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Foreword

Pioneering a new category of software systems is the dream of many software engi-
neers. I feel very fortunate for the opportunity to work on ksqlDB early on, even
before it was called ksqlDB, and before the category of streaming databases was
generally known. When I first heard that Ralph and Hubert were writing a book
dedicated to streaming databases, I was naturally interested right away.

So what is a streaming database? Database systems have many different flavors, from
traditional relational databases to XML, graph, object, vector, and NoSQL databases.
Many of these are well known and have been established for many decades. Stream-
ing, or stream processing, is much less established, although it has seen a steep
adoption rate in the industry over the past decade or so, led by the rise of Apache
Kafka as the de facto streaming platform.

Historically, stream processing was considered difficult, and only larger organizations
with dedicated teams of streaming experts could master it. The same was true for data
processing and computing 50 years ago, before SQL and relational database systems
were invented to allow nontechnical users to work with data stored in computer
systems. Now, SQL is the lingua franca of data processing.

Streaming databases are the next step in the evolution of stream processing. They
unify well-established techniques from database systems with the new paradigms
from the streaming world to simplify stream processing and enable nontechnical
users to work with data in motion, similar to what we are used to when we query data
at rest.

Database systems are designed to solve specific problems. The two main categories
of database systems, online transaction processing (OLTP) and online analytical pro-
cessing (OLAP) systems, were not originally designed for internet-scale applications.




With the rise of “big data” at the beginning of the third millennium, new systems such
as MapReduce were invented to meet the increased scaling requirements. However,
those new systems were developed by technical experts for technical experts, and they
moved us away from the familiarity of SQL.

With the invention of data lakes, the first child of the “big data” era, it was quickly
realized that SQL was needed to enable nontechnical users to make the most of these
new technologies. As a result, SQL was reintroduced, and nowadays, all modern data
lakes use SQL to query the stored data.

Data streaming, as the second child of the “big data” era, followed the same trend:
first, stream processing systems were built by experts for experts without the support
of SQL. It wasn't long until SQL and database technologies were introduced to enable
nontechnical users to use these new streaming systems. This development led to
streaming databases and the waves of innovation that followed.

As more people realize the significance of streaming databases in the world of stream
processing and database technology, they will need guidance on how to use them
with their existing systems. Stream processing, as this book puts it, adds a new
plane between the operational plane (OLTP) and the analytical plane (OLAP). The
streaming plane opens up a rich area of possibilities for the future of data systems.

In this book, Hubert and Ralph discuss the three different starting points for stream-
ing databases:

« Stream processing systems that adopt database technologies and SQL
« Database systems that are extended to incorporate streaming concepts

o Data lakes (which already adopted SQL) that are extended to use streaming
capabilities

These three gave rise to a variety of different streaming databases, each with its own
limitations and optimized for different use cases. This raises the question: which
system should we use for what use case, and what are the trade-offs?

Following Jay Kreps' prediction that “companies are becoming software,” we have an
exciting future in data processing ahead of us with streaming databases at its very
core. The simplifications that streaming databases and streaming SQL offer allow
many more nontechnical users to adopt stream processing, which will lead the way
for streaming to become ubiquitous.

We are still early in the era of streaming databases, and it’s exciting to observe the
current trends and discover newly built systems.
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This book provides an excellent entry point for learning about all these cutting-edge
innovations and the zoo of options, which is typical for the early days of a new era.
If you want to learn even more about streaming databases, check out Hubert and
Ralph’s podcast on Spotify, simply called “Hubert’s Podcast” They interviewed many
different people in the streaming and data space in preparation for this book, and it’s
a gem by itself.

— Matthias J. Sax

Technical Lead,

Kafka Streams Engineering Team at Confluent
Apache Committer and PMC member

(Kafka, Flink, Storm)

Reno, NV, May 2024
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Preface

In this book, we go beyond the boundaries of traditional batch processing and
seamlessly integrate the dynamic world of streaming data. If you come from the
streaming world, we provide a database perspective for stream processing. Streaming
databases bridge the gap between data at rest and data in motion.

Drawing inspiration from Martin Kleppmann’s seminal work on “turning the data-
base inside out,” we flip the narrative to “bringing streaming systems back into the
database” Through this paradigm shift, we can first unravel the intricate layers of
stream processing before we find familiar abstractions that make real-time streaming
more accessible and understandable to developers, regardless of their familiarity with
streaming technologies.

Our exploration delves into the core principles of streaming databases, exposing how
they empower developers to take on real-time data processing use cases within the
familiar confines of a database environment. Focusing on practicality and usability,
we unveil how streaming databases democratize real-time data analytics, paving the
way for innovative applications and insights.

Whether you're a seasoned database engineer or a novice developer, this book guides
you to unlocking the full potential of streaming databases and embracing the future
of data processing.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xXiii



Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/hdulay/streaming-databases.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless youre reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O'Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Streaming Databases
by Hubert Dulay and Ralph M. Debusmann (O’Reilly). Copyright 2024 Hubert Dulay
and Ralph M. Debusmann, 978-1-098-15483-7
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If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

For more than 40 years, O’Reilly Media has provided technol-
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O'Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/streaming-databases.

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
Watch us on YouTube: https://youtube.com/oreillymedia.
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CHAPTER1
Streaming Foundations

The heros journey always begins with the call. One way or another, a guide must come to
say, “Look, you're in Sleepy Land. Wake. Come on a trip. There is a whole aspect of your
consciousness, your being, that’s not been touched. So you’re at home here? Well, there’s not
enough of you there.” And so it starts.

—Joseph Campbell, Reflections on the Art of Living: A Joseph Campbell Companion

The streaming database is a concept born from over a decade of processing and serv-
ing data. The evolution leading to the advent of streaming databases is rooted in the
broader history of database management systems, data processing, and the changing
demands of the digital age. To understand this evolution, let’s take a historical journey
through the key milestones that have shaped the development of streaming databases.

The rise of the internet and the explosive growth of digital data in the late 20th
century led to the need for more scalable and flexible data management solutions.
Data warehouses and batch-oriented processing frameworks like Hadoop emerged to
address these challenges of the size of data during this era.

The term “big data” was and still is used to refer not only to the size of data but also
to all solutions that store and process data that is extremely large. Big data cannot fit
on a single computer or server. You need to divide it up into smaller, equal-sized parts
and store them in multiple computers. Systems like Hadoop and MapReduce became
popular because they enabled distributed storage and processing.

This led to the idea of using distributed streaming to move large volumes of data
into Hadoop. Apache Kafka emerged as one such messaging service that was designed
to handle big data. Not only did it provide a way to move data from system to
system, but it also provided a way to access data in motion—in real time. It was a
development that led to a new wave of demand for real-time streaming use cases.




New technologies, such as Apache Flink and Apache Spark, were developed and were
able to meet these new expectations. As distributed frameworks for batch processing
and streaming, they could process data across many servers and provide analytical
results. When coupled with Kafka, the trio provided a solution that could support
streaming real-time analytical use cases. We'll discuss stream processors in more
detail in Chapter 2.

In the mid-2010s, simpler and better paradigms in streaming emerged to increase
the scale of real-time data processing. This included two new stream processing
frameworks, Apache Kafka Streams (KStreams) and Apache Samza. KStreams and
Samza were the first to implement materialized views, which made the stream look
and feel more like a database.

Martin Kleppmann took the pairing of databases and streaming even further. In
his 2015 talk, “Turning the Database Inside-Out”, he described a way to implement
stream processing that takes internal database features and externalizes them in
real-time streams. This approach led to more scalable, resilient, and real-time stream
processing systems.

One of the problems of stream processing was (and still is) that it’s harder to use than
batch processing. There are fewer abstractions, and much more deep-down tech is
shining through. To implement stream processing for their use case, data engineers
now had to consider data order, consistency for accurate processing, fault tolerance,
resilience, scalability, and more. This became a hurdle that deterred data teams from
attempting to use streaming. As a result, most have opted to continue using databases
to transform data and running the data processing in batches at the expense of not
meeting performance requirements.

In this book, we hope to make streaming and stream processing more accessible to
those who are used to working with databases. We'll start, as Kleppmann did, by
talking about how to turn the database inside out.

Turning the Database Inside Out

Martin Kleppmann is a distinguished software developer who gave the thought-
provoking talk “Turning the Database Inside-Out” He introduced Apache Samza
as a newer way of implementing stream processing that takes internal database
features and externalizes them in real-time streams. His thought leadership led to the
paradigm shift of introducing materialized views to stream processing.

Really it’s a surreptitious attempt to take the database architecture we know and turn it
inside out.

—DMartin Kleppmann, “Turning the Database Inside-Out”
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However, stream processing is still hard, and hence, many data engineers have, over
time, opted to continue using databases to transform data and run it in batches even
if it meant not meeting SLA requirements.

As we move forward in this book, we will attempt to make streaming and stream
processing more accessible to data engineers by bringing them back into the database.
But before we can do this, we need to understand why Kleppmann decided to
take apart the database and why he chose the specific database features in his new
paradigm to achieve real-time data processing.

Externalizing Database Features

Kleppmann identified two important features in the database: the write-ahead log
(WAL) and the materialized view. As it turns out, these features naturally have
streaming characteristics that provide a better way of processing data in real time.

Write-Ahead Log

The WAL is a mechanism that allows databases to ensure data durability and consis-
tency. The spinning disks that databases write data upon don’t offer transactions. So
databases are challenged to provide transactionality atop a device that doesn't offer
transactions. WALs are a way for databases to provide transactionality without having
transactional disks.

A transaction in a database refers to a sequence of one or more database operations
executed as a single unit of work. These operations can include data insertion
(INSERT), data modification (UPDATE), or data deletion (DELETE) (see Figure 1-1).

New transaction

Insert
Insert
Update
Insert
Update
Delete
Insert
Update
Update
Insert

Figure 1-1. A write-ahead log that captures change events in a database

The WAL acts as a buffer that can be overwritten as new changes are made. The WAL
persists the change to disk, as shown in Figure 1-2.
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Figure 1-2. Database writing to disk through the write-ahead log
When saving transactions on disk, the database follows these steps:

The client starts a transaction by issuing a BEGIN statement.
The database writes a record to the WAL indicating that a transaction has started.
The client makes changes to the database data.

The client commits the transaction by issuing a COMMIT statement.

A S A

The database writes a record to the WAL indicating that the transaction has been
committed.

6. The changes made by the transaction are written to disk.

When a transaction starts, the database will write a record to the WAL indicating that
the transaction has started. The database will then proceed to make changes to the
database data. However, the changes will not be written to disk until the transaction
commits. Also, if the database crashes or loses power, the changes can be replayed
from the log, and the database can be restored to a consistent state.’

The WAL provides a mechanism to capture database transactions in real time by
allowing external systems to subscribe to it. One of these use cases is for database dis-
aster recovery. By reading the WAL, data can be replicated to a secondary database.
If the primary database were to suffer an outage, database clients can failover to the
secondary database, which is a replica of the primary database (see Figure 1-3).

