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P r e f a c e

Hyperparameters are an important element in building useful machine learning models. This book 
curates numerous hyperparameter tuning methods for Python, one of the most popular coding 
languages for machine learning. Alongside in-depth explanations of how each method works, you 
will use a decision map that can help you identify the best tuning method for your requirements.

We will start the book with an introduction to hyperparameter tuning and explain why it’s important. 
You’ll learn the best methods for hyperparameter tuning for a variety of use cases and a specific 
algorithm type. The book will not only cover the usual grid or random search but also other powerful 
underdog methods. Individual chapters are dedicated to giving full attention to the three main groups 
of hyperparameter tuning methods: exhaustive search, heuristic search, Bayesian optimization, and 
multi-fidelity optimization.  

Later in the book, you will learn about top frameworks such as scikit-learn, Hyperopt, Optuna, NNI, 
and DEAP to implement hyperparameter tuning. Finally, we will cover hyperparameters of popular 
algorithms and best practices that will help you efficiently tune your hyperparameters. 

By the end of the book, you will have the skills you need to take full control over your machine learning 
models and get the best models for the best results.

Who this book is for
The book is intended for data scientists and Machine Learning engineers who are working with Python 
and want to further boost their ML model’s performance by utilizing the appropriate hyperparameter 
tuning method. You will need to have a basic understanding of ML and how to code in Python but 
will require no prior knowledge of hyperparameter tuning in Python.

What this book covers
Chapter 1, Evaluating Machine Learning Models, covers all the important things we need to know 
when it comes to evaluating ML models, including the concept of overfitting, the idea of splitting data 
into several parts, a comparison between the random and stratified split, and numerous methods on 
how to split the data.

Chapter 2, Introducing Hyperparameter Tuning, introduces the concept of hyperparameter tuning, 
starting from the definition and moving on to the goal, several misconceptions, and distributions of 
hyperparameters.
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Chapter 3, Exploring Exhaustive Search, explores each method that belongs to the first out of four groups 
of hyperparameter tuning, along with the pros and cons. There will be both high-level and detailed 
explanations for each of the methods. The high-level explanation will use a visualization strategy 
to help you understand more easily, while the detailed explanation will bring the math to the table.

Chapter 4, Exploring Bayesian Optimization, explores each method that belongs to the second out of 
four groups of hyperparameter tuning, along with the pros and cons. There will also be both high-level 
and detailed explanations for each of the methods.

Chapter 5, Exploring Heuristic Search, explores each method that belongs to the third out of four 
groups of hyperparameter tuning, along with the pros and cons. There will also be both high-level 
and detailed explanations for each of the methods. 

Chapter 6, Exploring Multi-Fidelity Optimization, explores each method that belongs to the fourth 
out of four groups of hyperparameter tuning, along with the pros and cons. There will also be both 
high-level and detailed explanations for each of the methods.

Chapter 7, Hyperparameter Tuning via Scikit, covers all the important things about scikit-learn, scikit-
optimize, and scikit-hyperband, along with how to utilize each of them to perform hyperparameter 
tuning.

Chapter 8, Hyperparameter Tuning via Hyperopt, introduces the Hyperopt package, starting from its 
capabilities and limitations, how to utilize it to perform hyperparameter tuning, and all the other 
important things you need to know about it.

Chapter 9, Hyperparameter Tuning via Optuna, introduces the Optuna package, starting from its 
numerous features, how to utilize it to perform hyperparameter tuning, and all the other important 
things you need to know about it.

Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI, shows how to perform 
hyperparameter tuning using both the DEAP and Microsoft NNI packages, starting from getting 
ourselves familiar with the packages and moving on to the important modules and parameters we 
need to be aware of. 
Chapter 11, Understanding Hyperparameters of Popular Algorithms, explores the hyperparameters of 
several popular ML algorithms. There will be a broad explanation for each of the algorithms, including 
(but not limited to) the definition of each hyperparameter, what will be impacted when the value of 
each hyperparameter is changed, and the priority list of hyperparameters based on the impact.

Chapter 12, Introducing Hyperparameter Tuning Decision Map, introduces the Hyperparameter Tuning 
Decision Map (HTDM), which summarizes all of the discussed hyperparameter tuning methods as 
a simple decision map based on six aspects. There will be also three study cases that show how to 
utilize the HTDM in practice.



To get the most out of this book xv

Chapter 13, Tracking Hyperparameter Tuning Experiments, covers the importance of tracking 
hyperparameter tuning experiments, along with the usual practices. You will also be introduced to 
several open source packages that are available and learn how to utilize each of them in practice.

Chapter 14, Conclusions and Next Steps, summarizes all the important lessons learned in the previous 
chapters, and also introduces you to several topics or implementations that you may benefit from that 
we have not covered in detail in this book.

To get the most out of this book
You will also need Python version 3.7 (or above) installed on your computer, along with the related 
packages mentioned in the Technical requirements section of each chapter.

It is worth noting that there is a conflicting version requirement for the Hyperopt package in Chapter 
8, Hyperparameter Tuning via Hyperopt, and Chapter 10, Advanced Hyperparameter Tuning with DEAP 
and Microsoft NNI. You need to install version 0.2.7 for Chapter 8, Hyperparameter Tuning via Hyperopt, 
and version 0.1.2 for Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI.

It is also worth noting that the HyperBand implementation used in Chapter 7, Hyperparameter 
Tuning via Scikit, is the modified version of the scikit-hyperband package. You can utilize the modified 
version by cloning the GitHub repository (a link is available in the next section) and looking in a 
folder named hyperband.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

To understand all contents in this book, you will need to have a basic understanding of ML and how 
to code in Python but will require no prior knowledge of hyperparameter tuning in Python. At the 
end of this book, you will also be introduced to several topics or implementations that you may benefit 
from which we have not covered yet in this book. 

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python. If there’s an update to 
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/ExcbH.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: As for 
criterion and max_depth, we are still using the same configuration as the previous search space.

A block of code is set as follows:

for n_est in n_estimators:

          for crit in criterion:

          for m_depth in max_depth:

          #perform cross-validation here

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

https://packt.link/ExcbH
http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com/support/errata
http://copyright@packt.com
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If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Hyperparameter Tuning with Python, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and 
share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-803-23587-X
https://packt.link/r/1-803-23587-X




S e c t i o n  1 : 
T h e  M e t h o d s

This initial section covers concepts and theories you need to know before performing hyperparameter 
tuning experiments.

This section includes the following chapters:

•	 Chapter 1, Evaluating Machine Learning Models

•	 Chapter 2, Introducing Hyperparameter Tuning

•	 Chapter 3, Exploring Exhaustive Search

•	 Chapter 4, Exploring Bayesian Optimization 

•	 Chapter 5, Exploring Heuristic Search

•	 Chapter 6, Exploring Multi-Fidelity Optimization





1
E v a l u a t i n g  M a c h i n e 

L e a r n i n g  M o d e l s

Machine Learning (ML) models need to be thoroughly evaluated to ensure they will work in production. 
We have to ensure the model is not memorizing the training data and also ensure it learns enough 
from the given training data. Choosing the appropriate evaluation method is also critical when we 
want to perform hyperparameter tuning at a later stage.

In this chapter, we'll learn about all the important things we need to know when it comes to evaluating 
ML models. First, we need to understand the concept of overfitting. Then, we will look at the idea of 
splitting data into train, validation, and test sets. Additionally, we'll learn about the difference between 
random and stratified splits and when to use each of them. 

We'll discuss the concept of cross-validation and its numerous variations of strategy: k-fold repeated 
k-fold, Leave One Out (LOO), Leave P Out (LPO), and a specific strategy when dealing with time-
series data, called time-series cross-validation. We'll also learn how to implement each of the evaluation 
strategies using the Scikit-Learn package.

By the end of this chapter, you will have a good understanding of why choosing a proper evaluation 
strategy is critical in the ML model development life cycle. Also, you will be aware of numerous 
evaluation strategies and will be able to choose the most appropriate one for your situation. Furthermore, 
you will also be able to implement each of the evaluation strategies using the Scikit-Learn package.

In this chapter, we're going to cover the following main topics:

•	 Understanding the concept of overfitting

•	 Creating training, validation, and test sets

•	 Exploring random and stratified split

•	 Discovering k-fold cross-validation

•	 Discovering repeated k-fold cross-validation
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•	 Discovering LOO cross-validation

•	 Discovering LPO cross-validation

•	 Discovering time-series cross-validation

Technical requirements
We will learn how to implement each of the evaluation strategies using the Scikit-Learn package.  
To ensure that you can reproduce the code examples in this chapter, you will need the following:

•	 Python 3 (version 3.7 or above)

•	 The pandas package installed (version 1.3.4 or above) 

•	 The Scikit-Learn package installed (version 1.0.1 or above)

All of the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/01_
Evaluating-Machine-Learning-Models.ipynb.

Understanding the concept of overfitting
Overfitting occurs when the trained ML model learns too much from the given training data. In 
this situation, the trained model successfully gets a high evaluation score on the training data but 
a far lower score on new, unseen data. In other words, the trained ML model fails to generalize the 
knowledge learned from the training data to the unseen data. 

So, how exactly does the trained ML model get decent performance on the training data but fail to 
give a reasonable performance on unseen data? Well, that happens when the model tries too hard to 
achieve high performance on the training data and has picked up knowledge that is only applicable 
to that specific training data. Of course, this will negatively impact the model's ability to generalize, 
which results in bad performance when the model is evaluated on unseen data.

To detect whether our trained ML model faces an overfitting issue, we can monitor the performance 
of our model on the training data versus unseen data. Performance can be defined as the loss value of 
our model or metrics that we care about, for example, accuracy, precision, and the mean absolute error. 
If the performance of the training data keeps getting better, while the performance on the unseen data 
starts to become stagnant or even gets worse, then this is a sign of an overfitting issue (see Figure 1.1):

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/01_Evaluating-Machine-Learning-Models.ipynb
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/01_Evaluating-Machine-Learning-Models.ipynb
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/01_Evaluating-Machine-Learning-Models.ipynb
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Figure 1.1 – The model's performance on training data versus unseen data (overfitting)  

Note
The preceding diagram image has been reproduced according to the license specified: https://
commons.wikimedia.org/wiki/File:Overfitting_svg.svg.

Now that you are aware of the overfitting problem, we need to learn how to prevent this from happening 
in our ML development life cycle. We will discuss this in the following sections.

Creating training, validation, and test sets
We understand that overfitting can be detected by monitoring the model's performance on the training 
data versus the unseen data, but what exactly is unseen data? Is it just random data that has not yet 
been seen by the model during the training phase? 

Unseen data is a portion of our original complete data that was not seen by the model during the 
training phase. We usually refer to this unseen data as the test set. Let's imagine you have 100,000 
samples of data, to begin with; you can take out a portion of the data, let's say 10% of it, to become 
the test set. So, now we have 90,000 samples as the training set and 10,000 samples as the testing set. 

However, it is better to not just split our original data into train and test sets but also into a validation 
set, especially when we want to perform hyperparameter tuning on our model. Let's say that out of 100,000 
original samples, we held out 10% of it to become the validation set and another 10% to become the 
test set. Therefore, we will have 80,000 samples as the train set, 10,000 samples as the validation set, 
and 10,000 samples as the test set.

https://commons.wikimedia.org/wiki/File:Overfitting_svg.svg
https://commons.wikimedia.org/wiki/File:Overfitting_svg.svg
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You might be wondering why do we need a validation set apart from the test set. Actually, we do not 
need it if we do not want to perform hyperparameter tuning or any other model-centric approaches. 
This is because the purpose of having a validation set is to have an unbiased evaluation of the test set 
using the final version of the trained model.

A validation set can help us to get an unbiased evaluation of the test set because we only incorporate 
the validation set during the hyperparameter tuning phase. Once we finish the hyperparameter tuning 
phase and get the final model configuration, we can then evaluate our model on the purely unseen 
data, which is called the test set. 

Important Note
If you are going to perform any data preprocessing steps (for example, missing value imputation, 
feature engineering, standardization, label encoding, and more), you have to build the function 
based on the train set and then apply it to the validation and test set. Do not perform those 
data preprocessing steps on the full original data (before data splitting). That's because it might 
lead to a data leakage problem.

There is no specific rule when it comes to choosing the proportions for each of the train, validation, 
and test sets. You have to choose the split proportion by yourself based on the condition you are faced 
with. However, the common splitting proportion used by the data science community is 8:2 or 9:1 for 
the train set and the validation and test set, respectively. Usually, the validation and test set will have a 
proportion of 1:1. Therefore, the common splitting proportion is 8:1:1 or 9:0.5:0.5 for the train, validation, 
and test sets, respectively.

Now that we are aware of the train, validation, and test set concept, we need to learn how to build 
those sets. Do we just randomly split our original data into three sets? Or can we also apply some 
predefined rules? In the next section, we will explore this topic in more detail. 

Exploring random and stratified splits
The most straightforward way (but not entirely a correct way) to split our original full data into train, 
validation, and test sets is by choosing the proportions for each set and then directly splitting them 
into three sets based on the order of the index. 

For instance, the original full data has 100,000 samples, and we want to split this into train, validation, 
and test sets with a proportion of 8:1:1. Then, the training set will be the samples from index  
1 until 80,000. The validation and test set will be the index from 81,000 until 90,000 and 91,000 
until 100,000, respectively. 

So, what's wrong with that approach? There is nothing wrong with that approach as long as the original 
full data is shuffled. It might cause a problem when there is some kind of pattern between the indices 
of the samples. 
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For instance, we have data consisting of 10,000 samples and 3 columns. The first and second columns 
contain weight and height information, respectively. The third column contains the "weight status" 
class (for example, underweight, normal weight, overweight, and obesity). Our task is to build an ML 
classifier model to predict what the "weight status" class of a person is, given their weight and height. 
It is not impossible for the data to be given to us in the condition that it was ordered based on the 
third column. So, the first 80,000 rows only consist of the underweight and normal weight classes. In 
comparison, the overweight and obesity classes are only located in the last 20,000 rows. If this is the 
case, and we apply the data splitting logic from earlier, then there is no way our classifier can predict 
a new person has the overweight or obesity "weight status" classes. Why? Because our classifier has 
never seen those classes before during the training phase! 

Therefore, it is very important to ensure the original full data is shuffled in the first place, and essentially, 
this is what we mean by the random split. Random split works by first shuffling the original full data 
and then splitting it into the train, validation, and test sets based on the order of the index.

There is also another splitting logic called the stratified split. This logic ensures that the train, 
validation, and test set will get a similar proportion number of samples for each target class found in 
the original full data. 

Using the same "weight status" class prediction case example, let's say that we found that the proportion 
of each class in the full original data is 3:5:1.5:0.5 for underweight, normal weight, overweight, and 
obese, respectively. The stratified split logic will ensure that we can find a similar proportion of those 
classes in the train, validation, and test sets. So, out of 80,000 samples of the train set, around 24,000 
samples are in the underweight class, around 40,000 samples are in the normal weight class, around 
12,000 samples are overweight, and around 4,000 samples are in the obesity class. This will also be 
applied to the validation and test set.

The remaining question is understanding when it is the right time to use the random split/stratified 
split logic. Often, the stratified split logic is used when we are faced with an imbalanced class problem. 
However, it is also often used when we want to make sure that we have a similar proportion of samples 
based on a specific variable (not necessarily the target class). If you are not faced with this kind of 
situation, then the random split is the go-to logic that you can always choose.

To implement both of the data splitting logics, you can write the code by yourself from scratch or 
utilize the well-known package called Scikit-Learn. The following is an example to perform a random 
split with a proportion of 8:1:1: 

from sklearn.model_selection import train_test_split

df_train, df_unseen = train_test_split(df, test_size=0.2, 
random_state=0)

df_val, df_test = train_test_split(df_unseen, test_size=0.5, 
random_state=0)
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The df variable is our complete original data that was stored in the Pandas DataFrame object. The 
train_test_split function splits the Pandas DataFrame, array, or matrix into shuffled train 
and test sets. In lines 2–3, first, we split the original full data into df_train and df_unseen 
with a proportion of 8:2, as specified by the test_size argument. Then, we split df_unseen 
into df_val and df_test with a proportion of 1:1.

To perform the stratify split logic, you can just add the stratify argument to the train_test_
split function and fill it with the target array:

df_train, df_unseen = train_test_split(df, test_size=0.2, 
random_state=0, stratify=df['class'])

df_val, df_test = train_test_split(df_unseen, test_size=0.5, 
random_state=0, stratify=df_unseen['class'])

The stratify argument will ensure the data is split in the stratified fashion based on the given 
target array.

In this section, we have learned the importance of shuffling the original full data before performing 
data splitting and also understand the difference between the random and stratified split, as well as 
when to use each of them. In the next section, we will start learning variations of the data splitting 
strategies and how to implement each of them using the Scikit-learn package.

Discovering k-fold cross-validation
Cross-validation is a way to evaluate our ML model by performing multiple evaluations on our 
original full data via a resampling procedure. This is a variation from the vanilla train-validation-test 
split that we learned about in previous sections. Additionally, the concept of random and stratified 
splits can be applied in cross-validation.  

In cross-validation, we perform multiple splits for the train and validation sets, where each split is 
usually referred to Fold. What about the test set? Well, it still acts as the purely unseen data where 
we can test the final model configuration on it. Therefore, in the beginning, it is only separated once 
from the train and validation set.

There are several variations of the cross-validation strategy. The first one is called k-fold cross-
validation. It works by performing k times of training and evaluation with a proportion of (k-1):1 
for the train and validation set, respectively, in each fold. To have a clearer understanding of k-fold 
cross-validation, please refer to Figure 1.2:
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Figure 1.2 – K-fold cross-validation

Note
The preceding diagram has been reproduced according to the license specified: https://
commons.wikimedia.org/wiki/File:K-fold_cross_validation.jpg.

For instance, let's choose k = 4 to match the illustration in Figure 1.2. The green and red balls correspond 
to the target class, where, in this case, we only have two target classes. The data is shuffled beforehand, 
which can be seen from the absence of a pattern of green and red balls. It is also worth mentioning 
that the shuffling was previously only done once. That's why the order of green and red balls is always 
the same for each iteration (fold). The black box in each fold corresponds to the validation set (the 
test data is in the illustration).

As you can see in Figure 1.2, the proportion of the training set versus the validation set is (k-1):1, 
or in this case, 3:1. During each fold, the model will be trained on the train set and evaluated on 
the validation set. Notice that the training and validation sets are different across each fold. The final 
evaluation score can be calculated by taking the average score of all of the folds.

In summary, k-fold cross-validation works as follows:

1.	 Shuffling the original full data

2.	 Holding out the test data

3.	 Performing the k-fold multiple evaluation strategy on the rest of the original full data

4.	 Calculating the final evaluation score by taking the average score of all of the folds

5.	 Evaluating the test data using the final model configuration

https://commons.wikimedia.org/wiki/File:K-fold_cross_validation.jpg
https://commons.wikimedia.org/wiki/File:K-fold_cross_validation.jpg
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You might ask why do we need to perform cross-validation in the first place? Why is the vanilla 
train-validation-test splitting strategy not enough? There are several reasons why we need to apply 
the cross-validation strategy:

•	 Having only a small amount of training data.

•	 To get a more confident conclusion from the evaluation performance.

•	 To get a clearer picture of our model's learning ability and/or the complexity of the given data.

The first and second reasons are quite straightforward. The third reason is more interesting and should 
be discussed. How can cross-validation help us to get a better idea about our model's learning ability 
and/or the data complexity? Well, this happens when the variation of evaluation scores from each 
fold is quite big. For instance, out of 4 folds, we get accuracy scores of 45%, 82%, 64%, and 98%. This 
scenario should trigger our curiosity: what is wrong with our model and/or data? It could be that the 
data is too hard to learn and/or our model can't learn properly.

The following is the syntax to perform k-fold cross-validation via the Scikit-Learn package: 

From sklearn.model_selection import train_test_split, Kfold

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0)

kf = Kfold(n_splits=4)

for train_index, val_index in kf.split(df_cv):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

Notice that, first, we hold out the test set and only work with df_cv when performing the k-fold 
cross-validation. By default, the Kfold function will disable the shuffling procedure. However, 
this is not a problem for us since the data has already shuffled beforehand when we called the 
train_test_split function. If you want to run the shuffling procedure again, you can pass 
shuffle=True in the Kfold function.

Here is another example if you are interested in learning how to apply the concept of stratifying splits 
in k-fold cross-validation:

From sklearn.model_selection import train_test_split, 
StratifiedKFold

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0, stratify=df['class'])

skf = StratifiedKFold(n_splits=4)
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for train_index, val_index in skf.split(df_cv, df_cv['class']):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

The only difference is to import StratifiedKFold instead of the Kfold function and add the 
array of target variables, which will be used to split the data in a stratified fashion.

In this section, you have learned what cross-validation is, when the right time is to perform cross-
validation, and the first (and the most widely used) cross-validation strategy variation, which is called 
k-fold cross-validation. In the subsequent sections, we will also learn other variations of cross-validation 
and how to implement them using the Scikit-Learn package.

Discovering repeated k-fold cross-validation
Repeated k-fold cross-validation involves simply performing the k-fold cross-validation repeatedly, 
N times, with different randomizations in each repetition. The final evaluation score is the average of 
all scores from all folds of each repetition. This strategy will increase our confidence in  our model. 

So, why repeat the k-fold cross-validation? Why don't we just increase the value of k in k-fold? Surely, 
increasing the value of k will reduce the bias of our model's estimated performance. However, increasing 
the value of k will increase the variation, especially when we have a small number of samples. Therefore, 
usually, repeating the k-folds is a better way to gain higher confidence in our model's estimated 
performance. Of course, this comes with a drawback, which is the increase in computation time.

To implement this strategy, we can simply perform a manual for-loop, where we apply the k-fold 
cross-validation strategy to each loop. Fortunately, the Scikit-Learn package provide us with a specific 
function in which to implement this strategy:

from sklearn.model_selection import train_test_split, 
RepeatedKFold

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0)

rkf = RepeatedKFold(n_splits=4, n_repeats=3, random_state=0)

for train_index, val_index in rkf.split(df_cv):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here
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Choosing n_splits=4 and n_repeats=3 means that we will have 12 different train and validation 
sets. The final evaluation score is then just the average of all 12 scores. As you might expect, there is 
also a dedicated function to implement the repeated k-fold in a stratified fashion:

from sklearn.model_selection import train_test_split, 
RepeatedStratifiedKFold

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0, stratify=df['class'])

rskf = RepeatedStratifiedKFold(n_splits=4, n_repeats=3, random_
state=0)

for train_index, val_index in rskf.split(df_cv, df_
cv['class']):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_index]

#perform training or hyperparameter tuning here

The RepeatedStratifiedKFold function will perform stratified k-fold cross-validation 
repeatedly, n_repeats times.

Now that you have learned another variation of the cross-validation strategy, called repeated k-fold 
cross-validation, let's learn about the other variations next.

Discovering Leave-One-Out cross-validation
Essentially, Leave One Out (LOO) cross-validation is just k-fold cross-validation where k = n, where 
n is the number of samples. This means there are n-1 samples for the training set and 1 sample for 
the validation set in each fold (see Figure 1.3). Undoubtedly, this is a very computationally expensive 
strategy and will result in a very high variance evaluation score estimator: 

Figure 1.3 – LOO cross-validation
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So, when is LOO preferred over k-fold cross-validation? Well, LOO works best when you have a 
very small dataset. It is also good to choose LOO over k-fold if you prefer the high confidence of the 
model's performance estimation over the computational cost limitation.

Implementing this strategy from scratch is actually very simple. We just need to loop through each of 
the indexes of data and do some data manipulation. However, the Scikit-Learn package also provides 
the implementation for LOO, which we can use:

from sklearn.model_selection import train_test_split, 
LeaveOneOut

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0)

loo = LeaveOneOut()

for train_index, val_index in loo.split(df_cv):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

Notice that there is no argument provided in the LeaveOneOut function since this strategy is very 
straightforward and involves no stochastic procedure. There is also no stratified version of the LOO 
since the validation set will always contain one sample.

Now that you are aware of the concept of LOO, in the next section, we will learn about a slight 
variation of LOO.

Discovering LPO cross-validation
LPO cross-validation is a variation of the LOO cross-validation strategy, where the validation set in 
each fold contains p samples instead of only 1 sample. Similar to LOO, this strategy will ensure that 
we get all possible combinations of train-validation pairs. To be more precise, there will be ℂ𝑝𝑝𝑛𝑛  number 
of folds assuming there are n samples on our data. For example, there will be ℂ530  or 142,506 folds if 
we want to perform Leave-5-Out cross-validation on data that has 50 samples.

LPO is suitable when you have a small number of samples and want to get even higher confidence in 
the model's estimated performance compared to the LOO method. LPO will result in an exploding 
number of folds when you have a large number of samples.
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This strategy is a bit different from k-fold or LOO in terms of the overlapping between the validation 
sets. For P > 1, LPO will result in overlapping validation sets, while k-fold and LOO will always result 
in non-overlapping validation sets. Also, note that LPO is different from k-fold with K = N // P since 
k-fold will always create non-overlapping validation sets, but not with the LPO strategy:

from sklearn.model_selection import train_test_split, LeavePOut

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0)

lpo = LeavePOut(p=2)

for train_index, val_index in lpo.split(df_cv):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

Unlike LOO, we have to provide the p argument to LPO, which refers to the p values in LPO. 

In this section, we have learned about the variations of the LOO cross-validation strategy. In the next 
section, we will learn how to perform cross-validation on time-series data.

Discovering time-series cross-validation
Time-series data has a unique characteristic in nature. Unlike "normal" data, which is assumed to be 
independent and identically distributed (IID), time-series data does not follow that assumption. 
In fact, each sample is dependent on previous samples, meaning changing the order of the samples 
will result in different data interpretations.

Several examples of time-series data are listed as follows:

•	 Daily stock market price

•	 Hourly temperature data

•	 Minute-by-minute web page clicks count

There will be a look-ahead bias if we apply previous cross-validation strategies (for example, k-fold 
or random or stratified splits) to time-series data. Look-ahead bias happens when we use the future 
value of the data that is supposedly not available for the current time of the simulation.  

For instance, we are working with hourly temperature data. We want to predict what the temperature 
will be in 2 hours, but we use the temperature value of the next hour or the next 3 hours, which is 
supposedly not available yet. This kind of bias will happen easily if we apply the previous cross-validation 
strategies since those strategies are designed to work well only on IID distribution.
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Time-series cross-validation is the cross-validation strategy that is specifically designed to handle 
time-series data. It works similarly to k-fold in terms of accepting the predefined values of folds, which 
then generates k test sets. The difference is that the data is not shuffled in the first place, and the training 
set in the next iteration is the superset of the one in the previous iteration, meaning the training set 
keeps getting bigger over the number of iterations. Once we finish with the cross-validation and get 
the final model configuration, we can then test our final model on the test data (see Figure 1.4):

Figure 1.4 – Time-series cross-validation

Also, the Scikit-Learn package provides us with a nice implementation of this strategy:

from sklearn.model_selection import train_test_split, 
TimeSeriesSplit

df_cv, df_test = train_test_split(df, test_size=0.2, random_
state=0, shuffle=False)

tscv = TimeSeriesSplit(n_splits=5)

for train_index, val_index in tscv.split(df_cv):

df_train, df_val = df_cv.iloc[train_index], df_cv.iloc[val_
index]

#perform training or hyperparameter tuning here

Providing n_splits=5 will ensure that there are five test sets generated. It is worth noting that, by default, 
the train set will have the size of 𝑖𝑖 ⋅ 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   (𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1)⁄   +  𝑛𝑛𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎\%(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1)⁄   for 

the ith fold, while the test set will have the size of 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   (𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1)⁄⁄  .
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However, you can change the train and test set size via the max_train_size and test_size 
arguments of the TimeSeriesSplit function. Additionally, there is also a gap argument that 
can be utilized to exclude G samples from the end of each train set, where G is the value needed to 
be specified by the developer.

You need to be aware that the Scikit-Learn implementation will always make sure that there is no 
overlap between test sets, which is actually not necessary. Currently, there is no way to enable the 
overlap between the test sets using the Scikit-Learn implementation. You need to write the code from 
scratch to perform that kind of strategy. 

In this section, we learned about the unique characteristic of time-series data and how to perform a 
cross-validation strategy on it. There are other variations of the cross-validation strategy that haven't been 
covered in this book. If you are interested, you might find some pointers in the Further reading section.

Summary
In this chapter, we learned a lot of important things that we need to know regarding how to evaluate 
ML models properly. Starting from the concept of overfitting, numerous data splitting strategies, how 
to choose the best data splitting strategy based on the given situation, and how to implement each 
of them using the Scikit-Learn package. Understanding these concepts is important since you can't 
perform a good hyperparameter tuning process without applying the appropriate data splitting strategy. 

In the next chapter, we will discuss hyperparameter tuning. We will not only discuss the definition 
but also several misconceptions and types of hyperparameter distributions.

Further reading
In this chapter, we have covered a lot of topics. However, there are still many uncovered interesting 
algorithms related to cross-validation due to the scope of this book. If you want to learn more about 
those algorithms and the implementation details of each of them, you can refer to this awesome page 
created by the Scikit-Learn authors at https://scikit-learn.org/stable/modules/
cross_validation.html. 

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
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Introducing Hyperparameter 

Tuning

Every machine learning (ML) project should have a clear goal and success metrics. The success metrics 
can be in the form of business and/or technical metrics. Evaluating business metrics is hard, and 
often, they can only be evaluated after the ML model is in production. On the other hand, evaluating 
technical metrics is more straightforward and can be done during the development phase. We, as 
ML developers, want to achieve the best technical metrics that we can get since this is something that 
we can optimize.

In this chapter, we'll learn one out of several ways to optimize the chosen technical metrics, called 
hyperparameter tuning. We will start this chapter by understanding what hyperparameter tuning 
is, along with its goal. Then, we'll discuss the difference between a hyperparameter and a parameter. 
We'll also learn the concept of hyperparameter space and possible distributions of hyperparameter 
values that you may find in practice. 

By the end of this chapter, you will understand the concept of hyperparameter tuning and hyperparameters 
themselves. Understanding these concepts is crucial for you to get a bigger picture of what will be 
discussed in the next chapters.

In this chapter, we'll be covering the following main topics:

•	 What is hyperparameter tuning?

•	 Demystifying hyperparameters versus parameters

•	 Understanding hyperparameter space and distributions

What is hyperparameter tuning?
Hyperparameter tuning is a process whereby we search for the best set of hyperparameters of an ML 
model from all of the candidate sets. It is the process of optimizing the technical metrics we care about. 
The goal of hyperparameter tuning is simply to get the maximum evaluation score on the validation 
set without causing an overfitting issue. 
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Hyperparameter tuning is one of the model-centric approaches to optimizing a model's performance. 
In practice, it is suggested to prioritize data-centric approaches over a model-centric approach when 
it comes to optimizing a model's performance. Data-centric means that we are focusing on cleaning, 
sampling, augmenting, or modifying the data, while model-centric means that we are focusing on 
the model and its configuration.

To understand why data-centric is prioritized over model-centric, let's say you are a cook in a 
restaurant. When it comes to cooking, no matter how expensive and fancy your kitchen setups 
are, if the ingredients are not in a good condition, it's impossible to serve high-quality food to your 
customers. In that analogy, ingredients refer to the data, and kitchen setups refer to the model and 
its configuration. No matter how fancy and complex our model is, if we do not have good data or 
features in the first place, then we can't achieve the maximum evaluation score. This is expressed in 
the famous saying, garbage in, garbage out (GIGO).

In model-centric approaches, hyperparameter tuning is performed after we have found the most 
suitable model framework or architecture. So, it can be said that hyperparameter tuning is the ultimate 
step in optimizing the model's performance.

Now that you are aware of hyperparameter tuning and its purpose, let's discuss hyperparameters 
themselves What actually is a hyperparameter? What is the difference between hyperparameters and 
parameters? We will discuss this in the next section.

Demystifying hyperparameters versus parameters
The key difference between a hyperparameter and a parameter is how its value is generated. A parameter 
value is generated by the model during the model-training phase. In other words, its value is learned 
from the given data instead of given by the developer. On the other hand, a hyperparameter value is 
given by the developer since it can't be estimated from the data. 

Parameters are like the heart of the model. Poorly estimated parameters will result in a poorly performing 
model. In fact, when we said we are training a model, it actually means that we are providing the 
data to the model so that the model can estimate the value of its parameters, which is usually done 
by performing some kind of optimization algorithm. Here are several examples of parameters in ML:

•	 Coefficients (𝛽𝛽0,  𝛽𝛽1,   …  , 𝛽𝛽𝑖𝑖, …  ,  𝛽𝛽𝑛𝑛 ) in linear regression

•	 Weights (𝑊𝑊1,  𝑊𝑊2,   … ,  𝑊𝑊𝑖𝑖,   … ,  𝑊𝑊𝑛𝑛 ) in a multilayer perceptron (MLP)

Hyperparameters, on the other hand, are a set of values that support the model-training process. They 
are defined by the developer without knowing the exact impact on the model's performance. That's why 
we need to perform hyperparameter tuning to get the best out of our model. The searching process can 
be done via exhaustive search, heuristic search, Bayesian optimization, or multi-fidelity optimization, 
which will be discussed in the following chapters. Here are several examples of hyperparameters:
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•	 Dropout rate, number of epochs, and batch size in a neural network (NN)

•	 Maximum depth and splitting criterion in a decision tree

•	 Number of estimators in a random forest

You also need to be aware that there are models without hyperparameters or parameters, but not both 
of them. For instance, a linear regression model is a model that has only parameters but doesn't have 
any hyperparameters. On the other hand, K-Nearest Neighbors (KNN) is an instance of a model that 
doesn't contain any parameters but has a k hyperparameter. 

More possible confusion may appear when we start writing our code and developing the ML model. 
In programming, arguments in a particular function or class are also often called parameters. What 
if we utilize a class that implements an ML model, such as a decision-tree model? What should we 
call the maximum depth or splitting criterion arguments that need to be passed to the class? Are they 
parameters or hyperparameters? The correct answer is both! They are parameters to the class and they 
are hyperparameters to the decision-tree model. It's just a matter of perspective! 

In this section, we have learned what hyperparameters and parameters are, as well as what makes them 
different. In the next section, we will dive deeper into the realm of hyperparameters. 

Understanding hyperparameter space  
and distributions
Hyperparameter space is defined as the universal set of possible hyperparameter value combinations—in 
other words, it is the space containing all possible hyperparameter values that will be used as the search 
space during the hyperparameter-tuning phase. That's why it is also often called the hyperparameter-
tuning search space. This space is predefined before the hyperparameter-tuning phase so that the 
search will be performed only on this space.

For example, we want to perform hyperparameter tuning on a NN. Let's say we want to search what 
is the best value for the dropout rate, the number of epochs, and batch-size hyperparameters. 

The dropout rate is bounded in nature. Its value can only be between 0 and 1, while for the number of 
epochs and batch-size hyperparameters, in theory, we can specify any positive integer value. However, 
there are other considerations that we need to think of. A higher batch size will usually produce a 
better model performance, but it will be bounded by the memory size of our physical computer. As for 
the number of epochs, if we go with too high a value, we will more likely be faced with an overfitting 
issue. That's why we need to set boundaries for the values of possible hyperparameters, which we call 
the hyperparameter space. 

Hyperparameters can be in the form of discrete or continuous values. A discrete hyperparameter can 
be in the form of integer or string data types, while a continuous hyperparameter will always be in 
the form of real numbers or floating data types. 



Introducing Hyperparameter Tuning20

When defining a hyperparameter space, for some hyperparameter-tuning methods, it is not enough to 
only specify the possible values of each hyperparameter we care about. We also need to define what is 
the underlying distribution for each hyperparameter. Here, a distribution acts as some kind of policy 
that rules how likely it is that a specific value will be tested during the hyperparameter-tuning phase. 
If it is a uniform distribution, then all possible values have the same probability of being chosen. 

There are many types of probability distributions that can be used: uniform, log-uniform, normal, 
log-normal, and many more. There is no best practice when it comes to choosing the appropriate 
distribution; you can just treat it as another hyperparameter. It is worth noting that there are distributions 
specifically for continuous hyperparameters, and there are also distributions for discrete ones. For discrete 
hyperparameter distribution, some distributions are specifically designed for discrete values—for instance, 
an integer uniform distribution—but there are also distributions that are adjusted from a continuous 
distribution. The latter types of discrete distributions usually have a discretized or quantized prefix on 
their name—for instance, a quantized uniform distribution.

It is also worth noting that not all hyperparameters are equally significant when it comes to impacting 
the model's performance—that's why it is recommended that you prioritize. We do not have to perform 
hyperparameter tuning on all of the hyperparameters of a model—just focus on more important 
hyperparameters.

In this section, we have learned about hyperparameter space and the concept of a hyperparameter 
distribution and looked at examples of hyperparameter distributions you may find in practice.  

Summary
In this chapter, we have learned all we need to know about hyperparameter tuning, starting from what 
it is, what is its goal, and when we should perform hyperparameter tuning. We have also discussed 
the difference between hyperparameters and parameters, the concept of hyperparameter space, and 
the concept of hyperparameter distributions. Having a clear picture of the concept of hyperparameter 
tuning and  hyperparameters themselves will help you a lot in the following chapters.

As stated previously, we will discuss all of the four categories of hyperparameter-tuning methods in 
this book. In Chapter 3, Exploring Exhaustive Search, we will start discussing the first group and the 
most widely used hyperparameter-tuning methods in practice. There will be both high-level and 
detailed explanations to help you understand each of the methods more easily.
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Exploring Exhaustive Search

Hyperparameter tuning doesn't always correspond to fancy and complex search algorithms. In fact, 
a simple for loop or manual search based on the developer's instinct can also be utilized to achieve 
the goal of hyperparameter tuning, which is to get the maximum evaluation score on the validation 
score without causing an overfitting issue. 

In this chapter, we'll discuss the first out of four groups of hyperparameter tuning, called an exhaustive 
search. This is the most widely used and most straightforward hyperparameter-tuning group in 
practice. As explained by its name, hyperparameter-tuning methods that belong to this group work by 
exhaustively searching through the hyperparameter space. Except for one method, all of the methods 
in this group are categorized as uninformed search algorithms, meaning they are not learning from 
previous iterations to have a better search space in the future. Three methods will be discussed in this 
chapter: manual search, grid search, and random search. 

By the end of this chapter, you will understand the concepts of each of the hyperparameter-tuning 
methods that belong to the exhaustive search group. You will be able to explain these methods with 
confidence when someone asks you about them, in both a high-level and detailed fashion, along with 
the pros and cons. More importantly, you will be able to apply all of the methods with high confidence 
in practice. You will also be able to understand what's happening if there are errors or unexpected 
results and understand how to set up the method configuration to match your specific problem.

The following main topics will be covered in this chapter:

•	 Understanding manual search

•	 Understanding grid search

•	 Understanding random search
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Understanding manual search
Manual search is the most straightforward hyperparameter-tuning method that belongs to the 
exhaustive search group. In fact, it's not even an algorithm! There's no clear rule on how to perform 
this method. As its name would suggest, a manual search is performed based on your instinct. You 
simply have to tweak the hyperparameters until you are satisfied enough with the result.

This method is the one exception mentioned before in the introduction of this chapter. Except for this 
method, other methods in the exhaustive search group are categorized as uninformed search methods. 
You may already know the reason why this method is the exception. It's because the developer themselves 
learn what is the impact of changing a particular or a set of hyperparameters in each iteration. In other 
words, they learn from previous iterations to have a (hopefully) better "hyperparameter space" in the 
next iterations.

To perform a manual search, do the following:

1.	 Split the original full data into train and test sets (see Chapter 1, Evaluating Machine  
Learning Models).

2.	 Specify initial hyperparameter values.

3.	 Perform cross-validation on the train set (see Chapter 1, Evaluating Machine Learning Models).

4.	 Get the cross-evaluation score.

5.	 Specify new hyperparameter values.

6.	 Repeat steps 3-5 until you are satisfied enough.

7.	 Train on the full training set using the final hyperparameter values.

8.	 Evaluate the final trained model on the test set.

Although this method seems very straightforward and easy to do, it is actually the other way around 
for a beginner. This is because you need to really understand how the model works and the usage of 
each hyperparameter. It is also worth noting that, when it comes to manual search, there is no clear 
definition of the hyperparameter space. The hyperparameter space can be surprisingly narrow or vast, 
based on the developer's willingness and initiative to experiment with it. 

Here is a list of pros and cons of the manual search hyperparameter-tuning method:

Figure 3.1 – Manual search: pros and cons
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Now that you are aware of how manual search works, along with the pros and cons, we will learn 
the simplest automated hyperparameter-tuning strategy, which will be discussed in the next section.

Understanding grid search
Grid search is the simplest automated hyperparameter-tuning method that ever existed. Apart from 
the fancy name, grid search is basically just a nested for loop that tests all possible hyperparameter 
values in the search space. Although many packages have grid search as one of their hyperparameter-
tuning method implementations, it is super easy to write your own code from scratch to implement 
this method. The name grid comes from the fact that we have to test the whole hyperparameter space 
just like creating a grid, as illustrated in the following diagram.

Figure 3.2 – Grid search illustration

For example, let's say we want to perform hyperparameter tuning using the grid search method 
on a random forest. We decide to focus only on the number of estimators, splitting criterion, and 
maximum tree-depth hyperparameters. Then, we can specify a list of possible values for each of the 
hyperparameters. Let's say we define the hyperparameter space as follows:

•	 Number of estimators: n_estimators = [25, 50, 100, 150, 200]

•	 Splitting criterion: criterion = ["gini", "entropy"]

•	 Maximum depth: max_depth = [3, 5, 10, 15, 20, None]
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Notice that for the grid search method, we do not have to specify the underlying distribution of the 
hyperparameters. We simply create a list of all values that we want to test on for each hyperparameter. 
Then, we can call the grid search implementation from our favorite package or write the code for grid 
search by ourselves, as illustrated in the following snippet:

for n_est in n_estimators:

          for crit in criterion:

          for m_depth in max_depth:

          #perform cross-validation here

In this example, we create a nested for loop consisting of three layers, each for the hyperparameter 
in our search space. To perform a grid search in general, do the following:

1.	 Split the original full data into train and test sets.

2.	 Define the hyperparameter space.

3.	 Construct a nested for loop of H layers, where H is the number of hyperparameters in the space.

4.	 Within each loop, do the following:

	� Perform cross-validation on the train set

	� Store the cross-validation score along with the hyperparameter combination in a data 
structure—for example, a dictionary

5.	 Train on the full training set using the best hyperparameter combination.

6.	 Evaluate the final trained model on the test set.

As you can see from the detailed steps on how to perform a grid search, this method is actually a 
brute-force method since we have to test all possible combinations of the predefined hyperparameter 
space. That's why it is very important to have a proper or well-defined hyperparameter space. If not, 
then we will waste a lot of time testing all of the combinations.

Here is a list of pros and cons of the grid search hyperparameter-tuning method:

Figure 3.3 – Grid search: pros and cons
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The COD in Table 3.2 means that adding another value to the hyperparameter space will exponentially 
increase the experiment time. Let's use the preceding example where we performed hyperparameter 
tuning on a random forest. In our initial hyperparameter space, there are 5 ⋅ 2 ⋅ 6 = 60   combinations 
we have to test. If we add just another value to our space—let's say we add 30 to the max_depth 
list—there will be 5 ⋅ 2 ⋅ 7 = 70   combinations or an additional 10 combinations that we have to test. 
This exponential behavior will even become more apparent when we have a bigger hyperparameter 
space! Sadly, it is also possible that after defining a big hyperparameter space and spending a long 
time performing hyperparameter tuning, we can still miss better hyperparameter values since they are 
located outside of the predefined space!

In this section, we have learned what grid search is, how it works, and what the pros and cons are. 
In the next section, we will discuss the last hyperparameter-tuning method that is categorized in the 
exhaustive search group: the random search method.

Understanding random search
Random search is the third and the last hyperparameter-tuning method that belongs in the exhaustive 
search group. It is a simple method but works surprisingly well in practice. As implied by its name, 
random search works by randomly selecting hyperparameter values in each iteration. There's nothing 
more to it. The selected set of hyperparameters in the previous iteration will not impact how the 
method selects another set of hyperparameters in the following iterations. That's why random search 
is also categorized as an uninformed search method. 

You can see an illustration of the random search method in the following diagram:

Figure 3.4 – Random search illustration
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Random search usually works better than grid search when we have little or no idea of the proper 
hyperparameter space for our case, and this applies most of the time. Compared to grid search, 
random search is also more efficient in terms of computing cost and in finding the optimal set of 
hyperparameters. This is because we do not have to test each of the hyperparameter combinations; 
we can just let it run stochastically—or, in layman's terms, we can just let luck play its part. 

You may wonder how picking a random set of hyperparameters can lead to a better tuning result compared 
to grid search most of the time. It is actually not the case if the predefined hyperparameter space is exactly 
the same as the one we provide to the grid search method. We have to provide a bigger hyperparameter 
space in order to support random search to play its role. A bigger search space doesn't always mean we 
have to increase the dimensionality, either by widening existing hyperparameters' range or adding new 
hyperparameters. We can also create a bigger hyperparameter space by adding granularity to it. 

It is also worth noting that, unlike grid search, which doesn't require defining the hyperparameter's 
distribution when defining a search space, in random search, it is suggested to define the distribution 
of each hyperparameter. In some package implementations, if you do not specify the distribution, 
it will default to the uniform distribution. We will discuss more on the implementation part from 
Chapter 7, Hyperparameter Tuning via Scikit to Chapter 10, Advanced Hyperparameter Tuning with 
DEAP and Microsoft NNI

Let's use a similar example to what we saw in the Understanding grid search section to get a better 
understanding of how random search works. Apart from focusing on the number of estimators, splitting 
criterion, and maximum tree depth, we will also add a minimum samples split hyperparameter to our 
space. Unlike grid search, we have to also provide a distribution of each of the hyperparameters when 
defining a search space. Let's say we define the hyperparameter space as follows:

•	 Number of estimators: n_estimators = randint(25,200)

•	 Splitting criterion: criterion = ["gini", "entropy"]

•	 Maximum depth: max_depth = [3, 5, 10, 15, 20, None]

•	 Minimum samples split: min_samples_split = truncnorm(a=1, b=5, loc=2, 
scale=0.5)

As you can see, compared to the search space in the Understanding grid search section, we are increasing 
the size of the space by adding granularity and adding a new hyperparameter. We add granularity for the 
n_estimators hyperparameter by utilizing the randint uniform random integer distribution, 
ranging from 25 to 200. This means we can test any value between 25 and 200, where all of them 
will have the same probability of being tested. 
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Apart from increasing the size of the search space by adding granularity, we also add a new hyperparameter 
called min_samples_split. This hyperparameter has the truncnorm distribution or truncated 
normal distribution, which basically—as implied by its name—is a modified normal distribution 
bounded on a particular range. In this case, the range is bounded on a range from a=1 and b=5, 
with a mean of loc=2 and standard deviation of scale=0.5.

As for criterion and max_depth, we are still using the same configuration as the previous 
search space. Note that not specifying any distribution means we are applying uniform distribution 
to the hyperparameter, where all values will have the same probability of being tested. For now, 
you don't have to worry about what are the available distributions and how to implement them, 
since we will also discuss them from Chapter 7, Hyperparameter Tuning via Scikit to Chapter 10, 
Advanced Hyperparameter Tuning with DEAP and Microsoft NNI.

In random search, apart from the need to define a hyperparameter space, we also need to define a 
hyperparameter for this method itself, which is called the number of trials. This hyperparameter 
will control how many trials or iterations we want to perform on the predefined search space. This 
hyperparameter is needed since we are not aiming to test all possible combinations in the space; if we 
were, then it would be the same grid search method. It is also worth noting that since this method 
has a stochastic nature, we also need to specify a random seed to get the exact same result every time 
we run the code.

Unlike grid search, it is quite cumbersome to implement this method from scratch, although it is 
possible to do so. Therefore, many packages support the implementation of the random search method. 
Regardless of the implementation variations, in general, random search works like this:

1.	 Split the original full data into train and test sets.

2.	 Define the number of trials and a random seed.

3.	 Define a hyperparameter space with the accompanied distributions.

4.	 Generate an iterator consisting of random hyperparameter combinations with the number of 
elements equal to the defined number of trials in Step 2.

5.	 Loop through the iterator, where the following actions will be performed within each loop:

	� Getting the hyperparameter combination for this trial from the iterator

	� Performing cross-validation on the train set

	� Storing the cross-validation score along with the hyperparameter combination in a data 
structure—for example, a dictionary

6.	 Train on the full training set using the best hyperparameter combination.

7.	 Evaluate the final trained model on the test set.
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Please note that it is guaranteed there is no duplicate in the generated hyperparameter combinations 
in Step 4.  

Here is a list of pros and cons of the random search hyperparameter-tuning method:

Figure 3.5 – Random search: pros and cons

The random search produces high variance during the process due to the property of uninformed 
search methods. There is no way for the random search to learn from past experiences so that it 
can learn better and be more effective in the next iterations. In Chapter 6, Exploring Multi-Fidelity 
Optimization, we will learn other variations of grid search and random search that are categorized as 
informed search methods. 

In this section, we have learned all you need to know about random search, starting from what it is, 
how it works, what makes it different from grid search, and the pros and cons of this method. 

Summary
In this chapter, we have discussed the first out of four groups of hyperparameter-tuning methods, 
called the exhaustive search group. We have discussed manual search, grid search, and random search. 
We not only discussed the definition of those methods, but also how those methods work at both a 
high level and a technical level, and what are the pros and cons for each of them. From now on, you 
should be able to explain these exhaustive search methods with confidence when someone asks you 
about them and apply all of the exhaustive search methods with high confidence in practice.

In the next chapter, we will start discussing Bayesian optimization, the second group of hyperparameter-
tuning methods. The goal of the next chapter is similar to this chapter, which is to give a better 
understanding of methods belonging to the Bayesian optimization group so that you can utilize those 
methods with high confidence in practice.



4
E x p l o r i n g  B a y e s i a n 

O p t i m i z a t i o n

Bayesian optimization (BO) is the second out of four groups of hyperparameter tuning methods. 
Unlike grid search and random search, which are categorized as uninformed search methods, all of 
the methods that belong to the BO group are categorized as informed search methods, meaning 
they are learning from previous iterations to (hopefully) provide a better search space in the future.

In this chapter, we will discuss several methods that belong to the BO group, including Gaussian 
process (GP), sequential model-based algorithm configuration (SMAC), Tree-structured Parzen 
Estimators (TPE), and Metis. Similar to Chapter 3, Exploring Exhaustive Search, we will discuss the 
definition of each method, the differences between them, how they work, and the pros and cons of 
each method.

By the end of this chapter, you will be able to explain BO and its variations when someone asks 
you. You will not only be able to explain what they are, but also how they work, in a high-level and 
technical way. You will also be able to tell the differences between them, along with the pros and 
cons of each of the methods. Furthermore, you will experience a crucial benefit once you understand 
the ins and outs of each method; that is, you will be able to understand what’s happening if there 
are errors or unexpected results and understand how to set up the method configuration to match 
your specific problem.

