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xxi

About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/Wiley_Statistics_for_Data

We are happy that you have chosen our book for your course. For instructors that
adopt the book, we provide these supplemental materials:

● Short answers and exercises in the text.
● Datasets and Python examples
● Videos mentioned in the test
● Link to GitHub repository and Jupyter notebook
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xxiii

Introduction

Statistics and Data Science

As of the writing of this book, the fields of statistics and data science are evolv-
ing rapidly to meet the changing needs of business, government, and research
organizations. It is an oversimplification, but still useful, to think of two distinct
communities as you proceed:

1) The traditional academic and medical research communities that typically con-
duct extended research projects adhering to rigorous regulatory or publication
standards, and

2) Businesses and large organizations that use statistical methods to extract value
from their data, often on the fly. Reliability and value are more important than
academic rigor to this data science community.

Most users of statistical methods now fall in the second category, as those meth-
ods are a basic component of what is now called artificial intelligence (AI). How-
ever, most of the specific techniques, as well as the language of statistics, had their
origin in the first group. As a result, there is a certain amount of “baggage” that
is not truly relevant to the data science community. That baggage can sometimes
be obscure or confusing and, in this book, we provide guidance on what is or is
not important to data science. Another feature of this book is the use of resam-
pling/simulation methods to develop the underpinnings of statistical inference
(the most difficult topic in an introductory course) in a transparent and under-
standable fashion.
We start offwith some examples of statistics in action (including two of statistics

gone wrong), then dive right in to look at the proper design of studies and account
for the possible role of chance. All the standard topics of introductory statistics are
here (probability, descriptive statistics, inference, sampling, correlation, etc.), but
sometimes they are introduced not as separate standalone topics but rather in the
context of the situation in which they are needed.
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xxiv Introduction

Accompanying Web Resources

Python code, datasets, some solutions, and othermaterial accompanying this book
can be found at https://introductorystatistics.com/.

Python

Python is a general programming language that can be used in many different
areas. It is especially popular in the machine learning and data science commu-
nities. A wide range of libraries provide efficient solutions for almost every need,
from simple one-off scripts, to web servers, and highly complex scientific applica-
tions. As we will see throughout this book, it also has great support for statistics.
You can use Python in many different ways. For most people new to the

language, the easiest way to get started is to use Python in Jupyter notebooks (see
https://jupyter.org/jupyter.org). Jupyter notebooks are documents that contain
both code and rich text elements, such as figures, links, equations, etc. Because of
this, they are an ideal environment to learn Python and to present your work. You
will find notebooks with the example code of this book on our website (https://
introductorystatistics.com/).
A great way to get started with Python is to run code on one of the freely

accessible cloud computing platforms. Google Colab (https://colab.research
.google.com/) has a free tier that is sufficient for all the examples in this book.
An alternative to cloud computing platforms is to install Python locally on

your computer. You can download and install different versions of Python
from https://www.python.org. However, it is more convenient to use Anaconda
(https://www.anaconda.com). Anaconda is a free package manager for Python
and R programming languages focusing on scientific computing. It distributes the
most popular Python packages for science, mathematics, engineering, and data
analysis. We provide detailed installation instructions on our website at https://
introductorystatistics.com/.

Using Python with this Book

With some exceptions, this book presents relevant Python code in the second part
of each chapter. The book is not an in-depth step-by-step introduction to computer
programming as a discipline, but rather it provides the tools you need to imple-
ment the statistical procedures that are discussed in this book. Because many of
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Introduction xxv

these procedures are based on iterative resampling, rather than simply calculating
formulas, you will get useful practice with the data handling and manipulation
that is a Python strength. No specific level of Python ability is required to get
started. If you are completely new to Python, you could consider launching your-
self with a quick self-study guide (easily found on the web), but, in general, you
should be able to follow along.
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1

Statistics and Data Science

Statistical methods first came into use before homes had electricity, and had
several phases of rapid growth:

● The first big boost came from manufacturers and farmers who were able to
decrease costs, produce better products, and improve crop yields via statistical
experiments.

● Similar experiments helped drug companies graduate from snake oil purveyors
to makers of scientifically proven remedies.

● In the late 20th century, computing power enabled a new class of computation-
ally intensive methods, like the resampling methods that we will study.

● In the early decades of the current millennium, organizations discovered that
the rapidly growing repositories of data they were collecting (“big data”) could
be mined for useful insights.

As with any powerful tool, the more you know about it the better you can apply
it and the less likely you will go astray. The lurking dangers are illustrated when
you type the phrase “How to lie with...” into a web search engine. The likely auto-
completion is “statistics.”
Much of the book that follows deals with important issues that can determine

whether data yields meaningful information or not:

● How to assess the role that random chance can play in creating apparently inter-
esting results or patterns in data

● How to design experiments and surveys to get useful and reliable information
● How to formulate simple statistical models to describe relationships between
one variable and another

We will start our study in the next chapter with a look at how to design exper-
iments, but, before we dive in, let’s look at some statistical wins and losses from
different arenas.

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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2 1 Statistics and Data Science

1.1 Big Data: Predicting Pregnancy

In 2010, a statistician from Target described how the company used customer
transaction data to make educated guesses about whether customers are pregnant
or not. On the strength of these guesses, Target sent out advertising flyers to likely
prospects, centered around the needs of pregnant women.
How did Target use data to make those guesses? The key was data used to

“train” a statistical model: data in which the outcome of interest—pregnant/not
pregnant—was known in advance. Where did Target get such data? The “not
pregnant” data was easy—the vast majority of customers are not pregnant, so
data on their purchases is easy to come by. The “pregnant” data came from a
baby shower registry. Both datasets were quite large, containing lists of items
purchased by thousands of customers.
Some clues are obvious—the purchase of a crib and baby clothes is a dead

giveaway. But, from Target’s perspective, by the time a customer purchases these
obvious big ticket items, it was too late—they had already chosen their shopping
venue. Target wanted to reach customers earlier, before they decided where to
do their shopping for the big day. For that, Target used statistical modeling to
make use of non-obvious patterns in the data that distinguish pregnant from
non-pregnant customers. One clue that emerged was shifts in the pattern of
supplement purchases—e.g. a customer who was not buying supplements 60 days
ago but is buying them now.

1.2 Phantom Protection from Vitamin E

In 1993, researchers examining a database on nurses’ health found that nurses
who took vitamin E supplements had 30% to 40% fewer heart attacks than those
who didn’t. These data fit with theories that antioxidants such as vitamins E and
C could slow damaging processes within the body. Linus Pauling, winner of the
Nobel Prize in Chemistry in 1954, was a major proponent of these theories, which
were one driver of the nutritional supplements industry.
However, the heart health benefits of vitamin E turned out to be illusory. A study

completed in 2007 divided 14,641 male physicians randomly into four groups:

1) Take 268mg of vitamin E every other day
2) Take 500mg of vitamin C every day
3) Take both vitamin E and C
4) Take placebo.

Those who took vitamin E fared no better than those who did not take vitamin E.
Since the only difference between the two groups was whether or not they
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1.3 Statistician, Heal Thyself 3

took vitamin E, if there were a vitamin E effect, it would have shown up. Several
meta-analyses, which are consolidated reviews of the results ofmultiple published
studies, have reached the same conclusion. One found that vitamin E at the above
dosage might even increase mortality.
What happened to make the researchers in 1993 think they had found a link

between vitamin E and disease inhibition? In reviewing a vast quantity of data,
researchers thought they saw an interesting association. In retrospect, with the
benefit of a well-designed experiment, it appears that this association was merely
a chance coincidence. Unfortunately, coincidences happen all the time in life. In
fact, they happen to a greater extent than we think possible.

1.3 Statistician, Heal Thyself

In 1993, Mathsoft Corp., the developer of Mathcad mathematical software,
acquired StatSci, the developer of S-PLUS statistical software, the precursor
to R. Mathcad was an affordable tool popular with engineers—prices were
in the hundreds of dollars and the number of users was in the hundreds of
thousands. S-PLUS was a high-end graphical and statistical tool used primarily
by statisticians—prices were in the thousands of dollars and the number of users
was in the thousands.
In looking to boost revenues, Mathsoft turned to an established marketing

principle—cross-selling. In other words, try to convince the people who bought
product A to buy product B. With the acquisition of a highly regarded niche
product, S-PLUS, and an existing large customer base for Mathcad, Mathsoft
decided that the logical thing to do would be to ramp up S-PLUS sales via direct
mail to its installed Mathcad user base. It also decided to purchase lists of similar
prospective customers for both Mathcad and S-PLUS.
This major mailing program boosted revenues, but it boosted expenses even

more. The company lost over $13million in 1993 and 1994 combined—significant
numbers for a company that had only $11 million in 1992 revenue.
What happened?
In retrospect, it was clear that the mailings were not well targeted. The costs of

the unopenedmail exceeded the revenue from the few recipients who did respond.
Mathcad users turned out not to be likely users of S-PLUS. The huge losses could
have been avoided through the use of two common statistical techniques:

1) Doing a test mailing to the various lists being considered to (1) determine
whether the list is productive and (2) test different headlines, copy, pricing,
etc., to see what works best.

2) Using predictive modeling techniques to identify which names on a list are
most likely to turn into customers.
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4 1 Statistics and Data Science

1.4 Identifying Terrorists in Airports

Since the September 11, 2001, Al Qaeda attacks in the United States and subse-
quent attacks elsewhere, security screening programs at airports have become a
major undertaking, costing billions of dollars per year in the United States alone.
Most of these resources are consumed in an exhaustive screening process. All pas-
sengers and their tickets are reviewed, their baggage is screened and individuals
pass through detectors of varying sophistication. An individual and his or her bag
can only receive a limited amount of attention in a screening process that is applied
to everyone. The process is largely the same for each individual. Potential terrorists
can see the process and its workings in detail and identify weaknesses.
To improve the effectiveness of the system, security officials have studiedways of

focusing more concentrated attention on a small number of travelers. In the years
after the attacks, one technique used enhanced screening for a limited number
of randomly selected travelers. While it adds some uncertainty to the screening
process, which acts as a deterrent to attackers, random selection does nothing to
focus attention on high-risk individuals.
Determining who is at high-risk is, of course, the problem. How do you know

who the high-risk passengers are?
Onemethod is passenger profiling—specifying some guidelines aboutwhat pas-

senger characteristics merit special attention. These characteristics were deter-
mined by a reasoned, logical approach. For example, purchasing a ticket for cash,
as the 2001 hijackers did, raises a red flag. The Transportation Security Admin-
istration trains a cadre of Behavior Detection Officers. The Administration also
maintains a specific no-fly list of individuals who trigger special screening.
There are several problems with the profiling and no-fly approaches.

● Profiling can generate backlash and controversy because it comes close to stereo-
typing. American National Public Radio commentator Juan Williams was fired
when hemade an offhand comment to the effect that hewould be nervous about
boarding an aircraft in the company of people in full Muslim garb.

● Profiling, since it does tend tomerge with stereotyping and is based on logic and
reason, enables terrorist organizations to engineer attackers that do not meet
profile criteria.

● No-fly lists are imprecise (a name may match thousands of individuals) and
often erroneous. Senator Edward Kennedy was once pulled aside because he
supposedly showed up on a no-fly list.

An alternative or supplemental approach is a statistical one—separate out pas-
sengers who are “different” for additional screening, where “different” is defined
quantitatively across many variables that are not made known to the public.
The statistical term is “outlier.” Different does not necessarily prove that the
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1.6 Big Data and Statisticians 5

person is a terrorist threat, but the theory is that outliers may have a higher threat
probability. Turning the work over to a statistical algorithm mitigates some of the
controversy around profiling, since security officers would lack the authority to
make discretionary decisions.
Defining “different” requires a statistical measure of distance, which we will

learn more about later.

1.5 Looking Ahead

We’ll be studying many things in this book, but several important themes will be

1) Learning more about random processes and statistical tools that will help
quantify the role of chance and distinguish real phenomena from chance
coincidence.

2) Learning how to design experiments and studies that can provide more defini-
tive answers to questions such as whether a medical therapy works, which
marketing message generates a better response, and which management
technique or industrial process produces fewer errors.

3) Learning how to specify and interpret statistical models that describe the rela-
tionship between two variables, or between a response variable and several
“predictor” variables, in order to:
• Explain/understand phenomena and answer research questions (“What fac-
tors contribute to a drug’s success, or the response to amarketingmessage?”).

• Make predictions (“Will a given subscriber leave this year?” “Is a given insur-
ance claim fraudulent?”)

1.6 Big Data and Statisticians

Before the turn of the millennium, by and large, statisticians did not have to be
too concerned with programming languages, SQL queries, and the management
of data. Database administration and data storage in general was someone else’s
job, and statisticians would obtain or get handed data to work on and analyze.
A statistician might, for example,

● Direct the design of a clinical trial to determine the efficacy of a new therapy
● Help a researcher determine how many subjects to enroll in a study
● Analyze data to prepare for legal testimony
● Conduct sample surveys and analyze the results
● Help a scientist analyze data that comes out of a study
● Help an engineer improve an industrial process
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6 1 Statistics and Data Science

All of these tasks involve examining data, but the number of records is likely to
be in the hundreds or thousands at most, and the challenge of obtaining the data
and preparing it for analysis was not overwhelming. So the task of obtaining the
data could safely be left to others.

1.6.1 Data Scientists

The advent of big data has changed things. The explosion of data means that more
interesting things can be done with data, and they are often done in real time or
on a rapid turnaround schedule. FICO, the credit-scoring company, uses statistical
models to predict credit card fraud, collecting customer data, merchant data, and
transaction data 24 hours a day. FICOhasmore than twobillion customer accounts
to protect, so it is easy to see that this statisticalmodeling is amassive undertaking.
The science of computer programming and details of database administration lie

beyond the scope of this book, but these fields now liewithin the scope of statistical
work. The statistician must be conversant with the data, as well as how to get it
and work with it.

● Statisticians are increasingly asked to plug their statistical models into big data
environments, where the challenge of wrangling and preparing analyzable data
is paramount, and requires both programming and database skills.

● Programmers and database administrators are increasingly interested in adding
statistical methods to their toolkits, as companies realize that their databases
possess value that is strategic, not just administrative, and goes well beyond the
original reason for collecting the data.

Around 2010, the term data scientist came into use to describe analysts who com-
bined these two sets of skills. Job announcements now carry the term data scientist
with greater frequency than the term statistician, reflecting the importance that
organizations attach to managing, manipulating, and obtaining value out of their
vast and rapidly growing quantities of data.
We close this chapter with a probability experiment:

Try It Yourself
1) Write down a series of 50 random coin flips without actually flipping the
coins. That is, write down a series of 50 made-up H’s and T’s selected in
such a way that they appear random.

2) Now actually flip a coin 50 times.
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1.6 Big Data and Statisticians 7

If you look at the series of made-up tosses and compare them to the real tosses,
the longest streaks of either H or T generally occur in the ACTUAL tosses. When
a person is asked to make up random tosses, they will rarely “allow” more than
four H’s or T’s in a row. By the time they have written down four H’s in a row, they
think it is time to switch over to T, or else the series would not appear random. By
contrast, instructors who teach this exercise in class often see a streak of 8 T’s or
H’s in a row. Most people think that this is not random, and yet it clearly is.
In 1913, a roulette wheel at theMonte Carlo casino landed on black 26 times in a

row. As the streak developed, gamblers, convinced that the wheel would most cer-
tainly have to end the streak, increasingly bet heavily on red—they lost millions.
The message here is that random variation reliably produces patterns that

appear non-random.
Why is this significant? Just as with coin tosses, there is a significant component

of randomvariation (engineers call it noise) in the data that routinely flow through
life—whether business life, government affairs, the education world, or personal
life. Somuch data…somuch random variation…howdowe knowwhat is real and
what is random?
We can’t know for certain, thoughwe do know that randombehavior can appear

to be real. One purpose of this book is to teach you about probability, and help you
evaluate the potential randomcomponent in data, and provideways ofmodeling it.
This gives us a benchmark against which to measure patterns, and form educated
guesses about whether observed events or patterns of interest might be really due
to chance. When we understand randomness better, we can curb the tendency to
chase after random patterns, and produce more reliable analyses of data.
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2

Designing and Carrying Out a Statistical Study

In this chapter, we study random behavior and how it can fool us, and we learn
how to design studies to gain useful and reliable information. After completing
this chapter, you should be able to

1) Use coin flips to replicate random processes, and interpret the results of
coin-flipping experiments

2) Use an informal working definition of probability
3) Define, intuitively, p-value
4) Describe the different data formats you will encounter, including relational

database and flat file formats
5) Describe the difference between data encountered in traditional statistical

research, and “big data”
6) Explain the use of treatment and control groups in experiments
7) Define statistical bias
8) Explain the role of randomization and blinding in assigning subjects in a study
9) Explain the difference between observational studies and experiments
10) Design a statistical study following basic principles

2.1 Statistical Science

“It’s not what you don’t know that
hurts you, it’s what you know for sure
that ain’t so.” (Will Rogers, American
humorist)

Source: Silvio/Adobe Stock Photos

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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10 2 Designing and Carrying Out a Statistical Study

Nearly all large organizations now have huge stores of customer and other
data that they mine for insight, in hopes of boosting revenue or reducing costs.
In the academic world, over five million research articles are published per year
in scholarly and scientific journals. These activities afford ample opportunity to
dive into the data, and discover things that aren’t true, particularly when the
diving is done automatically and at a large scale. Statistical methods play a large
role in this extraction of meaning from data. However, the science of statistics
also provides tools to study data more carefully, and distinguish what’s true from
what ain’t so.

2.2 Big Data

In most organizations today, raw data are plentiful (often too plentiful), and this
is a two-edged sword.

● Huge amounts of data make prediction possible in circumstances where small
amounts of data don’t help. One type of recommendation system, for example,
needs to process millions of transactions to locate transactions with the same
item you are looking at—enough so that reliable information about associated
items can be deduced.

● On the other hand, huge data flows and incorrect data can obscure meaning-
ful patterns in the data, and generate false ones. Useful data are often difficult
and expensive to gather. We need to find ways to get the most information,
and the most accurate information, for each dollar spent in assembling and
preparing data.

2.3 Data Science

The terms big data, machine learning, data science, and artificial intelligence
(AI) often go together, and bring different things to mind for different people.
The term artificial intelligence, particularly with the advent of Chat-GPT and gen-
erative AI, suggests almost magical methods that approach human-like cognition
capabilities. Privacy-minded individuals may think of large corporations or spy
agencies combing through petabytes of personal data in hopes of locating tidbits
of information that are interesting or useful. Analysts may focus on statistical and
machine learning models that can predict an unknown value of interest (loan
default, acceptance of a sales offer, filing a fraudulent insurance claim or tax
return, for example).
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2.4 Example: Hospital Errors 11

Statistical science, by contrast, has well over a century of history, and its meth-
ods were originally tailored to data that were small and well-structured. However,
it is an important contributor to the field of data science which, when it is well
practiced, is not just aimless trolling for patterns, but starts out with questions of
interest:

● What additional product should we recommend to a customer?
● Which price will generate more revenue?
● Does the MRI show a malignancy?
● Is a customer likely to terminate a subscription?

All these questions require someunderstanding of randombehavior and all benefit
from an understanding of the principles of well-designed statistical studies, so this
is where we will start.

2.4 Example: Hospital Errors

Healthcare accounts for about 18% of the United States GDP (as of 2024), is a
regular subject of political controversy and proposals for reform, and produces
enormous amounts of data and analysis. One area of study is the problem of medi-
cal errors—violations of theHippocratic oath’s “donoharm”provision.Millions of
hospitalized patients each year around the world are affected by treatment errors
(mostly medication errors). A 2017 report from the National Institutes of Health
(NIH) in the U.S. estimated that 250,000 deaths per year resulted from medical
errors. There are various approaches to dealing with the problem.

Source: Vineey/Adobe Stock Photos
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12 2 Designing and Carrying Out a Statistical Study

Clinical Decision Support systems (CDS) are used to guide practitioners in
diagnosis and treatment, and can provide rule-based alerts when standard
treatment protocols are violated. However, all those rules must be programmed
and kept up-to-date in an extremely complex medical environment. Many false
alarms result, which can cause practitioners to ignore the alerts. Recent advances
in machine learning have enabled systems that learn on their own to provide
alerts, without experts having to program rules. These systems allow for the
correction of errors once they occur, but what about identifying the causes of
errors and reducing their frequency?
One obvious and uncontroversial innovation has been to promote the use of

checklists to reduce errors of omission.Other ideasmaynot be so obvious. No-fault
error reporting has been proposed, in which staff are encouraged to report all
errors, both their own and those committed by others, without fear of punish-
ment. This could have the benefit of generating better information about errors
and their sources, but could also hinder accountability efforts. How could you find
out whether such a program really works? The answer: a well-designed statistical
study.

2.5 Experiment

To tie together our study of statistics we will look at an experiment designed to test
whether no-fault reporting of all hospital errors reducesmajor errors in hospitals
(errors resulting in further hospitalization, serious complications, or even death).
An experiment like this was conducted by a hospital in Quebec, Canada, but it was
too small to provide definitive conclusions. For illustrative purposes, we will look
at hypothetical data that a larger study might have produced.
Experiments are used in industry, medicine, social science, and data science.

The ubiquitous A/B test (more on that later) is an experiment. The key feature of
an experiment is that the investigatormanipulates some variable that is believed to
affect an outcome of interest, in order to demonstrate the importance and effect (or
lack thereof) of the variable. This stands in contrast to a survey or other analysis
of existing data, where the analyst simply collects and analyzes data. For example,
in a web experiment, the marketing investigator might try out a new product price
to see how it affects sales.
Experiments can be uncontrolled or controlled. In an uncontrolled experiment,

the investigator collects data on the group or time period for which the variable of
interest has been changed. In aweb experiment, for example, the price of a product
might be increased by 25%, and then sales compared to prior sales.
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2.6 Designing an Experiment 13

Experiment vs. Observational Study
In the fifth inning of the third game of the 1932 baseball World Series between
the NY Yankees and the Chicago Cubs, the great slugger Babe Ruth came to
bat and pointed towards center field, as if to indicate that he planned to hit
the next pitch there. On the next pitch, he indeed hit the ball for a home run
into the center field bleachers.a

A Babe Ruth home run was an impressive feat, but not that uncommon. He
hit one every 11.8 at-bats. Whatmade this one so special is that he predicted it.
In statistical terms, he specified in advance a theory about a future event—the
next swing of the bat—and an outcome of interest—a home run to center field.
In statistics, we make an important distinction between studying

pre-existing data (an observational study) and collecting data to answer
a pre-specified question (an experiment or prospective study). The most
impressive and durable results in science come when the researcher specifies
a question in advance, then collects data in a well-designed experiment to
answer the question. Offering commentary on the past can be helpful, but is
no match for predicting the future.

aThere is some controversy about whether he actually pointed to center field or to left field
and whether he was foreshadowing a prospective home run or taunting Cubs players. You
can Google the incident (“Babe Ruth called shot”) and study videos on YouTube, then judge
for yourself.

2.6 Designing an Experiment

The problem with an uncontrolled experiment is the uncertainty involved in the
comparison. Suppose sales drop 10% in the web experiment with the new price.
Can you be sure that nothing else has changed since the experiment started? Prob-
ably not—companies aremakingmodifications and trying new things all the time.
Hence, the need for a control group.
In a controlled experiment, two groups are used and they are handled in the

same way, except that one is given the treatment (e.g. the increased price), and the
other is not given the treatment. In this way, we can eliminate the confounding
effect of other factors not being studied.

2.6.1 A/B Tests; A Controlled Experiment for the Hospital Plans

In our errors experiment, we could compare two groups of hospitals. One group
uses the no-fault plan and one does not. The group that gets the change in
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14 2 Designing and Carrying Out a Statistical Study

treatment you wish to study (here, the no-fault plan) is called the treatment group.
The group that gets no treatment or the standard treatment is called the control
group.
An experiment like this, testing a control group vs. a treatment group, is also

called an A/B test, particularly in the field of marketing, where one web treatment
might be tested against another. Sometimes, particularly inmarketing, theremight
not be an established control scenario and we are simply comparing one proposed
new treatment against another proposed new treatment (e.g. two different web
pages).
How do you decide which hospitals go into which group?
You would like the two groups to be similar to one another, except for the treat-

ment/control difference. That way, if the treatment group does turn out to have
fewer errors, you can be confident that it was due to the treatment. One way to do
this would be to study all the hospitals in detail, examine all their relevant charac-
teristics, and assign them to treatment/control in such a way that the two groups
end up being similar across all these attributes. There are two problems with this
approach.

1) It is usually not possible to think of all the relevant characteristics that might
affect the outcome. Research is replete with the discovery of factors that were
unknown prior to the study or thought to be unimportant.

2) The researcher, who has a stake in the outcome of the experiment, may con-
sciously or unconsciously assign hospitals in a way that enhances the chances
of the success of their pet theory.

Oddly enough, the best strategy is to assign hospitals randomly: for example,
by tossing a coin.

2.6.2 Randomizing

True random assignment eliminates both conscious and unconscious bias in
the assignment to groups. It does not guarantee that the groups will be equal in
all respects. However, it does guarantee that any departure from equality will
be due simply to the chance allocation, and that the larger the samples, the
fewer differences the groups will have. With extremely large samples, differences
due to chance virtually disappear, and you are left with differences that are
real—provided the assignment to groups is really random.
Random assignment lets us make the claim that any difference in group out-

comes that is more than might reasonably happen by chance is, in fact, due to
the different treatment of the groups. The study of probability in this book lets us
quantify the role that chance can play and take it into account.
We can imagine an experiment in which both groups got the same treatment.

Wewould expect to see somedifferences fromonehospital to another. An everyday
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2.6 Designing an Experiment 15

example of this might be tossing a coin. If you toss a coin 10 times you will get a
certain number of heads. Do it again and you will probably get a different number
of heads.
Though the results vary, there are laws of chance that allow you to calculate

things like howmany heads you would expect on average or howmuch the results
would vary from one set of 10 (or 100 or 1000) tosses to the next. If we assign sub-
jects at random, we can use these same laws of chance—or a lot of coin tosses—to
analyze our results.
If we have Doctor Jones assign subjects using her own best judgment, we will

have no knowledge of the (often subconscious) factors that influence assignment.
These factors may bias assignment so that we can no longer say that the only thing
(besides chance assignment) distinguishing the treatment and control groups is
the treatment. Randomassignment is not always possible—for example, randomly
assigning elementary school students to two different teaching methods, where
everything else in the education setting is the same.
Randomization can be difficult or impossible in some situations, but it is rela-

tively easy in the A/B testing that is popular in digital marketing. Web visitors can
be easily randomized to one web page or another; email recipients can easily be
assigned randomly to one version or another of an email.

2.6.3 Planning

You need some hospitals and you estimate you can find about 100 within a rea-
sonable distance. You will probably need to present a plan for your study to the
hospitals to get their approval. That seems like a nuisance, but they cannot let just
anyone do any study they please on the patients.1 In addition to writing a plan to
get approval, you know that one of the biggest problems in interpreting studies
is that many are poorly designed. You want to avoid that, so you think carefully
about your plan and ask others for advice. It would be good to talk to a statistician
with experience in medical work. Your plan is to ask the 100 or so available hos-
pitals if they are willing to join your study. They have a right to say no. You hope
quite a few will say yes. In particular, you hope to recruit 50 willing hospitals and
randomly assign them to treatment and control.

Try It Yourself
How exactly would you assign hospitals randomly? Think about options for
the scenario where it doesn’t matter if the groups are exactly equal-sized, and
for the scenario where you want two groups of equal size.

1 This effort is modest, in comparison to that required to gain approval for new drug therapies.
Clinical trials to establish drug efficacy and safety can take years and cost billions of dollars.
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16 2 Designing and Carrying Out a Statistical Study

Figure 2.1 Dart throws off-target
in consistent fashion (biased).
Source: Peter Bruce (Book Author).

2.6.4 Bias

Randomization is used to try to make the two groups similar at the beginning.
It is important to keep them as similar as possible during the experiment.Wewant
to be sure the treatment is the only difference between them. Any difference in
outcome due to non-randomextraneous factors is a formof bias. Statistical bias is a
technical concept but can include the lay definition that refers to people’s opinions
or states of mind.

Definitions: Bias Statistical bias is the tendency for an estimate, model, or pro-
cedure to yield results that are consistently off-target for a specific purpose (as in
Fig. 2.1).

For example, the mean (average) income for a region might not be a good esti-
mate for the income of a typical resident, if part of the region is home to a small
number of very high-income residents. Their incomes would likely raise the aver-
age above that of most typical residents (i.e. ones selected at random). Another
example is gun sights on a long-range rifle. Gravity will exert a downward pull on
a bullet, the more distant the target the greater the pull. The coordinates of the
target in the sights will be biased upward compared to where the bullet lands.
Bias can often creep into a studywhen humans are involved, either as subjects or

experimenters. For one thing, subject behavior can be changed by the fact that they
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2.6 Designing an Experiment 17

are participating in a study. Experience has also shown that people respond posi-
tively to attention, and just being part of a study may cause subjects to change. A
positive response to the attention of being in a study is called theHawthorne effect.
Awareness of an issue can significantly affect perceptions, which is why potential
jurors in a trial are asked if they have seen news coverage of a case at issue.

Out-of-Control Toyotas?
In the fall of 2009, the National Highway Transportation Safety Agency
(NHTSA) was receiving several dozen complaints per month about Toyota
cars speeding out of control. The rate of complaint was not that different
from the rates of complaint for other car companies. Then, in November of
2009, Toyota recalled 3.8 million vehicles to check for sticking gas pedals.
By February, the complaint rate had risen from several dozen per month to
over 1500 per month of alleged cases of unintended acceleration. Attention
turned to the electronic throttle.
Clearly what changed was not the actual condition of cars—the stock of Toy-

otas on the road in February of 2010 was not that different from November of
2009. What changed was car owners’ awareness and perception as a result of
the headlines surrounding the recall. Acceleration problems, whether real or
illusory, that escaped notice prior to November 2009 became causes for worry
and a trip to the dealer. Later, the NHTSA examined a number of engine data
recorders from accidents where the driver claimed to experience acceleration
despite applying the brakes. In all cases, the data recorder showed that the
brakes were not applied.
In February 2011, the US Department of Transportation announced that a

10-month investigation of the electronic throttle showed no problems. Public
awareness of the problem boosted the rate of complaint far out of proportion
to its true scope.

Lesson: Your perception of whether you personally experience a problem or
benefit is substantially affected by your prior awareness of others’ problems
and benefits.

Sources: Wall Street Journal, July 14, 2010; The Analysis Group (http://www.analysisgroup
.com—accessed July 14, 2010); USA Today online, April 2, 2011.

In some situations, we can avoid telling people they are participating in a study.
For example, a marketing study might try different ads or products in various
regions without publicizing that they are doing so for research purposes. In other
situations, we may not be able to avoid letting subjects know they are being
studied, but we may be able to conceal whether they are in the treatment or
control group.
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18 2 Designing and Carrying Out a Statistical Study

2.6.4.1 Placebo
A placebo is a dummy treatment imposed on the control group to render their
experience similar to that of the control group. In this way, we can distinguish the
real effect of the treatment from any response that is simply the result of perceiving
that you are being treated. Experience has shown that subjects will often experi-
ence and report good results even for dummy treatments. This positive response to
the perception that you are being treated is called the placebo effect. In medicine,
the placebo effect on the brain can be powerful for mitigating symptoms, and
explains the popularity of many remedies that have no rigorous scientific basis for
their effectiveness. In one study, a tablet labeled “placebo” was found to be 50% as
effective as actual migraine medicine in relieving migraine symptoms. Thus, the
net beneficial effect of many therapies is made up both of a real scientific compo-
nent, and a placebo component.

2.6.4.2 Blinding
The process of concealing treatment from control is termed blinding. We say
a study is single-blind when the subjects—the hospitals in our medical errors
example—do not know whether they are getting the treatment. It is double-blind
if the staff in contact with the subjects also do not know which group is getting
the real treatment. It is triple-blind if the people who evaluate the results do not
know, either.
Blinding, particularly full blinding, is not always feasible. The very nature of

the treatment (for example, no-fault error reporting for the hospital study) may
require participant awareness. The control side may need to be more than simply
“do nothing.” Drug trials typically include a sugar pill for the control arm. For
the hospital study, our control might be a standard set of best practices (excluding
no-fault reporting) shared among the control hospitals.
Inmarketing experiments, participant blindingusually happens automatically—

web viewers or message recipients are typically unaware there might be another
group seeing a different message. Bias from the analyst side, though, is common.
It often occurs when analysts have a favored outcome (perhaps subconsciously)
and can choose when to end an experiment, or elect to look at a subset of
results that seem more reasonable to them. Blinding of the analyst can mitigate
this bias.
In addition to the various forms of blinding, we try to keep all other aspects of

each subject’s environment the same. In the hospital experiment, we need to agree
on common treatment and control error-handling methods that will be applied
to all hospitals in each group. By keeping the two groups the same in every way
except the treatment, we can be confident that any differences in the results were
due to it.
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2.7 The Data 19

2.6.4.3 Before-after Pairing
We could run our study for a year and measure the total number of medical errors
each hospital had by the end of that period. A better strategy is to measure how
many errors they had the year before the study aswell. Thenwehave paired data—
two measurements on each unit. This allows us to compare the treatment to no
treatment at the same hospitals.
Note that we still retain the control group. Having both a control group and

a treatment group allows us to separate out the improvement due to no-fault-
reporting from the improvement due to themore general best practices treatment.
Having a control group also controls for trends that affect all hospitals. For
example, the number of errors could be increasing due to an increased patient
load at hospitals generally.

2.7 The Data

Let’s look at the results—major errors in the year preceding the treatment, and
during the period when some hospitals implemented the treatment intervention
(the no-fault reporting plan). A “0” in the treatment column in Table 2.1 indicates
the hospital was not selected for the no-fault treatment program, a “1” indicates
it was.
Let’s now focus directly on the subject of interest—reduction in errors. Table 2.2

shows the full table, listing only the amount by which errors were reduced.

2.7.1 Dataframe Format

Tables 2.1 and 2.2 are examples of a standard database or tabular format, which all
database programs and most standard-purpose statistical software programs use.

Table 2.1 Hospital errors (partial): before and after
treatment.

Row Hospital# Treat?
Errors
Before

Errors
After

1 239 0 27 24
2 1126 0 17 16
3 1161 0 31 29
4 1293 1 38 32
5 1462 1 25 23

45 more
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20 2 Designing and Carrying Out a Statistical Study

Table 2.2 Reduction in major errors in hospitals.

Row Hospital# Treat?
Reduction
in Errors Row Hospital# Treat?

Reduction
in Errors

1 239 0 3 26 2795 1 3
2 1126 0 1 27 2889 0 5
3 1161 0 2 28 2892 1 9
4 1293 1 2 29 2991 1 2
5 1462 1 2 30 3166 1 2
6 1486 0 2 31 3190 0 1
7 1698 1 5 32 3254 0 4
8 1710 0 1 33 3312 1 2
9 1807 0 1 34 3373 1 2
10 1936 1 2 35 3403 1 3
11 1965 1 2 36 3403 0 1
12 2021 1 2 37 3429 1 2
13 2026 0 1 38 3441 1 6
14 202 0 3 39 3520 0 1
15 208 1 4 40 3568 1 2
16 2269 1 2 41 3580 0 2
17 2381 1 2 42 3599 0 2
18 2388 0 1 43 3660 1 2
19 2400 1 2 44 3985 0 2
20 2475 0 4 45 4014 1 2
21 2548 0 1 46 4060 0 1
22 2551 0 2 47 4076 1 2
23 2661 0 1 48 4093 0 1
24 2677 1 4 49 4230 0 2
25 2739 1 2 50 5633 0 2

The standard object in data programming languages is a dataframe. Rows rep-
resent records or cases—hospitals in this example. Columns represent variables,
which are data that change from case to case (hospital to hospital). The format has
two key features:

1) Each row contains all the information for one and only one case.
2) All data for a given variable is in a single column.
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2.8 Variables and Their Flavors 21

To load data from a .csv file2 into a dataframe named “data,” you would use
pandas with the syntax data = pd.read_csv("hospitalerrors.
csv"). We will cover this in more detail in Section 2.19.3.
Let’s look at the hospital data.

Column 1 is simply the row number.
Column 2, hospital, contains case labels. These are arbitrary labels for the exper-
imental units—a unique number for each unit. Case labels keep track of the
data. For example, if we find a mistake in the data, we would need to know
which hospital that came from so we could investigate the cause and correct
the mistake. Numerical codes are preferred to more informative labels when
we wish to conceal the group to which subjects were assigned.

Column3 labels observations from the treatment groupwith a one and those from
the control group with a zero.

Column 4 is the number of major medical errors in the year before the study
minus the number from the following year. A positive number represents a
reduction in medical errors. Note that all the numbers are positive—things
got better whether subjects got the treatment or not! This could be due to
the Hawthorne effect, or to any extra care the subjects got from being in the
experiment, or to other factors that may have changed globally between the
two years.

2.8 Variables and Their Flavors

2.8.1 Numeric Variables

The third (Treat?) and fourth (Reduction in errors) columns in Table 2.2 contain
variables. These are thingswe observe, compute, ormeasure for each subject. Each
row represents an experimental unit or subject, while each column represents a
variable. Note that we have gone from listing the number of errors at the begin-
ning of the study and the number at the end to simply listing the reduction in
errors, which is what we are really interested in. They are an example of a numeric
variable, also called a quantitative variable. These are numbers with which you
can do meaningful arithmetic, and typically measure magnitudes—how much of
something. (The hospital error data is a special type of numerical variable—it is
“count” data.)

2 “Comma separated values,” or .csv, is a simple file format that can be read by a wide variety of
programming languages and software.
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22 2 Designing and Carrying Out a Statistical Study

2.8.2 Categorical Variables

The othermain type of variable is called categorical, or sometimes factor. Examples
that might be in the database (though not printed out above) are the city, county,
or province of each hospital, or whether it was a government, business, or char-
ity hospital. Categorical data is often recorded in text labels, for example: Male
or Female, Christian, Muslim, Hindu, Buddhist, Jew, or Other. But it is also com-
mon to code categories numerically. In the hospital data, treatment is a categorical
variable and was coded as one. Control is coded as zero.
A categorical variable must take one of a set of defined non-numerical values—

yes/no, low/medium/high, mammal/bird/reptile, etc. The categories might be
represented as numbers to accommodate software, so you need to be cautious
about doing routine arithmetic on those numbers, and be aware of what the
arithmetic really means. The choice of numbers is usually arbitrary.

2.8.3 Binary Variables

A special type of categorical variable is a binary, or two-value, variable. Much
data has a binary variable as an outcome, even some data that starts out as multi-
category outcome. Examples are survive or die, purchase or no-purchase, click
or no-click, fraud or no-fraud. The prevalence of binary or yes-no data reflects
the fact that decision-making is often easier if situations, even complex ones,
can be boiled down to a choice between two alternatives. Binary data is typically
represented by 1’s and 0’s, with 1 representing the more unusual and interesting
category.

Coding categories as numbers dose not make them numeric! Don’t do
arithmetic on numerical codes for categorical data when it makes no
sense. If we code Christian, Muslim, Hindu, Buddhist, Jew, or Other
as 1, 2, 3, 4, 5, 6, respectively, then finding the total or average of these
codes is not meaningful. When the categories are ordered, such as the
degree of pain, some limited calculations may be possible.

With binary data in which one class is much more scarce than the other (e.g.
fraud/no-fraud), the scarce class is often designated “1.” Surveys and observational
studies often produce categorical data. People might be asked which candidate
they plan to vote for; what toothpaste they use; or whether they live in a house,
apartment, or mobile home. Observational studies often use similar variables that
can be evaluated at a glance or found in existing records. The basic statistical sum-
marymethod for displaying such categorical data is a frequency table (see Table 3.5
for an example).
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2.8 Variables and Their Flavors 23

With 0/1 data, for example, “fraudulent” or “OK,” the more rare and interesting category
(e.g. a fraudulent credit card charge) is designated “1.” Source: energepic.com/Pexels.

2.8.4 Text Data

Another type of data encountered is text data. Text data can appear in awide variety
of formats: ordinary prose, posts on social media, a doctor’s notes, the contents of
labels, etc. Not usually thought of as a variable, text data typically must be prepro-
cessed before it can be subjected to statistical analysis, although some machine
learning methods incorporate the needed preprocessing and can deal with text
data directly.

2.8.5 Random Variables

A variable that takes on different values (e.g. heads/tails) as the result of a random
process is a random variable.
The distinction between what is random and what is not is often fuzzy. A coin

flip, you would think, is purely unpredictable, yet magicians are able to flip coins
so that they always appear to land heads. The quantity of acetaminophen in an
extra strength Tylenol you would consider to be invariant at 500mg, yet there is
always some tiny uncontrolled variability in the exact amount of acetaminophen
per tablet. If we drill down to a sufficiently fine level of resolution, we usually
encounter an element of randomness in most measurements.
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24 2 Designing and Carrying Out a Statistical Study

2.8.6 Simplified Columnar Format

An alternative is to present the error reduction for the control group in one col-
umn and the treatment group in the other (see Table 2.3). This provides the clear-
est presentation of how the two groups differ in the extent to which errors were
reduced. The treatment grouphad, on average, 2.80 fewer errors in the second year.

Table 2.3 Error reduction: compact table.

Treatment Control

2 3
2 1
5 2
2 2
2 1
2 1
4 1
2 3
2 1
2 4
4 1
2 2
3 1
9 5
2 1
2 4
2 1
2 1
3 2
2 2
6 2
2 1
2 1
2 2
2 2

Mean: 2.80 1.88
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2.9 Python: Data Structures and Operations 25

The control group had 1.88 fewer errors in the second year. Both groups reduced
errors, but the treatment does appear to have reduced errors to a greater extent
than the control.

2.9 Python: Data Structures and Operations

Data structures and their manipulation are key features of every programming
language. This section introduces standard data types and more complex data
structures as well as some basic operations to manipulate them.

2.9.1 Primary Data Types

Python has the following primary data types:

● int: Represents integer values, such as 1, −5, or 1000.
● float: Represents floating-point or decimal values, such as 3.14, −0.5, or 2.0.
● string: Represents sequences of characters enclosed in single (’) or double
quotes ("). For example, "Hello, World!" or ’Python’.

● bool: Represents the boolean values, True and False.

The Python standard library also has support to handle data describing events at
a specific time and/or date:

● time: Represents time values, e.g. 8AM or 13:20.
● date: Represents dates, e.g. May 4th, 2023.
● datetime: Represents date and time together, e.g. 8AM on May 4th, 2023.

We are not going to cover these three data types in this book. A special data type
is None which is representing the absence of a value.
You can use the type() function to check the data type of a value.

print(type(3.14)) # <class 'float'>
print(type("Python")) # <class 'str'>
print(type(True)) # <class 'bool'>

2.9.2 Comments

Every programming language has a way to add comments to code. Comments are
used to add information about the code, but will not be executed. Comments are
started with a hash (#) and continue until the end of the line.

# This is a comment
print("Hello, World!") # This is also a comment
print("Inside a string # this is not a comment")
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26 2 Designing and Carrying Out a Statistical Study

In the third line, the # character is inside a string, so it is not interpreted as a
comment. If we execute this code, we will get the following output.

Hello, World!
Inside a string # this is not a comment

2.9.3 Variables

Variables are used to store values in Python (“variables” in the computer science
world are related to, but different from “variables” in the statistical sense). In
Python, variables are words that start with a letter or underscore (_) and can con-
tain more letters, numbers, and underscores. Variable names are case-sensitive,
so message and Message are two different variables. There are some reserved
words that cannot be used as variable names. You can assign a value to a variable
using the assignment operator (=).
pi_value = 3.14
message = "Python"
is_raining = True
_formula_1 = "H2O"

You can view a variable as a synonym for the actual value and use it in place
of the value.

print(pi_value) # output: 3.14

Variables can be reassigned new values as many times as needed.

pi_value = 3.14 # value is 3.14
pi_value = 3.14159 # value is now 3.14159
two_pi = 2 * pi_value # value of two_pi is now 6.28318

2.9.4 Operations on Data

Variables by itself are useful to keep information, but the real value of variables
is that you can perform operations on them. We’ve already seen an example
above, where we used the pi_value to calculate its double value. This and other
numerical operations in Python allow you to perform calculations on numerical
data types, such as integers and floats. You can use arithmetic operators like
addition (+), subtraction (-), multiplication (*), division (/), potentiation (**)
and modulus (%).

print(2 + 3) # output: 5
print(2.0 - 3) # output: -1.0
print(10 * 3 / 6 + 4) # output: 9.0
print(2 ** 3) # output: 8 (2 to the power of 3)
print(10 * 3 / (6 + 4)) # output: 3.0
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2.9 Python: Data Structures and Operations 27

# Modulus operator returns the remainder of the division
print(8 % 3) # output: 2
print(8.0 % 3) # output: 2.0

Strings can be combined using the addition operator (+) and repeated using the
multiplication operator (*).

print("Hello, " + "World!") # output: Hello, World!
print("Python " * 3) # output: Python Python Python

If you want to access individual characters or substrings, you can index and slice
using square brackets ([]).

message = "Python"
print(message[0]) # output: P
print(message[0:2]) # output: Py
print(message[2:]) # output: thon

Strings also have a number of useful methods for common operations like replac-
ing substrings, converting to uppercase or lowercase, and splitting into substrings.

message = "Hello, World!"
print(message.replace("World", "Python")) # output: Hello, Python!
print(message.upper()) # output: HELLO, WORLD!
print(message.lower()) # output: hello, world!
print(message.split(",")) # output: ['Hello', ' World!']

2.9.4.1 Converting Data Types
Sometimes, it becomes necessary to convert data from one type to another. Python
provides functions like int(), float(), and str() to convert values between integer,
float, and string data types, respectively. This subsection explores the conversion
of data types and their significance in different scenarios.
Consider for example that you read a file, so any number will be presented as

a string of digits, for example "4213". Using the int function, we can convert
it to a number. If the text cannot be converted correctly, an exception is shown.
The same works for float and text representing real numbers like "3.1415".

text = "4213"
print(int(text)) # output: 4213
text = "3.1415"
print(float(text)) # output: 3.1415

The reverse is done by the str function. In fact, it converts any value to a string,
although not all might be very informative. This is useful if you want to show the
result of a calculation in a report or on the screen. The print function does this
actually automatically.

import math
print(math.pi) # output: 3.141592653589793
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28 2 Designing and Carrying Out a Statistical Study

The result might be good enough for a preliminary analysis, most of the time, we
want to control the outputmore. For example, wemight want to only print the first
two digits after the decimal point and combine the output with a string. There are
a variety of ways to create formatted output in Python. In our opinion, the most
flexible and readable way is to use f-strings.

print(f"PI = {math.pi:.4f}") # output: PI = 3.1416

Thef in front of the string indicates that it is a so-called f-string. The curly brackets
are used to indicate that the value of a variable or expression should be inserted
at this position. Here, the expression is math.pi. The part after the colon defines
how the values are displayed. The .4f specifies that we print a float value and that
we want to show four digits after the period. You can findmore information about
format specifiers in the Python documentation.3

2.9.5 Advanced Data Structures

Apart from the basic data types, Python offers advanced data structures that allow
you to organize and store more complex data. This subsection focuses on four
essential data structures:
list: A list is an ordered collection of elements of any type, e.g. [1, 2,

"a", [4, 5]].
tuple: A tuple is similar to a list, but cannot be modified after creation, this

means tuples are immutable, e.g. (1, 2, "a").
set: A set is an unordered collection of unique elements, e.g. {1, 2, 3}.
dict: A dictionary is a collection of key-value pairs, e.g. {"a": 1,

"b": 2}.
Lists are created using the list function or using square brackets ([]). In the
example, we create a list of integers and an empty list. We can get the length of
the list using the len function.

list1 = [0, 1, 2, 3, 4, 5, 6]
list2 = []
print(len(list1)) # output: 7
print(len(list2)) # output: 0

You can access individual elements of the list by their position. The position is
usually referred to as the index. The index of the first element is 0, the index of
the second element is 1, and so on. You can also use negative indices to access
elements counting from the end of the list. The index of the last element is−1, the
index of the second last element is −2, and so on.

3 https://docs.python.org/3/library/string.html#format-specification-mini-language
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2.9 Python: Data Structures and Operations 29

print(list1[0]) # output: 0
print(list1[1]) # output: 1
print(list1[-1]) # output: 6
print(list1[-2]) # output: 5

Lists also allow slices to access a continuous sequence of elements.

print(list1[1:3]) # output: [1, 2]
print(list1[2:]) # output: [2, 3, 4, 5, 6]
print(list1[:3]) # output: [0, 1, 2]

You can modify the elements of a list by assigning new values to the elements,
appending or inserting new values, or removing existing values.

list1[0] = 10
print(list1) # output: [10, 1, 2, 3, 4, 5, 6]
list1.append(7)
print(list1) # output: [10, 1, 2, 3, 4, 5, 6, 7]
list1.insert(3, 11) # insert 11 at index 3
print(list1) # output: [10, 1, 2, 11, 3, 4, 5, 6, 7]
list1.remove(10) # remove first occurrence of 10 from the list
print(list1) # output: [1, 2, 11, 3, 4, 5, 6, 7]
list1.pop(2) # remove element at index 2
print(list1) # output: [1, 2, 3, 4, 5, 6, 7]

Tuples are created using the tuple function or using parentheses (()). They are
similar to lists, but cannot be modified after creation.

tuple1 = (1, 2, 3, 4, 5, 6)
tuple2 = ()
print(len(tuple1)) # output: 6
print(len(tuple2)) # output: 0
print(tuple1[0]) # output: 1
print(tuple1[1:3]) # output: (2, 3)

You cannot replace, append, or remove values. The namedtuple function from the
collections module is a more flexible alternative to the standard tuple. You
can use it to create a tuple with a fixed set of fields, where the individual fields can
be accessed by names and not only by index. This is very useful in larger projects
as it makes the code more readable and less error-prone.

from collections import namedtuple
Point = namedtuple("Point", ["x", "y"]) 1©
p = Point(1, 2) 2©
print(p.x) # output: 1
print(p.y) # output: 2

1© This line creates a namedtuple called Point with the fields x and y.
2© This line creates a Point object with the values 1 and 2 for the fields x and
y. A slightly more readable alternative is to explicitly state the field names,
Point(x=1, y=2).
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30 2 Designing and Carrying Out a Statistical Study

An alternative way of defining named tuples is the NamedTuple class from the
typing package (see Section 2.9.5.2). It is the method of choice to define named
tuples with type information.

from typing import NamedTuple
class Point(NamedTuple):

x: int
y: int

We are not using it in this book, but you will find it useful in your own projects.
Sets are similar to lists, but represent an unordered collection of unique ele-

ments. Sets are created using the set function or using curly braces ({}).

set1 = {1, 2, 3, 4, 5, 6}
set2 = set()
print(len(set1)) # output: 6
print(len(set2)) # output: 0

You can add new elements to a set using the add method and remove elements
using the removemethod.

set1.add(7)
print(set1) # output: {1, 2, 3, 4, 5, 6, 7}
set1.remove(7)
print(set1) # output: {1, 2, 3, 4, 5, 6}

We can also combine two sets in different ways. The unionmethod returns a new
set with all elements from both sets, the intersectionmethod returns a new set with
elements that are common to both sets, and the difference method returns a new
set with elements in the first set but not in the second set.

set1 = {1, 2, 3, 4, 5, 6}
set2 = {4, 5, 6, 7, 8, 9}
print(set1.union(set2)) # output: {1, 2, 3, 4, 5, 6, 7, 8, 9}
print(set1.intersection(set2)) # output: {4, 5, 6}
print(set1.difference(set2)) # output: {1, 2, 3}
print(set2.difference(set1)) # output: {8, 9, 7}

There are short hand versions of these methods using the operators | for union, &
for intersection, and - for difference.

print(set1 | set2) # output: {1, 2, 3, 4, 5, 6, 7, 8, 9}
print(set1 & set2) # output: {4, 5, 6}
print(set1 - set2) # output: {1, 2, 3}
print(set2 - set1) # output: {8, 9, 7}

Sets can also be useful if you want to remove duplicate elements from a list.

list1 = [1, 2, 3, 4, 5, 6, 1, 2, 3]
print(list1) # output: [1, 2, 3, 4, 5, 6, 1, 2, 3]
list1 = list(set(list1))
print(list1) # output: [1, 2, 3, 4, 5, 6]
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2.9 Python: Data Structures and Operations 31

In lists, we identified a specific element by the position in the list. But what
wouldwe use if wewant to lookupUS state names (e.g. Virginia) using their abbre-
viation (e.g. VA). A dictionary is the perfect data structure for this task. Here is an
example:
states = {"VA": "Virginia", "MD": "Maryland", "DC": "District of Columbia"}
print(states["VA"]) # output: Virginia
print(states["MD"]) # output: Maryland

The dictionary is defined as a comma-separated list of key-value pairs. The key
and the value are separated by a colon (:). The key is used to lookup the value.
You can add new key-value pairs to a dictionary using the assignment operator
(=) and remove key-value pairs using the del function.
states["NY"] = "New York"
print(states) # output: {"VA": "Virginia", "MD": "Maryland",

# "DC": "District of Columbia", "NY": "New York"}
del states["NY"]
print(states) # output: {"VA": "Virginia", "MD": "Maryland",

# "DC": "District of Columbia"}

You can find many more specialized data structures in the Python standard
library. One that is useful to know is the collections module. It contains a
number of specialized data structures like namedtuple, Counter, and defaultdict.
We already learned about namedtuple and will cover Counter in Section 6.7. The
defaultdict is a dictionary subclass that calls a factory function to supply missing
values. This sounds more complex than it is. Here is an example:
from collections import defaultdict
word_counts = defaultdict(int) 1©
for word in ["apple", "banana", "apple", "banana", "apple"]:

word_counts[word] += 1 2©
print(word_counts) # output: defaultdict(<class 'int'>, {'apple': 3,

'banana': 2})

1© This line creates a defaultdict called word_counts with the default value of
int. This means that if a key is not found, the value will be initialized with 0.
Other types are also possible, for examplelist orset. In this case, the default
value will be an empty list or set.

2© This line increments the value of the key word by 1. If the key is not found,
the default value of 0 is used. This means word_counts[word] is initial-
ized with 0 and then incremented by 1. The operator += is a shorthand for
word_counts
[word] = word_counts[word] + 1.

As the example shows, thedefaultdict is useful if youwant to count the occurrences
of elements in a list to create a frequency table (see Section 3.6.1).
Later on, you will learn about pandas and numpy. These two packages are at

the core of many statistical packages in Python which require efficient implemen-
tation of data tables and numerical arrays. For details see Section 2.19.
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32 2 Designing and Carrying Out a Statistical Study

2.9.5.1 Classes and Objects
The data structures we covered so far, allow us to represent one or more pieces
of information. Classes and objects take this idea one step further. They combine
data and functions that operate on these data. The difference between class and
object is that class refers to the definition or implementation, while an object is an
instance of a class.
Here is an example. We want to capture information about a person. A Person

class might have a first name, family name, and a birth date. It might also have a
method (a function that is associated with a class) to calculate the full name.

class Person: 1©
def __init__(self, first_name, family_name, birth_date): 2©

self.first_name = first_name 3©
self.family_name = family_name
self.birth_date = birth_date

def full_name(self): 4©
return f"{self.first_name} {self.family_name}" 5©

1© This line indicates that we want to create a class called Person.
2© This line means that we store the value of the first_name argument in the
field self.first_name of the object.

3© This function is called an initializer. In order to create a Person object, we
need to provide the first name, family name, and birth date. The self param-
eter is a reference to the object itself. We use it to store the values in the object.

4© full_name is a method of the Person class. The self parameter is a refer-
ence to the object itself. We use it to access the values stored in the object.

5© self.first_name and self.family_name are the values stored in the
object identified by the self parameter. We use them to create the full name
with an f-string.

This might sound complicated, but it is actually quite simple. Let’s create a Per-
son object and use it.

person = Person("John", "Doe", "1970-01-01") 1©
print(person.first_name) # output: John 2©
print(person.full_name()) # output: John Doe 3©

1© This line creates a Person object with the first name John, family name Doe
and birth date 1970-01-01.

2© We can always access the fields of an object directly using the dot operator (.).
3© This line calls the full_name() method of the person object and prints the
result.

We can have asmany instances of a class as wewant. Each instance is independent
of the others. Let’s add a second person to our example and store both in a list.
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2.9 Python: Data Structures and Operations 33

person1 = Person("John", "Doe", "1970-01-01")
person2 = Person("Jane", "Doe", "1975-01-01")
persons = [person1, person2]
for person in persons: 1©

print(person.full_name()) 2©

1© We iterate over all the person objects in the list.
2© In each iteration, the variable person refers to a different person.

Output
John Doe
Jane Doe

We will not create classes in this book, but we will use them. A lot indeed, as
almost everything in Python is an object. So it is useful to have a basic under-
standing of what classes and objects are, and how they are used. For example,
the pandas library uses classes to represent dataframes (DataFrame) and series
(Series). There is a lot more to classes and objects in Python and in general.
If you want to dive deeper, we recommend the Python documentation.4

2.9.5.2 Data Types and Their Declaration
In many other programming languages, variables must be declared to be of a spe-
cific type. This is not the case in Python. The type of a variable is determined by the
value assigned to it. This is called dynamic typing. This is convenient (and power-
ful), but can also lead to errors that are not detected until the program is executed.
For example, we can assign an integer value to a variable and then assign a string
value to the same variable. If you are not aware of this change, youmight get unex-
pected results.
Since version 3.5, Python allows to declare the type of a variable. This is called

type hinting. Here is an example:

pi_value: float = 3.14 1©
message: str = "Python"
is_raining: bool = True
numbers: list[int] = [] 2©

1© This line declares that the variable pi_value is of type float. In a case like
this it is not necessary to define the type explicitly, since the value already
defines the type.

2© This line declares that the variable numbers is a list of integers (int). In this
case, it is necessary to define the type, since the value is an empty list and the
type cannot be deduced from the value.

4 https://docs.python.org/3/tutorial/classes.html
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34 2 Designing and Carrying Out a Statistical Study

Type hints can also be used to define the type of function parameters and return
values. For details, see the documentation of the typingmodule in the standard
library.
As mentioned, type hints are hints only, they are not enforced by the Python

interpreter. We can still change the type of a variable later.

pi_value = "3.14" # no error

However, there are external tools likemypy to identify cases like this and flag them
as potential errors.Modern IDEs likeVSCode are also able to check the code during
development whichmakes adding type hints evenmore useful. Most of the widely
used packages now support type hints.

2.10 Are We Sure We Made a Difference?

We found the average effect of our treatment was to reduce the number of hospital
errors by almost one—0.92. However, we see that the variability from hospital to
hospital is more than one. Some people define statistics as the art and science of
finding patterns in themidst of chance variability.We thinkwe found a difference,
but could it be due to chance? There is enough variability that it is hard to be sure
just by looking at the data. In Chapter 4 we will look at ways to assess whether the
difference we see in this current example is real or might simply be the result of
random variability in the numbers.

2.11 Is Chance Responsible? The Foundation
of Hypothesis Testing

What do we mean when we say “by chance?” Let’s illustrate with the simpler case
of just one hospital that reduced its errors from seven in the first year to three in
the second year under the no-fault program (this is the single hospital in Quebec
we mentioned earlier).

2.11.1 Looking at Just One Hospital

For this single hospital case, we can formulate our “chance” question as follows:
If we have 10 errors and each error is assigned randomly to the non-treatment

period or the treatment period (say, by coin flip), what is the probability that the
treatment year could do as well as it actually did: a “reduction” of three errors, or
even better?
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2.11 Is Chance Responsible? The Foundation of Hypothesis Testing 35

A reduction from seven errors to three seems impressive (more than 50%), but
a statistician recalling the vitamin E case might wonder if the change is real or if
it could be just a fluke of chance.
A standard approach exists for answering the question “could chance be respon-

sible?” This approach is called a hypothesis test. To conduct one, we first build a
plausiblemathematicalmodel ofwhatwemean by chance in the situation at hand.
Thenwe use thatmodel to estimate how likely it is, just by chance, to get a result as
impressive as our actual result. If we find that an impressive improvement like the
observed outcome would be very unlikely to happen by chance, we are inclined to
reject chance as the explanation. If, on the other hand, our observed result seems
quite possible according to our chance model, we conclude that chance is a rea-
sonable explanation.

Why Perform Hypothesis Tests?
The logic of a hypothesis test seems convoluted, and is confusing. You have
to make some hypothetical assumption (“chance is responsible”), and then try
to disprove it. Why do this? Think of hypothesis tests as a tool to impose
discipline on your brain, and avoid being led astray by chance. Engineers in
industry conduct experiments and want to avoid embarking on costly process
modifications suggested by chance results. Data scientists in marketing don’t
want to abandon tried and true marketing and branding campaigns on the
basis of A/B tests that are statistical flukes. Drug developers are required to
prove that the benefits of new drugs are real. The formal and mechanistic
nature of hypothesis tests with their attendant technical terms adds to the
confusion. Two groups in particular have formalized the process of assessing
whether an observed result might be explainable by chance:

● Editors of the thousands of journals that report the results of scientific
research, because they want to be sure that the results they publish are
real and not chance occurrences, and

● Regulatory authorities, mainly in medicine, who want to be sure that the
effects of drugs, treatments, etc., are real and are not due to chance.

Keeping in mind the “Is chance responsible” question, and what it means, can
mitigate the confusion.

Wewill now conduct a hypothesis test for the Quebec hospital data. What do we
mean by the outcome being “just” chance? What should that chance model look
like? We mean that there’s nothing remarkable going on—i.e. the no-fault report-
ing has no effect, and the 7 + 3 = 10 major errors just happened to land seven in
the first year and three in the second. If there is no treatment effect from no-fault
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36 2 Designing and Carrying Out a Statistical Study

reporting and only chance is operating, wemight expect 50/50, or five in each year,
but wewould not always get five each year if the outcomewere due to chance. One
way we could see what might happen would be to just toss a coin 10 times, letting
the 10 tosses represent the 10 major errors, and letting heads represent the first
year and tails the second. Then a toss of HTTHTTHHHH would represent six in the
first year and four in the second.

Try It Yourself
Toss a coin 10 times, and record the number of heads and the number of tails.
We will call the 10 tosses one trial. Then repeat that trial 11 more times for a
total of, say, 12 trials (120 tosses in all).
Did you ever get seven (or more) heads in a trial of 10 tosses?
At this stage, you have an initial impression of whether seven or more heads

is a rare event. But you only did 12 trials. We picked 12 as an arbitrary number,
just to get started. What’s next?
Let’s try a Python script to toss the coins many more times.

Let’s recap the building blocks of our model:

● A single coin flip, representing the allocation of a single error to this year (T in
the above discussion) or the prior year (H in the above discussion);

● A series of 10 coin flips, representing a single simulation, also called a trial, that
has the same sample size as the original sample of 10 errors;

● Twelve repetitions (an arbitrary number of times) of that simulation.

Another option is to sit down and figure out exactly what the probability is of
getting seven heads, eight heads, nine heads, or 10 heads. You can see how this
works for three tosses of a coin in Figure 2.2.
There are formulas that can be used to make these calculations, but for now,

we will rely on simulations, especially their computer equivalents. Recall that our
goal is to learnwhether seven heads and only three tails is an extreme, i.e. unusual,
occurrence. If we get lots of cases where we get eight heads, nine heads, etc., then
clearly seven heads is not extreme or unusual.

Why do we count ≥ 7 instead of = 7? This is an important but often
misunderstood point.

2.12 Probability

Wehave used the terms “probability” and “chance,” and you probably have a good
sense of what they mean. We hear talk of the “probability of precipitation” or
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2.12 Probability 37

Figure 2.2 All possible outcomes for three coin tosses.

“chance of precipitation,” and do not find it greatly puzzling. For now you can
think of it terms of long term frequency: The probability of something happening
is the proportion of time that it is expected to happen when the same process is
repeated over and over. For example, if, over the years,wewere to hear 100weather
forecasts of “20% chance of rain,” we would expect to have rain 20 of those days.
Probabilities are expressed as decimals (“0.20 probability of rain”) or percentages.
They must always lie between 0 (will never happen) and 1 (certain to happen), or
0% and 100%.
We will revisit probability in Chapter 5. For now, we return to the 10 coin tosses.

It turns out that the probability of getting seven or more heads is about 0.1667. A
bit later we’ll get to the question of how this number is calculated or estimated
(one way is by doing many more simulations), but for now let’s continue with our
story and see how we interpret this result.

2.12.1 Interpreting Our Result

The value of 0.1667means such an outcome, i.e. seven ormore heads, is not all that
unusual, and the results from the single Quebec hospital might be due to chance.

Would you consider chance a reasonable explanation if there were 10
major errors the year before the change and none the year after?Hint:
Use the coin tosses you already did.

Suppose it had turned out the other way? If our chance model had given a very
low probability of the actual outcome, then we are inclined to reject chance as the
main factor.
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38 2 Designing and Carrying Out a Statistical Study

Definition:P-value If we examine the results of the chancemodel simulations,
the probability of seeing a result as extreme as the observed value is called the
p-value (or probability value).

Don’t worry if this definition of p-value and thewhole hypothesis testing process
is not fully clear to you at this early stage. We will come back to it repeatedly.
The use of p-values is widespread; their use as formal decision-making criteria

lies more in the research community than in the data science community.

