table is not based on. There’s
probably a chance that you’ll overlook a measure and then end up with incorrect cal‐
culations. Therefore, I prefer checking on the dimensions used in the aggregation
table instead.

Key Takeaways
The performance tuning concept in the data model is based on exchanging storage
for query runtime, when query runtime is longer than report users would like. DAX
can support this concept in two ways: one, you can create aggregated tables as calcu‐
lated tables, and two, you can make any measure aware of such aggregations to per‐
form a calculation in the most efficient way.
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You also learned the following in this chapter:

• Calculated tables are always in Import mode (independent of the mode of the
base table).

• Table expressions in DAX allow you to create calculated tables. They can have
any content. You can create tables with aggregated content from another table
with the help of the SUMMARIZECOLUMNS function.

• If the capabilities of the “Manage aggregations” feature aren’t enough, you can
implement logic of any complexity in a measure via IF or SWITCH. You decide if
the calculation should be done based on the transaction table or based on any of
the pre-aggregated tables.

This chapter concludes the part about DAX. As you’ve learned, DAX is very powerful
in creating calculated columns and calculated tables in a data model. These artifacts
are always persisted in the data model and occupy memory. If you want to aggregate
tables in DirectQuery mode, you can do so with the help of Power Query and SQL.
Part IV kicks off with Power Query.
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PART IV

Data Modeling for Power BI
with the Help of Power Query

This part of the book is all about Power Query. Power Query’s purpose is to bring the
information available in any data source into the right shape. Even when the data is
already in the correct shape, it runs “through” Power Query. You will come very far
by clicking the correct buttons in Power Query’s user interface. Every transformation
you are applying to the data is “recorded” as a step in a Power Query query, written
in the M language. Only in more advanced cases, though, will you need to lay your
hands on such a script.



This part starts with an overview about the basic terms and concepts (in Chapter 13):

• Tables and queries
• Merging columns to form a primary key
• Creating a surrogate key
• Combining queries

Chapter 14 will show you the steps you’ll probably need to apply to all your data
sources:

• Normalizing and denormalizing
• Adding calculations
• Transforming flags and indicators into meaningful text
• Adding a date or time table
• Duplicating dimension tables per role
• Treating slowly changing dimensions
• Flattening parent-child hierarchies

This part teaches you how to solve the real-world examples introduced in Chapter 3
with the help of Power Query (Chapter 15):

• Binning
• Multi-fact data models
• Multi-language data models
• Key-value pair tables

Power Query has some interesting features that allow you to optimize and find the
best trade-offs among the available storage modes to increase the speed of reports
and queries based on a data model. Chapter 16 has you covered here.



CHAPTER 13

Understanding a Data Model from
the Power Query Point of View

Power BI’s tool to create the tables for and maintain the shape of the data model is
Power Query. Power Query is directly built into the product and can be accessed via
Home → “Transform data.” It opens in a separate window, which is convenient if you
have more than one screen. Then you can make changes to the transformations in
Power Query, refresh the data model, and test in the reports without closing the
Power Query window.

All changes you make in the UI in the Power Query window are “recorded” as steps,
which are applied to the source data. You can re-access every step (which is conve‐
nient when you need to debug the transformations). For many of the steps, you can
also click on the gear icon to change a step through a dialog box (which, in most
cases, matches the dialog box you use when you create a step in the first place).
Throughout Part IV, I also show how to directly change the steps or edit a script in
the advanced editor. The language of the script is the Power Query mashup language,
or M for short. Unfortunately, it doesn’t have much in common with the DAX
language.

Power BI dataflows are sometimes called “Power Query online.” They share most of
the functionality of Power Query. Unfortunately, they aren’t completely identical in
terms of features, but so close that you can copy most M scripts between the two
tools. Azure Data Factory offers a similar experience via Data Wrangling in Azure
Data Factory. Again, there are different limitations compared to Power Query in
Power BI Desktop.
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Data Model
All the data landing in Power BI’s data model comes via Power Query. There is no
way around it. It plays a very important role, but Power Query isn’t part of the data
model itself.

I prefer implementing transformations in Power Query to implementing them in
DAX for several reasons. First, Power Query offers a rich graphical user interface
(GUI) where you can achieve even complex tasks without writing a single line of
code. This makes creating transformations fast and easy. Every transformation is
recorded as an “Applied step.” Many types of steps offer a gear icon (e.g., Pivoted
Column, shown in Figure 13-1), which brings back a dialog box where you can
change the properties of the step. You can directly edit the code as well: either you
turn on View → Formula Bar and edit the code for a single step in the formula bar, or
you use View → Advanced Editor to edit the whole script behind a Power Query
query. This is necessary when a feature of the M language hasn’t made it into the GUI
yet, for example—like some parameters of functions—or if you need to solve more
complex algorithms, such as programming a loop to iterate over items or reference
intermediate steps of the Power Query code.

Figure 13-1. Applied steps of a Power Query

Second, in Power Query, you can decide if the result should be loaded into Power
BI’s data model per query. Figure 13-2 shows that the option “Enable load” doesn’t
show a checkmark and displays the name of query SQL in italics. Disabling this option
is useful when a certain query should not become a table in the Power BI data model.
If you were to postpone transformations to DAX instead, you’d need to load the
“half-baked” tables and combine them in the correct manner into calculated tables
and/or calculated columns to shape the data model. You can hide those half-baked
tables, but they’ll still take up memory and be updated with every refresh (slowing
down your data model’s overall refresh time).
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Figure 13-2. Applied steps of a Power Query

For some data sources (see “Query Folding on Native Queries”), Power Query will
translate your transformations into the data source’s query language and, hence, push
the hard work to the data source. This saves Power Query (and your machine or
resources in the Power BI service) from downloading all the raw data before your
transformations are applied step-by-step. You can imagine that a database server is
much better at applying filters, selecting columns, and completing transformations
than your local hardware will ever be. This feature is called query folding and leads to
a faster refresh of the data model (and query response time in case of DirectQuery
storage mode).

When you plan to enable DirectQuery or Dual mode for a table,
you need to make sure that the transformations applied are only so
complex that query folding is possible for the table (see the docu‐
mentation). Otherwise, the query response time of reports and vis‐
uals will not be satisfying.

Lastly, I prefer using Power Query for transformations because compression of the
data model tends to be better if you import it through Power Query as opposed to
adding calculated columns via DAX. This has something to do with the fact that the
order of the rows directly influences the compression ratio for your data. When load‐
ing data from Power Query, Power BI tries to find an optimal sort order of the rows
of a table. When you later add calculated columns, the sort order of the rows will not
be changed—resulting in a potentially less-than-optimal sort order and, therefore,
less-than-optimal overall compression of the column’s data.

The drawback of adding columns via Power Query is that you need to refresh the
whole query/table afterward. When you add or change the definition of a calculated
column in DAX, the new column is calculated based on the already imported data—
no need for any data refresh. For a quick proof-of-concept, a DAX calculated column
can be the better choice. But I recommend that you move the definition to Power
Query before you make the model available to other people.
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Tables are the basis of every data model. Learn how Power Query queries are related
to Power BI’s tables in the next section.

Basic Components
A data model consists of the following parts, which Power Query can provide:

• Tables or queries
• Relationships
• Primary keys

Tables or Queries
Power Query creates and maintains queries (hence the name Power Query), not
tables. But it is important to know that a query created in Power Query ultimately
becomes a table in the data model (unless you disable the “Enable load” option for a
query). Therefore, the result of a Power Query transformation is sometimes also
called a table. All transformations (including choosing the data type, names of tables
and columns, etc.) are matched into the data model. The collaboration between the
two is very strong. If you, for example, change the name of a column in Power BI in
the Data pane, you will discover that there is a step, “Renamed columns,” added in
Power Query reflecting this change.

The syntax of Power Query/M scripts is unfortunately completely different from
DAX. While DAX is similar to Excel’s formulas, M is similar to (and based on) the F#
language. Most importantly, M is case sensitive (it distinguishes between lower- and
uppercase characters in both keywords and string comparisons), while DAX is case
insensitive.

The fact that Power Query is case sensitive and the Power BI data
model (or DAX) isn’t can sometimes bite you. For example, if you
remove duplicates in Power Query, it’ll identify text like
“ABC123,” “Abc123,” and “abc123” in, say, column ProductID in
the Product table as different values (and therefore keep all three
values).
If you want to use that ProductID column to create a relationship
in your data model, the Product table’s ProductID column can’t be
on the “one” side of the relationship. Power BI will force you into a
many-to-many relationship between the Product table and the
Sales table, for example. The solution here is to transform the con‐
tent of the ProductID column into uppercase or lowercase before
you let Power Query remove duplicates.
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I use Power Query/M to prepare the data but will not use it to create any non-
additive calculations, as they can only be correctly provided in DAX.

Power BI allows you to define on a query-per-query basis if you want to load the
result into the Power BI data model. This allows for queries that contain only inter‐
mediate steps, like normalized tables, which you will merge with other tables to
achieve a unified dimension table.

In Power Query, a column can be any of the following data types (Figure 13-3):

Decimal number

Decimal number is stored as a 64-bit floating-point number. Such numbers have
a range from –1.79E +308 through –2.23E –308, 0, and positive values from
2.23E –308 through 1.79E + 308, but only with a maximum precision of 15 digits.

Power Query suggests Decimal number when you let it detect
the data type. In general, you should avoid floating-point
numbers because they can’t represent all numbers within their
supported range with 100% accuracy (in accordance with the
IEEE 754 Standard, as the documentation points out). Only
use them if Fixed decimal number won’t work for you.

Fixed decimal number

Despite the $-icon suggesting this data type is built for currency amounts, a
Fixed decimal number is made for all types of numbers, as long as a precision of
19 digits, from which 4 fixed digits are reserved for the decimals, is good enough
(which has been the case for most of the data models I’ve built so far). This data
type can cover numbers ranging from –922,337,203,685,477.5807 through
+922,337,203,685,477.5807. Fixed decimal number should be your default
choice for all numbers which are not whole numbers, as full accuracy is
guaranteed.

Whole number

Whole number is identical to Fixed decimal number with on exception: no digits
are reserved for the decimals. Whole number covers numbers ranging from
–9,223,372,036,854,775,807 (–2^63+1) to 9,223,372,036,854,775,806 (2^63–2).

Percentage

Percentage is identical to Decimal number, except that the value is automatically
multiplied by 100 and a % sign is added when displayed.

Date/Time

A column of data type Date/Time is internally stored as a Decimal number with
the whole number portion representing the number of dates since December 30
1899 (which itself is stored as a value of 0) and the decimal portion representing
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the parts of the day (with 0.5 representing 12 P.M., for example). The precision is
1/300 of a second.

Merging a column of type Date/Time that contains nonzero
timestamps with a usual Date dimension won’t succeed. The
Date value is converted into a Date/Time with a time value of
midnight (which won’t match a nonzero timestamp of a col‐
umn of data type Date/Time).

Date

Date stores only the date portion (not time portion). It’s best practice to store
only dates, or, if you need the time portion as well, store the time portion as a
separate column.

Time

Time stores only the time portion (and no date portion).

Date/Time/Timezone

Date/Time/Timezone is Date/Time including the time zone. Power BI does not
offer such a data type, so the column will be automatically converted into Date/
Time when loaded into the data model.

Duration

Duration represents the length of time. Power BI does not offer such a data type,
so the column will be automatically converted into Decimal number when loaded
into the data model.

Text

Text is stored as Unicode (which allows for all sorts of special characters, includ‐
ing emojis) and can have a maximum length of 268,435,456 characters.

True/False

True/False can contain a Boolean value (or null).

Binary

A column of data type Binary can contain any data. It’s best practice to either
remove such columns or extract data out of them into one of the other available
data types. A column of this type will not be loaded into the Power BI data
model.

246 | Chapter 13: Understanding a Data Model from the Power Query Point of View



Figure 13-3. Data types in Power Query

If Power Query can’t detect the data type and you don’t set the data
type explicitly, then a column will be of type Any. Such columns
will be loaded as Text into the data model. It’s best practice to be
explicit about the data type of a column instead.

On top of these column types, the content of a column could also contain one of the
following structures:

• A list of values
• A record, which is a grouping of a single row of data with individual fields
• A table contains multiple records
• An error

Typically, you see such columns when you load data from a JSON file or merge rows
from a different query. All three types have in common that, to the right of the
header of the column, Power Query shows an Expand icon with which you can
extract individual values from the structures. If you decide against extracting the val‐
ues, the content will not be loaded into Power BI’s data model.

Next, I explain the role of relationships in Power Query.

Basic Components | 247



Relationships
Because Power Query doesn’t use the concept of tables, it doesn’t employ the concept
of defining relationships either. Still, a Power Query’s result set ends up as a table in
the data model. And therefore, one query can have a relationship to the content of a
different query.

That’s why Power Query lets you merge and append queries on the one hand and
allows query references and adding and removing columns on the other hand (see
“Joins” on page 252 and “Set Operators” on page 251). The goal is to be able to
combine individual queries into one or split a single query into several queries. If you
split a query, you’ll need to create a relationship later in the data model (to combine
the information back again). If you combine queries, you will need fewer relation‐
ships.

Keep in mind that the star schema is the optimal way to split and combine queries.
The number of relationships isn’t so important, but the general design of the data
model is. Use Power Query and M to shape the source data into a star schema. Chap‐
ter 14 shows different techniques for how to achieve this in Power Query.

Primary Keys
If you load data into the data model with Power Query, it isn’t important (or possi‐
ble) that you identify the primary key column(s). Having a single column as the pri‐
mary key is, however, important later in the data model. If you can’t identify one
column as the primary key, but only a combination of columns (composite key), then
you need to concatenate those columns into a new column, which then forms the
single-key primary key.

Concatenating the individual column values of a composite key into one column can
be done via the UI: Ctrl-click the column headers in the desired order, then right-
click and select Merge Columns (which will replace the existing columns; via the rib‐
bon you can choose Merge Columns from either the Transform or the Add Column
section, to either replace the existing columns with the merged result or add another
column to the query). You can then choose a Separator and give the resulting column
a “New column name” (Figure 13-4).
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1 The examples in this section use the following files: Financials Dimensional Model Surrogate Key.pbix, Finan‐
cials Dimensional Model.pbix, Financials Filter Dimension Surrogate Key Measures.pbix, Financials Filter
Dimension Surrogate Key.pbix, Financials Filter Dimension.pbix, Financials OBT Measures.pbix, and Finan‐
cials OBT.pbix.

Figure 13-4. Merging several columns into one

Surrogate Keys
I very much prefer using surrogate keys to primary keys, which is also commonly
considered best practice (see “Surrogate Keys” on page 8). But the question remains:
does it pay off to add steps in Power Query to create surrogate keys (which slow data
model refreshes) to replace nonnumerical keys from your data source? By choosing
Add Column → “Index column,” you can easily introduce a surrogate key in your
dimension tables. That’s simple. But you need the surrogate key in the (referencing)
fact table as well. Therefore, you need to implement lookups (by choosing Merge and
Expand in the ribbon, as I demonstrate in detail in “Normalizing” on page 44).

You can safely state that if a data model uses less memory, the report performance
will be faster (as less memory has to be scanned to satisfy a query). That’s why I
implemented two versions of the same data model for Power BI’s demo data,
Financials:1

• Dimensional model, based on the business keys (those without “surrogate key” in
their name use the “business key”)

• Dimensional model, based on surrogate keys

With the help of DAX Studio, you have access to the VertiPaqAnalyzer functionality,
which tells you how much space a table and/or column occupies in the data model.
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Turns out that the difference in size for the Financials dataset is huge: creating the
model based on nonnumerical business keys occupies roughly 10 MB of storage,
while the same model, just based on surrogate keys, only occupies 277 KB. That’s less
then 3%! In other words, you can store 39 times as much information on any given
infrastructure (your PC or Power BI Premium capacity) with the version of the
model based on surrogate keys compared to the model based on business keys.

Taking a look at the details, the data itself is a very small size and almost the same in
both approaches. The difference lies in the size of the dictionary, as shown in
Table 13-1. Using dictionaries is one of two ways of storing (and compressing) a col‐
umn’s value (also called HASH encoding, typical for texts; the other is VALUE encod‐
ing, typical for numbers).

The dictionary for the table Discount Band occupies 1 MB, while the data occupies
only 264 bytes. This is, of course, an extreme case. The size of the dictionary is not
dependent on the number of rows in the table, but dependent on the number of dis‐
tinct values in a column (and has a minimum size of 1 MB). In a situation where you
store not 700 rows, but 700 billion rows in the fact table for these four Discount Band
values, the size of the dictionary will stay the same, and it’ll probably be negligible
compared to the size of the data.

Table 13-1. Model size comparison: business keys (BK) versus surrogate keys (SK)

Table Cardinality Size BK Data BK Dictionary BK Size SK Data SK Dictionary SK Size %
Financials 700 5,430,256 13,272 5,396,880 123,240 13,272 89,864 2.27%

Date 730 1,130,140 2,976 1,108,716 81,948 2,976 60,524 7.25%

Product 6 1,066,496 400 1,066,000 18,308 536 17,644 1.72%

Country 5 1,066,168 264 1,065,856 18,016 400 17,544 1.69%

Segment 5 1,066,168 264 1,065,856 17,996 400 17,524 1.69%

Discount Band 4 1,066,160 264 1,065,848 17,922 400 17,450 1.68%

TOTAL 10,825,388 17,440 10,769,156 277,430 17,984 220,550 2.56%

How much the refresh time increases due to introducing the index column in the
dimension tables and looking up the results in the fact table is hard to predict as well.
It depends on the number of rows in the dimension tables and the number of rows in
the fact table compared to the available resources (memory and CPU). In the con‐
crete example, in which the fact table has only 700 rows, the difference is negligible
on my machine.

I return to this topic in “Normalizing” on page 258, demonstrating how to further
decrease the size of the data model by implementing a single filter dimension. Keep
in mind that I suggest you consider replacing the business keys in the fact table with a
surrogate key but keep the business key’s content as a column in the dimension table
if you need it in the reports.
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Try out both approaches (keeping business keys versus introducing
surrogate keys in Power Query) using your own data before decid‐
ing for or against one solution. The resulting data model’s size (and
the duration of the refresh) is pretty much impossible to predict
because of the nature of the compression algorithm used in Power
BI’s VertiPaq engine, which is first and foremost optimized for fast
queries not for predicting how much time compressing data will
take or how much space the compressed data will occupy.

Surrogate keys or not—you will face situations where you need to combine several
Power Query queries into a single one. Either you merge two queries in order to
enrich the rows of the first one with additional columns, or you can just append one
query to another. I talk about the latter in the next section.

Combining Queries
Queries (or better: their results) can be combined in two ways: with set operators
(which basically add or remove rows) or with join operators (which basically add col‐
umns). Power Query allows you to show dependencies of such queries in a dedicated
view.

Set Operators
The only set operator available in Power Query is UNION, which can be implemented
via Home → Append Queries. In the dialog box, select if you want to append two
queries to each other or more via radio buttons, and then select which queries you
want to append from the dropbox (see Figure 13-5).

Figure 13-5. Append another query to the selected one
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This step keeps duplicates, so you need to explicitly remove them if you don’t want
them (e.g., when creating dimension tables). You’ll see examples of appended queries
in “Budget” on page 308, when you learn how to create a bridge table.

The next section is about joining tables, which is called Merge in Power Query.

Joins
You can join two Power Query queries via Home → Merge Queries. A dialog box will
appear and display all the columns and the first four rows of the selected query (later,
when choosing the “join” kind, this query is referred to as the left and first query).
Then you choose the second table (referred to as the right and second query) via a
dropbox. In Figure 13-6, I show a merge query with DimProduct with
DimProductSubcategory.

Figure 13-6. Merging two queries
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Selecting the join predicate (the columns that should be used to join the two tables) is
done by clicking on the columns. In case the join predicate consists of more than one
single column, you can Ctrl-click the columns. Pay attention to selecting all the col‐
umns in the very same order for both the first and the second query, as this config‐
ures which columns are compared to each other. On the bottom of Figure 13-6, you
see how many matches the join predicate makes: The selection matches 397 of 606
rows from the first table.

The dropbox Join Kind (Figure 13-7) offers different kinds of joins, with a good
description of which result to expect from each. All joins are equi-joins.

Figure 13-7. Different join kinds are available in Power Query

One join kind is missing in Figure 13-7, however: a cross join. These joins are rare,
but I demonstrate a use case in Chapter 15. To implement a cross join in Power
Query, you simply select “Add column” → Custom from the ribbon and just type in
the name of the query you want to cross join with the current one.

The conditions of the equi-join can be loosened when you choose settings from “Use
fuzzy matching” to perform the merge (see the bottom of Figure 13-6). Fuzzy match‐
ing allows you to fit two rows that are similar but not identical together on a column
value. You need to find out for yourself if such an imprecise match will achieve what
you are looking for, or if it would be better to clean up the data in the source system
to allow for precise joins.

After you merge the queries, you need to expand the result and select the columns
from the second query you want to add as columns to the first query. When you
combine a lot of queries with each other, it is easy to lose perspective on which query
is referenced with which. I talk about a way to keep an overview next.

Query Dependencies
In Power Query, you can visualize the dependencies between queries. Every query is
dependent on at least one source. Queries can also be dependent on other queries. In
complex scenarios Query Dependencies can give you a good overview. If you click
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DimProduct, DimProduct and all the queries and sources on which it’s directly or
indirectly dependent on get highlighted (Figure 13-8):

• DimProductSubcategory is referenced directly in DimProduct. Therefore, a direct
arrow is drawn between these two queries to visualize this direct dependency.

• DimProduct is indirectly dependent on DimProductSubcategory’s source (i.e., c:
\users\mehre...). This path isn’t directly added somewhere in DimProduct’s
query, but is part of the DimProductSubcategory, which is directly referenced in
DimProduct.

• Direct dependency on its own source (c:\users\mehre...)

Figure 13-8. Displaying the dependencies between queries
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Keep in mind that this is not about entities and their real-world
relationships but queries and their technical relationships to each
other. Therefore, this diagram is not an entity relationship diagram
(ERD).

Types of Queries
Strictly speaking, Power Query has no tables (only queries), hence no type of table
can be determined. But there can be different types of artifacts listed under queries:

Query
Every enabled query will load data into a table in Power BI’s data model. It has at
least one step (to reference the data source) and possibly a wide variety of addi‐
tional steps to transform the data source into the desired shape.

Query (“Enable load” disabled)
Queries created only as an intermediate step (or for testing and debugging rea‐
sons only) should not be loaded into the data model. Therefore, you can right-
click a query’s name and disable the option “Enable load.” The name of a
disabled query is printed in italic font.

Parameter
Parameters come in handy, if you need certain values to be easy to access and
change, or if you need a certain value be repeated in several queries or on several
steps. Choose Home > Manage Parameters to manage the options of all parame‐
ters in a single dialog box, edit the value of the selected parameter, or create a
brand new parameter. By default, a parameter’s value is not loaded into Power BI
as a table (if you choose to do so, it would appear as a table with one row and one
column, containing the parameter’s value).

Parameters of data type Any can’t be changed in the Power BI
service—avoid them and choose an appropriate data type
instead.

Parameters are exposed in the Power BI service, which makes them a handy tool
for specifying a data source’s properties, like the server name or the filepath. The
parameter’s default value can be overridden in the Power BI service accordingly,
to point it to the data sources in the production environment, for example. For
parameters, the same data types apply as for columns.

Function
As in other programming languages, functions allow for code reuse. You specify
the code only once (inside the function) and call the function whenever the code
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should be executed. You can right-click any query and select Create function to
create a function based on the selected query (the base query remains as it is).

Extract, Transform, Load
Power Query is the built-in self-service tool in Power BI to implement all steps of
extracting, transforming, and loading data into the data model. It’s easily accessible
(as it’s part of Power BI Desktop) and via the UI, you can clean and transform the
data and achieve even complex steps without typing any code. For more advanced
scenarios (e.g., because some features aren’t exposed over the UI), you can also edit
and write scripts in the Power Query/M language.

In Chapter 15, we’ll implement real-world use cases with the help of the UI and/or
the scripting language to apply techniques to transform data in an efficient way.

Key Takeaways
Power Query is an integral part of Power BI—all the data in the data model must pass
through Power Query. In general, Power Query is a better place for transformations
compared to DAX for the following reasons:

• Power Query is the self-service tool inside Power BI to clean data and to bring it
into the desired shape. I recommend using Power Query over DAX for those
kinds of tasks, as it allows you to only load what is needed into the data model.

• Every Power Query query that uses “Enable load” becomes a table in the data
model. The column’s data types are the same in Power Query and Power BI.

• You can’t create relationships in Power Query, but you can merge, append, and
split queries so the resulting tables form the desired data model shape.

• Power Query is a low-code/no-code environment that enables complex transfor‐
mations in the UI alone. Only in special cases will you need to write code in M,
the Power Query mashup language. Chapter 14 uses both the UI and M.

• Because you can neither read nor update the already existing rows of data during
a refresh in Power BI, you can’t implement slowly changing dimensions of any
type in Power Query. If you need to implement slowly changing dimensions, you
need a data warehouse. Chapter 17 covers examples.

With the foundational knowledge about Power Query learned in this chapter, it’s
now time to apply it to build data model.
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CHAPTER 14

Building a Data Model with
Power Query and M

Once you understand the moving parts of Power Query and the M language (see
Chapter 13), it’s time to see what this tool has in store for you to bring a data model
into shape. You can achieve many tasks by finding your way around in the UI. No
matter what kind of transformation you are applying, every step is “recorded” as a
step in a script in language M. Think of this feature as something similar to Excel’s
macro recorder. Some steps will show a gear icon, which will open a dialog box and
guide you through options to change a step’s logic. You can also directly edit the
scripts, if you want.

In this chapter, you’ll learn how and why to touch some of the scripts directly. Edit‐
ing the script is sometimes just faster, compared to navigating through the UI with
the mouse. In other cases, it might be that a feature of the powerful language M is just
not available via the UI. Especially when it comes to making the transformation
either flexible or resilient against changes in the data source, M can do some magic.

You’ll also learn how to normalize fact tables and denormalize dimension tables (to
form a star schema) using Power Query. I’ll introduce you to calculations in M and
show you how you can transform flags and indicators into user-friendly text. A whole
section is dedicated to creating a date table, which is mandatory for time-intelligence
calculations in DAX and increases the usability of a data model by offering a variety
of data- and/or time-related attributes (like year, month, weekday, etc.). The date
table especially (but also other dimensions) may play different roles in your data
model (e.g., to filter and aggregate by order date versus ship date). Creating these sep‐
arate tables is rather easy in Power Query, as you will see. This chapter closes with a
description of how to transform hierarchies such that they can be analyzed in Power
BI. Let’s start with normalizing.
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1 The examples in this section use the Normalize Facts PQ.pbix file in the book’s GitHub repository.

Normalizing
You can normalize a table (and derive the necessary dimension tables) with just a few
clicks in Power Query. But before you start, you need to find candidates for columns
that should be normalized into one or more dimension tables. Power Query can
assist you in finding these candidates, even before you load the data into Power BI
(and create a report) as it can calculate descriptive statistics on the query’s result.1

Note the default setting: “Column profiling based on top 1000 rows.” It’s a good
choice performance-wise; it speeds up calculating the necessary statistics. Only if you
doubt that the first thousand rows might not be representative of the full dataset
should you change this setting to “Column profiling based on entire data set.” Then,
Power Query will load the whole result set of the query into memory, which can take
awhile, of course. You can change the setting by clicking the text on the bottom left of
the Power Query window, as shown in Figure 14-1.

Figure 14-1. By default, column profiling is based on the top 1,000 rows

There are three statistics available:

• Column quality
• Column distribution
• Column profile

Column Quality
The setting View → “Column quality” activates the display of three indicators just
underneath the column name, telling you which percentage of rows are Valid, have
an Error, or are Empty. You may remember from “Tables” on page 6 that primary
keys must not be empty. It seems logical that a primary key must not evaluate to an
error as well. This leaves the choice of a primary key with columns, which shows
100% for the Valid indicator.

If you’re not confident that a column containing error or empty values is indeed the
primary key, then you must first clean up the column to remove the errors and empty
values. You could replace the erroneous or empty values or filter the rows out. The
best option is to achieve this in the data source. The second-best option is to
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transform the column in Power Query by replacing invalid values or filtering those
rows out (if they’re not needed). The column Segment shows 100% valid rows in
Figure 14-2.

Figure 14-2. The quality of column Segment shows 100% valid rows

If you want to know what the valid values look like, you can turn on “Column
distribution.”

Column Distribution
The option View → “Column distribution” activates a column chart (to be more pre‐
cise: a histogram) just underneath the column name. This chart illustrates the distri‐
bution of the values in the column and two additional indicators: the numbers for
distinct and unique values.

A column can only be a candidate to be a primary key if both distinct (number of
different values in this column) and unique (number of values that only appear in
one row for this column) are showing the total number of rows of the table. The col‐
umn Segment in Figure 14-3 shows five distinct values, none of which are unique. In
the current table, Segment cannot be the primary key.

Figure 14-3. The distribution of column Segment shows five distinct and zero unique
columns
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2 Print readers can find a full-sized, full-color version of this screenshot online.

The number of “unique” values in the column distribution shows
how many of the values are only appearing once in this table. If
“unique” is lower than “distinct,” some of the distinct values are
duplicates. In other words, if “distinct” is lower than the number of
rows, then not all rows can be “unique.”
For example, if a table has only three rows and one column and
contains values 11, 12, and 13, then it has three distinct values (11,
12, and 13), and all three are unique (each value only appears
once). If the column contains values 11, 11, and 12, then it would
have two distinct values (11 and 12), and only one (12) would be
unique.
A column containing the primary key must show the same number
for “distinct” and “unique,” which should be the same as the num‐
ber of rows in the table.

Column Profile
First enable the setting View → “Column profile,” and then click on a column. In
Figure 14-4, I selected the column Segment. The column profile displays the histo‐
gram from Figure 14-3 as a bar chart and includes the distinct values of the column
Segment. Additionally, it gives you descriptive statistics for the column’s content in
the left section. The kind of statistics shown are dependent on the column’s data type.

Figure 14-4. The column profile shows descriptive statistics and a histogram2

Via the ellipses (“…”) of “Column statistics,” you can copy all the information onto
the clipboard. The same applies to the ellipses (“… ”) of “Value distribution.” The
latter allows you to “Group by” the histogram by different options. For example, you
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can group the Segment by text length instead of the actual values, as shown in
Figure 14-5.

Figure 14-5. The histogram can be grouped by text length

The descriptive statistics of a column can give you a hint about whether the column
should be normalized and will support you in identifying whether a column is transi‐
tive dependent on another column.

Identifying the Columns to Normalize
In the process of normalizing a fact table, you can use the statistical indicators col‐
umn quality, distribution, and profile. Neither a primary key nor a foreign key may
be empty or contain an error. The cardinality of such a column is low compared to
the overall number of rows in a fact table.

In a star schema, a fact table is not (and shouldn’t be) referenced by
any other table. Therefore, you should omit the fact table’s primary
key if it’s not needed in any report. Keep in mind that columns
with high cardinality compress badly—keeping such a column is
costly in terms of memory consumption. The rule here is “when in
doubt, omit a column.” You can decide later to include the column,
if really needed.

The columns you identify as foreign keys will become the primary keys for the
dimension tables you “carve out” of the fact table during the process of normalizing.
Foreign keys aren’t required to be either distinct or unique, as they’re on the “many”
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side of the relationship. Foreign keys, though, typically have a low cardinality. For
example, depending on your organization, your sales table might contain millions of
rows, but only hundreds of products. The product is a dimensional attribute that
needs to be stored separately from the fact table in a dimension table of its own. You
need to walk through all columns whose content is not summable. Summable col‐
umns (like quantity or sales amount) stay in the fact table.

For numeric nonsummable columns, like price, you have two options: store the price
in the fact table and/or move it into one of the dimension tables. If the actual price
for a product can differ with every sale (e.g., because of discounts), then keeping
them in the fact table is a good idea. If the list price for a product never changes,
move it into the dimension table to save the space in the fact table.

To keep track of price changes over time in the dimension table, you need to imple‐
ment slowly changing dimensions (see “Slowly Changing Dimensions” on page 285).
If the goal is to store both the applied price and the list price, nothing will prevent
you from storing the applied price in the fact table and still tracking the list price in
the dimension table.

Let’s apply these ideas. For the following example, I use the built-in example file of
Power BI Desktop (see Figure 14-6).

Figure 14-6. Power BI Desktop’s splash screen
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Choose Report in the New section of the screen to get the choice of “Try a sample
semantic model,” the right-most option on the canvas (Figure 14-7).

Figure 14-7. Try a sample semantic model

From the “Two ways to use sample data” dialog, choose the button “Load sample
data” (Figure 14-8).

Figure 14-8. Two ways to use sample data

Then, a Navigator opens (Figure 14-9). If you’ve ever imported data from an Excel
file, this screen will look familiar; it’s exactly the same. Please activate the checkbox to
the left of financials and click Transform Data.
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Figure 14-9. Choosing the needed artifacts from the Excel file in the Navigator

When you have the choice between Load and Transform Data,
always choose “Transform data” (despite the fact that the Load
button is highlighted). “Transform data” will open the Power
Query window, and you can filter and transform the data, which is
always necessary in a real-world scenario. I have never experienced
a situation, where, e.g., an Excel file contains the data exactly as it is
optimal for Power BI. Therefore, you should never expect to be
able to just load it, but always plan to “Transform data” contained
in the file.

The example file contains 700 rows—so the default of value of “top 1000 rows” will
evaluate all rows for column profiling. In Power Query, you get the following results
for the column distribution:
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Column name Number of distinct rows Number of unique rows
Segment 5 0

Country 5 0

Product 6 0

Manufacturing Price 6 0

Discount Band 4 0

Sales Price 7 0

Units Sold 510 350

Gross Sales 550 406

Discounts 515 384

Sales 559 418

COGS 545 398

Profit 557 417

Date 16 0

Month Number 12 0

Month Name 12 0

Year 2 0

Some columns in this list are clearly candidates for dimensions, as their number of
distinct rows is only a fraction of the total number of rows (700). Sales Price has a
low cardinality as well, but I keep it in the fact table because it represents the price
used for an individual sales event (as opposed to Manufacturing Price, which is tied
to a product).

Creating a Query per Dimension
Before creating the queries for the dimensions, make sure that the financials query
only contains cleaned data (e.g., naming is done properly, data types are correct, etc.).
Then you have two options: you can either duplicate the query or reference it. Dupli‐
cate creates a full copy of the query, including all steps. In this case, I’d rather not
duplicate those steps because if we discover a mistake later (e.g., incorrect column
names or data types) I’d have to correct the mistake several times, once in each copy
of the query. I strongly recommend referencing the query instead. This creates a new
Power Query with the base query’s name as the source step of the query
(Figure 14-10). I give the referencing query then the name of the dimension table
(e.g., Segment).
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Figure 14-10. The Source step references query financials

Next, you need to remove all columns that shouldn’t be part of the dimension:

1. Select Home → Choose Columns → Choose Columns from the ribbon or scroll
through the query result in the middle of the screen (that’s my preference
because doing so shows me the values and the column profile).

2. Ctrl-click the columns you want to keep
3. Right-click one of the columns and select Remove Other Columns. If the table

ends up containing more details for a dimension table later, you can always edit
this step.

4. Choose either Advanced Editor from the View section of the ribbon, or turn on
View → Formula Bar.

5. Edit the step and add or remove columns from the Table.SelectColumns func‐
tion’s parameter. Alternatively, you can click the gear icon next to the step
Removed Other Columns in the APPLIED STEPS section and change your selec‐
tion in a dialog box. See Figure 14-11.