In this chapter, we will cover the following main topics:

•	 Introducing BO

•	 Understanding BO GP

•	 Understanding SMAC

•	 Understanding TPE

•	 Understanding Metis
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Introducing BO
BO is categorized as an informed search hyperparameter tuning method, meaning the search is learning 
from previous iterations to have a (hopefully) better subspace in the next iterations. It is also categorized 
as the sequential model-based optimization (SMBO) group. All SMBO methods work by sequentially 
updating probability models to estimate the effect of a set of hyperparameters on their performance based 
on historical observed data, as well as suggesting new hyperparameters to be tested in the following trials.

BO is a popular hyperparameter tuning method due to its data-efficient property, meaning it needs a 
relatively small number of samples to get to the optimal solution. You may be wondering, how exactly 
does BO get this ground-breaking data-efficient property? This property exists thanks to BO’s ability 
to learn from previous iterations. BO can learn and predict which subspace is worth visiting in the 
future by utilizing a probabilistic regression model, which acts as the cheap cloned version of the 
expensive objective function, and an acquisition function, which governs which set of hyperparameters 
should be tested in the next iteration.

The objective function is just a function that takes hyperparameter values as input and returns the 
cross-validation score (see Chapter 1, Evaluating Machine Learning Models). We do not know what the 
output of the objective function for all possible hyperparameter values is. If we did, there would be no 
need to perform hyperparameter tuning. We could just use that function to get the hyperparameter 
values, which results in the highest cross-validation score. That’s why we need a probabilistic regression 
model, to approximate the objective function by fitting a set of known hyperparameter and cross-
validation score value pairs (see Figure 4.1). The approximation concept is similar to the concept of 
ML-based regressor models, such as random forest, linear regression, and many more. First, we fit the 
regressor to the samples of independent and dependent variables; then, the model will try to learn 
from the data, which in the end can be used to predict new given data. The probabilistic regression 
model is also often called the surrogate model:

Figure 4.1 – Illustration of the probabilistic regression model, M
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The acquisition function governs which subspace we should search in the next iteration. Thanks to 
this function, BO enables us to learn from past experiences and have fewer hyperparameter tuning 
iterations compared to random search, in general. 

Important Note
Remember that, to get the cross-validation score, we need to perform multiple training and 
evaluation processes (see Chapter 1, Evaluating Machine Learning Models). This is an expensive 
process when you have a big, complex model with a large amount of training data. That’s why 
the acquisition function plays a big role here.

In general, BO works as follows:

1.	 Split the original full data into train and test sets. (See Chapter 1, Evaluating Machine Learning 
Models).

2.	 Define the hyperparameter space, H, with the accompanied distributions.

3.	 Define the objective function, f, based on the train set.

4.	 Define the stopping criterion. Usually, the number of trials is used. However, it is also possible 
to use the time taken or convergence as the stopping criterion.

5.	 Initializes the empty set, D, which will be used to store the initial pairs of hyperparameter values 
and cross-validation scores, as well as the resulting pairs suggested by the acquisition function, A.

6.	 Initialize several pairs of hyperparameter values and cross-validation scores and store them in D.

7.	 Fit the probabilistic regression model/surrogate model, M, using the value pairs in D.

8.	 Sample the next set of hyperparameters by utilizing the acquisition function, A:

I.	 Perform optimization on the acquisition function, A, with the help of the surrogate 
model, M, to sample which hyperparameters are to be passed to the acquisition function.

II.	 Get the expected optimal set of hyperparameters based on the acquisition function, A.

9.	 Compute the cross-validation score using the objective function, f, based on the output  
from Step 8.

10.	 Add the hyperparameters and cross-validation score pair from Step 8 and Step 9 to set D.

11.	 Repeat Steps 7 to 10 until the stopping criterion is met.

12.	 Trains on the full training set using the final hyperparameter values.

13.	 Evaluate the final trained model on the test set.
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You can initialize the hyperparameter values and cross-validation scores, as shown in Step 6, using several 
sampling strategies. The most straightforward and go-to way, in practice, is to just perform random 
sampling. However, there are also other methods that you may consider during your experiments, 
such as the quasi-random or Latin hypercube sampling methods. 

Similar to random search, we also need to define the distribution of each hyperparameter in BO. You 
may wonder if BO can also work on a non-numerical type of hyperparameter. The answer is based 
on the probabilistic regression model you are using. There are several surrogate models you can choose 
from. Those options will be discussed in the next three sections of this chapter, and they include GP, 
Tree-structured Parzen Estimator (TPE), random forest, extra trees, or other ML-based regressors. 
In this book, we will discuss the random forest regressor that’s implemented in the SMAC model.

It is also worth noting that the optimization process in Step 8 can be replaced with a random search. 
So, instead of performing some kind of second-order optimization method, we can randomly sample 
sets of hyperparameters from the search space and pass them onto the acquisition function. Then, we 
can get the optimal set of hyperparameters based on the output from the acquisition function. When 
using random search in this step, we still utilize the acquisition function to govern which subspace 
we should search for in the next iteration, but we add some random behavior to it, with the hope that 
we can escape the local optimum and converge toward the global optimum.

The first and the most popular acquisition function is expected improvement (EI), which is defined 
as follows:

𝐸𝐸𝐸𝐸(𝑥𝑥) = (𝜇𝜇(𝑥𝑥) − 𝑓𝑓(𝑥𝑥ˆ))Φ(𝑍𝑍) + 𝜎𝜎(𝑥𝑥)𝜙𝜙(𝑍𝑍)  when 𝜎𝜎(𝑥𝑥) ≠ 0 

𝐸𝐸𝐸𝐸(𝑥𝑥) = 0  when 𝜎𝜎(𝑥𝑥) = 0 

Here, 𝑍𝑍 = 𝜇𝜇(𝑥𝑥) − 𝑓𝑓(𝑥𝑥 ̂ )
𝜎𝜎(𝑥𝑥)  , Φ(𝑍𝑍)  and 𝜙𝜙(𝑍𝑍)  are the cumulative distribution and probability density 

functions of the standard normal distribution, respectively. 𝜇𝜇(𝑥𝑥)  and 𝜎𝜎(𝑥𝑥)  represent the expected 
performance and the uncertainty, respectively, that are captured by the surrogate model. Finally, 𝑓𝑓(𝑥𝑥ˆ)  
represents the current best value of the objective function. 

Implicitly, the EI acquisition function enables BO methods to have the exploration versus exploitation 
trade-off property. This property can be achieved by two terms competing within the formula. When 
the value of the first term is high, meaning the expected performance, 𝜇𝜇(𝑥𝑥) , is higher than the current 
best value, 𝑓𝑓(𝑥𝑥ˆ) , EI will favor the exploitation process. On the other hand, when the uncertainty is very 
high, meaning we have a high value of 𝜎𝜎(𝑥𝑥) , EI will favor the exploration process. By exploitation, 
this means that the acquisition function will recommend the set of hyperparameters that possibly 
get a higher value of the objective function, f. In terms of exploration, this means that the acquisition 
function will recommend the set of hyperparameters from the subspace that we haven’t explored yet.
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You can imagine this exploration and exploitation trade-off as when you are craving some food. 
Let’s say you want to have lunch with your brother today. Imagine the following two scenarios:

•	 “Hey bro, let’s have lunch at our favorite restaurant today!”

•	 “Hey bro, have you heard of the new restaurant up there? Why don’t we try it for lunch?”

In the first scenario, you choose to eat at your favorite restaurant since you are confident that there 
is nothing wrong with the food and, more importantly, you are confident about the taste of the food 
and the overall experience of eating at that restaurant. This first scenario best explains what we call the 
exploitation process. In the second scenario, you don’t have any idea what the overall experience of eating 
at that new restaurant is. It may be worse than your favorite restaurant, but it may also potentially be 
your new favorite restaurant! This is what we call the exploration process.

Important Note
In some implementations, such as in the Scikit-optimize package, there is a hyperparameter 
that enables us to control how much we are leaning toward exploitation compared to exploration. 
In Scikit-optimize, the sign of the EI function is negative. This is because the package treats the 
optimization problem as the minimization problem by default.

In our previous explanation, we treated the optimization problem as the maximization problem since 
we wanted to get the highest cross-validation score possible. Don’t confuse this with the minimization 
versus maximization problem – just choose what best describes the problem you will be facing in practice!

The following is the EI acquisition function that’s implemented in the Scikit-optimize package:

−𝐸𝐸𝐸𝐸(𝑥𝑥) = (𝑓𝑓(𝑥𝑥ˆ) − 𝜇𝜇(𝑥𝑥) − 𝛿𝛿)Φ(𝑍𝑍) + 𝜎𝜎(𝑥𝑥)𝜙𝜙(𝑍𝑍) 
As you can see in the first term, the value of 𝛿𝛿   will control how big our tendency is toward exploitation 
compared to exploration. The smaller the 𝛿𝛿   value is, the more we lean toward exploitation. We will 
learn more about the implementation part of BO using Scikit or other packages from Chapter 7, 
Hyperparameter Tuning via Scikit to Chapter 10, Advanced Hyperparameter Tuning with DEAP and 
Microsoft NNI.

To get a better understanding of how the exploration and exploitation trade-off happens during the 
hyperparameter tuning phase, let’s look at an example. Let’s say, for instance, we are using the GP 
surrogate model to estimate the following objective function. There’s no need to worry about what 
and how GP works for now; we will discuss it in more detail in the next section:

𝑓𝑓(𝑥𝑥) = cos(6𝑥𝑥) ⋅ (1 − sin(𝑥𝑥5)) + 𝜀𝜀 
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Here, 𝜀𝜀   is a noise that follows the standard normal distribution. The following is a plot of this function 
within the range of [−2,2] . Note that, in this example, we are assuming that we know what the true 
objective function is. However, in practice, this function is unknown:

Figure 4.2 – Plot of the objective function, f(x)

Let’s say we are using the EI as the acquisition function, setting the number of trials as 15, setting the 
initial number of points as 5, and setting the 𝛿𝛿   value to 0.01. You can see how the fitting process 
works for the first five trials in the following figure:

Figure 4.3 – GP and EI illustration, δ = 0.01
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Each row in the preceding figure corresponds to the first until the fifth trial. The left column contains 
information on the objective function (red dashed line), the GP surrogate model approximation of 
the objective function (green dashed line), how sure the approximation is (green transparent area), 
and the observed points up to each trial (red dots). The right column contains information on the EI 
acquisition function values (blue line) and the next point (blue dot) to be included in the next trials. 

Let’s run through each of the rows in Figure 4.3 so that you understand how it works. In the first 
trial (see the first row from the top in the left column), we initialize five random sample points – or 
hyperparameter values, in the context of hyperparameter tuning – and fit the GP model based on 
those five points. Remember that the GP model doesn’t know the actual objective function; the only 
information it has is just those five random points. Then (see the first row from the top in the right 
column), based on the fitted GP model, we get the value of the EI acquisition function across the 
space. In this case, the space is just a range – that is, [−2,2] . We also get the point to be included in 
the next trials, which in this case is around point 0.5. 

In the second trial, we utilize the point suggested by the EI acquisition function and fit the GP model 
again based on the six sample points we have (see the second row from the top in the left column). If 
you compare the GP approximation of the second trial with the first trial, you will see that it is closer 
to the true objective function. Next (see the second row from the top in the right column), we repeat the 
same process, which is to generate the EI function value across the space and the point to be included 
in the next trial. The suggested point in this step is around 0.7.

We keep repeating the same process until the stopping criteria are met, which in this case is 15 trials. 
The following plot shows the result after 15 trials. It is much better than the approximation in the first 
trial (see the green dashed line)! You can also see that there are some ranges of 𝑥𝑥   where the confidence 
of the GP approximation is high, such as around points –1.5 and 1.6:

Figure 4.4 – Result after 15 trials, δ = 0.01
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Based on the preceding plot, the final suggested point, or the hyperparameter value, is –1.5218, 
which results in the value of the objective function being equal to –1.9765. Let’s also look at the 
convergence plot from the first until the last trial. From the following convergence plot, we can see 
how our surrogate model and acquisition function help us get the minimum value of the objective 
function based on all the trials:

Figure 4.5 – Convergence plot

Now, let’s try to change the value of 𝛿𝛿   to a lower value than what we had previously to see how the EI 
acquisition function will favor exploitation more than exploration. Let’s set the 𝛿𝛿   value to be 1,000 times 
lower than the previous value. Note that we only change the 𝛿𝛿  value and leave the other setups as-is:

Figure 4.6 – GP and EI illustration, δ = 0.00001
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As you can see, the EI acquisition function suggested most of the points in a range between 0.5 and 
1.4. The acquisition function doesn’t suggest exploring the [1.5,1.6]  range, although we can get a 
much lower objective function value in that range. This happens because there are no initial random 
points in that range, and we favor exploitation a lot in this example. The following plot shows the 
final results after 15 trials. In this case, we get a worse result when we favor more exploitation over 
exploration. However, this is not always the case. You have to experiment since different data, different 
objective functions, a different hyperparameter space, and different implementations may result in 
different conclusions:

Figure 4.7 – Result after 15 trials, δ = 0.00001

Now, let’s see what the impact is if we set the 𝛿𝛿   value to 100, which in this case means that we favor 
exploration more than exploitation. Similar to the previous trial, after running 15 trials, we got the 
following results:

Figure 4.8 – Result after 15 trials, δ = 100
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As you can see, the points that are suggested by the acquisition function (the red dots) are all over the 
place. This is because we set such a high 𝛿𝛿   value. This means that the acquisition function’s outputs 
will suggest points in the space that haven’t been observed yet. We will learn how to produce the plots 
shown here in Chapter 7, Hyperparameter Tuning via Scikit.

Besides the EI acquisition function, there are also other popular acquisition functions that you may 
consider using, including Probability of Improvement (PI) and Upper Confidence Bound (UCB). 

PI is the acquisition function that existed before EI. It is simpler than EI – in fact, the formula of 
𝑃𝑃𝑃𝑃(𝑥𝑥)  is derived based on the following simple definition of improvement:

𝐼𝐼(𝑥𝑥) = max(0, 𝜇𝜇(𝑥𝑥) − 𝑓𝑓(𝑥𝑥ˆ)) 

The idea of 𝐼𝐼(𝑥𝑥)  is to return the size of improvement, if there is improvement between the expected 
performance and the current best performance, or just return zero if there is no improvement. Based 
on 𝐼𝐼(𝑥𝑥) , we can define PI as follows:

𝑃𝑃𝑃𝑃(𝑥𝑥) = Φ(𝑍𝑍) = Φ(𝜇𝜇
(𝑥𝑥) − 𝑓𝑓(𝑥𝑥ˆ)

𝜎𝜎(𝑥𝑥) )  when 𝜎𝜎(𝑥𝑥) ≠ 0 
𝑃𝑃𝑃𝑃(𝑥𝑥) = 0  when 𝜎𝜎(𝑥𝑥) = 0 

The problem with PI is that it will give the same reward for all sets of hyperparameters, so long as there’s 
an improvement compared to the current best value, 𝑓𝑓(𝑥𝑥ˆ) , no matter how big the improvement is. 
This behavior is not very preferable in practice since it can guide us to the local minima and get us stuck 
in there. If you are familiar with calculus and statistics, you will realize that EI is just the expectation 
over 𝐼𝐼(𝑥𝑥) , as shown here:

𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝔼𝔼[𝐼𝐼(𝑥𝑥)] = ∫ 𝐼𝐼(𝑥𝑥)𝜙𝜙(𝑧𝑧)𝑑𝑑𝑑𝑑
∞

−∞
 

Here, 𝜙𝜙(𝑧𝑧)  is the probability density function of the standard normal distribution. Unlike PI, the EI 
acquisition function will take the size of improvement into account.

As for the UCB, it is very straightforward compared to others. We have the power to control the 
trade-off between exploration and exploitation by ourselves via the 𝜆𝜆  parameter. This acquisition 
function can be defined as follows:

𝑈𝑈𝑈𝑈𝑈𝑈(𝑥𝑥; 𝜆𝜆) = 𝜇𝜇(𝑥𝑥) + 𝜆𝜆 ⋅ 𝜎𝜎(𝑥𝑥) 
As you can see, UCB doesn’t take into account the current best value of the objective function. It only 
considers the expected performance and the uncertainty captured by the surrogate model. You can 
control the exploration and exploitation trade-off by changing the 𝜆𝜆  value. If you want to lean toward 
exploring the search space, then you can increase the value of 𝜆𝜆  . However, if you want to focus more 
on the set of hyperparameters that are expected to perform well, then you can decrease the value of 𝜆𝜆  .

Apart from the variations of surrogate model and acquisition functions, there are also other variations 
of BO methods based on modifying the algorithm itself, including Metis and Bayesian optimization 
and HyperBand (BOHB). We will discuss Metis in the Understanding Metis section and BOHB in 
Chapter 6, Exploring Multi-Fidelity Optimization.
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The following are the pros and cons of BO hyperparameter tuning, in general, compared to other 
hyperparameter tuning methods:

Figure 4.9 – Pros and cons of BO

BO can handle expensive objective functions and is more data-efficient and arguably better than 
random search when it has good initial points. You can utilize the set of hyperparameters we used for 
the initial points up to Step 6 from the procedure mentioned at the beginning of this section. However, 
if you don’t have that privileged access, BO still can outperform random search if you give the method 
some more time since it has to build a good surrogate model first from scratch, especially if you have 
a huge hyperparameter space. Once BO has built a good surrogate model, it tends to work faster than 
random search to find the optimal set of hyperparameters. 

There is also another way to speed up the relatively slow warm-up process of BO. The idea is to adopt 
a meta-learning procedure to initialize the initial set of hyperparameters by learning from meta-
features in other, similar datasets. 

Speeding Up BO’s Warm-Up
See the following paper for more information: Efficient and Robust Automated Machine Learning, 
by Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, 
Frank Hutter (https://papers.nips.cc/paper/2015/hash/11d0e62872
02fced83f79975ec59a3a6-Abstract.html).

BO also has a nice feature that random search doesn’t have – the ability to control the exploration 
and exploitation trade-off, as explained previously in this section. This feature enables BO to do more 
than just constantly explore, as random search does.

https://papers.nips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://papers.nips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
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Now that you are aware of what BO is, how it works, what its important components are, and the 
pros and cons of this method, we will dive deeper into the variations of BO in the following sections.

Understanding BO GP 
Bayesian optimization Gaussian process (BOGP) is one of the variants of the BO hyperparameter 
tuning method. It is well-known for its good capability in describing the objective function. This 
variant is very popular due to the unique analytically tractable nature of the surrogate model and its 
ability to produce relatively accurate approximation, even with only a few observed points.

However, BOGP has limitations. It only works on continuous hyperparameters, not on the discrete 
or categorical types of hyperparameters. It is not recommended to use BOGP when you need a lot 
of iterations to get the optimal set of hyperparameters, especially when you have a large number of 
samples. This is BOGP has a 𝑂𝑂(𝑁𝑁3)  runtime, where 𝑁𝑁   is the number of samples. If you have more than 
10 hyperparameters to be optimized, the common belief is that BOGP is not the right hyperparameter 
tuning method for you.

Having GP as the surrogate model means that we utilize GP as the prior for our objective function. 
Then, we can utilize the prior along with a likelihood model to compute the posterior that we care about. 
All of these nerdy terms can easily be understood if we are familiar with the famous Bayes Theorem.

Bayes Theorem allows us to calculate the probability of an event, given a specific condition, by utilizing 
our previous knowledge or common belief that we have. Formally, Bayes Theorem is defined as follows:

𝑃𝑃(Θ|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|Θ) ⋅ 𝑃𝑃(Θ)
𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  

Here, Θ  is the event we want to know the probability of, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  refers to the specific condition we 
mentioned previously. The left-hand side of the equation, 𝑃𝑃(Θ|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) , is what we called as the posterior. 
𝑃𝑃(Θ)  is the prior and 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|Θ)  is what we call the likelihood model. Finally, 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  is just a constant 

to ensure that the resulting value of this formula is bound in the range of [0,1] .

To understand Bayes Theorem, let’s walk through an example. Let’s say we want to know the probability 
of you eating at your favorite restaurant, given that today’s weather is sunny. In this example, you eating 
at your favorite restaurant is the event we are interested in. This is Θ   in the equation. The information 
that today is sunny refers to 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  in the equation. 

Let’s say you are eating at your favorite restaurant for 40 out of 100 days. This means that before 
knowing what today’s weather is, your 𝑃𝑃(Θ)  is equal to 40

100 = 0.4 . Let’s also assume that out of 100 
days, there are 30 sunny days. Then, the 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  value is equal to 30

100 = 0.3 . Based on your experience 
of eating at your favorite restaurant, you have realized that you ate in the sunny weather condition 

20 out of 40 times. Thus, the likelihood, 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|Θ) , is equal to 20
40 = 0.5 . Using all of this information, we 

can calculate the probability of you eating at your restaurant, given that today’s weather is sunny, as 

𝑃𝑃(Θ|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 0.5 ⋅ 0.4
0.3 = 2

3 
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Now, we are ready to revisit the GP. BOGP utilizes GP as the surrogate model. GP as the surrogate 
model means that we utilize it as the prior of our objective function, which implies that the posterior 
distribution is also a GP. You can think of GP as a generalization of a Gaussian distribution that 
you are familiar with. Unlike Gaussian distribution, which describes the distribution of a random 
variable, GP describes the distribution over functions. Similar to the Gaussian distribution that is 
accompanied by the mean and variance of the random variable, GP is also accompanied by the mean 
and covariance of the function. As for the likelihood, we assume that the objective function, f, follows 
a normal likelihood with noise:

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝜀𝜀 

𝜀𝜀 ∼ 𝑁𝑁(0, 𝜎𝜎𝜀𝜀2) 
Then, we can describe 𝑓𝑓1:𝑛𝑛 = {𝑓𝑓(𝑥𝑥1), 𝑓𝑓(𝑥𝑥2),… , 𝑓𝑓(𝑥𝑥𝑛𝑛)} , or the values of our objective function for all n 
samples. as a GP with a mean function of 𝑚𝑚(𝑥𝑥1:𝑛𝑛)  and a covariance kernel, 𝐾𝐾  , sized n x n, which 
is defined as follows:

𝑓𝑓1:𝑛𝑛 ∼ Ν(𝑚𝑚(𝑥𝑥1:𝑛𝑛),𝐾𝐾) 

The distribution of prediction from GP also follows the Gaussian distribution, which can be defined 
as follows:

𝑝𝑝(𝑦𝑦|𝑥𝑥, 𝐷𝐷) = Ν(𝑦𝑦 | 𝜇𝜇ˆ, 𝜎𝜎ˆ2) 

Here, the value of 𝜇𝜇ˆ  and 𝜎𝜎ˆ2  can be analytically derived from the kernel, 𝐾𝐾 .
To summarize, GP approximates the objective function by following a normal distribution assumption. 
In practice, GP can also be utilized when we don’t have zero mean processes, as per our previous 
assumption. However, we need to do some preprocessing on the values of the objective function to 
center them to zero. Choosing the right covariance kernel, 𝐾𝐾 , is also crucial. It highly impacts the 
performance of our hyperparameter tuning process. The most popular kernel that’s used in practice 
is the Matern kernel. However, we must choose the right kernel for our case, since each kernel has a 
characteristic that may or may not be suitable for our objective function. We will discuss the kernels 
that are available in the Scikit package in Chapter 7, Hyperparameter Tuning via Scikit.



Exploring Bayesian Optimization42

The following table shows the list of pros and cons of BOGP compared to other variants of the BO 
hyperparameter tuning method:

Figure 4.10 – Pros and cons of BOGP

In the previous section, we saw how GP works in practice, where we discussed the exploration and 
exploitation trade-off. You can revisit that example to get a better understanding of how GP works in 
practice through the help of visualizations. 

In this section, we learned about utilizing GP as the surrogate model in BO, along with the pros and 
cons compared to other variants of BO. In the next section, we will learn about another variant of BO 
that utilizes random forest as the surrogate model. 

Understanding SMAC 
SMAC is part of the BO hyperparameter tuning method group and utilizes random forest as the 
surrogate model. This method is optimized to handle discrete or categorical hyperparameters. If 
your hyperparameter space is huge and is dominated by discrete hyperparameters, then SMAC is a 
good choice for you. 

Similar to BOGP, SMAC also works by modeling the objective function. Specifically, it utilizes random 
forest as the surrogate model to create an estimation of the real objective function, which can then be 
passed to the acquisition function (see the Introducing BO section for more details).

Random forest is a machine learning (ML) algorithm that can be utilized in classification or regression 
tasks. It is built upon a collection of decision trees, which is known to perform well with categorical 
types of features. The name random forest comes from the fact that it is built from several decision 
trees. We will discuss random forest, along with its hyperparameters, in more detail in Chapter 11, 
Understanding Hyperparameters of Popular Algorithms.
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The main difference between SMAC and BOGP lies in the type of surrogate model that’s used in each 
method. While BOGP utilizes GP as the surrogate model, SMAC utilizes random forest as the surrogate 
model. The acquisition function that was used in the original paper on SMAC is the EI function with 
some modifications on how the optimization process in Step 8 in the Introducing BO section is done, 
which also can be seen in the following screenshot:

Figure 4.11 – Optimization process of the acquisition function 

In SMAC, similar to BOGP, we are also assuming that the distribution of our surrogate model’s 
prediction follows the Gaussian distribution, as shown here:

𝑝𝑝(𝑦𝑦|𝑥𝑥, 𝐷𝐷) = 𝑁𝑁(𝑦𝑦  ∣∣  𝜇𝜇ˆ, 𝜎𝜎ˆ2 )  

Here, the 𝜇𝜇ˆ  and 𝜎𝜎ˆ2  values are derived from the random forest prediction’s mean and variance, 
respectively.

We can also utilize random forest to perform hyperparameter tuning on a random forest model! How is 
this possible? How can a model be used to improve the performance of another model of the same type?

It is possible because we are treating one model as the surrogate model while the other one is the actual 
model that is fitted to the independent variables to predict the dependent variable. As the surrogate 
model, random forest will act as the regressor, which has the goal of learning the relationship between 
the hyperparameter space and the corresponding objective function. So, when we said that we are 
utilizing random forest to perform hyperparameter tuning on a random forest model, there are two 
random forest models with different goals and different input-output pairs! 

Take a look at the following steps to get a better understanding of this concept. Note that the following 
procedure replaces Steps 7 to 11 in the Introducing BO section:

6. (The first few steps are the same as we saw earlier).

7. �Fit the first random forest model, which acts as a surrogate model, M, using the value 
pairs in D. Remember that D consists of pairs of hyperparameter values and the cross-
validation score.
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8. �Sample the next set of hyperparameters by utilizing the acquisition function, A:

I.	 Perform optimization on the acquisition function with the help of the surrogate model, 
M, to sample which hyperparameters are to be passed to the acquisition function.

II.	 Get the optimal set of hyperparameters based on the acquisition function.

9. �Compute the cross-validation score using the objective function, f, based on the output 
from Step 8. Note that the cross-validation score is computed based on the second 
random forest model, whose goal is to learn the relationship between the dependent and 
independent variables from our original problem.

10. �Add the hyperparameters and cross-validation score pair from Step 8 and Step 9  
to set D.

11. Repeat Steps 7 to 10 until the stopping criteria are met.

12. (The last few steps are the same as we saw earlier).

You may be wondering, why bother utilizing the same ML algorithm as the surrogate model? Why 
don’t we just perform a grid search or random search instead? Remember that the surrogate model is 
just one piece of the full BO algorithm. There is also the acquisition function and other optimization 
steps that can help us get the optimal set of hyperparameters faster. It is worth noting that we can 
utilize any ML model other than random forest. When it comes to tree-based ML models, XGBoost, 
CatBoost, and LightGBM are also popular among data scientists since they work well in practice.

In the Introducing BO section, we saw how GP works with the EI acquisition function to estimate a 
dummy objective function. Let’s use the same dummy objective function, as defined here, and see 
the result of utilizing random forest (not necessarily the SMAC algorithm) as the surrogate model 
instead of GP. We will still use EI as the acquisition function in this example and the Scikit-optimize 
package as the implementation:

𝑓𝑓(𝑥𝑥) = cos(6𝑥𝑥) ⋅ (1 − sin(𝑥𝑥5)) + 𝜀𝜀 

Here, 𝜀𝜀   is a noise that follows the standard normal distribution. Please see Figure 4.2 for a visualization 
of this dummy objective function.
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Let’s set the number of trials and the exploitation versus exploration trade-off controller, 𝛿𝛿  , using 
the default values given by the Scikit-optimize package for the random forest surrogate model, which 
are 100 and 0.01, respectively. You can see how the random forest surrogate model fitting process 
works for the first five trials in the following figure:

Figure 4.12 – Random forest and EI illustration; δ = 0.01; trials 1 – 5
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As you can see, not many things happened in the first five trials. Even the approximation of the objective 
function that’s given by the random forest (see the green-dashed line) is still very bad since it is just a 
straight line! Let’s see what the condition is during trials 71 until 75:

Figure 4.13 – Random forest and EI illustration; δ = 0.01; trials 71- 75

Here, we can see that our random forest surrogate model has improved a lot in estimating the true 
objective function. One interesting point is that the acquisition function curve looks very different 
from the one we saw when utilizing GP as the surrogate model. Here, the acquisition function looks 
edgier, just like the one we usually see from visualizing random forest. Finally, let’s see what the final 
form of the approximated function is:
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Figure 4.14 – Result after 100 trials; δ = 0.01

Here, we can see that random forest fails to fit the true objective function in general, but it succeeds to 
focus on the local minima of the objective function. This happens because random forest needs a lot of 
data, or in this case, the observed points (see red dots), to have a good approximation of the objective 
function. You can also see the convergence plot of the fitting process, starting from the first until the 
last trial, in the following plot. If we compare Figure 4.15 to Figure 4.5, we can easily see that, in this 
example, random forest, when supported by the EI acquisition function, learns much slower than GP 
supported by EI:

Figure 4.15 – Convergence plot
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From Figure 4.14, we can also see that, currently, we are only focusing on several ranges and missing 
the global minima of the dummy objective function, which is located around the [1.5,1.75]  range. Let’s 
see if changing the value of 𝛿𝛿   to 100 can solve this issue. The expectation is that the EI acquisition 
function can help the random forest surrogate model explore more in other ranges of values as well. 
You can see the result of the first five trials in the following figure:

Figure 4.16 – Random forest and EI illustration; δ = 100; trials 1 – 5
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Similar to the first five trials of the default 𝛿𝛿   value, we still can’t see much of the learning process. 
Let’s see what the condition is during trials 71 until 75:

Figure 4.17 – Random forest and EI illustration; δ = 100; trials 71 – 75
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Here, we can see a very big difference between Figure 4.17 and Figure 4.13. Finally, let’s see what the 
final form of the approximated function is:

Figure 4.18 – Result after 100 trials; δ = 100

By changing the value of 𝛿𝛿   to 100, it seems that our expectation has been achieved. The approximation 
from the random forest surrogate model (see the green-dashed line) is now focusing on more than 
specific ranges. Moreover, we even get a better result compared to GP (see Figure 4.4). Again, it is 
worth noting that this is not always the case – you must experiment a lot on your own since different 
data, different objective functions, a different hyperparameter space, and different implementations 
may result in different conclusions. We will learn how to implement random forest as the surrogate 
model and how to produce these figures in Chapter 7, Hyperparameter Tuning via Scikit.

There is another method, called Bayesian optimization inside a Grove (BOinG), whose goal is to get 
the best of both worlds by utilizing random forest and GP as surrogate models. 

Bayesian Optimization Inside a Grove
See the following paper for more information: Searching in the Forest for Local Bayesian Optimization, 
by Difan Deng and Marius Lindauer (https://arxiv.org/abs/2111.05834).

BOinG works by using two-stage optimization by using global and local models to cut down the 
computational cost and focus more on the promising subspace, respectively. In BOinG, random forest 
is utilized as the global model and GP as the local model. The global model is responsible for searching 
the promising subspace of the local model. Thus, a global model should be flexible enough to handle 
complex problems with different types of hyperparameters. Since the local model only searches in a 
promising subspace, it is possible to utilize a more accurate but expensive model, such as GP.

https://arxiv.org/abs/2111.05834


Understanding TPE 51

The following table lists the pros and cons of utilizing random forest as a surrogate model compared 
to other variants of the BO hyperparameter tuning method:

Figure 4.19 – Pros and cons of utilizing random forest as a surrogate model

A conditional hyperparameter is a hyperparameter that will only be utilized when a certain condition 
is met. The tree structure of random forest is very suitable for this kind of situation since it can just 
add another branch of the tree to check whether the condition is met or not. The condition is usually 
just a specific value or range of other hyperparameters in the space.

Now that you are aware of SMAC and utilizing random forest as a surrogate model in general, in 
the next section, we will discuss another variant of BO that has a different approach in terms of 
approximating the objective function.

Understanding TPE
TPE is another variant of BO that performs well in general and can be utilized for both categorical and 
continuous types of hyperparameters. Unlike BOGP, which has cubical time complexity, TPE runs in 
linear time. TPE is suggested if you have a huge hyperparameter space and have a very tight budget for 
evaluating the cross-validation score. 

The main difference between TPE and BOGP or SMAC is in the way that it models the relationship 
between hyperparameters and the cross-validation score. Unlike BOGP or SMAC, which approximate 
the value of the objective function, or the posterior probability, 𝑝𝑝(𝑦𝑦|𝑥𝑥) , TPE works the other way 
around. It tries to get the optimal hyperparameters based on the condition of the objective function, 
or the likelihood probability, 𝑝𝑝(𝑥𝑥|𝑦𝑦)  (see the explanation of Bayes Theorem in the Understanding BO 
GP section). 
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In other words, unlike BOGP or SMAC, which construct a predictive distribution over the objective 
function, TPE tries to utilize the information of the objective function to model the hyperparameter 
distributions. To be more precise, when the optimization problem is in the form of a minimization 
problem, 𝑝𝑝(𝑥𝑥|𝑦𝑦)  is defined as follows:

𝑝𝑝(𝑥𝑥|𝑦𝑦) = 𝑙𝑙(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝑦𝑦 < 𝑦𝑦∗ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝑦𝑦 ≥ 𝑦𝑦∗ 

Here, 𝑙𝑙(𝑥𝑥)  and 𝑔𝑔(𝑥𝑥)  are utilized when the value of the objective function is lower or higher than the 
threshold, 𝑦𝑦∗ , respectively. There is no specific rule on how to choose the threshold, 𝑦𝑦∗ . However, 
in the Hyperopt and Microsoft NNI implementations, this threshold is chosen based on the TPE’s 
hyperparameter, 𝛾𝛾  , and the number of observed points in D up to the current trial. The definition 
of 𝑝𝑝(𝑥𝑥|𝑦𝑦)  tells us that TPE has two models that act as the learning algorithm based on the value of 
the objective function, which is ruled by the threshold, 𝑦𝑦∗ .

When the distribution of hyperparameters is continuous, TPE will utilize Gaussian mixture models 
(GMMs), along with the EI acquisition function, to suggest the next set of hyperparameters to be 
tested. If the continuous distribution is not a Gaussian distribution, then TPE will convert it to mimic 
the Gaussian distribution. For example, if the specified hyperparameter distribution is the uniform 
distribution, then it will be converted into a truncated Gaussian distribution. 

The probabilities of the different possible outcomes for the multinomial distribution within the GMM, 
and the mean and variance values for the normal distribution within the GMM, are generated by the 
adaptive Parzen estimator. This estimator is responsible for constructing the two probability distributions, 
𝑙𝑙(𝑥𝑥)  and 𝑔𝑔(𝑥𝑥) , based on the mean and variance of the normal hyperparameter distribution, as well 
as the hyperparameter value of all observed points in D up to the current trial.

When the distribution is categorical or discrete, TPE will convert the categorical distribution into a 
re-weighted categorical and use weighted random sampling, along with the EI acquisition function, 
to suggest the expected best set of hyperparameters. The weights in the random sampling procedure 
are generated based on the historical counts of the hyperparameter value. 

The EI acquisition function definition in TPE is a bit different from the definition we learned about 
in the Introducing BO section. In TPE, we are using Bayes Theorem when deriving the EI formula. 
The simple formulation of the EI acquisition function in TPE is defined as follows: 

 𝐸𝐸𝐸𝐸(𝑥𝑥)  ∝   𝑙𝑙
(𝑥𝑥)

𝑔𝑔(𝑥𝑥) 

The proportionality defined here tells us that to get a high value of EI, we need to get a high 
𝑙𝑙(𝑥𝑥)
𝑔𝑔(𝑥𝑥)  

ratio. In other words, when the optimization problem is in the form of a minimization problem, the 
EI acquisition function must suggest more hyperparameters from 𝑙𝑙(𝑥𝑥)  over 𝑔𝑔(𝑥𝑥) . It is the other way 
around when the optimization problem is in the form of a maximization problem. For example, when 
we use accuracy to measure the performance of our classification model, then we should sample more 
hyperparameters from 𝑔𝑔(𝑥𝑥)  over 𝑙𝑙(𝑥𝑥) .
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To summarize, TPE works as follows. Note that the following procedure describes how TPE works 
for the minimization problem. This procedure replaces Steps 7 to 11 in the Introducing BO section:

6.  (The first few steps are the same as we saw earlier).

7.  �Divide pairs of hyperparameter values and cross-validation scores in D into two groups 
based on the threshold, 𝑦𝑦∗ , namely below and above groups (see Figure 4.19). 

8.  �Sample the next set of hyperparameters by utilizing the EI acquisition function:

I.	 For each group, calculate the probabilities, means, and variances for the GMM using 
the adaptive Parzen estimator (if it’s a continuous type) or weights for random sampling 
(if it’s a categorical type).

II.	 For each group, fit the GMM (if it’s a continuous type), or perform random sampling 
(if it’s a categorical type), to sample which hyperparameters will be passed to the EI 
acquisition function.

III.	For each group, calculate the probability of those samples being good samples (for the 
below group), or the probability of those samples being bad samples (for the above group).

IV.	Get the expected optimal set of hyperparameters based on the EI acquisition function.

9.  �Compute the cross-validation score using the objective function, f, based on the output 
from Step 8. 

10.  �Add the hyperparameters and cross-validation score pair from Step 8 and Step 9 to set D.

11.  Repeat Steps 7 to 10 until the stopping criteria have been met.

12.  (The last few steps are the same as we saw earlier):

Figure 4.20 – Illustration of groups division in TPE



Exploring Bayesian Optimization54

Based on the stated procedure and the preceding plot, we can see that, unlike BOGP or SMAC, which 
constructs a predictive distribution over the objective function, TPE tries to utilize the information of 
the objective function to model the hyperparameter distributions. This way, we are not only focusing 
on the best-observed points during the trials – we are focusing on the distribution of the best-observed 
points instead.

You may be wondering why the Tree-structured term is within the TPE method’s name. This term refers 
to the conditional hyperparameters that we discussed in the previous section. This means that there 
are hyperparameters in the space that will only be utilized when a certain condition is met. We will see 
what a tree-structured or conditional hyperparameter space looks like in Chapter 8, Hyperparameter 
Tuning via Hyperopt, and Chapter 9, Hyperparameter Tuning via Optuna.

One of the drawbacks that TPE has is that it may overlook the interdependencies among hyperparameters 
in a certain space since the Parzen estimators work univariately. However, this is not the case for BOGP 
or SMAC, since the surrogate model is constructed based on the configurations in the hyperparameter 
space. Thus, they can take into account the interdependencies among hyperparameters. Fortunately, 
there is an implementation of TPE that overcomes this drawback. The Optuna package provides 
the multivariate TPE implementation, which can take into account the interdependencies among 
hyperparameters. 

The following table lists of pros and cons of utilizing TPE compared to other variants of the BO 
hyperparameter tuning method:

Figure 4.21 – Pros and cons of TPE
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Important Note
Some implementations support parallel tuning, but with a trade-off between the suggested 
hyperparameter quality and the wall time. The Microsoft NNI package supports this feature via 
the constant_liar_type argument, which will be discussed in more detail in Chapter 
10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI.

In this section, we learned about TPE, along with its pros and cons compared to other variants of BO. 
In the next section, we will learn about another variant of BO that has a slightly modified algorithm 
compared to the BO method in general.

Understanding Metis
Metis is one of the variants of BO that has several algorithm modifications compared to the BO method 
in general. Metis utilizes GP and GMM in its algorithm. GP is used as the surrogate model and outliers 
detector, while GMM is used as part of the acquisition function, similar to TPE. 

What makes Metis different from other BO methods, in general, is that it can balance exploration and 
exploitation more data-efficiently than the EI acquisition function. It can also handle noise in the data 
that doesn’t follow the Gaussian distribution, and this is the case most of the time. Unlike most of the 
methods that perform random sampling to initialize the set of hyperparameters and cross-validation 
score, D, Metis utilizes Latin Hypercube Sampling (LHS), which is a stratified sampling procedure 
based on the equal interval of each hyperparameter. This sampling method is believed to be more 
data-efficient compared to random sampling to achieve the same exploration coverage.

So, how can Metis balance exploration and exploitation more efficiently than the EI acquisition function, 
in terms of the needs of the observed points? This is achieved through the custom acquisition function 
that Metis has, which consists of three sub-acquisition functions, as shown here:

•	 Lowest confidence (LC): This sub-acquisition function’s goal is to sample hyperparameters 
with the highest uncertainty. In other words, the goal of this sub-acquisition function is to 
maximize exploration. This function is defined as follows:

𝐿𝐿𝐿𝐿(𝑥𝑥) = −1.96 ⋅ 2 ⋅ 𝜎𝜎(𝑥𝑥)
𝜇𝜇(𝑥𝑥)  

•	 Parzen estimator: This sub-acquisition function is inspired by the TPE method, which utilizes 
GMM to estimate how likely the sampled hyperparameter is part of the below or above group 
(see the Understanding TPE section for more details). The goal of this sub-acquisition function 
is to sample hyperparameters with the highest probability to be the optimum hyperparameters. 
In other words, it is optimized for exploitation.
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•	 Outliers detector: As its name suggests, the goal of this sub-acquisition function is to detect 
outliers within D. The detected outlier will then be suggested as the candidate to be resampled 
in the next trial. Metis utilized GP to build the outliers detector or the diagnostic model. This 
diagnostic model works by comparing each of the cross-validation scores in D with the mean and 
standard deviation estimated by the GP. If the absolute difference between the cross-validation 
score and the estimated mean is greater than some constant multiplied by the estimated standard 
deviation, then it is flagged as an outlier. In other words, the diagnostic model will mark the 
hyperparameter as an outlier if it lies outside the confidence interval of the GP estimation. The 
constant for the 98% confidence interval is 2.326.

Based on candidates suggested by these three sub-acquisition functions, Metis will then compute their 
information gain to select the final candidate to be included in the next trial. This selection process is 
done by utilizing the lower bound of the GP estimation confidence interval. Metis will measure the 
difference between the lower bound of the interval and the expected mean from GP. The candidate 
that has the highest improvement will be selected as the final candidate. 

It is worth noting that Metis can handle non-Gaussian noise in the data because of the diagnostic model. 
The detected outliers made it possible for Metis to resample the previously tested hyperparameters so 
that it is robust to non-Gaussian noise as well. This way, Metis can balance exploration, exploitation, 
and re-sampling during the hyperparameter tuning process.

To have a better understanding of how Metis works, take a look at the following procedure. Note 
that the following procedure replaces Steps 6 to 11 in the Introducing BO section.

5.  (The first few steps are the same as we saw earlier).

6.  �Initialize several pairs of hyperparameter values and cross-validations scores using the 
LHS method, and store them in D. 

7.  Fit a GP that acts as a surrogate model, M, using the value pairs in D.

8.  �Sample the next set of hyperparameters by utilizing the custom acquisition function, 
which consists of three sub-acquisition functions:

I.	 Get the current best optimum set of hyperparameters

II.	 Get the suggested hyperparameters for exploration via the LC sub-acquisition function

III.	 Get the suggested hyperparameters for exploitation via the Parzen estimator

IV.	 Get the suggested hyperparameters to be resampled based on the detected outliers 
by the diagnostic model.

V.	 Calculate the information gain from each suggested candidate.

VI.	 Select the candidate that has the highest information gain.

VII.	 If no candidate is suggested, then pick one random candidate.
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9.  �Compute the cross-validation score using the objective function, f, based on the output 
from Step 8. Note that the cross-validation score is computed based on the second 
random forest model, whose goal is to learn the relationship between the dependent and 
independent variables from our original problem.

10.  �Add the hyperparameters and cross-validation score pair from Step 8 and Step 9  
to set D.

11.  �Repeat Steps 7 to 10 until the stopping criteria are met.

12.  (The last few steps are the same as we saw earlier).

The following table lists the pros and cons of utilizing Metis compared to other variants of the BO 
hyperparameter tuning method:

Figure 4.22 – Pros and cons of Metis

It is also worth noting that, unlike other BO variants, there is only one package that implements Metis 
for the hyperparameter tuning method, which is Microsoft NNI. As you may have noticed, all the 
variants of BO that were discussed in this chapter have the drawback of not being able to exploit parallel 
computing resources. So, why didn’t we put that drawback in the first section instead? Because there 
is a variant of BO, namely BOHB, that can exploit the parallel computing resources. We will discuss 
BOHB in more detail in Chapter 6, Exploring Multi-Fidelity Optimization.

In this section, we covered Metis in detail, including, what it is, how it works, what makes it different 
from other BO variants, and its pros and cons.
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Summary
In this chapter, we discussed the second out of four groups of hyperparameter tuning methods, called 
the BO group. We not only discussed BO in general but also several of its variants, including BOGP, 
SMAC, TPE, and Metis. We saw what makes each of the variants differ from each other, along with the 
pros and cons of each. At this point, you should be able to explain BO with confidence when someone 
asks you and apply hyperparameter tuning methods in this group with ease.

In the next chapter, we will start discussing heuristic search, the third group of hyperparameter tuning 
methods. The goal of the next chapter is similar to this chapter: to provide a better understanding of 
the methods that belong to the heuristic search group.



5
E x p l o r i n g  H e u r i s t i c  S e a r c h

Heuristic search is the third out of four groups of hyperparameter tuning methods. The key difference 
between this group and the other groups is that all the methods that belong to this group work by 
performing trial and error to achieve the optimal solution. Similar to the acquisition function in Bayesian 
optimization (see Chapter 4, Exploring Bayesian Optimization), all methods in this group also employ 
the concept of exploration versus exploitation. Exploration means performing a search in the unexplored 
space to lower the probability of being stuck in the local optima, while exploitation means performing 
a search in the local space that is known to have a good chance of containing the optimal solution. 

In this chapter, we will discuss several methods that belong to the heuristic search group, including 
simulated annealing (SA), genetic algorithms (GAs), particle swarm optimization (PSO), and 
Population-Based Training (PBT). Similar to Chapter 4, we will discuss the definition of each method, 
what the differences are between them, how they work, and the pros and cons of each method.

By the end of this chapter, you will understand the concept of the aforementioned hyperparameter 
tuning methods that belong to the heuristic search group. You will be able to explain these methods 
with confidence when someone asks you, at both a high-level and detailed fashion, along with the 
pros and cons. Once you are confident enough to explain them to other people, this means you have 
understood the ins and outs of each method. Thus, in practice, you can understand what’s happening if 
there are errors or you don’t get the expected results; you will also know how to configure the method 
so that it matches your specific problem.

In this chapter, we will cover the following topics:

•	 Understanding simulated annealing

•	 Understanding genetic algorithms

•	 Understanding particle swarm optimization

•	 Understanding population based training
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Understanding simulated annealing
SA is the heuristic search method that is inspired by the process of metal annealing in metallurgy. 
This method is similar to the random search hyperparameter tuning method (see Chapter 3, Exploring 
Exhaustive Search), except for the existence of a criterion that guides how the hyperparameter tuning 
process works. In other words, SA is like a smoothed version of random search. Just like random 
search, it is suggested to use SA when each trial doesn’t take too much time and you have enough 
computational resources. 

In the metal annealing process, the metal is heated to a very high temperature for a certain time and 
slowly cooled to increase its strength, reducing its hardness and making it easier to work with. The 
goal of giving a very high heat is to excite the metal’s atoms so that they can move around freely and 
randomly. During this random movement, atoms usually tend to form a better configuration. Then, 
the slow cooling process is performed so that we can have a crystalline form of the material.

Just like in the metal annealing process, SA works by randomly choosing the set of hyperparameters to 
be tested. At each trial, the method will consider some of the “neighbors” of the current set, randomly. 
If the acceptance criterion is met, then the method will change its focus to that “neighbor” set. The 
acceptance criterion is not a deterministic function, it is a stochastic function, which means probability 
comes into play during the process. This probabilistic way of deciding is similar to the cooling phase 
in the metal annealing process, where we accept a smaller number of bad hyperparameter sets as more 
parts of the search space are explored.

SA is a modified version of one of the most popular heuristic optimization methods, known as 
stochastic hill climbing (SHC). SHC is very simple to understand and implement, which means 
that SA is as well. In general, SHC works by initializing the random point within a pre-defined bound 
(the hyperparameter space, in our case) and treating it as the current best solution. Then, it randomly 
searches for the next candidate within the surrounding of the selected point. Then, we need to compare 
the selected candidate with the current best solution. If the candidate is better than or equal to the 
current best solution, SHC will treat the candidate as the new best solution. This process is repeated 
until the stopping criterion is met. 

The following steps show how SHC optimization works in general:

1.	 Define the bound of the space, B, and the step size, S.

2.	 Define the stopping criterion. Usually, it is defined as the number of iterations, but other 
stopping criteria definitions also work.

3.	 Initialize the random point within the bound, B. 

4.	 Set the selected point from Step 3 as the current point, current_point, as well as the best point, 
best_point.

5.	 Randomly sample the next candidate within the S distance from best_point and within the 
bound, B, then store it as candidate_point.
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6.	 If candidate_point is better than or equal to best_point, then replace best_point with candidate_point.

7.	 Replace current_point with candidate_point.

8.	 Repeat Steps 5 to 7 until the stopping criterion is met. 

The main difference between SA and SHC is located in Steps 5 and 6. In SHC, we always sample the 
next candidate from the surrounding of the best_point, while in SA, we sample from the surrounding 
of current_point. In SHC, we only accept a candidate that is better than or equal to the current best 
solution, while in SA, we may also accept a worse candidate with a certain probability that is guided 
by the acceptance criterion, AC, which is defined as follows:

𝐴𝐴𝐴𝐴(𝑇𝑇, Δ𝑓𝑓) = exp(−Δ𝑓𝑓
𝑇𝑇 )  𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 1 

Here, Δ𝑓𝑓 = |𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) − 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)|     , 𝑓𝑓  is the objective function and 𝑇𝑇   is temperature 
with a positive value. See Chapter 4 if you are not familiar with the objective function term.

The 𝐴𝐴𝐴𝐴  formula results in a value between 0 and 1, where it always results in a value of 1 when the 
candidate_point is better than or equal to the current_point. In other words, we always accept the 
candidate_point when it is better than or equal to the current_point. It is worth noting that better 
does not necessarily mean has a greater value. If you are working with a maximization problem, then 
better means greater. However, if you are working with a minimization problem, then it is the other 
way around. For example, if the cross-validation score you are measuring is the mean squared error 
(MSE), where a lower score corresponds to better performance, then the candidate_point is considered 
better than the current_point if the 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  value is less than 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) .