2.13 Significance or Alpha Level

How unusual is too unusual to be ascribed to chance?
Most would agree that if you get an apparently “extreme” result 20% or 30% of

the time under a chance model, that’s not improbable enough to rule out chance
as a possible cause.
Similarly, most would agree that if you get an extreme result only 1% of the time

under a chance model, then we probably can rule out chance as a possible cause.
What about the territory in between? Custom and tradition typically set the

threshold level of statistical significance as 5%. Given an apparently extreme result
seen in real life, if the chance model produces such an “extreme” result less than
5% of the time, i.e. in 5% of the resampling trials, it is said to be statistically signif-
icant. This 5% level is from the writings, in the first part of the 20th century, of the
great statistician, R. A. Fisher. He spoke of a frequency of one in 20 as being too
rare to ascribe to chance.
This threshold level is termed “alpha” and is denoted by the Greek letter 𝛼.

Alpha is determined before a study is done, usually by regulators or journal editors.
As noted, it is typically set at 0.05.

Definition: Significance Level The significance level 𝛼 is a threshold proba-
bility level set before doing a hypothesis test. If the hypothesis test yields a p-value
at or below 𝛼 the result is deemed statistically significant.

2.13.1 Increasing the Sample Size

Intuition tells us that small samples lead to fluke results. To see what happens
when you increase the sample size, you could try doubling the number of coin-flips
from 10 to 20, and observing the probability of getting an equivalent error reduc-
tion (from 14 to 6).
A comprehensive study like the one outlined earlier in this chapter provides for

a much larger sample, and, importantly, allows the conclusions to be extended
beyond a single hospital.
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2.13 Significance or Alpha Level 39

Law of Large Numbers
The impact of larger samples can be seen in “the law of large numbers.” The
law of large numbers states that, despite short-term average deviations from
an event’s theoretical mean, such as the chance of a coin landing heads, the
long-run empirical—actual—average occurrence of the event will approach,
with greater and greater precision, the theoretical mean. The short-run
deviations get washed out in a flood of trials. During World War II, John
Kerrich, a South African mathematician, was imprisoned in Denmark. In his
idle moments, he conducted several probability experiments.
In one such experiment, he flipped a coin repeatedly, keeping track of

the number of flips and the number of heads. After 20 flips, he was exactly
even—10 heads and 10 tails. After 100 flips, he was down six heads—44
heads, 56 tails—or 6%. After 500 flips, he was up five heads—255 heads, 245
tails—or 1%. After 10,000 flips, he was up 67 heads or 0.67%.
A plot of all his results with the proportion of heads on the y-axis and the

number of tosses on the x-axis shows a line that bounces around a lot on the
left side, but settles down to a straighter and straighter line on the right side,
tending towards 50% (see Figure 2.3a). A simulation of Kerrich’s experiment
(Figure 2.3b) shows that this behavior is not unusual.
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Figure 2.3 Kerrich coin tosses. Number of tosses on the x-axis and proportion of
heads on the y-axis. (a) Original experiment data. (b) Simulation of up to 10,000
tosses; single result highlighted, additional repeats shown in grey.

Don’t confuse the Law of Large Numbers with the popular conception
of the Law of Averages.
LawofLargeNumbers: Long run actual averagewill approach the

theoretical average as the sample size grows.
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40 2 Designing and Carrying Out a Statistical Study

LawofAverages: A vague term, sometimesmeaning the above, but
also used popularly to refer to the mistaken belief that, after a string of
heads, the coin is “due” to land tails, thus preserving its 50/50 proba-
bility in the long run. One often encounters this concept in sports, e.g.
a batter is “due” for a hit after a dry spell.

2.13.2 Simulating Probabilities with Random Numbers

We will be flipping coins or shuffling numbers mostly via random number equiv-
alents generated by Python. For our purposes, we can think of a random number
as the result of placing the digits 0 to 9 in a hat or box, shuffling the hat or box, and
then drawing a digit. We modeled whether an error occurred under the treatment
year or the pre-treatment year with a coin, and we could represent that by choos-
ing either a “0” or a “1.” Suppose a customer for a music streaming subscription
service has a 15% probability of canceling the service in a given year. This could be
modeled by generating a random integer between 1 and 100, and labeling 1–15 as
“cancel” and 16–100 as “maintain subscription.”
Most random numbers are produced by computer algorithms that produce

a series of numbers that are effectively random and unpredictable, or at least
sufficiently random for the purpose at hand. But the numbers are produced by
an algorithm that is technically called a pseudo-random number generator. There
have been many research studies and scholarly publications on the properties
of random number generators (RNGs) and the computer algorithms they use to
produce pseudo random numbers. Some are better than others; the details of
how they work are beyond the scope of this text. We can simply think of RNGs
as the computer equivalent of picking cards from a hat or box that has been
well-shuffled.

2.14 Other Kinds of Studies

We have been dealing in this chapter mostly with experiments, and accounting for
chance when we interpret the results. Experiments are costly, and most studies,
published or otherwise, fall into two other categories.

● Sample surveys
● Observational studies

In sample surveys, we have a large group, called the population, about which
we would like to know something. If we are able to obtain data on the entire popu-
lation, then the study is called a census. In national election polls, the population
might be all the people who will vote in the election.
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2.14 Other Kinds of Studies 41

Figure 2.4 The American Community Survey is a detailed version of the full census,
based on a sample.

If we asked all of them to tell us how they would vote, we would have a census,
but it would be difficult and expensive. So in many situations, we take a sample—
some smaller part of the population. This allows us to spend time and effort select-
ing sample elements in a way (usually randomly) that well represents the popu-
lation. The American Community Survey, for example, samples about 1% of the
US population yet yields much more frequent, detailed, and accurate information
than the 10-year Census (Figure 2.4). We will learn more about sample surveys
in Chapter 7.
Observational studieswork with pre-existing data. The study of nurses taking

vitamin E is one example of an observational study. Among the most famous
observational studies were the early investigations into the connection between
smoking and lung cancer. This is a situation in which an experiment would not
be ethical: we can not assign some people to smoke and others not to smoke if we
believe smoking is harmful. Observational studies are vulnerable to “look-back
bias,” in which existing data is examined, sometimes extensively, in search of
something interesting. We will learn more about this issue in Section 8.6. Since
observational studies lack treatments and randomly selected controls, their
conclusions have limitations.
One category of observational studies has grown rapidly to the point that it now

accounts for most data analysis: statistical and machine learning predictive mod-
els, the foundation for AI. They can be considered observational studies since they
rely upon existing data, not experiments.
Two practices can enhance confidence in observational studies:

1) Dividing the data randomly, and using one portion to derive a model and the
other portion to test the application of the model.

2) Rather than using all the conveniently available data, use statistical sampling
to get a fully representative sample of both conveniently available data and data
that are not convenient.
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42 2 Designing and Carrying Out a Statistical Study

2.15 When to Use Hypothesis Tests

Let’s sum up when hypothesis tests are really used:

1) Experiments in business and industry (testing responses to web offers, proto-
typing a new manufacturing process, trying out a new chemical formulation,
etc.). In such a case, the main point is to learn where the experiment results lie,
compared to possible chance outcomes (i.e. a p-value). Setting alpha is not so
important, since the decision-makers will want to judge the costs and benefits
of implementation, further research, etc. on a case-by-case basis. The p-value
is a factor, but not necessarily the deciding factor, in such analysis.

2) Studies for publication in scholarly or technical journals. The primary purpose
here is to assure the readers that the effect reported is real, not due to chance,
so alpha is typically set in advance (usually at 0.05) for a yes/no decision.

3) Studies for submission to governmental authorities (drug development, envi-
ronmental compliance, legal cases). Drug development in particular has a long
history of government control and a highly structured regulatory regime—an
important goal is to assure the public that any claimed effects of drugs are real,
and not the result of chance outcomes in studies.

2.16 Experiments Falling Short of the Gold Standard

We have described the attributes of a “gold standard” experiment:

● Group of subjects or cases, with a clearly defined intervention (treatment) that
is relevant and important

● A clear and meaningful measure of the outcome
● Control group for comparison
● Random assignment
● Blinding of participants
● Blinding of experimenter and analyst
● Testing the result for statistical significance, to avoid being fooled by chance

Studies that meet all these criteria are the exception, rather than the rule. Medi-
cal studies come the closest, due to the implications for human safety and the need
for regulatory approval. Most non-medical studies, however, work with existing
data and lack treatments initiated by the person doing the study.Most data science
analysis (predicting that an insurance claim is fraudulent, predicting that a web
visitor will purchase, segmenting customers into groups, recommending products
for purchase, and muchmore) falls in this category, involving large databases that
are generated for routine business purposes. Marketing experiments with con-
sumers can come close to the gold standard, since lists of prospective customers
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2.17 Summary 43

and web visitors can be randomly assigned to receive one message or another.
Recipients of the message see what appears to be normal marketing material and
are typically unaware they are part of an experiment.
The relative importance of formal hypothesis testing in the field of statistics has

declined somewhat as companies steadily increase the amount of analysis they do
with the vast quantities of data that they generate in the normal course of business.
These data are not typically generated as part of a study, and their analysis often
does not follow the protocol of an experiment or study that can be assessed with a
standard hypothesis test. On the other hand, resamplingmethods (generating ran-
dom data, shuffling existing data, sampling with replacement from existing data)
are often used in less formal procedures to assess natural variability in data.

Try It Yourself
Think about the following scenarios, and how (and to what extent) the desir-
able attributes of an experiment might be met:

● A large consumer goods producer with both direct-to-consumer sales
and sales via retail channels wants to test whether it should raise prices
on a product line.

● A health organization wants to test the accuracy of image-processing
algorithms in reading mammograms.

● A nonprofit wants to test different messaging in its membership renewal
drive.

● Investors in a startup want the company to focus more on increasing
profitability, and the company wants to know whether it can do this by
laying off staff.

● An agricultural product company that supplies feed to farmers wants to
test whether reducing the level of antibiotics in feed affects productivity.

2.17 Summary

Identifying truth and fact among a crowd of opinions, gut instincts, truisms, and
assumptions is difficult. Just bringing data to the table is not sufficient, as the
maxim about there being three types of lies, “lies, damned lies and statistics,”
illustrates.5 Well-designed experiments can yield sound and reliable answers to
questions. Key elements of these experiments include the use of a control group,
random assignment, and blinding. Hypothesis testing is used to reduce the risk of

5 This phrase is often attributed to Mark Twain, though he credited Disraeli.
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44 2 Designing and Carrying Out a Statistical Study

being fooled by chance, and resampling methods are an effective way of assess-
ing chance variability. Relatively few studies can be designed to incorporate all
attributes of a well-designed study, but it is still good to bear these principles in
mind and adhere to as many as are practicable.

2.18 Python: Iterations and Conditional Execution

In Section 2.9, we discussed data structures in Python, including lists, tuples,
dictionaries, and sets. Storing data is only the first step. To do something useful
with data, we need to be able to combine and manipulate them. We may for
example want to calculate the sum of all values in a list or determine the number
of values above a given threshold. In this section, we will discuss how to iterate
(repeatedly perform actions) over these data structures, and how to execute code
conditionally.

2.18.1 if Statements

The if statement allows you to execute code conditionally, depending onwhether
a certain condition is met. It can be combined with the optional elif and else
statements to execute code in different cases. Here is an example:
x = 123
if x < 0: 1©

print('x is negative')
elif x == 0: 2©

print('x is zero')
else: 3©

print('x is positive')

1© The conditional execution begins with the if statement followed by a condi-
tion. The following code block is indented and executed only if the condition is
True. In this case, the condition is x < 0, which is False because x is 123.
Therefore, the code block is not executed. Execution continues in the first line
after the code block, which is the elif statement.

2© The condition in the elif statement checks if x is equal to 0. This condition is
alsoFalse, so the next block is not excuted. Execution continues in theelse:
line.

3© The else statement does not have a condition. It is executed if none of the
previous conditions were True. This is the case here, so the outcome of the
whole if-elif-else statement is that “x is positive ” is printed.

The else and elif statements are optional. The following example only has an
if statement. After that, x is replaced with its absolute value.
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2.18 Python: Iterations and Conditional Execution 45

x = -123
if x < 0:

x = -x 1©
print(f'Absolute value of x: {x}')

1© The code block is executed only if the x < 0, which is True in this case. In
the if block, we make the negative number positive.

The elif statement is a shorthand for else: if. The initial example could also
be written as:

x = 123
if x < 0:

print('x is negative')
else:

if x == 0:
print('x is zero')

else:
print('x is positive')

If you have many conditions, the code will be indented more and more which will
make it harder to understand the expressed logic.

2.18.2 for Statements

The for statement allows you to iterate over a sequence of values. The following
example iterates over a list of numbers and prints each of them:

for x in [1, 2, 3, 4, 5]: 1©
print(x)

1© The statement is for variable in iterable. In this case, iterable is the
list of numbers. Each of the elements in the list will be assigned to the variable
x in sequence and the following code block executed. Like the if statement,
the code block is indented. The code block is executed five times. In the first
iteration, the value of x is 1, in the second iteration it is 2, and so on.

2.18.3 while Statements

The while statement allows you to execute a code block repeatedly as long as a
condition is True. The following example prints the numbers from 1 to 5:

x = 1
while x <= 5: 1©

print(x)
x += 1 2©
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46 2 Designing and Carrying Out a Statistical Study

1© The statement is while condition:. The code block is executed as long as
the condition is True. Here, the condition is x <= 5. In the first iteration, the
value of x is 1. At the end of the block, we increment x to 2. The condition x
<= 5 is still True, so we start a second iteration with x equal to 2, and so on.
In the last iteration, the value of x is 6, so the condition is False and the code
block is not executed. In total, the code block executed five times.

2© The statement x += 1 is shorthand for x = x + 1. It increases the value of
x by 1 in each iteration.

You need to be careful with while statements. If the condition is always True,
the code block will be executed forever. This is called an infinite loop.

2.18.4 break and continue Statements

There will be cases when you want to execute a for or while loop, but skip
some iterations. This can be done with the continue statement. The continue
stops the execution of the remainder of the code block and continues with the next
iteration. The following will print all odd numbers from 1 to 10:

for x in range(1, 11):
if x % 2 == 0: 1©

continue
print(x)

1© The if statement checks if the value of x is even using the modulo operator
%. If this is the case, the continue statement is executed and the loop starts
again with the next iteration.

Output
1
3
5
7
9

The break statement is similar to the continue statement. You use the break
statement, if you want to stop a for or while loop before it has finished
when a certain condition is met. This can be done with the break statement.
The following example prints the numbers from 1 to 5, but stops when the value
of x is 3:

for x in [1, 2, 3, 4, 5]:
if x == 3: 1©

break
print(x)
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2.18 Python: Iterations and Conditional Execution 47

1© The if statement checks if the value of x is 3. If this is the case, the break
statement is executed, which stops the for loop. The remainder of the code
block is not executed for x == 3, so the number 3, and the subsequent num-
bers, are not printed.

Output
1
2

2.18.5 Example: Calculate Mean, Standard Deviation, Subsetting

Let’s see the control statements in action. As a first example, we calculate themean
of a list of numbers.

numbers = [12, 8, 9, 10, 11, 13, 9, 11, 10, 12]
sum_of_numbers = 0 1©
for x in numbers: 2©

sum_of_numbers += x
mean = sum_of_numbers / len(numbers) 3©
print(f'Mean: {mean}')

1© The variable sum_of_numbers is initialized with the value 0. It will hold the
sum of all numbers after the for loop.

2© The for loop iterates over the numbers of the list and adds them to the variable
sum_of_numbers.

3© After the loop, the variable sum_of_numbers contains the sum of all num-
bers. We divide this sum by the length of the list numbers to get the mean.

Next, we calculate the standard deviation of the list of numbers. The standard devi-
ation is defined as the square root of the variance. The variance is the mean of
the squared differences of the numbers from the mean. We will learn more about
standard deviation and variance in Section 3.3.6. The following code calculates the
variance and the standard deviation:

variance = 0
for x in numbers:

variance += (x - mean) ** 2 1©
variance /= len(numbers) 2©
sd = variance ** 0.5 3©
print(f'Variance: {variance}')
print(f'Standard deviation: {sd}')

1© The for loop iterates over all numbers of the list and adds the squared differ-
ence of each number from the mean to the variable variance.

2© After the loop, the variable variance contains the sum of the squared differ-
ences of all numbers from the mean. We divide this sum by the length of the
list numbers to get the variance.
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48 2 Designing and Carrying Out a Statistical Study

3© The standard deviation is the square root of the variance. We calculate it by
raising the variance to the power of 0.5. We could also have used the sqrt()
function from the mathmodule.

Finally, we will use the if statement to subset the list of numbers. We will create
a new list that contains only the numbers that are greater than the mean:

greater_than_mean = [] 1©
for x in numbers:

if x > mean: 2©
greater_than_mean.append(x) 3©

print(f'Numbers greater than mean: {greater_than_mean}')

1© We initialize an empty list greater_than_mean that will hold the numbers
greater than the mean.

2© The for loop iterates over all numbers of the list. The if statement checks if
the number is greater than themean. If this is the case, the number is appended
to the list greater_than_mean.

2.18.6 List Comprehensions

In Python, simple for loops like the ones we’ve seen in the previous example can
be rewritten using so-called list comprehensions. Consider these two examples:

result = []
for item in iterable:

result.append(expression(item))

result = []
for item in iterable:

if condition(item):
result.append(expression(item))

The first example creates a list result by iterating over the elements of iter-
able and applying the function expression to each element. The second
example creates a list result by iterating over the elements of iterable
and applying the function expression to each element, but only if the con-
dition condition is True. The two for loops can be rewritten using list
comprehensions:

[expression(item) for item in iterable]
[expression(item) for item in iterable if condition(item)]

List comprehensions are a compact way to create lists and lead to more
readable code.
Let’s rewrite the previous examples using list comprehensions. Here is the

calculation of the variance:
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2.18 Python: Iterations and Conditional Execution 49

squared_differences = [(x - mean) ** 2 for x in numbers] 1©
variance = sum(squared_differences) / len(numbers)
print(f'Variance: {variance}, standard deviation: {variance ** 0.5}') 2©

1© The expression here is (x - mean) ** 2.
2© The f-string demonstrates how you can use an expression inside the curly
brackets. The expression variance ** 0.5 calculates the standard
deviation temporarily and uses it in the f-string.

Instead of creating the intermediate array, we can also calculate the variance
directly in a single step:

variance = sum((x - mean) ** 2 for x in numbers) / len(numbers)

This is not really a list comprehension.Whatwehave here is a generator expression.
It is similar to a list comprehension, but it does not create a list. Instead, it creates
a generator object that can be used in a for loop or passed to a function like sum()
or list().6

The subsetting of the list of numbers can be rewritten like this:

greater_than_mean = [x for x in numbers if x > mean]

There are also dictionary comprehensions and set comprehensions. Here are
two examples:

# set comprehension
numbers = [1, 2, 5, 1, 3, 2, 4, 5, 3, 4]
unique_squares = set()
for n in numbers:

unique_squares.add(n**2)
unique_squares = {n**2 for n in numbers} 1©

# dictionary comprehension
pairs = [(1, 'one'), (2, 'two'), (3, 'three')]
number_to_word = {}
for key, value in pairs:

number_to_word[key] = value
number_to_word = {key: value for key, value in pairs} 2©

1© Theset comprehension differs from list comprehensions by using curly braces
instead of square brackets.

2© The dictionary comprehension uses curly braces and a colon to separate the
key and the value.

6 You can sometimes see the sum of a list calculated like this: sum([x for x in
numbers]). This creates an intermediate list that is not needed. It is better to use sum(x for
x in numbers).
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50 2 Designing and Carrying Out a Statistical Study

2.19 Python: Numpy, scipy, and pandas—The
Workhorses of Data Science

You will often hear that Python is slow. Still, it is used in many data science appli-
cations that require fast processing of large amounts of data. How is this possible?
The answer is that these applications use specialized Python packages that move
data and time-intensive applications to highly optimized code that was written in
a more suitable programming language. In this case, Python acts as the glue to
manage the data and delegates the intensive processing to these packages. The
most important packages for data science are numpy, scipy, and pandas.

2.19.1 Numpy

For example, numpy provides a highly efficient implementation of multidimen-
sional numerical arrays. Let’s look at an example and compare performance with
a pure Python implementation. We will calculate the sum of all elements in a list
of numbers. Let us first create two representations of a list of onemillion numbers:

import numpy as np 1©
numbers = list(range(1_000_000)) 2©
numbers_np = np.arange(1_000_000) 3©

1© The import numpy as np statement imports the numpy package and
assigns it the alias np. This is a common convention that you will see every-
where. The numpy package is used so often, that it is easier to type np instead
of numpy.

2© The range() function creates an iterator that will create numbers from 0 to
999_999. The list() function converts this to a list.

3© The np.arange() function creates a numpy array of numbers from 0 to
999_999.

The numbers list is a pure Python list. The numbers_np array is a numpy array.
Thenumpy array ismore efficient in terms ofmemory usage and processing speed.
It requires only about one-fifth of the memory required by the list. Let’s see how
the processing speed differs.
We can now calculate the sum of all numbers. First, we will use a for loop:

%%timeit -n 1 -r 5 1©
sum_of_numbers = 0
for x in numbers:

sum_of_numbers += x

1© The%%timeit -n 1 -r 5 loop is a so-calledmagic command of the jupyter
notebook. It will repeat the code five times and then outputs the average time.
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2.19 Python: Numpy, scipy, and pandas—The Workhorses of Data Science 51

Output
45.1 ms ± 3.09 ms per loop (mean ± std. dev. of 5 runs, 1 loop each)

It takes about 45 ms to calculate the sum of all numbers. This is not bad, but we
can do better. If we replace the for loop with a call to the sum() function, the code
requires only 6 ms.
%%timeit -n 1 -r 5
sum_of_numbers = sum(numbers)

Output
5.92 ms ± 349 μs per loop (mean ± std. dev. of 5 runs, 1 loop each)

Using the sum method of the numpy array, we can calculate the sum even faster
in only 0.2 ms.
%%timeit -n 10 -r 5
sum_of_numbers = numbers_np.sum()

Output
184 μs ± 36.7 μs per loop (mean ± std. dev. of 5 runs, 10 loops
each)

This simple example shows that writing fast and efficient code in Python is possi-
ble if you use specialized packages. In fact,numpy is used bymany other packages.
It is at the core of scipy, pandas, and scikit-learn.
We already learned thatnumpy implementsmultidimensional numerical arrays

and operations on these arrays. In addition, you can find functions for random
number generation and linear algebra. We will encounter some of them in the
following chapters. The numpy.array is at the core of this package. You can
create a numpy.array from a list:
import numpy as np
numbers = [1, 2, 3, 4, 5]
x = np.array(numbers) 1©
print(x)

Output
[1 2 3 4 5]

There are many functions to manipulate and combine numpy.arrays. Here are
a few examples.
import numpy as np
x = np.array([1, 2, 3, 4, 5])
y = np.array([6, 7, 8, 9, 10])
print(x + y) 1©
print(x * y) 2©
print(np.sqrt((x - 3) ** 2)) 3©
print(x > 3) 4©
print(x[x > 3]) 5©
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52 2 Designing and Carrying Out a Statistical Study

1© The + operator adds the elements of the two arrays. All operations act
element-wise. This means the first element of the first array is added to the
first element of the second array, the second element of the first array is added
to the second element of the second array, and so on.

2© The * operator multiplies the elements of the two arrays.
3© In this statement, 3 is first subtracted from each element in x. The ** operator
then squares the elements of the resulting array. Finally, we take the square
root of the array.

4© The > operator compares the elements of the array with 3. The result is a
boolean array.

5© The [] operator selects the elements of the array that are True.

Output
[ 8 11 14 17 20]
[ 6 14 24 36 50]
[2. 1. 0. 1. 2.]
[False False False True True]
[4 5]

There are also a wide variety of functions to combine the elements of an array. For
example,

import numpy as np
x = np.array([1, 2, 3, 4, 5])
print(x.sum()) 1©
print(x.mean()) 2©
print(x.cumsum()) 3©

1© The sum function calculates the sum of all elements in the array.
2© Themean function calculates the mean of all elements in the array.
3© The cumsum function calculates the cumulative sum of all elements in the
array. The first element of the resulting array is the first element of the original
array, the second element is the sum of the first two elements of the original
array, and so on.

Output
15
3.0
[ 1 3 6 10 15]

This short overview should allow you to follow the examples in this book. How-
ever, we strongly recommend to have a look at the numpy documentation (https://
numpy.org) to learn more about the package.
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2.19 Python: Numpy, scipy, and pandas—The Workhorses of Data Science 53

2.19.2 Scipy

The scipy provides many more functions for scientific computing. It includes
functions for optimization, linear algebra, and statistics. We will encounter some
of them in the following chapters and introduce them when needed. The scipy
documentation (https://scipy.org) provides a good overview of the package.

2.19.3 Pandas

The name of the pandas package comes from panel data. This is a reference
to its use for the manipulation and analysis of dataframes. The pandas package
provides two main data structures:

● Series for a sequence of data points. An example would be a time series of
stock prices or the results of an experiment with a single variable.

● DataFrame for a table of data like we encountered in Section 2.7.1.

It also provides functions for reading and writing data from and to files, and for
data manipulation.
We will use pandas extensively in the following chapters as a way of loading

and collecting data and will highlight interesting features. For now, here is a short
overview of its basic functionality. Review the pandas documentation (https://
pandas.pydata.org) for detailed information.

2.19.3.1 Reading and Writing Data
Pandas has several functions for reading and writing data from and to files in
different formats. The following example reads the data from the file data.csv
and stores it in the variable df. The suffix .csv tells us that the file is in CSV
format, this means fields are separated by a comma.
import pandas as pd 1©
df = pd.read_csv("hospitalerrors.csv") 2©
df.head() 3©

1© The import pandas as pd statement imports the pandas package and
assigns it to the common alias pd.

2© The read_csv function reads a DataFrame from a CSV file. As given, the file
must be in the same directory that the code is executed from. If the file is
located in a different directory, you need to provide the full path to the file.
The DataFrame is stored in the variable df.

3© The headmethod prints the first five rows of the DataFrame. This is useful to
get a quick overview of the data. The output tells us that the data contains two
columns,Control andTreatment. The rows underneath the columnnames
are the first five rows of the data. The numbers 0 to 4 are the row indices. If not
explicitly specified otherwise, pandas uses an index for the rows that starts
at zero.
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54 2 Designing and Carrying Out a Statistical Study

Output
Control Treatment

0 1 2
1 1 2
2 1 2
3 1 2
4 1 2

The read_csv function has many options to control how the data is read. For
example, you can specify the column names or give the name of a column that
should be used as an index. The pandas documentation contains a detailed
description of all options.
You can also write a DataFrame to a file. The following example writes the

DataFrame df to the file data.csv:

df.to_csv("data.csv", index=False) 1©

1© The to_csvmethod writes the DataFrame to a CSV file. Without any options,
the index is written as an additional unnamed column in the file. We use the
index=False option to suppress this. If we don’t set this option, wewill need
to deal with this additional column when reading the file.

2.19.3.2 Accessing Data
We now have a dataframe with the data from the file hospitalerrors.csv.
We can access the data in different ways.

# Accessing a column
control = df["Control"] 1©
control = df.Control
# Accessing using row index and column names
control = df.loc[:, "Control"] 2©
row = df.loc[0] # or df.loc[0, :]
values = df.loc[4:10, "Treatment"]
value = df.loc[0, "Control"]
# Accessing data using row and column numbers 3©
treatment = df.iloc[:, 1]
row = df.iloc[0, :]
value = df.iloc[10, 0]

1© We’ve seen the [] operator as a way to access elements of lists and dictionar-
ies. It has a similar function when used with a pandas DataFrame s. Directly
applied to a DataFrame, it returns a single column as a pandas Series con-
taining the data of the column when the column’s name is used as the key.
If a list of column names is used as the key, it returns a DataFrame con-
taining the data of the columns matching the names in the list. As can be
seen in the second example, you can also use the .operator to access a col-
umn. This will only work if the column name contains no spaces or special
characters.
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2.19 Python: Numpy, scipy, and pandas—The Workhorses of Data Science 55

2© The .loc attribute is another way to access the data. The first argument is the
row index, the second argument is the column name. The .loc attribute can
also be used to access a single value. The first argument is the row index, the
second argument is the column name. Be careful if your row index is a number.
The .loc attribute will interpret the number as a row index and not as the
position in the dataframe. The .loc also understands slices as shown in the
third example. Finally, if we refer to a specific row and column, the result is
the value.

3© The .iloc attribute is similar to the .loc attribute, but uses row and column
numbers instead of row and column names.

2.19.3.3 Manipulating Data
The pandas package provides a wide variety of functions to manipulate data.
Here are a few examples:
# Adding or changing columns 1©
df["Constant value"] = 1
df["Sequence"] = range(len(df))
df["NewColumn"] = df["Control"] + df["Treatment"]
df["NewColumn"] = df["NewColumn"] * 2
# Removing a column 2©
df = df.drop(columns=["NewColumn"])
# Renaming columns 3©
df = df.rename(columns={"Control": "ControlGroup", "Treatment":

"TreatmentGroup"}) 4©
# Sorting the data
df = df.sort_values(by="ControlGroup")

1© You create new columns by using the [] operator and assigning a value to the
new column. The value can be a single value, a list, or anumpy array. In the first
example, we add a new column with the name "Constant value" and the
value 1 to the DataFrame. The second example adds a list. The third example
combines two columns by adding the values elementwise. The fourth example
takes an existing column,multiplies it by two, and replaces the original column
with the new values.

2© The drop method removes the specified columns from the DataFrame and
returns a new dataframe.

3© The renamemethod renames the specified columns. The columns argument
is a dictionary that maps the old column names to the new column names. The
renamemethod returns a new DataFrame with the renamed columns. If you
want to modify the original DataFrame, you need to assign the result of the
renamemethod to the original DataFrame.

4© The sort_valuesmethod sorts the DataFrame by the specified column. The by
argument is the name of the column to sort by. The sort_valuesmethod returns
a newDataFramewith the rows sorted by the specified column. If youwant to
modify the originalDataFrame, youneed to assign the result of the sort_values
method to the original DataFrame.
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56 2 Designing and Carrying Out a Statistical Study

Even though it can look like we copy data when using pandas, most of the time
changes are done with minimal changes to the underlying data structure. This
makes it very efficient in handling data. Should you need to create an independent
copy of the data, use the df.copy()method.

2.19.3.4 Iterating Over a DataFrame
You can iterate over the rows of a DataFrame using the iterrows method.
The following example prints the index and the ControlGroup information for
the first two rows of the DataFrame df:
for index, row in df.iterrows(): 1©

if index > 1:
break

print(f'Index: {index}')
print(row) 2©

1© The iterrows method returns a pair of the row index and the row in each
iteration.

2© The row is a Series containing the values of the row. You can access values
in each row using the column names.

Output
Index: 0
ControlGroup 1
TreatmentGroup 2
Constant value 1
Sequence 0
Name: 0, dtype: int64
Index: 1
ControlGroup 1
TreatmentGroup 2
Constant value 1
Sequence 1
Name: 1, dtype: int64

2.19.3.5 And a Lot More
Pandas has a lot more to offer. We will introduce additional functionality when
needed. For now, we recommend to have a look at the pandas documentation
(https://pandas.pydata.org) to learn more about the package.

Exercises

2.1 Dart throws that miss the target (extreme ones miss the dartboard entirely
and nick the wall) are analogous to errors in statistical estimates. Do the
nicks in the wall in Figure 2.5 of a dartboard exhibit bias? If so, what do you
think causes it?
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Exercises 57

Figure 2.5 Dart throw misses.
Source: Peter Bruce (Book Author).

2.2 Answer the following questions, referring to the pulse.csv data. You do not
need to execute any simulations, just describe them as a series of steps that
you might take with cards and a hat, or with random numbers.
Hint:Howmany cards would you need, and howwould you shuffle and deal
them out into samples?
a) Is the proportion who ran different for males vs. females? Describe how

you might use cards marked “1” for “ran” and “0” for “didn’t run” in a
resampling experiment to test whether chance might be responsible for
any difference.

b) Does the “before” pulse rate differ between smokers and nonsmokers?
Medical theory suggests that smoking elevates the pulse rate. Describe
how you might use cards marked with pulse rates in a resampling exper-
iment to test whether chance might be responsible for any difference.

c) Wewould expect running in place to affect a person’s pulse rate. Does the
“before” pulse rate differ from the “after” pulse rate? Describe how you
might use cards marked with pulse rates in a resampling experiment to
test whether chance might be responsible for any difference.

2.3 Which is a more effective marketing message—a plain text email, or an
email with pictures and design elements? Marketing professionals typically
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58 2 Designing and Carrying Out a Statistical Study

recommend the latter. Statistics.com performed an A/B test, sending an
email to a list that was randomly split into two groups. (The email service
did not produce an even split, but that did not mean it was not random.
Random does not mean 50/50—think of throwing a die: if the die lands “1”
the text message is sent, otherwise the email with images is sent.) Here are
the results:
● Group A, plain text: 71 sent, 13 opens
● Group B, same content with images: 355 sent, 47 opens
a) The marketing manager worries that the imbalance in the sample sizes

renders the experiment invalid. He thinks that, to perform a valid test of
statistical significance, the two groups must be about the same size. Is
this correct?

b) Looking at the results, how do groups A and B differ? Express the answer
in units that are relevant for comparison. Is thiswhat youwere expecting?

c) Describe how you might use cards marked with 0’s and 1’s in a resam-
pling experiment to test whether chance might be responsible for any
difference.

2.4 DISCUSS A common problem in the TV streaming business is that cus-
tomers sign up to watch just a few series, then cancel a couple of months
later, after they are finished watching the shows they are interested in. This
problem is particularly acute when show episodes are released all at once
for “binge-watching,” which is thought to generate maximum impact and
generate word-of-mouth publicity. Discuss whether and how an experiment
might play a role in determining whether it is better for the broadcaster to
release episodes all at once or space them out over time.

2.5 Consumer packaged goods (CPG) companies sell some goods online but
generate most of their revenue from sales through brick and mortar retail
companies. A CPG company typically manages a number of brands, each
of which has multiple products. For example, Unilever, a large CPG based
in the United Kingdom, owns over 400 brands. Just one of its brands, Dove,
sells body washes, hand, and body lotions, facial cleansers, deodorants,
shampoos, conditioners, and hair styling products. Each product is sold in
multiple sizes and variations (e.g. different soap scents), so the number of
individual “stockkeeping units” (SKU’s) on offer from a CPG might be in
the tens of thousands. A typical grocery or drug store has room to stock only
a small fraction of all the products on offer from CPGs. A major challenge
for the CPG is obtaining and retaining “shelf space” at major retailers.
CPG companies promote their products through advertising, issuance of
discount coupons to consumers, and “trade discounts” offered to retailers.
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Exercises 59

Trade discounts are product-specific discounts offered to individual retailers
that can fund co-advertising, or simply serve as an incentive to the retailer
to promote the discounted product. The company is debating whether to
reduce trade discounts and boost coupons, as is done in some of its Latin
American markets. Discuss the possible design of an experiment to shed
light on whether this is a good idea.

2.6 Acompany reportedmonthly sales figures for a retail store over the past year.
The sales figures are as follows (Jan. to Dec., $ million):

sales_figures = [6.5, 7.5, 9.3, 10.2, 11, 9.5, 10.5,
12.5, 13, 14, 15.5, 16]

Analyze the sales figures using Python to answer the following questions:
a) What is the average monthly sales figure?
b) In which months were the sales figures above the average?
c) What is the maximum sales figure and in which month did it occur?
d) Print the sales figures, skipping any month where sales were below 10.
e) Print the sales figures for each month, stopping as soon as a month has

lower sales than the previous month.
f) Optional: Try to combine some of the steps or calculations to optimize

your code, reducing redundancy.

2.7 In this problem, we will get experience with writing for loops and if state-
ments in Python. For each of the following exercises, write first a solution
using for loop and if statements and then write a second solution that
uses list comprehensions.
a) Create a list which contains the numbers 1 to 10. Then using a for loop,

create a new list that contains the squares of each number. Use a list com-
prehension to achieve the same result.

b) Create a list which contains a mix of numbers between −5 and 5. Then
using a for loop, create a new list that contains only the positive num-
bers. Use a list comprehension to achieve the same result.

2.8 Use pandas to read the pulse.csv data and answer the following questions:
a) What columns are in the dataset?
b) What are the average pulse rates before and after the exercise? By how

much did the pulse rate change?
c) How many smokers and non-smokers were studied?
d) On average, how much did the pulse rate change for smokers and

non-smokers?
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3

Exploring and Displaying the Data

Many data analysis mistakes can be avoided by first looking at summaries and
visualizations of the data. After completing this chapter you should be able to:

● Calculate measures of central location, such as mean and median
● Judge which measure of central location is appropriate for a particular scenario
● Calculate measures of variation, such as variance and percentiles
● Measure distance between records
● Produce a frequency table
● Interpret a box plot and histogram
● Describe what an outlier is

3.1 Exploratory Data Analysis

Some data analyses begin without a preconceived hypothesis. Space scientists
want to examine samples brought back from the moon to see what elements
are present. Marketers want to know about the characteristics of people who
buy a given product. Business researchers want to know about the financial
management structures of successful firms.
In other cases, a hypothesis is formed prior to the collection of data. Market

researchers may want to test a theory that urban residents are more likely to pur-
chase a certain product than rural residents. In the case study we have been look-
ing at, hospital administrators want to test the proposition that no-fault reporting
for errors will reduce the number of major medical errors.
In either case, it is good to conduct exploratory data analysis (EDA) to summa-

rize and display the data to develop greater understanding. There is one important
distinction:

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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62 3 Exploring and Displaying the Data

● If a hypothesis is developed out of the data exploration, it should be tested for
statistical significance with new data. If you test with the same data that helped
suggest the hypothesis, there will be a bias in favor of finding that the result is
significant.

3.2 What to Measure—Central Location

Part of the plan for any experiment will be the choice of what to measure to see if
the treatment works. In our hospital experiment, we chose to measure “average
(mean) reduction in errors.” This is a good place to review the standard mea-
sures with which statisticians are concerned: central location of, and variation in,
the data.

3.2.1 Mean

The mean is the average value—the sum of all the values divided by the number
of values. It is generally what we use unless we have some reason not to use it.
Consider the following set of numbers: {3 5 1 2}

The mean is 3 + 5 + 1 + 2
4

= 11
4

= 2.75.

You will encounter the following symbols for the mean:

● x represents the mean of a sample from a population. It is written as x-bar in
inline text.

● 𝜇 represents the mean of a population. The symbol is the Greek letter mu.

Whymake the distinction? Information about samples is observed, and informa-
tion about large populations is often inferred from smaller samples. Statisticians
like to keep the two things separate in the symbology.

3.2.2 Median

The median is the middle number on a ranked list of numbers. Table 3.1 shows
the ranked data for both groups of hospitals.
The middle number on each list would be the 13th value (leaving 12 numbers

above and 12 below). If there is an even number of data values, the middle value
is the average of the two values that divide the sorted data into upper and lower
halves.
We find that themedian is the same for both lists. It’s two. This is not unusual for

data with a lot of repeated values. The median is a blunt instrument for describing
such data. From what we have seen so far, the groups seem to be different.
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3.2 What to Measure—Central Location 63

Table 3.1 Hospital error reductions,
treatment, and control groups.

Control Treatment

1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
2 2
2 2
2 2
2 2
2 2
2 2
2 3
2 3
3 4
3 4
4 5
4 6
5 9

The median does not capture that. Looking at the numbers, you can see the
problem. In the control group, the numbers coming before the two at Position 13
are all ones; for the treatment group they are all twos. The median reflects what
is happening at the center of the sorted data, but not what is happening above or
below the center.
The median is more typically used for data measured over a broad range where

we want to get an idea of the typical case without letting extreme cases skew the
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64 3 Exploring and Displaying the Data

results. Let’s say we want to look at typical household wealth in neighborhoods
aroundLakeWashington in Seattle. In comparing theMedina neighborhood to the
Windermere neighborhood, using the mean would produce very different results
because Bill Gates lives in Medina. If we use the median, it won’t matter how rich
Bill Gates is—the position of the middle observation will remain the same.

A student gave seven as the median of the numbers 3,9,7,4,5. What do
you think they did wrong?

3.2.3 Mode

Themode is the value that appearsmost often in the data, assuming there is such a
value. In most parts of the United States, the mode for religious preference would
be Christian. For our data on errors, the mode is two for all 50 subjects and one for
the control group. The mode is the only simple summary statistic for categorical
data, and it is widely used for that. At different times in the history of the United
States, the mode for the make of new cars sold each year has been Buick, Ford,
Chevrolet, and Toyota. The mode is rarely used for measurement data.

3.2.4 Expected Value

The expected value is calculated as follows.

1) Multiply each outcome by its probability of occurring.
2) Sum these values.

For example, suppose a local charitable organization organizes a game in which
contestants purchase the right to spin a giant wheel with 50 equal sized sections,
and an indicator that points to a section when the wheel stops spinning. The right
to spin the wheel costs $5 per spin. One section is marked $50—that’s how much
the purchaser wins if the spinner ends up on that section. Five sections aremarked
$15, 10 sections are marked $5, and the remaining sections are marked $0.
To calculate the expected value of a spin, the outcomes, with the purchase price

of the spin subtracted from the prize, aremultiplied by their probabilities and then
summed.

EV = 1
50

($50 − $5) + 5
50

($15 − $5) + 10
50

($5 − $5) + 34
50

($0 − $5)

EV = −$1.50

The expected value of a ticket is negative for the purchaser (which produces
profit for the charitable organization). For each ticket youpurchase, you can expect
to lose, on average, approximately $1.50. Of course, you will not lose exactly $1.50
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3.3 What to Measure—Variability 65

in any of the above scenarios. Rather, the $1.50 is what you would lose per ticket,
on average, if you kept playing this game indefinitely.
The expected value is really a fancier mean: it adds the ideas of future expecta-

tions and probabilityweights. Expected value is a fundamental concept in business
valuation and capital budgeting—the expected number of barrels of oil a newwell
might produce, for example, the expected value of five-years of profits from a new
acquisition, or the expected cost savings from a new patient management software
at a clinic.

3.2.5 Proportions for Binary Data

When you have binary data, such as approve/disapprove, survive/die, themeasure
of central tendency is the proportion. An example would be the proportion of web
visitors who click on a specified link. The proportion for binary data fully defines
the data—once you know the proportion, you know all the values. For example,
if you have a sample of 50 zeros and ones, and the proportion for one is 60%, then
you know that there are 30 ones and 20 zeros.

3.2.5.1 Percents
Percents are simply proportions multiplied by 100. Percents are often used in
reporting, since they can be understood and visualized more easily and intuitively
than proportions.

3.3 What to Measure—Variability

If all the hospitals in the control group had one fewer error and all those in the
treatment group had two fewer, our jobwould be easy.Wewould be very confident
that the treatment improved the reduction in the number of errors by exactly one.
Instead, we have a lot of variability in both batches of numbers.
Variability lies at the heart of statistics: measuring it, reducing it, distinguishing

random from “real” variability, identifying the various sources of real variability,
and making decisions in the presence of it.
Just as there are different ways to measure central tendency—mean, median,

mode—there are also different ways to measure variability.

3.3.1 Range

The range of a batch of numbers is the difference between the largest and smallest
number. Referring to Table 3.1, the range for the control group is 5 − 1 = 4. Note
that in statistics the range is a single number.
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66 3 Exploring and Displaying the Data

Try It Yourself
Referring to the same table, what is the range for the treatment group?

The range is very sensitive to outliers. Recall the two similar Seattle
neighborhoods—Windermere and Medina. The range of income in Medina,
where Bill Gates lives, will be much larger than the range in Windermere.

3.3.2 Percentiles

One way to get around the sensitivity of the range to outliers is to go in a bit from
each end and take the difference from there. For example, we could take the range
between the 10th percentile and the 90th percentile. This would eliminate the
influence of extreme observations.

Definition: Pth Percentile In a population or a sample, the Pth percentile is
a value such that at least P percent of the values take on this value or less and at
least (100 − P) percent of the values take on this value or more. Sometimes there
is a single value in the data that satisfies this requirement, and sometimes there
are two. In the latter case, it is best to take the midpoint between the two values
that do. Softwaremay have slightly differing approaches that can produce differing
answers.

More intuitively: to find the 80th percentile, sort the data. Then, starting with
the smallest value, proceed 80% of the way to the largest value. Percentiles are
encountered all the time—such as your score on a test relative to a large class, or
household income level thresholds (“above the top one percent”).

3.3.3 Interquartile Range

One common measure of variation is to take the difference between the 25th per-
centile and the 75th percentile.

Definition: Interquartile Range The interquartile range (or IQR) is the 75th
percentile value minus the 25th percentile value. The 25th percentile is the first
quartile, the 50th percentile is the second quartile, also called the median, and the
75th percentile is the third quartile. The 25th and 75th percentiles are also called
hinges.

Here is a simple example: 3, 1, 5, 3, 6, 7, 2, 9.We sort these to get 1, 2, 3, 3, 5, 6, 7, 9.
The 25th percentile is at 2.5 and the 75th percentile is at 6.5, so the IQR is
6.5–2.5 = 4. Again, software can have slightly differing approaches that yield
different answers.
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3.3 What to Measure—Variability 67

Try It Yourself
Find the IQR for the control data, the treatment data, and for all 50 observa-
tions combined.

3.3.4 Deviations and Residuals

There are also a number of measures of variability based on deviations from some
typical value. Such deviations are called residuals.

Definition: Residual A residual is a difference between a mean value and an
observed value or the difference between a value predicted by a statistical model
and an actual observed value.

For the numbers 1, 4, 4 the mean is 3 and the median is 4. The deviations from the
mean are the differences

1 − 3 = −2

4 − 3 = 1

4 − 3 = 1

3.3.5 Mean Absolute Deviation

Oneway tomeasure variability is to take some kind of typical value for these resid-
uals. We could take the absolute values of the deviations—{2, 1, 1} in the above
case—and then average them: (2 + 1 + 1)∕3 = 1.33. Taking the deviations them-
selves without taking the absolute values would not tell us much—the negative
deviations offset the positive ones. This always happens with the mean.

3.3.6 Variance and Standard Deviation

Another way to deal with the problem of positive residuals offsetting negative ones
is by squaring the residuals.

Definition: Variance The variance is the mean of the squared residuals, where
𝜇 = populationmean, x represents the individual population values, and n= num-
ber of observations in the data.

Variance = 𝜎
2 = 1

n
∑

(x − 𝜇)2

Definition: Standard Deviation The standard deviation 𝜎 is the square root of
the variance. The symbol 𝜎 is the Greek letter sigma and commonly denotes the
standard deviation.
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68 3 Exploring and Displaying the Data

The standard deviation is a fairly universal measure of variability in statistics for
two reasons:

● It measures typical variation in the same units and scale as the original data and
● It is mathematically convenient, as squares and square roots can effectively be
plugged into more complex formulas.

Absolute values encounter problems on the latter front, though some of those
have been overcome as computational elegance fades in importance as computing
power grows.

Try It Yourself
Find the variance and standard deviation of 8, 1, 4, 2, 5 by hand. Is the standard
deviation in the ballpark of the residuals, i.e. the same order of magnitude?

3.3.6.1 Denominator of N or N–1?
Often, when considering “what to measure,” we are interested not just in the
dataset at hand, but a larger population from which it came. Intuitively, we are
tempted to estimate a population metric by using the same metric in the sample.
Most sample measures of location (mean, median) are unbiased estimators of the
population value. Measures of variability, however, are biased.
Consider the range of the above values in the “Try it Yourself.” Would that be

an accurate estimate of the range of the entire population fromwhich that sample
came? Probably not—it is likely an under-estimate of the range, since there are
bound to be more extreme values in a larger population. The same is true of the
variance and standard deviation. If you use the intuitive denominator of N, you
will underestimate the true value in the population.
However, if you divide by N − 1 instead of N, the variance and standard devia-

tion from a sample become unbiased estimators of the population values. Amath-
ematical proof is beyond our scope here, but you can confirm it with a resampling
simulation in which you repeatedly take small samples from a known larger pop-
ulation. Calculate the variance for each resample using both N − 1 and N, and
compare the average of those resample variances to the variance of the known
population they were drawn from.

Try It Yourself
This exercise illustrates how the use of N in the denominator for calculating
sample variance leads to a biased result, relative to the population variance.
In Python, randomly generate a population of 1000 values. It doesn’t mat-
ter what population you generate—let’s say a population of 1000 randomly
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3.4 What to Measure—Distance (Nearness) 69

selected numbers between 0 and 9. In Python, you can do this with the com-
mand random.choices(range(10), k=1000). Next, find the variance
of this population using N in the denominator. Then repeatedly take resam-
ples of size 10, and calculate the variance for each resample according to the
same population formula. How does the mean of the resample variances com-
pare to the population variance? Now repeat the exercise using N − 1 in the
denominator. How does the mean of the resample variances compare to the
population variance? Hint: See Problem 4.12. for a solution.

3.3.7 Population Variance

If the observations at hand constitute the entire population that you are interested
in, you can, in fact, use N as the denominator in the variance calculation.
If N is large, though, it won’t make much difference whether you divide by
N or N − 1.

3.3.8 Degrees of Freedom

In statistics you will encounter the term degrees of freedom. Its exact definition
is not needed here, but the concept can be illustrated. Let’s say you have three
observations and you know that their variance is x. Once you know the first two
values, the third is predetermined by the first two and the value for the variance.
We say there are n − 1, in this case, two, degrees of freedom. The denominator in
the sample variance formula is the number of degrees of freedom.

3.4 What to Measure—Distance (Nearness)

The concept ofdistance is of particular interest to thedata science community iden-
tified at the beginning of the Introduction.
Consider a poll in which respondents are asked to assess their preferences for

the musical genres listed in Table 3.2. Ratings are on a scale of 1 (dislike) to 10
(like), and we have the poll results from three students.
Consider person C. Is shemore like person A or person B? Looking at the scores,

our guess would be that person C is more like person A. We can measure this dis-
tance statistically by subtracting one vector from another, squaring the differences
so they are all positive, summing them so we have a single number, then taking
the square root so the original scale is restored. If the two records are identical, the
distance between them will be 0.
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70 3 Exploring and Displaying the Data

Table 3.2 Musical genre preferences.

Person Rock Hip-Hop Country Jazz New Age

A 7 1 9 1 3
B 4 9 1 3 1
C 9 1 7 2 2

Definition: Vector A vector is a row of numbers. Vector arithmetic is done by
performing the operation on the corresponding elements of each vector, resulting
in a new vector of sums, differences, products, etc.

The statistic that we have described is “Euclidean Distance.” Here is the formula,
followed by the calculations.
As a general example, assume we have two vectors, w and x, each containing n

values. The Euclidean Distance between the two vectors is

Euclidean Distance =
√

(w1 − x1)2 + (w2 − x2)2 + · · · (wn − xn)2

If you look carefully at the formula, you might recognize that this is the multi-
dimensional version of the formula for the distance between two points that you
may have learned in geometry.
For a specific example, the EuclideanDistance between vectorsA andB—amea-

sure of how alike person A is to person B—in Table 3.2 is calculated in Table 3.3.
In Table 3.3, the sum of the squares of the differences of each row is 145. The

square root of 145 is 12.04, which is the Euclidean Distance between the two vec-
tors representing person A and person B. Looking back at the data in Table 3.2, try
the following problem:

Let’s say that you run a digital music service. A, B, and C are all cus-
tomers of yours, and A and B have both just made downloads. You
want to recommend one of these downloads for C. Which one would
you recommend?

Table 3.3 Musical genre preferences.

Rock Hip-Hop Country Jazz New Age

Person A 7 1 9 1 3
Person B 4 9 1 3 1
(A − B)2 9 64 64 4 4

∑
(A − B)2 145

Euclidean Distance 12.04
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3.5 Test Statistic 71

In this small-scale problem you can guess the answer just by looking at the data,
but a practical business solution requires automation, which needs a distancemet-
ric that can be calculated. Distance measures are used in statistics for multiple
purposes:

● Finding clusters or segments of customers who are like one another.
● Classifying records by assigning them the same class as nearby records.
● Locating outliers, e.g. airport security screening.
● Finding the distance to a benchmark. For example, if you have a list of symptoms
for an individual, what disease is it closest to?

3.5 Test Statistic

Let’s continuewith our analysis of the hospital data, using themeans for reduction
in major errors. The treatment seems to reduce the number of errors by 2.80–1.88,
or nearly one. But there are other ways to look at this. The ratio 2.80∕1.88 = 1.49
gives another comparison. It says the reduction in errors for the treatment group
is 1.49 times that in the control group or nearly 50% greater.1
Our test statistic will be calculated as follows.

1) Measure the number of major medical errors for each hospital for the year
before and the year after the treatment is initiated, and find the reduction:
errors before minus errors after.

2) Calculate the mean reduction for the control group and the treatment group.
3) Find the difference: treatment minus control = 0.92.

Important: Throughout this example, we will be talking about “reductions in
number of errors,” not in the number of errors.
A test statistic is the key measurement that we use to judge the results of the

experiment or study. It is best to select the test statistic beforehand, to avoid the
temptation to “shop around” for different statistics after the results are in, looking
for the most interesting result.

3.5.1 Test Statistic for this Study

The test statistic for this study is “mean reduction in errors (treatment) minus
mean reduction in errors (control).”

1 Just counting errors treats them all alike. Ideally, we’d like to have some sort of measurement
that accounts for the severity for each error. This introduces complexity into both the
implementation of the study and the analysis.
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72 3 Exploring and Displaying the Data

3.6 Examining and Displaying the Data

The difference in error-reduction means between the two hospital groups is the
best single metric to answer our original question, but it is not the whole story.
We’d also like to learn more about the variability in the data.

3.6.1 Frequency Tables

Now that we have our results on 50 individual hospitals, we need a way to sum-
marize and compare the treatments and controls as groups. We will first look at
summaries that are numbers, then summaries that are pictures. One numerical
summarywe couldmake here is a table of values and howoften those values occur,
i.e. their frequencies (see Table 3.4).
This is called a frequency table or frequency distribution. Let’s interpret a couple

of rows.

● The first row tells us that 12 of the 25 control hospitals had a reduction in errors
of one, and that none of the treatment group hospitals had a reduction in errors
of one.

● The second row tells us that eight of the 25 control hospitals had a reduction in
errors of two, and that 18 of the treatment group hospitals had a reduction in
errors of two, so that a total of 26 hospitals had a reduction in errors of two.

● The bottom row is a summary: it tells us that there were 25 control group hos-
pitals and 25 treatment group hospitals, for a total of 50 hospitals.

Notice that ifwe did not have a control group,wewould overestimate the success of
the treatment. All the hospitals improved, even in the control group. Still, it looks
like the treatment group showed more improvement.

Table 3.4 Frequency distribution—reduction in errors.

Value Control Treatment Total

1 12 0 12
2 8 18 26
3 2 2 4
4 2 2 4
5 1 1 2
6 0 1 1
9 0 1 1
All 25 25 50
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3.6 Examining and Displaying the Data 73

Table 3.5 Error reduction frequency table (control).

Error
reduction Freq.

Cumulative
Frequency

Relative
Frequency

1 12 12 0.48
2 8 20 0.32
3 2 22 0.08
4 2 24 0.08
5 1 25 0.04
6 0 25 0.00
9 0 25 0.00
All 25 25 1.00

Frequency tables often include cumulative or relative frequencies. Row two in
Table 3.5 says that eight hospitals had a reduction in errors of two, while a reduc-
tion of two or fewer errors showed up 20 times, and the eight times out of 25
constituted 0.32 = 32% of the total.
Though it is not shown above, we could also calculate cumulative relative

frequency in the same way that cumulative frequency is calculated—by adding
together the current row with the preceding rows. For example, the cumula-
tive relative frequency for the third row (error reduction = 3) is 0.48 + 0.32 +
0.08 = 0.88.

Try It Yourself
Compute cumulative frequencies and relative frequencies for the treatment
hospitals. Can you also find cumulative relative frequencies?

3.6.2 Histograms

Let’s turn the frequency table into a plot—a frequency histogram. Figure 3.1 shows
a histogram of the error reductions for the treatment group.
Interpreting Figure 3.1, we see that 18 hospitals reduced the number of errors by

two, two hospitals reduced the number of errors by three, and so on. No hospital
had an error reduction of seven or eight, but the histogram must leave room for
these values to present an accurate picture.
In the above figure, the histogram is relatively easy tomake—there are only eight

possible values, so we can have a vertical bar for each value.
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Figure 3.1 Frequency histogram of error reductions in treatment group.

If we are plotting more complex data—say, hospital sizes—we will not have
enough room or visibility to devote one bar to each value. Instead, we group the
data into bins. It is important that the bins be (1) equally-sized and (2) contiguous.
By contiguous, we mean that the data range is divided up into equally sized bins,
even if some bins have no data, like 7 and 8 above. Consider Figure 3.2, which
shows hypothetical data for hospital sizes in a mid-sized state.
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Figure 3.2 Hospital sizes by number of beds (hypothetical data for a mid-sized state).
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Figure 3.3 Back-to-back histogram.

We can see that there were 13 hospitals, with 0 to 99 beds. There were 14 hospi-
tals with 100 to 199 beds, etc.
Deciding how to display these data is not a trivial matter for a computer. The

programmust decidewhere the bin boundaries are andmessiness can arise. Often,
the algorithm that is used results in non-integer values on the x-axis, which may
not make sense.
Figure 3.3 shows a back-to-back horizontal histogram of error reductions

showing the control and treatment groups separately on either side of the Errors
column.

3.6.3 Bar Chart

The histogram looks similar to another chart that is widely used—the bar chart.
Figure 3.4 is a bar chart that depicts the number of applicants to different depart-
ments in the UC Berkeley graduate school in the fall of 1973 (they are discussed
in Freedman, Pisani, Purves and Adhikari, Statistics, W. W. Norton, 4th ed, 1991):
Bar charts differ from histograms in two respects :

● unlike histograms, bar charts are usually drawn with gaps between the bars.
● unlike histograms, where the x-axis shows a progression of values on a contin-
uous scale, the x-axis values on bar charts represent categories that are separate
from one another and not part of a numerical continuum.

3.6.4 Box Plots

Let’s look at another plot of the data distribution. The boxplot shows key per-
centiles of the distribution, as well as outliers.
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Figure 3.4 Bar chart—applicants by department.

● A central box encloses the central half of the data—the top of the box is at the
75th percentile, and the bottom of the box is at the 25th percentile.

● The median is marked with a line.
● “Whiskers” extend out from the box in either direction to enclose the rest of the
data or most of it. The whiskers stop when they come to the most extreme point
that lies within 1.5 times the inter-quartile range, or IQR, of either end of the
box.

● Outliers beyond the whiskers are indicated with individual markers.

Outliers are simply values that are distant from the bulk of the data. In drawing
the boxplot, we defined them as values that were more than 1.5 IQR above the
75th percentile, or more than 1.5 IQR below the 25th percentile, but this was an
arbitrary definition and you may see other definitions. More on outliers below.
Consider Figure 3.5, which is a boxplot of hospital sizes by number of beds in a

hypothetical metropolitan area. We can glean the following information.

● Half the hospitals are between 99 and 351 beds.
● The IQR is 252 beds.
● The median hospital size is 189 beds.
● The rest of the hospitals are spread out between 50 and 604 beds, with the excep-
tion of four outlier hospitals.

Boxplots are a compact way to compare distributions. Figure 3.6 is a side-by-side
boxplot comparison of the reduction in errors for the control and treatment
hospitals.
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Figure 3.5 Boxplot of metropolitan area hospital sizes (y-axis shows number of beds).
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Figure 3.6 Error reductions (y-axis) for control hospitals(0) and treatment hospitals(1).
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78 3 Exploring and Displaying the Data

Different software has varyingways of displaying boxplots; some show themean,
others the median, some both.
Note how these boxes communicate information by the features that are

missing—the median line and the lower whiskers.

Try It Yourself
What does the absence of the median line and the lower whiskers communi-
cate?

3.6.5 Tails and Skew

Let’s review the picture we get from the histograms and the boxplots.
The location of the data is lower for the control group than the treatment group,

which is reflected in the value of the mean.
Other than the value of nine, the shape of the distribution for the treatment

groups looks roughly like that for the control group. Both have peaks at the low end
around one or two and trail off toward higher values.We call such a pattern skewed
toward high values. The part of the picture where the data trail off, say around five,
six, seven, eight, or nine, is called the tail of the distribution. The direction of the
skew is the direction of the longer tail. The shape of the distribution is easier to
see in the histogram than the table. Note how neither group has a bell-shaped
(“Normal”) distribution that is often (mistakenly) considered to be a typical distri-
bution of data.

3.6.6 Errors and Outliers Are Not the Same Thing!

We saw how one hospital in the treatment group had an error reduction of nine,
while all other hospitals, in both groups, were at six or below. We could consider
this nine an outlier, and the data might merit a second look, but there is nothing
inherent in this value that raises doubt.
However, suppose that Row 47 of Table 2.2 read as follows:

Row Hospital# Treat?
Reduction
in Errors

47 4076 10 2

10 is not a valid value for the treatment/control variable, which needs to be
either zero or one. We would then look up hospital number 4076 to see if we could
find the reason for this error. (Perhaps it came during data entry, omitting a space
between a 1 and a 0.)
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3.6 Examining and Displaying the Data 79

Definition: Outliers A value (for a given variable) that seems distant from or
does not fit in with the other values for that variable is called an outlier. It could be
an illegal value, as in the above case. It could also be a very odd value or a legitimate
one. If we saw a 456 in column four, this would not be illegal but it would be a very
improbable degree of error reduction.

Some statistical software will identify outliers for you, but keep in mind that these
are arbitrary identifications determined by arithmetic. Outliers are not necessar-
ily errors—some are legitimate values. Consider these annual enrollments at a
randomly selected set of 10 courses at Statistics.com.

8, 12, 21, 17, 6, 13, 29, 180, 11, 13

The 180 is certainly an outlier, but it is not incorrect. It is the enrollment in an
introductory course, whereas the other enrollment figures are for more advanced
courses.

Try It Yourself
Find the average enrollment for the 10 Statistics.com courses whose enroll-
ments are listed above. Would you say this is a good representation of the
typical enrollment?

Whenever we find an outlier, we need to investigate it and try to understand
the reason for it. If there is an error, we need to try to correct it. Outliers, whether
erroneous or legitimate, can strongly affect the numbers we compute from our
data. In some cases, an outlier is a symptom of a deeper problem that could have
an even greater impact on our results.

Outliers and Social Security
The US Social Security Administration (SSA) is a key source for wage
data—Social Security taxes are due on almost all wages, and employers must
file earnings reports with the tax authorities.
One statistic reported regularly is the average pay of those receiving more

than $50 million in wages. This number receives a great deal of attention
in the policy debate over income distribution. There were just 74 of these
super-earners in 2009, and the government reported on October 15, 2010 that
the average income of the super-earners more than quintupled in 2009—to
an average of $519 million. This was quite an impressive feat during a severe
recession, and the report came during a highly charged political atmosphere

(Continued)
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80 3 Exploring and Displaying the Data

(Continued)

in which an important bone of contention was the relative share of income
and wealth held by the richest members of society.
Shortly after the report was issued, analysts found that two individuals

were responsible for this entire increase. Between them, these two taxpay-
ers reported more than $32 billion in income on multiple W2 (tax) filings.
The SSA did not identify the individuals or reveal why they reported such
astronomical sums.
However, the SSA did determine that the filings from the two individuals

were in error and issued a revised report. The results?

● 2009 super-earner average wages actually declined 7.7% from 2008
instead of quintupling.

● 2009 average wages for all workers declined $598 from 2008; the orig-
inal report was $384.

These two outliers had a huge and misleading impact on key government
statistics. They contributed $214 to the average income of all wage earners,
and when they were removed, the recession’s wage hit grew by more than
50%. At the same time, the fuel they added to the income distribution debate
was illusory.

What impact would these two outliers have had on statistics that used
the median rather than the mean?

3.7 Python: Exploratory Data Analysis/Data
Visualization

Data visualization is a core component of EDA. In this section, we will learn
how to create data visualizations in Python using several packages. Given that
most of these packages are built on top of the matplotlib library, it is useful to
understand its key concepts to allow customizing the default data visualizations.
All graphs in this book were created using Python and we often make use of
customization. If the code is not shown in the book, you can find it in the
Jupyter notebooks for each chapter available from the book’s website at https://
introductorystatistics.com/.

3.7.1 Matplotlib

matplotlib is a Python library for creating static, animated, and interactive
visualizations in Python. It is a very powerful library that can be used to create
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3.7 Python: Exploratory Data Analysis/Data Visualization 81

a wide variety of visualizations. The matplotlib library is typically imported
using the following command.plt is a common alias formatplotlib.pyplot.

import matplotlib.pyplot as plt

There are two different approaches to usematplotlib to create visualizations,
the pyplot interface and the object-oriented interface. Here is an example of the
two approaches to create a simple line plot. The resulting graphs are shown in
Figure 3.7. Both approaches lead to the same result.

# create a data set
import numpy as np
x = np.linspace(0, 2*np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)

# pyplot interface
plt.plot(x, y1) 1©
plt.title("(a) pyplot interface")
plt.show()

# object-oriented interface
fig, ax = plt.subplots() 2©
ax.plot(x, y1)
ax.set_title("(b) object-oriented interface")
plt.show()

1© The plt.plot command creates a line plot by creating figures, x- and
y-axes, and adding the line plot to the axes. Additional commands, like e.g.
plt.title, operate on the current figure and axis.

2© In the object-oriented interface, we use the plt.subplots command to
explicitly create figure (fig) and axes (ax) objects. The ax object has several
methods for manipulating the graph. For example, ax.set_title, sets the
title for the axes.
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Figure 3.7 Simple line plot using the (a) pyplot and (b) object-oriented interface.
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82 3 Exploring and Displaying the Data

In this book, we prefer the object-oriented approach as it leads to cleaner, more
explicit code. This is in particular true for visualizations with multiple graphs.
Useful commands for customizing the visualizations include, set_xlabel,

set_ylabel, set_title, grid, and legend. The following code snippet
shows how to use these commands to create a graph with a title, labels, and
a legend. The resulting graph is shown in Figure 3.8. Note how matplotlib
automatically chooses the colors for the two lines.

