

Hyperparameter
Tuning with Python

Boost your machine learning model’s performance
via hyperparameter tuning

Louis Owen

BIRMINGHAM—MUMBAI

Hyperparameter Tuning with Python
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Gebin George
Publishing Product Manager: Dinesh Chaudhary
Senior Editor: David Sugarman
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Farheen Fathima
Proofreader: Safis Editing
Indexer: Pratik Shirodkhar
Production Designer: Ponraj Dhandapani
Marketing Coordinator: Shifa Ansari and Abeer Riyaz Dawe

First published: July 2022

Production reference: 1280722

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-587-5

www.packt.com

http://www.packt.com

To Mom and Dad, thanks for everything!

– Louis

C o n t r i b u t o r s

About the author
Louis Owen is a data scientist/AI engineer from Indonesia who is always hungry for new knowledge.
Throughout his career journey, he has worked in various fields of industry, including NGOs, e-commerce,
conversational AI, OTA, Smart City, and FinTech. Outside of work, he loves to spend his time helping
data science enthusiasts to become data scientists, either through his articles or through mentoring
sessions. He also loves to spend his spare time doing his hobbies: watching movies and conducting side
projects. Finally, Louis loves to meet new friends! So, please feel free to reach out to him on LinkedIn
if you have any topics to be discussed.

About the reviewer
Jamshaid Sohail is passionate about data science, machine learning, computer vision, and natural
language processing and has more than 2 years of experience in the industry. He has worked at a Silicon
Valley-based start-up named FunnelBeam, the founders of which are from Stanford University, as a
data scientist. Currently, he is working as a data scientist at Systems Limited. He has completed over
66 online courses from different platforms. He authored the book Data Wrangling with Python 3.X for
Packt Publishing and has reviewed multiple books and courses. He is also developing a comprehensive
course on data science at Educative and is in the process of writing books for multiple publishers.

Table of Contents
Preface

Section 1: The Methods

1
Evaluating Machine Learning Models

Technical requirements� 4
Understanding the concept
of overfitting� 4
Creating training, validation,
and test sets� 5
Exploring random and stratified splits� 6
Discovering repeated k-fold
cross-validation� 11

Discovering Leave-One-Out
cross-validation� 12
Discovering LPO cross-validation� 13
Discovering time-series
cross-validation� 14
Summary� 16
Further reading� 16

2
Introducing Hyperparameter Tuning

What is hyperparameter tuning?� 17
Demystifying hyperparameters
versus parameters� 18

Understanding hyperparameter
space and distributions� 19
Summary� 20

viii Table of Contents

3
Exploring Exhaustive Search

Understanding manual search� 22
Understanding grid search� 23

Understanding random search� 25
Summary� 28

4
Exploring Bayesian Optimization

Introducing BO� 30
Understanding BO GP � 40
Understanding SMAC � 42

Understanding TPE� 51
Understanding Metis� 55
Summary� 58

5
Exploring Heuristic Search

Understanding simulated annealing� 60
Understanding genetic algorithms� 65
Understanding particle swarm
optimization� 74

Understanding Population-Based
Training� 82
Summary� 86

6
Exploring Multi-Fidelity Optimization

Introducing MFO� 88
Understanding coarse-to-fine search� 89
Understanding successive halving� 95

Understanding hyper band� 100
Understanding BOHB� 103
Summary� 107

Table of Contents ix

Section 2: The Implementation

7
Hyperparameter Tuning via Scikit

Technical requirements� 112
Introducing Scikit� 112
Implementing Grid Search� 114
Implementing Random Search� 121
Implementing Coarse-to-Fine Search� 123
Implementing Successive Halving� 124
Implementing Hyper Band� 128

Implementing Bayesian
Optimization Gaussian Process� 130
Implementing Bayesian
Optimization Random Forest� 133
Implementing Bayesian
Optimization Gradient Boosted Trees�134
Summary� 136

8
Hyperparameter Tuning via Hyperopt

Technical requirements� 138
Introducing Hyperopt� 138
Implementing Random Search� 141

Implementing Tree-structured
Parzen Estimators� 146
Implementing Adaptive TPE� 146
Implementing simulated annealing� 148
Summary� 150

9
Hyperparameter Tuning via Optuna

Technical requirements� 152
Introducing Optuna� 152
Implementing TPE� 159
Implementing Random Search� 160
Implementing Grid Search� 161

Implementing Simulated Annealing� 162
Implementing Successive Halving� 164
Implementing Hyperband� 166
Summary� 167

x Table of Contents

10
Advanced Hyperparameter Tuning with DEAP and Microsoft NNI

Technical requirements� 170
Introducing DEAP� 171
Implementing the Genetic Algorithm� 176
Implementing Particle Swarm
Optimization� 183
Introducing Microsoft NNI� 189
Implementing Grid Search� 194
Implementing Random Search� 199
Implementing Tree-structured
Parzen Estimators� 201

Implementing Sequential Model
Algorithm Configuration� 203
Implementing Bayesian
Optimization Gaussian Process� 204
Implementing Metis� 207
Implementing Simulated Annealing� 208
Implementing Hyper Band� 210
Implementing Bayesian
Optimization Hyper Band� 212
Implementing Population-Based
Training� 214
Summary� 216

Section 3: Putting Things into Practice

11
Understanding the Hyperparameters of Popular Algorithms

Exploring Random Forest
hyperparameters� 220
Exploring XGBoost hyperparameters� 222
Exploring LightGBM
hyperparameters� 224
Exploring CatBoost hyperparameters� 226

Exploring SVM hyperparameters� 228
Exploring artificial neural network
hyperparameters� 229
Summary� 231

Table of Contents xi

12
Introducing Hyperparameter Tuning Decision Map

Getting familiar with HTDM� 234
Case study 1 – using HTDM with a
CatBoost classifier � 237
Case study 2 – using HTDM with a
conditional hyperparameter space� 239

Case study 3 – using HTDM
with prior knowledge of the
hyperparameter values� 241
Summary� 243

13
Tracking Hyperparameter Tuning Experiments

Technical requirements� 246
Revisiting the usual practices� 246
Using a built-in Python dictionary� 247
Using a configuration file� 247
Using additional modules� 247

Exploring Neptune� 250

Exploring scikit-optimize� 255
Exploring Optuna� 258
Exploring Microsoft NNI� 260
Exploring MLflow� 265
Summary� 267

14
Conclusions and Next Steps

Revisiting hyperparameter tuning
methods and packages� 269
Revisiting HTDM� 272

What’s next?� 273
Summary� 273

Index

Other Books You May Enjoy

P r e f a c e

Hyperparameters are an important element in building useful machine learning models. This book
curates numerous hyperparameter tuning methods for Python, one of the most popular coding
languages for machine learning. Alongside in-depth explanations of how each method works, you
will use a decision map that can help you identify the best tuning method for your requirements.

We will start the book with an introduction to hyperparameter tuning and explain why it’s important.
You’ll learn the best methods for hyperparameter tuning for a variety of use cases and a specific
algorithm type. The book will not only cover the usual grid or random search but also other powerful
underdog methods. Individual chapters are dedicated to giving full attention to the three main groups
of hyperparameter tuning methods: exhaustive search, heuristic search, Bayesian optimization, and
multi-fidelity optimization.

Later in the book, you will learn about top frameworks such as scikit-learn, Hyperopt, Optuna, NNI,
and DEAP to implement hyperparameter tuning. Finally, we will cover hyperparameters of popular
algorithms and best practices that will help you efficiently tune your hyperparameters.

By the end of the book, you will have the skills you need to take full control over your machine learning
models and get the best models for the best results.

Who this book is for
The book is intended for data scientists and Machine Learning engineers who are working with Python
and want to further boost their ML model’s performance by utilizing the appropriate hyperparameter
tuning method. You will need to have a basic understanding of ML and how to code in Python but
will require no prior knowledge of hyperparameter tuning in Python.

What this book covers
Chapter 1, Evaluating Machine Learning Models, covers all the important things we need to know
when it comes to evaluating ML models, including the concept of overfitting, the idea of splitting data
into several parts, a comparison between the random and stratified split, and numerous methods on
how to split the data.

Chapter 2, Introducing Hyperparameter Tuning, introduces the concept of hyperparameter tuning,
starting from the definition and moving on to the goal, several misconceptions, and distributions of
hyperparameters.

Prefacexiv

Chapter 3, Exploring Exhaustive Search, explores each method that belongs to the first out of four groups
of hyperparameter tuning, along with the pros and cons. There will be both high-level and detailed
explanations for each of the methods. The high-level explanation will use a visualization strategy
to help you understand more easily, while the detailed explanation will bring the math to the table.

Chapter 4, Exploring Bayesian Optimization, explores each method that belongs to the second out of
four groups of hyperparameter tuning, along with the pros and cons. There will also be both high-level
and detailed explanations for each of the methods.

Chapter 5, Exploring Heuristic Search, explores each method that belongs to the third out of four
groups of hyperparameter tuning, along with the pros and cons. There will also be both high-level
and detailed explanations for each of the methods.

Chapter 6, Exploring Multi-Fidelity Optimization, explores each method that belongs to the fourth
out of four groups of hyperparameter tuning, along with the pros and cons. There will also be both
high-level and detailed explanations for each of the methods.

Chapter 7, Hyperparameter Tuning via Scikit, covers all the important things about scikit-learn, scikit-
optimize, and scikit-hyperband, along with how to utilize each of them to perform hyperparameter
tuning.

Chapter 8, Hyperparameter Tuning via Hyperopt, introduces the Hyperopt package, starting from its
capabilities and limitations, how to utilize it to perform hyperparameter tuning, and all the other
important things you need to know about it.

Chapter 9, Hyperparameter Tuning via Optuna, introduces the Optuna package, starting from its
numerous features, how to utilize it to perform hyperparameter tuning, and all the other important
things you need to know about it.

Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI, shows how to perform
hyperparameter tuning using both the DEAP and Microsoft NNI packages, starting from getting
ourselves familiar with the packages and moving on to the important modules and parameters we
need to be aware of.
Chapter 11, Understanding Hyperparameters of Popular Algorithms, explores the hyperparameters of
several popular ML algorithms. There will be a broad explanation for each of the algorithms, including
(but not limited to) the definition of each hyperparameter, what will be impacted when the value of
each hyperparameter is changed, and the priority list of hyperparameters based on the impact.

Chapter 12, Introducing Hyperparameter Tuning Decision Map, introduces the Hyperparameter Tuning
Decision Map (HTDM), which summarizes all of the discussed hyperparameter tuning methods as
a simple decision map based on six aspects. There will be also three study cases that show how to
utilize the HTDM in practice.

To get the most out of this book xv

Chapter 13, Tracking Hyperparameter Tuning Experiments, covers the importance of tracking
hyperparameter tuning experiments, along with the usual practices. You will also be introduced to
several open source packages that are available and learn how to utilize each of them in practice.

Chapter 14, Conclusions and Next Steps, summarizes all the important lessons learned in the previous
chapters, and also introduces you to several topics or implementations that you may benefit from that
we have not covered in detail in this book.

To get the most out of this book
You will also need Python version 3.7 (or above) installed on your computer, along with the related
packages mentioned in the Technical requirements section of each chapter.

It is worth noting that there is a conflicting version requirement for the Hyperopt package in Chapter
8, Hyperparameter Tuning via Hyperopt, and Chapter 10, Advanced Hyperparameter Tuning with DEAP
and Microsoft NNI. You need to install version 0.2.7 for Chapter 8, Hyperparameter Tuning via Hyperopt,
and version 0.1.2 for Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI.

It is also worth noting that the HyperBand implementation used in Chapter 7, Hyperparameter
Tuning via Scikit, is the modified version of the scikit-hyperband package. You can utilize the modified
version by cloning the GitHub repository (a link is available in the next section) and looking in a
folder named hyperband.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

To understand all contents in this book, you will need to have a basic understanding of ML and how
to code in Python but will require no prior knowledge of hyperparameter tuning in Python. At the
end of this book, you will also be introduced to several topics or implementations that you may benefit
from which we have not covered yet in this book.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python. If there’s an update to
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexvi

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/ExcbH.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: As for
criterion and max_depth, we are still using the same configuration as the previous search space.

A block of code is set as follows:

for n_est in n_estimators:

 for crit in criterion:

 for m_depth in max_depth:

 #perform cross-validation here

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

https://packt.link/ExcbH
http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com/support/errata
http://copyright@packt.com

Share Your Thoughts xvii

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Hyperparameter Tuning with Python, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-803-23587-X
https://packt.link/r/1-803-23587-X

S e c t i o n 1 :
T h e M e t h o d s

This initial section covers concepts and theories you need to know before performing hyperparameter
tuning experiments.

This section includes the following chapters:

•	 Chapter 1, Evaluating Machine Learning Models

•	 Chapter 2, Introducing Hyperparameter Tuning

•	 Chapter 3, Exploring Exhaustive Search

•	 Chapter 4, Exploring Bayesian Optimization

•	 Chapter 5, Exploring Heuristic Search

•	 Chapter 6, Exploring Multi-Fidelity Optimization

1
E v a l u a t i n g M a c h i n e

L e a r n i n g M o d e l s

Machine Learning (ML) models need to be thoroughly evaluated to ensure they will work in production.
We have to ensure the model is not memorizing the training data and also ensure it learns enough
from the given training data. Choosing the appropriate evaluation method is also critical when we
want to perform hyperparameter tuning at a later stage.

In this chapter, we'll learn about all the important things we need to know when it comes to evaluating
ML models. First, we need to understand the concept of overfitting. Then, we will look at the idea of
splitting data into train, validation, and test sets. Additionally, we'll learn about the difference between
random and stratified splits and when to use each of them.

We'll discuss the concept of cross-validation and its numerous variations of strategy: k-fold repeated
k-fold, Leave One Out (LOO), Leave P Out (LPO), and a specific strategy when dealing with time-
series data, called time-series cross-validation. We'll also learn how to implement each of the evaluation
strategies using the Scikit-Learn package.

By the end of this chapter, you will have a good understanding of why choosing a proper evaluation
strategy is critical in the ML model development life cycle. Also, you will be aware of numerous
evaluation strategies and will be able to choose the most appropriate one for your situation. Furthermore,
you will also be able to implement each of the evaluation strategies using the Scikit-Learn package.

In this chapter, we're going to cover the following main topics:

•	 Understanding the concept of overfitting

•	 Creating training, validation, and test sets

•	 Exploring random and stratified split

•	 Discovering k-fold cross-validation

•	 Discovering repeated k-fold cross-validation

Evaluating Machine Learning Models4

•	 Discovering LOO cross-validation

•	 Discovering LPO cross-validation

•	 Discovering time-series cross-validation

Technical requirements
We will learn how to implement each of the evaluation strategies using the Scikit-Learn package.
To ensure that you can reproduce the code examples in this chapter, you will need the following:

•	 Python 3 (version 3.7 or above)

•	 The pandas package installed (version 1.3.4 or above)

•	 The Scikit-Learn package installed (version 1.0.1 or above)

All of the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/01_
Evaluating-Machine-Learning-Models.ipynb.

Understanding the concept of overfitting
Overfitting occurs when the trained ML model learns too much from the given training data. In
this situation, the trained model successfully gets a high evaluation score on the training data but
a far lower score on new, unseen data. In other words, the trained ML model fails to generalize the
knowledge learned from the training data to the unseen data.

So, how exactly does the trained ML model get decent performance on the training data but fail to
give a reasonable performance on unseen data? Well, that happens when the model tries too hard to
achieve high performance on the training data and has picked up knowledge that is only applicable
to that specific training data. Of course, this will negatively impact the model's ability to generalize,
which results in bad performance when the model is evaluated on unseen data.

To detect whether our trained ML model faces an overfitting issue, we can monitor the performance
of our model on the training data versus unseen data. Performance can be defined as the loss value of
our model or metrics that we care about, for example, accuracy, precision, and the mean absolute error.
If the performance of the training data keeps getting better, while the performance on the unseen data
starts to become stagnant or even gets worse, then this is a sign of an overfitting issue (see Figure 1.1):

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/01_Evaluating-Machine-Learning-Models.ipynb
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/01_Evaluating-Machine-Learning-Models.ipynb
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/01_Evaluating-Machine-Learning-Models.ipynb

Creating training, validation, and test sets 5

Figure 1.1 – The model's performance on training data versus unseen data (overfitting)

Note
The preceding diagram image has been reproduced according to the license specified: https://
commons.wikimedia.org/wiki/File:Overfitting_svg.svg.

Now that you are aware of the overfitting problem, we need to learn how to prevent this from happening
in our ML development life cycle. We will discuss this in the following sections.

Creating training, validation, and test sets
We understand that overfitting can be detected by monitoring the model's performance on the training
data versus the unseen data, but what exactly is unseen data? Is it just random data that has not yet
been seen by the model during the training phase?

Unseen data is a portion of our original complete data that was not seen by the model during the
training phase. We usually refer to this unseen data as the test set. Let's imagine you have 100,000
samples of data, to begin with; you can take out a portion of the data, let's say 10% of it, to become
the test set. So, now we have 90,000 samples as the training set and 10,000 samples as the testing set.

However, it is better to not just split our original data into train and test sets but also into a validation
set, especially when we want to perform hyperparameter tuning on our model. Let's say that out of 100,000
original samples, we held out 10% of it to become the validation set and another 10% to become the
test set. Therefore, we will have 80,000 samples as the train set, 10,000 samples as the validation set,
and 10,000 samples as the test set.

https://commons.wikimedia.org/wiki/File:Overfitting_svg.svg
https://commons.wikimedia.org/wiki/File:Overfitting_svg.svg

Evaluating Machine Learning Models6

You might be wondering why do we need a validation set apart from the test set. Actually, we do not
need it if we do not want to perform hyperparameter tuning or any other model-centric approaches.
This is because the purpose of having a validation set is to have an unbiased evaluation of the test set
using the final version of the trained model.

A validation set can help us to get an unbiased evaluation of the test set because we only incorporate
the validation set during the hyperparameter tuning phase. Once we finish the hyperparameter tuning
phase and get the final model configuration, we can then evaluate our model on the purely unseen
data, which is called the test set.

Important Note
If you are going to perform any data preprocessing steps (for example, missing value imputation,
feature engineering, standardization, label encoding, and more), you have to build the function
based on the train set and then apply it to the validation and test set. Do not perform those
data preprocessing steps on the full original data (before data splitting). That's because it might
lead to a data leakage problem.

There is no specific rule when it comes to choosing the proportions for each of the train, validation,
and test sets. You have to choose the split proportion by yourself based on the condition you are faced
with. However, the common splitting proportion used by the data science community is 8:2 or 9:1 for
the train set and the validation and test set, respectively. Usually, the validation and test set will have a
proportion of 1:1. Therefore, the common splitting proportion is 8:1:1 or 9:0.5:0.5 for the train, validation,
and test sets, respectively.

Now that we are aware of the train, validation, and test set concept, we need to learn how to build
those sets. Do we just randomly split our original data into three sets? Or can we also apply some
predefined rules? In the next section, we will explore this topic in more detail.

Exploring random and stratified splits
The most straightforward way (but not entirely a correct way) to split our original full data into train,
validation, and test sets is by choosing the proportions for each set and then directly splitting them
into three sets based on the order of the index.

For instance, the original full data has 100,000 samples, and we want to split this into train, validation,
and test sets with a proportion of 8:1:1. Then, the training set will be the samples from index
1 until 80,000. The validation and test set will be the index from 81,000 until 90,000 and 91,000
until 100,000, respectively.

So, what's wrong with that approach? There is nothing wrong with that approach as long as the original
full data is shuffled. It might cause a problem when there is some kind of pattern between the indices
of the samples.

Exploring random and stratified splits 7

For instance, we have data consisting of 10,000 samples and 3 columns. The first and second columns
contain weight and height information, respectively. The third column contains the "weight status"
class (for example, underweight, normal weight, overweight, and obesity). Our task is to build an ML
classifier model to predict what the "weight status" class of a person is, given their weight and height.
It is not impossible for the data to be given to us in the condition that it was ordered based on the
third column. So, the first 80,000 rows only consist of the underweight and normal weight classes. In
comparison, the overweight and obesity classes are only located in the last 20,000 rows. If this is the
case, and we apply the data splitting logic from earlier, then there is no way our classifier can predict
a new person has the overweight or obesity "weight status" classes. Why? Because our classifier has
never seen those classes before during the training phase!

Therefore, it is very important to ensure the original full data is shuffled in the first place, and essentially,
this is what we mean by the random split. Random split works by first shuffling the original full data
and then splitting it into the train, validation, and test sets based on the order of the index.

There is also another splitting logic called the stratified split. This logic ensures that the train,
validation, and test set will get a similar proportion number of samples for each target class found in
the original full data.

Using the same "weight status" class prediction case example, let's say that we found that the proportion
of each class in the full original data is 3:5:1.5:0.5 for underweight, normal weight, overweight, and
obese, respectively. The stratified split logic will ensure that we can find a similar proportion of those
classes in the train, validation, and test sets. So, out of 80,000 samples of the train set, around 24,000
samples are in the underweight class, around 40,000 samples are in the normal weight class, around
12,000 samples are overweight, and around 4,000 samples are in the obesity class. This will also be
applied to the validation and test set.

The remaining question is understanding when it is the right time to use the random split/stratified
split logic. Often, the stratified split logic is used when we are faced with an imbalanced class problem.
However, it is also often used when we want to make sure that we have a similar proportion of samples
based on a specific variable (not necessarily the target class). If you are not faced with this kind of
situation, then the random split is the go-to logic that you can always choose.

To implement both of the data splitting logics, you can write the code by yourself from scratch or
utilize the well-known package called Scikit-Learn. The following is an example to perform a random
split with a proportion of 8:1:1:

from sklearn.model_selection import train_test_split

df_train, df_unseen = train_test_split(df, test_size=0.2,
random_state=0)

df_val, df_test = train_test_split(df_unseen, test_size=0.5,
random_state=0)

Evaluating Machine Learning Models8

The df variable is our complete original data that was stored in the Pandas DataFrame object. The
train_test_split function splits the Pandas DataFrame, array, or matrix into shuffled train
and test sets. In lines 2–3, first, we split the original full data into df_train and df_unseen
with a proportion of 8:2, as specified by the test_size argument. Then, we split df_unseen
into df_val and df_test with a proportion of 1:1.

To perform the stratify split logic, you can just add the stratify argument to the train_test_
split function and fill it with the target array:

df_train, df_unseen = train_test_split(df, test_size=0.2,
random_state=0, stratify=df['class'])

df_val, df_test = train_test_split(df_unseen, test_size=0.5,
random_state=0, stratify=df_unseen['class'])

The stratify argument will ensure the data is split in the stratified fashion based on the given
target array.

In this section, we have learned the importance of shuffling the original full data before performing
data splitting and also understand the difference between the random and stratified split, as well as
when to use each of them. In the next section, we will start learning variations of the data splitting
strategies and how to implement each of them using the Scikit-learn package.

Discovering k-fold cross-validation
Cross-validation is a way to evaluate our ML model by performing multiple evaluations on our
original full data via a resampling procedure. This is a variation from the vanilla train-validation-test
split that we learned about in previous sections. Additionally, the concept of random and stratified
splits can be applied in cross-validation.

In cross-validation, we perform multiple splits for the train and validation sets, where each split is
usually referred to Fold. What about the test set? Well, it still acts as the purely unseen data where
we can test the final model configuration on it. Therefore, in the beginning, it is only separated once
from the train and validation set.

There are several variations of the cross-validation strategy. The first one is called k-fold cross-
validation. It works by performing k times of training and evaluation with a proportion of (k-1):1
for the train and validation set, respectively, in each fold. To have a clearer understanding of k-fold
cross-validation, please refer to Figure 1.2:

Exploring random and stratified splits 9

Figure 1.2 – K-fold cross-validation

Note
The preceding diagram has been reproduced according to the license specified: https://
commons.wikimedia.org/wiki/File:K-fold_cross_validation.jpg.

For instance, let's choose k = 4 to match the illustration in Figure 1.2. The green and red balls correspond
to the target class, where, in this case, we only have two target classes. The data is shuffled beforehand,
which can be seen from the absence of a pattern of green and red balls. It is also worth mentioning
that the shuffling was previously only done once. That's why the order of green and red balls is always
the same for each iteration (fold). The black box in each fold corresponds to the validation set (the
test data is in the illustration).

As you can see in Figure 1.2, the proportion of the training set versus the validation set is (k-1):1,
or in this case, 3:1. During each fold, the model will be trained on the train set and evaluated on
the validation set. Notice that the training and validation sets are different across each fold. The final
evaluation score can be calculated by taking the average score of all of the folds.

In summary, k-fold cross-validation works as follows:

1.	 Shuffling the original full data

2.	 Holding out the test data

3.	 Performing the k-fold multiple evaluation strategy on the rest of the original full data

4.	 Calculating the final evaluation score by taking the average score of all of the folds

5.	 Evaluating the test data using the final model configuration

https://commons.wikimedia.org/wiki/File:K-fold_cross_validation.jpg
https://commons.wikimedia.org/wiki/File:K-fold_cross_validation.jpg

Evaluating Machine Learning Models10

You might ask why do we need to perform cross-validation in the first place? Why is the vanilla
train-validation-test splitting strategy not enough? There are several reasons why we need to apply
the cross-validation strategy:

•	 Having only a small amount of training data.

•	 To get a more confident conclusion from the evaluation performance.

•	 To get a clearer picture of our model's learning ability and/or the complexity of the given data.

The first and second reasons are quite straightforward. The third reason is more interesting and should
be discussed. How can cross-validation help us to get a better idea about our model's learning ability
and/or the data complexity? Well, this happens when the variation of evaluation scores from each
fold is quite big. For instance, out of 4 folds, we get accuracy scores of 45%, 82%, 64%, and 98%. This
scenario should trigger our curiosity: what is wrong with our model and/or data? It could be that the
data is too hard to learn and/or our model can't learn properly.

The following is the syntax to perform k-fold cross-validation via the Scikit-Learn package:

From sklearn.model_selection import train_test_split, Kfold

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0)

kf = Kfold(n_splits=4)

for train_index, val_index in kf.split(df_cv):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

Notice that, first, we hold out the test set and only work with df_cv when performing the k-fold
cross-validation. By default, the Kfold function will disable the shuffling procedure. However,
this is not a problem for us since the data has already shuffled beforehand when we called the
train_test_split function. If you want to run the shuffling procedure again, you can pass
shuffle=True in the Kfold function.

Here is another example if you are interested in learning how to apply the concept of stratifying splits
in k-fold cross-validation:

From sklearn.model_selection import train_test_split,
StratifiedKFold

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0, stratify=df['class'])

skf = StratifiedKFold(n_splits=4)

Discovering repeated k-fold cross-validation 11

for train_index, val_index in skf.split(df_cv, df_cv['class']):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

The only difference is to import StratifiedKFold instead of the Kfold function and add the
array of target variables, which will be used to split the data in a stratified fashion.

In this section, you have learned what cross-validation is, when the right time is to perform cross-
validation, and the first (and the most widely used) cross-validation strategy variation, which is called
k-fold cross-validation. In the subsequent sections, we will also learn other variations of cross-validation
and how to implement them using the Scikit-Learn package.

Discovering repeated k-fold cross-validation
Repeated k-fold cross-validation involves simply performing the k-fold cross-validation repeatedly,
N times, with different randomizations in each repetition. The final evaluation score is the average of
all scores from all folds of each repetition. This strategy will increase our confidence in our model.

So, why repeat the k-fold cross-validation? Why don't we just increase the value of k in k-fold? Surely,
increasing the value of k will reduce the bias of our model's estimated performance. However, increasing
the value of k will increase the variation, especially when we have a small number of samples. Therefore,
usually, repeating the k-folds is a better way to gain higher confidence in our model's estimated
performance. Of course, this comes with a drawback, which is the increase in computation time.

To implement this strategy, we can simply perform a manual for-loop, where we apply the k-fold
cross-validation strategy to each loop. Fortunately, the Scikit-Learn package provide us with a specific
function in which to implement this strategy:

from sklearn.model_selection import train_test_split,
RepeatedKFold

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0)

rkf = RepeatedKFold(n_splits=4, n_repeats=3, random_state=0)

for train_index, val_index in rkf.split(df_cv):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

Evaluating Machine Learning Models12

Choosing n_splits=4 and n_repeats=3 means that we will have 12 different train and validation
sets. The final evaluation score is then just the average of all 12 scores. As you might expect, there is
also a dedicated function to implement the repeated k-fold in a stratified fashion:

from sklearn.model_selection import train_test_split,
RepeatedStratifiedKFold

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0, stratify=df['class'])

rskf = RepeatedStratifiedKFold(n_splits=4, n_repeats=3, random_
state=0)

for train_index, val_index in rskf.split(df_cv, df_
cv['class']):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_index]

#perform training or hyperparameter tuning here

The RepeatedStratifiedKFold function will perform stratified k-fold cross-validation
repeatedly, n_repeats times.

Now that you have learned another variation of the cross-validation strategy, called repeated k-fold
cross-validation, let's learn about the other variations next.

Discovering Leave-One-Out cross-validation
Essentially, Leave One Out (LOO) cross-validation is just k-fold cross-validation where k = n, where
n is the number of samples. This means there are n-1 samples for the training set and 1 sample for
the validation set in each fold (see Figure 1.3). Undoubtedly, this is a very computationally expensive
strategy and will result in a very high variance evaluation score estimator:

Figure 1.3 – LOO cross-validation

Discovering LPO cross-validation 13

So, when is LOO preferred over k-fold cross-validation? Well, LOO works best when you have a
very small dataset. It is also good to choose LOO over k-fold if you prefer the high confidence of the
model's performance estimation over the computational cost limitation.

Implementing this strategy from scratch is actually very simple. We just need to loop through each of
the indexes of data and do some data manipulation. However, the Scikit-Learn package also provides
the implementation for LOO, which we can use:

from sklearn.model_selection import train_test_split,
LeaveOneOut

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0)

loo = LeaveOneOut()

for train_index, val_index in loo.split(df_cv):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

Notice that there is no argument provided in the LeaveOneOut function since this strategy is very
straightforward and involves no stochastic procedure. There is also no stratified version of the LOO
since the validation set will always contain one sample.

Now that you are aware of the concept of LOO, in the next section, we will learn about a slight
variation of LOO.

Discovering LPO cross-validation
LPO cross-validation is a variation of the LOO cross-validation strategy, where the validation set in
each fold contains p samples instead of only 1 sample. Similar to LOO, this strategy will ensure that
we get all possible combinations of train-validation pairs. To be more precise, there will be ℂ𝑝𝑝𝑛𝑛 number
of folds assuming there are n samples on our data. For example, there will be ℂ530 or 142,506 folds if
we want to perform Leave-5-Out cross-validation on data that has 50 samples.

LPO is suitable when you have a small number of samples and want to get even higher confidence in
the model's estimated performance compared to the LOO method. LPO will result in an exploding
number of folds when you have a large number of samples.

Evaluating Machine Learning Models14

This strategy is a bit different from k-fold or LOO in terms of the overlapping between the validation
sets. For P > 1, LPO will result in overlapping validation sets, while k-fold and LOO will always result
in non-overlapping validation sets. Also, note that LPO is different from k-fold with K = N // P since
k-fold will always create non-overlapping validation sets, but not with the LPO strategy:

from sklearn.model_selection import train_test_split, LeavePOut

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0)

lpo = LeavePOut(p=2)

for train_index, val_index in lpo.split(df_cv):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

Unlike LOO, we have to provide the p argument to LPO, which refers to the p values in LPO.

In this section, we have learned about the variations of the LOO cross-validation strategy. In the next
section, we will learn how to perform cross-validation on time-series data.

Discovering time-series cross-validation
Time-series data has a unique characteristic in nature. Unlike "normal" data, which is assumed to be
independent and identically distributed (IID), time-series data does not follow that assumption.
In fact, each sample is dependent on previous samples, meaning changing the order of the samples
will result in different data interpretations.

Several examples of time-series data are listed as follows:

•	 Daily stock market price

•	 Hourly temperature data

•	 Minute-by-minute web page clicks count

There will be a look-ahead bias if we apply previous cross-validation strategies (for example, k-fold
or random or stratified splits) to time-series data. Look-ahead bias happens when we use the future
value of the data that is supposedly not available for the current time of the simulation.

For instance, we are working with hourly temperature data. We want to predict what the temperature
will be in 2 hours, but we use the temperature value of the next hour or the next 3 hours, which is
supposedly not available yet. This kind of bias will happen easily if we apply the previous cross-validation
strategies since those strategies are designed to work well only on IID distribution.

Discovering time-series cross-validation 15

Time-series cross-validation is the cross-validation strategy that is specifically designed to handle
time-series data. It works similarly to k-fold in terms of accepting the predefined values of folds, which
then generates k test sets. The difference is that the data is not shuffled in the first place, and the training
set in the next iteration is the superset of the one in the previous iteration, meaning the training set
keeps getting bigger over the number of iterations. Once we finish with the cross-validation and get
the final model configuration, we can then test our final model on the test data (see Figure 1.4):

Figure 1.4 – Time-series cross-validation

Also, the Scikit-Learn package provides us with a nice implementation of this strategy:

from sklearn.model_selection import train_test_split,
TimeSeriesSplit

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0, shuffle=False)

tscv = TimeSeriesSplit(n_splits=5)

for train_index, val_index in tscv.split(df_cv):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

Providing n_splits=5 will ensure that there are five test sets generated. It is worth noting that, by default,
the train set will have the size of 𝑖𝑖 ⋅ 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   (𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1)⁄   +  𝑛𝑛𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎\%(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1)⁄ for

the ith fold, while the test set will have the size of 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   (𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1)⁄⁄ .

Evaluating Machine Learning Models16

However, you can change the train and test set size via the max_train_size and test_size
arguments of the TimeSeriesSplit function. Additionally, there is also a gap argument that
can be utilized to exclude G samples from the end of each train set, where G is the value needed to
be specified by the developer.

You need to be aware that the Scikit-Learn implementation will always make sure that there is no
overlap between test sets, which is actually not necessary. Currently, there is no way to enable the
overlap between the test sets using the Scikit-Learn implementation. You need to write the code from
scratch to perform that kind of strategy.

In this section, we learned about the unique characteristic of time-series data and how to perform a
cross-validation strategy on it. There are other variations of the cross-validation strategy that haven't been
covered in this book. If you are interested, you might find some pointers in the Further reading section.

Summary
In this chapter, we learned a lot of important things that we need to know regarding how to evaluate
ML models properly. Starting from the concept of overfitting, numerous data splitting strategies, how
to choose the best data splitting strategy based on the given situation, and how to implement each
of them using the Scikit-Learn package. Understanding these concepts is important since you can't
perform a good hyperparameter tuning process without applying the appropriate data splitting strategy.

In the next chapter, we will discuss hyperparameter tuning. We will not only discuss the definition
but also several misconceptions and types of hyperparameter distributions.

Further reading
In this chapter, we have covered a lot of topics. However, there are still many uncovered interesting
algorithms related to cross-validation due to the scope of this book. If you want to learn more about
those algorithms and the implementation details of each of them, you can refer to this awesome page
created by the Scikit-Learn authors at https://scikit-learn.org/stable/modules/
cross_validation.html.

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html

2
Introducing Hyperparameter

Tuning

Every machine learning (ML) project should have a clear goal and success metrics. The success metrics
can be in the form of business and/or technical metrics. Evaluating business metrics is hard, and
often, they can only be evaluated after the ML model is in production. On the other hand, evaluating
technical metrics is more straightforward and can be done during the development phase. We, as
ML developers, want to achieve the best technical metrics that we can get since this is something that
we can optimize.

In this chapter, we'll learn one out of several ways to optimize the chosen technical metrics, called
hyperparameter tuning. We will start this chapter by understanding what hyperparameter tuning
is, along with its goal. Then, we'll discuss the difference between a hyperparameter and a parameter.
We'll also learn the concept of hyperparameter space and possible distributions of hyperparameter
values that you may find in practice.

By the end of this chapter, you will understand the concept of hyperparameter tuning and hyperparameters
themselves. Understanding these concepts is crucial for you to get a bigger picture of what will be
discussed in the next chapters.

In this chapter, we'll be covering the following main topics:

•	 What is hyperparameter tuning?

•	 Demystifying hyperparameters versus parameters

•	 Understanding hyperparameter space and distributions

What is hyperparameter tuning?
Hyperparameter tuning is a process whereby we search for the best set of hyperparameters of an ML
model from all of the candidate sets. It is the process of optimizing the technical metrics we care about.
The goal of hyperparameter tuning is simply to get the maximum evaluation score on the validation
set without causing an overfitting issue.

Introducing Hyperparameter Tuning18

Hyperparameter tuning is one of the model-centric approaches to optimizing a model's performance.
In practice, it is suggested to prioritize data-centric approaches over a model-centric approach when
it comes to optimizing a model's performance. Data-centric means that we are focusing on cleaning,
sampling, augmenting, or modifying the data, while model-centric means that we are focusing on
the model and its configuration.

To understand why data-centric is prioritized over model-centric, let's say you are a cook in a
restaurant. When it comes to cooking, no matter how expensive and fancy your kitchen setups
are, if the ingredients are not in a good condition, it's impossible to serve high-quality food to your
customers. In that analogy, ingredients refer to the data, and kitchen setups refer to the model and
its configuration. No matter how fancy and complex our model is, if we do not have good data or
features in the first place, then we can't achieve the maximum evaluation score. This is expressed in
the famous saying, garbage in, garbage out (GIGO).

In model-centric approaches, hyperparameter tuning is performed after we have found the most
suitable model framework or architecture. So, it can be said that hyperparameter tuning is the ultimate
step in optimizing the model's performance.

Now that you are aware of hyperparameter tuning and its purpose, let's discuss hyperparameters
themselves What actually is a hyperparameter? What is the difference between hyperparameters and
parameters? We will discuss this in the next section.

Demystifying hyperparameters versus parameters
The key difference between a hyperparameter and a parameter is how its value is generated. A parameter
value is generated by the model during the model-training phase. In other words, its value is learned
from the given data instead of given by the developer. On the other hand, a hyperparameter value is
given by the developer since it can't be estimated from the data.

Parameters are like the heart of the model. Poorly estimated parameters will result in a poorly performing
model. In fact, when we said we are training a model, it actually means that we are providing the
data to the model so that the model can estimate the value of its parameters, which is usually done
by performing some kind of optimization algorithm. Here are several examples of parameters in ML:

•	 Coefficients (𝛽𝛽0,  𝛽𝛽1,   …  , 𝛽𝛽𝑖𝑖, …  ,  𝛽𝛽𝑛𝑛) in linear regression

•	 Weights (𝑊𝑊1,  𝑊𝑊2,   … ,  𝑊𝑊𝑖𝑖,   … ,  𝑊𝑊𝑛𝑛) in a multilayer perceptron (MLP)

Hyperparameters, on the other hand, are a set of values that support the model-training process. They
are defined by the developer without knowing the exact impact on the model's performance. That's why
we need to perform hyperparameter tuning to get the best out of our model. The searching process can
be done via exhaustive search, heuristic search, Bayesian optimization, or multi-fidelity optimization,
which will be discussed in the following chapters. Here are several examples of hyperparameters:

Understanding hyperparameter space and distributions 19

•	 Dropout rate, number of epochs, and batch size in a neural network (NN)

•	 Maximum depth and splitting criterion in a decision tree

•	 Number of estimators in a random forest

You also need to be aware that there are models without hyperparameters or parameters, but not both
of them. For instance, a linear regression model is a model that has only parameters but doesn't have
any hyperparameters. On the other hand, K-Nearest Neighbors (KNN) is an instance of a model that
doesn't contain any parameters but has a k hyperparameter.

More possible confusion may appear when we start writing our code and developing the ML model.
In programming, arguments in a particular function or class are also often called parameters. What
if we utilize a class that implements an ML model, such as a decision-tree model? What should we
call the maximum depth or splitting criterion arguments that need to be passed to the class? Are they
parameters or hyperparameters? The correct answer is both! They are parameters to the class and they
are hyperparameters to the decision-tree model. It's just a matter of perspective!

In this section, we have learned what hyperparameters and parameters are, as well as what makes them
different. In the next section, we will dive deeper into the realm of hyperparameters.

Understanding hyperparameter space
and distributions
Hyperparameter space is defined as the universal set of possible hyperparameter value combinations—in
other words, it is the space containing all possible hyperparameter values that will be used as the search
space during the hyperparameter-tuning phase. That's why it is also often called the hyperparameter-
tuning search space. This space is predefined before the hyperparameter-tuning phase so that the
search will be performed only on this space.

For example, we want to perform hyperparameter tuning on a NN. Let's say we want to search what
is the best value for the dropout rate, the number of epochs, and batch-size hyperparameters.

The dropout rate is bounded in nature. Its value can only be between 0 and 1, while for the number of
epochs and batch-size hyperparameters, in theory, we can specify any positive integer value. However,
there are other considerations that we need to think of. A higher batch size will usually produce a
better model performance, but it will be bounded by the memory size of our physical computer. As for
the number of epochs, if we go with too high a value, we will more likely be faced with an overfitting
issue. That's why we need to set boundaries for the values of possible hyperparameters, which we call
the hyperparameter space.

Hyperparameters can be in the form of discrete or continuous values. A discrete hyperparameter can
be in the form of integer or string data types, while a continuous hyperparameter will always be in
the form of real numbers or floating data types.

Introducing Hyperparameter Tuning20

When defining a hyperparameter space, for some hyperparameter-tuning methods, it is not enough to
only specify the possible values of each hyperparameter we care about. We also need to define what is
the underlying distribution for each hyperparameter. Here, a distribution acts as some kind of policy
that rules how likely it is that a specific value will be tested during the hyperparameter-tuning phase.
If it is a uniform distribution, then all possible values have the same probability of being chosen.

There are many types of probability distributions that can be used: uniform, log-uniform, normal,
log-normal, and many more. There is no best practice when it comes to choosing the appropriate
distribution; you can just treat it as another hyperparameter. It is worth noting that there are distributions
specifically for continuous hyperparameters, and there are also distributions for discrete ones. For discrete
hyperparameter distribution, some distributions are specifically designed for discrete values—for instance,
an integer uniform distribution—but there are also distributions that are adjusted from a continuous
distribution. The latter types of discrete distributions usually have a discretized or quantized prefix on
their name—for instance, a quantized uniform distribution.

It is also worth noting that not all hyperparameters are equally significant when it comes to impacting
the model's performance—that's why it is recommended that you prioritize. We do not have to perform
hyperparameter tuning on all of the hyperparameters of a model—just focus on more important
hyperparameters.

In this section, we have learned about hyperparameter space and the concept of a hyperparameter
distribution and looked at examples of hyperparameter distributions you may find in practice.

Summary
In this chapter, we have learned all we need to know about hyperparameter tuning, starting from what
it is, what is its goal, and when we should perform hyperparameter tuning. We have also discussed
the difference between hyperparameters and parameters, the concept of hyperparameter space, and
the concept of hyperparameter distributions. Having a clear picture of the concept of hyperparameter
tuning and hyperparameters themselves will help you a lot in the following chapters.

As stated previously, we will discuss all of the four categories of hyperparameter-tuning methods in
this book. In Chapter 3, Exploring Exhaustive Search, we will start discussing the first group and the
most widely used hyperparameter-tuning methods in practice. There will be both high-level and
detailed explanations to help you understand each of the methods more easily.

3
Exploring Exhaustive Search

Hyperparameter tuning doesn't always correspond to fancy and complex search algorithms. In fact,
a simple for loop or manual search based on the developer's instinct can also be utilized to achieve
the goal of hyperparameter tuning, which is to get the maximum evaluation score on the validation
score without causing an overfitting issue.

In this chapter, we'll discuss the first out of four groups of hyperparameter tuning, called an exhaustive
search. This is the most widely used and most straightforward hyperparameter-tuning group in
practice. As explained by its name, hyperparameter-tuning methods that belong to this group work by
exhaustively searching through the hyperparameter space. Except for one method, all of the methods
in this group are categorized as uninformed search algorithms, meaning they are not learning from
previous iterations to have a better search space in the future. Three methods will be discussed in this
chapter: manual search, grid search, and random search.

By the end of this chapter, you will understand the concepts of each of the hyperparameter-tuning
methods that belong to the exhaustive search group. You will be able to explain these methods with
confidence when someone asks you about them, in both a high-level and detailed fashion, along with
the pros and cons. More importantly, you will be able to apply all of the methods with high confidence
in practice. You will also be able to understand what's happening if there are errors or unexpected
results and understand how to set up the method configuration to match your specific problem.

The following main topics will be covered in this chapter:

•	 Understanding manual search

•	 Understanding grid search

•	 Understanding random search

Exploring Exhaustive Search22

Understanding manual search
Manual search is the most straightforward hyperparameter-tuning method that belongs to the
exhaustive search group. In fact, it's not even an algorithm! There's no clear rule on how to perform
this method. As its name would suggest, a manual search is performed based on your instinct. You
simply have to tweak the hyperparameters until you are satisfied enough with the result.

This method is the one exception mentioned before in the introduction of this chapter. Except for this
method, other methods in the exhaustive search group are categorized as uninformed search methods.
You may already know the reason why this method is the exception. It's because the developer themselves
learn what is the impact of changing a particular or a set of hyperparameters in each iteration. In other
words, they learn from previous iterations to have a (hopefully) better "hyperparameter space" in the
next iterations.

To perform a manual search, do the following:

1.	 Split the original full data into train and test sets (see Chapter 1, Evaluating Machine
Learning Models).

2.	 Specify initial hyperparameter values.

3.	 Perform cross-validation on the train set (see Chapter 1, Evaluating Machine Learning Models).

4.	 Get the cross-evaluation score.

5.	 Specify new hyperparameter values.

6.	 Repeat steps 3-5 until you are satisfied enough.

7.	 Train on the full training set using the final hyperparameter values.

8.	 Evaluate the final trained model on the test set.

Although this method seems very straightforward and easy to do, it is actually the other way around
for a beginner. This is because you need to really understand how the model works and the usage of
each hyperparameter. It is also worth noting that, when it comes to manual search, there is no clear
definition of the hyperparameter space. The hyperparameter space can be surprisingly narrow or vast,
based on the developer's willingness and initiative to experiment with it.

Here is a list of pros and cons of the manual search hyperparameter-tuning method:

Figure 3.1 – Manual search: pros and cons

Understanding grid search 23

Now that you are aware of how manual search works, along with the pros and cons, we will learn
the simplest automated hyperparameter-tuning strategy, which will be discussed in the next section.

Understanding grid search
Grid search is the simplest automated hyperparameter-tuning method that ever existed. Apart from
the fancy name, grid search is basically just a nested for loop that tests all possible hyperparameter
values in the search space. Although many packages have grid search as one of their hyperparameter-
tuning method implementations, it is super easy to write your own code from scratch to implement
this method. The name grid comes from the fact that we have to test the whole hyperparameter space
just like creating a grid, as illustrated in the following diagram.

Figure 3.2 – Grid search illustration

For example, let's say we want to perform hyperparameter tuning using the grid search method
on a random forest. We decide to focus only on the number of estimators, splitting criterion, and
maximum tree-depth hyperparameters. Then, we can specify a list of possible values for each of the
hyperparameters. Let's say we define the hyperparameter space as follows:

•	 Number of estimators: n_estimators = [25, 50, 100, 150, 200]

•	 Splitting criterion: criterion = ["gini", "entropy"]

•	 Maximum depth: max_depth = [3, 5, 10, 15, 20, None]

Exploring Exhaustive Search24

Notice that for the grid search method, we do not have to specify the underlying distribution of the
hyperparameters. We simply create a list of all values that we want to test on for each hyperparameter.
Then, we can call the grid search implementation from our favorite package or write the code for grid
search by ourselves, as illustrated in the following snippet:

for n_est in n_estimators:

 for crit in criterion:

 for m_depth in max_depth:

 #perform cross-validation here

In this example, we create a nested for loop consisting of three layers, each for the hyperparameter
in our search space. To perform a grid search in general, do the following:

1.	 Split the original full data into train and test sets.

2.	 Define the hyperparameter space.

3.	 Construct a nested for loop of H layers, where H is the number of hyperparameters in the space.

4.	 Within each loop, do the following:

	� Perform cross-validation on the train set

	� Store the cross-validation score along with the hyperparameter combination in a data
structure—for example, a dictionary

5.	 Train on the full training set using the best hyperparameter combination.

6.	 Evaluate the final trained model on the test set.

As you can see from the detailed steps on how to perform a grid search, this method is actually a
brute-force method since we have to test all possible combinations of the predefined hyperparameter
space. That's why it is very important to have a proper or well-defined hyperparameter space. If not,
then we will waste a lot of time testing all of the combinations.

Here is a list of pros and cons of the grid search hyperparameter-tuning method:

Figure 3.3 – Grid search: pros and cons

Understanding random search 25

The COD in Table 3.2 means that adding another value to the hyperparameter space will exponentially
increase the experiment time. Let's use the preceding example where we performed hyperparameter
tuning on a random forest. In our initial hyperparameter space, there are 5 ⋅ 2 ⋅ 6 = 60 combinations
we have to test. If we add just another value to our space—let's say we add 30 to the max_depth
list—there will be 5 ⋅ 2 ⋅ 7 = 70 combinations or an additional 10 combinations that we have to test.
This exponential behavior will even become more apparent when we have a bigger hyperparameter
space! Sadly, it is also possible that after defining a big hyperparameter space and spending a long
time performing hyperparameter tuning, we can still miss better hyperparameter values since they are
located outside of the predefined space!

In this section, we have learned what grid search is, how it works, and what the pros and cons are.
In the next section, we will discuss the last hyperparameter-tuning method that is categorized in the
exhaustive search group: the random search method.

Understanding random search
Random search is the third and the last hyperparameter-tuning method that belongs in the exhaustive
search group. It is a simple method but works surprisingly well in practice. As implied by its name,
random search works by randomly selecting hyperparameter values in each iteration. There's nothing
more to it. The selected set of hyperparameters in the previous iteration will not impact how the
method selects another set of hyperparameters in the following iterations. That's why random search
is also categorized as an uninformed search method.

You can see an illustration of the random search method in the following diagram:

Figure 3.4 – Random search illustration

Exploring Exhaustive Search26

Random search usually works better than grid search when we have little or no idea of the proper
hyperparameter space for our case, and this applies most of the time. Compared to grid search,
random search is also more efficient in terms of computing cost and in finding the optimal set of
hyperparameters. This is because we do not have to test each of the hyperparameter combinations;
we can just let it run stochastically—or, in layman's terms, we can just let luck play its part.

You may wonder how picking a random set of hyperparameters can lead to a better tuning result compared
to grid search most of the time. It is actually not the case if the predefined hyperparameter space is exactly
the same as the one we provide to the grid search method. We have to provide a bigger hyperparameter
space in order to support random search to play its role. A bigger search space doesn't always mean we
have to increase the dimensionality, either by widening existing hyperparameters' range or adding new
hyperparameters. We can also create a bigger hyperparameter space by adding granularity to it.

It is also worth noting that, unlike grid search, which doesn't require defining the hyperparameter's
distribution when defining a search space, in random search, it is suggested to define the distribution
of each hyperparameter. In some package implementations, if you do not specify the distribution,
it will default to the uniform distribution. We will discuss more on the implementation part from
Chapter 7, Hyperparameter Tuning via Scikit to Chapter 10, Advanced Hyperparameter Tuning with
DEAP and Microsoft NNI

Let's use a similar example to what we saw in the Understanding grid search section to get a better
understanding of how random search works. Apart from focusing on the number of estimators, splitting
criterion, and maximum tree depth, we will also add a minimum samples split hyperparameter to our
space. Unlike grid search, we have to also provide a distribution of each of the hyperparameters when
defining a search space. Let's say we define the hyperparameter space as follows:

•	 Number of estimators: n_estimators = randint(25,200)

•	 Splitting criterion: criterion = ["gini", "entropy"]

•	 Maximum depth: max_depth = [3, 5, 10, 15, 20, None]

•	 Minimum samples split: min_samples_split = truncnorm(a=1, b=5, loc=2,
scale=0.5)

As you can see, compared to the search space in the Understanding grid search section, we are increasing
the size of the space by adding granularity and adding a new hyperparameter. We add granularity for the
n_estimators hyperparameter by utilizing the randint uniform random integer distribution,
ranging from 25 to 200. This means we can test any value between 25 and 200, where all of them
will have the same probability of being tested.

Understanding random search 27

Apart from increasing the size of the search space by adding granularity, we also add a new hyperparameter
called min_samples_split. This hyperparameter has the truncnorm distribution or truncated
normal distribution, which basically—as implied by its name—is a modified normal distribution
bounded on a particular range. In this case, the range is bounded on a range from a=1 and b=5,
with a mean of loc=2 and standard deviation of scale=0.5.

As for criterion and max_depth, we are still using the same configuration as the previous
search space. Note that not specifying any distribution means we are applying uniform distribution
to the hyperparameter, where all values will have the same probability of being tested. For now,
you don't have to worry about what are the available distributions and how to implement them,
since we will also discuss them from Chapter 7, Hyperparameter Tuning via Scikit to Chapter 10,
Advanced Hyperparameter Tuning with DEAP and Microsoft NNI.