Although 𝐴𝐴𝐴𝐴   is impacted by both Δ𝑓𝑓   and 𝑇𝑇  , we can only control the value of 𝑇𝑇  . In practice, the 
initial value of 𝑇𝑇   is treated as a hyperparameter and is usually set to a high value. Over the number 
of trials, the value of 𝑇𝑇   is decreased following the so-called annealing schedule or cooling schedule 
scheme. There are several annealing schedule schemes that we can follow. The three most popular 
schemes are as follows:

•	 Geometric cooling: This annealing schedule works by decreasing the temperature via a cooling 
factor of 0 < 𝛼𝛼 < 1  . In geometric cooling, the initial temperature, 𝑇𝑇0 , is multiplied by the cooling 
factor 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   number of times, where 𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟   is the current number of iterations:

𝑇𝑇 = 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝑇𝑇0 



Exploring Heuristic Search62

This can be seen in the following graph:

Figure 5.1 – Effect of the initial temperature in geometric cooling on the acceptable criterion

•	 Linear cooling: This annealing schedule works by decreasing the temperature linearly via a 
cooling factor, 𝛽𝛽  . The value of 𝛽𝛽  is chosen in such a way that 𝑇𝑇  will still have a positive value 
after 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  iterations. For example, 𝛽𝛽 =

(𝑇𝑇0 − 𝑇𝑇𝑓𝑓)
𝑡𝑡𝑓𝑓

 , where 𝑇𝑇𝑓𝑓  is the expected final temperature after 
𝑡𝑡𝑓𝑓  iterations:

𝑇𝑇 = 𝑇𝑇0 − 𝛽𝛽 ⋅ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

The following graph shows this annealing schedule:

Figure 5.2 – Effect of the initial temperature in linear cooling on the acceptable criterion
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•	 Fast SA: This annealing schedule works by decreasing the temperature proportional to the 
current number of iterations, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  :

𝑇𝑇 = 𝑇𝑇0
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

This annealing schedule can be seen in the following graph:

Figure 5.3 – Effect of the initial temperature in fast SA on the acceptable criterion

Based on Figures 5.1 to 5.3, we can see that no matter what annealing schedule scheme we use and what 
the initial temperature is, we will always have a lower 𝐴𝐴𝐴𝐴   value as the number of iterations increases, 
which means we will accept fewer bad candidates as the number of iterations increases. However, why 
do we need to accept bad candidates in the first place? The main purpose of SA not directly rejecting 
worse candidates, as in the SHC method, is to balance the exploration and exploitation trade-off. The 
high initial value of temperature allows SA to explore most of the parts of the hyperparameter space, 
and slowly focus on specific parts of the space as the number of iterations increases, just like how the 
metal annealing process works.
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Remember that 𝐴𝐴𝐴𝐴  only takes Δ𝑓𝑓  into account when the candidate_point is worse than the current_
point. This means that, based on Figure 5.4, we can say that the worse the suggested candidate is (the 
higher Δ𝑓𝑓   is), the lower the value of 𝐴𝐴𝐴𝐴  will be, and thus, the lower the probability of accepting the 
suggested bad candidate. This is the other way around for 𝑇𝑇   in that the higher the value of 𝑇𝑇  is, the 
higher the value of 𝐴𝐴𝐴𝐴  will be, and thus, the higher the probability of accepting the suggested bad 
candidate (see Figures 5.1 to 5.3):

Figure 5.4 – Effect of Δf on the acceptable criterion

To summarize, the following steps show how SA works as a hyperparameter tuning method:

1.	 Split the original full data into train and test sets (see Chapter 1, Evaluating Machine 
Learning Models).

2.	 Define the hyperparameter space, H, with the accompanied distributions.

3.	 Define the initial temperature, T0.

4.	 Define the objective function, f, based on the train set (see Chapter 4).

5.	 Define the stopping criterion. Usually, the number of trials is used. However, it is also possible 
to use the time taken or convergence as the stopping criterion.

6.	 Set the current temperature, T, using the value from T0.

7.	 Initialize a random set of hyperparameters that have been sampled from the hyperparameter 
space, H.

8.	 Set the selected set from Step 7 as the current set, current_set, as well as the best set, best_set.

9.	 Randomly sample the next candidate set, candidate_set, from the “neighbor” of the current_set 
within the hyperparameter space, H. The definition of the “neighbor” may differ across different 
types of hyperparameter distributions.

10.	 Generate a random number between 0 and 1 from the uniform distribution and store it as rnd.
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11.	 Decide whether to accept the candidate_set or not:

I.	 Calculate the value of 𝐴𝐴𝐴𝐴   using the value of T, f(candidate_set), and f(current_set).

II.	 If the value of rnd is smaller than 𝐴𝐴𝐴𝐴  , then replace current_set with candidate_set.

III.	 If candidate_set is better than or equal to current_set, then replace best_set with candidate_set.

12.	 Apply the annealing schedule to the temperature, T.

13.	 Repeat Steps 9 to 12 until the stopping criterion is met.

14.	 Train on the full training set using the best_set hyperparameters.

15.	 Evaluate the final trained model on the test set.

The following table lists the list of pros and cons of SA as a hyperparameter tuning method:

Figure 5.5 – Pros and cons of SA

In this section, we learned about SA, starting from what it is, how it works, what makes it different 
from SHC and random search, and its pros and cons. We will discuss another interesting heuristic 
search method that is inspired by the natural selection theory in the next section.

Understanding genetic algorithms
GAs are popular heuristic search methods that are inspired by Charles Darwin’s theory of natural 
selection. Unlike SA, which is classified as a single-point-based heuristic search method, GAs are 
categorized as population-based methods since they maintain a group of possible candidate solutions 
instead of just a single candidate solution at each trial. As a hyperparameter tuning method, you 
are recommended to utilize a GA when each trial doesn’t take too much time and you have enough 
computational resources, such as parallel computing resources.
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To have a better understanding of GAs, let’s start with a simple example. Let’s say we have a task to 
generate a pre-defined target word based on only a collection of words that are built from 26 alphabet 
letters in lowercase. For instance, the target word is “big,” and we have a collection that consists of the 
words “sea,” “pig,” “dog,” “bus,” and “tie.”

Based on the given collection of words, what should we do to generate the word “big?” It is no doubt a 
very easy and straightforward task. We just have to pick the letter “b” from the word “bus,” “i” from the 
word “pig” or “tie,” and “g” from the word “dog.” Voila! We get the word “big.” You may be wondering 
how this example is related to the GA method or even the natural selection theory. This example is 
a very simple task and there is no need to utilize a GA to solve the problem. However, we need this 
kind of example so that you have a better understanding of how GAs work since you already know 
the correct answer in the first place.

To solve this task using GA, you must know the three key items in GA related to the evolution theory. 
The first key item is variation. Imagine if the given collection of words consists of only the word “sea.” 
There’s no way we can generate the word “big” based on only the word “sea.” This is why variation is 
needed in the initial population (the collection of words, in our example). Without enough variation, 
we may not be able to achieve the optimal solution (to generate the word “big,” in our example) since 
there is no individual (each word in the collection of words, in our example) within the population 
that can evolve to the target word. 

Important Note
Population is not the hyperparameter space. In GAs or other population-based heuristic search 
methods, population refers to the candidates of the optimal hyperparameter set.

The second key item is selection. You can think of this item as being similar to the idea of natural 
selection that happens in the real world. It’s about selecting individuals that are more suitable for 
the surrounding environment (words that are similar to the word “big,” in our example) and thus can 
survive in the world. In GAs, we need quantitative guidance for us to perform the selection, which is 
usually called the fitness function. This function helps us judge how good an individual is concerning 
the objective we want to achieve. In our example, we can create a fitness function that measures the 
proportion of indexes of the word that has the same letters as the target word in the corresponding 
indexes. For example, the word “tie” has a fitness score of 

1
3  since only one out of three indexes contains 

the same letters as the target word, which is the index one that has the letter “i.”

Using this fitness function, we can evaluate the fitness score for each individual in the population, 
and then select which individuals should be added to the mating pool as parents. The mating pool 
is a collection of individuals that are considered high-quality individuals and thus called parents.
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The third key item is heredity. This item refers to the concept of reproduction or passing parents’ 
genes (each letter in the word, in our example) to their children or offspring. How is reproduction 
done in GAs? Taking the same spirit of natural selection, in Gas, we only perform the reproduction 
step from parents in the mating pool, meaning we only want to mate high-quality individuals with the 
hope to get only high-quality offspring in the next generation (a new population is created in the next 
iteration). There are two steps in the reproduction phase, namely the crossover and mutation steps. 
The crossover step is when we randomly mix or permute parents’ genes to generate offspring’s genes, 
while the mutation step is when we randomly change the value of offspring’s genes to add variation 
to the genes (see Figure 5.6). An individual that is mutated is called a mutant. The random value that 
is used in the mutation step should be drawn from the same gene’s distribution, meaning we can only 
use lower-case letters as the random values in our example, not floating points or integers:

Figure 5.6 – The crossover and mutation steps in a GA

Now that you are aware of the three key items in a GA, we can start solving the task from the previous 
example using a GA. Let’s assume we haven’t been given the collection of words so that we can learn the 
complete procedures of the GA. The target word is still “big.”

First, we must initialize a population with the NPOP number of individuals. The initialization process 
is usually done randomly to ensure we have enough variation in the population. By random, this 
means that the genes of each individual in the population are generated randomly. Let’s say we want 
to generate the initial population, which consists of seven individuals, where the generated results 
are “bee,” “tea,” “pie,” “bit,” “dog,” “cat,” and “dig.”

Now, we can evaluate the fitness score of each individual in the population. Let’s say we use the fitness 
function that was defined previously. So, we got the following scores for each individual; “bee:” 

1
3 , 

“tea:” 0  , “pie:” 
1
3 , “bit:” 

2
3 , ”dog:” 

1
3 , “cat:” 0  , and “dig:” 

2
3 . 
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Based on the fitness score of each individual, we can select which individual should be added to the 
mating pool as a parent. There are many strategies that we can adopt to select the best individuals from 
the population, but in this case, let’s just get the top three individuals based on the fitness score and 
randomly select individuals that have the same fitness score. Let’s say that, after running the selection 
strategy, we get a mating pool that consists of “bit,” “dig,” and “bee” as parents.

The next step is to perform the crossover and mutation steps. Before that, however, we need to specify 
the crossover probability, CXPB, and the mutation probability, MUTPB, which defines the probability 
of crossing two parents in the mating pool and mutating an offspring, respectively. This means we are 
neither performing crossover on all parent pairs nor mutating all offspring – we will only perform 
those steps based on the predefined probability. Let’s say that only “dig” and “bee” have chosen to be 
crossed, and the resulting offspring of the crossover is “deg” and “bie.” So, the mating pool currently 
consists of “bit,” “deg,” and “bie.” Now, we need to perform mutation on “deg” and “bie.” Let’s say that 
after mutating them, we got “den” and “tie.” This means that the mating pool is currently consisting 
of “bit,” “den,” and “tie.” 

After performing the crossover and mutation steps, we need to generate a new population for the 
next generation. The new population will consist of all crossed parents, mutated offspring, as well as 
other individuals from the current population. So, the next population consists of “bit,” “den,” “tie,” 
“tea,” “pie,” “dog,” and “cat.” 

Based on the new population, we have to repeat the selection, crossover, and mutation process. This 
procedure needs to be done NGEN times, where NGEN refers to the number of generations, and it 
is predefined by the developer. 

The following steps define how GA works in general, as an optimization method:

1.	 Define the population size, NPOP, the crossover probability, CXPB, the mutation probability, 
MUTPB, and the number of generations or number of trials, NGEN.

2.	 Define the fitness function, f.

3.	 Initialize a population with NPOP individuals, where each individual’s genes are initialized 
randomly.

4.	 Evaluate all individuals in the population based on the fitness function, f.

5.	 Select the best individuals based on Step 4 and store them in a mating pool.
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6.	 Perform the crossover process on the parents in the mating pool with a probability of CXPB.

7.	 Perform the mutation process on the offspring results from Step 8 with a probability of MUTPB.

8.	 Generate a new population consisting of all the individuals from Step 6, Step 7, and the rest of 
the individuals from the current population.

9.	 Replace the current population with the new population.

10.	 Repeat Steps 6 to 9 NGEN times.

Now, let’s look at a more concrete example of how a GA works in general. We will use the same 
objective function that we used in Chapter 4, Evaluating Machine Learning Models and treat this as a 
minimization problem. The objective function is defined as follows:

𝑓𝑓(𝑥𝑥) = cos(6𝑥𝑥) ⋅ (1 − sin(𝑥𝑥5)) + 𝜀𝜀 

Here, 𝜀𝜀  is the noise that follows the standard normal distribution. We are only going to perform 
a search within the [−2,2]  range. It is worth noting that in this example, we assume that we know 
what the true objective function is. However, in practice, this function is unknown. In this case, each 
individual will only have one gene, which is the value of 𝑥𝑥   itself.

Let’s say we define the hyperparameters for the GA method as NPOP = 25, CXPB = 0.5, MUTPB = 0.15, 
and NGEN = 6. As for the strategy of each genetic operator, we are using the Tournament, Blend, 
and PolynomialBounded strategies for selection, crossover, and mutation operators, respectively. 
The Tournament selection strategy works by selecting the best individuals among tournsize and the 
randomly chosen individual’s NPOP times, where tournsize is the number of individuals participating 
in the tournament. The Blend crossover strategy works by performing a linear combination between 
two continuous individual genes, where the weight of the linear combination is governed by the alpha 
hyperparameter. The PolynomialBounded mutation strategy works by passing continuous individual 
genes to a predefined polynomial mapping. 

There are many strategies available that you can follow based on your hyperparameter space specification. 
We will talk more about different strategies and how to implement the GA method using the DEAP 
package in Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI. For now, 
let’s see the results of applying a GA on the dummy objective function, f. Note that the points in each 
plot correspond to each individual in the population:
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Figure 5.7 – GA process

Based on the preceding figure, we can see that in the first generation, individuals are scattered all 
around the place since it is initialized randomly. In the second generation, several individuals that 
are initialized around point –1.0 moved to other places that have lower fitness scores. However, in the 
third generation, there are new individuals around point –1.0 again. This may be due to the random 
mutation operator that’s been applied to them. There are also several individuals stuck in the local 
optima, which is around point –0.5. In the fourth generation, most of the individuals have moved to 
places with lower fitness scores, although some of them are still stuck in the local optima. In the fifth 
generation, individuals are starting to converge in several places. 
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Finally, in the sixth generation, all of them converged to the near-global optima, which is around 
point 1.5. Note that we still have NPOP=25 individuals in the sixth generation, but all of them are 
located in the same place, which is why you can only see one dot in the plot. This also applies to other 
generations if you see that there are fewer than 25 individuals in the plot. The convergence trend across 
generations can be seen in the following graph:

Figure 5.8 – Convergence plot

The trend that’s shown in the preceding graph matches our previous analysis. However, we can get 
additional information from this plot. At first, many of the individuals are located in places with 
high fitness scores, but some individuals already get the best fitness score. Across generations, most 
of the individuals started to converge, and finally, in the last generation, all individuals had the best 
fitness score. It is worth noting that, in practice, it is not guaranteed that a GA will achieve the global 
optimal solution. 

At this point, you may be wondering, how can a GA be adopted as a hyperparameter tuning method? 
What is the corresponding definition of all terms in the GA within the context of hyperparameter 
tuning? What does an individual mean when performing hyperparameter tuning with a GA? 
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As a hyperparameter tuning method, the GA method treats a set of hyperparameters as an individual 
where the hyperparameter values are the genes. To have better clarity on what each important term 
in the GA method means, in the context of hyperparameter tuning, please refer to the following table:

Figure 5.9 – Definition of GA method terms in the hyperparameter tuning context

Now that you are aware of the corresponding definition of each important term in the GA method, 
we can define the formal procedure to utilize the GA method as a hyperparameter tuning method:

1.	 Split the original full data into train and test sets.

2.	 Define the hyperparameter space, H, with the accompanied distributions.

3.	 Define the population size, NPOP.

4.	 Define the crossover probability, CXPB, and mutation probability, MUTPB.

5.	 Define the number of trials, NGEN, as the stopping criterion.

6.	 Define the objective function, f, based on the train set.

7.	 Initialize a population with NPOP sets of hyperparameters, where each set is drawn randomly 
from the hyperparameter space, H.

8.	 Evaluate all hyperparameter sets in the population based on the objective function, f.

9.	 Select several best candidate sets based on Step 8.

10.	 Perform crossover on candidate sets from Step 9 with a probability of CXPB.
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11.	 Perform mutation on the crossed candidate sets from Step 10 with a probability of MUTPB.

12.	 Generate a new population consisting of all sets of hyperparameters from Step 10, Step 11, and 
the rest of the sets from the current population. The new population will also consist of NPOP 
sets of hyperparameters.

13.	 Repeat Steps 8 to 12 NGEN times.

14.	 Train on the full training set using the final hyperparameter values.

15.	 Evaluate the final trained model on the test set.

It is worth noting that when utilizing a GA as a hyperparameter tuning method, the GA itself has 
four hyperparameters, namely NPOP, CXPB, MUTPB, and NGEN, that control the performance of the 
hyperparameter tuning results, as well as the exploration versus exploitation trade-off. To be more precise, 
CXPB and MUTPB, or the crossover and mutation probability, respectively, are responsible for controlling 
the exploration rate, while the selection step, along with its strategy, controls the exploitation rate.

The following table lists the pros and cons of using a GA as a hyperparameter tuning method:

Figure 5.10 – Pros and Cons of the GA method

The need to evaluate all individuals in each generation means we multiplied the original time complexity 
that our objective has by NPOP * NGEN. It’s very costly! That’s why the GA method is not suitable for 
you if you have an expensive objective function and/or low computational resources. However, if you do 
have time to wait for the experiment to be done, and you have massively parallel computing resources, 
then the GA method is suitable for you. From a theoretical perspective, the GA method can also work 
with various types of hyperparameters – we just need to choose the appropriate crossover and mutation 
strategies for the corresponding hyperparameters. The GA method is better than SA in terms of having a 
population to guide which part of the subspace needs to be exploited more. However, it is worth noting 
that the GA method can still be stuck in local optima. 
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In this section, we discussed the GA method, starting with what it is, how it works both in terms of its 
general setup and the hyperparameter tuning context, and its pros and cons. We will discuss another 
interesting population-based heuristic search method in the next section.

Understanding particle swarm optimization
PSO is also a population-based heuristic search method, similar to the GA method. PSO is inspired by 
the schools of fish and flocks of birds’ social interaction in nature. As a hyperparameter tuning method, 
PSO is suggested to be utilized if your search space contains many non-categorical hyperparameters, 
each trial doesn’t take much time, and you have enough computational resources – especially parallel 
computing resources.

PSO is one of the most popular methods within the bigger swarm intelligence (SI) group of 
methods. There are various methods in SI that are inspired by the social interaction of animals in 
nature, such as herds of land animals, colonies of ants, flocks of birds, schools of fish, and many 
more. The common characteristics of SI methods are population-based, individuals within the 
population are relatively similar to each other, and the ability of the population to move in a specific 
direction systemically without a single coordinator inside or outside the population. In other words, 
the population can organize themselves based on the local interactions of individuals interacting 
with each other and/or the surrounding environment.

When a flock of birds is looking for food, it is believed that each bird can contribute to the group 
by sharing information about their sights, so that the group can move in the right direction. PSO 
is a method that simulates the movement of a flock of birds to optimize the objective function. In 
PSO, the flock of birds is called a swarm and each bird is called a particle. 

Each particle is defined by its position vector and velocity vector. The movement of each particle 
consists of both stochastic and deterministic components. In other words, the movement of each 
particle is not only based on a predefined rule but is also influenced by random components. Each 
particle also remembers its own best position, which gives the best objective function value along 
the trajectory it has passed. Then, along with the global best position, it is used to update the velocity 
and position of each particle at a particular time. The global best position is just the position of the 
best particle from the previous step. 

Let’s say that 𝑥𝑥𝑖𝑖(𝑡𝑡)  is the position vector in a d-dimensional space of the 𝑖𝑖𝑡𝑡ℎ  particle out of m particles 
in the swarm, and that 𝑣𝑣𝑖𝑖(𝑡𝑡)  is the velocity vector of the same size for the 𝑖𝑖𝑡𝑡ℎ  particle, as shown here:

𝑥𝑥𝑖𝑖(𝑡𝑡) = [𝑥𝑥𝑖𝑖1(𝑡𝑡),  𝑥𝑥𝑖𝑖2(𝑡𝑡),  𝑥𝑥𝑖𝑖3(𝑡𝑡),   … ,  𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)]𝑇𝑇 

𝑣𝑣𝑖𝑖(𝑡𝑡) = [𝑣𝑣𝑖𝑖1(𝑡𝑡),  𝑣𝑣𝑖𝑖2(𝑡𝑡),  𝑣𝑣𝑖𝑖3(𝑡𝑡),   … ,  𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)]𝑇𝑇 
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Let’s also define the best position for each particle and the global best position vectors, respectively:

𝑝𝑝𝑏𝑏𝑏𝑏(𝑡𝑡) = [𝑝𝑝𝑏𝑏𝑏𝑏1(𝑡𝑡),  𝑝𝑝𝑏𝑏𝑏𝑏2(𝑡𝑡),  𝑝𝑝𝑏𝑏𝑏𝑏3(𝑡𝑡),   … ,  𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)]𝑇𝑇 

𝑔𝑔𝑏𝑏(𝑡𝑡) = [𝑔𝑔𝑏𝑏1(𝑡𝑡),  𝑔𝑔𝑏𝑏2(𝑡𝑡),  𝑔𝑔𝑏𝑏3(𝑡𝑡),   … ,  𝑔𝑔𝑏𝑏𝑏𝑏(𝑡𝑡)]𝑇𝑇 

The following formulas define how each particle’s position and velocity vectors are updated in each iteration:

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) 

𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝜔𝜔 ⋅ 𝑣𝑣𝑖𝑖(𝑡𝑡)  +  𝑐𝑐1 ⋅ 𝑟𝑟1 ⋅ (𝑝𝑝𝑏𝑏𝑏𝑏(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡))  +  𝑐𝑐2 ⋅ 𝑟𝑟2 ⋅ (𝑔𝑔𝑏𝑏(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡)) 

Here, 𝜔𝜔  , 𝑐𝑐1 , and 𝑐𝑐2  are the hyperparameters that control the exploration versus exploitation trade-
off. 𝜔𝜔  has a value between zero and one is usually called the inertia weight coefficient, while 𝑐𝑐1  and 
𝑐𝑐2  are called the cognitive and social coefficients, respectively. 𝑟𝑟1  and 𝑟𝑟2  are the random values 
between zero and one and act as the stochastic components of the particle movement. Note that the 
d-dimensions of the position and velocity vectors refer to the number of hyperparameters we have 
in the search space, while the m particles refer to the number of candidate hyperparameters that are 
sampled from the hyperparameter space.

Updating the velocity vector may seem intimidating the first time, but actually, you can understand it 
more easily by treating the formula as three separate parts. The first part, or the left-most side of the 
formula, aims to update the next velocity proportional to the current velocity. The second part, or the 
middle part of the formula, aims to update the velocity toward the direction of the best position that 
the 𝑖𝑖𝑡𝑡ℎ  particle has, while also adding a stochastic component to it. The third part, or the right-most 
side of the formula, aims to bring the 𝑖𝑖𝑡𝑡ℎ  particle closer to the global best position, with additional 
random behavior applied to it. The following diagram helps illustrate this: 

Figure 5.11 – Updating the particle’s position and velocity
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The preceding diagram isn’t the same as the stated formula since the random components and the 
hyperparameters are missing from the picture. However, this diagram can help us understand the 
high-level concept of how each particle’s position and velocity vectors are updated in each iteration. 
We can see that the final updated velocity (see the orange line) is calculated based on three vectors, 
namely the current velocity (see the brown line), the particle best position (see the green line), and the 
global best position (see the purple line). Based on the final updated velocity, we can get the updated 
position of the 𝑖𝑖𝑡𝑡ℎ  particle – that is, 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) .

Now, let’s discuss how the hyperparameters affect the formula. The inertia weight coefficient, 𝜔𝜔  , 
controls how much we want to put our focus on the current velocity when updating the velocity 
vector. On the other hand, the cognitive coefficient, 𝑐𝑐1 , and the social coefficient, 𝑐𝑐2 , control how 
much we should focus on the particle’s past trajectory history and swarm’s search result, respectively. 
When we set 𝑐𝑐1 = 0 , we don’t take into account the influence of the best position of the 𝑖𝑖𝑡𝑡ℎ  particle, 
which may lead us to be trapped in the local optima. When we set 𝑐𝑐2 = 0 , we ignore the influence of 
the global best position, which may lead us to a slower convergence speed.

Now that you are aware of the position and velocity components of each particle in the swarm, take 
a look at the following steps, which define how PSO works in general as an optimization method:

1.	 Define the swarm size, N, the inertia weight coefficient, w, the cognitive coefficient, c1, the 
social coefficient, c2, and the maximum number of trials.

2.	 Define the fitness function, f.

3.	 Initialize a swarm with N particles, where each particle’s position and velocity vectors are 
initialized randomly.

4.	 Set each particle’s current position vector as their best position vector, pbi.

5.	 Set the current global best position, gb, by selecting a position vector from all N particles that 
have the most optimal fitness score.

6.	 Update each particle’s position and velocity vector based on the updating formula.

7.	 Evaluate all the particles in the swarm based on the fitness function, f.

8.	 Update each particle’s best position vectors, pbi:

I.	 Compare each particle’s current fitness score from Step 7 with its pbi fitness score.

II.	 If the current fitness score is better than the pbi fitness score, update pbi with the current 
position vector.

9.	 Update the global best position vector, gb:

I.	 Compare each particle’s current fitness score from Step 7 with the previous gb fitness score.

II.	 If the current fitness score is better than the gb fitness score, update gb with the current 
position vector.
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10.	 Update each particle’s position and velocity vector based on the updating formula.

11.	 Repeat Steps 7 to 10 until the maximum number of trials is reached.

12.	 Return the final global best position, gb.

It is worth noting that the definition of the optimal fitness score (or a better fitness score in the previously 
stated procedure) will depend on what type of optimization problem you are trying to solve. If it is a 
minimization problem, then a smaller fitness score is better. If it is a maximization problem, then it 
is the other way around.

To have even a better understanding of how PSO works, let’s go through an example. Let’s define the 
fitness function as follows:

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥2  +   cos(6𝑥𝑥)   +  𝑦𝑦2  +  (1 − sin(5𝑦𝑦)) 

Here, 𝑥𝑥   and 𝑦𝑦   are only defined within the [0,2]  range. The following contour plot shows what our 
objective function looks like. We will learn more about how to implement PSO using the DEAP 
package in Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI:

Figure 5.12 – A contour plot showing the objective function and its global minimum
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Here, you can see that the global minimum (see the red cross marker) is located at (0.497, 0.295) 
with an objective function value of –0.649. Let’s try to utilize PSO to see how well it estimates the 
minimum value of the objective function compared to the true global minimum. Let’s say we define 
the hyperparameter for PSO as N=20, w=0.5, c1=0.3, and c2=0.5, and set the maximum number of 
trials to 16. 

You can see the initial swarm illustration in the following contour plot. The blue dots refer to each 
of the particles, the blue arrow on each particle refers to the particle’s velocity vector, the black dots 
refer to each particle’s best position vectors, and the red star marker refers to the current global best 
position vector at a particular iteration:

Figure 5.13 – A PSO initial swarm

Since the initial particles at the swarm are initialized randomly, the direction of the velocity vectors 
is all over the place (see Figure 5.13). You can see how each particle’s position and velocity vectors are 
updated in each iteration, along with the global best position vector, as shown here: 
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Figure 5.14 – PSO process

Even at the first iteration, each particle’s velocity vector is pointing toward the global minimum, which 
is located in the bottom left of the plot. In each iteration, the position and velocity vectors are updated 
and move closer to the global minimum. At the end of the iteration loop, most of the particles are located 
around the global minimum position, where the final global best position vector is located at (0.496, 
0.290) with a fitness score of around –0.648. This estimation is very close to the true global minimum 
of the objective function! 
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It is worth noting that the velocity vector of each particle contains two components: magnitude and 
direction. The magnitude will impact the length of the velocity vector in Figure 5.14. While you may not 
see the difference in length between each particle’s velocity vector, they are different from each other!

Important Note
As a hyperparameter tuning method, in the PSO method, particle and swarm refer to the candidate 
set of hyperparameters that are sampled from the hyperparameter space and the collection 
of hyperparameter set candidates, respectively. The position vector of each particle refers to 
the values of each hyperparameter in a particle. Finally, the velocity vector refers to the delta 
of hyperparameter values that will be utilized to update the values of each hyperparameter in 
a particle.

The following steps define how PSO works as a hyperparameter tuning method:

1.	 Split the original full data into train and test sets.

2.	 Define the hyperparameter space, H, with the accompanied distributions.

3.	 Define the collection size, N, the inertia weight coefficient, w, the cognitive coefficient, c1, the 
social coefficient, c2, and the maximum number of trials.

4.	 Define the objective function, f, based on the train set.

5.	 Initialize a collection of N sets of hyperparameters, where each set is drawn randomly from 
the hyperparameter space, H. 

6.	 Randomly initialize the velocity vector for each set of hyperparameters in the collection.

7.	 Set each set’s current hyperparameter values as their best values, pbi.

8.	 Set the current global best set of hyperparameters, gb, by selecting a set from all N sets of 
hyperparameters that have the most optimal objective function score.

9.	 Update each set’s hyperparameter values and velocity vector based on the updating formula.

10.	 Evaluate all sets of hyperparameters in the collection based on the objective function, f.

11.	 Update each set’s best hyperparameter values, pbi:

I.	 Compare each set’s current score from Step 10 with its pbi score.

II.	 If the current score is better than the pbi score, update pbi with the current hyperparameter 
values.

12.	 Update the global best set of hyperparameters, gb:

I.	 Compare each set’s current score from Step 10 with the previous gb score.

II.	 If the current score is better than the gb score, update gb with the current set of 
hyperparameters.
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13.	 Update each set’s hyperparameter values and velocity vector based on the updating formula.

14.	 Repeat Steps 10 to 13 until the maximum number of trials is reached.

15.	 Train on the full training set using the global best set of hyperparameters.

16.	 Evaluate the final trained model on the test set.

One issue with the updating formula in the PSO method is that it only works on numerical variables, 
especially continuous variables, meaning we can’t directly utilize the original PSO as a hyperparameter 
tuning method if our hyperparameter space contains discrete hyperparameters. Motivated by this 
issue, there are several variants of PSO that are designed to be able to work in discrete spaces as well. 
The first variant is designed to work specifically for binary variables and is called binary PSO. In this 
variant, the updating formula for the velocity vector is the same, meaning we still treat the velocity 
vector in a continuous space, but the updating formula for the position vector is modified, like so:

𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 1 𝑖𝑖𝑖𝑖 𝑟𝑟 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣𝑖𝑖𝑗𝑗(𝑡𝑡 + 1))  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0 

Here, 𝑟𝑟   is a random number drawn from a uniform distribution within the [0,1) , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑧𝑧  
interval, and the j subscript refers to each component in the ith particle. As you can see, in the binary 
PSO variant, we can work within the discrete space, but we are restricted to only having binary variables. 

What about when we have a combination of discrete and continuous numerical hyperparameters? For 
example, our hyperparameter space for a neural network model contains the learning rate, dropout 
rate, and the number of layers. We can’t utilize the original PSO method directly since the number 
of layers hyperparameter expects an integer input, not a continuous or floating-point input. We also 
can’t utilize the binary PSO variant since the learning rate and dropout rate are continuous, and the 
number of layers hyperparameter is also not binary.

One simple thing we can do is round the updated velocity vector component values, but only for 
components that correspond to the discrete position component, before passing it to the position 
vector updating formula. This way, we can ensure that our discrete hyperparameters will still always 
be within the discrete space. However, this workaround still has an issue. The rounding operation may 
make the updating procedure of the velocity vector suboptimal. Why? Because of the possibility that 
no matter the updated values of the velocity vector, so long as they are still within a similar range of 
one integer point, then the position vector will not be updated anymore. This will contribute to a lot 
of redundant computational costs.

There is another workaround to make PSO operate well both in continuous and discrete spaces. On 
top of rounding the updated velocity vector component values, we can also update the inertia weight 
coefficient dynamically. The motivation is to help a particle focus on its past velocity values so that it 
is not stuck in the local or global optimum, which is influenced by 𝑝𝑝𝑏𝑏𝑏𝑏  or 𝑔𝑔𝑏𝑏 . The dynamic inertia 
weight updating procedure can be done based on several factors, such as the relative distance between 
its current position vector and its best position vector, the difference between the current number of 
trials and the maximum number of trials, and many more.
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There are many variants of how we can dynamically update the inertia weight coefficient during trials; 
we will leave it to you to choose what works well for your specific case.

Although we can modify the updating formula in PSO to make it work not only for continuous but 
also discrete variables, we are still faced with several issues, as stated previously. Thus, to utilize the 
maximum power of PSO within the continuous space, there’s another variant of PSO that tries to 
synergize PSO with the Bayesian optimization method, called PSO-BO. The goal of PSO-BO is to 
utilize PSO as a replacement for Bayesian optimization’s acquisition function optimizer (see Chapter 
4). So, rather than using a second-order optimization method to optimize the acquisition function, 
we can utilize PSO as the optimizer to help decide which set of hyperparameters to be tested in the 
next trial of the Bayesian optimization hyperparameter tuning procedure.  

The following table summarizes the pros and cons of utilizing PSO as a hyperparameter tuning method:

Figure 5.15 – Pros and cons of PSO

Now that you are aware of what PSO is, how it works, its several variants, and its pros and cons, let’s 
discuss another interesting population-based heuristic search method.

Understanding Population-Based Training
PBT is a population-based heuristic search method, just like the GA method and PSO. However, PBT 
is not a nature-inspired algorithm like GA or PSO. Instead, inspired by the GA method itself. PBT 
is suggested for when you are working with a neural-network-based type of model and just need the 
final trained model without knowing the specifically chosen hyperparameter configurations. 

PBT is specifically designed to work only with a neural network-based type of models, such as a multilayer 
perceptron, deep reinforcement learning, transformers, GAN, and any other neural network-based 
models. It can be said that PBT does both hyperparameter tuning and model training since the weights 
of the neural network model are inherited during the process. So, PBT is not only for choosing the 
most optimal hyperparameter configurations but also for transferring the weights or parameters of the 
model to other individuals within the population. That’s why the output of PBT is not a hyperparameter 
configuration but a model.
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PBT is a hybrid method of the random search and sequential search methods, such as manual search 
and Bayesian search (see Chapter 3, Exploring Exhaustive Search and Chapter 4, Exploring Bayesian 
Optimization for more details). Random search is a very good method for finding a good subspace for 
sensitive hyperparameters. Sequential search methods tend to give better performance than random 
search if we have enough computational resources and time to execute the optimization process. However, 
the fact that those methods need to be executed sequentially makes the experiment take a very long time 
to run. PBT comes with a solution to combine the best of both worlds into a single training optimization 
process, meaning the model training and hyperparameter tuning process are merged into a single process.

The term Population-Based in PBT comes from the fact that it is inspired by the GA method in terms of 
utilizing knowledge of the whole population to produce a better-performing individual. Note that the 
individual part of PBT refers to each of the N models with different parameters and hyperparameters 
in the population or a collection of all those N models.

The search process in PBT starts by initializing a population, P, that contains N models, {𝑀𝑀𝑖𝑖}𝑖𝑖=1𝑁𝑁  , 
with their own randomly sampled parameters, {𝜃𝜃𝑖𝑖}𝑖𝑖=1𝑁𝑁  , and randomly sampled hyperparameters, 
{ℎ𝑖𝑖}𝑖𝑖=1𝑁𝑁  . Within each iteration of the search process, the training step is triggered for each of the N 

models. The training step consists of both forward and backward propagation procedures that utilize 
gradient-based optimization methods, just like the usual training procedure for a neural network-based 
model. Once the training step is done, the next step is to perform an evaluation step. The purpose of 
the evaluation step is to evaluate the current model’s Mi performance on the unseen validation data. 

Once the model, Mi, is considered ready, PBT will trigger the exploit and explore steps. The definition 
of a model being ready may vary, but we can define “ready” as passing a predefined number of steps 
or passing a predefined performance threshold. Both the exploit and explore steps have the same 
goal, which is to update the model’s parameters and hyperparameters. The difference is determined 
by how they do the update process. 

The exploit step will decide, based on the evaluation results from the whole population, whether to 
keep utilizing the current set of parameters and hyperparameters or to focus on a more promising 
set. For example, the exploit step can be done by replacing a model that is considered as part of the 
bottom X% models in the whole population with a randomly sampled model from the top X% models 
in the population. Note that a model consists of all the parameters and hyperparameters. On the other 
hand, the explore step updates the model’s set of hyperparameters, not parameters, by proposing a 
new set. You can propose a new set by randomly perturbing the current set of hyperparameters with 
a predefined probability or by resampling the set of hyperparameters from the top X% models in the 
population. Note that this exploration step is only done on the chosen model from the exploitation step. 

Important Note
The exploration step in PBT is inspired by random search. This step can identify which subspace 
of hyperparameters needs to be explored more using partially trained models chosen from the 
exploitation step. The evaluation step that is done within the search process also enables us to 
remove the drawback of the sequential optimization process.
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The exploitation and exploration procedure in the PBT method allows us to update a model’s set of 
hyperparameters in an online fashion, while also putting more focus on the promising hyperparameter 
and weight space. The iterative process of train-eval-exploit-explore is performed asynchronously in 
parallel for each of the N individuals in the population until the stopping criterion is met.  

The following steps summarize how PBT works as a single training optimization process:

1.	 Split the original full data into train, validation, and test sets (see Chapter 1, Evaluating Machine 
Learning Models). 

2.	 Define the hyperparameter space, H, with the accompanied distributions.

3.	 Define the population size, N, the exploration perturbation factor, perturb_fact, the exploration 
resampling probability, resample_prob, and the exploitation fraction, frac.

4.	 Define the model’s readiness criterion. Usually, the number of SGD optimization steps is used. 
However, it is also possible to use the model’s performance threshold as the criterion.

5.	 Define the checkpoint directory that is used to store the model’s weights and hyperparameters.

6.	 Define the evaluation function, f.

7.	 Initialize a population, P, that contains N models, {𝑀𝑀𝑖𝑖}𝑖𝑖=1𝑁𝑁  , with their own randomly sampled 
parameters, {𝜃𝜃𝑖𝑖}𝑖𝑖=1𝑁𝑁  , and randomly sampled hyperparameters, {ℎ𝑖𝑖}𝑖𝑖=1𝑁𝑁  , from the hyperparameter 
space, H.

8.	 For each model in the population, P, run the following steps in parallel:

I.	 Run one step of the training process for the model, Mi, with the 𝜃𝜃𝑖𝑖  parameter and a 
set of hyperparameters, ℎ𝑖𝑖 .

II.	 If the readiness criterion has been met, do the following. If not, go back to Step I:

	� Perform the evaluation step based on f on the validation set.

	� Perform the exploitation step on the model, Mi, based on the predefined exploitation 
fraction, frac. This step will result in a new set of parameters and hyperparameters.

	� Perform the exploration step on the set of hyperparameters from the exploitation step 
based on the predefined perturb_fact and resample_prob.

	� Perform the evaluation step on the new set of parameters and hyperparameters based 
on f on the validation set.

	� Update the model, Mi, with the new set of parameters and hyperparameters.

III.	 Repeat Steps I and II until the end of the training loop. Usually, it is defined by the 
number of epochs.
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9.	 Return the model with the best evaluation score in the population, P.

10.	 Evaluate the final model on the test set.

It is worth noting that, in practice, such as in the implementation of the NNI package (see Chapter 10, 
Advanced Hyperparameter Tuning with DEAP and Microsoft NNI), the readiness criterion defined in 
Step 4 is an epoch. In other words, the second step within Step 8 will only be run after each training 
epoch, not in the middle of an epoch. It is also worth noting that the checkpoint directory defined 
in Step 5 is needed because, in PBT, we need to copy weights from another model in the population, 
while that’s not the case for the other hyperparameter tuning methods we’ve learned about so far.

While the original PBT algorithm states that we can run Step 8 asynchronously in parallel, this is not 
the case in the implementation of the NNI package, which will be used in this book to implement 
PBT. In the NNI package implementation, the process is run synchronously, meaning that we can 
continue to the next epoch once all of the individuals or models in the population have finished the 
previous epoch.

The following table lists the pros and cons of the PBT method:

Figure 5.16 – Pros and cons of PBT

In this section, you learned all you need to know about PBT, including what it is, how it works, what 
makes it different from other heuristic search methods, and its pros and cons.
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Summary
In this chapter, we discussed the third out of four groups of hyperparameter tuning methods, called 
the heuristic search group. We discussed what the heuristic search method is in general and several 
variants of heuristic search methods, including SA, the GA method, PSO, and PBT. We saw what 
makes each of the variants differ from each other, along with the pros and cons of each. At this point, 
you should be able to explain heuristic search in confidence when someone asks you. You should 
also be able to debug and set up the most suitable configuration of the chosen method that suits your 
specific problem definition.

In the next chapter, we will start discussing multi-fidelity optimization, the last group of hyperparameter 
tuning methods. The goal of the next chapter is similar to this one’s: to provide a better understanding 
of the methods that belong to the multi-fidelity optimization group so that you can explain those 
methods in confidence when someone asks you. By doing this, you will be able to configure each of 
the methods for your specific problem!



6
E x p l o r i n g  M u l t i - F i d e l i t y 

O p t i m i z a t i o n

Multi-Fidelity Optimization (MFO) is the fourth of four groups of hyperparameter tuning methods. 
The main characteristic of this group is that all methods belonging to this group utilize the cheap 
approximation of the whole hyperparameter tuning pipeline so we can have similar performance 
results with a much lower computational cost and faster experiment time. This group is suitable when 
you have a very large model or a very large number of samples, for example, when you are developing 
a neural-network-based model.

In this chapter, we will discuss several methods in the MFO group, including coarse-to-fine search, 
successive halving, hyper band, and Bayesian Optimization and Hyperband (BOHB). As in Chapter 5, 
Exploring Heuristic Search we will discuss the definition of each method, the differences between them, 
how they work, and the pros and cons of each.

By the end of this chapter, you will be confident in explaining MFO and its variations, and also how they 
work at a high level and in a technical way. You will also be able to tell the differences between them, 
along with the pros and cons of each. You will also experience the crucial benefit of understanding 
each of the methods in practice: being able to configure the method to match your own problem and 
knowing what to do when there are errors or unexpected outputs from the method.

In this chapter, we’ll be covering the following main topics:

•	 Introducing MFO

•	 Understanding coarse-to-fine search

•	 Understanding successive halving

•	 Understanding hyper band

•	 Understanding BOHB
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Introducing MFO
MFO is a group of hyperparameter tuning methods that work by creating a cheap approximation of the 
whole hyperparameter tuning pipeline so that we can get similar performance results with much lower 
computational cost and faster experiment time. There are many ways to create a cheap approximation. 
For example, we can work only on the subsets of the full data in the first several steps rather than directly 
working on the full data, or we can also try to use fewer epochs when training a neural-network-based 
model before training our model with full epochs. In other words, MFO methods work by combining cheap 
low-fidelity and expensive high-fidelity evaluations, where usually the proportion of cheaper evaluations 
is much larger than the more expensive evaluations so that we can achieve lower computational cost and 
thus faster experiment time. However, MFO methods can also be categorized as part of the informed 
search category since they utilize knowledge from previous iterations to have a (hopefully) better search 
space in future.

All of the methods that we have learned in the previous chapters can be categorized as black-box 
optimization methods. All black-box optimization methods try to perform hyperparameter tuning 
without utilizing any information from what is happening inside the ML model or the data that is 
used by the model. A black-box optimizer will only focus on searching the best set of hyperparameters 
from the defined hyperparameter space and treat other factors as a black box (see Figure 6.1). This 
characteristic has its own good and bad implications. It enables us to utilize a black-box optimizer, 
which is more flexible for various types of models or data, but it also costs us more since we do not 
consider other factors that may speed up the process.

Figure 6.1 – Illustration of black-box optimizer



Understanding coarse-to-fine search 89

The expense of black-box optimization methods means we can’t utilize them when we are working 
with a very large model or big data that requires a very long time for just one training iteration. That’s 
where the MFO group of hyperparameter tuning methods comes into the picture! By considering 
other factors that are treated as black-box by black-box optimizers, we can have a faster process while 
sacrificing a bit of the generality that black-box optimizers have. 

Generality
Generality means the model is able to perform on many unseen cases.

Furthermore, most of the methods categorized in this group can utilize parallel computational resources 
very nicely, which can further boost the speed of the hyperparameter tuning process. However, the 
benefit of faster processes offered by MFO methods comes with a cost. We may have worse performing 
tuning results since there is a chance we have excluded a better subspace during the cheap low-fidelity 
evaluations step. However, the speedup is arguably more significant than the estimation error, especially 
when we are working with a very large model and/or big data.

Important Note 
The MFO group of hyperparameter tuning methods is not a completely different group compared 
to black-box optimization methods, including exhaustive search, Bayesian optimization, and 
heuristic search. In fact, we can also apply a similar procedure done in a multi-fidelity optimization 
method to a black-box optimizer. In other words, we can combine black-box-and multi-fidelity 
models so we can get the best of both worlds.

For example, we can perform hyperparameter tuning with one of the Bayesian Optimization (BO) 
methods (see Chapter 4, Exploring Bayesian Optimization) and also apply the successive halving 
method (see the Understanding successive halving section) on top of it. This way, we will ensure that 
we only perform BO on important subspace, rather than letting BO explore the whole hyperparameter 
space by itself. By doing this, we can have a faster experiment time with lower computational cost.

Now that you are aware of what MFO is, how it differs from black-box optimization methods, and 
how it works at a high level, we will dive deeper into several MFO methods in the following sections. 

Understanding coarse-to-fine search
Coarse-to-Fine Search (CFS) is a combination of grid and random search hyperparameter tuning 
methods (see Chapter 3, Exploring Exhaustive Search). Unlike grid and random search, which are 
categorized in the uninformed search group of methods, CFS utilizes knowledge from previous 
iterations to have a (hopefully) better search space in the future. In other words, CFS is a combination 
of sequential and parallel hyperparameter tuning methods. It is indeed a very simple method since it 
is basically a combination of two other simple methods: grid and random search.
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CFS can be effectively utilized as a hyperparameter tuning method when you are working with a 
medium-sized model, for example, a shallow neural network (other types of models can also work) 
and a moderate amount of training data.

The main idea of CFS is just to start with a coarse random search from the whole hyperparameter 
space, then gradually refine the search in more detail, either using random or grid search. The following 
figure summarizes how CFS works as a hyperparameter tuning method.

Figure 6.2 – Illustration of CFS

As illustrated in Figure 6.2, CFS starts by performing a random search in the whole pre-defined 
hyperparameter space. Then, it looks for a promising subspace based on the first coarse random search 
evaluation results. The definition of a promising subspace may vary and can be adjusted to your own 
preference. The following list shows several definitions of a promising subspace that you can adopt:

•	 Get only the top N percentiles of the best set of hyperparameters based on the evaluation 
performed in the previous trial.

•	 Put a hard threshold to filter out the bad set of hyperparameters from the previous trial. 

•	 Conduct a univariate analysis to get the best range of values for each hyperparameter.

No matter what definition you are using to define the promising subspace, we will always get a list 
of values for each hyperparameter. Then, we can create a new hyperparameter space based on the 
minimum and maximum values in each list of hyperparameter values.

After getting the promising subspace, we can continue the process by performing a grid search or 
another random search in the smaller area. Note that you can also put a condition on when to keep 
using random search and when to start using grid search. Again, it is up to you to choose the appropriate 
condition. However, it is better to perform a random search than a grid search, so that we can have 
more evaluations based on the cheap low-fidelity approach compared to the expensive high-fidelity 
approach. We keep repeating this procedure until we reach the stopping criterion. 
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The following procedure explains in more detail how CFS works as a hyperparameter tuning method:

1.	 Split the original full data into a training set and a test set. (See Chapter 1, Evaluating Machine 
Learning Models.)

2.	 Define the hyperparameter space, H, with the accompanied distributions, the objective function, 
f, based on the training set, and the stopping criterion.

3.	 Define the grid size for creating the grid search hyperparameter space, grid_size, and the 
random search number of iterations, random_iters. 

4.	 Define the criterion of a promising subspace by utilizing the objective function, f. 

5.	 Define the criterion of when to start using grid search.

6.	 Set the initial best set of hyperparameters, best_set, with the value None. 

7.	 Perform a random search on the current hyperparameter space, H, for random_iters times.

8.	 Select a promising subspace based on the criterion defined in step 4:

I.	 If the current best-performing set of hyperparameters is worse than the previous best_
set, add best_set to the promising subspace.

II.	 If the current best-performing set of hyperparameters is better than the previous best_
set, update best_set.

9.	 If the criterion in step 5 is met, do the following:

I.	 Update the current hyperparameter space, H, with the promising subspace selected in 
step 8, using unique grid_size values for each of the hyperparameters. 

II.	 Perform a grid search on the updated hyperparameter space, H.

10.	 If the criterion in step 5 is not met, do the following:

I.	 Update the current hyperparameter space, H, with the promising subspace selected in 
step 8 using the minimum and maximum values for each hyperparameter.

II.	 Perform a random search on the updated hyperparameter space, H, for random_iters 
times.

11.	 Repeat steps 8 – 10 until the stopping criterion is met.

12.	 Train on the full training set using the best hyperparameter combination.

13.	 Evaluate the final trained model on the test set.
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In CFS, the multi-fidelity characteristic is based neither on the amount of data nor the number of 
training epochs, but on the granularity of the search performed in the search space during each 
trial. In other words, we will keep using all of the data and all of the training epochs with a refined 
hyperparameter space in each trial.

Let’s see how CFS works as a hyperparameter tuning method on dummy data generated by the scikit-
learn package. Scikit-learn has a function called make_classification to create dummy 
classification data with several customizable configurations. In this example, we use the following 
configurations to generate the dummy data:

•	 Number of classes. We set the number of target classes in the data to 2 by setting n_classes=2.

•	 Number of samples. We set the number of samples to 500 by setting n_samples=500.

•	 Number of features. We set the number of features or the number of dependent variables in the 
data to 25 by setting n_features=25.

•	 Number of informative features. We set the number of features that have high importance to 
distinguish between all of the target classes to 18 by setting n_informative=18.

•	 Number of redundant features. We set the number of features that are basically just a weighted 
sum from other features to 5 by setting n_redundant=5.

•	 Random seed. To ensure reproducibility, we set random_state=0.