# create a figure
fig, ax = plt.subplots()
ax.plot(x, y1, color="C2", label="sin(x)") 1©
ax.plot(x, y2, color="C3", label="cos(x)", linestyle=":") 2©
ax.set_xlabel("x") 3©
ax.set_ylabel("y = f(x)")
ax.set_title("sine and cosine") 4©
ax.grid() 5©
ax.legend() 6©
plt.show()

1© label="sin(x)" sets the text used in the legend
2© color="C3" specifies the color of the line. C0, C1,…, refers to a pre-defined
color palette that was chosen to be easy to distinguish. These colors are
used by default. Alternatively, you can specify the color using a name, e.g.
color="red" or using a RGB value like color="#ff0000". For the
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=

 f(
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Figure 3.8 Customization of a graph with title, axes labels, legends and grid
(matplotlib).
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3.7 Python: Exploratory Data Analysis/Data Visualization 83

second line, we also specify the line style using linestyle=":" to display a
dotted line.

3© ax.set_xlabel("x label") and ax.set_ylabel("y label") set
the labels of the x and y axis.

4© ax.set_title("title") sets the title of the graph.
5© ax.grid() to add a grid to the graph. It can also be used to customize the
grid further.

6© ax.legend() to add a legend to the graph and have finer control on what is
included in the legend.

Two other usefulmethods areax.set_xlim andax.set_ylim to set the limits
of the x and y axis. You can specify the minimum and maximum values as sepa-
rate arguments, e.g. ax.set_xlim(0, 1). An alternative is to specify the limits
using a list, e.g.
limits = [ymin, ymax]
ax.set_ylim(limits)

3.7.2 Data Visualization Using Pandas and Seaborn

Many Python packages have their own visualization routines. For example, pan-
das has a plot method for dataframes and series. This plot method is a wrapper
around matplotlib. The following code snippet shows how to use the pandas
DataFrame.plotmethod to create a line plot of a dataframe and further customize
it. The resulting graph will look similar to Figure 3.8.
# create a dataframe
import pandas as pd
df = pd.DataFrame({"x": x, "sin(x)": y1, "cos(x)": y2})
# create a line plot
ax = df.plot(x="x", y=["sin(x)", "cos(x)"]) 1©
ax.set_title("sine and cosine") 2©
ax.set_ylabel("y = f(x)")
plt.show()

1© The pandas plot method creates a line plot of the columns "sin(x)" and
"cos(x)" with the values of the column "x" on the x axis. The method
returns an axis object ax which allows us to further customize the graph.

2© Here, we add a title to the graph using the axis method set_title. The following
line changes the axis label using set_ylabel.

Using the Python commands will create two separate lines that are only distin-
guished by color. If you need to support color-blind readers, you should use dif-
ferent line styles or markers. This can be done using separate plot commands for
each line. The pandas plot functions also have an optional ax argument to add
visualizations to an existing graph.
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84 3 Exploring and Displaying the Data

ax = df.plot(x="x", y="sin(x)")
df.plot(x="x", y="cos(x)", ax=ax, linestyle="-") 1©
ax.set_ylabel("y = f(x)")
ax.set_title("sine and cosine")
ax.legend()
plt.show()

1© We pass the axis object ax from the first plot command to the second
DataFrame.plot command using ax=ax. This will add the second line to the
same graph. We also specify the line style using the linestyle argument;
"--" is shorthand for "dashed"

We can also use this to combine multiple graphs into one figure. Here is an
example that creates two graphs next to each other (see Figure 3.9).

fig, axes = plt.subplots(ncols=2, figsize=(6, 3)) 1©
df.plot(x="x", y="sin(x)", ax=axes[0]) 2©
df.plot(x="x", y="cos(x)", ax=axes[1]) 3©
axes[0].set_ylabel("sin(x)")
axes[1].set_ylabel("cos(x)")
plt.tight_layout() 4©
plt.show()

1© The matplotlib plt.subplots controls the size of the figure and the lay-
out of axes. Here, we create a figure with a defined size (figsize=(6,3)
and with two axes next to each other. The ncols argument specifies the num-
ber of columns (2). Optionally, use nrows to define the number of rows. The
plt.subplots function returns a tuple with the figure, the whole visualization,
and the axes. The axes can be a single axis, a list of axes, or a list of lists of axes,
depending on the number of rows and columns.

2© By specifying ax=axes[0], we add the plot of sin(x) to the left axis.
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Figure 3.9 Creating two graphs next to each other.
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3.7 Python: Exploratory Data Analysis/Data Visualization 85

3© This line adds the plot of cos(x) to the right axis.
4© The default settings for the layout often create axes that are too close together.
The matplotlib function plt.tight_layout() separates the axes more.

Most figures in the book were created using this approach. Figure 3.10a shows
the histogram from Section 3.6.2. The Python code for this graph is:
data = pd.read_csv("hospitalerrors_2.csv")
error_reduction = data[data["Treatment"] == 1]["Reduction"]
fig, ax = plt.subplots(figsize=(6, 3))
bins = [b + 1.5 for b in range(10)] 1©
error_reduction.plot.hist(bins=bins, ax=ax, edgecolor="black") 2©
ax.set_xlabel("Error reduction")
ax.set_ylabel("Number of hospitals")
plt.show()

1© We explicitly set the bin edges (bins) to get bars that are centered around
round numbers. Normally, we specify only the number of bins

2© The DataFrame.plot.hist method creates a histogram for the values in the
error_reduction series. The bins keyword argument usually takes an
integer value that gives the number of bins. It is always a good idea to explore
the effect of changing this number.

To compare two variables, we can use a scatterplot like the one shown in
Figure 3.10b. The figure shows a relationship between payroll and team success
in Baseball.
baseball = pd.read_csv("baseball_payroll.csv")
baseball.plot.scatter(x="Average Payroll (Million)", y="Total Wins") 1©
ax.set_xlabel("Average Payroll (Million)")
ax.set_ylabel("Total Wins")
plt.show()

1© The DataFrame.plot.scatter function creates a scatterplot graph.

Figure 3.10c shows the distribution of hospital sizes as a boxplot.
hospital_sizes = pd.read_csv("hospitalsizes.csv")
ax = hospital_sizes["size"].plot.box() 1©
ax.set_ylabel('Hospital size')
plt.show()

1© The Series.plot.box function creates the boxplot graph.

Figure 3.10d compares the distribution of error reduction with or without
treatment using side by side boxplots.
data = pd.read_csv("hospitalerrors_2.csv")
fig, ax = plt.subplots(figsize=(5, 3.5))
axes = data[["Reduction", "Treatment"]].plot.box("Treatment", ax=ax) 1©
axes["Reduction"].set_xlabel("Treatment") 2©
axes["Reduction"].set_ylabel("Error reduction")
plt.show()
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86 3 Exploring and Displaying the Data
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Figure 3.10 Examples of visualizations for exploratory data analysis created using
Python. (a) Histogram with defined bins, (b) scatterplot to visualize how two variables are
related, (c) boxplots give an overview of the distribution, (d) comparison of two
distributions using boxplots, (e) QQ-plot for residuals, and (f) scatterplot with regression
line.
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3.7 Python: Exploratory Data Analysis/Data Visualization 87

1© We first reduce the dataframe to the two columns that we want to visualize.
The Treatment column is specified for grouping of the data in the boxplot. The
function DataFrame.plot.box determines the unique Treatment values, here 0
and 1, splits the dataset into subsets and creates individual boxplots for each
subset.

2© TheDataFrame.plot.boxwill create individual graphs for each of the remaining
columns in the dataframe and returns the axes of the graphs. Here, we have
only one column, so the list axes has only one value.

Figure 3.10e is a so called QQ-plot. It’s a diagnostic plot to check if numbers follow
a given distribution. The function scipy.stats.probplot is part of scipy.2

from scipy import stats
housing = pd.read_csv("boston-housing-model.csv")
fig, ax = plt.subplots(figsize=(5, 5)) 1©
stats.probplot(housing["residual"], plot=ax) 2©
plt.show()

1© We define the figure size to create a square graph. This aspect ratio is preferred
for QQ-plots.

2© The scipy.stats.probplot creates theQQ-plot. By default, it compares to a normal
distribution. Use the dist argument to specify a different distribution.

Another popular package for data visualization is seaborn. It is built on top of
matplotlib and provides a high-level interface for creating statistical graphics.
This means, we can create complex visualizations with just a few, often only
one, statement. The following code snippet shows how to create a scatterplot
with an overlaid regression line (see Chapter 10) using seaborn. This results in
Figure 3.10f.

import seaborn as sns 1©

baseball = pd.read_csv("baseball_payroll.csv")
fig, ax = plt.subplots(figsize=(5, 5))
sns.regplot(x="Average Payroll (Million)", y="Total Wins", data=baseball,

ax=ax) 2©

1© The import seaborn as sns imports the seaborn package. The as
sns part is a common alias for seaborn.

2© The sns.regplot creates a scatterplot with a regression line. The data argument
specifies the dataframe that contains the data and we use the column names to
specify the x and y variables. Providing the optional ax argument allows us to
add the graph to an existing figure and control the size and shape of the graph.

2 We will learn in Section 11.7.2 how to customize this plot further.
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88 3 Exploring and Displaying the Data

The sns.regplot not only plots the data as a scatterplot, but also fits a regression
line to the data and estimates confidence intervals for it using bootstrap (light gray
area); more about confidence intervals and bootstrap in Sections 7.3.1 and 7.5.

Exercises

3.1 Here are 20 more trials of the exercise you did at the beginning of the read-
ings in which you investigated the model of a random distribution of 10
hospital errors between two years. Each row is a trial—10 coin flips. You
will use the results to determine whether it is unusual for 10 hospital errors
over two years to be split 7–3, just by chance.

Run Run

1 HHHTTHTTHH 11 TTHHHTTHHT
2 TTHHHTTTHH 12 TTTHHHHTHT
3 TTHHTHHTTT 13 TTHTHTTTTT
4 HTTHTHHTTT 14 THTHHHTTTT
5 HTHTHTHTTT 15 THTHHHTTTT
6 TTHTTTTHHH 16 HHTTHTHHHH
7 HHHTHTHHHH 17 HTTHTHTHTH
8 HHTHHHTTTH 18 THHTHHHHHT
9 HHTTTTHTTT 19 THHHTTHTTT
10 THHTTTHTTH 20 THTHHHTHTH

Each “H” or “T” represents an error. Under our chancemodel, let us say that
“H” means the error happened in year 1 and “T” means year 2. Each row
represents one trial (i.e. an allocation of 10 errors). Use Python to process
the data.
a) For each of the 20 runs, count the number of times “H” (year 1) occurred.
b) Then make a frequency table for your results.
c) Visualize the results using a histogram.
d) What proportion of the runs yielded 7 or more “H’s” (year 1)?
e) Comment on whether the difference between year 1 and year 2 might

have happened by chance.
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Exercises 89

3.2 Suppose you are a consultant for a large garden supply retailer and you have
been asked to determine whether to raise the price on a high quality hose
product. Howwould you structure an experiment to answer this question…
a) In the online world
b) In the brick and mortar world
Be sure to incorporate the design principles outlined in this chapter, and/or
discuss any problems involved in implementing them.

3.3 Estimate the probability that a family with 10 children would have three or
fewer girls. Explain how you arrived at your estimate.
Hint: Assume that each successive child has a 50/50 probability of being
male/female, and use dice, coins, or numbers drawn from hat.

3.4 Indicate whether the following statement is correct, along with a very brief
explanatory statement: “In the Kerrich coin-tossing experiment, the propor-
tions of heads and tails each tended towards 50% because, if an imbalance
of in favor of heads developed, the probability of heads diminished slightly
until balance was restored (and likewise for tails).”

3.5 A web consultant for a retail merchant tests two different presentations of
a product to determine whether there is a difference in the length of time
that people stay on that product page. She records the visit time in seconds
per visitor for each presentation and finds that people viewing Presentation
B (the new one) linger 0.33 seconds longer, on average, than those viewing
Presentation A (the existing presentation). In the time allotted for the study,
she is able to record 36 visits, 21 for PresentationA and 15 for PresentationB.
a) Load the data from dataset web-page-data.csv and calculate the average

visit time for each presentation.
b) Create a barchart of the average visit time for each presentation.
c) Show the distribution of visit times for each presentation using a boxplot.

What can you conclude from the visualization?
d) Create side-by side dotplots that show individual visit times for each

presentation.
e) Histograms are a good way of showing the distributions of data. Create

two visualizations that compare the distributions of visit times for each
presentation.
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90 3 Exploring and Displaying the Data

i) Using a single graph, show both distributions using histograms of
different colors.
Hint: Use alpha to make the histograms transparent.

ii) Using two graphs arranged in rows, show the distributions in separate
histograms. Make sure that the axis range for the visit times is the
same in both graphs.

Compare the two visualizations. Which one do you prefer? Discuss the
advantages and disadvantages of each visualization.
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4

Accounting for Chance—Statistical Inference

In this chapter we connect probability to the process of drawing conclusions from
data. After completing this chapter, you will be able to:

1) Explain the rationale for why hypothesis tests are needed
2) Identify when hypothesis tests are appropriate
3) Distinguish the circumstances that call for formal vs. informal hypothesis tests
4) Explain the logic of a hypothesis test
5) Interpret the results of a hypothesis test

The task of trying to assess the impact of random variability on the conclusion
from a study, or the results of a measurement, is called statistical inference. In this
chapter we will look at a particular kind of statistical inference called a hypothesis
test. Generally, a hypothesis test seeks to determine whether the effects we see in
some data from a study are real or might just be the result of chance variation.
The logic of a hypothesis test runs as follows:
Variation from random chance is everywhere, and we are easily fooled into

thinking it might be meaningful. When we see a data pattern or effect that we
think is important and real, e.g. a new medical treatment produces better health
outcomes or a new web ad being tested produces more clicks, we set up a chance
model (flipping coins or drawing numbers) to see whether it can produce a result
as unusual as the pattern or effect that we actually saw.

4.1 Avoid Being Fooled by Chance

Why does hypothesis testing, perhaps themost confusing and controversial aspect
of statistics, exist? Hypothesis testing is a way of protecting yourself against being
fooled by chance.
There is a powerful need for the human brain to explain the world. Data

that comes in to the eyes or ears is fitted into seemingly meaningful patterns.

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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92 4 Accounting for Chance—Statistical Inference

This happens even when the data are produced by random chance—we tend
to discount the ability of chance to generate patterns that look meaningful and
real. Diseases are often complex and have varied outcomes if left on their own,
yet we tend to attribute health changes to recent changes in diet, activities, or
environment. Sports commentators import undue meaning to short-term periods
of good or bad performance. A couple of big sales will send a marketing manager
scurrying to find out what produced them (and a corresponding small dip in sales
will send him in search of the cause).

Try It Yourself
In the book resources website https://introductorystatistics.com/, take a look
at the “50 Coin Tosses” experiment. One group of people was told to toss 50
coins and record the results. Another group was told to make up 50 imaginary
coin tosses and write down the results. Can you tell which group is which?

Who uses hypothesis testing?

● The research community uses hypothesis testing to determinewhether a study is
worthy of regulatory approval or publication (its role as gatekeeper in the latter
is increasingly controversial).

● Data scientists use it to assess the results of their tests andmodels. They have less
need of the formal apparatus of hypothesis testing, but do use the resampling
methods presented here, and their variants, to help separate random from real
patterns in data.

4.2 The Null Hypothesis

The standard hypothesis-testing procedure involves a what-if calculation.
We ask, “Could my study results or the results of my analysis be explainable
by chance?” This supposition is called the null hypothesis. Here, “null” means
nothing important is really happening, and whatever differences or variations
we observe between groups are just due to chance. Then we calculate how big
an effect chance might have in our situation, under the assumption that nothing
unusual is going on. If the real-world result that we observe is consistent with
the range of outcomes that chance might produce, then we say that what we
observed may well be due to chance. In other words, if our observations could be
due to chance, we do not reject the null hypothesis. However, if what we observe
is much more extreme than what we would expect due to chance, then it is likely
that something else is going on.
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4.3 Repeating the Experiment 93

4.3 Repeating the Experiment

One way to check the results of our experiment would be to repeat it over and over
to see if the result holds. However, doing just one experiment takes a lot of time
andmoney. Repeating it multiple times is out of the question. So instead we repeat
it on a computer, using themodel suggested by the null hypothesis, the null model.
After all, if the null model is valid, it should be able to produce results like the ones
we actually observed.
If the null model is valid and our results were just due to chance, that would

mean that the apparent superiority of the hospital treatment group in Chapter 2
was just due to the luck of the draw when we assigned hospitals to treatments.
If we assigned them differently, the results would change. Well, let’s assign them
differently to see howmuch theymight change. Thenullmodel suggestswe should
assign them randomly.

4.3.1 Shuffling and Picking Numbers from a Hat or Box

A good way to visualize the process of randomizing the hospital errors and reas-
signing them is to imagine picking numbers from a hat or box.

1) Write the error reduction scores from the 50 hospitals on slips of paper and put
them in a hat or box.

2) Shuffle the papers in the hat and deal them out into two “resampled” groups
of 25.1

3) Calculate the mean error reduction in each of the two groups, and record the
difference between them.

4) Repeat steps 2 and 3 many times.
5) Find out how many resampled differences exceeded the observed difference.

Try It Yourself
Stop now and reflect on just one shuffling of the hat. What is your best guess
about the difference in mean error reduction between the two groups of 25
drawn from the hat?

Definition: PermutationTest Combining two ormore samples in a hat or box,
shuffling the hat, then picking out resamples at random is called a permutation
test (sometimes called a “randomization test”). If there were two original samples

1 Sometimes each paper is replaced and the hat reshuffled before each draw–resampling with
replacement. With replacement and without replacement have slightly different statistical
properties, but produce results that are sufficiently similar for our purposes.
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94 4 Accounting for Chance—Statistical Inference

combined in the hat, then you typically draw out two resamples. If there were n
original samples in the hat, then you would draw out n resamples.

Hat Video
The accompanying website for this book contains a video of a permutation
test using the hospital error reduction data. Watch the video to see a couple of
trials of this permutation test, then continue with the computer implementa-
tion below.

Table 4.1 is one reshuffling of the medical error reduction scores done by a
computer.
The means of the two groups differ, but not by as much as before. Now they

only differ by 0.36. That difference is one estimate of how big a difference might
be due just to chance. It would be helpful to have another estimate. In fact, since
the computer is doing all the work, why not 50 more? Table 4.2 shows the values
of the differences in average error reductions for 50 different permutations.
This is encouraging. We never get a difference as large as 0.92 between the two

groups as a result of reshuffling.

Try It Yourself
What do these results mean?

P-value
Previously, we defined the p-value as the probability that the chance model
might produce an outcome as extreme as the observed value. In this simula-
tion, the chance model never produced a difference as large as 0.92, so the
estimate of the p-value is 0. But we only did 50 trials. If we did 10,000 trials
we might well see a chance result as large as 0.92, which would raise the
estimated p-value slightly above 0.

4.3.2 How Many Reshuffles?

Howmany shuffles do we need to get good accuracy for the p-value? We just tried
50 and found that the observed result of 0.92 seemed pretty unlikely. Let’s now try
1000. Table 4.3 shows the sorted results from the first 15 rows of 1000 trials.
Only 9 trials out of 1000 (bold type in Table 4.3) had differences in their means

of 0.92 or more. Figure 4.1 shows the histogram of all 1000 trials.
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4.3 Repeating the Experiment 95

Table 4.1 Permutation of error reduction scores into two groups.

Random Group 1 Random Group 2

1 1
4 2
1 1
2 3
2 1
3 2
1 1
1 2
2 1
2 1
2 4
5 1
2 1
2 6
2 3
2 2
2 9
4 2
2 2
2 3
2 2
2 2
2 5
2 2
2 4

Mean 2.16 2.52

4.3.3 The t-Test

Repeated shuffling is no problem for today’s computers, but it was prohibitively
costly before the computer age. Mathematical approximates to the resampling dis-
tribution were worked out and used instead. The mathematical approximation
that is used in assessing an A/B test with numerical data is the “t-test,” based on
the distribution of the t-statistic. We will learn more about the t-distribution and
how it was developed in Chapter 7.
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96 4 Accounting for Chance—Statistical Inference

Table 4.2 Average error reduction:
first random group—second random
group, 50 trials (sorted by difference).

−0.76
−0.68
−0.68
−0.60
+ 45 more
0.60

Table 4.3 Sorted results from
1000 trials (first 15 shown).

1.56
1.44
1.08
1.08
1.00
0.96
0.92
0.92
0.92
0.88
0.88
0.88
0.88
0.84
0.84
+ 985 more

4.3.4 Conclusion

Our chance model produced the observed result only rarely, and this was con-
sistent across multiple simulations of 1000 trials each. If you were to count up the
extreme (>=0.92) results fromall the simulations, theywould account for less than
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Figure 4.1 Histogram of 1000 trials—permutation of control and treatment groups
(x-axis is the mean of the first shuffled group minus the mean of the second shuffled
group).

2% of the total. This is sufficiently rare to reject the chance model. Two questions,
though, may remain in your mind.

1) How rare does rare have to be to reject the chance model? In other words, how
low should the p-value be?

2) Is there a firm rule we can use to determine the number of simulations
required?

The answer to question one is somewhat arbitrary. If you set the bar for the
p-value at a very low value, such as 1%, you’ll have good protection against being
fooled by chance. However, you’ll also miss more real events because they will
appear to be within the range of chance variation. If you set the bar relatively high,
such as 10%, more events will qualify as real, but there is a greater probability that
some of them are just the result of chance. There is no magic right answer, though
standard practice is to use a threshold of 5%.

Origin of the Five Percent Rule
R. A. Fisher, one of the “founding fathers” of statistics, is generally regarded
as the source of the prevalent standard that a p-value of 5% is the threshold
of “statistical significance.” He thought that if the chance model can produce
results as extreme as the observed data 5% of the time or more, we can’t rule
out chance. Source: The University of Adelaide/Wikimedia Commons/Public
domain.

(Continued)
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98 4 Accounting for Chance—Statistical Inference

(Continued)

Alcoholic beverages are legal in the United States, but it is not legal
to drive while under the influence of alcohol. In most areas, there
are legal limits that define “under the influence” in terms of a certain
cut-off for blood alcohol level. What are the pros and cons of setting
this cut-off at a high level? At a low level?

Question two also has no right answer. The number of simulations required
depends on the purposes of the investigation.

● If you are a researcher investigating a new drug, the clinical trial will cost hun-
dreds ofmillions of dollars and the drug regulatory agencywill require a rigorous
presentation of the results. If you are publishing a paper in a scientific research
journal, youwill be asked to justify how you arrived at your conclusion. In either
case, you might use a resampling procedure (perhaps with thousands or hun-
dreds of thousands of simulations), or you might use a formula calculation to
show what the resampling simulation would resolve to “in the limit.”

● If you are a data scientist examining some data to assess the possible role of
chance, perhaps as a preliminary step before further action, a high level of pre-
cision is not required.

As a final step in our example, we did 20,000 trials. Of those, 248 had differences in
means as great as 0.92 for a p-value of 248/20,000 = 0.0124. This confirms the ear-
lier trial results and the conclusion that the chance model is not likely to produce
the observed value.

Definition: Statistically Significant The results of an experiment or other
study are statistically significant if they are too unlikely to be accounted for by
our chance model.
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4.4 Statistical Significance 99

4.4 Statistical Significance

Howunlikely does our outcome have to be beforewe reject the null hypothesis and
declare our result statistically significant? This is partly for the analyst to decide,
and there is no definitively right or wrong answer. Whatever we choose for the
answer, the mathematical symbol for it is the Greek letter alpha, 𝛼.

Definition: 𝛂 (alpha) Alpha is the decision threshold you set for the p-value in
advance of an experiment. For example, you may decide that a p-value less than
0.05, a common choice, lets you rule out chance.

What is a reasonable value for 𝛼 depends on the situation. If we are really picky
and do not reject the null hypothesis unless 𝛼 is less than 0.00000001,wewill rarely
claim a real difference bymistake when there is none—this is called a Type I error.
On the other hand, we will frequently miss a real effect by not rejecting the null
hypothesis. This is called a Type II error. In practice, setting a reasonable alpha
depends on the relative costs for the two types of errors.

Definition: Type I Error When you erroneously conclude that an effect is real
when it is just chance, you have committed a Type I error. This occurs when you
get a very low p-value, which indicates a low probability of the result happening
by chance, but the result is, nonetheless, still due to chance.

Definition: Type II Error When you conclude that an effect could be due to
chance although it is real, you have committed a Type II error. This occurs when
the effect is real, but due to chance and small sample size, you get a p-value that is
not low enough.

4.4.1 Bottom Line

When you do a study and make decisions about whether results are interesting
and statistically significant, you are balancing the risks and costs associated with
these two types of error. For example:

● For the hospital error illustration, the social cost of a Type I error would be to
implement a program that really does no good. The main financial cost would
be the program cost itself. The social cost of a Type II error would be that we
discard a helpful program. Then the cost is measured less in dollars and more
in the unnecessary harm due to errors.

● For a web dating service testing, whether a slimmed-down registration form
yieldsmore registrants, the cost of a Type I error (and switching to the new form)
would be a loss of subscriber data, which is important in creating matches. The
cost of a Type II (sticking with the old form) error would be loss of the additional
subscribers that would be generated by the new form.
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100 4 Accounting for Chance—Statistical Inference

Getting back to the hospitals, if this is just the first stage of research on a program,
we would probably be inclined to set alphamoderately high so that if there is even
amild sign it is helpful, we can do further research. Perhaps an alpha of 10%would
be sensible. An alpha of 50% would almost always be too high. That would mean
accepting as unusual and acting upon things that happen randomly rather than
due to the treatment or other change that we make.
Some researchers advocate setting a level for alpha in advance. The idea is that

you set the rules before playing the game. Then you can’t decide at the end of the
game to let alpha be whatever it needs to be for you to win.

4.4.1.1 Statistical Significance as a Screening Device
The idea of statistical significance is sometimes used outside the framework of
formal hypothesis testing as a screening device. For example:

● Some machine learning algorithms that perform many (sometimes millions) of
operations on data in search of patterns use statistical significance tests as guid-
ance, for examplewhat variables to include in amodel. These decisions aremade
repeatedly, on the fly, in automated fashion, and are somewhat arbitrary in the
sense that there is no attempt made to interpret individual hypothesis tests.

● An agricultural research stationmay test numerous varieties of corn in one sum-
mer and use p-values as a threshold for proceeding with further development of
a limited set. The costs of both Type I and Type II error are not huge, and there
are no regulators or journal editors peering over your shoulder, so the applica-
tion of p-values as a threshold can be relaxed and informal.

Another type of screening takes place when scientists submit research for pub-
lication. In scientific journals, it is very hard to get published with an alpha bigger
than 5%, so most authors just use that. Indeed, many researchers probably do not
fully understand what statistical significance is all about, and simply view it as a
hurdle to jump over in getting published.

P-Hacking
The use of p-values became controversial in 2015, when the so-called practice
of “p-hacking” gained notoriety. P-hacking is the process of submitting data
to numerous statistical tests in the hopes that one test, benefiting from the
natural random variability of data, will prove to be “statistically significant.”
P-hacking can include the following:

1) Trying different test statistics (metrics)
2) Testing different subgroups of the data
3) Looking backwards to select different time points to capture the data
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4.4 Statistical Significance 101

4) Using different sources for similar data

Statistically significant p-values are the gateway to publication for aca-
demics, so a motivation for misuse comes naturally. One psychology journal
“banned” the use of p-values, and the American Statistical Association felt
compelled to issue a policy statement on the use of p-values.

4.4.2 Torturing the Data

A phenomenon related to p-hacking is the practice of “data dredging:” searching
through a large store of data, or through different data sources, in search of
interesting patterns (patterns that are often, in reality, just the result of chance).
The economist Ronald Coase had this in mind when he said, “If you torture
the data long enough, it will confess to anything.” Tyler Vigen’s book, Spurious
Correlations, illustrates a number of such examples. For example, he shows in
a plot how suicides by hanging move in tandem with US spending on scientific
research (see tylervigen.com). Sometimes these spurious effects are the unin-
tended byproduct of automated machine learning procedures that churn through
large amounts of data in search of patterns, but fail to adequately validate results
with fresh data. John Elder, founder of a data science consultancy, terms this the
“vast search effect.” Other times these patterns emerge when an analyst hopes for
a certain result and keeps looking until it is found.

The Vast Search For Mules
The movie 2000 Mules, concerning allegations of fraud in the 2020 US presi-
dential election, illustrates the vast search effect.

(Continued)
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102 4 Accounting for Chance—Statistical Inference

(Continued)

Themovie’s producers combed through 10 trillion cell phone pings to locate
250 cell phones it claimed belonged to people (“mules,” as in carriers for drug
dealers) supposedly delivering fraudulent ballots. The supposed evidence?
Their phones were frequently in the vicinity of ballot drop boxes. The Wall
Street Journal (July 23, 2023) noted, “With 10 trillion pings, what are the odds
that some random patterns would show up?” The answer is “pretty high:”
with 10 trillion pings, you could find almost any location pattern you want. In
2024, the movie’s producers disavowed the film and apologized. Source: Wery
Shania/Pexels.

4.4.3 Practical Significance

Statistical significance must be contrasted with practical significance—whether
the difference is big enough to make a practical difference outside the study in the
realm of business, medicine, etc.

● The treatment in our experiment reduced errors by almost 50% (about one per
hospital). These results definitely seem to have practical significance.

● Now consider a web marketing experiment for a digital streaming service with
$100 million in revenue and $95 million in costs. A new email reminder (differ-
ent from the existing reminder) produced 3% more subscription renewals. 3%
sounds small, but revenue is now $103 million as a result. Additional subscrip-
tions can be handled at little cost; costs rise only $1/2million.With the 3% boost
in revenue, profit has gone from $5 million to $7.5 million, a 50% increase—of
definite practical significance. However, the 3% change would need to be based
on a much larger sample than in our hospital study to be distinguishable from
chance—i.e. statistically significant.

With a large enough sample, any difference, no matter how minor and unimpor-
tant, can become statistically significant. Generally, the ability to detect differences
increases with the number of units studied. Statistical power is a measure of our
ability to detect a real effect.
When reporting the results of a hypothesis test, we should report both whether

the result was statistically significant and just how big it actually was—the effect
size. So for the errors experiment, we would report that we found a reduction of
0.92 in the number of errors as a result of the treatment and that we believe that
difference was not due to chance. If possible, a report should include an evalua-
tion of the practical importance of the size of the effect that we observed. Such an
evaluation should be done by someone familiar with the field under study—i.e.
a medical administrator for the hospital study, and a marketing manager for the
digital subscription experiment.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.6 The Normal Distribution 103

4.5 Power

If the result of your hypothesis test is “not statistically significant,” can you con-
clude that the effect you are looking for does not exist? No, you may simply have
had too small a sample to detect it—the sampling variability was too broad. The
ability of a given sample size and hypothesis test to detect an effect, if one exists,
is termed power.

Definition: Power Power is the probability that a statistical test will identify
a specified “effect,” i.e. determine that there is a statistically significant differ-
ence when one exists. For example, you might want to determine the sample size
needed to detect a 5% improvement in a product’s “Net Promoter Score” (derived
from surveys asking whether a consumer would recommend the product to oth-
ers). To calculate power, you need to know (1) the effect size you want to discern,
(2) the sample sizes, and (3) something about sample variances and distribution.

Calculations for power can be complex and are typically handled by software
algorithms developed for this purpose. Calculating power is important, however,
before undertaking a costly study. You want to be sure that the sample you are
planning to collect is big enough to detect the effect that you are interested in
identifying.

4.6 The Normal Distribution

Let’s use our results to briefly introduce a concept that has been central to statistics
for a century. The histogram of our first 1000 reshuffles, shown in Figure 4.1, looks
a lot like a theoretical distribution called the Normal distribution. The Normal
distribution is bell-shaped and symmetric—it has identical tails on both sides.
Figure 4.2 shows what the theoretical Normal distribution looks like.
The x-axis represents the metric of interest, the y-axis measures the relative

frequency of the scores (more about this later).
The Normal distribution was originally called the error distribution—it

depicted not the distribution of the original data, but of errors or deviations
from predicted values. The term “Normal” came into use over time to describe
typical distributions of these errors. In fact, the original raw data encountered in
research and business are typically not Normally distributed, but measurement
and estimation errors, as well as statistics calculated from samples, aremore likely
to be Normally-distributed. We will learn more about the Normal distribution in
the next chapter.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



104 4 Accounting for Chance—Statistical Inference
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Figure 4.2 The theoretical Normal distribution (the x-axis is expressed in standard
deviations).

Most Data Are Not Normal
Most naturally-occurring (raw) data are not Normally-distributed. For
example:

● Heights: On average, men are taller than women, children are shorter
than adults, and different ethnic groups can vary in their heights. Only
when you control such factors and restrict the definition of the group,
e.g. black American adult females, does the distribution turn Normal.

● Incomes: The distribution of incomes is long-tailed or skewed to the right
to account for the individuals who have incomesmany times greater than
the average.

● Tech Support Call Duration: Like incomes, this distribution is
right-skewed, reflecting the fact that there are a few extremely
difficult and lengthy calls.

4.6.1 The Exact Test

Before we leave this subject, let’s look at one more approach. Instead of simply
shuffling the error reduction values, we could examine all 126, 410, 606, 437, 752
ways of arranging the 50 numbers into two groups of 25. These 126, 410, 606,
437, 752 numbers are the complete permutation distribution. Then we would
compare the observed result to this distribution. Obviously it is going to take
some computing power to go that route, but with modern machines and clever
algorithms, this is a viable approach in some situations. Hypothesis tests done
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4.8 Python: Random Numbers 105

in this way are known as exact tests. Instead of exact tests, it is a lot easier to
just try 1000 or 5000 of the possible arrangements, which is what we did. Trying
such a random subset of the possible arrangements instead of all of them is how
permutation tests are usually carried out.

4.7 Summary

The human mind can have difficulty with chance events, interpreting them as
meaningful. One way to protect against being fooled by chance patterns in data
is the hypothesis test, in which we postulate a chance model and determine how
often that chance model can produce a result (for example, a difference between
treatment and control) as extreme as the observed result. The hypothesis testing
process can be very formal, as with regulatory submissions and academic publi-
cations. Or it can be less formal, to provide perspective on statistical or machine
learning analysis.

4.8 Python: Random Numbers

The random package, which is part of the Python standard library, provides func-
tions to generate random numbers.2 While it is called random, the numbers are
pseudo-random, meaning that they are generated by a deterministic algorithm.
Thismeans that randomnumbers can repeat after a certain period.With this draw-
back in mind, pseudo-random numbers are sufficient for most applications. Even
more, they also allow for reproducibility by creating the same sequence of random
numbers. This is important for statistical research.

4.8.1 Generating Random Numbers Using the random Package

The random package uses the Mersenne twister by default. This random number
generator (RNG) can generate 219937 − 1 different numbers before it repeats itself.
To create a random number, use the random() function. This function returns a
random float number between 0 and 1.

import random
print(random.random(), random.random())
print(random.random(), random.random())

Output
0.8515514062887293 0.9099953287797414

2 The random package is sufficient for modeling and simulation. For security or cryptography,
use packages like secrets that create cryptographically strong random numbers.
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106 4 Accounting for Chance—Statistical Inference

0.8681448728121443 0.1420894518957383

The result of this call will change every time you run it. To get the same result,
we can seed the RNG with a fixed value. This is useful for reproducibility.

random.seed(123)
print(random.random(), random.random())
random.seed(123)
print(random.random(), random.random())

Output
0.052363598850944326 0.08718667752263232
0.052363598850944326 0.08718667752263232

In addition to this simple function, the random package provides a number of
other functions to generate random numbers. Here is an overview of the most
important functions.

● randrange(start, stop, step): Returns a random integer betweenstart andstop
(exclusive) with a given step size.

● randint(a, b): Returns a random integer between a and b (inclusive).
● choice(x): Returns a random element from the given list x.

For example:
print(random.randrange(0, 10, 2)) # 6 - output from 2, 4, 6, or 8
print(random.randint(0, 10)) # 4 - output from 0, 1, ..., 9, or 10
print(random.choice([0, 1, 2])) # 0 - output from 0, 1, or 2

There are also three function that operate on lists:

● shuffle(population): Shuffles the list population in place.
● sample(population, k): Returns a list of k elements from the given population
without replacement.

● choices(population, k=1): Returns a list of k elements from the given
populationwith replacement.3

For example:

x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
random.shuffle(x)
print(x) # [7, 8, 3, 4, 1, 9, 2, 5, 6, 0]
print(random.sample(x, k=3)) # [4, 3, 7]
print(random.choices(x, k=6)) # [0, 5, 6, 4, 7, 5]

3 The full signature of the choices function is choices(population, weights=None, *,
cum_weights=None, k=1). The additional weights and cum_weights arguments allow
to specify a probability distribution of the elements of the population. Note the use of the * in
the signature, which indicates that the arguments after it are keyword-only arguments. You
always need to specify the name of the argument when calling the function. It is good practice to
use the keyword name in calls irrespective of it being enforced or not.
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4.8 Python: Random Numbers 107

You will findmore examples for these three functions in many places in this book.
The random package also has functions to generate random numbers from a

number of probability distributions. For now, here are three examples. We will
learn more in Section 5.6.

● random.uniform(a, b): Returns a random number from a uniform distribution
between a and b.

● random.gauss(mu, sigma): Returns a random number from a Normal distribu-
tion (also called Gaussian) with mean mu and standard deviation sigma.

● random.expovariate(lambd): Returns a random number from an exponential
distribution with rate lambd.

4.8.2 Random Numbers in numpy and scipy

You can also generate random numbers with the numpy package. It imple-
ments several different random number generators. The default is the Permuted
Congruential Generator (PCG64). In newer releases of numpy, it is rec-
ommended to use the numpy.random.Generator class instead of the
functions in the numpy.random module. It is faster and can be used in parallel
applications.4

import numpy as np
rng = np.random.default_rng(seed=321)
print(rng.random()) # 0.6587666953866232
print(rng.random()) # 0.9083083579615744

Like therandom package,numpy has functions to sample random integers or real
numbers from a defined range.

print(rng.integers(low=0, high=10, size=3)) # [6 4 3]
print(rng.uniform(low=0, high=10, size=3))
# [5.55856507 9.00575242 6.82980572]

The function rng.choice allows to sample from a list of elements with or without
replacement. The default is sampling with replacement.

# sample with replacement
print(rng.choice([0, 1, 2, 3, 4], size=3)) # [3 3 0]
# sample without replacement
print(rng.choice([0, 1, 2, 3, 4], size=3, replace=False)) # [2 1 0]

The numpy.randommodule also provides functions to sample from a number of
probability distributions. Here are two examples:

4 We will use the new approach throughout this book. If you use a package that depends on the
legacy version of the RNG, you can set a random seed using np.random.seed(123).
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108 4 Accounting for Chance—Statistical Inference

● rng.normal(loc=0.0, scale=1.0, size=None): Returns a random number from a
Normal distribution with mean loc and standard deviation scale.

● rng.exponential(scale=1.0, size=None): Returns a randomnumber from an expo-
nential distribution with scale scale.

If you set the size argument, you can sample multiple numbers at once.
The result is a numpy array.
The scipy package gives access to evenmore distributions. In addition to sam-

pling from these distributions, it also provides functions to calculate the probabil-
ity density function (PDF) and the cumulative distribution function (CDF). Let’s
look at the Normal distribution as an example:

from scipy.stats import norm
# create a RNG with a fixed seed for reproducibility
rng = np.random.default_rng(seed=123)
print(norm.rvs(loc=0.0, scale=1.0, size=3, random_state=rng))
# [-0.98912135 -0.36778665 1.28792526]
print(norm.pdf(x=0.0, loc=0.0, scale=1.0))
# 0.3989422804014327
print(norm.cdf(x=0.0, loc=0.0, scale=1.0))
# 0.5

4.8.3 Using Random Numbers in Other Packages

Many other statistical or data science packages make use of random numbers. To
make your results reproducible, it is useful to understand which method is used
and how to set a random seed in these packages. For example, the pandas pack-
age, like many other packages, uses numpy to generate random numbers. Here is
Python code to sample from a pandas DataFrame:

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3, 4, 5], "b": [6, 7, 8, 9, 10]})
print(df.sample(n=3, random_state=123))

Output
a b

1 2 7
3 4 9
4 5 10

If we don’t set the random_state argument, the result will change every time.
The pandas package uses the numpy RNG, so you could also use the generator
rng from the previous example. Alternatively, you can set the random seed using,
e.g. np.random.seed(123).
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4.8 Python: Random Numbers 109

4.8.4 Example: Implement a Resampling Experiment

Let’s look at an example. In this chapter, we discussed the reduction of errors in
hospitals. We first need to load the data from the file hospitalerrors_2.csv
using pandas.

import pandas as pd
df = pd.read_csv("hospitalerrors_2.csv")
print(df.head())

Output
Row Hospital Treatment Reduction

0 1 239 0 3
1 2 1126 0 1
2 3 1161 0 2
3 4 1293 1 2
4 5 1462 1 2

We are interested in the reduction in errors for the treatment group.
mean_reduction=df[["Treatment", "Reduction"]].groupby("Treatment").mean() 1©
print(mean_reduction)

1© The DataFrame.groupby() method groups the data by group (treatment or control). In a sub-
sequent step, mean calculates the mean of the Reduction values of each group.

Output
Reduction

Treatment
0 1.88
1 2.80

The observed difference is

observed_difference=(mean_reduction.loc[1, "Reduction"] -
mean_reduction.loc[0, "Reduction"]) 1©

print(f"Observed reduction {observed_difference:.3f}")

1© Use DataFrame.loc to access individual cells of a dataframe. The loc method uses the index
values to identify the cell.

Output
Observed reduction 0.920

We can now implement the resampling experiment. There are many ways to do
this. Let’s first have a look at using pure Python. We extract the observations
(Reduction) and the treatment (Treatment) information.

observation = df["Reduction"]
treatment = df["Treatment"]
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110 4 Accounting for Chance—Statistical Inference

Using the random package, we create a shuffled version of the observations.

import random
random.seed(123) 1©
shuffled = list(observation) 2©
random.shuffle(shuffled)

# split the shuffled observations by treatment group
observed_0 = []
observed_1 = []
for obs, treat in zip(shuffled, treatment): 3©

if treat == 0:
observed_0.append(obs)

else:
observed_1.append(obs)

# calculate the mean reduction for the treatment and control group
obs_treatment_0 = sum(observed_0) / len(observed_0) 4©
obs_treatment_1 = sum(observed_1) / len(observed_1)

# calculate the difference
obs_difference = obs_treatment_1 - obs_treatment_0
print(f"Observed difference after shuffling: {obs_difference:.3f}")

1© Set the random seed for reproducibility.
2© This creates a copy of the list to make sure we don’t modify the original list with the next

random.shuffle.
3© The zip function allows to iterate over two lists at the same time. It returns a sequence of tuples,

where each tuple contains the elements of the two lists at the same position.
4© The Python function sum adds up all values of a list. Dividing by the length of the list (the

number of elements of the list), calculates the mean of the list.

Output
Observed difference after shuffling: 0.200

There are many ways to write this code more concisely. For example, we could use
list comprehensions to create the two lists observed_0 and observed_1.
observed_0=[obs for obs, treat in zip(shuffled, treatment) if treat == 0] 1©
observed_1=[obs for obs, treat in zip(shuffled, treatment) if treat == 1]

1© List comprehensions are a great way to convert loops into a single, concise statement. More
about list comprehensions in Section 2.18.6

Or we make use of the numpy function np.mean to calculate the means:

import numpy as np
obs_treatment_0 = np.mean(observed_0)
obs_treatment_1 = np.mean(observed_1)

Using pandas, the code can get even shorter:

shuffled = observation.copy() 1©
random.shuffle(shuffled)
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4.8 Python: Random Numbers 111

means = shuffled.groupby(treatment).mean() 2©
means[1] - means[0] 3©
1© Here, we make use of the fact that observation is a column from a pandas dataframe.

The function random.shuffle shuffles the values in place. To avoid overwriting the infor-
mation in the original dataframe, we create a copy of the observations to preserve the
original list.

2© Both shuffled and treatment are pandas Series. The series (or list) that is used in the
groupby function, doesn’t need to be part of the series or dataframe that is grouped. The only
condition is that they have the same length. Combining the groupby function with the mean
function, we calculate the mean reduction for the treatment and control group.

3© The result of the previous statement is a pandas Series object, which allows us to subtract
the two values to calculate the difference.

We are now ready to repeat this process 1000 times and collect the results in a list.
shuffled = observation.copy() # create a copy of the observations
differences = []
for _ in range(1000):

random.shuffle(shuffled) # shuffle the copy
means = shuffled.groupby(treatment).mean()
differences.append(means[1] - means[0])

print(f"Mean difference after reshuffling {np.mean(differences):.2f}")
print(f"Minimum difference {np.min(differences):.2f}")
print(f"Maximum difference {np.max(differences):.2f}")

Figure 4.3 shows the obtained distribution of the differences. It’s created using the
following code:
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Figure 4.3 Histogram of 1000 trials—permutation of control and treatment groups
(x-axis is the mean of the first shuffled group minus the mean of the second shuffled
group).
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112 4 Accounting for Chance—Statistical Inference

ax = pd.Series(differences).plot.hist(bins=25) 1©
ax.axvline(x=observed_difference, color="grey") 2©
plt.show()

1© We first convert the list into a pandas series and use its Series.plot.hist function to create the
histogram plot.

2© The hist function returns a matplotlib axis object (ax), which we can use to further cus-
tomize the graph. Here, we add a vertical line at the observed difference.

Figure 4.3 clearly shows that the observed difference is very unlikely to occur by
chance. We can calculate the probability of observing a difference of 0.92 or larger
by chance by counting the number of times the difference is larger than 0.92 and
dividing it by the total number of trials.
nr_greater_observed = sum(d >= observed_difference for d in differences) 1©
prob_observed = nr_greater_observed / len(differences)
print("Probability of observing a difference of 0.92 or larger by chance: "

f"{prob_observed:.1%}")

1© At first glance, this statement might look confusing. We iterate over all differences and for
each difference d, we compare it to the observed difference. If it’s larger, the comparison gives
True, otherwise False. The sum function makes use of the fact that True is interpreted as 1
and False as 0. The value of the sum is therefore the number of differences that were larger
than the observed difference.

Output
Probability of observing a difference of 0.92 or larger by chance: 1.1%

4.8.5 Write Functions for Code Reuse

In all our examples, we used functions from a variety of Python packages.
Functions are an important concept in programming. They allow you to reuse
code and make it easier to read and understand a program. Understanding
how functions work and how to write them is an important skill for every data
scientist.
Let’s look at the resampling experiment again. While it was designed for the

experiment with a specific dataset, we may want to run the same experiment with
a different dataset. Instead of taking the original code and adjusting it, we can
extract the core algorithm of the resampling experiment into a function and use
that. Here is an example of how this can be done. The function takes two lists, the
observations and the treatment groups, and the number of trials as arguments.
It returns a list of differences.
The def keyword indicates that we are defining a function. The function name

is resampling_difference_means. The arguments are observations,
treatments, and nr_trials. The function body is indented and contains the
code that is executed when the function is called. The function returns the list
differences.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.8 Python: Random Numbers 113

def resampling_difference_means(observations, treatments, nr_trials=1000): 1©
""" Calculate differences in means between two treatment groups

using resampling """
# create an independent copy of the observations
shuffled = pd.Series(observations)
differences = []
for _ in range(nr_trials):

random.shuffle(shuffled) # shuffle the copy
means = shuffled.groupby(treatments).mean()
differences.append(means.iloc[1] - means.iloc[0])

return differences

1© The nr_trials is a so-called keyword argument with a default value of 1000. This means
that we can call the function without specifying the number of trials. In this case, the default
value is used. If we want to specify a different number of trials, we can do so by using the
keyword argument.

An important aspect of this function is that we created an independent copy of
the observations. If we would not create a copy, the original list would be shuffled
after the function call. This is a so-called side effect, a common source of errors
when writing functions. Look out for lists, dictionaries, and classes in the func-
tion arguments. These are mutable objects. It means that they can be modified in
place. Numbers, strings, tuples, and booleans are examples of immutable objects.
You can assign new values to them in a function without changing the value out-
side of the function. Sometimes, you want your function to have a side effect. The
random.shuffle does exactly that. However, it is good practice to avoid side effects
if possible.
Our function can now be used to repeat the resampling experiment with an

increased number of trials.

differences = resampling_difference_means(df["Reduction"], df["Treatment"],
nr_trials=2000)

print(f"Mean difference after reshuffling {np.mean(differences):.2f}")
print(f"Minimum difference {np.min(differences):.2f}")
print(f"Maximum difference {np.max(differences):.2f}")

Output
Mean difference after reshuffling -0.02
Minimum difference -1.24
Maximum difference 1.24

4.8.6 Organizing Code into Modules

In the previous section, we learned that functions help us to write reusable code
that can be used in multiple projects. In fact, every time we import and use a func-
tion from a package like pandas we make use of reusable code. Once you start
writing more functions and maybe even classes, you will find that you want to
organize them into related groups. In Python, these groups are called modules.
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114 4 Accounting for Chance—Statistical Inference

It is good practice to keep your code organized inmodules. Youmay even consider
sharing your code with others by publishing it as a package.
Creating a module, a collection of Python functions and classes, is easy. You just

create a file with the extension .py and add your functions and classes to it. For
example, we could create a file resampling.py and put the function resam-
pling_difference_means into it. We can then import the function using the
import statement. This is what the file resampling.py could look like:

import random 1©
import pandas as pd

def resampling_difference_means(observations, treatments,
nr_trials=1000):

""" Calculate differences in means between two treatment
groups using resampling """
# calculate observed difference
observed = observations.groupby(treatments).mean()
# create an independent copy of the observations
shuffled = pd.Series(observations)
differences = []
for _ in range(nr_trials):

random.shuffle(shuffled) # shuffle the copy
means = shuffled.groupby(treatments).mean()
differences.append(means.iloc[1] - means.iloc[0]) 2©

return {"observed": observed.iloc[1] - observed.iloc[0], 3©
"resamples": differences}

1© We need to import all packages that are used in a module even if you already imported them
somewhere else. Python is efficient and avoids reimporting the same package over and over
again.

2© We changed the index access from [] to .iloc[]. This is the recommended way to access
elements of a pandas Series or DataFrame. The [] operator is ambiguous and can lead to
unexpected results. If you change it to means[1]-means[0], it will still work, but pandas
will display a warning message that this will change in the future.

3© The function returns a dictionary with the observed difference and the list of differences from
the resampling experiment.

If wewant to use the function in a new project, we can import it using the import
statement like every other module. For now, we assume that the file resam-
pling.py is in the same directory as the file that we want to use it in. In this
case, we write:
import numpy as np
import pandas as pd
import resampling 1©

df = pd.read_csv("hybrid.csv")
differences = resampling.resampling_difference_means(df["Measurement"],

df["Experiment"]) 2©

resamples = differences["resamples"]
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Exercises 115

print(f"Observed difference {differences['observed']:.2f}")
print(f"Mean difference after reshuffling {np.mean(resamples):.2f}")
print(f"Minimum difference {np.min(resamples):.2f}")
print(f"Maximum difference {np.max(resamples):.2f}")

1© Import of our module by name.
2© Because we import themodule by name, we need to prefix the function namewith themodule

name.

Output
Observed difference -240.59
Mean difference after reshuffling -1.61
Minimum difference -141.47
Maximum difference 125.47

In this example, we imported the full module. Alternatively, we could have only
imported the function resampling_difference_means using the from
statement.

from resampling import resampling_difference_means

This allows us to use the function without prefixing it with the module name. You
will also come acrosswildcard imports, which import all functions from amodule.
For example:

from resampling import *

This is not recommended because it can lead to name clashes. This means, if we
import functions with the same name from different modules, the second import
will overwrite the first. There will be no warning and it can be hard to find the
source of the problem. It is always better to write explicit imports and reduce the
imports to what is needed.

Exercises

4.1 DISCUSS:What are the advantages and disadvantages of setting the voting
age very high? Or very low?

4.2 Answer the following questions, referring to the pulse.csv data, and your
answers to problems with the same data in Chapter 2. Use Python to per-
form the calculations.
a) Is there any sign that the proportion who ran is different for males vs.

females? Perform a hypothesis test and state your conclusion in plain
language that would be understandable to someone who never took a
statistics course.
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116 4 Accounting for Chance—Statistical Inference

b) Is there evidence that the “before” pulse rate differs between smokers
and nonsmokers? Medical theory suggests that smoking elevates the
pulse rate. Perform a hypothesis test.

c) We would expect running in place to affect a person’s pulse rate. Test
whether before and after pulse rates are the same.

4.3 Each of the following actions introduces the risk of a Type I error or a Type
II error. For each case, which type of error lurks as a risk? Also discuss the
likely cost of the error.
a) A new diet pill is introduced to the market after passing an appropriate

statistical review by the drug regulatory agency.
b) A computer chipmanufacturer tests a new process and the results show

it produces faster chips. However, the improvement is not statistically
significant, so the process is not developed further.

c) A municipal water supplier tests water regularly, and a particular test
shows a high level of contaminants. The water supplier issues an alert
for residents not to drink or cook with the water.

d) A parks department tests water in a lake to determine the level of fecal
coliform bacteria, which can pose risks of gastrointestinal illness for
swimmers. A particular test yields a high level of coliforms, but due
to some uncertainty about the reliability of the lab results no action is
taken.

4.4 A web consultant for a retail merchant tests two different presentations
of a product to determine whether there is a difference in the length of
time that people stay on that product page. She records the visit time in
seconds per visitor for each presentation and finds that people viewing
Presentation B (the new one) linger 0.33 seconds longer, on average, than
those viewing Presentation A (the existing presentation). In the time
allotted for the study, she is able to record 36 visits, 21 for Presentation A
and 15 for Presentation B.
a) From the histogram shown in Figure 4.4 for a permutation test

between the two treatments (putting all 36 values in a hat, repeatedly
shuffling and drawing out resamples of 21 and 15 values for A and B
respectively, and recording the difference), is the observed difference
within the range of chance variation? You can load the dataset from
web-page-data.csv and perform the resampling experiment yourself.

b) Now suppose that Presentation A and Presentation B are both part of
a web remake, and neither is an established standard. How would your
statistical approach differ?
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Exercises 117

Figure 4.4 Histogram of 1000
resampled difference in the
length of time people stay on
the product page for
presentations B compared to A.
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4.5 From Figure 4.2, the Normal curve, estimate the proportion of values
that are:
a) Greater than +2 standard deviations
b) Less than −2 standard deviations
Use scipy.stats.norm.cdf to check your answers.

4.6 Implement the following dice roll experiments using Python:
a) Roll a dice 100 times and count the number of times you roll a 6 (or any

other number). What count do you expect? Implement this experiment
using Python and compare the result to your expectation.

b) Roll two dice 100 times and count the number of times you roll a 7
(or any other number).

c) Roll two dice 100 times and count the number of times you roll a 7
(or any other number). Repeat this experiment 1000 times and plot the
distribution of the number of times you roll a 7.

4.7 In 2023, cracking a 10-character password that contains only lowercase
letters takes minutes. In order to make passwords more secure, a com-
pany decides to require that all passwords contain at least one uppercase
letter, one lowercase letter, one number, and one special character. The
company also requires that all passwords be at least 12 characters long.
Write a Python program that generates a randompassword thatmeets these
conditions:
● at least 12 characters long
● contains at least one uppercase letter
● contains at least one lowercase letter
● contains at least one number
● contains at least one special character

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



118 4 Accounting for Chance—Statistical Inference

4.8 Toss a coin 1000 times and count the length of sequences of consecutive
heads or tails. This is called a run. Plot the distribution of the run lengths.
What distribution do you expect?

4.9 Birthday paradox: How many people do you need in a room to have a 50%
chance that two people have the same birthday? How many people do you
need in a room to have a 99% chance that two people have the same birth-
day? Assume that all birthdays are equally likely and ignore leap years.
Write a Python program to answer these questions.
a) Simulate the problem by generating random birthdays until you see one

for the second time. Store the number of birthdays you had to generate.
Repeat this process 10,000 times and store the number of birthdays for
each trial in a list.

b) Count how often each number occurs and convert it into a frequency
table. Convert the counts into probabilities and add them to the table
together with a cumulative probability.
Hint: You can use a defaultdict to count the occurrences.

c) Plot the distribution of the number of birthdays you had to generate.
d) Use the cumulative property to answer the questions.

4.10 Determine the number 𝜋 using integration with aMonte Carlo simulation.
Draw a square with side length 2 and a circle with diameter 2. Generate
random points in the square and count the number of points that are also
in the circle. The ratio of the number of points in the circle to the total num-
ber of points is an approximation of 𝜋∕4. Repeat this experiment 20 times
with an increasing number of points and plot the approximation of 𝜋 as a
function of the number of points for 10,000, 20,000,…, 100,000. Describe
your findings.

4.11 In this exercise, we look at the effect of using n or n − 1 in the denominator
when calculating the standard deviation of a sample.
a) Create a random sample of 1000 values from aNormal distributionwith

mean 100 and standard deviation 15.
b) Compute the standard deviation of these 1000 values.
c) Repeatedly, take resamples of size 10 and calculate the standard devia-

tion of each resample using either n (population) or n − 1 (sample) in
the denominator.

d) Plot the distribution of these standard deviations for both cases and
compare to the standard deviation of the original 1000 values.

e) What do you observe?
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Exercises 119

4.12 This problem uses the dataset trade-discount-A-B.csv (There are similar
problems in Chapters 2 and 11). Consumer packaged goods ( CPG)
companies sell some goods online but generate most of their revenue from
sales through brick andmortar retail companies. A CPG company typically
manages a number of brands, each of which has multiple products. For
example, Unilever, a large CPG based in the United Kingdom, owns over
400 brands. Just one of its brands, Dove, sells body washes, hand and body
lotions, facial cleansers, deodorants, shampoos, conditioners, and hair
styling products. Each product is sold in multiple sizes and variations (e.g.
different soap scents), so the number of individual “stockkeeping units”
(SKU’s) on offer from a CPG might be in the tens of thousands. A typical
grocery or drug store has room to stock only a small fraction of all the
products on offer from a given CPG. A major challenge for the CPG is
obtaining and retaining “shelf space” at major retailers. CPG companies
promote their products through advertising, issuance of discount coupons
to consumers, and “trade discounts” offered to retailers. Trade discounts
are product-specific discounts offered to individual retailers that can
fund co-advertising, or simply serve as an incentive to the retailer to
promote the discounted product. The company is debating whether to
reduce trade discounts and boost coupons, as is done in some of its Latin
American markets. Analysts are considering whether and how to conduct
an experiment (A/B test) to shed light on whether this is a good idea.
a) Many in the company resist the idea of an experiment, as it would be

complex and costly, disrupting many relationships with retailers. More-
over, if the company were to change the trade discounting policy and
observe what happened to sales during the experiment period, there
might be other changes that affect sales and muddy the picture. In the
end, it is agreed to select two mid-sized US markets that have a similar
mix of product sales. In one of the markets, trade will be reduced and
coupon spend increased. No changes will bemade in the other (control)
market. Could a randomized experiment be used here instead? Why or
why not?

b) The data show the A/B test results, where C = the control group where
no changes to current practice have been made, and T = treatment
group, where trade discounts have been boosted and coupon spending
reduced, so as to leave overall promotion spending approximately
unchanged. Report the overall result, and its statistical significance.
Interpret the business significance of the result as well.
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5

Probability

“Is this a game of chance?”
“Not the way I play it.” W. C. Fields
Source: Courtesy of Universal Studios
Licensing LLC.

We have been dealing regularly with the notion of probability; in this chapter
we introduce more formal concepts of probability. After completing this chapter,
you should be able to:
● produce a Venn diagram
● use the addition rule and explain in what circumstances it is relevant
● explain the binomial probability distribution
● calculate standardized values (z scores)
● interpret the role of the Normal distribution as a benchmark

5.1 What Is Probability

Most people consider that they have an intuitive sense of probability and an idea of
chance. The weather forecaster does not need to explain what is meant by “chance

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.wiley.com/go/Wiley_Statistics_for_Data


122 5 Probability

of rain.” Formal and scientific understandings are more elusive—volumes have
beenwritten on probability over the centuries, in the realms of history, philosophy,
andmathematics. Sowewill not get tangled up in formal definitions of probability.
Instead, we will point to two useful concepts in interpreting probability:

1) Long-run Frequency: Probability can be seen as the frequency with which an
outcome of the event would occur if repeated over and over. For example, the
proportion of time you would get “heads” if you flip a coin many times. This is
easiest to understand for a concrete process, such as a game of chance, whose
repetition is easy to visualize. The earliest expositions on the theory of probabil-
ity were aimed at helping gamblers better understand the odds (closely related
to probabilities) in games they were playing.

2) Degree of Belief: Probability can be seen as a numerical mapping of the degree
to which you believe something will occur. For example, military planners
might attach a probability to the outcome, “Pakistan and India will fight a war
in the next five years.” It is difficult to imagine a repeatable process in which
this question can be framed, but the lack of such a practical process does not
diminish the relevance or utility of the concept of probability as applied to the
question.

5.2 Simple Probability

Perhaps no one is more familiar with probability in its pure form than gamblers.
The 17th century writer Antoine Gombaud, better known under his assumed
moniker Chevalier de Mere, was a prolific gambler at dice. The foundations of
probability theory were laid when he enlisted the help of mathematician Blaise
Pascal (shown in Figure 5.1) to explain why he was consistently losing his bets on
getting two sixes in 24 throws of a pair of dice. He assumed the probability was
the same as throwing one six in 4 plays of a single die, where he consistently won
his bets.
Pascal showed this simple calculation to be wrong and, in his analysis, showed

the importance of enumerating all the possible outcomes of throwing a pair of dice
24 times.

Definition: Sample Space The list of all possible outcomes of a specified exper-
iment or event is called the sample space.

The sample space for a coin toss is heads, tails. The sample space for the throw
of a die is 1, 2, 3, 4, 5, 6. The sample space for “flight arrival status” could be early,
on-time, delayed, or canceled. In the flight arrival case, as with most cases in real
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5.2 Simple Probability 123

Figure 5.1 Blaise Pascal,
1623–1662. Source:
Unknown author/Wikimedia
Commons/CC BY 3.0.

life, the sample space may not fully flow from deterministic rules as it would in a
gambling game. For example, defining “on-time” for a flight may include a buffer
in which the flight might be a few minutes late.
The sample space must:

● include every possible outcome,
● be jointly exhaustive, i.e. as a whole include every possible outcome, and
● mutually exclusive, i.e. the outcomes on the list must not overlap.

Sample space is a statistical concept, but the idea is also important in software
engineering. Incomplete or inaccurate specification of possible outcomes can
cause bugs, if a user enters data that is not part of the anticipated states or
outcomes. For example, American Airlines’ website is supposed to incorporate
the official code for each destination it serves, to facilitate online purchases.
Throughout 2023, a customer entering the code MVY (for Martha’s Vineyard, an
American destination) would encounter a fatal error at the end of the purchase
process that crashed the site. The problem? The set of valid destinations did not
include MVY.
Subsets of the sample space are often of interest—for example, the flight arrival

outcomes “delayed or canceled.” A weather outcome of special interest might be
“freezing rain or snow.”
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124 5 Probability

A list of possible outcomes might not be the same thing as the sample space.
A text classification algorithm might classify aircraft maintenance tickets as
“urgent,” “not urgent,” “safety-related,” or “not safety-related.” An item will
receive one label from the urgency category and one from the safety category,
and both are needed. An item for an aircraft in service might be urgent but not
safety-related (e.g. a malfunctioning toilet). An item, say an engine fault for a
backup aircraft not in service, might be nonurgent and safety related. A full
description of the sample space requires a set of four compound outcomes:

● Urgent but not safety related
● Urgent and safety related
● Nonurgent and not safety related
● Nonurgent and safety related

Unlike the initial lists, these compound outcomes are mutually exclusive and
exhaustive, and illustrate that many scenarios require analysis and processing to
arrive at an accurate description of the sample space.

5.2.1 Venn Diagrams

It is common to draw pictures called Venn diagrams for simple probability situa-
tions. In Figure 5.2, the disk represents event E (for example, rain) and the gray
area represents the “complement” ∼E (not rain). The entire rectangle represents
the whole sample space with an area (probability) of 1.

The probability of an event plus the probability of its complement add
up to ___?

Figure 5.3 depicts a situation where two outcomes overlap. For today’s weather,
there may be a certain probability of rain (rectangle B), a certain probability of
snow (rectangle E), a certain probability of both rain and snow (the intersection
ofB andE), and a certain probability of neither rain nor snow (the gray area outside
B and E). If no outcomes occur together, the Venn diagram would show no over-
lapping area. In calculating probabilities from theVenn diagram and the outcomes
it represents,

E ~E

Figure 5.2 Venn diagram: E and ∼E (∼E means
“not E”).
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5.2 Simple Probability 125

Figure 5.3 Venn diagram—two events of interest
(B and E) and their intersection (B∩E).

E

B
B   E

1) The probabilities of all the outcomes must sum to 1
2) If outcomes A and B are mutually exclusive (non-overlapping in the Venn

diagram), the probability of A OR B is the sum of the two probabilities
3) If outcomes A and B overlap, the probability of A OR B is the sum of the two

probabilities MINUS the probability of the two happening together (the inter-
section)

4) The probability of A AND B is the probability associated with the intersection
region.

In programming logic the operator AND is used where two or more outcomes
both occur: “list all the customers who purchased product A and product B.”
For a customer to be listed, they must have purchased both products.