Figure 14-11. Table.SelectColumns function in the formula bar
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6. Finally, you need to reduce the query to only distinct values, so that every unique
dimension row only appears once in the dimension query. Just choose Remove
Duplicates from the query’s options (Figure 14-12).

Figure 14-12. Removing duplicated rows from a query

Then, repeat all steps (referencing the base query in the Source step, selecting the
dimensional columns and removing the duplicates) for all dimension candidates. The
list of the applied steps will look the same for all those queries (see Figure 14-13).

Figure 14-13. Creating dimensions in three steps
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You can also directly copy and edit the M code generated from Power Query’s GUI.
Here is the script for the three steps:

let
    Source = financials,
    #"Removed Other Columns" = Table.SelectColumns(Source,{"Segment"}),
    #"Removed Duplicates" = Table.Distinct(#"Removed Other Columns")
in
    #"Removed Duplicates"

The Source step just references query financials. To remove the unnecessary col‐
umns, the column Segment is selected via Table.SelectColumns in the next step.
Finally, Table.Distinct removes all duplicates, with only a few exceptions:

• One is the date table. You can’t successfully derive the date table from the fact
table; there aren’t sales every single day of a year (e.g., the weekends, bank holi‐
days, etc.), which is mandatory for a date table in Power BI. In “Time and Date”
on page 279, I show how you can create such a table in Power Query.

• In this example, it makes sense to store the manufacturing price only once per
product. When you select the columns for query Product, make sure that you
not only select the column Product, but the column Manufacturing Price as
well. In general, for columns with the same statistical properties (distinct rows
and unique rows), you should check if they can be part of the same dimension.
Domain knowledge will guide you here. And you can create a temporarily Power
Query query containing all those columns and see if you discover a functional
dependency between these columns as soon as you ask to remove duplicates.

• The base query financials isn’t appropriate as the fact table because it contains
unnecessary columns (Manufacturing Price, Month Number, Month Name, and
Year). Therefore, you need to reference the base query once more and remove
these four columns. You only keep the references to the dimension’s primary
keys, and all factual attributes, of course. Make sure to not remove duplicates, as
a fact table may contain duplicated rows, when the same product was sold twice
on the same day to the same customer.

User-Friendly Naming Conventions
Because two Power Query queries (and tables in Power BI) can’t have the same name,
you need to either rename the base query (financials) or find a good name for the
fact table. In my opinion, all tables (including the fact table) should have a user-
friendly name that makes sense to people who use the data model to answer their
questions. Therefore, I don’t advise using prefixes like “Dim” or “Fact” in table’s
names (nor do I like camelCase, PascalCase, or hungarian_notation in such cases).
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I use an underscore (_) as a prefix for names of objects (both tables and columns),
which I hide from the users anyway. This means that I rename “financials” to
“_financials” and I am free to keep “financials” as the fact table’s name (or any other
name that makes sense to report creators).

Creating One Common Dimension Query
Alternatively, you can put all dimensional values together into one single filter
dimension (see “Normalizing and Denormalizing” on page 109). To achieve this, take
the following steps:

Creating a composite business key
In query _financials, you can concatenate the dimensions business keys into a
new column (which will form a composite key). Just Ctrl-click the columns, and
then right-click and choose “Merge columns.” Then choose a separator character
for which you can guarantee that it will never be part of the individual columns’
content. Replace the default name Merged with _FilterKey (Figure 14-14). The
M code looks like this:

= Table.AddColumn(#"Changed Type", "_FilterKey",
each Text.Combine({[Segment], [Country], [Product], [Discount Band]}, "|"),
type text)

Figure 14-14. Merge Columns dialog, used to create a composite business key

Creating one dimensional table for all dimensional attributes
Here, keep all dimensional attributes instead of just one (as in “Creating a Query
per Dimension” on page 265), including the business key column (_FilterKey).
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3 The examples in this section use the Denormalize Dimension PQ.pbix file in the book’s GitHub repository.

Normalizing the fact table
In the fact table, you can remove all dimensional attributes and keep only the
business key (_FilterKey).

The following hold regardless of the approach you choose: because you don’t want to
load both the original table and the newly created star schema, you should disable
“Enable load” for the original table (_financials in the example). During normaliza‐
tion, remove columns containing duplicated information from the fact table.

In the next section, you’ll learn how to denormalize tables in Power Query. This is
the process of intentionally introducing duplicated information into a dimension
table.

Denormalizing
Denormalizing means that you remove references from one dimension table and add
the referenced attributes directly to the dimension table instead. In Power Query, you
can achieve this by merging the referenced query with the referencing query. Select
Home → Merge Queries → Merge Queries to add columns to the current query or
Home → Merge Queries → “Merge Queries as New” to create an additional query
(which I don’t think is necessary in this case).

In Power Query, merge means that you add columns from one or
more queries. You need to specify the merge key(s) to tell Power
Query how it determines which rows shall be synchronized. You
can specify a composite join key by holding the Ctrl key on the
keyboard while selecting the columns with your mouse. Of course,
the order of the keys matters—so you should click the columns in
both tables in the same order. You can imagine merging as putting
both queries side-by-side. In “Joins” on page 13, I call this a join.
Append, on the other hand, puts the results of queries under each
other. So, you add rows (and not columns). In “Set Operators” on
page 11, I refer to this as a union set operator. Columns with the
same name in the source queries end up in the same column in the
result. Columns available in one query, but not the other, will show
empty values in the other queries.

In Figure 14-15, I merge DimProduct with DimProductSubcategory on column
ProductSubcategoryKey with a Join Kind of Left Outer to guarantee that all rows
from DimProduct get loaded, even if there is no matching subcategory.3
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Figure 14-15. Merging ProductSubcategory into Product on ProductSubcategory
Key

Implement Non-Breaking Changes in Views
If your data source is a table from a relational database that has foreign key con‐
straints defined, you do not need to Merge Queries before you can expand the col‐
umns from the other table, but Power Query offers this directly to you.

I want to emphasize, though, that best practice is that you should not directly access
tables but exclusively use views. Views give you an important extra layer. In case the
structure of the tables changes, the views can be rewritten so that the schema of their
result stays the same. This gives stability to your reports and relieves the pressure
caused by changes to the tables and modifications in Power Query needing to be rol‐
led out to production at the same time. Therefore, I see views as an API between the
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database and Power BI. In a well-implemented data warehouse, non-breaking
changes are done to the views (that means changes to existing columns like renam‐
ing, change of datatype, removing of columns). If breaking changes must occur, they
have to be implemented as a new view together with a grace period to give the Power
BI data modelers (you and me) time to implement the changes to the existing data
models.

Then you expand the column via the icon just to the right of the column name
(Figure 14-16).

Figure 14-16. Column DimProductSubcategory can be expanded

Expanding allows you to choose which columns you want to expand and if you want
to have a prefix in front of the original column names. In the example, I chose col‐
umns EnglishProductSubcategoryName (which is the name of the subcategory I
want to show in my reports) and ProductCategoryKey (which I need to denormalize
the category’s name into the product table). As I want to keep the column names as
they are, I chose to not have a “Default column name prefix” (Figure 14-17).

Don’t forget to disable “Enable load” for the referenced queries, as all necessary col‐
umns are now part of a different query, and it does not make sense to load informa‐
tion twice into the data model. Abstain from actually deleting those queries, as this
would break the merge step we just created.

The important steps in the M script are the following two:

#"Merged Queries" = Table.NestedJoin(#"Changed Type", {"ProductSubcategoryKey"},
  DimProductSubcategory, {"ProductSubcategoryKey"}, "DimProductSubcategory",
  JoinKind.LeftOuter),
#"Expanded DimProductSubcategory" = Table.ExpandTableColumn(#"Merged Queries",
  "DimProductSubcategory", {"EnglishProductSubcategoryName",
  "ProductCategoryKey"}, {"EnglishProductSubcategoryName",
  "ProductCategoryKey"}),
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Function Table.NestedJoin joins the two queries in a left outer fashion.
Table.ExpandTableColumn extracts the two columns (and keeps their original name).

Figure 14-17. A choice of columns to expand

Not many people are eager to build reports that show long lists of data. Every report
I’ve built so far contains at least one measure that, in its simplest form, aggregates
individual values. In the next section, I introduce you to calculations in Power Query.

Calculations
In Power Query, you can implement numerical calculations of high complexity.
Remember, though, that it only makes sense to add calculations for which the result
is fully additive in a report. A visual rarely shows individual rows of a table, but
aggregated values in most cases. For example, the count of rows is an additive calcu‐
lation; the distinct count definitely not. While I, in general, do not recommend
adding transformations in DAX, I fully recommend adding calculations (in the form
of DAX measures). As even additive calculations can be done in a DAX measure, I
wouldn’t create calculations in Power Query but start first in DAX. Only if you see
performance problems should you move the formula to Power Query and thereby
persist (intermediate) results. The size of your data model will grow when you add
new columns, and the speed of the report creation might increase.
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You can use a calculation to replace the value of an existing column (Transform) or
by adding a new column (“Add columns”). Both the Transform and the “Add col‐
umns” sections in the ribbon of Power Query offer a wide range of transformations,
including calculations on numeric values (Figure 14-18):

Statistics
Sum, Minimum, Maximum, Median, Average, Standard Deviation, Count Val‐
ues, Count Distinct Values

Standard
Add, Multiply, Subtract, Divide, Integer Divide, Modulo, Percentage, Percentage
of

Scientific
Absolute Value, Power, Square Root, Exponent, Logarithm, Factorial

Trigometry
Sine, Cosine, Tangent, Arcsine, Arccosine, Arctangent

Rounding
Round up, Round down, Round specific decimal places

Information
Is Even, Is Odd, Sign

Figure 14-18. The Number Column section in Power Query’s ribbon

Calculations in Power Query are transformations of numeric columns. You can apply
transformations to nonnumerical columns as well, as I show next.
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4 The examples in this section use the Flag.pbix file in the book’s GitHub repository.

Flags and Indicators
Transforming and adding columns is not only possible with numeric columns (as the
previous section describes) but is an easy task for any type of column with Power
Query. In the following examples, you will learn about the strength of Power Query
when it comes to transformations of any kind. I will show you which button to click
in the UI, but we will talk about the generated M code as well.

Power Query’s UI is very user-friendly, and you can achieve many
powerful transformations without writing a single line of code.
You can go far in Power Query without touching (or understand‐
ing) M. Only on special occasions do I turn toward the M code: fix‐
ing a typo in text I provided, duplicating logic (e.g., the rules of a
conditional column) by copying and pasting existing parts of the
code, or if the UI doesn’t provide a functionality (yet).
Chapter 15 cover advanced solutions with examples. Here, I want
to open your mind to M by demonstrating both the UI and the M
code behind.

In the following list, I apply a (slightly) different method of transformation on each
column:4

FinishedGoods

To transform column FinishedGoods (which contains 0s or 1s) to a descriptive
text column, I select Add Column → Conditional Column from the ribbon. Then
I type in Finished Goods as the “New column name” and provide the rules to
transform a value of 0 to “not salable” and a value of 1 to “salable.” In the Else
field, I provide “unknown,” as you can see in Figure 14-19.

If you make sure that View → Formula Bar is enabled, then you can read the gen‐
erated M code when you click Added Finished Goods under “Applied steps”:

= Table.AddColumn(Source, "Finished Goods", each
         if [FinishedGoodsFlag] = 0 then "not salable"
    else if [FinishedGoodsFlag] = 1 then "salable"
    else "unknown"
)
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Figure 14-19. You can provide rules to create a new column based on the values of
an existing column

Style

In general, I try to avoid solutions with conditional columns/nested if state‐
ments because I (or some poor other person) would need to dig into the code to
find where the condition is hidden if the logic has to be changed (e.g., an addi‐
tional value becomes available or the descriptive text has to be adapted). I prefer
to have a lookup table instead. In this example, I create table MyStyles via Home
→ Enter Data and provided a column named Style with the style’s code (W, M,
U, and an empty value) and a column StyleDescription with the descriptive
text, as shown in Figure 14-20.
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Figure 14-20. A table containing each style and its descriptive text

Editing this table is usually faster and easier than changing code containing if
statements or filling out the Add Conditional Column form, offered in a dialog
via the gear icon of the Added Finished Goods step. To change the content of the
table, just click the gear icon to the right of the step in “Applied steps.” In a per‐
fect world, the MyStyles table would be provided from outside Power BI, where
the responsible users (with the business’s authority) have editing rights. This
could be anything: an Excel file on a shared OneDrive, a SharePoint List, or a
table in a database, which the users can edit via an application.

After you create the lookup table, you need to merge it into the existing query
(Home → Merge Queries → Merge Queries) and expand the newly added col‐
umn to add a StyleDescription (Figure 14-21).
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Figure 14-21. Merging the created table into DimProduct

Because column Style in table DimProduct contains blanks, and Power Query
will respect those blanks while merging tables, I add an extra step, Trimmed Style
just before step Merged MyStyles: right-click the column’s header and choose
Transform → Trim. And here’s the M code that was generated via the GUI:

#"Trimmed Style" = Table.TransformColumns(#"Added Finished Goods",
  {{"Style", Text.Trim, type text}}),
#"Merged MyStyles" = Table.NestedJoin(#"Trimmed Style", {"Style"},
  MyStyles, {"Style"}, "Styles", JoinKind.LeftOuter),
#"Expanded Styles" = Table.ExpandTableColumn(#"Merged MyStyles", "Styles",
  {"StyleDescription"}, {"StyleDescription"}),
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5 Use Date.pbix to follow along with the examples in this section.

WeightUnitMeasureCode

Replacing a value in a column can be done by right-clicking on a column’s value
and choosing Replace Values. Value To Find will already contain the selected
value. You just fill out Replace With accordingly. That’s how I replaced an empty
WeightUnitMeasureCode with N/A. Column WeightUnitMeasureCode in table Dim
Product is sometimes empty (which is a blank string in the UI and two double-
quotes, "", in M), as shown in Figure 14-22. In other situations, a value,
independent of the datatype, could also be null. And “null” is exactly what you
would type into the field in the UI and/or in M code if you want to replace null
or replace something with null.

= Table.ReplaceValue(#"Expanded Styles","","N/A",Replacer.ReplaceValue,
  {"WeightUnitMeasureCode"})

Figure 14-22. Replacing empty values with N/A

Time and Date
In “Normalizing” on page 258, I promised to show you how to create a date table in
Power Query. Now the time has come!

To generate a time and a date table from scratch in Power Query, you need to reach
out to the M language; you can’t completely rely on the UI. In the first step, you need
to generate a list of dates (or timestamps), which the dimension table should cover.

Start with Home → New Query → Blank Query (Figure 14-23).5

Time and Date | 279

https://oreil.ly/Datepbix


Figure 14-23. Starting with a Blank Query in order to provide M code

In the following code example, I start with Power Query’s list indexer operator ({}).
Inside the curly braces, I pass in the start value, then two dots (..), and then the end
value. In this case, the operator only accepts numeric indexes but not a date or time‐
stamp. Therefore, I use function Number.From to convert the two dates into a number
(representing days since December 30 1899). I resist providing a hard-coded time
and date but used lookup column OrderDate from query Fact Reseller Sales. This
gives me peace of mind if data for a new year is available or old data is removed. As I
refer to the fact table’s content, I can be sure that the date table will always cover the
full time range. For the start date, I apply Date.StartOfYear and Table.Min. For the
end date, Date.EndOfYear and Table.Max, respectively:

= {Number.From(Date.StartOfYear(Table.Min(#"Fact Reseller Sales", "OrderDate")
  [OrderDate])) .. Number.From(Date.EndOfYear(DateTime.Date(Table.Max(
  #"Fact Reseller Sales", "OrderDate")[OrderDate])))}
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If you then right-click the header (List), you can convert To Table, as shown in
Figure 14-24.

Figure 14-24. Converting a list to a table

Here I insert the M code, which was generated by the To Table step:

= Table.FromList(Source, Splitter.SplitByNothing(), null, null,
  ExtraValues.Error)

To the left of Column1, you can click the button to select the correct data type, Date
for the column (Figure 14-25).

Figure 14-25. Setting the right data type for the column

Table.TransformColumnTypes is the corresponding function in M:

= Table.TransformColumnTypes(#"Converted to Table",{{"Column1", type date}})
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Column1 isn’t so practical as the column’s name. Double-click the header and type in
Date. The resulting code looks like this:

= Table.RenameColumns(#"Changed Type",{{"Column1", "Date"}})

Then I add informative columns to this query. Select the Date column and choose
from the available transformations under Add Column. I choose the following:

Date → Year → Year (e.g., 2023):

= Table.AddColumn(#"Renamed Columns", "Year", each Date.Year([Date]), Int64.Type)

Date → Month → Month (e.g., 01):

= Table.AddColumn(#"Inserted Year", "Month", each Date.Month([Date]), Int64.Type)

Date → Month → Name of Month (e.g., January):

= Table.AddColumn(#"Inserted Month", "Month Name", each Date.MonthName([Date]),
  type text)

Date → Day → Day (e.g., 31):

= Table.AddColumn(#"Inserted Month Name", "Day", each Date.Day([Date]),
  Int64.Type)

Add as many versions and combinations as will be useful for your report users. This
table will contain a maximum of 366 rows per year. If your report covers 10 years,
this table will contain fewer than 4,000 rows. Therefore, you can easily afford to
enrich it with columns to support every potential need of the report creators.

A numeric key for the table can be useful in some situations. For the date table, I pre‐
fer a numeric key, which represents the date in a YYYYMMDD fashion (20230801
would be the key for August 1, 2023). I add the following step to my query:

= Table.AddColumn(#"Inserted Day", "DateKey", each Text.Combine({
  Date.ToText([Date], "yyyy"), Date.ToText([Date], "MM"), Date.ToText([Date],
    "dd")}),
  type text)
= Table.TransformColumnTypes(#"Added Custom Column",{{"DateKey", Int64.Type}})

The solution for generating the Time dimension from scratch in Power Query
involves similar steps. You start again with Home → New Source → Blank Query and
use List.Times to generate a list of timestamps.

As the first parameter, I pass in #time(0, 0, 0), which represents a timestamp for
midnight (0 hours, 0 minutes, and 0 seconds). As the second parameter, I pass in the
expression 24 * 60, which gives the number of rows I want the query to have (24
hours per day and 60 minutes per hour to cover a time table for every minute of the
day). You could just write 1,440 (the result of the expression), but I find it more read‐
able to provide the calculation. The third parameter provides the steps the final result
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should contain. I use #duration(0, 0, 1, 0) because I want a table for every
minute (0 days, 0 hours, 1 minute, 0 seconds).

Here, you see the line of code for the Source step of the query:

= List.Times(#time(0, 0, 0), 24 * 60, #duration(0, 0, 1, 0)) -- 24h * 60minutes

The next steps include the conversion of the list into a table, changing the data type
of the column to Time and renaming the first column to Time. I won’t repeat the
description of the UI here; it’s very similar to what we did when creating the date
table. Here is the M code:

= Table.FromList(Source, Splitter.SplitByNothing(), null, null,
  ExtraValues.Error)
= Table.TransformColumnTypes(#"Converted to Table",{{"Column1", type time}})
= Table.RenameColumns(#"Changed Type",{{"Column1", "Time"}})

You can add variations of the timestamp via Power Query’s UI. Choose Add Column
in the ribbon and then:

Time → Hour → Hour (e.g., 11):

= Table.AddColumn(#"Renamed Columns", "Hour", each Time.Hour([Time]), Int64.Type)

Time → Minute(e.g., 59):

= Table.AddColumn(#"Inserted Hour", "Minute", each Time.Minute([Time]),
  Int64.Type)

I also want a column containing the time as a string in the format HH:MM. Let’s look
at Power Query’s feature Column From Examples.

First, Ctrl-click both the Hour and Minute columns. Then choose Add Column →
Column From Examples → From Selection. Now you need to “teach” Power Query
by giving examples of the results you want to achieve by a Power Query expression.
Double-click in column Column1 on the line for Time “00:01:00” and type in “00:01.”
Power Query will fill out the rest of the rows.

By the unintended leading zeros in the results, you can see that Power Query didn’t
fully understand this. You’ll have to provide another example to correct it. Double-
click “00:010” and change it to “00:10”. There is another incorrect value, “10:00”,
which we correct to “01:00”. When using this feature, always make sure to look out
for weird results (and correct them). Make sure that you understand the code at the
top of the screen. Here are my results after making corrections:

= Table.AddColumn(#"Added Custom Column", "Custom", each Text.Combine({
  Text.PadStart(Text.From([Hour], "en-AT"), 2, "0"), ":",
  Text.PadStart(Text.From([Minute], "en-AT"), 2, "0")}), type text)

The formula concatenates the hour with a colon (:) and the minute. For both the
hour and the minute, it makes sure to add a leading “0” and then chooses the two
right-most characters. This looks perfect to me. You can keep the formula. Before
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you press enter, double-click the header and provide Time Description as the col‐
umn’s name.

It is not unusual for a dimension to play several roles inside a data model. And this is
also very typical for the date table. The next section describes how to do this in Power
Query.

Role-Playing Dimensions
A dimension in a data model can play different roles in different contexts; you may
have both an order date and a sales date in your fact table. As “Role-Playing Dimen‐
sions” on page 123 points out, you can either create several filter relationships
between the fact table and the date dimension, or you can add the date dimension
several times into the data model under different names (e.g., Order Date and Sales
Date).

You can easily achieve the latter in Power Query. Simply right-click the query that
has multiple roles in the data model and choose either Duplicate or Reference. If you
duplicate a query, the new one will contain duplications of all the steps of the original
query. Referencing means that the new query only contains one step, which refer‐
ences the other query. This might not seem like much of a difference, but if you need
to change some of the steps later, the difference will become clear. If the changes
should be applied to all queries (the original one and the duplicates), you need to
repeat the change for all queries. Referenced queries will automatically receive the
changes.

Deciding between Duplicate and Reference is a bet on the future: how high is the
probability that future changes will need to be applied to all copies of the query? If
the probability is high, then Reference is the better choice. How high is the probabil‐
ity that changes will only need to be applied to individual copies of the query? If the
probability is high, then you’re better off duplicating all steps, generating an inde‐
pendent query.

When it comes to role-playing dimensions, I usually decide to apply all necessary
steps (transformations like renaming of columns, setting the correct data type, etc.)
to the original query and then reference the query as many times as I have roles for
this dimension. (This is similar to the workflow for creating dimension tables out of a
fact table in “Normalizing” on page 258.) Make sure to rename the queries accord‐
ingly (e.g., copies of the Date query become Order Date and Ship Date).

Pay attention to the fact that the two queries are now fully identical—except for their
names. When you load these queries as they are, you end up with columns with iden‐
tical names appearing in multiple tables. That’s very confusing if you search for
something in the data model, which undermines our ultimate goal of making the
report creator’s life easy. It’s also confusing for the report consumer because the
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column names become the standard header for the visuals. If the report creator
doesn’t take the time to change those default headers, it’s up to the report consumer
to guess if “Year” means the year from the Order Date or the Ship Date table. Before
you start manually renaming columns, take another deep breath and review the fol‐
lowing M code:

= Table.TransformColumnNames(Source, (columnName as text) as text => "Order "
  & columnName)

This small line of code iterates over all columns (not the rows!) of the existing query
and adds the text Order in front of the column name. The code is fully independent
of the number of columns or the actual name of the existing columns—and makes it,
therefore, resilient to changes in the table. I added the same code to the Ship Date
(PQ) as well (with Ship instead of Order, of course). This shows the beauty of M
code: you can make transformations dynamic instead of statically renaming every
single column.

Dimensions don’t just play different roles; their attributes can change as well. If you
want to track those changes you need to learn about the concept of slowly changing
dimensions.

Slowly Changing Dimensions
The idea behind the different types of slowly changing dimensions is to track
changes. Depending on the desired type, you need then to update existing rows or
insert additional rows in the existing tables. None of that is possible with Power
Query.

With the way Power BI (and the storage engine behind it) works, you can refresh
only a whole table (or partitions of a table, which I cover in Chapter 16). A refresh
operation triggers a full load of the whole content of the table, and the refresh opera‐
tion doesn’t allow you to access the previously stored data. Therefore, you can’t
implement slowly changing dimensions with Power Query, but need a data ware‐
house layer (where you can not only store the versions permanently, but where you
are also able to update existing rows). In Part V, you will learn about the concept of a
data warehouse layer in general, and in “Slowly Changing Dimensions” on page 387,
you’ll learn how to implement different types of slowly changing dimensions in a
relational database.

Usually, an implementation of slowly changing dimensions does not mean any extra
effort in the world of Power Query, as the rows in the data warehouse’s fact table(s)
are already referencing the right version of the dimension tables.

Power BI is special when it comes to hierarchies, as you need to deserialize hierar‐
chies in a way that each level of the hierarchy is represented by one column in the
table. The next section has you covered there.
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6 The examples in this section use the Hierarchies.pbix file.

Hierarchies
If you’re following along sequentially in this book, you should have denormalized all
natural hierarchies in the dimension tables (see “Denormalizing” on page 270). With
the natural hierarchy denormalized, you have all levels of the hierarchy as columns in
one single table. Adding them to a hierarchy in Power BI’s data model is very easy.

In this section, I concentrate on parent-child hierarchies. They’re very common, and
you also need to store the names of all parents in dedicated columns, one for each
level of the hierarchy. Read on to learn how to achieve this with Power Query.6

The solution you need for Power BI is a materialized path of the hierarchy. Before
you can create the materialized path, you have to merge and expand the query (in my
example, it’s DimEmployee) as many times as levels exist in this hierarchy. In a parent-
child hierarchy, the number of levels is never fixed (that’s basically the idea of model‐
ing parent-child hierarchies as a self-joining table). So, unfortunately, you need to do
some guessing here: how many levels are currently used? Add a buffer amount (and a
note in your “to do” list or calendar to regularly check the number of levels in the
table) to avoid being surprised by missing information. You need to repeat similar
steps (but not the exact same) per level:

1. Go to Home → Merge Queries → Merge Queries to merge the column
ParentEmployeeKey of the current query (Employee (PQ 2)) with column
EmployeeKey of (again) Employee (PQ 2). Make sure to choose Left Outer as the
Join Kind so you don’t lose any rows if there are no child nodes available
(Figure 14-26). The resulting code looks like this:

= Table.NestedJoin(Source,  {"ParentEmployeeKey"}, Source, {"EmployeeKey"},
  "Level -1", JoinKind.LeftOuter)
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Figure 14-26. Merge query Employee (PQ 2) with itself, and make sure to choose
the correct columns

2. Expand the newly created column and select at least ParentEmployeeKey and
FullName. Make sure to add Level -1 (or a similar hint) to the column name
(Figure 14-27). The resulting code looks like this:

= Table.ExpandTableColumn(#"Merged Queries", "Level -1",
  {"ParentEmployeeKey", "FullName"}, {"Level -1.ParentEmployeeKey",
  "Level -1.FullName"})
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Figure 14-27. Expand the next level

3. Go to Home → Merge Queries → Merge Queries to merge column
Level-1.ParentEmployeeKey of the current query (Employee (PQ 2)) with col‐
umn EmployeeKey of (again) Employee (PQ 2). Make sure to choose Left Outer
as the Join Kind so you are not losing any rows, in case there are no child nodes
available:

= Table.NestedJoin(#"Expanded Level -1", {"Level -1.ParentEmployeeKey"},
  Source, {"EmployeeKey"}, "Level -2", JoinKind.LeftOuter)

4. Expand the newly created column and select at least ParentEmployeeKey and
FullName. Make sure to add Level -2 (or a similar hint) to the column name:

= Table.ExpandTableColumn(#"Merged Queries -2", "Level -2",
  {"ParentEmployeeKey", "FullName"}, {"Level -2.ParentEmployeeKey",
  "Level -2.FullName"})

5. Repeat similarly for all necessary levels.
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After you have the EmployeeKey and FullName for every level as individual columns
for every row, you can create the materialized path. Remember, the materialized path
is a concatenated list of all the keys of all levels above a node. In Power Query’s UI,
you simply Ctrl-click all columns containing the keys; e.g., for the current example:

• Level -5.ParentEmployeeKey

• Level -4.ParentEmployeeKey

• Level -3.ParentEmployeeKey

• Level -2.ParentEmployeeKey

• Level -1.ParentEmployeeKey

• ParentEmployeeKey

• EmployeeKey

The order of the keys inside the materialized path is crucial, so pay attention to
retaining the order of the columns exactly as described. Then choose Add Column →
Merge Columns from the ribbon (Figure 14-28).

Figure 14-28. Build the Path as a merged columns

The character you choose as the separator isn’t so important as long as you make sure
that it isn’t (and never will be) part of the content of the employee key. I prefer to use
the pipe (|)—which isn’t available in the list. Therefore, I choose “--Custom--” and
type in the pipe symbol. As a “New column name (optional),” I provide Path in the
dialog box shown in Figure 14-29.
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Figure 14-29. Choosing the separator

The resulting code looks like this:

= Table.AddColumn(#"Expanded Level -5", "Path", each Text.Combine({Text.From(
  [#"Level -5.ParentEmployeeKey"]), Text.From([#"Level -4.ParentEmployeeKey"]),
  Text.From([#"Level -3.ParentEmployeeKey"]), Text.From(
  [#"Level -2.ParentEmployeeKey"]), Text.From([#"Level -1.ParentEmployeeKey"]),
  Text.From([ParentEmployeeKey]), Text.From([EmployeeKey])}, "|"), type text)

With the (materialized) Path at hand, it’s now easy to calculate on which level a cer‐
tain node in the hierarchy is. Just count the separators (|) and add one. Choose Add
Column → Custom Column from the ribbon and fill in PathLength for the “New col‐
umn name” and List.Count(Text.PositionOf([Path], "|", Occurrence.All)) +
1 for the “Custom column formula” in the text box that appears (see Figure 14-30).
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Figure 14-30. Calculating the PathLength

It’s common to speak of the leaves of the hierarchy when talking about the nodes on
the very bottom of the hierarchy. Leaf nodes are nodes that aren’t parents. To find out
if a node is a leaf, you need to find out if you can find the node’s EmployeeKey is
inside the list of all ParentEmployeeKeys. If we find it, it is not a leaf. If we do not find
it, it is a leaf. Choose Add Column → Custom Column from the ribbon once more
and fill in “IsLeaf” for the “New column name” and not List.Contains(Table
.Column (#"Changed Type", "ParentEmployeeKey") , [EmployeeKey]) for the
“Custom column formula” in the text box that appears (see Figure 14-31).
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Figure 14-31. Finding out if an employee is on the leaf level of the hierarchy

Finally, its time for the most important part: creating a column for every level, show‐
ing all the names of all the parents of a node.

Unfortunately, the Level -X.FullName columns are just in the wrong order (that’s
why I named them “minus X”). As the hierarchy can be ragged (i.e., not every part of
the hierarchy has the same amount of level), you need to start from the top node (e.g.,
the CEO) and work toward the leaves. The first step is similar to the creation of col‐
umn Path, but it’s based on FullName (and not ParentEmployeeKey). Again, double-
check the sequence order of the columns (starting with the column with “-5” in the
name and ending with column named FullName), as shown in Figure 14-32.
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Figure 14-32. Merging the name columns into one

Then you specify the separator and a new name (Figure 14-33).

Figure 14-33. Specifying the separator and a new column name

And here is the resulting M code:

= Table.AddColumn(#"Changed Type1", "Level", each Text.Combine({Text.From(
  [#"Level -5.FullName"]), Text.From([#"Level -4.FullName"]),
  Text.From([#"Level -3.FullName"]), Text.From([#"Level -2.FullName"]),
  Text.From([#"Level -1.FullName"]), Text.From([FullName])}, "|"), type text)

This step was just an intermediate step. By selecting Transform → Split Column →
By Delimiter and providing the separator from the step before (|), you can easily split
the content of the Level column into individual columns per level (Figure 14-34).
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Figure 14-34. Spliting the merged column

Here I have the M code for you:

= Table.SplitColumn(#"Added [Level]", "Level", Splitter.SplitTextByDelimiter(
  "|", QuoteStyle.Csv), {"Level 1", "Level 2", "Level 3", "Level 4", "Level 5"})

This code is not the one that was created by the UI. I removed the dots (.) in the list
of names for the level (e.g., I changed “Level.1” to “Level 1” for the sake of better
readability).

If you think all these steps are a bit tedious and that guessing about the number of
levels isn’t a good approach for a resilient data model, I fully agree. Imke Feldmann
developed a function (written in M code) to dynamically dissolve the levels of the
parent-child hierarchy and flatten them out into individual columns (as you did
manually). Her post informed the reasoning and steps of this section—I tweaked
Imke’s code in the example file to conform to my column and table names and my
data model.
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Key Takeaways
You learned that Power Query is a powerful tool to achieve all sorts of transforma‐
tions. I demonstrated many functionalities in the UI and also made sure that you
familiarized yourself with the M language, as it can help to make the steps resilient
against changes in the data source. I limited myself to what I consider the most
important features:

• Normalizing your fact tables involves steps to find candidates for dimensions.
Power Query’s column quality and column distribution give you an idea of the
cardinality of a column, even before you load it into the data model. Always
double-check the transitive dependencies to make the right decision.

• You create a dimension table by referencing it, selecting all necessary columns
(and removing all others), and remove all duplicates.

• To denormalize a table, you add the information from the related table by merg‐
ing it into the existing one, and expand the result to add the columns.

• It’s important to disable “Enable load” for intermediate queries, which should
not be part of the final data model.

• Don’t spend too much time on calculations in Power Query. DAX is usually the
better place.

• Physically adding variations for a table (for role-playing purposes) is very easy in
Power Query. You just reference the original table and add a suffix to all column
names, indicating the role.

• Slowly changing dimensions must be solved in a data warehouse layer, which
allows you to compare the existing rows with the newly delivered rows in order
to insert these rows or update the already existing rows. This is not possible in
Power Query.

• You can flatten parent-child hierarchies by applying several steps. Via a function,
you can apply these steps in a dynamic way.

In the next chapter, you will learn about more advanced challenges and how to solve
them in Power Query.
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CHAPTER 15

Real-World Examples Using
Power Query and M

In addition to the standard tasks to transform a given data model into a star schema,
there is a lot we can do in Power Query to prepare data for advanced challenges. In
many cases, Power Query is better than DAX when it comes to shaping data models.
Keep in mind, though, that some solutions require DAX measures to be written,
which can’t be replaced by even sophisticated Power Query or M. I also use scripts in
M to make solutions more dynamic, lessening the effort needed to maintain solutions
when there are changes in the data source.

The use cases in this chapter are listed here:

• How to group values into bins or buckets to show the name of the bucket instead
of the actual value.

• How to support multi-fact data models by bridging the many-to-many relation‐
ship, which will appear between some of the relationships between a fact and a
dimension table. I will demonstrate the solution on the example of a budget.

• In my multi-language solution, Power Query synthesizes the translations. I will
show you how you can use Azure Cognitive Services to get the texts translated.

• Key-value pair tables must be pivoted to be able to satisfy common reporting
requirements. You will learn which buttons to click in the UI to pivot the table so
that every key becomes a column of its own. I will also show you how you can
implement a dynamic solution that will take automatically care of new keys.

Let’s start with binning.
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1 The file for the examples in this section is Binning.pbix.

Binning
Let’s take a look at how to create either of the two lookup tables from “Binning” on
page 58. One of the lookup tables described there was the full list of possible values
including a column with the correct bin.1

Create a Bin Table by Hand
Of course, you can always create a new table by using Home → Enter Data and man‐
ually inserting the necessary values (or you can copy and paste from an Excel spread‐
sheet). You can see such a table in Figure 15-1.