We utilize a Multi-Layer Perceptron (MLP) with one hidden layer as the classifier model and use the 
mean of seven-fold cross-validation accuracy scores as the objective function (see Chapter 4, Exploring 
Bayesian Optimization). In this example, we are not using grid search as part of the CFS procedure, 
meaning that we only use random search in each of the trials. We set the maximum number of trials 
to 12, which acts as the stopping criterion. We set the number of iterations for each random search 
trial to 20. Finally, we utilize the top N percentiles scheme to define the promising subspace in each 
trial, with N=50. We define the hyperparameter space as follows:

•	 Number of neurons in the hidden layer: hidden_layer_sizes=range(1,51)

•	 Initial learning rate: learning_rate_init=np.linspace(0.001,0.1,50)
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The following figure shows how CFS works in each iteration or trial. The purple dots refer to hyperparameter 
values tested in the current trial, while the red rectangles refer to the promising subspace to be searched 
in the next trial.  

Figure 6.3 – Illustration of the CFS process

In Figure 6.3, we can see clearly how CFS starts by working at the full hyperparameter space and then 
gradually searches in the smaller subspaces. It is also worth noting that although we only use random 
search in this example, we can see that CFS still increases its fidelity over the number of trials until 
we get a final set of hyperparameters in the last trial. We can also see the performance of each trial 
in the following figure.
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Figure 6.4 – Convergence plot

The blue line in Figure 6.4 reflects the average cross-validation scores from all tested hyperparameters 
(see the purple dots in Figure 6.3) at each trial. The red line reflects the cross-validation score of the best-
performing set of hyperparameters at each trial. We can see that the red line has a nice non-decreasing 
monotonic characteristic. This happens because we always add back the best set of hyperparameters from 
all previous trials to the promising subspace definition, as defined in step 8 in the previous procedure. 
We will learn how to implement CFS with scikit-learn in Chapter 7, Hyperparameter Tuning via Scikit.

The following table summarizes the pros and cons of utilizing CFS as a hyperparameter tuning method.

Figure 6.5 – Pros and cons of CFS
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In this section, we have discussed CFS, looking at what it is, how it works, and the pros and cons.  
We will discuss another interesting MFO method in the next section.

Understanding successive halving
Successive Halving (SH) is an MFO method that is not only able to focus on a more promising 
hyperparameter subspace but can also allocate computational cost wisely in each trial. Unlike CFS, 
which utilizes all of the data in each trial, SH can utilize less data for a not-too-promising subspace 
while utilizing more data for a more promising subspace. It can be said that SH is a variant of CFS 
with a much clearer algorithm definition and is wiser in spending the computational cost. The most 
effective way to utilize SH as a hyperparameter tuning method is when you are working with a large 
model (for example, a deep neural network) and/or working with a large amount of data.

Similar to CFS, SH also utilizes grid search or random search to search for the best set of hyperparameters. 
At the first iteration, SH will perform a grid or random search on the whole hyperparameter space 
with a small amount of budget or resources, and then it will gradually increase the budget while 
also removing the worst half of the hyperparameters candidates at each iteration. In other words, SH 
performs hyperparameter tuning with a lower budget on a bigger search space and a higher budget on 
a more promising smaller subspace. SH can also be seen as a tournament between hyperparameter 
candidates, where only the best candidate will survive at the end of the trials.

Budget Definition in SH
In a default hyperparameter tuning setup, the budget is defined as the number of samples in 
the data. However, it is also possible to define the budget in other ways. For example, we can 
also define the budget as the maximum training time, number of iterations during XGBoost 
training steps, number of estimators in a random forest, or number of epochs when training 
a neural network model.

To have a better understanding of SH, let’s look at the following example before we discuss how it 
works in a formal procedure. We utilize the same model and the same hyperparameter space definition 
used in the example in the Understanding CFS section. We also utilize a similar procedure to generate 
a dummy classification dataset a hundred times bigger in size, meaning we have 50000 samples 
instead of only 500 samples as in the CFS example.
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In this example, we utilize random search instead of grid search to sample the hyperparameter candidates 
in each trial. The following figure shows the accuracy scores of hyperparameter candidates over trials. 
Each line refers to the trend of each hyperparameter candidate’s objective function score, which in 
this case is the seven-fold cross-validation accuracy score, over the number of trials.  The final objective 
function score, based on the best set of hyperparameters selected from the SH tuning process, is 
0.984. We will learn how to implement SH in Chapter 7, Hyperparameter Tuning via Scikit and 
Chapter 9, Hyperparameter Tuning via Optuna.

Figure 6.6 – Illustration of the SH process

In Figure 6.6, we can clearly see how SH takes only the top hyperparameter candidates (see the orange 
ovals) from each trial for further evaluation in the next trial. In the first iteration, a random search 
is performed 240 times with only 600 out of 50000 of the samples available in the data. This 
means we have 240 hyperparameter candidates, n_candidates, in the first iteration. Out of 
those hyperparameter candidates, SF takes only the top 80 candidates to be evaluated with a larger 
number of samples in the second iteration, which is 1800 samples. For the third iteration, SF again 
takes only the top 27 candidates and evaluates them on 5400 samples. 
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This process continues until we can’t use a larger number of samples since it will be greater than the 
maximum resources, max_resources, defined in the first place. In this example, the maximum 
resources are defined as the number of samples that we have in the data. However, it can also be defined 
as the total number of epochs or training steps based on the definition of the budget or resources.

In this example, we stopped at the fourth iteration, where we need to evaluate 3 candidates based on 
48600 samples. The final hyperparameter candidate chosen is the one that has the highest seven-fold 
cross-validation accuracy score evaluated on those 48600 samples.

As you will notice, the gradual increment of the number of samples in each trial and the gradual 
decrement of the number of candidates in each trial follows the same multiplier factor, factor, 
which is 3 in this example. That’s why we have to stop at the fourth iteration, since if we continue to 
the fifth iteration, we would need 48600*3=145800 samples, while we only have 50000 samples 
in the data. Note that we have to set the value of the multiplier factor ourselves before running the SH 
tuning process. In other words, this multiplier factor is the hyperparameter for SH. 

Multiplier Factor in SH
The halving term in SH refers to setting the multiplier factor value to two. In other words, 
only the best half of the hyperparameter candidates in each trial are passed to the next trial. 
However, we can also change this with another value. For example, when we set the multiplier 
factor as three, it means we take only the top one-third of hyperparameter candidates in each 
trial. In practice, setting the multiplier factor as three usually works better than setting it as two.

Besides the multiplier factor and maximum resources, SH also has other hyperparameters, such as the 
minimum number of resources to be used at the first iteration, min_resources, and the initial 
number of candidates to be evaluated at the first iteration, n_candidates. If grid search is utilized in 
the SH tuning process, n_candidates will equal the number of all combinations of hyperparameters 
in the search space. If a random search is utilized, then we have to set the value of n_candidates 
ourselves. In our example, where random search is utilized, we set min_resources=600 and 
n_candidates=240. 

While setting factor to be equal to three is the common practice, this is not the case for min_
resources and n_candidates. There are many factors to be considered before choosing the 
right values for both the min_resources and n_candidates hyperparameters. In other words, 
there is a trade-off between them, as explained here: 

•	 Choosing a bigger value for n_candidates is useful when the bad and good hyperparameters 
can be easily distinguished with a smaller number of samples (a smaller value for min_
resources). 

•	 Choosing a smaller value for n_candidates is useful when we need a larger number of 
samples (a larger value for min_resources) to distinguish between the bad and good 
hyperparameters.



Exploring Multi-Fidelity Optimization98

Another hyperparameter that SH has is the minimum early stopping rate, min_early_stopping. 
This integer-type hyperparameter has a default value of zero. If it is set to more than zero, it will reduce 
the number of iterations while increasing the number of resources to be used at the first iteration. In 
our previous example, we set min_early_stopping=0.

To summarize, SH as a hyperparameter tuning method works as follows:

1.	 Split the original dataset into train and test sets.

2.	 Define the hyperparameter space, H, with the accompanied distributions, and the objective 
function, f, based on the training set.

3.	 Define the budget/resources. Usually, this is defined as the number of samples or training epochs.

4.	 Define the maximum amount of resources, max_resources. Usually, this is defined as the 
total number of samples in data or the total number of epochs.

5.	 Define the multiplier factor, factor, the minimum amount of resources to be used at the first 
iteration, min_resources, and the minimum early stopping rate, min_early_stopping.

6.	 Define the initial number of hyperparameter candidates to be evaluated at the first iteration, 
n_candidates. If grid search is utilized, this will be automatically parsed from the total 
number of hyperparameter combinations in the search space.

7.	 Calculate the maximum number of iterations, niter, using the following formula:

           
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (log𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (

𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)) 

8.	 Assert if n_candidates ≥ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟(𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−1)  to ensure there is at least 
one candidate in the last iteration.

9.	 Warm up the first iteration:

I.	 Sample n_candidates sets of hyperparameters from the hyperparameter space. If 
grid search is utilized, just return all of the hyperparameter combinations in the space. 
This set of candidates is referred to as candidates1.

II.	 Evaluate all candidates1 sets of hyperparameters, using min_resources, based on 
the objective function, f.

III.	 Calculate the topK value that will be used to select top candidates for the next iteration: 

𝑡𝑡𝑡𝑡𝑝𝑝𝐾𝐾 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟−1) 
10.	 For each iteration, i, starting from the second iteration until niter iteration, proceed as follows:

I.	 Update the current set of candidates, candidatesi, by selecting topK candidates from 
candidatesi-1 in terms of the most optimal objective function score.
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II.	 Update the current allocated resources, resourcesi, based on the following formula:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟(𝑖𝑖+𝑚𝑚𝑚𝑚𝑚𝑚_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1) 
III.	 Evaluate all candidatesi sets of hyperparameters, using resourcesi, based on the objective 

function, f.

IV.	 Update the topK value based on the following formula:

𝑡𝑡𝑡𝑡𝑝𝑝𝐾𝐾 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟−𝑖𝑖) 
11.	 Return the best hyperparameter candidate:

I.	 Evaluate all candidates in the last iteration using the allocated number of resources and 
the objective function, f. Note that it’s possible that the allocated resource in the last 
iteration is less than max_resources.

II.	 Select the candidate with the optimal objective function score.

12.	 Train on the full train set using the best set of hyperparameters from step 11.

13.	 Evaluate the final trained model on the test set.

Based on the previous example and the stated procedure, we can see that SH performs cheap, low-fidelity 
evaluations on the first several iterations by using a low number of resources and starts to perform more 
expensive high-fidelity evaluations on the final several iterations by using a high number of resources.

Integration with Other Black-Box Methods
SH can also be utilized along with other black-box hyperparameter tuning methods apart from 
grid and random search. For example, in the Optuna (see Chapter 9, Hyperparameter Tuning 
via Optuna) package, we can combine TPE (see Chapter 4, Exploring Bayesian Optimization) 
with SH, where SH acts as a pruner. Note that in Optuna, the budget/resources is defined as 
the number of training steps or epochs instead of the number of samples.

The following is a list of the pros and cons of SH as a hyperparameter tuning method:

Figure 6.7 – Pros and cons of SH
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In practice, most of the time, we do not know how to balance the trade-off between the number 
of resources and the number of candidates since there is no clear definition of how to distinguish 
bad and good hyperparameters. One thing that can help us to find a sweet spot in this trade-off is 
leveraging previous similar experiment configurations or by performing meta-learning based on 
the available meta-data from previous similar experiments.

Now you are aware of SH, how it works, when to use it, and its pros and cons, in the next section,  
we will learn about an extension of this method that attempts to overcome the cons of SH.

Understanding hyper band
Hyper Band (HB) is an extension of SH that is specifically designed to overcome issues inherent in 
SH (see Figure 6.7). Although we can perform meta-learning to help us balance the trade-off, most 
of the time we do not have the metadata that’s needed in practice. Furthermore, the possibility of 
SH removing better sets of hyperparameters in the first several iterations is also worrying and can’t 
be solved by just finding a sweet spot from the trade-off. HB tries to solve these issues by calling SH 
several times iteratively. 

Since HB is just an extension of SH, it is suggested that you utilize HB as your hyperparameter tuning 
method when you are working with a large model (for example, a deep neural network) and/or working 
with a large amount of data, just like SH. Furthermore, it is even better to utilize HB than SH when 
you do not have the time or metadata needed to help you configure the trade-off between the amount 
of resources and the number of candidates, which is the case most of the time.

The main difference between HB and SH is in their hyperparameters. HB has the same hyperparameters 
as SH (see the Understanding SH section) except for n_candidates. In HB, we don’t have to choose 
the best value for n_candidates since it is calculated automatically within the HB algorithm. 

Basically, HB works by running SH iteratively with variations of n_candidates and min_
resources in each of the brackets (each SH run), starting from the combination of the highest 
possible value for n_candidates and the lowest possible value for min_resources, and 
going to the lowest possible value for n_candidates and the highest possible value for resources 
(see Figure 6.8). It’s like a brute-force approach to try almost all of the possible combinations of 
n_candidates and min_resources.

Figure 6.8 – Illustration of the HB process. Here, nj and rj refer to n_

candidates and min_resources for bracket-j, respectively
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As illustrated in Figure 6.8, assume that we set factor=3, min_resources=1, max_
resources=27, and min_early_stopping=0. As you can see, HB allocates the minimum 
amount of resources with the maximum number of candidates in the first bracket, while it allocates the 
maximum amount of resources with the minimum number of candidates in the last bracket. Again, each 
bracket refers to each SH run, meaning we are running SH four times in this illustration, where the last 
bracket is basically the same as performing random or grid search on a small hyperparameter space.

By testing almost all of the possible combinations of n_candidates and min_resources, HB is 
able to remove the trade-off in SH while also reducing the possibility of excluding better hyperparameters 
in the first iterations. However, this groundbreaking characteristic of HB doesn’t ensure that it will be 
always better than SH. Why? Because HB hasn’t actually tried all the possible combinations. We might 
find a better combination of n_candidates and min_resources values just by performing 
a single SH than all the possible combinations HB tried. However, this takes time and luck since we 
have to manually select the n_candidates and min_resources values.

Integration with Other Black-Box Methods
In the original paper on HB, the authors utilize random search for each SH run. However, as with 
SH, we can also integrate HB with other black-box methods.

The following procedure further states how HB works formally as a hyperparameter tuning method:

1.	 Split the full original dataset into train and test sets.

2.	 Define the hyperparameter space, H, with the accompanied distributions, and the objective 
function, f, based on the training set.

3.	 Define the budget resource. This is usually defined as the number of samples or training epochs.

4.	 Define the maximum resources, max_resources. This is usually defined as the total number 
of samples in the data or the total number of epochs.

5.	 Define the multiplier factor, factor, the minimum early stopping rate, min_early_
stopping, and the minimum number of resources for all brackets, min_resources. 
Usually, min_resources is set to one, if the budget is defined as the number of samples.

6.	 Create a dictionary, top_candidates, that will be utilized to store the best-performing 
set of hyperparameters from each SH run.

7.	 Calculate the number of brackets, nbrackets, using the following formula: 

𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (log𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (
𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)) 
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8.	 For each bracket-j, starting from j=1 until j=nbrackets, do the following:

I.	 Calculate the minimum number of resources to be used at the first iteration of SH for 
bracket-j, 𝑟𝑟𝑗𝑗 , using the following formula:

𝑟𝑟𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟− (𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑗𝑗) 

II.	 Calculate the initial number of hyperparameter candidates to be evaluated at the first 
iteration of SH for bracket-j, 𝑛𝑛𝑗𝑗  , using the following formula:

𝑛𝑛𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ( 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑗𝑗 + 1 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟

(𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑗𝑗)) 

III.	 Do steps 7 – 11 from the SH procedure given in the Understanding SH section by utilizing 
𝑟𝑟𝑗𝑗  as the min_resources and 𝑛𝑛𝑗𝑗   as the n_candidates for the current SH run, 

respectively. Other hyperparameters for SH, such as max_resources, min_early_
stopping, and factor, are inherited from HB. 

IV.	 Store the best set of hyperparameters output from the current SH run, along with the 
objective function score, in the top_candidates dictionary.

9.	 Select the best candidate that has the most optimal objective function score from the top_
candidates dictionary.

10.	 Train on the full training set using the best set of hyperparameters from step 9.

11.	 Evaluate the final trained model on the test set.

The following table summarizes the pros and cons of utilizing HB as a hyperparameter tuning method:

Figure 6.9 – Pros and cons of HB

It is worth noting that although HB can help us to deal with the trade-off of SH, it has a higher 
computational cost, since we have to run several SH rounds iteratively. It is even more costly when we 
are faced with a case where the bad and good hyperparameters cannot be easily distinguished with a 
small budget value. Why? The first several brackets of HB that utilize small budgets will result in a noisy 
estimation, since the relative rankings inside the SH iterations on smaller budgets do not reflect the 
actual relative rankings on higher budgets. In the most extreme case, the best set of hyperparameters 
will result from the last bracket (random search). If this is the case, then HB will run nbrackets times 
slower compared to random search.
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In this section, we have discussed HB, what it is, how it works, and its pros and cons. We will discuss 
another interesting MFO method in the next section.

Understanding BOHB
Bayesian Optimization and Hyper Band (BOHB) is an extension of HB that is superior to CFS, SH, 
and HB, in terms of understanding the relationship between the hyperparameter candidates and the 
objective function. If CFS, SH, and HB are all part of the informed search group based on random 
search, BOHB is an informed search group that is based on the BO method. This means BOHB is 
able to decide which subspace needs to be searched based on previous experiences rather than luck.

As its name implies, BOHB is the combination of the BO and HB methods. While SH and HB can also 
be utilized with other black-box methods (see the Understanding SH and Understanding HB sections), 
BOHB is specifically designed to utilize a BO method in a way that can support HB. Furthermore, 
the BO method in BOHB also tracks all the previous evaluations on all budgets, so that it can serve 
as the base for future evaluations. Note that the BO method used in BOHB is the multivariate TPE, 
which is able to take into account the interdependencies among hyperparameters (see Chapter 4, 
Exploring Bayesian Optimization). 

The main selling point of BOHB is its ability to achieve both a strong initial performance and a strong 
final performance. This can be easily seen in Figure 6.10, from the original BOHB paper (see the 
following note for details). BO (without performing metalearning) will outperform random search 
if we have more time to let it learn from previous experiences. If we don’t have time, BO will deliver 
a similar or even worse performance compared to random search. On the other hand, HB performs 
much better than random search when we have limited time, but will perform similarly to random 
search if we allow more time for random search to explore the hyperparameter space. By combining 
the best of both worlds, BOHB is able to not only outperform random search in a limited time but 
also when given enough time for random search to catch up.

Figure 6.10 – Comparison between random search, BO, HB, and BOHB
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The Original BOHB Paper
BOHB: Robust and Efficient Hyperparameter Optimization at Scale by Stefan Falkner, Aaron 
Klein, and Frank Hutter, Proceedings of the 35th International Conference on Machine Learning, 
PMLR 80:1437-1446, 2018 (http://proceedings.mlr.press/v80/falkner18a.
html).

The following procedure further states how BOHB works formally as a hyperparameter tuning 
method. Note that BOHB and HB are very similar except that random search in HB is replaced by 
the combination of multivariate TPE and random search. Since HB just performs SH several times 
iteratively, the actual replacement is actually performed in each of the SH runs (each bracket) in HB.

Let’s pick up from the previous instructions again.

6.  (The first six steps are the same as those in the Understanding HB section.)

7.  �Define the probability of just performing a random search rather than fitting the 
multivariate TPE, random_prob.

8.  �Define the percentage of the good set of hyperparameters for the multivariate TPE fitting 
procedure, top_n_percent. (See Chapter 4, Exploring Bayesian Optimization.)

9.  �Define a dictionary, candidates_dict, that stores the budget/resources used in a particular 
SH iteration and the pairs of hyperparameter candidates and the objective function score 
as the key and value, respectively.

10.  �Define the minimum number of sets of hyperparameters that are randomly sampled 
before starting to fit the multivariate TPE, n_min. By default, we set n_min to match 
the number of hyperparameters in the space plus one.

11.  �For each bracket-j, starting from j=1 until j=nbrackets, do the following:

I.	 Calculate the minimum number of resources to be used on the first iteration of SH 
for bracket-j, 𝑟𝑟𝑗𝑗 , using the following formula:

 𝑟𝑟𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟− (𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑗𝑗) 

II.	 Calculate the initial number of hyperparameters candidates to be evaluated on the 
first iteration of SH for bracket-j, 𝑛𝑛𝑗𝑗  , using the following formula:

 𝑛𝑛𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ( 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑗𝑗 + 1 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟

(𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑗𝑗)) 

III.	 Perform steps 7 – 11 from the SH procedure stated in the Understanding SH section 
by utilizing 𝑟𝑟𝑗𝑗  as min_resources and 𝑛𝑛𝑗𝑗   as n_candidates for the current SH run, 
respectively, where step 9. I. is replaced with the following procedure:

IV.	 Generate a random number between zero and one from a uniform distribution, rnd.

http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
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V.	 If rnd<random_prod or models_dict is empty, perform a random search to 
sample the initial hyperparameter candidates.

VI.	 Count the number of sampled hyperparameters in candidates_dict[𝑟𝑟𝑗𝑗 ], 
and store it as num_curr_candidates.

VII.	 If num_curr_candidates < n_min, then perform a random search to 
sample the initial hyperparameter candidates.

VIII.	 Alternatively, utilize the multivariate TPE (see Chapter 4, Exploring Bayesian 
Optimization) to sample the initial hyperparameter candidates. Note that we always 
utilize multivariate TPE on the largest budget available in candidates_dict. 
The number of hyperparameter sets for both good and bad groups is defined based 
on the following formula:

𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = max(𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝑛𝑛𝑛𝑛𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
100 )) 

𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏 = max(𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (
(100 − 𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ⋅ 𝑛𝑛𝑛𝑛𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

100 )) 

IX.	 Store the sampled initial hyperparameter candidates along with the objective function 
score (either from step ii, iv, or v) in candidates_dict[𝑟𝑟𝑗𝑗 ].

X.	 Store the best set of hyperparameters output from the current SH run, along with 
the objective function score, in the top_candidates dictionary.

12.	 Select the best candidate that has the most optimal objective function score from the top_
candidates dictionary.

13.	 Train on the full training set using the best set of hyperparameters from step 14.

14.	 Evaluate the final trained model on the test set.

Note that to ensure that BOHB tracks all of the evaluations on all budgets, we also need to store the 
hyperparameter candidates in each of the SH iterations for each HB bracket to candidates_
dict[budget] along with their objective function score. Here, hyperparameter candidates in each 
of the SH iterations refer to candidatesi, while budget refers to resourcesi in step 10 in the Understanding 
SH section, which also can be seen in the following figure:

Figure 6.11 – BOHB tracks all the evaluations on all budgets
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You may wonder whether it is possible for BOHB to take advantage of parallel resources since it 
utilizes a BO method that is notorious for not being able to exploit parallel computing resources. The 
answer is yes, it is possible! You can take advantage of parallel resources since in each of the BOHB 
iterations, specifically in the HB iterations, we can utilize more than one worker to evaluate multiple 
sets of hyperparameters, in parallel. 

What about the sequential nature of the multivariate TPE utilized in BOHB? Yes, there may be some 
sequential processes that need to be performed inside the TPE model. However, BOHB limits the 
number of sets of hyperparameters given to the multivariate TPE so it might not take too much time. 
Furthermore, the limitation on the number of hyperparameter sets is actually specifically designed 
by the authors of BOHB. The following is a direct quote from the original paper on BOHB:

The parallelism in TPE is achieved by limiting the number of samples to 
optimize EI, purposefully not optimizing it fully to obtain diversity. This 

ensures that consecutive suggestions by the model are diverse enough to yield 
near-linear speedups when evaluated in parallel.

It is also worth noting that we always utilize the multivariate TPE on the largest budget available to 
ensure that it is fitted on enough budget (high-fidelity) to minimize the chance of a noisy estimation. 
So, combined with the limitation on the number of hyperparameter sets passed to the TPE, we are 
trying to ensure that the multivariate TPE is fitted on the right number of hyperparameter sets.

The following table summarizes the pros and cons of utilizing BOHB as a hyperparameter tuning method:

Figure 6.12 – Pros and cons of BOHB

Just as HB may run nbrackets times slower compared to random search when we are faced with a 
situation where the bad and good hyperparameters cannot be easily distinguished with a small budget 
value, BOHB will also run nbrackets times slower compared to the vanilla BO, where we are faced 
with the same condition.

In this section, we have covered BOHB in detail, including what it is, how it works, and its pros and cons.
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Summary
In this chapter, we have discussed the fourth of the four groups of hyperparameter tuning methods, 
called the MFO group. We have discussed MFO in general and what makes it different from black-
box optimization methods, as well as discussing several variants, including CFS, SH, HB, and BOHB. 
We have seen the differences between them and the pros and cons of each. From now on, you should 
be able to explain MFO with confidence when someone asks you about it. You should also be able 
to debug and set up the most suitable configuration for the chosen method that suits your specific 
problem definition.

In the next chapter, we will begin implementing the various hyperparameter tuning methods that we 
have learned about so far using the scikit-learn package. We will become familiar with the scikit-learn 
package and learn how to utilize it in various hyperparameter tuning methods.





S e c t i o n  2 : 
T h e  I m p l e m e n t a t i o n

In this section of the book, we will learn how to utilize several powerful packages to implement all of 
the discussed hyperparameter tuning methods in the previous section.

This section includes the following chapters:

•	 Chapter 7, Hyperparameter Tuning via scikit-learn

•	 Chapter 8, Hyperparameter Tuning via Hyperopt

•	 Chapter 9, Hyperparameter Tuning via Optuna

•	 Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI





7
H y p e r p a r a m e t e r  Tu n i n g 

v i a  S c i k i t

scikit-learn is one of the Python packages that is used the most by data scientists. This package 
provides a range of Machine Learning (ML)-related modules that are ready to be used with minimum 
effort, including for the task of hyperparameter tuning. One of the main selling points of this package 
is its consistent interface across many implemented classes, which almost every data scientist loves! 
Apart from scikit-learn, there are also other packages for the hyperparameter tuning task that 
are built on top of scikit-learn or mimic the interface of scikit-learn, such as scikit-
optimize and scikit-hyperband.

In this chapter, we’ll learn about all of the important things to do with scikit-learn, scikit-
optimize, and scikit-hyperband, along with how to utilize them to implement the 
hyperparameter tuning methods that we learned about in the previous chapters. We’ll start by walking 
through how to install each of the packages. Then, we’ll learn not only how to utilize those packages 
with their default configurations but also discuss the available configurations along with their usage. 
Additionally, we’ll discuss how the implementation of the hyperparameter tuning methods is related 
to the theory that we learned in previous chapters, as there might be some minor differences or 
adjustments made in the implementation.

Finally, equipped with the knowledge from previous chapters, you will also be able to understand 
what’s happening if there are errors or unexpected results and understand how to set up the method 
configuration to match your specific problem.

In this chapter, we’ll be covering the following main topics:

•	 Introducing scikit

•	 Implementing Grid Search

•	 Implementing Random Search

•	 Implementing Coarse-to-Fine Search
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•	 Implementing Successive Halving

•	 Implementing Hyper Band 

•	 Implementing Bayesian Optimization Gaussian Process

•	 Implementing Bayesian Optimization Random Forest

•	 Implementing Bayesian Optimization Gradient Boosted Trees

Technical requirements
We will learn how to implement various hyperparameter tuning methods with scikit-learn, 
scikit-optimize, and scikit-hyperband. To ensure that you can reproduce the code 
examples in this chapter, you will require the following:

•	 Python 3 (version 3.7 or above)

•	 An installed Pandas package (version 1.3.4 or above)

•	 An installed NumPy package (version 1.21.2 or above)

•	 An installed Scipy package (version 1.7.3 or above)

•	 An installed Matplotlib package (version 3.5.0 or above)

•	 An installed scikit-learn package (version 1.0.1 or above)

•	 An installed scikit-optimize package (version 0.9.0 or above)

•	 An installed scikit-hyperband package (directly cloned from the GitHub repository)

All of the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python.

Introducing Scikit
scikit-learn, which is commonly called Sklearn, is a very popular open source package in 
Python that is widely used for ML-related tasks, starting from data preprocessing, model training and 
evaluation, model selection, hyperparameter tuning, and more. One of the main selling points of the 
sklearn package is the consistency of its interface across many implemented classes. 

For example, all of the implemented ML models, or estimators, in sklearn have the same fit() 
and predict() methods for fitting the model on the training data and evaluating the fitted model on 
the test data, respectively. When working with data preprocessors, or transformers, in sklearn, the 
typical method that every preprocessor has is the fit(), transform(), and fit_transform() 
methods for fitting the preprocessor, transforming new data with the fitted preprocessor, and fitting 
and directly transforming the data that is used to fit the preprocessor, respectively. 

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
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In Chapter 1, Evaluating Machine Learning Models, we learned how sklearn can be utilized to 
evaluate the performance of ML models through the concept of cross-validation, where the full data 
is split into several parts, such as train, validation, and test data. In Chapters 3–6, we always used the 
cross-validation score as our objective function. While we can manually perform hyperparameter 
tuning and calculate the cross-validation score based on the split data, sklearn provides dedicated 
classes for hyperparameter tuning that use the cross-validation score as the objective function during 
the tuning process. There are several hyperparameter tuning classes implemented in sklearn, 
such as GridSearchCV, RandomizedSearchCV, HalvingGridSearchCV, and 
HalvingRandomSearchCV.

Also, all of the hyperparameter tuning classes implemented in sklearn have a consistent interface. 
We can use the fit() method to perform hyperparameter tuning on the given data where the cross-
validation score is used as the objective function. Then, we can use the best_params_ attribute to 
get the best set of hyperparameters, the best_score_ attribute to get the average cross-validated 
score from the best set of hyperparameters, and the cv_results_ attribute to get the details of 
the hyperparameter tuning process, including but not limited to the objective function score for each 
tested set of hyperparameters in each of the folds.

To prevent data leakage when performing the data preprocessing steps (see Chapter 1, Evaluating 
Machine Learning Models), sklearn also provides a Pipeline object that can be used along with 
the hyperparameter tuning classes. This Pipeline object will ensure that any data preprocessing steps 
are only fitted based on the train set during the cross-validation. Essentially, this object is just a chain of 
several sklearn transformers and estimators, which has the same fit() and predict() method, 
just like a usual sklearn estimator.

While sklearn can be utilized for many ML-related tasks, scikit-optimize, which is 
commonly called skopt, is a package built on top of sklearn and can be utilized for implementing 
the Sequential Model-Based Optimization (SMBO) methods (see Chapter 4, Exploring Bayesian 
Optimization). skopt has a very similar interface to sklearn, so it will be very easy for you to get 
familiar with skopt once you are already familiar with sklearn itself. The main hyperparameter 
tuning class implemented in skopt is the BayesSearchCV class. 

skopt provides four implementations for the optimizer within the BayesSearchCV class, namely 
Gaussian Process (GP), Random Forest (RF), Gradient Boosted Regression Trees (GBRT), and Extra 
Trees (ET). Furthermore, you can also use any other regressors from sklearn to be utilized as the 
optimizer. Note that, here, the optimizer refers to the surrogate model that we learned in Chapter 4, 
Exploring Bayesian Optimization. Additionally, skopt provides various implementations of the 
acquisition function, namely the Expected Improvement (EI), Probability of Improvement (PI), 
and Lower Confidence Bound (LCB) functions.

Last but not least, the scikit-hyperband package. Additionally, this package is built on top 
of sklearn and is specifically designed for the HB implementation. The hyperparameter tuning 
class implemented in this package is HyperbandSearchCV. It also has a very similar interface 
to sklearn.
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As for sklearn and skopt, you can easily install them via pip install, just like you usually 
install other packages. As for scikit-hyperband, the author of the package didn’t put this on 
PyPI, which means you have to install the package directly from the GitHub repository. Furthermore, at 
the time of writing, the last update of the GitHub repo (https://github.com/thuijskens/
scikit-hyperband) was in 2020. There are several blocks of code that are no longer compatible 
with the newer version of sklearn. Luckily, there’s a forked version (https://github.com/
louisowen6/scikit-hyperband) of the original repo that works nicely with the newer 
version of sklearn (1.0.1 or above). To install scikit-hyperband, please follow the 
following steps:

1.	 Clone https://github.com/louisowen6/scikit-hyperband to your loca 
machinel:

git clone https://github.com/louisowen6/scikit-hyperband

2.	 Open the cloned repository:

cd scikit-hyperband

3.	 Move the hyperband folder to your working directory:

mv hyperband "path/to/your/working/directory"

Now that you are aware of the scikit-learn, scikit-optimize, and scikit-hyperband 
packages, in the following sections, we will learn how to utilize them to implement various hyperparameter 
tuning methods.

Implementing Grid Search
To implement Grid Search (see Chapter 3, Exploring Exhaustive Search), we can actually write 
our own code from scratch since it is just a simple nested for loop that tests all of the possible 
hyperparameter values in the search space. However, by using sklearn’s implementation of Grid 
Search, GridSearchCV, we can have a cleaner code since we just need to call a single line of code 
to instantiate the class. 

Let’s walk through an example of how we can utilize GridSearchCV to perform Grid Search. 
Note that, in this example, we are performing hyperparameter tuning on an RF model. We will utilize 
sklearn’s implementation of RF, RandomForestClassifier. The dataset used in this 
example is the Banking Dataset – Marketing Targets provided on Kaggle (https://www.kaggle.
com/datasets/prakharrathi25/banking-dataset-marketing-targets). 

Original Data Source
This data was first published in A Data-Driven Approach to Predict the Success of Bank Telemarketing, 
by Sérgio Moro, Paulo Cortez, and Paulo Rita, Decision Support Systems, Elsevier, 62:22–31, 
June 2014 (https://doi.org/10.1016/j.dss.2014.03.001).

https://github.com/thuijskens/scikit-hyperband
https://github.com/thuijskens/scikit-hyperband
https://github.com/louisowen6/scikit-hyperband
https://github.com/louisowen6/scikit-hyperband
https://github.com/louisowen6/scikit-hyperband
https://www.kaggle.com/datasets/prakharrathi25/banking-dataset-marketing-targets
https://www.kaggle.com/datasets/prakharrathi25/banking-dataset-marketing-targets
https://doi.org/10.1016/j.dss.2014.03.001
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This is a binary classification dataset with 16 features related to the marketing campaigns conducted by 
a bank institution. The target variable consists of two classes, yes or no, indicating whether the client 
of the bank has subscribed to a term deposit or not. Hence, the goal of training an ML model on this 
dataset is to identify whether a customer is potentially wanting to subscribe to the term deposit or 
not. For more details, you can refer to the description on the Kaggle page: 

1.	 There are two datasets provided, namely the train.csv dataset and the test.csv 
dataset. However, we will not use the provided test.csv dataset since it is sampled directly 
from the train data. We will manually split train.csv into two subsets, namely the train 
set and the test set, using the help of the train_test_split function from sklearn 
(see Chapter 1, Evaluating Machine Learning Models). We will set the test_size parameter 
to 0.1, meaning we will have 40,689 and 4,522 rows for the train set and the test set, 
respectively. The following code shows you how to load the data and perform the train set and 
the test set splitting:

import pandas as pd

from sklearn.model_selection import train_test_split

df = pd.read_csv("train.csv",sep=";")

df_train, df_test = train_test_split(df, test_size=0.1, 
random_state=0)

Out of the 16 features provided in the data, there are 7 numerical features and 9 categorical 
features. As for the target class distribution, 12% of them are yes and 88% of them are no, for 
both train and test datasets. This means that we can’t use accuracy as our metric since we 
have an imbalanced class problem—a situation where we have a very skewed distribution of 
the target classes. Instead, in this example, we will use the F1-score.

2.	 Before performing Grid Search, let’s see how RandomForestClassifier with the default 
hyperparameter values work. Furthermore, let’s also try to train our model on only those seven 
numerical features for now. The following code shows you how to get only numerical features, 
train the model on those features in the train set, and finally, evaluate the model on the test set:

import numpy as np

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import f1_score

The X_train_numerical variable only stores numerical features from the train data:

X_train_numerical = df_train.select_dtypes(include=np.
number).drop(columns=['y'])

y_train = df_train['y']

The X_test_numerical variable only stores numerical features from the test data:

X_test_numerical = df_test.select_dtypes(include=np.
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number).drop(columns=['y'])

y_test = df_test['y']

Fit the model on train data:

model = RandomForestClassifier(random_state=0)

model.fit(X_train_numerical,y_train)

Evaluate the model on the test data:

y_pred = model.predict(X_test_numerical)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.436 for the F1-Score when testing our 
trained RF model on the test set. Remember that this is the result of only using numerical 
features and the default hyperparameters of the RandomForestClassifier.

3.	 Before performing Grid Search, we have to define the hyperparameter space in a dictionary 
of list format, where the keys refer to the name of the hyperparameters and the lists consist of 
all the values we want to test for each hyperparameter. Let’s say we define the hyperparameter 
space for RandomForestClassifier as follows:

hyperparameter_space = {

"n_estimators": [25,50,100,150,200],

"criterion": ["gini", "entropy"],

"max_depth": [3, 5, 10, 15, 20, None],

"class_weight": ["balanced","balanced_subsample"],

"min_samples_split": [0.01,0.1,0.25,0.5,0.75,1.0],

}

4.	 Once we have defined the hyperparameter space, we can apply the GridSearchCV class to 
the train data, use the best set of hyperparameters to train a new model on the full train data, 
and then evaluate that final trained model on the test data, just as we learned in Chapters 3–6. 
The following code shows you how to do that:

from sklearn.model_selection import GridSearchCV

Initiate the model:

model = RandomForestClassifier(random_state=0)

Initiate the GridSearchCV class:

clf = GridSearchCV(model, hyperparameter_space, 

                   scoring='f1', cv=5, 
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                   n_jobs=-1, refit = True)

Run the GridSearchCV class:

clf.fit(X_train_numerical, y_train)

Print the best set of hyperparameters:

print(clf.best_params_,clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_numerical,y_test))

Look how clean our code is by utilizing sklearn’s implementation of Grid Search instead 
of writing our code from scratch! Notice that we just need to pass sklearn’s estimator 
and the hyperparameter space dictionary to the GridSearchCV class, and the rest will 
be handled by sklearn. In this example, we also pass several additional parameters to the 
class, such as scoring=’f1’, cv=5, n_jobs=-1, and refit=True. 

As its name suggests, the scoring parameter governs the scoring strategy that we want to use 
to evaluate our model during the cross-validation. While our objective function will always be the 
cross-validation score, this parameter controls what type of score we want to use as our metric. In 
this example, we are using the F1-score as our metric. However, you can also pass a custom callable 
function as the scoring strategy. 

Available Scoring Strategies in Sklearn
You can refer to https://scikit-learn.org/stable/modules/model_
evaluation.html#scoring-parameter for all of the implemented scoring strategies 
by sklearn, and refer to https://scikit-learn.org/stable/modules/
model_evaluation.html#scoring if you want to implement your own custom 
scoring strategy.

The cv parameter indicates how many folds of cross-validation you want to perform. The n_jobs 
parameter controls how many jobs you want to run in parallel. If you decide to use all of the processors, 
you can simply set n_jobs=–1, just as we did in the example. 

Last but not least, we have the refit parameter. This Boolean parameter is responsible for deciding 
whether at the end of the hyperparameter tuning process we want to refit our model on the full train 
set using the best set of hyperparameters or not. In this example, we set refit=True, meaning that 
sklearn will automatically refit our RF model on the full train set using the best set of hyperparameters. 
It is very important to retrain our model on the full train set after performing hyperparameter tuning 
since we only utilize subsets of the train set during the hyperparameter tuning process. There are several 
other parameters that you can control when initiating a GridSearchCV class. For more details, 
you can refer to the official page of sklearn (https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.GridSearchCV.html).

https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Let’s go back to our example. By performing Grid Search in the predefined hyperparameter space, we 
are able to get an F1-score of 0.495 when evaluated on the test set. The best set of hyperparameters is 
{‘class_weight’: ‘balanced’, ‘criterion’: ‘entropy’, ‘min_samples_
split’: 0.01, ‘n_estimators’: 150} with an objective function score of 0.493. 
Note that we can get the best set of hyperparameters along with its objective function score via the 
best_params_ and best_score_ attributes, respectively. Not bad! We get around 0.06 of 
improvement in the F1-score. However, note that we are still only using numerical features.

Next, we will try to utilize not only numerical features but also categorical features from our data. To be 
able to utilize those categorical features, we need to perform the categorical encoding preprocessing 
step. Why? Because ML models are not able to understand non-numerical features. Therefore, we 
need to convert those non-numerical features into numerical ones so that the ML model is able to 
utilize those features.

Remember that when we want to perform any data preprocessing steps, we have to be very careful with 
it to prevent any data leakage problem where we might introduce part of our test data into the train 
data (see Chapter 1, Evaluating Machine Learning Models). To prevent this problem, we can utilize the 
Pipeline object from sklearn. So, instead of passing an estimator to the GridSearchCV class, 
we can also pass a Pipeline object that consists of a chain of data preprocessors and an estimator:

1.	 Since, in this example, not all of our features are categorical and we only want to perform 
categorical encoding on those non-numerical features, we can utilize the ColumnTransformer 
class to specify which features we want to apply the categorical encoding step. Let’s say we 
also want to perform a normalization preprocessing step on the numerical features. We can 
also pass those numerical features to the ColumnTransformer class along with the 
normalization transformer. Then, it will automatically apply the normalization step to only 
those numerical features. The following code shows you how to create such a Pipeline object 
with ColumnTransformer, where we use StandardScaler for the normalization 
step and OneHotEncoder for the categorical encoding step:

from sklearn.preprocessing import StandardScaler, 
OneHotEncoder

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

Get list of numerical features and categorical features:

numerical_feats = list(df_train.drop(columns='y').select_
dtypes(include=np.number).columns)

categorical_feats = list(df_train.drop(columns='y').
select_dtypes(exclude=np.number).columns)
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Initiate the preprocessor for numerical features and categorical features:

numeric_preprocessor = StandardScaler()

categorical_preprocessor = OneHotEncoder(handle_
unknown="ignore")

Delegate each preprocessor to the corresponding features:

preprocessor = ColumnTransformer(

    transformers=[

        ("num", numeric_preprocessor, numerical_feats),

        ("cat", categorical_preprocessor, categorical_
feats),

    ])

Create a pipeline of preprocessors and models. In this example, we named our pr-processing 
steps as “preprocessor” and the modeling step as “model”:

pipe = Pipeline(

    steps=[("preprocessor", preprocessor), 

           ("model", RandomForestClassifier(random_
state=0))])

As you can see in the previous code blocks, the ColumnTransformer class is 
responsible for delegating each preprocessor to the corresponding features. Then, 
we can just reuse it for all of our preprocessing steps through a single preprocessor 
variable. Finally, we can create a pipeline consisting of the preprocessor variable and 
RandomForestClassifier. Note that within the ColumnTransformer class 
and the Pipeline class, we also have to provide the name of each preprocessor and step 
in the pipeline, respectively. 

2.	 Now that we have defined the pipeline, we can see how our model performs on the test set 
(without hyperparameter tuning) by utilizing all of the features and preprocessors defined in 
the pipeline. The following code shows how we can directly use the pipeline to perform the 
same fit() and predict() methods as we did earlier: 

pipe.fit(X_train_full,y_train)

y_pred = pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.516 for the F1-score when testing our 
trained pipeline on the test set. 
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3.	 Next, we can start performing Grid Search over the pipeline, too. However, before we can do that, 
we need to redefine the hyperparameter space. We need to change the keys in the dictionary with 
the format of <estimator_name_in_pipeline>__<hyperparameter_name>. 
The following is the redefined version of our hyperparameter space:

hyperparameter_space = { 

"model__n_estimators": [25,50,100,150,200], 

"model__criterion": ["gini", "entropy"], 

"model__class_weight": ["balanced", "balanced_
subsample"],

"model__min_samples_split": [0.01,0.1,0.25,0.5,0.75,1.0], 

}

4.	 The following code shows you how to perform Grid Search over the pipeline instead of the 
estimator itself. Essentially, the code is the same as the previous version. The only difference is 
that we are performing the Grid Search over the pipeline and on all of the features in the data, 
not just the numerical features.

Initiate the GridSearchCV class:

clf = GridSearchCV(pipe, hyperparameter_space, 

                   scoring = 'f1', cv=5, 

                   n_jobs=-1, refit = True

Run the GridSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.549 for the F1-Score when testing our 
final trained RF model with the best set of hyperparameters on the test set. The best set of 
hyperparameters is {‘model__class_weight’: ‘balanced_subsample’, 
‘model__criterion’: ‘gini’, ‘model__min_samples_split’: 
0.01, ‘model__n_estimators’: 100} with an objective function score of 
0.549.
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It is worth noting that we can also create a pipeline within a pipeline. For example, we can create a 
pipeline for numeric_preprocessor that consists of a chain of missing value imputation 
and normalization modules. The following code shows how we can create such a pipeline. The 
SimpleImputer class is the missing value imputation transformer from sklearn that can help 
us to perform mean, median, mode, or constant imputation strategies if there are any missing values:

from sklearn.impute import SimpleImputer

numeric_preprocessor = Pipeline(

steps=[("missing_value_imputation", 
SimpleImputer(strategy="mean")),     ("normalization", 
StandardScaler())]

)

In this section, we have learned how to implement Grid Search in sklearn through the GridSearchCV 
class, starting from defining the hyperparameter space, setting each important parameter of the 
GridSearchCV class, learning how to utilize the Pipeline and ColumnTransformer 
classes to prevent data leakage issues, and learning how to create a pipeline within the pipeline. 

In the next section, we will learn how to implement Random Search in sklearn  via 
RandomizedSearchCV.

Implementing Random Search
Implementing Random Search (see Chapter 3, Exploring Exhaustive Search) in sklearn is very 
similar to implementing Grid Search. The main difference is that we have to provide the number 
of trials or iterations since Random Search will not try all of the possible combinations in the 
hyperparameter space. Additionally, we have to provide the accompanying distribution for each of 
the hyperparameters when defining the search space. In sklearn, Random Search is implemented 
in the RandomizedSearchCV class.

To understand how we can implement Random Search in sklearn, let’s use the same example from 
the Implementing Grid Search section. Let’s directly try using all of the features available in the dataset. 
All of the pipeline creation processes are exactly the same, so we will directly jump into the process of 
how to define the hyperparameter space and the RandomizedSearchCV class. The following code 
shows you how to define the accompanying distribution for each of the hyperparameters in the space: 

from scipy.stats import randint, truncnorm

hyperparameter_space = { 

"model__n_estimators": randint(5, 200), 

"model__criterion": ["gini", "entropy"],

"model__class_weight": ["balanced","balanced_subsample"],

"model__min_samples_split": truncnorm(a=0,b=0.5,loc=0.005, 
scale=0.01),

}
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As you can see, the hyperparameter space is quite different from the one that we defined previously 
in the Implementing Grid Search section. Here, we are also specifying the distribution for each of the 
hyperparameters, where randint and truncnorm are utilized for the n_estimators and 
min_samples_split hyperparameters. As for criterion and class_weight, we are still 
using the same configuration as the previous search space. Note that by not specifying any distribution 
means we are applying uniform distribution to the hyperparameter, where all of the values will have 
the same probability to be tested. 

Essentially, the randint distribution is just a uniform distribution for discrete variables, while 
truncnorm stands for truncated normal distribution, which, as its name suggests, is a modified 
normal distribution bounded on a particular range. In this example, the range is bounded on a range 
from a=0 and b=0.5, with a mean of loc=0.005 and a standard deviation of scale=0.01. 

Distribution for Hyperparameters
There are many other available distributions that you can utilize. sklearn accepts all 
distributions that have the rvs method, as in the distribution implementation from Scipy. 
Essentially, this method is just a method to sample a value from the specified distribution. 
For more details, please refer to the official documentation page of Scipy (https://
docs.scipy.org/doc/scipy/reference/stats.html#probability-
distributions).

When initiating the RandomizedSearchCV class, we also have to define the n_iter and 
random_state parameters, which refer to the number of iterations and the random seed, respectively. 
The following code shows you how to perform Random Search over the same pipeline defined in the 
Implementing Grid Search section. In contrast with the example in the Implementing Grid Search section, 
which only performs 120 iterations of Grid Search, here, we perform 200 iterations of random search 
since we set n_iter=200. Additionally, we have a bigger hyperparameter space since we increase 
the granularity of the n_estimators and min_samples_split hyperparameter values:

from sklearn.model_selection import RandomizedSearchCV

Initiate the  RandomizedSearchCV class:

clf = RandomizedSearchCV(pipe, hyperparameter_space, 

                         n_iter = 200, random_state = 0,

                         scoring = 'f1', cv=5, 

                         n_jobs=-1, refit = True)

https://docs.scipy.org/doc/scipy/reference/stats.html#probability-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#probability-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#probability-distributions
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Run the RandomizedSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.563 for the F1-score when testing our final trained 
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is 
{‘model__class_weight’: ‘balanced_subsample’, ‘model__criterion’: 
‘entropy’, ‘model__min_samples_split’: 0.005155815445940717, 
‘model__n_estimators’: 187} with an objective function score of 0.562.

In this section, we have learned how to implement Random Search in sklearn through the 
RandomizedSearchCV class, starting from defining the hyperparameter space to setting each 
important parameter of the RandomizedSearchCV class. In the next section, we will learn how 
to perform CFS with sklearn.

Implementing Coarse-to-Fine Search
Coarse-to-Fine Search (CFS) is part of the Multi-Fidelity Optimization group that utilizes Grid 
Search and/or Random Search during the hyperparameter tuning process (see Chapter 6, Exploring 
Multi-Fidelity Optimization). Although CFS is not implemented directly in the sklearn package, 
you can find the implemented custom class, CoarseToFineSearchCV, in the repo mentioned 
in the Technical Requirements section. 

Let’s use the same example and hyperparameter space as in the Implementing Random Search section, 
to see how CoarseToFineSearchCV works in practice. Note that this implementation of CFS 
only utilizes Random Search and uses the top N percentiles scheme to define the promising subspace 
in each iteration, similar to the example shown in Chapter 6. However, you can edit the code based on 
your own preference since CFS is a very simple method with customizable modules.

The following code shows you how to perform CFS with the CoarseToFineSearchCV class. It is 
worth noting that this class has very similar parameters to the RandomizedSearchCV class, with 
several additional parameters. The random_iters parameter controls the number of iterations for 
each random search trial, top_n_percentile controls the N value within the top N percentiles 
promising subspace definition (see Chapter 6), n_iter defines the number of CFS iterations to be 
performed, and continuous_hyperparams stores the list of continuous hyperparameters in 
the predefined space.
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Initiate the CoarseToFineSearchCV class:

clf = CoarseToFineSearchCV(pipe, hyperparameter_space,

random_iters=25, top_n_percentile=50, n_iter=10, 

continuous_hyperparams=['model__min_samples_split'],

random_state=0, scoring='f1', cv=5, 

n_jobs=-1, refit=True)

Run the CoarseToFineSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

y_pred = clf.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.561 for the F1-score when testing our final trained 
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is 
{‘model__class_weight’: ‘balanced_subsample’, ‘model__criterion’: 
‘entropy’, ‘model__min_samples_split’: 0.005867409821769845, 
‘model__n_estimators’: 106} with an objective function score of 0.560.