In random search, apart from the need to define a hyperparameter space, we also need to define a
hyperparameter for this method itself, which is called the number of trials. This hyperparameter
will control how many trials or iterations we want to perform on the predefined search space. This
hyperparameter is needed since we are not aiming to test all possible combinations in the space; if we
were, then it would be the same grid search method. It is also worth noting that since this method
has a stochastic nature, we also need to specify a random seed to get the exact same result every time
we run the code.

Unlike grid search, it is quite cumbersome to implement this method from scratch, although it is
possible to do so. Therefore, many packages support the implementation of the random search method.
Regardless of the implementation variations, in general, random search works like this:

1.	 Split the original full data into train and test sets.

2.	 Define the number of trials and a random seed.

3.	 Define a hyperparameter space with the accompanied distributions.

4.	 Generate an iterator consisting of random hyperparameter combinations with the number of
elements equal to the defined number of trials in Step 2.

5.	 Loop through the iterator, where the following actions will be performed within each loop:

	� Getting the hyperparameter combination for this trial from the iterator

	� Performing cross-validation on the train set

	� Storing the cross-validation score along with the hyperparameter combination in a data
structure—for example, a dictionary

6.	 Train on the full training set using the best hyperparameter combination.

7.	 Evaluate the final trained model on the test set.

Exploring Exhaustive Search28

Please note that it is guaranteed there is no duplicate in the generated hyperparameter combinations
in Step 4.

Here is a list of pros and cons of the random search hyperparameter-tuning method:

Figure 3.5 – Random search: pros and cons

The random search produces high variance during the process due to the property of uninformed
search methods. There is no way for the random search to learn from past experiences so that it
can learn better and be more effective in the next iterations. In Chapter 6, Exploring Multi-Fidelity
Optimization, we will learn other variations of grid search and random search that are categorized as
informed search methods.

In this section, we have learned all you need to know about random search, starting from what it is,
how it works, what makes it different from grid search, and the pros and cons of this method.

Summary
In this chapter, we have discussed the first out of four groups of hyperparameter-tuning methods,
called the exhaustive search group. We have discussed manual search, grid search, and random search.
We not only discussed the definition of those methods, but also how those methods work at both a
high level and a technical level, and what are the pros and cons for each of them. From now on, you
should be able to explain these exhaustive search methods with confidence when someone asks you
about them and apply all of the exhaustive search methods with high confidence in practice.

In the next chapter, we will start discussing Bayesian optimization, the second group of hyperparameter-
tuning methods. The goal of the next chapter is similar to this chapter, which is to give a better
understanding of methods belonging to the Bayesian optimization group so that you can utilize those
methods with high confidence in practice.

4
E x p l o r i n g B a y e s i a n

O p t i m i z a t i o n

Bayesian optimization (BO) is the second out of four groups of hyperparameter tuning methods.
Unlike grid search and random search, which are categorized as uninformed search methods, all of
the methods that belong to the BO group are categorized as informed search methods, meaning
they are learning from previous iterations to (hopefully) provide a better search space in the future.

In this chapter, we will discuss several methods that belong to the BO group, including Gaussian
process (GP), sequential model-based algorithm configuration (SMAC), Tree-structured Parzen
Estimators (TPE), and Metis. Similar to Chapter 3, Exploring Exhaustive Search, we will discuss the
definition of each method, the differences between them, how they work, and the pros and cons of
each method.

By the end of this chapter, you will be able to explain BO and its variations when someone asks
you. You will not only be able to explain what they are, but also how they work, in a high-level and
technical way. You will also be able to tell the differences between them, along with the pros and
cons of each of the methods. Furthermore, you will experience a crucial benefit once you understand
the ins and outs of each method; that is, you will be able to understand what’s happening if there
are errors or unexpected results and understand how to set up the method configuration to match
your specific problem.

In this chapter, we will cover the following main topics:

•	 Introducing BO

•	 Understanding BO GP

•	 Understanding SMAC

•	 Understanding TPE

•	 Understanding Metis

Exploring Bayesian Optimization30

Introducing BO
BO is categorized as an informed search hyperparameter tuning method, meaning the search is learning
from previous iterations to have a (hopefully) better subspace in the next iterations. It is also categorized
as the sequential model-based optimization (SMBO) group. All SMBO methods work by sequentially
updating probability models to estimate the effect of a set of hyperparameters on their performance based
on historical observed data, as well as suggesting new hyperparameters to be tested in the following trials.

BO is a popular hyperparameter tuning method due to its data-efficient property, meaning it needs a
relatively small number of samples to get to the optimal solution. You may be wondering, how exactly
does BO get this ground-breaking data-efficient property? This property exists thanks to BO’s ability
to learn from previous iterations. BO can learn and predict which subspace is worth visiting in the
future by utilizing a probabilistic regression model, which acts as the cheap cloned version of the
expensive objective function, and an acquisition function, which governs which set of hyperparameters
should be tested in the next iteration.

The objective function is just a function that takes hyperparameter values as input and returns the
cross-validation score (see Chapter 1, Evaluating Machine Learning Models). We do not know what the
output of the objective function for all possible hyperparameter values is. If we did, there would be no
need to perform hyperparameter tuning. We could just use that function to get the hyperparameter
values, which results in the highest cross-validation score. That’s why we need a probabilistic regression
model, to approximate the objective function by fitting a set of known hyperparameter and cross-
validation score value pairs (see Figure 4.1). The approximation concept is similar to the concept of
ML-based regressor models, such as random forest, linear regression, and many more. First, we fit the
regressor to the samples of independent and dependent variables; then, the model will try to learn
from the data, which in the end can be used to predict new given data. The probabilistic regression
model is also often called the surrogate model:

Figure 4.1 – Illustration of the probabilistic regression model, M

Introducing BO 31

The acquisition function governs which subspace we should search in the next iteration. Thanks to
this function, BO enables us to learn from past experiences and have fewer hyperparameter tuning
iterations compared to random search, in general.

Important Note
Remember that, to get the cross-validation score, we need to perform multiple training and
evaluation processes (see Chapter 1, Evaluating Machine Learning Models). This is an expensive
process when you have a big, complex model with a large amount of training data. That’s why
the acquisition function plays a big role here.

In general, BO works as follows:

1.	 Split the original full data into train and test sets. (See Chapter 1, Evaluating Machine Learning
Models).

2.	 Define the hyperparameter space, H, with the accompanied distributions.

3.	 Define the objective function, f, based on the train set.

4.	 Define the stopping criterion. Usually, the number of trials is used. However, it is also possible
to use the time taken or convergence as the stopping criterion.

5.	 Initializes the empty set, D, which will be used to store the initial pairs of hyperparameter values
and cross-validation scores, as well as the resulting pairs suggested by the acquisition function, A.

6.	 Initialize several pairs of hyperparameter values and cross-validation scores and store them in D.

7.	 Fit the probabilistic regression model/surrogate model, M, using the value pairs in D.

8.	 Sample the next set of hyperparameters by utilizing the acquisition function, A:

I.	 Perform optimization on the acquisition function, A, with the help of the surrogate
model, M, to sample which hyperparameters are to be passed to the acquisition function.

II.	 Get the expected optimal set of hyperparameters based on the acquisition function, A.

9.	 Compute the cross-validation score using the objective function, f, based on the output
from Step 8.

10.	 Add the hyperparameters and cross-validation score pair from Step 8 and Step 9 to set D.

11.	 Repeat Steps 7 to 10 until the stopping criterion is met.

12.	 Trains on the full training set using the final hyperparameter values.

13.	 Evaluate the final trained model on the test set.

Exploring Bayesian Optimization32

You can initialize the hyperparameter values and cross-validation scores, as shown in Step 6, using several
sampling strategies. The most straightforward and go-to way, in practice, is to just perform random
sampling. However, there are also other methods that you may consider during your experiments,
such as the quasi-random or Latin hypercube sampling methods.

Similar to random search, we also need to define the distribution of each hyperparameter in BO. You
may wonder if BO can also work on a non-numerical type of hyperparameter. The answer is based
on the probabilistic regression model you are using. There are several surrogate models you can choose
from. Those options will be discussed in the next three sections of this chapter, and they include GP,
Tree-structured Parzen Estimator (TPE), random forest, extra trees, or other ML-based regressors.
In this book, we will discuss the random forest regressor that’s implemented in the SMAC model.

It is also worth noting that the optimization process in Step 8 can be replaced with a random search.
So, instead of performing some kind of second-order optimization method, we can randomly sample
sets of hyperparameters from the search space and pass them onto the acquisition function. Then, we
can get the optimal set of hyperparameters based on the output from the acquisition function. When
using random search in this step, we still utilize the acquisition function to govern which subspace
we should search for in the next iteration, but we add some random behavior to it, with the hope that
we can escape the local optimum and converge toward the global optimum.

The first and the most popular acquisition function is expected improvement (EI), which is defined
as follows:

𝐸𝐸𝐸𝐸(𝑥𝑥) = (𝜇𝜇(𝑥𝑥) − 𝑓𝑓(𝑥𝑥ˆ))Φ(𝑍𝑍) + 𝜎𝜎(𝑥𝑥)𝜙𝜙(𝑍𝑍) when 𝜎𝜎(𝑥𝑥) ≠ 0

𝐸𝐸𝐸𝐸(𝑥𝑥) = 0 when 𝜎𝜎(𝑥𝑥) = 0

Here, 𝑍𝑍 = 𝜇𝜇(𝑥𝑥) − 𝑓𝑓(𝑥𝑥 ̂)
𝜎𝜎(𝑥𝑥) , Φ(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) are the cumulative distribution and probability density

functions of the standard normal distribution, respectively. 𝜇𝜇(𝑥𝑥) and 𝜎𝜎(𝑥𝑥) represent the expected
performance and the uncertainty, respectively, that are captured by the surrogate model. Finally, 𝑓𝑓(𝑥𝑥ˆ)
represents the current best value of the objective function.

Implicitly, the EI acquisition function enables BO methods to have the exploration versus exploitation
trade-off property. This property can be achieved by two terms competing within the formula. When
the value of the first term is high, meaning the expected performance, 𝜇𝜇(𝑥𝑥) , is higher than the current
best value, 𝑓𝑓(𝑥𝑥ˆ) , EI will favor the exploitation process. On the other hand, when the uncertainty is very
high, meaning we have a high value of 𝜎𝜎(𝑥𝑥) , EI will favor the exploration process. By exploitation,
this means that the acquisition function will recommend the set of hyperparameters that possibly
get a higher value of the objective function, f. In terms of exploration, this means that the acquisition
function will recommend the set of hyperparameters from the subspace that we haven’t explored yet.

Introducing BO 33

You can imagine this exploration and exploitation trade-off as when you are craving some food.
Let’s say you want to have lunch with your brother today. Imagine the following two scenarios:

•	 “Hey bro, let’s have lunch at our favorite restaurant today!”

•	 “Hey bro, have you heard of the new restaurant up there? Why don’t we try it for lunch?”

In the first scenario, you choose to eat at your favorite restaurant since you are confident that there
is nothing wrong with the food and, more importantly, you are confident about the taste of the food
and the overall experience of eating at that restaurant. This first scenario best explains what we call the
exploitation process. In the second scenario, you don’t have any idea what the overall experience of eating
at that new restaurant is. It may be worse than your favorite restaurant, but it may also potentially be
your new favorite restaurant! This is what we call the exploration process.

Important Note
In some implementations, such as in the Scikit-optimize package, there is a hyperparameter
that enables us to control how much we are leaning toward exploitation compared to exploration.
In Scikit-optimize, the sign of the EI function is negative. This is because the package treats the
optimization problem as the minimization problem by default.

In our previous explanation, we treated the optimization problem as the maximization problem since
we wanted to get the highest cross-validation score possible. Don’t confuse this with the minimization
versus maximization problem – just choose what best describes the problem you will be facing in practice!

The following is the EI acquisition function that’s implemented in the Scikit-optimize package:

−𝐸𝐸𝐸𝐸(𝑥𝑥) = (𝑓𝑓(𝑥𝑥ˆ) − 𝜇𝜇(𝑥𝑥) − 𝛿𝛿)Φ(𝑍𝑍) + 𝜎𝜎(𝑥𝑥)𝜙𝜙(𝑍𝑍)
As you can see in the first term, the value of 𝛿𝛿 will control how big our tendency is toward exploitation
compared to exploration. The smaller the 𝛿𝛿 value is, the more we lean toward exploitation. We will
learn more about the implementation part of BO using Scikit or other packages from Chapter 7,
Hyperparameter Tuning via Scikit to Chapter 10, Advanced Hyperparameter Tuning with DEAP and
Microsoft NNI.

To get a better understanding of how the exploration and exploitation trade-off happens during the
hyperparameter tuning phase, let’s look at an example. Let’s say, for instance, we are using the GP
surrogate model to estimate the following objective function. There’s no need to worry about what
and how GP works for now; we will discuss it in more detail in the next section:

𝑓𝑓(𝑥𝑥) = cos(6𝑥𝑥) ⋅ (1 − sin(𝑥𝑥5)) + 𝜀𝜀

Exploring Bayesian Optimization34

Here, 𝜀𝜀 is a noise that follows the standard normal distribution. The following is a plot of this function
within the range of [−2,2] . Note that, in this example, we are assuming that we know what the true
objective function is. However, in practice, this function is unknown:

Figure 4.2 – Plot of the objective function, f(x)

Let’s say we are using the EI as the acquisition function, setting the number of trials as 15, setting the
initial number of points as 5, and setting the 𝛿𝛿 value to 0.01. You can see how the fitting process
works for the first five trials in the following figure:

Figure 4.3 – GP and EI illustration, δ = 0.01

Introducing BO 35

Each row in the preceding figure corresponds to the first until the fifth trial. The left column contains
information on the objective function (red dashed line), the GP surrogate model approximation of
the objective function (green dashed line), how sure the approximation is (green transparent area),
and the observed points up to each trial (red dots). The right column contains information on the EI
acquisition function values (blue line) and the next point (blue dot) to be included in the next trials.

Let’s run through each of the rows in Figure 4.3 so that you understand how it works. In the first
trial (see the first row from the top in the left column), we initialize five random sample points – or
hyperparameter values, in the context of hyperparameter tuning – and fit the GP model based on
those five points. Remember that the GP model doesn’t know the actual objective function; the only
information it has is just those five random points. Then (see the first row from the top in the right
column), based on the fitted GP model, we get the value of the EI acquisition function across the
space. In this case, the space is just a range – that is, [−2,2] . We also get the point to be included in
the next trials, which in this case is around point 0.5.

In the second trial, we utilize the point suggested by the EI acquisition function and fit the GP model
again based on the six sample points we have (see the second row from the top in the left column). If
you compare the GP approximation of the second trial with the first trial, you will see that it is closer
to the true objective function. Next (see the second row from the top in the right column), we repeat the
same process, which is to generate the EI function value across the space and the point to be included
in the next trial. The suggested point in this step is around 0.7.

We keep repeating the same process until the stopping criteria are met, which in this case is 15 trials.
The following plot shows the result after 15 trials. It is much better than the approximation in the first
trial (see the green dashed line)! You can also see that there are some ranges of 𝑥𝑥 where the confidence
of the GP approximation is high, such as around points –1.5 and 1.6:

Figure 4.4 – Result after 15 trials, δ = 0.01

Exploring Bayesian Optimization36

Based on the preceding plot, the final suggested point, or the hyperparameter value, is –1.5218,
which results in the value of the objective function being equal to –1.9765. Let’s also look at the
convergence plot from the first until the last trial. From the following convergence plot, we can see
how our surrogate model and acquisition function help us get the minimum value of the objective
function based on all the trials:

Figure 4.5 – Convergence plot

Now, let’s try to change the value of 𝛿𝛿 to a lower value than what we had previously to see how the EI
acquisition function will favor exploitation more than exploration. Let’s set the 𝛿𝛿 value to be 1,000 times
lower than the previous value. Note that we only change the 𝛿𝛿 value and leave the other setups as-is:

Figure 4.6 – GP and EI illustration, δ = 0.00001

Introducing BO 37

As you can see, the EI acquisition function suggested most of the points in a range between 0.5 and
1.4. The acquisition function doesn’t suggest exploring the [1.5,1.6] range, although we can get a
much lower objective function value in that range. This happens because there are no initial random
points in that range, and we favor exploitation a lot in this example. The following plot shows the
final results after 15 trials. In this case, we get a worse result when we favor more exploitation over
exploration. However, this is not always the case. You have to experiment since different data, different
objective functions, a different hyperparameter space, and different implementations may result in
different conclusions:

Figure 4.7 – Result after 15 trials, δ = 0.00001

Now, let’s see what the impact is if we set the 𝛿𝛿 value to 100, which in this case means that we favor
exploration more than exploitation. Similar to the previous trial, after running 15 trials, we got the
following results:

Figure 4.8 – Result after 15 trials, δ = 100

Exploring Bayesian Optimization38

As you can see, the points that are suggested by the acquisition function (the red dots) are all over the
place. This is because we set such a high 𝛿𝛿 value. This means that the acquisition function’s outputs
will suggest points in the space that haven’t been observed yet. We will learn how to produce the plots
shown here in Chapter 7, Hyperparameter Tuning via Scikit.

Besides the EI acquisition function, there are also other popular acquisition functions that you may
consider using, including Probability of Improvement (PI) and Upper Confidence Bound (UCB).

PI is the acquisition function that existed before EI. It is simpler than EI – in fact, the formula of
𝑃𝑃𝑃𝑃(𝑥𝑥) is derived based on the following simple definition of improvement:

𝐼𝐼(𝑥𝑥) = max(0, 𝜇𝜇(𝑥𝑥) − 𝑓𝑓(𝑥𝑥ˆ))

The idea of 𝐼𝐼(𝑥𝑥) is to return the size of improvement, if there is improvement between the expected
performance and the current best performance, or just return zero if there is no improvement. Based
on 𝐼𝐼(𝑥𝑥) , we can define PI as follows:

𝑃𝑃𝑃𝑃(𝑥𝑥) = Φ(𝑍𝑍) = Φ(𝜇𝜇
(𝑥𝑥) − 𝑓𝑓(𝑥𝑥ˆ)

𝜎𝜎(𝑥𝑥)) when 𝜎𝜎(𝑥𝑥) ≠ 0
𝑃𝑃𝑃𝑃(𝑥𝑥) = 0 when 𝜎𝜎(𝑥𝑥) = 0

The problem with PI is that it will give the same reward for all sets of hyperparameters, so long as there’s
an improvement compared to the current best value, 𝑓𝑓(𝑥𝑥ˆ) , no matter how big the improvement is.
This behavior is not very preferable in practice since it can guide us to the local minima and get us stuck
in there. If you are familiar with calculus and statistics, you will realize that EI is just the expectation
over 𝐼𝐼(𝑥𝑥) , as shown here:

𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝔼𝔼[𝐼𝐼(𝑥𝑥)] = ∫ 𝐼𝐼(𝑥𝑥)𝜙𝜙(𝑧𝑧)𝑑𝑑𝑑𝑑
∞

−∞

Here, 𝜙𝜙(𝑧𝑧) is the probability density function of the standard normal distribution. Unlike PI, the EI
acquisition function will take the size of improvement into account.

As for the UCB, it is very straightforward compared to others. We have the power to control the
trade-off between exploration and exploitation by ourselves via the 𝜆𝜆 parameter. This acquisition
function can be defined as follows:

𝑈𝑈𝑈𝑈𝑈𝑈(𝑥𝑥; 𝜆𝜆) = 𝜇𝜇(𝑥𝑥) + 𝜆𝜆 ⋅ 𝜎𝜎(𝑥𝑥)
As you can see, UCB doesn’t take into account the current best value of the objective function. It only
considers the expected performance and the uncertainty captured by the surrogate model. You can
control the exploration and exploitation trade-off by changing the 𝜆𝜆 value. If you want to lean toward
exploring the search space, then you can increase the value of 𝜆𝜆 . However, if you want to focus more
on the set of hyperparameters that are expected to perform well, then you can decrease the value of 𝜆𝜆 .

Apart from the variations of surrogate model and acquisition functions, there are also other variations
of BO methods based on modifying the algorithm itself, including Metis and Bayesian optimization
and HyperBand (BOHB). We will discuss Metis in the Understanding Metis section and BOHB in
Chapter 6, Exploring Multi-Fidelity Optimization.

Introducing BO 39

The following are the pros and cons of BO hyperparameter tuning, in general, compared to other
hyperparameter tuning methods:

Figure 4.9 – Pros and cons of BO

BO can handle expensive objective functions and is more data-efficient and arguably better than
random search when it has good initial points. You can utilize the set of hyperparameters we used for
the initial points up to Step 6 from the procedure mentioned at the beginning of this section. However,
if you don’t have that privileged access, BO still can outperform random search if you give the method
some more time since it has to build a good surrogate model first from scratch, especially if you have
a huge hyperparameter space. Once BO has built a good surrogate model, it tends to work faster than
random search to find the optimal set of hyperparameters.

There is also another way to speed up the relatively slow warm-up process of BO. The idea is to adopt
a meta-learning procedure to initialize the initial set of hyperparameters by learning from meta-
features in other, similar datasets.

Speeding Up BO’s Warm-Up
See the following paper for more information: Efficient and Robust Automated Machine Learning,
by Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
Frank Hutter (https://papers.nips.cc/paper/2015/hash/11d0e62872
02fced83f79975ec59a3a6-Abstract.html).

BO also has a nice feature that random search doesn’t have – the ability to control the exploration
and exploitation trade-off, as explained previously in this section. This feature enables BO to do more
than just constantly explore, as random search does.

https://papers.nips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://papers.nips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html

Exploring Bayesian Optimization40

Now that you are aware of what BO is, how it works, what its important components are, and the
pros and cons of this method, we will dive deeper into the variations of BO in the following sections.

Understanding BO GP
Bayesian optimization Gaussian process (BOGP) is one of the variants of the BO hyperparameter
tuning method. It is well-known for its good capability in describing the objective function. This
variant is very popular due to the unique analytically tractable nature of the surrogate model and its
ability to produce relatively accurate approximation, even with only a few observed points.

However, BOGP has limitations. It only works on continuous hyperparameters, not on the discrete
or categorical types of hyperparameters. It is not recommended to use BOGP when you need a lot
of iterations to get the optimal set of hyperparameters, especially when you have a large number of
samples. This is BOGP has a 𝑂𝑂(𝑁𝑁3) runtime, where 𝑁𝑁 is the number of samples. If you have more than
10 hyperparameters to be optimized, the common belief is that BOGP is not the right hyperparameter
tuning method for you.

Having GP as the surrogate model means that we utilize GP as the prior for our objective function.
Then, we can utilize the prior along with a likelihood model to compute the posterior that we care about.
All of these nerdy terms can easily be understood if we are familiar with the famous Bayes Theorem.

Bayes Theorem allows us to calculate the probability of an event, given a specific condition, by utilizing
our previous knowledge or common belief that we have. Formally, Bayes Theorem is defined as follows:

𝑃𝑃(Θ|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|Θ) ⋅ 𝑃𝑃(Θ)
𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

Here, Θ is the event we want to know the probability of, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 refers to the specific condition we
mentioned previously. The left-hand side of the equation, 𝑃𝑃(Θ|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) , is what we called as the posterior.
𝑃𝑃(Θ) is the prior and 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|Θ) is what we call the likelihood model. Finally, 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is just a constant

to ensure that the resulting value of this formula is bound in the range of [0,1] .

To understand Bayes Theorem, let’s walk through an example. Let’s say we want to know the probability
of you eating at your favorite restaurant, given that today’s weather is sunny. In this example, you eating
at your favorite restaurant is the event we are interested in. This is Θ in the equation. The information
that today is sunny refers to 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 in the equation.

Let’s say you are eating at your favorite restaurant for 40 out of 100 days. This means that before
knowing what today’s weather is, your 𝑃𝑃(Θ) is equal to 40

100 = 0.4 . Let’s also assume that out of 100
days, there are 30 sunny days. Then, the 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) value is equal to 30

100 = 0.3 . Based on your experience
of eating at your favorite restaurant, you have realized that you ate in the sunny weather condition

20 out of 40 times. Thus, the likelihood, 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|Θ) , is equal to 20
40 = 0.5 . Using all of this information, we

can calculate the probability of you eating at your restaurant, given that today’s weather is sunny, as

𝑃𝑃(Θ|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 0.5 ⋅ 0.4
0.3 = 2

3

Understanding BO GP 41

Now, we are ready to revisit the GP. BOGP utilizes GP as the surrogate model. GP as the surrogate
model means that we utilize it as the prior of our objective function, which implies that the posterior
distribution is also a GP. You can think of GP as a generalization of a Gaussian distribution that
you are familiar with. Unlike Gaussian distribution, which describes the distribution of a random
variable, GP describes the distribution over functions. Similar to the Gaussian distribution that is
accompanied by the mean and variance of the random variable, GP is also accompanied by the mean
and covariance of the function. As for the likelihood, we assume that the objective function, f, follows
a normal likelihood with noise:

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝜀𝜀

𝜀𝜀 ∼ 𝑁𝑁(0, 𝜎𝜎𝜀𝜀2)
Then, we can describe 𝑓𝑓1:𝑛𝑛 = {𝑓𝑓(𝑥𝑥1), 𝑓𝑓(𝑥𝑥2),… , 𝑓𝑓(𝑥𝑥𝑛𝑛)} , or the values of our objective function for all n
samples. as a GP with a mean function of 𝑚𝑚(𝑥𝑥1:𝑛𝑛) and a covariance kernel, 𝐾𝐾 , sized n x n, which
is defined as follows:

𝑓𝑓1:𝑛𝑛 ∼ Ν(𝑚𝑚(𝑥𝑥1:𝑛𝑛),𝐾𝐾)

The distribution of prediction from GP also follows the Gaussian distribution, which can be defined
as follows:

𝑝𝑝(𝑦𝑦|𝑥𝑥, 𝐷𝐷) = Ν(𝑦𝑦 | 𝜇𝜇ˆ, 𝜎𝜎ˆ2)

Here, the value of 𝜇𝜇ˆ and 𝜎𝜎ˆ2 can be analytically derived from the kernel, 𝐾𝐾 .
To summarize, GP approximates the objective function by following a normal distribution assumption.
In practice, GP can also be utilized when we don’t have zero mean processes, as per our previous
assumption. However, we need to do some preprocessing on the values of the objective function to
center them to zero. Choosing the right covariance kernel, 𝐾𝐾 , is also crucial. It highly impacts the
performance of our hyperparameter tuning process. The most popular kernel that’s used in practice
is the Matern kernel. However, we must choose the right kernel for our case, since each kernel has a
characteristic that may or may not be suitable for our objective function. We will discuss the kernels
that are available in the Scikit package in Chapter 7, Hyperparameter Tuning via Scikit.

Exploring Bayesian Optimization42

The following table shows the list of pros and cons of BOGP compared to other variants of the BO
hyperparameter tuning method:

Figure 4.10 – Pros and cons of BOGP

In the previous section, we saw how GP works in practice, where we discussed the exploration and
exploitation trade-off. You can revisit that example to get a better understanding of how GP works in
practice through the help of visualizations.

In this section, we learned about utilizing GP as the surrogate model in BO, along with the pros and
cons compared to other variants of BO. In the next section, we will learn about another variant of BO
that utilizes random forest as the surrogate model.

Understanding SMAC
SMAC is part of the BO hyperparameter tuning method group and utilizes random forest as the
surrogate model. This method is optimized to handle discrete or categorical hyperparameters. If
your hyperparameter space is huge and is dominated by discrete hyperparameters, then SMAC is a
good choice for you.

Similar to BOGP, SMAC also works by modeling the objective function. Specifically, it utilizes random
forest as the surrogate model to create an estimation of the real objective function, which can then be
passed to the acquisition function (see the Introducing BO section for more details).

Random forest is a machine learning (ML) algorithm that can be utilized in classification or regression
tasks. It is built upon a collection of decision trees, which is known to perform well with categorical
types of features. The name random forest comes from the fact that it is built from several decision
trees. We will discuss random forest, along with its hyperparameters, in more detail in Chapter 11,
Understanding Hyperparameters of Popular Algorithms.

Understanding SMAC 43

The main difference between SMAC and BOGP lies in the type of surrogate model that’s used in each
method. While BOGP utilizes GP as the surrogate model, SMAC utilizes random forest as the surrogate
model. The acquisition function that was used in the original paper on SMAC is the EI function with
some modifications on how the optimization process in Step 8 in the Introducing BO section is done,
which also can be seen in the following screenshot:

Figure 4.11 – Optimization process of the acquisition function

In SMAC, similar to BOGP, we are also assuming that the distribution of our surrogate model’s
prediction follows the Gaussian distribution, as shown here:

𝑝𝑝(𝑦𝑦|𝑥𝑥, 𝐷𝐷) = 𝑁𝑁(𝑦𝑦  ∣∣  𝜇𝜇ˆ, 𝜎𝜎ˆ2)

Here, the 𝜇𝜇ˆ and 𝜎𝜎ˆ2 values are derived from the random forest prediction’s mean and variance,
respectively.

We can also utilize random forest to perform hyperparameter tuning on a random forest model! How is
this possible? How can a model be used to improve the performance of another model of the same type?

It is possible because we are treating one model as the surrogate model while the other one is the actual
model that is fitted to the independent variables to predict the dependent variable. As the surrogate
model, random forest will act as the regressor, which has the goal of learning the relationship between
the hyperparameter space and the corresponding objective function. So, when we said that we are
utilizing random forest to perform hyperparameter tuning on a random forest model, there are two
random forest models with different goals and different input-output pairs!

Take a look at the following steps to get a better understanding of this concept. Note that the following
procedure replaces Steps 7 to 11 in the Introducing BO section:

6. (The first few steps are the same as we saw earlier).

7. �Fit the first random forest model, which acts as a surrogate model, M, using the value
pairs in D. Remember that D consists of pairs of hyperparameter values and the cross-
validation score.

Exploring Bayesian Optimization44

8. �Sample the next set of hyperparameters by utilizing the acquisition function, A:

I.	 Perform optimization on the acquisition function with the help of the surrogate model,
M, to sample which hyperparameters are to be passed to the acquisition function.

II.	 Get the optimal set of hyperparameters based on the acquisition function.

9. �Compute the cross-validation score using the objective function, f, based on the output
from Step 8. Note that the cross-validation score is computed based on the second
random forest model, whose goal is to learn the relationship between the dependent and
independent variables from our original problem.

10. �Add the hyperparameters and cross-validation score pair from Step 8 and Step 9
to set D.

11. Repeat Steps 7 to 10 until the stopping criteria are met.

12. (The last few steps are the same as we saw earlier).

You may be wondering, why bother utilizing the same ML algorithm as the surrogate model? Why
don’t we just perform a grid search or random search instead? Remember that the surrogate model is
just one piece of the full BO algorithm. There is also the acquisition function and other optimization
steps that can help us get the optimal set of hyperparameters faster. It is worth noting that we can
utilize any ML model other than random forest. When it comes to tree-based ML models, XGBoost,
CatBoost, and LightGBM are also popular among data scientists since they work well in practice.

In the Introducing BO section, we saw how GP works with the EI acquisition function to estimate a
dummy objective function. Let’s use the same dummy objective function, as defined here, and see
the result of utilizing random forest (not necessarily the SMAC algorithm) as the surrogate model
instead of GP. We will still use EI as the acquisition function in this example and the Scikit-optimize
package as the implementation:

𝑓𝑓(𝑥𝑥) = cos(6𝑥𝑥) ⋅ (1 − sin(𝑥𝑥5)) + 𝜀𝜀

Here, 𝜀𝜀 is a noise that follows the standard normal distribution. Please see Figure 4.2 for a visualization
of this dummy objective function.

Understanding SMAC 45

Let’s set the number of trials and the exploitation versus exploration trade-off controller, 𝛿𝛿 , using
the default values given by the Scikit-optimize package for the random forest surrogate model, which
are 100 and 0.01, respectively. You can see how the random forest surrogate model fitting process
works for the first five trials in the following figure:

Figure 4.12 – Random forest and EI illustration; δ = 0.01; trials 1 – 5

Exploring Bayesian Optimization46

As you can see, not many things happened in the first five trials. Even the approximation of the objective
function that’s given by the random forest (see the green-dashed line) is still very bad since it is just a
straight line! Let’s see what the condition is during trials 71 until 75:

Figure 4.13 – Random forest and EI illustration; δ = 0.01; trials 71- 75

Here, we can see that our random forest surrogate model has improved a lot in estimating the true
objective function. One interesting point is that the acquisition function curve looks very different
from the one we saw when utilizing GP as the surrogate model. Here, the acquisition function looks
edgier, just like the one we usually see from visualizing random forest. Finally, let’s see what the final
form of the approximated function is:

Understanding SMAC 47

Figure 4.14 – Result after 100 trials; δ = 0.01

Here, we can see that random forest fails to fit the true objective function in general, but it succeeds to
focus on the local minima of the objective function. This happens because random forest needs a lot of
data, or in this case, the observed points (see red dots), to have a good approximation of the objective
function. You can also see the convergence plot of the fitting process, starting from the first until the
last trial, in the following plot. If we compare Figure 4.15 to Figure 4.5, we can easily see that, in this
example, random forest, when supported by the EI acquisition function, learns much slower than GP
supported by EI:

Figure 4.15 – Convergence plot

Exploring Bayesian Optimization48

From Figure 4.14, we can also see that, currently, we are only focusing on several ranges and missing
the global minima of the dummy objective function, which is located around the [1.5,1.75] range. Let’s
see if changing the value of 𝛿𝛿 to 100 can solve this issue. The expectation is that the EI acquisition
function can help the random forest surrogate model explore more in other ranges of values as well.
You can see the result of the first five trials in the following figure:

Figure 4.16 – Random forest and EI illustration; δ = 100; trials 1 – 5

Understanding SMAC 49

Similar to the first five trials of the default 𝛿𝛿 value, we still can’t see much of the learning process.
Let’s see what the condition is during trials 71 until 75:

Figure 4.17 – Random forest and EI illustration; δ = 100; trials 71 – 75

Exploring Bayesian Optimization50

Here, we can see a very big difference between Figure 4.17 and Figure 4.13. Finally, let’s see what the
final form of the approximated function is:

Figure 4.18 – Result after 100 trials; δ = 100

By changing the value of 𝛿𝛿 to 100, it seems that our expectation has been achieved. The approximation
from the random forest surrogate model (see the green-dashed line) is now focusing on more than
specific ranges. Moreover, we even get a better result compared to GP (see Figure 4.4). Again, it is
worth noting that this is not always the case – you must experiment a lot on your own since different
data, different objective functions, a different hyperparameter space, and different implementations
may result in different conclusions. We will learn how to implement random forest as the surrogate
model and how to produce these figures in Chapter 7, Hyperparameter Tuning via Scikit.

There is another method, called Bayesian optimization inside a Grove (BOinG), whose goal is to get
the best of both worlds by utilizing random forest and GP as surrogate models.

Bayesian Optimization Inside a Grove
See the following paper for more information: Searching in the Forest for Local Bayesian Optimization,
by Difan Deng and Marius Lindauer (https://arxiv.org/abs/2111.05834).

BOinG works by using two-stage optimization by using global and local models to cut down the
computational cost and focus more on the promising subspace, respectively. In BOinG, random forest
is utilized as the global model and GP as the local model. The global model is responsible for searching
the promising subspace of the local model. Thus, a global model should be flexible enough to handle
complex problems with different types of hyperparameters. Since the local model only searches in a
promising subspace, it is possible to utilize a more accurate but expensive model, such as GP.

https://arxiv.org/abs/2111.05834

Understanding TPE 51

The following table lists the pros and cons of utilizing random forest as a surrogate model compared
to other variants of the BO hyperparameter tuning method:

Figure 4.19 – Pros and cons of utilizing random forest as a surrogate model

A conditional hyperparameter is a hyperparameter that will only be utilized when a certain condition
is met. The tree structure of random forest is very suitable for this kind of situation since it can just
add another branch of the tree to check whether the condition is met or not. The condition is usually
just a specific value or range of other hyperparameters in the space.

Now that you are aware of SMAC and utilizing random forest as a surrogate model in general, in
the next section, we will discuss another variant of BO that has a different approach in terms of
approximating the objective function.

Understanding TPE
TPE is another variant of BO that performs well in general and can be utilized for both categorical and
continuous types of hyperparameters. Unlike BOGP, which has cubical time complexity, TPE runs in
linear time. TPE is suggested if you have a huge hyperparameter space and have a very tight budget for
evaluating the cross-validation score.

The main difference between TPE and BOGP or SMAC is in the way that it models the relationship
between hyperparameters and the cross-validation score. Unlike BOGP or SMAC, which approximate
the value of the objective function, or the posterior probability, 𝑝𝑝(𝑦𝑦|𝑥𝑥) , TPE works the other way
around. It tries to get the optimal hyperparameters based on the condition of the objective function,
or the likelihood probability, 𝑝𝑝(𝑥𝑥|𝑦𝑦) (see the explanation of Bayes Theorem in the Understanding BO
GP section).

Exploring Bayesian Optimization52

In other words, unlike BOGP or SMAC, which construct a predictive distribution over the objective
function, TPE tries to utilize the information of the objective function to model the hyperparameter
distributions. To be more precise, when the optimization problem is in the form of a minimization
problem, 𝑝𝑝(𝑥𝑥|𝑦𝑦) is defined as follows:

𝑝𝑝(𝑥𝑥|𝑦𝑦) = 𝑙𝑙(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝑦𝑦 < 𝑦𝑦∗ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝑦𝑦 ≥ 𝑦𝑦∗

Here, 𝑙𝑙(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are utilized when the value of the objective function is lower or higher than the
threshold, 𝑦𝑦∗ , respectively. There is no specific rule on how to choose the threshold, 𝑦𝑦∗ . However,
in the Hyperopt and Microsoft NNI implementations, this threshold is chosen based on the TPE’s
hyperparameter, 𝛾𝛾 , and the number of observed points in D up to the current trial. The definition
of 𝑝𝑝(𝑥𝑥|𝑦𝑦) tells us that TPE has two models that act as the learning algorithm based on the value of
the objective function, which is ruled by the threshold, 𝑦𝑦∗ .

When the distribution of hyperparameters is continuous, TPE will utilize Gaussian mixture models
(GMMs), along with the EI acquisition function, to suggest the next set of hyperparameters to be
tested. If the continuous distribution is not a Gaussian distribution, then TPE will convert it to mimic
the Gaussian distribution. For example, if the specified hyperparameter distribution is the uniform
distribution, then it will be converted into a truncated Gaussian distribution.

The probabilities of the different possible outcomes for the multinomial distribution within the GMM,
and the mean and variance values for the normal distribution within the GMM, are generated by the
adaptive Parzen estimator. This estimator is responsible for constructing the two probability distributions,
𝑙𝑙(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) , based on the mean and variance of the normal hyperparameter distribution, as well
as the hyperparameter value of all observed points in D up to the current trial.

When the distribution is categorical or discrete, TPE will convert the categorical distribution into a
re-weighted categorical and use weighted random sampling, along with the EI acquisition function,
to suggest the expected best set of hyperparameters. The weights in the random sampling procedure
are generated based on the historical counts of the hyperparameter value.

The EI acquisition function definition in TPE is a bit different from the definition we learned about
in the Introducing BO section. In TPE, we are using Bayes Theorem when deriving the EI formula.
The simple formulation of the EI acquisition function in TPE is defined as follows:

 𝐸𝐸𝐸𝐸(𝑥𝑥)  ∝   𝑙𝑙
(𝑥𝑥)

𝑔𝑔(𝑥𝑥)

The proportionality defined here tells us that to get a high value of EI, we need to get a high
𝑙𝑙(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

ratio. In other words, when the optimization problem is in the form of a minimization problem, the
EI acquisition function must suggest more hyperparameters from 𝑙𝑙(𝑥𝑥) over 𝑔𝑔(𝑥𝑥) . It is the other way
around when the optimization problem is in the form of a maximization problem. For example, when
we use accuracy to measure the performance of our classification model, then we should sample more
hyperparameters from 𝑔𝑔(𝑥𝑥) over 𝑙𝑙(𝑥𝑥) .

Understanding TPE 53

To summarize, TPE works as follows. Note that the following procedure describes how TPE works
for the minimization problem. This procedure replaces Steps 7 to 11 in the Introducing BO section:

6. (The first few steps are the same as we saw earlier).

7. �Divide pairs of hyperparameter values and cross-validation scores in D into two groups
based on the threshold, 𝑦𝑦∗ , namely below and above groups (see Figure 4.19).

8. �Sample the next set of hyperparameters by utilizing the EI acquisition function:

I.	 For each group, calculate the probabilities, means, and variances for the GMM using
the adaptive Parzen estimator (if it’s a continuous type) or weights for random sampling
(if it’s a categorical type).

II.	 For each group, fit the GMM (if it’s a continuous type), or perform random sampling
(if it’s a categorical type), to sample which hyperparameters will be passed to the EI
acquisition function.

III.	For each group, calculate the probability of those samples being good samples (for the
below group), or the probability of those samples being bad samples (for the above group).

IV.	Get the expected optimal set of hyperparameters based on the EI acquisition function.

9. �Compute the cross-validation score using the objective function, f, based on the output
from Step 8.

10. �Add the hyperparameters and cross-validation score pair from Step 8 and Step 9 to set D.

11. Repeat Steps 7 to 10 until the stopping criteria have been met.

12. (The last few steps are the same as we saw earlier):

Figure 4.20 – Illustration of groups division in TPE

Exploring Bayesian Optimization54

Based on the stated procedure and the preceding plot, we can see that, unlike BOGP or SMAC, which
constructs a predictive distribution over the objective function, TPE tries to utilize the information of
the objective function to model the hyperparameter distributions. This way, we are not only focusing
on the best-observed points during the trials – we are focusing on the distribution of the best-observed
points instead.

You may be wondering why the Tree-structured term is within the TPE method’s name. This term refers
to the conditional hyperparameters that we discussed in the previous section. This means that there
are hyperparameters in the space that will only be utilized when a certain condition is met. We will see
what a tree-structured or conditional hyperparameter space looks like in Chapter 8, Hyperparameter
Tuning via Hyperopt, and Chapter 9, Hyperparameter Tuning via Optuna.

One of the drawbacks that TPE has is that it may overlook the interdependencies among hyperparameters
in a certain space since the Parzen estimators work univariately. However, this is not the case for BOGP
or SMAC, since the surrogate model is constructed based on the configurations in the hyperparameter
space. Thus, they can take into account the interdependencies among hyperparameters. Fortunately,
there is an implementation of TPE that overcomes this drawback. The Optuna package provides
the multivariate TPE implementation, which can take into account the interdependencies among
hyperparameters.

The following table lists of pros and cons of utilizing TPE compared to other variants of the BO
hyperparameter tuning method:

Figure 4.21 – Pros and cons of TPE

Understanding Metis 55

Important Note
Some implementations support parallel tuning, but with a trade-off between the suggested
hyperparameter quality and the wall time. The Microsoft NNI package supports this feature via
the constant_liar_type argument, which will be discussed in more detail in Chapter
10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI.

In this section, we learned about TPE, along with its pros and cons compared to other variants of BO.
In the next section, we will learn about another variant of BO that has a slightly modified algorithm
compared to the BO method in general.

Understanding Metis
Metis is one of the variants of BO that has several algorithm modifications compared to the BO method
in general. Metis utilizes GP and GMM in its algorithm. GP is used as the surrogate model and outliers
detector, while GMM is used as part of the acquisition function, similar to TPE.

What makes Metis different from other BO methods, in general, is that it can balance exploration and
exploitation more data-efficiently than the EI acquisition function. It can also handle noise in the data
that doesn’t follow the Gaussian distribution, and this is the case most of the time. Unlike most of the
methods that perform random sampling to initialize the set of hyperparameters and cross-validation
score, D, Metis utilizes Latin Hypercube Sampling (LHS), which is a stratified sampling procedure
based on the equal interval of each hyperparameter. This sampling method is believed to be more
data-efficient compared to random sampling to achieve the same exploration coverage.

So, how can Metis balance exploration and exploitation more efficiently than the EI acquisition function,
in terms of the needs of the observed points? This is achieved through the custom acquisition function
that Metis has, which consists of three sub-acquisition functions, as shown here:

•	 Lowest confidence (LC): This sub-acquisition function’s goal is to sample hyperparameters
with the highest uncertainty. In other words, the goal of this sub-acquisition function is to
maximize exploration. This function is defined as follows:

𝐿𝐿𝐿𝐿(𝑥𝑥) = −1.96 ⋅ 2 ⋅ 𝜎𝜎(𝑥𝑥)
𝜇𝜇(𝑥𝑥)

•	 Parzen estimator: This sub-acquisition function is inspired by the TPE method, which utilizes
GMM to estimate how likely the sampled hyperparameter is part of the below or above group
(see the Understanding TPE section for more details). The goal of this sub-acquisition function
is to sample hyperparameters with the highest probability to be the optimum hyperparameters.
In other words, it is optimized for exploitation.

Exploring Bayesian Optimization56

•	 Outliers detector: As its name suggests, the goal of this sub-acquisition function is to detect
outliers within D. The detected outlier will then be suggested as the candidate to be resampled
in the next trial. Metis utilized GP to build the outliers detector or the diagnostic model. This
diagnostic model works by comparing each of the cross-validation scores in D with the mean and
standard deviation estimated by the GP. If the absolute difference between the cross-validation
score and the estimated mean is greater than some constant multiplied by the estimated standard
deviation, then it is flagged as an outlier. In other words, the diagnostic model will mark the
hyperparameter as an outlier if it lies outside the confidence interval of the GP estimation. The
constant for the 98% confidence interval is 2.326.

Based on candidates suggested by these three sub-acquisition functions, Metis will then compute their
information gain to select the final candidate to be included in the next trial. This selection process is
done by utilizing the lower bound of the GP estimation confidence interval. Metis will measure the
difference between the lower bound of the interval and the expected mean from GP. The candidate
that has the highest improvement will be selected as the final candidate.

It is worth noting that Metis can handle non-Gaussian noise in the data because of the diagnostic model.
The detected outliers made it possible for Metis to resample the previously tested hyperparameters so
that it is robust to non-Gaussian noise as well. This way, Metis can balance exploration, exploitation,
and re-sampling during the hyperparameter tuning process.

To have a better understanding of how Metis works, take a look at the following procedure. Note
that the following procedure replaces Steps 6 to 11 in the Introducing BO section.

5. (The first few steps are the same as we saw earlier).

6. �Initialize several pairs of hyperparameter values and cross-validations scores using the
LHS method, and store them in D.

7. Fit a GP that acts as a surrogate model, M, using the value pairs in D.

8. �Sample the next set of hyperparameters by utilizing the custom acquisition function,
which consists of three sub-acquisition functions:

I.	 Get the current best optimum set of hyperparameters

II.	 Get the suggested hyperparameters for exploration via the LC sub-acquisition function

III.	 Get the suggested hyperparameters for exploitation via the Parzen estimator

IV.	 Get the suggested hyperparameters to be resampled based on the detected outliers
by the diagnostic model.

V.	 Calculate the information gain from each suggested candidate.

VI.	 Select the candidate that has the highest information gain.

VII.	 If no candidate is suggested, then pick one random candidate.

Understanding Metis 57

9. �Compute the cross-validation score using the objective function, f, based on the output
from Step 8. Note that the cross-validation score is computed based on the second
random forest model, whose goal is to learn the relationship between the dependent and
independent variables from our original problem.

10. �Add the hyperparameters and cross-validation score pair from Step 8 and Step 9
to set D.

11. �Repeat Steps 7 to 10 until the stopping criteria are met.

12. (The last few steps are the same as we saw earlier).

The following table lists the pros and cons of utilizing Metis compared to other variants of the BO
hyperparameter tuning method:

Figure 4.22 – Pros and cons of Metis

It is also worth noting that, unlike other BO variants, there is only one package that implements Metis
for the hyperparameter tuning method, which is Microsoft NNI. As you may have noticed, all the
variants of BO that were discussed in this chapter have the drawback of not being able to exploit parallel
computing resources. So, why didn’t we put that drawback in the first section instead? Because there
is a variant of BO, namely BOHB, that can exploit the parallel computing resources. We will discuss
BOHB in more detail in Chapter 6, Exploring Multi-Fidelity Optimization.

In this section, we covered Metis in detail, including, what it is, how it works, what makes it different
from other BO variants, and its pros and cons.

Exploring Bayesian Optimization58

Summary
In this chapter, we discussed the second out of four groups of hyperparameter tuning methods, called
the BO group. We not only discussed BO in general but also several of its variants, including BOGP,
SMAC, TPE, and Metis. We saw what makes each of the variants differ from each other, along with the
pros and cons of each. At this point, you should be able to explain BO with confidence when someone
asks you and apply hyperparameter tuning methods in this group with ease.

In the next chapter, we will start discussing heuristic search, the third group of hyperparameter tuning
methods. The goal of the next chapter is similar to this chapter: to provide a better understanding of
the methods that belong to the heuristic search group.

5
E x p l o r i n g H e u r i s t i c S e a r c h

Heuristic search is the third out of four groups of hyperparameter tuning methods. The key difference
between this group and the other groups is that all the methods that belong to this group work by
performing trial and error to achieve the optimal solution. Similar to the acquisition function in Bayesian
optimization (see Chapter 4, Exploring Bayesian Optimization), all methods in this group also employ
the concept of exploration versus exploitation. Exploration means performing a search in the unexplored
space to lower the probability of being stuck in the local optima, while exploitation means performing
a search in the local space that is known to have a good chance of containing the optimal solution.

In this chapter, we will discuss several methods that belong to the heuristic search group, including
simulated annealing (SA), genetic algorithms (GAs), particle swarm optimization (PSO), and
Population-Based Training (PBT). Similar to Chapter 4, we will discuss the definition of each method,
what the differences are between them, how they work, and the pros and cons of each method.

By the end of this chapter, you will understand the concept of the aforementioned hyperparameter
tuning methods that belong to the heuristic search group. You will be able to explain these methods
with confidence when someone asks you, at both a high-level and detailed fashion, along with the
pros and cons. Once you are confident enough to explain them to other people, this means you have
understood the ins and outs of each method. Thus, in practice, you can understand what’s happening if
there are errors or you don’t get the expected results; you will also know how to configure the method
so that it matches your specific problem.

In this chapter, we will cover the following topics:

•	 Understanding simulated annealing

•	 Understanding genetic algorithms

•	 Understanding particle swarm optimization

•	 Understanding population based training

Exploring Heuristic Search60

Understanding simulated annealing
SA is the heuristic search method that is inspired by the process of metal annealing in metallurgy.
This method is similar to the random search hyperparameter tuning method (see Chapter 3, Exploring
Exhaustive Search), except for the existence of a criterion that guides how the hyperparameter tuning
process works. In other words, SA is like a smoothed version of random search. Just like random
search, it is suggested to use SA when each trial doesn’t take too much time and you have enough
computational resources.

In the metal annealing process, the metal is heated to a very high temperature for a certain time and
slowly cooled to increase its strength, reducing its hardness and making it easier to work with. The
goal of giving a very high heat is to excite the metal’s atoms so that they can move around freely and
randomly. During this random movement, atoms usually tend to form a better configuration. Then,
the slow cooling process is performed so that we can have a crystalline form of the material.

Just like in the metal annealing process, SA works by randomly choosing the set of hyperparameters to
be tested. At each trial, the method will consider some of the “neighbors” of the current set, randomly.
If the acceptance criterion is met, then the method will change its focus to that “neighbor” set. The
acceptance criterion is not a deterministic function, it is a stochastic function, which means probability
comes into play during the process. This probabilistic way of deciding is similar to the cooling phase
in the metal annealing process, where we accept a smaller number of bad hyperparameter sets as more
parts of the search space are explored.

SA is a modified version of one of the most popular heuristic optimization methods, known as
stochastic hill climbing (SHC). SHC is very simple to understand and implement, which means
that SA is as well. In general, SHC works by initializing the random point within a pre-defined bound
(the hyperparameter space, in our case) and treating it as the current best solution. Then, it randomly
searches for the next candidate within the surrounding of the selected point. Then, we need to compare
the selected candidate with the current best solution. If the candidate is better than or equal to the
current best solution, SHC will treat the candidate as the new best solution. This process is repeated
until the stopping criterion is met.

The following steps show how SHC optimization works in general:

1.	 Define the bound of the space, B, and the step size, S.

2.	 Define the stopping criterion. Usually, it is defined as the number of iterations, but other
stopping criteria definitions also work.

3.	 Initialize the random point within the bound, B.

4.	 Set the selected point from Step 3 as the current point, current_point, as well as the best point,
best_point.

5.	 Randomly sample the next candidate within the S distance from best_point and within the
bound, B, then store it as candidate_point.

Understanding simulated annealing 61

6.	 If candidate_point is better than or equal to best_point, then replace best_point with candidate_point.

7.	 Replace current_point with candidate_point.

8.	 Repeat Steps 5 to 7 until the stopping criterion is met.

The main difference between SA and SHC is located in Steps 5 and 6. In SHC, we always sample the
next candidate from the surrounding of the best_point, while in SA, we sample from the surrounding
of current_point. In SHC, we only accept a candidate that is better than or equal to the current best
solution, while in SA, we may also accept a worse candidate with a certain probability that is guided
by the acceptance criterion, AC, which is defined as follows:

𝐴𝐴𝐴𝐴(𝑇𝑇, Δ𝑓𝑓) = exp(−Δ𝑓𝑓
𝑇𝑇)  𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 1

Here, Δ𝑓𝑓 = |𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) − 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)| , 𝑓𝑓 is the objective function and 𝑇𝑇 is temperature
with a positive value. See Chapter 4 if you are not familiar with the objective function term.