Figure 15-1. A table containing a row for each quantity

The M script for the table’s content is impossible to maintain directly; it’s Base64-
encoded:

= Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText(
  "i45WMlTSUfLJLweShkqxOtFKRmh8YyDLNzMlJScVyDAGC5lgCpkCWR6Z6RlAyhQsYIYiEAsA",
  BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text)
  meta [Serialized.Text = true]) in type table [Quantity = _t, Bin = _t,
  #"Bin Sort Order" = _t])

Instead of the values you entered into the table, you see a step containing a long chain
of letters and numbers, which seem to have nothing to do with your input because
the values are Base64-encoded. Luckily, you can edit the data of such a table from the
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gear icon of the Source step. Resist adding “Replace values” steps to correct typos in
the data created via Enter Data and edit the content of the table directly instead.

I like to use this feature (directly entering the data for a table) for quick demos or
proofs-of-concept. But I don’t like it for solutions rolled out into production. Instead,
I find it way better to create the tables with a script (instead of maintaining the tables
themselves).

Deriving the Bin Table from the Facts
As an alternative to the hardcoded table, you can use two other approaches to define
the list of values (which are then assigned to a bin). One method involves providing a
table containing the ranges per bin (see “Create a Bin Range Table in M” on page 307).
Here, I describe how to reference the fact table to derive a bin table.

Right-click the fact table in the Queries list and choose Reference. Then remove all
columns except the one for which you want to create the bins (e.g., Quantity) by
right-clicking the column header as shown in Figure 15-2.

Figure 15-2. Removing all columns except the one that should be binned
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Then, remove all duplicates, again via the context menu of the column’s header
(Figure 15-3).

Figure 15-3. Removing duplicates

The generated code looks like this:

let
    Source = Sales,
    #"Removed Other Columns" = Table.SelectColumns(Source,{"Quantity"}),
    #"Removed Duplicates" = Table.Distinct(#"Removed Other Columns"),
...

The result may not have a row for each quantity, but it’ll always contain all necessary
lookup values used in the fact table. The order of the rows in this table looks a bit
unusual—it’s not ordered by quantity but by order of appearance of a quantity in the
fact table; this isn’t a problem.

Before you complete the table, take a look at how to create it with M code.
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Create a Bin Table in M
Depending on the size of your fact table, building it can take a while. The alternative
is to use the function List.Numbers and provide a start and an end value (e.g., Power
Query parameters MinBin and MaxBin; I explain how to create and maintain parame‐
ters later). I then make sure to convert this list into a table, give column Column1 a
more descriptive name (e.g., Quantity) and the proper data type. This can’t be
started via the UI but only by creating a new empty query where you call the function
and pass in the two parameters:

let
    Source = List.Numbers(MinBin, MaxBin),
...

Then you need to convert the list (returned by function List.Numbers) into a table
via Transform → To Table (Figure 15-4).

Figure 15-4. Transforming a list into a table

Then I renamed Column 1 to Quantity and chose Whole number as the data type in
the UI. Here is the first part of this script:

let
    Source = List.Numbers(MinBin, MaxBin),
    #"Converted to Table" = Table.FromList(Source, Splitter.SplitByNothing(),
      null, null, ExtraValues.Error),
    #"Renamed Columns" = Table.RenameColumns(#"Converted to Table",{{"Column1",
      "Quantity"}}),
    #"Changed Type" = Table.TransformColumnTypes(#"Renamed Columns",
      {{"Quantity", Int64.Type}}),
...

In the next step, I add a custom column (Bin) containing the bin name per quantity.
To decide which bin a value falls into, I provide parameters (which are easy to spot
and understand) and use the parameter values. If I need to change the borders of the
bins, I don’t need to scan through all the applied steps of all the queries but can sim‐
ply change the parameter value.

Figure 15-5 shows the parameters I have created for the purpose of this demonstra‐
tion. MediumBin is selected. Via Home → Manage Parameters → Manage Parameters,
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you can create New parameters, change the settings for an existing parameter, or
remove it via the X icon next to the parameter’s name.

Figure 15-5. Managing the properties of a Power Query parameter

A Power Query parameter has the following properties:

• A mandatory Name.
• An optional Description, which is shown as a tooltip if you mouse over to select

the parameter name in the list of queries.
• A checkbox to define if a value for this parameter is Required.
• A data Type chosen from the list of available values. The available data types

match the data types available for a column. You can find a complete list and
explanation in “Tables or Queries” on page 244.
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Choose the data type of each parameter wisely. Leaving the
data type at the default value Any is a common mistake that
will prohibit changing the parameter’s value in the Power BI
service. Other problems can occur if you don’t choose the
right Date/Time-related data type (e.g., unexpected behavior
from a filter based on the parameter).

• The ability to decide, through Suggested Values, whether the parameter’s value
can be any value and changed via an simple input field, or if it needs to come
from a hardcoded list of values, or a value listed in a Power Query query.

• A parameter currently set to Current Value. This value is also saved in the .pbix
file and will be used for all future refreshes, unless changed here or in the Power
BI service.

Let’s use these parameters in a script to add the name of the bin. Choose Add Col‐
umn → Custom Column from the ribbon (Figure 15-6). In the dialog box, you can
then add the expression to return Low, Middle, or High according to the bin range
table.

Figure 15-6. Adding a custom column

Here is the full M code:

= Table.AddColumn(#"Changed Type", "Bin", each
     if [Quantity] < MediumBin then "Low"
else if [Quantity] < HighBin then "Middle"
else "High")

The code for the column Bin uses if then – else if then chains (due to the lack
of SWITCH or CASE keywords in Power Query). I didn’t hardcode the borders of the
bins but referenced Power Query parameters MediumBin and HighBin to decide
which bin a value should fall into. If these boundaries change over time, nobody
needs to touch the code—only changes to the content of the parameters would be
required. And only if the number of bins increases do we need to add parameters and
a new else if then line to the step where we define the custom column. You can
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achieve the same result by using the GUI and selecting Add Column → Conditional
Column from the ribbon (see Figure 15-7).

Figure 15-7. Specifying the condition to return Low, Middle, or High as the bin’s name

I add another column (_SortOrder) to be able to order the bin names in a custom
order (Low first, then Middle, and High last) instead of alphabetical order (which
would be High, Low, and Middle and confuse most report users). For this column, I
implement a logic to pick the smallest quantity of each bin. For this to happen, I first
group the result of the previous step (Added Custom) by bin name. Choose Trans‐
form → Group by in the ribbon (Figure 15-8).

Figure 15-8. Grouping a query

Specify the Bin column in the drop box, enter SortOrder for the New Column Name,
chose Min as the Operation (to get the minimal quantity value per bin as its sorting
value), and choose Quantity from the Column drop box (Figure 15-9).
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Figure 15-9. Specifying the grouping

I then merge the result of the Grouped Rows step with with Added Custom step.
Here, you need to right-click the last step and choose Insert Step After
(Figure 15-10).

Figure 15-10. Insert a step after Grouped Rows

Insert the following code:

= Table.NestedJoin(#"Added Custom", {"Bin"}, #"Grouped Rows", {"Bin"},
  "Grouped Rows", JoinKind.LeftOuter)

Finally, you need to expand the _SortOrder column. Click the Expand icon to the left
of the column name in the column header (Figure 15-11).
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Figure 15-11. Expanding the _SortOrder column

Here’s the code for the last three steps:

...
#"Grouped Rows" = Table.Group(#"Added Custom", {"Bin"}, {{"_SortOrder",
  each List.Min([Quantity]), type nullable number}}),
#"Merged Queries" = Table.NestedJoin(#"Added Custom", {"Bin"}, #"Grouped Rows",
  {"Bin"}, "Grouped Rows", JoinKind.LeftOuter),
#"Expanded Grouped Rows" = Table.ExpandTableColumn(#"Merged Queries",
  "Grouped Rows", {"_SortOrder"}, {"_SortOrder"})

Don’t forget to provide column _SortOrder as the “Sort by col‐
umn” for column Bin in Power BI’s “Column tools.”

In Table 15-1, you see the final result for the approach based on the fact table, which
lists only quantities existing in the fact table in the order of appearance of a quantity
in the fact table.

Table 15-1. A bin table derived from the values available in the fact table

Quantity Bin _SortOrder
3 Middle 3

4 Middle 3

1 Low 1

5 High 5
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Table 15-2 shows the final result for the approach based on the List.Numbers func‐
tion, which is a complete list of values, independent of whether a value appears in the
fact table.

Table 15-2. A bin table derived from a list of values

Quantity Bin _SortOrder
1 Low 1

2 Low 1

3 Middle 3

4 Middle 3

5 High 5

6 High 5

7 High 5

8 High 5

9 High 5

10 High 5

Create a Bin Range Table in M
A completely different approach to model binning in Power BI, also laid out in “Bin‐
ning” on page 58, is to provide a table containing the ranges per bin. You can easily
create a table in M via the function #table:

let
    Source = #table(
      type table [#"Low (incl.)" = number, #"High (excl.)" = number,
        #"Bin name" = text],
      {
      {null, MediumBin, "Low"},
      {MediumBin, HighBin, "Medium"},
      {HighBin, null, "High"}
      }
    )
in
    Source

The first parameter is optional, but I recommend specifying the names and data types
of the columns of the table so you have everything in one place, instead of adding
steps afterward.

The second parameter then specifies the content of the table, using the {} syntax.
You need an outer {} for the whole table, and then inner {}s per row. Inside the row,
provide a comma-separated list of values. Again, I don’t provide the ranges per bin in
a hard coded fashion but reference the parameters. In the code, you can see the
advantage of having an inclusive lower range and an exclusive higher range: I can
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2 These examples use the Budget.pbix file.

provide parameter MediumRange for both the high range of the Low bin and the low
range of the Medium bin. In “Binning” on page 216, I demonstrate how you can use
such a table as a lookup table for the bins in your DAX measure.

In my example, such a table looks like Table 15-3.

Table 15-3. A bin table derived from a list of values

Low (incl.) High (excl.) Bin name
null 3 Low

3 5 Medium

5 null High

In the following example, I show how to create a bridge table in Power Query.

Budget
The budget problem is a classic example for a multi-fact data model. You may need
more than one fact table if you’re working with content of a different granularity;
usually the budget is on a different granularity level than the actual values. I prefer to
connect a fact table of different granularity level than the relevant dimension tables is
over a bridge table. Such a bridge table is simply a distinct list of the dimensional val‐
ues on the fact’s granularity level. The fact’s granularity might be either on the
dimension’s primary key or a different column.

In the example in “Budget” on page 60, the fact table (Budget) is not on the same
level of granularity as the product table but that of the the product’s product group.
The bridge table must be on the same level of granularity as the product group in this
case. This table is then “inserted” into the data model between the dimension table
and the fact table which has the coarser granularity.2

Creating a bridge table involves the same steps as normalizing tables and creating
dimension tables. There are a few differences, though:

• You need to create a distinct list of the common values (e.g., the product group’s
name) from both the fact table (Budget) and the dimension table (Product).

• You keep all tables: the base fact table, the base dimension table, and the resulting
bridge table.
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“Normalizing” on page 258 provides a detailed description of the necessary steps to
normalize a table. Here, I describe the necessary steps to create the bridge table
between the Budget and the Product tables of my example.

First, I referenced query Budget (by right-clicking the query Budget in the query list
and selecting Reference) as shown in Figure 15-12 and renamed it to Budget Product
Group (PQ).

Figure 15-12. Referencing the Budget table

Right-click the newly created query and make sure to disable the “Enable load”
option (Figure 15-13). This query will only be an intermediate query, which
shouldn’t be loaded into the data model.
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Figure 15-13. Disabling the load for Budget Product Group (PQ)

Then, right-click column Product Group and choose Remove Other Columns to only
keep this column, as shown in Figure 15-14.

The code of these steps looks like the following:

let
    Source = Budget,
    #"Removed Other Columns" = Table.SelectColumns(Source,{"Product Group"})
in
    #"Removed Other Columns"

Next, create the query for the bridge table and load it into the data model. The first
steps are similar to the steps for creating the Product Group query: reference query
Product (by right-clicking the query Product in the query list and selecting Refer‐
ence) and rename it Product Group (PQ). Then, right-click the column Product
Group and choose “Remove other columns” to keep only this column.

There are two additional steps: Choosing “Append queries” from the Home ribbon
and selecting the intermediate query from the Budget Product Group (PQ) steps,
appending it to the current one (Figure 15-15).
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Figure 15-14. Removing columns other than Product Group

Figure 15-15. Appending query Budget Product Group (PQ) to query Product Group
(PQ)
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Then, right-click the column header and choose Remove Duplicates (Figure 15-16).
This will give you a distinct list of product groups, derived from the Product and
Budget tables.

Figure 15-16. Removing duplicate product groups from the query

The code of these steps looks like this:

let
    Source = Product,
    #"Removed Other Columns" = Table.SelectColumns(Source,{"Product Group"}),
    #"Appended Query" = Table.Combine({#"Removed Other Columns",
    #"Budget Product Group (PQ)"}),
    #"Removed Duplicates" = Table.Distinct(#"Appended Query")
in
    #"Removed Duplicates"

The final result looks like Table 15-4.

Table 15-4. A distinct list of product groups

Product Group
Group 1

Group 2

Group 3
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3 The file used for the examples in this section is Multilanguage.pbix.

In the next section, I share the steps necessary to implement my concept of a multi-
language model in Power Query.

Multi-Language Model
This section concentrates on the TextComponent table described in “Multi-Language
Model” on page 139, which contains all the descriptive text for a report (headlines,
buttons, etc.). I show how to solve two challenges with the help of Power Query:

• Translating text into different languages
• Pivoting the table to get one column per text prompt and one row per language

Imagine you need to create a report for different languages—including some lan‐
guages that you don’t understand yourself. Of course, you could hire a translator to
do that job. But this chapter is about Power Query, so let’s see how you can use Azure
Cognitive Services to translate texts for you.3

Azure Cognitive Services offer several services, including a translations API, which
you can call in a step in Power Query. You send text to the API and tell it which lan‐
guage you need. The service will return the text in the chosen language. At the time of
writing, the API supports translations from and to over one hundred languages,
including Klingon. (Now you know the secret of how I translated the description
fields for the sample dimensions into Klingon.)

Before you can start with the API, you need an Azure account with Translator in
your subscription. (If you just want to play around with this feature, a free Azure
account will be sufficient.) After you create the Translator service in your subscrip‐
tion, you’ll receive an API key.

Treat this key as carefully as you treat your passwords. Everybody
who knows this key will be able to use the services at your cost.
That’s why I made sure to not expose the full key in the screenshots
shown in this section. If you think the key has been leaked, then
you should immediately change the key in the service (and at every
place where you use the key to connect to the API).

Powers Query’s UI doesn’t have a button to connect to the Translator API. (Some
Cognitive Services are exposed via the AI Insights ribbon. You need a premium sub‐
scription to use them. Translator API isn’t part of the AI Insights offering at the time
of writing.) It makes sense to encapsulate the steps to call the API in a Power Query
function. Fortunately, the M code isn’t too heavy:
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(text, language) =>
let
    body =  "[{""Text"":""" & text & """}]",
    jsonContent = Text.ToBinary(body, TextEncoding.Ascii),
    //language = if isempty(language) then "en" else language,
    source= Web.Contents(
        "https://api.cognitive.microsofttranslator.com/translate?api-version=
          3.0&to=" & language,
        [
        Headers=
        [#"Ocp-Apim-Subscription-Key" = apikey_Translation,
        #"Content-Type"="application/json",
        #"Accept"="application/json"],
        Content=jsonContent
        ]
    ),
    json = Json.Document(source),
    json1 = json{0},
    translations = json1[translations],
    translations1 = translations{0}
in
    translations1

The function has two parameters: the text (which should be translated) and the
language (into which the text should be translated). It then embeds the text into a
string, representing the body for the API call. The body is converted into a binary for‐
mat (Text.ToBinary). The call to the API is done via the function Web.Contents. The
language parameter is appended to the API’s URL. Inside the Headers, the Power
Query parameter apikey_Translation is referenced (this is the Power Query param‐
eter where you should paste the API key from the the Translator service). The result
is stored in the step source, which is then treated as a JSON document, from the first
row ({0}) in which the column [translations] is referenced, and again from the
first row returned.

Before you can set this function into action, you need to do a cross join between the
Textcomponent table and the Language table. “Multi-Language Model” on page 313
covers how to cross join in Power Query: add a new column that references the
Language table, then expand the Language ID:

#"Added Language" = Table.AddColumn(#"Changed Type", "Custom", each Language),
#"Expanded Language" = Table.ExpandTableColumn(#"Added Language", "Custom",
  {"Language ID"}, {"Destination Language ID"}),

My example texts are available only in English. The cross join will duplicate the exist‐
ing English text prompts per language available in the Language table. Before calling
the Translate API function, add a check: you want to call the API only if the lan‐
guage is not English. If the language is English, add an empty record instead ([]),
which avoids calling the API for nothing (and saves money, as you pay per call).
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4 The examples in this section use the KeyValue.pbix file.

Expanding the new column will contain the translations for all languages, except for
English, which will be empty.

In the step Replace empty translations, add a Custom column containing either
the translated text or the original English text. This column is later renamed Display
Text:

#"Translate API" = Table.AddColumn(#"Expanded Language", "Translate API",
  each if [Language ID]=[Destination Language ID] then []
  else #"Translate API"([DisplayText], [Destination Language ID])),
#"Expanded Translate API" = Table.ExpandRecordColumn(#"Translate API",
  "Translate API", {"text"}, {"DisplayText translated"}),
#"Replace empty translations" = Table.AddColumn(#"Expanded Translate API",
  "Custom", each if [DisplayText translated] = null then [DisplayText]
  else [DisplayText translated]),

Now you should have a table with three columns: a technical identifier (Text
component), a Language ID, and the DisplayText. Pivot this result on the Textcompo
nent column, providing DisplayText as the Values Column and Minimum as the
Aggregate Value Function (hidden under the “Advanced options” in the dialog
window).

Voilá, you now have a table with one row per language and one column per text
prompt. When a language is selected the column will only show one value. Don’t for‐
get to create an active relationship between this table and the Language table in the
data model. The cardinality of this relationship will be one-to-one (as the newly cre‐
ated table only contains one column per language).

Of course, you can also easily create bridge tables for all dimension tables with Power
Query, as laid out in Table 11-3. Power Query also has nice capabilities to dynami‐
cally pivot a key-value pair table, as you will learn in the next section.

Key-Value Pair Tables
In some situations, you will face a table structured like Table 15-5.4

Table 15-5. A table containing key-value pairs of rows

ID Key Value Type
1 name Bill text

1 city Seattle text

1 revenue 20000 integer

1 firstPurchase 1980-01-01 date

Key-Value Pair Tables | 315

https://oreil.ly/KeyValuepbix


ID Key Value Type
2 name Jeff text

2 city Seattle text

2 revenue 19000 integer

2 firstPurchase 2000-01-01 date

3 name Markus text

3 city Alkoven text

3 revenue 5 integer

3 firstPurchase 2021-01-01 date

But you may want (or need) to transform a key-value pair table so you end up with
one column per key (instead of one row per key), as shown in Table 15-6.

Table 15-6. The key-value pairs table pivoted on the key column

ID name city revenue firstPurchase
1 Bill Seattle 20,000 1980-01-01

2 Jeff Seattle 19,000 2000-01-01

3 Markus Alkoven 5 2021-01-01

In this section, I present three solutions to the same problem; each solution is build‐
ing upon the previous one to make it more resilient to sudden changes in the content
of the key-value pair table. Such changes should be expected; the point of such a table
is to store data in a flexible fashion. Here are the three ways to get the result of having
one column per key with a key-value pair table:

• Using the GUI (over and over again)
• Using M code (and not touching the query again)
• Writing an M function (which can find the data type itself)

Using the GUI
Let’s walk through the steps to pivot a table in the GUI.

First, remove column Type because its content isn’t needed in the final result, and
keeping it would lead to an unwanted result in the next step (Figure 15-17).
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Figure 15-17. Removing the Type column

Then, you need to select the header of column Key and select Transform → Pivot
Column from the ribbon (Figure 15-18).

Figure 15-18. Pivoting the Key column
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In the dialog box that appears, choose the Value column for Values Column (easy to
remember, right?).

It’s very important to expand the “Advanced options” and select either Maximum or
Minimum as the Aggregate Value Function. This is necessary to have only one value
per key. Whether you choose the alphabetically last or first value is of lesser impor‐
tance. In theory, there should be only one value per Key (and ID), but you still need to
tell Power Query what to do if the table contains more than one value for a combina‐
tion of ID and Key (Figure 15-19).

Figure 15-19. Pivoting the Key column

If you choose Don’t Aggregate as the Aggregate Value Function,
it’ll work only as long as there is only one value per key. If you
duplicate one of the entries in the example, you’ll receive an error:
“Expression.Error: There weren’t enough elements in the enumera‐
tion to complete the operation.” I find the message rather confus‐
ing, but you can easily fix it by making sure to choose either
Maximum or Minimum as the Aggregate Value Function.

The steps so far create the following script:

let
    Source = Source,
    #"Removed Columns" = Table.RemoveColumns(Source,{"Type"}),
    #"Changed Type" = Table.TransformColumnTypes(#"Removed Columns",
      {{"ID", Int64.Type}, {"Key", type text}, {"Value", type text}}),
    #"Pivoted Column" = Table.Pivot(#"Changed Type",
      List.Distinct(#"Changed Type"[Key]), "Key", "Value", List.Min),
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All the newly created columns are now of data type text, because their data type is
inherited from column Value, which was of data type text. And column Value is of
data type text because that’s the common denominator to store information of any
data type. Therefore, as a last step, scroll through all the columns and decide whether
this column is indeed of data type text or if you need to change it accordingly. Here
is the corresponding code example:

#"Changed Type2" = Table.TransformColumnTypes(#"Pivoted Column",
  {{"revenue", Int64.Type}, {"firstPurchase", type date}, {"ID", Int64.Type}})

As a one-time effort, this would be OK. But remember, people decides to create a
key-value pair table by hand because schema changes (adding new rows with new
keys) are very easy.

When I face such a table, I assume that I have to regularly check the Change Type
step and reset the data type for columns where I’d assumed the wrong data type, and
set the correct type for new columns as well.

Using M Code
Wouldn’t it be better if the key-value pair table contained a hint about the data type
of a key? Then you’d be able to use this information to let Power Query set the cor‐
rect data type automatically. Guess what: that’s what the column Type is about!

Many key-value pair tables contain such a column (because the creator of the table
also needs a way to track the true data type; e.g., to show a date picker in the UI for a
column of data type Date). It’s important that you get a list of all possible values for
the Type column. You can create a distinct list of the column, but you never can be
totally sure that it will be complete. Therefore, you need to talk to the owner of the
table for an explanation of what values to expect and how to interpret them. For
example, in one of my projects, “1” means “text” and “2” means “decimal number.”
In the example file, I use values that match the Power Query data types 1:1.

In this improved version, I replace the step Changed Type2 with a step that groups
over the Key column and finds the minimal Type. In theory, there’ll be only one type
per key. Practically, the table contains several rows per key and could therefore con‐
tain—by mistake—different types. In such a scenario, I’d pick the alphabetical first
type assigned to the key:

#"Column Types" = Table.Group(Source, {"Key"}, {{"Type", each List.Min([Type]),
  type nullable text}}),

The result of this step is not used in the next step but is referred to several times over
the course of the remaining script.

Next, I create blocks of four steps each per data type. There is one block per data type
available in Power Query: Text, Int64.Type, Number, Currency, Percentage, Date/
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Time, Date, Time, Date/Time/Timezone, Duration, Logical, and Binary. Each of the
blocks contains these four steps:

<Datatype> Rows
Selects all rows from step Column Types whose data type should be changed to
<Datatype>. The condition puts a filter on column Type according to what the
documentation for the key-value pair table tells you. If a type of “1” means it’s a
string, then you have to set the condition for step Text Rows to filter where Type
equals 1. Remember that Power Query is case sensitive. A check for equality to
“text” (with a lowercase t) will not find rows that contains “Text” (with an upper‐
case T).

<Datatype> Rows Keys
Removes all columns from the previous step, except for the column Key.

<Datatype> Column List
Converts the content of the previous step into a List.

<Datatype> Changed Type
Sets the appropriate data type. A nested Table.TransformColumnTypes and
List.Transform allows you to change the data type for a list of column names.
This list is not hardcoded but references the list generated in the previous step.

I included the block for integers here:

#"Int64.Type Rows" = Table.SelectRows(#"Column Types", each ([Type] =
  "Int64.Type")),
#"Int64.Type Rows Keys" = Table.SelectColumns(#"Int64.Type Rows",{"Key"}),
#"Int64.Type Column List" = #"Int64.Type Rows Keys"[Key],
#"Int64.Type Changed Type" = Table.TransformColumnTypes ( #"Text Changed Type",
  List.Transform(#"Int64.Type Column List", each {_, Int64.Type})),

You can take this script and re-use it. The only thing you need to take care of are the
<Datatype> Rows steps—remember to update the filter condition according to the
content of the Type column.

Writing an M Function
To make everything even easier to use and maintain, I built an even more dynamic
solution based on the work of Imke Feldmann and Daniil Maslyuk. First, the match‐
ing between the data types mentioned in the key-value pair table and the actual
Power Query data types is done via a table. Second, if the type can’t be found in this
matching table, the solution finds a fitting data type itself. Third, everything is pack‐
aged into a bunch of functions so that you only need to call a function.

Table SourceType2PowerQueryType contains one row per Type delivered from the
data source and matches it with the appropriate data type in Power Query. For this
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example, use the Enter Data feature to create the pairs (Figure 15-20). In the last step
(TypeFromText), call Power Query function TypeFromText to convert the text in col‐
umn PowerQueryType into a Power Query data type. This will later allow you to con‐
vert a Value column into the appropriate data type.

Figure 15-20. A table containing the mapping between the source
table’s Type and the matching Power Query data type

Power Query function TypeFromText takes a text prompt as a parameter and converts
it into a Power Query type. It’s used in Power Query SourceType2PowerQueryType:

let
    /* Based on a script from Imke Feldmann/Daniil Maslyuk
     * https://www.thebiccountant.com/2019/11/17/
       dynamically-create-types-from-text-with-type-fromtext/#comment-1507
     */
    func = (TypeAsText as text) =>
    Record.Field(
    [
        type null = type null,
        type number = type number,
        Currency.Type = Currency.Type,
        Percentage.Type = Percentage.Type,
        Int64.Type = Int64.Type,
        type datetime = type datetime,
        type date = type date,
        type time = type time,
        type datetimezone = type datetimezone,
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        type duration = type duration,
        type text = type text,
        type logical = type logical,
        type binary = type binary,
        type type = type type,
        type list = type list,
        type record = type record,
        type table = type table,
        type function = type function,
        type anynonnull = type anynonnull
    ],
    TypeAsText)
in
Value.ReplaceType(func, Value.ReplaceMetadata(Value.Type(func),
  documentation))

Function TypeFromAny accepts parameters TableName (the name of a Power Query
result to process), Key for the name of the key column of the mentioned table, Value
for the value column, and Type for the type column. The function first converts all
the values explicitly to data type Any (Changed to Any). Then it removes the Type
column (Remove Type) and pivots the result (Pivoted Column), like the other two
solutions for the key-value pair problem, presented in the two previous sections.

Next comes the secret sauce of my solution: in step Added Custom I try (and catch)
to convert the values of a Key into different data types. First, try logical. If it fails, try
datetime; if that fails, try currency; and as a final fail-safe, assign data type text.
This solution isn’t perfect (e.g., a conversion to date, time, or datetime will succeed
for any Date/Time-related data and will, therefore, not be distinguished). In this case,
choose datetime because it can host a date and time as well. A similar thing is true
for numbers: any number can be successfully converted into a decimal, currency, or
whole number, where I chose currency as the common denominator. The code looks
like the following:

(TableName as table, Key as text, Value as text, Type as text) =>
let
    Source = TableName,
    #"Changed to Any" = Table.TransformColumnTypes(Source,{{Value,
      type any}}),
    #"Remove Type" = Table.RemoveColumns(#"Changed to Any",{Type}),
    #"Pivoted Column" = Table.Pivot(#"Remove Type",
      List.Distinct(#"Removed Columns"[Key]), Key, Value),
    #"Added Custom" = Table.AddColumn(#"Pivoted Column", "Custom", each
        if (try Logical.From(Record.Field(_, Record.Field(_, Key))) catch (r)
          => null) <> null then "logical" else
        if (try DateTime.From(Record.Field(_, Record.Field(_, Key))) catch (r)
          => null) <> null then "datetime" else
        if (try Number.From(Record.Field(_, Record.Field(_, Key))) catch (r)
          => null) <> null then "currency" else
        "text"),
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    Custom = #"Added Custom"{0}[Custom]

in
    Custom

Function TablePivotDynamic with parameter TableName is very useful; the names for
the mandatory columns in this table are IDColumn, KeyColumn, ValueColumn, and
TypeColumn. This is the function that you should call in your solution because it takes
care of all necessary steps to pivot your key-value pair table and gracefully assign the
data types to the key columns.

This code is, again, based on the works of Feldmann and Maslyuk. I incorporated the
call to function TypeFromAny in cases where I couldn’t find a match in the table Sour
ceType2PowerQueryType. It achieves the work of the blocks-per-data-type in the pre‐
vious section’s solution in a dynamic way:

(TableName as table, IDColumn as text, KeyColumn as text,
  ValueColumn as text, TypeColumn as text) =>
let
    Source = TableName,
    #"Removed Type" = Table.RemoveColumns(Source,{TypeColumn}),
    #"Changed to Text" = Table.TransformColumnTypes(#"Removed Type",
      {{IDColumn, Int64.Type}, {KeyColumn, type text}, {ValueColumn,
      type text}}),
    #"Pivoted Column" = Table.Pivot(#"Changed to Text",
      List.Distinct(#"Changed to Text"[Key]), KeyColumn, ValueColumn),

    /*
    inspried by Imke Feldmann
    Dynamic & bulk type transformation in Power Query, Power BI and M
    https://www.thebiccountant.com/2017/01/09/
      dynamic-bulk-type-transformation-in-power-query-power-bi-and-m/
    */

    #"Column Types" = Table.Group(Source, {KeyColumn}, {{TypeColumn,
      each List.Min(Record.Field(_, TypeColumn)), type nullable text}}),
    #"Find missing Type" = Table.AddColumn(#"Column Types", "TypeReplaced",
      each
        if Record.Field(_, TypeColumn) = null or Record.Field(_, TypeColumn)
          = ""
        then TypeFromAny(Source, KeyColumn, ValueColumn, TypeColumn)
        else Record.Field(_, TypeColumn)),
    #"Removed Type 2" = Table.RemoveColumns(#"Find missing Type",{TypeColumn}),
    #"Renamed Type" = Table.RenameColumns(#"Removed Type 2",
      {{"TypeReplaced", TypeColumn}}),
    #"Changed Type to Text 2" = Table.TransformColumnTypes(#"Renamed Type",
      {{TypeColumn, type text}}),
    #"Lowercased Type" = Table.TransformColumns(#"Changed Type to Text 2",
      {{TypeColumn, Text.Lower, type text}}),
    #"Trimmed Type" = Table.TransformColumns(#"Lowercased Type",
      {{KeyColumn, Text.Trim, type text}}),
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    #"Merged Queries" = Table.NestedJoin(#"Trimmed Type", {TypeColumn},
      SourceType2PowerQueryType, {"SourceType"}, "SourceType2PowerQueryType",
      JoinKind.LeftOuter),
    #"Expanded SourceType2PowerQueryType" =
      Table.ExpandTableColumn(#"Merged Queries",
      "SourceType2PowerQueryType", {"PowerQueryType", "DataType"},
      {"PowerQueryType", "DataType"}),
    #"List Key & Type" = List.Zip({#"Expanded SourceType2PowerQueryType"
      [Key], #"Expanded SourceType2PowerQueryType"[DataType]}),
    #"Set Data Type" = Table.TransformColumnTypes ( #"Pivoted Column",
      #"List Key & Type")
in
    #"Set Data Type"

The last section of this chapter is dedicated to the role Power Query plays when it
comes to comparing self-service and enterprise BI.

Combining Self-Service and Enterprise BI
You would only create transformations in Power Query yourself if you’re using
Power BI as a self-service BI tool. In an enterprise BI environment, all the necessary
transformations are already done by data engineers in the end user’s data source: in a
data warehouse layer, an Analysis Services database, a Power BI dataflow, an Power
BI semantic model, etc. When you discover yourself applying steps in Power BI while
you connected to the enterprise data warehouse layer, you should stop and recon‐
sider. Ask yourself why (if?) this transformation is really necessary and why it wasn’t
already done in the data source. If it is necessary, then talk to the owner of the data
source and agree on a solution to add the transformation there. Only add it in Power
Query as a “quick fix”—an intermediate solution if the timeline for implementing the
transformation in the data source is too long. Set a reminder in your calendar to
review the steps in Power Query at a later point to adapt it to use the transformed
data from the data source.

I recommend building a centralized enterprise BI solution over self-service BI when
information is used more than once in your organization. Every time you transform
data, it’s only available for others if they connect to this dataset. Not all datasets (and
the transformations they contain) can be re-used equally well. Transformation made
with Power Query are available in the Power BI semantic model if published to the
Power BI service. Users with access to it can connect via Power BI Desktop or Excel.
Your mileage with other tools may vary, as other tools (or users) might prefer a rela‐
tional database.

To satisfy requirements from a broader range of tools (and users), it’s a good idea to
apply all transformations in a relational data warehouse as a common denominator
from which you load the data (without any additional transformations) into a Power
BI semantic or Analysis Services tabular model.
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Key Takeaways
This chapter presented solutions to practical use cases. It demonstrated that you can
take some extra steps in Power Query (mostly by using the power of the M language)
to create a dynamic and resilient solution, which doesn’t break (so easily) with
changes in the data source. Here are some of the key takeaways:

• You can create a bin table as either a distinct list of the facts or by generating a
list of values in Power Query. A table containing simply the ranges can be created
via the M language’s table operator. In both cases, the bin’s borders should be
provided in Power Query parameters for easy maintenance.

• Just apply the concept of denormalizing to create a bridge table in case a fact
table doesn’t have the same granularity as the dimension table.

• The Textcomponent needs to be pivoted for easy usage in the report. This can be
done as a simple transformation step.

• You can use Azure Cognitive Services to translate the Textcomponent table.
• A key-value pair table needs to be pivoted in most cases so that common reports

can be built on top of it. This isn’t a real challenge in Power Query and can be
solved with the UI. It’s very important to set the right data type per key, though. I
showed you a script that uses the Type column’s information to automatically
apply the data type, and another script that can even find a fitting data type per
Key automatically.

• Power Query is the go-to tool to apply transformations in a self-service BI sce‐
nario. In an enterprise BI setting, consider moving transformations into the data
warehouse layer (and just load the tables, then, 1:1 into Power BI without further
transformations).

This was the third of four chapters about Power Query. In the next chapter, you will
learn how to support the performance tuning concepts discussed in Chapter 8 in
Power Query.
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CHAPTER 16

Performance Tuning the
Data Model with Power Query

In this chapter, you will learn how to improve the performance of a data model with
different strategies in Power Query. You will learn that Power Query is not available
in all storage modes; the choice of storage mode is therefore important. Depending on
the storage mode, partitioning can tremendously speed up refresh and/or query time.
I will show you how you can support your partitioning strategy in Power Query.