In this section, we have learned how to implement CFS using a custom class on top of sklearn 
through the CoarseToFineSearchCV class. In the next section, we will learn how to perform 
SH with sklearn.

Implementing Successive Halving
Similar to CFS, Successive Halving (SH) is also part of the Multi-Fidelity Optimization group (see 
Chapter 6). There are two implementations of SH in sklearn, namely HalvingGridSearchCV 
and HalvingRandomSearchCV. As their names suggest, the former class is an implementation 
of SH that utilizes Grid Search in each of the SH iterations, while the latter utilizes Random Search. 

By default, SH implementations in sklearn use the number of samples, or n_samples, as the definition 
of the budget or resource in SH. However, it is also possible to define a budget with other definitions. 
For example, we can use n_estimators in RF as the budget, instead of using the number of 
samples. It is worth noting that we cannot use n_estimators, or any other hyperparameters, to 
define the budget if it is part of the hyperparameter space.
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Both HalvingGridSearchCV and HalvingRandomSearchCV have similar standard 
SH parameters to control how the SH iterations will work, such as the factor parameter, which 
refers to the multiplier factor for SH, resource, which refers to what definition of budget we want 
to use, max_resources refers to the maximum budget or resource, and min_resources, 
which refers to the minimum number of resources to be used at the first iteration. By default, the 
max_resources parameter is set to auto, meaning it will use the total number of samples that we 
have when resource=’n_samples’. On the other hand, sklearn implemented a heuristic to 
define the default value for the min_resources parameter, referred to as smallest. This heuristic 
will ensure that we have a small value of min_resources.

Specific for HalvingRandomSearchCV, there is also the n_candidates parameter that refers 
to the initial number of candidates to be evaluated at the first iteration. Note that this parameter is not 
available in HalvingGridSearchCV since it will automatically evaluate all of the hyperparameter 
candidates in the predefined space. It is worth noting that sklearn implemented a strategy, called 
exhaust, to define the default value of the n_candidates parameter. This strategy ensures that we 
evaluate enough candidates at the first iteration so that we can utilize as many resources as possible 
at the last SH iteration. 

Besides those standard SH parameters, both of the classes also have the aggressive_elimination 
parameter, which can be utilized when we have a low number of resources. If this Boolean parameter is 
set to True, sklearn will automatically rerun the first SH iteration several times until the number 
of candidates is small enough. The goal of this parameter is to ensure that we only evaluate a maximum 
of factor candidates in the last SH iteration. Note that this parameter is only implemented in 
sklearn, the original SH doesn’t introduce this strategy as part of the tuning method (see Chapter 6).

Similar to GridSearchCV and RandomizedSearchCV, HalvingGridSearchCV and 
HalvingRandomSearchCV also have the usual default sklearn parameters for hyperparameter 
tuning, such as cv, scoring, refit, random_state, and n_jobs. 

Experimental Features of SH in sklearn
It is worth noting that as per version 1.0.2 of sklearn, the SH implementations are 
still in the experimental phase. This means that there might be changes in the implementation 
or interface of the classes without any depreciation cycle.

The following code shows how HalvingRandomSearchCV works with its default SH parameters. 
Note that we still use the same example and hyperparameter space as in the Implementing Random 
Search section. It is also worth noting that we only use the HalvingRandomSearchCV class in 
this example since HalvingGridSearchCV has a very similar interface:  

from sklearn.experimental import enable_halving_search_cv

from sklearn.model_selection import HalvingRandomSearchCV



Hyperparameter Tuningvia Scikit126

Initiate the HalvingRandomSearchCV class:

clf = HalvingRandomSearchCV(pipe, hyperparameter_space, 

                            factor=3,

 aggressive_elimination=False,

                            random_state = 0,

                            scoring = 'f1', cv=5, 

                            n_jobs=-1, refit = True)

Run the HalvingRandomSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.556 for the F1-score when testing our final trained 
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is 
{‘model__class_weight’: ‘balanced_subsample’, ‘model__criterion’: 
‘entropy’, ‘model__min_samples_split’: 0.007286406330027324, 
‘model__n_estimators’: 42} with an objective function score of 0.565.

1.	 The following code shows you how to generate a figure that shows the tuning process in each 
SH iteration: 

import matplotlib.pyplot as plt

Get the fitting history of each trial:

results = pd.DataFrame(clf.cv_results_)

results["params_str"] = results.params.apply(str)

results.drop_duplicates(subset=("params_str", "iter"), 
inplace=True)

mean_scores = results.pivot(

index="iter", columns="params_str", values="mean_test_
score")
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Plot the fitting history for each trial:

fig, ax = plt.subplots(figsize=(16,16))

ax = mean_scores.plot(legend=False, alpha=0.6, ax=ax)

labels = [

    f"Iteration {i+1}\nn_samples={clf.n_resources_[i]}\
nn_candidates={clf.n_candidates_[i]}"

    for i in range(clf.n_iterations_)]

ax.set_xticks(range(clf.n_iterations_))

ax.set_xticklabels(labels, rotation=0, 
multialignment="left",size=16)

ax.set_title("F1-Score of Candidates over 
Iterations",size=20)

ax.set_ylabel("5-Folds Cross Validation F1-Score", 
fontsize=18)

ax.set_xlabel("")

plt.tight_layout()

plt.show()

2.	 Based on the preceding code, we get the following figure:

Figure 7.1 – The SH hyperparameter tuning process
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Based on Figure 7.1, we can see that we only utilized around 14,000 samples in the last iteration while 
we have around 40,000 samples in our training data. Indeed, this is not an ideal case since there are 
too many samples not being utilized in the last SH iteration. We can change the default value of the 
SH parameters set by sklearn to ensure that we utilize as many resources as possible at the last 
iteration, through the min_resources and n_candidates parameters. 

In this section, we have learned how to implement SH in sklearn through the 
HalvingRandomSearchCV and HalvingGridSearchCV classes. We have also learned 
all of the important parameters available for both classes. In the next section, we will learn how 
to perform HB with scikit-hyperband.

Implementing Hyper Band
The extension of Successive Halving, the Hyper Band (HB) method (see Chapter 6), is implemented 
in the scikit-hyperband package. This package is built on top of sklearn, which means 
it also provides a very similar interface for GridSearchCV, RandomizedSearchCV, 
HalvingGridSearchCV, and HalvingRandomSearchCV. 

In contrast with the default SH budget definition in the sklearn implementation, Scikit-Hyperband 
defines the budget as the number of estimators, n_estimators, in an ensemble of trees, or the number 
of iterations for estimators trained with stochastic gradient descent, such as the XGBoost algorithm. 
Additionally, we can use any other hyperparameters that exist in the estimator as the budget definition. 
However, scikit-hyperband doesn’t allow us to use the number of samples as the budget definition.

Let’s use the same example as in the Implementing Successive Halving section, but with a different 
hyperparameter space. Here, we use the number of estimators, n_estimators, as the resource, which 
means we have to take out this hyperparameter from our search space. Note that you also have to 
remove any other hyperparameters from the space when you use it as the resource definition, just 
like in the sklearn implementation of SH. 

The following code shows you how HyperbandSearchCV works. The resource_param 
parameter refers to the hyperparameter that you want to use as the budget definition. The eta 
parameter is actually the same as the factor parameter in the HalvingRandomSearchCV or 
HalvingGridSearchCV classes, which refers to the multiplier factor for each SH run. The 
min_iter and max_iter parameters refer to the minimum and maximum resources for all 
brackets. Note that there’s no automatic strategy like in the sklearn implementation of SH for 
setting the value of the min_iter and max_iter parameters. 
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The remaining HyperbandSearchCV parameters are similar to any other sklearn implementation 
of the hyperparameter tuning methods. It is worth noting that the HB implementation used in this book 
is the modified version of the scikit-hyperband package. Please check the following folder in 
the book’s GitHub repo (https://github.com/PacktPublishing/Hyperparameter-
Tuning-with-Python/tree/main/hyperband):

from hyperband import HyperbandSearchCV

Initiate the HyperbandSearchCV class:

clf = HyperbandSearchCV(pipe, hyperparameter_space,

                        resource_param='model__n_estimators',

                        eta=3, min_iter=1, max_iter=100,

                        random_state = 0,

                        scoring = 'f1', cv=5, 

                        n_jobs=-1, refit = True)

 

Run the HyperbandSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.569 in F1-score when testing our final trained 
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is 
{‘model__class_weight’: ‘balanced’, ‘model__criterion’: ‘entropy’, 
‘model__min_samples_split’: 0.0055643644642829684, ‘model__n_
estimators’: 33} with an objective function score of 0.560. Note that although we remove 
model__n_estimators from the search space, HyperbandSearchCV still outputs the best 
value for this hyperparameter by choosing from the best bracket.

In this section, we have learned how to implement HB using the help of the scikit-hyperband 
package along with all of the important parameters available for the HyperbandSearchCV class. 
In the next section, we will learn how to perform Bayesian Optimization with scikit-optimize.

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/tree/main/hyperband
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/tree/main/hyperband
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Implementing Bayesian Optimization Gaussian Process
Bayesian Optimization Gaussian Process (BOGP) is one of the variants of the Bayesian Optimization 
hyperparameter tuning group (see Chapter 4, Exploring Bayesian Optimization). To implement BOGP, 
we can utilize the skopt package. Similar to scikit-hyperband, this package is also built on 
top of the sklearn package, which means the interface for the implemented Bayesian Optimization 
tuning class, BayesSearchCV, is very similar to GridSearchCV, RandomizedSearchCV, 
HalvingGridSearchCV,  HalvingRandomSearchCV, and HyperbandSearchCV.

However, unlike sklearn or scikit-hyperband, which works well directly with the 
distribution implemented in scipy, in skopt, we can only use the wrapper provided by the package 
when defining the hyperparameter space. The wrappers are defined within the skopt.space.
Dimension instances and consist of three types of dimensions, such as Real, Integer, and 
Categorical. Within each of these dimension wrappers, skopt actually uses the same distribution 
from the scipy package. 

By default, the Real dimension only supports the uniform and log-uniform distributions and 
can take any real/numerical value as the input. As for the Categorical dimension, this wrapper can 
only take categorical values as the input, as implied by its name. It will automatically convert categorical 
values into integers or even real values, which means we can also utilize categorical hyperparameters 
for BOGP! Although we can do this, remember that BOGP only works best for the actual real variables 
(see Chapter 4, Exploring Bayesian Optimization). Finally, we have the Integer dimension wrapper. 
By default, this wrapper only supports uniform and log-uniform distributions for integer 
formatting. The uniform distribution will utilize the randint distribution from scipy, while 
the log-uniform distribution is exactly the same as the one that is used in the Real wrapper. 

It is worth noting that we can write our own wrapper for other distributions too; for example, the 
truncnorm distribution that we use in all of our earlier examples. In fact, you can find the custom 
Real wrapper that consists of the truncnorm, uniform, and log-uniform distributions 
in the repo mentioned in the Technical Requirements section. The following code shows you how we 
can define the hyperparameter space for BayesSearchCV. Note that we are still using the same 
example and hyperparameter space as the Implementing Random Search section. Here, Integer 
and Categorical are the original wrappers provided by skopt, while the Real wrapper is the 
custom wrapper that consists of the truncnorm distribution, too:

from skopt.space import *

hyperparameter_space = {

"model__n_estimators": Integer(low=5, high=200),

"model__criterion": Categorical(["gini", "entropy"]),

"model__class_weight": Categorical(["balanced","balanced_
subsample"]),

"model__min_samples_split": 
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Real(low=0,high=0.5,prior="truncnorm",

                                 **{"loc":0.005,"scale":0.01})

}

All of the parameters of the BayesSearchCV class are very similar to the GridSearchCV, 
RandomizedSearchCV, HalvingGridSearchCV, HalvingRandomSearchCV, or 
HyperbandSearchCV. The only specific parameters for BayesSearchCV are the n_iter and 
optimizer_kwargs which refer to the total number of trials to be performed and the parameter 
that consists of all related parameters for the Optimizer, respectively. Here, the Optimizer is 
a class that represents each of the Bayesian Optimization steps, starting from initializing the initial 
points, fitting the surrogate model, sampling the next set of hyperparameters using the help of the 
acquisition function, and optimizing the acquisition function (see Chapter 4). 

There are several parameters available that we can pass to the optimizer_kwargs dictionary. 
The base_estimator parameter refers to the type of surrogate model to be used. skopt has 
prepared several surrogate models with default setups, including the Gaussian Process or GP.  The 
n_initial_points parameter refers to the number of random initial points before the actual 
Bayesian Optimization steps begin. The initial_point_generator parameter refers to the 
initialization method to be used. By default, skopt will initialize them randomly. However, you can 
also change the initialization method to lhs, sobol, halton, hammersly, or grid. 

As for the type of acquisition function to be used, by default, skopt will use gp_hedge, which is 
an acquisition function that will automatically choose either one of the Lower Confidence Bound 
(LCB), Expected Improvement (EI), or Probability of Improvement (PI) based on the probability. 
However, we can also choose to use each of those acquisition functions independently, by setting the 
acq_func parameter to LCB, EI, and PI, respectively. As explained in Chapter 4, besides choosing 
what acquisition function needs to be used, we also have to define what kind of optimizer to be utilized 
for the acquisition function itself. There are two options for the acquisition function’s optimizer provided 
by skopt, namely random sampling (sampling) and lbfgs, or the type of second-order optimization 
strategy mentioned in Chapter 4. By default, skopt sets the acq_optimizer parameter to auto, 
which will choose automatically when to use the sampling or lbfgs optimization methods.

Finally, we can also pass the acq_func_kwargs parameter within the optimizer_kwargs 
parameter. We can pass all parameters related to the acquisition function to this acq_func_kwargs 
parameter; for example, the xi parameter that controls the exploration and exploitation behavior 
of the BOGP, as explained in Chapter 4. While the xi parameter is responsible for controlling the 
exploration versus exploitation trade-off for EI and PI acquisition functions, there is also another 
parameter called kappa, which is responsible for the same task as the LCB acquisition function. The 
higher the value of xi or kappa means that we are favoring exploration over exploitation, and vice 
versa. For more information about all of the parameters that are available in the BayesSearchCV 
class, you can refer to the official API reference of the skopt package (https://scikit-
optimize.github.io/stable/modules/classes.html).

https://scikit-optimize.github.io/stable/modules/classes.html
https://scikit-optimize.github.io/stable/modules/classes.html
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The following code shows how we can utilize BayesSearchCV to perform BOGP on the same 
example as the Implementing Random Search section:

from skopt import BayesSearchCV

Initiate the BayesSearchCV class:

clf = BayesSearchCV(pipe, hyperparameter_space, n_iter=50,

optimizer_kwargs={"base_estimator":"GP",

                  "n_initial_points":10,

                  "initial_point_generator":"random",

                  "acq_func":"EI",

                  "acq_optimizer":"auto",

                  "n_jobs":-1,

                  "random_state":0,

                  "acq_func_kwargs": {"xi":0.01}

                  },

random_state = 0,

scoring = 'f1', cv=5, 

n_jobs=-1, refit = True)

Run the BayesSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.539 for the F1-Score when testing our final trained 
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is 
{‘model__class_weight’: ‘balanced’, ‘model__criterion’: ‘entropy’, 
‘model__min_samples_split’: 0.02363008892366518, ‘model__n_
estimators’: 94} with an objective function score of 0.530.



Implementing Bayesian Optimization Random Forest 133

In this section, we have learned how to implement BOGP in skopt along with all of the important 
parameters available for the BayesSearchCV class. It is worth noting that skopt also has 
experiment tracking modules that include several native supports for plotting the result. We will learn 
more about those modules in Chapter 13, Tracking Hyperparameter Tuning Experiments. In the next 
section, we will learn how to perform another variant of Bayesian Optimization that utilizes RF as its 
surrogate model with skopt.

Implementing Bayesian Optimization Random Forest
Bayesian Optimization Random Forest (BORF) is another variant of Bayesian Optimization 
hyperparameter tuning methods that utilize RF as the surrogate model. Note that this variant is 
different from Sequential Model Algorithm Configuration (SMAC) although both of them utilize 
RF as the surrogate model (see Chapter 4, Exploring Bayesian Optimization).

Implementing BORF with skopt is actually very similar to implementing BOGP as discussed in the 
previous section. We just need to change the base_estimator parameter within optimizer_
kwargs to RF. Let’s use the same example as in the Implementing Bayesian Optimization Gaussian 
Process section, but change the acquisition function from EI to LCB.  Additionally, let’s change the xi 
parameter in the acq_func_kwargs to kappa since we are using LCB as our acquisition function. 
Note that we can also still use the same acquisition function. The changes made here just to show how 
you can interact with the interface of the BayesSearchCV class:

from skopt import BayesSearchCV

Initiate the BayesSearchCV class:

clf = BayesSearchCV(pipe, hyperparameter_space, n_iter=50,

optimizer_kwargs={"base_estimator":"RF",

                  "n_initial_points":10,

                  "initial_point_generator":"random",

                  "acq_func":"LCB",

                  "acq_optimizer":"auto",

                  "n_jobs":-1,

                  "random_state":0,

                  "acq_func_kwargs": {"kappa":1.96}

                  },

random_state = 0,

scoring = 'f1', cv=5, 

n_jobs=-1, refit = True)
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Run the BayesSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data.

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.617 for the F1-score when testing our final trained 
RF model with the best set of hyperparameters on the test set. The best set of hyperparameters is 
{‘model__class_weight’: ‘balanced_subsample’, ‘model__criterion’: 
‘gini’, ‘model__min_samples_split’: 0.00043534042560206855, 
‘model__n_estimators’: 85} with an objective function score of 0.616.

In this section, we have learned how to implement BORF in skopt through the BayesSearchCV 
class. In the next section, we will learn how to perform another variant of Bayesian Optimization, 
which utilizes Gradient Boosted Trees as its surrogate model with skopt.

Implementing Bayesian Optimization Gradient Boosted 
Trees
Bayesian Optimization Gradient Boosted Trees (BOGBRT) is another variant of Bayesian Optimization 
that utilizes Gradient Boosted Trees as a surrogate model. Note that there will be endless variants of 
Bayesian Optimization that we can implement in skopt since we can just pass any other regressors 
from sklearn to be utilized as the base_estimator parameter. However, GBRT is part of the 
default surrogate model with predefined default hyperparameter values from the skopt package.

Similar to the Implementing Bayesian Optimization Random Forest section, we can just change the 
base_estimator parameter within optimizer_kwargs to GBRT. The following code shows 
you how to implement BOGBRT in skopt:

from skopt import BayesSearchCV
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Initiate the BayesSearchCV class:

clf = BayesSearchCV(pipe, hyperparameter_space, n_iter=50,

optimizer_kwargs={"base_estimator":"GBRT",

                  "n_initial_points":10,

                  "initial_point_generator":"random",

                  "acq_func":"LCB",

                  "acq_optimizer":"auto",

                  "n_jobs":-1,

                  "random_state":0,

                  "acq_func_kwargs": {"kappa":1.96}

                  },

random_state = 0,

scoring = 'f1', cv=5, 

n_jobs=-1, refit = True)

Run the BayesSearchCV class:

clf.fit(X_train_full, y_train)

Print the best set of hyperparameters:

print(clf.best_params_, clf.best_score_)

Evaluate the final trained model on the test data:

print(clf.score(X_test_full, y_test))

Based on the preceding code, we get around 0.611 for the F1-Score when testing our final trained RF 
model with the best set of hyperparameters on the test set. The best set of hyperparameters is {‘model__
class_weight’: ‘balanced_subsample’, ‘model__criterion’: ‘gini’, 
‘model__min_samples_split’: 0.0005745541104096049, ‘model__n_
estimators’: 143} with an objective function score of 0.618.

In this section, we have learned how to implement BOGBRT in skopt through the BayesSearchCV 
class by using the same example as in the Implementing Bayesian Optimization Random Forest section.
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Summary
In this chapter, we have learned all the important things about the scikit-learn, scikit-
optimize, and scikit-hyperband packages for hyperparameter tuning purposes. Additionally, 
we have learned how to implement various hyperparameter tuning methods using the help of those 
packages, along with understanding each of the important parameters of the classes and how are they 
related to the theory that we have learned in the previous chapters. From now on, you should be able 
to utilize these packages to implement your chosen hyperparameter tuning method and, ultimately, 
boost the performance of your ML model. Equipped with the knowledge from Chapters 3–6, you will 
also be able to understand what’s happening if there are errors or unexpected results and how to set 
up the method configuration to match your specific problem.

In the next chapter, we will learn about the Hyperopt package and how to utilize it to perform various 
hyperparameter tuning methods. The goal of the next chapter is similar to this chapter, that is, to be 
able to utilize the package for hyperparameter tuning purposes and understand each of the parameters 
of the implemented classes.



8
H y p e r p a r a m e t e r  Tu n i n g  

v i a  H y p e r o p t

Hyperopt is an optimization package in Python that provides several implementations of hyperparameter 
tuning methods, including Random Search, Simulated Annealing (SA), Tree-Structured Parzen 
Estimators (TPE), and Adaptive TPE (ATPE). It also supports various types of hyperparameters 
with ranging types of sampling distributions. 

In this chapter, we’ll introduce the Hyperopt package, starting with its capabilities and limitations, 
how to utilize it to perform hyperparameter tuning, and all the other important things you need to 
know about Hyperopt. We’ll learn not only how to utilize Hyperopt to perform hyperparameter 
tuning with its default configurations but also discuss the available configurations, along with their 
usage. Moreover, we’ll discuss how the implementation of the hyperparameter tuning methods is related 
to the theory that we learned about in the previous chapters, since there some minor differences or 
adjustments may have been made in the implementation.

By the end of this chapter, you will be able to understand all the important things you need to know 
about Hyperopt and be able to implement various hyperparameter tuning methods available in 
this package. You’ll also be able to understand each of the important parameters of their classes and 
how they are related to the theory that we learned about in the previous chapters. Finally, equipped 
with the knowledge from previous chapters, you will be able to understand what’s happening if there 
are errors or unexpected results, as well as how to set up the method configuration so that it matches 
your specific problem.
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The following topics will be covered in this chapter:

•	 Introducing Hyperopt

•	 Implementing Random Search

•	 Implementing Tree-Structured Parzen Estimators

•	 Implementing Adaptive Tree-Structured Parzen Estimators

•	 Implementing simulated annealing

Technical requirements
In this chapter, we will learn how to implement various hyperparameter tuning methods with Hyperopt. 
To ensure that you can reproduce the code examples in this chapter, you will require the following:

•	 Python 3 (version 3.7 or above)

•	 The pandas package (version 1.3.4 or above)

•	 The NumPy package (version 1.21.2 or above)

•	 The Matplotlib package (version 3.5.0 or above)

•	 The scikit-learn package (version 1.0.1 or above)

•	 The Hyperopt package (version 0.2.7 or above)

•	 The LightGBM package (version 3.3.2 or above)

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python.

Introducing Hyperopt
All of the implemented optimization methods in the Hyperopt package assume we are working 
with a minimization problem. If your objective function is categorized as a maximization problem, 
for example, when you are using accuracy as the objective function score, you must add a negative 
sign to your objective function.

Utilizing the Hyperopt package to perform hyperparameter tuning is very simple. The following 
steps show how to perform any hyperparameter tuning methods provided in the Hyperopt package. 
More detailed steps, including the code implementation, will be given through various examples in 
the upcoming sections:

1.	 Define the objective function to be minimized. 

2.	 Define the hyperparameter space.

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
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3.	 (Optional) Initiate the Trials() object and pass it to the fmin() function.

4.	 Perform hyperparameter tuning by calling the fmin() function.

5.	 Train the model on full training data using the best set of hyperparameters that have been 
found from the output of the fmin() function.

6.	 Test the final trained model on the test data.

The simplest case of the objective function is when we only return the floating type of objective 
function score. However, we can also add other additional information to the output of the objective 
function, for example, the evaluation time or any other statistics we want to get for further analysis. 
When we add additional information to the output of the objective function score, Hyperopt 
expects the output of the objective function to be in the form of a Python dictionary that has at least 
two mandatory key-value pairs – that is, status and loss. The former key stores the status value 
of the run, while the latter key stores the objective function that we want to minimize. 

The simplest type of hyperparameter space in Hyperopt is in the form of a Python dictionary, where 
the keys refer to the name of the hyperparameters and the values contain the distribution of the 
hyperparameters to be sampled from. The following example shows how we can define a very simple 
hyperparameter space in Hyperopt:

import numpy as np

from hyperopt import hp

hyperparameter_space = {

“criterion”: hp.choice(“criterion”, [“gini”, “entropy”]),

“n_estimators”: 5 + hp.randint(“n_estimators”, 195),

“min_samples_split” : hp.loguniform(“min_samples_split”, 
np.log(0.0001), np.log(0.5))

}

As you can see, the values of the hyperparameter_space dictionary are the distributions 
that accompany each of the hyperparameters we have in the space. Hyperopt provides a lot of 
sampling distributions that we can utilize, such as hp.choice, hp.randint, hp.uniform, 
hp.loguniform, hp.normal, and hp.lognormal. The hp.choice distribution will 
randomly choose one option from the several given options. The hp.randint distribution will 
randomly choose an integer within the range of [0, high), where high is the input given by 
us. In the previous example, we passed 195 as the high value and added a value of 5. This means 
Hyperopt will randomly choose an integer within the range of [5,200). 
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The rest of the distributions are dedicated to real/floating hyperparameter values. Note that Hyperopt 
also provides distributions dedicated to integer hyperparameter values that mimic the distribution 
of those four distributions – that is, hp.quniform, hp.qloguniform, hp.qnormal, and 
hp.qlognormal. For more information regarding the sampling distributions provided by Hyperopt, 
please refer to its official wiki page (https://github.com/hyperopt/hyperopt/wiki/
FMin#21-parameter-expressions).

It is worth noting that Hyperopt enables us to define a conditional hyperparameter space (see 
Chapter 4, Bayesian Optimization) that suits our needs. The following code example shows how we 
can define such a search space:

hyperparameter_space =

hp.choice(“class_weight_type”, [

{“class_weight”: None,

“n_estimators”: 5 + hp.randint(“none_n_estimators”, 45),

},

{“class_weight”: “balanced”,

“n_estimators”: 5 + hp.randint(“balanced_n_estimators”, 195),

}

])

As you can see, the only difference between a conditional hyperparameter space and a non-conditional 
one is that we add hp.choice before defining the hyperparameters for each condition. In this example, 
when class_weight is None, we will only search for the best n_estimators hyperparameters 
within the range [5,50). On the other hand, when class_weight is “balanced”, the range 
becomes [5,200).  

Once the hyperparameter space is defined, we can start the hyperparameter tuning process via the 
fmin() function. The output of this function is the best set of hyperparameters that has been found 
from the tuning process. There are several important parameters available in this function that you 
need to know about. The fn parameter refers to the objective function we are trying to minimize, 
the space parameter refers to the hyperparameter space that will be used in our experiment, the 
algo parameter refers to the hyperparameter tuning algorithm that we want to utilize, the rstate 
parameter refers to the random seed for the tuning process, the max_evals parameter refers to the 
stopping criterion of the tuning process based on the number of trials, and the timeout parameter 
refers to the stopping criterion based on the time limit in seconds. Another important parameter is 
the trials parameter, which expects to receive the Hyperopt Trials() object.

The Trials() object in Hyperopt logs all the relevant information during the tuning process. 
This object is also responsible for storing all of the additional information we put in the dictionary 
output of the objective function. We can utilize this object for debugging purposes or to pass it directly 
to the built-in plotting module in Hyperopt. 

https://github.com/hyperopt/hyperopt/wiki/FMin#21-parameter-expressions
https://github.com/hyperopt/hyperopt/wiki/FMin#21-parameter-expressions
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Several built-in plotting modules are implemented in the Hyperopt package, such as main_
plot_history, main_plot_histogram, and main_plot_vars modules. The first 
plotting module can help us understand the relationship between the loss values and the execution 
time. The second plotting module shows the histogram of all of the losses in all trials. The third 
plotting module is useful for understanding more about the heatmap of each hyperparameter in the 
space relative to the loss values.

Last but not least, it is worth noting that Hyperopt also supports parallel search processes by utilizing 
MongoDB or Spark. To utilize the parallel resources via MongoDB, we can simply change the trial database 
from Trials() to MongoTrials(). We can change from Trials() to SparkTrials() 
if we want to utilize Spark instead of MongoDB. Please refer to the official documentation of Hyperopt 
for more information about parallel computations (https://github.com/hyperopt/
hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB 
and http://hyperopt.github.io/hyperopt/scaleout/spark/).

In this section, you were introduced to the overall capability of the Hyperopt package, along with 
the general steps to perform hyperparameter tuning with this package. In the next few sections, we 
will learn how to implement each of the hyperparameter tuning methods available in Hyperopt 
through examples. 

Implementing Random Search
To implement Random Search (see Chapter 3) in Hyperopt, we can simply follow the steps explained 
in the previous section and pass the rand.suggest object to the algo parameter in the fmin() 
function. Let’s learn how we can utilize the Hyperopt package to perform Random Search. We will 
use the same data and sklearn pipeline definition as in Chapter 7, Hyperparameter Tuning via Scikit, 
but with a slightly different definition of the hyperparameter space. Let’s follow the steps that were 
introduced in the previous section:

1.	 Define the objective function to be minimized. Here, we are utilizing the defined pipeline, 
pipe, to calculate the 5-fold cross-validation score by utilizing the cross_val_score 
function from sklearn. We will use the F1 score as the evaluation metric:

import numpy as np

from sklearn.base import clone

from sklearn.model_selection import cross_val_score

from hyperopt import STATUS_OK

def objective(space):

    estimator_clone = clone(pipe).set_params(**space)

    return {‘loss’: -1 * np.mean(cross_val_
score(estimator_clone, X_train_full, y_train, cv=5, 
scoring=’f1’, n_jobs=-1)), 

            ‘status’: STATUS_OK}

https://github.com/hyperopt/hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB and http://hyperopt.github.io/hyperopt/scaleout/spark/
https://github.com/hyperopt/hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB and http://hyperopt.github.io/hyperopt/scaleout/spark/
https://github.com/hyperopt/hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB and http://hyperopt.github.io/hyperopt/scaleout/spark/
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Note that the defined objective function only receives one input, which is the predefined 
hyperparameter space, space, and outputs a dictionary that contains two mandatory 
key-value pairs – that is, status and loss.  It is also worth noting that the reason why 
we multiply the average cross-validation score output with –1 is that Hyperopt always 
assumes that we are working with a minimization problem, while we are not in this example.

2.	 Define the hyperparameter space. Since we are using the sklearn pipeline as our estimator, 
we still need to follow the naming convention of the hyperparameters within the defined 
space (see Chapter 7). Note that the naming convention just needs to be applied to the 
hyperparameter names in the keys of the search space dictionary, not to the names within the 
sampling distribution objects:

from hyperopt import hp

hyperparameter_space = { 

“model__n_estimators”: 5 + hp.randint(“n_estimators”, 
195), 

“model__criterion”: hp.choice(“criterion”, [“gini”, 
“entropy”]),

“model__class_weight”: hp.choice(“class_weight”, 
[“balanced”,”balanced_subsample”]),

“model__min_samples_split”: hp.loguniform(“min_samples_
split”, np.log(0.0001), np.log(0.5))

}

3.	 Initiate the Trials() object. In this example, we will utilize this object for plotting purposes 
after the tuning process has been done:

from hyperopt import Trials

trials = Trials()

4.	 Perform hyperparameter tuning by calling the fmin() function. Here, we are performing a 
Random Search by passing the defined objective function and hyperparameter space. We have 
set the algo parameter with the rand.suggest object and set the number of trials to 100 
as the stopping criterion. We also set the random state to ensure reproducibility. Last but not 
least, we passed the defined Trials() object to the trials parameter:

from hyperopt import fmin, rand

best = fmin(objective,

            space=hyperparameter_space,

            algo=rand.suggest,

            max_evals=100,

            rstate=np.random.default_rng(0),
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            trials=trials

           )

print(best)

Based on the preceding code, we get around -0.621 of the objective function score, which 
refers to 0.621 of the average 5-fold cross-validation F--score. We also get a dictionary 
consisting of the best set of hyperparameters, as follows:

{‘class_weight’: 0, ‘criterion’: 1, ‘min_samples_split’: 
0.00047017001935242104, ‘n_estimators’: 186}

As can be seen, Hyperopt will only return the index of the hyperparameter values 
when we use hp.choice as the sampling distribution (see the class_weight and 
criterion hyperparameters). Here, by referring to the predefined hyperparameter space, 
0 for class_weight refers to balanced and 1 for criterion refers to entropy. Thus, 
the best set of hyperparameters is {‘model__class_weight’: ‘balanced’, 
‘model__criterion’: ‘entropy’, ‘model__min_samples_split’: 
0.0004701700193524210, ‘model__n_estimators’: 186}.

5.	 Train the model on the full training data using the best set of hyperparameters that have been 
found in the output of the fmin() function:

pipe = pipe.set_params(**{‘model__class_weight’: 
“balanced”,

‘model__criterion’: “entropy”,

‘model__min_samples_split’: 0.00047017001935242104,

‘model__n_estimators’: 186})

pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

from sklearn.metrics import f1_score

y_pred = pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.624 for the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

7.	 Last but not least, we can also utilize the built-in plotting modules implemented in Hyperopt. 
The following code shows how to do this. Note that we need to pass the trials object from 
the tuning process to the plotting modules since all of the tuning process logs are in there:

from hyperopt import plotting
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Now, we must plot the relationship between the loss values and the execution time:

plotting.main_plot_history(trials)

We will get the following output:

Figure 8.1 – Relationship between the loss values and the execution time

Now, we must plot the histogram of all of the objective function scores from all the trials:

plotting.main_plot_histogram(trials)

We will get the following output.

Figure 8.2 – Histogram of all of the objective function scores from all trials
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Now, we must plot the heatmap of each hyperparameter in the space relative to the loss values:

Plotting.main_plot_vars(trials)

We will get the following output.

Figure 8.3 – Heatmap of each hyperparameter in the space 

relative to the loss values (the darker, the better)

In this section, we learned how to perform Random Search in Hyperopt by looking at an example 
similar example to the one shown in Chapter 7, Hyperparameter Tuning via Scikit. We also saw what 
kind of figures we can get from utilizing the built-in plotting modules in Hyperopt. 

It is worth noting that we are not bounded to using only the sklearn implementation of models 
to perform hyperparameter tuning with Hyperopt. We can also use implementations from other 
packages, such as PyTorch, Tensorflow, and so on. One thing that needs to be kept in mind is 
to be careful with the data leakage issue (see Chapter 1, Evaluating Machine Learning Models) when 
performing cross-validation. We must fit all of the data preprocessing methods on the training data 
and apply the fitted preprocessors to the validation data. 

In the next section, we will learn how to utilize Hyperopt to perform hyperparameter tuning with 
one of the available Bayesian Optimization methods.
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Implementing Tree-structured Parzen Estimators
Tree-Structured Parzen Estimators (TPE) is one of the variants of the Bayesian Optimization 
hyperparameter tuning group (see Chapter 4, Exploring Bayesian Optimization) that is also implemented 
in the Hyperopt package. To perform hyperparameter tuning with this method, we can follow a 
similar procedure as in the previous section by only changing the algo parameter to tpe.suggest 
in Step 4. The following code shows how to perform hyperparameter tuning with TPE in Hyperopt:

from hyperopt import fmin, tpe

best = fmin(objective, 

            space=hyperparameter_space, 

            algo=tpe.suggest, 

            max_evals=100, 

            rstate=np.random.default_rng(0), 

            trials=trials 

           )

print(best)

Using the same data, hyperparameter space, and parameters for the fmin() function, we get around 
-0.620 for the objective function score, which refers to 0.620 of the average 5-fold cross-validation 
F1-score. We also get a dictionary consisting of the best set of hyperparameters, as follows:

{‘class_weight’: 1, ‘criterion’: 1, ‘min_samples_split’: 
0.0005245304932726025, ‘n_estimators’: 138}

Once the model has been trained on the full data using the best set of hyperparameters, we get around 
0.621 in terms of the F1-score when we test the final Random Forest model that’s been trained on 
the test data.

In this section, we learned how to perform hyperparameter tuning using the TPE method with 
Hyperopt. In the next section, we will learn how to implement a variant of TPE called Adaptive 
TPE with the Hyperopt package.

Implementing Adaptive TPE
Adaptive TPE (ATPE) is a variant of the TPE hyperparameter tuning method that is developed based 
on several improvements compared to TPE, such as automatically tuning several hyperparameters of 
the TPE method based on the data that we have. For more information about this method, please refer 
to the original white papers. These can be found in the GitHub repository of the author (https://
github.com/electricbrainio/hypermax). 

https://github.com/electricbrainio/hypermax
https://github.com/electricbrainio/hypermax
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While you can experiment with this method directly using the original GitHub repository of ATPE, 
Hyperopt has also included this method as part of the package. You can simply follow a similar 
procedure as in the Implementing Random Search section by only changing the algo parameter to 
atpe.suggest in Step 4. The following code shows how to perform hyperparameter tuning with 
ATPE in Hyperopt. Please note that ATPE utilizes the LightGBM model to predict each of the 
ATPE parameters. That’s why we need to have the LightGBM package installed before we can start 
to perform hyperparameter tuning with ATPE in Hyperopt:

from hyperopt import fmin, atpe

best = fmin(objective, 

            space=hyperparameter_space, 

            algo=atpe.suggest, 

            max_evals=100, 

            rstate=np.random.default_rng(0), 

            trials=trials 

           )

print(best)

Using the same data, hyperparameter space, and parameters for the fmin() function, we get around 
-0.621 for the objective function score, which refers to 0.621 of the average 5-fold cross-validation 
F1-score. We also get a dictionary consisting of the best set of hyperparameters, as follows:

{‘class_weight’: 1, ‘criterion’: 1, ‘min_samples_split’: 
0.0005096354197481012, ‘n_estimators’: 157}

Once the model has been trained on the full data using the best set of hyperparameters, we get around 
0.622 in terms of the F1 score when we test the final Random Forest model that was trained on 
the test data.

In this section, we learned how to perform hyperparameter tuning using the ATPE method with 
Hyperopt. In the next section, we will learn how to implement a hyperparameter tuning method 
that is part of the Heuristic Search group with the Hyperopt package.
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Implementing simulated annealing
Simulated annealing (SA) is part of the Heuristic Search hyperparameter tuning group (see 
Chapter 5, Exploring Heuristic Search), which is also implemented in the Hyperopt package. 
Similar to TPE and ATPE, to perform hyperparameter tuning with this method, we can simply 
follow the procedure shown in the Implementing Random Search section; we only need to change 
the algo parameter to anneal.suggest in Step 4. The following code shows how to perform 
hyperparameter tuning with SA in Hyperopt:

from hyperopt import fmin, anneal

best = fmin(objective, 

            space=hyperparameter_space, 

            algo=anneal.suggest, 

            max_evals=100, 

            rstate=np.random.default_rng(0), 

            trials=trials 

           )

print(best)

Using the same data, hyperparameter space, and parameters for the fmin() function, we get around 
-0.620 for the objective function score, which refers to 0.620 of the average 5-fold cross-validation 
F1-score. We also get a dictionary consisting of the best set of hyperparameters, as follows:

{‘class_weight’: 1, ‘criterion’: 1, ‘min_samples_split’: 
0.00046660708302994583, ‘n_estimators’: 189}

Once the model has been trained on the full data using the best set of hyperparameters, we get around 
0.625 in terms of the F1-score when we test the final Random Forest model that was trained on 
the test data.

While Hyperopt has built-in plotting modules, we can also create a customized plotting function 
by utilizing the Trials() object. The following code shows how to visualize the distribution of 
each hyperparameter over the number of trials:

1.	 Get the value of each hyperparameter in each of the trials:

plotting_data = np.array([[x[‘result’][‘loss’],

x[‘misc’][‘vals’][‘class_weight’][0],

x[‘misc’][‘vals’][‘criterion’][0],

x[‘misc’][‘vals’][‘min_samples_split’][0],

x[‘misc’][‘vals’][‘n_estimators’][0],

] for x in trials.trials])
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2.	 Convert the values into a pandas DataFrame:

import pandas as pd

plotting_data = pd.DataFrame(plotting_data,

columns=[‘score’, ‘class_weight’, ‘criterion’, ‘min_
samples_split’,’n_estimators’])

3.	 Plot the relationship between each hyperparameter’s distribution and the number of trials:

import matplotlib.pyplot as plt

plotting_data.plot(subplots=True,figsize=(12, 12))

plt.xlabel(“Iterations”)

plt.show()

Based on the preceding code, we will get the following output:

Figure 8.4 – Relationship between each hyperparameter’s distribution and the number of trials 
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In this section, we learned how to implement SA in Hyperopt by using the same example as in 
the Implementing Random Search section. We also learned how to create a custom plotting function 
to visualize the relationship between each hyperparameter’s distribution and the number of trials.

Summary
In this chapter, we learned all the important things about the Hyperopt package, including its 
capabilities and limitations, and how to utilize it to perform hyperparameter tuning. We saw that 
Hyperopt supports various types of sampling distribution methods but can only work with a 
minimization problem. We also learned how to implement various hyperparameter tuning methods 
with the help of this package, which has helped us understand each of the important parameters of the 
classes and how are they related to the theory that we learned about in the previous chapters. At this 
point, you should be able to utilize Hyperopt to implement your chosen hyperparameter tuning 
method and, ultimately, boost the performance of your ML model. Equipped with the knowledge 
from Chapter 3, to Chapter 6, you should be able to understand what’s happening if there are errors or 
unexpected results, as well as understand how to set up the method configuration so that it matches 
your specific problem.

In the next chapter, we will learn about the Optuna package and how to utilize it to perform various 
hyperparameter tuning methods. The goal of the next chapter is similar to this chapter – that is, 
being able to utilize the package for hyperparameter tuning purposes and understanding each of the 
parameters of the implemented classes.
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Optuna

Optuna is a Python package that provides various implementations of hyperparameter tuning methods, 
including but not limited to Grid Search, Random Search, and Tree-Structured Parzen Estimators 
(TPE). This package also enables us to create our own hyperparameter tuning method class and 
integrate it with other popular hyperparameter tuning packages, such as scikit-optimize.

In this chapter, you’ll be introduced to the Optuna package, starting with its numerous features, 
how to utilize it to perform hyperparameter tuning, and all of the other important things you need 
to know about Optuna. We’ll not only learn how to utilize Optuna to perform hyperparameter 
tuning with their default configurations but also discuss the available configurations along with their 
usage. Moreover, we’ll also discuss how the implementation of the hyperparameter tuning methods 
is related to the theory that we have learned in previous chapters, since there may be some minor 
differences or adjustments made in the implementation.

By the end of this chapter, you will be able to understand all of the important things you need to 
know about Optuna and implement various hyperparameter tuning methods available in this 
package. You’ll also be able to understand each of the important parameters of the classes and how 
they are related to the theory that we have learned in previous chapters. Finally, equipped with the 
knowledge from previous chapters, you will also be able to understand what’s happening if there 
are errors or unexpected results and understand how to set up the method configuration to match 
your specific problem.
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The following are the main topics that will be discussed in this chapter:

•	 Introducing Optuna

•	 Implementing TPE

•	 Implementing Random Search

•	 Implementing Grid Search

•	 Implementing Simulated Annealing

•	 Implementing Successive Halving

•	 Implementing Hyperband

Technical requirements
We will learn how to implement various hyperparameter tuning methods with Optuna. To ensure 
that you are able to reproduce the code examples in this chapter, you will require the following:

•	 Python 3 (version 3.7 or above)

•	 Installed pandas package (version 1.3.4 or above)

•	 Installed NumPy package (version 1.21.2 or above)

•	 Installed Matplotlib package (version 3.5.0 or above)

•	 Installed scikit-learn package (version 1.0.1 or above)

•	 Installed Tensorflow package (version 2.4.1 or above)

•	 Installed Optuna package (version 2.10.0 or above)

All of the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python.

Introducing Optuna
Optuna is a hyperparameter tuning package in Python that provides several hyperparameter tuning 
methods implementation, such as Grid Search, Random Search, Tree-structured Parzen Estimators 
(TPE), and many more. Unlike Hyperopt, which assumes we are always working with a minimization 
problem (see Chapter 8, Hyperparameter Tuning via Hyperopt), we can tell Optuna the type of 
optimization problem we are working on: minimization or maximization. 

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
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Optuna has two main classes, namely samplers and pruners. Samplers are responsible for performing 
the hyperparameter tuning optimization, whereas pruners are responsible for judging whether we 
should prune the trials based on the reported values. In other words, pruners act like early stopping 
methods where we will stop a hyperparameter tuning iteration whenever it seems that there’s no 
additional benefit to continuing the process.

The built-in implementation for samplers includes several hyperparameter tuning methods that we 
have learned in Chapters 3 - 4, namely Grid Search, Random Search, and TPE, and also other methods 
that are outside of the scope of this book, such as CMA-ES, NSGA-II, and many more. We can also 
define our own custom samplers, such as the Simulated Annealing (SA), which will be discussed 
in the upcoming section. Furthermore, Optuna also allows us to integrate samplers from another 
package, such as from the scikit-optimize (skopt) package where we can utilize many 
Bayesian optimization-based methods from there. 

Integrations in Optuna
Besides skopt, there are also many other integrations provided by Optuna, including but 
not limited, to scikit-learn, Keras, PyTorch, XGBoost, LightGBM, FastAI, 
MLflow, and many more. For more information about the available integrations, please see 
the official documentation (https://optuna.readthedocs.io/en/v2.10.0/
reference/integration.html).

As for pruners, Optuna provides both statistics-based and multi-fidelity optimization (MFO)-based 
methods. There are MedianPruner, PercentilePruner, and ThresholdPruner for the 
statistics-based group. MedianPruner will prune the trials whenever the current trial’s best intermediate 
result is worse compared to the median of the result of the previous trial. PercentilePruner 
will perform pruning when the current best intermediate value is part of the bottom percentile from 
previous trials. ThresholdPruner will simply perform pruning whenever the predefined threshold 
is met. The MFO-based pruners implemented in Optuna are SuccessiveHalvingPruner 
and HyperbandPruner. Both of them define the resource as the number of training steps or epochs, 
not as the number of samples such as in the implementations of scikit-learn. We will learn 
how to utilize these MFO-based pruners in the upcoming sections.

To perform hyperparameter tuning with Optuna, we can simply perform the following simple steps 
(more detailed steps, including the code implementation, will be given through various examples in 
the upcoming sections):

1.	 Define the objective function along with the hyperparameter space.

2.	 Initiate a study object via the create_study() function.

3.	 Perform hyperparameter tuning by calling the optimize() method on the study object.

4.	 Train the model on full training data using the best set of hyperparameters found.

5.	 Test the final trained model on the test data.

https://optuna.readthedocs.io/en/v2.10.0/reference/integration.html
https://optuna.readthedocs.io/en/v2.10.0/reference/integration.html


Hyperparameter Tuning via Optuna154

In Optuna, we can directly define the hyperparameter space within the objective function 
itself. There’s no need to define another dedicated separate object just to store the hyperparameter 
space. This means that implementing conditional hyperparameters in Optuna becomes very easy 
since we just need to put them within the corresponding if-else blocks in the objective 
function. Optuna also provides very handy hyperparameter sampling distribution methods 
including suggest_categorical, suggest_discrete_uniform, suggest_int, 
and suggest_float. 

The suggest_categorical method will suggest value from a categorical type of hyperparameters, 
which works similarly with the random.choice() method. The suggest_discrete_
uniform can be utilized for a discrete type of hyperparameters, which works very similar to the 
hp.quniform in Hyperopt (see Chapter 8, Hyperparameter Tuning via Hyperopt) by sampling 
uniformly from the range of [low, high] with a q step of discretization. The suggest_int 
method works similarly to the random.randint() method. Finally, the suggest_float 
method. This method works for a floating type of hyperparameters and is actually a wrapper of two other 
sampling distribution methods, namely the suggest_uniform and suggest_loguniform. 
To utilize suggest_loguniform, simply set the log parameter in suggest_float as True.

To have a better understanding of how we can define the hyperparameter space within the objective 
function, the following code shows an example of how to define an objective function using 
TFKeras. Note that in this example, we write several functions to be called in the objective function, 
to ensure readability and to enable us to write the code in a modular fashion. However, you can also 
put all of the code within one single objective function directly. The data and preprocessing steps 
used in this example are the same as in Chapter 7, Hyperparameter Tuning via Scikit. However, in this 
example, we are using a neural network model instead of a random forest as follows: 

1.	 Create a function to define the model architecture. Here, we create a binary classifier model 
where the number of hidden layers, number of units, dropout rate, and the activation 
function for each layer are part of the hyperparameter space, as follows: 

import optuna

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout

def create_model(trial: optuna.trial.Trial, input_size: 
int):

model = Sequential() 

model.add(Dense(input_size,input_shape=(input_
size,),activation='relu'))

 num_layers = trial.suggest_int('num_
layers',low=0,high=3) 

for layer_i in range(num_layers): 

n_units = trial.suggest_int(f'n_units_layer_
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{layer_i}',low=10,high=100,step=5) 

 dropout_rate = trial.suggest_float(f'dropout_rate_layer_
{layer_i}',low=0,high=0.5) 

actv_func = trial.suggest_categorical(f'actv_func _layer_
{layer_i}',['relu','tanh','elu']) 

model.add(Dropout(dropout_rate)) 

 model.add(Dense(n_units,activation=actv_func)) 

model.add(Dense(1,activation='sigmoid'))

return model

2.	 Create a function to define the model’s optimizer. Notice that we define conditional hyperparameters 
in this function where we have a different set of hyperparameters for a different chosen optimizer 
as follows: 

import tensorflow as tf

def create_optimizer(trial: optuna.trial.Trial):

opt_kwargs = {}

opt_selected = trial.suggest_categorical('optimizer', 
['Adam','SGD'])

if opt_selected == 'SGD':

opt_kwargs['lr'] = trial.suggest_float('sgd_lr',1e-5,1e-
1,log=True)

opt_kwargs['momentum'] = trial.suggest_float('sgd_
momentum',1e-5,1e-1,log=True)

else: #'Adam'

opt_kwargs['lr'] = trial.suggest_float('adam_lr',1e-5,1e-
1,log=True)

optimizer = getattr(tf.optimizers,opt_selected)(**opt_
kwargs)

return optimizer

3.	 Create the train and validation functions. Note that the preprocessing code is not 
shown here, but you can see it in the GitHub repo mentioned in the Technical requirements 
section for the full code. As the case with the examples in Chapter 7, we are also using F1-score 
as the evaluation metric of the model as follows:

def train(trial, df_train: pd.DataFrame, df_val: 
pd.DataFrame = None):

    X_train,y_train = df_train.drop(columns=['y']), df_
train['y']

    if df_val is not None:
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        X_val,y_val = df_val.drop(columns=['y']), df_
val['y'] 

    #Apply pre-processing here... 

    #...