‘ Primary | ‘Secondary

Figure 1-3. The WAL is used to replicate data from a primary database to a secondary in
the case of a primary database outage

1 There are other types of recovery algorithms in addition to what we describe (roll forward/replay). Changes
to the actual data could be also applied before the COMMIT is done (given that the WAL contains the old value),
and uncommitted transactions could then be rolled back.
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Since WALs are receiving transactions in real time, they naturally have perfect
semantics for streaming. Clients can subscribe to the WAL and forward their transac-
tions to a streaming platform for other systems to consume. These other systems
can also build replicas that represent the original primary database. The semantics of
the WAL construct are mimicked in streaming platforms like Kafka in their storage
implementation. Streaming platforms extend the database WAL externally for other
applications and systems to use.

There are other streaming-related concepts about the WAL. After the transactions are
committed, the WAL is not cleared immediately. Instead, it follows a process called
checkpointing, which involves periodically flushing the transactions of the WAL to the
main data files. Checkpointing serves several purposes, one of which is ensuring that
some committed changes have been permanently written to the data files, reducing
the amount of data that needs to be replayed during recovery after a crash. This helps
speed up the recovery process. Also, as transactions are committed, the WAL grows
over time. Checkpointing helps control the size of the WAL by flushing some of its
contents to the data files. This prevents the WAL from becoming excessively large
and consuming too much disk space. Checkpointing and replaying transactions are
features you will also find in stream processing for very similar reasons.

We mentioned that the WAL construct that normally lives internally in the database
can be represented externally in streaming platforms like Kafka, which provide WAL-
like semantics when replicating data from system to system.

Streaming Platforms

Streaming platforms like Apache Kafka are distributed, scalable, and fault-tolerant
systems designed to handle real-time data streams. They provide a powerful infra-
structure for ingesting, storing, and processing large volumes of continuous data
from various sources.

Most streaming platforms have a construct called partitions. These constructs mimic
WALs in a database. Transactions are appended to partitions like transactions to a
WAL. Streaming platforms can hold many partitions to distribute the stream load
to promote horizontal scaling. Partitions are grouped in abstractions called topics to
which applications either publish or consume transactions.

By publishing the transactions to the streaming platform, you've published it to all
subscribers who may want to consume it. This is called a publish and subscribe model,
and it’s critical to allow multiple disparate consumers to use these transactions.

For other streaming platforms, the names of these constructs may be different.
Table 1-1 lists some alternative streaming platforms. Apache Kafka is the most
popular streaming platform used today. In Apache Kafka, the abstraction of these
constructs is called a topic, and the lower-level partitions are called partitions.
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Table 1-1. Alternative streaming platforms

Streaming Description Implementation Topic

platform name
name

Memphis Memphis is an open source next- Golang Station
generation alternative to traditional
message brokers.

Apache Pulsar  Apache Pulsar is an open source Java Topic
distributed messaging and streaming
platform that was originally developed at
Yahoo!

Redpanda Redpanda is an open source streaming ++ Topic
platform designed to provide a high-
performance, scalable, and reliable way
to handle real-time data streams.

WarpStream  WarpStream is a Kafka-compatible data ~ Golang Topic
streaming platform built directly on top of
S3.

Gazette Gazette is a lightweight open source Golang Selector

streaming platform.

Pravega Pravega is a stream processor that Java Stream
provides streaming storage abstraction for
continuously generated and unbounded
data.

Partition
name

Stream

Ledger

Partition

Partition

Journal

Stream
Segment

Kafka compliant

No

Yes—currently,
the Pulsar Kafka
wrapper supports
most of the
operations
offered by the
Kafka API.

Yes

Yes

No

Kafka adapter
available

In this book, we’ll use the terms “topic” and “partition” as the
names of the streaming platform constructs that hold real-time

streaming data.

Since Kafka is the most popular streaming platform used today, the last column in
Table 1-1 indicates if the streaming platform supports Kafka clients. This will allow
applications to swap out Kafka for another Kafka-compliant streaming platform.

As stated, a partition is a mechanism that streaming platforms use to scale themselves
out. The more partitions a topic has, the more it can distribute the data load.
This enables more consumer instances to process the transactions in parallel. The
way transactions get distributed across partitions is by using a key assigned to the
transaction. In Figure 1-4, the WAL in the database is read and stored into a topic in a
streaming platform—on a higher level of abstraction than just a disk.
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WAL Spinning disk

WAL
[Insert |Update| Delete |Update| Insert |Update| Delete |Update)—

Topic
Partition 1
[Insert |Update| Delete |Update| Insert |Update| Delete |UpdateJ
Partition 2

[Update| Delete | Delete | Deletel Insert | Insert | Delete |Update]

Figure 1-4. Topics in streaming platform can mimic a WAL and externalize it for other
systems to build replicas of the original source database

Instead of storing the data for others to query, the streaming platform reconstructs
the WAL and distributes the transactions onto separate partitions.? Reconstructing
the WAL exposes the transactions to other data systems to build replicas of the
primary database.

Partitions are immutable append-only logs that streaming platforms use to capture
and serve transactions. Many consumers can subscribe to them utilizing offsets.
Offsets correspond to the index or position of a transaction in the partition.’ Every
consumer of the topic has an offset pointer to keep track of their position in the
partition. This allows consumers to read and process the transactions in the partition
at their own pace. A side effect of this is that the streaming platform will have to
retain transactions in the partitions for a longer time than databases retain their
transactions in a WAL. The default retention in Kafka is 7 days. This gives a lot of
time for slow consumers to process the transactions in the topic. This property is also
configurable to allow even longer retention time as well.

Regarding Figure 1-4, the way you should think about publishing transactions to a
topic should be a lot different than writing to disk. The important fact about topics
in a streaming platform is that when transactions are published into them, they are
still considered streaming. Let’s use a water metaphor to help explain this. When you
consume water from a faucet, you would consider that fresh water. This is the same
with streaming platforms. When you consume transactions from a topic, they too

2 Transactions can span multiple records. In this case, the key for distributing the data onto partitions does not
directly correspond to the primary key in the source database.

3 Again, for simplicity, our transaction here only holds one record.
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are considered fresh. Conversely, if you bring a liter of water into your home and
don’t drink it for a while, it’s considered stale. Stale or stagnant water is susceptible to
bacterial growth and is unclean. The stale liter of water is more akin to batching of
data.

On the other hand, if you don’t use your faucets in over a month, the water sourced
from faucets may contain rust or debris, indicating the water has become stale. In this
case, water coming from faucets will not always be fresh. Streaming platforms tend
to have a mechanism that protects them from stale transactions. To avoid publishing
stale transactions, retention is applied to the topics. Transactions can be purged after
a retention period configured by the user of the streaming platform.

To recap, primary OLTP databases naturally write to a WAL when storing to spinning
disks. WALs can be used to replicate data to a secondary OLTP database for disaster
recovery scenarios. Streaming platforms like Kafka can be used to externalize the
database WAL using partitions abstracted by topics to provide the transactions that
were originally in the WAL to other systems. These systems subscribe to the topic
so that they can build their replica of the tables in the original primary OLTP data-
base just like the secondary OLTP database did (see Figure 1-5). Hence, streaming
platforms can be used to make the WALs previously hidden in your OLTP database
systems publicly available—becoming a tool for synchronizing your database systems
across your entire organization.

OLTP

database Topic

WAL

Figure 1-5. The partitions in a topic can hold the transactions from a source OLTP
database and publish the transactions for other systems to build replica tables

With a similar approach, we can build materialized views in stream processing
platforms.

Materialized Views

In typical OLTP databases, materialized views are special types of database objects
that store the results of a precomputed query or aggregation. Unlike regular views,
which are virtual and dynamically generate their results based on the underlying
data, materialized views store the actual data, making them physically stored in the
database.

8 | Chapter 1: Streaming Foundations



The purpose of materialized views is to improve the performance of complex queries
or aggregations by precomputing and storing the results. When a query references a
materialized view, the database can quickly retrieve the precomputed data from the
materialized view instead of recalculating it from the base data tables. This can signif-
icantly reduce the query execution time and improve overall database performance,
especially for large and resource-intensive queries.

The materialization process in databases usually needs to be refreshed manually to
keep the stored results fresh. Example 1-1 shows an example of how to refresh a
materialized view in a Postgres database, a popular OLTP database.

Example 1-1. Refreshing a materialized view in Postgres
REFRESH MATERIALIZED VIEW CONCURRENTLY product_sales;

By enabling materialized views to be updated, the stored data will always be fresh;
that is, the stored data is real-time data. This characteristic makes materialized views
fit naturally into streaming frameworks.

In the previous section, streaming platforms could hold transactions from OLTP
WALS. These partitions mimic the WAL construct, so other systems can build repli-
cas of tables in the original OLTP database. This same approach can be applied in
stream processors to build tabular structures (see Figure 1-6).

OLTP
database

WAL

Topic

Other systems
( — )

>
Stream processor
-~

Figure 1-6. Replicas can also be built in stream processors the same way other systems
can build replicas

We'll talk more about stream processing in Chapter 2. We also have dedicated
Chapter 3 to materialized views because their importance to streaming databases
is substantial. To best explain streaming databases, it helps to set up a simple use case
that we can follow to the end. Along the way, we'll identify each system needed to
accomplish the goal of the use case.
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Use Case: Clickstream Analysis

Let’s start by defining a simple use case. This use case will help create a path to a
better understanding of streaming databases, how they can resolve a real-time use
case, and the advantages they bring when architecting a real-time solution.

Our use case will involve clickstream data. Clickstream data refers to a sequence of
recorded events that capture the actions and interactions of users as they navigate
through a website, application, or digital platform. It provides a detailed record of
the clicks, page views, and other interactions performed by users during their online
sessions.

Clickstream data can be used for various purposes, like personalization, targeted
advertising, user segmentation, fraud detection, and conversion rate optimization. It
plays a crucial role in web analytics, marketing analytics, user experience research,
and other data-driven disciplines. In Figure 1-7, a customer clicks on a product,
generating a click event that is captured by a microservice. That click event is sent to
downstream analytical consumption.

Event

X

Product

Customer

Figure 1-7. A user clicks on a green T-shirt, generating a click event captured by a
microservice

In our use case, a 24-year-old male customer who lives in Woodstock, NY, clicks on
a green T-shirt using a phone application. Our goal is to provide clickstream data
to end users so that they can perform analytics and derive insights that help make
data-driven decisions.

Let’s say in this example, we want to capture click events and associate them with
existing customers. This will help analytics to provide targeted marketing and to
create a more personalized experience.

We call the data going into a WAL in an OLTP database transactions. We call the
clicks we capture from a user-facing application in our use case events. They both will
eventually end up in a streaming platform like Kafka so that we can eventually join
them together.
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Understanding Transactions and Events

So far, we have called the data that originated from a database a transaction. These
are the inserts, updates, and deletes that have occurred and got written to the WAL
and subsequently got written into a topic in a streaming platform. We can also call
these transactions change events or just events. They are insert events, update events,
and delete events, just like a click on an application is an event.