The 𝐴𝐴𝐴𝐴 formula results in a value between 0 and 1, where it always results in a value of 1 when the
candidate_point is better than or equal to the current_point. In other words, we always accept the
candidate_point when it is better than or equal to the current_point. It is worth noting that better
does not necessarily mean has a greater value. If you are working with a maximization problem, then
better means greater. However, if you are working with a minimization problem, then it is the other
way around. For example, if the cross-validation score you are measuring is the mean squared error
(MSE), where a lower score corresponds to better performance, then the candidate_point is considered
better than the current_point if the 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) value is less than 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) .

Although 𝐴𝐴𝐴𝐴 is impacted by both Δ𝑓𝑓 and 𝑇𝑇 , we can only control the value of 𝑇𝑇 . In practice, the
initial value of 𝑇𝑇 is treated as a hyperparameter and is usually set to a high value. Over the number
of trials, the value of 𝑇𝑇 is decreased following the so-called annealing schedule or cooling schedule
scheme. There are several annealing schedule schemes that we can follow. The three most popular
schemes are as follows:

•	 Geometric cooling: This annealing schedule works by decreasing the temperature via a cooling
factor of 0 < 𝛼𝛼 < 1 . In geometric cooling, the initial temperature, 𝑇𝑇0 , is multiplied by the cooling
factor 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 number of times, where 𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 is the current number of iterations:

𝑇𝑇 = 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝑇𝑇0

Exploring Heuristic Search62

This can be seen in the following graph:

Figure 5.1 – Effect of the initial temperature in geometric cooling on the acceptable criterion

•	 Linear cooling: This annealing schedule works by decreasing the temperature linearly via a
cooling factor, 𝛽𝛽 . The value of 𝛽𝛽 is chosen in such a way that 𝑇𝑇 will still have a positive value
after 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 iterations. For example, 𝛽𝛽 =

(𝑇𝑇0 − 𝑇𝑇𝑓𝑓)
𝑡𝑡𝑓𝑓

 , where 𝑇𝑇𝑓𝑓 is the expected final temperature after
𝑡𝑡𝑓𝑓 iterations:

𝑇𝑇 = 𝑇𝑇0 − 𝛽𝛽 ⋅ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

The following graph shows this annealing schedule:

Figure 5.2 – Effect of the initial temperature in linear cooling on the acceptable criterion

Understanding simulated annealing 63

•	 Fast SA: This annealing schedule works by decreasing the temperature proportional to the
current number of iterations, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 :

𝑇𝑇 = 𝑇𝑇0
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

This annealing schedule can be seen in the following graph:

Figure 5.3 – Effect of the initial temperature in fast SA on the acceptable criterion

Based on Figures 5.1 to 5.3, we can see that no matter what annealing schedule scheme we use and what
the initial temperature is, we will always have a lower 𝐴𝐴𝐴𝐴 value as the number of iterations increases,
which means we will accept fewer bad candidates as the number of iterations increases. However, why
do we need to accept bad candidates in the first place? The main purpose of SA not directly rejecting
worse candidates, as in the SHC method, is to balance the exploration and exploitation trade-off. The
high initial value of temperature allows SA to explore most of the parts of the hyperparameter space,
and slowly focus on specific parts of the space as the number of iterations increases, just like how the
metal annealing process works.

Exploring Heuristic Search64

Remember that 𝐴𝐴𝐴𝐴 only takes Δ𝑓𝑓 into account when the candidate_point is worse than the current_
point. This means that, based on Figure 5.4, we can say that the worse the suggested candidate is (the
higher Δ𝑓𝑓 is), the lower the value of 𝐴𝐴𝐴𝐴 will be, and thus, the lower the probability of accepting the
suggested bad candidate. This is the other way around for 𝑇𝑇 in that the higher the value of 𝑇𝑇 is, the
higher the value of 𝐴𝐴𝐴𝐴 will be, and thus, the higher the probability of accepting the suggested bad
candidate (see Figures 5.1 to 5.3):

Figure 5.4 – Effect of Δf on the acceptable criterion

To summarize, the following steps show how SA works as a hyperparameter tuning method:

1.	 Split the original full data into train and test sets (see Chapter 1, Evaluating Machine
Learning Models).

2.	 Define the hyperparameter space, H, with the accompanied distributions.

3.	 Define the initial temperature, T0.

4.	 Define the objective function, f, based on the train set (see Chapter 4).

5.	 Define the stopping criterion. Usually, the number of trials is used. However, it is also possible
to use the time taken or convergence as the stopping criterion.

6.	 Set the current temperature, T, using the value from T0.

7.	 Initialize a random set of hyperparameters that have been sampled from the hyperparameter
space, H.

8.	 Set the selected set from Step 7 as the current set, current_set, as well as the best set, best_set.

9.	 Randomly sample the next candidate set, candidate_set, from the “neighbor” of the current_set
within the hyperparameter space, H. The definition of the “neighbor” may differ across different
types of hyperparameter distributions.

10.	 Generate a random number between 0 and 1 from the uniform distribution and store it as rnd.

Understanding genetic algorithms 65

11.	 Decide whether to accept the candidate_set or not:

I.	 Calculate the value of 𝐴𝐴𝐴𝐴 using the value of T, f(candidate_set), and f(current_set).

II.	 If the value of rnd is smaller than 𝐴𝐴𝐴𝐴 , then replace current_set with candidate_set.

III.	 If candidate_set is better than or equal to current_set, then replace best_set with candidate_set.

12.	 Apply the annealing schedule to the temperature, T.

13.	 Repeat Steps 9 to 12 until the stopping criterion is met.

14.	 Train on the full training set using the best_set hyperparameters.

15.	 Evaluate the final trained model on the test set.

The following table lists the list of pros and cons of SA as a hyperparameter tuning method:

Figure 5.5 – Pros and cons of SA

In this section, we learned about SA, starting from what it is, how it works, what makes it different
from SHC and random search, and its pros and cons. We will discuss another interesting heuristic
search method that is inspired by the natural selection theory in the next section.

Understanding genetic algorithms
GAs are popular heuristic search methods that are inspired by Charles Darwin’s theory of natural
selection. Unlike SA, which is classified as a single-point-based heuristic search method, GAs are
categorized as population-based methods since they maintain a group of possible candidate solutions
instead of just a single candidate solution at each trial. As a hyperparameter tuning method, you
are recommended to utilize a GA when each trial doesn’t take too much time and you have enough
computational resources, such as parallel computing resources.

Exploring Heuristic Search66

To have a better understanding of GAs, let’s start with a simple example. Let’s say we have a task to
generate a pre-defined target word based on only a collection of words that are built from 26 alphabet
letters in lowercase. For instance, the target word is “big,” and we have a collection that consists of the
words “sea,” “pig,” “dog,” “bus,” and “tie.”

Based on the given collection of words, what should we do to generate the word “big?” It is no doubt a
very easy and straightforward task. We just have to pick the letter “b” from the word “bus,” “i” from the
word “pig” or “tie,” and “g” from the word “dog.” Voila! We get the word “big.” You may be wondering
how this example is related to the GA method or even the natural selection theory. This example is
a very simple task and there is no need to utilize a GA to solve the problem. However, we need this
kind of example so that you have a better understanding of how GAs work since you already know
the correct answer in the first place.

To solve this task using GA, you must know the three key items in GA related to the evolution theory.
The first key item is variation. Imagine if the given collection of words consists of only the word “sea.”
There’s no way we can generate the word “big” based on only the word “sea.” This is why variation is
needed in the initial population (the collection of words, in our example). Without enough variation,
we may not be able to achieve the optimal solution (to generate the word “big,” in our example) since
there is no individual (each word in the collection of words, in our example) within the population
that can evolve to the target word.

Important Note
Population is not the hyperparameter space. In GAs or other population-based heuristic search
methods, population refers to the candidates of the optimal hyperparameter set.

The second key item is selection. You can think of this item as being similar to the idea of natural
selection that happens in the real world. It’s about selecting individuals that are more suitable for
the surrounding environment (words that are similar to the word “big,” in our example) and thus can
survive in the world. In GAs, we need quantitative guidance for us to perform the selection, which is
usually called the fitness function. This function helps us judge how good an individual is concerning
the objective we want to achieve. In our example, we can create a fitness function that measures the
proportion of indexes of the word that has the same letters as the target word in the corresponding
indexes. For example, the word “tie” has a fitness score of

1
3 since only one out of three indexes contains

the same letters as the target word, which is the index one that has the letter “i.”

Using this fitness function, we can evaluate the fitness score for each individual in the population,
and then select which individuals should be added to the mating pool as parents. The mating pool
is a collection of individuals that are considered high-quality individuals and thus called parents.

Understanding genetic algorithms 67

The third key item is heredity. This item refers to the concept of reproduction or passing parents’
genes (each letter in the word, in our example) to their children or offspring. How is reproduction
done in GAs? Taking the same spirit of natural selection, in Gas, we only perform the reproduction
step from parents in the mating pool, meaning we only want to mate high-quality individuals with the
hope to get only high-quality offspring in the next generation (a new population is created in the next
iteration). There are two steps in the reproduction phase, namely the crossover and mutation steps.
The crossover step is when we randomly mix or permute parents’ genes to generate offspring’s genes,
while the mutation step is when we randomly change the value of offspring’s genes to add variation
to the genes (see Figure 5.6). An individual that is mutated is called a mutant. The random value that
is used in the mutation step should be drawn from the same gene’s distribution, meaning we can only
use lower-case letters as the random values in our example, not floating points or integers:

Figure 5.6 – The crossover and mutation steps in a GA

Now that you are aware of the three key items in a GA, we can start solving the task from the previous
example using a GA. Let’s assume we haven’t been given the collection of words so that we can learn the
complete procedures of the GA. The target word is still “big.”

First, we must initialize a population with the NPOP number of individuals. The initialization process
is usually done randomly to ensure we have enough variation in the population. By random, this
means that the genes of each individual in the population are generated randomly. Let’s say we want
to generate the initial population, which consists of seven individuals, where the generated results
are “bee,” “tea,” “pie,” “bit,” “dog,” “cat,” and “dig.”

Now, we can evaluate the fitness score of each individual in the population. Let’s say we use the fitness
function that was defined previously. So, we got the following scores for each individual; “bee:”

1
3 ,

“tea:” 0 , “pie:”
1
3 , “bit:”

2
3 , ”dog:”

1
3 , “cat:” 0 , and “dig:”

2
3 .

Exploring Heuristic Search68

Based on the fitness score of each individual, we can select which individual should be added to the
mating pool as a parent. There are many strategies that we can adopt to select the best individuals from
the population, but in this case, let’s just get the top three individuals based on the fitness score and
randomly select individuals that have the same fitness score. Let’s say that, after running the selection
strategy, we get a mating pool that consists of “bit,” “dig,” and “bee” as parents.

The next step is to perform the crossover and mutation steps. Before that, however, we need to specify
the crossover probability, CXPB, and the mutation probability, MUTPB, which defines the probability
of crossing two parents in the mating pool and mutating an offspring, respectively. This means we are
neither performing crossover on all parent pairs nor mutating all offspring – we will only perform
those steps based on the predefined probability. Let’s say that only “dig” and “bee” have chosen to be
crossed, and the resulting offspring of the crossover is “deg” and “bie.” So, the mating pool currently
consists of “bit,” “deg,” and “bie.” Now, we need to perform mutation on “deg” and “bie.” Let’s say that
after mutating them, we got “den” and “tie.” This means that the mating pool is currently consisting
of “bit,” “den,” and “tie.”

After performing the crossover and mutation steps, we need to generate a new population for the
next generation. The new population will consist of all crossed parents, mutated offspring, as well as
other individuals from the current population. So, the next population consists of “bit,” “den,” “tie,”
“tea,” “pie,” “dog,” and “cat.”

Based on the new population, we have to repeat the selection, crossover, and mutation process. This
procedure needs to be done NGEN times, where NGEN refers to the number of generations, and it
is predefined by the developer.

The following steps define how GA works in general, as an optimization method:

1.	 Define the population size, NPOP, the crossover probability, CXPB, the mutation probability,
MUTPB, and the number of generations or number of trials, NGEN.

2.	 Define the fitness function, f.

3.	 Initialize a population with NPOP individuals, where each individual’s genes are initialized
randomly.

4.	 Evaluate all individuals in the population based on the fitness function, f.

5.	 Select the best individuals based on Step 4 and store them in a mating pool.

Understanding genetic algorithms 69

6.	 Perform the crossover process on the parents in the mating pool with a probability of CXPB.

7.	 Perform the mutation process on the offspring results from Step 8 with a probability of MUTPB.

8.	 Generate a new population consisting of all the individuals from Step 6, Step 7, and the rest of
the individuals from the current population.

9.	 Replace the current population with the new population.

10.	 Repeat Steps 6 to 9 NGEN times.

Now, let’s look at a more concrete example of how a GA works in general. We will use the same
objective function that we used in Chapter 4, Evaluating Machine Learning Models and treat this as a
minimization problem. The objective function is defined as follows:

𝑓𝑓(𝑥𝑥) = cos(6𝑥𝑥) ⋅ (1 − sin(𝑥𝑥5)) + 𝜀𝜀

Here, 𝜀𝜀 is the noise that follows the standard normal distribution. We are only going to perform
a search within the [−2,2] range. It is worth noting that in this example, we assume that we know
what the true objective function is. However, in practice, this function is unknown. In this case, each
individual will only have one gene, which is the value of 𝑥𝑥 itself.

Let’s say we define the hyperparameters for the GA method as NPOP = 25, CXPB = 0.5, MUTPB = 0.15,
and NGEN = 6. As for the strategy of each genetic operator, we are using the Tournament, Blend,
and PolynomialBounded strategies for selection, crossover, and mutation operators, respectively.
The Tournament selection strategy works by selecting the best individuals among tournsize and the
randomly chosen individual’s NPOP times, where tournsize is the number of individuals participating
in the tournament. The Blend crossover strategy works by performing a linear combination between
two continuous individual genes, where the weight of the linear combination is governed by the alpha
hyperparameter. The PolynomialBounded mutation strategy works by passing continuous individual
genes to a predefined polynomial mapping.

There are many strategies available that you can follow based on your hyperparameter space specification.
We will talk more about different strategies and how to implement the GA method using the DEAP
package in Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI. For now,
let’s see the results of applying a GA on the dummy objective function, f. Note that the points in each
plot correspond to each individual in the population:

Exploring Heuristic Search70

Figure 5.7 – GA process

Based on the preceding figure, we can see that in the first generation, individuals are scattered all
around the place since it is initialized randomly. In the second generation, several individuals that
are initialized around point –1.0 moved to other places that have lower fitness scores. However, in the
third generation, there are new individuals around point –1.0 again. This may be due to the random
mutation operator that’s been applied to them. There are also several individuals stuck in the local
optima, which is around point –0.5. In the fourth generation, most of the individuals have moved to
places with lower fitness scores, although some of them are still stuck in the local optima. In the fifth
generation, individuals are starting to converge in several places.

Understanding genetic algorithms 71

Finally, in the sixth generation, all of them converged to the near-global optima, which is around
point 1.5. Note that we still have NPOP=25 individuals in the sixth generation, but all of them are
located in the same place, which is why you can only see one dot in the plot. This also applies to other
generations if you see that there are fewer than 25 individuals in the plot. The convergence trend across
generations can be seen in the following graph:

Figure 5.8 – Convergence plot

The trend that’s shown in the preceding graph matches our previous analysis. However, we can get
additional information from this plot. At first, many of the individuals are located in places with
high fitness scores, but some individuals already get the best fitness score. Across generations, most
of the individuals started to converge, and finally, in the last generation, all individuals had the best
fitness score. It is worth noting that, in practice, it is not guaranteed that a GA will achieve the global
optimal solution.

At this point, you may be wondering, how can a GA be adopted as a hyperparameter tuning method?
What is the corresponding definition of all terms in the GA within the context of hyperparameter
tuning? What does an individual mean when performing hyperparameter tuning with a GA?

Exploring Heuristic Search72

As a hyperparameter tuning method, the GA method treats a set of hyperparameters as an individual
where the hyperparameter values are the genes. To have better clarity on what each important term
in the GA method means, in the context of hyperparameter tuning, please refer to the following table:

Figure 5.9 – Definition of GA method terms in the hyperparameter tuning context

Now that you are aware of the corresponding definition of each important term in the GA method,
we can define the formal procedure to utilize the GA method as a hyperparameter tuning method:

1.	 Split the original full data into train and test sets.

2.	 Define the hyperparameter space, H, with the accompanied distributions.

3.	 Define the population size, NPOP.

4.	 Define the crossover probability, CXPB, and mutation probability, MUTPB.

5.	 Define the number of trials, NGEN, as the stopping criterion.

6.	 Define the objective function, f, based on the train set.

7.	 Initialize a population with NPOP sets of hyperparameters, where each set is drawn randomly
from the hyperparameter space, H.

8.	 Evaluate all hyperparameter sets in the population based on the objective function, f.

9.	 Select several best candidate sets based on Step 8.

10.	 Perform crossover on candidate sets from Step 9 with a probability of CXPB.

Understanding genetic algorithms 73

11.	 Perform mutation on the crossed candidate sets from Step 10 with a probability of MUTPB.

12.	 Generate a new population consisting of all sets of hyperparameters from Step 10, Step 11, and
the rest of the sets from the current population. The new population will also consist of NPOP
sets of hyperparameters.

13.	 Repeat Steps 8 to 12 NGEN times.

14.	 Train on the full training set using the final hyperparameter values.

15.	 Evaluate the final trained model on the test set.

It is worth noting that when utilizing a GA as a hyperparameter tuning method, the GA itself has
four hyperparameters, namely NPOP, CXPB, MUTPB, and NGEN, that control the performance of the
hyperparameter tuning results, as well as the exploration versus exploitation trade-off. To be more precise,
CXPB and MUTPB, or the crossover and mutation probability, respectively, are responsible for controlling
the exploration rate, while the selection step, along with its strategy, controls the exploitation rate.

The following table lists the pros and cons of using a GA as a hyperparameter tuning method:

Figure 5.10 – Pros and Cons of the GA method

The need to evaluate all individuals in each generation means we multiplied the original time complexity
that our objective has by NPOP * NGEN. It’s very costly! That’s why the GA method is not suitable for
you if you have an expensive objective function and/or low computational resources. However, if you do
have time to wait for the experiment to be done, and you have massively parallel computing resources,
then the GA method is suitable for you. From a theoretical perspective, the GA method can also work
with various types of hyperparameters – we just need to choose the appropriate crossover and mutation
strategies for the corresponding hyperparameters. The GA method is better than SA in terms of having a
population to guide which part of the subspace needs to be exploited more. However, it is worth noting
that the GA method can still be stuck in local optima.

Exploring Heuristic Search74

In this section, we discussed the GA method, starting with what it is, how it works both in terms of its
general setup and the hyperparameter tuning context, and its pros and cons. We will discuss another
interesting population-based heuristic search method in the next section.

Understanding particle swarm optimization
PSO is also a population-based heuristic search method, similar to the GA method. PSO is inspired by
the schools of fish and flocks of birds’ social interaction in nature. As a hyperparameter tuning method,
PSO is suggested to be utilized if your search space contains many non-categorical hyperparameters,
each trial doesn’t take much time, and you have enough computational resources – especially parallel
computing resources.

PSO is one of the most popular methods within the bigger swarm intelligence (SI) group of
methods. There are various methods in SI that are inspired by the social interaction of animals in
nature, such as herds of land animals, colonies of ants, flocks of birds, schools of fish, and many
more. The common characteristics of SI methods are population-based, individuals within the
population are relatively similar to each other, and the ability of the population to move in a specific
direction systemically without a single coordinator inside or outside the population. In other words,
the population can organize themselves based on the local interactions of individuals interacting
with each other and/or the surrounding environment.

When a flock of birds is looking for food, it is believed that each bird can contribute to the group
by sharing information about their sights, so that the group can move in the right direction. PSO
is a method that simulates the movement of a flock of birds to optimize the objective function. In
PSO, the flock of birds is called a swarm and each bird is called a particle.

Each particle is defined by its position vector and velocity vector. The movement of each particle
consists of both stochastic and deterministic components. In other words, the movement of each
particle is not only based on a predefined rule but is also influenced by random components. Each
particle also remembers its own best position, which gives the best objective function value along
the trajectory it has passed. Then, along with the global best position, it is used to update the velocity
and position of each particle at a particular time. The global best position is just the position of the
best particle from the previous step.

Let’s say that 𝑥𝑥𝑖𝑖(𝑡𝑡) is the position vector in a d-dimensional space of the 𝑖𝑖𝑡𝑡ℎ particle out of m particles
in the swarm, and that 𝑣𝑣𝑖𝑖(𝑡𝑡) is the velocity vector of the same size for the 𝑖𝑖𝑡𝑡ℎ particle, as shown here:

𝑥𝑥𝑖𝑖(𝑡𝑡) = [𝑥𝑥𝑖𝑖1(𝑡𝑡),  𝑥𝑥𝑖𝑖2(𝑡𝑡),  𝑥𝑥𝑖𝑖3(𝑡𝑡),   … ,  𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)]𝑇𝑇

𝑣𝑣𝑖𝑖(𝑡𝑡) = [𝑣𝑣𝑖𝑖1(𝑡𝑡),  𝑣𝑣𝑖𝑖2(𝑡𝑡),  𝑣𝑣𝑖𝑖3(𝑡𝑡),   … ,  𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)]𝑇𝑇

Understanding particle swarm optimization 75

Let’s also define the best position for each particle and the global best position vectors, respectively:

𝑝𝑝𝑏𝑏𝑏𝑏(𝑡𝑡) = [𝑝𝑝𝑏𝑏𝑏𝑏1(𝑡𝑡),  𝑝𝑝𝑏𝑏𝑏𝑏2(𝑡𝑡),  𝑝𝑝𝑏𝑏𝑏𝑏3(𝑡𝑡),   … ,  𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)]𝑇𝑇

𝑔𝑔𝑏𝑏(𝑡𝑡) = [𝑔𝑔𝑏𝑏1(𝑡𝑡),  𝑔𝑔𝑏𝑏2(𝑡𝑡),  𝑔𝑔𝑏𝑏3(𝑡𝑡),   … ,  𝑔𝑔𝑏𝑏𝑏𝑏(𝑡𝑡)]𝑇𝑇

The following formulas define how each particle’s position and velocity vectors are updated in each iteration:

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1)

𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝜔𝜔 ⋅ 𝑣𝑣𝑖𝑖(𝑡𝑡)  +  𝑐𝑐1 ⋅ 𝑟𝑟1 ⋅ (𝑝𝑝𝑏𝑏𝑏𝑏(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡))  +  𝑐𝑐2 ⋅ 𝑟𝑟2 ⋅ (𝑔𝑔𝑏𝑏(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡))

Here, 𝜔𝜔 , 𝑐𝑐1 , and 𝑐𝑐2 are the hyperparameters that control the exploration versus exploitation trade-
off. 𝜔𝜔 has a value between zero and one is usually called the inertia weight coefficient, while 𝑐𝑐1 and
𝑐𝑐2 are called the cognitive and social coefficients, respectively. 𝑟𝑟1 and 𝑟𝑟2 are the random values
between zero and one and act as the stochastic components of the particle movement. Note that the
d-dimensions of the position and velocity vectors refer to the number of hyperparameters we have
in the search space, while the m particles refer to the number of candidate hyperparameters that are
sampled from the hyperparameter space.

Updating the velocity vector may seem intimidating the first time, but actually, you can understand it
more easily by treating the formula as three separate parts. The first part, or the left-most side of the
formula, aims to update the next velocity proportional to the current velocity. The second part, or the
middle part of the formula, aims to update the velocity toward the direction of the best position that
the 𝑖𝑖𝑡𝑡ℎ particle has, while also adding a stochastic component to it. The third part, or the right-most
side of the formula, aims to bring the 𝑖𝑖𝑡𝑡ℎ particle closer to the global best position, with additional
random behavior applied to it. The following diagram helps illustrate this:

Figure 5.11 – Updating the particle’s position and velocity

Exploring Heuristic Search76

The preceding diagram isn’t the same as the stated formula since the random components and the
hyperparameters are missing from the picture. However, this diagram can help us understand the
high-level concept of how each particle’s position and velocity vectors are updated in each iteration.
We can see that the final updated velocity (see the orange line) is calculated based on three vectors,
namely the current velocity (see the brown line), the particle best position (see the green line), and the
global best position (see the purple line). Based on the final updated velocity, we can get the updated
position of the 𝑖𝑖𝑡𝑡ℎ particle – that is, 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) .

Now, let’s discuss how the hyperparameters affect the formula. The inertia weight coefficient, 𝜔𝜔 ,
controls how much we want to put our focus on the current velocity when updating the velocity
vector. On the other hand, the cognitive coefficient, 𝑐𝑐1 , and the social coefficient, 𝑐𝑐2 , control how
much we should focus on the particle’s past trajectory history and swarm’s search result, respectively.
When we set 𝑐𝑐1 = 0 , we don’t take into account the influence of the best position of the 𝑖𝑖𝑡𝑡ℎ particle,
which may lead us to be trapped in the local optima. When we set 𝑐𝑐2 = 0 , we ignore the influence of
the global best position, which may lead us to a slower convergence speed.

Now that you are aware of the position and velocity components of each particle in the swarm, take
a look at the following steps, which define how PSO works in general as an optimization method:

1.	 Define the swarm size, N, the inertia weight coefficient, w, the cognitive coefficient, c1, the
social coefficient, c2, and the maximum number of trials.

2.	 Define the fitness function, f.

3.	 Initialize a swarm with N particles, where each particle’s position and velocity vectors are
initialized randomly.

4.	 Set each particle’s current position vector as their best position vector, pbi.

5.	 Set the current global best position, gb, by selecting a position vector from all N particles that
have the most optimal fitness score.

6.	 Update each particle’s position and velocity vector based on the updating formula.

7.	 Evaluate all the particles in the swarm based on the fitness function, f.

8.	 Update each particle’s best position vectors, pbi:

I.	 Compare each particle’s current fitness score from Step 7 with its pbi fitness score.

II.	 If the current fitness score is better than the pbi fitness score, update pbi with the current
position vector.

9.	 Update the global best position vector, gb:

I.	 Compare each particle’s current fitness score from Step 7 with the previous gb fitness score.

II.	 If the current fitness score is better than the gb fitness score, update gb with the current
position vector.

Understanding particle swarm optimization 77

10.	 Update each particle’s position and velocity vector based on the updating formula.

11.	 Repeat Steps 7 to 10 until the maximum number of trials is reached.

12.	 Return the final global best position, gb.

It is worth noting that the definition of the optimal fitness score (or a better fitness score in the previously
stated procedure) will depend on what type of optimization problem you are trying to solve. If it is a
minimization problem, then a smaller fitness score is better. If it is a maximization problem, then it
is the other way around.

To have even a better understanding of how PSO works, let’s go through an example. Let’s define the
fitness function as follows:

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥2  +   cos(6𝑥𝑥)   +  𝑦𝑦2  +  (1 − sin(5𝑦𝑦))

Here, 𝑥𝑥 and 𝑦𝑦 are only defined within the [0,2] range. The following contour plot shows what our
objective function looks like. We will learn more about how to implement PSO using the DEAP
package in Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI:

Figure 5.12 – A contour plot showing the objective function and its global minimum

Exploring Heuristic Search78

Here, you can see that the global minimum (see the red cross marker) is located at (0.497, 0.295)
with an objective function value of –0.649. Let’s try to utilize PSO to see how well it estimates the
minimum value of the objective function compared to the true global minimum. Let’s say we define
the hyperparameter for PSO as N=20, w=0.5, c1=0.3, and c2=0.5, and set the maximum number of
trials to 16.

You can see the initial swarm illustration in the following contour plot. The blue dots refer to each
of the particles, the blue arrow on each particle refers to the particle’s velocity vector, the black dots
refer to each particle’s best position vectors, and the red star marker refers to the current global best
position vector at a particular iteration:

Figure 5.13 – A PSO initial swarm

Since the initial particles at the swarm are initialized randomly, the direction of the velocity vectors
is all over the place (see Figure 5.13). You can see how each particle’s position and velocity vectors are
updated in each iteration, along with the global best position vector, as shown here:

Understanding particle swarm optimization 79

Figure 5.14 – PSO process

Even at the first iteration, each particle’s velocity vector is pointing toward the global minimum, which
is located in the bottom left of the plot. In each iteration, the position and velocity vectors are updated
and move closer to the global minimum. At the end of the iteration loop, most of the particles are located
around the global minimum position, where the final global best position vector is located at (0.496,
0.290) with a fitness score of around –0.648. This estimation is very close to the true global minimum
of the objective function!

Exploring Heuristic Search80

It is worth noting that the velocity vector of each particle contains two components: magnitude and
direction. The magnitude will impact the length of the velocity vector in Figure 5.14. While you may not
see the difference in length between each particle’s velocity vector, they are different from each other!

Important Note
As a hyperparameter tuning method, in the PSO method, particle and swarm refer to the candidate
set of hyperparameters that are sampled from the hyperparameter space and the collection
of hyperparameter set candidates, respectively. The position vector of each particle refers to
the values of each hyperparameter in a particle. Finally, the velocity vector refers to the delta
of hyperparameter values that will be utilized to update the values of each hyperparameter in
a particle.

The following steps define how PSO works as a hyperparameter tuning method:

1.	 Split the original full data into train and test sets.

2.	 Define the hyperparameter space, H, with the accompanied distributions.

3.	 Define the collection size, N, the inertia weight coefficient, w, the cognitive coefficient, c1, the
social coefficient, c2, and the maximum number of trials.

4.	 Define the objective function, f, based on the train set.

5.	 Initialize a collection of N sets of hyperparameters, where each set is drawn randomly from
the hyperparameter space, H.

6.	 Randomly initialize the velocity vector for each set of hyperparameters in the collection.

7.	 Set each set’s current hyperparameter values as their best values, pbi.

8.	 Set the current global best set of hyperparameters, gb, by selecting a set from all N sets of
hyperparameters that have the most optimal objective function score.

9.	 Update each set’s hyperparameter values and velocity vector based on the updating formula.

10.	 Evaluate all sets of hyperparameters in the collection based on the objective function, f.

11.	 Update each set’s best hyperparameter values, pbi:

I.	 Compare each set’s current score from Step 10 with its pbi score.

II.	 If the current score is better than the pbi score, update pbi with the current hyperparameter
values.

12.	 Update the global best set of hyperparameters, gb:

I.	 Compare each set’s current score from Step 10 with the previous gb score.

II.	 If the current score is better than the gb score, update gb with the current set of
hyperparameters.

Understanding particle swarm optimization 81

13.	 Update each set’s hyperparameter values and velocity vector based on the updating formula.

14.	 Repeat Steps 10 to 13 until the maximum number of trials is reached.

15.	 Train on the full training set using the global best set of hyperparameters.

16.	 Evaluate the final trained model on the test set.

One issue with the updating formula in the PSO method is that it only works on numerical variables,
especially continuous variables, meaning we can’t directly utilize the original PSO as a hyperparameter
tuning method if our hyperparameter space contains discrete hyperparameters. Motivated by this
issue, there are several variants of PSO that are designed to be able to work in discrete spaces as well.
The first variant is designed to work specifically for binary variables and is called binary PSO. In this
variant, the updating formula for the velocity vector is the same, meaning we still treat the velocity
vector in a continuous space, but the updating formula for the position vector is modified, like so:

𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 1 𝑖𝑖𝑖𝑖 𝑟𝑟 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣𝑖𝑖𝑗𝑗(𝑡𝑡 + 1))  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0

Here, 𝑟𝑟 is a random number drawn from a uniform distribution within the [0,1) , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑧𝑧
interval, and the j subscript refers to each component in the ith particle. As you can see, in the binary
PSO variant, we can work within the discrete space, but we are restricted to only having binary variables.

What about when we have a combination of discrete and continuous numerical hyperparameters? For
example, our hyperparameter space for a neural network model contains the learning rate, dropout
rate, and the number of layers. We can’t utilize the original PSO method directly since the number
of layers hyperparameter expects an integer input, not a continuous or floating-point input. We also
can’t utilize the binary PSO variant since the learning rate and dropout rate are continuous, and the
number of layers hyperparameter is also not binary.

One simple thing we can do is round the updated velocity vector component values, but only for
components that correspond to the discrete position component, before passing it to the position
vector updating formula. This way, we can ensure that our discrete hyperparameters will still always
be within the discrete space. However, this workaround still has an issue. The rounding operation may
make the updating procedure of the velocity vector suboptimal. Why? Because of the possibility that
no matter the updated values of the velocity vector, so long as they are still within a similar range of
one integer point, then the position vector will not be updated anymore. This will contribute to a lot
of redundant computational costs.

There is another workaround to make PSO operate well both in continuous and discrete spaces. On
top of rounding the updated velocity vector component values, we can also update the inertia weight
coefficient dynamically. The motivation is to help a particle focus on its past velocity values so that it
is not stuck in the local or global optimum, which is influenced by 𝑝𝑝𝑏𝑏𝑏𝑏 or 𝑔𝑔𝑏𝑏 . The dynamic inertia
weight updating procedure can be done based on several factors, such as the relative distance between
its current position vector and its best position vector, the difference between the current number of
trials and the maximum number of trials, and many more.

Exploring Heuristic Search82

There are many variants of how we can dynamically update the inertia weight coefficient during trials;
we will leave it to you to choose what works well for your specific case.

Although we can modify the updating formula in PSO to make it work not only for continuous but
also discrete variables, we are still faced with several issues, as stated previously. Thus, to utilize the
maximum power of PSO within the continuous space, there’s another variant of PSO that tries to
synergize PSO with the Bayesian optimization method, called PSO-BO. The goal of PSO-BO is to
utilize PSO as a replacement for Bayesian optimization’s acquisition function optimizer (see Chapter
4). So, rather than using a second-order optimization method to optimize the acquisition function,
we can utilize PSO as the optimizer to help decide which set of hyperparameters to be tested in the
next trial of the Bayesian optimization hyperparameter tuning procedure.

The following table summarizes the pros and cons of utilizing PSO as a hyperparameter tuning method:

Figure 5.15 – Pros and cons of PSO

Now that you are aware of what PSO is, how it works, its several variants, and its pros and cons, let’s
discuss another interesting population-based heuristic search method.

Understanding Population-Based Training
PBT is a population-based heuristic search method, just like the GA method and PSO. However, PBT
is not a nature-inspired algorithm like GA or PSO. Instead, inspired by the GA method itself. PBT
is suggested for when you are working with a neural-network-based type of model and just need the
final trained model without knowing the specifically chosen hyperparameter configurations.

PBT is specifically designed to work only with a neural network-based type of models, such as a multilayer
perceptron, deep reinforcement learning, transformers, GAN, and any other neural network-based
models. It can be said that PBT does both hyperparameter tuning and model training since the weights
of the neural network model are inherited during the process. So, PBT is not only for choosing the
most optimal hyperparameter configurations but also for transferring the weights or parameters of the
model to other individuals within the population. That’s why the output of PBT is not a hyperparameter
configuration but a model.

Understanding Population-Based Training 83

PBT is a hybrid method of the random search and sequential search methods, such as manual search
and Bayesian search (see Chapter 3, Exploring Exhaustive Search and Chapter 4, Exploring Bayesian
Optimization for more details). Random search is a very good method for finding a good subspace for
sensitive hyperparameters. Sequential search methods tend to give better performance than random
search if we have enough computational resources and time to execute the optimization process. However,
the fact that those methods need to be executed sequentially makes the experiment take a very long time
to run. PBT comes with a solution to combine the best of both worlds into a single training optimization
process, meaning the model training and hyperparameter tuning process are merged into a single process.

The term Population-Based in PBT comes from the fact that it is inspired by the GA method in terms of
utilizing knowledge of the whole population to produce a better-performing individual. Note that the
individual part of PBT refers to each of the N models with different parameters and hyperparameters
in the population or a collection of all those N models.

The search process in PBT starts by initializing a population, P, that contains N models, {𝑀𝑀𝑖𝑖}𝑖𝑖=1𝑁𝑁 ,
with their own randomly sampled parameters, {𝜃𝜃𝑖𝑖}𝑖𝑖=1𝑁𝑁 , and randomly sampled hyperparameters,
{ℎ𝑖𝑖}𝑖𝑖=1𝑁𝑁 . Within each iteration of the search process, the training step is triggered for each of the N

models. The training step consists of both forward and backward propagation procedures that utilize
gradient-based optimization methods, just like the usual training procedure for a neural network-based
model. Once the training step is done, the next step is to perform an evaluation step. The purpose of
the evaluation step is to evaluate the current model’s Mi performance on the unseen validation data.

Once the model, Mi, is considered ready, PBT will trigger the exploit and explore steps. The definition
of a model being ready may vary, but we can define “ready” as passing a predefined number of steps
or passing a predefined performance threshold. Both the exploit and explore steps have the same
goal, which is to update the model’s parameters and hyperparameters. The difference is determined
by how they do the update process.

The exploit step will decide, based on the evaluation results from the whole population, whether to
keep utilizing the current set of parameters and hyperparameters or to focus on a more promising
set. For example, the exploit step can be done by replacing a model that is considered as part of the
bottom X% models in the whole population with a randomly sampled model from the top X% models
in the population. Note that a model consists of all the parameters and hyperparameters. On the other
hand, the explore step updates the model’s set of hyperparameters, not parameters, by proposing a
new set. You can propose a new set by randomly perturbing the current set of hyperparameters with
a predefined probability or by resampling the set of hyperparameters from the top X% models in the
population. Note that this exploration step is only done on the chosen model from the exploitation step.

Important Note
The exploration step in PBT is inspired by random search. This step can identify which subspace
of hyperparameters needs to be explored more using partially trained models chosen from the
exploitation step. The evaluation step that is done within the search process also enables us to
remove the drawback of the sequential optimization process.

Exploring Heuristic Search84

The exploitation and exploration procedure in the PBT method allows us to update a model’s set of
hyperparameters in an online fashion, while also putting more focus on the promising hyperparameter
and weight space. The iterative process of train-eval-exploit-explore is performed asynchronously in
parallel for each of the N individuals in the population until the stopping criterion is met.

The following steps summarize how PBT works as a single training optimization process:

1.	 Split the original full data into train, validation, and test sets (see Chapter 1, Evaluating Machine
Learning Models).

2.	 Define the hyperparameter space, H, with the accompanied distributions.

3.	 Define the population size, N, the exploration perturbation factor, perturb_fact, the exploration
resampling probability, resample_prob, and the exploitation fraction, frac.

4.	 Define the model’s readiness criterion. Usually, the number of SGD optimization steps is used.
However, it is also possible to use the model’s performance threshold as the criterion.

5.	 Define the checkpoint directory that is used to store the model’s weights and hyperparameters.

6.	 Define the evaluation function, f.

7.	 Initialize a population, P, that contains N models, {𝑀𝑀𝑖𝑖}𝑖𝑖=1𝑁𝑁 , with their own randomly sampled
parameters, {𝜃𝜃𝑖𝑖}𝑖𝑖=1𝑁𝑁 , and randomly sampled hyperparameters, {ℎ𝑖𝑖}𝑖𝑖=1𝑁𝑁 , from the hyperparameter
space, H.

8.	 For each model in the population, P, run the following steps in parallel:

I.	 Run one step of the training process for the model, Mi, with the 𝜃𝜃𝑖𝑖 parameter and a
set of hyperparameters, ℎ𝑖𝑖 .

II.	 If the readiness criterion has been met, do the following. If not, go back to Step I:

	� Perform the evaluation step based on f on the validation set.

	� Perform the exploitation step on the model, Mi, based on the predefined exploitation
fraction, frac. This step will result in a new set of parameters and hyperparameters.

	� Perform the exploration step on the set of hyperparameters from the exploitation step
based on the predefined perturb_fact and resample_prob.

	� Perform the evaluation step on the new set of parameters and hyperparameters based
on f on the validation set.

	� Update the model, Mi, with the new set of parameters and hyperparameters.

III.	 Repeat Steps I and II until the end of the training loop. Usually, it is defined by the
number of epochs.

Understanding Population-Based Training 85

9.	 Return the model with the best evaluation score in the population, P.

10.	 Evaluate the final model on the test set.

It is worth noting that, in practice, such as in the implementation of the NNI package (see Chapter 10,
Advanced Hyperparameter Tuning with DEAP and Microsoft NNI), the readiness criterion defined in
Step 4 is an epoch. In other words, the second step within Step 8 will only be run after each training
epoch, not in the middle of an epoch. It is also worth noting that the checkpoint directory defined
in Step 5 is needed because, in PBT, we need to copy weights from another model in the population,
while that’s not the case for the other hyperparameter tuning methods we’ve learned about so far.

While the original PBT algorithm states that we can run Step 8 asynchronously in parallel, this is not
the case in the implementation of the NNI package, which will be used in this book to implement
PBT. In the NNI package implementation, the process is run synchronously, meaning that we can
continue to the next epoch once all of the individuals or models in the population have finished the
previous epoch.

The following table lists the pros and cons of the PBT method:

Figure 5.16 – Pros and cons of PBT

In this section, you learned all you need to know about PBT, including what it is, how it works, what
makes it different from other heuristic search methods, and its pros and cons.

Exploring Heuristic Search86

Summary
In this chapter, we discussed the third out of four groups of hyperparameter tuning methods, called
the heuristic search group. We discussed what the heuristic search method is in general and several
variants of heuristic search methods, including SA, the GA method, PSO, and PBT. We saw what
makes each of the variants differ from each other, along with the pros and cons of each. At this point,
you should be able to explain heuristic search in confidence when someone asks you. You should
also be able to debug and set up the most suitable configuration of the chosen method that suits your
specific problem definition.

In the next chapter, we will start discussing multi-fidelity optimization, the last group of hyperparameter
tuning methods. The goal of the next chapter is similar to this one’s: to provide a better understanding
of the methods that belong to the multi-fidelity optimization group so that you can explain those
methods in confidence when someone asks you. By doing this, you will be able to configure each of
the methods for your specific problem!

6
E x p l o r i n g M u l t i - F i d e l i t y

O p t i m i z a t i o n

Multi-Fidelity Optimization (MFO) is the fourth of four groups of hyperparameter tuning methods.
The main characteristic of this group is that all methods belonging to this group utilize the cheap
approximation of the whole hyperparameter tuning pipeline so we can have similar performance
results with a much lower computational cost and faster experiment time. This group is suitable when
you have a very large model or a very large number of samples, for example, when you are developing
a neural-network-based model.

In this chapter, we will discuss several methods in the MFO group, including coarse-to-fine search,
successive halving, hyper band, and Bayesian Optimization and Hyperband (BOHB). As in Chapter 5,
Exploring Heuristic Search we will discuss the definition of each method, the differences between them,
how they work, and the pros and cons of each.

By the end of this chapter, you will be confident in explaining MFO and its variations, and also how they
work at a high level and in a technical way. You will also be able to tell the differences between them,
along with the pros and cons of each. You will also experience the crucial benefit of understanding
each of the methods in practice: being able to configure the method to match your own problem and
knowing what to do when there are errors or unexpected outputs from the method.

In this chapter, we’ll be covering the following main topics:

•	 Introducing MFO

•	 Understanding coarse-to-fine search

•	 Understanding successive halving

•	 Understanding hyper band

•	 Understanding BOHB

Exploring Multi-Fidelity Optimization88

Introducing MFO
MFO is a group of hyperparameter tuning methods that work by creating a cheap approximation of the
whole hyperparameter tuning pipeline so that we can get similar performance results with much lower
computational cost and faster experiment time. There are many ways to create a cheap approximation.
For example, we can work only on the subsets of the full data in the first several steps rather than directly
working on the full data, or we can also try to use fewer epochs when training a neural-network-based
model before training our model with full epochs. In other words, MFO methods work by combining cheap
low-fidelity and expensive high-fidelity evaluations, where usually the proportion of cheaper evaluations
is much larger than the more expensive evaluations so that we can achieve lower computational cost and
thus faster experiment time. However, MFO methods can also be categorized as part of the informed
search category since they utilize knowledge from previous iterations to have a (hopefully) better search
space in future.

All of the methods that we have learned in the previous chapters can be categorized as black-box
optimization methods. All black-box optimization methods try to perform hyperparameter tuning
without utilizing any information from what is happening inside the ML model or the data that is
used by the model. A black-box optimizer will only focus on searching the best set of hyperparameters
from the defined hyperparameter space and treat other factors as a black box (see Figure 6.1). This
characteristic has its own good and bad implications. It enables us to utilize a black-box optimizer,
which is more flexible for various types of models or data, but it also costs us more since we do not
consider other factors that may speed up the process.

Figure 6.1 – Illustration of black-box optimizer

Understanding coarse-to-fine search 89

The expense of black-box optimization methods means we can’t utilize them when we are working
with a very large model or big data that requires a very long time for just one training iteration. That’s
where the MFO group of hyperparameter tuning methods comes into the picture! By considering
other factors that are treated as black-box by black-box optimizers, we can have a faster process while
sacrificing a bit of the generality that black-box optimizers have.

Generality
Generality means the model is able to perform on many unseen cases.

Furthermore, most of the methods categorized in this group can utilize parallel computational resources
very nicely, which can further boost the speed of the hyperparameter tuning process. However, the
benefit of faster processes offered by MFO methods comes with a cost. We may have worse performing
tuning results since there is a chance we have excluded a better subspace during the cheap low-fidelity
evaluations step. However, the speedup is arguably more significant than the estimation error, especially
when we are working with a very large model and/or big data.

Important Note
The MFO group of hyperparameter tuning methods is not a completely different group compared
to black-box optimization methods, including exhaustive search, Bayesian optimization, and
heuristic search. In fact, we can also apply a similar procedure done in a multi-fidelity optimization
method to a black-box optimizer. In other words, we can combine black-box-and multi-fidelity
models so we can get the best of both worlds.

For example, we can perform hyperparameter tuning with one of the Bayesian Optimization (BO)
methods (see Chapter 4, Exploring Bayesian Optimization) and also apply the successive halving
method (see the Understanding successive halving section) on top of it. This way, we will ensure that
we only perform BO on important subspace, rather than letting BO explore the whole hyperparameter
space by itself. By doing this, we can have a faster experiment time with lower computational cost.

Now that you are aware of what MFO is, how it differs from black-box optimization methods, and
how it works at a high level, we will dive deeper into several MFO methods in the following sections.

Understanding coarse-to-fine search
Coarse-to-Fine Search (CFS) is a combination of grid and random search hyperparameter tuning
methods (see Chapter 3, Exploring Exhaustive Search). Unlike grid and random search, which are
categorized in the uninformed search group of methods, CFS utilizes knowledge from previous
iterations to have a (hopefully) better search space in the future. In other words, CFS is a combination
of sequential and parallel hyperparameter tuning methods. It is indeed a very simple method since it
is basically a combination of two other simple methods: grid and random search.

Exploring Multi-Fidelity Optimization90

CFS can be effectively utilized as a hyperparameter tuning method when you are working with a
medium-sized model, for example, a shallow neural network (other types of models can also work)
and a moderate amount of training data.

The main idea of CFS is just to start with a coarse random search from the whole hyperparameter
space, then gradually refine the search in more detail, either using random or grid search. The following
figure summarizes how CFS works as a hyperparameter tuning method.

Figure 6.2 – Illustration of CFS

As illustrated in Figure 6.2, CFS starts by performing a random search in the whole pre-defined
hyperparameter space. Then, it looks for a promising subspace based on the first coarse random search
evaluation results. The definition of a promising subspace may vary and can be adjusted to your own
preference. The following list shows several definitions of a promising subspace that you can adopt:

•	 Get only the top N percentiles of the best set of hyperparameters based on the evaluation
performed in the previous trial.

•	 Put a hard threshold to filter out the bad set of hyperparameters from the previous trial.

•	 Conduct a univariate analysis to get the best range of values for each hyperparameter.

No matter what definition you are using to define the promising subspace, we will always get a list
of values for each hyperparameter. Then, we can create a new hyperparameter space based on the
minimum and maximum values in each list of hyperparameter values.

After getting the promising subspace, we can continue the process by performing a grid search or
another random search in the smaller area. Note that you can also put a condition on when to keep
using random search and when to start using grid search. Again, it is up to you to choose the appropriate
condition. However, it is better to perform a random search than a grid search, so that we can have
more evaluations based on the cheap low-fidelity approach compared to the expensive high-fidelity
approach. We keep repeating this procedure until we reach the stopping criterion.

Understanding coarse-to-fine search 91

The following procedure explains in more detail how CFS works as a hyperparameter tuning method:

1.	 Split the original full data into a training set and a test set. (See Chapter 1, Evaluating Machine
Learning Models.)

2.	 Define the hyperparameter space, H, with the accompanied distributions, the objective function,
f, based on the training set, and the stopping criterion.

3.	 Define the grid size for creating the grid search hyperparameter space, grid_size, and the
random search number of iterations, random_iters.

4.	 Define the criterion of a promising subspace by utilizing the objective function, f.

5.	 Define the criterion of when to start using grid search.

6.	 Set the initial best set of hyperparameters, best_set, with the value None.

7.	 Perform a random search on the current hyperparameter space, H, for random_iters times.

8.	 Select a promising subspace based on the criterion defined in step 4:

I.	 If the current best-performing set of hyperparameters is worse than the previous best_
set, add best_set to the promising subspace.

II.	 If the current best-performing set of hyperparameters is better than the previous best_
set, update best_set.

9.	 If the criterion in step 5 is met, do the following:

I.	 Update the current hyperparameter space, H, with the promising subspace selected in
step 8, using unique grid_size values for each of the hyperparameters.

II.	 Perform a grid search on the updated hyperparameter space, H.

10.	 If the criterion in step 5 is not met, do the following:

I.	 Update the current hyperparameter space, H, with the promising subspace selected in
step 8 using the minimum and maximum values for each hyperparameter.

II.	 Perform a random search on the updated hyperparameter space, H, for random_iters
times.

11.	 Repeat steps 8 – 10 until the stopping criterion is met.

12.	 Train on the full training set using the best hyperparameter combination.

13.	 Evaluate the final trained model on the test set.

Exploring Multi-Fidelity Optimization92

In CFS, the multi-fidelity characteristic is based neither on the amount of data nor the number of
training epochs, but on the granularity of the search performed in the search space during each
trial. In other words, we will keep using all of the data and all of the training epochs with a refined
hyperparameter space in each trial.

Let’s see how CFS works as a hyperparameter tuning method on dummy data generated by the scikit-
learn package. Scikit-learn has a function called make_classification to create dummy
classification data with several customizable configurations. In this example, we use the following
configurations to generate the dummy data:

•	 Number of classes. We set the number of target classes in the data to 2 by setting n_classes=2.

•	 Number of samples. We set the number of samples to 500 by setting n_samples=500.

•	 Number of features. We set the number of features or the number of dependent variables in the
data to 25 by setting n_features=25.

•	 Number of informative features. We set the number of features that have high importance to
distinguish between all of the target classes to 18 by setting n_informative=18.

•	 Number of redundant features. We set the number of features that are basically just a weighted
sum from other features to 5 by setting n_redundant=5.

•	 Random seed. To ensure reproducibility, we set random_state=0.

We utilize a Multi-Layer Perceptron (MLP) with one hidden layer as the classifier model and use the
mean of seven-fold cross-validation accuracy scores as the objective function (see Chapter 4, Exploring
Bayesian Optimization). In this example, we are not using grid search as part of the CFS procedure,
meaning that we only use random search in each of the trials. We set the maximum number of trials
to 12, which acts as the stopping criterion. We set the number of iterations for each random search
trial to 20. Finally, we utilize the top N percentiles scheme to define the promising subspace in each
trial, with N=50. We define the hyperparameter space as follows:

•	 Number of neurons in the hidden layer: hidden_layer_sizes=range(1,51)

•	 Initial learning rate: learning_rate_init=np.linspace(0.001,0.1,50)

Understanding coarse-to-fine search 93

The following figure shows how CFS works in each iteration or trial. The purple dots refer to hyperparameter
values tested in the current trial, while the red rectangles refer to the promising subspace to be searched
in the next trial.

Figure 6.3 – Illustration of the CFS process

In Figure 6.3, we can see clearly how CFS starts by working at the full hyperparameter space and then
gradually searches in the smaller subspaces. It is also worth noting that although we only use random
search in this example, we can see that CFS still increases its fidelity over the number of trials until
we get a final set of hyperparameters in the last trial. We can also see the performance of each trial
in the following figure.

Exploring Multi-Fidelity Optimization94

Figure 6.4 – Convergence plot

The blue line in Figure 6.4 reflects the average cross-validation scores from all tested hyperparameters
(see the purple dots in Figure 6.3) at each trial. The red line reflects the cross-validation score of the best-
performing set of hyperparameters at each trial. We can see that the red line has a nice non-decreasing
monotonic characteristic. This happens because we always add back the best set of hyperparameters from
all previous trials to the promising subspace definition, as defined in step 8 in the previous procedure.
We will learn how to implement CFS with scikit-learn in Chapter 7, Hyperparameter Tuning via Scikit.