Finally, this chapter talks about another strategy to improve query time: how to pre-
aggregate the content of a table. Remember, aggregation tables are tables with a dif‐
ferent granularity than the base (transaction) table. This can speed up calculations.
For example, you can create a table that aggregates calculations by day. Then the
value for a year does not need to be calculated based on millions of rows but based on
only 365 pre-aggregated values. You can use the Performance Tuning.pbix file to fol‐
low along with the examples in this chapter.

Storage Mode
The aggregation table implemented with Power Query can be in any of the available
storage modes (Import, DirectQuery, or Dual), except for live connection, which pro‐
hibits the use of Power Query at all. That means that the aggregation table does not
necessarily need be imported into the data model but can be “virtualized” in Direct‐
Query mode. This is feasible if you need not only to keep the transaction table in
DirectQuery mode (see Chapter 8 for a refresh on when using DirectQuery makes
sense) but the aggregation table as well.
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In a perfect world, Power Query’s feature query folding will help to apply aggrega‐
tions directly to the query sent to the data source so that no explicit aggregation table
should be necessary. If query folding doesn’t happen, the whole content of the Source
step in Power Query is transferred from the data source, and then all transformations
listed in “Applied steps” are executed locally on your machine. This isn’t very effi‐
cient, especially when you work with a “smart” data source, like a database system,
which could apply transformations on the server’s side. In real-world scenarios,
query folding might generate a less-than-optimal query, though. Then, an aggrega‐
tion table created in Power Query can be of help.

Chapter 20 shows how you can create an aggregation table in a
relational database. In combination with DirectQuery, this might
be the better solution than Power Query. I would use Power Query
in combination with DirectQuery for aggregation tables only if
adding a database object to the data source is not an option.

At the time of writing, Power BI’s “Manage aggregation” feature can be applied only
to a base table that’s in DirectQuery mode. The aggregation table must be in Import
mode. Chapter 12 shows that you can manage which aggregation to use in DAX too.
Therefore, any combination of storage modes (except for live connection) can be
made for the base table and “its” aggregation table(s).

Independent from the storage mode, a table contains one or more partitions—sub‐
parts which can be managed and refreshed independently from each other.

Partitioning
By default, every refresh in Power BI triggers a full load of the table. To implement a
delta load, you need either to partition your table in Power BI (usually by date; see
“Partitioning” on page 160) and implement a logic to only refresh those partitions
where you expect that changes have happened.

Natively, Power BI Desktop doesn’t allow you to specify these partitions. And even
with external tools, you can’t specify partitions in your Power BI Desktop file.
Instead, you need to publish your .pbix file to the Power BI service first. At the time
of writing, you need a workspace with premium capabilities in order to create parti‐
tions (as read/write access to the XMLA endpoint is needed). Then you need an
external tool, like Tabular Editor, to define the partitions.

Custom partitions give you great flexibility in creating the definitions and great con‐
trol over when to trigger a refresh for a particular partition. Think of a partition as a
sub-element of a table. Indeed, when you don’t explicitly partition a table, it consists
of one single partition. Every partition has its “own” copy of the Power Query/M
script to refresh it, with the exception that at least one filter is different.
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Ensure that filters are written (and tested!) in a way that no row of
the table gets lost (because then you’d load too few rows from the
source) or can be part of more than one partition (because then
you’d load this row into multiple partitions of the same table). Both
would falsify the table’s content and must be avoided in all circum‐
stances. You are responsible, totally on your own, for the partitions
and their filters—I’m not aware of any tool that will check the par‐
titions for the mentioned mistakes for you.

Alternatively, you can use a feature of the Power BI service called incremental refresh.
Every time a refresh is triggered, the Power BI service will take care to refresh (only)
the necessary partitions. To use this feature, you need to create two mandatory Power
Query parameters of data type Date/Time. The names of these two parameters are
RangeStart and RangeEnd.

You need to create filters with the help of these two parameters in all queries that you
intend to refresh incrementally. For example, you would add a filter to a query and
specify that the OrderDate column must be equal to or after the RangeStart’s value
and before the RangeEnd’s value. After that, you can activate the incremental refresh
settings in Power BI’s Model view under the table’s properties.

No matter how you define partitions in Power BI, make sure to
align the partitions with the partition strategy in the data source. If
the data source has different or no partitions, the danger is that a
refresh for each partition in Power BI will trigger a full scan of the
whole table in the data source. This will make the overall refresh of
the data model slower than no Power BI partitions—the opposite of
what you want to achieve with partitioning.

Partitioning makes the refresh faster—when the filters of a query match the partition
key, it can also make a query faster. However, a query becomes even faster when it is
built on top of pre-aggregated data.

Pre-Aggregating
Pre-aggregating means that you create a Power Query that applies grouping on some
of the columns of the Power Query and applies aggregation functions on others. You
can achieve this via Home → Group By in the Power Query window. The Basic mode
of the dialog window (Figure 16-1) allows you to specify one column to group on and
have one column created based on an aggregation Operation. You can give this col‐
umn a name of your choice (“New column name”).
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Figure 16-1. Grouping by OrderDate and aggregating the Sales Amount

You can apply any of the following operations:

• Sum
• Average
• Median
• Min

• Max
• Count Rows
• Count Distinct Rows
• All Rows

For the majority of operators, you need to specify a column on which the aggrega‐
tions will be applied (e.g., the content of which column you want to sum up). The
latter three operators don’t allow you to specify a column, but they are calculated
over all columns, counting all the rows (Count Rows), counting all the rows with a
unique combination of values (Count Distinct Rows), or collapsing everything into a
column of type Table (All Rows).

In Advanced mode, you can add several columns on which you want the resulting
query to be grouped by, and add more aggregations. In Figure 16-2, I keep the aggre‐
gation to a single column (OrderDate) but add two aggregations: one Sum of the
SalesAmount, which I name SalesAmount, and another named SalesCount, which
just counts the rows per OrderDate.

The result is a query with three rows: OrderDate, SalesAmount, and SalesCount,
which has one single row per OrderDate. If there is no filter applied, or only Order
Date is filtered, visuals based on this aggregated query will be way faster compared to
applying the same calculations on the Reseller Sales table.
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Figure 16-2. Grouping by OrderDate, aggregating the SalesAmount, and calculating the
number of rows

“Pre-Aggregating” on page 166 describes how you can make Power
BI aware of the available aggregations. If the logic is more complex,
see “Pre-Aggregating” on page 235 for more on how to change
your measures in order to calculate in the most optimal way.

Key Takeaways
This chapter showed steps in Power Query that can support the performance tuning
strategy for your data model. Here are the key takeaways:

• Tables created in Power Query can be in either import, DirectQuery, or Dual
storage mode. Therefore, an aggregation table created with Power Query can be
imported (for best performance) or stay in DirectQuery mode (or Dual for that
matter) if you have reasons to do so. Live connections do not allow for any trans‐
formations in Power Query.

• Power BI’s incremental refresh builds on top of two Power Query parameters
and filters you apply to a Power Query. Partitions are then automatically created
for you.
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• You can create your own custom partitions as well. You are fully responsible for
setting the filters so that every row appears in exactly one partition.

• Partitions in Power BI should always be aligned with the partitions in the data
source to gain performance advantages (otherwise the performance can degrade
instead of improving).

• Power Query offers a limited list of aggregation functions you can apply on exist‐
ing columns: sum, average, median, min, max. You can also count all or the dis‐
tinct rows or collapse everything into a column of type Table.

This chapter closes this book’s coverage of Power Query. Part V is dedicated to the
SQL language. You will learn what you can do in a relational data warehouse (layer)
in terms of supporting the perfect data model for Power BI.
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PART V

Data Modeling for Power BI
with the Help of SQL

The part about SQL is especially aimed toward data engineers (usually part of the IT
department) and the dedicated domain expert. SQL stands for “Standard Query Lan‐
guage,” a deceiving name, as every database management system comes with its own
dialect. As this book is about Microsoft Power BI, I will concentrate on Transact-SQL
(T-SQL), which is available for all SQL interfaces in Microsoft’s data platform. This
dialect comes with a procedural extension, which allows to create variables,



implement conditional executions of code or loops. Such a code can be stored in the
form of procedures and functions in a database.

Chapter 17 starts with an introduction to the parts of a data model in a SQL-based
database:

• Tables
• Primary and Foreign Keys
• Relationships
• Combining the content of tables and possible traps

Chapter 18 shows you all steps typically used when building a data warehouse (layer)
from any data source:

• Normalizing and Denormalizing
• Adding calculations
• Transforming flags and indicators into meaningful text
• Creating your own date and time tables
• Duplicating tables in case they play more than one role in a data model
• Implementing slowly changing dimensions of different types
• Flattening parent-child hierarchies

The challenges of the real-world can be manifold. Also in this part, I will show you
how to solve the four introduced in Chapter 3 by demonstrating the power of the
SQL language:

• Binnng
• Multi-fact data models
• Multi-language data models
• Key-Value pair tables

This part concludes with solutions in SQL to support a good performing data model
in Power BI (Chapter 20). On the one hand, you can decide to “virtualize” transfor‐
mations in SQL or persist the data in the right shape in the relational database. On
the other hand, you need to decide if you can import the data provided by SQL into
Power BI or only query it when needed in a Power BI visual.



CHAPTER 17

Understanding a Relational Data Model

Relational databases have existed since 1970 and have introduced a lot of new con‐
cepts: tables, relationships, constraints, normalization, etc. The concept, and its
implementation by various vendors (e.g., SQL Server, Azure SQL DB, or Azure SQL
Managed Instance by Microsoft), is still successful and allows for a variety of use
cases. That’s why you find both application databases (OLTP) and analytical data‐
bases (OLAP) implemented as relational databases.

This chapter guides you on how relational databases are different from Power BI and
Analysis Services tabular. Due to these differences, you will learn that a relational
data warehouse is the perfect addition to your analytical infrastructure in an enter‐
prise environment. I explore techniques, use cases, and how to implement them in a
relational database (managed and updated by SQL) to make the experience in Power
BI and Analysis Services tabular great.

I introduce some basic concepts: that a data model consists of tables, that columns of
a table can have different purposes (key or attribute), and how you can combine
information that is spread out into different tables.

Data Model
A data model implemented in Power BI/Analysis Services tabular and one imple‐
mented in a relational database have many things in common. You store both data
and metadata in it. The data is hosted in tables. Metadata explains how the tables
form the data model. Let’s introduce the basic parts of a relational data model.
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Basic Components
This section introduces you to the basic components of a relational data model:

• Tables
• Relationships
• Primary keys

• Surrogate keys
• Foreign keys

Tables
Tables are the core of a relational database. They’re where the data is stored. A table
is part of a database schema, which is part of a database, which is stored on a database
server. The database schema works well as a security barrier. I put all the content I
want to expose to Power BI into its own schema and give the users and applications
read-only access to (only) this schema. Typically, I name this schema PowerBI,
Reporting, or something similar. [PowerBI].[Sales] would refer the Sales table
within the PowerBI schema.

You have influence over the physical storage of a table by creating a clustered index
on it. As a rule of thumb, all fact tables and dimension tables with a size over one
million rows should be stored in the columnstore format. All other tables should
have clustered indexes on their primary keys and page compression enabled.

To further improve performance for different scenarios, you might create non-
clustered index. As long as you plan to fully load the data from the data warehouse
into the Power BI/Analysis Services data model (which is the recommendation,
unless you have to specific reasons to not do so), and nobody and no application is
directly querying the tables, there is no need to create such additional index.

A table consists of columns. The columns can store data of different types. When
working in SQL Server/Azure SQL DB, data can be organized in the following ways:

Exact numerics
Exact numerics include bit, tinyint, smallint, int, bigint, numeric, decimal,
smallmoney, and money types. They can be stored in Power BI’s Whole number,
Fixed decimal number, or Decimal number. A value of SQL’s type bit is usually
stored as True/False in Power BI. smallmoney and money are legacy data types
and should not be used anymore—choose one of the other data types instead.
numeric and decimal are synonyms for each other. You need to provide scale
and precision, e.g., decimal (5,2) can fit values between –999.99 and +999.99—a
precision of up to five digits, of which are two decimals. The default precision is
18; the default scale is 0.
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Approximate numerics
Approximate numerics include float and real and can be stored in Power BI’s
Decimal number. You should avoid these approximate data types altogether, as
they are not exact, and unexpected rounding effects can bite; use one of the exact
numerics instead.

Date and time
Date and time data types include datetime, smalldatetime, datetime2,
datetimeoffset, date, and time. These can be stored in Power BI’s Date/Time,
Date, or Time data type. datetime and smalldatetime are legacy data types you
should not use anymore—use one of the other three data types instead. date
time2, datetimeoffset, and time can have a precision of up to 7 fractions of a
second (100 nanoseconds). This is also the default if you are not providing a
precision.

Character strings
Character strings include char, varchar, text, nchar, nvarchar, and ntext and
can be stored in Power BI’s Text data type. text and ntext are legacy data types
and should not be used anymore; they should be replaced by varchar(max) or
nvarchar(max), respectively.

For all text columns, you need to specify a size (otherwise it defaults to 1). The
maximum is 8,000 bytes. When the string size might exceed 8,000 bytes, use
“max” as the precision. The character string data types with a preceding n (nchar
and nvarchar) are stored in the Unicode format. One character occupies two
bytes; you can only fit half of the characters per byte compared to the ordinary
character string data types.

Binary strings
Binary strings include binary, image, and varbinary. They can be stored in
Power BI’s Binary data type, but it’s better to remove a column of this data type
before loading into Power BI, as its not supported.

Other data types
Other data types include cursor, hierarchyid, sql_variant, spatial geometry,
and geography types, table, rowversion, uniqueidentifier, and xml. These are
not supported in Power BI. You need to extract the necessary information into
one of the supported data types, before importing into Power BI (e.g., the rele‐
vant parts of the xml, or resolving the hierarchical information from a
hierarchyid column).

The best practice is to not directly expose the tables of a data warehouse but its views
instead. Simply put, views are stored SELECT statements, which expose the content of
one or more tables. From the outside perspective, queries against tables and queries
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against views can’t be distinguished from each other. The only disadvantage is that
you can’t create foreign key constraints on views. Therefore, Power BI (or Analysis
Services tabular) can’t create filter relationships based on this information (but needs
to apply other rules to discover them for you, if you want to do so). The advantage is
that the views work as an additional layer between the physical relational data model
and Power BI. If there are changes to the physical relational data model, the views can
be changed accordingly so that they still return the same content. This eases the roll‐
out of changes because Power BI (or any other tool that uses the relational database
as a data source) doesn’t have to change how it accesses the information.

I consider views to be equivalent to an API. If I really need to implement (breaking)
changes, I create a new database schema and create the new set of views there. This
gives all report creators a grace period to migrate their reports to the new schema/
data model before I turn off the “old” schema.

Alternatively, you could also expose data in the form of a stored procedure or a table-
valued function. Stored procedures are called via the EXEC keyword. Table-valued
functions are called as part of a query (either in the FROM or the JOIN part). Both can
be useful in edge cases, as you can provide parameters to a stored procedure or a
function, making for perhaps more efficient code inside the procedure or function. I
prefer not to use them because they mean writing (a small piece) of SQL as the data
source in Power BI, which needs to be maintained or may include some logic. I think
I’m better off with “ordinary” views and tables to which I can simply connect in
Power BI/Power Query.

Relationships
Queries in SQL do not depend on any up-front definition of a relationship. You must
define the necessary relationship via the JOIN operator in each and every query. This
gives you the freedom to apply any JOIN as you need it in the specific query (includ‐
ing non-equi-joins).

You can define foreign key constraints (we’ll talk about them later in this chapter).
But they give only suggestions to the query author and do not limit the kind of quer‐
ies you can write. With foreign key constraints given, you must still define the (kind
of) joins in each and every query.

Primary Keys
Primary keys can be explicitly defined as a constraint on a table (PRIMARY KEY). This
constraint is a combination of a UNIQUE constraint and a CHECK constraint under the
hood of the database system. The UNIQUE constraint will limit the content of the col‐
umn to only unique values (prohibiting duplicates from being created via INSERT or
UPDATE). And a check constraint to disallow NULL values for the column is created on
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top (NOT NULL). This is strongly recommended, so that you can discover data quality
issues right away, as soon as the table is manipulated.

Here’s the definition of the product’s table primary key:

ALTER TABLE [dbo].[DimProduct]
ADD CONSTRAINT [PK_DimProduct_ProductKey] PRIMARY KEY CLUSTERED
(
        [ProductKey] ASC
) ON [PRIMARY]

In a data warehouse, the primary key should be a surrogate key (read on to learn how
you create a surrogate key in a SQL database). Additionally, you should create a
unique constraint/unique index on the business key of a table. This will speed up
queries that filter on the business key (as it will be necessary to look up the primary
key for a business key in a dimension table during the ETL process).

Surrogate Keys
In “Surrogate Keys” on page 8, I emphasize that having a single integer surrogate key
as the primary key of a table is best practice. In Azure SQL, you can define a surro‐
gate key quite easily by using the keyword IDENTITY(1, 1) for the primary key col‐
umn when you create a table. This lets the database automatically maintain unique
numbers for your primary key. The first parameter in the keyword means that the
first row will get “1” as the content, and the second parameter means all the subse‐
quent rows will get a number that is 1 higher than the previous one. (To be honest, I
don’t see any reason to start at a number other than 1 or to let the database intention‐
ally generate key numbers with gaps; so “1,1” is simply best practice.)

Due to performance optimization, there could be gaps in the numbers (e.g., that after
number 2 the next number is not 3, but 4 or 5). But this isn’t that big of an issue
because the surrogate key is meaningless by itself and should therefore not be used in
any filter or grouping. A signed integer can hold values up to 2 billion—this is usually
sufficient for most of the dimension tables, even if there are gaps in the surrogate key.
If you can foresee that a table will contain more than 2 billion rows, you should create
the primary key as a BIGINT, which holds numbers up to 263 (which is over 9 quintil‐
lion, a number with 19 digits).

The following example shows how to create a Product table in schema form in
PowerBI with a PRIMARY KEY called ProductID of type INT with the aforementioned
IDENTITY definition:

CREATE TABLE PowerBI.Product (
   ProductID    INT IDENTITY(1, 1) PRIMARY KEY,
   Product      NVARCHAR(50),
   Subcategory  NVARCHAR(50),
   Category     NVARCHAR(50)
)
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Foreign Keys
A foreign key references the primary key of another table—the foreign key is a pri‐
mary key of a different table. If you create a foreign key constraint, it will guarantee
that the foreign key will always match a row in the table containing the referenced
primary key. You won’t be able to change the foreign key column to a value that can’t
be found as the primary key in the referenced table. And it will prohibit you from
deleting a row in the table containing the primary, which is currently referenced as a
foreign key. This is strongly recommended to discover data quality issues as soon as
the tables are manipulated.

Creating foreign key constraints is the only way to fully guarantee that there is refer‐
ential integrity between the tables. Together with disabled nullability, it will allow for
inner joins (instead of outer joins), which are faster.

You can add a foreign key constraint to an existing table—DimProduct in this exam‐
ple. The constraint’s name (FK_DimProduct_DimProductSubcategory) is mentioned
directly after keywords ADD CONSTRAINT. After the keywords FOREIGN KEY, you need
to mention the referencing column in parentheses (ProductSubcategoryKey). The
referenced table and column in parentheses ([dbo].[DimProductSubcategory]
([ProductSubcategoryKey])) follow the REFERENCES keyword:

ALTER TABLE [dbo].[DimProduct]  WITH CHECK
ADD CONSTRAINT [FK_DimProduct_DimProductSubcategory]
FOREIGN KEY([ProductSubcategoryKey])
REFERENCES [dbo].[DimProductSubcategory] ([ProductSubcategoryKey])
GO

Alternatively, you can create the foreign key constraint during the CREATE TABLE
statement, as shown in the following code:

CREATE TABLE [dbo].[DimProduct](
        [ProductKey] [int] IDENTITY(1,1) NOT NULL,
        [ProductAlternateKey] [nvarchar](25) NULL,
        [ProductSubcategoryKey] [int] NULL REFERENCES [dbo].
        [DimProductSubcategory] ([ProductSubcategoryKey])
,
        ...
);

It’s best practice to use the prefix FK for foreign keys and to give
them a meaningful name. If a constraint is violated during an
insert, update, or delete, the name of the constraint is shown. If the
name already gives you a hint as to what the constraint is about, it’s
easier to find out what violated the constraint.
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I strongly recommend creating the foreign key constraints in the development envi‐
ronment to quickly discover data quality issues in the ETL process that would violate
the constraint. If I need to performance tune the database to the last bits, I keep those
constraints, but disable them in the production environment. This allows tools and
people to recognize the relationships, without slowing down data manipulation lan‐
guage operations (insert, update, and delete); they’ll ignore a disabled constraint.
Here is the code to disable and enable a foreign key constraint:

ALTER TABLE [dbo].[DimProduct]
NOCHECK CONSTRAINT [FK_DimProduct_DimProductSubcategory];

Now that you’ve learned how to create tables and their relationships in the table’s
definition, ler’s talk about combining data that resides in different tables.

Combining Queries
No data model consists of just a single table but always comprises several tables. To
extract the necessary information from a data model, you need to combine tables in
your queries. This can be either done with set operators or with joins. This section
uses the 103 SET and JOINS.sql file for examples.

Set Operators
SQL allows for all three set operators, which “Set Operators” on page 11 discusses.
This section gives examples of all the different set operators (see Tables 17-1 and
17-2). All of them build upon the following two queries:

SELECT SalesTerritoryRegion FROM dbo.DimSalesTerritory

Table 17-1. The 11 rows of the DimSalesTerritory table

SalesTerritoryRegion
Northwest

Northeast

Central

Southwest

Southeast

Canada

France

Germany

Australia

United Kingdom

NA
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SELECT DISTINCT EnglishCountryRegionName FROM dbo.DimGeography

Table 17-2. The 6 rows of the DimGeography table.

EnglishCountryRegionName
Australia

Canada

France

Germany

United Kingdom

United States

For the following subsections, understand that the two queries’ results have both
identical rows (Australia, Canada, France, Germany, and United Kingdom), and
rows that appear only in one of the results. The first query contains Northwest,
Northeast, Central, Southwest, Southeast, and NA exclusively. The second query con‐
tains United States exclusively. I put the rows that are specific for one table in italic. I
will describe the result of the combined queries for each set operator.

UNION

The UNION operator puts the two queries just underneath each other to form one list
of items. If you want to keep duplicates (or if you are sure that there can’t be dupli‐
cates under any circumstances), you can save the database from an (expensive) sort
operation, which would be needed to look for duplicates were you using UNION ALL
instead of UNION. The first query (UNION) only returns 12 rows (see Table 17-3):

-- UNION
SELECT SalesTerritoryRegion FROM dbo.DimSalesTerritory
UNION
SELECT DISTINCT EnglishCountryRegionName FROM dbo.DimGeography

Table 17-3. The resulting 12 rows of the “UNIONed” queries

SalesTerritoryRegion
Australia

Canada

Central

France

Germany

NA

Northeast

Northwest

Southeast
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SalesTerritoryRegion
Southwest

United Kingdom

United States

The five duplicate regions (Australia, Canada, France, Germany, and United King‐
dom) only appear once in the result. The second query (UNION ALL) returns 17 rows
(11 rows from the first query plus 6 rows from the second, showing five rows twice;
see Table 17-4):

-- UNION ALL
SELECT SalesTerritoryRegion FROM dbo.DimSalesTerritory
UNION ALL
SELECT DISTINCT EnglishCountryRegionName FROM dbo.DimGeography

Table 17-4. The 17 rows resulting from the “UNION ALLed” queries

SalesTerritoryRegion
Northwest

Northeast

Central

Southwest

Southeast

Canada

France

Germany

Australia

United Kingdom

NA

Australia

Canada

France

Germany

United Kingdom

United States

INTERSECT
This operator looks for rows that appear in both queries and filters the other rows
out. The rows only appearing in the first (Northwest, Northeast, Central, Southwest,
Southeast, and NA) or in the second query (United States) are not shown in the fol‐
lowing example (see also Table 17-5):
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-- INTERSECT
SELECT SalesTerritoryRegion FROM dbo.DimSalesTerritory
INTERSECT
SELECT DISTINCT EnglishCountryRegionName FROM dbo.DimGeography

Table 17-5. Five rows as the result of the “INTERSECTed” queries

SalesTerritoryRegion
Australia

Canada

France

Germany

United Kingdom

EXCEPT
This operator looks for rows that appear in either or both queries. But it filters these
rows out and only returns rows from the first query result that do not appear in the
result of the second query. Only the “extra” rows from the first query are shown
(Northwest, Northeast, Central, Southwest, Southeast, and NA). The “extra” rows
from the second query are not returned (see also Table 17-6):

-- EXCEPT
SELECT SalesTerritoryRegion FROM dbo.DimSalesTerritory
EXCEPT
SELECT DISTINCT EnglishCountryRegionName FROM dbo.DimGeography

Table 17-6. Five rows as the result of the “EXCEPTed” queries

SalesTerritoryRegion
Central

NA

Northeast

Northwest

Southeast

Southwest

Joins
All joins discussed in “Joins” on page 13 can be implemented in SQL. Again, I built
all examples on the same two tables I used to demonstrate the set operators.

INNER JOIN
For an inner join, you need to specify a join predicate (a Boolean condition to specify
if two rows are related). In the following example (see also Table 17-7), only rows
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with regions (EnglishCountryRegionName and SalesTerritoryRegion) available in
both queries are shown in an INNER JOIN (Australia, Canada, France, Germany, Uni‐
ted Kingdom, and United States). The INNER keyword is optional and does not
change the behavior of the join operation. Whether you specify INNER JOIN or just
JOIN, you will get the exact same result:

-- INNER JOIN
SELECT DISTINCT dst.SalesTerritoryRegion, dg.EnglishCountryRegionName
FROM dbo.DimSalesTerritory dst
INNER JOIN dbo.DimGeography dg ON
  dg.EnglishCountryRegionName = dst.SalesTerritoryRegion

Table 17-7. Five rows as the result of the “INNER JOINed” queries

SalesTerritoryRegion EnglishCountryRegionName
Australia Australia

Canada Canada

France France

Germany Germany

United Kingdom United Kingdom

OUTER JOIN

This operator is available as LEFT, RIGHT, and FULL OUTER JOIN. The OUTER keyword
is optional and does not change the behavior of the join operation. Whether you
specify LEFT OUTER JOIN or only LEFT JOIN doesn’t matter; it will work and return
the exact same result in both cases.

The LEFT OUTER JOIN returns all rows of the first query (see also Table 17-8). For
regions not available in the second query, the EnglishCountryRegionName is NULL:

-- LEFT OUTER JOIN
SELECT DISTINCT dst.SalesTerritoryRegion, dg.EnglishCountryRegionName
FROM dbo.DimSalesTerritory dst
LEFT OUTER JOIN dbo.DimGeography dg ON dg.EnglishCountryRegionName =
  dst.SalesTerritoryRegion

Table 17-8. The 11 rows that result from the “LEFT OUTER JOINed” queries

SalesTerritoryRegion EnglishCountryRegionName
Australia Australia

Canada Canada

Central NULL

France France

Germany Germany

NA NULL
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SalesTerritoryRegion EnglishCountryRegionName
Northeast NULL

Northwest NULL

Southeast NULL

Southwest NULL

United Kingdom United Kingdom

The RIGHT OUTER JOIN returns all rows of the second query. For regions not avail‐
able in the first query, the SalesTerritoryRegion is NULL (see also Table 17-9):

-- RIGHT OUTER JOIN
SELECT DISTINCT dst.SalesTerritoryRegion, dg.EnglishCountryRegionName
FROM dbo.DimSalesTerritory dst
RIGHT OUTER JOIN dbo.DimGeography dg ON dg.EnglishCountryRegionName =
  dst.SalesTerritoryRegion

Table 17-9. Six rows as the result of the “RIGHT OUTER JOINed” queries

SalesTerritoryRegion EnglishCountryRegionName
NULL United States

Australia Australia

Canada Canada

France France

Germany Germany

United Kingdom United Kingdom

The FULL OUTER JOIN returns all rows of both queries, no matter whether or not
there is a matching row in the other table. For regions not available in the other
query, you will get a NULL result (see also Table 17-10):

-- FULL OUTER JOIN
SELECT DISTINCT dst.SalesTerritoryRegion, dg.EnglishCountryRegionName
FROM dbo.DimSalesTerritory dst
FULL OUTER JOIN dbo.DimGeography dg ON dg.EnglishCountryRegionName =
  dst.SalesTerritoryRegion

Table 17-10. The 12 rows that result from the “FULL OUTER JOINed” queries

SalesTerritoryRegion EnglishCountryRegionName
NULL United States

Australia Australia

Canada Canada

Central NULL

France France
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SalesTerritoryRegion EnglishCountryRegionName
Germany Germany

NA NULL

Northeast NULL

Northwest NULL

Southeast NULL

Southwest NULL

United Kingdom United Kingdom

Anti-join
There is no keyword for an anti-join in SQL. You must implement it by combining
an OUTER JOIN with a WHERE clause, which filters only those rows where the join key
on the outer rows are NULL. As this is an outer join, you can write it as left, RIGHT or
FULL ANTI-JOIN. The LEFT ANTI-JOIN returns rows only appearing in the first query
(Northwest, Northeast, Central, Southwest, Southeast, and NA), which means that
the EnglishCountryRegionName is NULL (see also Table 17-11):

-- LEFT ANTI-JOIN
SELECT DISTINCT dst.SalesTerritoryRegion, dg.EnglishCountryRegionName
FROM dbo.DimSalesTerritory dst
LEFT JOIN dbo.DimGeography dg ON dg.EnglishCountryRegionName =
  dst.SalesTerritoryRegion
WHERE dg.EnglishCountryRegionName IS NULL

Table 17-11. Six rows as the result of the LEFT ANTI-JOINed queries

SalesTerritoryRegion EnglishCountryRegionName
Central NULL

NA NULL

Northeast NULL

Northwest NULL

Southeast NULL

Southwest NULL

The right anti-join returns rows only appearing in the second query (United States),
showing NULL for the SalesTerritoryRegion (see also Table 17-12):

-- RIGHT ANTI-JOIN
SELECT DISTINCT dst.SalesTerritoryRegion, dg.EnglishCountryRegionName
FROM dbo.DimSalesTerritory dst
RIGHT JOIN dbo.DimGeography dg ON dg.EnglishCountryRegionName =
  dst.SalesTerritoryRegion
WHERE dst.SalesTerritoryRegion IS NULL
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Table 17-12. One row as the result of the RIGHT ANTI-JOINed queries

SalesTerritoryRegion EnglishCountryRegionName
NULL United States

The FULL ANTI-JOIN returns rows only appearing exclusively in either the first or
second query (Australia, Canada, France, Germany, and United Kingdom versus
United States). Every row shows NULL in either SalesTerritoryRegion or English
CountryRegionName (see also Table 17-13):

-- FULL ANTI-JOIN
SELECT DISTINCT dst.SalesTerritoryRegion, dg.EnglishCountryRegionName
FROM dbo.DimSalesTerritory dst
FULL JOIN dbo.DimGeography dg ON dg.EnglishCountryRegionName =
  dst.SalesTerritoryRegion
WHERE dst.SalesTerritoryRegion IS NULL or dg.EnglishCountryRegionName IS NULL

Table 17-13. Seven rows as the result of the FULL ANTI-JOINed queries.

SalesTerritoryRegion EnglishCountryRegionName
NULL United States

Central NULL

NA NULL

Northeast NULL

Northwest NULL

Southeast NULL

Southwest NULL

CROSS JOIN

A CROSS JOIN returns the so-called Cartesian product, a combination of all rows of
the first query with all rows from the second query (see Table 17-14). This long list
has only certain, narrow use cases.

-- CROSS JOIN
SELECT DISTINCT dst.SalesTerritoryRegion, dg.EnglishCountryRegionName
FROM dbo.DimSalesTerritory dst
CROSS JOIN dbo.DimGeography dg

Table 17-14. Some of the 66 rows as the result of the CROSS JOINed queries

SalesTerritoryRegion EnglishCountryRegionName
Australia Australia

Australia Canada

Australia France

Australia Germany
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SalesTerritoryRegion EnglishCountryRegionName
Australia United Kingdom

Australia United States

… …

United Kingdom Australia

United Kingdom Canada

United Kingdom France

United Kingdom Germany

United Kingdom United Kingdom

United Kingdom United States

SELF JOIN
The following example isn’t based on the two region tables, but on the employee
table. It contains a primary key (EmployeeKey) and a foreign key (ParentEmployee
Key), which refers the primary key of the same table (EmployeeKey). As discussed in
“Joins” on page 13, this allows for implementing a hierarchical structure (like an
organigram). The same table (DimEmployee) appears twice in a query to implement a
self join:

-- SELF JOIN
SELECT employee.EmployeeKey, employee.ParentEmployeeKey, employee.FirstName,
  parent.EmployeeKey, parent.FirstName
FROM dbo.DimEmployee employee
JOIN dbo.DimEmployee parent on parent.EmployeeKey = employee.ParentEmployeeKey

Table 17-15. Examples from the result of the SELF JOINed queries

EmployeeKey ParentEmployeeKey FirstName EmployeeKey FirstName
4 3 Rob 3 Roberto

5 3 Rob 3 Roberto

11 3 Gail 3 Roberto

13 3 Jossef 3 Roberto

162 3 Dylan 3 Roberto

267 3 Ovidiu 3 Roberto

271 3 Michael 3 Roberto

274 3 Sharon 3 Roberto

… … … … …

295 290 Rachel 290 Amy

291 290 Jae 290 Amy

292 290 Ranjit 290 Amy

296 294 Lynn 294 Syed
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EQUI-JOIN
Commonly, you will write most of the joins as equi-joins: you want to find rows
where the primary key of one table matches the foreign key of another table. All of
the previous examples demonstrating the different kinds of the JOIN keyword were
equi-joins, as the condition after the ON keyword contained solely the equal-sign
(“=”). That’s why I don’t list an example here.

NON-EQUI-JOIN
Only in rare use cases will you write non-equi-joins: when finding rows matching a
range of values, for example. The following example only shows combinations of
rows where the region names are not the same. Basically, it looks like the full join, but
with the matching rows (e.g., were both SalesTerritoryRegion and EnglishCountry
RegionName have the same content) not listed. This is more of an educational exam‐
ple (see also Table 17-16). Later, when we talk about binning (in “Binning” on page
399), you will see a more relevant example of an non-equi-join:

SELECT DISTINCT dst.SalesTerritoryRegion, dg.EnglishCountryRegionName
FROM dbo.DimSalesTerritory dst
JOIN dbo.DimGeography dg ON
dg.EnglishCountryRegionName <> dst.SalesTerritoryRegion

Table 17-16. Some of the 61 rows as the result of the “non-equi-join’ed” queries

SalesTerritoryRegion EnglishCountryRegionName
Australia Canada

Australia France

Australia Germany

Australia United Kingdom

Australia United States

… …

United Kingdom Australia

United Kingdom Canada

United Kingdom France

United Kingdom Germany

United Kingdom United States

Natural joins
This type of join is not supported in Microsoft’s SQL dialect. That means that you
must always specify a join predicate (the columns you want to be matched during the
join).

350 | Chapter 17: Understanding a Relational Data Model



Join Path Problems
When you join a row of one table to a row of another table, you can face several
problems, resulting in unwanted query results.