Even though they are both events, it’s extremely important to understand that they
are still different types of events. One comes from changes to tables in a database,
and the other comes from the actions taken on an application. To discern their
differences, we'll need to briefly go over domain-driven design.

Domain-Driven Design

In software, engineers will model their applications using objects that exist in their
business domain. For example, if part of your business includes customers, then you
will create an object in the application that represents a customer. You would do this
for every object included in the business domain.

Let’s build a model that describes the objects in our use case. Customers and products
are objects that would be part of the domain model that defines this application.
These objects are called entities. Entities live in the OLTP database and undergo
change events like inserts, updates, and deletes.

Events like click events capture the interactions between the entities in the applica-
tion. In our example, a customer clicks on a product. The customer and product
are the objects, and the action is the click of the product. This is represented in
Figure 1-7.

We can use the structure of a sentence to describe this relationship. A sentence
contains a subject, verb, and an object. The subject in a sentence generally is the entity
that’s carrying out an action. The verb describes the action. Lastly, the object is the
entity upon which the action is being applied. In our use case, the sentence is:

The customer clicked on a product.

Click events tend to provide a lot more information, so we can expand this sentence
with more description:

The customer with IP 111.11.1111 clicked on product 12345 on 07/21/2023 at
11:20 am Eastern time.

Notice that we don’t know the name of the customer or product, nor do we know
the customer’s location or age. We also don’t know the product type or its color. We

have to enrich the clickstream event with customer and product information before
delivering it for analysis.
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One question you could ask is, “Why can’t the click event also be stored in the
database?” This is a valid question. Why not use the WAL to read the click events
together with the entities? One major reason is the OLTP database could run out
of space. If you think about how many times a customer clicks on items in an
application, it would not be sensible to store all that data in an OLTP database. While
entities tend to change very slowly, they can be deleted or updated. In contrast, click
events are immutable and would be inserted only into a table. This pattern is also
called append-only. Click events are better captured using a microservice that writes
to a streaming platform directly.

Another difference to note is that the action event is being enriched, and the entity
events are being used to enrich. Knowing the differences between action events
and entity change events will be significant throughout this book. Each type will be
handled differently as they flow through the streaming data pipeline until they are
served to the end user.

Context Enrichment

All forms of analytical consumption need a context in which the event occurred. The
click event, as noted earlier, only contains the information related to the click but
neither the customer nor the product information. Typically, entity information is not
available at the time of the click event. If it were, collecting and enriching clickstream
data in the application would not be economical or scalable because of the size of the
data and the latency it would generate.

The better way to enrich the click event is to perform it downstream of a real-time
data pipeline. Having this additional information will help make more informed
decisions. For example, if the customer likes green shirts and is a male in his 20s,
knowing that information will help enable smarter decisions and make the applica-
tion more personalized.

In our use case, the click event is associated with two other entities in the business
domain: the customer and the clicked product. Combining these details of the enti-
ties with the click event will create a more compelling context needed for real-time
analytics. Compelling analytics can tell us more about the event and how to quickly
react to issues like deciding to increase the inventory of men’s green shirts.

We know entities that are part of the domain of the application exist in the OLTP
database. We also know that changes to these entities are written to the WAL. But we
did not talk about how the events in the WAL make it into a topic in a streaming
platform, where other systems can consume change events and build their replica of
the entities in the application. The replica will enable this enrichment of the click
event with product and customer information in a stream processor downstream.
The process of creating this replica is called change data capture.
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Change Data Capture

Change data capture (CDC) is a technique used in databases and data integration sys-
tems to capture and track changes made to the data in real time. The primary goal of
CDC is to identify and capture any change transactions (inserts, updates, or deletes)
made to specific tables and make the changes events available for consumption by
downstream systems or processes.

When performing CDC, you can either subscribe to a stream of transactions that
have been executed or you can capture a snapshot. Snapshots are not change events
as you would see in WAL. In database terminology, a snapshot refers to a copy of a
database (or table in a database) taken at a particular point in time, just like taking
a snapshot with a camera. Streams sourced from databases are akin to compressed
videos, where each frame of the video isn’'t a picture (or snapshot) but pixel changes
from one frame to the next.

The type of video that provides only changes in each frame versus
snapshots to save processing time is called delta encoding. Delta
encoding is a video compression technique that stores only the dif-
ferences between consecutive frames. This can significantly reduce
the size of the video file while still preserving the original video
quality.

CDC can be implemented in a few ways:

Listening to the WAL
This is the approach we've been discussing in this chapter and the preferred
way of capturing changes in a database. It's done in real time and naturally is
streaming.

The WAL approach to capturing change transactions is typi-
cally used by relational OLTP databases like PostgreSQL and
MySQL. We talk about it because of how similar it is to the
constructs that hold streams in streaming platforms. Some
NoSQL transactional databases may not follow this approach
but have some other mechanism to capture changes.

Comparing snapshots
This involves taking a snapshot of a table and comparing it to a previous snap-
shot to filter out changes. This act can be process intensive, especially if the table
is large. Also, this approach is not true real time. Snapshots are taken in intervals.
Changes that include a reversion that occurs in between intervals would be lost.
Suspicious change and reversion events might sometimes go undetected.
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Comparing update timestamps
This approach saves the timestamp of the last batch of changes and filters for
records with update timestamps that occur after it. This approach requires an
update column included in the table that needs to be updated anytime the record
is changed. This approach is also not in real time.

Fortunately, most OLTP databases have some way of reading their WAL. Some OLTP
databases also have native support for submitting events to streaming platforms or
other systems. For example, CockroachDB provides a way to create a change feed
from itself to:

« Kafka
+ Google Cloud Pub/Sub

o Cloud Storage (Amazon S3, Google Cloud Storage, Azure Storage)
» Webhook

This avoids requiring a client to subscribe to the WAL in CockroachDB and, instead,
CockroachDB pushes change events to Kafka directly (see Example 1-2). This is a
preferred pattern because it significantly reduces the architectural complexity of the
streaming data pipeline.

Example 1-2. Creating a change feed from CockroachDB to Kafka
CREATE CHANGEFEED FOR TABLE customer, product INTO 'kafka://localhost:9092';

Having this feature natively in OLTP databases fundamentally brings them closer to
streaming databases. We'll discuss streaming databases in Chapter 5.

Even if you were Martin Kleppmann himself, Chapters 1 to 4 are

critical reading before Chapter 5. Please don't skip ahead because

they provide foundational information supporting the introduction
\ of streaming databases in Chapter 5.

As stated, this push mechanism reduces architectural complexity. Other OLTP data-
bases that don’t have this feature require additional components called connectors to
extract data and publish them into a topic in a streaming platform.
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Connectors

In streaming, we distinguish two main types of connectors:

Source connectors
Source connectors read data from a data source system (e.g., a database) and
make that data available as an event stream.

Sink connectors
Sink connectors consume data from an event stream and write that data to a sink
system (a database again or a data warehouse, a data lake, etc.).

The two types of connectors are depicted in Figure 1-8. In most cases, source connec-
tors either transform data at rest into streaming data (aka data in motion), whereas
sink connectors transform streaming data into data at rest.

Source system Streaming platform
(dataatrest) (datainmotion) |

Streaming platform i
L (data in motion) connector

Figure 1-8. Source connectors (top) and sink connectors (bottom)

Sink system
(dataat rest)

With data at rest, we mean that the data is sitting in a database or a filesystem and
not moving. Data at rest tends to get processed using batching or microbatching
techniques.* A dataset batched from one source system to another has a beginning
and an end. The applications that process batched data can be started using a job
scheduler like cron, and the data processing ends when the dataset ends.

This is the opposite of streaming, or data in motion. Data in motion implies that
there is neither a beginning nor an end to the data. Applications that process stream-
ing data are always running and listening for new data to arrive on the stream.

Now let’s dive into how source and sink connectors can be implemented.

4 It’s debatable whether microbatching is actually closer to streaming or batch.
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Connector Middleware

Connector middleware solutions such as Kafka Connect, Meroxa, Striim, or Stream-
Sets already provide a large number of connectors out of the box and are often
extensible to serve further sources and sinks. Connector middlewares also offer
horizontal scaling, monitoring, and other required features, especially for production
deployments.

Kafka Connect is part of the Apache Kafka project. It is a distributed cluster in which
Kafka connectors are deployed to run in parallel. These types of deployments create
complexity in the streaming architecture. These clusters are bulky and maintenance
of them is arduous.

If you have a large amount of data sources and sinks, these clusters often become
costly and consume a lot of resources. Delegation of this integration is better solved
by embedding the connectors into the systems themselves.

Embedded

An increasing number of databases offer embedded connectors to streaming plat-
forms. As we stated earlier, CockroachDB is an example of this. An even larger set of
databases has implemented embedded connectors; that is, they can consume data off
the event stream themselves. Examples are Apache Druid, Apache Pinot, ClickHouse,
StarRocks, Apache Doris, and Rockset.

As we stated, having databases solve the integration to streaming platforms gets them
closer to becoming streaming databases. If you enable databases with the ability
to pull and push data into streaming platforms, streaming will naturally become a
first-class citizen in the database.

Custom-Built

Connectors can be custom-built, for example, by implementing a dedicated microser-
vice. The advantage of this approach is its flexibility; the downside is clearly the
need to “reinvent the wheel”’—it often doesn’t make sense to implement connectors
from scratch, especially in light of the plethora of existing powerful and scalable
open source connectors (e.g., the Debezium source connectors for the Kafka Connect
middleware).

In Figure 1-9, we have illustrated the three ways of implementing connectors (the
illustration only shows source connectors for simplicity; the corresponding sink
connector implementations would just be a mirror image of this illustration).
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Figure 1-9. Ways of implementing connectors via connector middleware, built-in connec-
tot, or custom-built connector

In the remainder of this book, we'll abstract away from the actual
implementation of the connectors. When we speak about a “con-
nector;” this can be a connector based on a connector middleware,
a built-in connector, or a custom-built one.

Back to our example use case. Here, we want to enrich click events with product and
customer information. Most likely, this data would reside in a transactional database
or online transactional processing (OLTP) database. To make this data available as an
event stream, we need to use a source connector for that database.

An OLTP database is also called an operational database, and it
refers to a type of database designed to handle a high volume
of transactions. OLTP databases are designed to provide fast data
access and updates, which is important for applications that require
real-time data processing.
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In Figure 1-10, you can see that the product and customer information is stored in
an OLTP database. Two database source connectors read from this database and write
them to topics (“Product topic” and “Customer topic”). The click events are written

to the “Click event topic”
. Click event
topic

X

Product

EEEEEE—
Customer
) Product

- topic

P‘ Q) q  Customer
Application e

base Database
connectors
) ——

Figure 1-10. Customer and product data in the database

Summary

In this chapter, we introduced some foundational streaming concepts by introducing
Martin Kleppmann and his approach to turning the database inside out. By doing
so, we identified two features that lay the foundation for streaming and stream
processing: the database WAL and the materialized view.