Don’t let your intuition lead you astraywith the usage of AND andOR.
“AND”makes us think of including both B outcomes andA outcomes,
but we really want to include only those events that have both out-
comes A and B. “OR”makes us think of having to choose one outcome
or another, but we really want to include all events that have either
A or B as an outcome.

Try It Yourself
Make a table showing the sample space for three tosses of a coin. Hint: Use
the table for two tosses as a starting point. Then note that each item on that
list has two children. For example, the parent TH has children THT and THH.

The following rule is a simplified version of the Venn diagram, and it applies
only for mutually exclusive outcomes to an event:

Addition Rule: P(A ∪ B)
Formutually exclusive (disjoint) outcomes:

P(A ∪ B) = P(A) + P(B)
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126 5 Probability

This reads, “the probability of A or B equals the probability of A plus the prob-
ability of B.” For example, if the probability of the Yankees winning the World
Series is 0.2 and the probability of the Nationals winning the World Series is
0.15, the probability that either the Yankees OR the Nationals will win is 0.35.
They cannot both win, so we do not need to subtract out that probability.

5.3 Probability Distributions

In Chapter 3, we were introduced to frequency distributions and histograms to
sum up and show how a data set is distributed. Let’s now apply frequency dis-
tributions to probabilities. For example, here we tabulate estimated probabilities
associated with flights in September, 2023 between two US airports, Atlanta
(the busiest) and NY-Newark (the most-delayed):

On-time 0.24
Delayed 0.70
Canceled 0.06

These outcomes aremutually exclusive (the categories do not overlap), and their
probabilities sum to 1.

5.3.1 Binomial Distribution

An important probability distribution in statistics and data science is the binomial
(two-outcome) distribution. It is a widely used concept because so many scenar-
ios that data scientists study are binomial outcomes—buy or don’t buy, fraud or
no-fraud, click on link or no click, survive or die. Many situations are more com-
plicated, of course, but, even so, it is typically the case that a decision is needed,
and it often boils down to a yes–no decision.
A binomial distribution shows the frequencies of obtaining x successes in

n trials, where each trial has a p probability of success. “Success” is an arbitrary
term simply denoting the outcome we choose to be interested in. A “trial” is
whatever we define as the yes–no event of interest (for example, a coin flip, exam-
ination of one insurance claim to determine whether it is fraudulent, showing
a web visitor a page with a clickable link, a pitch to a batter in baseball). Here
are those elements for the Try it Yourself flipping a coin three times experiment
(above):

● Trial: flipping a coin
● Success: heads
● Probability of success: 50%
● Number of trials: 3
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5.3 Probability Distributions 127

“Success” here is a purely statistical term and does not imply a favorable
outcome. In cases where we are interested in relatively infrequent outcomes
(a fraudulent insurance claim, a patient’s death), “success” typically denotes the
rare outcome of interest, though it may be quite unfavorable in practical terms.

Try It Yourself
Using your table showing the sample space for three tosses of a coin, add
probability calculations for each possible outcome. Assume the coin has a
50/50 chance of landing heads or tails—that it is a “fair coin.” Once you have
your table, find the probability of getting more heads than tails.

We can easily adapt our simple example to cover a wide variety of situations
by modifying the coin so it is “unfair.” For example, if we want to model a 2%
probability that a web visitor will click on a link, we would use a (theoretical) coin
that has a 2% chance of landing heads. More practically, we would use random
numbers. If we randomly select integers between 1 and 100, the numbers “1” and
“2” could be “click” and the remainder “no-click.”
Enumerating all possible outcomes for our simple experiment with three flips

of a coin was relatively easy. This becomes prohibitively hard for large n problems.
There are three possible solutions:

1) We can simulate probabilities with repeated resampling
2) We can calculate probabilities with the binomial formula
3) We can estimate probabilities using the Normal distribution

The binomial formula and the use of the Normal distribution to estimate bino-
mial probabilities are found in the Appendix to this chapter.
Here is the Python code for repeated resampling of 150 flips of a fair coin.

The resulting distribution is shown in Figure 5.4.

import random
import pandas as pd

random.seed(123) 1©
nrepeat = 10_000
nr_heads = []
for _ in range(nrepeat):

nr_head = random.choices(["H", "T"], k=150).count("H") 2©
nr_heads.append(nr_head) 3©

ax = pd.Series(nr_heads).plot.hist(bins=np.arange(49.5, 100, 1)) 4©
ax.axvline(75, color="black", linestyle="–")
ax.set_xlabel("Number of heads")
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128 5 Probability
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Figure 5.4 Distribution of the number of heads in 150 flips of a fair coin.

1© Set the random number generator seed so that the results are reproducible
2© Randomly select 150 values from the list [“H”, “T”] with replacement and count the number

of “H” values
3© We could replace the for loop with a list comprehension:

nr_heads = [random.choices(["H", "T"], k=150).count("H") for _
in range(nrepeat)]

4© We convert the list to a Pandas Series to use its plot function

5.3.1.1 Example
A baseball batter has a 0.3 probability of getting a hit in each at-bat. What is the
probability that he will get exactly three hits in five at-bats?
The binomial distribution shows the probability of all possible outcomes for a

given probability and number of trials. The distribution shown in Table 5.1 and
Figure 5.5 shows the distribution of success probabilities (“success” = hit) when
n= 5 and p= 0.3. It can be estimated by resampling and calculated by the binomial
formula (see Appendix to this chapter).

Answer the following questions based on the information in
this table:

1) What is the probability of getting four successes in 5 trials?
2) What is the probability of getting two or fewer successes?
3) What series of steps (algorithm) would you use to create the above table using

resampling?
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5.4 From Binomial to Normal Distribution 129

Table 5.1 Probability of
different successes.

Successes Probability

0 0.168
1 0.36
2 0.309
3 0.132
4 0.028
5 0.002

0.35 Probability

0.30

0.25

0.20

P
ro

ba
bi

lit
y

Successes

0.15

0.10

0.05

0.00

0 1 2 3 4 5

Figure 5.5 Probability of successes (hits) in 5 at-bats, calculated using the binomial
formula and estimated using resampling.

5.4 From Binomial to Normal Distribution

Go back and look at Figure 5.4. The shape of this distribution may be familiar to
you—it is the bell-shaped formof theNormal distribution thewe introduced in the
last chapter (see Figure 5.2). The Normal distribution has been central to statistics
for well over a century and is used in many circumstances, including:

● To approximate the binomial distribution when n is large and
● To approximate the permutation (shuffling) distribution that we explored in
earlier chapters
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130 5 Probability

The use of approximations like the Normal curve and its cousin, the
t-distribution, were the standard approach in statistics until the arrival of
widely available computing power that allows data scientists to directly model
problems with appropriate simulations.

5.4.1 Standardization (Normalization)

Much of our work to this point has been to determine how improbable (extreme)
an observed value is, relative to a resampling distribution of values under the
null hypothesis or chancemodel. Before computers were available, producing that
chance distribution was impractical—it would require lengthy sessions dealing
cards from a box or tossing dice.
Using a mathematical approximation, though, hits a roadblock. It is impractical

to derive a different mathematical benchmark each time you want to conduct a
study, to accommodate the scale of your measurements. One study might have
data centered around 15 meters with a standard deviation of 3 meters, another
with a mean of 25 μm with a standard deviation of 2 μm. Instead, we standardize
our data so that all distributions are on the same scale.

Definition: Standardization and z-Scores We standardize or normalize val-
ues in a sample or dataset by subtracting the mean from each and then dividing
by the standard deviation.

xi − 𝜇

𝜎

Standardized values are also called z-scores.

Standardizing data in this way strips scale and units from the measurement.
For example, instead of saying that a person weighs 220 pounds, we would say
that they weigh 1.8 standard deviations above the mean. You will also encounter
the term normalizing, which means the same thing. The term “normalizing” is
not directly related to the Normal distribution—normalizing data does not make
it have a Normal distribution. It does, however, make it easy to compare your data
to a standard Normal distribution (see Section 5.4.2).
Table 5.2 illustrates the calculations for cholesterol scores for a group of

10 subjects. For this group, the mean cholesterol is 204.9 and the standard
deviation is 22.81. Consider subject #6.

● Cholesterol raw score: 224

● Standardized score: 224 − 204.9
22.81

= 0.837
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5.4 From Binomial to Normal Distribution 131

Table 5.2 Cholesterol scores
for a group of 10 subjects.

Subject Cholesterol

1 175
2 210
3 245
4 198
5 210
6 224
7 189
8 171
9 232
10 195

Mean 204.90
SD 22.81

So the standardized cholesterol score for subject #6 is 0.837. Another way of
saying this is that subject six’s cholesterol is 0.837 standard deviations above the
average.

5.4.2 Standard Normal Distribution

The single Normal distribution that is used as a benchmark is called the Standard
Normal distribution.

Definition: The StandardNormal Distribution The Standard Normal distri-
bution has a mean of 0 and a standard deviation of 1.

Standard Normal distribution graphs provide standardized values (z-scores) on
the x-axis. The y-axis is labeled “density,”which is notmeaningful by itself.What is
meaningful is the area under the curve. The total area is= 1, and the area between
or beyond points on the x-axis is the probability that x takes on a value between
(or beyond) those points. For example, the shaded area in Figure 5.6 is the proba-
bility that x is greater than 1.
Calculating this probability from the graph is not easy, so cumulative probability

tables, z-tables, are typically used.
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132 5 Probability
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Figure 5.6 P(x > 1).

5.4.2.1 z-Tables
Z-tables, also called Standard Normal tables, show the probability that a value has
a value lower than the specified z-score in the table. Table 5.3 is a very simple table.
If a dataset follows the Normal distribution and has been standardized (normal-
ized), the first row of numbers in the table says the probability that a value z will
be less than −3 is 0.001350. So although any number less than −3 is possible, such
numbers are not very likely.
The last rowof the table says that the probability that z is less than+3 is 0.998650,

which is pretty likely. Since the cumulative probabilitymust equal 1, we also know
that the probability that z is more than 3 is 1 − 0.998650 = 0.001350. The Normal
distribution is symmetrical, so the probability of being more than 3 is the same as
the probability of being less than −3.

Table 5.3 Simple z-table.

z P(Z < z)

−3 0.001350
−2 0.022750
−1 0.158655
0 0.500000
1 0.841345
2 0.977250
3 0.998650
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5.5 Appendix: Binomial Formula and Normal Approximation 133

Older statistics textbooks contain detailed versions of the above table. It is more
common, though, to find the probability values directly in statistical software, or
via a web calculator (do a web search for “z-score calculator”).

Try It Yourself
For subject number 8 in the cholesterol table above (Table 5.2), find (1) the
z-score, and, using software or a web-based calculator, (2) the cumulative
probability associated with that score. Then interpret that probability.

5.4.3 The 95 Percent Rule

We can see from Table 5.3 to find that the probability that a Standard Normal vari-
able is above 2 or below −2 (in other words, beyond two standard deviations from
the mean) is 0.02275 + 0.02275 = 0.04550. A guideline based on the calculation
we just did is that about 95% of any Normal distribution is within two standard
deviations of the mean.

Try It Yourself
What percentage of the standard Normal distribution is within one standard
deviation of the mean? What about three standard deviations?

These guidelines are widely used for detection of outliers, which are points
unusually distant from the mean and therefore worthy of special attention.
Rules like this for finding outliers should be used with caution. Just because an
observation is distant from most of the others does not necessarily mean it is
anomalous in other respects.

The 95% rule is valid only for Normally distributed data. Even minor
deviations from Normality can have a big impact at the tails of the
distribution.

5.5 Appendix: Binomial Formula and Normal
Approximation

The binomial formula tells you the probability of getting exactly x successes in n
trials, when the probability of success on each trial is p. The formula is:

P(X) =
(n
x

)
px(1 − p)n−x

= n!
x!(n − x)!

px(1 − p)n−x
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134 5 Probability

5.5.1 Normal Approximation

The binomial formula can get cumbersome to calculate, especially when cal-
culating cumulative probabilities that require many calculations of individual
probabilities. When n is large, we can take advantage of the fact that the Normal
distribution looks almost exactly like the binomial distribution, and use z-scores.
The sample proportion has a standard error of (p(1 − p)∕n)1∕2, so we can divide
by this to obtain z-scores.
For example, suppose 100 customers are surveyed and 60% of them have a favor-

able opinion of your product. But could opinion among all customers be equally
split, and, due to sampling variation, you got a set of 100 that was 60% favorable?
Specifically, you’d like to know the probability that a 60% sample could come from
a 50% population. This is a binomial problem in proportions, so we can divide the
difference between observed (0.60) and hypothesized (0.50) = 0.10, and divide by
the standard error calculated from the sample:

0.1√
p(1 − p)∕100

= 0.1√
0.5(1 − 0.5)∕100

= 0.1∕0.05

= 2

In other words, two standard deviations separate 60% from the hypothesized 50%.
We saw earlier from the z-table that the probability of a z-score of 2 or more is
small—0.2275.

5.6 Python: Probability

5.6.1 Converting Counts to Probabilities

We often want to convert counts to proportions or estimated probabilities
(or, equivalently, frequencies to relative frequencies). This is easy to do in Python.
You divide each count by the sum of all counts. In the following example, we
throw a die 20 times and record our results. This code illustrates this for a list of
counts stored in the dictionary counts:
import random
random.seed(1245)

counts = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0} 1©
for _ in range(20):

outcome = random.randint(1, 6) 2©
counts[outcome] += 1 3©

sum_counts = sum(counts.values()) 4©
probabilities = {key: count / sum_counts for key, count in counts.items()} 5©
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5.6 Python: Probability 135

print(f"counts: {counts}")
print(f"sum of counts: {sum_counts}")
print(f"probabilities: {probabilities}")

1© counts is a dictionary that stores the counts for each outcome. It is initialized to zero for
each possible result from 1 to 6.

2© random.randint(1, 6) returns a random integer between 1 and 6, inclusive.
3© counts[outcome] += 1 increments the count for the observed outcome by 1.
4© sum(counts.values()) returns the sum of the counts. The dictionary method values

iterates over the values in the dictionary. In this case, the values are the counts.

Output
counts: {1: 2, 2: 6, 3: 3, 4: 2, 5: 5, 6: 2}
sum of counts: 20
probabilities: {1: 0.1, 2: 0.3, 3: 0.15, 4: 0.1, 5: 0.25, 6: 0.1}

The idea is the same, independent of how your data are stored. The following
demonstrates it for a list of counts:

counts_list = [2, 6, 3, 2, 5, 2]
sum_counts = sum(counts_list)
probabilities = [count / sum_counts for count in counts_list]

It is also straightforward if the data are stored in pandas data structures.

import pandas as pd
counts_df = pd.DataFrame({"outcome": k, "count": v}

for k, v in counts.items()) 1©
counts_df["probability"] = (counts_df["count"] /

counts_df["count"].sum()) 2©
counts_df

1© The items method returns the key-value pairs in the dictionary. We convert each pair to a
dictionary and pass this sequence to the constructor of the DataFrame. This will create a
dataframe with two columns: outcome and count.

2© This statement divides each value in the count column by the sum of the values in that
column. The result is stored as a new column in the dataframe.

Output
outcome count probability

0 1 2 0.10
1 2 6 0.30
2 3 3 0.15
3 4 2 0.10
4 5 5 0.25
5 6 2 0.10

5.6.2 Probability Distributions in Python

In Python, we have many options to create random numbers for different prob-
ability distributions. The random package implements the most frequently used
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136 5 Probability

distributions and for many applications this will be sufficient. If you need a dis-
tribution that is not supported by random, check numpy or even better scipy.
Thescipy package implements awide variety of distributions and providesmany
useful functions for working with them.

5.6.3 Probability Distributions in random

Here are a few examples that demonstrate how we can generate random numbers
from different distributions using random.

import random
random.seed(321)

uniform = [random.uniform(3, 10) for _ in range(3)] 1©
normal = [random.gauss(1, 3) for _ in range(3)] 2©
poisson = [random.expovariate(0.5) for _ in range(3)] 3©

def print_numbers(name, numbers): 4©
s = ", ".join([f'{number:.3f}' for number in numbers])
print(f"{name}: {s}")

print_numbers("uniform", uniform)
print_numbers("normal", normal)
print_numbers("poisson", poisson)

1© random.uniform(a, b) returns a random number from a uniform distribution between a and
b.

2© random.gauss(mu, sigma) returns a random number from a Normal distribution with mean
mu and standard deviation sigma.

3© random.expovariate(lambd) returns a random number from an exponential distribution with
rate lambd. The argument is called lambd because lambda is a reserved word in Python.

4© We created the function to make the code more readable.

Output
uniform: 4.928, 3.879, 6.932
normal: -6.217, 3.752, 7.947
poisson: 1.214, 2.938, 2.187

Looking at the numbers doesn’t tell us much. Let’s create a figure that com-
pares the three distributions. Figure 5.7 shows the result of the following code.
The distribution of the generated random numbers are clearly different.

fig, axes = plt.subplots(figsize=(10, 2.5), ncols=3)
axes[0].hist([random.uniform(3, 10) for _ in range(5000)],

bins=50, density=True)
axes[0].set_title("uniform")
axes[1].hist([random.gauss(1, 3) for _ in range(5000)],

bins=50, density=True)
axes[1].set_title("normal")
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5.6 Python: Probability 137
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Figure 5.7 Histograms of 5000 random numbers sampled from different distributions.

axes[2].hist([random.expovariate(0.5) for _ in range(5000)],
bins=50, density=True)

axes[2].set_title("poisson")
plt.tight_layout()

5.6.4 Probability Distributions in the scipy Package

5.6.4.1 Continuous Distributions
The scipy package implements more than 100 distributions. As an example, we
look at the Normal distribution. The following code generates 5000 random num-
bers from a Normal distribution with mean 1 and standard deviation 3.
import numpy as np
from scipy import stats

rng = np.random.default_rng(seed=783)
samples = stats.norm.rvs(loc=1, scale=3, size=5000, random_state=rng)
print(samples)

Output
[3.87280849 3.49605883 1.55079719 ... -1.93997238 -2.76834212 5.73210174]

The function stats.norm.rvs takes a variety of arguments. The first two argu-
ments are the mean (loc) and standard deviation (scale) of the distribution.
The argument size specifies the number of random numbers to generate.
Finally, we set the optional random_state for reproducibility.
There is an alternative way of using the Normal distribution in scipy. In the

following example, we create a dist object that represents a so-called frozen dis-
tribution (mean loc and standard deviation scale are fixed). When we use this
object, we no longer need to specify the mean and standard deviation. The fol-
lowing code illustrates this. This approach is useful if you want to work with a
distribution where the key properties are fixed.

rng = np.random.default_rng(seed=783)
dist = stats.norm(loc=1, scale=3)
samples = dist.rvs(size=5000, random_state=rng)
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138 5 Probability

Output
[3.87280849 3.49605883 1.55079719 ... -1.93997238 -2.76834212

5.73210174]

We can also use the stats.norm object and functions to calculate character-
istics of the distribution. For example,

dist = stats.norm() # standard normal distribution
print("mean:", dist.mean())
print("standard deviation:", dist.std())
print("median:", dist.median())
print("variance:", dist.var())
print("(mean, variance, skewness, kurtosis)", dist.stats(moments="mvsk"))

Output
mean: 0.0
standard deviation: 1.0
median: 0.0
variance: 1.0
(mean, variance, skewness, kurtosis) (0.0, 1.0, 0.0, 0.0)

A convenient function is also the interval function. It returns the interval that
contains a given percentage of the distribution. For example, the following code
returns the intervals that contains 90% and 95% of the distribution.

print("90% interval:", dist.interval(0.9))
print("95% interval:", dist.interval(0.95))

Output
90% interval: (-1.6448536269514729, 1.6448536269514722)
95% interval: (-1.959963984540054, 1.959963984540054)

Figure 5.8 shows the graphs of five functions that describe the probability
distribution.
pdf : The probability density function (pdf) describes the probability

of a random variable taking on a specific value.
cdf : The cumulative distribution function (cdf) describes the

probability of a random variable taking on a value less than or
equal to a specific value. For example, dist.cdf(1.645) is
approximately 0.95. This means that 95% of the distribution is
less than or equal to 1.645.

sf : The survival function (sf) is the complement of the cdf. For
example, dist.sf(1.645) is approximately 0.05. This means
that 5% of the distribution is greater than 1.645.

ppf and isf : The percent point function (ppf) is the inverse of the cumulative
density function and the inverse survival function (isf) is the
inverse of the survival function.
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5.6 Python: Probability 139
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Figure 5.8 Probability density function (pdf), cumulative distribution function (cdf),
survival function (sf = 1-cdf), percent point function (ppf), and inverse survival function
(isf) for the standard normal distribution.

Using the cdf function, we can confirm the “95 Percent rule.”

within_1std = stats.norm.cdf(1) - stats.norm.cdf(-1)
within_2std = stats.norm.cdf(2) - stats.norm.cdf(-2)
within_3std = stats.norm.cdf(3) - stats.norm.cdf(-3)
print(f"within 1 std of mean: {within_1std:.2%}")
print(f"within 2 std of mean: {within_2std:.2%}")
print(f"within 3 std of mean: {within_3std:.2%}")

5.6.4.2 Discrete Distributions
Discrete distributions are handled in a similar way. The following example shows
how to work with the binomial distribution that we used for the baseball batter
example from Section 5.3. We create a frozen distribution object and then use it to
calculate the probability of a batter getting 0, 1, 2, 3, 4, or 5 hits in 5 at-bats.

dist = stats.binom(5, 0.3) 1©
df = pd.DataFrame({

"hits": range(6),
"probability": [dist.pmf(hits) for hits in range(6)], 2©

})
df
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140 5 Probability

1© The first argument is the number of trials n and the second argument is the probability of
success p.

2© The pmf function returns the probability mass function for the given number of hits. This is
the only difference in the object methods compared to continuous distributions. The analo-
gous function for continuous distributions is pdf .

Output
hits probability

0 0 0.16807
1 1 0.36015
2 2 0.30870
3 3 0.13230
4 4 0.02835
5 5 0.00243

Figure 5.9 shows the graphs of the functions that describe the binomial
distribution.
We can see from the table that the probability that our batter gets three hits in

five at-bats is 0.1323 (dist.pmf(3)). If we want to know the probability that he
gets three or fewer hits, we can use the cumulative distribution function (cdf ).
print(f"probability of 3 hits: {dist.pmf(3):.4f}")
print(f"probability of 3 or fewer hits: {dist.cdf(3):.4f}")
print(f"probability of 3 or more hits: {dist.sf(2):.4f}") 1©
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Figure 5.9 Probability mass function (pmf), cumulative distribution function (cdf),
survival function (sf = 1-cdf), percent point function (ppf), and inverse survival function
(isf) for the binomial distribution with n = 5 and p = 0.3.
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Exercises 141

1© Note that we pass 2 to the sf function. The survival function tells us the probability of seeing
three or more after we’ve already seen two.

Output
probability of 3 hits: 0.1323
probability of 3 or fewer hits: 0.9692
probability of 3 or more hits: 0.1631

We can compare these results to a resampling experiment.
random.seed(321)
hits = [random.choices([0, 1], weights=[0.7, 0.3], k=5).count(1) 1©

for _ in range(1000)]
hits = np.array(hits) 2©
print(f"probability of 3 hits: {sum(hits == 3) / len(hits):.4f}")
print(f"probability of 3 or fewer hits: {sum(hits <= 3) / len(hits):.4f}")
print(f"probability of 3 or more hits: {sum(hits >= 3) / len(hits):.4f}")

1© There is a lot going on in this one line; let’s break it down. The choices function returns a list
of 0s and 1s (hit). The weights argument defines the probability of each outcome. The k
argument defines the number of draws (5). The result is a list of five 0s and 1s. We count the
number of 1s using the count(1) function. We repeat this 1000 times and store the results in
a list. Instead of using the count function, we can also use the sum function on the list of five
values.

2© The conversion to a numpy array is not strictly necessary, but it makes it easier to work with
the data. For example, we can use the== or other comparison operators to compare the array
to a value. This returns an array of True and False values. We can use the sum function to
count the number of True values.

Output
probability of 3 hits: 0.1430
probability of 3 or fewer hits: 0.9760
probability of 3 or more hits: 0.1670

The resampling probabilities are very close to the theoretical results.

Exercises

5.1 In basketball, some fouls result in “free throws” (unimpeded shots from
15 feet away from the basket) by the player fouled. Over his career, a certain
basketball player has scored on 1210 free throw attempts and missed 214
free throw attempts. What is his estimated probability of scoring on a free
throw attempt?

5.2 Consider the following data on the median home value (in $000) on Boston
neighborhoods (from the mid-20th century): (22, 13.1, 17.8, 20.3, 15.4, 11.7,
25.3, 15.2, 27.1, 23.2, 23.1, 18.1, 32.9, 20.3, 21.1, 21.1, 19.9, 23.1, 16.1, 10.4).
Find the standard Normal score for the first value (22). You can consider this
to be a sample from a larger population of neighborhoods.
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142 5 Probability

5.3 Dice are small cubes held in the hand and then dropped or thrown on a flat
surface, as part of a game. Each surface of a die has a number of dots, ranging
from one dot to six dots. The number of dots shown on the top surface after
a die lands is termed “how the die lands.” If you throw a single die once,
a) What is the probability that it will land 3?
b) What is the probability that it will land 1 or 6?
c) What is the probability that it will land 1 and 6?

5.4 Geologists can predict howmuch oil awell produces, but there is uncertainty
in the prediction. So, they express their prediction in probabilistic terms (vol-
ume in barrels per day):

Probability Volume

0.40 75
0.45 90
0.15 125

What is the expected value of the well’s production (in barrels per day)?

5.5 If you look at the scores on a collection of typical IQ tests, they will have a
mean near 100 and a standard deviation near 15.
a) DISCUSSION: Why do you think this is so?

i) This is the natural state of human intelligence
ii) The tests are engineered to make it so

b) DISCUSSION: Is “IQ” the same thing as “IQ test score?”
c) Convert an IQ score of 130 to a z-score
d) If you were to select a person at random, what is the probability that

they would have an IQ score of 130 or more, assuming the scores are
distributed Normally?
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6

Categorical Variables

In the previous chapter, we looked at binomial (two-outcome) variables. In this
chapter, we expand that discussion to multi-category variables and relationships
between categorical variables. After completing this chapter, you should be
able to

● summarize categorical data in two-way tables
● calculate conditional probabilities
● perform Bayesian calculations
● perform tests of independence
● use the multiplication rule
● explain Simpson’s paradox

6.1 Two-way Tables

We start with the data on UC Berkeley graduate admissions that were introduced
in Chapter 3, looking first at a breakdown by gender.
Table 6.1 is a “2-way” table—it portrays subjects by their status on two

variables—gender and admission status. It shows that the admission rate for men
is a lot higher than the admission rate for women. More generally, tables like this
are known as R×C tables (for row by column) or contingency tables (because
you can read counts for one variable contingent on the other variable taking a
certain value).
In Table 6.2, we see these data as a percentage table, which makes clearer the

difference between women and men with respect to admission rates.

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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144 6 Categorical Variables

Table 6.1 Applications to UC Berkeley departments.

Female Male All

Admitted 557 1198 1755
Rejected 1278 1493 2771
All 1835 2691 4526

Table 6.2 Applications to UC Berkeley departments.

Female Male All

Admitted 30.35 44.52 38.78
Rejected 69.65 55.48 61.22
All 100.00 100.00 100.00

6.2 Conditional Probability

Looking at one variable at a time leads us to the concept of “conditional
probability”—calculating a probability for one variable, conditional (contingent)
on the value of another. Let’s explore that further by looking at the UC Berkeley
data by department.
Table 6.3 shows the relationship between the gender of the applicant and the

department to which the person applied.
The gender variable is in the rows and has two categories, while the department

variable is in the columns and has six categories. We call this a 2 × 6 contingency
table because it has two rows and six columns and shows all the possible combi-
nations of gender and department.
The cells in this table contain counts, so 593 females applied to Dept. C. The

cells must be mutually exclusive and jointly exhaustive: every application has to

Table 6.3 Numbers of applicants to UC Berkeley departments A, B, C….

A B C D E F All

Female 108 25 593 375 393 341 1835
Male 825 560 325 417 191 373 2691
All 933 585 918 792 584 714 4526
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6.2 Conditional Probability 145

go in one and only one cell. One person could apply to more than one department,
in which case there would be an entry in the table for each application.
Here are some probabilities we can read from Table 6.3. The probability that

a randomly selected application is from a female is 1835/4526. The probability
that the application is to Dept. E is 584/4526. The probability that the application
satisfies both descriptions—female and Dept. E—is 393/4526.

Try It Yourself
From the above table, find the probability that

1) An application is from a female and applies to Dept. A.
2) An application is from a female.
3) An application is to either Dept. A or Dept. B.
4) An application to Dept. B is from a female.
5) An application from a female is to Dept. B.

Questions four and five above are both conditional probability questions—they
ask for the probability of one event, given another event. For example, given that
an application is from a female (event one), what is the probability that the appli-
cation is to department B (event two)?
There were 1835 applications from females, and 25 of them were to department

B. This is 1.36% or a probability of 0.0136. This probability is “conditioned” on the
knowledge that the applicant is female.
Given that an application is to department B, what is the probability that the

applicant is female?
Therewere 585 applications to department B, and 25 of themwere from females.

This is 4.27%, or a probability of 0.0427. This probability is conditioned on the
knowledge that the person has applied to department B.
We implicitly calculate conditional probabilities all the time. Your favorite soc-

cer team has won 57% of its games, but your estimate of their probability of win-
ning their next game will be lower if you know that their star striker is injured and
can’t play.
The probability that a streaming service customer rents a new movie might be

0.0001. That probability rises a lot if we know that the person watches a trailer
for the movie—the probability of a purchase, given that someone has watched the
trailer, is higher than the unconditional probability of a purchase.
The notation for this relationship of the probability of A, given B, is a vertical

line.

P(rent|trailer) = probability of rental, given watched trailer
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146 6 Categorical Variables

In arithmetic terms, what happened is that the denominator in the conditional
probability became a lot smaller—it includes only the people who watched the
trailer. The formula for a conditional probability is

P(A|B) = P(A ∩ B)
P(B)

In terms of the trailer/rent example, the probability of a rental (A), given trailer
(B), is the probability of the rental AND the trailer, divided by the probability of
watching the trailer. Put in terms of numbers, it is the number of people who
watched the trailer AND rented divided by the number of people who watched
the trailer. Put in terms of percentages, it is the percentage of trailer-watchers
who rent.

6.2.1 From Numbers to Percentages to Conditional Probabilities

We can explicitly present the conditional probabilities in two additional tables.
Table 6.4 breaks down each department’s applications by gender in percentages.

Try It Yourself
Describe what you see in the table. Do the departments all have about the
same ratio of males to females, or do they differ quite a bit? If they differ, which
departments differ most from what you might expect? Be sure to account for
a mostly male overall applicant pool, which means you would not expect the
department ratios to be 50/50.

From Table 6.4, we can say that the probability is 88.42% that an application
to Department A is from a male. If you go back to the original tables of counts,
you can see that this was computed as 825∕933. The notation here would be
P(M|A)—the probability ofM given A, or in more explicit English, the probability
of picking a male when choosing among the applications to Department A.

Table 6.4 Percentage of department applications by gender.

A B C D E F All

Female 11.58 4.27 64.6 47.35 67.29 47.76 40.54
Male 88.42 95.73 35.4 52.65 32.71 52.24 62.08
All 100 100 100 100 100 100 100
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6.3 Bayesian Estimates 147

Table 6.5 Male/female applications by department.

A B C D E F All

Female 5.89 1.36 32.32 20.44 21.42 18.58 100
Male 30.66 20.81 12.08 15.50 7.10 13.86 100
All 20.61 12.93 20.28 17.50 12.90 15.78 100

Try It Yourself
From Table 6.4, find P(M|C), P(∼ M|D) and P(M).

The second conditional probability, Table 6.5, breaks down each gender’s appli-
cations by department. From this, we can see that P(A|M) = 37.88%.
Note that the two conditional probability tables above break down the applica-

tions in different ways, and the values found in one table are nowhere to be found
in the other one.
In plain English, Table 6.4 shows that almost all the applicants to Department A

are male, but Table 6.5 shows that only about a third of the males apply to
Department A.

Getting these two probabilities mixed up is a common error in using
and interpreting probabilities.

Try It Yourself
Find P(E| ∼ M) and P(∼M|E). Show where these numbers can be found in a
table, and show what counts must be divided to get these numbers.

6.3 Bayesian Estimates

Consider a medical screening test that gives a positive result in 98% of the cases
where the condition is present but also gives a false positive result in 3% of cases
where the condition is not present. Suppose 0.1% of the people we screen actually
have the condition (to pick an actual disease, this is the approximate prevalence
of juvenile arthritis).

If you test positive, what is the probability that you have the
disease?
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148 6 Categorical Variables

Disease
(100)

98 2

No disease
(99,900)

Actual
condition

Test result

2997 96,903

Figure 6.1 Bayesian calculation (medical test example).

To work out the problem, let’s say you screen 100,000 people.
100 of them (0.1%) will actually have the condition, so the other 99,900 do not.
Of the 100 who have the disease, 98 test positive—giving 98 true positives. Two

of those with the disease test negative, which is two false negatives.
Of the 99,900 who do not have the disease, 97% test negative, but 3% or 2997

show false positive results. So we have

● 98 true positives
● 2997 false positives
● 3095 total positives.

Therefore, even if you test positive, the probability is only 98∕3095 = 0.0317 =
3.17% that you have the disease (Figure 6.1).1

6.3.1 Let’s Review the Different Probabilities

Shifting now from percentages to probabilities:

1) 0.001: The overall prevalence of the disease is an unconditional probability.

1 A short video on these calculations is available on the book resources website.
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6.3 Bayesian Estimates 149

2) 0.98: The probability of a positive test if you have the disease is a conditional
probability—P(positive|disease).

3) 0.03: The probability of a positive test if you do not have the disease is a condi-
tional probability—P(positive|no disease).

4) 0.0317: The probability of the disease if you have a positive test is a conditional
probability—P(disease|positive).
Probabilities one through three are known to the researchers, but probability

four is of primary interest. It is not known directly—we had to calculate it.

6.3.2 Bayesian Calculations

The calculations that we did to determine #4—the probability that you have the
disease if you test positive—are termed Bayesian calculations.

There is a formula to calculate Bayesian estimates using probabilities
1–3 above, but it is quite formidable in appearance. The least confusing
way to make and understand these estimates is to convert the percent-
ages to actual numbers, as we did above when we said, “let’s say you
screen 100,000 people.”

The essence of Bayesian estimation is that you have some initial or prior
estimate of a probability—the known overall prevalence of the disease. You
then receive some pertinent information—the test result—and revise the initial
estimate.
In this case, the revision of the initial estimate is surprisingly small and poten-

tially confusing. Faced with a test that is 98% effective in identifying the diseased
cases, most people—and many doctors!—have a hard time believing that if you
test positive, you have only a 3% chance of having the disease.
This confusion represents a real problem for mass screenings in populations;

the more so, the rarer the condition. While you do get true positives for most of
the folks having the condition, there are so many more folks who do not have it
that their false positives swamp the real positives. This is the reason you often find
statisticians testifying against mass screening proposals. To put a human face on
it, imagine that folks who test positive will lose their job, be denied insurance, be
barred from professional sports, or be told they have AIDS when that is the right
decision in only a small percentage of cases.
Public health authorities go back and forth on the right level of screening for

common diseases, as more is learned about offsetting costs and benefits, and as
the public weighs in.
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150 6 Categorical Variables

6.4 Independence

Weoften see the question posed of whether two variables are associated—whether
smoking is correlatedwith cancer, obesity with diabetes, or home runswith strike-
outs (in baseball). The machine learning revolution is predicated on the notion
that we can predict unknown variables by their association with known vari-
ables. The opposite notion—lack of association—is called independence. In
this section we compare the graduate school departments by admission rates
(Table 6.6).

Try It Yourself
What is the probability of being admitted if someone applies to Dept. A? What
is the admission probability if someone applies to Dept. F?

Is the admission rate independent of the choice of department?
We would say that admission to a department is independent of the choice of

the department if the admission rate is the same nomatter which department you
choose. In symbols:

P(Admit|Department) = P(Admit)

Definition: Independent Events Two events are independent of one another
if the probability that one will occur is unaffected by whether or not the other one
occurs.

Whether New York beats Chicago in a baseball game is probably unaffected by
whether Los Angeles beats SanDiego in a different baseball game—the two events
are independent.
On the other hand, whether it rains on Tuesday in Paris is probably associated

with whether it rains in Paris on Monday—the two events are connected and not
independent.

Table 6.6 Admission rates (percent) by department.

A B C D E F All

Admitted 64.42 63.25 35.08 33.96 25.17 6.44 38.78
Rejected 35.58 36.75 64.92 66.04 74.83 93.56 61.22
All 100 100 100 100 100 100 100
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6.4 Independence 151

Analysts often assume independence when it is not warranted,
because, without that assumption, analysis becomes difficult or
impossible. But no analysis may be better than a bad analysis.
The financial collapse of 2008 was prompted, in part, by poorly

designed financial products that were based on bundles of subprime
mortgages. The default risk of these bundles was confidently predicted
to be at a comfortably low level, based partly on the assumption that
the failure of mortgage A did not affect the probability that mortgage
B would fail. In fact, this was not strictly true—systemic problems,
including fraud and gross negligence, affected most subprime
mortgages, and their outcomes were quite correlated.

What about the admission rates? The variables Admit and Dept. would be
independent if the probability of admission were the same for every department.
Clearly, they are far from independent here—the probability of admission varies
substantially from department to department.

Try It Yourself
This table shows counts for 100 possible outcomes of events A and B.

A ∼A
B 20 20

∼B 40 20

Are A and B independent?

6.4.1 Chi-square Test

Just as with the hospital error reporting, we would like to know whether an
apparent association between categorical variables is real or possibly the result
of chance. The statistical test we use for this is a test for independence. Let’s
illustrate with the sensor components for a self-driving car.

6.4.1.1 Sensor Calibration
Self-driving cars are guided by a variety of cameras and other sensors that provide
data to the navigation algorithm. Over time, due to bumps, vibrations, and use, the
sensors can lose their accuracy and must be recalibrated. As part of the ongoing
research into recalibration, an automaker has two teams, one inCalifornia and one
in Texas, perform an identical battery of tests to determinewhether a vehicle’s sen-
sors need recalibration. Recalibration is done on a per-vehicle basis—the sensors
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152 6 Categorical Variables

must work together, so if any require recalibration, all must be recalibrated. Here
are the results (whether a vehicle’s sensors must be recalibrated) for 200 vehicles
(same model) after 50 hours of driving time:

Recalibrate?
Texas 25 yes 175 no
California 17 yes 183 no

Is the need for recalibration independent of state to a statistically significant
degree? If so, then the automaker might plan recalibrations without worrying
about the test center location. If, on the other hand, recalibration rates differ
significantly between Texas and California, then the company will have to
worry about either differences in driving conditions or differences in test center
procedures in setting recalibration policies.
For a more specific formulation of this test, we start by asking, “what distri-

bution of recalibrations would we expect to see if the two states share a common
recalibration rate, and might the actual distribution differ just by chance?” If the
state testing centers shared a common rate (i.e. the null hypothesis), we would
expect the total 42 recalibrations to be split equally.
Expected results with a common rate:

Recalibrate?
Texas 21 yes 179 no
California 21 yes 179 no

We see that Texas had four more recalibrations than expected and four fewer
non-recalibrations, and California is just the reverse. From this, we can construct
a table of the extent to which the actual results differ from expectations:

Source: Sundry Photography/Adobe stock
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6.4 Independence 153

Recalibrate?
Texas 4 yes −4 no
California −4 yes 4 no

For an overall measure of “departure from expected,” we sum up the absolute
differences for a total of 16. We ask for the absolute difference because we are inter-
ested in an overall departure from expectation, not whether Texas, in particular,
yields more recalibrations. Is 16 more than we might expect by chance? To test,
we can:

1) Put 42 1’s (yes) and 358 0’s (no) in a hat to represent the hypothesized common
recalibration rate.

2) Shuffle the hat and deal the numbers out in two resamples of 200 each.
3) Count the number of 1’s and 0’s in each resample.
4) Sum up the absolute differences between this resampled result and the

expected result under the assumption of a common rate.
5) Repeat 2–4 many times.
6) How often did we get a difference as great as 16?

If we often get a resampled sum as great as 16, we can’t rule out chance as an
explanation for the difference between the two states.2
You may have noticed that it is not strictly necessary to consider all four cells in

the 2 × 2 table; actually, one will suffice. This is not so with tables that have more
than two rows or columns, which we take up in Chapter 8.

6.4.1.2 Standardizing Departure from Expected
In 1900, Karl Pearson, one of the founding fathers of statistics, introduced
a formula-based approximation based on a standardized “departure from
expectation” test statistic—the chi-square test. The process is analogous to the
normalization of data, where we subtracted the mean and divided by the standard
deviation (see Section 5.4.1). This “normalized” departure from expectation
statistic differs from the “raw” departure from expectation statistic that we
calculated above:

1) Squared differences, rather than absolute differences, are used (in either case,
both positive and negative differences are rendered positive).

2) Each difference is divided by the expected value for that cell.

2 In our procedure, we could have replaced each number in the hat before dealing out the next
number; this is called resampling with replacement. Both procedures have been used in
multi-sample permutation tests like this; they have slightly different statistical properties that
are beyond the scope of this text.
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154 6 Categorical Variables
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Figure 6.2 Example 𝜒2 distribution for 10 degrees of freedom.

The formula for the chi-square statistic is:

𝜒
2 =

n∑
i=1

(Oi − Ei)2

Ei
This chi-square statistic can then be compared to a standard chi-square distribu-

tion, as generated by repeated random shuffling of a null model. In precomputer
days this was important, as this standard distribution only needed to be calcu-
lated once.
The distribution is long-tailed to the right, and its general form is shown in

Figure 6.2. The exact shape of the distribution differs, depending on the degrees
of freedom, which are governed by the number of rows and columns in the table.
The example is for 10 degrees of freedom.

6.5 Multiplication Rule

Now that we have a test for independence, let’s turn to a simple rule for calculating
the probability that both events A and B will occur. In general, the probability of
A and B occurring together is the probability of (A) times the probability of
(B, given A).
Multiplication Rule—General Form:

P (A ∩ B) = P (A) × P (B|A)
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6.5 Multiplication Rule 155

IfA andB are independent of one another, knowing thatAhas happenedmakes no
difference in calculating the probability of B. In this case, P(B) = P(B|A). So, when
events A and B are independent of one another, the multiplication rule simplifies
to this:
Multiplication Rule—Independent Events:

P (A ∩ B) = P (A) × P (B)

The probability of A and B is the probability of A times the probability of B.
For example, if we take the two baseball games referred to earlier, whose out-

comes are independent, let’s say we have the following probabilities:

● P(New York beats Chicago) = 0.60
● P(Los Angeles beats San Diego) = 0.45

Then the probability that New York wins AND Los Angeles wins = 0.60 × 0.45
= 0.27.

The multiplication rule is prone to misuse. The misuse is to blindly
assume two events are independent and then use this formula to
compute the probability that both happen. For example, in Los Ange-
les in 1964, a robbery case was tried in which eyewitness testimony
described the assailants as a bearded Black man traveling in a car
with a blond woman. Prosecutors contended that the probability of
seeing a woman with blond hair was 1/3, a Black man with a beard
was 1/10, and an interracial couple in a car was 1/1000. Adding
additional eyewitness information and using the multiplication rule,
they estimated the probability of some other random couple meeting
these descriptions as 1/12,000,000; therefore, it was most likely the
defendants. There were numerous problems with the analysis, but a
big one was that the events cited are not independent: once you have
a blonde woman and a Black man, the probability of an interracial
couple is no longer 1/1000—it is 1.0.a
For events that are not independent, use the more general form of

the multiplication rule above.
aCited in Statistics, 2nd ed., Freedman, Pisani, Purves and Adhikari, 1991,
W. W. Norton, p. 219.

The multiplication rule holds only when A and B are independent. It works the
other way as well: if this equation is true, then the events are independent.
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156 6 Categorical Variables

6.6 Simpson’s Paradox

The UC Berkeley data are the most famous example of Simpson’s Paradox. It is
named for Edward Simpson, a British statistician who got his start in statistics at
Bletchley Park—the World War II British decoding center (Figure 6.3).
Table 6.7 shows the admission rates for men and women at UC Berkeley gradu-

ate schools.
The gender and the admission of an applicant do not seem to be independent

for the college as a whole. Women have a lower rate of admission thanmen. Is this
evidence of discrimination against women?
When you look at individual departments (Table 6.8), though, you do not see

the apparent discrimination visible in the overall figures in Table 6.7.
Women had higher admission rates in every department except C and E, where

their disadvantage was slight.
What’s going on? How can women have a higher rate of admission in nearly

every department but a lower rate overall? Let’s look again at the actual num-
ber of applications for each department—originally presented at the beginning
of Section 6.2 in Table 6.3.

Figure 6.3 Bletchley Park. Source: DeFacto/Wikimedia Commons/CC BY SA 4.0.

Table 6.7 Apparent discrimination against women at Berkeley.

Female (%) Male (%) All (%)

Admitted 30.35% 44.52 38.78
Rejected 69.65 55.48 61.22
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6.7 Python: Counting and Contingency Tables 157

Table 6.8 Berkeley admission rates by department.

A (%) B (%) C (%) D (%) E (%) F (%)

Female 82.41 68.00 34.06 34.93 23.92 7.04
Male 62.06 63.04 36.92 33.09 27.75 5.90

Try It Yourself
Examine the percentages in Table 6.8. Then, examine Table 6.3 and where
men and women tend to apply. Can you explain the paradox?

Simpson’s Paradox is also termed the “aggregation paradox,” apparent contra-
dictons that emerge when putting parts together into a whole.

6.7 Python: Counting and Contingency Tables

6.7.1 Counting in Python

There are many ways of counting occurrences of items in a list. For example,
we can count the number of heads in 100 coin flips by iterating over the list of
coin flips.

# create a list of 100 coin flips
import random
random.seed(1234)
coin_flips = [random.choice(["H", "T"]) for i in range(100)]

count = 0 1©
for coin_flip in coin_flips: 2©

if coin_flip == "H": 3©
count += 1

print(count)

1© Initialize a counter to zero.
2© We iterate over all elements of our list of coin flips.
3© Every time we encounter a head ("H"), we increase the counter by one.

This can also be written as a list comprehension making use of the fact that True
is equal to 1 and False is equal to 0.

sum(coin_flip == "H" for coin_flip in coin_flips)
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158 6 Categorical Variables

Counting is such a frequent operation that Python even provides a built-inmethod
for lists:

coin_flips.count("H")

The examples so far were only counting occurrences of a single item. We can
also count occurrences of multiple items. For example, we can count the number
of heads and tails in 100 coin flips. In this case it is convenient to use a dictionary
to store the counts.

counts = {"H": 0, "T": 0} 1©
for coin_flip in coin_flips:

counts[coin_flip] += 1 2©
print(counts) # prints: {'H': 55, 'T': 45}

1© Initialize a dictionary with keys "H" and "T" and values 0.
2© We iterate over all elements of our list of coin flips.
3© Using the coin flip outcome as the key, we select the corresponding counter and increase it by

one. The+= operator is a shorthand forcounts[coin_flip] = counts[coin_flip]
+ 1.

If the number of itemswewant to count is large, we can use theCounter class from
the collectionsmodule.
from collections import Counter
counts = Counter(coin_flips) 1©
print(counts) # prints: Counter({'H': 55, 'T': 45})
print(f'Number of heads: {counts["H"]}') # prints: Number of heads: 55

1© The Counter class takes an iterable as input and returns a dictionary with the counts of
each item.

The resulting counts object can be updated with additional items using the update
method. For example, we can count the number of heads and tails in 100 coin flips
and then update the counts with 100 additional coin flips.

counts = Counter(coin_flips)
print(counts) # prints: Counter({'H': 55, 'T': 45})
counts.update(random.choice(["H", "T"]) for i in range(100))
print(counts) # prints: Counter({'H': 101, 'T': 99})

6.7.2 Counting in Pandas

The pandas package provides the value_counts method to count occurrences of
values in a column of a pd.DataFrame or a pd.Series.

import pandas as pd
df = pd.read_csv("microUCBAdmissions.csv")
counts = df["Admission"].value_counts() 1©
print(f"Number of admitted students: {counts['Admitted']}") 2©
counts
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6.7 Python: Counting and Contingency Tables 159

1© The value_countsmethod returns a pd.Series object with the counts of each value. The values
are sorted from most frequent to least. The index of the pd.Series object contains the values.

2© We can access the counts for a specific value by using the value as the key.

Output
Number of admitted students: 1755

Admission
Rejected 2771
Admitted 1755
Name: count, dtype: int64

The value_counts method can also be used with multiple columns. In this case,
the resulting pd.Series object is a multi-indexed series.

counts = df[["Admission", "Gender"]].value_counts() 1©
counts

1© We provide a list of column names to create a subtable that contains only the columns we are
interested in.

Output
Admission Gender
Rejected Male 1493

Female 1278
Admitted Male 1198

Female 557
Name: count, dtype: int64

There are various ways to access the counts in a multi-indexed pandas object.
Here are a few examples:
print(f"Number of admitted male students: {counts['Admitted', 'Male']}") 1©
print(counts["Admitted"]) 2©
print(counts[:, "Female"]) 3©
1© Using a tuple of keys returns a specific value. The keys need to be in the order of the columns,

here Admission, Gender.
2© If we only provide a few keys, the remaining keys are assumed to be all included. In our

case, we specify Admission, but show all values associated with Gender. This is equivalent to
counts["Admitted", :].

3© Using : for a key, will include all the values associated with that key.

Output
Number of admitted male students: 1198

Gender
Male 1198
Female 557
dtype: int64

Admission
Rejected 1278
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160 6 Categorical Variables

Admitted 557
dtype: int64

The value_countsmethod can also be used to calculate relative frequencies by set-
ting the argument normalize=True.
counts = df[["Admission", "Gender"]].value_counts(normalize=True)
counts

Output

Admission Gender
Rejected Male 0.329872

Female 0.282369
Admitted Male 0.264693

Female 0.123067
dtype: float64

Sometimes, it can be useful to convert the resulting pd.Series object to a
pd.DataFrame object. This can be done with the reset_index method. It will
convert the index into one or more columns.
counts.reset_index()

Output

Admission Gender 0
0 Rejected Male 0.329872
1 Rejected Female 0.282369
2 Admitted Male 0.264693
3 Admitted Female 0.123067

6.7.3 Two-way Tables Using Pandas

To generate a two-way table, we will need to count occurrences of pairs of items.
We can use the approach from the previous section and store the counts in a dictio-
nary. However, this quickly becomes tedious. Instead, we can use the pd.crosstab
method from the pandas package. Let’s see howwe can recreate the first two-way
table from Section 6.1 using pd.crosstab.
df = pd.read_csv("microUCBAdmissions.csv")
pd.crosstab(df["Admission"], df["Gender"])

The pd.crosstabmethod takes two (or more) arguments. With two arguments, the
first is the variable to be used for the rows, and the second is the variable to be used
for the columns. The resulting pd.DataFrame object contains the counts of each
combination of the two variables. The result is:
Gender F M
Admission
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6.7 Python: Counting and Contingency Tables 161

Accepted 557 1198
Rejected 1278 1493

It is not quite what we’ve seen in Section 6.1. The sums of the columns, rows,
and the full table are missing. We can add them by using the margins=True
argument.
pd.crosstab(df["Admission"], df["Gender"], margins=True)

Now we get the same information.
Gender F M All
Admission
Accepted 557 1198 1755
Rejected 1278 1493 2771
All 1835 2691 4526

The pd.crosstab method can also be used with more than two variables; see the
pandas documentation for example.
In Chapter 6, we also came across two-way tables that expressed conditional

probabilities. The function pd.crosstab can return conditional probabilities with
the normalize argument. The normalize argument can take the values "all",
"index", or "columns". Using "all" normalizes the full table.
pd.crosstab(df["Admission"], df["Gender"], normalize="all",
margins=True)

Each value in the two-way table is divided by the total number of observations.
The result is:
Gender Female Male All
Admission
Admitted 0.123067 0.264693 0.38776
Rejected 0.282369 0.329872 0.61224
All 0.405435 0.594565 1.00000

To get conditional probabilities, we need to set normalize to either "index"
or "columns". With "index", the values in each row are divided by the sum of
the row. This gives us the conditional probability of the column variable given the
row variable.
pd.crosstab(df["Admission"], df["Gender"], normalize="index",
margins=True)

Output

Gender Female Male
Admission
Admitted 0.317379 0.682621
Rejected 0.461205 0.538795
All 0.405435 0.594565
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162 6 Categorical Variables

Setting normalize="columns" returns the conditional probability of the row
variable given the column variable.

pd.crosstab(df["Admission"], df["Gender"], margins=True,
normalize="columns")

Output

Gender Female Male All
Admission
Admitted 0.303542 0.445188 0.38776
Rejected 0.696458 0.554812 0.61224

6.7.4 Chi-square Test

With the knowledge that we gained so far, we can perform the resampling
experiment from Section 6.4.1 in Python. We start by creating a pd.DataFrame
object with the observed counts and determine the common rate and the observed
difference.
data = pd.DataFrame({

"states": ["Texas"] * 200 + ["California"] * 200, 1©
"votes": ["yes"] * 25 + ["no"] * 175 + ["yes"] * 17 + ["no"] * 183

})
observed = pd.crosstab(data["states"], data["votes"])
common_rate = observed.sum(axis=0) / 2 2©
observed_difference = abs(observed - common_rate).sum().sum() 3©
print(f"The observed difference is {observed_difference}")

1© We use list operations here. ["Texas"] * 200 creates a list with 200 times the string
"Texas". The + operator concatenates the two lists.

2© We use the sum method of the pd.DataFrame object to sum over the rows (axis=0). The
result is a pd.Series object. We divide by 2 to get the common rate.

3© observed - common_rate subtracts a vector with two elements from a 2 × 2 matrix.
How is this possible? The vector is repeated along the rows and columns of the matrix. This is
called broadcasting and is a very useful feature. Be careful to check that the repetition is done
in the way you expect. The double call of sum() first sums the columns to return a pd.Series
object, and then sums the elements of the pd.Series object to return a single number. In future
versions of pandas, you will only need to call sum() once.

Now, we can perform the resampling experiment.
import random
import numpy as np
random.seed(1234)
differences = []
votes = list(data["votes"]) 1©
for _ in range(5_000):

random.shuffle(votes) 2©
distribution = pd.crosstab(data["states"], votes) 3©
differences.append(abs(distribution - common_rate).sum().sum()) 4©

at_least_observed = (sum(np.array(differences) >= observed_difference) /
len(differences))
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Exercises 163

print(f"Observed difference of at least {observed_difference}:"
f"{at_least_observed:.1%}")

1© We create a list with the votes from the original data, so that we can more easily reshuffle the
votes.

2© We use the random.shufflemethod to create a randomized copy of the original votes.
3© Using the resampled votes, we create a new two-way table.
4© and calculate the absolute difference.

The outcome of our calculation tells us that in 25.9% of the resampled tables, the
absolute difference is at least as large as the observed difference. This means that
the observed difference is not unusual, so we cannot reject the null hypothesis that
the voting behavior is independent of the state.
In Chapter 8, we will see that the chi-square test can be used to test for indepen-

dence between two categorical variables. The scipy package provides a function
to perform this test. The function takes a two-way table as input and returns the
test statistic, the p-value, the degrees of freedom, and the expected counts.

from scipy import stats
result = stats.chi2_contingency(observed)
print(f"chi2 = {result.statistic:.3f}")
print(f"p-value = {result.pvalue:.4f}")
print(f"degrees of freedom = {result.dof}")
print("expected")
print(result.expected_freq)

The p-value of the test is 0.2536, which is very close to the result of our resampling
experiment. The chi2_contingency function is also able toworkwithmore complex
multi-way tables. See the scipy documentation for more details.

Exercises

6.1 An energy company follows the practice of conducting a detailed survey of
potential natural gas tracts before exercising lease options. The true state of
a tract may be positive (economically recoverable natural gas is present) or
negative (economically recoverable natural gas is not present). 35% of tracts
are truly positive. The company’s prior experience has been that a positive
tract has a 70% chance of yielding a favorable geological survey, but a nega-
tive tract also has a 15% chance of yielding a favorable survey. If the company
gets a favorable survey on a tract, what is the chance that it is a truly positive
one?

6.2 Use the pulse.csv data for this question: Was the percentage of women who
ran higher or lower than that of men?
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164 6 Categorical Variables

6.3 Dice are small cubes held in the hand and then dropped or thrown on a flat
surface as part of a game. Each surface of a die has a number of dots, ranging
from one dot to six dots. The number of dots shown on the top surface after
a die lands is termed “how the die lands.”
a) If you throw two dice, is the probability of seeing a “1” on the first die

independent of the probability of seeing a “1” on the second die?
b) If you throw two dice, what is the probability that you will see a “6” on

the first die AND a “6” on the second die?
c) If you throw two dice, what is the probability that you will see a “6” on

the first die OR a “6” on the second die?

6.4 In 2022, Earnshaw closed 56% of his sales opportunities (14/25), while
Samuels closed only 54% (7/13). In 2023, Earnshaw again performed
better—71% (10/14) compared with Samuels’ 69% (20/29).
a) Calculate Earnshaw’s and Samuels’ performance over the entire two-year

period. Who did better?
b) Explain the apparent contradiction between the individual year perfor-

mances and the overall two-year performance.

6.5 A company offers a cloud service aimed at consumers, featuring a free level
of service to all as well as higher service fee-based tiers. Currently, they offer
a relatively low level of service for the free tier, hoping that people will even-
tually see the need for a higher fee-based level. However, if the service level
is toominimal, people are likely to keep searching for something better. They
decided to run an experiment, offering some customersmore at the free level,
hoping thatmore people would become engaged users and upgrade. For sev-
eral weeks, new customers are randomly selected to receive either the “low”
free service or the “high” free service. The number of upgrades over three
months is tracked. Here are the results:

Plan
Initial
Customers

Upgrades
to “Pay”

Low level free 329 27
High level free 385 29

a) Calculate the difference between the two upgrade rates.
b) Specify a resampling procedure to test whether the difference in the

upgrade rates might have arisen by chance.
c) Discuss: From a business perspective, what factors might enter into your

decision about which way to proceed in the future?
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Exercises 165

6.6 Consider this hypothetical table on drug test results and employment status
two years after the drug test for a sample of employees:

Failed
Drug Test

Passed
Drug Test Total

Still employed 7 89 96
Not employed ? ? ?
Total 16 ? 173

a) Fill in the missing information in the table.
b) Is employment status independent of drug test results?
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7

Surveys and Sampling

In this chapter, we discuss sampling as a device to gain a more accurate picture of
your data. After you complete this chapter, you should be able to:

● Define statistical bias
● Explain the key feature of an ideal simple random sample (SRS)
● Use resampling to derive sampling distributions for proportions and means
● Calculate confidence intervals
● Define the bootstrap
● Describe sampling methods other than simple random sampling

7.1 Literary Digest—Sampling Trumps “All Data”

By the end of 1936, theUnited Stateswas showing signs of economic recovery from
the Great Depression that started with the 1929 collapse of Wall Street. GDP was
back to where it was in 1929; it had fallen by a third in the interim. Unemployment
was headed back to 15% after having risen to 25% at the depths of the recession.
The good news was destined to be short-lived. Another recession hit in 1937, and
the economy stagnated until World War II. However, in 1936, things were looking
up for President Roosevelt as he campaigned for a second term. He had success-
fully put Social Security and Unemployment Compensation legislation through
Congress and was banking on the popularity of his New Deal platform.
Political polling was in its infancy, though, so the preferences of the electorate

remained somewhat obscure. In each presidential election year since 1916,
The Literary Digest, a national weekly opinion magazine that often featured
Norman Rockwell illustrations on its cover, had mailed out sample ballots to
its readers and used the results to predict the outcome of the vote. The Literary
Digest poll was a much-anticipated event; up through 1932, it had been accurate.
In the summer of 1936, the Digest mailed out 10 million ballots and got back

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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168 7 Surveys and Sampling

2.4 million. On the strength of the results, the Digest predicted a landslide victory
for Roosevelt’s opponent—Republican Alf Landon.
Republican success in the September congressional elections in Maine seemed

to validate the Literary Digest’s poll. Maine held some non-presidential elections
early at the time and was regarded as a bellwether state, inspiring the catchphrase
“As goes Maine, so goes the nation.”
As it turned out, Roosevelt won in a landslide, capturing 62% of the popular

vote andwinning every state exceptMaine and Vermont.Maine’s catchphrase was
amended and became “As goes Maine, so goes Vermont.” The Literary Digestwent
out of business shortly after the election.
What happened?
In addition to polling its readers, The Literary Digest also mailed ballots to lists

of automobile owners and telephone subscribers. At a time when much of the
nation was jobless and destitute, those who could afford magazine subscriptions,
automobiles, and telephones were hardly representative of the population. They
were wealthier and more Republican than the average voter, and they produced a
biased prediction.

Definition: Bias A metric, estimate, or sampling procedure is statistically
biased if, when you apply it to a sample from a population, it consistently
produces over-estimates or under-estimates of a characteristic of that population.

In 1935, the year before The Literary Digest polled its readers, George Gallup, a
young advertising executive with Young and Rubicam, founded the American
Institute of Public Opinion. It was dedicated to the measurement of public
opinion via statistically-designed surveys. He was convinced that what mattered
was not the number of people surveyed but rather their representativeness—the
degree to which they reflected the views of the general voting population.

The Gallup Poll
In October 1935, George Gallup published the first Gallup Poll—America
Speaks. The first question was, “Do you think expenditures by the government
for relief or recovery are too little, too great, or just about right?”
Sixty percent said, “too great.”
Gallup quickly capitalized on the success of his political polling (see below).

In the 1940s, he teamed up with David Ogilvy, famous for the phrase, “Adver-
tising is neither entertainment nor an art form—it is a medium of information.”
Together, they worked with Hollywood executives to develop methods for pre-
dicting the box-office revenues of films based on measuring the appeal of the
storyline, the popularity of the stars, the amount of publicity, and the reaction
of preview audiences.
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7.1 Literary Digest—Sampling Trumps “All Data” 169

Figure 7.1 The Literary Digest was the premier literary and political commentary weekly
of the early 20th century. Source: Agnes M. Watson/Wikimedia Commons/Public domain.
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170 7 Surveys and Sampling

49
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Figure 7.2 Gallup poll.

Gallup was convinced that 2000 people who were chosen scientifically would
be a better predictor of electoral outcomes than millions chosen in the way that
The Literary Digest did. He conducted bi-weekly polls, which showed Roosevelt
leading by increasing amounts fromAugust to October (Figure 7.2). The result can
be seen on the Gallup organization’s website, as the beginning of a continuum of
similar tracking polls for US presidential elections up to the present.
Not only did Gallup correctly predict that Roosevelt wouldwin, he also correctly

predicted the outcome of The Literary Digest survey. He did this via a random sam-
ple that he selected to replicate, as far as possible, the demographics of the Digest
survey respondents.
The key ingredient that catapulted Gallup to fame and success was the realiza-

tion that a small representative sample is more accurate than a large sample that
is not representative. There are now a variety of increasingly sophisticated devices
that pollsters use to ensure representative results, but at the root of all of them lies
random sampling.

7.2 Simple Random Samples

The most fundamental form of random sampling is the simple random sample
(SRS). What is a simple random sample ?
The basic idea is that, in drawing such a sample, each element in the population

has an equal chance of being selected. For a rigorous definition, though, we need
more than just the idea of “random.” For example, with a population of Democrats
and Republicans, we could be lazy and say that we will flip a coin and, if it lands
heads, our sample will consist of all the Democrats. Each member of the popula-
tion has an equal—50/50—chance of being selected, but this procedurewill hardly
produce a representative sample. We need more.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7.2 Simple Random Samples 171

Definition: Simple Random Sample (SRS) An SRS is produced by the equiv-
alent of first placing the entire population, represented by slips of paper, in a box.
Then, we shuffle the box and draw out the number of slips required for the sam-
ple. Statistically speaking, a sample of size n qualifies as an SRS if the sampling
procedure affords each potential sample, i.e. each combination of n elements, an
equal chance of emerging as the selected sample. The focus is on the procedure
by which the sample is drawn, not on the characteristics of the resulting sample.
It may, therefore, be more descriptive to use the term randomly drawn sample
rather than a random sample.

Random sampling does not guarantee a completely representative sample.
In fact, the use of random sampling almost guarantees that each sample will be a
little different from the population from which it is drawn. The beauty of random
sampling is that we can quantify the probable extent of this difference. We will
see how in a moment, but for now, let’s introduce or review some key concepts of
the sampling process.

Definition: Population Thepopulation is the group that you are studying. It is
often a somewhat amorphous concept that becomes difficult to define other than
in broad terms. Consider the notion of New York voters. Does it include people
who are eligible to vote but haven’t registered? What about out-of-state students
who attend university in New York and could vote there or at home?

Clearly, we need a working definition that we can put into practice.

Definition: Sampling Frame A sampling frame is a practical representation
of the population—the slips of paper in the box from which we draw samples.
For theNewYork voters, one possible sampling frame is the list of registered voters
as of a given date.

Definition: Parameter A parameter is a measurable characteristic of the
population—e.g. the mean, proportion, etc.

Definition: Sample A sample is a subset of the population. When it is ran-
domly drawn, it is a random sample.

Definition: Random Sampling Technically, a random sampling process is
one in which each element of a population has an equal chance of being drawn.
You can think of it as a box with slips of paper that are well-shuffled, and you
draw slips of paper blindly.
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172 7 Surveys and Sampling

Thewords “statistic” and “statistics” have severalmeanings, all valid in different
contexts. “Statistic,” in the context of sampling, is defined as follows:

Definition: Statistic A statistic is a measurable characteristic of a sample, and
it is used to estimate a population parameter.