    #Build model & optimizer

    model = create_model(trial,X_train.shape[1])

    optimizer = create_optimizer(trial)   

    model.compile(loss='binary_crossentropy', 
optimizer=optimizer, metrics=[f1_m])

    history = model.fit(X_train,y_train,

                   epochs=trial.suggest_
int('epoch',15,50),

              batch_size=64,

              validation_data=(X_val,y_val) if df_val is 
not None else None)

    if df_val is not None:

        return np.mean(history.history['val_f1_m'])

    else:

        return model

4.	 Create the objective function. Here, we split the original training data into training data 
for hyperparameter tuning, df_train_hp, and validation data, df_val. We won’t follow 
the k-fold cross-validation evaluation method since it will take too much time for the neural 
network model to go through several folds of evaluation within each tuning trial (see Chapter 1, 
Evaluating Machine Learning Models).

from sklearn.model_selection import train_test_split

def objective(trial: optuna.trial.Trial, df_train: 
pd.DataFrame):

#Split into Train and Validation data

      df_train_hp, df_val = train_test_split(df_train, 
test_size=0.1, random_state=0)

      #Train and Validate Model

      val_f1_score = train(trial, df_train_hp, df_val)  

      return val_f1_score
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To perform hyperparameter tuning in Optuna, we need to initiate a study object via the create_
study() function. The study object provides interfaces to run a new Trial object and access 
the trials’ history. The Trial object is simply an object that involves the process of evaluating an 
objective function. This object will be passed to the objective function and it is responsible 
for managing the trial’s state, providing interfaces upon receiving the parameter suggestion just as we 
saw earlier in the objective function. The following code shows how to utilize the create_
study() function to initiate a study object:

study = optuna.create_study(direction='maximize')

There are several important parameters in the create_study() function. The direction 
parameter allows us to tell Optuna what kind of optimization problem we are working on. There are 
two valid values for this parameter, namely ‘maximize’ and ‘minimize’. By setting the direction 
parameter equal to ‘maximize’, it means that we tell Optuna that we are currently working on a 
maximization problem. Optuna sets this parameter to ‘minimize’ by default. The sampler parameter 
refers to the hyperparameter tuning algorithm that we want to use. By default, Optuna will use TPE 
as the sampler. The pruner parameter refers to the pruning algorithm that we want to use, where 
MedianPruner() is used by default. 

Pruning in Optuna
Although MedianPruner() is chosen by default, the pruning process will not be performed 
unless we explicitly tell Optuna to do so within the objective function. This example 
shows how to perform a simple pruning procedure with the default pruner in Optuna at the 
following link: https://github.com/optuna/optuna-examples/blob/
main/simple_pruning.py.

Besides the three preceding parameters, there are also other parameters in the create_study() 
function, namely storage, study_name, and load_if_exists. The storage parameter 
expects a database URL input, which will be handled with SQLAlchemy internally by Optuna. If we 
do not pass a database URL, Optuna will use the in-memory storage instead. The study_name 
parameter is simply the name that we want to give to the current study object. If we do not pass a 
name, Optuna will automatically generate a random name for us. Last but not least, the load_if_
exists parameter is a Boolean parameter that handles cases when there might be conflicting study 
names. If the study name is already generated in the storage, and we set load_if_exists=False, 
then Optuna will raise an error. On the other hand, if the study name is already generated in the 
storage, but we set load_if_exists=True, Optuna will just load the existing study object 
instead of creating a new one.

https://github.com/optuna/optuna-examples/blob/main/simple_pruning.py
https://github.com/optuna/optuna-examples/blob/main/simple_pruning.py
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Once the study object is initiated along with the appropriate parameters, we can start performing 
the hyperparameter tuning by calling the optimize() method. The following code shows you 
how to do that:

study.optimize(func=lambda trial: objective(trial, df_train),

               n_trials=50, n_jobs=-1)

There are several important parameters in the optimize() method. The first and most important 
method is the func parameter. This parameter expects a callable that implements the objective 
function. Here, we don’t directly pass the objective function to the func parameter since our 
objective function expects two inputs, while by default, Optuna can only handle an objective 
function with one input, which is the Trial object itself. That’s why we need the help of Python’s 
built-in lambda function to pass the second input to our objective function. You can also utilize 
the same lambda function if your objective function has more than two inputs.

The second most important parameter is n_trials, which refers to the number of trials or iterations 
for the hyperparameter tuning process. Another implemented parameter that can be used as the 
stopping criteria is the timeout parameter. This parameter expects the stopping criteria in the unit 
of seconds. By default, Optuna sets the n_trials and timeout parameters to None. If we 
leave it be, then Optuna will run the hyperparameter tuning process until it receives a termination 
signal, such as Ctrl+C or SIGTERM.

Last but not least, Optuna also allows us to utilize the parallel resources through a parameter called 
n_jobs. By default, Optuna will set n_jobs=1, meaning that it will only utilize one job. Here, 
we set n_jobs=-1, meaning that we will use all of the CPU counts in our computer to perform 
parallel computation.

Hyperparameter’s Importance in Optuna
Optuna provides a very nice module to measure the importance of each hyperparameter 
in the search space. As per version 2.10.0, there are two methods implemented, namely the 
fANOVA and Mean Decrease Impurity methods. Please see the official documentation on 
how to utilize this module and the theory behind the implemented methods, available at the 
following link: https://optuna.readthedocs.io/en/v2.10.0/reference/
importance.html.

In this section, we learned what Optuna is in general, the available features that we can utilize, and the 
general steps as to how to perform hyperparameter tuning with this package. Optuna also has various 
visualization modules that can help us track our hyperparameter tuning experiments, which will be 
discussed in Chapter 13, Tracking Hyperparameter Tuning Experiments. In the upcoming sections, we 
will learn how to perform various hyperparameter tuning methods with Optuna through examples.

https://optuna.readthedocs.io/en/v2.10.0/reference/importance.html
https://optuna.readthedocs.io/en/v2.10.0/reference/importance.html
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Implementing TPE
TPE is one of the variants of the Bayesian optimization hyperparameter tuning group (see Chapter 4), 
which is the default sampler in Optuna. To perform hyperparameter tuning with TPE in Optuna, 
we can just simply pass the optuna.samplers.TPESampler() class to the sampler parameter 
of the create_study() function. The following example shows how to implement TPE in 
Optuna. We’ll use the same data as in the examples in Chapter 7 and follow the steps introduced in 
the preceding section as follows: 

1.	 Define the objective function along with the hyperparameter space. Here, we’ll use the same 
function that we defined in the Introducing Optuna section. Remember that we use the train-
validation split instead of the k-fold cross-validation method within the objective function.

2.	 Initiate a study object via the create_study() function as follows:

study = optuna.create_study(direction='maximize',

sampler=optuna.samplers.TPESampler(seed=0))

3.	 Perform hyperparameter tuning by calling the optimize() method on the study object 
as follows:

study.optimize(lambda trial: objective(trial, df_train),

               n_trials=50, n_jobs=-1)

print("Best Trial:")

best_trial = study.best_trial

print("    Value: ", best_trial.value)

print("    Hyperparameters: ")

for key, value in best_trial.params.items():

    print(f"        {key}: {value}")

Based on the preceding code, we get around 0.563 of F1-score evaluated in the validation 
data. We also get a dictionary consisting of the best set of hyperparameters as follows:

{'num_layers': 2,'n_units_layer_0': 30,'dropout_
rate_layer_0': 0.14068484717257745,'actv_
func_layer_0': 'relu','n_units_layer_1': 
20,'dropout_rate_layer_1': 0.34708586671782293,'actv_
func_layer_1': 'relu','optimizer': 'Adam','adam_lr': 
0.0018287924415952158,'epoch': 41}
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4.	 Train the model on full training data using the best set of hyperparameters found. Here, we 
define another function called train_and_evaluate_final() that has the purpose 
of training the model in the full training data based on the best set of hyperparameters found 
in the preceding step, as well as evaluating it on the test data. You can see the implemented 
function in the GitHub repo mentioned in the Technical requirements section. Define the 
function as follows:

train_and_evaluate_final(df_train, df_test, **best_trial.
params)

5.	 Test the final trained model on the test data. Based on the results from the preceding step, we 
get around 0.604 in F1-score when testing our final trained neural network model with the 
best set of hyperparameters on the test set.

There are several important parameters for the TPESampler class. First, there is the gamma 
parameter, which refers to the threshold used in TPE to divide good and bad samples (see Chapter 4). 
The n_startup_trials parameter is responsible for controlling how many trials will utilize 
Random Search before starting to perform the TPE algorithm. The n_ei_candidates parameter 
is responsible for controlling how many candidate samples are used to calculate the expected 
improvement acquisition function. Last but not least, the seed parameter, which 
controls the random seed of the experiment. There are many other parameters available for the 
TPESampler class, so please see the original documentation for more information, available at 
the following link: https://optuna.readthedocs.io/en/v2.10.0/reference/
generated/optuna.samplers.TPESampler.html.

In this section, we have learned how to perform hyperparameter tuning with TPE in Optuna using the 
same data as in the example in Chapter 7. As mentioned in Chapter 4, Exploring Bayesian Optimization 
Optuna also implements the multivariate TPE, which is able to capture the interdependencies among 
hyperparameters. To enable the multivariate TPE, we can just simply set the multivariate 
parameter in optuna.samplers.TPESampler() as True. In the next section, we will learn 
how to perform Random Search with Optuna.

Implementing Random Search
Implementing Random Search in Optuna is very similar to implementing TPE in Optuna. We can 
just follow a similar procedure to the preceding section and change the sampler parameter in the 
optimize() method in step 2. The following code shows you how to do that:

study = optuna.create_study(direction='maximize', 

sampler=optuna.samplers.RandomSampler(seed=0))

https://optuna.readthedocs.io/en/v2.10.0/reference/generated/optuna.samplers.TPESampler.html
https://optuna.readthedocs.io/en/v2.10.0/reference/generated/optuna.samplers.TPESampler.html
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Using the exact same data, preprocessing steps, hyperparameter space, and objective function, 
we get around 0.548 in the F1-score evaluated in the validation data. We also get a dictionary 
consisting of the best set of hyperparameters as follows: 

{'num_layers': 0,'optimizer': 'Adam','adam_lr': 
0.05075826567070766,'epoch': 50}

After the model is trained with full data using the best set of hyperparameters, we get around 0.596 in 
F1-score when we test the final neural network model trained on the test data. Notice that although we 
have defined many hyperparameters earlier, (see the objective function in the preceding section), 
here, we do not get all of them in the results. This is because most of the hyperparameters are conditional 
hyperparameters. For example, since the chosen value for the ’num_layers’ hyperparameter is zero, 
there will be no ’n_units_layer_{layer_i}’,  ’dropout_rate_layer_{layer_i}’, or ‘actv_func _layer_{layer_i}’ 
since those hyperparameters will only exist when the ’num_layers’ hyperparameter is greater than zero.

In this section, we have seen how to perform hyperparameter tuning using the Random Search 
method with Optuna. In the next section, we will learn how to implement Grid Search with the 
Optuna package.

Implementing Grid Search
Implementing Grid Search in Optuna is a bit different from implementing TPE and Random 
Search. Here, we need to also define the search space object and pass it to optuna.samplers.
GridSampler(). The search space object is just a Python dictionary data structure consisting of 
hyperparameters’ names as the keys and the possible values of the corresponding hyperparameter 
as the dictionary’s values. GridSampler will stop the hyperparameter tuning process if all of 
the combinations in the search space have already been evaluated, even though the number of 
trials, n_trials, passed to the optimize() method has not been reached yet. Furthermore, 
GridSampler will only get the value stated in the search space no matter the range we pass to the 
sampling distribution methods, such as suggest_categorical, suggest_discrete_
uniform, suggest_int, and suggest_float.

The following code shows how to perform Grid Search in Optuna. The overall procedure to implement 
Grid Search in Optuna is similar to the procedure stated in the Implementing Tree-structured 
Parzen Estimators section. The only difference is that we have to define the search space and change 
the sampler parameter to optuna.samplers.GridSampler() in the optimize() 
method in step 2 as follows: 

search_space = {'num_layers': [0,1],

                'n_units_layer_0': list(range(10,50,5)),

                'dropout_rate_layer_0': np.linspace(0,0.5,5),

                'actv_func_layer_0': ['relu','elu'],
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                'optimizer': ['Adam','SGD'],

                'sgd_lr': np.linspace(1e-5,1e-1,5),

                'sgd_momentum': np.linspace(1e-5,1e-1,5),

                'adam_lr': np.linspace(1e-5,1e-1,5),

                'epoch': list(range(15,50,5))

               }

study = optuna.create_study(direction='maximize',                  
sampler=optuna.samplers.GridSampler(search_space),

                           )

Based on the preceding code, we get around 0.574 of the F1-score evaluated in the validation data. 
We also get a dictionary consisting of the best set of hyperparameters as follows:

{'num_layers': 0,'optimizer': 'Adam','adam_lr': 
0.05000500000000001,'epoch': 25}

After the model is trained on full data using the best set of hyperparameters, we get around 0.610 
in F1-score when we test the final neural network model trained on the test data.

It is worth noting that GridSampler will rely on the search space to perform the hyperparameter 
sampling. For example, in the search space, we only define the valid values for num_layers as 
[0,1]. So, although within the objective function we set trial.suggest_int(‘num_
layers’,low=0,high=3) (see the Introducing Optuna section), only 0 and 1 will be tested 
during the tuning process. Remember that, in Optuna, we can specify the stopping criterion through 
the n_trials or timeout parameters. If we specify either one of those criteria, GridSampler 
will not test all of the possible combinations in the search space; the tuning process will stop once 
the stopping criterion is met. In this example, we set n_trials=50, just like the example in the 
preceding section.

In this section, we have learned how to perform hyperparameter tuning using the Grid Search method 
with Optuna. In the next section, we will learn how to implement SA with the Optuna package.

Implementing Simulated Annealing
SA is not part of the built-in implementation of the hyperparameter tuning method in Optuna. 
However, as mentioned in the first section of this chapter, we can define our own custom sampler 
in Optuna. When creating a custom sampler, we need to create a class that inherits from the 
BaseSampler class. The most important method that we need to define within our custom class 
is the sample_relative() method. This method is responsible for sampling the corresponding 
hyperparameters from the search space based on the hyperparameter tuning algorithm we chose.
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The complete custom SimulatedAnnealingSampler() class with geometric cooling 
annealing schedule (see Chapter 5) has been defined and can be seen in the GitHub repo mentioned 
in the Technical requirements section. The following code shows only the implementation of the 
sample_relative() method within the class:

class SimulatedAnnealingSampler(optuna.samplers.BaseSampler):

    ...

    def sample_relative(self, study, trial, search_space):

        if search_space == {}:

            # The relative search space is empty (it means this 
is the first trial of a study).

            return {}

 

        prev_trial = self._get_last_complete_trial(study)

        if self._rng.uniform(0, 1) <= self._transition_
probability(study, prev_trial):

            self._current_trial = prev_trial

        params = self._sample_neighbor_params(search_space)

        #Geometric Cooling Annealing Schedule

        self._temperature *= self.cooldown_factor 

        return params

    ...

The following code shows how to perform hyperparameter tuning with SA in Optuna. The overall 
procedure to implement SA in Optuna is similar to the procedure stated in the Implementing Tree-
structured Parzen Estimators section. The only difference is that we have to change the sampler 
parameter to SimulatedAnnealingSampler() in the optimize() method in step 2 as follows:

study = optuna.create_study(direction='maximize',

                  sampler=SimulatedAnnealingSampler(seed=0),

                           )

Using the exact same data, preprocessing steps, hyperparameter space, and objective function, 
we get around 0.556 of the F1-score evaluated in the validation data. We also get a dictionary 
consisting of the best set of hyperparameters as follows:

{'num_layers': 3,'n_units_layer_0': 30,'dropout_rate_
layer_0': 0.28421697443432425,'actv_func_layer_0': 
'tanh','n_units_layer_1': 20,'dropout_rate_layer_1': 
0.05936385947712203,'actv_func_layer_1': 'tanh','n_units_
layer_2': 25,'dropout_rate_layer_2': 0.2179324626328134,'actv_
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func_layer_2': 'relu','optimizer': 'Adam','adam_lr': 
0.006100619734336806,'epoch': 39}

After the model is trained on full data using the best set of hyperparameters, we get around 0.559 
in F1-score when we test the final neural network model trained on the test data.

In this section, we have learned how to perform hyperparameter tuning using the SA algorithm with 
Optuna. In the next section, we will learn how to utilize Successive Halving as a pruning method 
in Optuna.

Implementing Successive Halving
Successive Halving (SH) is implemented as a pruner in Optuna, meaning that it is responsible for 
stopping hyperparameter tuning iterations whenever it seems that there’s no additional benefit to 
continuing the process. Since it is implemented as a pruner, the resource definition of SH (see Chapter 
6) in Optuna refers to the number of training steps or epochs of the model, instead of the number 
of samples, as it does in scikit-learn’s implementation. 

We can utilize SH as a pruner along with any sampler that we use. This example shows you how to 
perform hyperparameter tuning with the Random Search algorithm as the sampler and SH as the 
pruner. The overall procedure is similar to the procedure stated in the Implementing TPE section. 
Since we are utilizing SH as a pruner, we have to edit our objective function so that it will utilize 
the pruner during the optimization process. In this example, we can use the callback integration with 
TFKeras provided by Optuna via optuna.integration.TFKerasPruningCallback. 
We simply need to pass this class to the callbacks parameter when fitting the model within the 
train function as shown in the following code:

def train(trial, df_train: pd.DataFrame, df_val: pd.DataFrame = 
None):

...

    history = model.fit(X_train,y_train,

                       epochs=trial.suggest_int('epoch',15,50),

                       batch_size=64,

                       validation_data=(X_val,y_val) if df_val 
is not None else None,

                       callbacks=[optuna.integration.
TFKerasPruningCallback(trial,'val_f1_m')],

                   )

...
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Once we have told Optuna to utilize the pruner, we also need to set the pruner parameter in the 
optimize() method to optuna.pruners.SuccessiveHalvingPruner() in step 2 
of the Implementing Tree-structured Parzen Estimators section as follows:

study = optuna.create_study(direction='maximize',

  sampler=optuna.samplers.RandomSampler(seed=0),

  pruner=optuna.pruners.SuccessiveHalvingPruner(reduction_
factor=3, min_resource=5)

                           )

In this example, we also increased the number of trials from 50 to 100 since most of the trials will 
be pruned anyway as follows: 

study.optimize(lambda trial: objective(trial, df_train),

               n_trials=100, n_jobs=-1,

              )

Using the exact same data, preprocessing steps, and hyperparameter space, we get around 0.582 of 
the F1-score evaluated in the validation data. Out of 100 trials performed, there are 87 trials pruned 
by SH, which implies only 13 completed trials. We also get a dictionary consisting of the best set of 
hyperparameters as follows:

{'num_layers': 3,'n_units_layer_0': 10,'dropout_rate_
layer_0': 0.03540368984067649,'actv_func_layer_0': 
'elu','n_units_layer_1': 15,'dropout_rate_layer_1': 
0.008554081181978979,'actv_func_layer_1': 'elu','n_units_
layer_2': 15,'dropout_rate_layer_2': 0.4887044768096681,'actv_
func_layer_2': 'relu','optimizer': 'Adam','adam_lr': 
0.02763126523504823,'epoch': 28}

After the model is trained on full data using the best set of hyperparameters, we get around 0.597 
in F1-score when we test the final neural network model trained on the test data.

It is worth noting that there are several parameters for SuccessiveHalvingPruner that we 
can customize based on our needs. The reduction_factor parameter refers to the multiplier 
factor of SH (see Chapter 6). The min_resource parameter refers to the minimum number of 
resources to be used at the first trial. This parameter is set to ‘auto’, by default, where a heuristic is 
utilized to calculate the most appropriate value based on the number of required steps for the first 
trial to be completed. In other words, Optuna will only be able to start the tuning process after the 
min_resource training steps or epochs have been performed.
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Optuna also provides the min_early_stopping_rate parameter, which has the exact same 
meaning as we defined in Chapter 6. Last but not least, the bootstrap_count parameter. This 
parameter is not part of the original SH algorithm. The purpose of this parameter is to control the 
minimum number of trials that need to be completed before the actual SH iterations start. 

You may wonder, what about the parameter that controls the value of maximum resources and the 
number of candidates in SH? Here, in Optuna, the maximum resources definition will be automatically 
derived based on the total number of training steps or epochs within the defined objective function. 
As for the parameter that controls the number of candidates, Optuna delegates this responsibility 
to the n_trials parameter in the study.optimize() method.

In this section, we have learned how to utilize SH as a pruner during the hyperparameter tuning 
process. In the next section, we will learn how to utilize Hyperband, the extended algorithm of SH, 
as a pruning method in Optuna.

Implementing Hyperband
Implementing Hyperband (HB) in Optuna is very similar to implementing Successive Halving as 
a pruner. The only difference is that we have to set the pruner parameter in the optimize() 
method to optuna.pruners.HyperbandPruner() in step 2 in the preceding section. The 
following code shows you how to perform hyperparameter tuning with the Random Search algorithm 
as the sampler and HB as the pruner:

study = optuna.create_study(direction='maximize',

  sampler=optuna.samplers.RandomSampler(seed=0),

  pruner=optuna.pruners.HyperbandPruner(reduction_factor=3, 
min_resource=5)

                           )

All of the parameters of HyperbandPruner are the same as SuccessiveHalvingPruner’s, 
except that, here, there is no min_early_stopping_rate parameter and there is a max_
resource parameter. The min_early_stopping_rate parameter is removed since it is 
set automatically based on the ID of each bracket. The max_resource parameter is responsible 
for setting the maximum resource allocated to a trial. By default, this parameter is set to ‘auto’, which 
means that the value will be set as the largest step in the first completed trial.

Using the exact same data, preprocessing steps, and hyperparameter space, we get around 0.580 of 
the F1-score evaluated in the validation data. Out of 100 trials performed, there are 79 trials pruned 
by SH, which implies only 21 completed trials. We also get a dictionary consisting of the best set of 
hyperparameters as follows:

{'num_layers': 0,'optimizer': 'Adam','adam_lr': 
0.05584201313189952,'epoch': 37}
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After the model is trained on full data using the best set of hyperparameters, we get around 0.609 
in F1-score when we test the final neural network model trained on the test data.

In this section, we have learned how to utilize HB as a pruner during the hyperparameter tuning 
process with Optuna.

Summary
In this chapter, we have learned all of the important aspects of the Optuna package. We have also 
learned how to implement various hyperparameter tuning methods using the help of this package, in 
addition to understanding each of the important parameters of the classes and how are they related to 
the theory that we have learned in previous chapters. From now on, you should be able to utilize the 
packages we have discussed in the last few chapters to implement your chosen hyperparameter tuning 
method, and ultimately, boost the performance of your ML model. Equipped with the knowledge 
from Chapters 3 - 6, you will also be able to debug your code if there are errors or unexpected results, 
and you will be able to craft your own experiment configuration to match your specific problem.

In the next chapter, we will learn about the DEAP and Microsoft NNI packages and how to utilize 
them to perform various hyperparameter tuning methods. The goal of the next chapter is similar 
to this chapter, which is to be able to utilize the package for hyperparameter tuning purposes and 
understand each of the parameters of the implemented classes.





10
Advanced Hyperparameter 

Tuning with DEAP and 
Microsoft NNI

DEAP and Microsoft NNI are Python packages that provide various hyperparameter tuning methods 
that are not implemented in other packages that we have discussed in Chapters 7 – 9. For example, 
Genetic Algorithm, Particle Swarm Optimization, Metis, Population-Based Training, and many more. 

In this chapter, we’ll learn how to perform hyperparameter tuning using both DEAP and Microsoft 
NNI packages, starting from getting ourselves familiar with the packages, along with the important 
modules and parameters we need to be aware of. We’ll learn not only how to utilize both DEAP and 
Microsoft NNI to perform hyperparameter tuning with their default configurations but also discuss other 
available configurations along with their usage. Moreover, we’ll also discuss how the implementation of 
the hyperparameter tuning methods is related to the theory that we have learned in previous chapters, 
since there may be some minor differences or adjustments made in the implementation.

By the end of this chapter, you will be able to understand all of the important things you need to know 
about DEAP and Microsoft NNI and be able to implement various hyperparameter tuning methods 
available in these packages. You’ll also be able to understand each of the important parameters of 
the classes and how they are related to the theory that we have learned in the previous chapters. 
Finally, equipped with the knowledge from previous chapters, you will also be able to understand 
what’s happening if there are errors or unexpected results and understand how to set up the method 
configuration to match your specific problem.
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The following are the main topics that will be discussed in this chapter:

•	 Introducing DEAP

•	 Implementing the Genetic Algorithm

•	 Implementing Particle Swarm Optimization

•	 Introducing Microsoft NNI

•	 Implementing Grid Search

•	 Implementing Random Search

•	 Implementing Tree-structured Parzen Estimators

•	 Implementing Sequential Model Algorithm Configuration

•	 Implementing Bayesian Optimization Gaussian Process

•	 Implementing Metis

•	 Implementing Simulated Annealing

•	 Implementing Hyper Band

•	 Implementing Bayesian Optimization Hyper Band

•	 Implementing Population-Based Training

Technical requirements
We will learn how to implement various hyperparameter tuning methods with DEAP and Microsoft NNI. 
To ensure that you are able to reproduce the code examples in this chapter, you will require the following:

•	 Python 3 (version 3.7 or above)

•	 Installed pandas package (version 1.3.4 or above)

•	 Installed NumPy package (version 1.21.2 or above)

•	 Installed SciPy package (version 1.7.3 or above)

•	 Installed Matplotlib package (version 3.5.0 or above)

•	 Installed scikit-learn package (version 1.0.1 or above)

•	 Installed DEAP package (version 1.3)

•	 Installed Hyperopt package (version 0.1.2)

•	 Installed NNI package (version 2.7)

•	 Installed PyTorch package (version 1.10.0)
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All of the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/10_
Advanced_Hyperparameter-Tuning-via-DEAP-and-NNI.ipynb.

Introducing DEAP
Distributed Evolutionary Algorithms in Python (DEAP) is a Python package that allows you to 
implement various evolutionary algorithms including (but not limited to) the Genetic Algorithm 
(GA) and Particle Swarm Optimization (PSO). To install DEAP, you can simply call the pip 
install deap command.

DEAP allows you to craft your evolutionary algorithm optimization steps in a very flexible manner. 
The following steps show how to utilize DEAP to perform any hyperparameter tuning methods. 
More detailed steps, including the code implementation, will be given through various examples in 
the upcoming sections:

1.	 Define the type classes through the creator.create() module. These classes are responsible 
for defining the type of objects that will be used in the optimization steps.

2.	 Define the initializers along with the hyperparameter space and register them in the base.
Toolbox() container. The initializers are responsible for setting the initial value of the 
objects that will be used in the optimization steps.

3.	 Define the operators and register them in the base.Toolbox() container. The operators 
refer to the evolutionary tools or genetic operator (see Chapter 5) that need to be defined 
as part of the optimization algorithm. For example, the selection, crossover, and mutation 
operators in the Genetic Algorithm.

4.	 Define the objective function and register it in the base.Toolbox() container.

5.	 Define your own hyperparameter tuning algorithm function.

6.	 Perform hyperparameter tuning by calling the defined function in step 5.

7.	 Train the model on full training data using the best set of hyperparameters found.

8.	 Test the final trained model on the test data.

The type classes refer to the type of objects used in the optimization steps. These type classes are 
inherited from the base classes implemented in DEAP. For example, we can define the type of our 
fitness function as the following:

from deap import base, creator

creator.create("FitnessMax", base.Fitness, weights=(1.0,))

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/10_Advanced_Hyperparameter-Tuning-via-DEAP-and-NNI.ipynb
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/10_Advanced_Hyperparameter-Tuning-via-DEAP-and-NNI.ipynb
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python/blob/main/10_Advanced_Hyperparameter-Tuning-via-DEAP-and-NNI.ipynb


Advanced Hyperparameter Tuning with DEAP and Microsoft NNI172

The base.Fitness class is a base abstract class implemented in DEAP that can be utilized to define 
our own fitness function type. It expects a weights parameter to understand the type of optimization 
problem we are working on. If it’s a maximization problem, then we have to put a positive weight 
and the other way around for a minimization problem. Notice that it expects a tuple data structure 
instead of a float. This is because DEAP also allows us to work with a multi-objective optimization 
problem. So, if we pass (1.0, -1.0) to the weights parameter, it means we have two objective 
functions where we want to maximize the first one and minimize the second one with equal weight.

The creator.create() function is responsible for creating a new class based on the base class. In 
the preceding code, we created the type class for our objective function with the name “FitnessMax”. 
This creator.create() function expects at least two parameters: specifically, the name of the 
newly created class and the base class itself. The rest of the parameters passed to this function will be 
treated as the attributes for this newly created class. Besides defining the type of the objective function, 
we can also define the type of individuals in the evolutionary algorithm that will be performed. The 
following code shows how to create the type of individuals inherited from the built-in list data 
structure in Python that has fitness as its attribute: 

creator.create("Individual", list, fitness=creator.FitnessMax)

Note that the fitness attribute has a type of creator.FitnessMax, which is the type that 
we just created in the preceding code. 

Types Definition in DEAP
There are a lot of ways to define type classes in DEAP. While we have discussed the most 
straightforward and, arguably, most used type class, you may find other cases that need other 
definitions of type class. For more information on how to define other types in DEAP, please 
refer to the official documentation (https://deap.readthedocs.io/en/master/
tutorials/basic/part1.html).

Once we have finished defining the type of objects that will be used in the optimization steps, we 
now need to initiate the value of those objects using the initializers and register them in the base.
Toolbox() container. You can think of this module as a box or container of initializers and other 
tools that will be utilized during the optimization steps. The following code shows how we can set the 
random initial values for individuals:

import random

from deap import tools

toolbox = base.Toolbox()

toolbox.register("individual",tools.initRepeat,creator.
Individual,

                 random.random, n=10)

https://deap.readthedocs.io/en/master/tutorials/basic/part1.html
https://deap.readthedocs.io/en/master/tutorials/basic/part1.html
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The preceding code shows an example of how to register the "individual" object in the base.
Toolbox() container, where each individual has a size of 10. The individual is generated by 
repeatedly calling the random.random method 10 times. Note that, in the hyperparameter tuning 
setup, the size of 10 of each individual actually refers to the number of the hyperparameters we have 
in the space. The following shows the output of calling the registered individual via the toolbox.
individual() method:

[0.30752039354315985,0.2491982746819209,0.8423374678316783,0.34
01579175109981,0.7699302429041264,0.046433183902334974,0.52870
19598616896,0.28081693679292696,0.9562244184741888,0.000845070
1833065954]

As you can see, the output of toolbox.individual() is just a list of 10 random values since 
we’ve defined creator.Individual to inherit from the built-in list data structure in 
Python. Furthermore, we also called tools.initRepeat when registering the individual with 
the random.random method by 10 times. 

You may now wonder, how do you define the actual hyperparameter space using this toolbox.
register() method? Initiating a bunch of random values definitely doesn’t make any sense. We 
need to know the way to define the hyperparameter space that will be equipped for each individual. 
To do that, we can actually utilize another tool provided by DEAP, tools.InitCycle. 

Where tools.initRepeat will just call the provided function n times, in our previous 
example, the provided function is random.random. Here, tools.InitCycle expects a list 
of functions and will call those functions for n cycles. The following code shows an example to define 
the hyperparameter space that will be equipped for each individual:

1.	 We need to first register each of the hyperparameters that we have in the space along with 
their distribution. Note that we can pass all of the required parameters to the sampling 
distribution function to toolbox.register() as well. For example, here, we pass the 
a=0,b=0.5,loc=0.005,scale=0.01 parameters of the truncnorm.rvs() method:

from scipy.stats import randint,truncnorm,uniform

toolbox.register(“param_1”, randint.rvs, 5, 200)

toolbox.register(“param_2”, truncnorm.rvs, 0, 0.5, 0.005, 
0.01)

toolbox.register(“param_3”, uniform.rvs, 0, 1)

2.	 Once we have registered each hyperparameter we have, we can register the individual by utilizing 
tools.initCycle with only one cycle of repetition:

toolbox.register(“individual”,tools.initCycle,creator.
Individual,

    (
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        toolbox.param_1,

        toolbox.param_2,

        toolbox.param_3

    ),

    n=1,

)

The following shows the output of calling the registered individual via the toolbox.
individual() method:

[172, 0.005840196235159121, 0.37250162585120816]

3.	 Once we have registered the individual in our toolbox, registering a population is very simple. 
We just need to utilize the tools.initRepeat module and pass the defined toolbox.
individual as the argument. The following code shows how to register a population in 
general. Note that, here, the population is just a list of five individuals defined previously:

toolbox.register(“population”, tools.initRepeat, list, 
toolbox.individual, n=5)

The following shows the output when calling the toolbox.population() method:

[[168, 0.009384417146554462, 0.4732188841620628],

[7, 0.009356636359759574, 0.6722125618177741],

[126, 0.00927973696427319, 0.7417964302134438],

[88, 0.008112369078803545, 0.4917555243983919],

[34, 0.008615337472475908, 0.9164442190622125]]

As mentioned previously, the base.Toolbox() container is responsible for storing not only 
initializers but also other tools that will be utilized during the optimization steps. Another important 
building block for an evolutionary algorithm, such as the GA, is the genetic operator. Fortunately, 
DEAP already implemented various genetic operators that we can utilize via the tools module. The 
following code shows an example of how to register the selection, crossover, and mutation operators 
for the GA (see Chapter 5):

# selection strategy

toolbox.register("select", tools.selTournament, tournsize=3)

# crossover strategy

toolbox.register("mate", tools.cxBlend, alpha=0.5)

# mutation strategy

toolbox.register("mutate", tools.mutPolynomialBounded, eta = 
0.1, low=-2, up=2, indpb=0.15)
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The tools.selTournament selection strategy works by selecting the best individuals among 
tournsize randomly chosen individuals, NPOP times, where tournsize is the number of 
individuals participating in the tournament and NPOP is the number of individuals in the population. 
The tools.cxBlend crossover strategy works by performing a linear combination between two 
continuous individual genes, where the weight for the linear combination is governed by the alpha 
hyperparameter. The tools.mutPolynomialBounded mutation strategy works by passing 
continuous individual genes to a pre-defined polynomial mapping.

Evolutionary Tools in DEAP
There are various built-in evolutionary tools implemented in DEAP that we can utilize for our 
own needs, starting from initializers, crossover, mutation, selection, and migration tools. For 
more information regarding the implemented tools, please refer to the official documentation 
(https://deap.readthedocs.io/en/master/api/tools.html).

To register the pre-defined objective function to the toolbox, we can just simply call the same 
toolbox.register() method and pass the objective function, as the following code shows:

toolbox.register("evaluate", obj_func)

Here, obj_func is a Python function that expects to receive the individual object defined 
previously. We will see how to create such an objective function and how to define our own hyperparameter 
tuning algorithm function in the upcoming sections when we discuss how to implement the GA and 
PSO in DEAP.

DEAP also allows us to utilize our parallel computing resources when calling the objective function. 
To do that, we can simply need to register the multiprocessing module to the toolbox as 
the following:

import multiprocessing

pool = multiprocessing.Pool()

toolbox.register("map", pool.map)

Once we have registered the multiprocessing module, we can simply apply this when calling 
the objective function, as shown in the following code:

fitnesses = toolbox.map(toolbox.evaluate, individual)

In this section, we have discussed the DEAP package and its building blocks. You may wonder how 
to construct a real hyperparameter tuning method using all of the building blocks provided by DEAP. 
Worry no more; in the upcoming two sections, we will learn how to utilize all of the discussed building 
blocks to perform hyperparameter tuning with the GA and PSO methods.

https://deap.readthedocs.io/en/master/api/tools.html
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Implementing the Genetic Algorithm
GA is one of the variants of the Heuristic Search hyperparameter tuning group (see Chapter 5) that 
can be implemented by the DEAP package. To show you how we can implement GA with the DEAP 
package, let’s use the Random Forest classifier model and the same data as in the examples in Chapter 
7. The dataset used in this example is the Banking Dataset – Marketing Targets dataset provided on 
Kaggle (https://www.kaggle.com/datasets/prakharrathi25/banking-
dataset-marketing-targets). 

The target variable consists of two classes, yes or no, indicating whether the client of the bank has 
subscribed to a term deposit or not. Hence, the goal of training an ML model on this dataset is to 
identify whether a customer is potentially wanting to subscribe to the term deposit or not. Out of the 
16 features provided in the data, there are seven numerical features and nine categorical features. As 
for the target class distribution, 12% of them are yes and 88% of them are no, for both train and test 
datasets. For more detailed information about the data, please refer to Chapter 7.

Before performing the GA, let’s see how the Random Forest classifier with default hyperparameters 
values works. As shown in Chapter 7, we get around 0.436 in the F1-score when evaluating the 
Random Forest classifier with default hyperparameter values on the test set. Note that we’re still 
using the same scikit-learn pipeline definition to train and evaluate the Random Forest classifier, as 
explained in Chapter 7. 

The following code shows how to implement the GA with the DEAP package. You can find the more 
detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Define the GA parameters and type classes through the creator.create() module:

# GA Parameters

NPOP = 50 #population size

NGEN = 15 #number of trials

CXPB = 0.5 #cross-over probability

MUTPB = 0.2 #mutation probability

Fix the seed for reproducibility:

import random

random.seed(1)

Define the type of our fitness function. Here, we are working with a maximization problem 
and a single objective function, that’s why we set weights=(1.0,):

from deap import creator, base

creator.create(“FitnessMax”, base.Fitness, 
weights=(1.0,))

https://www.kaggle.com/datasets/prakharrathi25/banking-dataset-marketing-targets
https://www.kaggle.com/datasets/prakharrathi25/banking-dataset-marketing-targets
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Define the type of individuals inherited from the built-in list data structure in Python 
that has fitness as its attribute:

creator.create(“Individual”, list, fitness=creator.
FitnessMax)

2.	 Define the initializers along with the hyperparameter space and register them in the base.
Toolbox() container. 

Initialize the toolbox:

toolbox = base.Toolbox()

Define the naming of the hyperparameters:

PARAM_NAMES = [“model__n_estimators”,”model__criterion”,

             “model__class_weight”,”model__min_samples_
split”

Register each of the hyperparameters that we have in the space along with their distribution:

from scipy.stats import randint,truncnorm

toolbox.register(“model__n_estimators”, randint.rvs, 5, 
200)

toolbox.register(“model__criterion”, random.choice, 
[“gini”, “entropy”])

toolbox.register(“model__class_weight”, random.choice, 
[“balanced”,”balanced_subsample”])

toolbox.register(“model__min_samples_split”, truncnorm.
rvs, 0, 0.5, 0.005, 0.01)

Register the individual by utilizing tools.initCycle with only one cycle of repetition:

from deap import tools

toolbox.register(

    “individual”,

    tools.initCycle,

    creator.Individual,

    (

        toolbox.model__n_estimators,

        toolbox.model__criterion,

        toolbox.model__class_weight,

        toolbox.model__min_samples_split,

    ),

)
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Register the population:

toolbox.register(“population”, tools.initRepeat, list, 
toolbox.individual)

3.	 Define the operators and register them in the base.Toolbox() container.

Register the selection strategy:

toolbox.register(“select”, tools.selTournament, 
tournsize=3)

Register the cross-over strategy:

toolbox.register(“mate”, tools.cxUniform, indpb=CXPB)

Define a custom mutation strategy. Note that all of the implemented mutation strategies in 
DEAP are not really suitable for hyperparameter tuning purposes since they can only be 
utilized for floating or binary values, while most of the time, our hyperparameter space will 
be a combination of real and discrete hyperparameters. The following function shows how 
to implement such a custom mutation strategy. You can follow the same structure to suit 
your own need:

def mutPolynomialBoundedMix(individual, eta, low, up, is_
int, indpb, discrete_params):

    for i in range(len(individual)):

        if discrete_params[i]:

            if random.random() < indpb:

                individual[i] = random.choice(discrete_
params[i])

        else:

            individual[i] = tools.
mutPolynomialBounded([individual[i]], 

                                                        
eta[i], low[i], up[i], indpb)[0][0]

        

        if is_int[i]:

            individual[i] = int(individual[i])

 

    return individual,
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Register the custom mutation strategy:

toolbox.register(“mutate”, mutPolynomialBoundedMix, 

                 eta = [0.1,None,None,0.1], 

                 low = [5,None,None,0], 

                 up = [200,None,None,1],

                 is_int = [True,False,False,False],

                 indpb=MUTPB,

                 discrete_params=[[],[“gini”, 
“entropy”],[“balanced”,”balanced_subsample”],[]]

                )

4.	 Define the objective function and register it in the base.Toolbox() container:

def evaluate(individual):

    # convert list of parameter values into dictionary of 
kwargs

    strategy_params = {k: v for k, v in zip(PARAM_NAMES, 
individual)}

    

    if strategy_params['model__min_samples_split'] > 1 or 
strategy_params['model__min_samples_split'] <= 0:

        return [-np.inf]

    

    tuned_pipe = clone(pipe).set_params(**strategy_
params)

    return [np.mean(cross_val_score(tuned_pipe,X_train_
full, y_train, cv=5, scoring='f1',))]

Register the objective function: 

toolbox.register(“evaluate”, evaluate)

5.	 Define the Genetic Algorithm with parallel processing:

import multiprocessing

import numpy as np

Register the multiprocessing module:

pool = multiprocessing.Pool(16)

toolbox.register(“map”, pool.map)
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Define empty arrays to store the best and average values of objective function scores in 
each trial:

mean = np.ndarray(NGEN)

best = np.ndarray(NGEN)

Define a HallOfFame class that is responsible for storing the latest best individual (set of 
hyperparameters) in the population:

hall_of_fame = tools.HallOfFame(maxsize=3)

Define the initial population:

pop = toolbox.population(n=NPOP)

Start the GA iterations:

for g in range(NGEN):

Select the next generation individuals/children/offspring.

    offspring = toolbox.select(pop, len(pop))

Clone the selected individuals.

    offspring = list(map(toolbox.clone, offspring))

Apply crossover on the offspring.

    for child1, child2 in zip(offspring[::2], 
offspring[1::2]):

        if random.random() < CXPB:

            toolbox.mate(child1, child2)

            del child1.fitness.values

            del child2.fitness.values

Apply mutation on the offspring.

    for mutant in offspring:

        if random.random() < MUTPB:

            toolbox.mutate(mutant)

            del mutant.fitness.values

Evaluate the individuals with an invalid fitness.

    invalid_ind = [ind for ind in offspring if not ind.
fitness.valid]

    fitnesses = toolbox.map(toolbox.evaluate, invalid_
ind)

    for ind, fit in zip(invalid_ind, fitnesses):
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        ind.fitness.values = fit

The population is entirely replaced by the offspring.

    pop[:] = offspring

    hall_of_fame.update(pop)

    fitnesses = [

        ind.fitness.values[0] for ind in pop if not 
np.isinf(ind.fitness.values[0])

    ]

    mean[g] = np.mean(fitnesses)

    best[g] = np.max(fitnesses)

6.	 Perform hyperparameter tuning by running the defined algorithm in step 5. After running the 
GA, we can get the best set of hyperparameters based on the following code:

params = {}

for idx_hof, param_name in enumerate(PARAM_NAMES):

    params[param_name] = hall_of_fame[0][idx_hof]

print(params)

Based on the preceding code, we get the following results:

{'model__n_estimators': 101,

'model__criterion': 'entropy',

'model__class_weight': 'balanced',

'model__min_samples_split': 0.0007106340458649385}

We can also plot the trial history or the convergence plot based on the following code:

import matplotlib.pyplot as plt

import seaborn as sns

sns.set()

fig, ax = plt.subplots(sharex=True, figsize=(8, 6))

sns.lineplot(x=range(NGEN), y=mean, ax=ax, label=”Average 
Fitness Score”)

sns.lineplot(x=range(NGEN), y=best, ax=ax, label=”Best 
Fitness Score”)

ax.set_title(“Fitness Score”,size=20)

ax.set_xticks(range(NGEN))

ax.set_xlabel(“Iteration”)

plt.tight_layout()

plt.show()
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Based on the preceding code, the following figure is generated. As you can see, the objective 
function score or the fitness score is increasing throughout the number of trials since the 
population is updated with the improved individuals:

Figure 10.1 – Genetic Algorithm convergence plot

7.	 Train the model on full training data using the best set of hyperparameters found:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**params)

tuned_pipe.fit(X_train_full,y_train)

8.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.608 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement the GA with the DEAP package, starting from 
defining the necessary objects and defining the GA procedures with parallel processing and custom 
mutation strategy, until plotting the history of the trials and testing the best set of hyperparameters 
in the test set. In the next section, we will learn how to implement the PSO hyperparameter tuning 
method with the DEAP package.
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Implementing Particle Swarm Optimization
PSO is also one of the variants of the Heuristic Search hyperparameter tuning group (see Chapter 5) 
that can be implemented by the DEAP package. We’ll still use the same example as in the previous 
section to see how we can implement PSO using the DEAP package.

The following code shows how to implement PSO with the DEAP package. You can find the more 
detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Define the PSO parameters and type classes through the creator.create() module:

N = 50 #swarm size

w = 0.5 #inertia weight coefficient

c1 = 0.3 #cognitive coefficient

c2 = 0.5 #social coefficient

num_trials = 15 #number of trials

Fix the seed for reproducibility:

import random

random.seed(1)

Define the type of our fitness function. Here, we are working with a maximization problem 
and a single objective function, which is why we set weights=(1.0,):

from deap import creator, base

creator.create(“FitnessMax”, base.Fitness, 
weights=(1.0,))

Define the type of particles inherited from the built-in list data structure in Python that 
has fitness, speed, smin, smax, and best as its attribute. These attributes will be 
utilized later on when updating each particle’s position (see Chapter 5):

creator.create(“Particle”, list, fitness=creator.
FitnessMax,

               speed=list, smin=list, smax=list, 
best=None)

2.	 Define the initializers along with the hyperparameter space and register them in the base.
Toolbox() container. 

Initialize the toolbox:

toolbox = base.Toolbox()
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Define the naming of the hyperparameters:

PARAM_NAMES = [“model__n_estimators”,”model__criterion”,

             “model__class_weight”,”model__min_samples_
split”

Register each of the hyperparameters that we have in the space along with their distribution. 
Remember that PSO only works with the numerical type hyperparameters. That’s why 
we encode the "model__criterion" and "model__class_weight" 
hyperparameters to integers:

from scipy.stats import randint,truncnorm

toolbox.register(“model__n_estimators”, randint.rvs, 5, 
200)

toolbox.register(“model__criterion”, random.choice, 
[0,1])

toolbox.register(“model__class_weight”, random.choice, 
[0,1])

toolbox.register(“model__min_samples_split”, truncnorm.
rvs, 0, 0.5, 0.005, 0.01)

Register the individual by utilizing tools.initCycle with only one cycle of repetition. 
Note that we need to also assign the speed, smin, and smax values to each individual. To 
do that, let’s just define a function called generate:

from deap import tools

def generate(speed_bound):

    part = tools.initCycle(creator.Particle,

                           [toolbox.model__n_estimators,

                            toolbox.model__criterion,

                            toolbox.model__class_weight,

                            toolbox.model__min_samples_
split,

                           ]

                          )

    part.speed = [random.uniform(speed_bound[i]['smin'], 
speed_bound[i]['smax']) for i in range(len(part))]

    part.smin = [speed_bound[i]['smin'] for i in 
range(len(part))]

    part.smax = [speed_bound[i]['smax'] for i in 
range(len(part))]

    return part
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Register the individual:

toolbox.register(“particle”, generate, 

                 speed_bound=[{'smin': -2.5,'smax': 2.5},

                              {'smin': -1,'smax': 1},

                              {'smin': -1,'smax': 1},

                              {'smin': -0.001,'smax': 
0.001}])

Register the population:

toolbox.register(“population”, tools.initRepeat, list, 
toolbox.particle)

3.	 Define the operators and register them in the base.Toolbox() container. The main operator 
in PSO is the particle’s position update operator, which is defined in the updateParticle 
function as follows:

import operator

import math

def updateParticle(part, best, c1, c2, w, is_int):

    w = [w for _ in range(len(part))]

    u1 = (random.uniform(0, 1)*c1 for _ in 
range(len(part)))

    u2 = (random.uniform(0, 1)*c2 for _ in 
range(len(part)))

    v_u1 = map(operator.mul, u1, map(operator.sub, part.
best, part))

    v_u2 = map(operator.mul, u2, map(operator.sub, best, 
part))

    part.speed = list(map(operator.add, map(operator.mul, 
w, part.speed), map(operator.add, v_u1, v_u2)))

    for i, speed in enumerate(part.speed):

        if abs(speed) < part.smin[i]:

            part.speed[i] = math.copysign(part.smin[i], 
speed)

        elif abs(speed) > part.smax[i]:

            part.speed[i] = math.copysign(part.smax[i], 
speed)

    part[:] = list(map(operator.add, part, part.speed))
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    for i, pos in enumerate(part):

        if is_int[i]:

            part[i] = int(pos)

Register the operator. Note that the is_int attribute is responsible for marking which 
hyperparameter has an integer type of value:

toolbox.register(“update”, updateParticle, c1=c1, c2=c2, 
w=w,

                is_int=[True,True,True,False]

                )

4.	 Define the objective function and register it in the base.Toolbox() container. Note 
that we also decode the "model__criterion" and "model__class_weight" 
hyperparameters within the objective function:

def evaluate(particle):

    # convert list of parameter values into dictionary of 
kwargs

    strategy_params = {k: v for k, v in zip(PARAM_NAMES, 
particle)}

    strategy_params[“model__criterion”] = “gini” if 
strategy_params[“model__criterion”]==0 else “entropy”

    strategy_params[“model__class_weight”] = “balanced” 
if strategy_params[“model__class_weight”]==0 else 
“balanced_subsample”

    

    if strategy_params['model__min_samples_split'] > 1 or 
strategy_params['model__min_samples_split'] <= 0:

        return [-np.inf]

    

    tuned_pipe = clone(pipe).set_params(**strategy_
params)

 

    return [np.mean(cross_val_score(tuned_pipe,X_train_
full, y_train, cv=5, scoring='f1',))]

Register the objective function:

toolbox.register(“evaluate”, evaluate)
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5.	 Define PSO with parallel processing:

import multiprocessing

import numpy as np

Register the multiprocessing module:

pool = multiprocessing.Pool(16)

toolbox.register(“map”, pool.map)

Define empty arrays to store the best and average values of objective function scores in each 
trial:

mean_arr = np.ndarray(num_trials)

best_arr = np.ndarray(num_trials)

Define a HallOfFame class that is responsible for storing the latest best individual (set of 
hyperparameters) in the population:

hall_of_fame = tools.HallOfFame(maxsize=3)

Define the initial population:

pop = toolbox.population(n=NPOP)

Start the PSO iterations:

best = None

for g in range(num_trials):

    fitnesses = toolbox.map(toolbox.evaluate, pop)

    for part, fit in zip(pop, fitnesses):

        part.fitness.values = fit

        

        if not part.best or part.fitness.values > part.
best.fitness.values:

            part.best = creator.Particle(part)

            part.best.fitness.values = part.fitness.
values

        if not best or part.fitness.values > best.
fitness.values:

            best = creator.Particle(part)

            best.fitness.values = part.fitness.values

    for part in pop:

        toolbox.update(part, best)
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    hall_of_fame.update(pop)    

    fitnesses = [

        ind.fitness.values[0] for ind in pop if not 
np.isinf(ind.fitness.values[0])

    ]

    mean_arr[g] = np.mean(fitnesses)

    best_arr[g] = np.max(fitnesses)

6.	 Perform hyperparameter tuning by running the algorithm defined in step 5. After running PSO, 
we can get the best set of hyperparameters based on the following code. Note that we need to 
decode the "model__criterion" and "model__class_weight" hyperparameters 
before passing them to the final model:

params = {}

for idx_hof, param_name in enumerate(PARAM_NAMES):

    if param_name == “model__criterion”:

        params[param_name] = “gini” if hall_of_fame[0]
[idx_hof]==0 else “entropy”

    elif param_name == “model__class_weight”:

        params[param_name] = “balanced” if hall_of_
fame[0][idx_hof]==0 else “balanced_subsample”

    else:

        params[param_name] = hall_of_fame[0][idx_hof]   

print(params)

Based on the preceding code, we get the following results:

{'model__n_estimators': 75,

'model__criterion': 'entropy',

'model__class_weight': 'balanced',

'model__min_samples_split': 0.0037241038302412493}

7.	 Train the model on full training data using the best set of hyperparameters found:

from sklearn.base import clone 

tuned_pipe = clone(pipe).set_params(**params) 

tuned_pipe.fit(X_train_full,y_train)
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8.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.569 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement PSO with the DEAP package, starting from 
defining the necessary objects, encoding the categorical hyperparameter to integers, and defining 
the optimization procedures with parallel processing, until testing the best set of hyperparameters in 
the test set. In the next section, we will start learning about another hyperparameter tuning package 
called NNI, which is developed by Microsoft.