We learned that the topics in streaming platforms are externalized database WALs for
other systems to subscribe to. These other systems can then build replicas of tables
from the source database using, for example, CDC (or other forms of connectors)
and perform their processing of the real-time data.

In the next chapter, we'll continue with the clickstream use case example and bring it
to the next step—the stream processing platform where the enrichment will occur.
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CHAPTER 2
Stream Processing Platforms

In Chapter 1, we introduced a simple use case of getting real-time data to consumers.
We also introduced connectors and how they can convert data at rest into data in
motion (or event streams) and then publish them into topics in streaming platforms.

The event streams can now be read, but they most likely aren’t yet in a format
consumers can use. Events tend to need cleansing and preparation before they
undergo analytical processing. Events also need to be enriched with context for
them to be useful enough to derive insights. Analytical processing heavily relies on
the accuracy and reliability of the data. By addressing issues such as missing values,
inconsistencies, duplicates, and outliers, data quality is improved, leading to more
reliable and accurate analytical results.

In Figure 2-1, event data preparation can also significantly impact the performance
of analytical queries. By optimizing the data layout, indexing, and partitioning, the
efficiency of data retrieval and processing can be improved. This includes techniques
such as data denormalization, columnar storage, and indexing strategies tailored
for the analytical workload. Well-prepared data can reduce the processing time and
enable faster insights. We will cover denormalization, columnar storage, and indexing
strategies in Chapter 4 when we discuss how to serve analytical data to consumers.

cl P Enrich

Source Destination

Figure 2-1. Cleanse, prepare, and enrich event data prior to reaching the destination

Event data preparation also plays a crucial role in ensuring data governance and
compliance. This involves enforcing data security measures, anonymizing sensitive
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information, and adhering to privacy regulations. By properly preparing the data,
organizations can maintain data integrity, protect privacy, and comply with legal and
ethical requirements.

Overall, data preparation in a data pipeline is essential to ensuring that the data
is accurate, consistent, and well-structured for effective analytical processing. It
enhances the reliability of analytical results, improves performance, and enables the
extraction of meaningful insights.

In Figure 2-1, the dotted line from the “Topic” to the “Destination” represents the
stream processing platform. The role of the stream processing platform is to take on
the tasks of cleansing, preparing, and enriching event data as a preprocessing step
before reaching the destination data store.

In this book, we will call the tasks of cleansing, preparation, and
enrichment of event data “transformations” that get executed in a
streaming data pipeline.

Transformation tasks tend to be resource consuming and process intensive. It’s best
to complete transformations as part of a preprocessing step in a data pipeline before
writing to a data store that serves it to consumers. The earlier the transformations
can be done, the better—as executing them incrementally, seeing only small amounts
of data at once, is much less resource consuming than having to scour through large
amounts of data already at rest later.

The destination data stores are typically online analytical processing, or OLAP, data
stores. OLAP data stores allow users to invoke analytical queries on the data. Real-
time OLAP (RTOLAP) data stores are also OLAP but are optimized for serving
real-time analytical data.

It's best practice to avoid process-intensive tasks in the OLAP that serve analytics
to the consumers. OLAPs need to reserve their resources for quickly responding
to analytical queries that answer questions related to the business or provide fast
insights to customers—another reason for executing the preprocessing as early as
possible in the pipeline.

OLAPs are data stores optimized for analytical reads. They tend
to be columnar-based data stores used to power user-facing dash-
boards and applications. OLTPs are databases that capture infor-
mation from applications from which events originate. They are
optimized for writing and single-row lookups. OLTP databases
tend to be the source for CDC extraction mentioned in Chapter 1.
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In our clickstream use case, we will enrich the clickstream with customer and product
information. This will provide context to the click analytics, like the location of the
customer, the type of product, its color, and more. This information can enable more
precise predictions that can help businesses reduce costs immensely in time, lost
inventory, and customer satisfaction.

Some transformations are complex enough to require remembering information,
for example, if they require joining (like our use case) or for aggregations. That
information needs to be saved somewhere to be remembered. That place is called the
state store. These complex transformations are then called stateful transformations.

Stateful Transformations

In Chapter 1, we ended the data pipeline with events being written to a topic in a
streaming platform. This kept the events in a stream for consumers to subscribe to.
Do not confuse this with loading, or the “L” in ELT. At this point, all we've technically
done is extract the events from their source and put them into a topic. As for ELT,
this still keeps us in the “E” (extract) phase.

Streaming platforms like Kafka do not transform data in such a way that it can hold
state. Hence, more complex transformations, like aggregations, and joins cannot be
performed on Kafka directly—you need additional components like Katka Streams.

Data pipelines follow two types of patterns that are common approaches for data
integration and processing, but they differ in the sequence of their operations and can
be limited in streaming capabilities:

« Extract, transform, and load (ETL)
« Extract, load, and transform (ELT)

In ETL, data is first extracted from the source systems, which could be OLTP data-
bases, files, devices, or other data sources. The extraction process involves retrieving
the required events from these sources. Extraction is the job of the source connectors
we mentioned in Chapter 1.

In ETL, the “T” requires the streaming data to be temporarily held in a store. This
store holds the state of a transformation. In other words, stateful transformations
require maintaining and updating some information or context between multiple
input data elements. Here are a few examples:

Rolling averages
To calculate a rolling average, you need to keep track of the sum and count of
previous data elements. As new data arrives, you update the state by adding the
new value and removing the oldest value, allowing you to compute the average
over a sliding window.
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Sessionization
In web analytics or event processing, sessionization involves grouping related
events into sessions based on a certain set of criteria (e.g., user activity within a
specific time threshold). To accomplish this, you need to maintain state informa-
tion about ongoing sessions, such as start time, end time, and the list of events
belonging to each session.

Deduplication
Removing duplicate events from a stream often requires maintaining a record of
previously seen events. As new events arrive, you compare them (typically using
their primary keys) against the stored state to identify and filter out duplicates.

Windowed aggregations
Aggregations such as sum, count, or maximum that operate over windows of
data are required to hold the state to accumulate values within each window. As
new data points arrive, you update the state accordingly and produce aggregated
results periodically.

Machine learning models
In scenarios where you continuously update and refine machine learning models
using streaming data, the models themselves require state. The model state holds
information about the learned parameters, weights, or other relevant data, which
gets updated with each new data point.

These examples demonstrate how maintaining state in streaming transformations
enables computations that span across multiple data elements, allowing for more
complex and meaningful analysis of streaming data. Pure streaming platforms like
Kafka, again, do not have this ability without deploying additional ecosystem compo-
nents like Kafka Streams-based microservices.

Some streaming platforms have stateless transformations built in.
These are called functions or single message transforms—transfor-
mations that don’t require maintaining state. These would include
string transformations like capitalization or simple math opera-
tions between columns. They do not qualify as stateful transforma-
tions in ETL or ELT.

As stated earlier, we have only completed the “E” for the extraction of data. Simply
putting events in a topic does not qualify as “load” in ETL or ELT because the pure
streaming platform cannot execute stateful transformations. Also, the pure streaming
platform cannot directly serve user-facing consumers or applications. Remember,
these consumers require cleansing, preparation, and enrichment of the events—and
none of these steps has yet been completed when the events have initially landed on
the streaming platform.
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This is where stream processing platforms come in. Note that we use the terms
stream processing platform, stream processing system, stream processing framework, and
stream processor interchangeably throughout the rest of this book. Stream processing
platforms have mechanisms to hold state and perform complex transformations.

These stateful transformations live within a data pipeline. We call the extraction,
transformation, and loading (ETL) into an OLAP data store a data pipeline. In our
case, it’s a streaming data pipeline (streaming ETL). Data pipelines play a crucial role
in real-time analytics. They are responsible for collecting data from various sources,
transforming it into a format that can be analyzed, and promptly delivering it to
analytics tools and applications.

Data Pipelines

Continuing the water metaphor introduced in Chapter 1, streaming data pipelines
are like the pipes in your home. In Figure 2-2, water in your pipes can contain
minerals and need to be filtered or heated for user consumption. Just like water pipes,
streaming data pipelines route event data through a series of transformations before
reaching the analytical consumer.

Figure 2-2. Streaming data pipelines follow the plumbing metaphor

One of the roles of the data pipeline is to move the data from the operational data
plane to the analytical data plane. The operational data plane is where the applica-
tions live, including microservices and OLTP databases. The analytical data plane
is where the analytical systems live—like data warehouses, data lakes, lakehouses—
all kinds of OLAP data stores. Data pipelines live in between the operational and
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analytical data planes, transforming and integrating data from one to the other,
respectively. See Figure 2-3.
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Figure 2-3. How data moves from operational to analytical planes using streaming data
pipelines

Once the data is extracted, it undergoes transformation tasks previously mentioned to
convert it into a suitable format for the target system or data warehouse, or OLAP
data store (see Figure 2-4). The transformed data is typically stored temporarily in an

intermediate store.
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Figure 2-4. An ETL data pipeline that extracts from an OLTP source database, performs
stateful transformations, and writes to an OLAP datastore
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Lastly in ETL, the load operation loads the transformed data into the target system,
such as a data warehouse. This involves inserting the data into the appropriate tables
or structures within the target system.

Let’s return to our simple use case where a customer clicks on a green T-shirt on an
application. Figure 2-5 shows where we are now. On the left side, we capture data
coming from a phone application. The click events go to a microservice that forwards
the event to a topic in a streaming platform (“Click event topic”).

The product and customer information gets sent to the OLTP database. The arrow
that emits from the phone to the OLTP database would represent transactions made
on the customer or product. Transactions would either be an insert, an update, or
a delete. These transactions are the same transactions that are associated with CDC,
which we talked about in Chapter 1. The transactions in the WAL in the OLTP
database are consumed by a connector and are published to their corresponding

» «

topics (“Products topic,” “Customers topic”).

)
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Clicks Click event
topic

Microservice

Product
M | topic Transformation
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topic State store

OLAP Dashboard

Products and
customers

Figure 2-5. An ETL streaming data pipeline with connector and source and sink topics

All three topics—for click events, products, and customers—are consumed by the
stream processor that implements the stateful transformations of the events. The
result of the stream processor is published to a sink topic that is then consumed
by the OLAP data store. The OLAP data store then serves the analytical data to the
dashboard for data analysts.

As you can see in Figure 2-5, ETL supports streaming nicely because the transforma-
tion is done in the stream processing platform. After all, the data is kept in motion.
The transformation is performed before loading the data into a destination store (or
OLAP) that serves the data to the consumers. This approach avoids executing the
(pre-)processing in the destination data store again and again for each served query.
Remember, preprocessing tasks are resource consuming and process intensive. In the
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data-serving data store, we need to reserve these resources to serve the data and not
to transform it.