The following table summarizes the pros and cons of utilizing CFS as a hyperparameter tuning method.

Figure 6.5 – Pros and cons of CFS

Understanding successive halving 95

In this section, we have discussed CFS, looking at what it is, how it works, and the pros and cons.
We will discuss another interesting MFO method in the next section.

Understanding successive halving
Successive Halving (SH) is an MFO method that is not only able to focus on a more promising
hyperparameter subspace but can also allocate computational cost wisely in each trial. Unlike CFS,
which utilizes all of the data in each trial, SH can utilize less data for a not-too-promising subspace
while utilizing more data for a more promising subspace. It can be said that SH is a variant of CFS
with a much clearer algorithm definition and is wiser in spending the computational cost. The most
effective way to utilize SH as a hyperparameter tuning method is when you are working with a large
model (for example, a deep neural network) and/or working with a large amount of data.

Similar to CFS, SH also utilizes grid search or random search to search for the best set of hyperparameters.
At the first iteration, SH will perform a grid or random search on the whole hyperparameter space
with a small amount of budget or resources, and then it will gradually increase the budget while
also removing the worst half of the hyperparameters candidates at each iteration. In other words, SH
performs hyperparameter tuning with a lower budget on a bigger search space and a higher budget on
a more promising smaller subspace. SH can also be seen as a tournament between hyperparameter
candidates, where only the best candidate will survive at the end of the trials.

Budget Definition in SH
In a default hyperparameter tuning setup, the budget is defined as the number of samples in
the data. However, it is also possible to define the budget in other ways. For example, we can
also define the budget as the maximum training time, number of iterations during XGBoost
training steps, number of estimators in a random forest, or number of epochs when training
a neural network model.

To have a better understanding of SH, let’s look at the following example before we discuss how it
works in a formal procedure. We utilize the same model and the same hyperparameter space definition
used in the example in the Understanding CFS section. We also utilize a similar procedure to generate
a dummy classification dataset a hundred times bigger in size, meaning we have 50000 samples
instead of only 500 samples as in the CFS example.

Exploring Multi-Fidelity Optimization96

In this example, we utilize random search instead of grid search to sample the hyperparameter candidates
in each trial. The following figure shows the accuracy scores of hyperparameter candidates over trials.
Each line refers to the trend of each hyperparameter candidate’s objective function score, which in
this case is the seven-fold cross-validation accuracy score, over the number of trials. The final objective
function score, based on the best set of hyperparameters selected from the SH tuning process, is
0.984. We will learn how to implement SH in Chapter 7, Hyperparameter Tuning via Scikit and
Chapter 9, Hyperparameter Tuning via Optuna.

Figure 6.6 – Illustration of the SH process

In Figure 6.6, we can clearly see how SH takes only the top hyperparameter candidates (see the orange
ovals) from each trial for further evaluation in the next trial. In the first iteration, a random search
is performed 240 times with only 600 out of 50000 of the samples available in the data. This
means we have 240 hyperparameter candidates, n_candidates, in the first iteration. Out of
those hyperparameter candidates, SF takes only the top 80 candidates to be evaluated with a larger
number of samples in the second iteration, which is 1800 samples. For the third iteration, SF again
takes only the top 27 candidates and evaluates them on 5400 samples.

Understanding successive halving 97

This process continues until we can’t use a larger number of samples since it will be greater than the
maximum resources, max_resources, defined in the first place. In this example, the maximum
resources are defined as the number of samples that we have in the data. However, it can also be defined
as the total number of epochs or training steps based on the definition of the budget or resources.

In this example, we stopped at the fourth iteration, where we need to evaluate 3 candidates based on
48600 samples. The final hyperparameter candidate chosen is the one that has the highest seven-fold
cross-validation accuracy score evaluated on those 48600 samples.

As you will notice, the gradual increment of the number of samples in each trial and the gradual
decrement of the number of candidates in each trial follows the same multiplier factor, factor,
which is 3 in this example. That’s why we have to stop at the fourth iteration, since if we continue to
the fifth iteration, we would need 48600*3=145800 samples, while we only have 50000 samples
in the data. Note that we have to set the value of the multiplier factor ourselves before running the SH
tuning process. In other words, this multiplier factor is the hyperparameter for SH.

Multiplier Factor in SH
The halving term in SH refers to setting the multiplier factor value to two. In other words,
only the best half of the hyperparameter candidates in each trial are passed to the next trial.
However, we can also change this with another value. For example, when we set the multiplier
factor as three, it means we take only the top one-third of hyperparameter candidates in each
trial. In practice, setting the multiplier factor as three usually works better than setting it as two.

Besides the multiplier factor and maximum resources, SH also has other hyperparameters, such as the
minimum number of resources to be used at the first iteration, min_resources, and the initial
number of candidates to be evaluated at the first iteration, n_candidates. If grid search is utilized in
the SH tuning process, n_candidates will equal the number of all combinations of hyperparameters
in the search space. If a random search is utilized, then we have to set the value of n_candidates
ourselves. In our example, where random search is utilized, we set min_resources=600 and
n_candidates=240.

While setting factor to be equal to three is the common practice, this is not the case for min_
resources and n_candidates. There are many factors to be considered before choosing the
right values for both the min_resources and n_candidates hyperparameters. In other words,
there is a trade-off between them, as explained here:

•	 Choosing a bigger value for n_candidates is useful when the bad and good hyperparameters
can be easily distinguished with a smaller number of samples (a smaller value for min_
resources).

•	 Choosing a smaller value for n_candidates is useful when we need a larger number of
samples (a larger value for min_resources) to distinguish between the bad and good
hyperparameters.

Exploring Multi-Fidelity Optimization98

Another hyperparameter that SH has is the minimum early stopping rate, min_early_stopping.
This integer-type hyperparameter has a default value of zero. If it is set to more than zero, it will reduce
the number of iterations while increasing the number of resources to be used at the first iteration. In
our previous example, we set min_early_stopping=0.

To summarize, SH as a hyperparameter tuning method works as follows:

1.	 Split the original dataset into train and test sets.

2.	 Define the hyperparameter space, H, with the accompanied distributions, and the objective
function, f, based on the training set.

3.	 Define the budget/resources. Usually, this is defined as the number of samples or training epochs.

4.	 Define the maximum amount of resources, max_resources. Usually, this is defined as the
total number of samples in data or the total number of epochs.

5.	 Define the multiplier factor, factor, the minimum amount of resources to be used at the first
iteration, min_resources, and the minimum early stopping rate, min_early_stopping.

6.	 Define the initial number of hyperparameter candidates to be evaluated at the first iteration,
n_candidates. If grid search is utilized, this will be automatically parsed from the total
number of hyperparameter combinations in the search space.

7.	 Calculate the maximum number of iterations, niter, using the following formula:

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (log𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (

𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟))

8.	 Assert if n_candidates ≥ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟(𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−1) to ensure there is at least
one candidate in the last iteration.

9.	 Warm up the first iteration:

I.	 Sample n_candidates sets of hyperparameters from the hyperparameter space. If
grid search is utilized, just return all of the hyperparameter combinations in the space.
This set of candidates is referred to as candidates1.

II.	 Evaluate all candidates1 sets of hyperparameters, using min_resources, based on
the objective function, f.

III.	 Calculate the topK value that will be used to select top candidates for the next iteration:

𝑡𝑡𝑡𝑡𝑝𝑝𝐾𝐾 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟−1)
10.	 For each iteration, i, starting from the second iteration until niter iteration, proceed as follows:

I.	 Update the current set of candidates, candidatesi, by selecting topK candidates from
candidatesi-1 in terms of the most optimal objective function score.

Understanding successive halving 99

II.	 Update the current allocated resources, resourcesi, based on the following formula:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟(𝑖𝑖+𝑚𝑚𝑚𝑚𝑚𝑚_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1)
III.	 Evaluate all candidatesi sets of hyperparameters, using resourcesi, based on the objective

function, f.

IV.	 Update the topK value based on the following formula:

𝑡𝑡𝑡𝑡𝑝𝑝𝐾𝐾 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟−𝑖𝑖)
11.	 Return the best hyperparameter candidate:

I.	 Evaluate all candidates in the last iteration using the allocated number of resources and
the objective function, f. Note that it’s possible that the allocated resource in the last
iteration is less than max_resources.

II.	 Select the candidate with the optimal objective function score.

12.	 Train on the full train set using the best set of hyperparameters from step 11.

13.	 Evaluate the final trained model on the test set.

Based on the previous example and the stated procedure, we can see that SH performs cheap, low-fidelity
evaluations on the first several iterations by using a low number of resources and starts to perform more
expensive high-fidelity evaluations on the final several iterations by using a high number of resources.

Integration with Other Black-Box Methods
SH can also be utilized along with other black-box hyperparameter tuning methods apart from
grid and random search. For example, in the Optuna (see Chapter 9, Hyperparameter Tuning
via Optuna) package, we can combine TPE (see Chapter 4, Exploring Bayesian Optimization)
with SH, where SH acts as a pruner. Note that in Optuna, the budget/resources is defined as
the number of training steps or epochs instead of the number of samples.

The following is a list of the pros and cons of SH as a hyperparameter tuning method:

Figure 6.7 – Pros and cons of SH

Exploring Multi-Fidelity Optimization100

In practice, most of the time, we do not know how to balance the trade-off between the number
of resources and the number of candidates since there is no clear definition of how to distinguish
bad and good hyperparameters. One thing that can help us to find a sweet spot in this trade-off is
leveraging previous similar experiment configurations or by performing meta-learning based on
the available meta-data from previous similar experiments.

Now you are aware of SH, how it works, when to use it, and its pros and cons, in the next section,
we will learn about an extension of this method that attempts to overcome the cons of SH.

Understanding hyper band
Hyper Band (HB) is an extension of SH that is specifically designed to overcome issues inherent in
SH (see Figure 6.7). Although we can perform meta-learning to help us balance the trade-off, most
of the time we do not have the metadata that’s needed in practice. Furthermore, the possibility of
SH removing better sets of hyperparameters in the first several iterations is also worrying and can’t
be solved by just finding a sweet spot from the trade-off. HB tries to solve these issues by calling SH
several times iteratively.

Since HB is just an extension of SH, it is suggested that you utilize HB as your hyperparameter tuning
method when you are working with a large model (for example, a deep neural network) and/or working
with a large amount of data, just like SH. Furthermore, it is even better to utilize HB than SH when
you do not have the time or metadata needed to help you configure the trade-off between the amount
of resources and the number of candidates, which is the case most of the time.

The main difference between HB and SH is in their hyperparameters. HB has the same hyperparameters
as SH (see the Understanding SH section) except for n_candidates. In HB, we don’t have to choose
the best value for n_candidates since it is calculated automatically within the HB algorithm.

Basically, HB works by running SH iteratively with variations of n_candidates and min_
resources in each of the brackets (each SH run), starting from the combination of the highest
possible value for n_candidates and the lowest possible value for min_resources, and
going to the lowest possible value for n_candidates and the highest possible value for resources
(see Figure 6.8). It’s like a brute-force approach to try almost all of the possible combinations of
n_candidates and min_resources.

Figure 6.8 – Illustration of the HB process. Here, nj and rj refer to n_

candidates and min_resources for bracket-j, respectively

Understanding hyper band 101

As illustrated in Figure 6.8, assume that we set factor=3, min_resources=1, max_
resources=27, and min_early_stopping=0. As you can see, HB allocates the minimum
amount of resources with the maximum number of candidates in the first bracket, while it allocates the
maximum amount of resources with the minimum number of candidates in the last bracket. Again, each
bracket refers to each SH run, meaning we are running SH four times in this illustration, where the last
bracket is basically the same as performing random or grid search on a small hyperparameter space.

By testing almost all of the possible combinations of n_candidates and min_resources, HB is
able to remove the trade-off in SH while also reducing the possibility of excluding better hyperparameters
in the first iterations. However, this groundbreaking characteristic of HB doesn’t ensure that it will be
always better than SH. Why? Because HB hasn’t actually tried all the possible combinations. We might
find a better combination of n_candidates and min_resources values just by performing
a single SH than all the possible combinations HB tried. However, this takes time and luck since we
have to manually select the n_candidates and min_resources values.

Integration with Other Black-Box Methods
In the original paper on HB, the authors utilize random search for each SH run. However, as with
SH, we can also integrate HB with other black-box methods.

The following procedure further states how HB works formally as a hyperparameter tuning method:

1.	 Split the full original dataset into train and test sets.

2.	 Define the hyperparameter space, H, with the accompanied distributions, and the objective
function, f, based on the training set.

3.	 Define the budget resource. This is usually defined as the number of samples or training epochs.

4.	 Define the maximum resources, max_resources. This is usually defined as the total number
of samples in the data or the total number of epochs.

5.	 Define the multiplier factor, factor, the minimum early stopping rate, min_early_
stopping, and the minimum number of resources for all brackets, min_resources.
Usually, min_resources is set to one, if the budget is defined as the number of samples.

6.	 Create a dictionary, top_candidates, that will be utilized to store the best-performing
set of hyperparameters from each SH run.

7.	 Calculate the number of brackets, nbrackets, using the following formula:

𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (log𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (
𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟))

Exploring Multi-Fidelity Optimization102

8.	 For each bracket-j, starting from j=1 until j=nbrackets, do the following:

I.	 Calculate the minimum number of resources to be used at the first iteration of SH for
bracket-j, 𝑟𝑟𝑗𝑗 , using the following formula:

𝑟𝑟𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟− (𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑗𝑗)

II.	 Calculate the initial number of hyperparameter candidates to be evaluated at the first
iteration of SH for bracket-j, 𝑛𝑛𝑗𝑗 , using the following formula:

𝑛𝑛𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑗𝑗 + 1 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟

(𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑗𝑗))

III.	 Do steps 7 – 11 from the SH procedure given in the Understanding SH section by utilizing
𝑟𝑟𝑗𝑗 as the min_resources and 𝑛𝑛𝑗𝑗 as the n_candidates for the current SH run,

respectively. Other hyperparameters for SH, such as max_resources, min_early_
stopping, and factor, are inherited from HB.

IV.	 Store the best set of hyperparameters output from the current SH run, along with the
objective function score, in the top_candidates dictionary.

9.	 Select the best candidate that has the most optimal objective function score from the top_
candidates dictionary.

10.	 Train on the full training set using the best set of hyperparameters from step 9.

11.	 Evaluate the final trained model on the test set.

The following table summarizes the pros and cons of utilizing HB as a hyperparameter tuning method:

Figure 6.9 – Pros and cons of HB

It is worth noting that although HB can help us to deal with the trade-off of SH, it has a higher
computational cost, since we have to run several SH rounds iteratively. It is even more costly when we
are faced with a case where the bad and good hyperparameters cannot be easily distinguished with a
small budget value. Why? The first several brackets of HB that utilize small budgets will result in a noisy
estimation, since the relative rankings inside the SH iterations on smaller budgets do not reflect the
actual relative rankings on higher budgets. In the most extreme case, the best set of hyperparameters
will result from the last bracket (random search). If this is the case, then HB will run nbrackets times
slower compared to random search.

Understanding BOHB 103

In this section, we have discussed HB, what it is, how it works, and its pros and cons. We will discuss
another interesting MFO method in the next section.

Understanding BOHB
Bayesian Optimization and Hyper Band (BOHB) is an extension of HB that is superior to CFS, SH,
and HB, in terms of understanding the relationship between the hyperparameter candidates and the
objective function. If CFS, SH, and HB are all part of the informed search group based on random
search, BOHB is an informed search group that is based on the BO method. This means BOHB is
able to decide which subspace needs to be searched based on previous experiences rather than luck.

As its name implies, BOHB is the combination of the BO and HB methods. While SH and HB can also
be utilized with other black-box methods (see the Understanding SH and Understanding HB sections),
BOHB is specifically designed to utilize a BO method in a way that can support HB. Furthermore,
the BO method in BOHB also tracks all the previous evaluations on all budgets, so that it can serve
as the base for future evaluations. Note that the BO method used in BOHB is the multivariate TPE,
which is able to take into account the interdependencies among hyperparameters (see Chapter 4,
Exploring Bayesian Optimization).

The main selling point of BOHB is its ability to achieve both a strong initial performance and a strong
final performance. This can be easily seen in Figure 6.10, from the original BOHB paper (see the
following note for details). BO (without performing metalearning) will outperform random search
if we have more time to let it learn from previous experiences. If we don’t have time, BO will deliver
a similar or even worse performance compared to random search. On the other hand, HB performs
much better than random search when we have limited time, but will perform similarly to random
search if we allow more time for random search to explore the hyperparameter space. By combining
the best of both worlds, BOHB is able to not only outperform random search in a limited time but
also when given enough time for random search to catch up.

Figure 6.10 – Comparison between random search, BO, HB, and BOHB

Exploring Multi-Fidelity Optimization104

The Original BOHB Paper
BOHB: Robust and Efficient Hyperparameter Optimization at Scale by Stefan Falkner, Aaron
Klein, and Frank Hutter, Proceedings of the 35th International Conference on Machine Learning,
PMLR 80:1437-1446, 2018 (http://proceedings.mlr.press/v80/falkner18a.
html).

The following procedure further states how BOHB works formally as a hyperparameter tuning
method. Note that BOHB and HB are very similar except that random search in HB is replaced by
the combination of multivariate TPE and random search. Since HB just performs SH several times
iteratively, the actual replacement is actually performed in each of the SH runs (each bracket) in HB.

Let’s pick up from the previous instructions again.

6. (The first six steps are the same as those in the Understanding HB section.)

7. �Define the probability of just performing a random search rather than fitting the
multivariate TPE, random_prob.

8. �Define the percentage of the good set of hyperparameters for the multivariate TPE fitting
procedure, top_n_percent. (See Chapter 4, Exploring Bayesian Optimization.)

9. �Define a dictionary, candidates_dict, that stores the budget/resources used in a particular
SH iteration and the pairs of hyperparameter candidates and the objective function score
as the key and value, respectively.

10. �Define the minimum number of sets of hyperparameters that are randomly sampled
before starting to fit the multivariate TPE, n_min. By default, we set n_min to match
the number of hyperparameters in the space plus one.

11. �For each bracket-j, starting from j=1 until j=nbrackets, do the following:

I.	 Calculate the minimum number of resources to be used on the first iteration of SH
for bracket-j, 𝑟𝑟𝑗𝑗 , using the following formula:

 𝑟𝑟𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟− (𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑗𝑗)

II.	 Calculate the initial number of hyperparameters candidates to be evaluated on the
first iteration of SH for bracket-j, 𝑛𝑛𝑗𝑗 , using the following formula:

 𝑛𝑛𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑗𝑗 + 1 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟

(𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑗𝑗))

III.	 Perform steps 7 – 11 from the SH procedure stated in the Understanding SH section
by utilizing 𝑟𝑟𝑗𝑗 as min_resources and 𝑛𝑛𝑗𝑗 as n_candidates for the current SH run,
respectively, where step 9. I. is replaced with the following procedure:

IV.	 Generate a random number between zero and one from a uniform distribution, rnd.

http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html

Understanding BOHB 105

V.	 If rnd<random_prod or models_dict is empty, perform a random search to
sample the initial hyperparameter candidates.

VI.	 Count the number of sampled hyperparameters in candidates_dict[𝑟𝑟𝑗𝑗],
and store it as num_curr_candidates.

VII.	 If num_curr_candidates < n_min, then perform a random search to
sample the initial hyperparameter candidates.

VIII.	 Alternatively, utilize the multivariate TPE (see Chapter 4, Exploring Bayesian
Optimization) to sample the initial hyperparameter candidates. Note that we always
utilize multivariate TPE on the largest budget available in candidates_dict.
The number of hyperparameter sets for both good and bad groups is defined based
on the following formula:

𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = max(𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝑛𝑛𝑛𝑛𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
100))

𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏 = max(𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (
(100 − 𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ⋅ 𝑛𝑛𝑛𝑛𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

100))

IX.	 Store the sampled initial hyperparameter candidates along with the objective function
score (either from step ii, iv, or v) in candidates_dict[𝑟𝑟𝑗𝑗].

X.	 Store the best set of hyperparameters output from the current SH run, along with
the objective function score, in the top_candidates dictionary.

12.	 Select the best candidate that has the most optimal objective function score from the top_
candidates dictionary.

13.	 Train on the full training set using the best set of hyperparameters from step 14.

14.	 Evaluate the final trained model on the test set.

Note that to ensure that BOHB tracks all of the evaluations on all budgets, we also need to store the
hyperparameter candidates in each of the SH iterations for each HB bracket to candidates_
dict[budget] along with their objective function score. Here, hyperparameter candidates in each
of the SH iterations refer to candidatesi, while budget refers to resourcesi in step 10 in the Understanding
SH section, which also can be seen in the following figure:

Figure 6.11 – BOHB tracks all the evaluations on all budgets

Exploring Multi-Fidelity Optimization106

You may wonder whether it is possible for BOHB to take advantage of parallel resources since it
utilizes a BO method that is notorious for not being able to exploit parallel computing resources. The
answer is yes, it is possible! You can take advantage of parallel resources since in each of the BOHB
iterations, specifically in the HB iterations, we can utilize more than one worker to evaluate multiple
sets of hyperparameters, in parallel.

What about the sequential nature of the multivariate TPE utilized in BOHB? Yes, there may be some
sequential processes that need to be performed inside the TPE model. However, BOHB limits the
number of sets of hyperparameters given to the multivariate TPE so it might not take too much time.
Furthermore, the limitation on the number of hyperparameter sets is actually specifically designed
by the authors of BOHB. The following is a direct quote from the original paper on BOHB:

The parallelism in TPE is achieved by limiting the number of samples to
optimize EI, purposefully not optimizing it fully to obtain diversity. This

ensures that consecutive suggestions by the model are diverse enough to yield
near-linear speedups when evaluated in parallel.

It is also worth noting that we always utilize the multivariate TPE on the largest budget available to
ensure that it is fitted on enough budget (high-fidelity) to minimize the chance of a noisy estimation.
So, combined with the limitation on the number of hyperparameter sets passed to the TPE, we are
trying to ensure that the multivariate TPE is fitted on the right number of hyperparameter sets.

The following table summarizes the pros and cons of utilizing BOHB as a hyperparameter tuning method:

Figure 6.12 – Pros and cons of BOHB

Just as HB may run nbrackets times slower compared to random search when we are faced with a
situation where the bad and good hyperparameters cannot be easily distinguished with a small budget
value, BOHB will also run nbrackets times slower compared to the vanilla BO, where we are faced
with the same condition.

In this section, we have covered BOHB in detail, including what it is, how it works, and its pros and cons.

Summary 107

Summary
In this chapter, we have discussed the fourth of the four groups of hyperparameter tuning methods,
called the MFO group. We have discussed MFO in general and what makes it different from black-
box optimization methods, as well as discussing several variants, including CFS, SH, HB, and BOHB.
We have seen the differences between them and the pros and cons of each. From now on, you should
be able to explain MFO with confidence when someone asks you about it. You should also be able
to debug and set up the most suitable configuration for the chosen method that suits your specific
problem definition.

In the next chapter, we will begin implementing the various hyperparameter tuning methods that we
have learned about so far using the scikit-learn package. We will become familiar with the scikit-learn
package and learn how to utilize it in various hyperparameter tuning methods.

S e c t i o n 2 :
T h e I m p l e m e n t a t i o n

In this section of the book, we will learn how to utilize several powerful packages to implement all of
the discussed hyperparameter tuning methods in the previous section.

This section includes the following chapters:

•	 Chapter 7, Hyperparameter Tuning via scikit-learn

•	 Chapter 8, Hyperparameter Tuning via Hyperopt

•	 Chapter 9, Hyperparameter Tuning via Optuna

•	 Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI

7
H y p e r p a r a m e t e r Tu n i n g

v i a S c i k i t

scikit-learn is one of the Python packages that is used the most by data scientists. This package
provides a range of Machine Learning (ML)-related modules that are ready to be used with minimum
effort, including for the task of hyperparameter tuning. One of the main selling points of this package
is its consistent interface across many implemented classes, which almost every data scientist loves!
Apart from scikit-learn, there are also other packages for the hyperparameter tuning task that
are built on top of scikit-learn or mimic the interface of scikit-learn, such as scikit-
optimize and scikit-hyperband.

In this chapter, we’ll learn about all of the important things to do with scikit-learn, scikit-
optimize, and scikit-hyperband, along with how to utilize them to implement the
hyperparameter tuning methods that we learned about in the previous chapters. We’ll start by walking
through how to install each of the packages. Then, we’ll learn not only how to utilize those packages
with their default configurations but also discuss the available configurations along with their usage.
Additionally, we’ll discuss how the implementation of the hyperparameter tuning methods is related
to the theory that we learned in previous chapters, as there might be some minor differences or
adjustments made in the implementation.

Finally, equipped with the knowledge from previous chapters, you will also be able to understand
what’s happening if there are errors or unexpected results and understand how to set up the method
configuration to match your specific problem.

In this chapter, we’ll be covering the following main topics:

•	 Introducing scikit

•	 Implementing Grid Search

•	 Implementing Random Search

•	 Implementing Coarse-to-Fine Search

Hyperparameter Tuningvia Scikit112

•	 Implementing Successive Halving

•	 Implementing Hyper Band

•	 Implementing Bayesian Optimization Gaussian Process

•	 Implementing Bayesian Optimization Random Forest

•	 Implementing Bayesian Optimization Gradient Boosted Trees

Technical requirements
We will learn how to implement various hyperparameter tuning methods with scikit-learn,
scikit-optimize, and scikit-hyperband. To ensure that you can reproduce the code
examples in this chapter, you will require the following:

•	 Python 3 (version 3.7 or above)

•	 An installed Pandas package (version 1.3.4 or above)

•	 An installed NumPy package (version 1.21.2 or above)

•	 An installed Scipy package (version 1.7.3 or above)

•	 An installed Matplotlib package (version 3.5.0 or above)

•	 An installed scikit-learn package (version 1.0.1 or above)

•	 An installed scikit-optimize package (version 0.9.0 or above)

•	 An installed scikit-hyperband package (directly cloned from the GitHub repository)

All of the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python.

Introducing Scikit
scikit-learn, which is commonly called Sklearn, is a very popular open source package in
Python that is widely used for ML-related tasks, starting from data preprocessing, model training and
evaluation, model selection, hyperparameter tuning, and more. One of the main selling points of the
sklearn package is the consistency of its interface across many implemented classes.

For example, all of the implemented ML models, or estimators, in sklearn have the same fit()
and predict() methods for fitting the model on the training data and evaluating the fitted model on
the test data, respectively. When working with data preprocessors, or transformers, in sklearn, the
typical method that every preprocessor has is the fit(), transform(), and fit_transform()
methods for fitting the preprocessor, transforming new data with the fitted preprocessor, and fitting
and directly transforming the data that is used to fit the preprocessor, respectively.

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python

Introducing Scikit 113

In Chapter 1, Evaluating Machine Learning Models, we learned how sklearn can be utilized to
evaluate the performance of ML models through the concept of cross-validation, where the full data
is split into several parts, such as train, validation, and test data. In Chapters 3–6, we always used the
cross-validation score as our objective function. While we can manually perform hyperparameter
tuning and calculate the cross-validation score based on the split data, sklearn provides dedicated
classes for hyperparameter tuning that use the cross-validation score as the objective function during
the tuning process. There are several hyperparameter tuning classes implemented in sklearn,
such as GridSearchCV, RandomizedSearchCV, HalvingGridSearchCV, and
HalvingRandomSearchCV.

Also, all of the hyperparameter tuning classes implemented in sklearn have a consistent interface.
We can use the fit() method to perform hyperparameter tuning on the given data where the cross-
validation score is used as the objective function. Then, we can use the best_params_ attribute to
get the best set of hyperparameters, the best_score_ attribute to get the average cross-validated
score from the best set of hyperparameters, and the cv_results_ attribute to get the details of
the hyperparameter tuning process, including but not limited to the objective function score for each
tested set of hyperparameters in each of the folds.

To prevent data leakage when performing the data preprocessing steps (see Chapter 1, Evaluating
Machine Learning Models), sklearn also provides a Pipeline object that can be used along with
the hyperparameter tuning classes. This Pipeline object will ensure that any data preprocessing steps
are only fitted based on the train set during the cross-validation. Essentially, this object is just a chain of
several sklearn transformers and estimators, which has the same fit() and predict() method,
just like a usual sklearn estimator.

While sklearn can be utilized for many ML-related tasks, scikit-optimize, which is
commonly called skopt, is a package built on top of sklearn and can be utilized for implementing
the Sequential Model-Based Optimization (SMBO) methods (see Chapter 4, Exploring Bayesian
Optimization). skopt has a very similar interface to sklearn, so it will be very easy for you to get
familiar with skopt once you are already familiar with sklearn itself. The main hyperparameter
tuning class implemented in skopt is the BayesSearchCV class.

skopt provides four implementations for the optimizer within the BayesSearchCV class, namely
Gaussian Process (GP), Random Forest (RF), Gradient Boosted Regression Trees (GBRT), and Extra
Trees (ET). Furthermore, you can also use any other regressors from sklearn to be utilized as the
optimizer. Note that, here, the optimizer refers to the surrogate model that we learned in Chapter 4,
Exploring Bayesian Optimization. Additionally, skopt provides various implementations of the
acquisition function, namely the Expected Improvement (EI), Probability of Improvement (PI),
and Lower Confidence Bound (LCB) functions.

Last but not least, the scikit-hyperband package. Additionally, this package is built on top
of sklearn and is specifically designed for the HB implementation. The hyperparameter tuning
class implemented in this package is HyperbandSearchCV. It also has a very similar interface
to sklearn.

Hyperparameter Tuningvia Scikit114

As for sklearn and skopt, you can easily install them via pip install, just like you usually
install other packages. As for scikit-hyperband, the author of the package didn’t put this on
PyPI, which means you have to install the package directly from the GitHub repository. Furthermore, at
the time of writing, the last update of the GitHub repo (https://github.com/thuijskens/
scikit-hyperband) was in 2020. There are several blocks of code that are no longer compatible
with the newer version of sklearn. Luckily, there’s a forked version (https://github.com/
louisowen6/scikit-hyperband) of the original repo that works nicely with the newer
version of sklearn (1.0.1 or above). To install scikit-hyperband, please follow the
following steps:

1.	 Clone https://github.com/louisowen6/scikit-hyperband to your loca
machinel:

git clone https://github.com/louisowen6/scikit-hyperband

2.	 Open the cloned repository:

cd scikit-hyperband

3.	 Move the hyperband folder to your working directory:

mv hyperband "path/to/your/working/directory"

Now that you are aware of the scikit-learn, scikit-optimize, and scikit-hyperband
packages, in the following sections, we will learn how to utilize them to implement various hyperparameter
tuning methods.

Implementing Grid Search
To implement Grid Search (see Chapter 3, Exploring Exhaustive Search), we can actually write
our own code from scratch since it is just a simple nested for loop that tests all of the possible
hyperparameter values in the search space. However, by using sklearn’s implementation of Grid
Search, GridSearchCV, we can have a cleaner code since we just need to call a single line of code
to instantiate the class.

Let’s walk through an example of how we can utilize GridSearchCV to perform Grid Search.
Note that, in this example, we are performing hyperparameter tuning on an RF model. We will utilize
sklearn’s implementation of RF, RandomForestClassifier. The dataset used in this
example is the Banking Dataset – Marketing Targets provided on Kaggle (https://www.kaggle.
com/datasets/prakharrathi25/banking-dataset-marketing-targets).

Original Data Source
This data was first published in A Data-Driven Approach to Predict the Success of Bank Telemarketing,
by Sérgio Moro, Paulo Cortez, and Paulo Rita, Decision Support Systems, Elsevier, 62:22–31,
June 2014 (https://doi.org/10.1016/j.dss.2014.03.001).

https://github.com/thuijskens/scikit-hyperband
https://github.com/thuijskens/scikit-hyperband
https://github.com/louisowen6/scikit-hyperband
https://github.com/louisowen6/scikit-hyperband
https://github.com/louisowen6/scikit-hyperband
https://www.kaggle.com/datasets/prakharrathi25/banking-dataset-marketing-targets
https://www.kaggle.com/datasets/prakharrathi25/banking-dataset-marketing-targets
https://doi.org/10.1016/j.dss.2014.03.001

Implementing Grid Search 115

This is a binary classification dataset with 16 features related to the marketing campaigns conducted by
a bank institution. The target variable consists of two classes, yes or no, indicating whether the client
of the bank has subscribed to a term deposit or not. Hence, the goal of training an ML model on this
dataset is to identify whether a customer is potentially wanting to subscribe to the term deposit or
not. For more details, you can refer to the description on the Kaggle page:

1.	 There are two datasets provided, namely the train.csv dataset and the test.csv
dataset. However, we will not use the provided test.csv dataset since it is sampled directly
from the train data. We will manually split train.csv into two subsets, namely the train
set and the test set, using the help of the train_test_split function from sklearn
(see Chapter 1, Evaluating Machine Learning Models). We will set the test_size parameter
to 0.1, meaning we will have 40,689 and 4,522 rows for the train set and the test set,
respectively. The following code shows you how to load the data and perform the train set and
the test set splitting:

import pandas as pd

from sklearn.model_selection import train_test_split

df = pd.read_csv("train.csv",sep=";")

df_train, df_test = train_test_split(df, test_size=0.1,
random_state=0)

Out of the 16 features provided in the data, there are 7 numerical features and 9 categorical
features. As for the target class distribution, 12% of them are yes and 88% of them are no, for
both train and test datasets. This means that we can’t use accuracy as our metric since we
have an imbalanced class problem—a situation where we have a very skewed distribution of
the target classes. Instead, in this example, we will use the F1-score.

2.	 Before performing Grid Search, let’s see how RandomForestClassifier with the default
hyperparameter values work. Furthermore, let’s also try to train our model on only those seven
numerical features for now. The following code shows you how to get only numerical features,
train the model on those features in the train set, and finally, evaluate the model on the test set:

import numpy as np

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import f1_score

The X_train_numerical variable only stores numerical features from the train data:

X_train_numerical = df_train.select_dtypes(include=np.
number).drop(columns=['y'])

y_train = df_train['y']

The X_test_numerical variable only stores numerical features from the test data:

X_test_numerical = df_test.select_dtypes(include=np.

Hyperparameter Tuningvia Scikit116

number).drop(columns=['y'])

y_test = df_test['y']

Fit the model on train data:

model = RandomForestClassifier(random_state=0)

model.fit(X_train_numerical,y_train)

Evaluate the model on the test data:

y_pred = model.predict(X_test_numerical)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.436 for the F1-Score when testing our
trained RF model on the test set. Remember that this is the result of only using numerical
features and the default hyperparameters of the RandomForestClassifier.

3.	 Before performing Grid Search, we have to define the hyperparameter space in a dictionary
of list format, where the keys refer to the name of the hyperparameters and the lists consist of
all the values we want to test for each hyperparameter. Let’s say we define the hyperparameter
space for RandomForestClassifier as follows:

hyperparameter_space = {

"n_estimators": [25,50,100,150,200],

"criterion": ["gini", "entropy"],

"max_depth": [3, 5, 10, 15, 20, None],

"class_weight": ["balanced","balanced_subsample"],

"min_samples_split": [0.01,0.1,0.25,0.5,0.75,1.0],

}

4.	 Once we have defined the hyperparameter space, we can apply the GridSearchCV class to
the train data, use the best set of hyperparameters to train a new model on the full train data,
and then evaluate that final trained model on the test data, just as we learned in Chapters 3–6.
The following code shows you how to do that:

from sklearn.model_selection import GridSearchCV

Initiate the model:

model = RandomForestClassifier(random_state=0)

Initiate the GridSearchCV class:

clf = GridSearchCV(model, hyperparameter_space,

 scoring='f1', cv=5,

Implementing Grid Search 117

 n_jobs=-1, refit = True)

Run the GridSearchCV class:

clf.fit(X_train_numerical, y_train)

Print the best set of hyperparameters:

print(clf.best_params_,clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_numerical,y_test))

Look how clean our code is by utilizing sklearn’s implementation of Grid Search instead
of writing our code from scratch! Notice that we just need to pass sklearn’s estimator
and the hyperparameter space dictionary to the GridSearchCV class, and the rest will
be handled by sklearn. In this example, we also pass several additional parameters to the
class, such as scoring=’f1’, cv=5, n_jobs=-1, and refit=True.

As its name suggests, the scoring parameter governs the scoring strategy that we want to use
to evaluate our model during the cross-validation. While our objective function will always be the
cross-validation score, this parameter controls what type of score we want to use as our metric. In
this example, we are using the F1-score as our metric. However, you can also pass a custom callable
function as the scoring strategy.

Available Scoring Strategies in Sklearn
You can refer to https://scikit-learn.org/stable/modules/model_
evaluation.html#scoring-parameter for all of the implemented scoring strategies
by sklearn, and refer to https://scikit-learn.org/stable/modules/
model_evaluation.html#scoring if you want to implement your own custom
scoring strategy.

The cv parameter indicates how many folds of cross-validation you want to perform. The n_jobs
parameter controls how many jobs you want to run in parallel. If you decide to use all of the processors,
you can simply set n_jobs=–1, just as we did in the example.

Last but not least, we have the refit parameter. This Boolean parameter is responsible for deciding
whether at the end of the hyperparameter tuning process we want to refit our model on the full train
set using the best set of hyperparameters or not. In this example, we set refit=True, meaning that
sklearn will automatically refit our RF model on the full train set using the best set of hyperparameters.
It is very important to retrain our model on the full train set after performing hyperparameter tuning
since we only utilize subsets of the train set during the hyperparameter tuning process. There are several
other parameters that you can control when initiating a GridSearchCV class. For more details,
you can refer to the official page of sklearn (https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.GridSearchCV.html).

https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

Hyperparameter Tuningvia Scikit118

Let’s go back to our example. By performing Grid Search in the predefined hyperparameter space, we
are able to get an F1-score of 0.495 when evaluated on the test set. The best set of hyperparameters is
{‘class_weight’: ‘balanced’, ‘criterion’: ‘entropy’, ‘min_samples_
split’: 0.01, ‘n_estimators’: 150} with an objective function score of 0.493.
Note that we can get the best set of hyperparameters along with its objective function score via the
best_params_ and best_score_ attributes, respectively. Not bad! We get around 0.06 of
improvement in the F1-score. However, note that we are still only using numerical features.

Next, we will try to utilize not only numerical features but also categorical features from our data. To be
able to utilize those categorical features, we need to perform the categorical encoding preprocessing
step. Why? Because ML models are not able to understand non-numerical features. Therefore, we
need to convert those non-numerical features into numerical ones so that the ML model is able to
utilize those features.

Remember that when we want to perform any data preprocessing steps, we have to be very careful with
it to prevent any data leakage problem where we might introduce part of our test data into the train
data (see Chapter 1, Evaluating Machine Learning Models). To prevent this problem, we can utilize the
Pipeline object from sklearn. So, instead of passing an estimator to the GridSearchCV class,
we can also pass a Pipeline object that consists of a chain of data preprocessors and an estimator:

1.	 Since, in this example, not all of our features are categorical and we only want to perform
categorical encoding on those non-numerical features, we can utilize the ColumnTransformer
class to specify which features we want to apply the categorical encoding step. Let’s say we
also want to perform a normalization preprocessing step on the numerical features. We can
also pass those numerical features to the ColumnTransformer class along with the
normalization transformer. Then, it will automatically apply the normalization step to only
those numerical features. The following code shows you how to create such a Pipeline object
with ColumnTransformer, where we use StandardScaler for the normalization
step and OneHotEncoder for the categorical encoding step:

from sklearn.preprocessing import StandardScaler,
OneHotEncoder

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

Get list of numerical features and categorical features:

numerical_feats = list(df_train.drop(columns='y').select_
dtypes(include=np.number).columns)

categorical_feats = list(df_train.drop(columns='y').
select_dtypes(exclude=np.number).columns)

Implementing Grid Search 119

Initiate the preprocessor for numerical features and categorical features:

numeric_preprocessor = StandardScaler()

categorical_preprocessor = OneHotEncoder(handle_
unknown="ignore")

Delegate each preprocessor to the corresponding features:

preprocessor = ColumnTransformer(

 transformers=[

 ("num", numeric_preprocessor, numerical_feats),

 ("cat", categorical_preprocessor, categorical_
feats),

])

Create a pipeline of preprocessors and models. In this example, we named our pr-processing
steps as “preprocessor” and the modeling step as “model”:

pipe = Pipeline(

 steps=[("preprocessor", preprocessor),

 ("model", RandomForestClassifier(random_
state=0))])

As you can see in the previous code blocks, the ColumnTransformer class is
responsible for delegating each preprocessor to the corresponding features. Then,
we can just reuse it for all of our preprocessing steps through a single preprocessor
variable. Finally, we can create a pipeline consisting of the preprocessor variable and
RandomForestClassifier. Note that within the ColumnTransformer class
and the Pipeline class, we also have to provide the name of each preprocessor and step
in the pipeline, respectively.

2.	 Now that we have defined the pipeline, we can see how our model performs on the test set
(without hyperparameter tuning) by utilizing all of the features and preprocessors defined in
the pipeline. The following code shows how we can directly use the pipeline to perform the
same fit() and predict() methods as we did earlier:

pipe.fit(X_train_full,y_train)

y_pred = pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.516 for the F1-score when testing our
trained pipeline on the test set.

Hyperparameter Tuningvia Scikit120

3.	 Next, we can start performing Grid Search over the pipeline, too. However, before we can do that,
we need to redefine the hyperparameter space. We need to change the keys in the dictionary with
the format of <estimator_name_in_pipeline>__<hyperparameter_name>.
The following is the redefined version of our hyperparameter space:

hyperparameter_space = {

"model__n_estimators": [25,50,100,150,200],

"model__criterion": ["gini", "entropy"],

"model__class_weight": ["balanced", "balanced_
subsample"],

"model__min_samples_split": [0.01,0.1,0.25,0.5,0.75,1.0],

}

4.	 The following code shows you how to perform Grid Search over the pipeline instead of the
estimator itself. Essentially, the code is the same as the previous version. The only difference is
that we are performing the Grid Search over the pipeline and on all of the features in the data,
not just the numerical features.

Initiate the GridSearchCV class:

clf = GridSearchCV(pipe, hyperparameter_space,

 scoring = 'f1', cv=5,

 n_jobs=-1, refit = True

Run the GridSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.549 for the F1-Score when testing our
final trained RF model with the best set of hyperparameters on the test set. The best set of
hyperparameters is {‘model__class_weight’: ‘balanced_subsample’,
‘model__criterion’: ‘gini’, ‘model__min_samples_split’:
0.01, ‘model__n_estimators’: 100} with an objective function score of
0.549.

Implementing Random Search 121

It is worth noting that we can also create a pipeline within a pipeline. For example, we can create a
pipeline for numeric_preprocessor that consists of a chain of missing value imputation
and normalization modules. The following code shows how we can create such a pipeline. The
SimpleImputer class is the missing value imputation transformer from sklearn that can help
us to perform mean, median, mode, or constant imputation strategies if there are any missing values:

from sklearn.impute import SimpleImputer

numeric_preprocessor = Pipeline(

steps=[("missing_value_imputation",
SimpleImputer(strategy="mean")), ("normalization",
StandardScaler())]

)

In this section, we have learned how to implement Grid Search in sklearn through the GridSearchCV
class, starting from defining the hyperparameter space, setting each important parameter of the
GridSearchCV class, learning how to utilize the Pipeline and ColumnTransformer
classes to prevent data leakage issues, and learning how to create a pipeline within the pipeline.

In the next section, we will learn how to implement Random Search in sklearn via
RandomizedSearchCV.

Implementing Random Search
Implementing Random Search (see Chapter 3, Exploring Exhaustive Search) in sklearn is very
similar to implementing Grid Search. The main difference is that we have to provide the number
of trials or iterations since Random Search will not try all of the possible combinations in the
hyperparameter space. Additionally, we have to provide the accompanying distribution for each of
the hyperparameters when defining the search space. In sklearn, Random Search is implemented
in the RandomizedSearchCV class.

To understand how we can implement Random Search in sklearn, let’s use the same example from
the Implementing Grid Search section. Let’s directly try using all of the features available in the dataset.
All of the pipeline creation processes are exactly the same, so we will directly jump into the process of
how to define the hyperparameter space and the RandomizedSearchCV class. The following code
shows you how to define the accompanying distribution for each of the hyperparameters in the space:

from scipy.stats import randint, truncnorm

hyperparameter_space = {

"model__n_estimators": randint(5, 200),

"model__criterion": ["gini", "entropy"],

"model__class_weight": ["balanced","balanced_subsample"],

"model__min_samples_split": truncnorm(a=0,b=0.5,loc=0.005,
scale=0.01),

}

Hyperparameter Tuningvia Scikit122

As you can see, the hyperparameter space is quite different from the one that we defined previously
in the Implementing Grid Search section. Here, we are also specifying the distribution for each of the
hyperparameters, where randint and truncnorm are utilized for the n_estimators and
min_samples_split hyperparameters. As for criterion and class_weight, we are still
using the same configuration as the previous search space. Note that by not specifying any distribution
means we are applying uniform distribution to the hyperparameter, where all of the values will have
the same probability to be tested.

Essentially, the randint distribution is just a uniform distribution for discrete variables, while
truncnorm stands for truncated normal distribution, which, as its name suggests, is a modified
normal distribution bounded on a particular range. In this example, the range is bounded on a range
from a=0 and b=0.5, with a mean of loc=0.005 and a standard deviation of scale=0.01.

Distribution for Hyperparameters
There are many other available distributions that you can utilize. sklearn accepts all
distributions that have the rvs method, as in the distribution implementation from Scipy.
Essentially, this method is just a method to sample a value from the specified distribution.
For more details, please refer to the official documentation page of Scipy (https://
docs.scipy.org/doc/scipy/reference/stats.html#probability-
distributions).

When initiating the RandomizedSearchCV class, we also have to define the n_iter and
random_state parameters, which refer to the number of iterations and the random seed, respectively.
The following code shows you how to perform Random Search over the same pipeline defined in the
Implementing Grid Search section. In contrast with the example in the Implementing Grid Search section,
which only performs 120 iterations of Grid Search, here, we perform 200 iterations of random search
since we set n_iter=200. Additionally, we have a bigger hyperparameter space since we increase
the granularity of the n_estimators and min_samples_split hyperparameter values:

from sklearn.model_selection import RandomizedSearchCV

Initiate the RandomizedSearchCV class:

clf = RandomizedSearchCV(pipe, hyperparameter_space,

 n_iter = 200, random_state = 0,

 scoring = 'f1', cv=5,

 n_jobs=-1, refit = True)

https://docs.scipy.org/doc/scipy/reference/stats.html#probability-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#probability-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#probability-distributions

Implementing Coarse-to-Fine Search 123

Run the RandomizedSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.563 for the F1-score when testing our final trained
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is
{‘model__class_weight’: ‘balanced_subsample’, ‘model__criterion’:
‘entropy’, ‘model__min_samples_split’: 0.005155815445940717,
‘model__n_estimators’: 187} with an objective function score of 0.562.

In this section, we have learned how to implement Random Search in sklearn through the
RandomizedSearchCV class, starting from defining the hyperparameter space to setting each
important parameter of the RandomizedSearchCV class. In the next section, we will learn how
to perform CFS with sklearn.

Implementing Coarse-to-Fine Search
Coarse-to-Fine Search (CFS) is part of the Multi-Fidelity Optimization group that utilizes Grid
Search and/or Random Search during the hyperparameter tuning process (see Chapter 6, Exploring
Multi-Fidelity Optimization). Although CFS is not implemented directly in the sklearn package,
you can find the implemented custom class, CoarseToFineSearchCV, in the repo mentioned
in the Technical Requirements section.

Let’s use the same example and hyperparameter space as in the Implementing Random Search section,
to see how CoarseToFineSearchCV works in practice. Note that this implementation of CFS
only utilizes Random Search and uses the top N percentiles scheme to define the promising subspace
in each iteration, similar to the example shown in Chapter 6. However, you can edit the code based on
your own preference since CFS is a very simple method with customizable modules.

The following code shows you how to perform CFS with the CoarseToFineSearchCV class. It is
worth noting that this class has very similar parameters to the RandomizedSearchCV class, with
several additional parameters. The random_iters parameter controls the number of iterations for
each random search trial, top_n_percentile controls the N value within the top N percentiles
promising subspace definition (see Chapter 6), n_iter defines the number of CFS iterations to be
performed, and continuous_hyperparams stores the list of continuous hyperparameters in
the predefined space.

Hyperparameter Tuningvia Scikit124

Initiate the CoarseToFineSearchCV class:

clf = CoarseToFineSearchCV(pipe, hyperparameter_space,

random_iters=25, top_n_percentile=50, n_iter=10,

continuous_hyperparams=['model__min_samples_split'],

random_state=0, scoring='f1', cv=5,

n_jobs=-1, refit=True)

Run the CoarseToFineSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

y_pred = clf.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.561 for the F1-score when testing our final trained
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is
{‘model__class_weight’: ‘balanced_subsample’, ‘model__criterion’:
‘entropy’, ‘model__min_samples_split’: 0.005867409821769845,
‘model__n_estimators’: 106} with an objective function score of 0.560.

In this section, we have learned how to implement CFS using a custom class on top of sklearn
through the CoarseToFineSearchCV class. In the next section, we will learn how to perform
SH with sklearn.

Implementing Successive Halving
Similar to CFS, Successive Halving (SH) is also part of the Multi-Fidelity Optimization group (see
Chapter 6). There are two implementations of SH in sklearn, namely HalvingGridSearchCV
and HalvingRandomSearchCV. As their names suggest, the former class is an implementation
of SH that utilizes Grid Search in each of the SH iterations, while the latter utilizes Random Search.

By default, SH implementations in sklearn use the number of samples, or n_samples, as the definition
of the budget or resource in SH. However, it is also possible to define a budget with other definitions.
For example, we can use n_estimators in RF as the budget, instead of using the number of
samples. It is worth noting that we cannot use n_estimators, or any other hyperparameters, to
define the budget if it is part of the hyperparameter space.

Implementing Successive Halving 125

Both HalvingGridSearchCV and HalvingRandomSearchCV have similar standard
SH parameters to control how the SH iterations will work, such as the factor parameter, which
refers to the multiplier factor for SH, resource, which refers to what definition of budget we want
to use, max_resources refers to the maximum budget or resource, and min_resources,
which refers to the minimum number of resources to be used at the first iteration. By default, the
max_resources parameter is set to auto, meaning it will use the total number of samples that we
have when resource=’n_samples’. On the other hand, sklearn implemented a heuristic to
define the default value for the min_resources parameter, referred to as smallest. This heuristic
will ensure that we have a small value of min_resources.

Specific for HalvingRandomSearchCV, there is also the n_candidates parameter that refers
to the initial number of candidates to be evaluated at the first iteration. Note that this parameter is not
available in HalvingGridSearchCV since it will automatically evaluate all of the hyperparameter
candidates in the predefined space. It is worth noting that sklearn implemented a strategy, called
exhaust, to define the default value of the n_candidates parameter. This strategy ensures that we
evaluate enough candidates at the first iteration so that we can utilize as many resources as possible
at the last SH iteration.

Besides those standard SH parameters, both of the classes also have the aggressive_elimination
parameter, which can be utilized when we have a low number of resources. If this Boolean parameter is
set to True, sklearn will automatically rerun the first SH iteration several times until the number
of candidates is small enough. The goal of this parameter is to ensure that we only evaluate a maximum
of factor candidates in the last SH iteration. Note that this parameter is only implemented in
sklearn, the original SH doesn’t introduce this strategy as part of the tuning method (see Chapter 6).

Similar to GridSearchCV and RandomizedSearchCV, HalvingGridSearchCV and
HalvingRandomSearchCV also have the usual default sklearn parameters for hyperparameter
tuning, such as cv, scoring, refit, random_state, and n_jobs.

Experimental Features of SH in sklearn
It is worth noting that as per version 1.0.2 of sklearn, the SH implementations are
still in the experimental phase. This means that there might be changes in the implementation
or interface of the classes without any depreciation cycle.

The following code shows how HalvingRandomSearchCV works with its default SH parameters.
Note that we still use the same example and hyperparameter space as in the Implementing Random
Search section. It is also worth noting that we only use the HalvingRandomSearchCV class in
this example since HalvingGridSearchCV has a very similar interface:

from sklearn.experimental import enable_halving_search_cv

from sklearn.model_selection import HalvingRandomSearchCV

Hyperparameter Tuningvia Scikit126

Initiate the HalvingRandomSearchCV class:

clf = HalvingRandomSearchCV(pipe, hyperparameter_space,

 factor=3,

 aggressive_elimination=False,

 random_state = 0,

 scoring = 'f1', cv=5,

 n_jobs=-1, refit = True)

Run the HalvingRandomSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.556 for the F1-score when testing our final trained
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is
{‘model__class_weight’: ‘balanced_subsample’, ‘model__criterion’:
‘entropy’, ‘model__min_samples_split’: 0.007286406330027324,
‘model__n_estimators’: 42} with an objective function score of 0.565.