Loop

Between the table FactResellerSales and the table DimDate exists more than one
foreign key constraint. Some users (and unfortunately many reporting tools) will,
therefore, create a combined join predicate, asking for only rows where both the
FactResellerSales’ OrderDateKey and the ShipDateKey are equal to the DimDate’s
DateKey. This leads to an empty query, as in the example (see also Table 17-17) there
was no sale that was ordered and shipped on the exact same day:

SELECT
        SUM(SalesAmount) SalesAmount
FROM
        dbo.FactResellerSales frs
JOIN dbo.DimDate dd ON dd.DateKey = frs.OrderDateKey
AND dd.DateKey = frs.ShipDateKey

Table 17-17. This simple loop leads to an empty query result

SalesAmount
NULL

In SQL, you must explicitly solve this problem by rewriting this query. You need to
join the DimDate table twice. Once with a join predicated on the FactResellerSales’
OrderDateKey, and once more with a join predicated on the the FactResellerSales’
ShipDateKey. In this case, specifying an alias (like od or sd, as in the example) is
mandatory, to distinguish the two references to the same table (DimDate). This is also
called a role-playing dimension, as DimDate plays the role of the order date dimen‐
sion in one join, and the role of the ship date dimension in the other (see also
Table 17-18):

SELECT
        SUM(SalesAmount) SalesAmount
FROM
        dbo.FactResellerSales frs
JOIN dbo.DimDate od ON od.DateKey = frs.OrderDateKey
JOIN dbo.DimDate sd ON sd.DateKey = frs.ShipDateKey

Table 17-18. Joining twice gets you out of the loop dilemma

SalesAmount
80,450,596.9823
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Chasm trap

A join between FactResellerSales and DimDate leads to duplicate rows of the Dim
Date table, as there is more than one row in FactResellerSales per row in DimDate
(remember that the relationship between DimDate and FactResellerSales has a
one-to-many cardinality). This is expected and intended. The exact same thing hap‐
pens if you join FactInternetSales with DimDate.

But when you join all three tables (FactResellerSales, DimDate, and FactInternet
Sales) in the same query, you will get the rows of FactInternetSales duplicated
(per duplicate row in DimDate). But this will also happen in the other direction, as the
relationship between DimDate and FactInternetSales is, again, a one-to-many rela‐
tionship. The result is a very inflated sum of SalesAmount (which results from the
true sales amount being multiplied by the number of rows in the “other” table). Let’s
first query the two fact tables separately (see also Tables 17-19 and 17-20):

SELECT
        dd.DateKey, SUM(frs.SalesAmount) ResellerSalesAmount,
        COUNT(*) ResellerSalesCount
FROM
        dbo.FactResellerSales frs
JOIN dbo.DimDate dd ON dd.DateKey = frs.OrderDateKey
WHERE dd.DateKey=20110101
GROUP BY dd.DateKey

Table 17-19. For January 1 2011, there are 786 reseller sales worth 1,538,508.3122

DateKey ResellerSalesAmount ResellerSalesCount
20110101 1,538,408.3122 785

SELECT
        dd.DateKey, SUM(fis.SalesAmount) InternetSalesAmount,
        COUNT(*) InternetSalesCount
FROM
        dbo.FactInternetSales fis
JOIN dbo.DimDate dd ON dd.DateKey = fis.OrderDateKey
WHERE dd.DateKey=20110101
GROUP BY dd.DateKey

Table 17-20. For January 1 2011, there are 2 internet sales worth 7,156.54

DateKey ResellerSalesAmount ResellerSalesCount
20110101 7,156.54 2

So far so good. However, if you simply combine the two queries and join all three
tables in one query, the results are inflated (see Table 17-21):

SELECT
        dd.DateKey, SUM(frs.SalesAmount) ResellerSalesAmount,

352 | Chapter 17: Understanding a Relational Data Model



          SUM(fis.SalesAmount) InternetSalesAmount
FROM
        dbo.FactResellerSales frs
JOIN dbo.DimDate dd ON dd.DateKey = frs.OrderDateKey
JOIN dbo.FactInternetSales fis ON fis.OrderDateKey = dd.DateKey
WHERE dd.DateKey=20110101
GROUP BY dd.DateKey

Table 17-21. A chasm trap inflates the true values

DateKey ResellerSalesAmount InternetSalesAmount
20110101 3,076,816.6244 5,617,883.90

Both the ResellerSalesAmount and InternetSalesAmount in the last query are
higher than in the first two queries—and the results in the last query are wrong. The
amount of 3,076,816.6244 for the ResellerSalesAmount is double the true amount,
as the true amount was multiplied by the number of rows in the FactInternetSales
table. The shown amount of 5,617,883.90 results from the true amount of 7,156.54
being multiplied by 785 (the number of rows from the FactResellerSales table).

To overcome this problem, you need to make sure that you split the necessary joins
into separate queries. Later, you can then either UNION the two queries (to two rows
per date, one for the FactResellerSales and one for the FactInternetSales) or
JOIN the two query results (on the now unique DateKey) (see Table 17-22). The first
piece of code shows the solution with UNION ALL:

SELECT
        DateKey, SUM(SalesAmount) SalesAmount, SUM(SalesCount) SalesCount
FROM
(
        SELECT
                dd.DateKey, SUM(frs.SalesAmount) SalesAmount, COUNT(*) SalesCount
        FROM
                dbo.FactResellerSales frs
        JOIN dbo.DimDate dd ON dd.DateKey = frs.OrderDateKey
        WHERE dd.DateKey=20110101
        GROUP BY dd.DateKey

        UNION ALL

        SELECT
                dd.DateKey, SUM(fis.SalesAmount) SalesAmount, COUNT(*) SalesCount
        FROM
                dbo.FactInternetSales fis
        JOIN dbo.DimDate dd ON dd.DateKey = fis.OrderDateKey
        WHERE dd.DateKey=20110101
        GROUP BY dd.DateKey
) x
GROUP BY DateKey
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Table 17-22. “UNIONing” the two separate queries overcomes the problem

DateKey SalesAmount SalesCount
20110101 1,545,564.8522 787

Alternatively, you can just join the two queries (see also Table 17-23):

SELECT
        frs.DateKey,
        frs.ResellerSalesAmount + irs.InternetSalesAmount SalesAmount,
        frs.ResellerSalesCount + irs.InternetSalesCount SalesCount
FROM
(
        SELECT
                dd.DateKey, SUM(frs.SalesAmount) ResellerSalesAmount,
                COUNT(*) ResellerSalesCount
        FROM
                dbo.FactResellerSales frs
        JOIN dbo.DimDate dd ON dd.DateKey = frs.OrderDateKey
        WHERE dd.DateKey=20110101
        GROUP BY dd.DateKey
) frs
JOIN
(
        SELECT
                dd.DateKey, SUM(fis.SalesAmount) InternetSalesAmount,
                COUNT(*) InternetSalesCount
        FROM
                dbo.FactInternetSales fis
        JOIN dbo.DimDate dd ON dd.DateKey = fis.OrderDateKey
        WHERE dd.DateKey=20110101
        GROUP BY dd.DateKey
) irs ON irs.DateKey = frs.DateKey

Table 17-23. Joining the two separate queries overcomes the problem

DateKey SalesAmount SalesCount
20110101 1,545,564.8522 787

In my demo system, the execution plans for both versions are slightly different, but
from a query cost perspective, they are identical.

Fan trap

In the following query, the freight cost (stored in in table SalesOrderHeader) “fans
out” to every row of the SalesOrderDetail table. Adding the order’s freight up per
order line does lead to a wrong (too high) amount of freight (as it is the freight times
the number of rows in the SalesOrderDetail table for that order). Let’s look at the
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true values first for the order with SalesOrderID of 43659 (see also Tables 17-24 and
17-25):

SELECT
        soh.SalesOrderID, SUM(soh.Freight) Freight, COUNT(*) HeaderCount
FROM
        Sales.SalesOrderHeader soh
WHERE soh.SalesOrderID = 43659
GROUP BY soh.SalesOrderID

Table 17-24. The total freight costs of an order

SalesOrderID Freight HeaderCount
43659 616,0984 1

SELECT
        soh.SalesOrderID, SUM(sod.OrderQty) OrderQty, COUNT(*) DetailCount
FROM
        Sales.SalesOrderHeader soh
JOIN Sales.SalesOrderDetail sod ON sod.SalesOrderID = soh.SalesOrderID
WHERE soh.SalesOrderID = 43659
GROUP BY soh.SalesOrderID

Table 17-25. The order has 12 line items

SalesOrderID OrderQty DetailCount
43659 26 12

When I combine the two queries naively, I am bitten by the fan trap; the true freight
cost of 616.0984 for the particular order is multiplied by the number of order detail
rows (12), and a wrong freight amount of 7,393.1808 is returned by the query (see
also Table 17-26):

SELECT
        soh.SalesOrderID, SUM(soh.Freight) Freight, SUM(sod.OrderQty) OrderQty
FROM
        Sales.SalesOrderHeader soh
JOIN Sales.SalesOrderDetail sod ON sod.SalesOrderID = soh.SalesOrderID
WHERE soh.SalesOrderID = 43659
GROUP BY soh.SalesOrderID

Table 17-26. The order header rows are “fanned out” over the order detail rows

SalesOrderID Freight OrderQty
43659 7,393.1808 26

Again, you need to split the single query into two, to avoid this effect and get the cor‐
rect value instead. The first query calculates the freight (without the problematic join
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to the SalesOrderDetail table). The second query calculates only the OrderQty by
joining the two tables:

SELECT
        soh.SalesOrderID, SUM(soh.Freight) Freight, SUM(sod.OrderQty) OrderQty
FROM
        Sales.SalesOrderHeader soh
JOIN (
SELECT
        soh.SalesOrderID, SUM(sod.OrderQty) OrderQty, COUNT(*) DetailCount
FROM
        Sales.SalesOrderHeader soh
JOIN Sales.SalesOrderDetail sod ON sod.SalesOrderID = soh.SalesOrderID
GROUP BY soh.SalesOrderID
) sod ON sod.SalesOrderID = soh.SalesOrderID
WHERE soh.SalesOrderID = 43659
GROUP BY soh.SalesOrderID

Table 17-27. The separated queries are joined into one

SalesOrderID Freight OrderQty
43659 7,393.1808 26

Before you start writing a query, you should always look out for join path problems.
One way to find out is to look at the entity relationship diagram. In the next section, I
show you how you can create one in SQL Server Management Studio.

Entity Relationship Diagrams
SQL Server Management Studio lets you create an ERD for your existing tables (and
foreign key constraints). If you expand the database name in the Object explorer, you
will find Database Diagrams. There, you can create a new diagram by adding and
arranging tables, or view an existing one. In Figure 17-1, you see an example I created
for the AdventureWorksDW database. It illustrates the many-to-one relationships
between the FactResellerSales table and the date, sales territory, and product
dimensions. You can clearly see that this is a snowflake schema, as the DimProduct
table has a relationship to DimProductSubcategory, which has a relationship to Dim
ProductCategory.
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1 The file used throughout this section is 104 ETL.sql.

Figure 17-1. A database diagram in SQL Server Management Studio

You can save as many database diagrams as you want. Just hit File → Save and give it
a name.

Extract, Transform, Load
If the amount of data loaded into a data warehouse is small enough (in relation to the
available hardware resources), a regular full load might be sufficient to complete it in
the maintenance window. First, you truncate the table. Then you insert all the rows
from the data source, as in the following example:1

-- Full Load
TRUNCATE TABLE demo.Sales;
INSERT INTO demo.Sales (ProductID, SalesAmount)
SELECT
        ISNULL(p.ID, -1) ProductID,
        ps.SalesAmount
FROM
        demo.ProductSales ps
LEFT JOIN demo.Product p ON p.Product=ps.Product;
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The outcome of TRUNCATE TABLE demo.Sales is identical to
DELETE FROM demo.Sales. There is a difference under the hood,
though: TRUNCATE TABLE is considered a metadata operation. This
operation will not touch a single row of the table but just change
the information for the whole table to inform everybody that the
table is empty. As you can imagine, this operation is much faster
compared to actually deleting every row in a table (as the DELETE
keyword does). That’s why I prefer TRUNCATE TABLE over DELETE.
You need to consider two things, though. First, TRUNCATE TABLE is
only possible if the table is not part of any foreign key constraint. If
it is, first, you need to DROP the constraint, then TRUNCATE the table,
and then CREATE the constraint again. Second, TRUNCATE TABLE
does not accept any filter conditions, as DELETE does via the WHERE
clause. You can only empty a full table (or partition it, to be pre‐
cise; “Partitioning” on page 421 talks about partitions).

The bigger the amount of data gets (as the data grows in size) or the smaller the
maintenance windows become (as there are more and more processes running in the
maintenance window or because you need to load the data more often, for example
multiple times a day), the more critical it is to update your data warehouse more
quickly. That’s the time when you should think about changing your ETL from a full
to a delta load. A delta load is more complex, in the sense that it needs to identify the
rows that:

• Are new in the data source and therefore need to be inserted into the data ware‐
house.

• Have changed since the last load and therefore need to be updated in the data
warehouse.

• Have been deleted in the data source and therefore need to be either removed
from the data warehouse (hard delete) or marked as deleted (soft delete) in the
data warehouse.

The following example inserts only rows for new products (products that didn’t have
a row in the table Sales yet). The WHERE clause filters for rows that “NOT EXISTS” in
the data warehouse:

-- Delta Load
INSERT INTO demo.Sales (ProductID, SalesAmount)
SELECT
        ISNULL(p.ID, -1) ProductID,
        ps.SalesAmount
FROM
        demo.ProductSales ps
LEFT JOIN demo.Product p ON p.Product=ps.Product
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WHERE NOT EXISTS (SELECT TOP 1 1 FROM demo.Sales ss WHERE ss.ProductID =
  ISNULL(p.ID, -1))

In case already-loaded data can change as well, you need to add an UPDATE statement.
And in case already-loaded data can be deleted in the data source, you need to add a
DELETE statement (for a hard delete) or an UPDATE statement (to implement a soft
delete) as well. More often than not, the business users want to keep track of such
changes: when a row was inserted, updated or modified and what the row looked like
before the modification? In “Slowly Changing Dimensions” on page 387, I show how
to add such information by implementing slowly changing dimensions.

Keep in mind that a delta load will only be faster if the physical organization (index
strategy, table partitioning) of the tables in the data source and in the data warehouse
supports the JOIN predicates and the WHERE conditions. If not, the delta load might
take as long as a full load (or even longer due to added filter conditions). In Chap‐
ter 20, you will learn which indexes you should create and how you can manage par‐
titions in a relational table.

To further refresh your data model in Power BI or Analysis Services more quickly,
you need to create partitions there and in the data warehouse. Usually, you partition
your tables time-wise (e.g., one partition per day). A partition stores rows of a table
together. In a relational database, you can quickly truncate the content of a partition
before you reload the data for it. In Power BI and Analysis Services, you can specify
that only a partition should be refreshed, instead of the whole table. This will speed
up the refresh time tremendously, since you won’t need to refresh all the (certainly
unchanged) old data from years ago over and over again. It is important that the par‐
titions are aligned between the relational database and Power BI/Analysis Services, to
get the best performance.

With this section about ETL, the first chapter about SQL is finished.

Key Takeaways
In this chapter, I introduced the moving parts of a relational database that is queried
and maintained via SQL. Here are some of the main points:

• You learned about the basic parts of a relational database: tables, columns, rela‐
tionships, primary keys, and foreign keys.

• I recommended creating a dedicated schema for all objects you want to expose to
Power BI, or Analysis Services (or any other reporting layer), and to which you
give read-only access to all tools and people who need access.

• The content of the data warehouse can be exposed as tables, views, stored proce‐
dures, or functions. Views are the most common way and are a good starting
point. In case of performance issues when querying the content, the information
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can be persisted as a table. Implementing the queries as stored procedures or as
functions makes it less user friendly for the data consumers, but allows for
parameters and optimized T-SQL code, where necessary.

• There are tools available to visualize the tables and their foreign key constraints
as an entity relationship diagram. Foreign key constraints restrict manipulations
of the content of the tables (INSERT, UPDATE, and DELETE), but have no direct
influence on SELECT.

• You must define the kind of relationship in each and every query (JOIN operator
in SELECT statement)—they are not automatically added behind the scenes for
you. On the one hand, this gives you full control and flexibility about how you
combine the contents of tables. But be aware of traps in your data model that
might lead to too few or too many rows in the query result (or too low or too
high numbers in aggregated values).

• In SQL Server Management Studio, you can easily create an entity relationship
diagram and get a quick overview about tables and their relationships, which will
allow you to discover potential join path problems.

• If you need to keep track of changes to dimensions, you can implement slowly
changing dimensions in a relational data warehouse during the ETL process.

Now that you’ve met your new best friends in the world of SQL, it’s about time to
learn what these friends can do for you for you in terms of building a data model that
will help you in your adventures in Power BI.
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CHAPTER 18

Building a Data Model with SQL

SQL as a language is quite mature, and if you master this language, you can make
transformations of your tables very easy. Similar to some applied steps in Power
Query, dynamic SQL can make our life even easier as it can make your code resilient
to changes. Instead of manually maintaining code, you can write code to maintain the
solution for you in an (semi-)automatic way.

After many years working with analytic solutions, I still believe that a data warehouse
is the powerhouse in a business intelligence architecture. Putting transformations in a
relational layer (which does not necessarily persist all the content) opens your solu‐
tion to many tools. Of course, Power BI (via Power Query) can consume data from a
relational database. But also, plenty of other tools (and users) will be able to connect
to a relational database. In a scenario where you or your colleagues have—God for‐
bid!—BI and reporting tools other than Power BI in place, a relational data ware‐
house (layer) can be the common ground and important puzzle piece to achieve the
single source of truth. Instead of re-implementing transformations in all those tools,
you can do them in the data warehouse.

All solutions around SQL can be accomplished in different ways:

Persist the content into a table
This is practical if tools or users query content of the data warehouse regularly
(e.g., if you use Power BI Report Builder on top of the relational database instead
of a Power BI semantic model, or if you run Power BI in DirectQuery mode).
You can create indexes and partitions on this table to speed up the queries even
more.

Persist a query only as a view
This is practical if the sole purpose of the relational database is to provide all
transformations but the data is cached in a different place (e.g., if you load the
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1 The file used for this section’s demonstrations is 201 Normalizing.sql.

data into Power BI and run it in Import mode). If the data is only read once per
refresh, persisting the data usually does not pay off.

Use the indexed or materialized view feature
Many relational database management systems have a feature called indexed view
or materialized view. Through this, the result of a view is persisted and offers
similar performance to that of an indexed table. The advantage, though, is that
you do not need setup schedules to refresh the content of the indexed view—the
database management system will make sure to keep it updated whenever the
underlying table(s) are manipulated. The disadvantage is that it will slow down
the manipulation of the underlying tables (due to the extra steps needed for
updating the indexed view).

Create functions and/or stored procedures
You can pass parameters into functions and stored procedures, which can make
handling them easier for users (and you can hide complex logic reacts in differ‐
ent ways to the parameters from them).

I strongly recommend giving the report creators access only to
views (and maybe functions or stored procedures) and not the data
warehouse tables. Put all those artifacts into a dedicated database
schema and give read access to this schema only (and no other
schema). In Chapter 20, I will discuss the different options from a
performance perspective.

Normalizing
The goal of normalizing is to move redundant information into a different table and
only keep a foreign key to reference the row in the (now) separate table. Normalizing
in SQL means that you list the columns you want in the projection (by writing them
right after the SELECT keyword). The question is, again, how to decide which columns
you want to keep in a result set. In SQL, you can find dimension candidates by using
COUNT and GROUP BY. By counting the number of rows per distinct value of a column,
you can easily discover redundant information.1

The table demo.financials in my example contains several columns:

• Segment

• Country

• Product

• Discount Band

• Units Sold

• Manufacturing Price
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• Sale Price

• Gross Sales

• Discounts

• Sales

• COGS

• Profit

• Date

• Month Number

• Month Name

• Year

A quick glance will identify Units Sold, Sale Price, Gross Sales, Discounts,
Sales, COGS, Profit as the facts: they are numeric and aggregable (except for the Sale
Price). The other columns (including all date-related columns like month and year)
are candidates for normalization into their own table.

From the following query, you learn that there are 700 rows in total in the table but
only five segments:

SELECT COUNT(*) CountAll, COUNT(DISTINCT Segment) CountSegment
FROM demo.financials;

CountAll CountSegment
700 5

The Segment is a redundant column in the financials table. Therefore, I remove it
from financials and create a separate Segment table:

CREATE TABLE normalization.Segment (
        SegmentID int IDENTITY(1,1) PRIMARY KEY,
        Segment nvarchar(50)
)

Column SegementID is the PRIMARY KEY of this new table. The content for each row
of this column is automatically determined by the database (IDENTITY(1,1)). The
only “real” content (which will later be exposed to the report creators) is the column
Segment.

During the INSERT statement, you need to make sure to specify the DISTINCT key‐
word (so each unique Segment is only inserted once). A mistake here would result in
a later duplication of the rows in the fact table:

INSERT INTO normalization.Segment
SELECT
        DISTINCT
        Segment
FROM
        demo.financials;
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Additionally, I strongly recommend that you insert a placeholder value, in case a fact
row contains an invalid segment or for when the segment should contain NULL. It’s
best practice to have a row with value -1 for the ID column in a dimension table
(which will be later referenced when the rows are inserted into the fact table):

SET IDENTITY_INSERT normalization.Segment ON;
INSERT INTO normalization.Segment (SegmentID, Segment) VALUES (-1, 'unknown');
SET IDENTITY_INSERT normalization.Segment OFF;

Before you can directly set the value for an identity column, you need to set the
IDENTITY_INSERT property of the table to ON. Don’t forget to set it to OFF right after‐
ward to avoid the identity column being used in other INSERT or UPDATE statements
by mistake. The provided value for the Segment column (“unknown” in the preceding
example) should be something that is meaningful to report consumers. I will talk
about your options again in “Flags and Indicators” on page 379.

When you count the distinct values of the Product and the [Manufacturing Price]
column, you will discover that they have the same count:

SELECT COUNT(*) CountAll, COUNT(DISTINCT Product) CountProduct,
  COUNT(DISTINCT [Manufacturing Price]) CountManufacturingPrice
FROM demo.financials;

CountAll CountProduct CountManufacturingPrice
700 6 6

As it turns out, this is not by chance but because a transitive dependency exists
between the two columns: there is exactly one [Manufacturing Price] per Product:

SELECT
        DISTINCT
        Product,
        [Manufacturing Price]
FROM
        demo.financials;

Product Manufacturing Price
Amarilla 260.00

Carretera 3.00

Montana 5.00

Paseo 10.00

Velo 120.00

VTT 250.00

That’s why I will put them together into the same dimension table.
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You need to repeat these steps for all dimensional attributes of the table financials:

• Segment (Segment)
• Country (Country)
• Product (Product, [Manufacturing Price])
• Discount Band ([Discount Band]

The date-related columns are special. They are definitely candidates for a dimension
table, but you cannot derive its content from the table financials. The reason is that
Power BI will need a table that contains a row for every day of a calendar year. The
rows in the table financials violate this condition, as you can see here:

SELECT
    COUNT(*) CountAll,
    MIN([Date]) MinDate,
    MAX([Date]) MaxDate,
    COUNT(DISTINCT [Date]) CountDay
FROM
    demo.financials;

CountAll MinDate MaxDate CountDay
700 2013-09-01 2014-12-01 16

The range of dates is between September 1, 2013 and December 1, 2014 and therefore
does not cover a full calendar year. On top of that, it only contains 16 different dates.
This is a clear violation of the rules for a proper date table (at least when it comes to
Power BI). This is actually pretty typical for a fact table, as transactions will not hap‐
pen every day; also, fact tables are often already aggregated (like in this case, where
the facts are aggregated to the first of the month). That’s why you should never derive
the content for the date dimension from the fact table. I show how to create a date
table properly in “Time and Date” on page 383.

After every dimension has its own table, I can finally normalize the fact table (in a
schema named normaliziation). This table will only contain numerical columns—
integers for the foreign keys and decimals for the facts:

CREATE TABLE normalization.financials (
        SegmentID int NOT NULL
                CONSTRAINT FK_financials_Segment
                REFERENCES normalization.Segment(SegmentID),
        CountryID int NOT NULL
                CONSTRAINT FK_financials_Country
                REFERENCES normalization.Country(CountryID),
        ProductID int NOT NULL
                CONSTRAINT FK_financials_Product
                REFERENCES normalization.Product(ProductID),
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        DiscountBandID int NOT NULL
                CONSTRAINT FK_financials_DiscountBand
                REFERENCES normalization.[Discount Band](DiscountBandID),
        DateKey int,
        [Units Sold] decimal(18,2),
        [Sales Price] decimal(18,2),
        [Gross Sales] decimal(18,2),
        [Discounts] decimal(18,2),
        [Sales] decimal(18,2),
        [COGS] decimal(18,2),
        [Profit] decimal(18,2)
)

I do not allow NULL as a value for a foreign key. To tell the database system that these
columns are indeed foreign key columns, I add the CONSTRAINT keyword to give the
constraint a proper name (which will make it easier to drop or disable the constraint
later, if needed) and specify the dimension table and its primary key column after
REFERENCES. As I have not created the Date table, I omit the foreign key constraint
here.

In Example 18-1, I then insert all rows from financials into the newly created table.

Example 18-1. Inserting rows in the newly created table

INSERT INTO normalization.financials
SELECT
        ISNULL(s.SegmentID, -1) as SegmentID,
        ISNULL(c.CountryID, -1) as CountryID,
        ISNULL(p.ProductID, -1) as ProductID,
        ISNULL(d.DiscountBandID, -1) as DiscountBandID,
        YEAR(f.[Date]) * 10000 + MONTH(f.[Date]) * 100 + DAY(f.[Date])
        as DateKey,
        f.[Units Sold],
        f.[Sale Price],
        f.[Gross Sales],
        f.[Discounts],
        f.[Sales],
        f.[COGS],
        f.[Profit]
FROM
        demo.financials f
LEFT JOIN normalization.Segment s ON
    s.Segment = f.Segment
LEFT JOIN normalization.Country c ON
    c.Country = f.Country
LEFT JOIN normalization.Product p ON
    p.Product= f.Product
LEFT JOIN normalization.[Discount Band] d ON
    d.[Discount Band]= f.[Discount Band]
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For the values of the foreign key columns, I added a safeguard in cases where the fact
table contains a business key (e.g., Segment), which is not (yet) inserted into the
dimension table. If you run the queries in the exact order discussed here (first the
insert statements for the dimension, and in the end the insert statements for the fact
table), then this will not be necessary. I tend to add this logic anyways, as I prefer
being safe over being sorry, for cases where the order may have been mixed up for
some reason. The safeguard is twofold:

• I intentionally use a LEFT JOIN (instead of an inner join).
• I replace NULL values (via function ISNULL) with a value of -1.

Without this safeguard, either rows from the fact table could be filtered out (by an
inner join), or a value of NULL would be inserted into the foreign key columns. Both
are bad; if you unintentionally filter out rows from the fact table, the content of your
data warehouse would be wrong. If you add fact rows with NULL as their foreign key,
every report would need to use a (slower) LEFT JOIN rather than a (faster) INNER
JOIN. I prefer the latter. The previously inserted extra row in the dimension tables
(with -1 as the primary key), and the safeguard here will allow you to always do INNER
JOINs between the tables in the data warehouse. And even missing or wrong dimen‐
sions do not lead to empty descriptions shown in the report, but to meaningful text
(e.g., “unknown”).

The value for the DateKey foreign key column is derived from the fact’s actual date:
the date’s year is multiplied by 10,000 (e.g., 20,230,000), then the month number is
multiplied by 100 (e.g., 800) and added to the year number, and finally the day num‐
ber of the month is added as well (for a total of 20,230,801). Despite the rule that a
surrogate key in a data warehouse should always be considered meaningless, it is best
practice to allow the date table’s key an exception. This key is still readable. Neverthe‐
less, in Power BI, you should never use the fact table’s foreign key to filter the rows,
but always join the date dimension and put filters there, as I explained in “Normaliz‐
ing and Denormalizing” on page 109.

I wouldn’t recommend directly using the query from Example 18-1 when connecting
Power BI to the data source but instead provide the result in the database. As men‐
tioned in “Normalizing” on page 44, you have several options to do so: persist into a
table, create a view, create a function, or create a procedure.

Persisting into a Table
For the dimension tables, there is no way around persisting if you want to use the
IDENTITY feature. This is only available for rows physically persisted in a table. As a
first step, you need to drop all foreign key constraints referencing the table. Then,
you drop the table if it already exists. Finally, you (re-)create the table (in the right
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schema) and insert the rows. Don’t forget to insert the extra row with primary key -1.
For the Segment table, this looks like this:

-- Segment
IF EXISTS (
    SELECT TOP 1 1
    FROM sys.objects
    WHERE OBJECT_NAME(object_id) = 'FK_financials_Segment'
    )
    ALTER TABLE normalization.financials
    DROP CONSTRAINT FK_financials_Segment;

DROP TABLE IF EXISTS normalization.Segment;

CREATE TABLE normalization.Segment (
        SegmentID int IDENTITY(1,1) PRIMARY KEY,
        Segment nvarchar(50)
);
GO

INSERT INTO normalization.Segment
SELECT
        DISTINCT
        Segment
FROM
        demo.financials;

SET IDENTITY_INSERT normalization.Segment ON;
INSERT INTO normalization.Segment (SegmentID, Segment)
VALUES (-1, 'unknown');
SET IDENTITY_INSERT normalization.Segment OFF;

For the fact table(s), the steps are simpler: you only need to drop the table (if it exists)
and then insert all the rows. No need to take extra care of constraints or the extra
row (-1):

-- Financials
DROP TABLE IF EXISTS normalization.Financials;
CREATE TABLE normalization.Financials (
        SegmentID int NOT NULL
                CONSTRAINT FK_Financials_Segment
                REFERENCES normalization.Segment(SegmentID),
        CountryID int NOT NULL
                CONSTRAINT FK_Financials_Country
                REFERENCES normalization.Country(CountryID),
        ProductID int NOT NULL
                CONSTRAINT FK_Financials_Product
                REFERENCES normalization.Product(ProductID),
        DiscountBandID int NOT NULL
                CONSTRAINT FK_Financials_DiscountBand
                REFERENCES normalization.[Discount Band]
            (DiscountBandID),
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        DateKey int,
        [Units Sold] decimal(18,2),
        [Sales Price] decimal(18,2),
        [Gross Sales] decimal(18,2),
        [Discounts] decimal(18,2),
        [Sales] decimal(18,2),
        [COGS] decimal(18,2),
        [Profit] decimal(18,2)
);
GO
INSERT INTO normalization.Financials
SELECT
        ISNULL(s.SegmentID, -1) as SegmentID,
        ISNULL(c.CountryID, -1) as CountryID,
        ISNULL(p.ProductID, -1) as ProductID,
        ISNULL(d.DiscountBandID, -1) as DiscountBandID,
        YEAR(f.[Date]) * 10000 + MONTH(f.[Date]) * 100 + DAY(f.[Date])
        as DateKey,
        f.[Units Sold],
        f.[Sale Price],
        f.[Gross Sales],
        f.[Discounts],
        f.[Sales],
        f.[COGS],
        f.[Profit]
FROM
        demo.financials f
LEFT JOIN normalization.Segment s ON
    s.Segment = f.Segment
LEFT JOIN normalization.Country c ON
    c.Country = f.Country
LEFT JOIN normalization.Product p ON
    p.Product= f.Product
LEFT JOIN normalization.[Discount Band] d ON
    d.[Discount Band]= f.[Discount Band]

Creating a View
Instead of duplicating all the data and persisting it into a table, on many occasions, a
view will be enough (e.g., when you do not need to create a surrogate key or when a
query is not used to actually query per se but is only used to refresh a Power BI
semantic model or an Analysis Services database). A view can be described as a “vir‐
tual” table. No data is duplicated; only the SELECT statement is stored in the view’s
definition. As I already created a table with the name Financials in the normaliza
tion schema, I decided to add vw_ as a prefix to the view’s name. The data types for
the columns of the view are automatically derived from the columns referenced in
the view:

CREATE OR ALTER VIEW normalization.vw_Financials AS (
SELECT
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        ISNULL(s.SegmentID, -1) as SegmentID,
        ISNULL(c.CountryID, -1) as CountryID,
        ISNULL(p.ProductID, -1) as ProductID,
        ISNULL(d.DiscountBandID, -1) as DiscountBandID,
        YEAR(f.[Date]) * 10000 + MONTH(f.[Date]) * 100 + DAY(f.[Date])
        as DateKey,
        f.[Units Sold],
        f.[Sale Price],
        f.[Gross Sales],
        f.[Discounts],
        f.[Sales],
        f.[COGS],
        f.[Profit]
FROM
        demo.financials f
LEFT JOIN normalization.Segment s ON
    s.Segment = f.Segment
LEFT JOIN normalization.Country c ON
    c.Country = f.Country
LEFT JOIN normalization.Product p ON
    p.Product= f.Product
LEFT JOIN normalization.[Discount Band] d ON
    d.[Discount Band]= f.[Discount Band]
)

The view can be queried the same way as you would query a table. Either with a
SELECT statement, or simply in Power Query by selecting its name in the list of
“tables” (which also exposes the view, just with a slightly different icon in front of its
name):

SELECT * FROM normalization.vw_Financials;

Creating a Function
Typically, you would create a function (instead of a view) because you want to add
parameters you pass into the query. I therefore sometimes refer to (table-valued)
functions as “parametrized views.” To demonstrate this, I add the parameter Date
Key, which is used as a filter in the WHERE clause of the query. Again, I use a prefix
(fn_) to distinguish it as a database object from the table and the view:

-- FUNCTION
CREATE OR ALTER FUNCTION normalization.fn_Financials (
        @Date date
)
RETURNS TABLE
AS
RETURN
SELECT
        ISNULL(s.SegmentID, -1) as SegmentID,
        ISNULL(c.CountryID, -1) as CountryID,
        ISNULL(p.ProductID, -1) as ProductID,
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        ISNULL(d.DiscountBandID, -1) as DiscountBandID,
        YEAR(f.[Date]) * 10000 + MONTH(f.[Date]) * 100 + DAY(f.[Date])
        as DateKey,
        f.[Units Sold],
        f.[Sale Price],
        f.[Gross Sales],
        f.[Discounts],
        f.[Sales],
        f.[COGS],
        f.[Profit]
FROM
        demo.financials f
LEFT JOIN normalization.Segment s ON
    s.Segment = f.Segment
LEFT JOIN normalization.Country c ON
    c.Country = f.Country
LEFT JOIN normalization.Product p ON
    p.Product= f.Product
LEFT JOIN normalization.[Discount Band] d ON
    d.[Discount Band]= f.[Discount Band]
WHERE [Date] = ISNULL(@Date, [Date]);

The only difference from view (beyond the differences in the keywords you need to
use to define a view versus a function) is the added line for the WHERE clause. I use the
function ISNULL to fail over the row’s [Date] value. This allows you to use NULL for
the @Date parameter. When this is the case, then all fact rows are returned (instead of
none). This makes the parameter optional, as you can see in the following two
examples.