ELT Limitations

In ELT, the transformation and load tasks are transposed, which makes this approach
more flexible but also causes some limitations. The transformation is executed in the
target system instead of transforming in the data pipeline. Without needing to hold
the state of the transformation, ELT data pipelines are much simpler and do not use
stateful stream processing. By loading the data into the target system (most likely
a database that can perform transformations), the data has been removed from the
stream and placed at rest. The data pipeline is no longer considered real time because
the transformation needs to be either scheduled or triggered to run at a time interval.
This approach is considered batching.

A SQL statement is triggered to run on the destination data store. The SQL statement
has transformation logic, hence the “T” at the end of ELT. Let’s look into this in
depth.

Figure 2-6 illustrates the ELT process:
1. The data gets extracted from the OLTP database.

2. The data gets loaded into the OLAP datastore.
3. The SQL that transforms the data gets executed when the load completes.

®SQL
transform
Extract Load .
OLAP

Figure 2-6. An ELT data pipeline that forces transformations in the destination
data store

The invocation of the SQL statement in the destination data store would only get
triggered after the “load” has been completed. This implies that the data flowing
through the data pipeline is batched because batches have an end. If the data was a
stream, it would never end, and thus, it would become hard to find out when the SQL
would have to be executed. See Figure 2-7.

26 | Chapter2: Stream Processing Platforms



When does the data

stop so I can run?
SQL
transform
Stream .
- ------------------ 4
OLTP OLAP

Figure 2-7. An ELT data pipeline failing to transform events

In real-time streaming use cases, the data pipeline should delay persisting data into
the destination until the transformations are complete and the data ready for serving.
At first glance, ELT is not at all a good fit for streaming.

Stream Processing with ELT

However, there is a way that ELT can support streaming real-time use cases. This
can only be done by leveraging the capabilities of modern streaming platforms and
real-time data processing frameworks. Here’s how ELT can be applied to streaming
real-time use cases:

Extract
In ELT, the extraction step involves retrieving data from streaming sources,
such as message queues, event streams, or real-time data feeds. These sources
continuously produce data in real time, and ELT can extract this data stream for
further processing.

Load
The extracted data is loaded into a target system that supports streaming data
ingestion and storage. This could be a streaming platform or data store designed
to handle high-velocity and high-volume data streams in real time. The target
system should be capable of ingesting the streaming data efficiently and storing it
in a manner that allows for real-time processing.

Transform
In ELT, the transformation step occurs after the data is loaded into the target
system, such as real-time data processing frameworks like Apache Flink, Apache
Kafka Streams, or any stateful stream processing platform.

Figure 2-8 shows how ELT can work using a stream processing platform as its target.
In this case, the stream can either be a connector extracting data from an OLTP
database, or the stream can be a streaming platform like Kafka. However, as many
stream processing platforms like Flink do not have a persistence layer (counting out
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their state stores), the result of the transformation step would have to be brought to,
for example, a database to enable queries. Streaming databases do have a persistence
layer and could also be a target system enabling this architectural pattern. We will
revisit this when we finally talk about streaming databases in Chapter 5.

sSaL
transform
- Stream Stream
------------------ P processing
OLTP platform

Figure 2-8. ELT with a stream processing platform as the target

By adopting streaming platforms and stateful stream processors, ELT can effectively
handle streaming real-time use cases. The key factors for deciding between ETL and
ELT include the scalability and performance of the target system, efficient streaming
data ingestion, and the ability to perform stateful transformations and analytics on
the streaming data.

Stream Processors

Stream processors are software platforms or tools that enable the processing of
continuous data streams in real time. Most importantly, they can perform stateful
transformations because they have a built-in state store.! These transformations of
event data are necessary for consumers to derive the analytical insights that they
need.

Popular Stream Processors

Here is a selection of popular stream processors:

o Apache Kafka Streams is a stream processing library for JVM-based program-
ming languages that is part of the Apache Kafka project. It allows developers
to build real-time applications and microservices that consume, process, and
produce streams of data from/to Kafka.

o Apache Flink is a stream processor that supports both batch and stream process-
ing and can be connected to a large variety of sources and sinks, including
Kafka, Pulsar, and Kinesis, as well as databases like MongoDB and Elasticsearch.

1 There are (typically older) stream processors like Apache Storm that don’t have built-in state support, but we
are focusing on the majority of stream processors here that do.
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Flink views batch as a special case of streaming (streaming with bounded data).
Contrary to Kafka Streams, Flink is not a library but runs on its own cluster.

o Spark Structured Streaming is a component of Apache Spark that enables stream
processing. It supports a large variety of connectors and is also cluster based. It
is set apart from other stream processors like Kafka Streams, Flink, and Samza
by making use of mini-batching instead of native stream processing—for Spark,
streaming is a special case of batch rather than the other way around, as in Flink.

o Apache Samza is a stream processor developed by LinkedIn. It supports Kafka,
Azure Event Hubs, Kinesis, and HDFS and is also cluster based like Flink.

o Apache Beam is not a stream processor itself but a unified programming model
and set of software development kits (SDKs) for building data processing pipe-
lines. It provides an abstraction that allows developers to write data-processing
jobs that can be executed on various distributed processing engines, such as
Apache Flink, Apache Spark, Apache Samza, and Google Cloud Dataflow.

Newer Stream Processors

We continue with a selection of newer stream processors:

Quix Streams
A C#/Python-based stream processing library comparable to Kafka Streams for
the JVM. Quix Streams also supports streaming data frames that behave similarly
to data frames in, for example, Pandas or Spark while being incrementally upda-
ted under the covers.

Bytewax
A Python-based stream processing library—comparable to Kafka Streams—mak-
ing use of timely dataflow as the underlying stream processing engine.

Pathway
A Python-based stream processing library. It is based on Differential Dataflow
(DD) as the underlying stream processing engine.

Estuary Flow
A stream processor that supports a large variety of connectors. It is cluster based.

These stream processing frameworks provide features like event-time processing,
windowing, state management, fault tolerance, scalability, and integration with vari-
ous data sources and sinks. They empower developers to build real-time data process-
ing pipelines and enable applications that can react to data as it arrives, making them
valuable tools for handling streaming data in a variety of use cases.
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These lists only include stream processors but not streaming data-
bases. Streaming databases can also perform stateful transforma-
tions. We will introduce streaming databases in Chapter 5.

Although these stream processors are very powerful, not all of them support mate-
rialized views. Materialized views represent data in a way that is reminiscent of a
database. This capability is very useful for the implementation of real-time analytics
use cases.

At the time of writing, the following stream processors from the aforementioned list
support materialized views:

 Kafka Streams (KTable, GlobalKTable)
o Samza (Table)
o Pathway (Table)

Emulating Materialized Views in Apache Spark

As of the release of this book, to our knowledge, Apache Spark doesn’t have built-in
support for creating materialized views. However, Apache Spark offers various fea-
tures and optimizations that can help achieve similar benefits to materialized views.
For example:

o You can leverage Sparks caching mechanism to cache intermediate or final
results of expensive computations. By caching the results in memory or disk,
subsequent queries can access the precomputed data, potentially improving
performance.

 Another approach in Spark is to use DataFrames or Datasets to define reusable
views or transformations that can be applied to input data. These views can be
saved and reused across multiple Spark applications, providing a form of data
abstraction and optimization.

o Additionally, like Flink and other stream processors, Spark integrates with exter-
nal data stores and systems, such as Apache Hive, Apache HBase, or other data-
bases, which might have native support for materialized views. In such cases, you
can leverage the capabilities of the underlying data store to create and manage
materialized views while using Spark for data processing and analytics tasks.

It's worth noting that the Apache Spark ecosystem is constantly evolving, and new
features and enhancements may be introduced in newer versions that extend its
capabilities. Therefore, it’s always recommended to refer to the official Apache Spark
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documentation and release notes for the latest information on materialized views or
similar optimizations.

Two Types of Streams

To better understand materialized views, you will need to understand the types of
streams in a stream processor. There are two types of real-time streams of data that
flow through stream processors—change and append-only streams. The best way to
describe these streams is to provide examples of how they get created. See Figure 2-9.
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Click event
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Microservice
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Figure 2-9. Click events are append streams, and change streams come from CDC
streams

In Figure 2-9, the topics are highlighted: Click event, Product, and Customer. The
click event stream is append-only, which means it contains discrete, distinct events.
Why do we know this? Clicks are always unique. Every click event is different, even
it it’s done on the same T-shirt by the same customer. The only difference is the time
it was clicked. In an append-only stream, the events are associated with a timestamp
that indicates when each event occurred. The timestamp provides temporal informa-
tion, allowing for the ordering and sequencing of events within the stream. This also
applies to other types of events, not just click events.

Append-only streams tend to be not sourced from databases. In our use case in
Figure 2-9, the clickstream data is sent to a microservice that acts as a proxy for
the topic. If clicks were written to an OLTP database, the database would run out
of space very quickly because every click event is a unique event; that is, we would
trigger an insert into the OLTP table for every click on the application. Hence, using
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an OLTP database for click events would be bad design—it’s clearly better to use an
append-only stream of events here.

Conversely, change stream data almost always comes from CDC events. If you recall,
these events are the transactions applied to a table in the OLTP database. These
transactions are inserts, updates, and deletes. These records will not grow as fast
as clickstream data because some events will include updates or deletes of existing
records in a table.

Also, customer data may not change a lot. Customers may change their names,
emails, or phone numbers, but probably not that often. Products would have a lot
more changes, but still not many compared to clicks on an application. Also, change
streams tend to represent changes to dimensional data. Dimensions change slowly
in a database because they typically represent properties that do not frequently or
rapidly change for the entities they describe.

If the product and customer datasets fit in the OLTP database, this means they
should fit in the state store in the stream processing platform if the state store is
sized appropriately. This provides a way to create a materialized view in the stream
processor, which we could use to enrich the clickstream data.

In Chapter 1, we talked about how OLTP databases can support disaster recovery by
replicating the primary database to a secondary database. This is exactly what we've
done here—we've replicated a table in the OLTP database into the state store in the
stream processing platform.

In the stream processing platform, both change and append-only streams will reside
in structures that have different names depending on the stream processor you are
using. For append-only streams, these structures may be called streams. For change
streams, they may be just called tables. We can perform our enrichment of the
clickstream by using SQL.

Append Stream

First, Example 2-1 ingests the clickstream data from Kafka into a hypothetical stream
processor (for the example, we use a syntax similar to existing stream processors).
This statement will create a source table called click_events that is an append-only
stream.

Example 2-1. Create a source table from a Kafka topic

CREATE SOURCE click_events (
id integer,
ts long, (1]
url varchar, (2]
ipAddress varchar, (3]
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sessionId varchar,
referrer varchar,
browser varchar

)

WITH (
connector="kafka',
topic="clicks"',
properties.bootstrap.server="'kafka:9092"',
scan.startup.mode="earliest'

ROW FORMAT JSON;

© Timestamp.
® Contains product ID to be parsed out.

©® The ipAddress that identifies a customer.