Introducing Microsoft NNI
Neural Network Intelligence (NNI) is a package that is developed by Microsoft and can be utilized 
not only for hyperparameter tuning tasks but also for neural architecture search, model compression, 
and feature engineering. In this section, we will discuss how to utilize NNI specifically for the 
hyperparameter tuning task. To install NNI, you can simply call the pip install nni command. 

Although NNI refers to Neural Network Intelligence, it actually supports numerous ML frameworks 
including (but not limited to) scikit-learn, XGBoost, LightGBM, PyTorch, TensorFlow, Caffe2, and MXNet.

There are numerous hyperparameter tuning methods implemented in NNI; some of them are built-in 
and others are wrapped from other packages such as Hyperopt (see Chapter 8) and SMAC3. Here, 
in NNI, the hyperparameter tuning methods are referred to as tuners. We will not discuss all of the 
tuners implemented in NNI since there are too many of them. We will only discuss the tuners that have 
been discussed in Chapters 3 – 6. Apart from tuners, some of the hyperparameter tuning methods, 
such as Hyper Band and BOHB, are treated as advisors in NNI.

Available Tuners in NNI
To see all of the available tuners in NNI, please refer to the official documentation page 
(https://nni.readthedocs.io/en/stable/hpo/tuners.html).

Unlike other hyperparameter tuning packages that we have discussed so far, in NNI, we have to 
prepare a Python script containing the model definition before being able to run the hyperparameter 
tuning process from the notebook. Furthermore, NNI also allows us to run the hyperparameter tuning 
experiment from the command-line tool where we need to define several other additional files to 
store the hyperparameter space information and other configurations.

https://nni.readthedocs.io/en/stable/hpo/tuners.html
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The following steps show how we can perform any hyperparameter tuning procedure with NNI with 
pure Python code: 

1.	 Prepare the model to be tuned in a script, for example, model.py. This script should include 
the model architecture definition, dataset loading function, training function, and testing 
function. It also has to include three NNI API calls, as follows:

	� nni.get_next_parameter() is responsible for collecting the hyperparameters to 
be evaluated in a particular trial.

	� nni.report_intermediate_result() is responsible for reporting the evaluation 
metric within each training iteration (epoch or steps). Note that this API call is not mandatory; 
if you can’t get the intermediate evaluation metric from your ML framework, then this API 
call is not required.

	� nni.report_final_result() is responsible for reporting the final evaluation 
metric score after the training process is finished. 

2.	 Define the hyperparameter space. NNI expects the hyperparameter space is in the form of 
a Python dictionary, where the first-level keys store the names of the hyperparameters. The 
second-level keys store the types of the sampling distribution and the hyperparameter values 
range. The following shows an example of how to define the hyperparameter space in the 
expected format:

hyperparameter_space = {

    ' n_estimators ': {'_type': 'randint', '_value': [5, 
200]},

    ' criterion ': {'_type': 'choice', '_value': ['gini', 
'entropy']},

    ' min_samples_split ': {'_type': 'uniform', '_value': 
[0, 0.1]},

} 

More Information on NNI
For more information regarding the supported sampling distributions in NNI, please refer to 
the official documentation (https://nni.readthedocs.io/en/latest/hpo/
search_space.html). 

3.	 Next, we need to set up the experiment configurations via the Experiment class. The 
following shows steps to set up several configurations before we can run the hyperparameter 
tuning process.

https://nni.readthedocs.io/en/latest/hpo/search_space.html
https://nni.readthedocs.io/en/latest/hpo/search_space.html
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Load the Experiment class. Here, we are using the 'local' experiment mode, 
which means all the training and hyperparameter tuning processes will be done only on 
our local computer. NNI allows us to run the training procedures in various platforms, 
including (but not limited to) Azure Machine Learning (AML), Kubeflow, and OpenAPI. 
For more information, please refer to the official documentation (https://nni.
readthedocs.io/en/latest/reference/experiment_config.html): 

from nni.experiment import Experiment

experiment = Experiment('local')

Set up the trial code configuration. Here, we need to specify the command to run the 
defined script in step 1 and the relative path to the script. The following shows an example of 
how to set up the trial code configuration:

experiment.config.trial_command = 'python model.py'

experiment.config.trial_code_directory = '.'

Set up the hyperparameter space configuration. To set up the hyperparameter space 
configuration, we simply need to pass the defined hyperparameter space in step 2. The 
following code shows how to do that:

experiment.config.search_space = hyperparameter_space

Set up the hyperparameter tuning algorithm to be utilized. The following shows an example 
of how to use TPE as the hyperparameter tuning algorithm on a maximization problem:

experiment.config.tuner.name = 'TPE'

experiment.config.tuner.class_args['optimize_mode'] = 
'maximize'

Set up the number of trials and concurrent processes. NNI allows us to set how many 
numbers of hyperparameter sets are to be evaluated concurrently at a single time. The 
following code shows an example of how to set the number of trials to 50, where five sets 
will be evaluated concurrently at a particular time:

experiment.config.max_trial_number = 50

experiment.config.trial_concurrency = 5

It is worth noting that NNI also allows you to define the stopping criterion based on the 
time duration instead of the number of trials. The following code shows how you can set the 
limit of the experiment time to 1 hour: 

experiment.config.max_experiment_duration = '1h'

If you don’t provide both max_trial_number and max_experiment_duration, 
then the experiment will run forever until you forcefully stop it via the Ctrl + C command.

https://nni.readthedocs.io/en/latest/reference/experiment_config.html
https://nni.readthedocs.io/en/latest/reference/experiment_config.html
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4.	 Run the hyperparameter tuning experiment. To run the experiment, we can simply call the 
run method on the Experiment class. Here, we have to also choose what port to be used. 
We can see the experiment status and various interesting stats via the launched web portal. 
The following code shows how to run the experiment on port 8080 in local, meaning you 
can open the web portal on http://localhost:8080:

experiment.run(8080) 

There are two available Boolean parameters for the run method, namely wait_
completion and debug. When we set wait_completion=True, we can’t run 
other cells in the notebook until the experiment is done or some errors are found. The 
debug parameter enables us to choose whether we want to start the experiment in debug 
mode or not. 

5.	 Train the model on full training data using the best set of hyperparameters found. 

6.	 Test the final trained model on the test data.

NNI Web Portal
For more information regarding features available in the web portal, please refer to the official 
documentation (https://nni.readthedocs.io/en/stable/experiment/
web_portal/web_portal.html). Note that we will discuss the web portal more in 
Chapter 13, Tracking Hyperparameter Tuning Experiments.

If you prefer to work with the command-line tool, the following steps show how to perform any 
hyperparameter tuning procedure with NNI with the command-line tool, JSON, and YAML config files:

1.	 Prepare the model to be tuned in a script. This step is exactly the same as the previous procedure 
to perform hyperparameter tuning with NNI with pure Python code.

2.	 Define the hyperparameter space. The expected format of the hyperparameter space is exactly 
the same as in the procedure on how to perform any hyperparameter tuning procedure with 
NNI with pure Python code. However, here, we need to store the Python dictionary within a 
JSON file, for example, hyperparameter_space.json. 

3.	 Set up the experiment configurations via the config.yaml file. The configurations that 
need to be set up are basically the same as in the procedure with NNI with pure Python code. 
However, instead of configuring the experiment via a Python class, here, we store all of the 
configuration details in a single YAML file. The following shows an example of what the YAML 
file will look like:

https://nni.readthedocs.io/en/stable/experiment/web_portal/web_portal.html
https://nni.readthedocs.io/en/stable/experiment/web_portal/web_portal.html
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searchSpaceFile: hyperparameter_space.json

trial_command: python model.py

trial_code_directory: .

 

trial_concurrency: 5

max_trial_number: 50

 

tuner:

  name: TPE

  class_args:

    optimize_mode: maximize

 

training_service:

  platform: local

4.	 Run the hyperparameter tuning experiment. To run the experiment, we can simply call the 
nnictl create command. The following code shows how to use the command to run 
the experiment on port 8080 in local:

nnictl create --config config.yaml --port 8080

When the experiment is done, you can easily stop the process via the nnictl stop 
command.

5.	 Train the model on full training data using the best set of hyperparameters found. 

6.	 Test the final trained model on the test data.

Examples for Various ML Frameworks
You can find all of the examples to perform hyperparameter tuning via NNI using your favorite 
ML frameworks in the official documentation (https://github.com/microsoft/
nni/tree/master/examples/trials). 

scikit-nni
There is also a package called scikit-nni, which will automatically generate the required 
config.yml and search-space.json and build the scikit-learn pipelines 
based on your own custom needs. Please refer to the official repository for further information 
about this package (https://github.com/ksachdeva/scikit-nni). 

https://github.com/microsoft/nni/tree/master/examples/trials
https://github.com/microsoft/nni/tree/master/examples/trials
https://github.com/ksachdeva/scikit-nni
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Besides tuners or hyperparameter tuning algorithms, NNI also provides assessors that can be utilized. 
Assessors are basically early stopping modules that can be used to control the hyperparameter tuning 
experiment when there’s a sign that we may not need to finish the whole experiment trials. Assessors 
can only be utilized when we provide the intermediate results to NNI via the nni.report_
intermediate_result() API call. There are only two built-in assessors in NNI: median stop 
and curve fitting. The first assessor will stop the experiment whenever a hyperparameter set performs 
worse than the median at any step. The latter assessor will stop the experiment if the learning curve 
is likely to converge to a suboptimal result. 

Setting up an assessor in NNI is very straightforward. You can simply add the configuration on the 
Experiment class or within the config.yaml file. The following code shows how to configure 
the median stop assessor on the Experiment class:

experiment.config.assessor.name = 'Medianstop'

Custom Algorithms in NNI
NNI also allows us to define our own custom tuners and assessors. To do that, you need to inherit 
the base Tuner or Assessor class, write several required functions, and add more details 
on the Experiment class or in the config.yaml file. For more information regarding 
how to define your own custom tuners and assessors, please refer to the official documentation 
(https://nni.readthedocs.io/en/stable/hpo/custom_algorithm.
html).

In this section, we have discussed the NNI package and how to perform hyperparameter tuning 
experiments in general. In the upcoming sections, we will learn how to implement various hyperparameter 
tuning algorithms using NNI.

Implementing Grid Search
Grid Search is one of the variants of the Exhaustive Search hyperparameter tuning group (see Chapter 
3) that the NNI package can implement. To show you how we can implement Grid Search with the 
NNI package, let’s use the same data and pipeline as in the examples in the previous section. However, 
here, we’ll define a new hyperparameter space since NNI supports only limited types of sampling 
distribution.

The following code shows how to implement Grid Search with the NNI package. Here, we’ll use the 
NNI command-line tool (nnictl) instead of using pure Python code. You can find the more detailed 
code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. Here, we’ll name the script model.py. There 
are several functions defined within this script, including load_data, get_default_
parameters, get_model, and run. 

https://nni.readthedocs.io/en/stable/hpo/custom_algorithm.html
https://nni.readthedocs.io/en/stable/hpo/custom_algorithm.html
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The load_data function loads the original data and splits it into train and test data. 
Furthermore, it’s also responsible for returning the lists of numerical and categorical 
column names:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from pathlib import Path

def load_data():

    df = pd.read_csv(f”{Path(__file__).parent.parent}/
train.csv”,sep=”;”)

 

    #Convert the target variable to integer

    df['y'] = df['y'].map({'yes':1,'no':0})

 

    #Split full data into train and test data

    df_train, df_test = train_test_split(df, test_
size=0.1, random_state=0) 

 

    #Get list of categorical and numerical features

    numerical_feats = list(df_train.drop(columns='y').
select_dtypes(include=np.number).columns)

    categorical_feats = list(df_train.drop(columns='y').
select_dtypes(exclude=np.number).columns)

 

    X_train = df_train.drop(columns=['y'])

    y_train = df_train['y']

    X_test = df_test.drop(columns=['y'])

    y_test = df_test['y']

 

    return X_train, X_test, y_train, y_test, numerical_
feats, categorical_feats

The get_default_parameters function returns the default hyperparameter values 
used in the experiment:

def get_default_parameters():

    params = {

        'model__n_estimators': 5,

        'model__criterion': 'gini',
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        'model__class_weight': 'balanced',

        'model__min_samples_split': 0.01,

    }

 

    return params

The get_model function defines the sklearn pipeline used in this example:

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import StandardScaler, 
OneHotEncoder

from sklearn.pipeline import Pipeline

from sklearn.ensemble import RandomForestClassifier

def get_model(PARAMS, numerical_feats, categorical_
feats): 

Initiate the Normalization Pre-processing for Numerical Features.

    numeric_preprocessor = StandardScaler()

Initiate the One-Hot-Encoding Pre-processing for Categorical Features.

    categorical_preprocessor = OneHotEncoder(handle_
unknown=”ignore”)

Create the ColumnTransformer Class to delegate each preprocessor to the corresponding 
features.

    preprocessor = ColumnTransformer(

        transformers=[

            (“num”, numeric_preprocessor, numerical_
feats),

            (“cat”, categorical_preprocessor, 
categorical_feats),

        ]

    )

Create a Pipeline of preprocessor and model.

    pipe = Pipeline(

        steps=[(“preprocessor”, preprocessor), 

               (“model”, RandomForestClassifier(random_
state=0))]

    )
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Set hyperparmeter values.

    pipe = pipe.set_params(**PARAMS)

 

    return pipe

The run function is responsible for training the model and getting the cross-validation score:

import nni

import logging

from sklearn.model_selection import cross_val_score

LOG = logging.getLogger('nni_sklearn')

def run(X_train, y_train, model):

    model.fit(X_train, y_train)

    score = np.mean(cross_val_score(model,X_train, y_
train, 

                    cv=5, scoring='f1')

            )

    LOG.debug('score: %s', score)

    nni.report_final_result(score)

Finally, we can call those functions in the same script:

if __name__ == '__main__':

    X_train, _, y_train, _, numerical_feats, categorical_
feats = load_data()

    try:

        # get parameters from tuner

        RECEIVED_PARAMS = nni.get_next_parameter()

        LOG.debug(RECEIVED_PARAMS)

        PARAMS = get_default_parameters()

        PARAMS.update(RECEIVED_PARAMS)

        LOG.debug(PARAMS)

        model = get_model(PARAMS, numerical_feats, 
categorical_feats)

        run(X_train, y_train, model)

    except Exception as exception:

        LOG.exception(exception)

        raise



Advanced Hyperparameter Tuning with DEAP and Microsoft NNI198

2.	 Define the hyperparameter space in a JSON file called hyperparameter_space.json:

{“model__n_estimators”: {“_type”: “randint”, “_value”: 
[5, 200]}, “model__criterion”: {“_type”: “choice”, “_
value”: [“gini”, “entropy”]}, “model__class_weight”: 
{“_type”: “choice”, “_value”: [“balanced”,”balanced_
subsample”]}, “model__min_samples_split”: {“_type”: 
“uniform”, “_value”: [0, 0.1]}}

3.	 Set up the experiment configurations via the config.yaml file:

searchSpaceFile: hyperparameter_space.json

experimentName: nni_sklearn

trial_command: python '/mnt/c/Users/Louis\ Owen/Desktop/
Packt/Hyperparameter-Tuning-with-Python/nni/model.py'

trial_code_directory: .

trial_concurrency: 10

max_trial_number: 100 

maxExperimentDuration: 1h

tuner: 

  name: GridSearch

training_service:

  platform: local

4.	 Run the hyperparameter tuning experiment. We can see the experiment status and various 
interesting stats via the launched web portal. The following code shows how to run the 
experiment on port 8080 in local, meaning you can open the web portal on http://
localhost:8080: 

nnictl create --config config.yaml --port 8080

5.	 Train the model on full training data using the best set of hyperparameters found. To get the 
best set of hyperparameters, you can go to the web portal and see them from the Overview tab.

Based on the experiment results shown in the web portal within the Top trials tab, the 
following are the best hyperparameter values found from the experiment. Note that we will 
discuss the web portal more in Chapter 13, Tracking Hyperparameter Tuning Experiments:

best_parameters = {

    “model__n_estimators”: 27,

    “model__criterion”: “entropy”,

    “model__class_weight”: “balanced_subsample”,
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    “model__min_samples_split”: 0.05

}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_parameters)

# Fit the pipeline on train data 

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.517 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Grid Search with the NNI package via nnictl. 
In the next section, we will learn how to implement Random Search with NNI via pure Python code.

Implementing Random Search
Random Search is one of the variants of the Exhaustive Search hyperparameter tuning group (see 
Chapter 3) that the NNI package can implement. Let’s use the same data, pipeline, and hyperparameter 
space as in the example in the previous section to show you how to implement Random Search with 
NNI using pure Python code.

The following code shows how to implement Random Search with the NNI package. Here, we’ll use 
pure Python code instead of using nnictl as in the previous section. You can find the more detailed 
code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. We’ll use the same model.py script as in the 
previous section.

2.	  Define the hyperparameter space in the form of a Python dictionary:

hyperparameter_space = { 

    'model__n_estimators': {'_type': 'randint', '_value': 
[5, 200]}, 

    'model__criterion': {'_type': 'choice', '_value': 
['gini', 'entropy']}, 

    'model__class_weight': {'_type': 'choice', '_value': 
[“balanced”,”balanced_subsample”]}, 

    'model__min_samples_split': {'_type': 'uniform', '_
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value': [0, 0.1]}, 

}  

3.	 Set up the experiment configurations via the Experiment class. Note that there is only one 
parameter for the Random Search tuner, namely the random seed parameter:

experiment = Experiment('local')

 

experiment.config.experiment_name = 'nni_sklearn_random_
search'

experiment.config.tuner.name = 'Random'

experiment.config.tuner.class_args['seed'] = 0

 

# Boilerplate code

experiment.config.trial_command = “python '/mnt/c/Users/
Louis\ Owen/Desktop/Packt/Hyperparameter-Tuning-with-
Python/nni/model.py'”

experiment.config.trial_code_directory = '.'

experiment.config.search_space = hyperparameter_space

experiment.config.max_trial_number = 100

experiment.config.trial_concurrency = 10

experiment.config.max_experiment_duration = '1h'

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug = 
False)

5.	 Train the model on full training data using the best set of hyperparameters found. 

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda 
x: x.value, reverse = True)[0]

print(best_trial.parameter)

6.	 Based on the preceding code, we get the following results:

{'model__n_estimators': 194, 'model__criterion': 
'entropy', 'model__class_weight': 'balanced_subsample', 
'model__min_samples_split': 0.0014706304965369289}
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We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

# Fit the pipeline on train data 

tuned_pipe.fit(X_train_full,y_train)

7.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.597 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Random Search using NNI with pure Python 
code. In the next section, we will learn how to implement Tree-structured Parzen Estimators with 
NNI via pure Python code.

Implementing Tree-structured Parzen Estimators
Tree-structured Parzen Estimators (TPEs) are one of the variants of the Bayesian Optimization 
hyperparameter tuning group (see Chapter 4) that the NNI package can implement. Let’s use the same 
data, pipeline, and hyperparameter space as in the example in the previous section to implement TPE 
with NNI using pure Python code.

The following code shows how to implement TPE with the NNI package using pure Python code. You can 
find the more detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. We’ll use the same model.py script as in the 
previous section.

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use the same 
hyperparameter space as in the previous section.

3.	 Set up the experiment configurations via the Experiment class. Note that there are three 
parameters for the TPE tuner: optimize_mode, seed, and tpe_args. Please refer to the 
official documentation page for more information regarding the TPE tuner parameters (https://
nni.readthedocs.io/en/stable/reference/hpo.html#tpe-tuner):

experiment = Experiment('local')

experiment.config.experiment_name = 'nni_sklearn_tpe'

experiment.config.tuner.name = 'TPE'

https://nni.readthedocs.io/en/stable/reference/hpo.html#tpe-tuner
https://nni.readthedocs.io/en/stable/reference/hpo.html#tpe-tuner
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experiment.config.tuner.class_args = {'optimize_mode': 
'maximize', 'seed': 0}

 

# Boilerplate code

# same with previous section

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug = 
False)

5.	 Train the model on full training data using the best set of hyperparameters found. 

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda 
x: x.value, reverse = True)[0]

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__n_estimators': 195, 'model__criterion': 
'entropy', 'model__class_weight': 'balanced_subsample', 
'model__min_samples_split': 0.0006636374717157983}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data.

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.618 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement TPE using NNI with pure Python code. In the 
next section, we will learn how to implement Sequential Model Algorithm Configuration with NNI 
via pure Python code.
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Implementing Sequential Model Algorithm Configuration
Sequential Model Algorithm Configuration (SMAC) is one of the variants of the Bayesian Optimization 
hyperparameter tuning group (see Chapter 4) that the NNI package can implement. Note that to 
use SMAC in NNI, we need to install additional dependencies using the following command: pip 
install "nni[SMAC]". Let’s use the same data, pipeline, and hyperparameter space as in the 
example in the previous section to implement SMAC with NNI using pure Python code.

The following code shows how to implement SMAC with the NNI package using pure Python code. You 
can find the more detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. We’ll use the same model.py script as in the 
previous section.

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use the same 
hyperparameter space as in the previous section.

3.	 Set up the experiment configurations via the Experiment class. Note that there are two 
parameters for the SMAC tuner: optimize_mode, and config_dedup. Please refer to 
the official documentation page for more information regarding the SMAC tuner parameters 
(https://nni.readthedocs.io/en/stable/reference/hpo.html#smac-
tuner):

experiment = Experiment('local')

 

experiment.config.experiment_name = 'nni_sklearn_smac'

experiment.config.tuner.name = 'SMAC'

experiment.config.tuner.class_args['optimize_mode'] = 
'maximize'

# Boilerplate code

# same with previous section

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug = 
False)

5.	 Train the model on full training data using the best set of hyperparameters found. 

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda 
x: x.value, reverse = True)[0]

print(best_trial.parameter)

https://nni.readthedocs.io/en/stable/reference/hpo.html#smac-tuner
https://nni.readthedocs.io/en/stable/reference/hpo.html#smac-tuner
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Based on the preceding code, we get the following results:

{'model__class_weight': 'balanced', 'model__
criterion': 'entropy', 'model__min_samples_split': 
0.0005502416428725066, 'model__n_estimators': 199}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

# Fit the pipeline on train data 

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.619 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement SMAC using NNI with pure Python code. In the 
next section, we will learn how to implement Bayesian Optimization Gaussian Process with NNI via 
pure Python code.

Implementing Bayesian Optimization Gaussian Process
Bayesian Optimization Gaussian Process (BOGP) is one of the variants of the Bayesian Optimization 
hyperparameter tuning group (see Chapter 4) that the NNI package can implement. Let’s use the same 
data, pipeline, and hyperparameter space as in the example in the previous section to implement 
BOGP with NNI using pure Python code.

The following code shows how to implement BOGP with the NNI package using pure Python code. You 
can find the more detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. Here, we’ll use a new script called model_numeric.
py. In this script, we add a mapping for non-numeric hyperparameters since BOGP can only 
work with numerical hyperparameters:

non_numeric_mapping = params = {

   'model__criterion': ['gini','entropy'],

   'model__class_weight': ['balanced','balanced_
subsample'],

    }
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2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use a similar 
hyperparameter space as in the previous section with the only difference on the non-numeric 
hyperparameters. Here, all of the non-numeric hyperparameters are encoded into integer 
types of values:

hyperparameter_space_numeric = { 

    'model__n_estimators': {'_type': 'randint', '_value': 
[5, 200]}, 

    'model__criterion': {'_type': 'choice', '_value': [0, 
1]}, 

    'model__class_weight': {'_type': 'choice', '_value': 
[0, 1]}, 

    'model__min_samples_split': {'_type': 'uniform', '_
value': [0, 0.1]}, 

}  

3.	 Set up the experiment configurations via the Experiment class. Note that there are nine 
parameters for the BOGP tuner: optimize_mode, utility, kappa, xi, nu, alpha, 
cold_start_num, selection_num_warm_up, and selection_num_starting_
points. Please refer to the official documentation page for more information regarding 
the BOGP tuner parameters (https://nni.readthedocs.io/en/stable/
reference/hpo.html#gp-tuner):

experiment = Experiment('local')

 

experiment.config.experiment_name = 'nni_sklearn_bogp'

experiment.config.tuner.name = 'GPTuner'

experiment.config.tuner.class_args = {

'optimize_mode': 'maximize', 'utility': 'ei','xi': 0.01}

# Boilerplate code

experiment.config.trial_command = “python '/mnt/c/Users/
Louis\ Owen/Desktop/Packt/Hyperparameter-Tuning-with-
Python/nni/model_numeric.py'”

experiment.config.trial_code_directory = '.'

experiment.config.search_space = hyperparameter_space_
numeric

experiment.config.max_trial_number = 100

experiment.config.trial_concurrency = 10

experiment.config.max_experiment_duration = '1h'

https://nni.readthedocs.io/en/stable/reference/hpo.html#gp-tuner
https://nni.readthedocs.io/en/stable/reference/hpo.html#gp-tuner
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4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug = 
False)

5.	 Train the model on full training data using the best set of hyperparameters found. 

Get the best set of hyperparameters:

non_numeric_mapping = params = {

'model__criterion': ['gini','entropy'],

'model__class_weight': ['balanced','balanced_subsample'],

    }

best_trial = sorted(experiment.export_data(),key = lambda 
x: x.value, reverse = True)[0]

for key in non_numeric_mapping:

    best_trial.parameter[key] = non_numeric_mapping[key]
[best_trial.parameter[key]]

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__class_weight': 'balanced_subsample', 'model__
criterion': 'entropy', 'model__min_samples_split': 
0.00055461211818435, 'model__n_estimators': 159}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data.

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.619 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement BOGP using NNI with pure Python code. In the 
next section, we will learn how to implement Metis with NNI via pure Python code.
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Implementing Metis
Metis is one of the variants of the Bayesian Optimization hyperparameter tuning group (see Chapter 4) 
that the NNI package can implement. Let’s use the same data, pipeline, and hyperparameter space as in 
the example in the previous section to implement Metis with NNI using pure Python code.

The following code shows how to implement Metis with the NNI package using pure Python code. You 
can find the more detailed code in the GitHub repository mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. Here, we’ll use the same script as in the previous 
section, model_numeric.py, since Metis can only work with numerical hyperparameters.

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use the same 
hyperparameter space as in the previous section.

3.	 Set up the experiment configurations via the Experiment class. Note that there are six 
parameters for the Metis tuner: optimize_mode, no_resampling, no_candidates, 
selection_num_starting_points, cold_start_num, and exploration_
probability. Please refer to the official documentation page for more information regarding 
the Metis tuner parameters (https://nni.readthedocs.io/en/stable/
reference/hpo.html#metis-tuner):

experiment = Experiment('local')

 

experiment.config.experiment_name = 'nni_sklearn_metis'

experiment.config.tuner.name = 'MetisTuner'

experiment.config.tuner.class_args['optimize_mode'] = 
'maximize'

# Boilerplate code 

# same as previous section

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug = 
False)

5.	 Train the model on full training data using the best set of hyperparameters found. 

Get the best set of hyperparameters:

non_numeric_mapping = params = {

'model__criterion': ['gini','entropy'],

'model__class_weight': ['balanced','balanced_subsample'],

    }

https://nni.readthedocs.io/en/stable/reference/hpo.html#metis-tuner
https://nni.readthedocs.io/en/stable/reference/hpo.html#metis-tuner
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best_trial = sorted(experiment.export_data(),key = lambda 
x: x.value, reverse = True)[0]

for key in non_numeric_mapping:

    best_trial.parameter[key] = non_numeric_mapping[key]
[best_trial.parameter[key]]

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__n_estimators': 122, 'model__criterion': 'gini', 
'model__class_weight': 'balanced', 'model__min_samples_
split': 0.00173059072806428}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

# Fit the pipeline on train data 

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.590 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Metis using NNI with pure Python code. In the 
next section, we will learn how to implement Simulated Annealing with NNI via pure Python code.

Implementing Simulated Annealing
Simulated Annealing is one of the variants of the Heuristic Search hyperparameter tuning group (see 
Chapter 5) that the NNI package can implement. Let’s use the same data, pipeline, and hyperparameter 
space as in the example in the previous section, to implement Simulated Annealing with NNI using 
pure Python code.

The following code shows how to implement Simulated Annealing with the NNI package using pure 
Python code. You can find the more detailed code in the GitHub repository mentioned in the Technical 
requirements section:

1.	 Prepare the model to be tuned in a script. We’ll use the same model.py script as in the 
Implementing Grid Search section.
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2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use the same 
hyperparameter space as in the Implementing Grid Search section.

3.	 Set up the experiment configurations via the Experiment class. Note that there is one 
parameter for the Simulated Annealing tuner, namely optimize_mode: 

experiment = Experiment('local')

 

experiment.config.experiment_name = 'nni_sklearn_anneal'

experiment.config.tuner.name = 'Anneal'

experiment.config.tuner.class_args['optimize_mode'] = 
'maximize'

# Boilerplate code

experiment.config.trial_command = “python '/mnt/c/Users/
Louis\ Owen/Desktop/Packt/Hyperparameter-Tuning-with-
Python/nni/model.py'”

experiment.config.trial_code_directory = '.'

experiment.config.search_space = hyperparameter_space

experiment.config.max_trial_number = 100

experiment.config.trial_concurrency = 10

experiment.config.max_experiment_duration = '1h'

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug = 
False)

5.	 Train the model on full training data using the best set of hyperparameters found. 

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda 
x: x.value, reverse = True)[0]

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__n_estimators': 103, 'model__criterion': 'gini', 
'model__class_weight': 'balanced_subsample', 'model__min_
samples_split': 0.0010101249953063539}
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We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

# Fit the pipeline on train data 

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.600 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Simulated Annealing using NNI with pure Python 
code. In the next section, we will learn how to implement Hyper Band with NNI via pure Python code.

Implementing Hyper Band
Hyper Band is one of the variants of the Multi-Fidelity Optimization hyperparameter tuning 
group (see Chapter 6) that the NNI package can implement. Let’s use the same data, pipeline, and 
hyperparameter space as in the example in the previous section to implement Hyper Band with NNI 
using pure Python code.

The following code shows how to implement Hyper Band with the NNI package using pure Python 
code. You can find the more detailed code in the GitHub repository mentioned in the Technical 
requirements section:

1.	 Prepare the model to be tuned in a script. Here, we’ll use a new script called model_advisor.
py. In this script, we utilize the TRIAL_BUDGET value from the output of nni.get_
next_parameter() to update the 'model__n_estimators' hyperparameter. 

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use a similar 
hyperparameter space to the Implementing Grid Search section but we will remove the 
'model__n_estimators' hyperparameter since it will become the budget definition 
for Hyper Band:

hyperparameter_space_advisor = { 

    'model__criterion': {'_type': 'choice', '_value': 
['gini', 'entropy']}, 

    'model__class_weight': {'_type': 'choice', '_value': 
[“balanced”,”balanced_subsample”]}, 

    'model__min_samples_split': {'_type': 'uniform', '_
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value': [0, 0.1]}, 

}  

3.	 Set up the experiment configurations via the Experiment class. Note that there are four 
parameters for the Hyper Band advisor: optimize_mode, R, eta, and exec_mode. 
Please refer to the official documentation page for more information regarding the Hyper Band 
advisor parameters (https://nni.readthedocs.io/en/latest/reference/
hpo.html#hyperband-tuner):

experiment = Experiment('local')

 

experiment.config.experiment_name = 'nni_sklearn_hyper_
band'

experiment.config.advisor.name = 'Hyperband'

experiment.config.advisor.class_args['optimize_mode'] = 
'maximize'

experiment.config.advisor.class_args['R'] = 200

experiment.config.advisor.class_args['eta'] = 3

experiment.config.advisor.class_args['exec_mode'] = 
'parallelism'

 

# Boilerplate code

experiment.config.trial_command = “python '/mnt/c/Users/
Louis\ Owen/Desktop/Packt/Hyperparameter-Tuning-with-
Python/nni/model_advisor.py'”

experiment.config.trial_code_directory = '.'

experiment.config.search_space = hyperparameter_space_
advisor

experiment.config.max_trial_number = 100

experiment.config.trial_concurrency = 10

experiment.config.max_experiment_duration = '1h'

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug = 
False)

https://nni.readthedocs.io/en/latest/reference/hpo.html#hyperband-tuner
https://nni.readthedocs.io/en/latest/reference/hpo.html#hyperband-tuner
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5.	 Train the model on full training data using the best set of hyperparameters found. 

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda 
x: x.value, reverse = True)[0]

best_trial.parameter['model__n_estimators'] = best_trial.
parameter['TRIAL_BUDGET'] * 50

del best_trial.parameter['TRIAL_BUDGET']

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__criterion': 'gini', 'model__class_weight': 
'balanced_subsample', 'model__min_samples_split': 
0.001676130360763284, 'model__n_estimators': 100}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

Fit the pipeline on train data.

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.593 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Hyper Band using NNI with pure Python code. 
In the next section, we will learn how to implement Bayesian Optimization Hyper Band with NNI 
via pure Python code.

Implementing Bayesian Optimization Hyper Band
Bayesian Optimization Hyper Band (BOHB) is one of the variants of the Multi-Fidelity Optimization 
hyperparameter tuning group (see Chapter 6) that the NNI package can implement. Note that to use 
BOHB in NNI, we need to install additional dependencies using the following command: 

pip install "nni[BOHB]"
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Let’s use the same data, pipeline, and hyperparameter space as in the example in the previous section 
to implement BOHB with NNI using pure Python code.

The following code shows how to implement Hyper Band with the NNI package using pure Python 
code. You can find the more detailed code in the GitHub repository mentioned in the Technical 
requirements section:

1.	 Prepare the model to be tuned in a script. We’ll use the same model_advisor.py script 
as in the previous section.

2.	 Define the hyperparameter space in the form of a Python dictionary. We’ll use the same 
hyperparameter space as in the previous section.

3.	 Set up the experiment configurations via the Experiment class. Note that there are 11 
parameters for the BOHB advisor: optimize_mode, min_budget, max_budget, 
eta, min_points_in_model, top_n_percent, num_samples, random_
fraction, bandwidth_factor, min_bandwidth, and config_space. Please 
refer to the official documentation page for more information regarding the Hyper Band advisor 
parameters (https://nni.readthedocs.io/en/latest/reference/hpo.
html#bohb-tuner):

experiment = Experiment('local')

 

experiment.config.experiment_name = 'nni_sklearn_bohb'

experiment.config.advisor.name = 'BOHB'

experiment.config.advisor.class_args['optimize_mode'] = 
'maximize'

experiment.config.advisor.class_args['max_budget'] = 200

experiment.config.advisor.class_args['min_budget'] = 5

experiment.config.advisor.class_args['eta'] = 3

# Boilerplate code  

# same as previous section

4.	 Run the hyperparameter tuning experiment:

experiment.run(8080, wait_completion = True, debug = 
False)

https://nni.readthedocs.io/en/latest/reference/hpo.html#bohb-tuner
https://nni.readthedocs.io/en/latest/reference/hpo.html#bohb-tuner
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5.	 Train the model on full training data using the best set of hyperparameters found. 

Get the best set of hyperparameters:

best_trial = sorted(experiment.export_data(),key = lambda 
x: x.value, reverse = True)[0]

best_trial.parameter['model__n_estimators'] = best_trial.
parameter['TRIAL_BUDGET'] * 50

del best_trial.parameter['TRIAL_BUDGET']

print(best_trial.parameter)

Based on the preceding code, we get the following results:

{'model__class_weight': 'balanced', 'model__criterion': 
'gini', 'model__min_samples_split': 0.000396569883631686, 
'model__n_estimators': 1100}

We can now train the model on full training data:

from sklearn.base import clone

tuned_pipe = clone(pipe).set_params(**best_trial.
parameter)

# Fit the pipeline on train data 

tuned_pipe.fit(X_train_full,y_train)

6.	 Test the final trained model on the test data:

y_pred = tuned_pipe.predict(X_test_full)

print(f1_score(y_test, y_pred))

Based on the preceding code, we get around 0.617 in the F1-score when testing our final 
trained Random Forest model with the best set of hyperparameters on the test set.

In this section, we have learned how to implement Bayesian Optimization Hyper Band using NNI with 
pure Python code. In the next section, we will learn how to implement Population-Based Training 
with NNI via nnictl.

Implementing Population-Based Training
Population-Based Training (PBT) is one of the variants of the Heuristic Search hyperparameter 
tuning group (see Chapter 5) that the NNI package can implement. To show you how to implement 
PBT with NNI using pure Python code, let’s use the same example provided by the NNI package. 
Here, the MNIST dataset and a convolutional neural network model are utilized. We’ll use PyTorch 
to implement the neural network model. For details of the code example provided by NNI, 
please refer to the NNI GitHub repository (https://github.com/microsoft/nni/
tree/1546962f83397710fe095538d052dc74bd981707/examples/trials/
mnist-pbt-tuner-pytorch).

https://github.com/microsoft/nni/tree/1546962f83397710fe095538d052dc74bd981707/examples/trials/mnist-pbt-tuner-pytorch
https://github.com/microsoft/nni/tree/1546962f83397710fe095538d052dc74bd981707/examples/trials/mnist-pbt-tuner-pytorch
https://github.com/microsoft/nni/tree/1546962f83397710fe095538d052dc74bd981707/examples/trials/mnist-pbt-tuner-pytorch
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MNIST Dataset
MNIST is a dataset of handwritten digits that have been size-normalized and centered in a 
fixed-size image. Here, we’ll use the MNIST dataset provided directly by the PyTorch package 
(https://pytorch.org/vision/stable/generated/torchvision.
datasets.MNIST.html#torchvision.datasets.MNIST).

The following code shows how to implement PBT with the NNI package. Here, we’ll use nnictl 
instead of using pure Python code. You can find the more detailed code in the GitHub repository 
mentioned in the Technical requirements section:

1.	 Prepare the model to be tuned in a script. Here, we’ll use the same mnist.py script from 
the NNI GitHub repository. Note that we save the script with a new name: model_pbt.py.

2.	 Define the hyperparameter space in a JSON file called hyperparameter_space_pbt.
json. Here, we’ll use the same search_space.json file from the NNI GitHub repository.

3.	 Set up the experiment configurations via the config_pbt.yaml file. Note that there 
are six parameters for the PBT tuner: optimize_mode, all_checkpoint_dir, 
population_size, factor, resample_probability, and fraction. Please 
refer to the official documentation page for more information regarding the PBT tuner 
parameters (https://nni.readthedocs.io/en/latest/reference/hpo.
html#pbt-tuner):

searchSpaceFile: hyperparameter_space_pbt.json

trialCommand: python '/mnt/c/Users/Louis\ Owen/Desktop/
Packt/Hyperparameter-Tuning-with-Python/nni/model_pbt.py'

trialGpuNumber: 1

trialConcurrency: 10

maxTrialNumber: 100

maxExperimentDuration: 1h

tuner:

  name: PBTTuner

  classArgs:

    optimize_mode: maximize

trainingService:

  platform: local

  useActiveGpu: false

https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html#torchvision.datasets.MNIST
https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html#torchvision.datasets.MNIST
https://nni.readthedocs.io/en/latest/reference/hpo.html#pbt-tuner
https://nni.readthedocs.io/en/latest/reference/hpo.html#pbt-tuner
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4.	 Run the hyperparameter tuning experiment. We can see the experiment status and various 
interesting stats via the launched web portal. The following code shows how to run the 
experiment on port 8080 in local, meaning you can open the web portal on http://
localhost:8080:

nnictl create --config config_pbt.yaml --port 8080

In this section, we have learned how to implement Population-Based Training with NNI via nnictl 
using the same example as provided in the official documentation of NNI.

Summary
In this chapter, we have learned all the important things about the DEAP and Microsoft NNI packages. 
We also have learned how to implement various hyperparameter tuning methods with the help of these 
packages, along with understanding each of the important parameters of the classes and how are they 
related to the theory that we have learned in the previous chapters. From now on, you should be able 
to utilize these packages to implement your chosen hyperparameter tuning method, and ultimately, 
boost the performance of your ML model. Equipped with the knowledge from Chapters 3 – 6, you 
will also be able to debug your code if there are errors or unexpected results, and be able to craft your 
own experiment configuration to match your specific problem.

In the next chapter, we’ll learn about hyperparameters for several popular algorithms. There will be 
a wide explanation for each of the algorithms, including (but not limited to) the definition of each 
hyperparameter, what will be impacted when the value of each hyperparameter is changed, and the 
priority list of hyperparameters based on the impact.



S e c t i o n  3 : 
P u t t i n g  T h i n g s  i n t o  P r a c t i c e

In the final section of the book, as its name suggests, we will learn how to put everything we have learned 
into practice so that we can have an effective and powerful hyperparameter tuning experiment workflow.

This section includes the following chapters:

•	 Chapter 11, Understanding Hyperparameters of Popular Algorithms

•	 Chapter 12, Introducing the Hyperparameter Tuning Decision Map

•	 Chapter 13, Tracking Hyperparameter Tuning Experiments

•	 Chapter 14, Conclusions and Next Steps





11
Understanding the 

Hyperparameters of Popular 
Algorithms

Most machine learning (ML) algorithms have their own hyperparameters. Knowing how to implement 
a lot of fancy hyperparameter tuning methods without understanding the hyperparameters of the 
model is the same as a doctor writing a prescription before diagnosing the patient.

In this chapter, we’ll learn about the hyperparameters of several popular ML algorithms. There will be 
a broad explanation for each of the algorithms, including (but not limited to) the definition of each 
hyperparameter, what will be impacted when the value of each hyperparameter is changed, and the 
priority list of hyperparameters based on the impact.

By the end of this chapter, you will understand the important hyperparameters of several popular 
ML algorithms. Understanding the hyperparameters of ML algorithms is crucial since not all 
hyperparameters are equally significant when it comes to impacting the model’s performance. We do 
not have to perform hyperparameter tuning on all of the hyperparameters of a model; we just need 
to focus on the more critical hyperparameters.

In this chapter, we will cover the following main topics:

•	 Exploring Random Forest hyperparameters

•	 Exploring XGBoost hyperparameters

•	 Exploring LightGBM hyperparameters

•	 Exploring CatBoost hyperparameters

•	 Exploring SVM hyperparameters

•	 Exploring artificial neural network hyperparameters
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Exploring Random Forest hyperparameters
Random Forest is a tree-based model that is built using a collection of decision trees. It is a very 
powerful ensemble ML model that can be utilized for both classification and regression tasks. The 
way Random Forest utilizes the collection of decision trees is by performing an ensemble method 
called bootstrap aggregation (bagging) with some modifications. To understand how each of the 
Random Forest’s hyperparameters can impact the model’s performance, we need to understand how 
the model works in the first place.

Before discussing how Random Forest ensembles a collection of decision trees, let’s discuss how 
a decision tree works at a high level. A decision tree can be utilized to perform a classification or 
regression task by constructing a series of decisions (in the form of rules and splitting points) that can 
be visualized in the form of a tree. These decisions are made by looking through all of the features and 
the feature values of the given training data. The goal of a decision tree is to have high homogeneity for 
each of the leaf nodes. Several methods can be used to measure homogeneity; the two most popular 
methods for classification tasks are to calculate the Gini or Entropy values, while the most popular 
method for regression tasks is to calculate the Mean Squared Error value.

Random Forest utilizes the bagging method to ensemble the collection of decision trees. Bagging is 
an ensemble method that works by combining predictions from multiple ML models with the hope of 
generating a more accurate and robust prediction. In this case, Random Forest combines the prediction 
outputs from several decision trees so that we are not too focused on the prediction from a single tree. 
This is because a decision tree is very likely to overfit the training data. However, Random Forest does 
not just utilize the vanilla bagging ensemble method – it also ensures that it only utilizes prediction 
outputs from the collection of decision trees that are not highly correlated with each other. How is 
Random Forest able to do that? Instead of asking each decision tree to look through all the features 
and their values when choosing the splitting points, Random Forest customizes this procedure so 
that each decision tree only looks at a random sample of features.

The most popular and well-maintained implementation of Random Forest in Python can be found in the 
scikit-learn package. It includes implementations for both regression (RandomForestRegressor) 
and classification (RandomForestClassifier) tasks. Both implementations have very similar 
hyperparameters with only a few small differences. The following are the most important hyperparameters, 
starting with the most important to the least based on the impact on model performance. Note that this 
priority list is subjective, based on our experience of developing Random Forest models in the past:

1.	 n_estimators: This specifies the number of decision trees to be utilized to build the Random 
Forest. In general, the larger the number of trees, the better the model’s performance will be, 
with a trade-off of having longer computational time. However, there is a threshold beyond 
which adding more trees will not have much additional impact on the model’s performance. 
It could even have a negative impact due to the problem of overfitting.
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2.	 max_features: This specifies the number of randomly sampled features that are used by 
Random Forest to choose the best splitting point in each of the decision trees. The higher the 
value, the lower the reduction in variance, and hence the lower the increase in bias. A higher 
value also leads to having a longer computational time. scikit-learn, by default, will use all of 
the features for regression tasks and use only sqrt(n_features) number of features for 
classification tasks.

3.	 criterion: This is used to measure the homogeneity of each decision tree. scikit-learn 
implemented several methods for both regression and classification tasks. There’s squared_
error, absolute_error, and poisson for regression tasks, while there’s gini, 
entropy, and log_loss for classification tasks. Different methods will have different 
impacts on model performance; there is no clear rule of thumb for this hyperparameter.

4.	 max_depth: This specifies the maximum depth of each decision tree. The default value of 
this hyperparameter is None, meaning that the nodes of each tree will keep branching until 
we have pure leaf nodes or until all the leaves contain less than min_samples_split 
number of samples. The lower the value, the better, since this prevents overfitting. However, a 
value that is too low can lead to an underfitting problem. One thing is for sure – a higher value 
implies a longer computational time.

5.	 min_samples_split: This specifies the minimum number of samples required for a 
tree to be able to further split an internal node (a node that can be split into child nodes).  The 
higher the value, the easier it is to prevent overfitting.

6.	 min_samples_leaf: This specifies the minimum number of samples required in the leaf 
nodes. A higher value can help us prevent overfitting.  

Random Forest Hyperparameters in scikit-learn
For more information about each of the hyperparameters of the Random Forest implementation 
in scikit-learn, please visit the official documentation pages at https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html and https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestRegressor.html. 

Other useful boilerplate parameters can be found across different scikit-learn estimator implementations. 
The following are several important parameters that you need to be aware of that can help you while 
training a scikit-learn estimator:

1.	 class_weight: This specifies the weights for each class that exists in the training data. This 
is only available for classification tasks. This parameter is very important when you face an 
imbalanced class problem. We need to give higher weights to classes that have fewer samples.

2.	 n_jobs: This specifies the number of parallel processes to be utilized when training the 
estimator. scikit-learn utilizes the joblib package in the backend.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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3.	 random_state: This specifies the random seed number to ensure the code is reproducible.

4.	 verbose: This parameter is used to control any logging activities. Setting verbose to an 
integer greater than zero enables us to see what happens when training an estimator. 

In this section, we learned how Random Forest works at a high level and looked at several important 
hyperparameters, along with an explanation of how they impact the model’s performance. We also looked 
at the main hyperparameters. Furthermore, we learned about several useful parameters in scikit-learn 
that can ease the training process. In the next section, we will discuss the XGBoost algorithm.

Exploring XGBoost hyperparameters
Extreme Gradient Boosting (XGBoost) is also a tree-based model that is built using a collection of 
decision trees, similar to a Random Forest. It can also be utilized for both classification and regression 
tasks. The difference between XGBoost and Random Forest is in how they perform the ensemble. 
Unlike Random Forest, which uses the bagging ensemble method, XGBoost utilizes another ensemble 
method called boosting. 

Boosting is an ensemble algorithm whose goal is to achieve higher performance through a sequence 
of individually weak models by overcoming the weaknesses of the predecessor models (see Figure 
11.1). It is not a specific model; it’s just a generic ensemble algorithm. The definition of weakness may 
vary across different types of boosting ensemble implementation. In XGBoost, it is defined based on 
the error of the gradient from the previous decision tree model. Take a look at the following diagram:

 

Figure 11.1 – Boosting ensemble algorithm

XGBoost is a very popular and well-adopted ML model that is built using the boosting ensemble 
algorithm and a collection of decision trees. Each of the decision trees is added one at a time and is 
fitted to the prediction errors from the previous tree to correct those errors. It is worth noting that 
since XGBoost is part of the gradient boosting algorithm, all of the weak models (decision trees) 
need to be fitted using a differentiable loss function and the gradient descent optimization method.
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XGBoost has its own package and can be utilized not only in Python but also in other programming 
languages, such as R and JVM. In Python, you can install XGBoost via pip install xgboost. 
This package also implements the scikit-learn wrappers for both regression (XGBRegressor) and 
classification (XGBClassifier) tasks. Numerous hyperparameters are provided by the package, 
but not all of them are very important in affecting the model’s performance. The following are the 
most important hyperparameters, starting with the most important to the least based on their impact 
on model performance:

1.	 n_estimators: This specifies the number of decision trees to be utilized to build the 
XGBoost model. It can also be interpreted as the number of boosting rounds, which is similar 
to the concept of epochs in a neural network. In general, the higher the value, the better the 
model’s performance will be, with the trade-off of having a longer computation time. However, 
we need to be careful with a value that’s too high since it can lead us to the overfitting problem.