Unfortunately, Power Query will not expose functions to you. Instead, providing a
SQL query as the data source is mandatory. You can use this function in a similar
way to a table or a view in a SELECT statement. Don’t forget to add opening and clos‐
ing parentheses after the function’s name, though. In the first example, the parameter
is respected and 35 rows that match the parameter value are returned:

SELECT * FROM normalization.fn_Financials ({d'2014-01-01'});

On the other hand, if I provide NULL as the parameter value, all 700 rows are
returned:

SELECT * FROM normalization.fn_Financials (null);

Creating a Procedure
To make this list of options complete, I’m adding a definition for a stored procedure.
Again, the example contains the query and a parameter for the date column. Typi‐
cally, you would create a stored procedure because you want or need to add more
logic. A procedure can use all of the good stuff the procedural extension (called
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T-SQL, for transactional SQL) offers, including parameters. Again, I use a prefix
(“usp_”) for the procedure’s name:

-- PROCEDURE
CREATE OR ALTER PROCEDURE normalization.usp_Financials (
        @Date date = null
)
AS
SELECT
        ISNULL(s.SegmentID, -1) as SegmentID,
        ISNULL(c.CountryID, -1) as CountryID,
        ISNULL(p.ProductID, -1) as ProductID,
        ISNULL(d.DiscountBandID, -1) as DiscountBandID,
        YEAR(f.[Date]) * 10000 + MONTH(f.[Date]) * 100 + DAY(f.[Date])
        as DateKey,
        f.[Units Sold],
        f.[Sale Price],
        f.[Gross Sales],
        f.[Discounts],
        f.[Sales],
        f.[COGS],
        f.[Profit]
FROM
        demo.financials f
LEFT JOIN normalization.Segment s ON
    s.Segment = f.Segment
LEFT JOIN normalization.Country c ON
    c.Country = f.Country
LEFT JOIN normalization.Product p ON
    p.Product= f.Product
LEFT JOIN normalization.[Discount Band] d ON
    d.[Discount Band]= f.[Discount Band]
WHERE [Date] = ISNULL(@Date, [Date]);

Unfortunately, procedures cannot be used as part of a the FROM or JOIN clause, as you
are using tables, views, and functions. You need to call a procedure via the EXEC com‐
mand instead. This makes stored procedures a less common way of exposing infor‐
mation from the data warehouse. Before you decide to create procedures, make sure
that the reporting tool you want to use can handle procedures. In Power BI, you
would connect to the database and specify a query as the data source.

EXEC normalization.usp_Financials {d'2014-01-01'};

As I defined the procedure’s parameter with a default value (@Date date = null),
you can also omit the parameter value if you want to have it contain the value NULL:

EXEC normalization.usp_Financials null;

EXEC normalization.usp_Financials;
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In the rest of Part V, I will show the query but won’t repeat the code to persist the
query as a table, or transform it into a view, function, or procedure, for the sake of
brevity.

Creating a Filter Dimension
I also want to demonstrate the solution of a Junk or Filter dimension in SQL (as
described in “Normalizing and Denormalizing” on page 109). Especially when the
dimensions do not have many attributes (or just one, as is the case for Segment,
Country, or Discount Amount), this approach can reduce storage space, as the fact
table only needs to contain a single foreign key (the composite business key), instead
of several independent foreign keys.

First, you create the Filter table:

CREATE TABLE normalization_filter.[Filter]
(
        _FilterKey [int] IDENTITY(1, 1) PRIMARY KEY,
        [Segment] [nvarchar](50) NULL,
        [Country] [nvarchar](50) NULL,
        [Product] [nvarchar](50) NULL,
        [Discount Band] [nvarchar](50) NULL,
        [Manufacturing Price] [decimal](18, 2) NULL
) ON [PRIMARY];

When I physically create a table (instead of just creating a view), I will definitely add a
surrogate key (_FilterKey).

The table will be populated with a distinct list of possible combinations of the dimen‐
sional values, derived from the financials table. Column _FilterKey is not part of
the list, as it will be auto-populated due to the IDENTITY(1, 1) clause used during
the CREATE TABLE statement.

INSERT INTO normalization_filter.[Filter]
SELECT
        DISTINCT
        [Segment],
        [Country],
        [Product],
        [Discount Band],
        [Manufacturing Price]
FROM
        demo.financials;

There’s nothing special about the fact table. It has columns for the _FilterKey and all
facts:

CREATE TABLE normalization_filter.[Financials]
(
        [_FilterKey] [int] NULL
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          REFERENCES normalization_filter.[Filter] (_FilterKey),
        [Units Sold] [decimal](18, 2) NULL,
        [Sale Price] [decimal](18, 2) NULL,
        [Gross Sales] [decimal](18, 2) NULL,
        [Discounts] [decimal](18, 2) NULL,
        [Sales] [decimal](18, 2) NULL,
        [COGS] [decimal](18, 2) NULL,
        [Profit] [decimal](18, 2) NULL,
        [Date] [date] NULL
) ON [PRIMARY];

The SELECT statement for the INSERT operation queries all rows from the table finan
cials. To insert the correct _FilterKey value, a lookup to the newly created dimen‐
sion table (Filter) is necessary. The JOIN predicate includes all columns from the
Filter table. In theory, you could omit the Manufacturing Price, as this column is
transitive dependent on the Product column. In practice, I want to make sure that
my code also covers situations where a product suddenly comes with different prices.
The same is true for the LEFT JOIN. As I just have inserted a distinct list of possible
combinations into the Filter table, I don’t want to risk losing any rows from the fact
table in case there was a problem when the Filter table was populated. The LEFT
JOIN guarantees that no rows from the fact table can be lost. Here’s the code:

INSERT INTO normalization_filter.[Financials]
SELECT
        d._FilterKey
        ,f.[Units Sold]
        ,f.[Sale Price]
        ,f.[Gross Sales]
        ,f.[Discounts]
        ,f.[Sales]
        ,f.[COGS]
        ,f.[Profit]
        ,f.[Date]
FROM
        [demo].[financials] f
LEFT JOIN
        normalization_filter.[Filter] d ON
                d.[Segment] = f.[Segment] AND
                d.[Country] = f.[Country] AND
                d.[Product] = f.[Product] AND
                d.[Discount Band] = f.[Discount Band] AND
                d.[Manufacturing Price]  = f.[Manufacturing Price]
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2 The file used for this section’s examples is 202 Denormalizing.sql.

Denormalizing
Denormalizing can be seen as the opposite of normalizing. Instead of storing a refer‐
ence, the goal is to have the actual value(s) in the current table, even when these val‐
ues are redundant and transitive dependent. If you have a background in IT and
databases, this step might be counterintuitive for you. Personally, I had to overcome
an inner resistance to introducing redundancy to a table, after the two decades I’ve
spent learning how to avoid redundancies, and practicing doing so, before starting
building data warehouses, where redundancies are not only accepted but are best
practice for dimension tables.

You can access the columns of the referenced table in a query by joining the referenc‐
ing and referenced table together. Remember: you need to denormalize dimension
tables to achieve a star schema. And while you are transforming a table in SQL, you
should add an integer surrogate key to the dimension table. Therefore, I would rec‐
ommend persisting every dimension as a table, as shown in the following code exam‐
ple for the table Product. Only the primary key (ProductID) is of data type integer
(with an IDENTITY specification); the rest of the columns are defined as Unicode
strings of variable length (and a maximum of 50 characters, which should fit the
expected text):2

CREATE TABLE denormalization.Product (
        ProductID int IDENTITY(1,1) PRIMARY KEY,
        Product nvarchar(50),
        Subcategory nvarchar(50),
        Category nvarchar(50)
);

The content for this table is created via joins from three tables (DimProduct, Dim
ProductSubcategory, and DimCategory):

INSERT INTO denormalization.Product
SELECT
        dp.EnglishProductName Product,
        ISNULL(dps.EnglishProductSubcategoryName, 'unknown') Subcategory,
        ISNULL(dpc.EnglishProductCategoryName, 'unknown') Category
FROM
        dbo.DimProduct dp
LEFT JOIN dbo.DimProductSubcategory dps ON
    dps.ProductSubcategoryKey=dp.ProductSubcategoryKey
LEFT JOIN dbo.DimProductCategory dpc ON
    dpc.ProductCategoryKey=dps.ProductCategoryKey
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3 The file used for the examples in this section is 203 Calculations.sql.

After you have created the perfect star schema, as you normalized all fact tables and
denormalized all dimension tables, it is time to think about adding information in the
form of calculations.

I intentionally use LEFT JOINs in case referential integrity is not
guaranteed (if a product’s ProductSubcategoryKey can’t be found
in DimProductSubcategory). On top of that, I recommend finding
a good replacement value for the subcategory’s name stored in the
Product table, like “Unknown.” In “Flags and Indicators” on page
379, I show ways to assign replacement values gracefully.
If referential integrity is guaranteed (active foreign key constraints
are in place between the tables used in the join), you should use
INNER JOINs instead; they’re more performant. No treatment for
replacement values is necessary, then.

Calculations
SQL offers standard operators and a wide variety of mathematical and statistical
function. I won’t go into too much detail about them here. You can find all the opera‐
tors and functions explained very well in Microsoft’s official online documentation
for free.

Before you start creating calculations in SQL, evaluate whether the result will indeed
be additive (that means that aggregating the result will lead to a meaningful result). A
rule of thumb is that calculations involving a division operator (e.g., to calculate an
average, a percentage, or a ratio) are not additive. Those calculations need to be done
on the report level (read: on aggregated values and not per individual rows of the
table), and therefore be defined as a measure in the data model. You can find typical
examples for such calculations in DAX in “Calculations” on page 190.

To demonstrate the problem with non-aggregable calculations, I created the follow‐
ing view, which aggregates and calculates numbers based on the available facts in the
FactResellerSales table:3

CREATE OR ALTER VIEW calc.SalesAggregation AS (
SELECT
        frs.ProductKey,
        SUM(frs.OrderQuantity) as OrderQuantity,
        AVG(frs.UnitPrice) as UnitPrice, -- dangerous
        SUM(frs.TotalProductCost) as TotalProductCost,
        SUM(frs.DiscountAmount) as DiscountAmount,
        SUM(SalesAmount) - SUM(frs.TotalProductCost) as Margin,
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        (SUM(SalesAmount) - SUM(frs.TotalProductCost))/SUM(SalesAmount)
        as MarginPct,
        SUM(frs.SalesAmount) as SalesAmount,
        COUNT(frs.SalesAmount) as SalesAmountCount,
        AVG(frs.SalesAmount) as SalesAmountAvg -- dangerous
FROM
        dbo.FactResellerSales frs
GROUP BY frs.ProductKey
);

Based on this view, I calculate the grand margin (a single number calculated over all
rows) once as the difference of SalesAmount and TotalProductCost (named
Margin1) and once as the sum of the view’s Margin column (named Margin2):

-- Margin
SELECT
        FORMAT(SUM(SalesAmount) - SUM(TotalProductCost), '#,###')  Margin1,
        FORMAT(SUM(Margin), '#,###') Margin2
FROM
        calc.SalesAggregation;

Margin1 Margin2
470,483 470,483

The result is exactly the same. And the reason is that it makes no difference if you
first add up the values for SalesAmount and TotalProductCost and then subtract the
two numbers (as was done in Margin1) or if you first subtract the two values per
product and then add up the results (as was done in Margin2). Such a calculation
(result of a subtraction) is aggregable and can be implemented either way.

Next, let’s look at ways to calculate the sales amount. I implemented five different
versions. The first version just sums up the column from the view (SalesAmount1).
The second version multiplies the UnitPrice by the OrderQuantity and subtracts the
DiscountAmount from the result (SalesAmount2). Alternatively, I calculate the aver‐
age of the UnitPrice, multiply this by the sum of the OrderQuantity, and then sub‐
tract the DiscountAmount (SalesAmount3). The next two versions ignore the view and
directly query the base table (FactResellerSales) to avoid the aggregations done
in the view needing to be. The sum of the SalesAmount is calculated once
(SalesAmount4). For SalesAmount5, I implement the formula per row of Fact
ResellerSales and add up the values. The expectation is that the last two versions
will be identical and correct.

But what about the other versions? Here you are:

-- SalesAmount
SELECT
        FORMAT(SUM(SalesAmount), '#,###')  SalesAmount1,
        FORMAT(SUM((UnitPrice * OrderQuantity) - DiscountAmount), '#,###')
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          SalesAmount2,
        FORMAT((AVG(UnitPrice) * SUM(OrderQuantity)) - SUM(DiscountAmount),
          '#,###')  SalesAmount3
FROM
        calc.SalesAggregation

SELECT
        FORMAT(SUM(SalesAmount4), '#,###') SalesAmount4,
        FORMAT(SUM(SalesAmount5), '#,###') SalesAmount5
FROM
        (SELECT
                SalesAmount as SalesAmount4,
                (UnitPrice*OrderQuantity)-DiscountAmount SalesAmount5
         FROM dbo.FactResellerSales
         ) x

SalesAmount1 SalesAmount2 SalesAmount3 SalesAmount4 SalesAmount5
80,450,597 80,722,815 101,291,559 80,450,597 80,450,597

SalesAmount1, SalesAmount4, and SalesAmount5 are identical, and trust me, they are
correct. SalesAmount2 is (slightly) off and therefore wrong. SalesAmount3 is com‐
pletely off. These two versions have in common that they are based on the (aggrega‐
ted) UnitPrice from the view SalesAggregation, which is calculated as the average
of the UnitPrice per ProductKey. Function AVG calculates only an arithmetic average.
That means it sums up all values of UnitPrice (per ProductKey), and then divides
the sum by the number of rows (per ProductKey). This would only work correctly if
only a single product was sold. The correct calculation must take the OrderQuantity
into account.

Imagine you bought apples one day for the price of $1 per pound and for $2 per
pound another day. If you bought a pound each day, then the average price is $1.5.
But imagine you bought 1 pound for $1 and 10 pounds for $2—then you can not
safely pretend that the average price was $1.5 (as the AVG function will calculate). The
correct formula has to take the quantity into account: 1 pound × $1 plus 10 pounds ×
$2 = $21. Dividing this by 11 pounds gives the correct average price of $1.9.

The problem with SalesAmount2 is that it multiplies the incorrectly calculated
UnitPrice from the view with the OrderQuantity. The problem with SalesAmount3
is that it averages the wrongly calculated UnitPrice. The calculation formula of
SalesAmount5 works because it is not based on the (aggregated values of the) view
but is calculated on the granularity level of the table FactResellerSales.

The correct calculation for the UnitPrice on any aggregation level is as a sum of the
SalesAmount divided by the sum of OrderQuantity. This you can only achieve as a
calculation on the report level, which means in DAX, when it comes to Power BI.
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4 This section uses for 204 Flags and Indicators.sql for the examples.

MarginPct is the Margin in percent of the SalesAmount. To calculate “in percent”
means that the Margin has to be divided by the SalesAmount. The following query
shows the Margin and the SalesAmount and then two versions for the calculation of
the margin in percent: one averages the MarginPct from the view (which calculates
the margin in percent per ProductKey), and the other calculates it as the division of
the sum of Margin and sum of SalesAmount:

-- MarginPct
SELECT
        FORMAT(SUM(Margin), '#,###')  Margin,
        FORMAT(SUM(SalesAmount), '#,###')  SalesAmount,
        FORMAT(AVG(MarginPct), '0.00%') MarginPct1,
        FORMAT(SUM(Margin)/SUM(SalesAmount), '0.00%') MarginPct2
FROM
        calc.SalesAggregation;

Margin SalesAmount MarginPct1 MarginPct2
470,483 80,450,597 8.34% 0.58%

The numbers for the two versions are very different. Averaging the MarginPct, as in
the calculation for MarginPct1, does not lead to the correct number. The only way is
to divide the two aggregated (and shown values): 470,483 divided by 80,450,597 leads
to the correct value of 0.58%.

It is not enough that the numbers in the tables and views provided
in the data warehouse are correct. You need to think beyond the
data warehouse and decide if a calculation’s result is aggregable, if
the result is additive. If it is not, then pre-calculating the value in
the data warehouse layer makes no sense. In fact, it could lead to
wrongly reported numbers, if somebody aggregates the values in
visuals and reports.

Flags and Indicators
Remember: the goal of all the exercises in transforming source data is to make the
lives of report creators easier. Usually, showing codes or abbreviations in a report is
not what the report consumer wants. SQL is good central place to transform such
flags and indicators into meaningful text:4
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• To transform the column FinishedGoods (which contains 0 or 1) to a descriptive
text column, use the CASE operator and provide different conditions to convert
the flag into not salable, salable, or unknown:

SELECT
        FinishedGoodsFlag as _FinishedGoodsFlag,
        CASE
        WHEN FinishedGoodsFlag=0 THEN 'not salable'
        WHEN FinishedGoodsFlag=1 THEN 'salable'
        ELSE                          'unknown'
        END [Finished Goods Flag]
        ,*
FROM dbo.DimProduct;

_FinishedGoodsFlag Finished Goods Flag ProductKey ProductAlternateKey …
… … … … …

0 not salable 208 TP-0923 …

0 not salable 209 RC-0291 …

1 salable 210 FR-R92B-58 …

1 salable 211 FR-R92R-58 …

… … … … …

• Instead of providing individual conditions, you can also use CASE to compare an
expression to different values. Specify the expression between CASE and WHEN and
for each WHEN for which you specify a value, the expression should be compared:

SELECT
        ProductLine as _ProductLine,
        CASE ProductLine
        WHEN 'R' THEN 'Road'
        WHEN 'M' THEN 'Mountain'
        WHEN 'T' THEN 'Touring'
        WHEN 'S' THEN 'Standard'
        ELSE          'other'
        END [Product Line]
        ,*
FROM dbo.DimProduct;

_ProductLine Product Line ProductKey ProductAlternateKey …
… … … … …

NULL other 208 TP-0923 …

NULL other 209 RC-0291 …

R Road 210 FR-R92B-58 …

R Road 211 FR-R92R-58 …

S Standard 212 HL-U509-R …
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_ProductLine Product Line ProductKey ProductAlternateKey …
S Standard 213 HL-U509-R …

… … … … …

• Converting values is a classical use case for common table expressions (CTEs) in
SQL, as well. In the following example, I specify common table expression Class
as a unioned list of SELECT statements, which deliver a query result of three rows
and two columns: one row per Class and an additional ClassDescription. I
then join the table DimProduct with the common table expression (Class), as it
would do with a table:

WITH Class AS (
SELECT 'H' Class, 'High'    ClassDescription UNION ALL
SELECT 'M' Class, 'Medium'  ClassDescription UNION ALL
SELECT 'L' Class, 'Low'     ClassDescription
)
SELECT
        dp.Class as _Class,
        c.ClassDescription as [Class Description]
        , *
FROM dbo.DimProduct dp
JOIN Class c ON c.Class=dp.Class;

_Class Class Class Description ProductKey ProductAlternateKey …
… … … … … M

Medium 194 SA-T612 … L Low

196 SD-2342 … L Low 198

SH-4562 … H High 210 FR-R92B-58

… … … … … …

An improved version of this query would also take care of classes not listed in the
CTE and show, e.g., “Unknown” as the ClassDescription. In the next example,
I show you how to catch missing values and replace them with a meaningful text.

• I’m not a big fan of implementing business logic within a query (or report), as
shown in the previous examples. In a perfect world, the report user would over‐
see defining what text should be shown instead of a flag or an indicator. It should
not be necessary the query code to be updated (by IT) to implement a change.
That’s why my preferred way of transforming flags and indicators is to create a
physical table to store the lookup values. This table could sit inside an Excel
workbook or a SharePoint list, but optimally, it’s a table in the database, exposed
to the responsible users via an application, so they can maintain changes to the
content of this table. This table is then simply joined in a query, as you can see
from the following code example (which contains the code to re-create the table
and fill it with initial values):
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DROP TABLE IF EXISTS flag.Styles;
CREATE TABLE flag.Styles (
        Style char(1),
        StyleDescription nvarchar(50)
        )
INSERT INTO flag.Styles
SELECT 'W' Class, 'Womens'    StyleDescription UNION ALL
SELECT 'M' Class, 'Mens'      StyleDescription UNION ALL
SELECT 'U' Class, 'Universal' StyleDescription
GO
CREATE OR ALTER VIEW flag.Style AS (
SELECT
        s.Style as _Style,
        ISNULL(s.StyleDescription, 'Unkown') as [Style Description]
        , *
FROM dbo.DimProduct dp
JOIN flag.Styles s ON s.Style=dp.Style
);

_Style Style Description ProductKey ProductAlternateKey …
… … … … …

NULL Unkown 208 TP-0923 …

NULL Unkown 209 RC-0291 …

U Universal 210 FR-R92B-58 …

U Universal 211 FR-R92R-58 …

… … … … …

• Unknown values are coded as NULL in relational databases. Power BI treats a NULL
as zero for numerical columns, as False for True/False columns, and as empty
for all other data types (text or Date/Time). It is best practice to avoid empty val‐
ues in reports, though. Therefore, you need to replace NULL with meaningful text.
If you want to write this as a condition in a CASE statement, remember that a
comparison like <expression> = NULL never evaluates to true, but you need to
formulate the condition as <expression> IS NULL. In the following example, I
use the function ISNULL. This function checks if the first value IS NULL. If this is
the case, then the second parameter is returned. If it is not the case, then the first
parameter is returned. In cases where the logic is chained (“take the value from
column c1, but if c1 is null, take c2, but if c2 is null take, …”), you can use func‐
tion COALESCE:

SELECT
        EnglishProductName,
        WeightUnitMeasureCode as WeightUnitMeasureCode,
        ISNULL(WeightUnitMeasureCode, 'N/A') [Weight Unit Measure Code]
FROM dbo.DimProduct dp
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EnglishProductName WeightUnitMeasureCode Weight Unit Measure Code
… … …

Cone-Shaped Race NULL N/A

Reflector NULL N/A

LL Mountain Rim G G

ML Mountain Rim G G

… … …

So far, I have shown you how to split or combine existing tables or add calculations
or meaningful text. Now it is time to talk about how you can create a new table from
scratch.

Time and Date
If someone would present a data warehouse to me in which there is not a Date table, I
would be very curious. Every single data warehouse I have built so far has had a Date
table, and for good reasons. Creating such a table isn’t a big issue. And keeping it
automatically up-to-date (pun intended) can be done as well.5

To create the number of rows I need for the table, I use Itzik Ben-Gan’s function
GetNumsItzikBatch. It has two parameters (a start value and a maximum value) and
will return a row for every value in between as a query result. I add then these
numeric values via the function DATEADD as the number of days to my start date. The
start date I derive as January 1 for the year of the earliest (MIN) order date of my fact
table. The maximum value for the GetNumsItzikBatch function I derive as the differ‐
ence in days between the start date and the last day of the year of the latest (MAX)
order date of my fact table. All these components I created as common table expres‐
sions, as you can see in the first portion of the code listed here:

WITH
MinYear     AS
    ( SELECT YEAR(MIN(OrderDate)) MinYear FROM PowerBI.FactResellerSales ),
MinDate     AS
    ( SELECT DATEFROMPARTS(MinYear, 01, 01) MinDate FROM MinYear),
MaxYear     AS
    ( SELECT YEAR(MAX(OrderDate)) MaxYear FROM PowerBI.FactResellerSales),
MaxDate     AS
    ( SELECT DATEFROMPARTS(MaxYear+1, 12, 31) MaxDate FROM MaxYear),
MaxNumber   AS
    ( SELECT CONVERT(bigint, DATEDIFF(day, MinDate, MaxDate))
          MaxNumber FROM MinDate CROSS JOIN MaxDate),
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NumberTable AS
    ( SELECT N as Number
      FROM demo.GetNumsItzikBatch(0, (SELECT MaxNumber FROM MaxNumber))),
Date AS (
SELECT
        DATEADD(
                day,
                n.Number,
                d.MinDate
                ) Date
FROM
        NumberTable n
CROSS JOIN MinDate d
)
SELECT
        Date                                   as Date,
        CONVERT(int, FORMAT(Date, 'yyyyMMdd')) as DateKey,
        YEAR(Date)                             as Year,
        MONTH(Date)                            as [Month Number],
        FORMAT(Date, 'MMMM')                   as Month,
        FORMAT(Date, 'yyyy-MM')                as [YYYY-MM],
        DATEPART(ww, Date)                     as [Week Number],
        DATEPART(iso_week, Date)               as [Week Number ISO]
FROM
        Date;

The SELECT takes then the generated Date and applies different formulas to derive the
columns I need in my Date dimension:

• DateKey is an integer representing the date in the format YYYYMMDD (e.g.,
20231231).

• Year is the year (e.g., 2023).
• Month Number contains the number of the month (e.g., 12 for December).
• In Month usually stores the month’s name (e.g., December).
• Depending on the needs of the report, I add a different format for the month

(e.g., 2023-12). This is easy to do with the FORMAT function.
• Sometimes reports are based on weeks. Function DATEPART can deliver both the

number of the week and the number of the ISO week.

The story for a Time table, if needed, is similar. This time, I generate a list of values
between 1 and 1,440 (minutes a day). I find the code more readable when I specify 24
* 60, instead of 1,440, but that’s, of course, totally up to you. I add these numbers,
then, as minutes, to time “00:00:00,” as you can see from the following code snippet:

WITH
NumberTable AS ( SELECT N as Number FROM demo.GetNumsItzikBatch(1, 24
  /* hours */ * 60 /* minutes */)),
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Time AS (
SELECT
        DATEADD(minute, Number, '00:00:00') Time
FROM
        NumberTable
)
SELECT
        CONVERT(Time, Time)          as Time,
        FORMAT(Time, 'HH')           Hour,
        FORMAT(Time, 'mm')           Minutes,
        FORMAT(Time, 'HH:mm')        TimeDescription
FROM
        Time;

Again, I use function FORMAT to generate the additional columns for my Time table,
based on what is needed in the reports. A Time table for every minute of a day con‐
tains only 1,440 rows—so we do not have to be greedy in terms of the columns the
report users might ask you for.

Role-Playing Dimensions
In the world of SQL, role-playing dimensions can easily be solved, as you can join a
table with a join predicate of your choice. The same tables could be joined with dif‐
ferent join predicates multiple times in a query. One solution for Power BI and Anal‐
ysis Services tabular is to add the same table multiple times under different names to
the data model. As long as the dimension table is not too big, this is easily tolerable
(and no, there is no clear number as to what “too big” means; it depends solely on the
resources you are using).

Remember that best practice is to not directly access the tables from the data ware‐
house but to use VIEWs as a layer in between. So, the solution is to just create more
than one VIEW for the identical table from the data warehouse. Instead of creating one
view Date, you create variations per role: [Order Date], [Ship Date], etc. No need
to actually duplicate the content of the dimension table in the data warehouse.

It’s important to remember that it is best practice to choose names for your columns
that are unique through the whole data model. Nothing is more frustrating than dis‐
cussions about “Which year are you showing in this visual?” or “Which date should
the filter be applied on?”. That’s what the alias definition (keyword AS) in the SELECT
projection is for:6

CREATE OR ALTER VIEW roleplaying.vw_OrderDate AS (
SELECT
        DateKey             as OrderDateKey,
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        Date                as OrderDate,
        CalendarYear        as OrderYear
FROM
        PowerBI.DimDate
)
GO
CREATE OR ALTER VIEW roleplaying.vw_ShipDate AS (
SELECT
        DateKey             as ShipDateKey,
        Date                as ShipDate,
        CalendarYear        as ShipYear
FROM
        PowerBI.DimDate
)

As long as the number of columns and the number of rows is small, creating these
views and copy and pasting the prefix in front of all columns is doable. The brave
ones among us will still choose a solution built on dynamic SQL, as it’s really com‐
fortable to use once you have built it. And, as for all automatic solutions, it will guar‐
antee that the prefixes are spelled identically for all columns (which is not always the
case when you make changes manually in an editor).

The following code first defines a bunch of variables to identify the database object
the VIEW should be generated on (variables @SchemaName and @TableName), to specify
the VIEW that should be generated (variables @SchemaNameTarget and @TableName
Targe), and to articulate the prefix that will be applied to the name of the VIEW and all
columns. Another set of helper variables is defined to host the list of the names of the
columns (@ColumnList) and the separator (@Separator).

Then, a SELECT statement aggregates, via function STRING_AGG, a string containing
the column names of the source object in the format we need it in when creating the
view (including brackets and the alias definition). For example, for a query list list
containing only DateKey and Date, the aggregation creates this string: [DateKey] as
[OrderDateKey], [Date] as [OrderDate]. This string is then printed to the console
output with the rest of the text to form a valid CREATE OR ALTER VIEW statement:

-- Automate renaming
DECLARE
        @SchemaName sysname = 'PowerBI',
        @TableName sysname = 'DimDate',
        @SchemaNameTarget sysname = 'roleplaying',
        @TableNameTarget sysname = 'Date',
        @Prefix nvarchar(50) = 'Ship';

DECLARE
        @ColumnList nvarchar(max),
        @Separator nvarchar(50) = N',' + char(10) + char(09) -- + char(13)
        ;
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SELECT
        @ColumnList = STRING_AGG(QUOTENAME(c.name) + ' AS ' +
          QUOTENAME(@Prefix + c.name), @Separator) WITHIN GROUP(
          ORDER BY c.column_id)
FROM
        (SELECT t.object_id, t.schema_id FROM sys.tables t UNION ALL
         SELECT v.object_id, v.schema_id FROM sys.views v) t
JOIN sys.columns c ON c.object_id=t.object_id
WHERE
        OBJECT_NAME(t.object_id) = @TableName AND
        SCHEMA_NAME(t.schema_id) = @SchemaName;
print '
CREATE OR ALTER VIEW ' + QUOTENAME(@SchemaNameTarget) + '.' +
  QUOTENAME('vw_' + @Prefix + @TableNameTarget) + ' AS (
SELECT
        ' + @ColumnList + '
FROM
        ' + QUOTENAME(@SchemaName) + '.' + QUOTENAME(@TableName) + '
)
'

To generate a view for a role-playing dimension, make sure to set the first five param‐
eters right, execute the code, and then copy, paste, and execute the generated code
from the console. Feel free to transform this code into a procedure, run the procedure
in an automatic manner, etc.

I usually also add a comment in the code inside the generated
VIEW’s definition to warn people not to change this definition by
hand, as their changes might be overwritten the next time I gener‐
ate the code again. I, myself, was thankful for such a hint several
times, when I, in the heat of a problem, was about to directly
change the content of such a view.

Next, I introduce you how to implement slowly changing dimensions with the help of
SQL.

Slowly Changing Dimensions
Implementing slowly changing dimensions (SCD) is only possible if you physically
store the data in a data warehouse (a logical data warehouse layer with views on e.g.,
the data source does not allow for SCD). If you want (or need?) to implement slowly
changing dimensions then there is no way around a data warehouse, where you per‐
sist the dimension’s data. Only with the persisted data can you compare newly arriv‐
ing data with the already existing data to track the changes. In this section I will show
you how to implement slowly changing dimensions of Type 1 (last change wins) and
Type 2 (creating separated rows for each version) in SQL, as well as explaining
Type 0.
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Example 18-2 and Table 18-1 illustrate the use cases:7

Example 18-2. Creating a source table and propagating it with sample rows

DROP TABLE IF EXISTS scd.SCDSource;
CREATE TABLE scd.SCDSource (
        AlternateKey int,
        Region nvarchar(50)
);
INSERT INTO scd.SCDSource
SELECT  0, 'NA'             UNION ALL
SELECT  1, 'Northwest'      UNION ALL
SELECT 10, 'United Kingdom'

Table 18-1. Sample rows of source table

AlternateKey Region
0 NA

1 Northwest

10 United Kingdom

Type 0: Retain Original
Type 0 means that the loaded data must not change. Implementation of the ETL task
is limited to inserting new rows. The NOT EXISTS clause makes sure to identify such
rows via the source’s business key (column AlternateKey). When rows get deleted in
the data source, nothing needs to be done in the data warehouse’s table. The same
applies to updated rows in the data source: the change is just be ignored. I store the
creation date in an additional column (CreatedAt):

-- SCD Type 0
DROP TABLE IF EXISTS scd.SCD0;
CREATE TABLE scd.SCD0 (
        AlternateKey int,
        Region nvarchar(50),
        CreatedAt datetime2
);

-- INSERT
INSERT INTO scd.SCD0
SELECT AlternateKey, Region, SYSDATETIME()
FROM scd.SCDSource stage
WHERE NOT EXISTS (SELECT TOP 1 1 FROM scd.SCD0 dwh WHERE dwh.AlternateKey =
  stage.AlternateKey)
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AlternateKey Region CreatedAt
0 NA 2023-07-08 07:46:16.9373128

1 Northwest 2023-07-08 07:46:16.9373128

10 United Kingdom 2023-07-08 07:46:16.9373128

Type 1: Overwrite
I implement Type 1 in a way where it not only overwrites existing rows of data but
keeps track of changes (e.g., timestamp of the change, which process changed the
data, etc.). Checking changes for columns that can be NULL involves some extra logic
to find out if the value changed to or from NULL. Instead of deleting rows, I only mark
them as deleted (soft delete) by updating a column with the current timestamp.
That’s why rows that were deleted in the data source trigger an UPDATE (and not a
DELETE) statement in the following code snippet.

In a first step, I load this table into the data warehouse (into another table). Let’s
make this table Type 1. This table contains all columns of the source table, plus some
additional columns to store metadata: a timestamp, when the row was firstly created
or the latest changes that happened, and a timestamp to mark it as deleted:

DROP TABLE IF EXISTS scd.SCD1
CREATE TABLE scd.SCD1 (
        AlternateKey int,
        Region nvarchar(50),
        ChangedAt datetime2,
        DeletedAt datetime2
);

A usual plain INSERT needs to be extended with a check to ensure that only rows that
don’t already exist are inserted into the data warehouse. The check for existence is
done via the business key AlternateKey. ChangedAt is propagated with the current
time and date, and DeletedAt is explicitly set to NULL (Example 18-3):

Example 18-3. Inserting rows into a table of type SCD 1

INSERT INTO scd.SCD1
SELECT AlternateKey, Region, SYSDATETIME(), null
FROM scd.SCDSource stage
WHERE NOT EXISTS (SELECT TOP 1 1 FROM scd.SCD1 dwh WHERE dwh.AlternateKey =
  stage.AlternateKey)
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The result is that we’ve got the three rows in the data warehouse, as you can see here:

AlternateKey Region ChangedAt DeletedAt
0 NA 2023-07-08 08:06:16.9373128 NULL

1 Northwest 2023-07-08 08:06:16.9373128 NULL

10 United Kingdom 2023-07-08 08:06:16.9373128 NULL

Let’s introduce now some changes to the source table (laid out in Example 18-4). We
cover the following cases:

• A new row appears in the source system (AlternateKey = 11). It must be inser‐
ted into the data warehouse. (That’s already covered with the statement
described in Example 18-3. Make sure to rerun this statement.)

• A row could be removed from the source table (AlternateKey = 0). In this case,
we expect the row’s DeletedAt to be filled with the current timestamp.

• An attribute could be changed in the source (AlternateKey = 1, where I changed
the region from “Northwest” to “Nordwest”). Then we expect the update to be
reflected in the data warehouse and the ChangedAt to be set to the current point
in time.

• A row could exist totally unchanged in the source system (AlternateKey = 10).
We have to make sure to not update any column for such rows.

Example 18-4. Simulating changes to the data source

INSERT INTO scd.SCDSource SELECT 11, 'Austria'
DELETE FROM scd.SCDSource WHERE AlternateKey=0;
UPDATE scd.SCDSource SET Region='Nordwest' WHERE AlternateKey=1

In case of the removed row, I don’t want to remove the row from the data warehouse,
but only mark it as removed. That’s why a deletion is implemented as an UPDATE that
sets the DeletedAt column to the current timestamp:

UPDATE dwh
SET
        dwh.[DeletedAt] = SYSDATETIME()
FROM [scd].[SCD1] dwh
WHERE NOT EXISTS (SELECT TOP 1 1 FROM scd.SCDSource stage WHERE stage.
  AlternateKey = dwh.AlternateKey)

An update is only justifiable if a change to one of the attributes of the row has hap‐
pened. This is important; otherwise I would update the column ChangedAt under all
circumstances (even when no change has happened). Someone reading this column
would then wrongly get the impression that a change happened. And any delta-load
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logic depending on the ChangedAt column would wrongly reload all rows instead,
and I’d end up with an unwanted full load.