Debezium Change Data

The SQL statements in Examples 2-2 and 2-3 also ingest data from Kafka—but in this
case, it's Debezium CDC data for products and customer information. Debezium is a
popular connector that can read the WAL of an OLTP database and capture changes
to a table and publish them to Kafka. Notice in the SQL statements, there is a before,
after, and op that provide the before and after values of the changes as well as the
type of operation that was performed to the record.

Example 2-2. Ingest and create a table for the products

CREATE SOURCE products (
before ROW<id long, name varchar, color varchar, barcode long>,
after ROW<id long, name varchar, color varchar, barcode long>,
op varchar,
source <...>

)

WITH (
connector="kafka"',
topic="products',
properties.bootstrap.server="'kafka:9092"',
scan.startup.mode="earliest'

)

ROW FORMAT JSON;

Example 2-3. Ingest and create a table for the customers

CREATE SOURCE customers (
before ROW<id long, name varchar, email varchar, ipAddress varchars>,
after ROW<id long, name varchar, email varchar, ipAddress varchar>,
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op varchar,
source <...>,

)

WITH (
connector="kafka',
topic='customers',
properties.bootstrap.server="'kafka:9092"',
scan.startup.mode="earliest'

)
ROW FORMAT JSON;

To enrich the clickstream data with product and customer information, we will need
to join these three tables together. A lot of transformations will need to be done
to get the CDC data into a structure that allows us to easily join them with the
clickstream data. For now, let'’s assume we've done this work. We will go over this
more specifically in later chapters, when we start using a streaming database.

If we've transformed the product and customer tables from the Debezium format to
a standard table, we still cannot join them with the clickstream table. The product
and customer tables will contain duplicate records for each ID caused by multiple
changes made to a single record. This means that joining these tables together will
result in even more duplicate records. In Table 2-1, you can see that the color value
was changed multiple times. We want this table to only project the latest record. This
will project only one record per ID.

Table 2-1. Products table that contains previous changes to the color column

ID Name Color Barcode

1 T-shirt Green 123456
1 T-shirt Greenish 123456
1 T-shirt Limegreen 123456

Materialized Views

The term “materialize” is defined as something that creates itself. The “something”
doing the materialization usually does it on its own. This concept is important in
understanding materialized views.

In Example 2-4, we create materialized views for each of the CDC datasets: products
and customers. Each materialized view will only hold the latest version of every
record.” The materialized view reduces the count of records, keeping only the latest
record for each product or customer ID. That is, in essence, what a materialized view
does—it’s a reduction of the change stream. The reduction is an aggregation, like

2 We assume that we have flagged the product id and the customer id as primary keys here.
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count, average, min, max, etc. In our case, the materialized view is reducing records
by their ID, capturing the latest state of the record.

Example 2-4. Create a source table from a Kafka topic

CREATE MATERIALIZED VIEW mv_products AS select * from products;
CREATE MATERIALIZED VIEW mv_customers AS select * from customers;

The materialized views allow us to JOIN them with the clickstream events by only
projecting the latest records for each product and customer change streams. We
do not create a materialized view on the clickstream because it cannot be reduced.
Remember that append-only streams are discrete, unique events like clickstreams.
Click events cannot be reduced any more. Example 2-5 shows how we join the three
tables and write them out to a sink topic.

Example 2-5. Create a source table from a Kafka topic

CREATE SINK http_enrich AS
SELECT
E.*,
C.*,
P.*
FROM click_events E
JOIN CUSTOMERS C ON C.ip=E.ip and
JOIN PRODUCTS P ON P.product_id=E.product_id (1]
WITH (
connector="kafka',
topic='click_customer_product',
properties.bootstrap.server="'kafka:9092",
type='upsert',
primary_key="1d"

K

© The product ID value was extracted from the click URL and placed into a
separate column called product_1id.

Since the change streams can be reduced, their results are small enough to fit in a
state store in the stream processing platform.

It's advantageous to perform these transformations on the streams before loading
them into the OLAP data store for serving. Consumer queries that are invoked on
the OLAP should only contain analytical business logic and not any of the transfor-
mations implemented in the preprocessing.

Query logic that transforms events should be separate from queries that focus on
business analytics. We will use this practice to separate transformation logic from
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analytical logic in queries using push and pull queries. We will talk more about
materialized views and push versus pull queries in Chapter 4.

From now on, we will be focusing only on stream processors that support building
materialized views. Materialized views in a stream processor can be treated like
materialized views in a database. The primary difference between materialized views
in a stream processor and those in a database is that in the stream processor, the data
is sourced from streaming data, and the materialized views are updated continuously
rather than periodically/manually.

In Figure 2-10, we can see what transformations have been done. These transfor-
mations were defined in SQL and executed in a stream processing platform. The
materialized views for the product and customers are always running, producing the
latest records from the Debezium change streams.

..........................................................................
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Figure 2-10. The transformations executed in the stream processor

Summary

In this chapter, we covered the common ways to transform data and how these
transformations get executed in different data pipeline patterns: ETL and ELT. We
indicated that to perform more complex transformations, the stream processor will
need to be able to store state.

o Stream processing platforms need to support stateful stream processing to hold
the state of complex, stateful transformations.

o ETL naturally fits streaming use cases by preprocessing data before it reaches the
serving data store.
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o ELT writes the events in the destination data store before transforming the data.
Transformations are defined as SQL statements that need to be triggered to
execute in the destination database, which forces batching semantics.

o ELT can support streaming by changing the target system to a stream processing
platform.

o Materialized views are what make nontrivial, stateful transformations in stream
processing platforms possible. Materialized views require a stream processing
platform that can hold the state of a transformation.

o The stateful stream processing platform writes the result of the transformations
into a sink topic.

In the next chapter, we will discuss different ways of serving the transformed data to
consumers.

Summary | 37






CHAPTER 3
Serving Real-Time Data

In Chapter 2, we had the stream processing platform transform the data and place it
into a sink topic. The preprocessed data is now residing in a topic in the streaming
platform. In Figure 3-1, the sink topic and OLAP data store are highlighted in the
analytical plane.

The next thing we need to do is to serve real-time data to the consumers. In this
chapter, we'll talk about delivering enriched real-time data to the end user. This stage
of the real-time data pipeline is the last mile streaming data takes before it’s presented
to the end user.

Analytical
. serving layer

Operational | ............................i| Analytical

Click event H =)
topic g :

Clicks

Microservice

'|Dashboard
———————/

\ ——

customers Customer - g f Q

Products and
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Figure 3-1. The preprocessed data is available in the sink topic for real-time analytical
serving to user-facing dashboards or applications
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Real-Time Expectations

To serve real-time analytics to the consumers we've identified (humans and applica-
tions), a set of service-level agreements (SLAs) should be considered. In our click-
stream use case, we didn’t specify requirements for the end user or application.
However, since we want to serve analytics in real time, we should consider some
metrics:

Latency
Measures the time it takes for an analytics query or computation to complete
and return results. In real-time analytics, low latency is crucial to provide
near-instantaneous insights to users. SLA metrics may define acceptable latency
thresholds, such as average response time or maximum response time, to ensure
the timely delivery of analytics results.

Throughput and concurrency
Measures the number of analytics queries or computations that can be processed
within a given time frame. It indicates the system’s capacity to handle concurrent
requests and is especially important for high-volume scenarios. SLA metrics may
specify a target throughput, such as queries per second or computations per
minute, to ensure sufficient capacity for real-time analytics workloads.

Data freshness
Indicates how up-to-date the analytics results are in relation to the underlying
data streams. It measures the delay between when the data is generated and
when it becomes available for analysis. SLA metrics may specify acceptable data
freshness requirements, such as a maximum delay in seconds or minutes, to
ensure that users have access to the most recent information.

Accuracy
Measures the correctness and precision of the analytics results. SLA metrics may
define acceptable error rates, confidence intervals, or validation criteria to ensure
the accuracy of real-time analytics.

In serving real-time analytics to the consumers, the preceding metrics affect the
real-time requirements the most. Other metrics are related to capacity sizing, data
resilience, and security. We will focus more on them in later chapters of this book.
These other SLA metrics include:

Availability
Measures the percentage of time the real-time analytics system is operational
and accessible to users. SLA metrics may define the desired uptime or downtime
allowance for the system, taking into account planned maintenance windows and
unexpected outages. High availability is critical for providing continuous access
to real-time analytics capabilities.
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Consistency
Metrics ensure that results are consistent across different query executions and
system replicas.

Scalability
Measures the ability of the real-time analytics system to handle increasing data
volumes, user requests, and computational complexity. SLA metrics may specify
performance benchmarks or capacity thresholds, ensuring that the system can
scale horizontally or vertically to meet growing demands.

Security and privacy
SLA metrics may include security and privacy requirements to ensure data
protection, access controls, encryption, and compliance with regulations. This
includes measures to prevent unauthorized access, safeguard sensitive informa-
tion, and maintain data integrity.

We need to choose the most appropriate database for serving the data that meets the
real-time-related SLAs: latency, concurrency, freshness, and accuracy.

Choosing an Analytical Data Store

Several types of data stores can satisfy the SLAs for real-time analytics, depending
on the specific requirements and constraints of the use case. Again, our use case
did not specify SLAs for real-time analytics, but clickstream use cases require very-
low-latency queries to keep track of and react to changes in inventory, like dynamic
replenishment, dynamic pricing, inventory redistribution and allocation, and predic-
tive analytics, to name a few.

Here are some examples of data stores that can satisfy these strict real-time SLAs:

» In-memory databases, such as Redis, SingleStore (formerly MemSQL), Hazelcast,
or Apache Ignite, store data in memory for fast access and processing. These
databases offer extremely low latency and high throughput, making them suitable
for real-time analytics that require near-instantaneous responses.

o RTOLAP data stores, such as Apache Pinot, Apache Druid, ClickHouse, Star-
Rocks, and Apache Doris. These data stores tend to be column-oriented dis-
tributed data stores. They organize data by column rather than row, enabling
efficient analytics and query processing. These databases can handle large vol-
umes of data and offer excellent scalability and high availability, making them
well-suited for real-time analytics at scale.

o Hybrid transactional/analytical processing (HTAP) data stores such as TiDB or
SingleStore (formerly MemSQL) support both real-time transactional processing
and analytics within a single system. These databases provide the capability to
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serve real-time analytics directly on operational data, minimizing data movement
and reducing latency.

Serving data from a data warehouse, data lake, or lakehouse will not achieve the
real-time SLAs needed for some of the inventory-related use cases stated earlier.

It has been debated that the term “database” refers to OLTP data-
bases. If you recall, OLTP databases are usually transactional and
row-based and exist on the operational data plane that serves
records to user-facing applications. Those who agree with this
premise like to use the term “data store” for systems that serve
analytical queries. We will adhere to these definitions and may
interchange them throughout this book.