Random Selection vs. Random Assignment: We began this book
with a look at the effect that random variation in the assignment
of hospitals to treatment or control might have had on the hospital
no-fault error reporting study. In this chapter, we are examining the
effect that random selection from a larger population might have on
sample results.

7.3 Margin of Error: Sampling Distribution for a
Proportion

You are probably familiar with the margin of error that often accompanies survey
results, such as “42 percent think the country is headed in the right direction with
a plus-or-minus two percent margin of error.”
How is the margin of error calculated? What does it mean? The answer to the

first question will help you understand the answer to the second.
The margin of error quantifies the extent to which a sample might misrepresent

the population it is coming from, owing simply to the luck of the draw in who gets
selected in the sample.
We’ll start with this example.
In December 2010, a commercial polling organization sampled 200 US voters

and found that only 72 voters, 36%, rated President Obama’s handling of the econ-
omy positively—as good or excellent.

Definition: Point Estimate A point estimate is a statistic, such as a mean,
median, etc., from a sample. The term “point” is to emphasize the fact that it is
a single value, not a range of values.

Can we use a simulation to assess how reliable the 36% estimate from our
sample is?
Before we answer that question explicitly, let’s use a simulation to explore the

extent towhich the favorable proportionmight change from resample to resample.
We can put our 72 positives (1’s) and 128 negatives (0’s) in a box and repeatedly
draw resamples of size 200, seeing how the proportion of 1’s changes from draw
to draw.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7.3 Margin of Error: Sampling Distribution for a Proportion 173

Try It Yourself
Using Python, execute a computer equivalent of the following simulation.

1) Put 200 slips of paper in a box. Mark 72 as 1 and 128 as 0.
2) Shuffle the box, and draw out a number. Record the number, and put
the number back.

3) Repeat step two 199 more times, and record the total number of ones.
4) Repeat steps two and three many times (say, 1000), recording the
number of ones each time.

5) Produce a histogram of the results.
6) Without worrying about being too precise, fill in the blanks in the
following statement: Most of the time, the proportion who rated the
handling of the economy “positively” in the sample lies between
___ and ___.

What is the importance of using 200 slips of paper in step 1? Could you
use, say, 36 1’s and 64 2’s? 18 1’s and 32 0’s?

Which step in the above simulation is essential in modeling the size of
the original sample?

7.3.1 The Confidence Interval

Looking at the histogram in Figure 7.3, we can see that the resample results range
from about 25.0% positive to about 46.0% positive. For now, we can ignore the
outliers beyond this interval. We can quantify the uncertainty with an interval
that includes the large majority—say 90% or 95%—of the resampling results.
For example, we find a 90% interval—called a confidence interval—by locating
the fifth and 95th percentiles of the resampling distribution. This interval encloses
90% of the resampling results. The 90% confidence interval is approximately from
0.30 to 0.41.
To represent the population, how do we know what to put in the box?
In our simulation above, we knew what was in the population, and we wanted

to learn how the samples behaved. In reality, we know only the sample result—we
do not know what the population holds.
What do we put in the box? We create our best guess simulated population,

which is based on the observed sample—36% positive. If we wanted to have a box
with all voters, that would be a box with 45 million positive slips and 80 million
not-positive slips.
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Figure 7.3 90% confidence interval; proportion “favorable” on x-axis.

7.3.2 A More Manageable Box: Sampling with Replacement

A box with millions of slips of paper is not manageable, and it is even a bit cum-
bersome on the computer. We use a shortcut instead:

1) A smaller hat—72 slips labeled “positive” and 128 labeled “not positive.”
2) Sample with replacement.

Resampling with replacement ensures that the positive proportion in the box
always remains the same. It is equivalent to resampling without replacement from
a huge population. In the latter case, the positive proportion in the box remains
prettymuch the same from one draw to the next as long as the sample size remains
very small relative to the population.
The container that holds the slips of paper is variously called a box, an urn, or a

hat. The idea is the same.

7.3.3 Summing Up

To produce a confidence interval:

1) We can use the observed sample as a good proxy for the population.
2) The resample size should be the same as the original sample size.
3) The fact that the sampling is donewith replacement allows the sample to serve,

in effect, as a simulated population of infinitely large size.

7.4 Sampling Distribution for a Mean

We just calculated a confidence interval for a proportion. Let’s do it now for
the mean.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7.4 Sampling Distribution for a Mean 175

When you purchase a car, the dealer typically offers to purchase your old car,
which is then resold. Toyota would like to know how much those used cars sell
for—this is an important piece of information in revenue projection. Let’s take a
simple case—establishing the average resale price of the used cars disposed of by
the dealers. The Toyota regional office in Europe takes a sample of recent Corolla
sales, which yields the resale values shown in Table 7.1. The data are real sale
values of used Toyotas; the scenario has been modified slightly.
Figure 7.4 is a histogram of the Toyota prices. The average sale price in this sam-

ple of 20 cars is 17,685 Euros. This is the point estimate. How much might this
average be in error? In other words, if sales records could be located for all recent
sales of used Toyota Corollas, how much might this estimate be off?
If we had easy access to records of all recent sales of used Corollas, we could just

compare our sample to the entire data set. But we don’t have easy access—that’s
why we took a sample.

Table 7.1 Toyota Corolla
used car prices.

13,500
13,750
13,950
14,950
13,750
12,950
16,900
18,600
21,500
12,950
20,950
19,950
19,600
21,500
22,500
22,000
22,750
17,950
16,750
16,950

Mean: 17,685
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Figure 7.4 Histogram of Toyota prices.

Oneway to answer this question is to actually go out and sample additional sales
transactions. Take another sample of 20, another sample of 20, etc., and see how
much they differ from one another. But that will cost much more time, effort, and
money than taking only a single sample of 20.
Can we take additional simulated samples instead of real samples like we did

with the political poll? The trick, as always, is to determine what goes in the box.
What population do we choose to sample from?

7.4.1 Simulating the Behavior of Samples from a Hypothetical
Population

We can imagine creating a hypothetical population from our sample by replicating
each item in our samplemany,many times.We don’t really know how big the total
population of transactions is, but, as we saw earlier, it doesn’t really matter as long
as the sample is small relative to the population. We could then take resamples
(without replacement) from this hypothetical population and see how those sam-
ples behave. We can achieve nearly the same thing by sampling with replacement
from our original sample.

7.5 The Bootstrap

Wehave seen that individual sample results can vary, so a point estimate has uncer-
tainty attached to it. Earlier, we discussed a political survey that asked 200 people
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7.6 Rationale for the Bootstrap 177

their opinion of President Obama, and we used resampling to derive a confidence
interval for the proportion favorable. We can do the same thing for measured data,
like the Toyota prices: calculate a confidence interval for the mean.

Definition: A 90% Confidence Interval for the Mean A 90% confidence
interval1 is a range that encloses the central 90% of the resampledmeans using the
simulation procedures described below. We then say that the population mean
lies within the confidence interval with 90% confidence.

Let’s review the Toyota Corolla case described above, where the average price in
the sample—the sample mean—is 17,685 Euros.

7.5.1 Resampling Procedure (Bootstrap)

1) Write all 20 sample values on slips of paper, and place them in a box.
2) Draw a slip from the box, record its value, and replace the slip.
3) Repeat step two 19more times, and record the mean of the 20 values, shown in

Table 7.2.
4) Repeat steps two and three many more times, say 1000.
5) Arrange the 1000 resampled means in ascending order, and identify the fifth

percentile and the 95th percentile—the values that enclose 90% of the resam-
pled means. These are the endpoints of a 90% confidence interval, as shown in
Table 7.3. Figure 7.5 is a histogram of the 1000 resampled means.

7.6 Rationale for the Bootstrap

We talked earlier about using the observed sample as a stand-in for the population
by replicating it many times and placing the replicated slips of paper in a huge
box. We noted that, in reality, we don’t really need a huge box. Instead, we can
achieve the same effect by sampling with replacement—putting each value back
into the box after we have drawn it, thus yielding an infinite supply of each sample
element. This is worth repeating here because the bootstrap engendered a lot of
skepticism among statisticians when it was first developed, and many still puzzle
over how we can get useful information by simply resampling from an observed
sample.
Let’s clarify some terms first.

1 We began this chapter by talking about surveys, where the term margin of error is frequently
used. A margin of error is simply a plus or minus quantity attached to a point estimate, while a
confidence interval is the actual interval. (If the confidence interval is not symmetric, it will
differ from the margin of error.)
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178 7 Surveys and Sampling

Table 7.2 Mean of 20 resampled or
bootstrapped values.

Original Sample Resample

13,500 13,750
13,750 13,750
13,950 21,500
14,950 13,950
13,750 16,750
12,950 13,500
16,900 20,950
18,600 16,900
21,500 17,950
12,950 14,950
20,950 16,900
19,950 16,900
19,600 13,750
21,500 13,500
22,500 21,500
22,000 13,750
22,750 19,950
17,950 13,750
16,750 16,900
16,950 21,500

Mean 17,685 16,618

Table 7.3 90% confidence interval from
percentiles of resampling distribution.

5% Original Sample 95%

16,357 17,685 18,950
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Figure 7.5 Histogram of used Toyota Corolla resale values.

Definition: Observation An observation is a data value for a single case.
It could be a single value or multiple values, e.g. blood pressure and heart rate for
a single subject.

Definition: Sample A sample is a collection of actual observations from a
population.

Definition:Resample Aresample is a new simulated sample, i.e. a collection of
observations drawn from the original sample or generated randomly by a formula
based on the original sample.

Definition: Sampling with Replacement When we sample with replace-
ment, each item is replaced after it is drawn from a box, hat, etc.

Definition: Sampling Without Replacement In sampling without replace-
ment, once an item is drawn, it is not eligible to be drawn again. Sampling without
replacement is also called shuffling.

In the specific case described above, we have an original sample from a popu-
lation, and instead of replicating the sample many times to create a hypothetical
large population, we take resamples with replacement.

Definition: Single Simulation Trial A single simulation trial is the taking of
a resample and performing further calculations with it. Typically, this means cal-
culating the value of some statistic, such as the mean.
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180 7 Surveys and Sampling

Definition: Simulation A simulation is a repeat of multiple single simulation
trials and the collection of their calculation results.

Definition: The Bootstrap The bootstrap is a simulation in which we resam-
ple with replacement from an observed sample to observe the distribution of a
sample statistic. This is a shortcut that eliminates the need to replicate the values
in the sample many times and then sample without replacement from that large
hypothetical population.

7.6.1 Let’s Recap

We have a sample of size n from an unknown population, and we want to know
how much an estimate based on that sample might be in error.

Unknown population Known sample

The key question is howdo samples drawn from this population behave, i.e. how
different are they from one another? We address this by taking resamples of size
n, drawn with replacement from our sample (standing in for the population that
the sample came from).

Hypothetical population Simulated samples
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7.6 Rationale for the Bootstrap 181

The accuracy of this procedure depends onhowwell the hypothetical population
(in our imagination, the sample replicated over and over, but in reality, using the
bootstrap)—mimics the characteristics of the unknown population.
Usually, the sample embodies all thatwe knowabout the population that it came

from, and the bootstrap is an effective way to proceed. (It is also possible to create
a simulated population from the sample parameters, such as a Normal population
whose mean and standard deviation are estimated from the sample.)
Having found an appropriate representation of the population, we can draw

resamples from that population, calculating the statistic of interest and recording
it each time we draw a resample. Once again, the steps are as follows:

1) From our observed sample, calculate a statistic to measure some attributes of
the population that we are examining.

2) Draw a resample from the original sample, with replacement, and record the
statistic of interest.

3) Repeat step two many times.
4) Observe the sampling distribution of the statistic of interest to either learn how

much our original estimate might be in error or howmuch it might differ from
some benchmark value of interest.

7.6.2 Formula-based Counterparts to Resampling

Computational power and fast statistical software were not widely available until
the 1980s, so resampling simulations were not feasible until then. Statisticians
instead developed approximations that allowed analysts to calculate confidence
intervals from formulas. These formulas rely on the fact that some sample statis-
tics, like themean, have a Normally-shaped distribution, even though the data the
samples are drawn from are not Normally distributed.

The next sections cover scenarios for which we have already seen
resampling solutions, and describe formulas that can also be applied
in those situations. We provide them here as supplements because
you are likely to see them in other contexts. Resampling and the
formulas below are equivalent, alternate approaches. Formulas
have the advantage that software provides ready-made routines
to implement them. This can also be a disadvantage; they can be
applied without a good understanding of whether and when they
are appropriate. Formulas also have the disadvantage that data must
meet certain conditions for the mathematical approximations to be
suitable.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



182 7 Surveys and Sampling

7.6.2.1 FORMULA: The Z-interval
To calculate a confidence interval for a mean, we revisit the standard Normal dis-
tribution we first saw in Chapter 4. Procedurally, the steps are as follows:

1) Find the values in a standard Normal distribution that correspond to the fifth
and 95th percentiles. These values are −1.6449 and +1.6449.

2) Multiply by the sample standard deviation divided by the square root of the
sample size. Then, add the sample mean.

Hint: If you Google Normal distribution probabilities, you will find web-based
calculators for the above. With many such calculators, you can enter the sample
standard deviation and mean and then obtain the interval directly.
The shaded area in Figure 7.6 represents the 90% z-interval for a Standard

Normal distribution, i.e. a Normal distribution with mean = 0 and standard
deviation = 1. We use this information to calculate a confidence interval.
The 100(1 − 𝛼)% z-interval for the mean =(

x − z
𝛼∕2

s√
n
, x + z

𝛼∕2
s√
n

)

wheren is the sample size, x is the samplemean, s is the sample standard deviation,
and −z

𝛼∕2 and z𝛼∕2 are the z-values corresponding to the 𝛼∕2 percentile and the
1 − 𝛼∕2 percentile.

7.6.2.2 Proportions
The same approach can be used for binomial (yes/no) data, where we use the pro-
portion instead of the mean. Specifically, we use the Normal approximation to the
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Figure 7.6 Normal distribution with mean = 0, SD = 1; x-axis is z-score.
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7.6 Rationale for the Bootstrap 183

binomial distribution that we introduced in the last chapter. The formula to calcu-
late a 95% confidence interval around a given observed sample proportion p (where
the sample is of size n):

p ± 1.96
√

p(1 − p)
n

In a Normal distribution, 95% of the data lie within 1.96 standard deviations of
the mean, which, in this case, is the observed proportion. The second part of the
equation,

√
p(1 − p)

n
,

is the standard deviation for a proportion. Had we wanted, say, a 90% confidence
interval instead of a 95% interval, we would have multiplied by the coefficient that
encloses 90% of the data: 1.645.
For the Normal approximation to the binomial to work effectively, the data

should have at least five 1’s and five 0’s.

7.6.3 For a Mean: T-interval

The Normal distribution is actually not the best approximation to the true resam-
pling distribution of the sample mean when samples have fewer than 30 values.
The so-called Student’s t distribution has the same general shape as the Normal
and is almost indistinguishable for samples of size 30 or more. The t-distribution
is actually a family of distributionswhose shapes differ depending on the size of the
sample. As sample sizes diminish, the t-distribution takes account of the greater
variability with small samples and becomes lower and longer-tailed than the Nor-
mal. Since there are multiple t-distributions to be used when there are different
sample sizes, a parameter called degrees of freedommust be specified when using
the t-distribution. The number of degrees of freedom for the t-distribution is the
sample size minus one.
The 100(1 − 𝛼)% t-interval for the mean is(

x − tn−1,𝛼∕2
s√
n
, x + tn−1,𝛼∕2

s√
n

)

where n is the sample size, x is the sample mean, s is the sample standard devi-
ation, n − 1 are the degrees of freedom and −tn−1,𝛼∕2 and tn−1,𝛼∕2 are the t values
corresponding to the 𝛼∕2 percentile and the 1 − 𝛼∕2 percentile.

7.6.4 Example—Manual Calculations

The t-interval calculations for the Toyota example are shown below.
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184 7 Surveys and Sampling

The degrees of freedom for the one-sample t calculation are n − 1 = 19.
If 𝛼 = 0.1, then the fifth and the 95th percentiles for t19 are −1.7291 and 1.7291.

These values traditionally were found in tables but now can be found inweb-based
calculators as well.
Using the same measures of x = 17,685 and s = 3507.252 from the previous

example, the 90% t-interval for the mean is(
x − t19,0.05

s√
n
, x + t19,0.05

s√
n

)

=

(
17685 − 1.72913507.252√

20
, 17685 + 1.72913507.252√

20

)

= (17685 − 1356.04, 17685 + 1356.04)
= (16328.96, 19041.04).

7.6.5 Example—Software

In Python, we can use the scipy package to calculate the 90% confidence interval
using the intervalmethod of the stats.t distribution.
import numpy as np
import pandas as pd
from scipy import stats

toyota = pd.read_csv("toyota.txt", header=None)
toyota.columns = ["price"]

# determine mean and its standard error
mean_price = np.mean(toyota["price"])
std_err_mean = stats.sem(toyota["price"])
dof = len(toyota["price"]) - 1
# calculate 90% confidence interval
ci_interval = stats.t.interval(0.9, dof, loc=mean_price,

scale=std_err_mean)

print(f'Sample mean: {mean_price:.2f}')
print(f'Standard error of the mean: {std_err_mean:.2f}')
print(f'Degrees of freedom: {dof}')
print(f'90% confidence interval: [{ci_interval[0]:.2f}, '

f'{ci_interval[1]:.2f}]')

Executing the code above produces the following output:
Sample mean: 17685.00
Standard error of the mean: 784.25
Degrees of freedom: 19
90% confidence interval: [16328.94, 19041.06]

The result is similar to but not exactly the same as the bootstrap interval.
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7.6 Rationale for the Bootstrap 185

7.6.6 A Bit of History—1906 at Guinness Brewery

The t-distribution was developed by William S. Gossett, a chemist at the Guin-
ness brewery firm. In 1906, he took a leave of absence to study with the noted
statistician Karl Pearson. When he returned to Guinness, one of his concerns
was the reliability of conclusions drawn from small samples. In 1908, he pub-
lished an article, “The Probable Error of a Mean,” in the journal Biometrika
(Figure 7.7).
Gossett published his article under the pseudonym Student because Guinness

did notwant competitors to know that theywere employing statisticians. The exist-
ing industry practice at the timewas tomeasure processes with very large samples,
which was costly and time-consuming. Being able to work effectively with smaller
sampleswould reduce cost and speed innovation, but this required knowing some-
thing about how reliable those small samples were.
Gossett started with a simulation (Figure 7.8). He workedwith data on the phys-

ical attributes of criminals. Scientific society at the time was very interested in
profiling and explaining the criminal “type,” so lots of datawere available from this
captive audience. Gossett wanted to avoid data that would reveal that he worked
for a brewery.
Gossett then took the recorded values for his samples, plotted them, and fitted

curves to them. Figure 7.9 is his plot of the sample standard deviations, along with
the curve that he fitted to them. (Notice that this is not Normally shaped;measures
of variability tend to be distributed long-tail right.) The curve that he fitted to the
resampled distribution of means is now known as the t-distribution.
If computing power like we have today had been available in 1908, it seems

likely that computer sampling and simulation would have played a major role
in statistics from the beginning. As it was, statisticians developed mathematical
approximations as shortcuts to repeatedly dealing out cards.

Figure 7.7 William S. Gossett’s 1908 article.
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186 7 Surveys and Sampling

Figure 7.8 Gossett”s description of his simulation.

DIAGRAM III.
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Figure 7.9 Gossett”s plot of one simulation.

Of course, computing power is available now, and computer-intensive simula-
tions and other procedures play a major role in statistics and data science today.
However, the legacy of formula-based mathematical approximations is still with
us in textbooks and software, so we present both in this text.

7.6.7 The Bootstrap Today

The bootstrap was first suggested by Julian Simon in his 1969 work Basic Research
Methods in Social Science and was named and elaborated by Bradley Efron in the
late 1970s. It is now regarded as the major fundamental advance in statistics of
the last quarter of the 20th century—a “paradigm shift” in the words of George
Casella, chair of the Department of Statistics, University of Florida, writing in
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7.6 Rationale for the Bootstrap 187

Statistical Science. It now pervades the field of applied statistics, from astronomy
to zoology and everything in between. Assessments of uncertainty that were pre-
viously infeasible have been made practical by this simple device.
An example is the study of climate data. ManfredMudelsee, in 2010, tackled the

problem of climate data analysis. Uncertainty and error (in the statistical sense)
are inevitable in data that purport to represent the state of the climate thousands
of years ago. Mudulsee’s work looked at nine major time series of climate data,
from ice cores in Antarctica to lake sediments in Massachusetts. These time series
had been used in climate data models to produce the estimates of global warming
and sea level rise.
Mudulsee emphasized that these precise-seeming models are really just esti-

mates and that confidence intervals were essential for a complete understanding
of the data. The problem was that the data did not conform to the requirements of
the classical statistical methods that had traditionally been used to fit confidence
intervals. His work (which you can review at http://bit.ly/1MjRaoE) applied the
bootstrap with the goal of establishing credible confidence intervals (“error bars”)
around various estimates.

7.6.8 Central Limit Theorem

Depending on the size of the sample and the degree of non-Normality in the parent
population, sample means are often Normally distributed. This phenomenon is
termed the Central Limit Theorem and has been useful historically in facilitating
the development of mathematical approximations to sampling distributions.

Definition: Central Limit Theorem The Central Limit Theorem says that
the means drawn from multiple samples will be Normally distributed, even if the
source population is not Normally distributed, provided that the sample size is
large enough and the departure from Normality is not too great.

Many books state that the “large enough” range is a sample size of 20 to 30, but
they leave unanswered the question of how non-Normal a population must be for
the Central Limit Theorem not to apply.
The Central Limit Theorem allows Normal-approximation formulas to be used

in calculating sampling distributions for inference, i.e. confidence intervals and
hypothesis tests. With the advent of computer-intensive resampling methods, the
Central Limit Theorem is not as important as it used to be, because resampling
methods for determining sampling distributions are not sensitive to departures
from Normality.
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188 7 Surveys and Sampling

7.7 Standard Error

Another statistic that is used to characterize the reliability of a sample result is the
standard error.

Definition: Standard Error (SE) The standard error of a sample statistic is
the standard deviation of that sample statistic. It is often termed the “standard
error of the estimate,” where “sample estimate” means the same thing as “sample
statistic.”

Note that the term standard deviation, as used above, refers to variation in the
sample statistic, not to variation in the sample data.
Let’s illustrate with the results of the Toyota bootstrap, where the sample statis-

tic of interest was the mean. We’ll use the 1000 resampled means, as earlier, but
instead of finding percentile intervals, we’ll calculate the standard deviation of the
means.
The estimated standard error is thus 772.4. In calculating the standard deviation

of the resampledmeans, the data are the 1000means and n = 1000. If we had done
10,000 trials, then n would equal 10,000. We divide by n − 1 in the calculation,
though dividing by n would make little difference.

7.7.1 Standard Error via Formula

The standard error can also be estimated using the standard deviation of the sam-
ple data itself, without resampling. Here is the formula for the standard error of
the mean, where s refers to the standard deviation of the sample values and n to
the sample size.

SEx =
s√
n

7.8 Other Sampling Methods

Simple random sampling is easy in theory, but it can be complex in practice. There
are some situations when variations on simple random sampling are either easier
to implement or produce better results.

7.8.1 Stratified Sampling

You work for an internet merchant whose websites produce many leads
(prospects). Five percent of these leads eventually become sales. You want to
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7.8 Other Sampling Methods 189

conduct a survey to discover what distinguishes non-purchasing leads from those
that go on to purchase. In particular, youmight want to develop a statistical model
that can predict, based on data concerning the prospect, whether a prospect will
end up purchasing.
Available to you is a customer database that includes a record for each customer

and each prospect. You could take a simple random sample from the database.
However, only about 5% of customers in the database will be purchasers. As you
proceed with the survey, you will spend time and effort collecting and examining
information about lots of non-purchasers while gathering relatively little informa-
tion about purchasers.
An alternative is to sample equal numbers of non-purchasers and purchasers.

This way, you will get the same amount of information about each group.

Definition: Stratified Sampling In stratified sampling, the population is split
into categories or strata (singular stratum), and separate samples are drawn from
each stratum.

In the above illustration, we need equal information about purchasers and
non-purchasers, so we draw equal-sized samples from each stratum. In some
cases, it may be desirable to draw different-sized samples from each stratum. For
example, those who commission political polls often want to know both about the
opinion of the population as a whole as well as the opinions of various subgroups
(e.g. Republicans who voted for a Democrat). In such a case, strata sample sizes
are a compromise between the need to get information about the population as
a whole and the need to get information about subgroups. Taking equal-sized
samples of subgroups—particularly smaller groups like Republicans who voted
for a Democrat—diminishes the efficiency of the survey for getting information
about the population as a whole.

7.8.2 Cluster Sampling

Let’s say you want to survey a sample of high school students in a large school
district. There is no readily practical and affordable way to achieve the equivalent
of placing all the high school students’ names in a box and drawing a sample.
Various obstacles include the absence of a single student database covering all
high schools, privacy concerns, and the manual labor involved in tracking down
each student selected for the sample.
An easy and practical solution is to survey the students as a group in their

start-of-day administrative homeroom. A certain number of homerooms could be
selected from each school, and all the students in each homeroom could be given
the survey. This procedure would be reasonably representative, provided that
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190 7 Surveys and Sampling

students are assigned to these administrative homeroom units in some fashion
that does not introduce bias, such as by birthdate or student ID number. But if
students are assigned to homerooms by, for example, athletic participation or
academic ability, you run the risk of over- or under-representing groups whose
opinions might be systematically different.

Definition: Cluster Sampling In cluster sampling, clusters of subjects or
records are selected, and the subjects or records within those clusters are surveyed
or measured. The main rationale for selecting clusters, rather than individuals, is
practicality and efficiency. Care must be taken that the characteristics that define
clusters are not characteristics that will introduce bias into the results.

7.8.3 Systematic Sampling

Another alternative to pure random sampling is systematic sampling—the selec-
tion of every nth record. For example, youmight sample every 100th transaction or
every 10th customer. However, with systematic sampling, you lose the assurance
you have with simple random sampling that the sample will be representative of
the population—allowing for sampling error. So, youmust take care to avoid possi-
ble sources of bias. For example, if you sample daily sales and sample every seventh
day, you will only measure sales on one particular day of the week. That day may
not be typical, so your measurements could be biased.

7.8.4 Multistage Sampling

Professional polling and sampling organizations use amix ofmethods tominimize
cost, sampling error, and bias. These organizations have the benefit of lengthy
experience with different methods. Therefore, they can assess from their prior
work whether a departure from simple random sampling, in the name of effi-
ciency, will introduce bias. An example of a multistage process might be to ran-
domly select neighborhoods, as defined by the US Census, and then sample every
10th household.

7.8.5 Convenience Sampling

You have probably encountered polls on the web in which you are invited to state
your opinion on something. This is an example of convenience sampling. In con-
venience sampling, there is no effort to define a population or sampling frame,
and there is no attempt to ensure that the sample is representative of a larger pop-
ulation. It is simply taking a sample on the basis of convenience. This sampling
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7.8 Other Sampling Methods 191

method is easy and cheap, but it does not produce consistently useful or reliable
information.

7.8.6 Self-selection

An added problem with the convenience sampling method is that the sample is
self-selecting. The organization collecting the data is not selecting the sample;
the respondents themselves determine whether they participate. In an opinion
survey, this almost guarantees biased results—those with stronger opinions are
more likely to participate.
The difficulty with self-selection can be seen in web-based product reviews.

Consider these two reviews of a printer from Amazon, January 31, 2011.

Because it appears that anyone who wants to can post a review, the survey
method makes it difficult to draw conclusions. Are disgruntled customers more
likely to post reviews and skew the results? Does the vendor have an incentive
to write spurious positive reviews? What would motivate an ordinary user who
had no particular issues to write a review? Are ordinary users who write reviews
different from those who do not write reviews?

7.8.7 Nonresponse Bias

Nonresponse bias is a problem that can occur nomatterwhat the samplingmethod
is. It is the question of whether people who respond to a survey are different from
those who do not. Since nonresponders, by definition, do not respond and do not
show up in surveys, we can’t know for sure if they are different from responders.
However, it is hard to rule out this possibility.

How will a survey response rate affect the problem caused by nonre-
sponse bias?
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192 7 Surveys and Sampling

7.9 Absolute vs. Relative Sample Size

Let’s return to the story about the Gallup Poll vs. The Literary Digest. Gallup
believed that selecting a representative sample was more important than selecting
a large sample. The Literary Digest touted the millions of people in its survey.
Let’s consider a related issue. Consider these two questions.

1) What size sample do you need to obtain accurate voter preference estimates for
the United States, which has a population of 300 million?

2) What size sample do you need to obtain accurate voter preference estimates for
Albany, NY, with a population of 300 thousand?

When asked these questions, many people think that a larger sample is required
for the United States, than for Albany. Is this correct?

Try It Yourself
Suppose a presidential approval survey of 1000 people is conducted for
Albany. Spell out the simulation steps, as above, that would be required to
assess its accuracy. Then, the same survey is done for the United States as
a whole. To achieve the same degree of accuracy for the United States, is a
larger sample required?

7.10 Python: Random Sampling Strategies

We already used random sampling with Python at several places in the previous
chapters. Here, we will focus on how we can implement the various sampling
strategies discussed in this chapter.

7.10.1 Implement Simple Random Sample (SRS)

To set the scene, we implement the sampling experiment from Section 7.3 using
Python. The resulting histogram is shown in Figure 7.10.

import random
import matplotlib.pyplot as plt

random.seed(123) 1©
box = [0] * 128 + [1] * 72 2©
# Repeated sampling
nsamples = 1000
proportion = []
for _ in range(nsamples): 3©
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7.10 Python: Random Sampling Strategies 193
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Figure 7.10 Sampling distribution for a proportion.

nr_ones = 0
for _ in range(len(box)):

random.shuffle(box) 4©
sample = random.choice(box) 5©
if sample == 1:

nr_ones += 1
proportion.append(nr_ones / len(box) * 100) 6©

# Visualize the results
fig, ax = plt.subplots()
ax.hist(proportion, bins=20)
ax.set_xlabel("Proportion favorable [%]")
ax.set_ylabel("Frequency")
plt.show()
print(f"Mean: {sum(proportion)/len(proportion)}")

1© Set a random seed for reproducibility.
2© Create a list with 128 zeros and 72 ones. This represents the box with the
200 cards. Multiplying a list by an integer creates a list with the elements
of the original list repeated the specified number of times. This means
[0]*128 will create a list with 128 zeros. Summing two lists concatenates
them.

3© The underscore _ is a special variable in Python. It is used to indicate that the
variable is not used. In this case, we use becausewe do not care about the value
of the variable.

4© The function random.shuffle shuffles the elements of a list in place. This
means the list is modified. If you need to preserve the order, create a copy of
the original list and work with that.
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194 7 Surveys and Sampling

5© The function random.choice selects a random element from the shuffled list.
6© Convert the number of ones to a proportion [%] and add it to the list of pro-
portions.

You will find out that running this code will take several seconds. Can
you spot why this is the case and suggest ways to improve it?

There is no need to shuffle the list 200 times. Making a random choice from
the box will be sufficient to get a random sample. Another aspect of writing effi-
cient Python code is to reduce the number of function calls. Instead of calling
random.choice repeatedly, we can use random.choices to get all samples at once.
The following code snippet implements this idea.

proportion = []
for _ in range(nsamples):

samples = random.choices(box, k=len(box))
nr_ones = sum(samples)
proportion.append(nr_ones / len(box))

# Visualize the results
fig, ax = plt.subplots()
ax.hist(proportion, bins=20)
plt.show()
print(f"Mean: {sum(proportion)/len(proportion)}")

The new code is far more efficient and runs in a fraction of a second.
Instead of initializing the box, we can also use the weights argument of

random.choices. In this case, we would write:
import numpy as np
population_size = 200
proportion = []
for _ in range(nsamples):

samples = random.choices([0, 1], weights=[128, 72], k=population_size)
proportion.append(sum(samples) / population_size)

print(f"Mean: {np.mean(proportion)}")

Using the weights argument is useful if we know the population size and have
information about the distribution. The weights are normalized to sum to 1. This
means 128 and 72 are converted to 64% and 36%. Implicitly, the random.choices
argument converts the weights to weights=[0.64, 0.36].

7.10.2 Determining Confidence Intervals

In Section 7.3.1, we learned how to determine confidence intervals by calculating
percentiles from the resampled values. In Python, we can do this as follows:

percentiles = [0.025, 0.975] 1©
sorted_proportion = sorted(proportion) 2©
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7.10 Python: Random Sampling Strategies 195

lower = sorted_proportion[round(percentiles[0] * nsamples)] 3©
upper = sorted_proportion[round(percentiles[1] * nsamples)]
print(f"Confidence interval: [{lower:.3f}, {upper:.3f}]")

1© Determine the percentiles we are interested in. In this case, we want the 2.5%
and 97.5% percentiles, so that we get a 95% confidence interval.

2© Sort the list of proportions.
3© Determine the lower and upper bounds of the confidence interval.

Output
Confidence interval: [0.295, 0.430]

Our calculation is an approximation. We determine the index to lookup the per-
centile usingproportion[int(p*nsamples)]. Here, we convert the product
p*nsamples to an integer so that we can use it to lookup the value in the sorted
list. However, what if the product is not a whole number? A more accurate calcu-
lation of the percentile is to use, for example, a linear interpolation between the
two closest values. The function np.percentile implements this and several other
methods to determine percentiles; linear interpolation is the default.

import numpy as np
lower, upper = np.percentile(proportion, [2.5, 97.5]) 1©
print(f"Confidence interval: [{lower:.3f}, {upper:.3f}]")

1© The np.percentile function requires the percentiles to be specified as percent-
ages. The array doesn’t need to be sorted.

Output
Confidence interval: [0.295, 0.430]

We can also use the formula from Section 7.6.2.2 to calculate confidence inter-
vals using a Normal approximation.

from scipy import stats
p = np.mean(proportion)
n = population_size
z = stats.norm().ppf(0.975) 1©
lower = p - z * np.sqrt(p * (1 - p) / n)
upper = p + z * np.sqrt(p * (1 - p) / n)
print(f"Confidence interval: [{lower:.3f}, {upper:.3f}]")

1© The scipy.stats.norm function returns a Normal distribution with mean 0 and
standard deviation 1. The ppf method returns the inverse of the cumulative
distribution function (CDF) at the specified value. In this case, we want the
value at a CDF value of 0.975.

Output
Confidence interval: [0.294, 0.427]

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



196 7 Surveys and Sampling

Alternatively, you can use the statsmodels package (more about this package
in Chapter 10) to calculate the confidence interval. This package implements a
variety of approaches. Here, we show the code for the Normal approximation and
for the Clopper–Pearson confidence interval based on the beta distribution.

from statsmodels.stats.proportion import proportion_confint
ci_interval = proportion_confint(72, 200, alpha=0.05,

method="normal") 1©
print(f"Confidence interval (normal): [{ci_interval[0]:.3f}, "

f"{ci_interval[1]:.3f}]")
ci_interval = proportion_confint(72, 200, alpha=0.05,

method="beta") 2©
print(f"Confidence interval (beta): [{ci_interval[0]:.3f}, "

f"{ci_interval[1]:.3f}]")

1© The proportion_confint function returns a tuple with the lower and upper
bounds of the confidence interval. The alpha argument specifies the confi-
dence level using the alpha value (1 − 0.95). The method argument specifies
the method with the default being the Normal approximation.

2© Withmethod="beta"we select the calculation of the Clopper–Pearson con-
fidence interval.

Output
Confidence interval (normal): [0.293, 0.427]
Confidence interval (beta): [0.294, 0.431]

7.10.3 Bootstrap Sampling to Determine Confidence Intervals for a
Mean

In the previous section, we implemented sampling from a Python list. However, in
practice, we will often work with data in a pandas DataFrame. The following
code snippet shows how we can use bootstrap sampling to determine the confi-
dence interval for the mean price of Toyota Corollas.

import pandas as pd
rng = np.random.default_rng(seed=321) 1©

df = pd.read_csv("toyota.txt", header=None, names=["price"]) 2©

nsamples = 1000
mean_price = []
for _ in range(nsamples):

sample = df.sample(frac=1.0, replace=True, random_state=rng) 3©
mean_price.append(sample["price"].mean())

percentiles = [0.025, 0.975]
lower, upper = np.percentile(mean_price, [2.5, 97.5])
print(f"Confidence interval: [{lower:.2f}, {upper:.2f}]")
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7.10 Python: Random Sampling Strategies 197

1© Pandas uses the numpy random number generator. We create a random
number generator to ensure reproducibility.

2© Read the data from the file toyota.txt into a DataFrame. The file con-
tains a single column with no header. We use the header=None argument
to indicate this. We also use the names argument to give the column a name.

3© The DataFrame.sample method samples rows from the DataFrame. The
argument replace=True indicates that we sample with replacement.
(By default, sampling would be without replacement.) There are two ways of
specifying the size of the sample. We can use the frac argument to specify
the fraction of rows to sample. For bootstrap, we need to create samples of the
same size as the original data. Therefore, we use frac=1.0. Alternatively,
we can use n=len(df) argument to specify the number of rows in the
sample. The argument random_state=rng passes the initialized random
number generator to the DataFrame.samplemethod. A simple integer would
not work here, because we want to create different samples in each iteration
of the loop.

Output
Confidence interval: [16242.06, 19112.62]

The bootstrap sampling distribution, mean, and 95% confidence intervals are
shown in Figure 7.11. The code to create this figure is:
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Figure 7.11 Bootstrap sampling distribution for the mean price of Toyota Corollas; mean
and 95% confidence interval are indicated by the vertical lines.
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198 7 Surveys and Sampling

# Visualize the results
fig, ax = plt.subplots()
ax.hist(mean_price, bins=20)
ax.set_xlabel("Mean price")
ax.set_ylabel("Frequency")
ax.axvline(lower, color="black", linestyle="--")
ax.axvline(upper, color="black", linestyle="--")
ax.axvline(np.mean(mean_price), color="black")
plt.show()

Wealready demonstrated in Section 7.6.5 howwe canuse the scipy.stats.t.interval
function to determine the confidence interval via formula, using the t statistic.
Here is the code for calculating a 95% confidence interval.

from scipy import stats

mean_price = np.mean(df["price"]) 1©
std_err_mean = stats.sem(df["price"])
dof = len(df["price"]) - 1
# calculate 95% confidence interval
ci_interval = stats.t.interval(0.95, dof, loc=mean_price,

scale=std_err_mean) 2©

print(f'95% confidence interval: [{ci_interval[0]:.2f}, '
f'{ci_interval[1]:.2f}]')

1© Calculate the mean and standard error of the mean of the sample.
2© Calculate the confidence interval using the scipy.stats.t.interval function.
The arguments specify the confidence level, degrees of freedom, mean
(location), and standard error of the mean (scale).

Output
95% confidence interval: [16043.56, 19326.44]

7.10.4 Advanced Sampling Techniques

In Section 7.8, we discussed other sampling methods. Here, we will see how we
can implement some of them in Python.

7.10.4.1 Stratified Sampling for Categorical Variables
Stratified sampling is done by first splitting the dataset into groups and then sam-
pling from each group. We can achieve this easily with the pandas dataframe
method DataFrame.groupby. Let’s exemplify it using the Berkeley admission
dataset microUCBAdmissions.csv. We use the Major column as the group and
sample 10% from each group.

rng = np.random.default_rng(seed=123)
df = pd.read_csv("microUCBAdmissions.csv")
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7.10 Python: Random Sampling Strategies 199

resample = (df.groupby("Major") 1©
.sample(frac=0.1, random_state=rng)) 2©

print(f"{len(resample)} rows sampled from {len(df)} rows") 3©
resample.head()

1© TheDataFrame.groupbymethod groups the rows of the dataframe by the spec-
ified column. The DataFrame.sample method samples from each group. The
frac argument specifies the fraction of rows to sample. The random_state
argument specifies the random number generator to use. The outcome of the
DataFrame.groupbymethod is a collection of dataframes.

2© The outcome of the DataFrame.groupby is chained to the sample method,
which is applied to each group. After sampling from each group, all
subsamples are combined in a new DataFrame object.

3© The output shows that the new dataframe has 451 rows. This is close to 10%
of the original dataset.

Output
451 rows sampled from 4526 rows

Admission Gender Major
3893 Admitted Male A
830 Admitted Male A
2916 Rejected Male A
925 Admitted Male A
844 Admitted Female A

We can compare the distribution of the departments in the original dataset and
the resampled dataset. We see that the distribution is similar.

pd.DataFrame({
"Original": df.value_counts("Major") / len(df), 1©
"Resampled": resample.value_counts("Major") / len(resample)

}).round(3) 2©

1© The DataFrame.value_counts method counts the number of rows for each
unique value in the specified column. Dividing the counts by the number of
rows gives the distribution.

2© The DataFrame.roundmethod rounds the values to 3 decimal places.

Output
Original Resampled

Major
A 0.206 0.206
C 0.203 0.204
D 0.175 0.175
F 0.158 0.157
B 0.129 0.129
E 0.129 0.129
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200 7 Surveys and Sampling

In the above example, we created a stratified sample using sampling without
replacement. By sampling with replacement, we can create a stratified bootstrap
sample.
rng = np.random.default_rng(seed=123)
resample = (df.groupby(["Major", "Gender"]) 1©

.sample(frac=1, replace=True, random_state=rng) 2©

.reset_index(drop=True)) 3©
print(f"{len(resample)} rows sampled from {len(df)} rows")
resample.head()

1© Grouping can be done onmultiple columns by passing a list of column names
to the DataFrame.groupbymethod.

2© Settingfrac=1 andreplace=True sampleswith replacement andwill cre-
ate a bootstrap sample for each group.

3© The DataFrame.reset_index method resets the index of the dataframe. The
drop=True argument indicates that the old index should be dropped. Oth-
erwise, it would be included in the resulting dataframe as a new column.

Output
4526 rows sampled from 4526 rows

Admission Gender Major
0 Admitted Female A
1 Admitted Female A
2 Admitted Female A
3 Admitted Female A
4 Admitted Female A

Comparing the number of examples with the same gender and major combina-
tion, we can see that the resampled dataframe reproduces the distribution of the
original dataframe.
print(pd.DataFrame({

"Original": df.value_counts(["Gender", "Major"]), 1©
"Resampled": resample.value_counts(["Gender", "Major"]),

}).sort_index()) 2©

Output
Original Resampled

Gender Major
Female A 108 108

B 25 25
C 593 593
D 375 375
E 393 393
F 341 341

Male A 825 825
B 560 560
C 325 325
D 417 417
E 191 191
F 373 373
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7.10 Python: Random Sampling Strategies 201

7.10.4.2 Stratified Sampling of Continuous Variables
If we want to preserve the distribution of a continuous variable in a stratified sam-
ple, grouping by unique values no longer works; we require a different approach.
We group the continuous variable into bins and then use the bin as the group-
ing variable. In the following code example, we demonstrate this using the CRIM
variable of the boston-housing.csv.
rng = np.random.default_rng(seed=123)
df = pd.read_csv("boston-housing.csv")

resample = (df.groupby(pd.cut(df["CRIM"], bins=10), 1©
observed=True) 2©

.sample(frac=0.1, random_state=rng))
print(f"{len(resample)} rows sampled from {len(df)} rows")
resample.head()

1© The pd.cut function creates bins for the specified column. Thebins argument
specifies the number of bins. This command will create bins of equal width.
You can also specify the bin edges explicitly using a list. An alternative would
be to use the pd.qcut function, which creates bins with the same (or almost
same) number of elements in each bin.

2© The pandas package is improving the way it is handling categorical data.
We specify the observed argument to avoid a warning message. If the con-
tinuous variable has larger gaps, it can happen that the binning creates empty
bins. Theobserved=True argument of the groupbymethod,will only create
groups that are not empty. Setting it to False will create all possible groups,
even if they are empty.

Output
26 rows sampled from 267 rows

CRIM RM MEDV
83 1.38799 5.950 13.2
231 3.69311 6.376 17.7
256 0.14866 6.727 27.5
44 2.73397 5.597 15.4
223 0.63796 6.096 18.2

We see the effect of the binning in Figure 7.12. The stratified sample (dashed
line) represents the distribution of the full dataset (solid line) more closely than
the random sample (dotted line). The figure was created using the following
Python code.
bw_method = 0.5
ax = df["CRIM"].plot.density(color="black", bw_method=bw_method,

label="Full dataset")
resample["CRIM"].plot.density(linestyle="--", ax=ax, bw_method=bw_method,

label="Stratified sample")
df["CRIM"].sample(frac=0.1, random_state=rng).plot.density(linestyle=":",

ax=ax, bw_method=bw_method,
label="Random sample")
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202 7 Surveys and Sampling
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Figure 7.12 Stratified sampling of the CRIM variable of the boston-housing.csv dataset.
The lines show the distribution of the full dataset (solid line), the stratified sample
(dashed line), and a random sample (dotted line).

Exercises

7.1 When you take a sample and calculate a statistic (measurement), you
learn something about a population—you get an estimate of a population
parameter.
a) What is the point of then doing a resampling simulation? What

additional information do you get?
b) What about using a formula for a confidence interval? Does its purpose

differ from using a resampling simulation?

7.2 Youwork for a survey organization that has been asked to conduct a survey
to determine what proportion of football players suffer from health condi-
tions related to head trauma. The client seeking the survey has not been
more specific than that. You are developing a plan that can serve as a start-
ing point to discuss exactly what the client wants. Identify:
a) An appropriate population
b) The sampling frame
c) Any other practical issues

7.3 An online retailer is profiling its customers and, among other things,
wants to learn its median transaction size for the previous year. Describe
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Exercises 203

a sampling procedure that would avoid having to look at all transactions.
(Do not use statistical terms; instead, write down a series of steps that, for
example, a summer intern could follow.)

7.4 Consider the following populations:
A = [1, 2, 3, 3]
B = [one million 1’s, one million 2’s, one million 3’s]
a) If you randomly draw one value without replacement from population

A, what is the probability of drawing a “3?”
b) If you randomly draw two values without replacement from population

A and draw a “3” on your first draw, what is the probability of drawing
a “3” on your second draw?

c) If you randomly draw one value without replacement from population
B, what is the probability of drawing a “3?”

d) If you randomly draw two values without replacement from population
B and draw a “3” on your first draw, what is the probability of drawing
a “3” on your second draw?

e) If you randomly draw two values with replacement from population A
and draw a “3” on your first draw, what is the probability of drawing a
“3” on your second draw?

f) Consider procedures b, d, and e. Which of them are almost equivalent
to one another?

7.5 The “churn” rate in a subscription business is the rate at which subscribers
leave (cancel) in a given time period. In the USwireless phone industry, the
churn rate is close to 10% annually—out of 100 customers at the beginning
of a 12-month period, only 90 will be left at the end of the 12month period.
a) A 10% churn rate can be represented by a single boxwith 9 cardsmarked

“0” and one card marked “1.” Other numbers of 0’s and 1’s in the box
could do the job—give a couple of examples.

b) What resampling process makes these boxes functionally equivalent?
Sampling with replacement or sampling without replacement?

c) Describe the resampling steps2 that you would take to assess the sam-
pling variability of samples of size 250.

d) Describe the resampling steps that youwould take to assess the sampling
variability of samples of size 50.

e) Implement the resampling steps you described in the previous two ques-
tions using Python and compare the results.

2 As in “Put X slips of paper marked “0” and Y slips of paper marked “1” in a hat, take a sample
with/out replacement of size…etc.
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204 7 Surveys and Sampling

7.6 A politician contemplating running for local office wants to know how
widely her name is recognized and undertakes a sample survey of 200
people who voted in the last election. 65% had heard of him, but the others
had not.
a) Describe the resampling steps you would take to determine the reliabil-

ity of this sample result.
b) Carry out these steps using Python.

7.7 A politician running for state office suggests to the campaign’s consultant
that, instead of using expensive surveys to measure public opinion among
likely voters, they should simply harvest feeds from X (Twitter) and assess
sentiment. Comment.

7.8 A lumber mill tests the thickness of plywood panels with a sample of
panels. The average thickness in the sample is 0.509 inches and the
confidence interval for that mean (based on the sample) is from 0.489
inches to 0.521 inches. Which of the following is true?
a) The observed value is within the interval; therefore, the result is statis-

tically significant.
b) The observed value is within the interval; therefore, the result is not sta-

tistically significant.
c) The fact that the observed value lies within the interval is to be expected;

this is how confidence intervals work (statistical significance is not at
issue).

7.9 Have you everwondered, when youweigh yourself on a scale, how the scale
is calibrated? How is it known that 150 pounds on that scale is the same as
150 pounds on another? Scales are calibrated by comparison to standard
weights. Of course, millions of instruments require calibration, and they
cannot all be compared to the same weight. Rather, there is a single defini-
tive weight, and a hierarchy of other weights that are compared to it. The
US National Bureau of Standards maintains a set of standard weights that
are an important link in this chain.
In Statistics, Freedman et al. report the results of a set definitive measure-
ments of one 10 g standard weight, done in 1962. The first measurement
was 9.999591. The error is very slight, on the order of what a fine grain of
salt weighs. Several other measurements also came in slightly below 10 g.
Tomake interpretation easier, the Bureau chose tomeasure not “grams” but
rather “micrograms below 10g.” A microgram is one-millionth of a gram.
So, instead of 9.999591, the measurement was 409. Here is a sample of 20
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Exercises 205

such measurements for this 10 g standard weight: 409, 400, 406, 399, 402,
406, 401, 403, 401, 403, 398, 403, 407, 402, 401, 399, 400, 401, 405, 402.
a) Based on this sample, you would estimate that this particular standard

weight falls short by ___ micrograms.
b) Do a bootstrap simulation to determine how much variability there

might be in this estimate; produce a 90% or 95% confidence interval.

7.10 The data streams.csv reflects the pH readings on a sample of streams in a
United States county.
a) Calculate a point estimate and a confidence interval (90% or 95%) for the

mean pH.
b) Discuss briefly a possible sampling scheme that might have been used

to obtain these data, and potential challenges and pitfalls.

7.11 Using the pulse.csv data:
a) Calculate the proportion of the total who smoke and find a confidence

interval (90% or 95%) around this proportion.
b) It appears that males are more likely to be smokers than females. Find

the difference in the proportion who smoke (males–females) and find a
confidence interval (90% or 95%) around that difference.

c) Medical theory suggests that smoking elevates the pulse rate. Looking
at the “before” pulse rate for everyone, calculate the difference: “mean
smoker pulse rate” minus “mean nonsmoker pulse rate.” Find a confi-
dence interval around this difference.
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8

More than Two Samples or Categories

In previous chapters, we looked at the popular A/B test and how to test for statisti-
cal significance of the results. In this chapter, we will see how to comparemultiple
samples and whether they differ from one another. After completing this chapter,
you should be able to:

● Construct an R×C table to compare categorical data across multiple categories.
● Perform a chi-square test to assess whether categories differ in a statistically
significant way.

● Construct a table to compare numeric data across multiple samples or
treatments.

● Conduct ANOVA to test whether multiple samples with numeric data differ in
a statistically significant way.

● Explain how the problem of testing for statistical significance becomes more
complex with multiple comparisons.

● Explain how multi-arm bandits deal with A/B and multiple testing from an
optimization perspective.

8.1 Count Data—R×C Tables

The field of behavioral economics has called into question many truisms of classi-
cal economics, such as the idea that demand rises as prices go down. The business
consultant McKinsey and Company recounts the story of a jewelry store owner
trying to sell a line of jewelry that was proving difficult to move.
Several strategies accomplished nothing, and the owner asked the staff to mark

down the price by “X1/2” and left on a trip. On her return, she was surprised to see
the whole lot gone and doubly surprised to learn that the staff had misinterpreted
instructions and doubled the prices instead of discounting them. Academics
studying consumer behavior have learned that “second most expensive” and
“second cheapest” are good price points that boost demand irrespective of product

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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208 8 More than Two Samples or Categories

Doubling the price of some jewelry increased its popularity.
Source: PhotoMIX Company/Pexels.

quality. Purchasers at the top end tell themselves they are not paying absolute top
dollar, and those at the bottom can avoid thinking of themselves as cheap. Adding
a couple of relatively inferior items alongside a flagship item can boost sales of the
latter, as it makes the choice easier. On the other hand, including too many items
can induce decision paralysis.

8.2 The Role of Experiments (Many Are Costly)

Knowledge of human behavior is useful in business, but much of this knowl-
edge is not obvious and must be derived through experiments. The digital age
has made some marketing experiments cheap and relatively easy, but behavioral
experiments can be expensive to set up. Industrial and medical studies, as well as
surveys, are even more expensive.
Clinical trials for new drugs can cost hundreds of millions of dollars. The overall

design is set up front and cannot be modified midstream. Once the data is col-
lected, which can take years in medical experiments, the results are what they are.
It is not possible to go back and revise the design. For this reason, it often makes
sense to investigate several things at once.
Let’s look first at an example in behavioral psychology.

8.2.1 Example: Marriage Therapy

Do behavioral and insight therapies for marriage counseling differ in effec-
tiveness? Behavioral therapy stresses the skills of managing interpersonal
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8.2 The Role of Experiments (Many Are Costly) 209

Table 8.1 Marriage therapy.

Happily
Married

Distress
Married Divorced

Behavioral 15 3 11
Insight 24 5 1

Source: Adapted from Douglas et al., 1991.

relationships, and insight therapy stresses working out underlying difficulties.
Fifty-nine couples were randomly assigned, with 29 to behavioral therapy and
30 to insight therapy. At a four-year follow-up, 15 of the behavioral group were
happily married (HM), three were distressed married (DM), and 11 were divorced
(DIV). The insight group had 24 HM, five DM, and one DIV (see the contingency
table for these results, Table 8.1).
Are the differences among the groups significant?
We could ask whether insight therapy producesmore “happilymarried” results,

but that leaves out the “distressed married.” And which is better, “distressed mar-
ried” or “divorced”? Even if we could say which is better, we still do not have a
simple comparison of the two groups that can be boiled down to a single statistic.
A single statistic is necessary for a hypothesis test, which in the end will have to

answer the question “might this have happened by chance?” where “this” is the
extreme value of some statistic.
So, we can step back and ask a more general question: Do the observed results

depart from what we would expect to get by chance if the choice of therapy had
no effect at all on the outcome?

Departure from Expectation
The concept of “departure from expectation” is an important one in statistical
inference. By this, we really mean “departure from what we would expect if
only chance variation were at work.”
We have already been testing hypotheses to see if a mean or proportion is

bigger (smaller) in one sample than another. Departure from expectation is a
more general overlapping concept that simply asks whether observed sample
results (from two or more samples) are different from what we would expect
in a chance model.
The fundamental idea is to figure out what a sample result (e.g. proportion

or mean) would be in a chance model, what it was in actuality, and sub-
tract. The concept can be applied to both continuous (measured) data and
count data.
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210 8 More than Two Samples or Categories

For continuous data, the traditional approach to measuring departure from
expectation is Analysis of Variance (ANOVA), which is dealt with later in this
chapter.
For count data, the traditional approach is a chi-square test, which we take

up next.

8.3 Chi-Square Test

Before we revisit the chi-square test, which we introduced in Chapter 6,
we will construct a resampling test with an intuitive statistic—sum-of-differences.
The first task is to establish what we would expect if both therapies yielded the
same results, i.e. our null hypothesis is that results are independent of therapy.
We would expect the overall behavioral/insight split to be the same across all
marital outcomes. With 29 in the behavioral group and 30 in the insight group,
if therapy made no difference, we would expect each outcome (happily married,
distressed, divorced) to be almost equally split between behavioral and insight
therapy (with a bit more to the insight group).
There were 39 happily marrieds. Specifically, we would expect just under half,

or 29/59 = 49.2% = 19.17 couples, to be behavioral and just over half of them,
or 30/59 = 50.8% = 19.83 couples, to be insight. We can make similar calculations
for distressed married and divorced.

8.3.1 Alternate Option

With equivalent arithmetic, you could note that therewere 39HMs (66.1%), 8 DMs
(13.6%), and 12 DIVs (20.3%). So, of the 29 behavioral couples, 66.1% = 19.17 cou-
ples would be expected to be HM and so on (Table 8.2).
The next step is to determine the extent to which the observed results differ

from the expected results. Direction does not matter, so we take absolute values
(Table 8.3).
Overall, these differences sum to 20.41, although the table above sums to 20.42

due to rounding.

8.3.2 Testing for the Role of Chance

Is this a greater sum of differences than wemight expect from a random allocation
of outcomes to 29 behavioral couples and 30 insight couples?
To answer this question, we can use the following resampling procedure

(also called a permutation procedure).
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8.3 Chi-Square Test 211

Table 8.2 Expected outcomes if treatments
yield the same results.

Happily
Married

Distress
Married Divorced

Behavioral 19.17 3.93 5.90
Insight 19.83 4.07 6.10

Table 8.3 Absolute difference between
observed and expected.

Happily
Married

Distress
Married Divorced

Behavioral 4.17 0.93 5.11
Insight 4.17 0.93 5.11

1) Fill a single box with 39 ones (happily married), 8 twos (distressed married),
and 12 threes (divorced).

2) Shuffle the box and take two samples without replacement of sizes 29 and 30.
3) Count the number of ones, twos, and threes in each sample.
4) Reconstruct the resampled counterpart to Table 8.1.
5) Find the sum of absolute differences between that resampled table and what

you would expect under the null hypothesis (Table 8.2).
6) Repeat steps two through five many times, say 10,000 times, each time record-

ing the sum of absolute differences.
7) Determine how often the resampled sum of differences exceeds the observed

value of 20.41.

The outcome of one resampling trial can be seen in Table 8.4; we shuffle the box
and then treat the first 29 values as the N = 29 resample and the remaining 30 as
the N = 30 resample.
The statistic of interest here was 4.27 (Table 8.5), which is not nearly as extreme

as the observed value of 20.42. Of course, the above is just one trial. When the
simulationwas repeated 10,000 times, a statistic≥20.42was encountered, but only
65 times.
A portion of the relevant resampled values in the vicinity of the observed value

of 20.42 is displayed in Table 8.6 from the sorted output of 10,000 trials.
We can see that only 65 trials (one through 65) out of all 10,000 trials—fewer

than 1%—yielded a sum of differences as big as or bigger than the observed value.
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212 8 More than Two Samples or Categories

Table 8.4 Resampling output—distribution of outcome after one shuffling.

Therapy Outcome Therapy Outcome

Behavioral Divorced Insight Happily married
Behavioral Happily married Insight Happily married
Behavioral Divorced Insight Happily married
Behavioral Happily married Insight Happily married
Behavioral Happily married Insight Happily married
Behavioral Happily married Insight Divorced
Behavioral Happily married Insight Divorced
Behavioral Happily married Insight Happily married
Behavioral Happily married Insight Happily married
Behavioral Happily married Insight Distress married
Behavioral Happily married Insight Happily married
Behavioral Divorced Insight Distress married
Behavioral Distress married Insight Divorced
Behavioral Happily married Insight Distress married
Behavioral Happily married Insight Happily married
Behavioral Happily married Insight Happily married
Behavioral Happily married Insight Divorced
Behavioral Distress married Insight Divorced
Behavioral Distress married Insight Happily married
Behavioral Happily married Insight Happily married
Behavioral Happily married Insight Happily married
Behavioral Happily married Insight Happily married
Behavioral Happily married Insight Happily married
Behavioral Divorced Insight Happily married
Behavioral Happily married Insight Divorced
Behavioral Distress married Insight Happily married
Behavioral Divorced Insight Divorced
Behavioral Happily married Insight Happily married
Behavioral Distress married Insight Happily married

Insight Happily married
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8.3 Chi-Square Test 213

Table 8.5 Tabulation of one shuffling.

Resampled table

Happily Married Distress Married Divorced

Behavioral 19 5 5
Insight 20 3 7

Expected table

Happily Married Distress Married Divorced

Behavioral 19.17 3.93 5.90
Insight 19.83 4.07 6.10

Absolute differences

Happily Married Distress Married Divorced

Behavioral 0.17 1.07 0.90
Insight 0.17 1.07 0.90

Sum = 4.27

This represents an estimated p-value of 0.0065. The chance occurrence of the
observed value is so rare that we conclude that there is a real difference among
the therapies.

8.3.3 Standardization to the Chi-Square Statistic

With computer-based resampling, the use of absolute values is no problem, and
we can compare the observed sum-of-difference statistic to values obtained by the
resampled distributions. Before computing power was widely available to do your
own resampling test, the chi-square statistic was developed to allow comparison
of any 2× 2 table to a standardized and tabulated test statistic. That same statistic
can be generalized to the case of an R×C table.

Definition: Chi-Square Statistic (repeating from Chapter 6) The chi-
square statistic squares each deviation from expectation in a contingency table,
divides it by the expected value, and then sums the results.
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214 8 More than Two Samples or Categories

Table 8.6 Marriage therapy: A few of the sums
of resampled differences, in descending order out
of 10,000, in the vicinity of the observed value.

62 20.678
63 20.678
64 20.678
65 20.678

66 20.407
67 20.407
68 20.407
69 19.593
70 19.593
71 19.593

Dividing by the expected value standardizes the distribution so that it is a mem-
ber of a family of similar chi-square distributions, each characterized by its degrees
of freedom. For anR×C (rows by columns) table, the degrees of freedomare calcu-
lated as (R-1)(C-1). This standardization allows a comparison between the results
of a given study like the one above and a tabulated set of chi-square values.

8.3.4 Chi-Square Example on the Computer

Most statistical software has the ability to perform chi-square tests. Here is an
example using Python:

result = stats.chi2_contingency(observed)
print(f"chi2 = {result.statistic:.3f}")
print(f"p-value = {result.pvalue:.4f}")
print(f"degrees of freedom = {result.dof}")
print("expected")
print(result.expected_freq)

The command creates this output:

chi2 = 10.896
p-value = 0.0043
degrees of freedom = 2
expected
[[19.16949153 3.93220339 5.89830508]
[19.83050847 4.06779661 6.10169492]]
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8.4 Single Sample—Goodness-of-Fit 215

8.4 Single Sample—Goodness-of-Fit

The idea of departure-from-expectation can also be applied to a single sample.
In 1991, Tufts University researcher Thereza Imanishi-Kari was accused of fabri-
cating data in her genetic research on mice. Congressman John Dingell became
involved, and the case eventually led to the resignation of her colleague, David
Baltimore, from the presidency of Rockefeller University.
Imanishi-Kari was ultimately exonerated after a lengthy proceeding. However,

one element in the case rested on statistical evidence regarding the distribution
of digits in her data, as compared to the expected distribution of interior digits in
data produced by a wide variety of sources.
Leading Digits: Looking at data from many different natural and man-made

sources, it turns out that “1” occurs as the initial digit in numbers almost twice
as frequently as the next most frequent leading digit, “2.” Digits “3” through “9”
decline steadily in frequency as the leading digit. See Figure 8.1 and Google “Ben-
ford’s Law” for more information.
Interior Digits: Benford’s Law applies to leading digits, but not interior digits

in long numbers—they are expected to show a uniform distribution, with each
one occurring with probability 1/10. Imanishi-Kari’s data were examined, and the
investigator concluded that the distribution of her interior digits strayed too far
from the expected uniform distribution.
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Figure 8.1 The frequency (y-axis) of leading digits (x-axis) in most multi-digit numbers
that count or measure something.
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216 8 More than Two Samples or Categories

Table 8.7 Frequencies of 315 interior
digits in Imanishi-Kari data.

Digit Frequency

0 14
1 71
2 7
3 65
4 23
5 19
6 12
7 45
8 53
9 6

Source: Science, March 8, 1991, News &
Comment, p. 1171.

What is too far? Table 8.7 displays the frequencies of 315 interior digits in one of
Imanishi-Kari’s data tables.
The distribution looks unbalanced, but could the imbalance arise naturally

through random chance? Let’s test the proposition that the digits 0 through 9 all
occur with equal probability. Note how we measure the difference between the
resampled distribution and the expected uniform distribution, i.e. the expected
distribution is that each digit will occur 31.5 (315/10) times. In Imanishi Kari’s
table, we got fourteen zeros when we expected 31.5, so the absolute difference is
17.5. For the ones, the absolute difference is 71 − 31.5 or 39.5.
Overall, these absolute deviations sum to 216. Is this a greater overall deviation

than might be explained by chance?

8.4.1 Resampling Procedure

1) Create a box with the digits 0, 1, 2,… 9.
2) Sample with replacement 315 times. The probability of getting a specific digit

must remain the same from one draw to the next, hence the need to replace it.
3) Count the number of 0s, 1s, 2s, 3s, etc. The histogram in Figure 8.2 illustrates

just one group of 315 digits using a bin width of one. It looks more balanced
than Imanishi-Kari’s.

4) Find the absolute difference between the number of 0s and 31.5, the number
of 1s and 31.5, etc., and sum.
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8.5 Numeric Data: ANOVA 217

70

60

50

40

C
ou

nt

30

20

10

0 2 4
Digit

6 8
0

Figure 8.2 Histogram of one 315-digit resample (bars) compared to the observed
distribution of interior digits in Imanishi-Kari’s data (dots).

5) Repeat steps 2–4, 10,000 times.
6) How often did the resampled sum of absolute deviations equal or exceed 216?

Divide this sum by 10,000 to calculate the p-value.

Results: Not once in 10,000 trials did an imbalance as great as the observed
imbalance occur, for an estimated p-value = 0.0000.
These results show that an imbalance as great as the observed one is extremely

rare, sowe reject the null hypothesis that chance is responsible. This does not prove
that Imanishi Kari invented the results; it is possible that some other non-chance
mechanism could be at work.
This statistical procedure is known as a “goodness-of-fit” test. It examines how

well an observed distribution fits a theoretical expectation.