1.	 The following code shows you how to generate a figure that shows the tuning process in each
SH iteration:

import matplotlib.pyplot as plt

Get the fitting history of each trial:

results = pd.DataFrame(clf.cv_results_)

results["params_str"] = results.params.apply(str)

results.drop_duplicates(subset=("params_str", "iter"),
inplace=True)

mean_scores = results.pivot(

index="iter", columns="params_str", values="mean_test_
score")

Implementing Successive Halving 127

Plot the fitting history for each trial:

fig, ax = plt.subplots(figsize=(16,16))

ax = mean_scores.plot(legend=False, alpha=0.6, ax=ax)

labels = [

 f"Iteration {i+1}\nn_samples={clf.n_resources_[i]}\
nn_candidates={clf.n_candidates_[i]}"

 for i in range(clf.n_iterations_)]

ax.set_xticks(range(clf.n_iterations_))

ax.set_xticklabels(labels, rotation=0,
multialignment="left",size=16)

ax.set_title("F1-Score of Candidates over
Iterations",size=20)

ax.set_ylabel("5-Folds Cross Validation F1-Score",
fontsize=18)

ax.set_xlabel("")

plt.tight_layout()

plt.show()

2.	 Based on the preceding code, we get the following figure:

Figure 7.1 – The SH hyperparameter tuning process

Hyperparameter Tuningvia Scikit128

Based on Figure 7.1, we can see that we only utilized around 14,000 samples in the last iteration while
we have around 40,000 samples in our training data. Indeed, this is not an ideal case since there are
too many samples not being utilized in the last SH iteration. We can change the default value of the
SH parameters set by sklearn to ensure that we utilize as many resources as possible at the last
iteration, through the min_resources and n_candidates parameters.

In this section, we have learned how to implement SH in sklearn through the
HalvingRandomSearchCV and HalvingGridSearchCV classes. We have also learned
all of the important parameters available for both classes. In the next section, we will learn how
to perform HB with scikit-hyperband.

Implementing Hyper Band
The extension of Successive Halving, the Hyper Band (HB) method (see Chapter 6), is implemented
in the scikit-hyperband package. This package is built on top of sklearn, which means
it also provides a very similar interface for GridSearchCV, RandomizedSearchCV,
HalvingGridSearchCV, and HalvingRandomSearchCV.

In contrast with the default SH budget definition in the sklearn implementation, Scikit-Hyperband
defines the budget as the number of estimators, n_estimators, in an ensemble of trees, or the number
of iterations for estimators trained with stochastic gradient descent, such as the XGBoost algorithm.
Additionally, we can use any other hyperparameters that exist in the estimator as the budget definition.
However, scikit-hyperband doesn’t allow us to use the number of samples as the budget definition.

Let’s use the same example as in the Implementing Successive Halving section, but with a different
hyperparameter space. Here, we use the number of estimators, n_estimators, as the resource, which
means we have to take out this hyperparameter from our search space. Note that you also have to
remove any other hyperparameters from the space when you use it as the resource definition, just
like in the sklearn implementation of SH.

The following code shows you how HyperbandSearchCV works. The resource_param
parameter refers to the hyperparameter that you want to use as the budget definition. The eta
parameter is actually the same as the factor parameter in the HalvingRandomSearchCV or
HalvingGridSearchCV classes, which refers to the multiplier factor for each SH run. The
min_iter and max_iter parameters refer to the minimum and maximum resources for all
brackets. Note that there’s no automatic strategy like in the sklearn implementation of SH for
setting the value of the min_iter and max_iter parameters.

Implementing Hyper Band 129

The remaining HyperbandSearchCV parameters are similar to any other sklearn implementation
of the hyperparameter tuning methods. It is worth noting that the HB implementation used in this book
is the modified version of the scikit-hyperband package. Please check the following folder in
the book’s GitHub repo (https://github.com/PacktPublishing/Hyperparameter-
Tuning-with-Python/tree/main/hyperband):

from hyperband import HyperbandSearchCV

Initiate the HyperbandSearchCV class:

clf = HyperbandSearchCV(pipe, hyperparameter_space,

 resource_param='model__n_estimators',

 eta=3, min_iter=1, max_iter=100,

 random_state = 0,

 scoring = 'f1', cv=5,

 n_jobs=-1, refit = True)

Run the HyperbandSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.569 in F1-score when testing our final trained
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is
{‘model__class_weight’: ‘balanced’, ‘model__criterion’: ‘entropy’,
‘model__min_samples_split’: 0.0055643644642829684, ‘model__n_
estimators’: 33} with an objective function score of 0.560. Note that although we remove
model__n_estimators from the search space, HyperbandSearchCV still outputs the best
value for this hyperparameter by choosing from the best bracket.

In this section, we have learned how to implement HB using the help of the scikit-hyperband
package along with all of the important parameters available for the HyperbandSearchCV class.
In the next section, we will learn how to perform Bayesian Optimization with scikit-optimize.

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/tree/main/hyperband
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/tree/main/hyperband

Hyperparameter Tuningvia Scikit130

Implementing Bayesian Optimization Gaussian Process
Bayesian Optimization Gaussian Process (BOGP) is one of the variants of the Bayesian Optimization
hyperparameter tuning group (see Chapter 4, Exploring Bayesian Optimization). To implement BOGP,
we can utilize the skopt package. Similar to scikit-hyperband, this package is also built on
top of the sklearn package, which means the interface for the implemented Bayesian Optimization
tuning class, BayesSearchCV, is very similar to GridSearchCV, RandomizedSearchCV,
HalvingGridSearchCV, HalvingRandomSearchCV, and HyperbandSearchCV.

However, unlike sklearn or scikit-hyperband, which works well directly with the
distribution implemented in scipy, in skopt, we can only use the wrapper provided by the package
when defining the hyperparameter space. The wrappers are defined within the skopt.space.
Dimension instances and consist of three types of dimensions, such as Real, Integer, and
Categorical. Within each of these dimension wrappers, skopt actually uses the same distribution
from the scipy package.

By default, the Real dimension only supports the uniform and log-uniform distributions and
can take any real/numerical value as the input. As for the Categorical dimension, this wrapper can
only take categorical values as the input, as implied by its name. It will automatically convert categorical
values into integers or even real values, which means we can also utilize categorical hyperparameters
for BOGP! Although we can do this, remember that BOGP only works best for the actual real variables
(see Chapter 4, Exploring Bayesian Optimization). Finally, we have the Integer dimension wrapper.
By default, this wrapper only supports uniform and log-uniform distributions for integer
formatting. The uniform distribution will utilize the randint distribution from scipy, while
the log-uniform distribution is exactly the same as the one that is used in the Real wrapper.

It is worth noting that we can write our own wrapper for other distributions too; for example, the
truncnorm distribution that we use in all of our earlier examples. In fact, you can find the custom
Real wrapper that consists of the truncnorm, uniform, and log-uniform distributions
in the repo mentioned in the Technical Requirements section. The following code shows you how we
can define the hyperparameter space for BayesSearchCV. Note that we are still using the same
example and hyperparameter space as the Implementing Random Search section. Here, Integer
and Categorical are the original wrappers provided by skopt, while the Real wrapper is the
custom wrapper that consists of the truncnorm distribution, too:

from skopt.space import *

hyperparameter_space = {

"model__n_estimators": Integer(low=5, high=200),

"model__criterion": Categorical(["gini", "entropy"]),

"model__class_weight": Categorical(["balanced","balanced_
subsample"]),

"model__min_samples_split":

Implementing Bayesian Optimization Gaussian Process 131

Real(low=0,high=0.5,prior="truncnorm",

 **{"loc":0.005,"scale":0.01})

}

All of the parameters of the BayesSearchCV class are very similar to the GridSearchCV,
RandomizedSearchCV, HalvingGridSearchCV, HalvingRandomSearchCV, or
HyperbandSearchCV. The only specific parameters for BayesSearchCV are the n_iter and
optimizer_kwargs which refer to the total number of trials to be performed and the parameter
that consists of all related parameters for the Optimizer, respectively. Here, the Optimizer is
a class that represents each of the Bayesian Optimization steps, starting from initializing the initial
points, fitting the surrogate model, sampling the next set of hyperparameters using the help of the
acquisition function, and optimizing the acquisition function (see Chapter 4).

There are several parameters available that we can pass to the optimizer_kwargs dictionary.
The base_estimator parameter refers to the type of surrogate model to be used. skopt has
prepared several surrogate models with default setups, including the Gaussian Process or GP. The
n_initial_points parameter refers to the number of random initial points before the actual
Bayesian Optimization steps begin. The initial_point_generator parameter refers to the
initialization method to be used. By default, skopt will initialize them randomly. However, you can
also change the initialization method to lhs, sobol, halton, hammersly, or grid.

As for the type of acquisition function to be used, by default, skopt will use gp_hedge, which is
an acquisition function that will automatically choose either one of the Lower Confidence Bound
(LCB), Expected Improvement (EI), or Probability of Improvement (PI) based on the probability.
However, we can also choose to use each of those acquisition functions independently, by setting the
acq_func parameter to LCB, EI, and PI, respectively. As explained in Chapter 4, besides choosing
what acquisition function needs to be used, we also have to define what kind of optimizer to be utilized
for the acquisition function itself. There are two options for the acquisition function’s optimizer provided
by skopt, namely random sampling (sampling) and lbfgs, or the type of second-order optimization
strategy mentioned in Chapter 4. By default, skopt sets the acq_optimizer parameter to auto,
which will choose automatically when to use the sampling or lbfgs optimization methods.

Finally, we can also pass the acq_func_kwargs parameter within the optimizer_kwargs
parameter. We can pass all parameters related to the acquisition function to this acq_func_kwargs
parameter; for example, the xi parameter that controls the exploration and exploitation behavior
of the BOGP, as explained in Chapter 4. While the xi parameter is responsible for controlling the
exploration versus exploitation trade-off for EI and PI acquisition functions, there is also another
parameter called kappa, which is responsible for the same task as the LCB acquisition function. The
higher the value of xi or kappa means that we are favoring exploration over exploitation, and vice
versa. For more information about all of the parameters that are available in the BayesSearchCV
class, you can refer to the official API reference of the skopt package (https://scikit-
optimize.github.io/stable/modules/classes.html).

https://scikit-optimize.github.io/stable/modules/classes.html
https://scikit-optimize.github.io/stable/modules/classes.html

Hyperparameter Tuningvia Scikit132

The following code shows how we can utilize BayesSearchCV to perform BOGP on the same
example as the Implementing Random Search section:

from skopt import BayesSearchCV

Initiate the BayesSearchCV class:

clf = BayesSearchCV(pipe, hyperparameter_space, n_iter=50,

optimizer_kwargs={"base_estimator":"GP",

 "n_initial_points":10,

 "initial_point_generator":"random",

 "acq_func":"EI",

 "acq_optimizer":"auto",

 "n_jobs":-1,

 "random_state":0,

 "acq_func_kwargs": {"xi":0.01}

 },

random_state = 0,

scoring = 'f1', cv=5,

n_jobs=-1, refit = True)

Run the BayesSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.539 for the F1-Score when testing our final trained
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is
{‘model__class_weight’: ‘balanced’, ‘model__criterion’: ‘entropy’,
‘model__min_samples_split’: 0.02363008892366518, ‘model__n_
estimators’: 94} with an objective function score of 0.530.

Implementing Bayesian Optimization Random Forest 133

In this section, we have learned how to implement BOGP in skopt along with all of the important
parameters available for the BayesSearchCV class. It is worth noting that skopt also has
experiment tracking modules that include several native supports for plotting the result. We will learn
more about those modules in Chapter 13, Tracking Hyperparameter Tuning Experiments. In the next
section, we will learn how to perform another variant of Bayesian Optimization that utilizes RF as its
surrogate model with skopt.

Implementing Bayesian Optimization Random Forest
Bayesian Optimization Random Forest (BORF) is another variant of Bayesian Optimization
hyperparameter tuning methods that utilize RF as the surrogate model. Note that this variant is
different from Sequential Model Algorithm Configuration (SMAC) although both of them utilize
RF as the surrogate model (see Chapter 4, Exploring Bayesian Optimization).

Implementing BORF with skopt is actually very similar to implementing BOGP as discussed in the
previous section. We just need to change the base_estimator parameter within optimizer_
kwargs to RF. Let’s use the same example as in the Implementing Bayesian Optimization Gaussian
Process section, but change the acquisition function from EI to LCB. Additionally, let’s change the xi
parameter in the acq_func_kwargs to kappa since we are using LCB as our acquisition function.
Note that we can also still use the same acquisition function. The changes made here just to show how
you can interact with the interface of the BayesSearchCV class:

from skopt import BayesSearchCV

Initiate the BayesSearchCV class:

clf = BayesSearchCV(pipe, hyperparameter_space, n_iter=50,

optimizer_kwargs={"base_estimator":"RF",

 "n_initial_points":10,

 "initial_point_generator":"random",

 "acq_func":"LCB",

 "acq_optimizer":"auto",

 "n_jobs":-1,

 "random_state":0,

 "acq_func_kwargs": {"kappa":1.96}

 },

random_state = 0,

scoring = 'f1', cv=5,

n_jobs=-1, refit = True)

Hyperparameter Tuningvia Scikit134

Run the BayesSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data.

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.617 for the F1-score when testing our final trained
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is
{‘model__class_weight’: ‘balanced_subsample’, ‘model__criterion’:
‘gini’, ‘model__min_samples_split’: 0.00043534042560206855,
‘model__n_estimators’: 85} with an objective function score of 0.616.

In this section, we have learned how to implement BORF in skopt through the BayesSearchCV
class. In the next section, we will learn how to perform another variant of Bayesian Optimization,
which utilizes Gradient Boosted Trees as its surrogate model with skopt.

Implementing Bayesian Optimization Gradient Boosted
Trees
Bayesian Optimization Gradient Boosted Trees (BOGBRT) is another variant of Bayesian Optimization
that utilizes Gradient Boosted Trees as a surrogate model. Note that there will be endless variants of
Bayesian Optimization that we can implement in skopt since we can just pass any other regressors
from sklearn to be utilized as the base_estimator parameter. However, GBRT is part of the
default surrogate model with predefined default hyperparameter values from the skopt package.

Similar to the Implementing Bayesian Optimization Random Forest section, we can just change the
base_estimator parameter within optimizer_kwargs to GBRT. The following code shows
you how to implement BOGBRT in skopt:

from skopt import BayesSearchCV

Implementing Bayesian Optimization Gradient Boosted Trees 135

Initiate the BayesSearchCV class:

clf = BayesSearchCV(pipe, hyperparameter_space, n_iter=50,

optimizer_kwargs={"base_estimator":"GBRT",

 "n_initial_points":10,

 "initial_point_generator":"random",

 "acq_func":"LCB",

 "acq_optimizer":"auto",

 "n_jobs":-1,

 "random_state":0,

 "acq_func_kwargs": {"kappa":1.96}

 },

random_state = 0,

scoring = 'f1', cv=5,

n_jobs=-1, refit = True)

Run the BayesSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.611 for the F1-Score when testing our final trained RF
model with the best set of hyperparameters on the test set. The best set of hyperparameters is {‘model__
class_weight’: ‘balanced_subsample’, ‘model__criterion’: ‘gini’,
‘model__min_samples_split’: 0.0005745541104096049, ‘model__n_
estimators’: 143} with an objective function score of 0.618.

In this section, we have learned how to implement BOGBRT in skopt through the BayesSearchCV
class by using the same example as in the Implementing Bayesian Optimization Random Forest section.

Hyperparameter Tuningvia Scikit136

Summary
In this chapter, we have learned all the important things about the scikit-learn, scikit-
optimize, and scikit-hyperband packages for hyperparameter tuning purposes. Additionally,
we have learned how to implement various hyperparameter tuning methods using the help of those
packages, along with understanding each of the important parameters of the classes and how are they
related to the theory that we have learned in the previous chapters. From now on, you should be able
to utilize these packages to implement your chosen hyperparameter tuning method and, ultimately,
boost the performance of your ML model. Equipped with the knowledge from Chapters 3–6, you will
also be able to understand what’s happening if there are errors or unexpected results and how to set
up the method configuration to match your specific problem.

In the next chapter, we will learn about the Hyperopt package and how to utilize it to perform various
hyperparameter tuning methods. The goal of the next chapter is similar to this chapter, that is, to be
able to utilize the package for hyperparameter tuning purposes and understand each of the parameters
of the implemented classes.

8
H y p e r p a r a m e t e r Tu n i n g

v i a H y p e r o p t

Hyperopt is an optimization package in Python that provides several implementations of hyperparameter
tuning methods, including Random Search, Simulated Annealing (SA), Tree-Structured Parzen
Estimators (TPE), and Adaptive TPE (ATPE). It also supports various types of hyperparameters
with ranging types of sampling distributions.

In this chapter, we’ll introduce the Hyperopt package, starting with its capabilities and limitations,
how to utilize it to perform hyperparameter tuning, and all the other important things you need to
know about Hyperopt. We’ll learn not only how to utilize Hyperopt to perform hyperparameter
tuning with its default configurations but also discuss the available configurations, along with their
usage. Moreover, we’ll discuss how the implementation of the hyperparameter tuning methods is related
to the theory that we learned about in the previous chapters, since there some minor differences or
adjustments may have been made in the implementation.

By the end of this chapter, you will be able to understand all the important things you need to know
about Hyperopt and be able to implement various hyperparameter tuning methods available in
this package. You’ll also be able to understand each of the important parameters of their classes and
how they are related to the theory that we learned about in the previous chapters. Finally, equipped
with the knowledge from previous chapters, you will be able to understand what’s happening if there
are errors or unexpected results, as well as how to set up the method configuration so that it matches
your specific problem.

Hyperparameter Tuning via Hyperopt138

The following topics will be covered in this chapter:

•	 Introducing Hyperopt

•	 Implementing Random Search

•	 Implementing Tree-Structured Parzen Estimators

•	 Implementing Adaptive Tree-Structured Parzen Estimators

•	 Implementing simulated annealing

Technical requirements
In this chapter, we will learn how to implement various hyperparameter tuning methods with Hyperopt.
To ensure that you can reproduce the code examples in this chapter, you will require the following:

•	 Python 3 (version 3.7 or above)

•	 The pandas package (version 1.3.4 or above)

•	 The NumPy package (version 1.21.2 or above)

•	 The Matplotlib package (version 3.5.0 or above)

•	 The scikit-learn package (version 1.0.1 or above)

•	 The Hyperopt package (version 0.2.7 or above)

•	 The LightGBM package (version 3.3.2 or above)

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python.

Introducing Hyperopt
All of the implemented optimization methods in the Hyperopt package assume we are working
with a minimization problem. If your objective function is categorized as a maximization problem,
for example, when you are using accuracy as the objective function score, you must add a negative
sign to your objective function.

Utilizing the Hyperopt package to perform hyperparameter tuning is very simple. The following
steps show how to perform any hyperparameter tuning methods provided in the Hyperopt package.
More detailed steps, including the code implementation, will be given through various examples in
the upcoming sections:

1.	 Define the objective function to be minimized.

2.	 Define the hyperparameter space.

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python

Introducing Hyperopt 139

3.	 (Optional) Initiate the Trials() object and pass it to the fmin() function.

4.	 Perform hyperparameter tuning by calling the fmin() function.

5.	 Train the model on full training data using the best set of hyperparameters that have been
found from the output of the fmin() function.

6.	 Test the final trained model on the test data.

The simplest case of the objective function is when we only return the floating type of objective
function score. However, we can also add other additional information to the output of the objective
function, for example, the evaluation time or any other statistics we want to get for further analysis.
When we add additional information to the output of the objective function score, Hyperopt
expects the output of the objective function to be in the form of a Python dictionary that has at least
two mandatory key-value pairs – that is, status and loss. The former key stores the status value
of the run, while the latter key stores the objective function that we want to minimize.

The simplest type of hyperparameter space in Hyperopt is in the form of a Python dictionary, where
the keys refer to the name of the hyperparameters and the values contain the distribution of the
hyperparameters to be sampled from. The following example shows how we can define a very simple
hyperparameter space in Hyperopt:

import numpy as np

from hyperopt import hp

hyperparameter_space = {

“criterion”: hp.choice(“criterion”, [“gini”, “entropy”]),

“n_estimators”: 5 + hp.randint(“n_estimators”, 195),

“min_samples_split” : hp.loguniform(“min_samples_split”,
np.log(0.0001), np.log(0.5))

}

As you can see, the values of the hyperparameter_space dictionary are the distributions
that accompany each of the hyperparameters we have in the space. Hyperopt provides a lot of
sampling distributions that we can utilize, such as hp.choice, hp.randint, hp.uniform,
hp.loguniform, hp.normal, and hp.lognormal. The hp.choice distribution will
randomly choose one option from the several given options. The hp.randint distribution will
randomly choose an integer within the range of [0, high), where high is the input given by
us. In the previous example, we passed 195 as the high value and added a value of 5. This means
Hyperopt will randomly choose an integer within the range of [5,200).

Hyperparameter Tuning via Hyperopt140

The rest of the distributions are dedicated to real/floating hyperparameter values. Note that Hyperopt
also provides distributions dedicated to integer hyperparameter values that mimic the distribution
of those four distributions – that is, hp.quniform, hp.qloguniform, hp.qnormal, and
hp.qlognormal. For more information regarding the sampling distributions provided by Hyperopt,
please refer to its official wiki page (https://github.com/hyperopt/hyperopt/wiki/
FMin#21-parameter-expressions).

It is worth noting that Hyperopt enables us to define a conditional hyperparameter space (see
Chapter 4, Bayesian Optimization) that suits our needs. The following code example shows how we
can define such a search space:

hyperparameter_space =

hp.choice(“class_weight_type”, [

{“class_weight”: None,

“n_estimators”: 5 + hp.randint(“none_n_estimators”, 45),

},

{“class_weight”: “balanced”,

“n_estimators”: 5 + hp.randint(“balanced_n_estimators”, 195),

}

])

As you can see, the only difference between a conditional hyperparameter space and a non-conditional
one is that we add hp.choice before defining the hyperparameters for each condition. In this example,
when class_weight is None, we will only search for the best n_estimators hyperparameters
within the range [5,50). On the other hand, when class_weight is “balanced”, the range
becomes [5,200).

Once the hyperparameter space is defined, we can start the hyperparameter tuning process via the
fmin() function. The output of this function is the best set of hyperparameters that has been found
from the tuning process. There are several important parameters available in this function that you
need to know about. The fn parameter refers to the objective function we are trying to minimize,
the space parameter refers to the hyperparameter space that will be used in our experiment, the
algo parameter refers to the hyperparameter tuning algorithm that we want to utilize, the rstate
parameter refers to the random seed for the tuning process, the max_evals parameter refers to the
stopping criterion of the tuning process based on the number of trials, and the timeout parameter
refers to the stopping criterion based on the time limit in seconds. Another important parameter is
the trials parameter, which expects to receive the Hyperopt Trials() object.

The Trials() object in Hyperopt logs all the relevant information during the tuning process.
This object is also responsible for storing all of the additional information we put in the dictionary
output of the objective function. We can utilize this object for debugging purposes or to pass it directly
to the built-in plotting module in Hyperopt.

https://github.com/hyperopt/hyperopt/wiki/FMin#21-parameter-expressions
https://github.com/hyperopt/hyperopt/wiki/FMin#21-parameter-expressions

Implementing Random Search 141

Several built-in plotting modules are implemented in the Hyperopt package, such as main_
plot_history, main_plot_histogram, and main_plot_vars modules. The first
plotting module can help us understand the relationship between the loss values and the execution
time. The second plotting module shows the histogram of all of the losses in all trials. The third
plotting module is useful for understanding more about the heatmap of each hyperparameter in the
space relative to the loss values.

Last but not least, it is worth noting that Hyperopt also supports parallel search processes by utilizing
MongoDB or Spark. To utilize the parallel resources via MongoDB, we can simply change the trial database
from Trials() to MongoTrials(). We can change from Trials() to SparkTrials()
if we want to utilize Spark instead of MongoDB. Please refer to the official documentation of Hyperopt
for more information about parallel computations (https://github.com/hyperopt/
hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB
and http://hyperopt.github.io/hyperopt/scaleout/spark/).

In this section, you were introduced to the overall capability of the Hyperopt package, along with
the general steps to perform hyperparameter tuning with this package. In the next few sections, we
will learn how to implement each of the hyperparameter tuning methods available in Hyperopt
through examples.

Implementing Random Search
To implement Random Search (see Chapter 3) in Hyperopt, we can simply follow the steps explained
in the previous section and pass the rand.suggest object to the algo parameter in the fmin()
function. Let’s learn how we can utilize the Hyperopt package to perform Random Search. We will
use the same data and sklearn pipeline definition as in Chapter 7, Hyperparameter Tuning via Scikit,
but with a slightly different definition of the hyperparameter space. Let’s follow the steps that were
introduced in the previous section:

1.	 Define the objective function to be minimized. Here, we are utilizing the defined pipeline,
pipe, to calculate the 5-fold cross-validation score by utilizing the cross_val_score
function from sklearn. We will use the F1 score as the evaluation metric:

import numpy as np

from sklearn.base import clone

from sklearn.model_selection import cross_val_score

from hyperopt import STATUS_OK

def objective(space):

 estimator_clone = clone(pipe).set_params(**space)

 return {‘loss’: -1 * np.mean(cross_val_
score(estimator_clone, X_train_full, y_train, cv=5,
scoring=’f1’, n_jobs=-1)),

 ‘status’: STATUS_OK}

https://github.com/hyperopt/hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB and http://hyperopt.github.io/hyperopt/scaleout/spark/
https://github.com/hyperopt/hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB and http://hyperopt.github.io/hyperopt/scaleout/spark/
https://github.com/hyperopt/hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB and http://hyperopt.github.io/hyperopt/scaleout/spark/

Hyperparameter Tuning via Hyperopt142

Note that the defined objective function only receives one input, which is the predefined
hyperparameter space, space, and outputs a dictionary that contains two mandatory
key-value pairs – that is, status and loss. It is also worth noting that the reason why
we multiply the average cross-validation score output with –1 is that Hyperopt always
assumes that we are working with a minimization problem, while we are not in this example.

2.	 Define the hyperparameter space. Since we are using the sklearn pipeline as our estimator,
we still need to follow the naming convention of the hyperparameters within the defined
space (see Chapter 7). Note that the naming convention just needs to be applied to the
hyperparameter names in the keys of the search space dictionary, not to the names within the
sampling distribution objects:

from hyperopt import hp

hyperparameter_space = {

“model__n_estimators”: 5 + hp.randint(“n_estimators”,
195),

“model__criterion”: hp.choice(“criterion”, [“gini”,
“entropy”]),

“model__class_weight”: hp.choice(“class_weight”,
[“balanced”,”balanced_subsample”]),

“model__min_samples_split”: hp.loguniform(“min_samples_
split”, np.log(0.0001), np.log(0.5))

}

3.	 Initiate the Trials() object. In this example, we will utilize this object for plotting purposes
after the tuning process has been done:

from hyperopt import Trials

trials = Trials()

4.	 Perform hyperparameter tuning by calling the fmin() function. Here, we are performing a
Random Search by passing the defined objective function and hyperparameter space. We have
set the algo parameter with the rand.suggest object and set the number of trials to 100
as the stopping criterion. We also set the random state to ensure reproducibility. Last but not
least, we passed the defined Trials() object to the trials parameter:

from hyperopt import fmin, rand

best = fmin(objective,

 space=hyperparameter_space,

 algo=rand.suggest,

 max_evals=100,

 rstate=np.random.default_rng(0),

Implementing Random Search 143

 trials=trials

)

print(best)

Based on the preceding code, we get around -0.621 of the objective function score, which
refers to 0.621 of the average 5-fold cross-validation F--score. We also get a dictionary
consisting of the best set of hyperparameters, as follows:

{‘class_weight’: 0, ‘criterion’: 1, ‘min_samples_split’:
0.00047017001935242104, ‘n_estimators’: 186}

As can be seen, Hyperopt will only return the index of the hyperparameter values
when we use hp.choice as the sampling distribution (see the class_weight and
criterion hyperparameters). Here, by referring to the predefined hyperparameter space,
0 for class_weight refers to balanced and 1 for criterion refers to entropy. Thus,
the best set of hyperparameters is {‘model__class_weight’: ‘balanced’,
‘model__criterion’: ‘entropy’, ‘model__min_samples_split’:
0.0004701700193524210, ‘model__n_estimators’: 186}.

5.	 Train the model on the full training data using the best set of hyperparameters that have been
found in the output of the fmin() function:

pipe = pipe.set_params(**{‘model__class_weight’:
“balanced”,

‘model__criterion’: “entropy”,

‘model__min_samples_split’: 0.00047017001935242104,

‘model__n_estimators’: 186})

pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

from sklearn.metrics import f1_score

y_pred = pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.624 for the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

7.	 Last but not least, we can also utilize the built-in plotting modules implemented in Hyperopt.
The following code shows how to do this. Note that we need to pass the trials object from
the tuning process to the plotting modules since all of the tuning process logs are in there:

from hyperopt import plotting

Hyperparameter Tuning via Hyperopt144

Now, we must plot the relationship between the loss values and the execution time:

plotting.main_plot_history(trials)

We will get the following output:

Figure 8.1 – Relationship between the loss values and the execution time

Now, we must plot the histogram of all of the objective function scores from all the trials:

plotting.main_plot_histogram(trials)

We will get the following output.

Figure 8.2 – Histogram of all of the objective function scores from all trials

Implementing Random Search 145

Now, we must plot the heatmap of each hyperparameter in the space relative to the loss values:

Plotting.main_plot_vars(trials)

We will get the following output.

Figure 8.3 – Heatmap of each hyperparameter in the space

relative to the loss values (the darker, the better)

In this section, we learned how to perform Random Search in Hyperopt by looking at an example
similar example to the one shown in Chapter 7, Hyperparameter Tuning via Scikit. We also saw what
kind of figures we can get from utilizing the built-in plotting modules in Hyperopt.

It is worth noting that we are not bounded to using only the sklearn implementation of models
to perform hyperparameter tuning with Hyperopt. We can also use implementations from other
packages, such as PyTorch, Tensorflow, and so on. One thing that needs to be kept in mind is
to be careful with the data leakage issue (see Chapter 1, Evaluating Machine Learning Models) when
performing cross-validation. We must fit all of the data preprocessing methods on the training data
and apply the fitted preprocessors to the validation data.

In the next section, we will learn how to utilize Hyperopt to perform hyperparameter tuning with
one of the available Bayesian Optimization methods.

Hyperparameter Tuning via Hyperopt146

Implementing Tree-structured Parzen Estimators
Tree-Structured Parzen Estimators (TPE) is one of the variants of the Bayesian Optimization
hyperparameter tuning group (see Chapter 4, Exploring Bayesian Optimization) that is also implemented
in the Hyperopt package. To perform hyperparameter tuning with this method, we can follow a
similar procedure as in the previous section by only changing the algo parameter to tpe.suggest
in Step 4. The following code shows how to perform hyperparameter tuning with TPE in Hyperopt:

from hyperopt import fmin, tpe

best = fmin(objective,

 space=hyperparameter_space,

 algo=tpe.suggest,

 max_evals=100,

 rstate=np.random.default_rng(0),

 trials=trials

)

print(best)

Using the same data, hyperparameter space, and parameters for the fmin() function, we get around
-0.620 for the objective function score, which refers to 0.620 of the average 5-fold cross-validation
F1-score. We also get a dictionary consisting of the best set of hyperparameters, as follows:

{‘class_weight’: 1, ‘criterion’: 1, ‘min_samples_split’:
0.0005245304932726025, ‘n_estimators’: 138}

Once the model has been trained on the full data using the best set of hyperparameters, we get around
0.621 in terms of the F1-score when we test the final Random Forest model that’s been trained on
the test data.

In this section, we learned how to perform hyperparameter tuning using the TPE method with
Hyperopt. In the next section, we will learn how to implement a variant of TPE called Adaptive
TPE with the Hyperopt package.

Implementing Adaptive TPE
Adaptive TPE (ATPE) is a variant of the TPE hyperparameter tuning method that is developed based
on several improvements compared to TPE, such as automatically tuning several hyperparameters of
the TPE method based on the data that we have. For more information about this method, please refer
to the original white papers. These can be found in the GitHub repository of the author (https://
github.com/electricbrainio/hypermax).

https://github.com/electricbrainio/hypermax
https://github.com/electricbrainio/hypermax

Implementing Adaptive TPE 147

While you can experiment with this method directly using the original GitHub repository of ATPE,
Hyperopt has also included this method as part of the package. You can simply follow a similar
procedure as in the Implementing Random Search section by only changing the algo parameter to
atpe.suggest in Step 4. The following code shows how to perform hyperparameter tuning with
ATPE in Hyperopt. Please note that ATPE utilizes the LightGBM model to predict each of the
ATPE parameters. That’s why we need to have the LightGBM package installed before we can start
to perform hyperparameter tuning with ATPE in Hyperopt:

from hyperopt import fmin, atpe

best = fmin(objective,

 space=hyperparameter_space,

 algo=atpe.suggest,

 max_evals=100,

 rstate=np.random.default_rng(0),

 trials=trials

)

print(best)

Using the same data, hyperparameter space, and parameters for the fmin() function, we get around
-0.621 for the objective function score, which refers to 0.621 of the average 5-fold cross-validation
F1-score. We also get a dictionary consisting of the best set of hyperparameters, as follows:

{‘class_weight’: 1, ‘criterion’: 1, ‘min_samples_split’:
0.0005096354197481012, ‘n_estimators’: 157}

Once the model has been trained on the full data using the best set of hyperparameters, we get around
0.622 in terms of the F1 score when we test the final Random Forest model that was trained on
the test data.

In this section, we learned how to perform hyperparameter tuning using the ATPE method with
Hyperopt. In the next section, we will learn how to implement a hyperparameter tuning method
that is part of the Heuristic Search group with the Hyperopt package.

Hyperparameter Tuning via Hyperopt148

Implementing simulated annealing
Simulated annealing (SA) is part of the Heuristic Search hyperparameter tuning group (see
Chapter 5, Exploring Heuristic Search), which is also implemented in the Hyperopt package.
Similar to TPE and ATPE, to perform hyperparameter tuning with this method, we can simply
follow the procedure shown in the Implementing Random Search section; we only need to change
the algo parameter to anneal.suggest in Step 4. The following code shows how to perform
hyperparameter tuning with SA in Hyperopt:

from hyperopt import fmin, anneal

best = fmin(objective,

 space=hyperparameter_space,

 algo=anneal.suggest,

 max_evals=100,

 rstate=np.random.default_rng(0),

 trials=trials

)

print(best)

Using the same data, hyperparameter space, and parameters for the fmin() function, we get around
-0.620 for the objective function score, which refers to 0.620 of the average 5-fold cross-validation
F1-score. We also get a dictionary consisting of the best set of hyperparameters, as follows:

{‘class_weight’: 1, ‘criterion’: 1, ‘min_samples_split’:
0.00046660708302994583, ‘n_estimators’: 189}

Once the model has been trained on the full data using the best set of hyperparameters, we get around
0.625 in terms of the F1-score when we test the final Random Forest model that was trained on
the test data.

While Hyperopt has built-in plotting modules, we can also create a customized plotting function
by utilizing the Trials() object. The following code shows how to visualize the distribution of
each hyperparameter over the number of trials:

1.	 Get the value of each hyperparameter in each of the trials:

plotting_data = np.array([[x[‘result’][‘loss’],

x[‘misc’][‘vals’][‘class_weight’][0],

x[‘misc’][‘vals’][‘criterion’][0],

x[‘misc’][‘vals’][‘min_samples_split’][0],

x[‘misc’][‘vals’][‘n_estimators’][0],

] for x in trials.trials])

Implementing simulated annealing 149

2.	 Convert the values into a pandas DataFrame:

import pandas as pd

plotting_data = pd.DataFrame(plotting_data,

columns=[‘score’, ‘class_weight’, ‘criterion’, ‘min_
samples_split’,’n_estimators’])

3.	 Plot the relationship between each hyperparameter’s distribution and the number of trials:

import matplotlib.pyplot as plt

plotting_data.plot(subplots=True,figsize=(12, 12))

plt.xlabel(“Iterations”)

plt.show()

Based on the preceding code, we will get the following output:

Figure 8.4 – Relationship between each hyperparameter’s distribution and the number of trials

Hyperparameter Tuning via Hyperopt150

In this section, we learned how to implement SA in Hyperopt by using the same example as in
the Implementing Random Search section. We also learned how to create a custom plotting function
to visualize the relationship between each hyperparameter’s distribution and the number of trials.

Summary
In this chapter, we learned all the important things about the Hyperopt package, including its
capabilities and limitations, and how to utilize it to perform hyperparameter tuning. We saw that
Hyperopt supports various types of sampling distribution methods but can only work with a
minimization problem. We also learned how to implement various hyperparameter tuning methods
with the help of this package, which has helped us understand each of the important parameters of the
classes and how are they related to the theory that we learned about in the previous chapters. At this
point, you should be able to utilize Hyperopt to implement your chosen hyperparameter tuning
method and, ultimately, boost the performance of your ML model. Equipped with the knowledge
from Chapter 3, to Chapter 6, you should be able to understand what’s happening if there are errors or
unexpected results, as well as understand how to set up the method configuration so that it matches
your specific problem.

In the next chapter, we will learn about the Optuna package and how to utilize it to perform various
hyperparameter tuning methods. The goal of the next chapter is similar to this chapter – that is,
being able to utilize the package for hyperparameter tuning purposes and understanding each of the
parameters of the implemented classes.

9
Hyperparameter Tuning via

Optuna

Optuna is a Python package that provides various implementations of hyperparameter tuning methods,
including but not limited to Grid Search, Random Search, and Tree-Structured Parzen Estimators
(TPE). This package also enables us to create our own hyperparameter tuning method class and
integrate it with other popular hyperparameter tuning packages, such as scikit-optimize.

In this chapter, you’ll be introduced to the Optuna package, starting with its numerous features,
how to utilize it to perform hyperparameter tuning, and all of the other important things you need
to know about Optuna. We’ll not only learn how to utilize Optuna to perform hyperparameter
tuning with their default configurations but also discuss the available configurations along with their
usage. Moreover, we’ll also discuss how the implementation of the hyperparameter tuning methods
is related to the theory that we have learned in previous chapters, since there may be some minor
differences or adjustments made in the implementation.

By the end of this chapter, you will be able to understand all of the important things you need to
know about Optuna and implement various hyperparameter tuning methods available in this
package. You’ll also be able to understand each of the important parameters of the classes and how
they are related to the theory that we have learned in previous chapters. Finally, equipped with the
knowledge from previous chapters, you will also be able to understand what’s happening if there
are errors or unexpected results and understand how to set up the method configuration to match
your specific problem.

Hyperparameter Tuning via Optuna152

The following are the main topics that will be discussed in this chapter:

•	 Introducing Optuna

•	 Implementing TPE

•	 Implementing Random Search

•	 Implementing Grid Search

•	 Implementing Simulated Annealing

•	 Implementing Successive Halving

•	 Implementing Hyperband

Technical requirements
We will learn how to implement various hyperparameter tuning methods with Optuna. To ensure
that you are able to reproduce the code examples in this chapter, you will require the following:

•	 Python 3 (version 3.7 or above)

•	 Installed pandas package (version 1.3.4 or above)

•	 Installed NumPy package (version 1.21.2 or above)

•	 Installed Matplotlib package (version 3.5.0 or above)

•	 Installed scikit-learn package (version 1.0.1 or above)

•	 Installed Tensorflow package (version 2.4.1 or above)

•	 Installed Optuna package (version 2.10.0 or above)

All of the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python.

Introducing Optuna
Optuna is a hyperparameter tuning package in Python that provides several hyperparameter tuning
methods implementation, such as Grid Search, Random Search, Tree-structured Parzen Estimators
(TPE), and many more. Unlike Hyperopt, which assumes we are always working with a minimization
problem (see Chapter 8, Hyperparameter Tuning via Hyperopt), we can tell Optuna the type of
optimization problem we are working on: minimization or maximization.

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python

Introducing Optuna 153

Optuna has two main classes, namely samplers and pruners. Samplers are responsible for performing
the hyperparameter tuning optimization, whereas pruners are responsible for judging whether we
should prune the trials based on the reported values. In other words, pruners act like early stopping
methods where we will stop a hyperparameter tuning iteration whenever it seems that there’s no
additional benefit to continuing the process.

The built-in implementation for samplers includes several hyperparameter tuning methods that we
have learned in Chapters 3 - 4, namely Grid Search, Random Search, and TPE, and also other methods
that are outside of the scope of this book, such as CMA-ES, NSGA-II, and many more. We can also
define our own custom samplers, such as the Simulated Annealing (SA), which will be discussed
in the upcoming section. Furthermore, Optuna also allows us to integrate samplers from another
package, such as from the scikit-optimize (skopt) package where we can utilize many
Bayesian optimization-based methods from there.

Integrations in Optuna
Besides skopt, there are also many other integrations provided by Optuna, including but
not limited, to scikit-learn, Keras, PyTorch, XGBoost, LightGBM, FastAI,
MLflow, and many more. For more information about the available integrations, please see
the official documentation (https://optuna.readthedocs.io/en/v2.10.0/
reference/integration.html).

As for pruners, Optuna provides both statistics-based and multi-fidelity optimization (MFO)-based
methods. There are MedianPruner, PercentilePruner, and ThresholdPruner for the
statistics-based group. MedianPruner will prune the trials whenever the current trial’s best intermediate
result is worse compared to the median of the result of the previous trial. PercentilePruner
will perform pruning when the current best intermediate value is part of the bottom percentile from
previous trials. ThresholdPruner will simply perform pruning whenever the predefined threshold
is met. The MFO-based pruners implemented in Optuna are SuccessiveHalvingPruner
and HyperbandPruner. Both of them define the resource as the number of training steps or epochs,
not as the number of samples such as in the implementations of scikit-learn. We will learn
how to utilize these MFO-based pruners in the upcoming sections.

To perform hyperparameter tuning with Optuna, we can simply perform the following simple steps
(more detailed steps, including the code implementation, will be given through various examples in
the upcoming sections):

1.	 Define the objective function along with the hyperparameter space.

2.	 Initiate a study object via the create_study() function.

3.	 Perform hyperparameter tuning by calling the optimize() method on the study object.

4.	 Train the model on full training data using the best set of hyperparameters found.

5.	 Test the final trained model on the test data.

https://optuna.readthedocs.io/en/v2.10.0/reference/integration.html
https://optuna.readthedocs.io/en/v2.10.0/reference/integration.html

Hyperparameter Tuning via Optuna154

In Optuna, we can directly define the hyperparameter space within the objective function
itself. There’s no need to define another dedicated separate object just to store the hyperparameter
space. This means that implementing conditional hyperparameters in Optuna becomes very easy
since we just need to put them within the corresponding if-else blocks in the objective
function. Optuna also provides very handy hyperparameter sampling distribution methods
including suggest_categorical, suggest_discrete_uniform, suggest_int,
and suggest_float.

The suggest_categorical method will suggest value from a categorical type of hyperparameters,
which works similarly with the random.choice() method. The suggest_discrete_
uniform can be utilized for a discrete type of hyperparameters, which works very similar to the
hp.quniform in Hyperopt (see Chapter 8, Hyperparameter Tuning via Hyperopt) by sampling
uniformly from the range of [low, high] with a q step of discretization. The suggest_int
method works similarly to the random.randint() method. Finally, the suggest_float
method. This method works for a floating type of hyperparameters and is actually a wrapper of two other
sampling distribution methods, namely the suggest_uniform and suggest_loguniform.
To utilize suggest_loguniform, simply set the log parameter in suggest_float as True.

To have a better understanding of how we can define the hyperparameter space within the objective
function, the following code shows an example of how to define an objective function using
TFKeras. Note that in this example, we write several functions to be called in the objective function,
to ensure readability and to enable us to write the code in a modular fashion. However, you can also
put all of the code within one single objective function directly. The data and preprocessing steps
used in this example are the same as in Chapter 7, Hyperparameter Tuning via Scikit. However, in this
example, we are using a neural network model instead of a random forest as follows:

1.	 Create a function to define the model architecture. Here, we create a binary classifier model
where the number of hidden layers, number of units, dropout rate, and the activation
function for each layer are part of the hyperparameter space, as follows:

import optuna

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout

def create_model(trial: optuna.trial.Trial, input_size:
int):

model = Sequential()

model.add(Dense(input_size,input_shape=(input_
size,),activation='relu'))

 num_layers = trial.suggest_int('num_
layers',low=0,high=3)

for layer_i in range(num_layers):

n_units = trial.suggest_int(f'n_units_layer_

Introducing Optuna 155

{layer_i}',low=10,high=100,step=5)

 dropout_rate = trial.suggest_float(f'dropout_rate_layer_
{layer_i}',low=0,high=0.5)

actv_func = trial.suggest_categorical(f'actv_func _layer_
{layer_i}',['relu','tanh','elu'])

model.add(Dropout(dropout_rate))

 model.add(Dense(n_units,activation=actv_func))

model.add(Dense(1,activation='sigmoid'))

return model

2.	 Create a function to define the model’s optimizer. Notice that we define conditional hyperparameters
in this function where we have a different set of hyperparameters for a different chosen optimizer
as follows:

import tensorflow as tf

def create_optimizer(trial: optuna.trial.Trial):

opt_kwargs = {}

opt_selected = trial.suggest_categorical('optimizer',
['Adam','SGD'])

if opt_selected == 'SGD':

opt_kwargs['lr'] = trial.suggest_float('sgd_lr',1e-5,1e-
1,log=True)

opt_kwargs['momentum'] = trial.suggest_float('sgd_
momentum',1e-5,1e-1,log=True)

else: #'Adam'

opt_kwargs['lr'] = trial.suggest_float('adam_lr',1e-5,1e-
1,log=True)

optimizer = getattr(tf.optimizers,opt_selected)(**opt_
kwargs)

return optimizer

3.	 Create the train and validation functions. Note that the preprocessing code is not
shown here, but you can see it in the GitHub repo mentioned in the Technical requirements
section for the full code. As the case with the examples in Chapter 7, we are also using F1-score
as the evaluation metric of the model as follows:

def train(trial, df_train: pd.DataFrame, df_val:
pd.DataFrame = None):

 X_train,y_train = df_train.drop(columns=['y']), df_
train['y']

 if df_val is not None:

Hyperparameter Tuning via Optuna156

 X_val,y_val = df_val.drop(columns=['y']), df_
val['y']

 #Apply pre-processing here...

 #...

 #Build model & optimizer

 model = create_model(trial,X_train.shape[1])

 optimizer = create_optimizer(trial)

 model.compile(loss='binary_crossentropy',
optimizer=optimizer, metrics=[f1_m])

 history = model.fit(X_train,y_train,

 epochs=trial.suggest_
int('epoch',15,50),

 batch_size=64,

 validation_data=(X_val,y_val) if df_val is
not None else None)

 if df_val is not None:

 return np.mean(history.history['val_f1_m'])

 else:

 return model

4.	 Create the objective function. Here, we split the original training data into training data
for hyperparameter tuning, df_train_hp, and validation data, df_val. We won’t follow
the k-fold cross-validation evaluation method since it will take too much time for the neural
network model to go through several folds of evaluation within each tuning trial (see Chapter 1,
Evaluating Machine Learning Models).

from sklearn.model_selection import train_test_split

def objective(trial: optuna.trial.Trial, df_train:
pd.DataFrame):

#Split into Train and Validation data

 df_train_hp, df_val = train_test_split(df_train,
test_size=0.1, random_state=0)

 #Train and Validate Model

 val_f1_score = train(trial, df_train_hp, df_val)

 return val_f1_score

Introducing Optuna 157

To perform hyperparameter tuning in Optuna, we need to initiate a study object via the create_
study() function. The study object provides interfaces to run a new Trial object and access
the trials’ history. The Trial object is simply an object that involves the process of evaluating an
objective function. This object will be passed to the objective function and it is responsible
for managing the trial’s state, providing interfaces upon receiving the parameter suggestion just as we
saw earlier in the objective function. The following code shows how to utilize the create_
study() function to initiate a study object:

study = optuna.create_study(direction='maximize')

There are several important parameters in the create_study() function. The direction
parameter allows us to tell Optuna what kind of optimization problem we are working on. There are
two valid values for this parameter, namely ‘maximize’ and ‘minimize’. By setting the direction
parameter equal to ‘maximize’, it means that we tell Optuna that we are currently working on a
maximization problem. Optuna sets this parameter to ‘minimize’ by default. The sampler parameter
refers to the hyperparameter tuning algorithm that we want to use. By default, Optuna will use TPE
as the sampler. The pruner parameter refers to the pruning algorithm that we want to use, where
MedianPruner() is used by default.

Pruning in Optuna
Although MedianPruner() is chosen by default, the pruning process will not be performed
unless we explicitly tell Optuna to do so within the objective function. This example
shows how to perform a simple pruning procedure with the default pruner in Optuna at the
following link: https://github.com/optuna/optuna-examples/blob/
main/simple_pruning.py.

Besides the three preceding parameters, there are also other parameters in the create_study()
function, namely storage, study_name, and load_if_exists. The storage parameter
expects a database URL input, which will be handled with SQLAlchemy internally by Optuna. If we
do not pass a database URL, Optuna will use the in-memory storage instead. The study_name
parameter is simply the name that we want to give to the current study object. If we do not pass a
name, Optuna will automatically generate a random name for us. Last but not least, the load_if_
exists parameter is a Boolean parameter that handles cases when there might be conflicting study
names. If the study name is already generated in the storage, and we set load_if_exists=False,
then Optuna will raise an error. On the other hand, if the study name is already generated in the
storage, but we set load_if_exists=True, Optuna will just load the existing study object
instead of creating a new one.

https://github.com/optuna/optuna-examples/blob/main/simple_pruning.py
https://github.com/optuna/optuna-examples/blob/main/simple_pruning.py

Hyperparameter Tuning via Optuna158

Once the study object is initiated along with the appropriate parameters, we can start performing
the hyperparameter tuning by calling the optimize() method. The following code shows you
how to do that:

study.optimize(func=lambda trial: objective(trial, df_train),

 n_trials=50, n_jobs=-1)

There are several important parameters in the optimize() method. The first and most important
method is the func parameter. This parameter expects a callable that implements the objective
function. Here, we don’t directly pass the objective function to the func parameter since our
objective function expects two inputs, while by default, Optuna can only handle an objective
function with one input, which is the Trial object itself. That’s why we need the help of Python’s
built-in lambda function to pass the second input to our objective function. You can also utilize
the same lambda function if your objective function has more than two inputs.

The second most important parameter is n_trials, which refers to the number of trials or iterations
for the hyperparameter tuning process. Another implemented parameter that can be used as the
stopping criteria is the timeout parameter. This parameter expects the stopping criteria in the unit
of seconds. By default, Optuna sets the n_trials and timeout parameters to None. If we
leave it be, then Optuna will run the hyperparameter tuning process until it receives a termination
signal, such as Ctrl+C or SIGTERM.

Last but not least, Optuna also allows us to utilize the parallel resources through a parameter called
n_jobs. By default, Optuna will set n_jobs=1, meaning that it will only utilize one job. Here,
we set n_jobs=-1, meaning that we will use all of the CPU counts in our computer to perform
parallel computation.

Hyperparameter’s Importance in Optuna
Optuna provides a very nice module to measure the importance of each hyperparameter
in the search space. As per version 2.10.0, there are two methods implemented, namely the
fANOVA and Mean Decrease Impurity methods. Please see the official documentation on
how to utilize this module and the theory behind the implemented methods, available at the
following link: https://optuna.readthedocs.io/en/v2.10.0/reference/
importance.html.

In this section, we learned what Optuna is in general, the available features that we can utilize, and the
general steps as to how to perform hyperparameter tuning with this package. Optuna also has various
visualization modules that can help us track our hyperparameter tuning experiments, which will be
discussed in Chapter 13, Tracking Hyperparameter Tuning Experiments. In the upcoming sections, we
will learn how to perform various hyperparameter tuning methods with Optuna through examples.

https://optuna.readthedocs.io/en/v2.10.0/reference/importance.html
https://optuna.readthedocs.io/en/v2.10.0/reference/importance.html

Implementing TPE 159

Implementing TPE
TPE is one of the variants of the Bayesian optimization hyperparameter tuning group (see Chapter 4),
which is the default sampler in Optuna. To perform hyperparameter tuning with TPE in Optuna,
we can just simply pass the optuna.samplers.TPESampler() class to the sampler parameter
of the create_study() function. The following example shows how to implement TPE in
Optuna. We’ll use the same data as in the examples in Chapter 7 and follow the steps introduced in
the preceding section as follows:

1.	 Define the objective function along with the hyperparameter space. Here, we’ll use the same
function that we defined in the Introducing Optuna section. Remember that we use the train-
validation split instead of the k-fold cross-validation method within the objective function.