Some of these data stores previously stated are commonly deployed in the analytical
data plane, which would coincide with OLAP-style data stores. Others would be
deployed only in the operational data plane, like HTAP databases, which we will
talk about more in depth in Chapter 7. In this chapter, we will use what has been
traditionally used in real-time analytical use cases, which are RTOLAP data stores.
What makes them real time is that they are able to source data from a topic in a
streaming platform like Kafka.

Sourcing from a Topic

In Figure 3-1, you see that the real-time data for our use case was preprocessed and
placed into a sink topic in a streaming platform like Kafka. Streaming platforms
provide a publish and subscribe model for distributing streaming data, which means
other systems, domains, and use cases can be consuming the same data from the
sink topic. The preprocessing work done in the stream processing platform may
have prepared the data only to the point where all consumers can use the data, in a
data format that corresponds to a common denominator for them. This leaves any
consumer-specific data preparation up to the consumer to implement. Figure 3-2
shows this scenario.
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Figure 3-2. The sink topic can be consumed by multiple domain consumers requiring
differing timestamp formats

Let’s say, for example, Domain consumer 1 needs the timestamps in the data to be
seconds while Domain consumer 2 needs the data to be in the YEAR-MONTH-DAY
format. The engineer who implemented the transformation in the stream processing
platform could decide to serve the timestamp in milliseconds so that both consumers
can derive their preferred timestamp values. This would also satisfy any future con-
sumer who needs the data in milliseconds.

These scenarios require queries to implement the transformation to get the time-
stamp value to their required format. Unfortunately, this transformation will slow
the query down. It would also need to be executed for every run of the query
and could eventually break the SLA for latency. This would eventually cause the
application or dashboard to slow down and create an unsatisfactory experience for
the data consumers. Any consumer-specific data preparation left for the consumer to
implement will always affect the SLAs for serving real-time analytics.

This scenario is illustrated in Figure 3-3.
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Figure 3-3. On the left, the timestamp transformation is done per query request, and on
the right, the timestamp transformation is done only once

Ingestion Transformations

In many RTOLAPs, a feature exists where streaming data can be preprocessed before
it reaches the persistent storage. It provides a way for RTOLAPs to transform the
streaming data while data is still in flight. In the timestamp use case, the data
consumed from the topic can travel through a set of stateless transformations, like
converting milliseconds to a YEAR-MONTH-DAY format.

Ingestion transformations are akin to a stateless stream processor. This is important
to keep in mind in subsequent chapters as we talk about materialized views. Consum-
ers of the data in the topic are forced to treat said data as a base format from which to
derive their preferred formats.

Most of these RTOLAP data stores can only perform stateless preprocessing of
real-time data before it’s stored, although some are already considering doing stateful
transformations as part of the ingestion process.
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Apache Pinot is an example of an RTOLAP data store that has the ability to perform
stateful transformations at ingestion. Pinot has a comprehensive list of indexes that
makes Pinot queries to perform at very low latency. One of the indexes is named
star-tree index. The advantage of the star-tree index is its ability to preprocess aggre-
gations, requiring to hold state. This, in effect, is a stateful transformation that occurs
at ingestion. We will talk more about indexes and their importance later in this
chapter.

In RTOLAP data stores, stateful ingestion transformation is becoming more common
to get data from a base format into a preferred one. In future use cases, stateful
ingestion transformations in RTOLAPs could join with other tables to provide a
denormalized view in the RTOLAP. Denormalized views are a lot more performant
when serving analytical queries because the join is performed only once prior to
persisting the data. This is more optimal than the user submitting a join query, which
would happen at every query request.

A denormalized view, also called One Big Table (OBT), refers to a
way of organizing data that combines and consolidates information
from multiple tables into a single table or view. Typically, data
is divided into multiple tables, each representing a specific entity
or relationship to ensure data integrity and minimize redundancy
and, ultimately, storage. However, in certain analytical scenarios,
it can be more efficient to combine related data into a denormal-
ized view. A denormalized consolidated view simplifies querying
and analysis because all the necessary information is available in
one place, eliminating the need for complex joins between tables.
Denormalized views will introduce redundancy and potentially
impact data integrity if not carefully managed.

Ingestion transformations and stream processing behave very much the same in that
they are both asynchronous processes that run in the background. Asynchronous
processes are not interactive with a user and, instead, are defined and run by the
user but do not wait for the results to return. We'll return to asynchronous and
synchronous processes later in this chapter.

Not only do ingestion transformations format the data, but they also optimize it for
fast analytical queries. One such optimization is to use columnar (or column-based)
formats, which many OLAPs like Pinot take advantage of. Columnar formats are
typically not used in OLTP databases, which employ row-based formats. We'll cover
this in more detail in this chapter.
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OLTP Versus OLAP

It’s illustrative to compare OLTP databases and OLAP data stores to understand how
data can be served.

Recall that OLTP databases are used for transactional workloads on the operational
plane. They serve records back to the user-facing application and are designed to effi-
ciently handle and manage transactional operations in real time. They are primarily
used to support day-to-day business activities that involve frequent data interactions,
such as creating (inserting), retrieving, updating, and deleting data records. This is
also known as CRUD: creation, retrieval, update, deletion.

The main purpose of an OLTP database is to ensure the integrity and consistency
of data during transactional processing. It provides fast and reliable access to data
for operational tasks like order processing, inventory management, financial transac-
tions, and customer interactions. OLTP databases are optimized for handling a large
number of concurrent transactions, often with multiple users accessing the system
simultaneously.

These databases typically have normalized data structures, meaning they minimize
data redundancy and maintain data consistency. They prioritize transactional capa-
bilities, supporting ACID (atomicity, consistency, isolation, durability) properties to
ensure reliable and secure data processing.

ACID

ACID is an acronym that defines a set of properties that ensure the reliability and
consistency of data when performing transactions in an OLTP database:

Atomicity
Imagine a transaction as a single, indivisible action. Atomicity means that a
transaction is treated as a whole, and either all of its changes are applied success-
fully, or none of them are. It ensures that the database remains in a consistent
state even if something goes wrong during the transaction.

Consistency
Consistency ensures that a transaction brings the database from one valid state
to another. It means that any rules, constraints, or relationships defined in the
database are maintained during and after the transaction. In simpler terms, the
database remains in a sensible and expected state, so when many clients are
retrieving records from the database, they all have the same view of the database,
and the records are all the same and, thus, consistent.
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Isolation
Isolation means that multiple transactions can occur concurrently without inter-
fering with each other. Each transaction is isolated from the others until it’s
completed, preventing conflicts and ensuring that each transaction sees a consis-
tent view of the database.

Durability
Durability guarantees that once a transaction is successfully completed, its
changes are permanently saved and will survive any subsequent system failures
or crashes. The changes become a permanent part of the database, and the data is
reliably stored for future use.

ACID compliance ensures that database transactions are reliable, consistent, isolated
from each other, and durable, providing a strong foundation for data integrity and
reliability.

Conversely, OLAP data stores are used for analytical workloads on the analytical
plane. They employ different optimization techniques than OLTP databases. Each
type of data store is optimized for the role they are supposed to play.

Row- Versus Column-Based Optimization

We introduced row-based versus column-based formats earlier in this chapter. These
formats are two different ways of organizing and storing data in a database.

In a row-based format, data is stored and organized row by row. It means that all
the columns of a particular row are stored together, and then the next row’s data is
stored, and so on. This format is similar to how data is traditionally represented in
spreadsheets. It's optimized for transactional processing, where individual rows are
frequently updated or inserted.

In a column-based format, data is stored and organized column by column. It means
that all the values of a particular column are stored together, and then the next col-
umn’s values are stored, and so on. This format is optimized for analytical processing,
where queries often involve aggregations, filtering, and analysis of specific columns
or subsets of data. See Table 3-1 for more differences.

When real-time streaming data reaches the serving layer, it’s expected to have been
prepared for fast analytical queries since the serving layer lives in the analytical
plane. Columnar storage will provide the best query performance and efficiency for
analytical queries.
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Table 3-1. Row- versus column-based optimization differences

Properties Row-based Column-based
Data storage  In row-based format, each row is stored together. Row- In column-based format, each column
based formats impact how the data is accessed and read is stored together. Column-based formats
during queries. Analytical queries are not recommended. provide better optimizations that support
analytical queries.
Query Row-based formats are generally better suited for Column-based formats excel in analytical
performance  transactional operations that involve retrieving entire rows  operations, as they allow for faster data
or updating individual rows. retrieval and processing of specific columns
or subsets of data.
Compression  Row-based formats offer some compression techniques Column-based formats often offer better
like null value compression, run-length encoding, compression ratios than row-based formats.

dictionary compression, and data type—specific compression.  Since columns typically contain repetitive
Compression techniques introduce additional computational  information, compression techniques can be
overhead during data read and write operations and, applied more effectively, resulting in reduced
therefore, the choice and configuration of compression storage requirements.

algorithms need to be balanced based on the specific

workload and performance requirements of the database

system.
Query Row-based formats may need to read entire rows, evenif ~ Column-based formats are designed to read
efficiency only a few columns are needed, which can lead to higher ~ and process only the columns required for
disk 1/0 and slower query performance. a particular query, minimizing disk 1/0 and

improving query performance.

Queries Per Second and Concurrency

Queries per second (QPS) is the measure of how well an OLAP data store can return
the results of a query. This in turn indicates the volume of queries the OLAP can
process within a second and, ultimately, the number of concurrent queries that can be
invoked.

In our clickstream use case, we did not specify how many end users may be viewing
the analytics. The assumption is for every end user, there will be at least one query.
We did indicate that this is a real-time use case. Hence the data freshness on the
dashboard is expected to be real time. Real-time dashboards tend to require a high
rate of refreshes to keep the charts in the dashboard as real time as possible. There is a
query for every refresh of the dashboard.

For 1,000 users viewing clickstream analytics with a 5-second dashboard refresh rate,
you will get the following formula:

1 query

1,000 users x 5 second refresh

=200 QPS requirement
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This means the query needs to have a latency of 5 milliseconds. We can convert 200
queries/second to milliseconds/query by taking the inverse:

1
200 queries/second

=5 ms/query

You'll need to test a single query to see if the OLAP data store can return the result
within 5 milliseconds. This is a hard requirement to meet for only 1,000 end users. If
the dashboard is used by external users or on a phone application, you might exceed
1,000 end users. You probably also don’t want to limit your business to only 1,000
users. You'll need to scale your OLAP cluster out to accommodate more users or
simplify the query so that it can return in under 5 milliseconds. You can also apply
better indexing strategies.

Indexing

Indexing plays a crucial role in improving QPS for OLAP databases. Applying
indexes strategically will help improve QPS without scaling out the OLAP cluster,
which requires more hardware and higher costs.

All RTOLAP data stores employ a set of indexes to help with QPS. They help in
several ways. For instance, indexing allows the database to locate and retrieve relevant
data more quickly. By creating indexes on frequently queried columns, the database
can avoid scanning through the entire dataset and directly access the indexed values,
significantly reducing query response time and, thus, improving QPS.