8.5 Numeric Data: ANOVA

We turn now from count data to multiple groups with numeric (measured)
data. Although the data below dates back to 1935, the topic of the study—the
amount of fat in our diet—is still a very current issue. In this study, investi-
gators wanted to know how much fat doughnuts absorb while they are being
fried. In particular, they wished to compare the absorption levels of four types
of fat.
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218 8 More than Two Samples or Categories

The investigators whipped up a batch of doughnut dough, split it into four
doughnuts, and fried one doughnut in each type of oil (or fat). The results are
given below.

● Fat 1 164 g
● Fat 2 178 g
● Fat 3 175 g
● Fat 4 155 g

If each fat is always absorbed to exactly the same degree, and there are no mea-
surement errors, then the data above answers our question. Unfortunately, it is
very likely that the quantity of fat absorbed varies from one batch to the next, even
if we use just one fat. To assess this variability, we must repeat the experiment to
see if we get exactly the same results. Our investigators did this. The second time
around, they obtained the following results:

● Fat 1 172 g absorbed
● Fat 2 191 g absorbed
● Fat 3 193 g absorbed
● Fat 4 166 g absorbed

The results above are clearly not the same numbers when compared to what
the investigators observed the first time around. For example, during the second
experiment, Fat 3 was absorbed the most, whereas in the first experiment, Fat 2
was absorbed the most. A repetition of an experiment that allows us to assess vari-
ability is called a “replication.”

Definition: Replication A replication is a repeat of an experiment or a proce-
dure with all elements remaining unchanged.

Actually, our investigators made six replications using just one large batch of
dough.

What are the advantages and disadvantages of using one big batch of
dough rather than a separate batch for each replication?

In at least one replication, Fats 1, 2, and 3 each had, at one point, the highest
levels of absorption. There were also replications in which Fats 1 and 4 had the
lowest levels of absorption. Now, our results are not so clear-cut. Let’s look at the
complete data set in Table 8.8.
Of course, it is always important to graph our data in addition to examining

summary statistics. Figure 8.3 shows dot plots of the data (a dot plot is used with
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8.5 Numeric Data: ANOVA 219

Table 8.8 Fat absorption data (grams).

Fat 1 Fat 2 Fat 3 Fat 4

Replication 1 164 178 175 155
Replication 2 172 191 193 166
Replication 3 168 197 178 149
Replication 4 177 182 171 164
Replication 5 156 185 163 170
Replication 6 195 177 176 168
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Figure 8.3 Dot plots for the doughnut experiment.

relatively small datasets; each observation gets its own dot). Figure 8.4 shows box-
plots of the data.
It looks like the groups differ, but it also looks like there is a lot of overlap among

the groups. We need some criterion for deciding just how different the samples
must be before we say there is a real difference in the population. In other words,
we need some sort of hypothesis test.
What statistic will we use in our hypothesis test? There are several choices, but

the average amount of fat absorbed is probably of primary interest, so wewill com-
pare means, as shown in Table 8.9.
Now, we have a conundrum. When we were comparing just two groups, it was

a simple matter; we merely looked at the difference between the means of each
group. With four means, there are six possible comparisons between fat types.
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220 8 More than Two Samples or Categories
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Figure 8.4 Boxplots for the doughnut experiment.

Table 8.9 Comparing means.

Fat 1 Fat 2 Fat 3 Fat 4

Replication 1 164 178 175 155
Replication 2 172 191 193 166
Replication 3 168 197 178 149
Replication 4 177 182 171 164
Replication 5 156 185 163 170
Replication 6 195 177 176 168
Average 172 185 176 162

● Fat 1 compared to Fat 2
● Fat 1 compared to Fat 3
● Fat 1 compared to Fat 4
● Fat 2 compared to Fat 3
● Fat 2 compared to Fat 4
● Fat 3 compared to Fat 4

We could do multiple hypothesis tests, but that would increase our chances of
being fooled by chance (see Section 8.8). Instead of conducting multiple tests, we
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8.5 Numeric Data: ANOVA 221

will examine multiple groups with a single test, which is called an analysis of vari-
ance (ANOVA). If the results of this test are significant, this means there is some
significant difference among the group means as a whole. Our null hypothesis is
that all four fats share the same absorption properties, and the differences among
the groups are just due to chance.
We can test this hypothesis by repeatedly placing all the values in a box, ran-

domly drawing out four groups of six, and then measuring the extent to which
the group means differ from the overall “grand mean.” There are different ways to
measure variation, and we will choose the variance using the following formula
(k refers to the total number of groups, and k − 1 is the counterpart to n − 1 used
in calculating variance for individual observations):

Variance among group means =
∑

(grand average − x)2

k − 1
The observed variance among the groupmeans is 90.92. Table 8.10 shows the vari-
ances among group means for the experiment.
“Deviation” in the above table refers to the difference between the group mean

and the grand average. It is also the “group effect” or “treatment effect.”
The steps in our resampling procedure are as follows:

1) Place all 24 fat absorption values in a box.
2) Shuffle the box and draw1 four groups of six values each (i.e. four groups, each

with six values).
3) Find the mean of each of the four groups.
4) Calculate the variance among the means and record it.

Table 8.10 Variance of group means.

Fat Type Group Mean Deviation Dev. Sq.

1 172 −1.75 3.06
2 185 11.25 126.56
3 176 2.25 5.06
4 162 −11.75 138.06

Grand mean 173.75 Total 272.75

Variance = 272.75∕(k − 1) = 272.75∕3 = 90.92

1 We draw without replacement here. Where you have combined two or more groups in a single
box, drawing from that box can be done with or without replacement. The conceptual
frameworks and statistical properties differ a bit in ways that are beyond the scope of this text,
but both are valid procedures.
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222 8 More than Two Samples or Categories

Table 8.11 Resampled variances.

128.602
113.639
111.954
104.750
100.750
98.157
91.046
Threshold
90.602
87.361
86.491

5) Repeat steps 2 through 4 many more times (say up to 1000 times).
6) Determine what proportion of the 1000 trials produces a variance ≥90.92.

This is the p-value.

If the trials regularly produce a variance in excess of the observed value of 90.92,
this indicates that chance is a reasonable explanation for the differences among
the groups.
The largest 10 results out of 10,000 trials produced by this resampling procedure,

and ordered from largest to smallest, are given in Table 8.11.
You can see that only seven of the 1000 trials produced a variance as great as

90.92, for an estimated p-value of 0.007. We, therefore, conclude that chance is
probably not responsible for the differences among the fats with respect to absorp-
tion in the doughnuts, and those differences are statistically significant.
As shown in Figure 8.5, the distribution of the variances of the 1000 trials is

skewed to the right and truncated at zero. Variances less than zero are not arith-
metically possible.

8.6 Components of Variance

In the doughnut problem, each observed data value in the data set can be thought
of as a combination of three components:

Observed value = Grand average + Treatment effect + Residual error

Sometimes, this ANOVA model is written in symbols rather than in words:

Yij = 𝜇 + 𝛼i + 𝜖ij
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8.6 Components of Variance 223
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Figure 8.5 Frequency histogram of resampled variances from doughnut data problem.

In the above model, Yij is used to denote the individual observation. The Grand
Average is denoted as 𝜇, the treatment effect as 𝛼i, and the residual error as 𝜖ij.
You can see this laid out in Table 8.12, along with the means for each fat and the

grand average.
One goal of ANOVA is to estimate the amount of variability in our dependent

(response) variable that is due to the independent predictor (treatment) variable,
as opposed to variability due to individual differences among cases.

Table 8.12 Doughnut data with group means and grand average.

Fat 1 Fat 2 Fat 3 Fat 4

164 178 175 155
172 191 193 166
168 197 178 149
177 182 171 164
156 185 163 170
195 177 176 168
Average x1 = 172 Average x2 = 185 Average x3 = 176 Average x4 = 162

Grand average = 173.75
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224 8 More than Two Samples or Categories

The leftover variability not attributed to the independent variable is referred to
as residual error.
The statistician George Cobb suggested an “assembly line” metaphor to help

explain the above model.

● Start with the grand average (173.75 for doughnut data)
● Add treatment or predictor variable effect, remembering that it might be nega-
tive (independent variable = fat type)

● Add residual error, which also might be negative.

By an analogous reverse process, we can “decompose” any observed data value
within a data set into the grand average, the treatment or variable effect, and the
residual error. The ratio between the treatment effect and the residual error is
important—the higher this ratio is, the more the treatment effect stands out from
the “noise” of residual error.2 For more on this, including the traditional metric of
this ratio, the F-statistic, see the Appendix to this chapter.

8.6.1 From ANOVA to Regression

InANOVAwe are interested inwhether there is a statistically significant difference
among groups. We might also be interested in this question, “Howmuch does the
outcome change as you change the input variables?” We will take up this issue in
Chapter 10.

8.7 Factorial Design

The type of experiment we have been reviewing—an ANOVA with multiple
independent variables whose levels are set by the researcher—is called a factorial
design. To see the advantages of factorial design, let’s look at a hypothetical
situation and consider other ways a study might be conducted. The hypothetical
situation is that there are two types of subjects, A and B (for example, male and
female), and two treatments, 1 and 2. A factorial design produces a table like
Table 8.13 of mean outcomes for the four factor combinations.
Clearly, there is a very strong interaction between treatment and subject type,

meaning that the effect of one independent variable on the response depends on
the level of the other independent variable. The outcomes differ markedly for sub-
ject types A and B. Now consider other possible designs and how they would
turn out.

2 The term “noise” implies randomness, while “residual error” could include something other
than random variation, such as the effect of some variable not considered in the analysis. Often,
the two terms are used interchangeably.
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8.7 Factorial Design 225

Table 8.13 Hypothetical outcomes of factorial design.

Treatment 1 Treatment 2

Subject type A 10 20
Subject type B 15 5

1) One investigator recruits only subject type A. What will her investigation con-
clude about the effect of treatments one and two?

2) A second investigator recruits only subject type B. What will her investigation
conclude about the effect of treatments one and two?

3) A third investigator recruits both subject types but keeps no record aboutwhich
subject types get treatment one and which get treatment two. She has only the
overall results. What will her investigation conclude about the effect of treat-
ments one and two?

The factorial design allows us to understand how effects differ for different
groups and avoid the above errors.

8.7.1 Stratification and Blocking

In an experiment, the researcher can often control the levels of all the variables. In
survey sampling, a researcher may not be able to alter a value for a subject, but he
or she may be able to choose subjects with appropriate values. Imagine a survey to
be done in Vermont, for which it is believed race or ethnicity may be an important
variable. We cannot assign a race or ethnicity to a subject. The demographics of
Vermont are such that, in a general sample, there are apt to be many whites but
very few blacks, native Americans, or Hispanics.
To overcome that problem, we can draw four separate samples from the four

ethnic groups instead of from the population as a whole. In that case, the subpop-
ulations are called strata, and the process is called stratification. It is limited in
that it may not be practical to stratify on all variables at once if there are many of
them. Fortunately, we can often pick and choose which variables we wish to strat-
ify. Gender might also be a variable in the same survey, but the numbers of males
and females in Vermont are balanced closely enough that stratification would not
be needed. Stratification is needed, in other words, when the groups we need to
sample make up a small part of the general population.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



226 8 More than Two Samples or Categories

The strata then become variables. In the Vermont case, we might have a single
categorical variable “stratum” that can take on the values, “White, Black, Native
American, Hispanic.”

To gain an accurate picture of the whole population, of course, you
cannot simply combine the results from the different strata. You must
weight them by their share of the population.

8.7.2 Blocking

Blocking: Stratification is typically applied to observational or survey data.
In designed experiments, the equivalent concept is known as “blocking.”
Often, the blocking variable, or the variable on which we stratify, is not one of

the variables of interest in an experiment but rather a “nuisance” variable. Such
a nuisance variable is one we can measure and include in the study but whose
effect we are not interested in studying. For example, an internet retailer may be
interested in testing the implementation of newAI in its phone support systemand
chooses several call centers to test the new system. It would include the call center
identity as a blocking variable because effectsmaydiffer fromcenter to center, even
though the company is not currently interested in studying differences among call
centers.

8.8 The Problem of Multiple Inference

One common abuse of data analysis is to gather or find data and then look up
and down and left and right in an attempt to find some association, pattern, or
difference between groups that is interesting. The more questions you investigate,
the greater the chances you will find something “significant.” The related sin
in hypothesis testing is to gather data first and then test all kinds of hypotheses
until we find one that gives a significant result. We often refer to this sin as data
snooping.
One option we have at this point, with our doughnut data, is to simply conduct

six different A/B tests, as you learned about in Chapter 2. This would allow us to
examine the six comparisons between fat types that were outlined at the end of
Section 8.5. Intuitively, it might make sense to you to do this, but there are some
problems with this approach. Because each test or comparison will falsely show
a significant result 5% of the time, you can usually find such an erroneous result
if you make enough comparisons; in fact, about one in every 20 comparisons you
make will mistakenly appear significant. Put more simply, the more comparisons
we make, the more prone we are to make an error and to claim that a comparison
is significant when it really is not.
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8.8 The Problem of Multiple Inference 227

This is not simply a technical issue. It is a fundamental problemwith data analy-
sis as it is practiced today, particularly in the health arena, and there are significant
costs.

Everything is Dangerous
“Everything is Dangerous” was the title of a lecture that statistician Stanley
Young gave at a number of US government agencies in the first decade of
the 21st century. He was referring to published reports about associations
between certain things and human health, such as coffee and pancreatic can-
cer, type A personality and heart attacks, reserpine and breast cancer, etc.
Young and a colleague, Alan Karr, expanded on this theme in a September

2011 article in Significancemagazine. They examined 52 claims of health ben-
efits reported in 12 peer-reviewed papers. These papers all reported obser-
vational studies rather than experiments (i.e. they were reviews of existing
data). One of the observational studies claimed protection from heart attack
afforded by vitamin E, which we mentioned at the beginning of this book.
Of course, there are hundreds—thousands—of claims every year about sub-

stances or treatments represented as helpful or harmful to health. What was
special about these 52 claims was that they were later tested in rigorously
controlled randomized trials. Amazingly, not one of the 52 claims was verified,
and the trials produced opposite results in five of the cases.
The most likely reason for the failure to validate these claims in experi-

ments is that they were the result of data snooping in the first place. Data
snooping is an extensive search through data, testing a variety of possibili-
ties until something interesting is found. Other phrases describing this effect
include:

● Torturing the data until it confesses (Ronald Coase)
● The vast search effect (John Elder)

A conservative approach that avoids such problems is to state any hypotheses to
be tested in advance. If a researcher cannot state a definite hypothesis, then it is
probably too early in the study to test anything, andmore data is needed to develop
at least one hypothesis.

Examining data in order to develop a hypothesis is termed exploratory
data analysis (EDA). These techniques for summarizing and visu-
alizing data were described in Chapter 3. Once you have developed
a hypothesis and want to test it for statistical significance, you
should use different data. Significance tests on the same data whose
exploration suggested the hypothesis are biased in favor of finding
significance.
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228 8 More than Two Samples or Categories

If you have more than one hypothesis to test, then you must adopt a more strin-
gent standard for any one of them to be declared “significant.” A simple, though
conservative, approach is to divide the desired alpha by the number of tests.
For example, if you have five hypotheses to test, and the traditional alpha
(i.e. significance level) you require for a single hypothesis test is 0.05, then the
equivalent alpha for each of five hypothesis tests is 0.01 (or 0.05/5). There are
more complex schemes for alpha adjustment beyond the scope of this book.

8.9 Continuous Testing

To this point, our process has been that data are collected in an experiment, accord-
ing to a specified design, including sample size, to answer a specific question, e.g.
“Which is better, treatment A or treatment B?” The presumption is that once we
get an answer to that question, the experimenting is over, and we proceed to act
on the results. You can probably perceive several difficulties with that approach.

1) Our answer may be inconclusive: “effect not proven.” The results from the
experiment suggest an effect, but we don’t have a big enough sample to
prove it.

2) We might want to begin taking advantage of results that come in prior to the
conclusion of the experiment.

3) We might want the right to change our minds or try something different based
on additional data that comes in after the experiment is over.

The traditional approach to experiments and hypothesis tests dates from the
1920s and is rather inflexible. The advent of computer power and software has
made more flexible approaches possible, particularly in business but in medicine
as well.

8.9.1 Medicine

The strictest rules governing experiments apply, naturally, inmedicine and, in par-
ticular, in drug trials. However, even in drug trials, newflexiblemethods have been
developed that allow experiments to be stopped early or treatments to be discon-
tinued early. Controversial at first, the methods are now the norm in many trials
and are accepted by the US Food and Drug Administration, the regulatory body
that must approve new drug applications.
One technique used maintains “alpha” at the traditional level of 5% (0.05) but

allows it to be parceled out into multiple looks at the accumulating results. Rather
than an experiment that must be run to a fixed sample size, the experiment can
be phased. For example, the trial protocol might say that an initial assessment will
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8.10 Bandit Algorithms 229

be made with 100 patients in each group, and a (stringent) test of p = 0.005 is set
as the determinant of significance. If the results do not prove significant, more
patients are entered another assessment might be made at 300 patients in each
group, say with a p-value threshold of 0.01. Additional assessments can be made,
but each one counts against the overall allotment of p = 0.05. You are said to be
“spending your alpha.” This way, if a very strong treatment identifies itself early
and beyond doubt, it can be brought to market immediately without waiting for
the remainder of the trial to complete.

8.9.2 Business

Nonmedical businesses and other organizations have different motivations from
drug companies when they run experiments. They are not seeking to assemble
evidence in support of a new drug application but rather to gain information that
helps them optimize and improve products, services, and products. Thus, they are
not so constrained in seeking an escape from the straight-jacket approach of tra-
ditional hypothesis testing.
One new approach basically eliminates the strict dividing wall between exper-

iments (to gather information) and deployment (cementing the results of exper-
iments into operations). Experimentation becomes an ongoing iterative process,
incorporating a feedback loop to modify the experiment. Operations then incor-
porate the new information on an ongoing basis. This approach is termed a bandit
algorithm and is used in web testing where results are rapid and ongoing.

8.10 Bandit Algorithms

Bandit algorithms take their name from slot machines used in gambling, also
termed one-armed bandits (since they are configured in such a way that they
extract money from the gambler in a steady flow). If you imagine a slot machine
with more than one arm, and each arm paid out at a different (but unknown) rate,
you would have a multi-armed bandit, and that is the full name of this algorithm.
Your goal is to win as muchmoney as possible and, more specifically, to identify

and settle on the winning arm sooner rather than later. The challenge is that you
don’t know at what rate the arms pay out—you only know the results of pulling
the arm. Suppose each “win” is for the same amount, no matter which arm. What
differs is the probability of a win. Suppose further that you initially try each arm
100 times and get the following results:

● Arm A: 10 wins out of 50
● Arm B: 2 wins out of 50
● Arm C: 4 wins out of 50
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230 8 More than Two Samples or Categories

One extreme approach is to say, “Looks like armA is awinner—let’s quit trying the
other arms and stick with A.” This takes full advantage of the information from
the initial trial. If A is truly superior, we get the benefit of that early on. On the
other hand, if B or C are truly better, we lose any opportunity to discover that.
Another extreme approach is to say, “This all looks to be within the realm of

chance—let’s keep pulling them all equally.” This gives maximum opportunity
for alternates to A to show themselves. However, in the process, we are deploying
what seem to be inferior treatments. How long do we permit that?
Bandit algorithms take a hybrid approach: We start pulling Amore often to take

advantage of its apparent superiority, but we don’t abandon B and C. We just pull
them less often. If A continues to outperform,we continue to shift resources (pulls)
away fromBandC and pull Amore often. If, on the other hand, C starts to do better
and A starts to do worse, we can shift pulls from A back to C. If one of them turns
out to be superior to A, and this was hidden in the initial trial due to chance, it
now has a chance to emerge with further testing.

8.10.1 Web Testing

Now, think of applying this to web testing. Instead of three different slot machine
arms, a merchant might have three different offers being tested on a website. Cus-
tomers either click (a “win” for the merchant) or don’t click. Initially, the offers
are shown randomly and equally. If, however, one offer starts to outperform the
others, it can be shown (“pulled”) more often.
But what should be the parameters of the algorithm that modifies the pull rates?

What “pull rates” should we change to, and when should we change?
Simulations similar to the resampling simulationswehave seen, onlymore com-

plex, can help answer these questions. Given assumptions about arm payouts,
different switching rule algorithms can be simulated, and the probability of pick-
ing the best arm can be plotted as a function of time spent playing. The details
of evaluating and implementing bandit algorithms are beyond the scope of this
book, but an excellent short treatment, along with Python code to implement it,
is in Bandit Algorithms for Website Optimization by John Myles White, O’Reilly,
2013.

8.11 Appendix: ANOVA, the Factor Diagram, and the
F-Statistic

In this chapter, we looked at how to determine whether differences among groups
are statistically significant. For measured data, we looked at ANOVA and the
components of variance. Understanding the latter helps us quantify meaningful
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8.11 Appendix: ANOVA, the Factor Diagram, and the F-Statistic 231

differences among groups, as opposed to random variation. For those interested,
we now look in greater detail at how to unpack variance components.

8.11.1 Decomposition: The Factor Diagram

When we perform a decomposition, we find the means for each of our treatment
groups and the grand average (or grand mean); see Table 8.12. We can take this
information and put together a factor diagram as follows:

Observations
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

164 178 175 155
172 191 193 166
168 197 178 149
177 182 171 164
156 185 163 170
195 177 176 168

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

Grand average
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

173.75 173.75 173.75 173.75
173.75 173.75 173.75 173.75
173.75 173.75 173.75 173.75
173.75 173.75 173.75 173.75
173.75 173.75 173.75 173.75
173.75 173.75 173.75 173.75

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

Treatment effect
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1.75 11.25 2.25 −11.75
−1.75 11.25 2.25 −11.75
−1.75 11.25 2.25 −11.75
−1.75 11.25 2.25 −11.75
−1.75 11.25 2.25 −11.75
−1.75 11.25 2.25 −11.75

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

Residual error
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−8.0 −7.0 −1.0 −7.0
0.0 6.0 17.0 4.0
−4.0 12.0 2.0 −13.0
5.0 −3.0 −5.0 2.0

−16.0 0.0 −13.0 8.0
23.0 −8.0 0.0 6.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Let’s look at how the different components of the factor diagramwere arrived at.
The Observation: In this part of our diagram, we are simply presenting the

individual observations in our data set. Note that each column in the Observation
portion of the diagram refers to a different group in our study (column 1 is Fat 1,
column 2 is Fat 2, column 3 is Fat 3, and column 4 is Fat 4).
The Grand Average: In our example, the average of all the observations is

173.75. This is our baseline, or where the observation begins. Since the grand aver-
age is the same for all cases, we have just repeated the same value 24 times in the
Grand Average portion of the diagram.
The Treatment Effect: For each group, we can find the group (treatment)

mean and learn howmuch each group diverges from the grand average. This diver-
gence is the same for all members of a group and is shown in the Treatment Effect
portion of the diagram.
Note that if you now look across each row in the treatment effect portion of the

diagram and add all the deviations (or treatment effects) together, they should sum
or add to 0. In row 1, for example, we have −1.75 + 11.25 + 2.25 + (−11.75) = 0.
TheResidual Error: Oncewe know the grand average and the treatment effect,

what’s left over is the residual error.
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232 8 More than Two Samples or Categories

For example, remember that column 1 contains all doughnuts fried in Fat 1. The
first case in that group had a value of 164. If we take 164 and subtract 172 from it
(since 172 is the mean for Fat 1), we get −8.

8.11.2 Constructing the ANOVA Table

The decomposition table shows us how each case is made up of the different
components: base average, group contribution, and residual error. Another table,
called theANOVA table, summarizes this information. Oncewe have decomposed
the data, we can use the factor diagram to help us construct an ANOVA table and
conduct the ANOVA. Conducting the ANOVA means to describe the variance
components overall and assess whether group differences are significant. To
construct our table, we need to determine:

● Degrees of freedom
● Sums of squares
● Mean squares
● An F statistic

Let’s first examine how we would determine the appropriate degrees of freedom
for each source of variability in our analysis.
The degrees of freedom (or df) are the number of observations that are theoret-

ically free to vary once some parameter(s) describing the data is set.
For each section of our factor diagram, we can determine a corresponding value

for degrees of freedom.

● For theGrandAverage section, all values are, by definition, the same (since the
grand average is the same for everyone). Once we know the grand average and
place it in one cell of the Grand Average portion of the factor diagram, we know
all other cells will have the same value. So, we only have 1 degree of freedom
associated with the grand average.

● For the Treatment Effect section of the factor diagram, recall that the treat-
ment effects must sum to 0 within each row. In this example, we have four
treatment groups. Once we know three of our estimated treatment effects, the
fourth must be that value that causes all treatment effects to sum to zero. There
is also a formula we can use to determine the degrees of freedom due to treat-
ment. It is the number of groups (denoted sometimes as “k”) minus 1. In our
example, we’d have k − 1 = 4 − 1 = 3.

● For theResidual Error section, we know that each column gives the deviations
around the groupmean. For each column, once we know all but one of the devi-
ations, the last one is fixed (since the sum of the deviations must be 0). In this
particular example, within each column, we’d have 6 − 1 degrees of freedom,
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8.11 Appendix: ANOVA, the Factor Diagram, and the F-Statistic 233

or 5. Thus, the degrees of freedom associated with residual error would be 20
(or 5 × 4 sincewe have four groups).We can also use the formulaN − k to deter-
mine the degrees of freedom for residual error, where N is the total sample size
(in this case, 24) and k is the number of groups (in this case, 4). We can see that
24 − 4 = 20.

8.11.3 Inference Using the ANOVA Table

With our resampling procedure,we simply looked at the variance among the group
means. In precomputer days, this was not possible. Just as with the t-test, a sin-
gle standardized statistic that could be compared to tables was needed. Instead of
the variance among the group means, this standardized statistic works from the
ANOVA table and uses the ratio of twomeasures of variation, one for the treatment
and the other for the residual. This allows us to use a single comparison table for
all ANOVA problems.
We began our discussion about constructing the ANOVA table by illustrating

ways in which we could determine degrees of freedom (df). To complete our
ANOVA table, we also need to obtain the sum of squared deviations, or sum of
squares for short, for the treatment (or independent variable3) groups and for the
residuals. Actually, we will deal with averages more than sums, i.e.mean squares
or MS. From these, we can calculate the F-statistic and, from that, a p-value.

Why SQUARED deviations?
We square deviations before summing them to render them all positive; if we
simply added deviation values together in the factor diagramwithout squaring
them, the sum would always end up being zero and all sense of variation
would be lost. (We could take absolute values of the deviations, but squared
values are easier to deal with mathematically in calculations.)

To find the sum of squares for our treatment effects, we would square each cell
in that section of the diagram and add all the squared values together. We do the
same for the residual error section.4 If you do this, you should get:

● Sum of Squares (Treatment Effect) = 1636.5
● Sum of Squares (Residual Error) = 2018

3 Also called the predictor variable.
4 Some ANOVA tables also reference the sum of squares, or SS, for the grand average, which is
the sum of all the (identical) values in that section of the diagram squared.
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234 8 More than Two Samples or Categories

We obtain the mean squares for treatment by taking the sum of squares for the
treatment effect (or 1636.5) and dividing it by the degrees of freedom for the treat-
ment effect (or 3). This gives us 1636.5/3= 545.5.We can also find themean square
for our residual error by taking the sum of squares for the residual error (or 2018)
and dividing it by the degrees of freedom for the residual error (or 20). This gives
us 2018/20 = 100.9.
We get our F-statistic by dividing the mean square for our treatment effect by

the mean square for our residual error. In this example, we get F = 545.5∕100.9 =
5.41.
The formula for the F-statistic is:

F =
MSTreatment
MSResidual

In Figure 8.6, you will see the ANOVA table that was created using stats-
models. The larger the F-value, the greater the contribution of the treatment
variable to overall variability and the less likely it is that chance is responsible
for the differences among groups. The p-value is computed for us automatically
in statsmodels. It is based on a comparison of the observed F-value to a stored
table of F-values that reflect what we would obtain by resampling.

8.11.4 The F-Distribution

We saw earlier that W. S. Gossett devised a formula for the t-distribution that
approximates the distribution of a sample mean and the difference between two
sample means. There is an analogous distribution for the ratio of treatment and
error variances.
To determine if we have a significant F statistic (and to estimate our p-value),

we compare our calculated F statistic to a standard distribution of variance ratios.
To do this, we need a family of standard distributions of these ratios. This family
is called the “F distribution,” after Sir Ronald Fisher, who originally proposed the
formal ANOVA. Each distribution in this family is characterized by two separate
values for degrees of freedom (df), where k is the number of groups:

1) df for the numerator (or treatment effect) is = k − 1.

df sum_sq mean_sq F PR(>F)
C(variable) 3.0 1636.5 545.5 5.406343 0.006876
Residual 20.0 2018.0 100.9 NaN NaN

Figure 8.6 Resulting ANOVA table from statsmodels.
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8.11 Appendix: ANOVA, the Factor Diagram, and the F-Statistic 235

2) df for the denominator (or residual error) is = k(n − 1), (where n = is the num-
ber of values in each sample. Where there are an unequal number of cases per
sample, the more general (N − k), where N is the total sample size across all
groups, is used.

As noted earlier, based on our decomposition of the data, the degrees of freedom
for the numerator are 3 and the degrees of freedom for the denominator are 20.
We write this as F(3,20), and this refers to the F distribution for four groups of six
values each.
You can compare the observed F value (5.406) to a critical F value by looking it

up in a web calculator, or you can use Python to determine the area to the right of
the observed F statistic using the scipy functions stats.f.cdf (cumulative distri-
bution function) or stats.f.sf (survival function). The two methods are equivalent.

from scipy import stats
x = 5.406
print(f"p-value {1 - stats.f.cdf(x, 3, 20):.4f}")
print(f"p-value {stats.f.sf(x, 3, 20):.4f}")

Output
p-value 0.0069
p-value 0.0069

Figure 8.7 visualizes the probability density and the cumulative distribution
density of F(3,20). It shows that the p-value is very small. This matches closely with
the p-value we saw earlier in our statsmodels output and in the results from
using a resampling procedure.
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Figure 8.7 Probability density of F(3,20) (a) and its inverse cumulative density (b). The
vertical line shows the F-statistic obtained for the fat dataset. The horizontal line shows
the corresponding p-value.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



236 8 More than Two Samples or Categories

Note that the statistic thatwe used in our resampling procedurewas the variance
among group means. We could also have used the F statistic itself as our resam-
pling statistic, calculating it during each resample and comparing the resampled
distribution to the observed value. Fisher, like Gossett, simply found a mathemat-
ical approximation to the resampled distribution and reduced it to tables of values
(these F tables, along with z tables, t tables, and more, are typically found at the
back of most statistics texts).

8.11.5 Different Sized Groups

So far, we have only dealt with situations where the groups are all equally sized.
What about situations where the group sizes are different?

8.11.5.1 Resampling Method
Whengroup sizes differ, only step two in the resamplingmethod changes, and then
only slightly. Instead of shuffling the box and drawing four groups of six values
each, as before in step 2, we now shuffle the box and draw four groups with the
same number of values as in each original group. So, as an example, suppose one
group has three values, a second has four values, a third has six values, and a fourth
group has seven values. For this case, we shuffle the box and draw three values for
the first group, four for the second, and so forth.

8.11.5.2 Formula Method
In contrast to the resampling method, the formula method described above only
workswhen the groups are all the same size. If the groups are not the same size, the
computations aremessier and harder to interpret, though some statistical software
handles this “under the hood.”

8.11.6 Caveats and Assumptions

ANOVAmay be used with multigroup controlled experiments or with multigroup
observational studies where no treatment is involved. For experiments, treatments
must be randomly assigned to subjects. For observational studies, sample groups
must be independently and randomly selected from a much larger population of
interest.
In addition, for the formula-based approach, which includes most software

applications, we assume our groups are similar in terms of variability (e.g. we
assume the largest group standard deviation is no bigger than twice the smallest
group standard deviation), and we assume the outcome variable is Normally dis-
tributed. These requirements can be checked by comparing standard deviations
among the groups, by graphical analysis, or by examining residuals.
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8.13 Python: Contingency Tables and Chi-square Test 237

8.12 More than One Factor or Variable—From ANOVA
to Statistical Models

Running an experiment is expensive, and it is often cost-effective to study more
than one thing at a time. We can add another variable to ANOVA, which is
then termed two-way ANOVA. Two-way ANOVA is more complex than standard
one-way ANOVA and is beyond the scope of this book. Instead, we turn to
statistical and machine learning methods that model the relationship between
input predictor variables (factors) and a target (outcome) variable. The emphasis
becomes not on whether a variable has an effect but on how that variable affects
an outcome. After we look at correlation in the next chapter, the rest of this book
will introduce you to those modeling methods.

8.13 Python: Contingency Tables and Chi-square Test

8.13.1 Example: Marriage Therapy

We already learned how to create two-way tables using Python in Section 6.7 using
the pd.crosstab function. Let us recap this with themarriage-therapy.csv.

import pandas as pd
marriage_therapy = pd.read_csv("marriage-therapy.csv")
contingency_table = pd.crosstab(marriage_therapy["Therapy"],
marriage_therapy["Outcome"])
contingency_table

Output
Outcome Distress Married Divorced Happily Married
Therapy
Behavioral 3 11 15
Insight 5 1 24

In this chapter, we learned how to use resampling or the chi-square test to decide
whether the therapy option influences the outcome or not. For this, we need to
be able to calculate the expected outcomes if the treatment option does not influ-
ence the outcome. We write a function that returns the expected table given the
observed table. Here is the first version of this function:

def expected_table(observed_table):
total = observed_table.sum().sum() 1©
row_prob = observed_table.sum(axis=1) / total 2©
col_prob = observed_table.sum(axis=0) / total
expected = pd.DataFrame(index=observed_table.index,

columns=observed_table.columns) 3©

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



238 8 More than Two Samples or Categories

for row in observed_table.index: 4©
for col in observed_table.columns:

expected.loc[row, col] = row_prob[row] * col_prob[col] * total
return expected

1© The total number of observations is the sum of all entries in the table. For
a pandas DataFrame, we need to call the sum method twice, once for the
rows and once for the columns.

2© We calculate the row and column probabilities by summing over the rows and
columns and dividing by the total number of observations.

3© We create an empty pandas DataFrame with the same row and column
labels as the observed table.

4© We iterate over all rows and columns and calculate the expected value for each
cell by multiplying the row and column probabilities (assumption of indepen-
dence) and the total number of observations.

The implementation can be made more efficient by realizing that the expected
value is the outer product of the probabilities multiplied by the total number of
observations. Here is a version that uses the numpy function np.outer to calculate
the outer product.
import numpy as np
def expected_table(observed_table):

total = observed_table.sum().sum()
row_sums = observed_table.sum(axis=1) 1©
col_sums = observed_table.sum(axis=0)
expected = np.outer(row_sums, col_sums) / total 3©
return pd.DataFrame(expected,

index=observed_table.index, columns=observed_table.columns) 4©

expected_table(contingency_table).round(2)

1© Instead of calculating the row and column probabilities, we calculate the row
and column sums. This reduces the number of calculations.

2© Thenp.outer function is calledwith the row and column sums. The outer prod-
uct is then divided by the number of observations to get the expected values.

3© We create a pandas DataFrame from the numpy array and return it.

Output
Outcome Distress Married Divorced Happily Married
Therapy
Behavioral 3.93 5.9 19.17
Insight 4.07 6.1 19.83

With the function in place, we can now implement the resampling experiment
from Section 8.1.3. The resampling procedure is:
import random
random.seed(123)
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8.13 Python: Contingency Tables and Chi-square Test 239

def calculate_difference(contingency_table): 1©
expected = expected_table(contingency_table)
difference = contingency_table - expected
return difference.abs().sum().sum()

def resample(therapy_box, outcome_box): 2©
random.shuffle(outcome_box)
contingency_table = pd.crosstab(therapy_box, outcome_box)
return calculate_difference(contingency_table)

outcome_box = (["Happily Married"]*39 + ["Distress Married"]*8 +
["Divorced"]*12)

therapy_box = ["Behavioral"]*29 + ["Insight"]*30

resamples = np.array([resample(therapy_box, outcome_box)
for _ in range(10000)]) 3©

observed = calculate_difference(contingency_table)

print(f"Observed difference: {observed:.2f}")
print("Resamples above observed difference: "

f"{np.sum(resamples >= observed)}")
print("p-value:", np.mean(np.array(resamples) >= observed))

1© The calculate_difference function calculates the difference between
a contingency table and the expected table under the assumption of indepen-
dence.

2© The resample function implements the resampling procedure. It takes the
therapy and outcome boxes as arguments. It shuffles the outcome box and
creates a new contingency table. It then calculates the expected table and the
difference between the observed and expected tables. The sum of the absolute
values of the differences is returned.

3© We call the resample function 10,000 times and store the results in a list.

Output
Observed difference: 20.41
Resamples above observed difference: 68
p-value: 0.0068

The low p-value indicates that the observed difference is very unlikely under the
assumption of independence. Figure 8.8 shows this visually.

ax = pd.Series(resamples).plot.hist(bins=20)
ax.axvline(observed, color="red")
ax.set_xlabel("Sum of absolute differences to expected table")
ax.set_ylabel("Frequency")
plt.show()
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240 8 More than Two Samples or Categories
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Figure 8.8 Resampling procedure for the marriage therapy data. The observed
difference is shown as a vertical line.

8.13.2 Example: Imanishi-Kari Data

As a second example, we use resampling to analyze the Imanishi-Kari data. Here
is the Python code that implements the resampling procedure from Section 8.2.

from collections import Counter
random.seed(123)

box = list(range(10)) 1©

differences = []
for _ in range(10_000):

random.shuffle(box)
resample = random.choices(box, k=315)
counts = Counter(resample) 2©
difference = sum(abs(counts[i] - 31.5) for i in range(10)) 3©
differences.append(difference)

differences = np.array(differences)
above_216 = sum(differences >= 216)
p_value = above_216 / len(differences)

print("Number of resamples with sum of absolute deviations >= 216: "
f"{above_216}")

print(f"p-value = {p_value:.4f}")

1© We create a list with the digits from 0 to 9.
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8.14 Python: ANOVA 241

2© We shuffle the box and draw 315 digits from it with replacement. We then
count the number of occurrences of each digit type using the Counter class.

3© We calculate the sum of the absolute differences between the observed counts
and the expected counts (31.5).

Output
Number of resamples with sum of absolute deviations >= 216: 0
p-value = 0.0000

None of our resampled differences is larger than 216, and the p-value is 0.0000.
The observed distribution of digits is highly unusual.

8.14 Python: ANOVA

8.14.1 Visual Comparison of Groups

In this chapter, we learned about ANOVA. It is possible to use the statsmodels
package to perform ANOVA, but let us first see how we can perform an ANOVA
with Python using the fat absorption data as an example. We start by loading the
data and creating a variety of visualizations.

fat_absorption = pd.DataFrame([
[1, 164, 178, 175, 155], 1©
[2, 172, 191, 193, 166],
[3, 168, 197, 178, 149],
[4, 177, 182, 171, 164],
[5, 156, 185, 163, 170],
[6, 195, 177, 176, 168],

], columns=["Replication", "Fat 1", "Fat 2", "Fat 3", "Fat 4"]) 2©

1© The pandas DataFrame is created from a list where each list element is the
result of one replication.

2© The columns argument defines the column labels.

Next, we visualize the data. Figure 8.9a shows the data in the form of a dot plot.

fats = ["Fat 1", "Fat 2", "Fat 3", "Fat 4"]

# convert from wide to long format for plotting
fat_long = fat_absorption.melt(value_vars=fats, var_name="group") 1©

fig, ax = plt.subplots(figsize=(5, 3))
fat_long.plot.scatter(x="group", y="value", ax=ax)
ax.set_xlabel("Fat type")
ax.set_ylabel("Grams of fat absorbed")
ax.set_xlim(-0.5, 3.5)
plt.show()
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242 8 More than Two Samples or Categories

(a)

190

180

G
ra

m
s 

of
 fa

t a
bs

or
be

d

170

160

150

190 200

180

160

140

180

G
ra

m
s 

of
 fa

t a
bs

or
be

d

G
ra

m
s 

of
 fa

t a
bs

or
be

d

170

160

150

190

180

G
ra

m
s 

of
 fa

t a
bs

or
be

d

170

160

150

Fat 1 Fat 2
Fat type

Fat 3 Fat 4 Fat 1 Fat 2
Fat type

Fat 3 Fat 4

Fat 1 Fat 2
Fat type

Fat 3 Fat 4 Fat 1 Fat 2
Fat type

Fat 3 Fat 4

(b)

(c) (d)

Figure 8.9 Visualizations for the doughnut experiment. (a) Dot plots, (b) dot plot with
jitter, (c) boxplots, and (d) violin plot.

1© We use themeltmethod to convert the DataFrame fromwide to long format.
The resulting dataframe has two columns. The group column contains the
column names, and the value column contains the values of the original
DataFrame. To convert from long to wide format, use the pivot method.

This type of visualization works only for a small number of data points so that
the probability of overlapping points is low. We already learned how we can use
transparency in this case by setting the argument alpha of the plot function to a
value less than 1. An alternative is to add random displacement to the points. This
is known as adding jitter. The stripplot function from the seaborn package has
this functionality. We enable it by setting jitter=True. The resulting graph is
Figure 8.9b.
import seaborn as sns
fig, ax = plt.subplots(figsize=(5, 3))
sns.stripplot(data=fat_long, x="group", y="value", color="C0",
jitter=True, ax=ax)
ax.set_xlabel("Fat type")
ax.set_ylabel("Grams of fat absorbed")
ax.set_xlim(-0.5, 3.5)
plt.show()

Boxplots are another good way to visualize the distribution of a group for differ-
ent groups (see Figure 8.9c)
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8.14 Python: ANOVA 243

fig, ax = plt.subplots(figsize=(5, 3))
fat_absorption[fats].plot.box(ax=ax) 1©
ax.set_xlabel("Fat type")
ax.set_ylabel("Grams of fat absorbed")
plt.show()

1© The plot.box method of the DataFrame creates the boxplot for each column.
This is the reason why we use the fats list to select the columns. We
could have also created the boxplot using the fat_long data: fat_long
.plot.box("group").

Boxplots can hide the actual distribution of the data. If you want to see those,
you canuse a violin plot (see Figure 8.9d). Theseaborn package has the violinplot
function to create these.
import seaborn as sns
fig, ax = plt.subplots(figsize=(5, 3))
sns.violinplot(data=fat_long, x="group", y="value", color="lightgrey", ax=ax)
ax.set_xlabel("Fat type")
ax.set_ylabel("Grams of fat absorbed")
ax.set_xlim(-0.5, 3.5)
plt.show()

8.14.2 ANOVA Using Resampling Test

Now that we have visualized our data, we can perform the resampling experiment
from Section 8.3. We start by writing a function that calculates the deviation of the
group means from the total mean. We use the data in the long format.
def calculate_deviation(data, group, values): 1©

total_mean = data[values].mean() 2©
group_means = data.groupby(group)[values].mean() 3©
k = len(group_means)
return sum((group_means - total_mean)**2) / (k - 1) 4©

deviation = calculate_deviation(fat_long, "group", "value")
print(f"Deviation: {deviation:.2f}")

1© The calculate_deviation function takes three arguments: the
DataFrame, the name of the column that contains the group labels,
and the name of the column that contains the values.

2© This calculates the total mean of all values
3© The groupbymethod splits the dataframe into subsets using the unique values
in the data. We then reduce it to the values and calculate themean() of the
values in each subset. At the end, we have a Series with the means of each
group.

4© Finally, we calculate the variance among the group means and return it.

Output
Deviation: 90.92
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244 8 More than Two Samples or Categories

We can now implement the resampling procedure.
rng = np.random.default_rng(seed=4321) 1©
observed = calculate_deviation(fat_long, "group", "value")
resamples = []
box = fat_long.copy() 2©
for _ in range(10_000):

shuffled = box["group"].sample(frac=1, random_state=rng) 3©
box["group"] = shuffled.to_numpy() 4©
resamples.append(calculate_deviation(box, "group", "value"))

resamples = np.array(resamples)
p_value = np.mean(resamples >= observed)

print(f"Observed deviation:{observed:.2f}")
print(f"Resamples above observed deviation: {np.sum(resamples >= observed)}")
print(f"p-value: {p_value:.4f}")

1© Set a random seed for reproducibility.
2© We create a copy of the original dataframe, to avoid changing the original
dataframe.

3© This statement shuffles the content of the group column. The result is a
pandas Series.

4© Even though the order of the groups changed, pandas keeps the index of the
original dataframe andwould assign themback into the column in the original
order. Changing the Series to a numpy array using the function to_numpy,
we remove the index and are now able to assign the shuffled group back to the
group column.

Output
Observed deviation:90.92
Resamples above observed deviation: 84
p-value: 0.0084

The p-value of 0.0084 is very low, which means that the observed difference
between the fats is very unlikely under the assumption that the means of
the groups are equal. The distribution of the resampled variances, shown in
Figure 8.10 confirms this interpretation.

ax = pd.Series(resamples).plot.hist(bins=30)
ax.set_xlabel("Variance")
ax.axvline(observed, color="black")
plt.show()

8.14.3 ANOVA Using the F-Statistic

ANOVA is such an important statistical test that it is implemented in many sta-
tistical packages. We can use the statsmodels package to perform an ANOVA.
Here is the code for the doughnut data.
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Figure 8.10 Frequency histogram of resampled variances from doughnut data
problem.

import statsmodels.api as sm 1©
from statsmodels.formula.api import ols

model = ols("value ∼ C(group)", data=fat_long).fit() 2©
table = sm.stats.anova_lm(model) 3©
print(table)

1© The statsmodels package is commonly imported as sm.
2© We use the ols function to create a model. The formula "value ∼
C(group)" specifies that we want to use the value column as the depen-
dent variable and the group column as the independent variable. The C
function is used to indicate that group is a categorical variable. The model is
fitted using the fat_long data.

3© The fitted model is passed to the sm.stats.anova_lm function. The result is a
pandas DataFrame with the ANOVA table.

Output
df sum_sq mean_sq F PR(>F)

group 3.0 1636.5 545.5 5.406343 0.006876
Residual 20.0 2018.0 100.9 NaN NaN

The F-statistic is 5.41. The p-value calculated from the F-statistic is 0.0069,
which is very close to the p-value we calculated using the resampling test.
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246 8 More than Two Samples or Categories

Exercises

8.1 A nursery wholesaler breeds flowers, and a botanist believes that a certain
cross will produce plants with either white, red, or pink flowers in the fol-
lowing proportions: 60% white, 30% red and 10% pink. A given plant has
only one color. The botanist is experimentingwith a treatment thatmay alter
the above proportions. Further development of such a treatment would be
useful in helping match flower color to customer demand if the treatment
does, in fact, alter the proportions of flowers. In a test of 100 plants, 65 pro-
ducedwhite flowers, 24 produced red flowers, and 11 produced pink. Is there
evidence that the treatment alters color proportions? State and test an appro-
priate hypothesis.

8.2 A social media site that allows community members to rate restaurants
wants to ensure that the reviews are genuine and not spurious. For each
restaurant, every four days, it collects reviews and counts the “favorable”
reviews. Per a consultant’s recommendation, for each restaurant, it performs
a hypothesis test on the four-day data to determine whether the proportion
“favorable” is outside the range of expected chance variation, given a his-
toric favorability benchmark for the restaurant. Is there a multiple testing
issue in this procedure? If so, what effect would that have on interpreting a
given hypothesis test?

8.3 A retailer of bike racks for vehicles conducts an A/B test for how to present
one of its products online. A randomizer routes visitors to one of the two
treatments. The outcomes of interest are “bounce” (exit the page with no
further exploration), “click” (click on a link to further explore the product,
but no purchase), or “purchase” (continue through exploration to purchase
before the expiration of cookies that track a user). Consider the data in Table
8.14 on two alternate treatments.

Table 8.14 User responses to two online product treatments.

Bounce Click Purchase

Treatment A 312 69 7
Treatment B 279 87 2

Is there a statistically significant difference between the two online product
treatments?
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Exercises 247

8.4 Web page load time depends on a number of variables, but internet service
providers (ISPs) have control only over factors at the server end. An ISP is
considering whether to invest staff time in working on different configura-
tions and deploying more successful ones. The first step is an experiment in
web page load times with three different server configurations, A, B, and C.
Different web pages are tested at a remote location with the three configu-
rations, each page being tested under equal conditions for A, B, and C. A
limited number of pages are tested, since each one requires a build on three
different servers. The web page load times are shown in Table 8.15 and are
available in the server-configurations.csv dataset.

Table 8.15 Web page load times in seconds for 3 different server configurations.

A B C

1.049 1.979 0.948
1.029 1.992 0.856
1.349 2.323 1.004
1.171 2.056 0.386
2.071 2.308 0.308
0.366 3.558 1.589
1.201 2.206 0.274
1.434 2.291 0.767
0.836 1.962 0.978
3.201 1.112 0.371
0.415 2.368 0.298
1.934 1.178 0.445

a) Calculate the average load time at the three different server configura-
tions.

b) Visualize the data to compare the three configurations.
c) Test the hypothesis that the three servers do not differwith respect to load

time using resampling.
d) Test the hypothesis that the three servers do not differwith respect to load

time using the ANOVA implementation of the statsmodels package.
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9

Correlation

In this chapter, we look at relationships between variables. After completing this
chapter, you should be able to:

● Define what we mean by correlation
● Determine the statistical significance of apparent correlation by resampling
● Calculate the correlation coefficient
● Assess whether correlation suggests causation

Think back to the “no-fault” study of errors in hospitals. In an experiment,
we found that introducing a no-fault reporting system reduced the number of
serious errors. We found there was a relationship between one variable—a type
of reporting system—and another variable—a reduction in errors.
“Type of reporting system” is a binary variable. It has just two values: “regular”

and “no-fault.” Often, you may want to determine whether there is a relationship
involving the amount of something, not just whether it is “on” or “off.”
For example, is there a relationship between employee training and productiv-

ity? Training is expensive, and organizations need to know not simply whether
training helps but also how much it helps.

Definition: Correlation Correlation is an association between the magnitude
of one variable and that of a second—e.g. as x1 increases, x2 also increases (posi-
tive correlation). Or as x1 increases, x2 decreases (negative correlation). Different
statistics are used to measure correlation; we will develop and define two in this
chapter.

9.1 Example: Delta Wire

In the 1990s, DeltaWire, a small wiremanufacturing company in Clarksdale, Mis-
sissippi, started a basic skills training program. Over time, as wastage declined,

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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250 9 Correlation

Table 9.1 Training and productivity at Delta Wire.

Total Training Hours
Cumulative

Productivity
Pounds per Week

0 70,000
100 70,350
250 70,500
375 72,600
525 74,000
750 76,500
875 77,000
1100 77,400
1300 77,900
1450 77,200
1660 78,900
1900 81,000
2300 82,500
2600 84,000
2850 86,500
3150 87,000
3500 88,600
4000 90,000

production at the facility improved from 70,000 pounds of wire per week to 90,000
pounds per week. Table 9.1 shows some detailed data1 from the program.
Clearly, more training led to higher productivity throughout the period. We can

get a better idea of the relationship from the scatterplot in Figure 9.1. Henceforth,
we will deal with productivity in terms of thousands of pounds per week for easier
display.
Figure 9.1 presents a clear picture: more training is associated with higher

productivity. No further analysis is needed to reach this conclusion. We
can say that the correlation is positive, and the relationship is more or less
linear.

1 The Delta Wire case was reported in Bergman, Terri, “TRAINING: The Case for Increased
Investment,” Employment Relations Today, Winter 1994/95, pp. 381–391. Detailed data are from
an adaptation by Ken Black, Business Statistics, Wiley, Hoboken, NJ, 2008, p. 589.
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9.2 Example: Cotton Dust and Lung Disease 251
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Figure 9.1 Delta Wire productivity vs. training.

9.2 Example: Cotton Dust and Lung Disease

Figure 9.2, which illustrates the respiratory function of workers in cotton facto-
ries in India, depicts a relationship that is less clear.2 The y-axis shows a worker’s
Peak Expiration Flow Rate (PEFR), and higher is better. The x-axis shows years of
exposure to cotton dust in a cotton factory.
Is PEFR related to Exposure? It’s hard to tell, just based on the picture.We need:

1) A way to measure the correlation between two numeric variables, and
2) A way to determine whether the correlation we measure is real or might just

be a chance association.

We will tackle these questions in the next section. But before we proceed:

Can you spot an unusual feature of the exposure variable?Whatmight
account for it?

2 Diagram is based on data published in “To Know the Prevalence of Byssinosis in Cotton Mill
Workers & to know Changes in Lung Function in Patients of Byssinosis,” Indian Journal of
Physiotherapy and Occupational Therapy, Authors: Sarang Bobhate, Rakhi Darne, Rupali
Bodhankar, Shilpa Hatewar, Vol. 1, No. 4 (2007-10–2007-12); available as of January 2024 at
https://ijpot.com/scripts/Oct-Dec\LY1\textbackslash%202007\LY1\textbackslash
%20issue\LY1\textbackslash%20of\LY1\textbackslash%20IJPOT.pdf.
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Figure 9.2 Pulmonary capacity (PEFR) and exposure to cotton dust (years).

9.3 The Vector Product Sum Test

Vectors x and y are correlated if high values of x correspond to high values of y.
One way to measure the correlation between x and y is to multiply them together
as vectors and then sum them. That sum is the vector product sum, and it is greatest
when the rank order of xmatches that of y.

Vector and Matrix Notation
A vector is a list of numbers—a single column or row. It is denoted by a
lower-case bold letter, as with x and y above. A matrix is a two-dimensional
array of numbers with both rows and columns. It is denoted by an uppercase
bold letter, e.g. X. We have not yet dealt with matrices.

Definition: Rank Order Rank Order is a list of the rank positions of a list
of values. For example, consider the list {7 9 6 3}. The rank order of this list is
{3 4 2 1}.

Try It Yourself
Let x be [1 2 3] and y be [2 3 4]. Note that they are in the same rank
order—lowest to highest. When multiplied together, the vector product sum
is 20.
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9.3 The Vector Product Sum Test 253

x y Product

1 2 2
2 3 6
3 4 12

Vector product sum = 2 + 6 + 12 = 20

Let’s try a different arrangement:

x y Product

2 2 4
1 3 3
3 4 12

Vector product sum = 4 + 3 + 12 = 19

Try rearranging the x vector in various other ways and recalculating the vector
product sum. You will see that it is never as high as it is when the two vectors
are in the same rank order.
Note: In the sameway, the vector product sum is smallest when the two vari-

ables’ rank orders are exact opposites—i.e. when they are perfectly negatively
correlated.

Definition: Perfect Correlation Perfect positive correlation is when the rank
order of one variable exactly matches the rank order of the second variable—
highest value goes with highest value, second-highest with second-highest, etc.
Perfect negative correlation is when the rank order of one variable is the exact
opposite of the second variable—highest value goes with lowest, second-highest
goes with second-lowest, etc.

Your “Try it Yourself” results, with the arrangements of [1 2 3] and [2 3 4], sug-
gest a way of determining whether an apparent correlation between two variables
might have happened by chance.

1) Write down the values for one of the variables on a set of cards.
2) Write down the values for the other variable on a second set of cards.
3) Array the two sets of cards next to each other, one column for variable one and

the other column for variable two. Make sure that cards for the same case are
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254 9 Correlation

adjacent to one another. For example, in the lung disease case, the card for a
110 PERF score must be next to a card for four-year exposure. Multiply the two
variables, and sum those values to calculate the vector product sum.

4) Shuffle one set of cards, repeat the multiplication, and record the vector
product sum.

5) Repeat the above step 1000 times.
6) Find out how often the shuffled sum is equal to or greater than the

observed sum.

The result is the p-value. Given the null model of no correlation, the p-value is
the probability that a vector product sum as large or larger than the observed value
might occur by chance.

9.3.1 Example: Baseball Payroll

Is the total salary payroll of a U.S. Major League Baseball team correlated with
performance? More specifically, do teams with higher payrolls win more games
(Figure 9.3)?
Table 9.2 shows actual data for several teams, along with the products and the

vector product sum.

9.3.1.1 Resampling Procedure
1) Multiply the payroll vector by the wins vector. The sum of products is 668,620.
2) Shuffle one vector—we will shuffle the wins vector—and re-multiply. Record

the shuffled sum.
3) Repeat step 2 many times (say 1000).
4) How often do we get a sum of products >= 668,620?
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Figure 9.3 Baseball payroll vs. total wins, 2006–2008.
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9.3 The Vector Product Sum Test 255

Table 9.2 Excerpt of baseball payroll and total wins.

Team
Name

Average
Payroll
(Million $)

Total
Wins Product

Yankees 216.1 279 60,292
Red Sox 146.66 276 40,478
Mets 127.4 273 34,780
. . . .
. . . .
. . . .
Rays 39.76 224 8906
Marlins 27.07 233 6307

Vector product sum = 668,620

From the histogram in Figure 9.4, we can see that a product sum of 668,620
rarely, if ever, occurs. So, we conclude that the degree of correlation between pay-
roll and wins is not just a coincidence.

Try It Yourself
An online dating site seeks to learn more about what it can do to encourage
successful outcomes in the relationships formed by its customers. It collects
various data, including satisfaction surveys six months after a customer first
signs up and also how much time the customer has spent on its dating site.
Satisfaction data is recorded as an integer between 1 (low satisfaction) and
10, and time-on-site is recorded in minutes. Here are hypothetical results:

Time Spent Satisfaction

10.1 2
67.3 7
34.0 2
2.9 1

126.3 9
39.0 8
4.6 1

211.3 6

Calculate the vector product sum and use a resampling procedure to test
whether there is a correlation between time spent and satisfaction.
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Figure 9.4 Baseball histogram of shuffled vector product sums (000).

9.4 Correlation Coefficient

The vector product sum can be used to test the statistical significance of the corre-
lation between two variables, but the sum itself is not that meaningful.
Consider the vector product sum for the three examples above.

● Baseball: 688,620
● Lung disease: 603,670
● Worker training: 2,397,534.

These numbers cannot be compared to one another, nor can they be used to
measure the strength of correlation.
Instead, statisticians use a standardized version of the vector product sum called

the correlation coefficient. Aswe sawpreviously, standardization involves subtrac-
tion of the mean and division by the standard deviations.

Definition: Correlation Coefficient Let x and y denote the two variables.
Consider a sample of size n of paired data (Xi,Yi). Then, the sample correlation
coefficient, denoted as r or the Greek letter 𝜌 (rho), is given by

r =

n∑
i=1

(
Xi − X

)(
Yi − Y

)

(n − 1) sxsy

where (X ,Y ) are the sample means and (sx, sy) are the sample standard deviations
for x and y.
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9.4 Correlation Coefficient 257

As a result of standardization, the correlation coefficient always falls between
−1, which is a perfect negative correlation, and +1, which is a perfect positive
correlation. A value of zero indicates no correlation.
Note: The correlation coefficient defined above is called the “Pearson product

moment correlation coefficient” or simply the “Pearson correlation coefficient.”
It is named after the great English statistician Karl Pearson (1857–1936). There
are other correlation coefficients, but this one is the most widely used.

The correlation coefficients for the three examples cited above follow below.
The x − y scatterplots are repeated for reference.

1) Baseball: r = 0.63 (Figure 9.5)
2) Lung Disease: r = −0.28 (Figure 9.6)
3) Worker Training: r = 0.99 (Figure 9.7)

For the worker training example, the 0.99 value for the correlation coefficient
indicates a very strong positive correlation between training time and productivity.
For the lung disease example, the −0.28 value for the correlation coefficient

indicates modest negative correlation between exposure time and lung function
(more exposure leads to lesser lung function).
For the baseball example, the 0.64 value for the correlation coefficient indicates

strong positive correlation between payroll and won-loss record.

9.4.1 Inference for the Correlation Coefficient—Resampling

Could the correlation simply be the result of random chance?
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Figure 9.5 Baseball payroll vs. total wins, 2006–2008; r = 0.63.
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Figure 9.6 Pulmonary capacity (PEFR) and exposure to cotton dust (years); r = −0.28.
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Figure 9.7 Delta Wire productivity vs. training; r = 0.99.

Significance testing for correlation has already been illustrated for the vector
product sum method. We can use the same procedure with the correlation
coefficient.

9.4.1.1 Hypothesis Test—Resampling

1) Calculate the correlation coefficient for the two variables.
2) Shuffle one of the variables, calculate this shuffled correlation coefficient, and

record.
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9.4 Correlation Coefficient 259

3) Repeat step two 1000 times.
4) When the observed correlation is positive: Find out how often the shuffled cor-

relation coefficient is greater than the observed value. OR...
5) When the observed correlation is negative: Find out how often the shuffled

correlation coefficient is less than the observed value.
The result is the p-value. Given the null model of no correlation, the p-value is the
probability that a correlation coefficient as least as extreme as the observed value
might occur by chance.

9.4.1.2 Example: Baseball Again
We return to the baseball payroll example, only this time using the correlation
coefficient instead of the vector product sum. Under the null hypothesis of no lin-
ear correlation, the resampling (shuffled) distribution of the correlation coefficient
centers, as expected, around 0 (Figure 9.8).
It rarely exceeds 0.5, so we can be safe in concluding that the value of 0.64 did

not arise by chance and that the apparent correlation between wins and payroll
is real.

9.4.1.3 Inference for the Correlation Coefficient: Formulas
Before computer-intensive resampling was available, a formula was needed
to approximate the above-shuffled distribution. A modified sample statistic t
(where n is the sample size and r is the sample correlation) follows Student’s
t-distribution with n − 2 d.f. (degrees of freedom) is given by:
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Figure 9.8 Resampling distribution of correlation coefficient for baseball under the null
hypothesis.
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260 9 Correlation

t =
r
√
n − 2√
1 − r2

9.5 Correlation is not Causation

Correlation—even statistically significant correlation—does not imply anything
about causation. Below, we present some examples of cases in which two variables
are correlated, but causation is nonexistent.

9.5.1 A Lurking External Cause

In 1999, a University of Pennsylvania study found that infants who slept with a
light on were more likely to develop myopia (near-sightedness) later in life. How-
ever, a later study found that the real cause was not the light but a genetic link to
myopic parents. Lights in infants’ rooms were more likely to be left on by myopic
parents thannon-myopic parents. Themyopic parents needed the light to navigate.
In this case, the event “lights left on” was correlated with the development of

myopia, but it was not the cause. When A causes both B and C, then B and C are
correlated.

9.5.2 Coincidence

Consider murder rates in the 50 US states and the District of Columbia from 2021.
The correlation between a state’s murder rate and its position in the alphabetical
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Figure 9.9 Murder rates and alphabetical order of states, 𝜌 = −0.28.
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9.6 Other Forms of Association 261

order of states—Alabama being #1 andWyoming being #50—ismodestly negative
at−0.21 (Figure 9.9). It is also statistically significant. Yet there seems no plausible
reason why the two should be related, so we are inclined to think that this is due
to coincidence.

Statistical significance is not a 100% guarantee that a relationship
or finding is real rather than just coincidence. Significance testing
reduces the chances of being fooled, but it does not eliminate them.
The more you examine a given data set in hopes of finding something
interesting, the greater your chance of finding something interesting
that is actually due solely to chance.

Try It Yourself
Consider the following studies, and assess whether the reported correlation
is probably part of a cause and effect relationship. Consider whether there is
a reasonable theory to explain the correlation and whether some third factor
might cause the correlation.

1) A web merchant finds a correlation between time spent on the website
and money spent at checkout.

2) A medical study finds that elderly subjects who walk the fastest live the
longest.

3) There is a positive correlation between income and education.
4) An exhaustive review of health records shows that higher consumption
of zinc supplements is positively correlated with the scope of a person’s
social network.

9.6 Other Forms of Association

So far, we have been considering a relationship between x and y in which high
values of x correspond with high values of y, or vice versa, on a consistent basis.
Now, consider these hypothetical data on the relationship between tax rates and

tax revenue in the US (Figure 9.10).
At a zero tax rate, of course, no revenue is collected. As the tax rate, shown on the

x-axis, increases, tax revenue, shown on the y-axis, also increases. However, at a
certain point, the high tax ratesmake it increasingly profitable to employ tax avoid-
ance schemes. Tax evasion increases. As a result, the revenue collected flattens out
and begins to drop. At the point where the government seeks to take most of your
money, the legal economy withers away. Most activity moves to the underground
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Figure 9.10 Hypothetical data on tax rates and revenue.

economy to escape taxes, and the tax revenues collected decline precipitously. The
above data are hypothetical, but they are based in part on research concerning the
“inflection point” where increasing rates do not yield additional revenue. There is
much disagreement arising from differing political perspectives about the location
of this point.
Clearly, there is a strong relationship between tax rates and revenue, but it will

not show up clearly in the correlation coefficient for linear relationships because
low revenue can be associated with both low tax rates and high tax rates. A nonlin-
ear model is required to describe and investigate this relationship. We will briefly
introduce nonlinear models in our prediction of binary outcomes (Chapter 12),
but for now, we simply note that the absence of a strong positive or negative value
for the correlation coefficient does not necessarily demonstrate the absence of an
association.

9.7 Python: Correlation

9.7.1 Vector Operations

While Python has lists to represent vectors, it does not perform vector operations
like addition, subtraction, or multiplication. However, we can implement them
ourselves easily using list comprehensions. Here we illustrate multiplying a vector
by a scalar (2), adding two vectors, and multiplying two vectors.

x = [1, 2, 3]
y = [2, 3, 4]
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9.7 Python: Correlation 263

z = [2 * xi for xi in x] # 2x = [2, 4, 6]
z = [xi + yi for xi, yi in zip(x, y)] # x+y = [3, 5, 7] 1©
z = [xi * yi for xi, yi in zip(x, y)] # x*y = [2, 6, 12]

1© The zip function returns the elements of the two lists in pairs as a tuple. This
means it first returns (1, 2), then (2, 3), and finally (3, 4). Each pair
is assigned to the variables xi and yi in the list comprehension.