2.	 Initiate a study object via the create_study() function as follows:

study = optuna.create_study(direction='maximize',

sampler=optuna.samplers.TPESampler(seed=0))

3.	 Perform hyperparameter tuning by calling the optimize() method on the study object
as follows:

study.optimize(lambda trial: objective(trial, df_train),

 n_trials=50, n_jobs=-1)

print("Best Trial:")

best_trial = study.best_trial

print(" Value: ", best_trial.value)

print(" Hyperparameters: ")

for key, value in best_trial.params.items():

 print(f" {key}: {value}")

Based on the preceding code, we get around 0.563 of F1-score evaluated in the validation
data. We also get a dictionary consisting of the best set of hyperparameters as follows:

{'num_layers': 2,'n_units_layer_0': 30,'dropout_
rate_layer_0': 0.14068484717257745,'actv_
func_layer_0': 'relu','n_units_layer_1':
20,'dropout_rate_layer_1': 0.34708586671782293,'actv_
func_layer_1': 'relu','optimizer': 'Adam','adam_lr':
0.0018287924415952158,'epoch': 41}

Hyperparameter Tuning via Optuna160

4.	 Train the model on full training data using the best set of hyperparameters found. Here, we
define another function called train_and_evaluate_final() that has the purpose
of training the model in the full training data based on the best set of hyperparameters found
in the preceding step, as well as evaluating it on the test data. You can see the implemented
function in the GitHub repo mentioned in the Technical requirements section. Define the
function as follows:

train_and_evaluate_final(df_train, df_test, **best_trial.
params)

5.	 Test the final trained model on the test data. Based on the results from the preceding step, we
get around 0.604 in F1-score when testing our final trained neural network model with the
best set of hyperparameters on the test set.

There are several important parameters for the TPESampler class. First, there is the gamma
parameter, which refers to the threshold used in TPE to divide good and bad samples (see Chapter 4).
The n_startup_trials parameter is responsible for controlling how many trials will utilize
Random Search before starting to perform the TPE algorithm. The n_ei_candidates parameter
is responsible for controlling how many candidate samples are used to calculate the expected
improvement acquisition function. Last but not least, the seed parameter, which
controls the random seed of the experiment. There are many other parameters available for the
TPESampler class, so please see the original documentation for more information, available at
the following link: https://optuna.readthedocs.io/en/v2.10.0/reference/
generated/optuna.samplers.TPESampler.html.

In this section, we have learned how to perform hyperparameter tuning with TPE in Optuna using the
same data as in the example in Chapter 7. As mentioned in Chapter 4, Exploring Bayesian Optimization
Optuna also implements the multivariate TPE, which is able to capture the interdependencies among
hyperparameters. To enable the multivariate TPE, we can just simply set the multivariate
parameter in optuna.samplers.TPESampler() as True. In the next section, we will learn
how to perform Random Search with Optuna.

Implementing Random Search
Implementing Random Search in Optuna is very similar to implementing TPE in Optuna. We can
just follow a similar procedure to the preceding section and change the sampler parameter in the
optimize() method in step 2. The following code shows you how to do that:

study = optuna.create_study(direction='maximize',

sampler=optuna.samplers.RandomSampler(seed=0))

https://optuna.readthedocs.io/en/v2.10.0/reference/generated/optuna.samplers.TPESampler.html
https://optuna.readthedocs.io/en/v2.10.0/reference/generated/optuna.samplers.TPESampler.html

Implementing Grid Search 161

Using the exact same data, preprocessing steps, hyperparameter space, and objective function,
we get around 0.548 in the F1-score evaluated in the validation data. We also get a dictionary
consisting of the best set of hyperparameters as follows:

{'num_layers': 0,'optimizer': 'Adam','adam_lr':
0.05075826567070766,'epoch': 50}

After the model is trained with full data using the best set of hyperparameters, we get around 0.596 in
F1-score when we test the final neural network model trained on the test data. Notice that although we
have defined many hyperparameters earlier, (see the objective function in the preceding section),
here, we do not get all of them in the results. This is because most of the hyperparameters are conditional
hyperparameters. For example, since the chosen value for the ’num_layers’ hyperparameter is zero,
there will be no ’n_units_layer_{layer_i}’, ’dropout_rate_layer_{layer_i}’, or ‘actv_func _layer_{layer_i}’
since those hyperparameters will only exist when the ’num_layers’ hyperparameter is greater than zero.

In this section, we have seen how to perform hyperparameter tuning using the Random Search
method with Optuna. In the next section, we will learn how to implement Grid Search with the
Optuna package.

Implementing Grid Search
Implementing Grid Search in Optuna is a bit different from implementing TPE and Random
Search. Here, we need to also define the search space object and pass it to optuna.samplers.
GridSampler(). The search space object is just a Python dictionary data structure consisting of
hyperparameters’ names as the keys and the possible values of the corresponding hyperparameter
as the dictionary’s values. GridSampler will stop the hyperparameter tuning process if all of
the combinations in the search space have already been evaluated, even though the number of
trials, n_trials, passed to the optimize() method has not been reached yet. Furthermore,
GridSampler will only get the value stated in the search space no matter the range we pass to the
sampling distribution methods, such as suggest_categorical, suggest_discrete_
uniform, suggest_int, and suggest_float.

The following code shows how to perform Grid Search in Optuna. The overall procedure to implement
Grid Search in Optuna is similar to the procedure stated in the Implementing Tree-structured
Parzen Estimators section. The only difference is that we have to define the search space and change
the sampler parameter to optuna.samplers.GridSampler() in the optimize()
method in step 2 as follows:

search_space = {'num_layers': [0,1],

 'n_units_layer_0': list(range(10,50,5)),

 'dropout_rate_layer_0': np.linspace(0,0.5,5),

 'actv_func_layer_0': ['relu','elu'],

Hyperparameter Tuning via Optuna162

 'optimizer': ['Adam','SGD'],

 'sgd_lr': np.linspace(1e-5,1e-1,5),

 'sgd_momentum': np.linspace(1e-5,1e-1,5),

 'adam_lr': np.linspace(1e-5,1e-1,5),

 'epoch': list(range(15,50,5))

 }

study = optuna.create_study(direction='maximize',
sampler=optuna.samplers.GridSampler(search_space),

)

Based on the preceding code, we get around 0.574 of the F1-score evaluated in the validation data.
We also get a dictionary consisting of the best set of hyperparameters as follows:

{'num_layers': 0,'optimizer': 'Adam','adam_lr':
0.05000500000000001,'epoch': 25}

After the model is trained on full data using the best set of hyperparameters, we get around 0.610
in F1-score when we test the final neural network model trained on the test data.

It is worth noting that GridSampler will rely on the search space to perform the hyperparameter
sampling. For example, in the search space, we only define the valid values for num_layers as
[0,1]. So, although within the objective function we set trial.suggest_int(‘num_
layers’,low=0,high=3) (see the Introducing Optuna section), only 0 and 1 will be tested
during the tuning process. Remember that, in Optuna, we can specify the stopping criterion through
the n_trials or timeout parameters. If we specify either one of those criteria, GridSampler
will not test all of the possible combinations in the search space; the tuning process will stop once
the stopping criterion is met. In this example, we set n_trials=50, just like the example in the
preceding section.

In this section, we have learned how to perform hyperparameter tuning using the Grid Search method
with Optuna. In the next section, we will learn how to implement SA with the Optuna package.

Implementing Simulated Annealing
SA is not part of the built-in implementation of the hyperparameter tuning method in Optuna.
However, as mentioned in the first section of this chapter, we can define our own custom sampler
in Optuna. When creating a custom sampler, we need to create a class that inherits from the
BaseSampler class. The most important method that we need to define within our custom class
is the sample_relative() method. This method is responsible for sampling the corresponding
hyperparameters from the search space based on the hyperparameter tuning algorithm we chose.

Implementing Simulated Annealing 163

The complete custom SimulatedAnnealingSampler() class with geometric cooling
annealing schedule (see Chapter 5) has been defined and can be seen in the GitHub repo mentioned
in the Technical requirements section. The following code shows only the implementation of the
sample_relative() method within the class:

class SimulatedAnnealingSampler(optuna.samplers.BaseSampler):

 ...

 def sample_relative(self, study, trial, search_space):

 if search_space == {}:

 # The relative search space is empty (it means this
is the first trial of a study).

 return {}

 prev_trial = self._get_last_complete_trial(study)

 if self._rng.uniform(0, 1) <= self._transition_
probability(study, prev_trial):

 self._current_trial = prev_trial

 params = self._sample_neighbor_params(search_space)

 #Geometric Cooling Annealing Schedule

 self._temperature *= self.cooldown_factor

 return params

 ...

The following code shows how to perform hyperparameter tuning with SA in Optuna. The overall
procedure to implement SA in Optuna is similar to the procedure stated in the Implementing Tree-
structured Parzen Estimators section. The only difference is that we have to change the sampler
parameter to SimulatedAnnealingSampler() in the optimize() method in step 2 as follows:

study = optuna.create_study(direction='maximize',

 sampler=SimulatedAnnealingSampler(seed=0),

)

Using the exact same data, preprocessing steps, hyperparameter space, and objective function,
we get around 0.556 of the F1-score evaluated in the validation data. We also get a dictionary
consisting of the best set of hyperparameters as follows:

{'num_layers': 3,'n_units_layer_0': 30,'dropout_rate_
layer_0': 0.28421697443432425,'actv_func_layer_0':
'tanh','n_units_layer_1': 20,'dropout_rate_layer_1':
0.05936385947712203,'actv_func_layer_1': 'tanh','n_units_
layer_2': 25,'dropout_rate_layer_2': 0.2179324626328134,'actv_

Hyperparameter Tuning via Optuna164

func_layer_2': 'relu','optimizer': 'Adam','adam_lr':
0.006100619734336806,'epoch': 39}

After the model is trained on full data using the best set of hyperparameters, we get around 0.559
in F1-score when we test the final neural network model trained on the test data.

In this section, we have learned how to perform hyperparameter tuning using the SA algorithm with
Optuna. In the next section, we will learn how to utilize Successive Halving as a pruning method
in Optuna.

Implementing Successive Halving
Successive Halving (SH) is implemented as a pruner in Optuna, meaning that it is responsible for
stopping hyperparameter tuning iterations whenever it seems that there’s no additional benefit to
continuing the process. Since it is implemented as a pruner, the resource definition of SH (see Chapter
6) in Optuna refers to the number of training steps or epochs of the model, instead of the number
of samples, as it does in scikit-learn’s implementation.

We can utilize SH as a pruner along with any sampler that we use. This example shows you how to
perform hyperparameter tuning with the Random Search algorithm as the sampler and SH as the
pruner. The overall procedure is similar to the procedure stated in the Implementing TPE section.
Since we are utilizing SH as a pruner, we have to edit our objective function so that it will utilize
the pruner during the optimization process. In this example, we can use the callback integration with
TFKeras provided by Optuna via optuna.integration.TFKerasPruningCallback.
We simply need to pass this class to the callbacks parameter when fitting the model within the
train function as shown in the following code:

def train(trial, df_train: pd.DataFrame, df_val: pd.DataFrame =
None):

...

 history = model.fit(X_train,y_train,

 epochs=trial.suggest_int('epoch',15,50),

 batch_size=64,

 validation_data=(X_val,y_val) if df_val
is not None else None,

 callbacks=[optuna.integration.
TFKerasPruningCallback(trial,'val_f1_m')],

)

...

Implementing Successive Halving 165

Once we have told Optuna to utilize the pruner, we also need to set the pruner parameter in the
optimize() method to optuna.pruners.SuccessiveHalvingPruner() in step 2
of the Implementing Tree-structured Parzen Estimators section as follows:

study = optuna.create_study(direction='maximize',

 sampler=optuna.samplers.RandomSampler(seed=0),

 pruner=optuna.pruners.SuccessiveHalvingPruner(reduction_
factor=3, min_resource=5)

)

In this example, we also increased the number of trials from 50 to 100 since most of the trials will
be pruned anyway as follows:

study.optimize(lambda trial: objective(trial, df_train),

 n_trials=100, n_jobs=-1,

)

Using the exact same data, preprocessing steps, and hyperparameter space, we get around 0.582 of
the F1-score evaluated in the validation data. Out of 100 trials performed, there are 87 trials pruned
by SH, which implies only 13 completed trials. We also get a dictionary consisting of the best set of
hyperparameters as follows:

{'num_layers': 3,'n_units_layer_0': 10,'dropout_rate_
layer_0': 0.03540368984067649,'actv_func_layer_0':
'elu','n_units_layer_1': 15,'dropout_rate_layer_1':
0.008554081181978979,'actv_func_layer_1': 'elu','n_units_
layer_2': 15,'dropout_rate_layer_2': 0.4887044768096681,'actv_
func_layer_2': 'relu','optimizer': 'Adam','adam_lr':
0.02763126523504823,'epoch': 28}

After the model is trained on full data using the best set of hyperparameters, we get around 0.597
in F1-score when we test the final neural network model trained on the test data.

It is worth noting that there are several parameters for SuccessiveHalvingPruner that we
can customize based on our needs. The reduction_factor parameter refers to the multiplier
factor of SH (see Chapter 6). The min_resource parameter refers to the minimum number of
resources to be used at the first trial. This parameter is set to ‘auto’, by default, where a heuristic is
utilized to calculate the most appropriate value based on the number of required steps for the first
trial to be completed. In other words, Optuna will only be able to start the tuning process after the
min_resource training steps or epochs have been performed.

Hyperparameter Tuning via Optuna166

Optuna also provides the min_early_stopping_rate parameter, which has the exact same
meaning as we defined in Chapter 6. Last but not least, the bootstrap_count parameter. This
parameter is not part of the original SH algorithm. The purpose of this parameter is to control the
minimum number of trials that need to be completed before the actual SH iterations start.

You may wonder, what about the parameter that controls the value of maximum resources and the
number of candidates in SH? Here, in Optuna, the maximum resources definition will be automatically
derived based on the total number of training steps or epochs within the defined objective function.
As for the parameter that controls the number of candidates, Optuna delegates this responsibility
to the n_trials parameter in the study.optimize() method.

In this section, we have learned how to utilize SH as a pruner during the hyperparameter tuning
process. In the next section, we will learn how to utilize Hyperband, the extended algorithm of SH,
as a pruning method in Optuna.

Implementing Hyperband
Implementing Hyperband (HB) in Optuna is very similar to implementing Successive Halving as
a pruner. The only difference is that we have to set the pruner parameter in the optimize()
method to optuna.pruners.HyperbandPruner() in step 2 in the preceding section. The
following code shows you how to perform hyperparameter tuning with the Random Search algorithm
as the sampler and HB as the pruner:

study = optuna.create_study(direction='maximize',

 sampler=optuna.samplers.RandomSampler(seed=0),

 pruner=optuna.pruners.HyperbandPruner(reduction_factor=3,
min_resource=5)

)

All of the parameters of HyperbandPruner are the same as SuccessiveHalvingPruner’s,
except that, here, there is no min_early_stopping_rate parameter and there is a max_
resource parameter. The min_early_stopping_rate parameter is removed since it is
set automatically based on the ID of each bracket. The max_resource parameter is responsible
for setting the maximum resource allocated to a trial. By default, this parameter is set to ‘auto’, which
means that the value will be set as the largest step in the first completed trial.

Using the exact same data, preprocessing steps, and hyperparameter space, we get around 0.580 of
the F1-score evaluated in the validation data. Out of 100 trials performed, there are 79 trials pruned
by SH, which implies only 21 completed trials. We also get a dictionary consisting of the best set of
hyperparameters as follows:

{'num_layers': 0,'optimizer': 'Adam','adam_lr':
0.05584201313189952,'epoch': 37}

Summary 167

After the model is trained on full data using the best set of hyperparameters, we get around 0.609
in F1-score when we test the final neural network model trained on the test data.

In this section, we have learned how to utilize HB as a pruner during the hyperparameter tuning
process with Optuna.

Summary
In this chapter, we have learned all of the important aspects of the Optuna package. We have also
learned how to implement various hyperparameter tuning methods using the help of this package, in
addition to understanding each of the important parameters of the classes and how are they related to
the theory that we have learned in previous chapters. From now on, you should be able to utilize the
packages we have discussed in the last few chapters to implement your chosen hyperparameter tuning
method, and ultimately, boost the performance of your ML model. Equipped with the knowledge
from Chapters 3 - 6, you will also be able to debug your code if there are errors or unexpected results,
and you will be able to craft your own experiment configuration to match your specific problem.

In the next chapter, we will learn about the DEAP and Microsoft NNI packages and how to utilize
them to perform various hyperparameter tuning methods. The goal of the next chapter is similar
to this chapter, which is to be able to utilize the package for hyperparameter tuning purposes and
understand each of the parameters of the implemented classes.

10
Advanced Hyperparameter

Tuning with DEAP and
Microsoft NNI

DEAP and Microsoft NNI are Python packages that provide various hyperparameter tuning methods
that are not implemented in other packages that we have discussed in Chapters 7 – 9. For example,
Genetic Algorithm, Particle Swarm Optimization, Metis, Population-Based Training, and many more.

In this chapter, we’ll learn how to perform hyperparameter tuning using both DEAP and Microsoft
NNI packages, starting from getting ourselves familiar with the packages, along with the important
modules and parameters we need to be aware of. We’ll learn not only how to utilize both DEAP and
Microsoft NNI to perform hyperparameter tuning with their default configurations but also discuss other
available configurations along with their usage. Moreover, we’ll also discuss how the implementation of
the hyperparameter tuning methods is related to the theory that we have learned in previous chapters,
since there may be some minor differences or adjustments made in the implementation.

By the end of this chapter, you will be able to understand all of the important things you need to know
about DEAP and Microsoft NNI and be able to implement various hyperparameter tuning methods
available in these packages. You’ll also be able to understand each of the important parameters of
the classes and how they are related to the theory that we have learned in the previous chapters.
Finally, equipped with the knowledge from previous chapters, you will also be able to understand
what’s happening if there are errors or unexpected results and understand how to set up the method
configuration to match your specific problem.

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI170

The following are the main topics that will be discussed in this chapter:

•	 Introducing DEAP

•	 Implementing the Genetic Algorithm

•	 Implementing Particle Swarm Optimization

•	 Introducing Microsoft NNI

•	 Implementing Grid Search

•	 Implementing Random Search

•	 Implementing Tree-structured Parzen Estimators

•	 Implementing Sequential Model Algorithm Configuration

•	 Implementing Bayesian Optimization Gaussian Process

•	 Implementing Metis

•	 Implementing Simulated Annealing

•	 Implementing Hyper Band

•	 Implementing Bayesian Optimization Hyper Band

•	 Implementing Population-Based Training

Technical requirements
We will learn how to implement various hyperparameter tuning methods with DEAP and Microsoft NNI.
To ensure that you are able to reproduce the code examples in this chapter, you will require the following:

•	 Python 3 (version 3.7 or above)

•	 Installed pandas package (version 1.3.4 or above)

•	 Installed NumPy package (version 1.21.2 or above)

•	 Installed SciPy package (version 1.7.3 or above)

•	 Installed Matplotlib package (version 3.5.0 or above)

•	 Installed scikit-learn package (version 1.0.1 or above)

•	 Installed DEAP package (version 1.3)

•	 Installed Hyperopt package (version 0.1.2)

•	 Installed NNI package (version 2.7)

•	 Installed PyTorch package (version 1.10.0)

Introducing DEAP 171

All of the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/10_
Advanced_Hyperparameter-Tuning-via-DEAP-and-NNI.ipynb.

Introducing DEAP
Distributed Evolutionary Algorithms in Python (DEAP) is a Python package that allows you to
implement various evolutionary algorithms including (but not limited to) the Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO). To install DEAP, you can simply call the pip
install deap command.

DEAP allows you to craft your evolutionary algorithm optimization steps in a very flexible manner.
The following steps show how to utilize DEAP to perform any hyperparameter tuning methods.
More detailed steps, including the code implementation, will be given through various examples in
the upcoming sections:

1.	 Define the type classes through the creator.create() module. These classes are responsible
for defining the type of objects that will be used in the optimization steps.

2.	 Define the initializers along with the hyperparameter space and register them in the base.
Toolbox() container. The initializers are responsible for setting the initial value of the
objects that will be used in the optimization steps.

3.	 Define the operators and register them in the base.Toolbox() container. The operators
refer to the evolutionary tools or genetic operator (see Chapter 5) that need to be defined
as part of the optimization algorithm. For example, the selection, crossover, and mutation
operators in the Genetic Algorithm.

4.	 Define the objective function and register it in the base.Toolbox() container.

5.	 Define your own hyperparameter tuning algorithm function.

6.	 Perform hyperparameter tuning by calling the defined function in step 5.

7.	 Train the model on full training data using the best set of hyperparameters found.

8.	 Test the final trained model on the test data.

The type classes refer to the type of objects used in the optimization steps. These type classes are
inherited from the base classes implemented in DEAP. For example, we can define the type of our
fitness function as the following:

from deap import base, creator

creator.create("FitnessMax", base.Fitness, weights=(1.0,))

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/10_Advanced_Hyperparameter-Tuning-via-DEAP-and-NNI.ipynb
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/10_Advanced_Hyperparameter-Tuning-via-DEAP-and-NNI.ipynb
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/10_Advanced_Hyperparameter-Tuning-via-DEAP-and-NNI.ipynb

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI172

The base.Fitness class is a base abstract class implemented in DEAP that can be utilized to define
our own fitness function type. It expects a weights parameter to understand the type of optimization
problem we are working on. If it’s a maximization problem, then we have to put a positive weight
and the other way around for a minimization problem. Notice that it expects a tuple data structure
instead of a float. This is because DEAP also allows us to work with a multi-objective optimization
problem. So, if we pass (1.0, -1.0) to the weights parameter, it means we have two objective
functions where we want to maximize the first one and minimize the second one with equal weight.

The creator.create() function is responsible for creating a new class based on the base class. In
the preceding code, we created the type class for our objective function with the name “FitnessMax”.
This creator.create() function expects at least two parameters: specifically, the name of the
newly created class and the base class itself. The rest of the parameters passed to this function will be
treated as the attributes for this newly created class. Besides defining the type of the objective function,
we can also define the type of individuals in the evolutionary algorithm that will be performed. The
following code shows how to create the type of individuals inherited from the built-in list data
structure in Python that has fitness as its attribute:

creator.create("Individual", list, fitness=creator.FitnessMax)

Note that the fitness attribute has a type of creator.FitnessMax, which is the type that
we just created in the preceding code.

Types Definition in DEAP
There are a lot of ways to define type classes in DEAP. While we have discussed the most
straightforward and, arguably, most used type class, you may find other cases that need other
definitions of type class. For more information on how to define other types in DEAP, please
refer to the official documentation (https://deap.readthedocs.io/en/master/
tutorials/basic/part1.html).

Once we have finished defining the type of objects that will be used in the optimization steps, we
now need to initiate the value of those objects using the initializers and register them in the base.
Toolbox() container. You can think of this module as a box or container of initializers and other
tools that will be utilized during the optimization steps. The following code shows how we can set the
random initial values for individuals:

import random

from deap import tools

toolbox = base.Toolbox()

toolbox.register("individual",tools.initRepeat,creator.
Individual,

 random.random, n=10)

https://deap.readthedocs.io/en/master/tutorials/basic/part1.html
https://deap.readthedocs.io/en/master/tutorials/basic/part1.html

Introducing DEAP 173

The preceding code shows an example of how to register the "individual" object in the base.
Toolbox() container, where each individual has a size of 10. The individual is generated by
repeatedly calling the random.random method 10 times. Note that, in the hyperparameter tuning
setup, the size of 10 of each individual actually refers to the number of the hyperparameters we have
in the space. The following shows the output of calling the registered individual via the toolbox.
individual() method:

[0.30752039354315985,0.2491982746819209,0.8423374678316783,0.34
01579175109981,0.7699302429041264,0.046433183902334974,0.52870
19598616896,0.28081693679292696,0.9562244184741888,0.000845070
1833065954]

As you can see, the output of toolbox.individual() is just a list of 10 random values since
we’ve defined creator.Individual to inherit from the built-in list data structure in
Python. Furthermore, we also called tools.initRepeat when registering the individual with
the random.random method by 10 times.

You may now wonder, how do you define the actual hyperparameter space using this toolbox.
register() method? Initiating a bunch of random values definitely doesn’t make any sense. We
need to know the way to define the hyperparameter space that will be equipped for each individual.
To do that, we can actually utilize another tool provided by DEAP, tools.InitCycle.

Where tools.initRepeat will just call the provided function n times, in our previous
example, the provided function is random.random. Here, tools.InitCycle expects a list
of functions and will call those functions for n cycles. The following code shows an example to define
the hyperparameter space that will be equipped for each individual:

1.	 We need to first register each of the hyperparameters that we have in the space along with
their distribution. Note that we can pass all of the required parameters to the sampling
distribution function to toolbox.register() as well. For example, here, we pass the
a=0,b=0.5,loc=0.005,scale=0.01 parameters of the truncnorm.rvs() method:

from scipy.stats import randint,truncnorm,uniform

toolbox.register(“param_1”, randint.rvs, 5, 200)

toolbox.register(“param_2”, truncnorm.rvs, 0, 0.5, 0.005,
0.01)

toolbox.register(“param_3”, uniform.rvs, 0, 1)

2.	 Once we have registered each hyperparameter we have, we can register the individual by utilizing
tools.initCycle with only one cycle of repetition:

toolbox.register(“individual”,tools.initCycle,creator.
Individual,

 (

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI174

 toolbox.param_1,

 toolbox.param_2,

 toolbox.param_3

),

 n=1,

)

The following shows the output of calling the registered individual via the toolbox.
individual() method:

[172, 0.005840196235159121, 0.37250162585120816]

3.	 Once we have registered the individual in our toolbox, registering a population is very simple.
We just need to utilize the tools.initRepeat module and pass the defined toolbox.
individual as the argument. The following code shows how to register a population in
general. Note that, here, the population is just a list of five individuals defined previously:

toolbox.register(“population”, tools.initRepeat, list,
toolbox.individual, n=5)

The following shows the output when calling the toolbox.population() method:

[[168, 0.009384417146554462, 0.4732188841620628],

[7, 0.009356636359759574, 0.6722125618177741],

[126, 0.00927973696427319, 0.7417964302134438],

[88, 0.008112369078803545, 0.4917555243983919],

[34, 0.008615337472475908, 0.9164442190622125]]

As mentioned previously, the base.Toolbox() container is responsible for storing not only
initializers but also other tools that will be utilized during the optimization steps. Another important
building block for an evolutionary algorithm, such as the GA, is the genetic operator. Fortunately,
DEAP already implemented various genetic operators that we can utilize via the tools module. The
following code shows an example of how to register the selection, crossover, and mutation operators
for the GA (see Chapter 5):

selection strategy

toolbox.register("select", tools.selTournament, tournsize=3)

crossover strategy

toolbox.register("mate", tools.cxBlend, alpha=0.5)

mutation strategy

toolbox.register("mutate", tools.mutPolynomialBounded, eta =
0.1, low=-2, up=2, indpb=0.15)

Introducing DEAP 175

The tools.selTournament selection strategy works by selecting the best individuals among
tournsize randomly chosen individuals, NPOP times, where tournsize is the number of
individuals participating in the tournament and NPOP is the number of individuals in the population.
The tools.cxBlend crossover strategy works by performing a linear combination between two
continuous individual genes, where the weight for the linear combination is governed by the alpha
hyperparameter. The tools.mutPolynomialBounded mutation strategy works by passing
continuous individual genes to a pre-defined polynomial mapping.

Evolutionary Tools in DEAP
There are various built-in evolutionary tools implemented in DEAP that we can utilize for our
own needs, starting from initializers, crossover, mutation, selection, and migration tools. For
more information regarding the implemented tools, please refer to the official documentation
(https://deap.readthedocs.io/en/master/api/tools.html).

To register the pre-defined objective function to the toolbox, we can just simply call the same
toolbox.register() method and pass the objective function, as the following code shows:

toolbox.register("evaluate", obj_func)

Here, obj_func is a Python function that expects to receive the individual object defined
previously. We will see how to create such an objective function and how to define our own hyperparameter
tuning algorithm function in the upcoming sections when we discuss how to implement the GA and
PSO in DEAP.

DEAP also allows us to utilize our parallel computing resources when calling the objective function.
To do that, we can simply need to register the multiprocessing module to the toolbox as
the following:

import multiprocessing

pool = multiprocessing.Pool()

toolbox.register("map", pool.map)

Once we have registered the multiprocessing module, we can simply apply this when calling
the objective function, as shown in the following code:

fitnesses = toolbox.map(toolbox.evaluate, individual)

In this section, we have discussed the DEAP package and its building blocks. You may wonder how
to construct a real hyperparameter tuning method using all of the building blocks provided by DEAP.
Worry no more; in the upcoming two sections, we will learn how to utilize all of the discussed building
blocks to perform hyperparameter tuning with the GA and PSO methods.

https://deap.readthedocs.io/en/master/api/tools.html

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI176

Implementing the Genetic Algorithm
GA is one of the variants of the Heuristic Search hyperparameter tuning group (see Chapter 5) that
can be implemented by the DEAP package. To show you how we can implement GA with the DEAP
package, let’s use the Random Forest classifier model and the same data as in the examples in Chapter
7. The dataset used in this example is the Banking Dataset – Marketing Targets dataset provided on
Kaggle (https://www.kaggle.com/datasets/prakharrathi25/banking-
dataset-marketing-targets).

The target variable consists of two classes, yes or no, indicating whether the client of the bank has
subscribed to a term deposit or not. Hence, the goal of training an ML model on this dataset is to
identify whether a customer is potentially wanting to subscribe to the term deposit or not. Out of the
16 features provided in the data, there are seven numerical features and nine categorical features. As
for the target class distribution, 12% of them are yes and 88% of them are no, for both train and test
datasets. For more detailed information about the data, please refer to Chapter 7.

Before performing the GA, let’s see how the Random Forest classifier with default hyperparameters
values works. As shown in Chapter 7, we get around 0.436 in the F1-score when evaluating the
Random Forest classifier with default hyperparameter values on the test set. Note that we’re still
using the same scikit-learn pipeline definition to train and evaluate the Random Forest classifier, as
explained in Chapter 7.

The following code shows how to implement the GA with the DEAP package. You can find the more
detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Define the GA parameters and type classes through the creator.create() module:

GA Parameters

NPOP = 50 #population size

NGEN = 15 #number of trials

CXPB = 0.5 #cross-over probability

MUTPB = 0.2 #mutation probability

Fix the seed for reproducibility:

import random

random.seed(1)

Define the type of our fitness function. Here, we are working with a maximization problem
and a single objective function, that’s why we set weights=(1.0,):

from deap import creator, base

creator.create(“FitnessMax”, base.Fitness,
weights=(1.0,))

https://www.kaggle.com/datasets/prakharrathi25/banking-dataset-marketing-targets
https://www.kaggle.com/datasets/prakharrathi25/banking-dataset-marketing-targets

Implementing the Genetic Algorithm 177

Define the type of individuals inherited from the built-in list data structure in Python
that has fitness as its attribute:

creator.create(“Individual”, list, fitness=creator.
FitnessMax)

2.	 Define the initializers along with the hyperparameter space and register them in the base.
Toolbox() container.

Initialize the toolbox:

toolbox = base.Toolbox()

Define the naming of the hyperparameters:

PARAM_NAMES = [“model__n_estimators”,”model__criterion”,

 “model__class_weight”,”model__min_samples_
split”

Register each of the hyperparameters that we have in the space along with their distribution:

from scipy.stats import randint,truncnorm

toolbox.register(“model__n_estimators”, randint.rvs, 5,
200)

toolbox.register(“model__criterion”, random.choice,
[“gini”, “entropy”])

toolbox.register(“model__class_weight”, random.choice,
[“balanced”,”balanced_subsample”])

toolbox.register(“model__min_samples_split”, truncnorm.
rvs, 0, 0.5, 0.005, 0.01)

Register the individual by utilizing tools.initCycle with only one cycle of repetition:

from deap import tools

toolbox.register(

 “individual”,

 tools.initCycle,

 creator.Individual,

 (

 toolbox.model__n_estimators,

 toolbox.model__criterion,

 toolbox.model__class_weight,

 toolbox.model__min_samples_split,

),

)

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI178

Register the population:

toolbox.register(“population”, tools.initRepeat, list,
toolbox.individual)

3.	 Define the operators and register them in the base.Toolbox() container.

Register the selection strategy:

toolbox.register(“select”, tools.selTournament,
tournsize=3)

Register the cross-over strategy:

toolbox.register(“mate”, tools.cxUniform, indpb=CXPB)

Define a custom mutation strategy. Note that all of the implemented mutation strategies in
DEAP are not really suitable for hyperparameter tuning purposes since they can only be
utilized for floating or binary values, while most of the time, our hyperparameter space will
be a combination of real and discrete hyperparameters. The following function shows how
to implement such a custom mutation strategy. You can follow the same structure to suit
your own need:

def mutPolynomialBoundedMix(individual, eta, low, up, is_
int, indpb, discrete_params):

 for i in range(len(individual)):

 if discrete_params[i]:

 if random.random() < indpb:

 individual[i] = random.choice(discrete_
params[i])

 else:

 individual[i] = tools.
mutPolynomialBounded([individual[i]],

eta[i], low[i], up[i], indpb)[0][0]

 if is_int[i]:

 individual[i] = int(individual[i])

 return individual,

Implementing the Genetic Algorithm 179

Register the custom mutation strategy:

toolbox.register(“mutate”, mutPolynomialBoundedMix,

 eta = [0.1,None,None,0.1],

 low = [5,None,None,0],

 up = [200,None,None,1],

 is_int = [True,False,False,False],

 indpb=MUTPB,

 discrete_params=[[],[“gini”,
“entropy”],[“balanced”,”balanced_subsample”],[]]

)

4.	 Define the objective function and register it in the base.Toolbox() container:

def evaluate(individual):

 # convert list of parameter values into dictionary of
kwargs

 strategy_params = {k: v for k, v in zip(PARAM_NAMES,
individual)}

 if strategy_params['model__min_samples_split'] > 1 or
strategy_params['model__min_samples_split'] <= 0:

 return [-np.inf]

 tuned_pipe = clone(pipe).set_params(**strategy_
params)

 return [np.mean(cross_val_score(tuned_pipe,X_train_
full, y_train, cv=5, scoring='f1',))]

Register the objective function:

toolbox.register(“evaluate”, evaluate)

5.	 Define the Genetic Algorithm with parallel processing:

import multiprocessing

import numpy as np

Register the multiprocessing module:

pool = multiprocessing.Pool(16)

toolbox.register(“map”, pool.map)

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI180

Define empty arrays to store the best and average values of objective function scores in
each trial:

mean = np.ndarray(NGEN)

best = np.ndarray(NGEN)

Define a HallOfFame class that is responsible for storing the latest best individual (set of
hyperparameters) in the population:

hall_of_fame = tools.HallOfFame(maxsize=3)

Define the initial population:

pop = toolbox.population(n=NPOP)

Start the GA iterations:

for g in range(NGEN):

Select the next generation individuals/children/offspring.

 offspring = toolbox.select(pop, len(pop))

Clone the selected individuals.

 offspring = list(map(toolbox.clone, offspring))

Apply crossover on the offspring.

 for child1, child2 in zip(offspring[::2],
offspring[1::2]):

 if random.random() < CXPB:

 toolbox.mate(child1, child2)

 del child1.fitness.values

 del child2.fitness.values

Apply mutation on the offspring.

 for mutant in offspring:

 if random.random() < MUTPB:

 toolbox.mutate(mutant)

 del mutant.fitness.values

Evaluate the individuals with an invalid fitness.

 invalid_ind = [ind for ind in offspring if not ind.
fitness.valid]

 fitnesses = toolbox.map(toolbox.evaluate, invalid_
ind)

 for ind, fit in zip(invalid_ind, fitnesses):

Implementing the Genetic Algorithm 181

 ind.fitness.values = fit

The population is entirely replaced by the offspring.

 pop[:] = offspring

 hall_of_fame.update(pop)

 fitnesses = [

 ind.fitness.values[0] for ind in pop if not
np.isinf(ind.fitness.values[0])

]

 mean[g] = np.mean(fitnesses)

 best[g] = np.max(fitnesses)

6.	 Perform hyperparameter tuning by running the defined algorithm in step 5. After running the
GA, we can get the best set of hyperparameters based on the following code:

params = {}

for idx_hof, param_name in enumerate(PARAM_NAMES):

 params[param_name] = hall_of_fame[0][idx_hof]

print(params)

Based on the preceding code, we get the following results:

{'model__n_estimators': 101,

'model__criterion': 'entropy',

'model__class_weight': 'balanced',

'model__min_samples_split': 0.0007106340458649385}

We can also plot the trial history or the convergence plot based on the following code:

import matplotlib.pyplot as plt

import seaborn as sns

sns.set()

fig, ax = plt.subplots(sharex=True, figsize=(8, 6))

sns.lineplot(x=range(NGEN), y=mean, ax=ax, label=”Average
Fitness Score”)

sns.lineplot(x=range(NGEN), y=best, ax=ax, label=”Best
Fitness Score”)

ax.set_title(“Fitness Score”,size=20)

ax.set_xticks(range(NGEN))

ax.set_xlabel(“Iteration”)

plt.tight_layout()

plt.show()

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI182

Based on the preceding code, the following figure is generated. As you can see, the objective
function score or the fitness score is increasing throughout the number of trials since the
population is updated with the improved individuals:

Figure 10.1 – Genetic Algorithm convergence plot

7.	 Train the model on full training data using the best set of hyperparameters found:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**params)

tuned_pipe.fit(X_train_full,y_train)

8.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.608 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement the GA with the DEAP package, starting from
defining the necessary objects and defining the GA procedures with parallel processing and custom
mutation strategy, until plotting the history of the trials and testing the best set of hyperparameters
in the test set. In the next section, we will learn how to implement the PSO hyperparameter tuning
method with the DEAP package.

Implementing Particle Swarm Optimization 183

Implementing Particle Swarm Optimization
PSO is also one of the variants of the Heuristic Search hyperparameter tuning group (see Chapter 5)
that can be implemented by the DEAP package. We’ll still use the same example as in the previous
section to see how we can implement PSO using the DEAP package.

The following code shows how to implement PSO with the DEAP package. You can find the more
detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Define the PSO parameters and type classes through the creator.create() module:

N = 50 #swarm size

w = 0.5 #inertia weight coefficient

c1 = 0.3 #cognitive coefficient

c2 = 0.5 #social coefficient

num_trials = 15 #number of trials

Fix the seed for reproducibility:

import random

random.seed(1)

Define the type of our fitness function. Here, we are working with a maximization problem
and a single objective function, which is why we set weights=(1.0,):

from deap import creator, base

creator.create(“FitnessMax”, base.Fitness,
weights=(1.0,))

Define the type of particles inherited from the built-in list data structure in Python that
has fitness, speed, smin, smax, and best as its attribute. These attributes will be
utilized later on when updating each particle’s position (see Chapter 5):

creator.create(“Particle”, list, fitness=creator.
FitnessMax,

 speed=list, smin=list, smax=list,
best=None)

2.	 Define the initializers along with the hyperparameter space and register them in the base.
Toolbox() container.

Initialize the toolbox:

toolbox = base.Toolbox()

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI184

Define the naming of the hyperparameters:

PARAM_NAMES = [“model__n_estimators”,”model__criterion”,

 “model__class_weight”,”model__min_samples_
split”

Register each of the hyperparameters that we have in the space along with their distribution.
Remember that PSO only works with the numerical type hyperparameters. That’s why
we encode the "model__criterion" and "model__class_weight"
hyperparameters to integers:

from scipy.stats import randint,truncnorm

toolbox.register(“model__n_estimators”, randint.rvs, 5,
200)

toolbox.register(“model__criterion”, random.choice,
[0,1])

toolbox.register(“model__class_weight”, random.choice,
[0,1])

toolbox.register(“model__min_samples_split”, truncnorm.
rvs, 0, 0.5, 0.005, 0.01)

Register the individual by utilizing tools.initCycle with only one cycle of repetition.
Note that we need to also assign the speed, smin, and smax values to each individual. To
do that, let’s just define a function called generate:

from deap import tools

def generate(speed_bound):

 part = tools.initCycle(creator.Particle,

 [toolbox.model__n_estimators,

 toolbox.model__criterion,

 toolbox.model__class_weight,

 toolbox.model__min_samples_
split,

]

)

 part.speed = [random.uniform(speed_bound[i]['smin'],
speed_bound[i]['smax']) for i in range(len(part))]

 part.smin = [speed_bound[i]['smin'] for i in
range(len(part))]

 part.smax = [speed_bound[i]['smax'] for i in
range(len(part))]

 return part

Implementing Particle Swarm Optimization 185

Register the individual:

toolbox.register(“particle”, generate,

 speed_bound=[{'smin': -2.5,'smax': 2.5},

 {'smin': -1,'smax': 1},

 {'smin': -1,'smax': 1},

 {'smin': -0.001,'smax':
0.001}])

Register the population:

toolbox.register(“population”, tools.initRepeat, list,
toolbox.particle)

3.	 Define the operators and register them in the base.Toolbox() container. The main operator
in PSO is the particle’s position update operator, which is defined in the updateParticle
function as follows:

import operator

import math

def updateParticle(part, best, c1, c2, w, is_int):

 w = [w for _ in range(len(part))]

 u1 = (random.uniform(0, 1)*c1 for _ in
range(len(part)))

 u2 = (random.uniform(0, 1)*c2 for _ in
range(len(part)))

 v_u1 = map(operator.mul, u1, map(operator.sub, part.
best, part))

 v_u2 = map(operator.mul, u2, map(operator.sub, best,
part))

 part.speed = list(map(operator.add, map(operator.mul,
w, part.speed), map(operator.add, v_u1, v_u2)))

 for i, speed in enumerate(part.speed):

 if abs(speed) < part.smin[i]:

 part.speed[i] = math.copysign(part.smin[i],
speed)

 elif abs(speed) > part.smax[i]:

 part.speed[i] = math.copysign(part.smax[i],
speed)

 part[:] = list(map(operator.add, part, part.speed))

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI186

 for i, pos in enumerate(part):

 if is_int[i]:

 part[i] = int(pos)

Register the operator. Note that the is_int attribute is responsible for marking which
hyperparameter has an integer type of value:

toolbox.register(“update”, updateParticle, c1=c1, c2=c2,
w=w,

 is_int=[True,True,True,False]

)

4.	 Define the objective function and register it in the base.Toolbox() container. Note
that we also decode the "model__criterion" and "model__class_weight"
hyperparameters within the objective function:

def evaluate(particle):

 # convert list of parameter values into dictionary of
kwargs

 strategy_params = {k: v for k, v in zip(PARAM_NAMES,
particle)}

 strategy_params[“model__criterion”] = “gini” if
strategy_params[“model__criterion”]==0 else “entropy”

 strategy_params[“model__class_weight”] = “balanced”
if strategy_params[“model__class_weight”]==0 else
“balanced_subsample”

 if strategy_params['model__min_samples_split'] > 1 or
strategy_params['model__min_samples_split'] <= 0:

 return [-np.inf]

 tuned_pipe = clone(pipe).set_params(**strategy_
params)

 return [np.mean(cross_val_score(tuned_pipe,X_train_
full, y_train, cv=5, scoring='f1',))]

Register the objective function:

toolbox.register(“evaluate”, evaluate)

Implementing Particle Swarm Optimization 187

5.	 Define PSO with parallel processing:

import multiprocessing

import numpy as np

Register the multiprocessing module:

pool = multiprocessing.Pool(16)

toolbox.register(“map”, pool.map)

Define empty arrays to store the best and average values of objective function scores in each
trial:

mean_arr = np.ndarray(num_trials)

best_arr = np.ndarray(num_trials)

Define a HallOfFame class that is responsible for storing the latest best individual (set of
hyperparameters) in the population:

hall_of_fame = tools.HallOfFame(maxsize=3)

Define the initial population:

pop = toolbox.population(n=NPOP)

Start the PSO iterations:

best = None

for g in range(num_trials):

 fitnesses = toolbox.map(toolbox.evaluate, pop)

 for part, fit in zip(pop, fitnesses):

 part.fitness.values = fit

 if not part.best or part.fitness.values > part.
best.fitness.values:

 part.best = creator.Particle(part)

 part.best.fitness.values = part.fitness.
values

 if not best or part.fitness.values > best.
fitness.values:

 best = creator.Particle(part)

 best.fitness.values = part.fitness.values

 for part in pop:

 toolbox.update(part, best)

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI188

 hall_of_fame.update(pop)

 fitnesses = [

 ind.fitness.values[0] for ind in pop if not
np.isinf(ind.fitness.values[0])

]

 mean_arr[g] = np.mean(fitnesses)

 best_arr[g] = np.max(fitnesses)

6.	 Perform hyperparameter tuning by running the algorithm defined in step 5. After running PSO,
we can get the best set of hyperparameters based on the following code. Note that we need to
decode the "model__criterion" and "model__class_weight" hyperparameters
before passing them to the final model:

params = {}

for idx_hof, param_name in enumerate(PARAM_NAMES):

 if param_name == “model__criterion”:

 params[param_name] = “gini” if hall_of_fame[0]
[idx_hof]==0 else “entropy”

 elif param_name == “model__class_weight”:

 params[param_name] = “balanced” if hall_of_
fame[0][idx_hof]==0 else “balanced_subsample”

 else:

 params[param_name] = hall_of_fame[0][idx_hof]

print(params)

Based on the preceding code, we get the following results:

{'model__n_estimators': 75,

'model__criterion': 'entropy',

'model__class_weight': 'balanced',

'model__min_samples_split': 0.0037241038302412493}

7.	 Train the model on full training data using the best set of hyperparameters found:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**params)

tuned_pipe.fit(X_train_full,y_train)

Introducing Microsoft NNI 189

8.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.569 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement PSO with the DEAP package, starting from
defining the necessary objects, encoding the categorical hyperparameter to integers, and defining
the optimization procedures with parallel processing, until testing the best set of hyperparameters in
the test set. In the next section, we will start learning about another hyperparameter tuning package
called NNI, which is developed by Microsoft.

Introducing Microsoft NNI
Neural Network Intelligence (NNI) is a package that is developed by Microsoft and can be utilized
not only for hyperparameter tuning tasks but also for neural architecture search, model compression,
and feature engineering. In this section, we will discuss how to utilize NNI specifically for the
hyperparameter tuning task. To install NNI, you can simply call the pip install nni command.

Although NNI refers to Neural Network Intelligence, it actually supports numerous ML frameworks
including (but not limited to) scikit-learn, XGBoost, LightGBM, PyTorch, TensorFlow, Caffe2, and MXNet.

There are numerous hyperparameter tuning methods implemented in NNI; some of them are built-in
and others are wrapped from other packages such as Hyperopt (see Chapter 8) and SMAC3. Here,
in NNI, the hyperparameter tuning methods are referred to as tuners. We will not discuss all of the
tuners implemented in NNI since there are too many of them. We will only discuss the tuners that have
been discussed in Chapters 3 – 6. Apart from tuners, some of the hyperparameter tuning methods,
such as Hyper Band and BOHB, are treated as advisors in NNI.

Available Tuners in NNI
To see all of the available tuners in NNI, please refer to the official documentation page
(https://nni.readthedocs.io/en/stable/hpo/tuners.html).

Unlike other hyperparameter tuning packages that we have discussed so far, in NNI, we have to
prepare a Python script containing the model definition before being able to run the hyperparameter
tuning process from the notebook. Furthermore, NNI also allows us to run the hyperparameter tuning
experiment from the command-line tool where we need to define several other additional files to
store the hyperparameter space information and other configurations.

https://nni.readthedocs.io/en/stable/hpo/tuners.html

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI190

The following steps show how we can perform any hyperparameter tuning procedure with NNI with
pure Python code:

1.	 Prepare the model to be tuned in a script, for example, model.py. This script should include
the model architecture definition, dataset loading function, training function, and testing
function. It also has to include three NNI API calls, as follows:

	� nni.get_next_parameter() is responsible for collecting the hyperparameters to
be evaluated in a particular trial.

	� nni.report_intermediate_result() is responsible for reporting the evaluation
metric within each training iteration (epoch or steps). Note that this API call is not mandatory;
if you can’t get the intermediate evaluation metric from your ML framework, then this API
call is not required.

	� nni.report_final_result() is responsible for reporting the final evaluation
metric score after the training process is finished.

2.	 Define the hyperparameter space. NNI expects the hyperparameter space is in the form of
a Python dictionary, where the first-level keys store the names of the hyperparameters. The
second-level keys store the types of the sampling distribution and the hyperparameter values
range. The following shows an example of how to define the hyperparameter space in the
expected format:

hyperparameter_space = {

 ' n_estimators ': {'_type': 'randint', '_value': [5,
200]},

 ' criterion ': {'_type': 'choice', '_value': ['gini',
'entropy']},

 ' min_samples_split ': {'_type': 'uniform', '_value':
[0, 0.1]},

}

More Information on NNI
For more information regarding the supported sampling distributions in NNI, please refer to
the official documentation (https://nni.readthedocs.io/en/latest/hpo/
search_space.html).

3.	 Next, we need to set up the experiment configurations via the Experiment class. The
following shows steps to set up several configurations before we can run the hyperparameter
tuning process.

https://nni.readthedocs.io/en/latest/hpo/search_space.html
https://nni.readthedocs.io/en/latest/hpo/search_space.html

Introducing Microsoft NNI 191

Load the Experiment class. Here, we are using the 'local' experiment mode,
which means all the training and hyperparameter tuning processes will be done only on
our local computer. NNI allows us to run the training procedures in various platforms,
including (but not limited to) Azure Machine Learning (AML), Kubeflow, and OpenAPI.
For more information, please refer to the official documentation (https://nni.
readthedocs.io/en/latest/reference/experiment_config.html):

from nni.experiment import Experiment

experiment = Experiment('local')

Set up the trial code configuration. Here, we need to specify the command to run the
defined script in step 1 and the relative path to the script. The following shows an example of
how to set up the trial code configuration:

experiment.config.trial_command = 'python model.py'

experiment.config.trial_code_directory = '.'

Set up the hyperparameter space configuration. To set up the hyperparameter space
configuration, we simply need to pass the defined hyperparameter space in step 2. The
following code shows how to do that:

experiment.config.search_space = hyperparameter_space

Set up the hyperparameter tuning algorithm to be utilized. The following shows an example
of how to use TPE as the hyperparameter tuning algorithm on a maximization problem:

experiment.config.tuner.name = 'TPE'

experiment.config.tuner.class_args['optimize_mode'] =
'maximize'

Set up the number of trials and concurrent processes. NNI allows us to set how many
numbers of hyperparameter sets are to be evaluated concurrently at a single time. The
following code shows an example of how to set the number of trials to 50, where five sets
will be evaluated concurrently at a particular time:

experiment.config.max_trial_number = 50

experiment.config.trial_concurrency = 5

It is worth noting that NNI also allows you to define the stopping criterion based on the
time duration instead of the number of trials. The following code shows how you can set the
limit of the experiment time to 1 hour:

experiment.config.max_experiment_duration = '1h'

If you don’t provide both max_trial_number and max_experiment_duration,
then the experiment will run forever until you forcefully stop it via the Ctrl + C command.

https://nni.readthedocs.io/en/latest/reference/experiment_config.html
https://nni.readthedocs.io/en/latest/reference/experiment_config.html

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI192

4.	 Run the hyperparameter tuning experiment. To run the experiment, we can simply call the
run method on the Experiment class. Here, we have to also choose what port to be used.
We can see the experiment status and various interesting stats via the launched web portal.
The following code shows how to run the experiment on port 8080 in local, meaning you
can open the web portal on http://localhost:8080:

experiment.run(8080)

There are two available Boolean parameters for the run method, namely wait_
completion and debug. When we set wait_completion=True, we can’t run
other cells in the notebook until the experiment is done or some errors are found. The
debug parameter enables us to choose whether we want to start the experiment in debug
mode or not.

5.	 Train the model on full training data using the best set of hyperparameters found.

6.	 Test the final trained model on the test data.

NNI Web Portal
For more information regarding features available in the web portal, please refer to the official
documentation (https://nni.readthedocs.io/en/stable/experiment/
web_portal/web_portal.html). Note that we will discuss the web portal more in
Chapter 13, Tracking Hyperparameter Tuning Experiments.

If you prefer to work with the command-line tool, the following steps show how to perform any
hyperparameter tuning procedure with NNI with the command-line tool, JSON, and YAML config files:

1.	 Prepare the model to be tuned in a script. This step is exactly the same as the previous procedure
to perform hyperparameter tuning with NNI with pure Python code.

2.	 Define the hyperparameter space. The expected format of the hyperparameter space is exactly
the same as in the procedure on how to perform any hyperparameter tuning procedure with
NNI with pure Python code. However, here, we need to store the Python dictionary within a
JSON file, for example, hyperparameter_space.json.

3.	 Set up the experiment configurations via the config.yaml file. The configurations that
need to be set up are basically the same as in the procedure with NNI with pure Python code.
However, instead of configuring the experiment via a Python class, here, we store all of the
configuration details in a single YAML file. The following shows an example of what the YAML
file will look like:

https://nni.readthedocs.io/en/stable/experiment/web_portal/web_portal.html
https://nni.readthedocs.io/en/stable/experiment/web_portal/web_portal.html

Introducing Microsoft NNI 193

searchSpaceFile: hyperparameter_space.json

trial_command: python model.py

trial_code_directory: .

trial_concurrency: 5

max_trial_number: 50

tuner:

 name: TPE

 class_args:

 optimize_mode: maximize

training_service:

 platform: local

4.	 Run the hyperparameter tuning experiment. To run the experiment, we can simply call the
nnictl create command. The following code shows how to use the command to run
the experiment on port 8080 in local:

nnictl create --config config.yaml --port 8080

When the experiment is done, you can easily stop the process via the nnictl stop
command.