2.	 learning_rate: This is the learning rate of the gradient descent optimization algorithm. 
The lower the value, the higher the chances of the model finding the optimum solution, with a 
trade-off of having a longer computational time. You can increase the value of this hyperparameter 
if there no sign of overfitting is found on the last iterations of training; you can decrease it if 
there is overfitting.

3.	 max_depth: This is the maximum depth of each decision tree. A lower value can help us 
prevent overfitting. However, a too-low value can lead to an underfitting problem. One thing 
is for sure – a higher value leads to a longer computational time.

4.	 min_child_weight: This is the minimum sum of instance weight, calculated using the 
Hessian, that’s needed in a child. This hyperparameter acts as a regularizer to ensure that each 
tree will stop trying to split the node once a certain degree of purity is reached. In other words, 
it is a regularization parameter that works by limiting the depth of the tree so that the overfitting 
problem can be prevented. A higher value can help us prevent overfitting. However, a too-high 
value can lead to an underfitting problem.

5.	 gamma: This is a pseudo-regularization parameter that is calculated based on a reduction 
in the loss value. The value of this hyperparameter specifies the minimum loss reduction 
required to make a further partition on a leaf node of the tree. You can put a high value on 
this hyperparameter to prevent the overfitting problem. However, please be careful and don’t 
use a value that’s too high; it can lead to an underfitting problem.

6.	 colsample_bytree: This is the fraction version of the max_features hyperparameter 
in the scikit-learn implementation of Random Forest. This hyperparameter is responsible for 
telling XGBoost how many randomly sampled features are needed to choose the best splitting 
point in each of the decision trees. A low value can help us prevent overfitting and lowers the 
computational time. However, a value that’s too low can lead to an underfitting problem.
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7.	 subsample: This is the observation’s version of the colsample_bytree hyperparameter. 
This hyperparameter is responsible for telling XGBoost how many training samples need to 
be used while training each tree. This hyperparameter can be useful to prevent the overfitting 
problem. However, it can also lead us to an underfitting problem if we use a value that’s too low.

Complete List of XGBoost Hyperparameters
For more information about other XGBoost’s hyperparameters, please visit the official 
documentation page: https://xgboost.readthedocs.io/en/stable/python/
python_api.html#module-xgboost.sklearn. 

In this section, we discussed how XGBoost works at a high level and looked at several important 
hyperparameters, along with an explanation of how they impact model performance. We also looked 
at the main hyperparameters. In the next section, we will discuss the LightGBM algorithm.

Exploring LightGBM hyperparameters
Light Gradient Boosting Machine (LightGBM) is also a boosting algorithm built on top of a collection 
of decision trees, similar to XGBoost. It can also be utilized both for classification and regression tasks. 
However, it differs from XGBoost in the way the trees are grown. In LightGBM, trees are grown in a 
leaf-wise manner, while XGBoost grows trees in a level-wise manner (see Figure 11.2). By leaf-wise, 
we mean that LightGBM grows trees by prioritizing nodes whose split leads to the highest increase 
of homogeneity:

Figure 11.2 – Level-wise versus leaf-wise tree growth
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Besides the difference in how XGBoost and LightGBM grow the trees, they also have different ways of 
handling categorical features. In XGBoost, we need to encode the categorical features before passing 
them to the model. This is usually done using the one-hot encoding or integer encoding methods. In 
LightGBM, we can just tell which features are categorical and it will handle those features automatically 
by performing equality splitting. There are several other differences between XGBoost and LightGBM 
in terms of the way they perform optimization in distributed learning. In general, LightGBM has a 
much faster computation time compared to XGBoost.

Similar to XGBoost, LightGBM also has its own package and can be utilized not only in Python but 
also in the R language. In Python, you can install LightGBM via pip install lightgbm. This 
package also implements the scikit-learn wrappers for both regression (LGBMRegressor) and 
classification (LGBMClassifier) tasks. The following are the most important hyperparameters for 
LightGBM, starting with the most important to the least based on the impact on model performance:

1.	 max_depth: This specifies the maximum depth of each decision tree. A lower value can help 
us prevent overfitting. However, a value that’s too low can lead to an underfitting problem. One 
thing is for sure – a higher value implies a longer computational time.

2.	 num_leaves: This specifies the maximum number of leaves in each tree. It should have a 
value lower than two to the power of max_depth since a leaf-wise tree is much deeper than a 
depth-wise tree for a set number of leaves. In general, the higher the value, the better the model’s 
performance will be, with a trade-off of having a longer computational time. However, there is 
a threshold where the impact of adding more leaves will not have much additional impact on 
the model’s performance or even have a negative impact due to overfitting.

3.	 Learning_rate: This specifies the learning rate of the gradient descent optimization 
algorithm. The lower the value, the higher the chances of the model finding a more optimum 
solution, with a trade-off of having a longer computational time. You can increase the value 
of this hyperparameter if no sign of overfitting is found on the last iterations of training and 
vice versa.

4.	 min_child_samples: This specifies the minimum number of samples required in the 
leaf nodes. A higher value can help us prevent overfitting. However, a value that’s too high can 
lead to an underfitting problem.

5.	 Feature_fraction: This is similar to colsample_bytree in XGBoost. This 
hyperparameter tells LightGBM how many randomly sampled features need to be used to 
choose the best splitting point in each of the decision trees. This hyperparameter can be useful 
for preventing overfitting. However, it can also lead to an underfitting problem if we use a 
value that is too low.

6.	 bagging_fraction: This is the observation’s version of the feature_fraction 
hyperparameter. This hyperparameter is responsible for telling LightGBM how many training 
samples need to be used during the training of each tree. Lower values can help us prevent 
overfitting and lower the computational time. However, a value that is too low can lead to an 
underfitting problem.
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Complete List of LightGBM Hyperparameters
For more information about other LightGBM hyperparameters, please visit the official 
documentation page: https://lightgbm.readthedocs.io/en/latest/
Python-API.html#scikit-learn-api.

In this section, we discussed how LightGBM works at a high level and looked at several important 
hyperparameters, along with an explanation of how they impact model performance. We also looked 
at the main hyperparameters. In the next section, we will discuss the CatBoost algorithm.

Exploring CatBoost hyperparameters
Categorical Boosting (CatBoost) is another boosting algorithm built on top of a collection of 
decision trees, similar to XGBoost and LightGBM. It can also be utilized both for classification and 
regression tasks. The main difference between CatBoost and XGBoost or LightGBM is how it grows 
the trees. In XGBoost and LightGBM, trees are grown asymmetrically, while in CatBoost, trees are 
grown symmetrically so that all of the trees are balanced. This balanced tree characteristic provides 
several benefits, including the ability to control overfitting problems, lower inference time, and efficient 
implementation in CPUs. CatBoost does this by using the same condition in every split in the nodes, 
as shown in the following diagram:

Figure 11.3 – Asymmetric versus symmetric tree

https://lightgbm.readthedocs.io/en/latest/Python-API.html#scikit-learn-api
https://lightgbm.readthedocs.io/en/latest/Python-API.html#scikit-learn-api
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The main selling point of CatBoost is its ability to handle numerous types of features automatically, 
including numerical, categorical, and text, especially for categorical features. We just need to tell CatBoost 
which features are categorical features via the cat_features parameter and it will handle those 
features automatically. By default, CatBoost will perform one-hot encoding for categorical features 
that only have two classes. For higher cardinality features, it will perform target encoding and combine 
several categorical features or even categorical and numerical features. For more information on how 
CatBoost handles categorical features, please refer to the official documentation page: https://
catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic.

Similar to XGBoost and LightGBM, CatBoost also has its own package and can be utilized not only 
in Python but also in the R language. In Python, you can install CatBoost via pip install 
catboost. You can utilize the implemented scikit-learn-friendly classes for both regression 
(CatBoostRegressor) and classification (CatBoostClassifier) tasks. The following 
is a list of CatBoost’s most important hyperparameters, sorted in descending order based on the 
importance of each hyperparameter regarding model performance:

1.	 iterations: This specifies the number of decision trees to be utilized to build the CatBoost 
model. It can also be interpreted as the number of boosting rounds, similar to the concept of 
epochs in a neural network. In general, the higher the value, the better the model’s performance 
will be, with a trade-off of having a longer computational time. However, there is a threshold 
where the impact of adding more trees will not have much additional impact on the model’s 
performance or even have a negative impact due to overfitting.

2.	 depth: This specifies the maximum depth of each decision tree. A lower value can help us 
prevent overfitting. However, a value that’s too low can lead to an underfitting problem. One 
thing is for sure – a higher value implies a longer computational time.

3.	 learning_rate: This specifies the learning rate of the gradient descent optimization 
algorithm. The lower the value, the higher the chances of the model finding a more optimum 
solution, with a trade-off of having a longer computational time. You can increase the value 
of this hyperparameter if no sign of overfitting is found on the last iterations of training and 
vice versa.

4.	 l2_leaf_reg: This is the regularization parameter on the cost function. This hyperparameter 
can prevent the overfitting problem. However, it can also lead to an underfitting problem if we 
use a value that’s too high.

5.	 one_hot_max_size: This is the threshold that tells CatBoost when to perform one-hot 
encoding on the categorical features. Any categorical features that have cardinality lower 
than or equal to the given value will be transformed into numerical values via the one-hot 
encoding method.

Complete List of CatBoost Hyperparameters
For more information about other CatBoost hyperparameters, please visit the official documentation 
page (https://catboost.ai/en/docs/concepts/parameter-tuning).

https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic
https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic
https://catboost.ai/en/docs/concepts/parameter-tuning
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In this section, we discussed how CatBoost works at a high level and looked at several important 
hyperparameters, along with an explanation of how they impact model performance. We also looked 
at the main hyperparameters. In the next section, we will discuss the SVM algorithm.

Exploring SVM hyperparameters
Support Vector Machine (SVM) is an ML model that utilizes lines or hyperplanes, along with some 
linear algebra transformations, to perform a classification or regression task. All the algorithms 
discussed in the previous sections can be classified as tree-based algorithms, while SVM is not part 
of the tree-based group of ML algorithms. It is part of the distance-based group of algorithms. We 
usually called the linear algebra transformation in SVM a kernel. This is responsible for transforming 
any problem into a linear problem. 

The most popular and well-maintained implementation of SVM in Python can be found in the scikit-
learn package. It includes implementations for both regression (SVR) and classification (SVC) tasks. 
Both of them have very similar hyperparameters with only a few small differences. The following are 
the most important hyperparameters for SVM, starting with the most important to the least based 
on their impact on model performance:

1.	 kernel: This is the linear algebra transformation, whose goal is to convert the given problem 
into a linear problem. There are five kernels that we can choose from, including linear (linear), 
polynomial (poly), radial basis function (rbf), and sigmoid (sigmoid) kernels. Different 
kernels will have different impacts on model performance and there is no clear rule of thumb 
for this hyperparameter.

2.	 C: This is the regularization parameter that controls overfitting. The lower the value, the 
stronger the impact that regularization will have on the model, and hence a higher chance of 
preventing overfitting. 

3.	 degree: This hyperparameter is specific to the polynomial kernel function. The value of this 
hyperparameter corresponds to the degree of the polynomial function that’s used by the model.

4.	 gamma: This is the coefficient for the radial basis, polynomial, and sigmoid kernel functions. 
There are two options that scikit-learn provides, namely scale and auto. 

SVM Hyperparameters in scikit-learn
For more information about how each of the hyperparameters in SVM are implemented in 
scikit-learn, you can visit the official documentation pages at https://scikit-learn.
org/stable/modules/generated/sklearn.svm.SVC.html and https://
scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html. 

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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In this section, we discussed how SVM works at a high level and looked at several important 
hyperparameters, along with an explanation of how they impact model performance. We also looked 
at the main hyperparameters. In the next section, we will discuss artificial neural networks.

Exploring artificial neural network hyperparameters
An artificial neural network, also known as deep learning, is a kind of ML algorithm that mimics 
how human brains work. Deep learning can be utilized for both regression and classification tasks. 
One of the main selling points of this model is its ability to perform feature engineering and selection 
automatically from the raw data. In general, to ensure this algorithm works decently, we need a large 
amount of training data to be fed to the model. The simplest form of a neural network is called a 
perceptron (see Figure 11.4). A perceptron is just a linear combination that is applied on top of all of 
the features, with bias added at the end of the calculation:

Figure 11.4 – Perceptron

If the output from the perceptron is passed to a non-linear function, which is usually called an activation 
function, and then passed to another perceptron, then we can call this a multi-layer perceptron 
(MLP) with one layer. The training process for a neural network consists of two big procedures, 
namely forward propagation and backward propagation. In forward propagation, we just let the 
neural network perform calculations on top of the given inputs based on the defined architecture. In 
backward propagation, the model will update the weights and bias parameters based on the defined 
loss function using a gradient-based optimization procedure.
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There are other variants of neural networks besides MLP, such as convolutional neural networks (CNNs), 
long short-term memory networks (LSTMs), recurrent neural networks (RNNs), and transformers. 
CNN is usually adopted when we work with image data, but we can also use a one-dimensional CNN 
when working with text data. RNNs and LSTMs are usually adopted when working with time series 
or natural language data. Transformers are mainly used for text-related projects, but recently, they 
have been adopted for image and voice data.

Several packages provide implementations of neural networks in Python, including PyTorch, TensorFlow, 
and Scikit Learn. The following are the most important hyperparameters, sorted in descending order 
based on the importance of each hyperparameter regarding model performance. Note that this priority 
list is subjective based on our experience of developing Random Forest models in the past. Since the 
naming of the hyperparameters may differ across different packages, we will only use the general 
names of the hyperparameters:

1.	 Optimizer: This is the gradient-based optimization algorithm to be used. There are several 
optimizers for us to choose from. However, perhaps the most popular and widely adopted 
optimizer is Adam. There are other options, including (but not limited to) SGD and RMSProp. 
Different optimizers may have different impacts on model performance and there is no clear 
rule of thumb for choosing which one is the best. It is worth noting that each optimizer has 
its own hyperparameter as well.

2.	 Learning Rate: This hyperparameter controls how big the step will be for the optimizer to 
“learn” from the given training data during the optimization process. It is important to choose 
the best range of learning rates first before tuning other hyperparameters. The lower the value, 
the higher the chances of the model finding a more optimum solution, with a trade-off of having 
a longer computational time. You can increase the value of this hyperparameter if no sign of 
overfitting is found on the last iterations of training and vice versa.

3.	 Batch Size: This specifies the number of training samples that will be passed to the neural network 
within each training step. In general, the higher the value, the better the model’s performance 
will be. However, a batch size that’s too high will usually be constrained by the device’s memory.

4.	 Epochs: This is the number of training iterations. Similar to n_estimators in XGBoost 
and iterations in CatBoost, a high value can lead to better model performance, with a 
trade-off of having a longer computational time. However, we need to be careful when using 
a value that’s too high since it can lead to overfitting.

5.	 Number of Layers: The higher the value, the higher the complexity of the model, hence the 
higher the chance of overfitting. Usually, one or two layers is more than enough to build a 
good model.

6.	 Number of Nodes: The number of units or nodes within each of the layers. The higher the 
value, the higher the complexity of the model, hence a higher chance of overfitting.



Summary 231

7.	 Activation Function: The non-linear transformation function. There are many activation 
functions to choose from. Some of the most well-adopted activation functions in practice are 
Rectified Linear Activation Function (ReLU), Exponential Linear Unit (ELU), Sigmoid, 
Softmax, and Tanh. 

8.	 Dropout Rate: The rate for the dropout layer. The dropout layer is a special layer in a neural 
network that acts as a regularizer by randomly setting the unit value to zero. This hyperparameter 
controls how many units are set to zero. A higher value can help us prevent overfitting. However, 
a value that’s too high can lead to an underfitting problem.

9.	 L1/L2 Regularization: These are the regularization parameters that are applied to the loss 
function. This hyperparameter can help prevent overfitting. However, it can also lead to an 
underfitting problem if its value is too high.

In this section, we have discussed how neural network works at a high level, the variants of neural networks, 
and looked at several important hyperparameters, along with an explanation of how they impact model 
performance. We also looked at the main hyperparameters. Now, let’s summarize this chapter.

Summary
In this chapter, we discussed how several popular algorithms work at a high level, explained their 
important hyperparameters and how they impact performance, and provided priority lists of the 
hyperparameters, sorted in descending order based on their impact on performance. At this point, 
you should be able to design your hyperparameter tuning experiments more effectively by focusing on 
the most important hyperparameters. You should also understand what impact each of the important 
hyperparameters has on the performance of the model. 

In the next chapter, we’ll summarize the hyperparameter tuning methods we’ve discussed here into a 
simple decision map that can help you choose which method is the most suitable for your problem. 
Furthermore, we will cover several study cases that show how to utilize this decision map in practice.
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Tuning Decision Map

Getting too much information can sometimes lead to confusion, which can, in turn, lead back to 
adopting the simplest option. We learned about numerous hyperparameter tuning methods in the 
previous chapters. Although we have discussed the ins and outs of each method, it will be very useful 
for us to have a single source of truth that can be used to help us decide which method to use in 
which situation.

In this chapter, you’ll be introduced to the Hyperparameter Tuning Decision Map (HTDM), which 
summarizes all of the discussed hyperparameter tuning methods into a simple decision map based on 
many aspects, including the properties of the hyperparameter space, the complexity of the objective 
function, training data size, computational resources availability, prior knowledge availability, and 
the types of ML algorithms we are working with. There will be also three study cases that show how 
to utilize HTDM in practice.

By the end of this chapter, you’ll be able to utilize HTDM in practice to help you decide which 
hyperparameter tuning method to be adopted in your specific situation. 

In this chapter, we will cover the following main topics:

•	 Getting familiar with HTDM

•	 Case study 1 – using HTDM with a CatBoost classifier

•	 Case study 2 – using HTDM with a conditional hyperparameter space

•	 Case study 3 – using HTDM with prior knowledge of the hyperparameter values
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Getting familiar with HTDM
HTDM is designed to help you decide which hyperparameter tuning method should be adopted in a 
particular situation (see Figure 12.1). Here, the situation is defined based on six aspects:

•	 Hyperparameter space properties, including the size of the space, types of hyperparameter 
values (numerical only or mixed), and whether it contains conditional hyperparameters or not

•	 Objective function complexity: whether it is a cheap or expensive objective function

•	 Computational resource availability: whether or not you have enough parallel computational 
resources

•	 Training data size: whether you have a few, moderate, or a large number of training samples

•	 Prior knowledge availability: whether you have prior knowledge of the good range of 
hyperparameter values

•	 Types of ML algorithms: whether you are working with a small, medium, or large-sized model, 
and whether you are working with a traditional ML or deep learning type of algorithm

This can be seen in the following diagram:

Figure 12.1 – HTDM
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The definition of Small, Medium, and Large in HTDM is very subjective. However, you can refer to 
the following table as a rule of thumb:

Figure 12.2 – Rule of thumb of size definition

The following important notes may also help us decide which hyperparameter tuning method we 
should adopt in a particular situation:



Introducing Hyperparameter Tuning Decision Map236

Figure 12.3 – Important notes for each hyperparameter tuning method

In this section, we discussed HTDM, along with several additional important notes to help you 
decide which hyperparameter tuning method you should adopt in a particular situation. In the next 
few sections, we will learn how to utilize HTDM in practice through several interesting study cases.
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Case study 1 – using HTDM with a CatBoost classifier 
Let’s say we are training a classifier based on the marketing campaign data that was introduced 
in Chapter 7, Hyperparameter Tuning via scikit. Here, we are utilizing CatBoost (see Chapter 11, 
Understanding Hyperparameters of Popular Algorithms) as the classifier. This is our first time working 
with the given data. The laptop we are using only has a single-core CPU and the hyperparameter 
space is defined as follows. Note that we are not working with a conditional hyperparameter space:

•	 iterations: randint(5,200)

•	 depth: randint(3,10)

•	 learning_rate: np.linspace(1e-5,1e-3,20)

•	 l2_leaf_reg: np.linspace(1,30,30)

•	 one_hot_max_size: randint(2,15)

Based on the given case description, we can try to utilize HTDM to help us choose which hyperparameter 
tuning suits the condition the best. First of all, we know that we do not have any prior knowledge or 
meta-learning results of the good hyperparameter values on the given data. This means we will only 
focus on the right branch of the first node in HTDM, as shown here:

Figure 12.4 – Case study 1, no prior knowledge
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We know that we are not working with a conditional hyperparameter space. This means we will only 
focus on the right branch of the second node, as shown here:

Figure 12.5 – Case study 1, not a conditional hyperparameter space

Based on a rough estimation, our CatBoost model’s size should be in the range of small to medium-
sized. This means we will only focus on the left and bottom branches of the third node, as shown here:

Figure 12.6 – Case study 1, small to medium model size



Case study 2 – using HTDM with a conditional hyperparameter space 239

We also have a medium-sized hyperparameter space that consists of only numerical values. This means 
our options are Coarse-to-Fine, Random Search, PSO, Simulated Annealing, and Genetic Algorithm. 
It is worth noting that even though our hyperparameter space consists of only numerical values, we 
can still utilize hyperparameter tuning methods that work with mixed types of values:

Figure 12.7 – Case study 1, medium-sized hyperparameter space with only numerical values

So, how do we choose a hyperparameter tuning method from the selected options? First, we know 
that PSO only works very well on the continuous type of hyperparameter values while we also have 
integers in the hyperparameter space. Thus, we can remove PSO from our options. This leaves us with 
the remaining four options. One easy and effective way to choose the best hyperparameter tuning 
method is by choosing the simplest method, which is the Random Search method.

In this section, we discussed the first case study on how to utilize HTDM in practice. In the next 
section, we will do the same using another interesting case study.

Case study 2 – using HTDM with a conditional 
hyperparameter space
Let’s say we are faced with a similar condition as in the previous section but now, we are working with 
a conditional hyperparameter space, as defined here:

one_hot_max_size = randint(2,15)

iterations = randint(5,200)

If iterations < 50:

   depth = randint(3,10)

   learning_rate = np.linspace(5e-4,1e-3,10)

   l2_leaf_reg = np.linspace(1,15,20)

elif iterations < 100:

   depth = randint(3,7)
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   learning_rate = np.linspace(1e-5,5e-4,10)

l2_leaf_reg = np.linspace(5,20,20)

else:

     depth = randint(3,5)

     learning_rate = np.linspace(1e-6,5e-5,10)

l2_leaf_reg = np.linspace(5,30,20)

Based on the given case description, we can try to utilize HTDM again to help us choose which 
hyperparameter tuning method suits the condition the best. Here, similar to the previous study case, 
we know that we do not have any prior knowledge or meta-learning results of the good hyperparameter 
values on the given data. This means we will only focus on the right branch of the first node in HTDM 
(see Figure 12.4). However, in this case, we are now working with a conditional hyperparameter space. 
This means we will only focus on the left branch of the second node, as shown here:

Figure 12.8 – Case study 2, a conditional hyperparameter space

Since we have more than 10,000 samples of training data (see Chapter 7, Hyperparameter Tuning via 
scikit), we only have two hyperparameter tuning methods to choose from based on HTDM, namely 
the BOHB or Random Search method (see Figure 12.9). Choosing Random Search over BOHB surely 
is a wise choice if we only compare them based on the simplicity of the implementation since we need 
to install the Microsoft NNI package just to adopt the BOHB method (see Figure 12.3). 
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However, we know that we are working with a model that is not very small, and BOHB can decide 
which subspace needs to be searched based on previous experiences, not based on luck. Thus, in 
theory, BOHB will be a better choice to save us time searching for the best set of hyperparameters. 
So, which method should we pick? It’s up to your discretion:

Figure 12.9 – Case study 2, large training data

In this section, we discussed the second case study on how to utilize HTDM in practice. In the next 
section, we will do the same using another interesting case study.

Case study 3 – using HTDM with prior knowledge of the 
hyperparameter values
Let’s say, in this case, we are also faced with a similar condition as in the previous case study, but this 
time, we have prior knowledge of the good hyperparameter values for the given data since one of the 
data scientists in our team has worked with the same data previously. This means we will only focus 
on the left branch of the first node in HTDM, as shown here:

Figure 12.10 – Case study 3, have prior knowledge
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Based on the given case description, we know that we do not have enough parallel computational 
resources since we only have a single-core CPU. This means we will only focus on the right branch 
of the second node, as shown here:

Figure 12.11 – Case study 3, not enough parallel computational resources

We also know that we have a medium-sized hyperparameter space that only consists of numerical 
types of values. This means our options are SMAC, TPE, and Metis:

Figure 12.12 – Case study 3, medium-sized hyperparameter space with only numerical values
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Based on the preceding diagram, we know that SMAC works best when the hyperparameter space 
is dominated by categorical hyperparameters, which is not the case here. Thus, we can remove 
SMAC from our options. If we try to decide based on the implementation popularity, then TPE is 
the one we should choose since it’s implemented in Hyperopt, Optuna, and NNI, while Metis is only 
implemented in NNI. However, one of the main selling points of Metis is its ability to suggest the set 
of hyperparameters we should test in our next trial. So, which method should we pick? It’s up to you.

In this section, we discussed the third case study on how to utilize HTDM in practice. Now, let’s 
summarize this chapter.

Summary
In this chapter, we summarized all of the hyperparameter tuning methods we’ve discussed so far in a 
simple decision map called HTDM. This can help you to choose which method is the most suitable for 
your specific problem. We also discussed several important notes for each of the hyperparameter tuning 
methods and saw how to utilize the HTDM in practice. From now on, you’ll be able to utilize HTDM 
in practice to help you decide which hyperparameter tuning method to adopt in your specific situation.

In the next chapter, we’ll discuss the need to track hyperparameter tuning experiments and learn how 
to do so using several open source packages. 
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Tuning Experiments

Working with a lot of experiments can sometimes be overwhelming. Many iterations of experiments 
will need to be done. It will become even more complicated when we are experimenting with many 
ML models.

In this chapter, you will be introduced to the importance of tracking hyperparameter tuning experiments, 
along with the usual practices. You will also be introduced to several open source packages that are 
available and learn how to utilize each of them in practice.

By the end of this chapter, you will be able to utilize your favorite package to track your hyperparameter 
tuning experiment. Being able to track your hyperparameter tuning experiment will boost the 
effectiveness of your workflow.

In this chapter, we will cover the following topics:

•	 Revisiting the usual practices

•	 Exploring Neptune

•	 Exploring Scikit-Optimize

•	 Exploring Optuna

•	 Exploring Microsoft NNI

•	 Exploring MLflow



Tracking Hyperparameter Tuning Experiments246

Technical requirements
In this chapter, we will learn how to track hyperparameter tuning experiments with various packages. 
To ensure that you can reproduce the code examples in this chapter, you will require the following:

•	 The Python 3 (version 3.7 or above)

•	 The pandas package (version 1.3.4 or above)

•	 The NumPy package (version 1.21.2 or above)

•	 The scikit-learn package (version 1.0.1 or above)

•	 The matplotlib package (version 3.5.0 or above)

•	 The Plotly package (version 4.0.0 or above)

•	 The Neptune-client package (version 0.16.3 or above)

•	 The Neptune-optuna package (version 0.9.14 or above)

•	 The Scikit-Optimize package (version 0.9.0 or above)

•	 The TensorFlow package (version 2.4.1 or above)

•	 The Optuna package (version 2.10.0 or above)

•	 The MLflow package (version 1.27.0 or above)

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Hyperparameter-Tuning-with-Python.

Revisiting the usual practices
Conducting hyperparameter tuning experiments in a small-scale project may seem straightforward. 
We can easily do several iterations of experiments and write all the results in a separate document. 
We can log the details of the best set of hyperparameter values (or the tested set of hyperparameters 
if we perform a manual search method, as shown in Chapter 3, Exhaustive Search), along with the 
evaluation metric, in each experiment iteration. By having an experiment log, we can learn from the 
history and define a better hyperparameter space in the next iteration of the experiment. 

When we adopt the automated hyperparameter tuning method (all the methods we’ve discussed so 
far besides the manual search method), we can get the final best set of hyperparameter values directly. 
However, this is not the case when we adopt the manual search method. We need to test numerous 
sets of hyperparameters manually. Several practices are adopted by the community when performing 
manual searches. Let’s take a look.

https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python
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Using a built-in Python dictionary

This is the most straightforward approach since we just need to create a Python dictionary that stores 
all the hyperparameter values that need to be tested. Although this practice is very simple, it has 
drawbacks. For example, we may not notice if we overwrite some of the hyperparameter values and 
forget to log the correct set of hyperparameter values. The following example of utilizing a built-in 
Python dictionary to store all of the hyperparameter values needs to be tested in a particular manual 
search iteration:

hyperparameters = {

'n_estimators': 30,

'max_features': 10,

'criterion': 'gini',

'max_depth': 5,

'min_samples_split': 0.03,

'min_samples_leaf': 1,

}

Next, let’s look at configuration files.

Using a configuration file

Whether it is a JSON, YAML, or CFG file, configuration files are another option. We can put all the 
hyperparameter details within this configuration file, along with other additional information, including 
(but not limited to) project name, author name, and data pre-processing pipeline methods. Once you 
have created the configuration file, you can load it into your Python script or Jupyter notebook, and 
treat it like a standard Python dictionary. The main advantage of using a configuration file is that all 
the important parameters are located within a single file, so it will be very easy to reuse the previously 
saved configuration files and increase the readability of your code. However, utilizing configuration 
files when working with a big project or huge code base can sometimes confuse us since we have to 
maintain several configuration files.

Using additional modules

The argparse and Click modules come in handy if you want to specify the hyperparameter 
values or any other training arguments via the Command Line Interface (CLI). These modules can 
be utilized when we write our code in a Python script, not in a Jupyter notebook. 
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Using argparse

The following code shows how to utilize argparse in a Python script:

import argparse

parser = argparse.ArgumentParser(description='Hyperparameter 
Tuning')

parser.add_argument('--n_estimators, type=int, default=30, 
help='number of estimators')

parser.add_argument('--max_features, type=int, default=20, 
help='number of randomly sampled features for choosing the best 
splitting point')

parser.add_argument('--criterion, type=str, default='gini', 
help='homogeneity measurement method')

parser.add_argument('--max_depth, type=int, default=5, 
help='maximum tree depth')

parser.add_argument('--min_samples_split, type=float, 
default=0.03, help='minimum samples to split internal node')

parser.add_argument('--min_samples_leaf, type=int, default=1, 
help='minimum number of samples in a leaf node')

parser.add_argument('--data_dir, type=str, required=True, 
help='maximum tree depth')

The following code shows how to access the values from the CLI:

args = parser.parse_args()

print(args.n_estimators)

print(args.max_features)

print(args.criterion)

print(args.max_depth)

print(args.min_samples_split)

print(args.min_samples_leaf)

print(args.data_dir)

You can run the Python script with specified parameters, as follows:

python main.py --n_estimators 35 -–criterion "entropy" -–data_
dir "/path/to/my/data"

It is worth noting that the default values of the hyperparameters will be used if you don’t specify them 
when calling the Python script. 
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Using click

The following code shows how to utilize click in a Python script. Note that click is very similar  
to argparse with a simpler implementation. We just need to add decorations on top of a 
particular function:

import click

@click.command()

@click.option("--n_estimators, type=int, default=30, 
help='number of estimators")

@click.option("--max_features, type=int, default=20, 
help='number of randomly sampled features for choosing the best 
splitting point")

@click.option("--criterion, type=str, default='gini', 
help='homogeneity measurement method")

@click.option("--max_depth, type=int, default=5, help='maximum 
tree depth")

@click.option("--min_samples_split, type=float, default=0.03, 
help='minimum samples to split internal node")

@click.option("--data_dir, type=str, required=True, 
help='maximum tree depth")

def hyperparameter_tuning(n_estimators, max_features, 
criterion, max_depth, min_samples_split, data_dir):

#write your code here

Similar to argparse, you can run the Python script with specified parameters, as shown here. The 
default hyperparameter values will be used if you don’t specify them when calling the Python script:

python main.py --n_estimators 35 -–criterion "entropy" -–data_
dir "/path/to/my/data"

While experimenting with either argparse or click is very easy to do, it is worth noting that neither 
saves values anywhere. Hence, it requires extra effort to log all of the experimented hyperparameter 
values in each trial.

Regardless of whether we are adopting manual search or other automated hyperparameter tuning 
methods, it will require a lot of effort if we have to log the resulting experiment’s details manually. It 
can be overwhelming, especially when we are working with larger-scale experiments where we have 
to test several different ML models, data pre-processing pipelines, and other experiment setups. That’s 
why, in the coming sections, you will be introduced to several packages that can help you track your 
hyperparameter tuning experiments so that you have a more effective workflow.
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Exploring Neptune
Neptune is a Python (and R) package that acts as a metadata store for MLOps. This package supports 
a lot of features for working with the model-building metadata. We can utilize Neptune for tracking 
our experiments, not only hyperparameter tuning experiments but also other model-building-related 
experiments. We can log, visualize, organize, and manage our experiments just by using a single 
package. Furthermore, it also supports model registry and live monitors our ML jobs.

Installing Neptune is very easy – you can just use pip install neptune-client or conda 
install -c conda-forge neptune-client. Once it has been installed, you need to sign 
up for an account to get the API token. Neptune is free for an individual plan within the quota limit, 
but you need to pay if you want to utilize Neptune for commercial team usage. Further information 
about registering yourself for Neptune can be found on their official website: https://neptune.
ai/register.

Using Neptune to help track your hyperparameter tuning experiments is straightforward, as shown 
in the following steps:

1.	 Create a new project from your Neptune account’s home page:

Figure 13.1 – Creating a new Neptune project
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2.	 Enter a name and description for your project:

Figure 13.2 – Entering the project’s details
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3.	 Write the hyperparameter tuning experiment script. Neptune provides several boilerplate code 
options based on the framework you want to use, including (but not limited to) Optuna, PyTorch, 
Keras, TensorFlow, scikit-learn, and XGBoost. You can just copy the provided boilerplate code 
and customize it based on your needs. For example, let’s use the provided boilerplate code for 
Optuna (see Figure 13.3) and save the training script as train_optuna.py. Please see the full 
code in this book’s GitHub repository, which was provided in the Technical requirements section:

Figure 13.3 – Creating the hyperparameter tuning experiment script

4.	 Run the hyperparameter tuning script (python train_optuna.py) and look at the 
metadata of the experiments on your Neptune project page. Every run will be stored as a new 
experiment ID in Neptune, so you don’t have to worry about the experiment versioning since 
Neptune will handle it automatically for you:

Figure 13.4 – Neptune’s experiment runs table
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You can also see all the metadata for each of the experiment runs, including (but not limited 
to) the tested hyperparameters, source code, CPU/GPU usage, metric charts, artifacts (data, 
model, or any other related files), and figures (for example, confusion matrices), as shown in 
the following screenshot:

Figure 13.5 – Metadata stored in Neptune
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5.	 Analyze the experiment results. Neptune can not only help you log all of the metadata for 
each experiment run, but it can also compare several different runs using several types of 
comparison strategies. You can see the hyperparameter values comparison via parallel plot or 
line charts. You can also compare all of the experiment details via a Side-by-side comparison 
strategy (see Figure 13.6). Furthermore, Neptune also enables us to compare the logged images 
or artifacts between each run:

Figure 13.6 – Comparing the experiment runs and their results

For more information regarding what you can log and display in Neptune, please refer to the official 
documentation page: https://docs.neptune.ai/you-should-know/what-can-
you-log-and-display. 

Integrations in Neptune
Neptune provides numerous integrations for ML-related experiments in general and also for 
specific hyperparameter tuning-related tasks. Three integrations are supported by Neptune for 
hyperparameter tuning tasks: Optuna, Keras, and Scikit-Optimize. For more information, please 
refer to the official documentation page: https://docs.neptune.ai/integrations-
and-supported-tools/intro.  
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More examples
Neptune is a very powerful package that can be utilized for other ML experiment-related 
tasks, too. For more examples of how to utilize Neptune in general, please refer to the official 
documentation page: https://docs.neptune.ai/getting-started/examples. 

In this section, you were introduced to Neptune and how to utilize it to help you track your hyperparameter 
tuning experiments. In the next section, you will learn how to utilize the famous Scikit-Optimize 
package for hyperparameter tuning experiment tracking purposes.

Exploring scikit-optimize
You were introduced to the Scikit-Optimize package in Chapter 7, Hyperparameter Tuning via Scikit, 
to conduct a hyperparameter tuning experiment. In this section, we will learn how to utilize this 
package to track all hyperparameter tuning experiments conducted using this package. 

Scikit-Optimize provides very nice visualization plots that summarize the tested hyperparameter 
values, the objective function scores, and the relationship between them. Three plots are available in this 
package, as shown here. Please see the full code in this book’s GitHub repository for more details. The 
following plots were generated based on the same experimental setup that was provided in Chapter 7, 
Hyperparameter Tuning via Scikit, for the BOGP hyperparameter tuning method:

•	 plot_convergence: This is used to visualize the hyperparameter tuning optimization 
progress for each iteration:

Figure 13.7 – Convergence plot



Tracking Hyperparameter Tuning Experiments256

•	 plot_evaluations: This is used to visualize the optimization evolution process history. 
In other words, it shows the order in which hyperparameter values were sampled during the 
optimization process. For each hyperparameter, a histogram of explored hyperparameter values 
is generated. For each pair of hyperparameters, the scatter plot of tested hyperparameter values 
is visualized and equipped with colors to act as the legend of the evolution history (from blue 
to yellow):

Figure 13.8 – Evaluation plot

•	 plot_objective: This is used to visualize the pairwise dependence plot of the objective 
function. This visualization helps us gain information regarding the relationship between the 
tested hyperparameter values and the objective function scores. From this plot, you can see 
which subspace needs more attention and which subspace, or even which hyperparameter, 
needs to be removed from the original space in the next trial:
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Figure 13.9 – Pairwise dependence plot

Integration with Neptune
Scikit-Optimize provides very informative visualization modules. However, it does not support 
any experiment versioning capabilities, unlike the Neptune package. To get the best of both 
worlds, we can integrate Scikit-Optimize with Neptune via its integration module. For more 
information about this, please refer to the official documentation page: https://docs-
legacy.neptune.ai/integrations/skopt.html. 
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In this section, you learned how to utilize the Scikit-Optimize package to help you track your 
hyperparameter tuning experiments. In the next section, you will learn how to utilize the Optuna 
package for hyperparameter tuning experiment tracking purposes.

Exploring Optuna
Optuna is a hyperparameter tuning package in Python that provides several hyperparameter tuning 
methods. We discussed how to utilize Optuna to conduct a hyperparameter tuning experiment in 
Chapter 9, Hyperparameter Tuning via Optuna. Here, we will discuss how to utilize this package to 
track those experiments. 

Similar to Scikit-Optimize, Optuna provides very nice visualization modules to help us track the 
hyperparameter tuning experiments and as a guide for us to decide which subspace to search in the 
next trial. Four visualization modules can be utilized, as shown here. All of them expect the study 
object (see Chapter 9, Hyperparameter Tuning via Optuna) as input. Please see the full code in this 
book’s GitHub repository:

•	 plot_contour: This is used to visualize the relationship between hyperparameters (as well 
as the objective function scores) in the form of contour plots:

Figure 13.10 – Contour plot
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•	 plot_optimization_history: This is used to visualize the hyperparameter tuning 
optimization progress for each iteration:

Figure 13.11 – Optimization history plot

•	 plot_parallel_coordinate: This is used to visualize the relationship between 
hyperparameters (as well as the objective function scores) in the form of a parallel coordinate plot:

Figure 13.12 – Parallel coordinate plot
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•	 plot_slice: This is used to visualize the hyperparameter tuning method’s search evolution. 
You can see what hyperparameter values have been tested in the experiment and which subspace 
is getting more attention during the search process:

Figure 13.13 – Slice plot

The nice thing about all the visualization modules in Optuna is that they are all interactive charts 
since they are created using the Plotly visualization package. You can zoom in on a specific area 
in the charts and use other interactive features.

Integration with Neptune
Similar to Scikit-Optimize, Optuna provides very informative visualization modules. However, 
it does not support any experiment versioning capability, unlike the Neptune package. We can 
integrate Optuna with Neptune via its integration module. For more information about this, 
please refer to the official documentation page: https://docs-legacy.neptune.
ai/integrations/optuna.html. 

In this section, you learned how to utilize the Optuna package to track your hyperparameter tuning 
experiments. In the next section, you will learn how to utilize the Microsoft NNI package for 
hyperparameter tuning experiment tracking purposes.

Exploring Microsoft NNI
Neural Network Intelligence (NNI) is a package that is developed by Microsoft and can be utilized not 
only for hyperparameter tuning tasks but also for neural architecture search, model compression, and 
feature engineering. We discussed how to utilize NNI to conduct hyperparameter tuning experiments 
in Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI. 
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In this section, we will discuss how to utilize this package to track those experiments. All of the 
experiment tracking modules provided by NNI are located in the web portal. You learned about the 
web portal in Chapter 10, Advanced Hyperparameter Tuning with DEAP and Microsoft NNI. However, 
we haven’t discussed it in depth and there are many useful features you should know about. 

The web portal can be utilized to visualize all of the hyperparameter tuning experiment’s metadata, 
including (but not limited to) tuning and training progress, evaluation metrics, and error logs. It can 
also be utilized to update the experiment’s concurrency and duration, and retry the failed trials. The 
following is a list of all the important modules in the NNI web portal that can be utilized to help us track 
our hyperparameter tuning experiments. The following plots have been generated based on the same 
experimental setup that was stated in Chapter 10, Advanced Hyperparameter Tuning with DEAP and 
Microsoft NNI, for the Random Search method. Please see the full code in this book’s GitHub repository:

•	 The Overview page shows an overview of our hyperparameter tuning experiment, including its 
name and ID, status, start and end time, best metric, elapsed duration, number of trials faceted 
by the status, as well as the experiment path, training platform, and tuner details. Here, you 
can also change the maximum duration, the maximum number of trials, and the experiment’s 
concurrency. There is also a dedicated module that shows the top-performing trials: 

Figure 13.14 – The Overview page
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•	 The Trials detail page shows every detail regarding the experiment’s trials, including a 
visualization of all the metrics (see Figure 13.15), a hyperparameter values parallel plot (see 
Figure 13.16), a bar chart of the duration of all the trials (see Figure 13.17), and a line chart of 
all intermediate results that shows the trend of each trial during the intermediate steps. We can 
also see the details of each trial via the Trial jobs module, including (but not limited to) the 
trial’s ID, duration, status, metric, hyperparameter value details, and log files (see Figure 13.18):

Figure 13.15 – The Trials detail page

The following is a parallel plot that shows different hyperparameter values that had been 
tested in the experiment:

Figure 13.16 – Hyperparameter values parallel plot
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The following is a bar chart containing information about the duration of all the trials in the 
experiment:

Figure 13.17 – Trials duration bar chart

Finally, there’s the Trial jobs module:

Figure 13.18 – The Trial jobs module
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The Trial jobs module includes the following:

•	 Sidebar: We can access all the information related to the search space, config, and log files in 
the sidebar:

Figure 13.19 – Sidebar

•	 The Auto refresh button: We can also change the refresh interval of the web portal by using 
the Auto refresh button:

Figure 13.20 – The Auto refresh button
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•	 The Experiment summary button: By clicking this button, you can view all the summaries 
for the current experiment:

Figure 13.21 – The Experiment summary button

In this section, you learned how to utilize the Microsoft NNI package to track your hyperparameter 
tuning experiments. In the next section, you will learn how to utilize the MLflow package for 
hyperparameter-tuning experiment tracking purposes.

Exploring MLflow
MLflow can be utilized to manage the whole end-to-end ML pipeline. It is available in Python, R, 
Java, and via the REST API. The primary functions of MLflow include experiment tracking, ML code 
packaging, ML model deployment management, and centralized model storing and versioning. In this 
section, we will learn how to utilize this package to track our hyperparameter tuning experiments. 
Installing MLflow is very easy; you can just use the pip install mlflow command.

To track our hyperparameter tuning experiments with MLflow, we simply need to add several logging 
functions to our code base. Once we’ve added the required logging function, we can go to the provided 
UI by simply entering the mlflow ui command in the command line and opening it at http://
localhost:5000. Many logging functions are provided by MLflow, and the following are some 
of the main important logging functions you need to be aware of. Please see the full example c

ode in this book’s GitHub repository:

•	 create_experiment(): This function is used to create a new experiment. You can specify 
the name of the experiment, tags, and the path to store the experiment artifacts.

•	 set_experiment(): This function is used to set the given experiment name or ID as the 
current active experiment.

•	 start_run(): This function is used to start a new MLflow run under the current active 
experiment. It is suggested to use this function as a context manager within a with block. 

http://localhost:5000
http://localhost:5000
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•	 log_metric(): This function is used to log a single metric within the currently active run. 
If you want to do bulk logging, you can also use the log_metrics() function by passing 
a dictionary of metrics.

•	 log_param(): This function is used to log a parameter or hyperparameter within the 
currently active run. If you want to do bulk logging, you can also use the log_params() 
function by passing a dictionary of metrics.

•	 log_artifact(): This function is used to log a file or directory as an artifact of the 
currently active run. If you want to log all the contents of a local directory, you can also use 
the log_artifacts() function.

•	 set_tag(): This function is used to set a tag for the currently active run. You must provide 
the key and value of the tag. For example, you can set the key as “release_version” 
and the value as “1.0.0”. 

•	 log_figure(): This function is used to log a figure as an artifact of the currently active 
run. This function supports the matplotlib and pyplot figure object types.

•	 log_image(): This function is used to log an image as an artifact of the currently active 
run. This function supports the numpy.ndarray and PIL.image.image object types.

MLflow Logging Functions
For more information regarding all the available logging functions in MLfLow, please refer 
to the official documentation page: https://www.mlflow.org/docs/latest/
tracking.html#logging-functions. 

MLflow Integrations
MLflow also supports integrations with many well-known open source packages, including (but 
not limited to) scikit-learn, TensorFlow, XGBoost, PyTorch, and Spark. You can do automatic 
logging by utilizing the provided integrations. For more information, please refer to the official 
documentation page: https://www.mlflow.org/docs/latest/tracking.
html#automatic-logging. 

Examples of Hyperparameter Tuning Use Cases
The author of MLflow has provided example code for hyperparameter tuning use cases. For 
more information, please refer to the official GitHub repository: https://github.com/
mlflow/mlflow/tree/master/examples/hyperparam. 



Summary 267

In this section, you learned how to utilize the MLflow package to track your hyperparameter tuning 
experiments. You can start exploring this package by yourself to get a better understanding of how 
this package works and how powerful it is.

Summary
In this chapter, we discussed the importance of tracking hyperparameter tuning experiments, along 
with the usual practices. You were also introduced to several open source packages that are available 
and learned how to utilize each of them in practice, including Neptune, Scikit-Optimize, Optuna, 
Microsoft NNI, and MLflow. At this point, you should be able to utilize your favorite package to track 
your hyperparameter tuning experiment, which will boost the effectiveness of your workflow.

In the next chapter, we’ll conclude all the topics we have discussed throughout this book. We’ll also 
discuss the next steps you can take to expand your hyperparameter tuning knowledge.
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Conclusions and Next Steps

Congratulations on finishing this book! You have been introduced to a lot of interesting concepts, 
methods, and implementations related to hyperparameter tuning throughout the previous chapters. 
This chapter summarizes all the important lessons learned in the previous chapters, and will introduce 
you to several topics or implementations that you may benefit from that we have not covered yet in 
this book.

The following are the main topics that will be discussed in this chapter:

•	 Revisiting hyperparameter tuning methods and packages

•	 Revisiting HTDM

•	 What’s next?

Revisiting hyperparameter tuning methods and packages
Throughout this book, we have discussed four groups of hyperparameter tuning methods, including 
exhaustive search, Bayesian optimization, heuristic search, and multi-fidelity optimization. All the 
methods within each group have similar characteristics to each other. For example, manual search, 
grid search, and random search, which are part of the exhaustive search group, all work by exhaustively 
searching through the hyperparameter space, and can be categorized as uninformed search methods. 

Bayesian optimization hyperparameter tuning methods are categorized as informed search methods, 
where all of them work by utilizing both surrogate model and acquisition function. Hyperparameter 
tuning methods, which are part of the heuristic search group, work by performing trial and error. 
As for hyperparameter tuning methods from the multi-fidelity optimization group, they all utilize 
the cheap approximation of the whole hyperparameter tuning pipeline, so that we can have similar 
performance results with much lesser computational cost and faster experiment time.
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The following table summarizes all of the hyperparameter tuning methods discussed in this book, 
along with the supported packages:
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Figure 14.1 – Hyperparameter tuning methods and packages summary

In this section, we have revisited all of the hyperparameter tuning methods and packages discussed 
throughout the book. In the next section, we will revisit the HTDM.
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Revisiting HTDM
The Hyperparameter Tuning Decision Map (HTDM) is a map that you can use to help you decide 
which hyperparameter tuning method should be adopted in a particular situation. We discussed in detail 
how you can utilize HTDM, along with several use cases, in Chapter 12, Introducing the Hyperparameter 
Tuning Decision Map. Here, we will only revisit the map, as shown in the following figure:

Figure 14.2 – HTDM

In this section, we have revisited the HTDM. In the next section, we’ll discuss other topics you may 
find interesting to further boost your hyperparameter tuning knowledge.
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What’s next?
Even though we have discussed a lot of hyperparameter tuning methods and their implementations in 
various packages, there are several important concepts you may need to know about that have not been 
discussed in this book. As for the hyperparameter tuning method, you can also read more about the 
CMA-ES method, which is part of the heuristic search group (https://cma-es.github.io/). 
You can also read more about the meta-learning concept to further boost the performance of your 
Bayesian optimization tuning results (https://lilianweng.github.io/posts/2018-
11-30-meta-learning/). It is also worth noting that we can combine the manual search method 
with other hyperparameter tuning methods to boost the efficiency of our experiments, especially when 
we already have prior knowledge about the good range of the hyperparameter values.

As for the packages, you can also learn more about the HpBandSter package, which implements 
the Hyper Band, BOHB, and random search methods (https://github.com/automl/
HpBandSter). Finally, there are also several packages that automatically create a scikit-learn wrapper 
from the non-scikit-learn model. For example, you can utilize the Skorch package to create scikit-learn 
wrappers from PyTorch models (https://skorch.readthedocs.io/en/stable/).

Summary
In this chapter, we have summarized all the important concepts discussed throughout all chapters 
in this book. You have also been introduced to several new concepts that you may want to learn to 
further boost your hyperparameter tuning knowledge. From now on, you will have the skills you need 
to take full control over your machine learning models and get the best models for the best results via 
hyperparameter tuning experiments. 

Thanks for investing your interest and time in reading this book. Best of luck on your hyperparameter 
tuning learning journey!

https://cma-es.github.io/
https://lilianweng.github.io/posts/2018-11-30-meta-learning/
https://lilianweng.github.io/posts/2018-11-30-meta-learning/
https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://skorch.readthedocs.io/en/stable/
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