We can also implement the vector product sum from Section 9.3.

x = [1, 2, 3]
y = [2, 3, 4]
z = sum(xi * yi for xi, yi in zip(x, y)) 1©
print(z) # Output: 20

1© As before, the zip function returns the pairs of elements from the two lists. We
then multiply the elements of the pairs and sum them up.

We see that we can implement these operations in Python; however, it is not the
most efficient way. The numpy package is a better choice. Here are the same oper-
ations using numpy.

import numpy as np
x = np.array([1, 2, 3])
y = np.array([2, 3, 4])
x = 2 * x # array([2, 4, 6])
z = x + y # array([3, 5, 7])
z = x * y # array([2, 6, 12])

The vector product sum can be written in either of the following ways.

z = np.sum(x * y) # 20 1©
z = np.dot(x, y) # 20 2©

1© This statement first multiplies the elements of the two arrays in pairs. The ele-
ments of the resulting array are summed using the np.sum function.

2© The np.dot function is a better way of calculating the vector product sum of the
two arrays.

9.7.2 Resampling Test for Vector Product Sums

With the vector operations of the previous section, we can implement the resam-
pling procedure from Section 9.3 and apply it to the baseball_payroll.csv dataset.

import pandas as pd
baseball = pd.read_csv("baseball_payroll.csv")

rng = np.random.default_rng(seed=321)

x = baseball["Average Payroll (Million)"]
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264 9 Correlation

y = baseball["Total Wins"]

resamples = np.array([np.dot(x, rng.permutation(y)) 1©
for _ in range(100_000)])

observed = np.dot(x, y)

p_value = np.mean(resamples >= observed)
print(f"observed: {observed:.0f}")
print(f"resamples above observed: {np.sum(resamples >= observed)}")
print(f"p-value: {p_value}")

1© In previous chapters, we used the random.shuffle command to randomize the
elements of a list in place. The rng.permutation function is an alternative. It
will return a randomized version of the vector y. The vector itself remains
unchanged.

Output
observed: 668620
resamples above observed: 6
p-value: 6e-05

Only six out of 100,000 resamples have a larger vector product sum than the
observed one. This results in a very low p-value. This is also clearly visible in the
histogram of the resampled vector product sums in Figure 9.11a.
fig, ax = plt.subplots(figsize=(8, 4))
ax.hist(resamples / 1000, bins=30)
ax.axvline(observed / 1000, color="grey", linestyle="–")
ax.set_xlabel("Product sum (000)")
ax.set_ylabel("Frequency")
plt.show()

9.7.3 Calculating Correlation Coefficient

In this chapter, we learned that the correlation coefficient is a better measure of
correlation than the vector product sum. The equation for the correlation coeffi-
cient r is:

r =

n∑
i=1

(
Xi − X

)(
Yi − Y

)

(n − 1) sxsy
Here is a function that implements this equation:
def correlation_coefficient(x, y):

x = np.array(x) 1©
y = np.array(y)
n = len(x)
numerator = np.sum((x - np.mean(x)) * (y - np.mean(y)))
denominator = (n - 1)*np.std(x, ddof=1)*np.std(y, ddof=1) 2©
return numerator / denominator
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Figure 9.11 Distribution of resampled statistics for the Baseball dataset. In each graph,
the observed statistic is shown as a dashed line. (a) Vector product sums and (b)
correlation coefficient.

x = baseball["Average Payroll (Million)"]
y = baseball["Total Wins"]
r = correlation_coefficient(x, y)
print(f"correlation coefficient: {r:.3f}")

1© This line and the next ensures that x and y are numpy arrays. Otherwise, this
conversion would happen several times.

2© We set the ddof parameter to 1 to calculate the sample standard deviation.

Output
correlation coefficient: 0.633
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266 9 Correlation

9.7.4 Calculate Correlation with numpy, pandas

Obviously, calculating the correlation coefficient is such a common operation that
we find implementations inmany packages. For example, the np.corrcoef function
calculates the correlation coefficient for two vectors.

corrcoef_matrix = np.corrcoef(x, y)
print(corrcoef_matrix)
r = corrcoef_matrix[0, 1]
print(f"correlation coefficient: {r:.3f}")

Output
[[1. 0.63345733]
[0.63345733 1. ]]
correlation coefficient: 0.633

The function returns a matrix, not just a single value. This is because the
np.corrcoef is more flexible and can calculate correlation coefficients between
several vectors at once. The correlation coefficient between x and y is the value
at position [0, 1] or [1, 0] in the matrix.
In pandas, we calculate the correlation coefficient between two columns of a

DataFrame using the corr method.

corr_matrix = baseball[["Average Payroll (Million)", "Total Wins"]].corr()
print(corr_matrix)
r = corr_matrix.iloc[0, 1]
print(f"correlation coefficient: {r:.3f}")

Output
Average Payroll (Million) Total Wins

Average Payroll (Million) 1.000000 0.633457
Total Wins 0.633457 1.000000
correlation coefficient: 0.633

9.7.5 Hypothesis Tests for Correlation

In order to use resampling to test the hypothesis that an observed correlation coef-
ficient is a result of random chance, we modify the procedure we developed for
the vector product sum test.

rng = np.random.default_rng(seed=321)
resamples = np.array([np.corrcoef(x, rng.permutation(y))[0,1]

for _ in range(100_000)])
observed = np.corrcoef(x, y)[0,1]

p_value = np.mean(resamples >= observed)
print(f"observed: {observed:.3f}")
print(f"resamples above observed: {np.sum(resamples >= observed)}")
print(f"p-value: {p_value}")
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9.7 Python: Correlation 267

Output
observed: 0.633
resamples above observed: 6
p-value: 6e-05

As before, only six out of 100,000 resamples have a larger correlation coefficient
than the observed one. It is no surprise that we got the same p-value. Setting
the random seed ensures that we create the same sequence of shuffled data
and, therefore, a sequence of correlation coefficients that is perfectly correlated
with the vector product sums and has the same distribution. We can also see
in Figure 9.11b that the distribution is identical, with the exception of a linear
transformation.

fig, ax = plt.subplots(figsize=(8, 4))
ax.hist(resamples, bins=30)
ax.axvline(observed, color="grey", linestyle="–")
ax.set_xlabel("Correleation coefficient")
ax.set_ylabel("Frequency")
plt.show()

9.7.6 Using the t Statistic

The modified sample statistic t can be calculated from the correlation coefficient
r as follows.

t =
r
√
n − 2√
1 − r2

Using this equation, we calculate the t statistic for the observed correlation coeffi-
cient and estimate the p-value as follows.

from scipy import stats
r = observed
n = len(x)
t_value = r * np.sqrt(n - 2) / np.sqrt(1-r**2)
print(f"p-value {stats.t.sf(t_value, n-2):.2g}") 1©
print(f"p-value {1 - stats.t.cdf(t_value, n-2):.2g}")

1© The stats.t.sf survival function calculates the p-value for a given t statistic
and degrees of freedom. It is the probability that the t statistic under the null
hypothesis is larger than the observed one.

Output
p-value 8.6e-05
p-value 8.6e-05

The calculated p-value is very close to the one we determined using resampling.
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268 9 Correlation

The scipy function stats.pearsonr is an implementation of this approach.
It returns the correlation coefficient and the p-value as a named tuple.

stats.pearsonr(x, y, alternative="greater")

Output
PearsonRResult(statistic=0.6334573297712217, pvalue=8.579436079820662e-05)

9.7.7 Visualizing Correlation

A great way of visualizing the correlation between two variables is a scatter plot.
There are several examples of this in this chapter.
Another way of visualizing the correlation between several variables is a

heatmap. We can use the imshowmethod of an axis object to create a heatmap.

import matplotlib.pyplot as plt

housing = pd.read_csv("boston-housing-large.csv")
fig, ax = plt.subplots()
ax.imshow(housing.corr(), cmap="coolwarm", vmin=-1, vmax=1) 1©
ax.set_yticks(range(housing.shape[1])) 2©
ax.set_yticklabels(housing.columns)
plt.show()

1© The imshowmethod creates a heatmap from the correlationmatrix. The colors
of the heatmap are defined using a colormap (cmap). We set vmin=-1 and
vmax=1 to make sure that the colors are centered around zero and that the
full range of possible correlation coefficients is mapped onto the colors.

2© The set_yticks method sets the ticks on the y-axis. We do this to ensure that
each columnname is shown in the final figure. The labels are set to the column
names using the set_yticklabelsmethod.

The result is shown in Figure 9.12a. The heatmap shows the strength of the cor-
relation between the variables. The darker the color, the stronger the correlation.
The color indicates the sign of the correlation.3
Figure 9.12b shows a variation. The colored rectangle patches are replaced by

ellipses that represent the sign of the correlation by color and direction and the
strength of the correlation by the size of the ellipses. The code for Figure 9.12b
is too complex to include here. You can find it in the Jupyter Notebook for this
chapter.

3 In the print version of this book, the heatmap is shown in grey. Check the accompanying
Jupyter Notebooks for colored versions of the heatmaps and for the code to create the variation
using ellipses.
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Figure 9.12 Visualizing correlation between two variables. (a) Heatmap and
(b) variation of heatmap with ellipses showing the strength of the correlation.

Exercises

9.1 In the following situations, what form of association would you expect to see
between the variables—linear, nonlinear, or none at all? If linear, would it be
positive or negative?Andwould you expect there to be a causal relationship?
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270 9 Correlation

a) Income and obesity in the United States
b) Advertising and market share
c) Cement production and potato production
d) Website traffic and website sales
e) Air traffic (passenger miles) and month
f) Alcohol consumption in a community and heart disease

9.2 Consider the following two sets of numbers: [1 2 3] and [6 5 4]
a) Calculate the vector product sum
b) Repeat the following procedure and calculation by hand five times:

i) Randomly rearrange the values [6 5 4]
ii) Recalculate the vector product sum

c) Did you ever get a result as small as you got in part (a)?

9.3 Activity in the portions of the brain connected with social perceptions
was tracked for a sample of university students, and the number of
Facebook friends was recorded for the same sample. Review the data in
brain-facebook.csv, then:
a) Plot the two variables in a scatterplot.
b) The metric used for gray matter (GM) density is complex and it is not

necessary to understand it fully. However, look at the y-axis and make a
guess about the final step used in arriving at the metric for each person
(Hint: review Section 5.4.1).

c) Calculate the correlation between brain activity and Facebook friends.
d) Test whether it is statistically significant.
e) Discuss: What is the direction of causality?

9.4 In the 1950’s, in the United States, the incidence of polio was on the rise.
Disease rates were found to be correlated with the consumption of ice cream
(more ice cream, more polio), and somemedical authorities advised parents
not to feed ice cream to their children. Can you think of an external factor
that might be correlated with both ice cream consumption and polio inci-
dence?

9.5 For the following exercise, we use the pulse.csv dataset.
a) Load the data and determine the correlation coefficients between all

numerical variables.
b) Visualize the correlation matrix as a heatmap.
c) Show scatterplots for the pairs of variables with correlation coefficients.
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10

Regression

With correlation, all we canmeasure is the relative strength of a linear association
and whether it is statistically significant. In this chapter, wemove on to regression
and quantifying howmuch an outcome variable changes as you change a predictor
variable or variables. After completing this chapter, you should be able to:

● Estimate, by eye, a trend line from a two-dimensional scatterplot
● Explain the derivation of a two-dimensional least-squares regression line
● Interpret the meaning of a regression line
● Use a regression line to predict values
● Interpret a residual plot

With regression, we can model that association in linear form and predict val-
ues of Y given values of X . The simple form of a linear regression model is as
follows:

y = ax + b

We read this as “y equals a times x, plus a constant b.” You will note that this is
the equation for a line with slope a and intercept b. The value a is also termed
the coefficient (“coef ” in software output) for x (Figure 10.1). Regression is one
of a number of statistical and machine learning algorithms used to predict some
target variable of interest (y) on the basis of predictor variables (one or more x
variables).

Definition: Algorithm An algorithm is a procedure or set of rules for solving
a problem, typically specified with sufficient precision that they can be followed
unambiguously by a computer. The resampling procedures we have been follow-
ing in this book are good examples of algorithms.

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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272 10 Regression
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Figure 10.1 Slope and
intercept of a line.

10.1 Finding the Regression Line by Eye

Using the baseball payroll examplewe introduced in the last chapter and assuming
correlation exists between the payroll amount in million and the number of wins
over three seasons, can we predict wins based on a given payroll amount?
Based on Figure 10.2, it appears that an increase in payroll generally predicts an

increase in wins. Suppose we ask the question, “How many wins can be expected
over a three-year periodwith a payroll of $130million dollars?” Itmight be possible
to arrive at a reasonable answer based on the scatterplot.
A better first step might be to find a line that best represents the data. This is

sometimes called a “line of best fit” or a “trend line.” An eyeball estimate of such
a line appears in Figure 10.3.
Assuming that the trend line is reasonable, one can estimate approximately

258 wins over three seasons with a payroll of $130 million. The word “ap-
proximately” is important. Other factors—including, of course, chance—affect
performance, so relatively few teams fall exactly on the trend line. The difference
between an actual y value and the predicted y value is called a residual or error.

Definition: Residual Residuals are the differences between the actual y values
and the values predicted by the trend line or linear regression equation. In a world
of perfect prediction, all residuals would be zero, indicating that no error exists
between the prediction and the true value. In reality, this never happens, and there
is always some error. The key to finding the optimum regression line is tominimize
the error in the residuals.

Residual = Y − Ŷ

where Y is the actual value and Ŷ , pronounced “Y -hat,” is the predicted value.
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10.1 Finding the Regression Line by Eye 273
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Figure 10.2 Payroll vs. total wins 2006–2008.
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Figure 10.3 Estimated trend line, drawn by eye.

Definition: Error In statistics, the term “error” does not mean “mistake.”
Rather, it simply means the difference between predicted and actual values.
It is the same thing as the residual. Error in a positive direction is just as bad
as error in a negative direction, and to keep positive and negative errors from
canceling each other out, we use either absolute error or, more commonly,
squared error.
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274 10 Regression

Now, we can add an error term, e, to the regression model. The equation for the
regression line is now:

y = ax + b + e

We read this as “y equals a times x, plus a constant b, plus an error e.”
The error can result from the effect of an additional variable that we did not

include, or itmight simply be a randomerror resulting fromunaccountable causes.

10.1.1 Making Predictions Based on the Regression Line

Let’s go one step further. If an equation for the regression line can be found, the
estimation ofwins based on payroll becomes easier. Based on the graph, the regres-
sion line goes through or very close to the points (30.00, 220) and (60.00, 232). The
slope of this line is 0.40, whichmeans that, in general, as payroll increases by (say)
$10 million, the number of wins increases by 4. For this example, the equation for
the estimated regression line is

y = 0.40x + 208

The variable x is the predictor. In this case, x is the payroll in millions of USD.
The y variable represents the predicted number of wins. The constant 208—the
y-intercept—is the value the equation takes when x represents zero payroll
(Figure 10.3). A prediction at $0 is meaningless, of course, since it is not possible
in Major League Baseball to field a team without paying the players.
Using $130 million as the predictor, 0.40 × 130 + 208 = 260 wins, which is

very close to our eyeball estimate. Predicting values within the limits of the data
is called interpolation. Predicting values outside the limits of the data is called
extrapolation.

What conclusions could you draw from extrapolation in this case?

Placing a trend line by eye based on an aesthetic best fit may work in some cases,
but a more scientific method is needed to cover all situations. In particular, when
we move to multiple predictors, a two-dimensional plot doesn’t help.

10.2 Finding the Regression Line by Minimizing
Residuals

We will use Python to calculate the trend line by finding the line that minimizes
the error.
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10.2 Finding the Regression Line by Minimizing Residuals 275

Figure 10.4 Minimizing
residuals.
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In other words, the computer will find the equation of the line that minimizes
the sum of the error terms—the residuals. Figure 10.4 shows the residuals as the
vertical lines between the regression line and the observations.
In practice, themathematics of linear regression does notminimize the absolute

residual error. Instead, for mathematical convenience, it minimizes the squared
residual error. This procedure is called Least Squares Regression.

Definition: Least Squares Regression The least squares regression line for
x–y data is the line that minimizes the sum of the squared residuals between the
actual y-values and the y values that are predicted by that line.

The least squares regression line for the baseball payroll data shown above is:

y = 0.39047x + 207.4793

10.2.1 The “Loss Function”

The least squares is a specific example, of a loss function for a statistical ormachine
learning predictive model. (In this chapter, we are looking at a linear model for
numerical data, but there are a number of different models that do not assume a
linear relationship.) A predictive model like regression requires some metric that
measures howwell it does its prediction. For example, if you are predicting binary
outcomes, one possible loss function is accuracy—the percent of cases predicted
correctly. The loss function we are using here for regression is the sum of squared
errors. In this case, the loss function of the sum of squared errors is used to find
the regression line. Loss functions can also be used to compare the performance
of different statistical or machine learning models applied to the same data. The
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276 10 Regression

square root ofmean squared error (RMSE) is commonly used for this purposewith
numerical data.

10.3 Linear Relationships

Linear relationships are powerful. If a linear relationship exists between two vari-
ables, then it becomes possible to predict the unknown value of one variable based
on the known value of another.
Some linear relationships are obvious. Figure 10.5 illustrates the Delta Wire

example from the correlation chapter, with a regression line added. As the num-
ber of hours of training increases, so does the productivity. The linear relationship
appears to be very strong, and the line almost draws itself.
The least squares regression line equation is (Figure 10.5):

y = 5.093445x + 70, 880.25

When an obvious linear relationship does not appear to exist, what can be done?

10.3.1 Example: Workplace Exposure and PEFR

Consider the data shown in Figure 10.6. How and where would a trend line be
placed? No linear relationship is obvious. The least squares regression line calcu-
lated by Python can be viewed in Figure 10.7.
The least squares regression line is:

y = −4.18458x + 424.5828
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Figure 10.5 Delta Wire hours of training and productivity.
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10.3 Linear Relationships 277
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Figure 10.6 Pulmonary capacity (PEFR) and exposure to cotton dust (years).

600

500

400

P
E

F
R

300

200

100

0 5 10

Exposure

15 20

Figure 10.7 Trend line with negative slope.

It appears that there may be a slight negative relationship between exposure to
cotton dust and pulmonary effusion rates. Thismeans that as the years of exposure
increase, the pulmonary capacity decreases, albeit slowly. But the data are all over
the place—how much confidence can we have in this linear relationship?

10.3.2 Residual Plots

One method for assessing the predictive ability of a trend line is to look at a plot
of residual values.
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278 10 Regression
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Figure 10.8 Payroll residual plot.

Figure 10.8 illustrates the residual plot for the baseball payroll data. At first
glance, it appears from the plot that there is a large amount of error. To interpret
the amount of error and, indirectly the confidence we have in ourmodel equation,
it is useful to compare the scale of the residuals to the scale of the number of wins
in the original data. The residual values range from approximately +30 to −30,
a range which is somewhat smaller than the range of wins (202 to 283). The fact
that, in general, the error is smaller than the variability in the data reflects the fact
that the regression equation is useful.

10.3.2.1 How to Read the Payroll Residual Plot
The x-axis is the fitted value, i.e. the predicted number of wins for a team.
(Sometimes, for simple regression with a single predictor, the plot is constructed
with the x-axis showing the independent or predictor variable.) The y-axis is
the residual between the predicted number of wins and the actual number of
wins. Consider the left-most point. The x-coordinate of this point is the predicted
number of wins for what was then called the Florida Marlins and is now called
theMiamiMarlins. Our regression equation predicted about 218 wins, and yet the
Marlins won 233 games. Thus, the residual—actual wins − predicted wins—is
15, which is the y-coordinate of the point.
Figure 10.9, the Delta Wire Training Residual Plot, has a residual error range of

approximately−1600 to+1800. This seems high, but consider that the productivity
range is from 70,000 to 90,000! The residual error is relatively small, and we can
see this in the linear nature of the data shown in Figure 10.5.
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10.3 Linear Relationships 279
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Figure 10.9 Delta Wire training residual plot.
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Figure 10.10 PEFR residual plot.

At first glance, the residuals in the PEFRplot in Figure 10.10 appear to be similar
to the previous plots. However, the residual error ranges from −300 to +210, and
the actual data ranges from 110 to 610. The residual range is as large as the data
range! This indicates that either the regression equation fit isn’t very good or there
isn’t much of a relationship between the two variables. In this case, from look-
ing at the original data scatterplot in Figure 10.6, it doesn’t appear that a strong
relationship exists.
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280 10 Regression

While the relationship is not strong, it still could be

1) Statistically significant, and
2) Useful

The utility can be measured in terms of human health. Although respiratory
function varies widely among individuals, an improvement in overall average res-
piratory function is still very valuable. Most improvements in health conditions
and treatments are not sweeping and revolutionary. If they help only 10% of the
population, they are still very meaningful, but they will not necessarily show a
dramatic statistical picture.
Note: There is probably some inherent difference among individuals with

respect to PEFR, which adds noise to the picture. A plot of change in PEFR
(which was not available), rather than PEFR itself, would control for the great
differences among individuals and probably show a stronger relationship.

10.4 Prediction vs. Explanation

Regression is used in two different contexts:

1) In research studies, to quantify and confirm relationships between predictor
(independent) variables and outcome (dependent) variables. It is the relation-
ship that is of interest.

2) In predictive modeling, to predict individual values for outcome variables. It is
the individual predictions that are of interest.

10.4.1 Research Studies: Regression for Explanation

In the examples presented in Chapter 9, we spoke about using linear regression to
predict values, but we were interested in more than individual values: we wanted
to learn something about how strong and reliable the relationship was and how
sound the regression model was as an explanation for the phenomenon being
studied.
In the baseball payroll example, the user of this model might be a management

team in baseball seeking to allocate budget for payroll. A simple prediction of
“X wins if you spend Y dollars” might be of interest, but they would want to know
all about the relationship and how well it explains the data.

● Is it a strong relationship? Does a boost in spending produce a big boost in
performance?

● Is it linear? Or are there ranges where spending more might have no effect?
● Is it reliable? Are the data clustered tightly along the regression line, giving you
confidence in the relationship, or are they all over the place?
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10.4 Prediction vs. Explanation 281

In the example relating cotton dust exposure to pulmonary function, there
is probably almost no interest in an individual prediction. The purpose of the
research is to inform public policy and industry health and safety standards,
which requires an evaluation of the data as a whole.
Regression has long been used in this way—to characterize and explain an

overall relationship, typically as part of a research study. Data may be sufficiently
scarce that you want to use all of it in the study. Consumers of the study (other
researchers, public policymakers, regulators, etc.) will want to know how well the
regression model fits the data, whether relationships are statistically significant,
what the confidence intervals are, and how sound your overall analysis is.

10.4.2 Assessing the Performance of Regression for Explanation

The traditionalmachinery for assessing regression assumes all of the available data
are used in the study and in fitting a regression model. So the model is typically
assessed on the basis of how well it does with those data (Figure 10.11). In statisti-
cal software, including Statsmodels, the default reporting mode is to calculate the
model evaluation metrics using the data that was used to fit the model.1
A variety of metrics are used to assess the performance of regression for expla-

nation, including:

1) P-values to measure the statistical significance of the coefficients and constant
2) The F statistic to measure the significance of the overall model (see ANOVA

chapter)
3) Standard errors (SE) for the coefficients and constant

p-values
Conf. interval

x1, x2,  ..., xn, y y = b0 + b1x1 + b2x2 + ...

The data Assess

RMSE

R2

F

Figure 10.11 Assessing the performance of regression.

1 Evaluating regression models using holdout data, as is done for prediction models, is an
increasingly common practice for research projects where there is enough data to support this.
This may involve ignoring the default software reporting metrics. See the section on regression
for prediction.
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282 10 Regression

4) Confidence intervals for the coefficients and constant
5) Overall R2 to measure the proportion of the variation in the data that is

explained by the model
6) RMSE, or root-mean-squared-error (see Section 10.4.4)

Somemetrics are used to assess the overall validity of the model (F statistic) and
its strength (R2). Others assess the reliability of the individual predictor variable
coefficients and the constant in light of possible chance variation. P-values answer
the question “is this predictor coefficient or constant significantly different from
what we might get by chance?” Confidence intervals provide a range for the likely
coefficient value. Standard errors (see Section 7.7) embody in a single number the
potential chance variation in the coefficient or constant.

10.4.3 Big Data: Regression for Prediction

The advent of “big data” added a new paradigm for using regression and similar
models and gave rise to the field of “data science.” “Big data” are data typically
produced by ongoing processes such as e-commerce and social media interac-
tions, with many variables and vast numbers of records—and that’s just struc-
tured data that are stored in databases. “Unstructured” data, often in the form
of text and images (Twitter feeds, Facebook postings, tech support records, email,
e-commerce documents, weblogs, etc.), constitute an even larger source of contin-
ually generated data. Amazon alone requires 1.4 million servers to store its data,
and the pace of data generation is accelerating. It is estimated that 90% of all data
was generated in the last two years. The techniques needed to analyze text and
image data are complex and lie beyond the scope of this text, but they rest on the
foundation of statistical andmachine learning models that we are looking at here.
Organizations with access to big data (which is most organizations) can use sta-

tistical modeling techniques like regression to make valuable predictions.

● How much will a customer spend?
● Howmuchwill an insurance company have to pay in claims for a customer with
certain characteristics?

● Is an email spam?
● Which online ad is a customer most likely to click on?
● Will a borrower default?

In all these cases, the main goal is to make individual predictions. Understand-
ing and explaining the overall relationship is usually a secondary issue, though it
can be useful as part of the “due diligence” around a statistical ormachine learning
model.
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10.4 Prediction vs. Explanation 283

The data

Data to fit
model

Data to assess
model

(1) Randomly
split data

(2) Fit a model
y = b0 + b1x1 + b2x2 + ∙∙∙

(3) Apply model

(4) Compare
predicted values to
actual values,
calculate RMSE

x1, x2,  ..., xn, y

Figure 10.12 Assessing the performance of regression for prediction.

10.4.4 Assessing the Performance of Regression for Prediction

Since the data are plentiful, they can be split up into separate partitions, and the
accuracy of predictions can be tested directly with “holdout” data.

Definition: Training and Holdout Samples Records used in building regres-
sion models can be randomly partitioned into training data and holdout data
(Figure 10.12).
Training data are the records used to fit the model. Usually, they constitute

50%–70% of the data.
Holdout data are the records to which the model is applied to see how well

it does.

There are many ways of dividing (partitioning) datasets using Python. We will
cover this in more detail in Section 10.5.4. Once we have the partitions, one of the
partitions (the “training” partition) can be used to fit a model. The model is then
used to “score” the other partition (the “holdout” partition), meaning that it uses
the model to calculate the predicted y value for each record (this process is also
called “inference”). The residual, or error, between the predicted y value and the
actual y value in the holdout data, then goes into calculations that measure the
overall accuracy of the model.
One overall measure of error is “Root Mean Squared Error” or RMSE, using the

residuals (predicted vs. actual values). It is calculated by squaring the residuals,
taking the average, and then finding the square root. You can think of this as the
“typical” error in each predicted value.
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284 10 Regression

Definition: Root Mean Squared Error
√√√√ 1

n

n∑
i=1

(
ŷi − yi

)2

Most statistical software will automatically produce regression output
with a variety of metrics and diagnostics. Note that many of these, e.g.
p-values, goodness-of-fit statistics, confidence intervals, and the like,
are usually not relevant for prediction—the only thing that matters is
how well the model predicts “new” data.

10.5 Python: Linear Regression

10.5.1 Linear Regression Using Statsmodels

We already used the statsmodels package to perform an ANOVA in Chapter 8.
This is just one of the many statistical models and tests the statsmodels pack-
age implements. Statsmodels can domore; it can also perform time series anal-
ysis, generalized linear models, and many other statistical models. In this chapter,
we will use it to build linear regression models.
The statsmodels package is loaded, usually, as follows:

import statsmodels.api as sm
import statsmodels.formula.api as smf

The statsmodels.apimodule contains the core functionality of the package.
This includes statistical models like linear regression. However, it is often more
convenient to use the formula interface to these models that is available in the
statsmodels.formula.api module. This interface allows us to specify the
model using a formula string, similar to the formula strings used in R and other
statistical software. Let’s look at an example using the delta-wire.csv dataset. We
build a linear regression model to predict productivity from the training time. The
formula interface is used to specify the model. The formula string "productiv-
ity ∼ training" specifies that we want to predict the productivity from the
training time. The smf.ols function is used to fit the model. The function name ols
stands for ordinary least squares, which is the method used to fit the model. This
is how it is used:
import pandas as pd
delta_wire = pd.read_csv("delta-wire.csv")
formula = "productivity ∼ training" 1©
model_definition = smf.ols(formula, data=delta_wire) 2©
model = model_definition.fit() 3©
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10.5 Python: Linear Regression 285

1© The formula string specifies themodel. To the left side of the tilde is the depen-
dent variable y, and to the right side is the independent variable x.

2© The smf.ols function is called with the formula and the dataset. It returns the
model instancemodel_definition. At this point, themodel is not yet fitted
to the data.

3© We call the fit method of the model instance to fit the model to the data.
The result is the fitted model assigned to the variable model.

We can get a summary of the model using the summary method of the fitted
model. The output of the summarymethod is shown in Figure 10.13.

print(model.summary())

There is a lot of information in Figure 10.13. The most important part is the
table with the coefficients.We can see that the intercept is about 70,880. This is the
productivity of an employee without any training. The coefficient of the training
time is about 5.09. This means that for every hour of training, the productivity
increases by 5.09. The r2 value of the model is 0.976.

OLS Regression Results
=================================================================
Dep. Variable: productivity R-squared: 0.976
Model: OLS Adj. R-squared: 0.975
Method: Least Squares F-statistic: 662.3
Date: Sat, 17 Feb 2024 Prob (F-statistic): 1.90e-14
Time: 19:08:01 Log-Likelihood: -148.92
No. Observations: 18 AIC: 301.8
Df Residuals: 16 BIC: 303.6
Df Model: 1
Covariance Type: nonrobust
=================================================================

coef std err t P>|t| [0.025 0.975]
————————————————————————————————————————————————————————————————-
Intercept 7.088e+04 394.546 179.650 0.000 7e+04 7.17e+04
training 5.0934 0.198 25.735 0.000 4.674 5.513
=================================================================
Omnibus: 0.348 Durbin-Watson: 0.812
Prob(Omnibus): 0.840 Jarque-Bera (JB): 0.495
Skew: 0.207 Prob(JB): 0.781
Kurtosis: 2.301 Cond. No. 3.32e+03
=================================================================

Figure 10.13 Output of the summary function of the fitted model.
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Figure 10.14 Residual plot of the fitted model.

The fittedmodel also contains information about the residuals (model.resid)
and the predicted outcome (model.fittedvalues), which allows us to create
the residual plot shown in Figure 10.14.

df = pd.DataFrame({"predicted": model.fittedvalues,
"residuals": model.resid})
ax = df.plot.scatter(x="predicted", y="residuals")

ax.set_xlabel("Predicted productivity")
ax.set_ylabel("Residuals")
ax.axhline(0, color="black")
plt.show()

The fitted model can be used to make predictions using the predict method.
The code below shows how to use the model to predict the productivity for
training times of 1230 and 2390 hours.

prediction = model.predict({"training": [1230, 2390]}) 1©
print(prediction)

1© Because we used the formula, we need to call the predict method with a data
structure that allows us to access the independent variables by name. Here,
we use a dictionary with the variable name as a key and the values as a list. An
alternativewould be to use apandasDataFrame. The result of the prediction
is a pandas Series with the predicted values.
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10.5 Python: Linear Regression 287

Output

0 77145.189207
1 83053.584830
dtype: float64

The formula interface automatically added an intercept to the model. However,
what if we wanted to create a model with an intercept of 0? In this case, we can
modify the formula as follows:

formula = "productivity ∼ training - 1"
formula = "productivity ∼ training + 0"

Both are equivalent and will create a model without an intercept. There is a lot
more to know about formulas in statsmodels. For example, you can specify
interactions between variables, use the Q function for column names with spaces,
or use the C function to specify categorical variables. We will see more of this
in this chapter. You can also find a wealth of information in the statsmodels
documentation.

10.5.2 Using the Non-formula Interface to statsmodels

The formula interface is convenient for simple models. However, it is not always
necessary to specify the model using a formula. As we will see in the next chapter,
we can extend linear regression to more than one independent variable, and if
their number gets very large, there will be no advantage in using formulas. In
these cases, we can use the non-formula interface for statsmodels. In the
non-formula interface, you provide the dependent and independent variables
as arguments to the model. The dependent variable is called the endogenous
variable, and the independent variables are called the exogenous variables.
These terms come from econometrics, where the endogenous variables are the
variables that are determined within the model, and the exogenous variables
are the variables that are determined outside the model. Let’s build the same
model as before using the non-formula interface. A first attempt might look
like this:

import statsmodels.api as sm
import pandas as pd
delta_wire = pd.read_csv("delta-wire.csv")
X = delta_wire["training"]
y = delta_wire["productivity"]
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())
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288 10 Regression

Here is the partial output of the print(results.summary()) statement:

OLS Regression Results
===================================================================
.....
===================================================================

coef std err t P>|t| [0.025 0.975]
——————————————————————————————————————————————————————————————————–
training 33.5179 5.182 6.468 0.000 22.584 44.451
===================================================================
.....
===================================================================

The output shows that the model has only one coefficient, which is the coeffi-
cient of the training time; there is no Intercept. This is not what we want. The
problem is that the sm.OLS function expects the design matrix to be the second
argument. The design matrix is a matrix that contains the independent variables,
and the constant intercept can be one of them. The statsmodels package pro-
vides the add_constant function to do just this (it does this by adding a column of
ones to the design matrix). This column is used to fit the intercept of the model.
Let’s see what happens if we increase the design matrix by adding the constant
term.

X = delta_wire["training"]
y = delta_wire["productivity"]
X = sm.add_constant(X)
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())

Output
OLS Regression Results

===================================================================
.....
===================================================================

coef std err t P>|t| [0.025 0.975]
——————————————————————————————————————————————————————————————————–
const 7.088e+04 394.546 179.650 0.000 7e+04 7.17e+04
training 5.0934 0.198 25.735 0.000 4.674 5.513
===================================================================
.....
===================================================================

The resulting model is identical to the model we built using the formula
interface.
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10.5 Python: Linear Regression 289

10.5.3 Linear Regression Using scikit-learn

The scikit-learn package is a powerful package for machine learning. In
contrast to statsmodels, scikit-learn is not a package for statistical
analysis. It is a package for machine learning. This means that scikit-learn is
more focused on predictive modeling than on statistical inference. It implements
a wide variety of machine-learning algorithms for regression, classification,
clustering, and dimensionality reduction. It also provides tools for preprocessing
data, model selection, and evaluation. We will only scratch the surface of what
scikit-learn can do in this chapter and show how to use it to build a linear
regression model.
Here is how to build the linear regression model using scikit-learn:

import pandas as pd
from sklearn.linear_model import LinearRegression 1©
delta_wire = pd.read_csv("delta-wire.csv")
X = delta_wire[["training"]]
y = delta_wire["productivity"]
model = LinearRegression() 2©
model.fit(X, y) 3©
print(f"Model intercept: {model.intercept_}") 4©
print(f"Model coefficients: {model.coef_}")

1© The scikit-learn package is loaded as the module sklearn.
2© The LinearRegression class is used to define a linear regression model.
At this point, the model is not yet fitted to the data.

3© The fitmethod fits the model to the data.
4© We can access the intercept and coefficients using the intercept_ and the
coef_ attributes. Both names end in an underscore. This is a convention in
scikit-learn to identify attributes that are set during the fitting process.

Output
Model intercept: 70880.25246964331
Model coefficients: [5.0934445]

All predictive models in scikit-learn have the same API (application pro-
gramming interface). This means they all have a fit method that takes the depen-
dent and independent variables and fits the model to the data. Another method
that is shared between all predictive models is the predict method. This method
is used to make predictions using the fitted model. The code below shows how to
use the fitted model to make predictions for the training times 1230 and 2390.

new_data = pd.DataFrame({'training': [1230, 2390]})
prediction = model.predict(new_data) 1©
print(prediction)
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290 10 Regression

1© The predict method takes a matrix with the independent variables as an
argument. Here, we use a dataframe that contains the same column name
as the training data. It is possible to call this function using a list of lists like
[[1230], [2390]]. If you do this, scikit-learn will print a warning
that the model was trained with feature names. It is better, in this case, to
use a dataframe like we’ve done here. The result of the prediction is a numpy
array with the predicted values.

Output
[77145.18920738 83053.58482997]

Due to scikit-learn’s focus on predictive modeling, it does not provide as
much information about the model as statsmodels. There are, for example, no
p-values or confidence intervals for the coefficients, as these are not as relevant in
predictive modeling. In contrast, scikit-learn implements a variety of ways
to validate models and estimate their performance. In the next section, we will see
how to use scikit-learn to split a dataset into a training and a holdout set and
estimate the performance of a model using the holdout set.
By default, scikit-learn will fit a model with an intercept. If you want to

fit a model without an intercept, you can set the fit_intercept argument to
False when you define the model.

model = LinearRegression(fit_intercept=False)
model.fit(X, y)
print(model.intercept_)
print(model.coef_)

Output
0.0
[33.51785714]

The intercept is now fixed at 0, and the coefficient is adjusted accordingly.

10.5.4 Splitting Datasets and Evaluating Model Performance

In order to split a dataset into training and holdout sets, we can use the
train_test_split function from the sklearn.model_selectionmodule.

from sklearn.model_selection import train_test_split

baseball = pd.read_csv("baseball_payroll.csv")
X = baseball[["Average Payroll (Million)"]]
y = baseball["Total Wins"]

X_train, X_holdout, y_train, y_holdout = train_test_split(X, y, 1©
test_size=0.2, 2©
random_state=123) 3©
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10.5 Python: Linear Regression 291

model_full = LinearRegression() 4©
model_full.fit(X, y)
model_train = LinearRegression()
model_train.fit(X_train, y_train)

print(f"Full model intercept: {model_full.intercept_}")
print(f"Full model coefficients: {model_full.coef_}")
print(f"Model intercept: {model_train.intercept_}")
print(f"Model coefficients: {model_train.coef_}")

1© The train_test_split function takes the independent (X) and dependent (y) vari-
ables as arguments and returns training and holdout sets for the independent
and dependent variables.

2© The test_size argument specifies the proportion of the dataset that should
be used as the holdout set. Here, we split the dataset into 80% training and 20%
holdout sets.

3© Therandom_state argument is used to set the randomseed for reproducibil-
ity. You can also pass in a numpy random number generator.

4© We train two models. The first model is trained on the full dataset, and the
second model is trained on the training set.

Output
Full model intercept: 207.47931041732843
Full model coefficients: [0.3904698]
Model intercept: 213.31899006194885
Model coefficients: [0.32644877]

The two models are similar but not identical. This becomes more obvious when
we compare the two models by plotting them.

x_range = pd.DataFrame({'Average Payroll (Million)': [0, 250]})
fig, ax = plt.subplots(figsize=[6, 4])
ax.plot(x_range, model_full.predict(x_range), color='grey')
ax.scatter(X_train, y_train, color='grey')
ax.plot(x_range, model_train.predict(x_range), color='black',

linestyle='dashed')
ax.scatter(X_holdout, y_holdout, color='black', marker='x')
ax.set_xlabel("Average Payroll (Million)")
ax.set_ylabel("Total Wins")

Figure 10.15 shows the comparison. The dashed line is the regression line of the
model fitted using only the training set.
We now estimate the model performance by calculating the RMSE value.

from sklearn.metrics import mean_squared_error 1©
rmse_full = mean_squared_error(y, model_full.predict(X),

squared=False) 2©
rmse_train = mean_squared_error(y_train,

model_train.predict(X_train), squared=False)
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292 10 Regression
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Figure 10.15 Linear regression model fitted to the full dataset set (gray line) and the
training set (full circles and dashed line). The holdout set is shown as black crosses.

rmse_holdout = mean_squared_error(y_holdout,
model_train.predict(X_holdout), squared=False)

print(f"Full RMSE: {rmse_full:.3f}")
print(f"Training RMSE: {rmse_train:.3f}")
print(f"Holdout RMSE: {rmse_holdout:.3f}")

1© The sklearn.metrics module contains a wide variety of performance
metrics for regression, classification, and more. Here, we import the
mean_squared_error function, which by default calculates the MSE value, the
square of the RMSE.

2© The squared=False argument is used to get the RMSE value instead of the
MSE value.

Output
Full RMSE: 16.904
Training RMSE: 15.701
Holdout RMSE: 21.643

The training set RMSE is considerably smaller than the holdout set RMSE. This
is expected because the model was trained on the training set. Estimating the per-
formance using data that were not included in the training, is more relevant and
we should look at the holdout set RMSE tomake our final assessment of themodel
performance.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Exercises 293

Exercises

10.1 An online retailer wants to learnmore about the success of its online adver-
tising program. It reviews three weeks’ worth of sales of a variety of differ-
ent products at different price ranges and analyzes the data in a regression.
The variables involved are sales (Y ) and ad costs (X) (each in $000). The
following information is obtained:

intercept: coef. = 32 SE = 5.6
X1: coef. = 1.6 SE = 1.9

a) Write out the regression formula that this output represents and inter-
pret it.

b) What does “SE” stand for? What information does “SE = 1.9” give you,
in a general sense?

c) For advertising expenditures of $10,000, what level of sales is predicted?
d) Around this prediction, use the SEs to place a range of sales inwhich you

would have substantial confidence that actual sales will fall (multiply
the X1 coef. and the intercept by +2 and −2 SEs).

10.2 A retail company wants to find out whether clickthroughs (CTs) are a good
substitute for sales in evaluating the effectiveness of an online ad. One CT
is one person clicking on an ad to learn more. Advertisers typically pay
for ads on a per-clickthrough basis, so they want to learn quickly whether
the ad is paying off. CTs have the advantage of being much more plenti-
ful than sales, and accumulating faster, allowing the firm to judge quickly
whether an ad is effective. Data on sales and CTs for 13 ads are recorded in
clickthroughs.csv.
a) Create a scatterplot of the data. Do you see a linear relationship?
b) Calculate the correlation coefficient and assess whether CTs are a good

substitute for sales.
c) Assume now that the company has determined that CTs are, in fact, a

good proxy (substitute) for sales. Use regression to find a linear relation-
ship between the two. Add the regression line to the scatterplot.

d) What level of sales would you predict for 350 CTs?

10.3 To facilitate sales of new cars, a large European auto retailer accepts
trade-ins of used cars, which it must then resell. It wants to use a model
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294 10 Regression

to determine the resale value of value used cars based on their mileage
(distance traveled).
a) Use the data in toyota-km.csv to develop a linear regression model

that predicts sale price based on kilometers (KM) driven. Report the
equation for the model, and interpret the coefficient for KM.

b) Predict the sale price for a vehicle that has 45,000KM.

10.4 Large realtor agencies and online real estate companies like Zillow deal
with large numbers of homes, both on and off themarket, and need a quick
way to estimate their value. One determinant of value is the size of the
home.
a) Use the data inWestRoxbury.csv to fit a linear regressionmodel to predict

home value, with living area as the predictor.
Hint: Use e.g. Q("LIVING AREA") to refer to the column names that
have spaces in the formula.

b) What is the RMSE for this model?
c) Create a residual plot for the model.

Hint: Use alpha to make the points semitransparent.
d) Create a scatterplot of the data with the regression line added.
e) Predict the value of a home that has 1800 sq ft. of living area.
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11

Multiple Linear Regression

To this point, we have been concerned with only one predictor variable—salary
in the baseball example, and cotton dust exposure in the pulmonary function
example. Let us now turn to the more common situation where there are multiple
independent or predictor variables. There are a variety of statistical and machine
learning techniques that can model relationships between predictor variables and
an outcome variable; we will focus on the oldest: multiple linear regression.
After completing this chapter, you should be able to:

● Fit a multiple linear regression model
● Test the statistical significance of coefficients
● Establish confidence limits around coefficients
● Distinguish traditional explanatory purposes from predictive modeling pur-
poses, and identify the model performance metrics appropriate in each
case

● Explain the role of training and holdout datasets
● Implement a predictive regression model and evaluate it using holdout data

11.1 Terminology

First, to minimize confusion, we will pause to review terminology. Different disci-
plines (statistics, computer science, IT) use different terms to refer to the variables
in a regression. Figure 11.1 gives a summary.
There can also be different terms for the unit of observation, whether it is a

patient in a health study, customer, web visitor, insurance claim, tax return, or
whatever. All these terms, referring to that unit of observation, mean essentially
the same thing:

● Subject
● Case

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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296 11 Multiple Linear Regression

Different names for the
same thing:

Different names for the
same thing:

Independent variable Dependent variable
Output variable
Endogenous variable
Outcome variable
Response variable
Target variable

Supposed
causationInput variable

Exogenous variable
Predictor
Feature
Attribute

Figure 11.1 Different terms for variables in regression.

● Observation
● Example
● Sample

Note that the use of the term “sample” here, which comes from the computer
science and machine learning community, means one observation, in contrast to
the standard statistics usage where it refers to a collection of observations.
In the basic regression scenario, we have measurement data on an outcome

variable—a single dependent variable of interest. We wish to model how that vari-
able depends on other variables—input or independent variables—for which we
also have data for the same observations.

The diagram 11.1 talks of “causation” and the terminology refers to
one outcome variable “depending” on other variables. The directional
nature of this relationship is a product of our belief, presumably on
the basis of theory or knowledge, but regression does not prove it. The
mathematics of regression merely describes a relationship; it does not
prove a direction of causation. So the logical train of thought is thus:
(1) We have a theory that y depends on a set of x variables. (2) Regres-
sion analysis may confirm that there is a relationship, and it may also
describe the strength of that relationship. (3) If so, we take this as evi-
dence that our theory is correct. However, you can see that there is no
guarantee that the theory that y depends on x is correct. The direction
of the relationship could be the reverse. Or both x and y could depend
on some third variable.

11.2 Example—Housing Prices

The years 2002 to 2005 marked a housing bubble around the world, particularly
in the United States. In 2006, prices started declining. In 2007, the decline
accelerated, culminating in 2008 in a financial panic, massive intervention in
financial markets by the US Federal Reserve and the start of a protracted and
severe recession.
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11.2 Example—Housing Prices 297

In retrospect, the growth of the bubble is clear. At the time, however, key actors
failed to see it or ignored the signs. Before the bubble collapsed, many people con-
cluded that their house was fairly priced if all other similar houses nearby were
similarly priced.
Is it possible to establish an objective standard for home valuation, so that

lenders and real estate brokers have a reference point more solid than the other
houses comprising the bubble?

11.2.1 Explaining Home Prices

One possibility is to consider the underlying determinants of home value, and then
establish a relationship between those variables and home prices. Until now, we
have considered a single independent (predictor) variable and a single dependent
(outcome) variable. It is unlikely that a phenomenon of interest—housing prices,
in this case—can be explained by a single variable. Usually, multiple factors are at
work, and we can model those in a multiple linear regression of the form

y = b0 + b1x1 + b2x2 + · · · + 𝜀

Note this switch: When we introduced the equation for a line, and its slope and
intercept, the intercept was denoted by “a.” We now call the intercept b0 in line
with common usage for a multiple regression.
In words, this means that the dependent (outcome) variable y is a function of

an unchanging value (a constant), b0, plus a series of independent (predictor)
variables x1, x2, etc., times their respective coefficients b1, b2, etc., plus an error
term 𝜀.
When we had just one independent variable, we saw that the chosen regres-

sion lineminimized the sum of the squared deviations between the actual y values
and the predicted y values that are points on the line. With multiple variables, the
mathematics is more complex because we are no longer dealing with a line. How-
ever, the idea remains the same, which is to minimize squared deviations between
predicted and actual values.

Notation
The dependent, i.e. outcome, variable is typically denoted by y.
Predicted values of y are typically indicated by the symbol ŷ or “y-hat.”
Independent variables in the abstract are usually referred to as

“x variables”—x1, x2,… , xi.
The constant and the coefficients belonging to these x-variables are

typically denoted by the letter b (b0, b1, b2,… bi) or by the Greek letter beta
(𝛽0, 𝛽1, 𝛽2,… , 𝛽i).
The error term, also called the residual, is usually denoted by the letter “e”

or the Greek letter epsilon−𝜀.
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298 11 Multiple Linear Regression

11.2.2 House Prices in Boston

Let’s consider a simplified example—the Boston Housing data from the 1970 cen-
sus. (The complete data are available at theUniversity of California at Irvine (UCI)
Machine Learning Repository.) A reduced set of variables is used here. The out-
come variable is the average price of homes by census tract, which is a neigh-
borhood defined by the US Census Bureau. A tract consists of several thousand
people and is relatively homogeneous with respect to demographic characteris-
tics. The independent variables are factors that are believed to have an effect on
home value. For simplicity, this presentation uses only a subset of the records and
a subset of the variables originally associated with the data set (Table 11.1).

11.2.3 Explore the Data

As a first step, it would be useful to understand how these variables are distributed.
We can do this with a set of separate boxplots, shown in Figure 11.2. Note that the
variables do not share the same y-axis.
From the first boxplot, CRIM, we can see that most neighborhoods have very

low crime rates with little variation among them and that there are some neigh-
borhoods with much higher rates. You should take a moment to review the other
boxplots to get a sense of how the variables they represent are distributed.
Next, it would be useful to learn the extent of correlation among the variables,

especially the correlation between each independent variable and the dependent
variable, which is median home value. We can do this with the correlation matrix
shown in Table 11.2.

Definition: Correlation Matrix In a correlation matrix, the variable names
constitute both the row and column headings. Each cell in the matrix indicates
the correlation between its row and column variable.

For example, the correlation between RM, the number of rooms in a home,
and MEDV, the median value of the home, is 0.36591, which is a low positive

Table 11.1 Boston Housing data variables.

Independent (predictor) variables
CRIM Crime rate per 1000 residents
RM Average number of rooms per dwelling

Dependent (outcome) variable
MEDV Median home value in $1000s
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Figure 11.2 Boston Housing data variables.

Table 11.2 Boston Housing data: correlation matrix.

CRIM RM MEDV

CRIM 1.00000 −0.11605 −0.60046
RM −0.11605 1.00000 0.36591
MEDV −0.60046 0.36591 1.00000

correlation. Also, the correlation between CRIM, the crime rate, and MEDV is
−0.60046. As the crime rate decreases, the median value of the home generally
increases. Along the diagonal is a series of 1’s; the correlation of a variable with
itself is 1. The cells above the diagonal are duplicative of the cells below the diag-
onal (the correlation of RM with CRIM is the same as the correlation of CRIM
with RM).

11.2.3.1 Performing and Interpreting a Regression Analysis
Finally, we can perform a multiple regression analysis on the data using
statsmodels. We specify MEDV as the dependent (outcome) variable and
CRIM and RM as the predictor (independent) variables. Figure 11.3 shows the
output.
Let’s focus now on the coefficients and their interpretations. Ignore the other

part of the output for now.
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300 11 Multiple Linear Regression

Results: Ordinary least squares
==================================================================
Model: OLS Adj. R-squared: 0.445
Dependent Variable: MEDV AIC: 1431.9896
Date: 2023-05-27 11:06 BIC: 1442.7514
No. Observations: 267 Log-Likelihood: -712.99
Df Model: 2 F-statistic: 107.8
Df Residuals: 264 Prob (F-statistic): 6.03e-35
R-squared: 0.449 Scale: 12.357
----------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
----------------------------------------------------
Intercept 2.5088 2.8215 0.8892 0.3747 -3.0467 8.0643
CRIM -0.4904 0.0399 -12.3025 0.0000 -0.5689 -0.4119
RM 3.0083 0.4606 6.5311 0.0000 2.1013 3.9152
----------------------------------------------------
Omnibus: 7.375 Durbin-Watson: 1.883
Prob(Omnibus): 0.025 Jarque-Bera (JB): 12.275
Skew: 0.044 Prob(JB): 0.002
Kurtosis: 4.047 Condition No.: 101
==================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the
errors is correctly specified.

Figure 11.3 Multiple linear regression: Boston Housing data.

The CRIM coefficient is −0.4903722, and the RM coefficient is 3.0082633. The
y-intercept is 2.5087717, but this is not a very meaningful number by itself in this
case. (The intercept contributes to a better fitting regression within the range of
the data, but the implied value of a house when all predictors are zero is a concept
that doesn’t make sense.)
We will round these coefficient values to four significant figures for brevity.

11.2.4 Using the Regression Equation

The regression equation is:

MEDVr = 2.509 − 0.4904 × CRIM + 3.009 × RM

What would you predict for the following housing tract:
Crime rate: 2 (per 1000), Rooms: 8
We plug these values into the regression equation:

MEDV = 2.509 − 0.4904 × 2 + 3.009 × 8

= 2.509 − 0.98 + 24.7 = 25.6
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11.3 Interaction 301

So the predicted median value for this tract is $25,600 (recall that these data are
from mid-20th century).

11.3 Interaction

The regression model that we have considered to this point tells a story in which
the effect of each predictor variable is constant throughout the data. This is not
always true.
Consider grapefruit and the drug quinidine. Alternative medicine practition-

ers advocate consuming grapefruit to minimize the symptoms of malaria. Quini-
dine is also prescribed by traditional doctors for malaria. So a study of the two
variables might show that each, by itself, is associated with diminished malar-
ial symptoms. However, there is an interaction between grapefruit and quinidine.
Grapefruit affects certain stomach enzymes in ways that inhibit the absorption of
quinidine. Therefore, if you take quinidine, adding grapefruit will probably exac-
erbate malarial symptoms, rather than adding further relief.
Let’s now consider how we incorporate an interaction term into a regression

model.Without interaction, a regression equation with two independent variables
x1 and x2 and the random error term “𝜀,” the Greek letter epsilon, looks like this.

y = a + b1x1 + b2x2 + 𝜀

With an interaction term added, the equation becomes

y = a + b1x1 + b2x2 + b3x1x2 + 𝜀

You create the derived variable x1x2 by multiplying the two variables together.

Definition: Derived Variable A derived variable is a variable that is created
from two or more other variables. A derived variable can be included in a regres-
sion model and treated like any other variable.

Let’s look again at the Boston Housing data and create a new derived variable
from CRIM, the crime rate, and RM, the number of rooms: CRIM*RM. The new
regression output is shown in Figure 11.4.
This is the resulting regression equation, rounded to four significant figures.

MEDVi = −7.624 + 1.247 × CRIM + 4.680 × RM − 0.2916 × CRIM × RM

Compared to the initial regression model without the interaction term, the effect
of CRIM is now positive! Although the value is small, a higher crime rate predicts
a higher MEDV.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



302 11 Multiple Linear Regression

Results: Ordinary least squares
==================================================================
Model: OLS Adj. R-squared: 0.485
Dependent Variable: MEDV AIC: 1413.2655
Date: 2023-05-27 11:09 BIC: 1427.6145
No. Observations: 267 Log-Likelihood: -702.63
Df Model: 3 F-statistic: 84.43
Df Residuals: 263 Prob (F-statistic): 2.74e-38
R-squared: 0.491 Scale: 11.477
----------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
----------------------------------------------------
Intercept -7.6236 3.4973 -2.1799 0.0302 -14.5098 -0.7374
CRIM 1.2469 0.3790 3.2898 0.0011 0.5006 1.9932
RM 4.6799 0.5733 8.1627 0.0000 3.5510 5.8089
CRIM:RM -0.2916 0.0633 -4.6073 0.0000 -0.4162 -0.1670
----------------------------------------------------
Omnibus: 16.819 Durbin-Watson: 1.860
Prob(Omnibus): 0.000 Jarque-Bera (JB): 38.218
Skew: 0.251 Prob(JB): 0.000
Kurtosis: 4.784 Condition No.: 650
==================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the
errors is correctly specified.

Figure 11.4 Regression output with CRIM*RM interaction.

RM is slightly larger (more rooms increases value). The interaction term is
significant—it has a very low p-value—and its effect is negative.
Let’s look at the effect of increasing CRIM by one unit.

11.3.1 Original Regression with No Interaction Term

For the original regression, when CRIM is increased by one unit, the response
changes as follows.
Original equation:

MEDVr = 2.509 − 0.4904 × CRIM + 3.009 × RM (11.1)

Same equation, but CRIM increased by 1 unit:

MEDV = 2.509 − 0.4904 × (CRIM + 1) + 3.009 × RM

= 2.509 − 0.4904 × CRIM − 0.4904 + 3.009 × RM

= 2.0186 − 0.4904 × CRIM + 3.009 × RM (11.2)
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11.3 Interaction 303

The effect of increasing CRIM by 1 unit is:

Eqs. (11.2)−(11.1) = −0.4904

So, if we hold the number of rooms constant with no interaction term, then
increasing the crime rate one unit decreases the average value of homes by $490.

11.3.2 The Regression with an Interaction Term

For the regression with an interaction term, the equation is as follows.

MEDVi = −7.624 + 1.247 × CRIM + 4.680 × RM − 0.2916 × CRIM × RM
(11.3)

Now the same equation, but CRIM increased by 1 unit:

MEDV = −7.624 + 1.247 × (CRIM + 1) + 4.680 × RM

− 0.2916 × (CRIM + 1) × RM

= −7.624 + 1.247 × CRIM + 1.247 + 4.680 × RM

− 0.2916 × CRIM × RM − 0.2916 × RM

= −6.377 + 1.247 × CRIM + 4.3884 × RM − 0.2916 × CRIM × RM
(11.4)

The effect of increasing CRIM by 1 unit is:

Eqs. (11.4)−(11.3) = 1.247 − 0.2916 × RM

For RM = 6, an average sized house, this works out to −0.5026—holding num-
ber of rooms constant, adding a unit to the crime rate subtracts $502 fromMEDV.
The more rooms, the greater the negative impact from crime.

11.3.3 Does Crime Pay?

Let’s return to the coefficient for CRIM: 1.247. It looks like higher crime rates pro-
duce higher home values, whichmakes no sense. Butwe just found that increasing
CRIM actually loweredMEDV. We must look at the whole picture, taking account
of the interaction, and increasing CRIM has an effect not just via the coefficient
for CRIM, but also the coefficient for CRIM × RM. term.

Try It Yourself
What is the effect of increasing CRIM by one unit when RM = 5? What about
when RM = 7? Work through subtracting Eq. (11.3) from Eq. (11.4). Do higher
crime rates really increase home values?
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304 11 Multiple Linear Regression

11.4 Regression Assumptions

Multiple linear regression models work best when certain assumptions about the
data are met. These assumptions, as well as methods for checking them, are listed
below.

Assumption 1: The observations are independent.
This is usually assured by design: random selection in surveys and
random assignment in experiments. In an observational study, the
analyst has little control over how the data were collected, but
should be aware of ways in which data may not be independent
(e.g. collected from the same location, or from the same batch in a
process). Themain problemwith nonindependent data is that you
have less information than your sample size may suggest.

Assumption 2: The relationship being investigated is, indeed, linear. There may be
strong patterns in the data, but they don’t show up in a linear
regression.

Assumption 3: The variance of y does not change as x changes.
Assumptions two and three are both tested by plotting residuals
against predicted values. The resulting scatterplot should ideally
be rectangular and random along the vertical axis, although some
vertical stripes might be more dense than others. Figure 11.5
illustrates such a distribution produced by generating random
numbers.
The scatter diagram in Figure 11.6 suggests some basis for ques-
tioning whether assumptions two and three hold; residuals are
more positive for homes of less than $13K MEDV.

Assumption 4: For every value of x, the error values of y are Normally distributed.
This assumption matters primarily for rigorous formula-based
inference (p-values and confidence intervals). If the residuals lie
along a straight diagonal in what is called a QQ plot, then we
can assume approximate normality (see for example Figure 11.7).
However, for many applications, including those in data science,
a simple check of predictive accuracy (which does not require
formal statistical inference) may suffice and these normality
assumptions are not relevant. Also, resampling methods that are
less sensitive to this assumption are increasingly used in place of
formula-based inference.
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11.4 Regression Assumptions 305
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Figure 11.5 Random x and y coordinates, plotted.
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Figure 11.6 Boston Housing, predicted values vs. residuals.

11.4.1 Violation of Assumptions—Is the Model Useless?

If residuals are randomly andNormally distributed, this is evidence that themodel
is a good one—it has effectively accounted for all nonrandom sources of variation.
Perfect models are hard to achieve, though. The worlds of natural phenomena and
human behavior are complex and difficult to explain or predict completely. Usu-
ally, we must make do with models that fall short of 100% perfection—models
where these assumptions may not be met.
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306 11 Multiple Linear Regression
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Figure 11.7 QQ-plot for
residuals.

What happens if the assumptions are not met? Is the model useless? No. Viola-
tion of assumptions detracts from the credibility of the model as a full explanation
of the relationship between the independent variables and the response variable,
but it does not render the model valueless. Some knowledge is better than no
knowledge.
In the housing data, for example, the residuals seem to violate assumptions at

the extreme ends of the data. They are predominantly positive at predicted val-
ues below $15,000 and above $22,000. However, they are better behaved in the
mid-range between these values. So, the model may be useful, after all, especially
for non-extreme predicted values of MEDV. This is often the case with regression
models—there may be a range over which the regression model is a good expla-
nation of the data and other range or ranges over which it is less good.
Moreover, when regression is used for prediction rather than explanation, and

a holdout sample is used to assess performance, the importance of these assump-
tions diminishes. In that case, our main concern is whether themodel does a good
job in predicting unknown values.
Now that we have learned how to fit a regressionmodel to data, let’s look at how

well the model performs, keeping in mind whether our purpose is (1) regression
for explanation and (2) regression for prediction.

11.5 Assessing Explanatory Regression Models

The standard regression evaluation metrics (such as those shown in Figure 11.4)
computed in most statistical software, including statsmodels are for the data
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11.5 Assessing Explanatory Regression Models 307

that the model was fit with. They show how well the model fits that data, but not
necessarily how well the model will perform with new data.

11.5.1 Overall Model Strength R2

R2 is the measure of the extent of variation in y that is explained by the regression
model. We already encountered it for the case of simple linear regression: R2 is the
square of the correlation coefficient 𝜌. An R2 value of, for example, 0.75, means
that the regression model explains 75% of the variation in y.
R2 is a biased estimator. Its value in a samplewill always be higher than the value

you would get if you could perform a regression on the entire population. You
can see this most easily in a small sample for a regression with multiple predictor
variables. Consider the simplest case of all—two observations and two variables.
The regression line will fit perfectly and R2 will be 1.0, but such a model tells you
next to nothing about the data.
statsmodels produces an adjusted R2 that corrects for both the size of the

sample and the number of predictor variables. The more predictor variables you
have, the larger the sample required to get a useful regression estimate.

11.5.2 Assessing Individual Coefficients

The keys to using a regressionmodel for explanatory purposes are the coefficients.
These tell you how much a baseball team’s record improves as the payroll grows,
how much lung capacity diminishes as cotton dust exposure increases, how much
consumer spending increases as advertising grows, etc. You will want to know,
“Are the coefficient estimates reliable?”

11.5.3 Resampling Procedure to Test Statistical Significance

You can test the statistical significance of coefficients by repeatedly shuffling the
outcome (dependent) variable and recalculating the regression each time. The
algorithm (termed target shuffling by John Elder) is as follows:

1) Fit a regression model to the original data
2) Shuffle the outcome (dependent) variable
3) Recalculate the regression model and record the coefficients
4) Tabulate the distribution of these coefficients that the shuffled regression

produced

Since the outcome variable was shuffled, any actual relationship between pre-
dictor variables and the outcome has been broken. The resampled predictor coeffi-
cients are the product of pure chance. If an observed coefficient value lies within a
range which this chance shuffling produces, we can say that it might be the prod-
uct of chance and is not statistically significant. If, on the other hand, an observed
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308 11 Multiple Linear Regression

value rarely occurs in the distribution of its counterpart resampled values, we
deem it statistically significant.

11.5.4 Resampling Procedure for a Confidence Interval (the
Pulmonary Data)

Typically, coefficients in regressions are reported along with confidence intervals.
This combination answers the question, “How differently might this estimate of
the relationship turn out if we selected additional samples from the same popula-
tion?” In most explanatory (research) situations, we do not have lots of additional
samples to examine.
The next best thing is to take lots of bootstrap samples, i.e. resamples with

replacement from our original sample. The steps are as follows.
Recall that the regression for the observed pulmonary suggested a negative rela-

tionship between pulmonary capacity and years of exposure data, with the regres-
sion equation:

y = −4.18458x + 424.5828

We want to establish a resampling confidence interval around both the constant
and the slope coefficient. The algorithm is as follows:

1) PlaceN slips of paper in a box, whereN = the original sample size. On each slip
of paper, write down the variable values for a single case. In this case, a pair for
one case comprises the values for exposure and PEFR. A slip of paper for one
such case, for example, might read (0,390) where zero is the exposure and 390
is the PEFR. If the data has multiple predictor variables, their values are also
recorded on the slip of paper.

2) Shuffle the papers in the box, draw a slip, record its values, and replace it.
3) Repeat step 2 N times, yielding a bootstrap dataset of N records.
4) Perform a regression with PEFR as dependent variable and exposure as the

independent variable, then record the coefficient and the constant.
5) Repeat steps 2–4, say, 1000 times.