5.	 Train the model on full training data using the best set of hyperparameters found.

6.	 Test the final trained model on the test data.

Examples for Various ML Frameworks
You can find all of the examples to perform hyperparameter tuning via NNI using your favorite
ML frameworks in the official documentation (https://github.com/microsoft/
nni/tree/master/examples/trials).

scikit-nni
There is also a package called scikit-nni, which will automatically generate the required
config.yml and search-space.json and build the scikit-learn pipelines
based on your own custom needs. Please refer to the official repository for further information
about this package (https://github.com/ksachdeva/scikit-nni).

https://github.com/microsoft/nni/tree/master/examples/trials
https://github.com/microsoft/nni/tree/master/examples/trials
https://github.com/ksachdeva/scikit-nni

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI194

Besides tuners or hyperparameter tuning algorithms, NNI also provides assessors that can be utilized.
Assessors are basically early stopping modules that can be used to control the hyperparameter tuning
experiment when there’s a sign that we may not need to finish the whole experiment trials. Assessors
can only be utilized when we provide the intermediate results to NNI via the nni.report_
intermediate_result() API call. There are only two built-in assessors in NNI: median stop
and curve fitting. The first assessor will stop the experiment whenever a hyperparameter set performs
worse than the median at any step. The latter assessor will stop the experiment if the learning curve
is likely to converge to a suboptimal result.

Setting up an assessor in NNI is very straightforward. You can simply add the configuration on the
Experiment class or within the config.yaml file. The following code shows how to configure
the median stop assessor on the Experiment class:

experiment.config.assessor.name = 'Medianstop'

Custom Algorithms in NNI
NNI also allows us to define our own custom tuners and assessors. To do that, you need to inherit
the base Tuner or Assessor class, write several required functions, and add more details
on the Experiment class or in the config.yaml file. For more information regarding
how to define your own custom tuners and assessors, please refer to the official documentation
(https://nni.readthedocs.io/en/stable/hpo/custom_algorithm.
html).

In this section, we have discussed the NNI package and how to perform hyperparameter tuning
experiments in general. In the upcoming sections, we will learn how to implement various hyperparameter
tuning algorithms using NNI.

Implementing Grid Search
Grid Search is one of the variants of the Exhaustive Search hyperparameter tuning group (see Chapter
3) that the NNI package can implement. To show you how we can implement Grid Search with the
NNI package, let’s use the same data and pipeline as in the examples in the previous section. However,
here, we’ll define a new hyperparameter space since NNI supports only limited types of sampling
distribution.

The following code shows how to implement Grid Search with the NNI package. Here, we’ll use the
NNI command-line tool (nnictl) instead of using pure Python code. You can find the more detailed
code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. Here, we’ll name the script model.py. There
are several functions defined within this script, including load_data, get_default_
parameters, get_model, and run.

https://nni.readthedocs.io/en/stable/hpo/custom_algorithm.html
https://nni.readthedocs.io/en/stable/hpo/custom_algorithm.html

Implementing Grid Search 195

The load_data function loads the original data and splits it into train and test data.
Furthermore, it’s also responsible for returning the lists of numerical and categorical
column names:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from pathlib import Path

def load_data():

 df = pd.read_csv(f”{Path(__file__).parent.parent}/
train.csv”,sep=”;”)

 #Convert the target variable to integer

 df['y'] = df['y'].map({'yes':1,'no':0})

 #Split full data into train and test data

 df_train, df_test = train_test_split(df, test_
size=0.1, random_state=0)

 #Get list of categorical and numerical features

 numerical_feats = list(df_train.drop(columns='y').
select_dtypes(include=np.number).columns)

 categorical_feats = list(df_train.drop(columns='y').
select_dtypes(exclude=np.number).columns)

 X_train = df_train.drop(columns=['y'])

 y_train = df_train['y']

 X_test = df_test.drop(columns=['y'])

 y_test = df_test['y']

 return X_train, X_test, y_train, y_test, numerical_
feats, categorical_feats

The get_default_parameters function returns the default hyperparameter values
used in the experiment:

def get_default_parameters():

 params = {

 'model__n_estimators': 5,

 'model__criterion': 'gini',

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI196

 'model__class_weight': 'balanced',

 'model__min_samples_split': 0.01,

 }

 return params

The get_model function defines the sklearn pipeline used in this example:

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import StandardScaler,
OneHotEncoder

from sklearn.pipeline import Pipeline

from sklearn.ensemble import RandomForestClassifier

def get_model(PARAMS, numerical_feats, categorical_
feats):

Initiate the Normalization Pre-processing for Numerical Features.

 numeric_preprocessor = StandardScaler()

Initiate the One-Hot-Encoding Pre-processing for Categorical Features.

 categorical_preprocessor = OneHotEncoder(handle_
unknown=”ignore”)

Create the ColumnTransformer Class to delegate each preprocessor to the corresponding
features.

 preprocessor = ColumnTransformer(

 transformers=[

 (“num”, numeric_preprocessor, numerical_
feats),

 (“cat”, categorical_preprocessor,
categorical_feats),

]

)

Create a Pipeline of preprocessor and model.

 pipe = Pipeline(

 steps=[(“preprocessor”, preprocessor),

 (“model”, RandomForestClassifier(random_
state=0))]

)

Implementing Grid Search 197

Set hyperparmeter values.

 pipe = pipe.set_params(**PARAMS)

 return pipe

The run function is responsible for training the model and getting the cross-validation score:

import nni

import logging

from sklearn.model_selection import cross_val_score

LOG = logging.getLogger('nni_sklearn')

def run(X_train, y_train, model):

 model.fit(X_train, y_train)

 score = np.mean(cross_val_score(model,X_train, y_
train,

 cv=5, scoring='f1')

)

 LOG.debug('score: %s', score)

 nni.report_final_result(score)

Finally, we can call those functions in the same script:

if __name__ == '__main__':

 X_train, _, y_train, _, numerical_feats, categorical_
feats = load_data()

 try:

 # get parameters from tuner

 RECEIVED_PARAMS = nni.get_next_parameter()

 LOG.debug(RECEIVED_PARAMS)

 PARAMS = get_default_parameters()

 PARAMS.update(RECEIVED_PARAMS)

 LOG.debug(PARAMS)

 model = get_model(PARAMS, numerical_feats,
categorical_feats)

 run(X_train, y_train, model)

 except Exception as exception:

 LOG.exception(exception)

 raise

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI198

2.	 Define the hyperparameter space in a JSON file called hyperparameter_space.json:

{“model__n_estimators”: {“_type”: “randint”, “_value”:
[5, 200]}, “model__criterion”: {“_type”: “choice”, “_
value”: [“gini”, “entropy”]}, “model__class_weight”:
{“_type”: “choice”, “_value”: [“balanced”,”balanced_
subsample”]}, “model__min_samples_split”: {“_type”:
“uniform”, “_value”: [0, 0.1]}}

3.	 Set up the experiment configurations via the config.yaml file:

searchSpaceFile: hyperparameter_space.json

experimentName: nni_sklearn

trial_command: python '/mnt/c/Users/Louis\ Owen/Desktop/
Packt/Hyperparameter-Tuning-with-Python/nni/model.py'

trial_code_directory: .

trial_concurrency: 10

max_trial_number: 100

maxExperimentDuration: 1h

tuner:

 name: GridSearch

training_service:

 platform: local

4.	 Run the hyperparameter tuning experiment. We can see the experiment status and various
interesting stats via the launched web portal. The following code shows how to run the
experiment on port 8080 in local, meaning you can open the web portal on http://
localhost:8080:

nnictl create --config config.yaml --port 8080

5.	 Train the model on full training data using the best set of hyperparameters found. To get the
best set of hyperparameters, you can go to the web portal and see them from the Overview tab.

Based on the experiment results shown in the web portal within the Top trials tab, the
following are the best hyperparameter values found from the experiment. Note that we will
discuss the web portal more in Chapter 13, Tracking Hyperparameter Tuning Experiments:

best_parameters = {

 “model__n_estimators”: 27,

 “model__criterion”: “entropy”,

 “model__class_weight”: “balanced_subsample”,

Implementing Random Search 199

 “model__min_samples_split”: 0.05

}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_parameters)

Fit the pipeline on train data

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.517 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Grid Search with the NNI package via nnictl.
In the next section, we will learn how to implement Random Search with NNI via pure Python code.

Implementing Random Search
Random Search is one of the variants of the Exhaustive Search hyperparameter tuning group (see
Chapter 3) that the NNI package can implement. Let’s use the same data, pipeline, and hyperparameter
space as in the example in the previous section to show you how to implement Random Search with
NNI using pure Python code.

The following code shows how to implement Random Search with the NNI package. Here, we’ll use
pure Python code instead of using nnictl as in the previous section. You can find the more detailed
code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. We’ll use the same model.py script as in the
previous section.

2.	 Define the hyperparameter space in the form of a Python dictionary:

hyperparameter_space = {

 'model__n_estimators': {'_type': 'randint', '_value':
[5, 200]},

 'model__criterion': {'_type': 'choice', '_value':
['gini', 'entropy']},

 'model__class_weight': {'_type': 'choice', '_value':
[“balanced”,”balanced_subsample”]},

 'model__min_samples_split': {'_type': 'uniform', '_

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI200

value': [0, 0.1]},

}

3.	 Set up the experiment configurations via the Experiment class. Note that there is only one
parameter for the Random Search tuner, namely the random seed parameter:

experiment = Experiment('local')

experiment.config.experiment_name = 'nni_sklearn_random_
search'

experiment.config.tuner.name = 'Random'

experiment.config.tuner.class_args['seed'] = 0

Boilerplate code

experiment.config.trial_command = “python '/mnt/c/Users/
Louis\ Owen/Desktop/Packt/Hyperparameter-Tuning-with-
Python/nni/model.py'”

experiment.config.trial_code_directory = '.'

experiment.config.search_space = hyperparameter_space

experiment.config.max_trial_number = 100

experiment.config.trial_concurrency = 10

experiment.config.max_experiment_duration = '1h'

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug =
False)

5.	 Train the model on full training data using the best set of hyperparameters found.

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda
x: x.value, reverse = True)[0]

print(best_trial.parameter)

6.	 Based on the preceding code, we get the following results:

{'model__n_estimators': 194, 'model__criterion':
'entropy', 'model__class_weight': 'balanced_subsample',
'model__min_samples_split': 0.0014706304965369289}

Implementing Tree-structured Parzen Estimators 201

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data

tuned_pipe.fit(X_train_full,y_train)

7.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.597 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Random Search using NNI with pure Python
code. In the next section, we will learn how to implement Tree-structured Parzen Estimators with
NNI via pure Python code.

Implementing Tree-structured Parzen Estimators
Tree-structured Parzen Estimators (TPEs) are one of the variants of the Bayesian Optimization
hyperparameter tuning group (see Chapter 4) that the NNI package can implement. Let’s use the same
data, pipeline, and hyperparameter space as in the example in the previous section to implement TPE
with NNI using pure Python code.

The following code shows how to implement TPE with the NNI package using pure Python code. You can
find the more detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. We’ll use the same model.py script as in the
previous section.

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use the same
hyperparameter space as in the previous section.

3.	 Set up the experiment configurations via the Experiment class. Note that there are three
parameters for the TPE tuner: optimize_mode, seed, and tpe_args. Please refer to the
official documentation page for more information regarding the TPE tuner parameters (https://
nni.readthedocs.io/en/stable/reference/hpo.html#tpe-tuner):

experiment = Experiment('local')

experiment.config.experiment_name = 'nni_sklearn_tpe'

experiment.config.tuner.name = 'TPE'

https://nni.readthedocs.io/en/stable/reference/hpo.html#tpe-tuner
https://nni.readthedocs.io/en/stable/reference/hpo.html#tpe-tuner

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI202

experiment.config.tuner.class_args = {'optimize_mode':
'maximize', 'seed': 0}

Boilerplate code

same with previous section

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug =
False)

5.	 Train the model on full training data using the best set of hyperparameters found.

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda
x: x.value, reverse = True)[0]

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__n_estimators': 195, 'model__criterion':
'entropy', 'model__class_weight': 'balanced_subsample',
'model__min_samples_split': 0.0006636374717157983}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data.

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.618 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement TPE using NNI with pure Python code. In the
next section, we will learn how to implement Sequential Model Algorithm Configuration with NNI
via pure Python code.

Implementing Sequential Model Algorithm Configuration 203

Implementing Sequential Model Algorithm Configuration
Sequential Model Algorithm Configuration (SMAC) is one of the variants of the Bayesian Optimization
hyperparameter tuning group (see Chapter 4) that the NNI package can implement. Note that to
use SMAC in NNI, we need to install additional dependencies using the following command: pip
install "nni[SMAC]". Let’s use the same data, pipeline, and hyperparameter space as in the
example in the previous section to implement SMAC with NNI using pure Python code.

The following code shows how to implement SMAC with the NNI package using pure Python code. You
can find the more detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. We’ll use the same model.py script as in the
previous section.

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use the same
hyperparameter space as in the previous section.

3.	 Set up the experiment configurations via the Experiment class. Note that there are two
parameters for the SMAC tuner: optimize_mode, and config_dedup. Please refer to
the official documentation page for more information regarding the SMAC tuner parameters
(https://nni.readthedocs.io/en/stable/reference/hpo.html#smac-
tuner):

experiment = Experiment('local')

experiment.config.experiment_name = 'nni_sklearn_smac'

experiment.config.tuner.name = 'SMAC'

experiment.config.tuner.class_args['optimize_mode'] =
'maximize'

Boilerplate code

same with previous section

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug =
False)

5.	 Train the model on full training data using the best set of hyperparameters found.

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda
x: x.value, reverse = True)[0]

print(best_trial.parameter)

https://nni.readthedocs.io/en/stable/reference/hpo.html#smac-tuner
https://nni.readthedocs.io/en/stable/reference/hpo.html#smac-tuner

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI204

Based on the preceding code, we get the following results:

{'model__class_weight': 'balanced', 'model__
criterion': 'entropy', 'model__min_samples_split':
0.0005502416428725066, 'model__n_estimators': 199}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.619 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement SMAC using NNI with pure Python code. In the
next section, we will learn how to implement Bayesian Optimization Gaussian Process with NNI via
pure Python code.

Implementing Bayesian Optimization Gaussian Process
Bayesian Optimization Gaussian Process (BOGP) is one of the variants of the Bayesian Optimization
hyperparameter tuning group (see Chapter 4) that the NNI package can implement. Let’s use the same
data, pipeline, and hyperparameter space as in the example in the previous section to implement
BOGP with NNI using pure Python code.

The following code shows how to implement BOGP with the NNI package using pure Python code. You
can find the more detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. Here, we’ll use a new script called model_numeric.
py. In this script, we add a mapping for non-numeric hyperparameters since BOGP can only
work with numerical hyperparameters:

non_numeric_mapping = params = {

 'model__criterion': ['gini','entropy'],

 'model__class_weight': ['balanced','balanced_
subsample'],

 }

Implementing Bayesian Optimization Gaussian Process 205

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use a similar
hyperparameter space as in the previous section with the only difference on the non-numeric
hyperparameters. Here, all of the non-numeric hyperparameters are encoded into integer
types of values:

hyperparameter_space_numeric = {

 'model__n_estimators': {'_type': 'randint', '_value':
[5, 200]},

 'model__criterion': {'_type': 'choice', '_value': [0,
1]},

 'model__class_weight': {'_type': 'choice', '_value':
[0, 1]},

 'model__min_samples_split': {'_type': 'uniform', '_
value': [0, 0.1]},

}

3.	 Set up the experiment configurations via the Experiment class. Note that there are nine
parameters for the BOGP tuner: optimize_mode, utility, kappa, xi, nu, alpha,
cold_start_num, selection_num_warm_up, and selection_num_starting_
points. Please refer to the official documentation page for more information regarding
the BOGP tuner parameters (https://nni.readthedocs.io/en/stable/
reference/hpo.html#gp-tuner):

experiment = Experiment('local')

experiment.config.experiment_name = 'nni_sklearn_bogp'

experiment.config.tuner.name = 'GPTuner'

experiment.config.tuner.class_args = {

'optimize_mode': 'maximize', 'utility': 'ei','xi': 0.01}

Boilerplate code

experiment.config.trial_command = “python '/mnt/c/Users/
Louis\ Owen/Desktop/Packt/Hyperparameter-Tuning-with-
Python/nni/model_numeric.py'”

experiment.config.trial_code_directory = '.'

experiment.config.search_space = hyperparameter_space_
numeric

experiment.config.max_trial_number = 100

experiment.config.trial_concurrency = 10

experiment.config.max_experiment_duration = '1h'

https://nni.readthedocs.io/en/stable/reference/hpo.html#gp-tuner
https://nni.readthedocs.io/en/stable/reference/hpo.html#gp-tuner

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI206

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug =
False)

5.	 Train the model on full training data using the best set of hyperparameters found.

Get the best set of hyperparameters:

non_numeric_mapping = params = {

'model__criterion': ['gini','entropy'],

'model__class_weight': ['balanced','balanced_subsample'],

 }

best_trial = sorted(experiment.export_data(),key = lambda
x: x.value, reverse = True)[0]

for key in non_numeric_mapping:

 best_trial.parameter[key] = non_numeric_mapping[key]
[best_trial.parameter[key]]

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__class_weight': 'balanced_subsample', 'model__
criterion': 'entropy', 'model__min_samples_split':
0.00055461211818435, 'model__n_estimators': 159}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data.

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.619 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement BOGP using NNI with pure Python code. In the
next section, we will learn how to implement Metis with NNI via pure Python code.

Implementing Metis 207

Implementing Metis
Metis is one of the variants of the Bayesian Optimization hyperparameter tuning group (see Chapter 4)
that the NNI package can implement. Let’s use the same data, pipeline, and hyperparameter space as in
the example in the previous section to implement Metis with NNI using pure Python code.

The following code shows how to implement Metis with the NNI package using pure Python code. You
can find the more detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. Here, we’ll use the same script as in the previous
section, model_numeric.py, since Metis can only work with numerical hyperparameters.

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use the same
hyperparameter space as in the previous section.

3.	 Set up the experiment configurations via the Experiment class. Note that there are six
parameters for the Metis tuner: optimize_mode, no_resampling, no_candidates,
selection_num_starting_points, cold_start_num, and exploration_
probability. Please refer to the official documentation page for more information regarding
the Metis tuner parameters (https://nni.readthedocs.io/en/stable/
reference/hpo.html#metis-tuner):

experiment = Experiment('local')

experiment.config.experiment_name = 'nni_sklearn_metis'

experiment.config.tuner.name = 'MetisTuner'

experiment.config.tuner.class_args['optimize_mode'] =
'maximize'

Boilerplate code

same as previous section

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug =
False)

5.	 Train the model on full training data using the best set of hyperparameters found.

Get the best set of hyperparameters:

non_numeric_mapping = params = {

'model__criterion': ['gini','entropy'],

'model__class_weight': ['balanced','balanced_subsample'],

 }

https://nni.readthedocs.io/en/stable/reference/hpo.html#metis-tuner
https://nni.readthedocs.io/en/stable/reference/hpo.html#metis-tuner

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI208

best_trial = sorted(experiment.export_data(),key = lambda
x: x.value, reverse = True)[0]

for key in non_numeric_mapping:

 best_trial.parameter[key] = non_numeric_mapping[key]
[best_trial.parameter[key]]

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__n_estimators': 122, 'model__criterion': 'gini',
'model__class_weight': 'balanced', 'model__min_samples_
split': 0.00173059072806428}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.590 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Metis using NNI with pure Python code. In the
next section, we will learn how to implement Simulated Annealing with NNI via pure Python code.

Implementing Simulated Annealing
Simulated Annealing is one of the variants of the Heuristic Search hyperparameter tuning group (see
Chapter 5) that the NNI package can implement. Let’s use the same data, pipeline, and hyperparameter
space as in the example in the previous section, to implement Simulated Annealing with NNI using
pure Python code.

The following code shows how to implement Simulated Annealing with the NNI package using pure
Python code. You can find the more detailed code in the GitHub repository mentioned in the Technical
requirements section:

1.	 Prepare the model to be tuned in a script. We’ll use the same model.py script as in the
Implementing Grid Search section.

Implementing Simulated Annealing 209

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use the same
hyperparameter space as in the Implementing Grid Search section.

3.	 Set up the experiment configurations via the Experiment class. Note that there is one
parameter for the Simulated Annealing tuner, namely optimize_mode:

experiment = Experiment('local')

experiment.config.experiment_name = 'nni_sklearn_anneal'

experiment.config.tuner.name = 'Anneal'

experiment.config.tuner.class_args['optimize_mode'] =
'maximize'

Boilerplate code

experiment.config.trial_command = “python '/mnt/c/Users/
Louis\ Owen/Desktop/Packt/Hyperparameter-Tuning-with-
Python/nni/model.py'”

experiment.config.trial_code_directory = '.'

experiment.config.search_space = hyperparameter_space

experiment.config.max_trial_number = 100

experiment.config.trial_concurrency = 10

experiment.config.max_experiment_duration = '1h'

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug =
False)

5.	 Train the model on full training data using the best set of hyperparameters found.

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda
x: x.value, reverse = True)[0]

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__n_estimators': 103, 'model__criterion': 'gini',
'model__class_weight': 'balanced_subsample', 'model__min_
samples_split': 0.0010101249953063539}

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI210

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.600 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Simulated Annealing using NNI with pure Python
code. In the next section, we will learn how to implement Hyper Band with NNI via pure Python code.

Implementing Hyper Band
Hyper Band is one of the variants of the Multi-Fidelity Optimization hyperparameter tuning
group (see Chapter 6) that the NNI package can implement. Let’s use the same data, pipeline, and
hyperparameter space as in the example in the previous section to implement Hyper Band with NNI
using pure Python code.

The following code shows how to implement Hyper Band with the NNI package using pure Python
code. You can find the more detailed code in the GitHub repository mentioned in the Technical
requirements section:

1.	 Prepare the model to be tuned in a script. Here, we’ll use a new script called model_advisor.
py. In this script, we utilize the TRIAL_BUDGET value from the output of nni.get_
next_parameter() to update the 'model__n_estimators' hyperparameter.

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use a similar
hyperparameter space to the Implementing Grid Search section but we will remove the
'model__n_estimators' hyperparameter since it will become the budget definition
for Hyper Band:

hyperparameter_space_advisor = {

 'model__criterion': {'_type': 'choice', '_value':
['gini', 'entropy']},

 'model__class_weight': {'_type': 'choice', '_value':
[“balanced”,”balanced_subsample”]},

 'model__min_samples_split': {'_type': 'uniform', '_

Implementing Hyper Band 211

value': [0, 0.1]},

}

3.	 Set up the experiment configurations via the Experiment class. Note that there are four
parameters for the Hyper Band advisor: optimize_mode, R, eta, and exec_mode.
Please refer to the official documentation page for more information regarding the Hyper Band
advisor parameters (https://nni.readthedocs.io/en/latest/reference/
hpo.html#hyperband-tuner):

experiment = Experiment('local')

experiment.config.experiment_name = 'nni_sklearn_hyper_
band'

experiment.config.advisor.name = 'Hyperband'

experiment.config.advisor.class_args['optimize_mode'] =
'maximize'

experiment.config.advisor.class_args['R'] = 200

experiment.config.advisor.class_args['eta'] = 3

experiment.config.advisor.class_args['exec_mode'] =
'parallelism'

Boilerplate code

experiment.config.trial_command = “python '/mnt/c/Users/
Louis\ Owen/Desktop/Packt/Hyperparameter-Tuning-with-
Python/nni/model_advisor.py'”

experiment.config.trial_code_directory = '.'

experiment.config.search_space = hyperparameter_space_
advisor

experiment.config.max_trial_number = 100

experiment.config.trial_concurrency = 10

experiment.config.max_experiment_duration = '1h'

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug =
False)

https://nni.readthedocs.io/en/latest/reference/hpo.html#hyperband-tuner
https://nni.readthedocs.io/en/latest/reference/hpo.html#hyperband-tuner

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI212

5.	 Train the model on full training data using the best set of hyperparameters found.

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda
x: x.value, reverse = True)[0]

best_trial.parameter['model__n_estimators'] = best_trial.
parameter['TRIAL_BUDGET'] * 50

del best_trial.parameter['TRIAL_BUDGET']

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__criterion': 'gini', 'model__class_weight':
'balanced_subsample', 'model__min_samples_split':
0.001676130360763284, 'model__n_estimators': 100}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data.

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.593 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Hyper Band using NNI with pure Python code.
In the next section, we will learn how to implement Bayesian Optimization Hyper Band with NNI
via pure Python code.

Implementing Bayesian Optimization Hyper Band
Bayesian Optimization Hyper Band (BOHB) is one of the variants of the Multi-Fidelity Optimization
hyperparameter tuning group (see Chapter 6) that the NNI package can implement. Note that to use
BOHB in NNI, we need to install additional dependencies using the following command:

pip install "nni[BOHB]"

Implementing Bayesian Optimization Hyper Band 213

Let’s use the same data, pipeline, and hyperparameter space as in the example in the previous section
to implement BOHB with NNI using pure Python code.

The following code shows how to implement Hyper Band with the NNI package using pure Python
code. You can find the more detailed code in the GitHub repository mentioned in the Technical
requirements section:

1.	 Prepare the model to be tuned in a script. We’ll use the same model_advisor.py script
as in the previous section.

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use the same
hyperparameter space as in the previous section.

3.	 Set up the experiment configurations via the Experiment class. Note that there are 11
parameters for the BOHB advisor: optimize_mode, min_budget, max_budget,
eta, min_points_in_model, top_n_percent, num_samples, random_
fraction, bandwidth_factor, min_bandwidth, and config_space. Please
refer to the official documentation page for more information regarding the Hyper Band advisor
parameters (https://nni.readthedocs.io/en/latest/reference/hpo.
html#bohb-tuner):

experiment = Experiment('local')

experiment.config.experiment_name = 'nni_sklearn_bohb'

experiment.config.advisor.name = 'BOHB'

experiment.config.advisor.class_args['optimize_mode'] =
'maximize'

experiment.config.advisor.class_args['max_budget'] = 200

experiment.config.advisor.class_args['min_budget'] = 5

experiment.config.advisor.class_args['eta'] = 3

Boilerplate code

same as previous section

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug =
False)

https://nni.readthedocs.io/en/latest/reference/hpo.html#bohb-tuner
https://nni.readthedocs.io/en/latest/reference/hpo.html#bohb-tuner

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI214

5.	 Train the model on full training data using the best set of hyperparameters found.

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda
x: x.value, reverse = True)[0]

best_trial.parameter['model__n_estimators'] = best_trial.
parameter['TRIAL_BUDGET'] * 50

del best_trial.parameter['TRIAL_BUDGET']

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__class_weight': 'balanced', 'model__criterion':
'gini', 'model__min_samples_split': 0.000396569883631686,
'model__n_estimators': 1100}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.617 in the F1-score when testing our final
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Bayesian Optimization Hyper Band using NNI with
pure Python code. In the next section, we will learn how to implement Population-Based Training
with NNI via nnictl.

Implementing Population-Based Training
Population-Based Training (PBT) is one of the variants of the Heuristic Search hyperparameter
tuning group (see Chapter 5) that the NNI package can implement. To show you how to implement
PBT with NNI using pure Python code, let’s use the same example provided by the NNI package.
Here, the MNIST dataset and a convolutional neural network model are utilized. We’ll use PyTorch
to implement the neural network model. For details of the code example provided by NNI,
please refer to the NNI GitHub repository (https://github.com/microsoft/nni/
tree/1546962f83397710fe095538d052dc74bd981707/examples/trials/
mnist-pbt-tuner-pytorch).

https://github.com/microsoft/nni/tree/1546962f83397710fe095538d052dc74bd981707/examples/trials/mnist-pbt-tuner-pytorch
https://github.com/microsoft/nni/tree/1546962f83397710fe095538d052dc74bd981707/examples/trials/mnist-pbt-tuner-pytorch
https://github.com/microsoft/nni/tree/1546962f83397710fe095538d052dc74bd981707/examples/trials/mnist-pbt-tuner-pytorch

Implementing Population-Based Training 215

MNIST Dataset
MNIST is a dataset of handwritten digits that have been size-normalized and centered in a
fixed-size image. Here, we’ll use the MNIST dataset provided directly by the PyTorch package
(https://pytorch.org/vision/stable/generated/torchvision.
datasets.MNIST.html#torchvision.datasets.MNIST).

The following code shows how to implement PBT with the NNI package. Here, we’ll use nnictl
instead of using pure Python code. You can find the more detailed code in the GitHub repository
mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. Here, we’ll use the same mnist.py script from
the NNI GitHub repository. Note that we save the script with a new name: model_pbt.py.

2.	 Define the hyperparameter space in a JSON file called hyperparameter_space_pbt.
json. Here, we’ll use the same search_space.json file from the NNI GitHub repository.

3.	 Set up the experiment configurations via the config_pbt.yaml file. Note that there
are six parameters for the PBT tuner: optimize_mode, all_checkpoint_dir,
population_size, factor, resample_probability, and fraction. Please
refer to the official documentation page for more information regarding the PBT tuner
parameters (https://nni.readthedocs.io/en/latest/reference/hpo.
html#pbt-tuner):

searchSpaceFile: hyperparameter_space_pbt.json

trialCommand: python '/mnt/c/Users/Louis\ Owen/Desktop/
Packt/Hyperparameter-Tuning-with-Python/nni/model_pbt.py'

trialGpuNumber: 1

trialConcurrency: 10

maxTrialNumber: 100

maxExperimentDuration: 1h

tuner:

 name: PBTTuner

 classArgs:

 optimize_mode: maximize

trainingService:

 platform: local

 useActiveGpu: false

https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html#torchvision.datasets.MNIST
https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html#torchvision.datasets.MNIST
https://nni.readthedocs.io/en/latest/reference/hpo.html#pbt-tuner
https://nni.readthedocs.io/en/latest/reference/hpo.html#pbt-tuner

Advanced Hyperparameter Tuning with DEAP and Microsoft NNI216

4.	 Run the hyperparameter tuning experiment. We can see the experiment status and various
interesting stats via the launched web portal. The following code shows how to run the
experiment on port 8080 in local, meaning you can open the web portal on http://
localhost:8080:

nnictl create --config config_pbt.yaml --port 8080

In this section, we have learned how to implement Population-Based Training with NNI via nnictl
using the same example as provided in the official documentation of NNI.

Summary
In this chapter, we have learned all the important things about the DEAP and Microsoft NNI packages.
We also have learned how to implement various hyperparameter tuning methods with the help of these
packages, along with understanding each of the important parameters of the classes and how are they
related to the theory that we have learned in the previous chapters. From now on, you should be able
to utilize these packages to implement your chosen hyperparameter tuning method, and ultimately,
boost the performance of your ML model. Equipped with the knowledge from Chapters 3 – 6, you
will also be able to debug your code if there are errors or unexpected results, and be able to craft your
own experiment configuration to match your specific problem.

In the next chapter, we’ll learn about hyperparameters for several popular algorithms. There will be
a wide explanation for each of the algorithms, including (but not limited to) the definition of each
hyperparameter, what will be impacted when the value of each hyperparameter is changed, and the
priority list of hyperparameters based on the impact.

S e c t i o n 3 :
P u t t i n g T h i n g s i n t o P r a c t i c e

In the final section of the book, as its name suggests, we will learn how to put everything we have learned
into practice so that we can have an effective and powerful hyperparameter tuning experiment workflow.

This section includes the following chapters:

•	 Chapter 11, Understanding Hyperparameters of Popular Algorithms

•	 Chapter 12, Introducing the Hyperparameter Tuning Decision Map

•	 Chapter 13, Tracking Hyperparameter Tuning Experiments

•	 Chapter 14, Conclusions and Next Steps

11
Understanding the

Hyperparameters of Popular
Algorithms

Most machine learning (ML) algorithms have their own hyperparameters. Knowing how to implement
a lot of fancy hyperparameter tuning methods without understanding the hyperparameters of the
model is the same as a doctor writing a prescription before diagnosing the patient.

In this chapter, we’ll learn about the hyperparameters of several popular ML algorithms. There will be
a broad explanation for each of the algorithms, including (but not limited to) the definition of each
hyperparameter, what will be impacted when the value of each hyperparameter is changed, and the
priority list of hyperparameters based on the impact.

By the end of this chapter, you will understand the important hyperparameters of several popular
ML algorithms. Understanding the hyperparameters of ML algorithms is crucial since not all
hyperparameters are equally significant when it comes to impacting the model’s performance. We do
not have to perform hyperparameter tuning on all of the hyperparameters of a model; we just need
to focus on the more critical hyperparameters.

In this chapter, we will cover the following main topics:

•	 Exploring Random Forest hyperparameters

•	 Exploring XGBoost hyperparameters

•	 Exploring LightGBM hyperparameters

•	 Exploring CatBoost hyperparameters

•	 Exploring SVM hyperparameters

•	 Exploring artificial neural network hyperparameters

Understanding the Hyperparameters of Popular Algorithms220

Exploring Random Forest hyperparameters
Random Forest is a tree-based model that is built using a collection of decision trees. It is a very
powerful ensemble ML model that can be utilized for both classification and regression tasks. The
way Random Forest utilizes the collection of decision trees is by performing an ensemble method
called bootstrap aggregation (bagging) with some modifications. To understand how each of the
Random Forest’s hyperparameters can impact the model’s performance, we need to understand how
the model works in the first place.

Before discussing how Random Forest ensembles a collection of decision trees, let’s discuss how
a decision tree works at a high level. A decision tree can be utilized to perform a classification or
regression task by constructing a series of decisions (in the form of rules and splitting points) that can
be visualized in the form of a tree. These decisions are made by looking through all of the features and
the feature values of the given training data. The goal of a decision tree is to have high homogeneity for
each of the leaf nodes. Several methods can be used to measure homogeneity; the two most popular
methods for classification tasks are to calculate the Gini or Entropy values, while the most popular
method for regression tasks is to calculate the Mean Squared Error value.

Random Forest utilizes the bagging method to ensemble the collection of decision trees. Bagging is
an ensemble method that works by combining predictions from multiple ML models with the hope of
generating a more accurate and robust prediction. In this case, Random Forest combines the prediction
outputs from several decision trees so that we are not too focused on the prediction from a single tree.
This is because a decision tree is very likely to overfit the training data. However, Random Forest does
not just utilize the vanilla bagging ensemble method – it also ensures that it only utilizes prediction
outputs from the collection of decision trees that are not highly correlated with each other. How is
Random Forest able to do that? Instead of asking each decision tree to look through all the features
and their values when choosing the splitting points, Random Forest customizes this procedure so
that each decision tree only looks at a random sample of features.

The most popular and well-maintained implementation of Random Forest in Python can be found in the
scikit-learn package. It includes implementations for both regression (RandomForestRegressor)
and classification (RandomForestClassifier) tasks. Both implementations have very similar
hyperparameters with only a few small differences. The following are the most important hyperparameters,
starting with the most important to the least based on the impact on model performance. Note that this
priority list is subjective, based on our experience of developing Random Forest models in the past:

1.	 n_estimators: This specifies the number of decision trees to be utilized to build the Random
Forest. In general, the larger the number of trees, the better the model’s performance will be,
with a trade-off of having longer computational time. However, there is a threshold beyond
which adding more trees will not have much additional impact on the model’s performance.
It could even have a negative impact due to the problem of overfitting.

Exploring Random Forest hyperparameters 221

2.	 max_features: This specifies the number of randomly sampled features that are used by
Random Forest to choose the best splitting point in each of the decision trees. The higher the
value, the lower the reduction in variance, and hence the lower the increase in bias. A higher
value also leads to having a longer computational time. scikit-learn, by default, will use all of
the features for regression tasks and use only sqrt(n_features) number of features for
classification tasks.

3.	 criterion: This is used to measure the homogeneity of each decision tree. scikit-learn
implemented several methods for both regression and classification tasks. There’s squared_
error, absolute_error, and poisson for regression tasks, while there’s gini,
entropy, and log_loss for classification tasks. Different methods will have different
impacts on model performance; there is no clear rule of thumb for this hyperparameter.

4.	 max_depth: This specifies the maximum depth of each decision tree. The default value of
this hyperparameter is None, meaning that the nodes of each tree will keep branching until
we have pure leaf nodes or until all the leaves contain less than min_samples_split
number of samples. The lower the value, the better, since this prevents overfitting. However, a
value that is too low can lead to an underfitting problem. One thing is for sure – a higher value
implies a longer computational time.

5.	 min_samples_split: This specifies the minimum number of samples required for a
tree to be able to further split an internal node (a node that can be split into child nodes). The
higher the value, the easier it is to prevent overfitting.

6.	 min_samples_leaf: This specifies the minimum number of samples required in the leaf
nodes. A higher value can help us prevent overfitting.

Random Forest Hyperparameters in scikit-learn
For more information about each of the hyperparameters of the Random Forest implementation
in scikit-learn, please visit the official documentation pages at https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html and https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestRegressor.html.

Other useful boilerplate parameters can be found across different scikit-learn estimator implementations.
The following are several important parameters that you need to be aware of that can help you while
training a scikit-learn estimator:

1.	 class_weight: This specifies the weights for each class that exists in the training data. This
is only available for classification tasks. This parameter is very important when you face an
imbalanced class problem. We need to give higher weights to classes that have fewer samples.

2.	 n_jobs: This specifies the number of parallel processes to be utilized when training the
estimator. scikit-learn utilizes the joblib package in the backend.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Understanding the Hyperparameters of Popular Algorithms222

3.	 random_state: This specifies the random seed number to ensure the code is reproducible.

4.	 verbose: This parameter is used to control any logging activities. Setting verbose to an
integer greater than zero enables us to see what happens when training an estimator.

In this section, we learned how Random Forest works at a high level and looked at several important
hyperparameters, along with an explanation of how they impact the model’s performance. We also looked
at the main hyperparameters. Furthermore, we learned about several useful parameters in scikit-learn
that can ease the training process. In the next section, we will discuss the XGBoost algorithm.

Exploring XGBoost hyperparameters
Extreme Gradient Boosting (XGBoost) is also a tree-based model that is built using a collection of
decision trees, similar to a Random Forest. It can also be utilized for both classification and regression
tasks. The difference between XGBoost and Random Forest is in how they perform the ensemble.
Unlike Random Forest, which uses the bagging ensemble method, XGBoost utilizes another ensemble
method called boosting.

Boosting is an ensemble algorithm whose goal is to achieve higher performance through a sequence
of individually weak models by overcoming the weaknesses of the predecessor models (see Figure
11.1). It is not a specific model; it’s just a generic ensemble algorithm. The definition of weakness may
vary across different types of boosting ensemble implementation. In XGBoost, it is defined based on
the error of the gradient from the previous decision tree model. Take a look at the following diagram:

Figure 11.1 – Boosting ensemble algorithm

XGBoost is a very popular and well-adopted ML model that is built using the boosting ensemble
algorithm and a collection of decision trees. Each of the decision trees is added one at a time and is
fitted to the prediction errors from the previous tree to correct those errors. It is worth noting that
since XGBoost is part of the gradient boosting algorithm, all of the weak models (decision trees)
need to be fitted using a differentiable loss function and the gradient descent optimization method.

Exploring XGBoost hyperparameters 223

XGBoost has its own package and can be utilized not only in Python but also in other programming
languages, such as R and JVM. In Python, you can install XGBoost via pip install xgboost.
This package also implements the scikit-learn wrappers for both regression (XGBRegressor) and
classification (XGBClassifier) tasks. Numerous hyperparameters are provided by the package,
but not all of them are very important in affecting the model’s performance. The following are the
most important hyperparameters, starting with the most important to the least based on their impact
on model performance:

1.	 n_estimators: This specifies the number of decision trees to be utilized to build the
XGBoost model. It can also be interpreted as the number of boosting rounds, which is similar
to the concept of epochs in a neural network. In general, the higher the value, the better the
model’s performance will be, with the trade-off of having a longer computation time. However,
we need to be careful with a value that’s too high since it can lead us to the overfitting problem.

2.	 learning_rate: This is the learning rate of the gradient descent optimization algorithm.
The lower the value, the higher the chances of the model finding the optimum solution, with a
trade-off of having a longer computational time. You can increase the value of this hyperparameter
if there no sign of overfitting is found on the last iterations of training; you can decrease it if
there is overfitting.

3.	 max_depth: This is the maximum depth of each decision tree. A lower value can help us
prevent overfitting. However, a too-low value can lead to an underfitting problem. One thing
is for sure – a higher value leads to a longer computational time.

4.	 min_child_weight: This is the minimum sum of instance weight, calculated using the
Hessian, that’s needed in a child. This hyperparameter acts as a regularizer to ensure that each
tree will stop trying to split the node once a certain degree of purity is reached. In other words,
it is a regularization parameter that works by limiting the depth of the tree so that the overfitting
problem can be prevented. A higher value can help us prevent overfitting. However, a too-high
value can lead to an underfitting problem.

5.	 gamma: This is a pseudo-regularization parameter that is calculated based on a reduction
in the loss value. The value of this hyperparameter specifies the minimum loss reduction
required to make a further partition on a leaf node of the tree. You can put a high value on
this hyperparameter to prevent the overfitting problem. However, please be careful and don’t
use a value that’s too high; it can lead to an underfitting problem.

6.	 colsample_bytree: This is the fraction version of the max_features hyperparameter
in the scikit-learn implementation of Random Forest. This hyperparameter is responsible for
telling XGBoost how many randomly sampled features are needed to choose the best splitting
point in each of the decision trees. A low value can help us prevent overfitting and lowers the
computational time. However, a value that’s too low can lead to an underfitting problem.

Understanding the Hyperparameters of Popular Algorithms224

7.	 subsample: This is the observation’s version of the colsample_bytree hyperparameter.
This hyperparameter is responsible for telling XGBoost how many training samples need to
be used while training each tree. This hyperparameter can be useful to prevent the overfitting
problem. However, it can also lead us to an underfitting problem if we use a value that’s too low.

Complete List of XGBoost Hyperparameters
For more information about other XGBoost’s hyperparameters, please visit the official
documentation page: https://xgboost.readthedocs.io/en/stable/python/
python_api.html#module-xgboost.sklearn.

In this section, we discussed how XGBoost works at a high level and looked at several important
hyperparameters, along with an explanation of how they impact model performance. We also looked
at the main hyperparameters. In the next section, we will discuss the LightGBM algorithm.

Exploring LightGBM hyperparameters
Light Gradient Boosting Machine (LightGBM) is also a boosting algorithm built on top of a collection
of decision trees, similar to XGBoost. It can also be utilized both for classification and regression tasks.
However, it differs from XGBoost in the way the trees are grown. In LightGBM, trees are grown in a
leaf-wise manner, while XGBoost grows trees in a level-wise manner (see Figure 11.2). By leaf-wise,
we mean that LightGBM grows trees by prioritizing nodes whose split leads to the highest increase
of homogeneity:

Figure 11.2 – Level-wise versus leaf-wise tree growth

Exploring LightGBM hyperparameters 225

Besides the difference in how XGBoost and LightGBM grow the trees, they also have different ways of
handling categorical features. In XGBoost, we need to encode the categorical features before passing
them to the model. This is usually done using the one-hot encoding or integer encoding methods. In
LightGBM, we can just tell which features are categorical and it will handle those features automatically
by performing equality splitting. There are several other differences between XGBoost and LightGBM
in terms of the way they perform optimization in distributed learning. In general, LightGBM has a
much faster computation time compared to XGBoost.

Similar to XGBoost, LightGBM also has its own package and can be utilized not only in Python but
also in the R language. In Python, you can install LightGBM via pip install lightgbm. This
package also implements the scikit-learn wrappers for both regression (LGBMRegressor) and
classification (LGBMClassifier) tasks. The following are the most important hyperparameters for
LightGBM, starting with the most important to the least based on the impact on model performance:

1.	 max_depth: This specifies the maximum depth of each decision tree. A lower value can help
us prevent overfitting. However, a value that’s too low can lead to an underfitting problem. One
thing is for sure – a higher value implies a longer computational time.

2.	 num_leaves: This specifies the maximum number of leaves in each tree. It should have a
value lower than two to the power of max_depth since a leaf-wise tree is much deeper than a
depth-wise tree for a set number of leaves. In general, the higher the value, the better the model’s
performance will be, with a trade-off of having a longer computational time. However, there is
a threshold where the impact of adding more leaves will not have much additional impact on
the model’s performance or even have a negative impact due to overfitting.

3.	 Learning_rate: This specifies the learning rate of the gradient descent optimization
algorithm. The lower the value, the higher the chances of the model finding a more optimum
solution, with a trade-off of having a longer computational time. You can increase the value
of this hyperparameter if no sign of overfitting is found on the last iterations of training and
vice versa.

4.	 min_child_samples: This specifies the minimum number of samples required in the
leaf nodes. A higher value can help us prevent overfitting. However, a value that’s too high can
lead to an underfitting problem.

5.	 Feature_fraction: This is similar to colsample_bytree in XGBoost. This
hyperparameter tells LightGBM how many randomly sampled features need to be used to
choose the best splitting point in each of the decision trees. This hyperparameter can be useful
for preventing overfitting. However, it can also lead to an underfitting problem if we use a
value that is too low.

6.	 bagging_fraction: This is the observation’s version of the feature_fraction
hyperparameter. This hyperparameter is responsible for telling LightGBM how many training
samples need to be used during the training of each tree. Lower values can help us prevent
overfitting and lower the computational time. However, a value that is too low can lead to an
underfitting problem.

Understanding the Hyperparameters of Popular Algorithms226

Complete List of LightGBM Hyperparameters
For more information about other LightGBM hyperparameters, please visit the official
documentation page: https://lightgbm.readthedocs.io/en/latest/
Python-API.html#scikit-learn-api.

In this section, we discussed how LightGBM works at a high level and looked at several important
hyperparameters, along with an explanation of how they impact model performance. We also looked
at the main hyperparameters. In the next section, we will discuss the CatBoost algorithm.

Exploring CatBoost hyperparameters
Categorical Boosting (CatBoost) is another boosting algorithm built on top of a collection of
decision trees, similar to XGBoost and LightGBM. It can also be utilized both for classification and
regression tasks. The main difference between CatBoost and XGBoost or LightGBM is how it grows
the trees. In XGBoost and LightGBM, trees are grown asymmetrically, while in CatBoost, trees are
grown symmetrically so that all of the trees are balanced. This balanced tree characteristic provides
several benefits, including the ability to control overfitting problems, lower inference time, and efficient
implementation in CPUs. CatBoost does this by using the same condition in every split in the nodes,
as shown in the following diagram:

Figure 11.3 – Asymmetric versus symmetric tree

https://lightgbm.readthedocs.io/en/latest/Python-API.html#scikit-learn-api
https://lightgbm.readthedocs.io/en/latest/Python-API.html#scikit-learn-api

Exploring CatBoost hyperparameters 227

The main selling point of CatBoost is its ability to handle numerous types of features automatically,
including numerical, categorical, and text, especially for categorical features. We just need to tell CatBoost
which features are categorical features via the cat_features parameter and it will handle those
features automatically. By default, CatBoost will perform one-hot encoding for categorical features
that only have two classes. For higher cardinality features, it will perform target encoding and combine
several categorical features or even categorical and numerical features. For more information on how
CatBoost handles categorical features, please refer to the official documentation page: https://
catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic.

Similar to XGBoost and LightGBM, CatBoost also has its own package and can be utilized not only
in Python but also in the R language. In Python, you can install CatBoost via pip install
catboost. You can utilize the implemented scikit-learn-friendly classes for both regression
(CatBoostRegressor) and classification (CatBoostClassifier) tasks. The following
is a list of CatBoost’s most important hyperparameters, sorted in descending order based on the
importance of each hyperparameter regarding model performance:

1.	 iterations: This specifies the number of decision trees to be utilized to build the CatBoost
model. It can also be interpreted as the number of boosting rounds, similar to the concept of
epochs in a neural network. In general, the higher the value, the better the model’s performance
will be, with a trade-off of having a longer computational time. However, there is a threshold
where the impact of adding more trees will not have much additional impact on the model’s
performance or even have a negative impact due to overfitting.

2.	 depth: This specifies the maximum depth of each decision tree. A lower value can help us
prevent overfitting. However, a value that’s too low can lead to an underfitting problem. One
thing is for sure – a higher value implies a longer computational time.

3.	 learning_rate: This specifies the learning rate of the gradient descent optimization
algorithm. The lower the value, the higher the chances of the model finding a more optimum
solution, with a trade-off of having a longer computational time. You can increase the value
of this hyperparameter if no sign of overfitting is found on the last iterations of training and
vice versa.

4.	 l2_leaf_reg: This is the regularization parameter on the cost function. This hyperparameter
can prevent the overfitting problem. However, it can also lead to an underfitting problem if we
use a value that’s too high.

5.	 one_hot_max_size: This is the threshold that tells CatBoost when to perform one-hot
encoding on the categorical features. Any categorical features that have cardinality lower
than or equal to the given value will be transformed into numerical values via the one-hot
encoding method.

Complete List of CatBoost Hyperparameters
For more information about other CatBoost hyperparameters, please visit the official documentation
page (https://catboost.ai/en/docs/concepts/parameter-tuning).

https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic
https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic
https://catboost.ai/en/docs/concepts/parameter-tuning

Understanding the Hyperparameters of Popular Algorithms228

In this section, we discussed how CatBoost works at a high level and looked at several important
hyperparameters, along with an explanation of how they impact model performance. We also looked
at the main hyperparameters. In the next section, we will discuss the SVM algorithm.

Exploring SVM hyperparameters
Support Vector Machine (SVM) is an ML model that utilizes lines or hyperplanes, along with some
linear algebra transformations, to perform a classification or regression task. All the algorithms
discussed in the previous sections can be classified as tree-based algorithms, while SVM is not part
of the tree-based group of ML algorithms. It is part of the distance-based group of algorithms. We
usually called the linear algebra transformation in SVM a kernel. This is responsible for transforming
any problem into a linear problem.

The most popular and well-maintained implementation of SVM in Python can be found in the scikit-
learn package. It includes implementations for both regression (SVR) and classification (SVC) tasks.
Both of them have very similar hyperparameters with only a few small differences. The following are
the most important hyperparameters for SVM, starting with the most important to the least based
on their impact on model performance:

1.	 kernel: This is the linear algebra transformation, whose goal is to convert the given problem
into a linear problem. There are five kernels that we can choose from, including linear (linear),
polynomial (poly), radial basis function (rbf), and sigmoid (sigmoid) kernels. Different
kernels will have different impacts on model performance and there is no clear rule of thumb
for this hyperparameter.

2.	 C: This is the regularization parameter that controls overfitting. The lower the value, the
stronger the impact that regularization will have on the model, and hence a higher chance of
preventing overfitting.

3.	 degree: This hyperparameter is specific to the polynomial kernel function. The value of this
hyperparameter corresponds to the degree of the polynomial function that’s used by the model.

4.	 gamma: This is the coefficient for the radial basis, polynomial, and sigmoid kernel functions.
There are two options that scikit-learn provides, namely scale and auto.

SVM Hyperparameters in scikit-learn
For more information about how each of the hyperparameters in SVM are implemented in
scikit-learn, you can visit the official documentation pages at https://scikit-learn.
org/stable/modules/generated/sklearn.svm.SVC.html and https://
scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

Exploring artificial neural network hyperparameters 229

In this section, we discussed how SVM works at a high level and looked at several important
hyperparameters, along with an explanation of how they impact model performance. We also looked
at the main hyperparameters. In the next section, we will discuss artificial neural networks.

Exploring artificial neural network hyperparameters
An artificial neural network, also known as deep learning, is a kind of ML algorithm that mimics
how human brains work. Deep learning can be utilized for both regression and classification tasks.
One of the main selling points of this model is its ability to perform feature engineering and selection
automatically from the raw data. In general, to ensure this algorithm works decently, we need a large
amount of training data to be fed to the model. The simplest form of a neural network is called a
perceptron (see Figure 11.4). A perceptron is just a linear combination that is applied on top of all of
the features, with bias added at the end of the calculation:

Figure 11.4 – Perceptron

If the output from the perceptron is passed to a non-linear function, which is usually called an activation
function, and then passed to another perceptron, then we can call this a multi-layer perceptron
(MLP) with one layer. The training process for a neural network consists of two big procedures,
namely forward propagation and backward propagation. In forward propagation, we just let the
neural network perform calculations on top of the given inputs based on the defined architecture. In
backward propagation, the model will update the weights and bias parameters based on the defined
loss function using a gradient-based optimization procedure.

Understanding the Hyperparameters of Popular Algorithms230

There are other variants of neural networks besides MLP, such as convolutional neural networks (CNNs),
long short-term memory networks (LSTMs), recurrent neural networks (RNNs), and transformers.
CNN is usually adopted when we work with image data, but we can also use a one-dimensional CNN
when working with text data. RNNs and LSTMs are usually adopted when working with time series
or natural language data. Transformers are mainly used for text-related projects, but recently, they
have been adopted for image and voice data.