If an attribute is nullable, the check for a change is a bit more complex. It is not
enough to just compare the columns from the source and from the data warehouse
table with each other. If either would be NULL, the comparison would evaluate to NULL
as well, and no update would happen. Instead, you need to additionally check if the
source IS NULL and the target IS NOT NULL or if the source is IS NOT NULL, but the
target IS NULL. In all these cases, we need to trigger the update as well. Also, we need
to set DeletedAt to NULL to resurrect a row in case the row was previously (soft)
deleted but happens to show up in the source again:

UPDATE [dwh]
SET
         [dwh].[Region] = [stage].[Region]
        ,[dwh].[ChangedAt] = SYSDATETIME()
        ,[dwh].[DeletedAt] = null
FROM [scd].[SCD1] [dwh]
INNER JOIN [scd].[SCDSource] [stage] on [dwh].AlternateKey=[stage].AlternateKey
WHERE
   ([dwh].[Region] <> [stage].[Region] OR
   ([dwh].[Region] IS NOT NULL AND [stage].[Region] IS NULL) OR
   ([dwh].[Region] IS NULL AND [stage].[Region] IS NOT NULL))

SQL Server 2022 (compatibility level 160+) introduced a new com‐
parison operator IS DISTINCT FROM, which is available in all Azure
tastes of SQL Server as well (Azure SQL Database, Azure SQL
Managed Instance, SQL Endpoint in Microsoft Fabric, and Ware‐
house in Microsoft Fabric). With the help of this operator, you can
replace the following:

([dwh].[Region] <> [stage].[Region] OR ([dwh].[Region]
  IS NOT NULL AND [stage].[Region] IS NULL) OR ([dwh].
  [Region] IS NULL AND [stage].[Region] IS NOT NULL))

with
[dwh].[Region] IS [NOT] DISTINCT FROM [stage].[Region]

This makes the code shorter and more readable.

If you’ve run all snippets as shown, the data warehouse table should look like this:

AlternateKey Region ChangedAt DeletedAt
0 NA 2023-07-08 08:06:16.9373128 2023-07-08 08:39:58.6840573

1 Northwest 2023-07-08 08:06:16.9373128 NULL

10 United Kingdom 2023-07-08 08:06:16.9373128 NULL

11 Austria 2023-07-08 08:31:41.4968427 NULL
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In a final step, I test if resurrection of previously deleted rows works as well. To prac‐
tice this, please execute the script to initialize the source table (Example 18-2) and
then rerun the load scripts (Examples 18-3, 18-5, and 18-6). This will reset the data
warehouse to a state where the rows with DeletedAt of NULL matches the initial state,
and ChangedAt has changed several times (except for the row with AlternateKey =
10, which never changed). A table of Type 1 will keep the extra row (Alternate
Key=11) but marked as deleted. Compared to a table without slowly changing dimen‐
sions, the number of rows might be slightly bigger.

AlternateKey Region ChangedAt DeletedAt
 0 NA 2023-07-08 08:46:37.0275009 NULL

 1 Northwest 2023-07-08 08:46:37.0275009 NULL

10 United Kingdom 2023-07-08 08:06:16.9373128 NULL

11 Austria 2023-07-08 08:31:41.4968427 2023-07-08 08:46:37.0275009

When you need to not only keep track that a change happened, but what a row
looked like before the change, then you need to implement slowly changing dimen‐
sions of Type 2.

Type 2: Add New Row
A slowly changing dimension Type 2 (SCD2) is similar to Type 1 for new and deleted
rows but different for rows changed in the data source: in the case of a change of an
attribute, you do not simply overwrite the row in the data warehouse but keep the old
row (and mark it as old) and insert an additional row (with the changed attributes).

Before you can do the initial load, you need to create the table in the data warehouse.
Instead of ChangedAt and DeletedAt, it contains ValidFrom and ValidUntil to spec‐
ify a range of time when this version of a row was or is active. It’s important to point
out that a surrogate key (SID) is mandatory in this scenario. The business key (Alter
nateKey) will not be unique, as there will (soon) be multiple versions of this key
stored in the table:

DROP TABLE IF EXISTS scd.SCD2
CREATE TABLE scd.SCD2 (
        SID int identity(1,1),
        AlternateKey int,
        Region nvarchar(50),
        ValidFrom datetime2,
        ValidUntil datetime2
);

Inserting into a Type 2 table is similar to inserting into a Type 1 table (see
Example 18-5). Ensure that an active row for this business key (AlternateKey)
doesn’t already exist. A row is active if ValidUntil is NULL. ValidFrom is propagated
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with the current timestamp, and ValidUntil is explicitly set to NULL for this new row.
(Alternatively, you could also set it to a date in the far future, like December 31 in
year 9999. This has, though, the potential to create huge date tables in Power BI in
case users don’t follow best practices and either do not turn off the auto date/time
setting, as described in “Time and Date” on page 116, or use function CALENDARAUTO,
as described in “Time and Date” on page 203).

Example 18-5. Inserting rows into a table of type SCD2

INSERT INTO [scd].[SCD2] ([AlternateKey], [Region], [ValidFrom], [ValidUntil])
SELECT [stage].[AlternateKey], [stage].[Region], SYSDATETIME() AS [ValidFrom],
  null AS [ValidUntil]
FROM [scd].[SCDSource] [stage]
WHERE NOT EXISTS (
        SELECT TOP 1 1
        FROM [scd].[SCD2] [dwh]
        WHERE [dwh].AlternateKey=[stage].AlternateKey
                AND [dwh].[ValidUntil] IS NULL
        )

The result is that you’ve got the three rows in the data warehouse, as you can see in
the following table:

SID AlternateKey Region ValidFrom ValidUntil
1 0 NA 2023-07-08 10:00:06.9957244 NULL

2 1 Northwest 2023-07-08 10:00:06.9957244 NULL

3 10 United Kingdom 2023-07-08 10:00:06.9957244 NULL

Let’s now introduce the same changes to the source table as in the Type 1 scenario
(laid out in Example 18-4). After applying the changes to the source table, make sure
to rerun Example 18-5.

In case of the removed row, I don’t want to remove the row from the data warehouse
but only mark it as removed. That’s why a delete is implemented as an UPDATE state‐
ment that sets the ValidUntil column to the current timestamp (Example 18-6).

Example 18-6. Soft deleting rows in a table of type SCD2

UPDATE dwh
SET dwh.[ValidUntil] = SYSDATETIME()
FROM [scd].[SCD2] dwh
WHERE
        dwh.SID >= 1 AND
        ISNULL(dwh.[ValidUntil], SYSDATETIME()) >= SYSDATETIME() AND
        NOT EXISTS (SELECT TOP 1 1 FROM [scd].[SCDSource] stage
        WHERE dwh.AlternateKey=stage.AlternateKey)
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An update is only justifiable if a change to one of the attributes of the row has hap‐
pened. This is important, as otherwise we would update the column ValidUntil for
all existing rows and re-create new versions for the AlternateKey. The dimension
table would unnecessarily insert a row for every AlternateKey with every single load.
In the case of a daily load, after a year, 365 versions of every region would exist, even
when no column changes its values. Therefore, make sure to test this case thoroughly.

Nullable attributes need a special treatment, as well (also described in the section
about Type 1). An update must be done in two steps: soft delete the old version via
UPDATE, then insert the new version of the row, as you can see in Example 18-7.

Example 18-7. Updating a row in a table of type SCD2

-- INACTIVATE OLD VERSION
UPDATE dwh
SET dwh.[ValidUntil] = SYSDATETIME()
FROM [scd].[SCD2] dwh
INNER JOIN [scd].[SCDSource] stage on dwh.AlternateKey=stage.AlternateKey
WHERE
        dwh.SID >= 1 AND
        ISNULL(dwh.[ValidUntil], SYSDATETIME()) >= SYSDATETIME() AND
        ([dwh].[Region] <> [stage].[Region] OR ([dwh].[Region]
          IS NOT NULL AND  [stage].[Region] IS NULL) OR ([dwh].[Region]
          IS NULL AND  [stage].[Region] IS NOT NULL))
-- INSERT NEW VERSION
INSERT INTO [scd].[SCD2] ([AlternateKey], [Region], [ValidFrom], [ValidUntil])
SELECT [stage].[AlternateKey], [stage].[Region], SYSDATETIME() AS [ValidFrom],
  null AS [ValidUntil]
FROM [scd].[SCDSource] stage
WHERE
        EXISTS (SELECT TOP 1 1 FROM [scd].[SCD2] dwh WHERE dwh.AlternateKey=
          stage.AlternateKey
        AND ([dwh].[Region] <> [stage].[Region] OR ([dwh].[Region]
          IS NOT NULL AND  [stage].[Region] IS NULL) OR ([dwh].[Region]
          IS NULL AND  [stage].[Region] IS NOT NULL))
        AND dwh.SID >= 1
        )

If you have executed all snippets as described, the data warehouse table will now look
like the following:

SID AlternateKey Region ValidFrom ValidUntil
1 0 NA 2023-07-08 10:00:06.9957244 2023-07-08 10:09:27.5110675

2 1 Northwest 2023-07-08 10:00:06.9957244 2023-07-08 10:14:11.3859165

3 10 United Kingdom 2023-07-08 10:00:06.9957244 NULL

4 11 Austria 2023-07-08 10:04:56.1362259 NULL

5 1 Nordwest 2023-07-08 10:14:11.3859165 NULL
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In a final step, I want to test if resurrection of previously deleted rows works as well.
To practice this, please execute the script to initialize the source table (Example 18-2)
and then rerun the load scripts (Examples 18-7, 18-8, and 18-9). This will reset the
data warehouse, to a state where the active rows match the initial state. You can
clearly see that a table with Slowly Changing Dimensions Type 2 can grow very fast
in, number of rows, as every change (and re-change) creates its own row:

SID AlternateKey Region ValidFrom ValidUntil
1 0 NA 2023-07-08 10:00:06.9957244 2023-07-08 10:09:27.5110675

2 1 Northwest 2023-07-08 10:00:06.9957244 2023-07-08 10:14:11.3859165

3 10 United Kingdom 2023-07-08 10:00:06.9957244 NULL

4 11 Austria 2023-07-08 10:04:56.1362259 2023-07-08 10:18:46.0263334

5 1 Nordwest 2023-07-08 10:14:11.3859165 2023-07-08 10:18:46.0263334

6 0 NA 2023-07-08 10:18:46.0263334 NULL

7 1 Northwest 2023-07-08 10:18:46.0263334 NULL

Another challenge that can happen with every dimension is that it can store hierarch‐
ical information. Continue to read if you want to learn how you can use SQL to
transform this information into a shape that can be consumed easily by Power BI.

Hierarchies
If you followed all best practices described in this book so far, then you already have
denormalized all natural hierarchies in the dimension tables, as described in
“Denormalizing” on page 375. With the natural hierarchy denormalized, you have all
levels of the hierarchy as columns in one table. Adding them to a hierarchy is easy.

Here I want to concentrate on parent-child hierarchies. They are very common, and
for the sake of Power BI, you need to store the names of all parent levels in dedicated
columns. Therefore, you need to bring the parent-child hierarchy into a materialized
path.

Before you can create the materialized path for the hierarchy, you have to merge and
expand the query as many times as levels you have. You could do this by writing a
JOIN per (expected) level of the parent-child hierarchy, but it would have the draw‐
back of duplicated code (similar to the first, static, solution in Power Query,
described in “Hierarchies” on page 286). While in Power Query, you need a function
to solve this problem in a dynamic way. You can use a common table expression to
solve this within a query. The result delivers, then, one row per level. To turn those
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8 The examples in this section use the 208 Hierarchies.sql file.

rows into columns, you need to PIVOT the result. The query in Example 18-8 shows
the full code.8

Example 18-8. Pivoting a self-referencing hierarchy.

;WITH PCCTE AS (
SELECT
        EmployeeKey, ParentEmployeeKey,
        convert(varchar(max), FirstName + ' ' + LastName) as FullName,
        1 as Lvl,
        convert(varchar(max), FirstName + ' ' + LastName) as [Path],
        CONVERT(bit, CASE WHEN EXISTS (SELECT 1 FROM dbo.DimEmployee sde
        WHERE sde.ParentEmployeeKey = DimEmployee.EmployeeKey)
        THEN 0 ELSE 1 END) IsLeaf
FROM dbo.DimEmployee
WHERE ParentEmployeeKey IS NULL
UNION ALL
SELECT
        child.EmployeeKey, child.ParentEmployeeKey,
        convert(varchar(max), FirstName + ' ' + LastName) as FullName,
        parent.Lvl + 1 as Lvl,
        convert(varchar(max), parent.[Path] + '|' + child.FirstName + ' ' + child.
          LastName) as [Path],
        CONVERT(bit, CASE WHEN EXISTS (SELECT 1 FROM dbo.DimEmployee sde
        WHERE sde.ParentEmployeeKey = child.EmployeeKey)
        THEN 0 ELSE 1 END) IsLeaf
FROM dbo.DimEmployee child
JOIN PCCTE parent ON parent.EmployeeKey= child.ParentEmployeeKey
)
SELECT *
FROM (
        SELECT c.*, [split].[Value], 'Level ' +  convert(varchar, ROW_NUMBER() OVER(
          PARTITION BY EmployeeKey ORDER BY [Lvl] DESC)) AS [ColumnName]
        FROM   PCCTE AS c
        CROSS APPLY STRING_SPLIT([Path], '|') AS split
        ) AS t
PIVOT(
        MAX([Value])
        FOR ColumnName
        IN([Level 1], [Level 2], [Level 3], [Level 4], [Level 5], [Level 6],
          [Level 7])
        ) p
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CTE can divide the code of a query into smaller parts, which are
easier for the developer and the database management system to
digest. I sometimes call CTEs “named subqueries”: you define a
query, name it, and then join it in the main portion of your SELECT
statement. But there’s more: you can refer to a CTE within its own
definition. This will start iterations over the resulting content of the
CTE. Such a (recursive) CTE must start with a query that doesn’t
reference itself. This is called the anchor query of the recursive
CTE. Then you UNION this SELECT with a second SELECT statement,
which references the CTE. When the CTE is referenced during the
first iteration, its content is simply what the first (anchor) query
returns. During the second iteration, the CTE contains what the
first iteration contained. And so forth until an iteration doesn’t
return any rows, or until a maximum iteration is reached (which
can be set via options, including 0 for no limit).

Don’t forget to add some logic to your measures, as described in “Hierarchies” on
page 210, to avoid this hierarchy being expanded to unnecessary levels.

Key Takeaways
In this chapter, I showed you how you can apply the power of SQL to bring a data
model into a star schema and solve typical use cases. Specifically, you learned the
following:

• Normalizing your fact tables involves steps to find candidates for dimensions.
GROUP BY and COUNT(*) are helpful to get an idea of the cardinality of a column,
even before you load it into the data model.

• You create a (denormalized) dimension table by joining all necessary tables and
creating a DISTINCT list of columns.

• Don’t spend too much time on calculations in SQL. DAX is usually the better
place.

• Physically adding variations for a table (for role-playing purposes) is very easy:
you just create several views with renamed columns, based on the same query.

• You can flatten parent-child-hierarchies by applying several steps. You learned
about recursive common table expressions and the PIVOT keyword in SQL.

Continue with the next chapter to learn how to support advanced data modeling use
cases in SQL.
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CHAPTER 19

Real-World Examples Using SQL

Chapter 3 introduces real-world use cases I’ve encountered while working on
projects for customers and how I solved them in Power BI. Being able to “attack” a
problem with different “weapons” is of help when it comes to those challenges. You
always need to be flexible and sometimes think out-of-the box to find the right
approach. In this chapter, I demonstrate how to generate and shape tables in SQL:

• You’ll learn how to generate both the bin table and the bin range table in SQL.
• To resolve a many-to-many relationship (like for a budget that is on a different

level of granularity than the actual values), you need to create a bridge table. This
can be done easily in SQL.

• For the demonstrated solution for multi-language reports, you need a table con‐
taining the texts for headlines, buttons, etc. I will show you how you can pivot
the table, so it perfectly fits the solution.

• Key-value pair tables are hard to query in the shape they are in natively. There‐
fore, you will learn how you can pivot the table to bring it in an analytics-friendly
shape.

• I’ll show you what role a data warehouse plays in the concept of self-service BI
versus enterprise BI.

Binning
In “Binning” on page 58, I describe three solutions. All of the necessary tables can be
created in SQL. Remember that I wouldn’t recommend adding the bin information
into the fact table, as a change in the bin ranges would mean updating the whole fact
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table. That’s why you should look at the two other solutions only. The file used in this
section’s examples is 301 Binning.sql.

Deriving the Lookup Table from the Facts
Creating a DISTINCT list of values for the lookup table (which contains, then, every
possible value and its bin) in SQL is easy, as there is a dedicated keyword for that.
The name of the bin can be created with the help of the CASE keyword. CASE is similar
to DAX’s SWITCH function, which I introduce in “Binning” on page 216:

CREATE OR ALTER VIEW bin.vw_QuantityBin AS
SELECT
        DISTINCT
        OrderQuantity,
        CASE
        WHEN OrderQuantity <=  5 THEN 'Small'
        WHEN OrderQuantity <= 10 THEN 'Medium'
        ELSE                          'Large'
        END QuantityBin
FROM
        PowerBI.FactResellerSales

OrderQuantity QuantityBin
33 Large

1 Small

6 Medium

38 Large

12 Large

… …

To use this bin table in a query, you join view vw_QuantityBin with the fact table on
the OrderQuantity column. This looks a bit unusual, as the OrderQuantity column
in the fact table is not a classic foreign key, but we use it in such a way. This frees you
from the burden of needing to create an additional foreign key in the fact table
(which would occupy space and would need to be maintained if the ranges of the bins
should change):

SELECT
        frs.OrderQuantity,
        qb.QuantityBin,
        frs.*
FROM
        PowerBI.FactResellerSales frs
JOIN bin.vw_QuantityBin qb ON
    qb.OrderQuantity = frs.OrderQuantity
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Due to a high number of distinct values, the bin table could be huge. This is the case
for the SalesAmount column. To reduce the number of rows, you could create this
bin list not on the fact table’s value, but, e.g., on the thousandths of the value. You
simply take the preceding code snippet and replace OrderQuantity with SalesAmount
/1000, which can be aliased as SalesAmountK. The changed code is listed here:

CREATE OR ALTER VIEW bin.vw_SalesAmountBin AS
SELECT
        DISTINCT
        CONVERT(int, SalesAmount/1000) SalesAmountK,
        CASE
        WHEN SalesAmount/1000 <=  5 THEN 'Small'
        WHEN SalesAmount/1000 <= 10 THEN 'Medium'
        ELSE                             'Large'
        END SalesAmountBin
FROM
        PowerBI.FactResellerSales

SalesAmountK SalesAmountBin
1 Small

6 Medium

12 Large

26 Large

… …

As the goal is, again, to not add columns to the fact table you need to implement the
division by 1,000 in the JOIN predicate:

SELECT
        frs.SalesAmount,
        sb.SalesAmountBin,
        frs.*
FROM
        PowerBI.FactResellerSales frs
JOIN bin.vw_SalesAmountBin sb ON
sb.SalesAmountK = CONVERT(int, frs.SalesAmount/1000)

Generating a Lookup Table
Depending on the size of the fact table, querying the distinct values of the fact table to
create the bin table can result in a bad performance and put pressure on your
resources, leading to a long query duration. The following code queries the fact table
too, but asks for the smallest and largest OrderQuantity, which can sometimes be
calculated more efficiently. That’s why I included this version here as well:

CREATE OR ALTER VIEW bin.vw_QuantityBin AS
WITH
MinNumber AS (SELECT MIN(OrderQuantity) MinNumber FROM PowerBI.
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  FactResellerSales),
MaxNumber AS (SELECT MAX(OrderQuantity) MaxNumber FROM PowerBI.
  FactResellerSales),
NumberTable AS (
SELECT N as Number
FROM demo.GetNumsItzikBatch(0, (SELECT MaxNumber FROM MaxNumber)))
SELECT
        Number as OrderQuantity,
        CASE
        WHEN Number <=  5 THEN 'Small'
        WHEN Number <= 10 THEN 'Medium'
        ELSE                   'Large'
        END QuantityBin
FROM
        NumberTable

OrderQuantity QuantityBin
0 Small

1 Small

2 Small

3 Small

4 Small

5 Small

6 Medium

7 Medium

… …

Range Table
A completely different way of looking at the problem is not to create a table contain‐
ing all possible values and their bins but a table that specifies the ranges per bin, with
a lower and an upper value. You can create such a lookup table if you UNION a simple
SELECT statement that provides the bin’s name and the ranges. But I guess it would be
better if a domain user, rather than a SQL developer, has sole control over the names
and ranges. Here’s the code:

CREATE OR ALTER VIEW bin.[vw_QuantityBin Range] AS (
SELECT 'Small'  [QuantityBin], null [Low (incl.)], 5 [High (excl.)] UNION ALL
SELECT 'Medium' [SalesAmountBin], 5 [Low (incl.)], 10 [High (excl.)] UNION ALL
SELECT 'Large'  [QuantityBin], 10 [Low (incl.)], null [High (excl.)]
)
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QuantityBin Low (incl.) High (excl.)
Small NULL 5

Medium 5 10

Large 10 NULL

The created table is much smaller, but using the table in a join is slightly more com‐
plex: you need to get the non-equi-joins (>= and <) into the correct shape and treat
the NULLs in the ranges correctly:

SELECT
        frs.OrderQuantity,
        sb.QuantityBin,
        frs.*
FROM
        PowerBI.FactResellerSales frs
JOIN bin.[vw_QuantityBin Range] sb ON
        (frs.OrderQuantity >= sb.[Low (incl.)]  OR sb.[Low (incl.)]   IS NULL)
          AND
        (frs.OrderQuantity <  sb.[High (excl.)] OR sb.[High (excl.)]  IS NULL)

OrderQuantity QuantityBin OrderDateKey …
… … … …

3 Small 20231101 …

3 Small 20231101 …

6 Medium 20201201 …

5 Medium 20201201 …

… … … …

Next, I show you how to create the bridge table discussed in “Budget” on page 60 as a
solution to avoid many-to-many relationships.

Budget
The “long story short” in “Budget” on page 60 is that you need a bridge table between
the Budget table and the Product table because the Product Group column isn’t
unique in either of the two tables. Power BI will only allow creating a relationship of a
many-to-many cardinality based on Product Group. Such relationships have more
unintended effects in Power BI than one-to-many relationships. The bridge table
allows you to transform the many-to-many relationship into two one-to-many
relationships.
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1 The examples in this section use the 302 Budget.sql file.

Creating the bridge table is a very simple SELECT statement with DISTINCT over the
Product Group column of each table. Then you combine these two queries with a
UNION:1

CREATE OR ALTER VIEW budget.ProductGroup AS
SELECT DISTINCT ProductGroup from budget.Product
UNION
SELECT DISTINCT ProductGroup from budget.Budget

ProductGroup
Group 1

Group 2

Group 3

When creating a bridge table, you need to write a UNION and not a
UNION ALL. UNION will scan the result for duplicates and remove
them. UNION ALL would keep Product Group values that appear in
both the Product table and the Budget table (e.g., “Group 2”). The
bridge table must not contain duplicates.

The next section cover how to implement pivoting with SQL.

Multi-Language Model
For this section’s examples, I use the 303 Localized model.sql file and concentrate on
the Textcomponent table that contains the parts of a report (headlines, buttons, etc.)
which are usually static. Such a table for two pieces of text (Sales Overview and
Sales Details) and languages—English (EN) and Klingon (tlh-Latn)—could look
like the following:

CREATE OR ALTER VIEW [language].[TextComponent] AS
(
SELECT 'EN' [LanguageID], 'SalesOverview' [TextComponent],
  'Sales Overview' [DisplayText]
UNION ALL
SELECT 'EN' [LanguageID], 'SalesDetails' [TextComponent],
  'Sales Details' [DisplayText]
UNION ALL
SELECT 'tlh-Latn' [LanguageID], 'SalesOverview' [TextComponent],
  'QI''yaH' [DisplayText]
UNION ALL
SELECT 'tlh-Latn' [LanguageID], 'SalesDetails' [TextComponent],
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  'qeylIS belHa''' [DisplayText]
)

LanguageID TextComponent DisplayText
EN SalesOverview Sales Overview

EN SalesDetails Sales Details

tlh-Latn SalesOverview QI’yaH

tlh-Latn SalesDetails qeylIS belHa’

This table can easily be used after it’s been pivoted (one column per piece of text, one
row per language). As it will be in an active one-to-many relationship with the
Language table, only one row (one language) will be available at query time.

Fortunately, SQL provides the PIVOT keyword to transform rows into columns. You
need to provide the following:

• An aggregate function and the name of the column whose content you want
pivot into different columns. For text columns, you choose either the MIN or the
MAX function, which will return the alphabetically first or last text, in case there is
more than one row available for a piece of text. Even if you are convinced that
this is not the case, using PIVOT is mandatory to provide such an aggregate
function.

• The name of the column whose content should be transformed into column
names, after the FOR keyword.

• A list of the new column names (a list of the expected content of the column
name whose content should be transformed into column names) provided after
the IN keyword.

The code looks straightforward:

CREATE OR ALTER VIEW [language].[vw_TextComponent]
SELECT
        *
FROM
        [language].[TextComponent] tc
PIVOT
(
        MIN([DisplayText])
        FOR [TextComponent]
        IN (
                [SalesOverview],
                [SalesDetails]
        )
) p
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LanguageID SalesOverview SalesDetails
EN Sales Overview Sales Details

tlh-Latn QI’yaH qeylIS belHa’

On top of my wish list for the SQL syntax is to be able to provide the list of column
names for the IN keyword as a subquery. Unfortunately, this is not supported by the
language. Therefore, you need to either manually update the code every single time a
new value for TextComponent is added to the table, or reach out to dynamic SQL to
generate the whole SELECT statement including the list of column names, as you can
see here:

DECLARE
        @CRLF nvarchar(MAX) = CHAR(13)+CHAR(10),
        @cmd nvarchar(MAX),
        @ColumnNameList nvarchar(max)
SELECT
        @ColumnNameList   = STRING_AGG([ColumnNameKey],   ', ')
          WITHIN GROUP (ORDER BY [ColumnNameKey])
FROM
        (SELECT
                DISTINCT
                CONVERT(nvarchar(max), [TextComponent] + @CRLF)
                  as [ColumnNameKey]
        FROM
                (
                SELECT
                        DISTINCT
                        QUOTENAME(TRIM(tc.[TextComponent])) [TextComponent]
                FROM [language].[TextComponent] tc
                ) k
        ) x;

-- VIEW
SET @cmd=N'
CREATE OR ALTER VIEW [language].[vw_TextComponent]
AS
(
/*** DO NOT MAKE ANY CHANGES DIRECTLY ***/
/*** This code was generated ***/
SELECT *
FROM [language].[TextComponent] tc
PIVOT
(
        MIN([DisplayText])
        FOR [TextComponent] IN (
'        + @ColumnNameList + N'
        )
) as p
'
exec sp_executesql @stmt = @cmd
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When using dynamic SQL, always ensure that SQL injection is pro‐
hibited. You can find a good guide for this at Microsoft.
In this book’s code examples, the problem of SQL injection is
rather negligible, as the injected text is not an input from a (possi‐
bly untrustworthy) user but from a key-value pair table, delivered
from an application and from a lookup table maintained by you.
On top of that, the function QUOTENAME will wrap every key inside
of brackets. In case the name of a key contains harmful code, it
would simply not be executed but treated as part of the key’s name
only.

I first declared the variables. One contains the two characters for carriage return and
line feed (@CRLF), so that list of column names can be put one per line. Variable @cmd
hosts the whole SQL statement to create the view. And @ColumnNameKey will contain
the list of column names, which is used for the IN clause for PIVOT.

The @ColumnNameList is propagated in the inner SELECT with DISTINCT values of the
TextComponent column. The values are trimmed (function TRIM) to cut off leading
and trailing whitespace. Function QUOTENAME wraps the content inside brackets ([])
and will add escape characters in case the TextComponent contains any “]” character
itself. I then append @CRLF and convert the content explicitly to a varchar(max) so no
column name is cut off. In the outermost SELECT, I aggregate all the column names
with function STRING_AGG and a comma (“,”) as a separator in alphabetical order.

The @cmd variable is then assigned to a string containing the full CREATE OR ALTER
VIEW command, where I replace a hardcoded list for IN with the content of
@ColumnNameList. Here is the generated command:

CREATE OR ALTER VIEW [language].[vw_TextComponent]
AS
(
--/*** DO NOT MAKE ANY CHANGES DIRECTLY ***/
--/*** This code was generated ***/
SELECT        *
FROM [language].[TextComponent] tc
PIVOT
(
        MIN([DisplayText])
        FOR [TextComponent] IN (
[SalesDetails]
, [SalesOverview]

        )
) as p
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2 The examples in this section use the 304 Key Value.sql file.

In the next section, you’ll face a similar challenge: pivoting a table. Additionally, it
will be necessary to find the correct data types for the columns, which adds a bit of
complexity to the problem.

Key-Value Pair Tables
The problem for the key-value pair table is similar to that of the TextComponent
table—it needs to be pivoted. There is an additional challenge, though. While all col‐
umns in the pivoted TextComponent table are of a string data type (varchar), the
types for the columns of the pivoted key-value pair table can be of any data type.2

Here’s the table:

CREATE TABLE [dwh].[KeyValue] (
        [_Source] varchar(20),
        [ID] int,
        [Key] nvarchar(3000),
        [Value] nvarchar(3000),
        [Type] nvarchar(125)
)
;

INSERT INTO [dwh].[KeyValue] VALUES
('[dwh].[KeyValue]', 1,        'name'          ,'Bill'         ,'text'),
('[dwh].[KeyValue]', 1,        'city'          ,'Seattle'      ,'text'),
('[dwh].[KeyValue]', 2,        'name'          ,'Jeff'         ,'text'),
('[dwh].[KeyValue]', 2,        'city'          ,'Seattle'      ,'text'),
('[dwh].[KeyValue]', 3,        'name'          ,'Markus'       ,'text'),
('[dwh].[KeyValue]', 3,        'city'          ,'Alkoven'      ,'text'),
('[dwh].[KeyValue]', 1,        'revenue'       ,'20000'        ,'Int64.Type'),
('[dwh].[KeyValue]', 2,        'revenue'       ,'19000'        ,'Int64.Type'),
('[dwh].[KeyValue]', 3,        'revenue'       ,'5'            ,'Int64.Type'),
('[dwh].[KeyValue]', 1,        'firstPurchase' ,'1980-01-01'   ,'date'),
('[dwh].[KeyValue]', 2,        'firstPurchase' ,'2000-01-01'   ,'date'),
('[dwh].[KeyValue]', 3,        'firstPurchase' ,'2021-01-01'   ,'date'),
('[dwh].[KeyValue]', 1,        'zip'           ,'0100'         ,'text'),
('[dwh].[KeyValue]', 2,        'zip'           ,'0200'         ,'text'),
('[dwh].[KeyValue]', 3,        'zip'           ,'0300'         ,'text')

_Source ID Key Value Type
[dwh].[KeyValue] 1 name Bill text

[dwh].[KeyValue] 1 city Seattle text

[dwh].[KeyValue] 2 name Jeff text

[dwh].[KeyValue] 2 city Seattle text
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_Source ID Key Value Type
[dwh].[KeyValue] 3 name Markus text

[dwh].[KeyValue] 3 city Alkoven text

[dwh].[KeyValue] 1 revenue 20,000 Int64.Type

[dwh].[KeyValue] 2 revenue 19,000 Int64.Type

[dwh].[KeyValue] 3 revenue 5 Int64.Type

[dwh].[KeyValue] 1 firstPurchase 1980-01-01 date

[dwh].[KeyValue] 2 firstPurchase 2000-01-01 date

[dwh].[KeyValue] 3 firstPurchase 2021-01-01 date

[dwh].[KeyValue] 1 zip 0100 text

[dwh].[KeyValue] 2 zip 0200 text

[dwh].[KeyValue] 3 zip 0300 text

I will first teach you how to write the static code before jumping to dynamic SQL.
When you apply the PIVOT keyword in the same way as in “Multi-Language Model”
on page 404, you’ll be disappointed because you’ll get more rows than expected, with
many column values being NULL:

-- PIVOT
SELECT
        *
FROM
        [dwh].[KeyValue] kv
PIVOT
(
        MIN([Value])
        FOR [Key]
        IN (
                [name],
                [city],
                [revenue],
                [firstPurchase],
                [zip]
        )
) p

_Source ID Type name city revenue firstPurchase zip
[dwh].[KeyValue] 1 date NULL NULL NULL 1980-01-01 NULL

[dwh].[KeyValue] 1 Int64.Type NULL NULL 20,000 NULL NULL

[dwh].[KeyValue] 1 text Bill Seattle NULL NULL 0100

[dwh].[KeyValue] 2 date NULL NULL NULL 2000-01-01 NULL

[dwh].[KeyValue] 2 Int64.Type NULL NULL 19,000 NULL NULL

[dwh].[KeyValue] 2 text Jeff Seattle NULL NULL 0200

[dwh].[KeyValue] 3 date NULL NULL NULL 2021-01-01 NULL
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_Source ID Type name city revenue firstPurchase zip
[dwh].[KeyValue] 3 Int64.Type NULL NULL 5 NULL NULL

[dwh].[KeyValue] 3 text Markus Alkoven NULL NULL 0300

You could GROUP BY column ID and apply function MIN on all pivoted columns.
Before you do that, let’s think about why you receive these extra rows. The reason for
this behavior can be found in the Type column. There are several Types per ID.
Removing the column Type from the query will also remove the extra rows. You need
to tell SQL to ignore this column for the sake of pivoting. That’s why I rewrote the
query with a subselect in the first FROM clause, replacing the simple reference to the
table. The subselect queries only the necessary columns (ID, Key, and Value):

-- PIVOT without Type column
SELECT
        *
FROM
        (SELECT [ID], [Key], [Value] FROM [dwh].[KeyValue]) kv
PIVOT
(
        MIN([Value])
        FOR [Key]
        IN (
                [name],
                [city],
                [revenue],
                [firstPurchase],
                [zip]
        )
) p

ID name city revenue firstPurchase zip
1 Bill Seattle 20,000 1980-01-01 0100

2 Jeff Seattle 19,000 2000-01-01 0200

3 Markus Alkoven 5 2021-01-01 0300

The next improvement is to get the data types right. PIVOT will keep the data type of
the Value column and will make all columns in the result set a VARCHAR(3000).
Because there’s simply no guarantee that the Value for a Key really sticks to the
expected data type (described in the Type column), I prefer to use the function
TRY_CONVERT. In case a value cannot be converted to the desired data type, this func‐
tion does not throw an error (as function CONVERT would do) but simply returns NULL
as the result after conversion. You need to decide on your own if you prefer an error
or NULL.