You will end up with distributions of 1000 values for the coefficient (or coeffi-
cients if there are multiple predictors) and the constant, from which you can find
appropriate percentiles to determine confidence intervals (e.g. the 5th and 95th
percentiles for a 90% interval).
We saw earlier that the PEFR dataset has a lot of variability, and it is difficult

to estimate where the regression line should be. We are definitely interested in
the reliability of the estimated slope and y-intercept. We can use bootstrapping to
assess this. Figure 11.8 compares the regression line of a single bootstrap sample
to the regression line of the original data.
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11.5 Assessing Explanatory Regression Models 309

600

500

400

P
E

F
R

300

200

100

0 5 10
Exposure

15 20 25

Figure 11.8 Regression via resampling—revisiting the PEFR data with a single bootstrap
sample. The solid line is the regression line using the full dataset, the dashed line is
fitted using a single bootstrap sample.

Producing a histogram for the resampled constant values will yield something
like the output shown in Figure 11.9. The resampled intercept has a wide range
of values. Also notice the 90% confidence interval (the 5th and 95th percentile
values), running from around 390 to just under 460. You could easily choose a con-
fidence degree other than 90%, we will see a 95% interval that is typical of software
output in Section 11.5.5 (it will be wider, of course).

11.5.4.1 Interpretation
The regression equation for the observed data was

PEFR = −4.18458 ∗ EXPOSURE + 424.5828.

The 90% resampling confidence interval for the constant (intercept) goes from 389
to 457.

Try It Yourself
Try the simulation again using the coefficient for exposure as the statistic of
interest to obtain a resampling confidence interval for it.
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Figure 11.9 Analyzing PEFR regression intercept bootstrapped output.

11.5.5 Formula-based Inference

Before resampling was available, confidence intervals were calculated using
formulas based on the t-statistic that we saw earlier. Over-simplifying a bit, and
switching from the 90% interval we calculated via resampling to the 95% interval
more typical of default software output, the interval is given by

b ± t0.05SE

Where b is the coefficient from the regression, t0.05 is the value of the t statistic at
the 0.05 probability level, and SE is the standard error of b. The standard error is
calculated as

SE = s√∑
x2

Where s is the standard deviation of the residuals and x represents the individual
values of the independent variable (to be squared and summed).
Thestatsmodels output, see for example Figure 11.10, shows 95% confidence

intervals calculated automatically along the above lines.

11.5.6 Interpreting Software Output

The output from the statsmodels summary2method is daunting at first glance.
In fact, you don’t need to worry about most of it. For our purposes, let’s focus on
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11.5 Assessing Explanatory Regression Models 311

Model output ( statsmodels):

Results: Ordinary least squares
==================================================================
Model: OLS Adj. R-squared: 0.069
Dependent Variable: pefr AIC: 1475.3501
Date: 2023-05-27 11:51 BIC: 1480.9581
No. Observations: 122 Log-Likelihood: -735.68
Df Model: 1 F-statistic: 9.974
Df Residuals: 120 Prob (F-statistic): 0.00201
R-squared: 0.077 Scale: 10290.
----------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
----------------------------------------------------
Intercept 424.5828 20.7960 20.4165 0.0000 383.4081 465.7575
exposure -4.1846 1.3250 -3.1582 0.0020 -6.8079 -1.5612
----------------------------------------------------
Omnibus: 0.767 Durbin-Watson: 1.111
Prob(Omnibus): 0.681 Jarque-Bera (JB): 0.891
Skew: -0.162 Prob(JB): 0.641
Kurtosis: 2.734 Condition No.: 36
==================================================================

ANOVA analysis ( statsmodels):

df sum_sq mean_sq F PR(>F)
exposure 1.0 1.026333e+05 102633.255269 9.974366 0.002008
Residual 120.0 1.234764e+06 10289.702381 NaN NaN

Figure 11.10 Statsmodels regression output.

the coefficients section of the data found in the middle section. Notice the “Inter-
cept” and “exposure” labels. Intercept refers to the y-intercept of the regression
line, and exposure refers to the slope of the regression line. The Coefficients col-
umn (Coef.) supplies the values for the y-intercept and slope. Based on the data in
Figure 11.10, with coefficients rounded to two decimals, the resulting equation for
the regression line (rounded to two decimal places) is

y = −4.18x + 424.58

The standard error (Std.Err.) and t statistic are reported, as is a p-value (P>|t|)
and the lower and upper bounds of a 95% confidence interval. The SE and t statistic
are both used in calculating the p-value and the confidence interval, so are redun-
dant information. The p-value is used in determiningwhether the coefficient value
is different from 0 to a statistically significant degree. Confidence intervals and
p-values are calculated by formula; for a better understanding of what they mean,
review the resampling procedures presented above (Sections 11.5.3 and 11.5.4).

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



312 11 Multiple Linear Regression

Note: In statsmodels you need to specify the degree of confidence for your
interval—90%, 95%, etc. The default confidence interval is 95%. To change this to
90%, you can use the keyword argument alpha=0.1 when calling the summary
or summary2 method. Figure 11.10 shows the output for the default 95% confi-
dence level and interval.
Based on the data in Figure 11.10, the 95% confidence interval for the intercept,

rounded to two decimal places, is 383.41 to 465.76. The 95% confidence interval
for the slope is −6.81 to −1.56.

11.5.7 More Practice: Bootstrapping the Boston Housing Model

Again, we are interested in the coefficients and how reliable they are. If we took a
different sample of housing tracts and performed a new regression, would we see
completely different coefficients, or would they be similar?
The answer to that question, familiar by now, is given by drawing repeated boot-

strap samples from our original sample, and repeating the regression over and
over, recording the coefficients each time.
Here is the procedure applied to the Boston Housing data.

1) PlaceN slips of paper in a box, whereN = the original sample size.N = 267 for
the boston-housing.csv dataset. On each slip of paper, write down the values for
a single census tract. Here’s how the slip of paper might look for one tract.

CRIM RM MEDV

8.98296 6.212 17.8

2) Shuffle the papers in the box, draw a slip, and replace.
3) Repeat step two N times.
4) Perform a regression with MEDV as dependent variable and the others as the

independent variables. Record the coefficients.
5) Repeat steps two through four many times, say 1000.

You will end up with distributions of 1000 values for each coefficient.
Figure 11.12 shows the distributions of the bootstrapped coefficients for the
Boston Housing model. The distributions for the intercept and the coefficient
for RM are both asymmetric which is also reflected in the calculated confidence
intervals.

11.5.8 Inference for Regression—Hypothesis Tests

We have just finished looking at confidence intervals. Typical regression output
will also include p-values for coefficients. Let’s look again at the Boston Housing
regression output, which is repeated in Figure 11.11.
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11.5 Assessing Explanatory Regression Models 313

Results: Ordinary least squares
==================================================================
Model: OLS Adj. R-squared: 0.445
Dependent Variable: MEDV AIC: 1431.9896
Date: 2023-05-27 15:17 BIC: 1442.7514
No. Observations: 267 Log-Likelihood: -712.99
Df Model: 2 F-statistic: 107.8
Df Residuals: 264 Prob (F-statistic): 6.03e-35
R-squared: 0.449 Scale: 12.357
----------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
----------------------------------------------------
Intercept 2.5088 2.8215 0.8892 0.3747 -3.0467 8.0643
CRIM -0.4904 0.0399 -12.3025 0.0000 -0.5689 -0.4119
RM 3.0083 0.4606 6.5311 0.0000 2.1013 3.9152
----------------------------------------------------
Omnibus: 7.375 Durbin-Watson: 1.883
Prob(Omnibus): 0.025 Jarque-Bera (JB): 12.275
Skew: 0.044 Prob(JB): 0.002
Kurtosis: 4.047 Condition No.: 101
==================================================================

Figure 11.11 Multiple linear regression: Boston Housing data (same as Figure 11.3).
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Figure 11.12 Bootstrapped coefficients for the Boston Housing model.

Consider the row for “RM.”

● 3.008 is the estimated regression coefficient, which we covered earlier.
● 0.4606 is the standard error of the estimated coefficient RM. You can think of
this as equivalent to the standard deviation of the bootstrapped coefficients that
we produced above.

● 6.531 is the value of the t-statistic.
● < 0.0001 is the p-value.
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314 11 Multiple Linear Regression

The best way to understand the p-value is as the product of the resampling pro-
cedure outlined in Section 11.5.3.
The F-statistic reported in the Model row is the same F-statistic that we dis-

cussed earlier in the context of ANOVA. It indicates whether or not there is overall
statistical significance considering all the variables.

11.6 Assessing Regression for Prediction

As noted above, standard regression metrics typically apply to the data used to fit
themodel. Thismakes some sensewhen our purpose is explanatory: to understand
those specific data. However, it introduces optimistic bias when we seek to use
the model to understand a broader population. The model will probably do better
when we measure it with the same data it was fit to than when we apply it to
new data.
When our purpose is prediction, the main issue is how well the model predicts

new data. Prediction is primarily used in a big data setting, where data are plen-
tiful, so we can afford to set aside some of the data where the outcome is known,
for purposes of assessing the model.

11.6.1 Separate Training and Holdout Data

Using new data to evaluate a model is a formal part of predictive modeling. Avail-
able data are typically divided randomly into data used to fit the model and data
used to evaluate it. The data used to fit themodel are called the “training” data, and
the data used to evaluate it are called, variously, “holdout,” “validation,” or “eval-
uation” data. The evaluation data are often used to compare differentmodels, or to
adjust models so they perform better. In some cases, a third portion of the data is
set aside, and is not used in any part of the model fitting, adjustment and selection
process, but is used as a final step in estimating true predictive performance.

11.6.2 Root Mean Squared Error—RMSE

The most popular metric to assess how well a regression model predicts new data
is root mean squared error (RMSE). To calculate RMSE, you simply square the
prediction errors (to render them all positive), find the mean, then take the square
root (to put them back on the same scale as the original data.) RMSE is calculated
on the holdout (validation) data.
There are a number of statistical and machine learning models besides linear

regression that can be used for prediction; we will see another, k-nearest neigh-
bors, in the next chapter. RMSE can be calculated for any model that predicts a
numerical outcome, and so it is useful in comparing models against each other.
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11.6 Assessing Regression for Prediction 315

11.6.3 Tayko

Consider the hypothetical case of Tayko Software, a company that sells games
and educational software.1 It has recently put together a new catalog, which it is
preparing to roll out in a direct mail campaign. In an effort to expand its customer
base, it has joined a consortium of similar catalog firms. The consortium affords
members the opportunity tomail catalogs to names drawn fromapooled list of cus-
tomers totaling more than 20million. Members supply their own customer lists to
the pool and can borrow an equivalent number of names each quarter. A member
can also apply predictive models to the entire consortium database to optimize its
selection of names. Tayko has supplied 200,000 names from its own customer list.
It is therefore entitled to mail to 200,000 names from the consortium per quar-
ter. However, it has decided on a more limited effort and has budgeted funds for
a mailing to 50,000 names. Although Tayko is a hypothetical company, the data
in this case are from a real company that sells software through direct sales. The
concept of a catalog consortium is also real, based on the Abacus Catalog Alliance.
The task is to build a regression model that will predict how much a customer

will spend based on a small sample. Tayko will then apply this model to the con-
sortium database to select the highest spending customers as its 50,000 names for
mailing. These are the steps.

1) Draw a sample of names (including associated information for each name)
from the consortium, mail catalogs to them, and see howmuch they purchase.
A sample of 1000 should yield reasonably reliable results.

2) Randomly divide the 1000 names into a training partition and a validation par-
tition (the validation sample is the holdout portion used for assessment).

3) Perform a regression with the training partition to determine the relationship
between the available information for a customer and how much they spend.

4) Apply (score) that regression model to the validation partition and derive pre-
dicted spending values.

5) Use the actual and predicted spending values to calculate RMSE.
6) You can now try other regression models with different predictor variables

to see how well they do. You can also try different types of models—see
“k-nearest-neighbors” in the next section.

Deployment

1) Once you have selected the best model, it is time to apply that model to the
entire consortium database of names to predict spending levels.

2) Select the 50,000 names with the highest predicted spending levels and mail

1 © Datastats LLC, used by permission.
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316 11 Multiple Linear Regression

Table 11.3 Tayko data fields.

source:_a Was source company a? 1=yes, 0=no
source:_b Was source company b? 1=yes, 0=no
source:_r Was source company r? 1=yes, 0=no
Freq How many orders in last 2 years
last_update_
days_ago

How many days ago was customer
record last updated (inquiry or order)

Web order Was order via web? 1=yes, 0=no

The customer information variables are shown in Table 11.3. “Source” refers to
the catalog company that supplied the name to the consortium.
Before we proceed, however, we need to stop and consider how categorical vari-

ables can be included in regression equations.

11.6.4 Binary and Categorical Variables in Regression

Up to now we have used only continuous variables in regression. As you can see
above, it is also possible to use binary—0 or 1—variables as independent or predic-
tor variables, where a “1” or a “0” indicates a “yes” or “no” concerning the variable
in question. The interpretation of the coefficient b in the resulting equation is sim-
ple. If the variable is present, e.g. “address is residential,” the outcome is increased
by an amount equal to b since it ismultiplied by 1. If the variable is not present, e.g.
“address is not residential,” then the outcome is unaffected, since b is multiplied
by 0 and the term reduces to 0.

Example
Suppose wewant tomodel howmuch a catalog customer will spend in the coming
year, and suppose the regression equation is

Spending = 65 + 35 × gender + 0.0019 × income

where

Gender: 1 if female, 0 if male

Income: Per capita income in the state of residence

You can see from the regression equation that being female increases predicted
spending by $35. Let’s say a customer comes from a state where the per capita
income is $40,000.

Spending if male: 65 + 35 × 0 + 0.0019 × 40,000 = $141

Spending if female: 65 + 35 × 1 + 0.0019 × 40,000 = $176
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11.6 Assessing Regression for Prediction 317

Where there are more than two categories for a variable, such as a “source”
that could be one of three different companies, you need to create multiple binary
“dummy” variables. You can see this above, where source:_a, source:_b and
source:_r are all listed as individual yes or no (0 or 1) variables. In other words,
instead of a multi-category variable indicating “source could be a, b, or r,” we have
a series of binary variables indicating “is source = a?,” “is source =b?,” etc. Note
that a binary variable is also a categorical variable, one with only two categories.

Definition: Dummy Variable A dummy variable is a derived variable created
by taking the categories in a categorical variable and making separate binary
(yes/no) variables for each of those categories.

11.6.5 Multicollinearity

Multicollinearity is another issue to be aware of when bringing multiple variables
into the picture.

Definition: Multicollinearity Multicollinearity in multivariate modeling is
the presence of one or more predictor variables that can be expressed as a linear
combination of other predictor variable(s).

In this example, there are four possible sources, including “other.” However,
let’s say that we had only two possible sources—“source a” and “source b.” Every
name comes from one source or the other. So the variable “source:_b” tells us
nothing new—its information is exactly the same as the information contained
in “source:_a.” If a name comes from “source a,” it cannot come from “source b,”
and vice versa.
Similarly, if wehave four possible sources—“a,” “b,” “r,” and “other”—and every

name has one and only one source, then once we know the values for “a,” “b,” and
“r,” the value for “other” is predetermined. If a source is “a,” “b,” or “r,” the value
for “other” must be 0, and if a source is not “a,” “b,” or “r,” the value for “other”
must be 1.
In each case, we have multicollinearity: the information in one of the variables

exactly duplicates the information contained in the other(s). This is a problem in
regression, because the mathematical operations needed to calculate the regres-
sion crash in the presence of multicollinearity. Even if variables are only approxi-
mately, rather than exactly, duplicative, the regression calculations can be unstable
and unreliable.
Multicollinearity can happen with both continuous and categorical—including

binary—variables. To avoid multicollinearity, two checks are needed.
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318 11 Multiple Linear Regression

1) When creating binary dummy variables from a single categorical variable, use
a maximum of k − 1 dummies, where k is the number of categories.

2) When making decisions about which variables to include in a regression, con-
sider whether they might be measuring the same thing and check the correla-
tion between the two variables. Where correlation is high, you should use only
one of them.

For calculation purposes, you will get the same results no matter which of the
multicollinear variables you omit, so you should retain the variables that are most
informative. For example, in the above problem it would make sense to retain the
source variables that contain the specific information and omit “other.”

11.6.6 Tayko—Building the Model

Let’s return to our goal, which is to build a model that predicts howmuch an indi-
vidual will spend from a catalog. Our first step is to build a regression model using
the training data for which we have known spending outcomes. To avoid multi-
collinearity problems, we use only the three specific source categories, leaving out
“other.” Table 11.4 shows the first few rows of the data. The regression output is
shown in Figure 11.13.

Table 11.4 Tayko data, spending known (top-10 rows).

source:_a source:_b source:_r Freq
last_update_
days_ago

Web
order Spending

0 1 0 2 183 1 128
0 0 0 2 194 0 127
1 0 0 1 161 0 174
0 0 0 1 73 0 192
0 0 1 2 147 1 386
0 0 0 2 73 0 174
0 0 0 1 123 1 189
0 0 0 1 165 0 90
0 0 0 2 147 1 352
0 0 1 9 43 1 639
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11.6 Assessing Regression for Prediction 319

Results: Ordinary least squares
==========================================================================
Model: OLS Adj. R-squared: 0.461
Dependent Variable: Spending AIC: 6546.4415
Date: 2024-01-22 08:48 BIC: 6575.9437
No. Observations: 500 Log-Likelihood: -3266.2
Df Model: 6 F-statistic: 72.02
Df Residuals: 493 Prob (F-statistic): 2.82e-64
R-squared: 0.467 Scale: 28032.
----------------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
----------------------------------------------------------
Intercept 93.0655 22.8179 4.0786 0.0001 48.2332 137.8978
source:_a 42.7556 20.5935 2.0762 0.0384 2.2938 83.2174
source:_b 1.5061 37.7112 0.0399 0.9682 -72.5884 75.6007
source:_r 56.2754 29.8218 1.8871 0.0597 -2.3181 114.8688
Freq 81.2010 4.8176 16.8549 0.0000 71.7354 90.6667
last_update_days_ago -0.6559 0.1521 -4.3115 0.0000 -0.9548 -0.3570
Q('Web order') -2.4575 15.0377 -0.1634 0.8703 -32.0034 27.0884
----------------------------------------------------------
Omnibus: 352.373 Durbin-Watson: 2.176
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5542.869
Skew: 2.891 Prob(JB): 0.000
Kurtosis: 18.252 Condition No.: 578
==========================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the
errors is correctly specified.

Figure 11.13 Tayko data, multiple linear regression output.

11.6.7 Reviewing the Output

The regression equation is

Spending = 93.07 + 42.76 × source:_a + 1.51 × source:_b + 56.28

× source:_r + 81.20 × freq − 0.656 × last_update_days_ago

− 2.46 ×web_order

Make sure you understand how you can derive this equation by looking at the
software output.
We can see that the source catalogs “a” and “r” add to the spending estimate,

by about $43 and $56, respectively. Each additional order (freq) in the customer’s
history adds about $81 to spending. Each additional day since the last contact
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320 11 Multiple Linear Regression

(update) cuts the spending estimate by $0.656. P-values are all low for these vari-
ables. Catalog “b” as source, and whether an order comes from the web, seem to
make little difference (coefficients are small, and p-values quite high).

11.6.8 Scoring the Model to the Validation Partition

A brief review of the model coefficients and their significance is useful, but our
real goal is to see how themodel does in predicting spending when applied to new
data. Our proxy for new data is the validation partition that we set aside at the
beginning. We will pretend that we lack spending information for these data and
predict spending for each customer. This is also termed “scoring” themodel; in the
machine learning community it is called “inference” (not to be confused with the
statistical inference of p-values and confidence intervals). Then we will compare
our predictions to the actuals.
The first few rows of the data to be predicted are shown in Table 11.5.
The first step is to fill in the unknown values with your predictions. How? Just

apply the regression model that we have already developed:

Spending = 93.07 + 42.76 × source_a + 1.51 × source_b
+ 56.28 × source_r + 81.20 × freq − 0.656
× last_update_days_ago
− 2.46 ×web_order

Table 11.5 Tayko data, validation partition.

row source:_a source:_b source:_r Freq
last_update_
days_ago

Web
order Spending

1 0 1 0 3 148 1 ?
2 0 0 0 3 145 0 ?
3 0 0 0 1 45 1 ?
4 0 0 0 6 70 0 ?
5 1 0 0 4 24 1 ?
6 0 0 0 6 74 0 ?
7 1 0 0 1 156 1 ?
8 0 0 0 2 27 1 ?
9 1 0 0 1 125 0 ?
10 0 0 0 1 105 1 ?
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11.6 Assessing Regression for Prediction 321

Table 11.6 Predictions from the regression.

row
Actual
Spending

Predicted
Spending

1 ? 239
2 ? 242
3 ? 142
4 ? 534
5 ? 442
6 ? 532
7 ? 112
8 ? 235
9 ? 135
10 ? 103

For the first row above, this works out as follows:

Spending = 93.07 + 42.76 × 0 + 1.51 × 1 + 56.28 × 0

+ 81.20 × 3 − 0.656 × 148

− 2.46 × 1 ≈ $238.6

Thus, for the rows shown in Table 11.5, the predictions are shown in Table 11.6.
Nextwe can reveal the actual values for Spending thatwere hidden in Table 11.5.

These are shown in Table 11.7 Then we compare predicted to actual and find
the differences: (Actual – Predicted) in Table 11.8 (note that the Actual–Predicted
values have been rounded to integers). And, finally, we average the squared dif-
ferences and find the square root; this is the root mean squared error (RMSE), see
Table 11.9. If you perform the calculations your results may vary slightly due to
rounding.
Doing so for the remainder of the data, beyond the few rows shown in the illus-

tration above, is left as an exercise.

Why square the differences?

11.6.9 The Naive Rule

Before we leave the subject, we’d like to know whether the model is useful at all!
For example, does it do better than simply predicting that everyone will be average
(also called the naïve rule)?
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322 11 Multiple Linear Regression

Table 11.7 Actual spending in hold-out data
revealed.

row
Actual
Spending

Predicted
Spending

1 136 239
2 261 242
3 43 142
4 389 534
5 394 442
6 588 532
7 160 112
8 50 235
9 233 135
10 54 103

Table 11.8 Actual spending in hold-out data
revealed, adding residuals.

row
Actual
Spending

Predicted
Spending Residual

1 136 239 −103
2 261 242 19
3 43 142 −99
4 389 534 −145
5 394 442 −48
6 588 532 56
7 160 112 48
8 50 235 −185
9 233 135 98
10 54 103 −49

The naive rule is simply predicting that everyone will spend at the average level
in the training data (213). This rule, when applied to the few rows of the validation
data shown above (see Table 11.10), has a RMSE of 172, considerably higher than
the 98 in the regression model. This suggests the model does have some predictive
power. In similar fashion we could compare the regressionmodel to other models,
most of which are beyond the scope of this book.
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11.6 Assessing Regression for Prediction 323

Table 11.9 Finding root mean squared error (RMSE).

row
Actual
Spending

Predicted
Spending Residual Squared residual

1 136 239 −103 10,609
2 261 242 19 361
3 43 142 −99 9801
4 389 534 −145 21,025
5 394 442 −48 2304
6 588 532 56 3136
7 160 112 48 2304
8 50 235 −185 34,225
9 233 135 98 9604
10 54 103 −49 2401

Sum = 95,770
Mean = 9577
RMSE = 97.86

Table 11.10 Predicting everyone is average.

row
Actual
Spending

Predicted
Spending Residual Squared Residual

1 136 213 −77 5929
2 261 213 48 2304
3 43 213 −170 28,900
4 389 213 176 30,976
5 394 213 181 32,761
6 588 213 375 140,625
7 160 213 −53 2809
8 50 213 −163 26,569
9 233 213 20 400
10 54 213 −159 25,281

Sum = 296,554
Mean = 29,655
Mean = 38,520
RMSE = 172
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324 11 Multiple Linear Regression

11.7 Python: Multiple Linear Regression

11.7.1 Using Statsmodels

In Chapter 10, we learned how to make a linear regression with one independent
variable. Extending this to multiple independent variables in statsmodels is
straightforward. When we use the formula interface, we simply extend the for-
mula with the additional independent variables. Let’s look at the example from
this chapter with the BostonHousing data (housing.csv). The dataset has two inde-
pendent variables, crime rate CRIM and number of rooms RM, and one dependent
variable, the median home value MEDV. When we write the formula, we use the
+ sign to add the independent variables on the right side. The formula for the
multiple linear regression is therefore:

MEDV ∼ CRIM + RM

That is essentially it. Fitting the model and getting the summary is the same as
before.

import pandas as pd
import statsmodels.formula.api as smf

housing = pd.read_csv("boston-housing.csv")
formula = "MEDV ∼ CRIM + RM"
model = smf.ols(formula, data=housing).fit()
print(model.summary2()) 1©

Output
Results: Ordinary least squares

==================================================================
Model: OLS Adj. R-squared: 0.445
Dependent Variable: MEDV AIC: 1431.9896
Date: 2024-02-18 15:06 BIC: 1442.7514
No. Observations: 267 Log-Likelihood: -712.99
Df Model: 2 F-statistic: 107.8
Df Residuals: 264 Prob (F-statistic): 6.03e-35
R-squared: 0.449 Scale: 12.357
-----------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
-----------------------------------------------------
Intercept 2.5088 2.8215 0.8892 0.3747 -3.0467 8.0643
CRIM -0.4904 0.0399 -12.3025 0.0000 -0.5689 -0.4119
RM 3.0083 0.4606 6.5311 0.0000 2.1013 3.9152
-----------------------------------------------------
Omnibus: 7.375 Durbin-Watson: 1.883
Prob(Omnibus): 0.025 Jarque-Bera (JB): 12.275
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11.7 Python: Multiple Linear Regression 325

Skew: 0.044 Prob(JB): 0.002
Kurtosis: 4.047 Condition No.: 101
==================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the
errors is correctly specified.

1© The summary2method creates a slightly more compact view of the regression
results, but contains otherwise the same information as the summarymethod.

The resulting model is

MEDVr = 2.509 − 0.4904 × CRIM + 3.009 × RM.

Predicting new data is also unchanged. We use the predict method of the model
object and call it with a dataframe that contains the new data.

new_data = pd.DataFrame({"CRIM": [2, 10], "RM": [8, 7]})
predictions = model.predict(new_data)
print(predictions)

Output
0 25.594134
1 18.662893
dtype: float64

11.7.1.1 Adding Interaction Terms
We can also define interactions in the formula. There are two ways of doing this:

MEDV ∼ CRIM + RM + CRIM:RM
MEDV ∼ CRIM * RM

Both of these formulas will create the interaction term between CRIM and RM.
The first formula is more explicit, while the second is a shorthand that creates the
interaction term (CRIM:RM) and the main effects (CRIM and RM).
Computationally, the interaction term is the product of the two independent

variables. The model will then have the following form:

formula = "MEDV ∼ CRIM + RM + CRIM:RM"
model_interaction = smf.ols(formula, data=housing).fit()
print(model_interaction.summary2())

Output
Results: Ordinary least squares

==================================================================
Model: OLS Adj. R-squared: 0.485
.....
R-squared: 0.491 Scale: 11.477
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326 11 Multiple Linear Regression

-----------------------------------------------------
Coef. Std.Err. t P>|t| [0.025 0.975]

-----------------------------------------------------
Intercept -7.6236 3.4973 -2.1799 0.0302 -14.5098 -0.7374
CRIM 1.2469 0.3790 3.2898 0.0011 0.5006 1.9932
RM 4.6799 0.5733 8.1627 0.0000 3.5510 5.8089
CRIM:RM -0.2916 0.0633 -4.6073 0.0000 -0.4162 -0.1670
-----------------------------------------------------
.....

The two models are fairly similar. The r2 value is slightly higher for the model
with the interaction term; 0.491 compared to 0.449. The same is true for the
adjusted r2 value, 0.485 compared to 0.445.
Figure 11.14 shows the actual vs. predicted values for the twomodels. Themodel

with the interaction term has a slightly better fit, we can see that the points are
closer to the line y = x.
fig, axes = plt.subplots(ncols=2, figsize=[8, 4])
df = pd.DataFrame({"Predicted value": model.fittedvalues,

"Actual value (MEDV)": housing["MEDV"]})
ax = df.plot.scatter(x="Actual value (MEDV)", y="Predicted value",

alpha=0.5, ax=axes[0])
ax.set_title("(a) Main effects model")
ax.plot([0,30], [0,30], color="black")

df = pd.DataFrame({"Predicted value":model_interaction.fittedvalues,
"Actual value (MEDV)": housing["MEDV"]})

ax = df.plot.scatter(x="Actual value (MEDV)", y="Predicted value",
alpha=0.5, ax=axes[1])

ax.set_title("(b) Interactions model")
ax.plot([0,30], [0,30], color="black")
plt.show()
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Figure 11.14 Actual vs. predicted MEDV plots for the main effects model (a) and the
interactions model (b).
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11.7 Python: Multiple Linear Regression 327

11.7.2 Diagnostic Plots

In Chapter 10, we learned about the residual plot. The same plot can also be cre-
ated for multiple linear regression models. This chapter introduced the QQ-plot
to analyze the distribution of the residuals and check for Normality. This is not
so essential in most data science applications, but we show it here since you may
encounter it.We can use the qqplot function from the scipy package to create the
QQ-plot. Let’s create both diagnostic plots for the interaction model. Figure 11.15
shows the residual plot and the QQ-plot.

import scipy.stats as stats

fig, axes = plt.subplots(ncols=2, figsize=[8, 4])
ax = axes[0]
ax.scatter(model_interaction.fittedvalues, model_interaction.resid,

alpha=0.5)
ax.axhline(0, color="black", linestyle="dashed")
ax.set_xlabel("Fitted values")
ax.set_ylabel("Residuals")
ax.set_title("(a) Residual plot")

ax = axes[1]
stats.probplot(model_interaction.resid, dist="norm", plot=ax) 1©
ax.get_lines()[0].set_color("C0") 2©
ax.get_lines()[0].set_alpha(0.5)
ax.get_lines()[1].set_color("black")
ax.set_title("(a) QQ-plot")
plt.tight_layout()
plt.show()
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Figure 11.15 Residual plot (a) and QQ-plot (b) for the interaction model.
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328 11 Multiple Linear Regression

1© The probplot function creates the QQ-plot. We use the dist argument to spec-
ify the expected theoretical distribution of the residuals. In this case, we use the
Normal distribution. We didn’t really need to specify this; we use this plot to
check for Normality so the Normal distribution is the default.

2© This and the following two statements modify the colors in the graph. We
need to use this here because the probplot function doesn’t expose this
functionality.

11.7.3 Using Scikit-learn

In the last chapter, we provided the independent variable to the LinearRegres-
sion model as a dataframe with a single column. When we have multiple inde-
pendent variables, we just add additional columns for each of the independent
variables.

from sklearn.linear_model import LinearRegression
import pandas as pd

predictors = ["CRIM", "RM"] 1©
outcome = "MEDV"
X = housing[predictors] 2©
y = housing[outcome]
model = LinearRegression()
model.fit(X, y)
print(model.intercept_)
print(pd.Series(model.coef_, index=predictors))

1© We define the independent variables in a list. This way, we can use the same
list to more easily identify the coefficients.

2© We use the list of predictors to extract a subset of the dataframe. X will have
two columns.

Output
2.508771666893967
CRIM -0.490372
RM 3.008263
dtype: float64

Predicting new data is also the same as before. We create a dataframe with the
new data and call the predict method of the model.

new_data = pd.DataFrame({"CRIM": [2, 10], "RM": [8, 7]})
predictions = model.predict(new_data)
print(predictions)

Output
[25.59413421 18.66289324]
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11.7 Python: Multiple Linear Regression 329

11.7.3.1 Adding Interaction Terms
We learned that adding an interaction term is equivalent to adding a column with
the product of the two independent variables. Here is one way to do this.
X["CRIM:RM"] = X["CRIM"] * X["RM"]
model_interaction = LinearRegression()
model_interaction.fit(X, y)
print(model_interaction.intercept_)
print(pd.Series(model_interaction.coef_, index=predictors + ["CRIM:RM"]))

Output
-7.623594886934143
CRIM 1.246896
RM 4.679950
CRIM:RM -0.291616
dtype: float64

We need to manage the names of the columns ourselves.

11.7.4 Resampling Procedures

In this section, we will implement the resampling procedures from Chapter 10.
We start by using the shuffling (permutation) procedure to estimate statistical sig-
nificance.

11.7.4.1 Estimating the Significance of the Coefficients
We first look at the statistical significance of the coefficients using again the hous-
ing.csv dataset. We use the scikit-learn library for this. For demonstration
purposes, we will also add a random column to the dataframe.

from sklearn.linear_model import LinearRegression
import numpy as np

rng = np.random.default_rng(seed=321)

housing["RANDOM"] = rng.random(len(housing)) 1©
predictors = ["CRIM", "RM", "RANDOM"]
outcome = "MEDV"
X = housing[predictors]
y = housing[outcome]

model = LinearRegression()
model.fit(X, y)
actual = pd.Series([model.intercept_, *model.coef_], 2©

index=["Intercept", *predictors])

resamples = []
for _ in range(1000):

model.fit(X, rng.permutation(y)) 3©
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330 11 Multiple Linear Regression

resamples.append((model.intercept_, *model.coef_))
resamples = pd.DataFrame(resamples, columns=["Intercept", *predic-
tors])

1© We add a random column to the dataframe. This will be used for illustration
purposes, to demonstrate that the random variable is not significant.

2© We create a series with the actual coefficients. This allows us later to access the
information by name.

3© The randomnumber generatormethod permutation, returns a shuffled version
of the outcome.

We cannow create histograms of the coefficients and compare them to the actual
coefficients.
fig, axes = plt.subplots(ncols=4, figsize=[10, 3])
for ax, name in zip(axes, resamples.columns):

resamples[name].plot.hist(bins=30, ax=ax)
ax.axvline(actual[name], color="black", linestyle="dashed")
ax.set_xlabel(name)

plt.tight_layout()
plt.show()

Figure 11.16 shows the histograms. For the intercept and the two independent
variables,RM andCRIM, the actual coefficients arewell separated from the range of
the resampled coefficients (i.e. the coefficients produced by fitting the model with
a shuffled outcome variable). The randomvariableRANDOM on the other hand falls
withing the distribution of resamples values. Unsurprisingly, the random variable
is not significant in the model and can be removed.

11.7.4.2 Estimating Confidence Intervals—The Bootstrap
To estimate confidence intervals for the model coefficients, we create bootstrap
samples of the data and fit the model to each sample. We then calculate the 2.5th
and 97.5th percentiles of the coefficients to get a 95% resampling confidence inter-
val. We will use the housing.csv dataset and the scikit-learn package for this.
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Figure 11.16 Histograms of the coefficients from the resampling procedure. The black
vertical lines indicate the actual coefficients.
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11.7 Python: Multiple Linear Regression 331

from numpy.random import RandomState
from sklearn.utils import resample

rng = np.random.RandomState(seed=321) 1©
model = LinearRegression()
model.fit(X, y)
estimate = pd.Series([model.intercept_, *model.coef_],

index=["Intercept", *predictors]) 2©
coefficients = []
for _ in range(1000):

X_resampled, y_resampled = resample(X, y, random_state=rng) 3©
model = LinearRegression()
model.fit(X_resampled, y_resampled)
coefficients.append([model.intercept_, *model.coef_])

coefficients = pd.DataFrame(coefficients, columns=estimate.index)

conf_intervals = pd.DataFrame({
"Coefficient": estimate, 4©
"Lower": np.percentile(coefficients, 2.5, axis=0),
"Upper": np.percentile(coefficients, 97.5, axis=0)

})
print(conf_intervals)

1© The resample function does not yet support the new numpy random number
generator. We use the old RandomState class to create a random number
generator.

2© We store the estimates in a pandas Series. This allows us to easily access the
coefficients by name.

3© We use the resample function from the scikit-learn package to create a
bootstrap sample of the data. We then fit the model to the resampled data and
store the coefficients in a list.

4© We calculate the 2.5th and 97.5th percentiles of the coefficients and store them
in a dataframe.

5© The index of the series, i.e. the names of the estimated values, is used as the
index of the dataframe. This way, the confidence intervals are easily matched
to the coefficients.

Output
Coefficient Lower Upper

Intercept 2.310490 -5.394596 8.763676
CRIM -0.489569 -0.616600 -0.381332
RM 2.987768 1.972809 4.263446
RANDOM 0.646785 -0.819860 2.017485

Let’s see how these compare to the confidence interval calculated by the
statsmodels package using formulas (not resampling).
formula = "MEDV ∼ CRIM + RM + RANDOM"
model = smf.ols(formula, data=housing).fit()
print(model.summary2())
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332 11 Multiple Linear Regression

80

60

40

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y
20

0
–10 100

Intercept CRIM

–0.6 –0.4 2

RM

4 –2 0

RANDOM

2

80

60

40

20

0

80

100

60

40

20

0

Fr
eq

ue
nc

y

80

100

60

40

20

0

Figure 11.17 Distribution of resampled coefficients and the 95% confidence intervals
(dashed lines). The black vertical lines shows the actual estimate of the coefficient.

Output
....
-----------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
-----------------------------------------------------
Intercept 2.3105 2.8325 0.8157 0.4154 -3.2668 7.8878
CRIM -0.4896 0.0399 -12.2726 0.0000 -0.5681 -0.4110
RM 2.9878 0.4615 6.4744 0.0000 2.0791 3.8964
RANDOM 0.6468 0.7581 0.8532 0.3943 -0.8459 2.1395
-----------------------------------------------------
......

The confidence intervals are fairly similar. Figure 11.17 shows the distribution
of the resampled coefficients and the 95% confidence intervals.

fig, axes = plt.subplots(ncols=4, figsize=[10, 3])
for ax, name in zip(axes, coefficients.columns):

coefficients[name].plot.hist(bins=30, ax=ax)
ax.axvline(actual[name], color="black")
ax.axvline(conf_intervals.loc[name, "Lower"], color="black",

linestyle="dashed")
ax.axvline(conf_intervals.loc[name, "Upper"], color="black",

linestyle="dashed")
ax.set_xlabel(name)

plt.tight_layout()
plt.show()

Exercises

11.1 This problem uses a variant of the Boston Housing data (boston-housing-
large.csv). This version of the data contains five predictor variables for
MEDV. The five variables are:
● CRIM: crime rate per 1000 persons
● NOX: ambient nitric oxide concentration (parts per 10 million)
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Exercises 333

● RM: average number of rooms per dwelling
● PTRATIO: pupil teacher ratio by town
● LSTAT: percent of the population in a lower socioeconomic status
a) Make a scatterplot of MEDV vs. CRIM. What do you see? On the basis

of your scatterplot, does CRIM appear helpful in predicting MEDV?
b) Run a regression of MEDV as a function of CRIM. Report a p-value and

interpret it. From this, does CRIM appear useful in predicting MEDV?
c) Make a scatterplot of MEDV vs. LSTAT. What do you see? On the basis

of your scatterplot, does LSTAT appear helpful in predicting MEDV?
d) Run a regression of MEDV as a function of LSTAT. Report a p-value and

interpret it. From this, does LSTAT appeal helpful in predictingMEDV?
e) So far, we have been analyzing one predictor variable at a time, so we do

not have a good idea how theywork together to affectMEDV.Run amul-
tiple regression ofMEDVvs. all five of the predictor variables. Report the
regression equation and the predictor variable p-values from the com-
puter output. From this, does the regression appear helpful in predicting
MEDV?

11.2 Use the dataset Tayko-known.csv for the following problems.
a) Perform a multiple linear regression. Specify appropriate independent

(predictor) and response variables. Report the resulting equation.
Hint: This duplicates an illustration in the chapter.

b) Create a graph showing actual vs. predicted spending.
c) Calculate the following statistics for the Tayko-known.csv dataset and

the regression.
– standard deviation of the spending
– mean spending
– RMSE
In a sentence or twodescribe variability in theTayko-known.csvdata and
your regression. Your goal is to convey to your reader an understanding
of average spending, how variable it is, and how much a typical predic-
tion might be in error.

d) Use the regression equation to predict spending levels for the customer
records in Tayko-unknown.csv.

e) Sort the results from the previous step by predicted spending, and report
the top 10 customers for predicted spending.

f) Your goal is to generate at least $250 in spending per catalog mailed.
How many customers should you mail to, from Tayko-unknown.csv?
Hint:Would you mail a catalog to the customer represented by the top
row in the sorted results? The second row? The last row?
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334 11 Multiple Linear Regression

11.3 Background: Use the trade-discount.csv dataset for this problem. Con-
sumer packaged goods (CPG) companies sell some goods online but
generate most of their revenue from sales through brick and mortar retail
companies. A CPG company typically manages a number of brands, each
of which has multiple products. For example, Unilever, a large CPG based
in the United Kingdom, owns over 400 brands. Just one of its brands, Dove,
sells body washes, hand and body lotions, facial cleansers, deodorants,
shampoos, conditioners and hair styling products. Each product is sold in
multiple sizes and variations (e.g. different soap scents), so the number
of individual “stockkeeping units” (SKU’s) on offer from a CPG might
be in the tens of thousands. A typical grocery or drug store has room to
stock only a small fraction of all the products on offer from CPGs. A major
challenge for the CPG is obtaining and retaining “shelf space” at major
retailers. CPG companies promote their products through advertising,
issuance of discount coupons to consumers, and “trade discounts” offered
to retailers. Trade discounts are product-specific discounts offered to
individual retailers that can fund co-advertising, or simply serve as an
incentive to the retailer to promote the discounted product.
The Problem: You work for a CPG company that wants to evaluate its
trade discount spending. The finance department, noting the high cost
of the program, wants to curtail the discounts. The marketing and sales
department, naturally, resists. It turns out that nobody has a good answer
to the question, “Do discounts increase sales?” The company could try
reducing the discounts and seeing if that made a difference in sales but
that would entail substantial risk and upheaval. You suggest taking a look
at existing data, to see if there is a relationship between trade discounts
and sales revenue. (Note: There are problems with a similar scenario and
similar data but different questions in Chapters 2 and 4)
a) You decide to perform amultiple linear regression, with Sales as the out-

come variable, and trade discount percentage (Trade-disc) as a predictor
variable. Why use trade discount percentage as a predictor rather than
actual trade discount dollars?

b) You also decide to add Coupon as a predictor, so that the effects of trade
discount spending and consumer coupon spending are kept separate.
Perform a regression with Sales as the outcome variable and Trade-disc
and Coupon as predictor variables. Report the resulting regression
equation.

c) Consider an itemwhere the trade discount is 0.26 (26%) and the coupon
spending rate is 0.15 (15%). What is the predicted sales revenue?

d) Change the trade discount to 0.27 and recalculate predicted sales rev-
enue. What is the increase in sales revenue?
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Exercises 335

e) This increased revenue has a cost—the larger trade discount the com-
pany must offer. How much is this cost in dollars?

f) What is the predicted net profit effect of increasing the trade discount?
g) Reviewing the regression statistics, comment on the reliability of the

estimated relationship between sales, trade discount, and coupon
spending.
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12

Predicting Binary Outcomes

In this chapter we discuss a simple to understand technique for predicting binary
outcomes—k-nearest-neighbors (k-NNs). After completing this chapter, you
should be able to:

● Distinguish between predicting a numerical outcome and predicting a binary
outcome

● Classify binary outcome data using k-nearest neighbors in Python
● Divide the data into training and validation partitions to optimize the
choice of k

● Explain whether k-nearest-neighbors can be used for explanatory modeling

Many, if not most, statistical analyses and decisions involve binary outcomes:
a consumer buys or doesn’t buy, a prospect responds or doesn’t respond, a patient
dies or survives, a loan is paid off or goes into default, a person votes for your can-
didate or not, a link is clicked or not, etc. The structure of the data is the same aswe
have seen in multiple linear regression, except the outcome (dependent) variable
is binary instead of continuous. Another term for this is classification—predicting
which class a new record will fall into. In this case there are two classes.
Regression analysis is not suitable for modeling such data. In fact, despite the

seeming simplicity of yes/no data, statistical methods for modeling it are actually
more involved than those for numeric data and, therefore, are rarely touched upon
in an introductory course.
One suchmethod for prediction is intuitively simple, however, andmerits a brief

discussion.

12.1 K-Nearest-Neighbors

Recall that, in prediction, we “train” models with a set of data in which both the
predictor and outcome variables are known. The goal is to predict an outcome

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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338 12 Predicting Binary Outcomes

of interest for a new record, where we know only the values for the predictor
variables. For example, a bankmight have prior data on 5 year old loans for which
a borrower’s assets, debt, income, education and credit score are known, and the
current status of the loan (current or in default) is also known. For new applicants,
the bank can collect the same information on assets, debt, income, education and
credit score, and, using the information from the prior loans, predict which class,
current or in default, the loan will be in, five years later.
The k-nearest-neighbor method is quite simple. The basic idea is as follows:

1) Locate the k prior customers who are most like (“near”) the new customer in
terms of the predictor variables

2) Find which class most of those similar customers belong to
3) Predict that majority class for the new customer

Let’s first illustrate this in the two-dimensional case where we wish to predict
whether a household owns a ridingmower or not. Figure 12.1 is a scatterplot illus-
trating our two predictor variables, the income and lot size of households that own
riding mowers (filled circles), and households that do not (empty circles). It also
shows a new household (the x) for which we want to predict whether a riding
mower is owned.
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Figure 12.1 Riding Mower, classifying new household (cross) as owner (filled circle) or
nonowner (open circle).
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12.1 K-Nearest-Neighbors 339
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Figure 12.2 Finding the nearest single neighbor (k = 1).

Using the nearest-neighbor algorithm, we can locate the single closest house-
hold and determine its class (see Figure 12.2). In this case, it is “owner” so that is
how we would classify our new household.
Let’s expand the comparison base, so that we are considering the five nearest

neighbors, not just the single nearest neighbor (Figure 12.3). Four of themare own-
ers, one is a nonowner, so, by majority vote, we again classify the new household
as an owner.
Determining the nearest neighbors can be done visually with just two variables,

as above. To locate nearest neighbors in data with multiple predictor variables, we
use the concept of distance that we introduced in Section 3.4. We illustrate this
in the case of the big retailer Target, introduced in Chapter 1, and how it used
statistical methods to predict whether a customer was pregnant or not.

12.1.1 Predicting Which Customers Might be Pregnant

For retailers, early identification of customers whomight be pregnant can be prof-
itable. Impending childbirth means there is much to purchase and, as the event
approaches, less time for shopping. A retailer that can establish itself early with a
pregnantmother stands a good chance of capturing her big-ticket purchases of fur-
niture and clothing. By the time a family is purchasing a crib, stroller, and infant
clothing it is too late. The retailer Target decided to use predictive modeling to
predict, at an early stage, which customers were pregnant.
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340 12 Predicting Binary Outcomes
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Figure 12.3 Five nearest neighbors (k = 5).

The first challenge was to assemble a dataset with known outcomes. For this,
Target used its baby shower registry, figuring that all the registrants were, for the
most part, pregnant. Then it took a demographically similar set of women from
among its general customer records, figuring that they were unlikely to be preg-
nant. Of course, a few of them would be, but Target still had a dataset with two
well-distinguished subgroups—“pregnant” and “not-pregnant.”
Next they needed a model to predict, on the basis of past purchases, whether a

customer was pregnant or not. Multiple linear regression was not suitable, since
the outcome (dependent) variable is not a continuous one, but rather binary. Let’s
apply k-nearest-neighbors to a hypothetical tiny dataset to illustrate how it works.

12.1.2 Small Hypothetical Example

Consider the data shown in Table 12.1. There is data on six prior customers, two of
whomare on the baby shower registry and fourwho are not. There are six predictor
variables (columns) for each customer and one outcome variable. The predictors
are 0/1 variables, indicating whether a product (zinc supplements, manganese
supplements, cotton swabs) has been bought in the last 10 days, or prior 10–90
day period.
We wish to predict whether the new customer—the row at the bottom—would

be on the baby shower registry; this is a proxy forwhether the customer is predicted
to be pregnant.
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12.1 K-Nearest-Neighbors 341

Table 12.1 Hypothetical customer purchases.

Cust # zinc10 zinc90 mag10 mag90 cotton10 cotton90 Registry ?

1 1 1 1 1 0 1 0
2 1 1 1 1 0 1 0
3 1 1 0 1 0 1 0
4 0 1 1 0 1 1 0
5 1 1 0 1 1 0 1
6 0 0 1 0 1 0 1
NEW 1 0 1 1 0 1 ?

By eyeballing the data, we can see that the new customer is more like customers
1 and 2 than the other customers—the new customer matches customers 1 and 2
in all predictor variables except one. Customers 1 and 2 are not on the baby shower
registry, so we would be inclined to predict that the new customer is not pregnant.
With hundreds of predictors and tens of thousands of customers, it is not feasible

to eyeball the data, so we need a way to automatically measure how close (alike)
customers are. We will use the measure of distance that we first introduced in
Section 3.4—sum the squared differences, then take the square root (Euclidean
distance).
The Euclidean distance between two vectors w and x is

Euclidean Distance =
√

(w1 − x1)2 + (w2 − x2)2 + · · · (wn − xn)2

Here are the Euclidean distance calculations for the new customer—compared
first to Customer #1 and then to Customer #6:

Predictor Variables Outcome
Customer # 1 1 1 1 1 0 1 0
NEW 1 0 1 1 0 1 ?
Difference 0 1 0 0 0 0
Sq difference 0 1 0 0 0 0

Sum = 1

Customer # 6 0 0 1 0 1 0 1
NEW 1 0 1 1 0 1 ?
Difference −1 0 0 −1 1 −1
Sq difference 1 0 0 1 1 1

Sum = 4
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342 12 Predicting Binary Outcomes

For the new customer and customer #1, the sum of squared differences = 1, so
the square root = 1 as well. For customer #6, the sum of squared differences = 4,
so the square root = 2. So we conclude that customer #1 (who is not on the baby
shower registry) is closer to the new customer.
Note that in this small example, all the data are binary (yes/no) data. Measured

data can be used aswell. Suppose onewewere to add the variable “total spending.”
For many, if not most, customers, the value of “total spending” will range in the
hundreds, if not thousands of dollars. “Total spending” will now dominate the
Euclidean distance calculations; the 0’s and 1’s will be of little consequence. To
avoid this, we can normalize (standardize) the data, as discussed in Section 5.4.1.
This will put all the variables on the same scale.
The classification procedure is, therefore, as follows:

1) Assemble a “training” data set that includes predictor variables and known
outcomes

2) Normalize each variable by subtracting the mean and dividing by the standard
deviation (a superfluous step in this simple examplewhere all variables are 0/1,
but otherwise needed)

3) For each new customer to be classified,
a) Calculate and record Euclidean distance to each record in the training data
b) Note the k-closest records
c) Find which class is prevalent (majority vote) in the k-closest records
d) Classify the new customer as that prevalent class

12.1.3 Setting k

As you can see, the results of this method depend on how many neighbors you
consult. How do you set k? Very small values of k respond to highly local informa-
tion, butmay produce unstable classifications (classifications that change depend-
ing on the data used to find neighbors). Large values of k produce more stable
classifications, but may miss local information. Typically you first divide the data
into a training set and a holdout set, and use the above procedure to classify the
holdout set as “new” data, and find what value of k produces the most accurate
classifications.

12.1.4 K-Nearest-Neighbors and Numerical Outcomes

The above example uses k-nearest-neighbors to predict binary outcomes, but the
technique can be extended to cover the same sort of measured data we analyzed
with regression. Instead of taking a majority vote of class, we would simply take
the average of the predicted outcomes among the neighbors.
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12.2 Python: Classification 343

12.1.5 Explanatory Modeling

K-nearest-neighbors is not useful for explanatory modeling, however. We saw in
Chapter 11 how we could derive information about linear relationships between
predictors and an outcome variable. Other statistical and machine learning
models can provide such structural information about such patterns in data:
curvilinear relationships, if-then rules, and more. K-nearest-neighbors provides
no useful information about “macro-level” relationships—linear or otherwise—
between predictor variables and an outcome variable. It only provides the actual
predictions.

12.2 Python: Classification

12.2.1 Classification Using scikit-learn

For classification, the scikit-learn package is the most popular Python pack-
age. It implements about 40 different classifier algorithms. Here, we will only look
at the k-nearest neighbor algorithm. To bemore specific, themethod that is imple-
mented by the sklearn.neighbors.KNeighborsClassifier class. You
will see that fitting a classifier is a lot like fitting a regression model.
We use the RidingMowers.csv as an example to demonstrate how to fit a

k-nearest neighbor classifier. The outcome variable is Ownership, which is a
binary variable. The predictors are Income and Lot_Size. We will use the
KNeighborsClassifier class to fit the model. However, first we need to
normalize the data.

import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

mower_df = pd.read_csv("RidingMowers.csv")
outcome = "Ownership"
predictors = ["Income", "Lot_Size"]

X = mower_df[predictors]
y = mower_df[outcome]

scaler = StandardScaler()
X_normalized = scaler.fit_transform(X)

We use the StandardScaler class to normalize the predictors. This class is
a transformer; it takes data and changes them. Here, this means subtracting the
column mean and dividing by the standard deviation. The transformation is first
“learned” from the data (fit), meaning that the standard deviation and mean are
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344 12 Predicting Binary Outcomes

calculated, and then applied to the data by subtracting the mean and dividing by
the standard deviation (transform). Transformers generally implement these two
stages. The fit_transformmethod performs both in one go.
We have now normalized data and can use these to fit the k-nearest neighbor

classifier.

model = KNeighborsClassifier(n_neighbors=5) 1©
model.fit(X_normalized, y) 2©

1© The KNeighborsClassifier class implements the k-nearest neighbor
classifier. The n_neighbors parameter is used to specify the number of
neighbors k to use. This type of parameter is known as a tuning parameter or
hyperparameter.

2© Like in regression models, classification models also use the fit method to fit
the model to the data.

The scikit-learn classifiers also have a predict method that we can use to
make predictions. Assume we have a new customer with an income of 60 and a
lot size of 20. Would this customer buy a riding mower?

new_customer = pd.DataFrame({"Income": 60, "Lot_Size": 20},
index=["New customer"])

new_customer_normalized = scaler.transform(new_customer)
pred_class = model.predict(new_customer_normalized)
print(f'Class predicted for the new customer: {pred_class[0]}')

Output
Class predicted for the new customer: Owner

In contrast to regression models, classification models have a second type of
prediction. The predict_probamethod returns not a class, but the estimated prob-
ability of belonging to each class.

pred_class = model.predict_proba(new_customer_normalized)
print(f'Class predicted for the new customer: {pred_class[0]}')

Output
Class predicted for the new customer: [0.2 0.8]

The predicted probability for the new customer to be an owner is 0.8 (80%).

12.2.2 Evaluating the Model

We learned that regression models can be evaluated using the R2 or RMSE statis-
tics. For classification models, the accuracy is a common measure. Accuracy is
the proportion of predictions that are correct. In scikit-learn, the function
accuracy_score function calculates the accuracy.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - U
niversita D

i Firenze Sistem
a , W

iley O
nline L

ibrary on [13/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12.2 Python: Classification 345

from sklearn.metrics import accuracy_score
accuracy = accuracy_score(mower_df[outcome],

model.predict(X_normalized))
print(f'Accuracy: {accuracy:.2f}')

Output
Accuracy: 0.83

12.2.3 Streamlining Model Fitting Using Pipelines

This classification model required two steps. First, the normalization of the data
and then the fitting of the k-nearest neighbor model. Both steps are learned from
the data and to predict new data, we need to keep track of both steps. To make this
easier, scikit-learn has pipelines. Pipelines allow you to link several trans-
formers and estimators together to form a single object.
Let’s see how this works.

from sklearn.pipeline import Pipeline
model = Pipeline(steps=[

('normalize', StandardScaler()),
('kNN', KNeighborsClassifier(n_neighbors=5))

])
print(model)

Output
Pipeline(steps=[('normalize', StandardScaler()),

('kNN', KNeighborsClassifier())])

ThePipeline initializer takes a list of steps and combines them into a pipeline.
The steps are defined as tuples, where the first element is the name of the step and
the second element is the transformer or estimator. The pipeline has the same
methods as the final estimator. When calling fit, the data is passed through all
transformers and then to the final estimator.

model.fit(X, y)

As before, the fitted model can predict our new customer. This time we don’t
have to worry about passing the data through both steps separately—the pipeline
handles both the normalization and the model fitting.

pred_class = model.predict(new_customer)
print(f'Class predicted for the new customer: {pred_class[0]}')

Output
Class predicted for the new customer: Owner
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346 12 Predicting Binary Outcomes

Next calculate the accuracy of the model.

accuracy = accuracy_score(mower_df[outcome], model.predict(X))
print(f'Accuracy: {accuracy:.2f}')

Output
Accuracy: 0.83

There is a lot more to pipelines and scikit-learn in general that we won’t
cover here. For example, there are many more classifiers, transformers, and tools
for model evaluation. The scikit-learn documentation is a great resource to
learn more about these topics. The book Data Mining for Business Analytics by
Shmueli et al. (2019, Wiley, 1st edition)1 is also a great resource to learn more
about scikit-learn and other Python packages for machine learning and data
mining.

Exercises

12.1 If you want your predictions using k-NN to be quite sensitive to the infor-
mation contained in the most similar records, would you choose k to be
relatively low or relatively high?

12.2 If you want your predictions using k-NN to be quite stable and not depen-
dent on random elements in the chosen sample, would you choose k to be
relatively low or relatively high?

12.3 This exercise with a tiny dataset illustrates the calculation of Euclidean dis-
tance and the creation of binary dummies. The online education company
Statistics.com segments its customers and prospects (noncustomers) into
threemain professional categories: software engineers (EN), data scientists
(DS), and other. They are also categorized by whether they are located in
the United States, and whether they first came to Statistics.com after being
referred by another customer. Consider Table 12.2, showing the customers
and prospects and the additional information aboutwhether they have pur-
chased a course or not.
Consider now the following new prospect, for whom you want to predict
whether they will become a customer:
Prospect 1: EN, located in the United States, referred by another customer

1 A revised second edition will be published in 2024 under the nameMachine Learning for
Business Analytics: Concepts, Techniques and Applications in Python (2024, Wiley, 2nd edition).
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Exercises 347

Table 12.2 Online course customers.

Customer # Profession US? Referred? Bought Course?

1 DS 0 1 0
2 DS 1 0 1
3 EN 0 0 1
4 DS 1 1 0
5 Other 1 0 1

a) Just looking at the five customers and prospects, and considering the
data on profession, location, and referral, which ismost similar (closest)
to the new prospect?

b) Convert the Profession variable into 3 binary dummies (see Section
11.6.4), and calculate Euclidean distance between the new prospect
and each of the five known customers and prospects. Which is closest?
(Note: While it is typical to normalize data for k-NN, this is not needed
here since the variables are binary and all on the same scale.)

12.4 Personal LoanAcceptance:Universal Bank is a relatively young bank grow-
ing rapidly in terms of overall customer acquisition. The majority of these
customers are liability customers (depositors) with varying sizes of rela-
tionship with the bank. The customer base of asset customers (borrowers)
is quite small, and the bank is interested in expanding this base rapidly to
bring in more loan business. In particular, it wants to explore ways of con-
verting its liability customers to personal loan customers (while retaining
them as depositors).
A campaign that the bank ran last year for liability customers showed a
healthy conversion rate of over 9% success. This has encouraged the retail
marketing department to devise smarter campaigns with better target mar-
keting. The goal is to use k-NN to predict whether a new customer will
accept a loan offer.
This will serve as the basis for the design of a new campaign.
The file universal-bank.csv contains data on 5000 customers. The data
include customer demographic information (age, income, etc.), the
customer’s relationship with the bank (mortgage, securities account, etc.),
and the customer response to the last personal loan campaign (Personal
Loan). Among these 5000 customers, only 480 (= 9.6%) accepted the
personal loan that was offered to them in the earlier campaign.
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348 12 Predicting Binary Outcomes

Transform categorical predictors with more than two categories into
dummy variables and normalize the data.
a) Consider the following customer:

Age= 40, Experience= 10, Income= 84, Family= 2, CCAvg= 2, Educa-
tion_1 = 0, Education_2 = 1, Education_3 = 0, Mortgage = 0, Securities
Account = 0, CD Account = 0, Online = 1, and Credit Card = 1. Per-
form a k-NN classification with all predictors except ID and ZIP code
using k = 1. Specify the success class as 1 (loan acceptance), and use the
default cutoff value of 0.5 (i.e. straight majority vote). How would this
customer be classified?

b) Repeat this classification using k = 5 and k = 9 and report the results.
What are the considerations in setting k?
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Index

a
A/B test 14
AI, see artificial intelligence
algorithm 271
alpha (α) 99
ANOVA table 232
artificial intelligence 10

b
Babe Ruth 13
bandit algorithms 229
bar chart 75
Benford’s Law 215
bias 16, 168
nonresponse 191

big data 9, 10
binary variables 22
binomial distribution 126
blinding 18
blocking 226
bootstrap 176–177, 180, 186, 187
box plots 75–78

c
categorical data 22
categorical variables 22
in regression 316

census 40
central limit theorem 187

central location 62
central tendency, see central location
chi-square test 152, 153, 213
class 337
classification 377
cluster sampling 190
conditional probability 144
confidence interval 173
proportion formula 182
proportion resampling 174

contingency table 143
control group 14
convenience sampling 190–191
correlation 249, 253
correlation coefficient 256

d
data dredging 101
data science 10–11
data snooping 226
database format 19
dataframe 19–21
dataset
baseball payroll.csv 263
boston-housing-large.csv 332
boston-housing.csv 201, 202, 312
brain-facebook.csv 270
clickthroughs.csv 293
delta-wire.csv 284

Statistics for Data Science and Analytics, First Edition. Peter C. Bruce, Peter Gedeck, and Janet Dobbins.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Wiley_Statistics_for_Data
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350 Index

dataset (contd.)
housing.csv 324, 329
marriage-therapy.csv 237
microUCBAdmissions.csv 198
pulse.csv 57, 59, 115, 163, 205, 270
RidingMowers.csv 343
server-configurations.csv 247
streams.csv 205
Tayko-known.csv 333
Tayko-unknown.csv 333
toyota-km.csv 294
trade-discount-A-B.csv 119
trade-discount.csv 334
universal-bank.csv 347
web-page-data.csv 89, 116
WestRoxbury.csv 294

degrees of freedom 69, 183, 232
design of experiments 12
deviation, see residual
distance 5, 69
dot plot 218
dummy variable 317
dynamic typing 33

e
EDA, see exploratory data analysis
Euclidean distance 70, 341
exact test 104–105
experiment 12
exploratory data analysis 61, 227

f
factor variables 22
factorial design
blocking 226
stratification 225

frequency table 72
F-statistic 234
f -string 28

g
goodness-of-fit 215
Gosset, William S. 185
grand average 232

h
Hawthorne effect 17
histogram 73
holdout data 314
hospital errors 13–14

i
Imanishi-Kari 215
independence 150
inference
as model application 320
statistical 91

interaction 301
interquartile range 66

j
jitter 242

k
k-nearest-neighbors 337–339
k-NN, see k-nearest-neighbors

l
look-back bias 41
loss function 275–276

m
machine learning 10
MAD, seemean absolute deviation
mean 62
mean absolute deviation 67
median 62–64
mode 64
multicollinearity 317
multiple inference 226
multistage sampling 190
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Index 351

n
naïve rule 321
95 percent rule 133, 139
noise 224
normal distribution 103, 129
normalization 130
null hypothesis 92
numeric data 21
numeric variables 21

o
observation 179, 231
observational data 13
observational study 41
outliers 4, 78–79

p
paired data 19
parameter 171
percentile 66
permutation test 93–94
personal loan data 347
p-hacking 100
placebo 18
point estimate 172
population 171
power 103
Python
classes 32
control statements 43
data structures 28
data types 25
dict 28
dictionary comprehensions 49
dynamic typing 33
f -string 28
list 28
list comprehensions 48
objects 32
operations 26
set 28

set comprehensions 49
tuple 28
type hints 33
variables 26

Python packages
collections 158
DataFrame.groupby 198
matplotlib 80–84, 87, 112
numpy 31, 50–52, 55, 107–108, 110,

136, 141, 197, 238, 244, 263, 266,
290, 291, 331

numpy.random 107
numpy.random.Generator 107
pandas 21, 31, 33, 50, 51, 53–56, 59,

83, 108, 110, 111, 113, 114, 128,
135, 158, 159, 160, 161, 162, 197,
198, 201, 238, 241, 244, 245, 266,
286, 331

random 107–108, 110, 136
scikit-learn 51, 289–290, 329,

330, 331, 343–344, 346
scipy 50, 51, 53, 87, 107–108, 136,

137, 163, 184, 235, 268, 327
seaborn 87, 242, 243
statsmodels 196, 234–235, 241,

244, 245, 247, 287–290, 299, 306,
307, 310–312, 324, 331

typing 30

r
random sample 170
random sampling 171
randomization 15
randomization test 93
range 65
replication 218
resample 179
residual 67, 272, 273
residual error 231, 232
riding mower data 338
RMSE, see root mean squared error
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root mean squared error 284
RxC table 143

s
sample 171, 179
sample survey 40
sampling
cluster 190
convenience 190–191
multistage 190
stratified 189
systematic 190
with replacement 179
without replacement 179

sampling frame 171
scoring 320
self-selection 191
simple random sample 171
simulation 180
single simulation trial 179
skew 78
SRS, see simple random sample
standard deviation 67
sample vs. population 68

standard error (SE) 188
standard normal distribution 131
standardization 130
statistic 172
stratification 225
stratified sampling 189
systematic sampling 190

t
tails 78
Target retail example

339–340
Tayko case 315
t-distribution 185
text data 23
training data 314
treatment effect 231
treatment group 14
t-test 95
2-way table 143
type hints 33
type I error 99
type II error 99

u
Universal Bank data 11

v
validation data 314
variability 65
variance 67
sample vs. population 68

variance components 222
vector product 252
vector product sum 252

z
z-score 130
z-table 132
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