Several packages provide implementations of neural networks in Python, including PyTorch, TensorFlow,
and Scikit Learn. The following are the most important hyperparameters, sorted in descending order
based on the importance of each hyperparameter regarding model performance. Note that this priority
list is subjective based on our experience of developing Random Forest models in the past. Since the
naming of the hyperparameters may differ across different packages, we will only use the general
names of the hyperparameters:

1.	 Optimizer: This is the gradient-based optimization algorithm to be used. There are several
optimizers for us to choose from. However, perhaps the most popular and widely adopted
optimizer is Adam. There are other options, including (but not limited to) SGD and RMSProp.
Different optimizers may have different impacts on model performance and there is no clear
rule of thumb for choosing which one is the best. It is worth noting that each optimizer has
its own hyperparameter as well.

2.	 Learning Rate: This hyperparameter controls how big the step will be for the optimizer to
“learn” from the given training data during the optimization process. It is important to choose
the best range of learning rates first before tuning other hyperparameters. The lower the value,
the higher the chances of the model finding a more optimum solution, with a trade-off of having
a longer computational time. You can increase the value of this hyperparameter if no sign of
overfitting is found on the last iterations of training and vice versa.

3.	 Batch Size: This specifies the number of training samples that will be passed to the neural network
within each training step. In general, the higher the value, the better the model’s performance
will be. However, a batch size that’s too high will usually be constrained by the device’s memory.

4.	 Epochs: This is the number of training iterations. Similar to n_estimators in XGBoost
and iterations in CatBoost, a high value can lead to better model performance, with a
trade-off of having a longer computational time. However, we need to be careful when using
a value that’s too high since it can lead to overfitting.

5.	 Number of Layers: The higher the value, the higher the complexity of the model, hence the
higher the chance of overfitting. Usually, one or two layers is more than enough to build a
good model.

6.	 Number of Nodes: The number of units or nodes within each of the layers. The higher the
value, the higher the complexity of the model, hence a higher chance of overfitting.

Summary 231

7.	 Activation Function: The non-linear transformation function. There are many activation
functions to choose from. Some of the most well-adopted activation functions in practice are
Rectified Linear Activation Function (ReLU), Exponential Linear Unit (ELU), Sigmoid,
Softmax, and Tanh.

8.	 Dropout Rate: The rate for the dropout layer. The dropout layer is a special layer in a neural
network that acts as a regularizer by randomly setting the unit value to zero. This hyperparameter
controls how many units are set to zero. A higher value can help us prevent overfitting. However,
a value that’s too high can lead to an underfitting problem.

9.	 L1/L2 Regularization: These are the regularization parameters that are applied to the loss
function. This hyperparameter can help prevent overfitting. However, it can also lead to an
underfitting problem if its value is too high.

In this section, we have discussed how neural network works at a high level, the variants of neural networks,
and looked at several important hyperparameters, along with an explanation of how they impact model
performance. We also looked at the main hyperparameters. Now, let’s summarize this chapter.

Summary
In this chapter, we discussed how several popular algorithms work at a high level, explained their
important hyperparameters and how they impact performance, and provided priority lists of the
hyperparameters, sorted in descending order based on their impact on performance. At this point,
you should be able to design your hyperparameter tuning experiments more effectively by focusing on
the most important hyperparameters. You should also understand what impact each of the important
hyperparameters has on the performance of the model.

In the next chapter, we’ll summarize the hyperparameter tuning methods we’ve discussed here into a
simple decision map that can help you choose which method is the most suitable for your problem.
Furthermore, we will cover several study cases that show how to utilize this decision map in practice.

12
Introducing Hyperparameter

Tuning Decision Map

Getting too much information can sometimes lead to confusion, which can, in turn, lead back to
adopting the simplest option. We learned about numerous hyperparameter tuning methods in the
previous chapters. Although we have discussed the ins and outs of each method, it will be very useful
for us to have a single source of truth that can be used to help us decide which method to use in
which situation.

In this chapter, you’ll be introduced to the Hyperparameter Tuning Decision Map (HTDM), which
summarizes all of the discussed hyperparameter tuning methods into a simple decision map based on
many aspects, including the properties of the hyperparameter space, the complexity of the objective
function, training data size, computational resources availability, prior knowledge availability, and
the types of ML algorithms we are working with. There will be also three study cases that show how
to utilize HTDM in practice.

By the end of this chapter, you’ll be able to utilize HTDM in practice to help you decide which
hyperparameter tuning method to be adopted in your specific situation.

In this chapter, we will cover the following main topics:

•	 Getting familiar with HTDM

•	 Case study 1 – using HTDM with a CatBoost classifier

•	 Case study 2 – using HTDM with a conditional hyperparameter space

•	 Case study 3 – using HTDM with prior knowledge of the hyperparameter values

Introducing Hyperparameter Tuning Decision Map234

Getting familiar with HTDM
HTDM is designed to help you decide which hyperparameter tuning method should be adopted in a
particular situation (see Figure 12.1). Here, the situation is defined based on six aspects:

•	 Hyperparameter space properties, including the size of the space, types of hyperparameter
values (numerical only or mixed), and whether it contains conditional hyperparameters or not

•	 Objective function complexity: whether it is a cheap or expensive objective function

•	 Computational resource availability: whether or not you have enough parallel computational
resources

•	 Training data size: whether you have a few, moderate, or a large number of training samples

•	 Prior knowledge availability: whether you have prior knowledge of the good range of
hyperparameter values

•	 Types of ML algorithms: whether you are working with a small, medium, or large-sized model,
and whether you are working with a traditional ML or deep learning type of algorithm

This can be seen in the following diagram:

Figure 12.1 – HTDM

Getting familiar with HTDM 235

The definition of Small, Medium, and Large in HTDM is very subjective. However, you can refer to
the following table as a rule of thumb:

Figure 12.2 – Rule of thumb of size definition

The following important notes may also help us decide which hyperparameter tuning method we
should adopt in a particular situation:

Introducing Hyperparameter Tuning Decision Map236

Figure 12.3 – Important notes for each hyperparameter tuning method

In this section, we discussed HTDM, along with several additional important notes to help you
decide which hyperparameter tuning method you should adopt in a particular situation. In the next
few sections, we will learn how to utilize HTDM in practice through several interesting study cases.

Case study 1 – using HTDM with a CatBoost classifier 237

Case study 1 – using HTDM with a CatBoost classifier
Let’s say we are training a classifier based on the marketing campaign data that was introduced
in Chapter 7, Hyperparameter Tuning via scikit. Here, we are utilizing CatBoost (see Chapter 11,
Understanding Hyperparameters of Popular Algorithms) as the classifier. This is our first time working
with the given data. The laptop we are using only has a single-core CPU and the hyperparameter
space is defined as follows. Note that we are not working with a conditional hyperparameter space:

•	 iterations: randint(5,200)

•	 depth: randint(3,10)

•	 learning_rate: np.linspace(1e-5,1e-3,20)

•	 l2_leaf_reg: np.linspace(1,30,30)

•	 one_hot_max_size: randint(2,15)

Based on the given case description, we can try to utilize HTDM to help us choose which hyperparameter
tuning suits the condition the best. First of all, we know that we do not have any prior knowledge or
meta-learning results of the good hyperparameter values on the given data. This means we will only
focus on the right branch of the first node in HTDM, as shown here:

Figure 12.4 – Case study 1, no prior knowledge

Introducing Hyperparameter Tuning Decision Map238

We know that we are not working with a conditional hyperparameter space. This means we will only
focus on the right branch of the second node, as shown here:

Figure 12.5 – Case study 1, not a conditional hyperparameter space

Based on a rough estimation, our CatBoost model’s size should be in the range of small to medium-
sized. This means we will only focus on the left and bottom branches of the third node, as shown here:

Figure 12.6 – Case study 1, small to medium model size

Case study 2 – using HTDM with a conditional hyperparameter space 239

We also have a medium-sized hyperparameter space that consists of only numerical values. This means
our options are Coarse-to-Fine, Random Search, PSO, Simulated Annealing, and Genetic Algorithm.
It is worth noting that even though our hyperparameter space consists of only numerical values, we
can still utilize hyperparameter tuning methods that work with mixed types of values:

Figure 12.7 – Case study 1, medium-sized hyperparameter space with only numerical values

So, how do we choose a hyperparameter tuning method from the selected options? First, we know
that PSO only works very well on the continuous type of hyperparameter values while we also have
integers in the hyperparameter space. Thus, we can remove PSO from our options. This leaves us with
the remaining four options. One easy and effective way to choose the best hyperparameter tuning
method is by choosing the simplest method, which is the Random Search method.

In this section, we discussed the first case study on how to utilize HTDM in practice. In the next
section, we will do the same using another interesting case study.

Case study 2 – using HTDM with a conditional
hyperparameter space
Let’s say we are faced with a similar condition as in the previous section but now, we are working with
a conditional hyperparameter space, as defined here:

one_hot_max_size = randint(2,15)

iterations = randint(5,200)

If iterations < 50:

 depth = randint(3,10)

 learning_rate = np.linspace(5e-4,1e-3,10)

 l2_leaf_reg = np.linspace(1,15,20)

elif iterations < 100:

 depth = randint(3,7)

Introducing Hyperparameter Tuning Decision Map240

 learning_rate = np.linspace(1e-5,5e-4,10)

l2_leaf_reg = np.linspace(5,20,20)

else:

 depth = randint(3,5)

 learning_rate = np.linspace(1e-6,5e-5,10)

l2_leaf_reg = np.linspace(5,30,20)

Based on the given case description, we can try to utilize HTDM again to help us choose which
hyperparameter tuning method suits the condition the best. Here, similar to the previous study case,
we know that we do not have any prior knowledge or meta-learning results of the good hyperparameter
values on the given data. This means we will only focus on the right branch of the first node in HTDM
(see Figure 12.4). However, in this case, we are now working with a conditional hyperparameter space.
This means we will only focus on the left branch of the second node, as shown here:

Figure 12.8 – Case study 2, a conditional hyperparameter space

Since we have more than 10,000 samples of training data (see Chapter 7, Hyperparameter Tuning via
scikit), we only have two hyperparameter tuning methods to choose from based on HTDM, namely
the BOHB or Random Search method (see Figure 12.9). Choosing Random Search over BOHB surely
is a wise choice if we only compare them based on the simplicity of the implementation since we need
to install the Microsoft NNI package just to adopt the BOHB method (see Figure 12.3).

Case study 3 – using HTDM with prior knowledge of the hyperparameter values 241

However, we know that we are working with a model that is not very small, and BOHB can decide
which subspace needs to be searched based on previous experiences, not based on luck. Thus, in
theory, BOHB will be a better choice to save us time searching for the best set of hyperparameters.
So, which method should we pick? It’s up to your discretion:

Figure 12.9 – Case study 2, large training data

In this section, we discussed the second case study on how to utilize HTDM in practice. In the next
section, we will do the same using another interesting case study.

Case study 3 – using HTDM with prior knowledge of the
hyperparameter values
Let’s say, in this case, we are also faced with a similar condition as in the previous case study, but this
time, we have prior knowledge of the good hyperparameter values for the given data since one of the
data scientists in our team has worked with the same data previously. This means we will only focus
on the left branch of the first node in HTDM, as shown here:

Figure 12.10 – Case study 3, have prior knowledge

Introducing Hyperparameter Tuning Decision Map242

Based on the given case description, we know that we do not have enough parallel computational
resources since we only have a single-core CPU. This means we will only focus on the right branch
of the second node, as shown here:

Figure 12.11 – Case study 3, not enough parallel computational resources

We also know that we have a medium-sized hyperparameter space that only consists of numerical
types of values. This means our options are SMAC, TPE, and Metis:

Figure 12.12 – Case study 3, medium-sized hyperparameter space with only numerical values

Summary 243

Based on the preceding diagram, we know that SMAC works best when the hyperparameter space
is dominated by categorical hyperparameters, which is not the case here. Thus, we can remove
SMAC from our options. If we try to decide based on the implementation popularity, then TPE is
the one we should choose since it’s implemented in Hyperopt, Optuna, and NNI, while Metis is only
implemented in NNI. However, one of the main selling points of Metis is its ability to suggest the set
of hyperparameters we should test in our next trial. So, which method should we pick? It’s up to you.

In this section, we discussed the third case study on how to utilize HTDM in practice. Now, let’s
summarize this chapter.

Summary
In this chapter, we summarized all of the hyperparameter tuning methods we’ve discussed so far in a
simple decision map called HTDM. This can help you to choose which method is the most suitable for
your specific problem. We also discussed several important notes for each of the hyperparameter tuning
methods and saw how to utilize the HTDM in practice. From now on, you’ll be able to utilize HTDM
in practice to help you decide which hyperparameter tuning method to adopt in your specific situation.

In the next chapter, we’ll discuss the need to track hyperparameter tuning experiments and learn how
to do so using several open source packages.

13
Tracking Hyperparameter

Tuning Experiments

Working with a lot of experiments can sometimes be overwhelming. Many iterations of experiments
will need to be done. It will become even more complicated when we are experimenting with many
ML models.

In this chapter, you will be introduced to the importance of tracking hyperparameter tuning experiments,
along with the usual practices. You will also be introduced to several open source packages that are
available and learn how to utilize each of them in practice.

By the end of this chapter, you will be able to utilize your favorite package to track your hyperparameter
tuning experiment. Being able to track your hyperparameter tuning experiment will boost the
effectiveness of your workflow.

In this chapter, we will cover the following topics:

•	 Revisiting the usual practices

•	 Exploring Neptune

•	 Exploring Scikit-Optimize

•	 Exploring Optuna

•	 Exploring Microsoft NNI

•	 Exploring MLflow

Tracking Hyperparameter Tuning Experiments246

Technical requirements
In this chapter, we will learn how to track hyperparameter tuning experiments with various packages.
To ensure that you can reproduce the code examples in this chapter, you will require the following:

•	 The Python 3 (version 3.7 or above)

•	 The pandas package (version 1.3.4 or above)

•	 The NumPy package (version 1.21.2 or above)

•	 The scikit-learn package (version 1.0.1 or above)

•	 The matplotlib package (version 3.5.0 or above)

•	 The Plotly package (version 4.0.0 or above)

•	 The Neptune-client package (version 0.16.3 or above)

•	 The Neptune-optuna package (version 0.9.14 or above)

•	 The Scikit-Optimize package (version 0.9.0 or above)

•	 The TensorFlow package (version 2.4.1 or above)

•	 The Optuna package (version 2.10.0 or above)

•	 The MLflow package (version 1.27.0 or above)

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python.

Revisiting the usual practices
Conducting hyperparameter tuning experiments in a small-scale project may seem straightforward.
We can easily do several iterations of experiments and write all the results in a separate document.
We can log the details of the best set of hyperparameter values (or the tested set of hyperparameters
if we perform a manual search method, as shown in Chapter 3, Exhaustive Search), along with the
evaluation metric, in each experiment iteration. By having an experiment log, we can learn from the
history and define a better hyperparameter space in the next iteration of the experiment.

When we adopt the automated hyperparameter tuning method (all the methods we’ve discussed so
far besides the manual search method), we can get the final best set of hyperparameter values directly.
However, this is not the case when we adopt the manual search method. We need to test numerous
sets of hyperparameters manually. Several practices are adopted by the community when performing
manual searches. Let’s take a look.

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python

Revisiting the usual practices 247

Using a built-in Python dictionary

This is the most straightforward approach since we just need to create a Python dictionary that stores
all the hyperparameter values that need to be tested. Although this practice is very simple, it has
drawbacks. For example, we may not notice if we overwrite some of the hyperparameter values and
forget to log the correct set of hyperparameter values. The following example of utilizing a built-in
Python dictionary to store all of the hyperparameter values needs to be tested in a particular manual
search iteration:

hyperparameters = {

'n_estimators': 30,

'max_features': 10,

'criterion': 'gini',

'max_depth': 5,

'min_samples_split': 0.03,

'min_samples_leaf': 1,

}

Next, let’s look at configuration files.

Using a configuration file

Whether it is a JSON, YAML, or CFG file, configuration files are another option. We can put all the
hyperparameter details within this configuration file, along with other additional information, including
(but not limited to) project name, author name, and data pre-processing pipeline methods. Once you
have created the configuration file, you can load it into your Python script or Jupyter notebook, and
treat it like a standard Python dictionary. The main advantage of using a configuration file is that all
the important parameters are located within a single file, so it will be very easy to reuse the previously
saved configuration files and increase the readability of your code. However, utilizing configuration
files when working with a big project or huge code base can sometimes confuse us since we have to
maintain several configuration files.

Using additional modules

The argparse and Click modules come in handy if you want to specify the hyperparameter
values or any other training arguments via the Command Line Interface (CLI). These modules can
be utilized when we write our code in a Python script, not in a Jupyter notebook.

Tracking Hyperparameter Tuning Experiments248

Using argparse

The following code shows how to utilize argparse in a Python script:

import argparse

parser = argparse.ArgumentParser(description='Hyperparameter
Tuning')

parser.add_argument('--n_estimators, type=int, default=30,
help='number of estimators')

parser.add_argument('--max_features, type=int, default=20,
help='number of randomly sampled features for choosing the best
splitting point')

parser.add_argument('--criterion, type=str, default='gini',
help='homogeneity measurement method')

parser.add_argument('--max_depth, type=int, default=5,
help='maximum tree depth')

parser.add_argument('--min_samples_split, type=float,
default=0.03, help='minimum samples to split internal node')

parser.add_argument('--min_samples_leaf, type=int, default=1,
help='minimum number of samples in a leaf node')

parser.add_argument('--data_dir, type=str, required=True,
help='maximum tree depth')

The following code shows how to access the values from the CLI:

args = parser.parse_args()

print(args.n_estimators)

print(args.max_features)

print(args.criterion)

print(args.max_depth)

print(args.min_samples_split)

print(args.min_samples_leaf)

print(args.data_dir)

You can run the Python script with specified parameters, as follows:

python main.py --n_estimators 35 -–criterion "entropy" -–data_
dir "/path/to/my/data"

It is worth noting that the default values of the hyperparameters will be used if you don’t specify them
when calling the Python script.

Revisiting the usual practices 249

Using click

The following code shows how to utilize click in a Python script. Note that click is very similar
to argparse with a simpler implementation. We just need to add decorations on top of a
particular function:

import click

@click.command()

@click.option("--n_estimators, type=int, default=30,
help='number of estimators")

@click.option("--max_features, type=int, default=20,
help='number of randomly sampled features for choosing the best
splitting point")

@click.option("--criterion, type=str, default='gini',
help='homogeneity measurement method")

@click.option("--max_depth, type=int, default=5, help='maximum
tree depth")

@click.option("--min_samples_split, type=float, default=0.03,
help='minimum samples to split internal node")

@click.option("--data_dir, type=str, required=True,
help='maximum tree depth")

def hyperparameter_tuning(n_estimators, max_features,
criterion, max_depth, min_samples_split, data_dir):

#write your code here

Similar to argparse, you can run the Python script with specified parameters, as shown here. The
default hyperparameter values will be used if you don’t specify them when calling the Python script:

python main.py --n_estimators 35 -–criterion "entropy" -–data_
dir "/path/to/my/data"

While experimenting with either argparse or click is very easy to do, it is worth noting that neither
saves values anywhere. Hence, it requires extra effort to log all of the experimented hyperparameter
values in each trial.

Regardless of whether we are adopting manual search or other automated hyperparameter tuning
methods, it will require a lot of effort if we have to log the resulting experiment’s details manually. It
can be overwhelming, especially when we are working with larger-scale experiments where we have
to test several different ML models, data pre-processing pipelines, and other experiment setups. That’s
why, in the coming sections, you will be introduced to several packages that can help you track your
hyperparameter tuning experiments so that you have a more effective workflow.

Tracking Hyperparameter Tuning Experiments250

Exploring Neptune
Neptune is a Python (and R) package that acts as a metadata store for MLOps. This package supports
a lot of features for working with the model-building metadata. We can utilize Neptune for tracking
our experiments, not only hyperparameter tuning experiments but also other model-building-related
experiments. We can log, visualize, organize, and manage our experiments just by using a single
package. Furthermore, it also supports model registry and live monitors our ML jobs.

Installing Neptune is very easy – you can just use pip install neptune-client or conda
install -c conda-forge neptune-client. Once it has been installed, you need to sign
up for an account to get the API token. Neptune is free for an individual plan within the quota limit,
but you need to pay if you want to utilize Neptune for commercial team usage. Further information
about registering yourself for Neptune can be found on their official website: https://neptune.
ai/register.

Using Neptune to help track your hyperparameter tuning experiments is straightforward, as shown
in the following steps:

1.	 Create a new project from your Neptune account’s home page:

Figure 13.1 – Creating a new Neptune project

Exploring Neptune 251

2.	 Enter a name and description for your project:

Figure 13.2 – Entering the project’s details

Tracking Hyperparameter Tuning Experiments252

3.	 Write the hyperparameter tuning experiment script. Neptune provides several boilerplate code
options based on the framework you want to use, including (but not limited to) Optuna, PyTorch,
Keras, TensorFlow, scikit-learn, and XGBoost. You can just copy the provided boilerplate code
and customize it based on your needs. For example, let’s use the provided boilerplate code for
Optuna (see Figure 13.3) and save the training script as train_optuna.py. Please see the full
code in this book’s GitHub repository, which was provided in the Technical requirements section:

Figure 13.3 – Creating the hyperparameter tuning experiment script

4.	 Run the hyperparameter tuning script (python train_optuna.py) and look at the
metadata of the experiments on your Neptune project page. Every run will be stored as a new
experiment ID in Neptune, so you don’t have to worry about the experiment versioning since
Neptune will handle it automatically for you:

Figure 13.4 – Neptune’s experiment runs table

Exploring Neptune 253

You can also see all the metadata for each of the experiment runs, including (but not limited
to) the tested hyperparameters, source code, CPU/GPU usage, metric charts, artifacts (data,
model, or any other related files), and figures (for example, confusion matrices), as shown in
the following screenshot:

Figure 13.5 – Metadata stored in Neptune

Tracking Hyperparameter Tuning Experiments254

5.	 Analyze the experiment results. Neptune can not only help you log all of the metadata for
each experiment run, but it can also compare several different runs using several types of
comparison strategies. You can see the hyperparameter values comparison via parallel plot or
line charts. You can also compare all of the experiment details via a Side-by-side comparison
strategy (see Figure 13.6). Furthermore, Neptune also enables us to compare the logged images
or artifacts between each run:

Figure 13.6 – Comparing the experiment runs and their results

For more information regarding what you can log and display in Neptune, please refer to the official
documentation page: https://docs.neptune.ai/you-should-know/what-can-
you-log-and-display.

Integrations in Neptune
Neptune provides numerous integrations for ML-related experiments in general and also for
specific hyperparameter tuning-related tasks. Three integrations are supported by Neptune for
hyperparameter tuning tasks: Optuna, Keras, and Scikit-Optimize. For more information, please
refer to the official documentation page: https://docs.neptune.ai/integrations-
and-supported-tools/intro.

Exploring scikit-optimize 255

More examples
Neptune is a very powerful package that can be utilized for other ML experiment-related
tasks, too. For more examples of how to utilize Neptune in general, please refer to the official
documentation page: https://docs.neptune.ai/getting-started/examples.

In this section, you were introduced to Neptune and how to utilize it to help you track your hyperparameter
tuning experiments. In the next section, you will learn how to utilize the famous Scikit-Optimize
package for hyperparameter tuning experiment tracking purposes.

Exploring scikit-optimize
You were introduced to the Scikit-Optimize package in Chapter 7, Hyperparameter Tuning via Scikit,
to conduct a hyperparameter tuning experiment. In this section, we will learn how to utilize this
package to track all hyperparameter tuning experiments conducted using this package.

Scikit-Optimize provides very nice visualization plots that summarize the tested hyperparameter
values, the objective function scores, and the relationship between them. Three plots are available in this
package, as shown here. Please see the full code in this book’s GitHub repository for more details. The
following plots were generated based on the same experimental setup that was provided in Chapter 7,
Hyperparameter Tuning via Scikit, for the BOGP hyperparameter tuning method:

•	 plot_convergence: This is used to visualize the hyperparameter tuning optimization
progress for each iteration:

Figure 13.7 – Convergence plot

Tracking Hyperparameter Tuning Experiments256

•	 plot_evaluations: This is used to visualize the optimization evolution process history.
In other words, it shows the order in which hyperparameter values were sampled during the
optimization process. For each hyperparameter, a histogram of explored hyperparameter values
is generated. For each pair of hyperparameters, the scatter plot of tested hyperparameter values
is visualized and equipped with colors to act as the legend of the evolution history (from blue
to yellow):

Figure 13.8 – Evaluation plot

•	 plot_objective: This is used to visualize the pairwise dependence plot of the objective
function. This visualization helps us gain information regarding the relationship between the
tested hyperparameter values and the objective function scores. From this plot, you can see
which subspace needs more attention and which subspace, or even which hyperparameter,
needs to be removed from the original space in the next trial:

Exploring scikit-optimize 257

Figure 13.9 – Pairwise dependence plot

Integration with Neptune
Scikit-Optimize provides very informative visualization modules. However, it does not support
any experiment versioning capabilities, unlike the Neptune package. To get the best of both
worlds, we can integrate Scikit-Optimize with Neptune via its integration module. For more
information about this, please refer to the official documentation page: https://docs-
legacy.neptune.ai/integrations/skopt.html.

Tracking Hyperparameter Tuning Experiments258

In this section, you learned how to utilize the Scikit-Optimize package to help you track your
hyperparameter tuning experiments. In the next section, you will learn how to utilize the Optuna
package for hyperparameter tuning experiment tracking purposes.

Exploring Optuna
Optuna is a hyperparameter tuning package in Python that provides several hyperparameter tuning
methods. We discussed how to utilize Optuna to conduct a hyperparameter tuning experiment in
Chapter 9, Hyperparameter Tuning via Optuna. Here, we will discuss how to utilize this package to
track those experiments.

Similar to Scikit-Optimize, Optuna provides very nice visualization modules to help us track the
hyperparameter tuning experiments and as a guide for us to decide which subspace to search in the
next trial. Four visualization modules can be utilized, as shown here. All of them expect the study
object (see Chapter 9, Hyperparameter Tuning via Optuna) as input. Please see the full code in this
book’s GitHub repository:

•	 plot_contour: This is used to visualize the relationship between hyperparameters (as well
as the objective function scores) in the form of contour plots:

Figure 13.10 – Contour plot

Exploring Optuna 259

•	 plot_optimization_history: This is used to visualize the hyperparameter tuning
optimization progress for each iteration:

Figure 13.11 – Optimization history plot

•	 plot_parallel_coordinate: This is used to visualize the relationship between
hyperparameters (as well as the objective function scores) in the form of a parallel coordinate plot:

Figure 13.12 – Parallel coordinate plot

Tracking Hyperparameter Tuning Experiments260

•	 plot_slice: This is used to visualize the hyperparameter tuning method’s search evolution.
You can see what hyperparameter values have been tested in the experiment and which subspace
is getting more attention during the search process:

Figure 13.13 – Slice plot

The nice thing about all the visualization modules in Optuna is that they are all interactive charts
since they are created using the Plotly visualization package. You can zoom in on a specific area
in the charts and use other interactive features.

Integration with Neptune
Similar to Scikit-Optimize, Optuna provides very informative visualization modules. However,
it does not support any experiment versioning capability, unlike the Neptune package. We can
integrate Optuna with Neptune via its integration module. For more information about this,
please refer to the official documentation page: https://docs-legacy.neptune.
ai/integrations/optuna.html.

In this section, you learned how to utilize the Optuna package to track your hyperparameter tuning
experiments. In the next section, you will learn how to utilize the Microsoft NNI package for
hyperparameter tuning experiment tracking purposes.

Exploring Microsoft NNI
Neural Network Intelligence (NNI) is a package that is developed by Microsoft and can be utilized not
only for hyperparameter tuning tasks but also for neural architecture search, model compression, and
feature engineering. We discussed how to utilize NNI to conduct hyperparameter tuning experiments
in Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI.

Exploring Microsoft NNI 261

In this section, we will discuss how to utilize this package to track those experiments. All of the
experiment tracking modules provided by NNI are located in the web portal. You learned about the
web portal in Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI. However,
we haven’t discussed it in depth and there are many useful features you should know about.

The web portal can be utilized to visualize all of the hyperparameter tuning experiment’s metadata,
including (but not limited to) tuning and training progress, evaluation metrics, and error logs. It can
also be utilized to update the experiment’s concurrency and duration, and retry the failed trials. The
following is a list of all the important modules in the NNI web portal that can be utilized to help us track
our hyperparameter tuning experiments. The following plots have been generated based on the same
experimental setup that was stated in Chapter 10, Advanced Hyperparameter Tuning with DEAP and
Microsoft NNI, for the Random Search method. Please see the full code in this book’s GitHub repository:

•	 The Overview page shows an overview of our hyperparameter tuning experiment, including its
name and ID, status, start and end time, best metric, elapsed duration, number of trials faceted
by the status, as well as the experiment path, training platform, and tuner details. Here, you
can also change the maximum duration, the maximum number of trials, and the experiment’s
concurrency. There is also a dedicated module that shows the top-performing trials:

Figure 13.14 – The Overview page

Tracking Hyperparameter Tuning Experiments262

•	 The Trials detail page shows every detail regarding the experiment’s trials, including a
visualization of all the metrics (see Figure 13.15), a hyperparameter values parallel plot (see
Figure 13.16), a bar chart of the duration of all the trials (see Figure 13.17), and a line chart of
all intermediate results that shows the trend of each trial during the intermediate steps. We can
also see the details of each trial via the Trial jobs module, including (but not limited to) the
trial’s ID, duration, status, metric, hyperparameter value details, and log files (see Figure 13.18):

Figure 13.15 – The Trials detail page

The following is a parallel plot that shows different hyperparameter values that had been
tested in the experiment:

Figure 13.16 – Hyperparameter values parallel plot

Exploring Microsoft NNI 263

The following is a bar chart containing information about the duration of all the trials in the
experiment:

Figure 13.17 – Trials duration bar chart

Finally, there’s the Trial jobs module:

Figure 13.18 – The Trial jobs module

Tracking Hyperparameter Tuning Experiments264

The Trial jobs module includes the following:

•	 Sidebar: We can access all the information related to the search space, config, and log files in
the sidebar:

Figure 13.19 – Sidebar

•	 The Auto refresh button: We can also change the refresh interval of the web portal by using
the Auto refresh button:

Figure 13.20 – The Auto refresh button

Exploring MLflow 265

•	 The Experiment summary button: By clicking this button, you can view all the summaries
for the current experiment:

Figure 13.21 – The Experiment summary button

In this section, you learned how to utilize the Microsoft NNI package to track your hyperparameter
tuning experiments. In the next section, you will learn how to utilize the MLflow package for
hyperparameter-tuning experiment tracking purposes.

Exploring MLflow
MLflow can be utilized to manage the whole end-to-end ML pipeline. It is available in Python, R,
Java, and via the REST API. The primary functions of MLflow include experiment tracking, ML code
packaging, ML model deployment management, and centralized model storing and versioning. In this
section, we will learn how to utilize this package to track our hyperparameter tuning experiments.
Installing MLflow is very easy; you can just use the pip install mlflow command.

To track our hyperparameter tuning experiments with MLflow, we simply need to add several logging
functions to our code base. Once we’ve added the required logging function, we can go to the provided
UI by simply entering the mlflow ui command in the command line and opening it at http://
localhost:5000. Many logging functions are provided by MLflow, and the following are some
of the main important logging functions you need to be aware of. Please see the full example c

ode in this book’s GitHub repository:

•	 create_experiment(): This function is used to create a new experiment. You can specify
the name of the experiment, tags, and the path to store the experiment artifacts.

•	 set_experiment(): This function is used to set the given experiment name or ID as the
current active experiment.

•	 start_run(): This function is used to start a new MLflow run under the current active
experiment. It is suggested to use this function as a context manager within a with block.

http://localhost:5000
http://localhost:5000

Tracking Hyperparameter Tuning Experiments266

•	 log_metric(): This function is used to log a single metric within the currently active run.
If you want to do bulk logging, you can also use the log_metrics() function by passing
a dictionary of metrics.

•	 log_param(): This function is used to log a parameter or hyperparameter within the
currently active run. If you want to do bulk logging, you can also use the log_params()
function by passing a dictionary of metrics.

•	 log_artifact(): This function is used to log a file or directory as an artifact of the
currently active run. If you want to log all the contents of a local directory, you can also use
the log_artifacts() function.

•	 set_tag(): This function is used to set a tag for the currently active run. You must provide
the key and value of the tag. For example, you can set the key as “release_version”
and the value as “1.0.0”.

•	 log_figure(): This function is used to log a figure as an artifact of the currently active
run. This function supports the matplotlib and pyplot figure object types.

•	 log_image(): This function is used to log an image as an artifact of the currently active
run. This function supports the numpy.ndarray and PIL.image.image object types.

MLflow Logging Functions
For more information regarding all the available logging functions in MLfLow, please refer
to the official documentation page: https://www.mlflow.org/docs/latest/
tracking.html#logging-functions.

MLflow Integrations
MLflow also supports integrations with many well-known open source packages, including (but
not limited to) scikit-learn, TensorFlow, XGBoost, PyTorch, and Spark. You can do automatic
logging by utilizing the provided integrations. For more information, please refer to the official
documentation page: https://www.mlflow.org/docs/latest/tracking.
html#automatic-logging.

Examples of Hyperparameter Tuning Use Cases
The author of MLflow has provided example code for hyperparameter tuning use cases. For
more information, please refer to the official GitHub repository: https://github.com/
mlflow/mlflow/tree/master/examples/hyperparam.

Summary 267

In this section, you learned how to utilize the MLflow package to track your hyperparameter tuning
experiments. You can start exploring this package by yourself to get a better understanding of how
this package works and how powerful it is.

Summary
In this chapter, we discussed the importance of tracking hyperparameter tuning experiments, along
with the usual practices. You were also introduced to several open source packages that are available
and learned how to utilize each of them in practice, including Neptune, Scikit-Optimize, Optuna,
Microsoft NNI, and MLflow. At this point, you should be able to utilize your favorite package to track
your hyperparameter tuning experiment, which will boost the effectiveness of your workflow.

In the next chapter, we’ll conclude all the topics we have discussed throughout this book. We’ll also
discuss the next steps you can take to expand your hyperparameter tuning knowledge.

14
Conclusions and Next Steps

Congratulations on finishing this book! You have been introduced to a lot of interesting concepts,
methods, and implementations related to hyperparameter tuning throughout the previous chapters.
This chapter summarizes all the important lessons learned in the previous chapters, and will introduce
you to several topics or implementations that you may benefit from that we have not covered yet in
this book.

The following are the main topics that will be discussed in this chapter:

•	 Revisiting hyperparameter tuning methods and packages

•	 Revisiting HTDM

•	 What’s next?

Revisiting hyperparameter tuning methods and packages
Throughout this book, we have discussed four groups of hyperparameter tuning methods, including
exhaustive search, Bayesian optimization, heuristic search, and multi-fidelity optimization. All the
methods within each group have similar characteristics to each other. For example, manual search,
grid search, and random search, which are part of the exhaustive search group, all work by exhaustively
searching through the hyperparameter space, and can be categorized as uninformed search methods.

Bayesian optimization hyperparameter tuning methods are categorized as informed search methods,
where all of them work by utilizing both surrogate model and acquisition function. Hyperparameter
tuning methods, which are part of the heuristic search group, work by performing trial and error.
As for hyperparameter tuning methods from the multi-fidelity optimization group, they all utilize
the cheap approximation of the whole hyperparameter tuning pipeline, so that we can have similar
performance results with much lesser computational cost and faster experiment time.

Conclusions and Next Steps270

The following table summarizes all of the hyperparameter tuning methods discussed in this book,
along with the supported packages:

Revisiting hyperparameter tuning methods and packages 271

Figure 14.1 – Hyperparameter tuning methods and packages summary

In this section, we have revisited all of the hyperparameter tuning methods and packages discussed
throughout the book. In the next section, we will revisit the HTDM.

Conclusions and Next Steps272

Revisiting HTDM
The Hyperparameter Tuning Decision Map (HTDM) is a map that you can use to help you decide
which hyperparameter tuning method should be adopted in a particular situation. We discussed in detail
how you can utilize HTDM, along with several use cases, in Chapter 12, Introducing the Hyperparameter
Tuning Decision Map. Here, we will only revisit the map, as shown in the following figure:

Figure 14.2 – HTDM

In this section, we have revisited the HTDM. In the next section, we’ll discuss other topics you may
find interesting to further boost your hyperparameter tuning knowledge.

What’s next? 273

What’s next?
Even though we have discussed a lot of hyperparameter tuning methods and their implementations in
various packages, there are several important concepts you may need to know about that have not been
discussed in this book. As for the hyperparameter tuning method, you can also read more about the
CMA-ES method, which is part of the heuristic search group (https://cma-es.github.io/).
You can also read more about the meta-learning concept to further boost the performance of your
Bayesian optimization tuning results (https://lilianweng.github.io/posts/2018-
11-30-meta-learning/). It is also worth noting that we can combine the manual search method
with other hyperparameter tuning methods to boost the efficiency of our experiments, especially when
we already have prior knowledge about the good range of the hyperparameter values.

As for the packages, you can also learn more about the HpBandSter package, which implements
the Hyper Band, BOHB, and random search methods (https://github.com/automl/
HpBandSter). Finally, there are also several packages that automatically create a scikit-learn wrapper
from the non-scikit-learn model. For example, you can utilize the Skorch package to create scikit-learn
wrappers from PyTorch models (https://skorch.readthedocs.io/en/stable/).

Summary
In this chapter, we have summarized all the important concepts discussed throughout all chapters
in this book. You have also been introduced to several new concepts that you may want to learn to
further boost your hyperparameter tuning knowledge. From now on, you will have the skills you need
to take full control over your machine learning models and get the best models for the best results via
hyperparameter tuning experiments.

Thanks for investing your interest and time in reading this book. Best of luck on your hyperparameter
tuning learning journey!

https://cma-es.github.io/
https://lilianweng.github.io/posts/2018-11-30-meta-learning/
https://lilianweng.github.io/posts/2018-11-30-meta-learning/
https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://skorch.readthedocs.io/en/stable/

Index

A
acquisition function 30, 113
activation function 229, 231
adaptive Parzen estimator 52
Adaptive TPE (ATPE)

implementing 146, 147
additional modules

argparse, using 248
click, using 249
using 247

advisors 189
annealing schedule 61
argparse

using 248
artificial neural network 229
artificial neural network hyperparameters

exploring 229, 230
assessors 194
Azure Machine Learning (AML) 191

B
backward propagation 229
Banking Dataset

reference link 114

batch size 230
Bayesian optimization and

Hyperband (BOHB)
about 38, 87, 103, 212
cons 106
implementing 213, 214
pros 106
working 104, 105

Bayesian optimization (BO)
about 29-39
pros and cons 39
working 31

Bayesian optimization Gaussian
process (BOGP)

about 41, 42
implementing 130-133, 204-206
pros and cons 42

Bayesian Optimization Gradient
Boosted Trees (BOGBRT)

implementing 134, 135
Bayesian optimization inside a

Grove (BOinG) 50
Bayesian Optimization Random

Forest (BORF)
implementing 133, 134

Index276

binary PSO 81
black-box optimization methods 88
black-box optimizer 88, 89
Blend crossover strategy 69
BOGP hyperparameter tuning method

plot_convergence 255
plot_evaluations 256
plot_objective 256

BOGP tuner parameters
reference link 205

boosting 222
bootstrap aggregation (bagging) 220
budget 95
built-in Python dictionary

using 247

C
CatBoost categorical features

reference link 227
CatBoost classifier

Hyperparameter Tuning Decision
Map (HTDM), using 237-239

CatBoost hyperparameters
exploring 226, 227
reference link 227

Categorical Boosting (CatBoost) 226
categorical encoding 118
click

using 249
CMA-ES method

URL 273
Coarse-to-Fine Search (CFS)

about 89, 90
cons 94
implementing 123, 124
pros 94
working 91-93

cognitive coefficients 75
Command Line Interface (CLI) 247
conditional hyperparameters 54
conditional hyperparameter space 140

Hyperparameter Tuning Decision
Map (HTDM), using 239-241

configuration file
using 247

convergence plot 71
convolutional neural networks

(CNNs) 230
crossover step 67
cross-validation 8

D
data-centric approach 18
data leakage problem 6
decision trees 220
deep learning 229
diagnostic model 56
Distributed Evolutionary Algorithms

in Python (DEAP)
about 171-175
evolutionary tools 175
reference link 172
type classes, defining 172

distribution 19, 20
dropout rate 231

E
Entropy 220
epochs 230
exhaustive search 21
Expected Improvement (EI) 32, 113, 131
exploitation 59
exploration 59

Index 277

Exponential Linear Unit (ELU) 231
Extra Trees (ET) 113
Extreme Gradient Boosting

(XGBoost) 222

F
fANOVA 158
Fast SA 63
fitness function 66
Fold 8
forward propagation 229

G
garbage in, garbage out (GIGO) 18
Gaussian mixture models (GMMs) 52
Gaussian Process (GP) 32, 113
generality 89
genetic algorithm (GA)

about 65-73, 171
cons 73
implementing 176-182
pros 73
utilizing, as hyperparameter

tuning method 72, 73
working, as optimization

methods 68, 69
genetic operator 171
geometric cooling 61
Gini 220
global best position 74
Gradient Boosted Regression

Trees (GBRT) 113
grid search

about 23-25
cons 24

performing 24
pros 24

Grid Search
implementing 114-121,

161, 162, 194-199

H
Heuristic search 59
HpBandSter package

reference link 273
Hyper Band advisor parameters

reference link 211, 213
Hyperband (HB)

about 100, 101, 210
cons 102
implementing 128, 129, 166, 210-212
pros 102
working 101, 102

Hyperopt
about 52, 138-140
reference link 141

hyperparameter
about 18
versus parameter 18, 19

hyperparameter space
about 19, 20
defining 140

hyperparameter tuning
about 17, 18, 72
concepts 273

Hyperparameter Tuning Decision
Map (HTDM)

about 234-236, 272
revisiting 272
using, with CatBoost classifier 237-239

Index278

using, with conditional
hyperparameter space 239-241

using, with hyperparameter
values 241-243

hyperparameter tuning experiments
additional modules, using 247
best practices, revisiting 246
built-in Python dictionary, using 247
configuration file, using 247

hyperparameter tuning methods
revisiting 269-271

hyperparameter tuning packages
revisiting 269-271

hyperparameter values
Hyperparameter Tuning Decision

Map (HTDM), using 241-243

I
independent and identically

distributed (IID) 14
inertia weight coefficient 75, 76
informed search methods 29, 88

K
kernel 228
k-fold cross-validation

about 8
discovering 8-10
reference link 9
stratifying split concept, applying 10

K-Nearest Neighbor (KNN) 19

L
L1 regularization 231
L2 regularization 231
Latin Hypercube Sampling (LHS) 32, 55
learning rate 230
Leave One Out (LOO) cross-validation

about 12
discovering 12, 13

LightGBM hyperparameters
exploring 224-226
reference link 226

Light Gradient Boosting Machine
(LightGBM) 147, 224

linear cooling 62
long short-term memory

networks (LSTMs) 230
look-ahead bias 14
Lower Confidence Bound (LCB) 113, 131
lowest confidence (LC) 55
LPO cross-validation

about 13
discovering 13, 14

M
machine learning (ML) algorithm 42
manual search

about 22
cons 22
performing 22
pros 22

Mean Decrease Impurity 158
mean squared error (MSE) 61, 220
metal annealing 60
meta-learning

reference link 273

Index 279

Metis
about 55, 57
implementing 207, 208
lowest confidence (LC) 55
outliers detector 56
Parzen estimator 55
pros and cons 57
working 56

Metis tuner parameters
reference link 207

Microsoft NNI
about 52, 57
exploring 260-265

MLflow
exploring 265-267

MLflow integration
reference link 266

MLflow logging functions
reference link 266

ML frameworks, examples
reference link 193

MNIST dataset 215
model-centric approach 18
MongoDB 141
Multi-Fidelity Optimization (MFO) 87-89
multilayer perceptron (MLP) 18, 92, 229
multivariate TPE 54, 103
mutant 67
mutation step 67

N
Neptune

about 250
exploring 250-255
integration 254
URL 250

Neptune, log and display
reference link 254

Neural Network Intelligence (NNI)
about 189, 260
hyperparameter tuning procedure,

performing with 190-194
reference link 190
tuners 189

neural network (NN) 19, 154-156
NNI package

implementation 85
number of layers 230
number of nodes 230
number of trials 27

O
optimizer 230
Optuna

about 152, 153, 258
exploring 258-260
hyperparameter space, defining 154
hyperparameter tuning,

performing 153, 157, 158
plot_contour 258
plot_optimization_history 259
plot_parallel_coordinate 259
plot_slice 260

Optuna integration
reference link 153, 260

Optuna package 54
outliers detector 56
overfitting

concept 4

Index280

P
parameter

about 18
versus hyperparameter 18, 19

particle 74
particle swarm optimization (PSO)

about 74-81, 171
implementing 183-189
working, as hyperparameter

tuning method 80, 81
working, as optimization method 76, 77

Parzen estimator 55
PBT tuner parameters

reference link 215
perceptron 229
PolynomialBounded mutation strategy 69
population 66
population-based method 65
Population-Based Training (PBT)

about 82, 83, 214
cons 85
evaluation step 83
exploitation step 83, 84
exploration step 83
implementing 215, 216
pros 85
working, as single training

optimization process 84, 85
position vector 74
probabilistic regression model 30
Probability of Improvement

(PI) 38, 113, 131
pruners 153
PSO-BO 82

PSO, utilizing as hyperparameter
tuning method

cons 82
pros 82

Q
quasi-random sampling method 32

R
RandomForestClassifier

reference link 221
Random Forest hyperparameters

exploring 220-222
RandomForestRegressor

reference link 221
Random Forest (RF) 42, 113, 220
random sampling 32
random search

about 25, 26
cons 28
implementing 121-123,

141-145, 160, 199, 200
pros 28
working 27

random search method 83
random split

about 7
exploring 6-8

Rectified Linear Activation
Function (ReLU) 231

recurrent neural networks (RNNs) 230
repeated k-fold cross-validation

about 11
discovering 11, 12

Index 281

S
samplers 153
scikit 112-114
scikit-learn

about 7
parameters 221, 222

scikit-nni 193
scikit-optimize integration

reference link 257
scikit-optimize package

about 33, 255
exploring 255, 258

Scipy
reference link 122

scoring strategies
reference link 117

search space 19
selection 66
Sequential Model Algorithm

Configuration (SMAC)
about 133
implementing 203, 204

sequential model-based algorithm
configuration (SMAC) 42-51

sequential model-based
optimization (SMBO) 30

sequential search method 83
Sigmoid 231
Simulated Annealing
simulated annealing (SA)

about 60-65
cons 65
implementing 148, 150,

162, 163, 208-210
pros 65

single-point-based method 65
sklearn

about 112
URL 117

skopt 113
skopt package

reference link 131
Skorch package

reference link 273
SMAC tuner parameters

reference link 203
social coefficients 75
Softmax 231
Spark 141
SQLAlchemy 157
stochastic hill climbing (SHC)

about 60
optimization, working 60

stratified split
about 7
exploring 6-8

Successive Halving (SH)
about 95
cons 99
example 95-99
implementing 124-128, 164-166
multiplier factor 97
pros 99

Support Vector Machine (SVM) 228
surrogate model 30, 113
SVM hyperparameters

exploring 228
reference link 228

swarm 74
swarm intelligence (SI)

about 74
characteristics 74

Index282

T
Tanh 231
test set

about 6
creating 5, 6

TFKeras 154
time-series cross-validation

about 15
discovering 14-16

time-series data
about 14
example 14

Tournament selection strategy 69
TPE tuner parameters

reference link 201
training set

creating 5, 6
transformers 230
Tree-structured Parzen Estimators (TPEs)

about 32, 51-55
implementing 146, 159, 160, 201, 202
pros and cons 54

truncated normal distribution 27
tuners 189

U
uninformed search 21, 22, 89
Upper Confidence Bound (UCB) 38

V
validation set

about 5
creating 5, 6

variation 66
velocity vector 74, 80

X
XGBoost hyperparameters

exploring 222-224
reference link 224

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Machine Learning for Streaming Data with Python

Joos Korstanje

ISBN: 9781803248363

•	 Understand the challenges and advantages of working with streaming data Develop real-time
insights from streaming data Understand the implementation of streaming data with various
use cases to boost your knowledge Develop a PCA alternative that can work on real-time data
Explore best practices for handling streaming data that you absolutely need to remember
Develop an API for real-time machine learning inference

https://packt.link/9781803248363

285Other Books You May Enjoy

Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

ISBN: 9781801819312

•	 Explore frameworks, models, and techniques for machines to ‘learn’ from data Use scikit-learn
for machine learning and PyTorch for deep learning Train machine learning classifiers on
images, text, and more Build and train neural networks, transformers, and boosting algorithms
Discover best practices for evaluating and tuning models Predict continuous target outcomes
using regression analysis Dig deeper into textual and social media data using sentiment analysis

https://packt.link/9781801819312

286

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Hyperparameter Tuning with Python, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site that
you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-803-23587-X
https://packt.link/r/1-803-23587-X

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1:
The Methods
	Chapter 1: Evaluating Machine Learning Models
	Technical requirements
	Understanding the concept of overfitting
	Creating training, validation, and test sets
	Exploring random and stratified splits
	Discovering repeated k-fold cross-validation
	Discovering Leave-One-Out cross-validation
	Discovering LPO cross-validation
	Discovering time-series cross-validation
	Summary
	Further reading

	Chapter 2: Introducing Hyperparameter Tuning
	What is hyperparameter tuning?
	Demystifying hyperparameters versus parameters
	Understanding hyperparameter space
and distributions
	Summary

	Chapter 3: Exploring Exhaustive Search
	Understanding manual search
	Understanding grid search
	Understanding random search
	Summary

	Chapter 4: Exploring Bayesian Optimization
	Introducing BO
	Understanding BO GP
	Understanding SMAC
	Understanding TPE
	Understanding Metis
	Summary

	Chapter 5: Exploring Heuristic Search
	Understanding simulated annealing
	Understanding genetic algorithms
	Understanding particle swarm optimization
	Understanding Population-Based Training
	Summary

	Chapter 6: Exploring Multi-Fidelity Optimization
	Introducing MFO
	Understanding coarse-to-fine search
	Understanding successive halving
	Understanding hyper band
	Understanding BOHB
	Summary

	Section 2:
The Implementation
	Chapter 7: Hyperparameter Tuning
via Scikit
	Technical requirements
	Introducing Scikit
	Implementing Grid Search
	Implementing Random Search
	Implementing Coarse-to-Fine Search
	Implementing Successive Halving
	Implementing Hyper Band
	Implementing Bayesian Optimization Gaussian Process
	Implementing Bayesian Optimization Random Forest
	Implementing Bayesian Optimization Gradient Boosted Trees
	Summary

	Chapter 8: Hyperparameter Tuning
via Hyperopt
	Technical requirements
	Introducing Hyperopt
	Implementing Random Search
	Implementing Tree-structured Parzen Estimators
	Implementing Adaptive TPE
	Implementing simulated annealing
	Summary

	Chapter 9: Hyperparameter Tuning via Optuna
	Technical requirements
	Introducing Optuna
	Implementing TPE
	Implementing Random Search
	Implementing Grid Search
	Implementing Simulated Annealing
	Implementing Successive Halving
	Implementing Hyperband
	Summary

	Chapter 10: Advanced Hyperparameter Tuning with DEAP and Microsoft NNI
	Technical requirements
	Introducing DEAP
	Implementing the Genetic Algorithm
	Implementing Particle Swarm Optimization
	Introducing Microsoft NNI
	Implementing Grid Search
	Implementing Random Search
	Implementing Tree-structured Parzen Estimators
	Implementing Sequential Model Algorithm Configuration
	Implementing Bayesian Optimization Gaussian Process
	Implementing Metis
	Implementing Simulated Annealing
	Implementing Hyper Band
	Implementing Bayesian Optimization Hyper Band
	Implementing Population-Based Training
	Summary

	Section 3:
Putting Things into Practice
	Chapter 11: Understanding the Hyperparameters of Popular Algorithms
	Exploring Random Forest hyperparameters
	Exploring XGBoost hyperparameters
	Exploring LightGBM hyperparameters
	Exploring CatBoost hyperparameters
	Exploring SVM hyperparameters
	Exploring artificial neural network hyperparameters
	Summary

	Chapter 12: Introducing Hyperparameter Tuning Decision Map
	Getting familiar with HTDM
	Case study 1 – using HTDM with a CatBoost classifier
	Case study 2 – using HTDM with a conditional hyperparameter space
	Case study 3 – using HTDM with prior knowledge of the hyperparameter values
	Summary

	Chapter 13: Tracking Hyperparameter Tuning Experiments
	Technical requirements
	Revisiting the usual practices
	Using a built-in Python dictionary
	Using a configuration file
	Using additional modules

	Exploring Neptune
	Exploring scikit-optimize
	Exploring Optuna
	Exploring Microsoft NNI
	Exploring MLflow
	Summary

	Chapter 14: Conclusions and Next Steps
	Revisiting hyperparameter tuning methods and packages
	Revisiting HTDM
	What’s next?
	Summary

	Index
	Other Books You May Enjoy