Here is the improved code for the VIEW:

410 | Chapter 19: Real-World Examples Using SQL



CREATE OR ALTER VIEW [PowerBI].[KeyValue]
AS
(
SELECT
        p.ID [ID]
        , TRY_CONVERT(NVARCHAR(3000),   [city])             AS [city]
        , TRY_CONVERT(DATE,             [firstPurchase])    AS [firstPurchase]
        , TRY_CONVERT(NVARCHAR(3000),   [name])             AS [name]
        , TRY_CONVERT(BIGINT,           [revenue])          AS [revenue]
        , TRY_CONVERT(NVARCHAR(3000),   [zip])              AS [zip]
FROM (SELECT [ID], [Key], [Value] FROM [dwh].[KeyValue]) kv
PIVOT
        (MIN([Value]) FOR [Key] IN (
          [city]
        , [firstPurchase]
        , [name]
        , [revenue]
        , [zip]
        )
) as p
)

I bet you already see the drawback of this static code: if new keys are added, you
always need to adopt the definition of the VIEW. You need to maintain the column list
in the projection (SELECT) and in the PIVOT list. You also need to choose the right
data type per column. If, over time, many new keys are added, maintaining the defi‐
nition of the VIEW can take up a lot of your time. That’s where dynamic SQL can
come in. First, create a table that matches the content of the Type column to a data
type available in SQL:

-- KeyType
DROP TABLE IF EXISTS [KeyValue].[KeyType];
CREATE TABLE [KeyValue].[KeyType] (
        KeyType nvarchar(128),
        KeyDescription nvarchar(128),
        DataType nvarchar(128)
)
INSERT INTO [KeyValue].[KeyType] VALUES
(N'text',           N'Text',                    N'NVARCHAR(3000)' ),
(N'Int64.Type',     N'Whole Number',            N'BIGINT'),
(N'number',         N'Decimal Number',          N'DOUBLE' ),
(N'currency',       N'Fixed Decimal Number',    N'DECIMAL(19,4)' ),
(N'Percentage',     N'Percentage',              N'DECIMAL(19,4)' ),
(N'datetime',       N'Date/Time',               N'DATETIME2' ),
(N'date',           N'Date',                    N'DATE' ),
(N'time',           N'Time',                    N'TIME' ),
(N'datetimezone',   N'Date/Time/Timezone',      N'DATETIMEOFFSET' ),
(N'duration',       N'Duration',                N'DOUBLE' ),
(N'logical',        N'True/False',              N'BIT' ),
(N'binary',         N'Binary',                  N'VARCHAR(max)' )
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KeyType KeyDescription DataType
text Text NVARCHAR(3000)

Int64.Type Whole Number BIGINT

number Decimal Number DOUBLE

currency Fixed Decimal Number DECIMAL(19,4)

Percentage Percentage DECIMAL(19,4)

datetime Date/Time DATETIME2

date Date DATE

time Time TIME

datetimezone Date/Time/Timezone DATETIMEOFFSET

duration Duration DOUBLE

logical True/False BIT

binary Binary VARCHAR(max)

As a side effect, this table gives also a good overview about which
data type in Power Query is compatible with which data type in
SQL.

Second, create a stored procedure that creates the VIEW. The first step in the proce‐
dure is to LEFT JOIN the key-value pair table (KeyValue) and the lookup table for the
data types (KeyType). If a data type can’t be found, I default to NVARCHAR(3000). With
function STRING_AGG, I concatenate the list of keys to a comma-separated list. I do
this twice: once for a plain list, which is later used for the IN clause of the PIVOT
keyword, and for a second one, I add TRY_CONVERT for the projection. The variables
containing the result of the aggregation are then injected inside the CREATE OR ALTER
VIEW definition:

CREATE or ALTER PROC [KeyValue].[CreateViewKeyValue] (
        @_Source varchar(50),
        @debug bit = 0
)
AS
BEGIN

SET NOCOUNT ON;

DECLARE
        @CRLF nvarchar(MAX) = CHAR(13)+CHAR(10),
        @cmd nvarchar(MAX),
        @ColumnNameKey nvarchar(max),
        @ColumnNamePivot nvarchar(max)
SELECT
        @ColumnNameKey   = STRING_AGG([ColumnNameKey],   ', ')
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          WITHIN GROUP (ORDER BY [ColumnNameKey]),
        @ColumnNamePivot = STRING_AGG([ColumnNamePivot], ', ')
          WITHIN GROUP (ORDER BY [ColumnNameKey])
FROM
        (SELECT
                DISTINCT
                CONVERT(varchar(max), [Key] + @CRLF)
                  as [ColumnNameKey],
                CONVERT(varchar(max),
                        N'TRY_CONVERT(' + [DataType] + N', ' + [Key]
                        + N') AS ' + [Key] + @CRLF)
                          as [ColumnNamePivot]
        FROM
                (
                SELECT DISTINCT
                        kv.[_source]
                        ,QUOTENAME(TRIM(kv.[key])) [Key]
                        ,ISNULL(kt.[DataType], 'NVARCHAR(3000)') [DataType]
                FROM [dwh].[KeyValue] kv
                LEFT JOIN [KeyValue].[KeyType] kt ON kt.KeyType = kv.[Type]
                ) k
        ) x;

-- VIEW
SET @cmd=N'
CREATE OR ALTER VIEW [PowerBI].[KeyValue]
AS
(
/*** DO NOT MAKE ANY CHANGES DIRECTLY ***/
/*** This code was generated ***/
SELECT
        p.ID [ID],
'        + @ColumnNamePivot + N'
FROM (SELECT [ID], [Key], [Value] FROM [dwh].[KeyValue]) kv
PIVOT
        (MIN([Value]) FOR [Key] IN (
'        + @ColumnNameKey + N'
)
        ) as p
)
'
if @debug = 1 exec [KeyValue].[Print] @cmd;
exec sp_executesql @stmt = @cmd

END

Now you’ve mastered a rather complex topic in SQL! This chapter concludes with
how to combine the world of self-service and enterprises when it comes to a data
warehouse.
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Combining Self-Service and Enterprise BI
I assume that the idea of many programming languages developed in the 1960s and
1970s was that they should enable anyone who can write a natural language to con‐
trol a computer. SQL is no exception here. The language is derived from the English
language including the grammar. That’s why it starts with the SELECT keyword:
SELECT “book” FROM “library.” (IntelliSense would appreciate if we would start with
the FROM keyword instead, as, e.g., it is implemented in .NET’s LINQ, because it
would make it easier for IntelliSense to support you with helpful suggestions). A
number of decades later, we can conclude that this plan did not work out. Only
(some?) people from IT and a few power users are capable of writing SQL statements
that produce useful answers from a relational database.

With that said, implementations in SQL are clearly part of an enterprise BI environ‐
ment. This chapter has demonstrated that you can use the power of SQL to model
and transform a data model so it makes the end user’s life easy when working with
tools like Power BI.

Key Takeaways
This chapter’s use cases demonstrated that SQL is a very powerful language. Com‐
bined with the possibility to generate dynamic SQL, you can write resilient code and
(semi-)automate a lot of processes. Therefore, I prefer a relational data warehouse
(layer) for these tasks, if available, for my customers. Specifically, you learned how to
apply SQL to solve the following challenges:

• You can use a combination of DISTINCT and CASE to build a static lookup table
for the desired bins. You can directly join this table with the fact table. Alterna‐
tively, you can UNION a couple of SELECT statements to build a table containing
the ranges for each bin. In SQL, you can write non-equi-joins to combine this
information with the fact table. In Power BI, you can re-use this table, but must
write a measure in DAX to implement the non-equi-join (see Chapter 11).

• For the budget problem, I prefer to create a bridge table, which simply contains
the distinct values of the Product Group column. This table then has two one-to-
many relationships, replacing to original many-to-many relationship.

• For the TextColumn, you learned that you can use PIVOT. This keyword needs a
static list of the pivoted column’s list, though. Therefore, I introduced you to
dynamic SQL, where you can dynamically inject the list of columns into the
SELECT statement.

• In the key-value pair scenario, applying PIVOT is necessary, too. Additionally, you
need to take care of assigning the appropriate data types to the columns. In case a
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data type per key is available, you learned how you can extend the dynamic SQL
solution and inject the right data type conversions as well.

• SQL and relational databases are clearly most useful in an enterprise BI environ‐
ment. The goal should not be to teach domain users the secrets of SQL but to
build (with SQL) a data model that can easily consumed by the domain experts
in tools like Power BI Desktop, Power BI Report Builder, or Excel.

Last, but not least, I will show you how you can improve the performance of your
data model with features in SQL.
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1 The file used for this section’s examples is 401 Data vs Query.sql.

CHAPTER 20

Performance Tuning the
Data Model with SQL

In Chapters 4 and 8, you learned several options for optimizing query response time
through decisions about the storage mode of the tables in your Power BI data model.
Physics mandates that you can obtain faster query response times by using more disk
space—and the other way around. This is not only true for Power BI and Analysis
Services but for all database systems, including relational databases.

In this chapter, I describe the options you have in relational databases to exchange
storage space for query response time, and what you can do in the relational world to
support query speed inside Power BI and Analysis Services.

Storage Modes
I title this section after Power BI’s term storage modes to parallel other parts of the
book even though it’s typically not used when talking about relational databases. In
relational databases, people usually talk about either persisting data in the database, or
not. Persisting means to actually use disk space to store information in a certain form
and shape, as opposed to only storing a query string. If the data is already stored in
the right shape on disk, it only has to be transferred from the disk into memory and
then sent over the network to the client. If only a query string is stored, everything I
just mentioned has to be done as well, but on top of that, you need resources (CPU,
memory, disk IO) to fetch the data from different tables, join it, and apply the one or
another transformation to it.1
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In a relational database, you have the following options when it comes to storage:
tables, indexes, compression, views, functions, and stored procedures.

Table
You can create a table in a relational database and then INSERT, UPDATE, and DELETE
rows in it. By storing information in a table, you can apply complex transformations
as soon as you insert a row into the table. Such a transformation would make updat‐
ing the content of the table slower but improve the time it takes to query the informa‐
tion later.

Only when the table’s content is to be read multiple times is it worth persisting the
data into a table. If the sole purpose of the information is to feed an analytical system
(like Power BI or Analysis Services), it’s usually not worth the effort of triggering a
job to persist the data or spending disk space on storage. Persisting the data will
increase the overall time required to transfer the data from the data source into the
analytical system.

If certain users (e.g., data scientists) or tools (which can send requests in SQL but not
the analytical system’s query language) are supposed to read regularly from the rela‐
tional system, it’s worth persisting the data and implementing an index strategy on
the tables. Another use case that warrants persisting the data is if you’re planning to
implement a delta load based on partitioning. Only when the partitions between
Power BI and the relational database are aligned can you expect a faster refresh of the
Power BI semantic model. The same is true if you decided against importing the con‐
tent of a table into Power BI, but keep the table in DirectQuery mode.

Index
An index on a table is like the index at the end of this book: it’s extra space reserved
for an ordered list of items used to speed up the time it takes to find certain informa‐
tion. While a book usually only contains a single index, a table can have several
indexes. Microsoft’s SQL databases (Azure SQL DB, Azure SQL Managed Instance,
SQL Server, etc.) offer the following types of indexes:

• You can have one CLUSTERED INDEX per table. The special characteristic of a clus‐
tered index is that it doesn’t use extra storage space, but puts the rows of the table
itself in the order of the index column(s), like the order of the chapters in this
book. The book’s table of contents points out on which pages you’ll find the
information for a certain chapter or a section. As the rows of a table can be put
into only one order, there can only be one CLUSTERED INDEX per table (just as a
book can only be physically ordered according to one criteria).

• If you need to further improve queries (based on filters and groupings of other
columns), you can add NONCLUSTERED INDEXes to the table. These use extra
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storage space for index columns and a row identifier (like the book’s index). The
row identifier is like the page number. When using NONCLUSTERED INDEXes, the
database management system needs to find the entry in the index first and then
look up the row in the table if the query asks for nonindexed columns. You can
avoid the need for the lookup by including further columns in the index. The
index isn’t sorted by those included columns. Operations that manipulate the
content of the table will maintain the index automatically, but extra effort will be
required to keep the index ordered and the content of the included columns up
to date. Again, this exchanges storage space (and slower write operations) for
improved query time.

When it comes to a physical implementation of a CLUSTERED or a NONCLUSTERED
index, the most common form in relational databases is a so-called B-Tree. You can
imagine a B-Tree as an upside-down tree with the individual rows of the table on the
bottom (called leaves). If I ask you to guess a number between 1 and 100, you’ll prob‐
ably start by asking if it’s greater or lower than 50. If it’s bigger, then you might ask if
it’s greater or lower than 75, and so on. This search algorithm is called a binary
search. You can imagine the structure of a B-Tree index as having been created in
such a way as to support exactly this algorithm. As a rule of thumb when it comes to
relational databases, you should create at least one index on a table (on the primary
key of a table and its foreign keys).

Under the hood, a columnstore index is the same as the storage
engine behind Power BI and Analysis Services. Any white paper on
this index will explain how Power BI’s VertiPaq is implemented. In
theory, a DirectQuery connection on a data model hosted in a table
with a clustered columnstore index should be as fast as the same
data available in Import mode. Practically, small but crucial differ‐
ences slow queries on a columnstore index: a columnstore index
doesn’t need to fit into memory (as with a data model in Power BI
and Analysis Services) but can be paged to the disk. You can
update, insert, and delete individual rows of a columnstore index,
while you only can refresh a full partition of a Power BI and Analy‐
sis Services data model. This makes the Power BI implementation
of this storage engine superior to the columnstore index of a rela‐
tional database. So when you need to use DirectQuery, ensure that
you apply the right index strategy. But import everything into a
Power BI semantic model, if possible, to achieve the best query per‐
formance for your data model.

Technically, the columnstore index isn’t an index but a completely different storage
engine inside Microsoft’s relational databases. As opposed to “normal” tables and
indexes, which store the information of all columns for a single row physically

Storage Modes | 419



together, a columnstore splits up rows into their columns and stores the content of
the columns physically together (as you might have guessed from the name). These
blocks of similar data can be compressed very efficiently. You can create both a
CLUSTERED and a NONCLUSTERED columnstore index on a table. As a rule of thumb,
you should add a clustered columnstore index to all fact tables and big dimension
tables in an analytical database. The high compression rate of this type of index
(which typically squeezes the data to a tenth of its size without losing any informa‐
tion) is very welcome with these big tables.

Compression
For all tables where a clustered columnstore index isn’t feasible (e.g., if it contains less
than one million rows) you should turn on page compression. This not only saves you
disk space, but usually decreases query time as well because the disk transfer is the
bottleneck, for most servers, and the CPU tends to be underused. Compression will
increase overhead to the CPU (for compressing and uncompressing the data), but
less data will be transferred from and to the disk; thus, the overall query performance
will improve.

View
A VIEW is simply a SELECT statement stored under a certain name in the database. It
can be queried in the same way a table can. If you don’t look at the metadata of the
database object, you won’t recognize a difference in syntax. However, query time
might be slower if the SELECT statement of the definition of the VIEW contains com‐
plex queries or complex transformations, and/or the underlying tables are not
indexed well enough. Especially when the sole purpose of the data warehouse (layer)
is to provide a data model for Power BI or Analysis Services, there is no need to per‐
sist the data; it’ll only be read once per refresh. Not even an index is necessary if you
do only full refreshes. In such a case, putting all transformations into a VIEW is more
than sufficient. Only when the data will be read more often (from different BI tools or
by data analysts, data scientists, or similar) might it make sense to persist the data, as
I pointed out when I explained the advantages and disadvantages of a table.

Serverless SQL pool in Azure Synapse Analytics offers a way to cre‐
ate a table as a SQL query. The result of the query will be persisted
in a parquet file in the data lake. Storage costs for the data lake are
very cheap compared to the storage costs in a relational database.
Azure Synapse Serverless lets you use these inexpensive services in
exchange for increased computing costs on the database side to
collect (and transform) all the data from text files. The costs for the
data at rest may be close to be negligible, but every query on such a
table (e.g., to refresh your Power BI/Azure Analysis Services data
model) will cost you.
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Function
Different types of functions are available in T-SQL. Table-valued functions can be
queried similarly to tables and views, with the difference that you need to write
mandatory parentheses after the name. Inside the parentheses, you specify parame‐
ters, if applicable. I therefore tend to call table-valued functions “parametrized
views.” The provided parameter(s) can help to optimize the query statement inside
the definition of the function. Functions aren’t listed when you connect to the data‐
base from Power BI, but you need to provide a SQL statement for the data source,
which then contains the function’s name in the FROM or JOIN portions.

Stored Procedure
A stored procedure can contain even very complex T-SQL code. Again, a procedure
might have parameters, which might allow you to optimize the code inside. A proce‐
dure can’t be part of a query, but you need to execute it. Stored procedures are not
listed when you connect to the database from Power BI, but you need to provide a T-
SQL statement for the data source and then provide the name of the procedure plus
its parameters (for example, EXECUTE PowerBI.GetDates).

In the next section, I introduce a different technique, which can speed up queries and
your ETL process.

Partitioning
If the refresh of the Power BI/Analysis Services data model takes too much time, you
should invest time in a good partitioning concept (either on the table you’re directly
importing or on the underlying table of a view, function, or stored procedure). It’s
important that the partition strategies of the relational table and the table in Power
BI/Analysis Services are aligned (meaning that both use the same partition key). If
you only partition the latter (or use a different partition key), then the refresh time
might not improve at all because the full source table must still be scanned to provide
the rows needed for the refreshed partition. It might even take longer—the refresh of
every partition in Power BI may trigger a full scan of the whole table of Power BI’s
data source.

Tables in DirectQuery mode will also benefit from partitioning when the partition
key is also part of the queries filter, as whole partitions can be ruled out and less data
needs to be scanned. If the partition key isn’t part of the filter, then you shouldn’t
expect any drawbacks. A full scan of a partitioned table or a nonpartitioned table will
take the same amount of time. So, implementing the right index is crucial to avoid
full table scans also in the case of partitioned tables.

Partitioning will also help if you persist data in a relational data warehouse. I recom‐
mend using the timestamp of the creation of the row in the data source as the
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2 The file used for this section’s examples is 403 Partitioning.sql.

partition key because it won’t change. If you need to reload data for a certain period
of time, you can easily switch out the partition in question into a table of its own,
truncate this table, insert the new version of these rows into this table, and switch the
partition back into the original table. All operations, except for the insert, are so-
called metadata operations, which can be done very quickly (the duration is inde‐
pendent of the number of rows involved). Microsoft’s online documentation will
provide you with the necessary details to implement partitioning.

From a technical perspective, it’s important to understand that you need to create a
PARTITION FUNCTION that contains a list of values for the partition key and is used to
assign a row of the table to a certain partition. Each value provided during the defini‐
tion of the PARTITION FUNCTION is then either the left or the right border of the parti‐
tion: RANGE LEFT means that the first partition will contain values lower than or equal
to the first value of the PARTITION FUNCTION (the value is part of the partition to the
left of it); RANGE RIGHT means that the first partition will contain values lower than
the first value of the partition function (and the value mentioned in the PARTITION
FUNCTION is part of the partition to the right of it). So, the type specifies whether the
border’s values are part of the partition to the left or right of the border. You always
have one partition more than values listed in the PARTITION FUNCTION.

Then, you need to create a PARTITION SCHEMA that uses the PARTITION FUNCTION. To
partition a table, you need to create it ON this PARTITION SCHEMA. Let’s see these com‐
mands in action.2

First, create a PARTITION FUNCTION with the name pfOrderDate that accepts partition
keys of data type datetime2(0), which means dates including timestamps with a pre‐
cision to the second. This data type must match the data type of the column you use
as a partition key. The function has three values. All partition keys before September
1, 2023 are assigned to the first partition (due to RANGE RIGHT being implemented,
September 1, 2023 is part of the partition to the right of it):

CREATE PARTITION FUNCTION pfOrderDate (datetime2(0))
     AS RANGE RIGHT FOR VALUES
     ('2023-09-01', '2023-10-01', '2023-11-01');

As the function defines three borders, there will be four partitions. The RANGE RIGHT
or RANGE LEFT option only defines whether the value of the border itself is part of the
partition to the right or left of the border (Figure 20-1).

Next, create a PARTITION SCHEME named psOrderDate, which references the newly
created PARTITION FUNCTION with the name pfOrderDate. In the example, all parti‐
tions will be hosted in the PRIMARY file group of the database.
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Figure 20-1. Partition RANGE RIGHT versus RANGE LEFT

Technically, it makes no difference whether you choose RANGE
RIGHT or RANGE LEFT, but if your partition key is somehow related
to a point in time (date or datetime2), I’d strongly recommend
opting for RANGE RIGHT. You want to have all rows for a day or
month in the same partition. With RANGE LEFT, rows for
midnight/the first day of the month would be in a different parti‐
tion than rows for the same day but at a later point in time, or later
in the month, as you can see in Figure 20-1.

Alternatively, you could provide a list of the FILEGROUPs. The first partition would be
then hosted in the first FILEGROUP, the second partition in the second FILEGROUP, etc.
In the definition of a FILEGROUP, you specify in which physical file on which physical
drive the data is stored. This enables you to put, e.g., the partitions containing the
newest data, which are updated and queried often, on a fast SSD drive, while the par‐
titions for older years, which are never updated and queried very rarely, may reside
on cheaper storage. You can find more information about managing file groups in
the Microsoft documentation:

CREATE PARTITION SCHEME psOrderDate
    AS PARTITION pfOrderDate
    ALL TO ('PRIMARY') ;

Last but not least, create a table dbo.PartitionTable, which you put ON the newly
created PARTITION SCHEMA with the name psOrderDate. Pass OrderDate as the
parameter for the PARTITION SCHEMA. For each row, the content of OrderDate will
decide in which partition the row will be stored—it is your partition key. Having this
column as the first (or only) column of the PRIMARY KEY and any index will further
speed up queries, as they are then aligned with the partition:
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CREATE TABLE partitioning.FactResellerSales (
     [OrderDate] datetime2(0),
     [SalesAmount] decimal(19, 2)
)
    ON psOrderDate (OrderDate) ;

Let’s insert some rows and then find out in which partitions they landed:

INSERT INTO partitioning.FactResellerSales
SELECT OrderDate, SalesAmount
FROM PowerBI.FactResellerSales

Group the rows of this table by OrderDate and count the rows:

SELECT
     OrderDate,
     COUNT(*) [RowCount]
FROM
     PowerBI.FactResellerSales
GROUP BY
     OrderDate
ORDER BY
     OrderDate;

OrderDate RowCount
… …

2023-07-01 00:00:00.000 2,076

2023-08-01 00:00:00.000 2,177

2023-09-01 00:00:00.000 1,797

2023-10-01 00:00:00.000 2,847

2023-11-01 00:00:00.000 3,004

The expectation is that a lot of rows will be added to the first partition (which con‐
tains everything before September 1, 2023). But only 1,797 rows will be put into the
second partition (on or after September 1, 2023); 2,847 rows will go into the third
partition (on or after October 1, 2023); and 3,004 rows will go into the fourth parti‐
tion (on or after November 1, 2023). Example 20-1 proves this successfully. It joins
metadata tables from the database’s sys schema (schemas, tables, indexes,
partitions, filegroups (twice), and destination_data_space) and then shows the
schema’s name, the table’s name, the partition number, the file group, and the row
count.

Example 20-1. Count rows per partition

-- Count rows per partition
SELECT
     s.[name] AS SchemaName
     , t.[name] AS TableName
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     , ds.[name] AS PartitionScheme
     , p.partition_number AS PartitionNumber
     , COALESCE(f.[name], d.[name]) AS [FileGroup]
     , p.[rows] AS [RowCount]
FROM
    sys.schemas AS s
INNER JOIN sys.tables AS t ON
     t.schema_id = s.schema_id
INNER JOIN sys.partitions AS p ON
     p.object_id = t.object_id
INNER JOIN sys.indexes AS i ON
     i.[object_id] = p.[object_id] AND
     i.index_id = p.index_id
LEFT JOIN sys.index_columns AS ic ON
     ic.[object_id] = i.[object_id] AND
     ic.index_id = i.index_id
LEFT JOIN sys.columns AS c ON
     c.[object_id] = ic.[object_id] AND
    c.column_id = ic.column_id
LEFT JOIN sys.data_spaces AS ds ON
     ds.data_space_id = i.data_space_id
LEFT JOIN sys.data_spaces AS ds ON
     ds.data_space_id = i.data_space_id
LEFT JOIN sys.partition_schemes AS ps ON
     ps.data_space_id = ds.data_space_id
LEFT JOIN sys.partition_functions AS pf ON
     pf.function_id = ps.function_id
LEFT JOIN sys.filegroups AS f ON
     f.data_space_id = i.data_space_id
LEFT JOIN sys.destination_data_spaces AS dds ON
     dds.partition_scheme_id = i.data_space_id AND
     dds.destination_id = p.partition_number
LEFT JOIN sys.filegroups AS d ON
     d.data_space_id = dds.data_space_id
LEFT JOIN sys.partition_range_values AS prv_left ON
     ps.function_id = prv_left.function_id AND
     prv_left.boundary_id = p.partition_number - 1
LEFT JOIN sys.partition_range_values AS prv_right ON
     ps.function_id = prv_right.function_id AND
     prv_right.boundary_id = p.partition_number
WHERE
     s.[name] = 'partitioning' AND
     t.[name] IN ( 'FactResellerSales', 'FactResellerSales_STAGE' ) AND
     t.[type] = 'U' AND
     i.index_id IN (0, 1)
ORDER BY
     s.[name]
     , t.[name]
     , p.index_id
     , p.partition_number;
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SchemaName TableName PartitionScheme PartitionNumber FileGroup RowCount
partitioning FactResellerSales psOrderDate 1 PRIMARY 53,207

partitioning FactResellerSales psOrderDate 2 PRIMARY 1,797

partitioning FactResellerSales psOrderDate 3 PRIMARY 2,847

partitioning FactResellerSales psOrderDate 4 PRIMARY 3,004

As I’ve explained, a partitioned table can be queried faster, if the partition key is part
of the filter. Even if no index is available to satisfy the search condition, only the par‐
tition needs to be scanned for the rows, instead of the full table. Partitioning is also
helpful when you need to reload data into the table for a specific day. Without parti‐
tions per day, you would need to either DELETE and INSERT all the rows for this day (a
full load) or implement a logic to remove outdated rows, insert new rows, and update
changed rows (a delta load). All these operations can take a while to complete when
executed on a large table.

With partitioning, you can tremendously speed up the process of reloading the data
for one day (assuming that you use a date as the partition key of your table). First,
create an empty copy of the table, which will host the rows that should be updated. In
the following code, the INTO clause creates the new table (with suffix _STAGE) and
selects the TOP 0 rows (no data) for all columns (*). You need to make sure that the
newly created table is put on the same file group as the partition scheme:

DROP TABLE IF EXISTS partitioning.FactResellerSales_STAGE;
SELECT TOP 0 *
INTO partitioning.FactResellerSales_STAGE ON [PRIMARY]
FROM partitioning.FactResellerSales;

Then, SWITCH a specific partition out of the original table (partitioning. Fact

ResellerSales) and into the stage table. This operation is incredibly fast because no
data is moved; only the metadata for the partition’s rows is changed. The partition
information for the rows is changed only to indicate that they are now part of the
stage table. The following example specifies to SWITCH partition 3, which is made up
of the 2,847 rows from October 1:

ALTER TABLE partitioning.FactResellerSales
SWITCH PARTITION 3
TO partitioning.FactResellerSales_STAGE;

If you rerun the query to count the rows per partition (Table 20-0), you will see that
partition 3 of FactResellerSales has a row count of 0, but the only partition avail‐
able in FactResellerSales_STAGE has a row count of 2,847:
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SchemaName TableName PartitionScheme PartitionNumber FileGroup RowCount
partitioning FactResellerSales psOrderDate 1 PRIMARY 53,207

partitioning FactResellerSales psOrderDate 2 PRIMARY 1,797

partitioning FactResellerSales psOrderDate 3 PRIMARY 0

partitioning FactResellerSales psOrderDate 4 PRIMARY 3,004

partitioning FactResellerSales_STAGE PRIMARY 1 PRIMARY 2,847

Now it’s easy to work with the data for October 1 because all the rows are sitting in a
much smaller table. For a full load, you can execute a TRUNCATE TABLE partitioning
.FactResellerSales to erase the content (as a, once again, fast metadata operation)
and insert the source’s data into it again.

If you’re finished bringing the rows for October 1 up-to-date, you can SWITCH the full
table back into FactResellerSales:

ALTER TABLE partitioning.FactResellerSales_STAGE SWITCH TO partitioning.
  FactResellerSales PARTITION 3;

Unfortunately, you’ll receive an error message asking for a mandatory CHECK
CONSTRAINT, which must be present on the stage table:

ALTER TABLE SWITCH statement failed. Check constraints of source table
'AdventureWorksDW.partitioning.FactResellerSales_STAGE' allow values that
are not allowed by range defined by partition 3 on target table
'AdventureWorksDW.partitioning.FactResellerSales'.

The mandatory check constraint must reflect the rule that allows a row to be part of
partition 3, which is that the OrderDate must be after or equal to October 1 and
before November 1:

ALTER TABLE partitioning.FactResellerSales_STAGE
WITH CHECK
ADD CONSTRAINT CK_FactResellerSales_STAGE_OrderDate
CHECK (
     OrderDate IS NOT NULL AND
     OrderDate >= {d'2023-10-01'} AND
     OrderDate < {d'2023-11-01'}
     )

With the following addition to the projection of the query in Example 20-1, you get
the text for the CHECK constraint listed in the query result, derived from the partition’s
definition:

, QUOTENAME(c.name) + ' IS NOT NULL AND ' +
     CASE pf.boundary_value_on_right WHEN 1 THEN
     --'RIGHT'
     ISNULL(QUOTENAME(c.name) + ' >= ''' +
     convert(varchar, prv_left.[value], 126) + '''', '') +
     case when p.partition_number NOT IN (1, MAX(p.partition_number) OVER())
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     then ' AND '
     else ''
     end +
     ISNULL(QUOTENAME(c.name) + ' < ''' +
     convert(varchar, prv_right.[value], 126) + '''', '')
     ELSE
     --'LEFT'
     ISNULL('[PartitionKey] > ''' +
     convert(varchar, prv_left.[value], 126) + '''', '') +
     case when p.partition_number NOT IN (1, MAX(p.partition_number) OVER())
     then ' AND '
     else ''
     end + ISNULL(QUOTENAME(c.name) + ' <= ''' +
     convert(varchar, prv_right.[value], 126) + '''', '')
     END as CheckConstraint

Here’s the result for this additional column, which you can just copy and paste into
the ALTER TABLE statement:

… TableName PartitionNumber … CheckConstraint
… FactResellerSales 1 … [OrderDate] IS NOT NULL AND [OrderDate] < ’2023-09-01’

… FactResellerSales 2 … [OrderDate] IS NOT NULL AND [OrderDate] >= ’2023-09-01’ AND
[OrderDate] < ’2023-10-01’

… FactResellerSales 3 … [OrderDate] IS NOT NULL AND [OrderDate] >= ’2023-10-01’ AND
[OrderDate] < ’2023-11-01’

… FactResellerSales 4 … [OrderDate] IS NOT NULL AND [OrderDate] >= ’2023-11-01’

If you now retry switching the partition back into FactResellerSales, it will suc‐
ceed. If you didn’t change the content of the stage table, the content of FactReseller
Sales should be back to the original state:

SchemaName TableName PartitionNumber FileGroup RowCount
partitioning FactResellerSales 1 PRIMARY 53,207

partitioning FactResellerSales 2 PRIMARY 1,797

partitioning FactResellerSales 3 PRIMARY 2,847

partitioning FactResellerSales 4 PRIMARY 3,004

partitioning FactResellerSales_STAGE 1 PRIMARY 0

Instead of speeding up the access to the data itself, you can calculate intermediate
results on an aggregated level and take the data from there, as the next section
explains.
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3 This section uses the 402 Aggregated Facts.sql file for examples.

Pre-Aggregating
Providing Power BI with pre-aggregated data can be done with any of the relational
storage modes that “Storage Modes” on page 417 discusses: (indexed) table, view,
function, or stored procedure. With all of these, you can either Import or access in
DirectQuery mode from Power BI and Analysis Services tabular.

To create an aggregated version of a table, all you need to do is to specify the granu‐
larity (basically, the dimension keys) and aggregation functions (typically COUNT or
SUM) on the numeric values.3 Watch out for the GROUP BY clause, in which you need to
put all the columns that aren’t wrapped inside an aggregation function:

CREATE OR ALTER VIEW agg.FactResellerSalesAgg AS
SELECT
     OrderDate,
     COUNT(*) SalesCount,
     SUM(SalesAmount) SalesAmount
FROM
     PowerBI.FactResellerSales
GROUP BY OrderDate

After you’ve added this view as an additional table to your data model, do not forget
to tell Power BI that this table is an aggregated version of the already existing table
FactResellerSales (“Pre-Aggregating” on page 166), or make sure to include logic
in your measures to use the aggregated table, where appropriate (“Pre-Aggregating”
on page 235).

“Calculations” on page 376 explains that not all operations’ results
are aggregable. Aggregations like a distinct count or a percentage
are non-additive, and should therefore not be added to an aggrega‐
tion table.
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Key Takeaways
This chapter talked about both how to increase the speed of operations in a relational
database and how to support speedy operations in Power BI through a well-thought-
out design of your database objects. In summary, you learned the following:

• In a relational database, information can be provided either persisted in a table
or as a query stored inside a view, function, or stored procedure.

• Information stored in a table should definitely be indexed. You learned about the
principles of how an index works. And you learned that a columnstore index is
not truly an index but supports a query engine inside a relational database, which
is basically identical to the query engine of Power BI and Analysis Services
tabular.

• Partitioning is crucial for both big tables in a relational database and big tables in
Power BI and Analysis Services. If you decide to use partitioning, make sure to
use the identical column to partition in the relational world and in Power BI/
Analysis Services, to align the partitions.

• You can pre-aggregate information in the relational layer with the help of the
GROUP BY clause and aggregation functions.
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Epilogue

Congratulations—you made it through to the last page! Thank you so much for
spending your precious time reading this book. I hope you enjoyed reading it as
much as I enjoyed writing it. Before I let you go, here’s a quick summary of the most
important things when it comes to data modeling for Power BI:

• You should sit down and understand your data and the business’s needs before
connecting to the first data source. Data profiling in Power Query can help you
understand the data; it shows descriptive statistics for each column.

• Bringing the source’s information into a dimensional model is crucial when it
comes to Power BI. Any shortcut taken here will come back to haunt you at a
later stage. (I speak from experience!) Many-to-many relationships and bi-
directional filters exist only for very special use cases. I build many data models
solely based on one-to-many relationships and single-directed filters.

• Make sure that every table is connected to at least one other table. Unrelated
tables are useful only in special cases (like when you need a non-equi-join). If
you can’t connect a table to other tables and the table is not used in connection
with other tables of the semantic model, consider removing this table from this
semantic model and building a different semantic model for it.

• Push all necessary transformations as early as possible up the data chain. Use
Power Query over DAX for this task. If you can, convince the people providing
you with Excel sheets to bring them into the necessary shape, or ask for access to
the database the Excel sheets are based on. Even better, talk to the right people in
your organization to set up a data warehouse layer, where all the transformation
“magic” should happen. This way, you make all the work more re-usable
throughout your organization.
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• When it comes to all sorts of calculations (especially semi-additive and non-
additive ones), you need to develop DAX measures. Don’t create calculated col‐
umns. Don’t add the results of such calculations as columns during the data
transformation process.

• When you discover obstacles, like slow performance or very complicated DAX
calculations, take a step back and reevaluate if your data model really is in a star
schema.

• You will get the best possible report speed by importing data to Power BI. In case
you discover problems with data size or refresh time, try out aggregation, dual,
hybrid tables, or a composite model before changing a whole data model to
DirectQuery mode. DirectQuery is only the second-best option.

• Mastering data modeling takes time and effort. Practice is king. Failing is part of
the journey!

And last but not least, the most important thing to remember: the goal of the data
model is to make the report creator’s life easy!
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