Indexes also provide valuable statistics and metadata that the query optimizer can
use to determine the most efficient query execution plan. This aids in optimizing
resource allocation, data retrieval strategies, and join operations, ultimately enhanc-
ing overall query performance and increasing QPS.

Pruning is a performance technique that allows the OLAP to prune away chunks of
data where results don't exist. This approach narrows down the search space based
on specific column values. This selective access eliminates the need to scan the entire
dataset (or omit large subsets of data), allowing the database to handle a higher
volume of queries within a given time frame, thereby also increasing QPS.

Indexes also provide a data structure that organizes the data in a way that reduces
disk I/O operations during query processing. By reducing the number of disk reads
required, indexing minimizes the time spent on accessing data, leading to improved
QPS.

As a concrete example for indexes in an RTOLAP data store, Apache Pinot supports
several types of indexes to optimize query performance. Table 3-2 shows some of the
most commonly used indexes in Apache Pinot.
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Table 3-2. Row- versus column-based optimization differences

Index Description Use
Bitmap Bitmap indexes are efficient for low-cardinality columns (columns with a small number  Low-cardinality
index of distinct values). They create a bitmap for each distinct value, indicating the presence  columns

or absence of the value in each row. Bitmap indexes are highly effective for filtering and
aggregation operations.

Sorted Sorted indexes store the values of a column in a sorted order. They are particularly Date, timestamps
index useful for range-based queries and enable efficient filtering and sorting operations.
Inverted Inverted indexes are suitable for high-cardinality columns (columns with a large High-cardinality
index number of distinct values). They map each unique value to the corresponding set of columns
rows that contain that value. Inverted indexes are efficient for equality and prefix
searches.
Forward Forward indexes store the raw values of a column in the order they appear in the data. ~ For columns not
index They are useful for queries that require fetching the raw values without any specific used for filtering or
filtering or aggregation. aggregations

Textindex  Text indexes are designed for full-text search scenarios. They enable efficient searching  Text columns for
based on keywords, phrases, or other textual criteria. efficient searching

These indexes can be used individually or in combination, depending on the nature
of the data and the specific query patterns. Choosing the appropriate index for each
column plays a crucial role in optimizing query performance in Apache Pinot.

It's important to note that while indexing can significantly enhance query perfor-
mance and QPS, it’s essential to strike a balance between the number and size
of indexes, as excessive indexing can negatively impact insert, update, and delete
operations. A proper indexing strategy and periodic index maintenance are crucial
for optimal performance of OLAP databases.

As stated earlier in this chapter, the star-tree index can preprocess aggregations
that require a holding state. It is, in effect, a stateful transformation that occurs at
ingestion time.

Star-tree is an indexing technique used to sort and preaggregate data across multiple
fields based on its cardinality. It’s designed to speed up aggregation and computation-
heavy queries on large datasets. The star-tree index operates like a tree structure,
where each level corresponds to fields used to filter and aggregate data in your dataset
(see Figure 3-4). The root of the tree represents the star (or wildcard), which aggre-
gates metrics across these fields. Each path from the root to a leaf node represents a
combination of field values and their corresponding aggregated metrics.
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Figure 3-4. The preprocessed data is available in the sink topic for real-time analytical
serving to user-facing dashboards or applications

Let’s perform a simple example of how the star-tree index works:

The query starts from the root node and walks down to the first dimension, or
D1. The star-tree dimensions are ordered by cardinality top-down. In this case,
D1 is a column with the highest cardinality.

If the SQL predicate is where D1 = V2, the records are aggregated under V2 node
on D1 dimension:

Query path = Root - V2 scan

If the SQL predicate is where D1 = V1, then the query goes to the star node in
the second dimension under “V1” and returns the preaggregated value:

Query path = Root - V1 — Star preaggregated

If the SQL predicate is where D1 = V1 and D2 = Vi, the query scans the V1
records under the D2 dimension:

Query path = Root > V1 - V1 scan

If the predicate is where D2 = V2, the query path goes to the star node on the D1
dimension because D1 isn't filtered. Then it drops to the V2 node and scans its
records:

Query path = Root — Star - V2 scan
Lastly, for queries where there isn’t a predicate:

Query path = Root - Star — Star
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Part of the star-tree configuration is providing a split threshold limiting the number
of records to scan. If you provide a split threshold of 100,000, the star-tree index will
ensure that your queries will never scan more than 100,000 records.

The star-tree index gets built after the segment has been created during the segment
generation phase. A segment in Apache Pinot is a logical abstraction that represents
a chunk of table data with some number of rows. The segment stores data for all
columns of the table in a columnar fashion, along with dictionaries and indexes for
these columns.

Segments are similar to shards or partitions in relational databases
and can also be seen as time-based partitions. They allow Pinot’s
distributed architecture to scale horizontally by breaking down
large amounts of data into smaller, manageable chunks, which are
then distributed across multiple nodes.

The star-tree aggregates data as it's being ingested so that incoming queries can
take advantage of it. This optimization activity is akin to the preprocessing work
done in a stream processing platform. Preprocessing built into OLAP data store is
becoming more common because the work to optimize into columnar formats, index
optimizations, and simple transformations like timestamp reformatting is very hard
to avoid. OLAPs are extremely dependent on implementing stateful stream processing
for real-time data.

By providing a way to define stateful ingestion transformations in the OLAP, users
can author additional preprocessing logic that will execute once instead of at every
invocation of an analytical query (see Figure 3-5).

Ingestion Analytical
transform query

Dashboard

Figure 3-5. Users of the OLAP data store can define both the ingestion transform and the
analytical query

Users can define a separate command for ingestion in either SQL or a set of functions
during the ingestion phase so that the SQL in the analytical query stage is simplified,
executes with lower latency, and ultimately increases the QPS of the OLAP data store.
This technique will also decrease the need to scale the OLAP cluster since you've
reduced the work the analytical queries have to perform.
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Serving Analytical Results

As mentioned, QPS is a metric that indicates good performance for queries that are
invoked by users or applications. Especially for real-time use cases, analytical queries
will have a high refresh rate. High refresh rates can strain the OLAP system. This is
also called polling.

Synchronous Queries

The type of analytical polling queries we've been describing is also called pull queries
because the user or application (client) submits a query and pulls data from the
OLAP system. It follows a request-response pattern.

The clients submit the queries through a driver and a dialect. The dialect provides a
way for the client and OLAP to communicate using a variant of SQL specific to the
OLAP system.

Asynchronous Queries

Analytical data can also be served in an asynchronous manner. This type of query
is called a push query because the data is being pushed to the clients. The advantage
of push queries is that QPS is no longer a needed measurement because it’s strictly
a pull query performance measurement. Clients of push queries get notified of new
analytical data such that no polling is necessary.

Push queries are most likely served from topics in a streaming platform. Clients can
subscribe to the topics and (re-)populate their real-time applications or dashboards
when notified.

Services like Aklivity/Zilla provide asynchronous APIs that allow clients to sub-
scribe to asynchronous analytical data using either Server-Sent Events (SSEs) or Web-
Sockets. SSEs and WebSockets are technologies used for real-time communication
between clients (usually web browsers) and servers. While they both enable real-time
updates, there are key differences between them:

Unidirectional communication
SSEs allow the server to push data to the client browser, providing a one-way
communication channel. The client receives updates or events from the server,
but it cannot send data back using the same connection.

Event stream format
SSEs use a specific event stream format for delivering data to the client. The
server sends data as a series of events, and the client processes these events using
JavaScript. The event stream format includes event types, data, and optional
fields like IDs or timestamps.
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HTTP protocol
SSEs are built on top of the HTTP protocol and use standard HTTP connections.
This establishes a long-lived connection between the client and the server, typi-
cally using a single HTTP connection for multiple updates.

Browser compatibility
SSEs are supported by most modern web browsers, but there might be limita-
tions in older browsers or specific configurations. SSEs don’t require additional
browser plugins or libraries for basic functionality.

Bidirectional communication
WebSockets support full duplex communication, allowing both the client and the
server to send data to each other over a single connection. This enables real-time
communication in both directions.

Arbitrary data format
WebSockets have a flexible data format that supports arbitrary binary or text-
based data transmission. They don't enforce a specific event stream format like
SSE.

WebSocket protocol
WebSockets use a specialized WebSocket protocol built on top of TCP. It provides
a persistent, low-latency, and bidirectional communication channel.

Browser compatibility
WebSockets are supported by most modern web browsers, but there might be
limitations in older browsers or specific configurations. WebSocket functional-
ity requires native WebSocket support or the use of WebSocket libraries or
frameworks.

SSEs are suitable for scenarios where the server needs to push periodic updates or
events to the client, such as real-time notifications, live updates, or streaming data
feeds. WebSockets are well suited for applications that require bidirectional, interac-
tive, and real-time communication, such as chat applications, multiplayer games, or
collaborative editing tools.

The choice between SSEs and WebSockets depends on the specific requirements of
the application. SSEs are simpler to implement and boast broader browser support,
while WebSockets offer more advanced functionality and bidirectional communica-
tion capabilities.

Push Versus Pull Queries

Synchronous queries are similar to pull queries, and asynchronous queries corre-
spond to push queries. It’s important to understand this now because it will become
more apparent in Chapter 4 when we talk about materialized views.
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With push queries, the data is actively pushed to the client or application when
changes occur in the database. This allows for real-time updates and immediate
access to new information without the need for continuous polling or manual
requests.

Since data is pushed as soon as it becomes available, push queries can provide lower
latency than pull queries. There is no delay in waiting for the client to request the
data; it’s delivered proactively.

Push queries align well with event-driven architectures. They enable systems to react
to events and trigger actions based on the received data, providing a more responsive
and event-oriented approach.

Pull queries, on the other hand, provide more flexibility because they allow the client
or application to retrieve data on demand whenever needed. The data is fetched when
requested, which gives more control over the timing and frequency of data retrieval.

Pull queries help reduce unnecessary network traffic because the client only retrieves
data when necessary. This can be beneficial in scenarios where network bandwidth is
limited or when the data being retrieved is not frequently changing.

Pull queries can be more resource efficient because the server doesn’t need to actively
push data to all clients or applications. It eliminates the need for continuously moni-
toring and pushing data, which can reduce server load and resource consumption.
On the other hand, frequent pull queries can lead to very high resource consumption
since the data store may need to scour large amounts of data too often.

The choice between push queries and pull queries depends on the specific require-
ments and use case. Push queries are generally preferred when real-time updates and
immediate data availability are critical, while pull queries provide more flexibility
and efficiency in scenarios where data retrieval can be done on demand and not too
frequently.

But what if we can take advantage of both push and pull queries? Using a combina-
tion of both pull and push queries could play out as follows:

1. The client submits the query as a pull query to fetch the current state of the table
in the OLAP system.

2. The client then subscribes to the changes in the table, that is, only updating
records that have changed.

Just like a WAL in an OLTP database, the client can first invoke a pull query to
get a snapshot of the data and then subscribe to the table’s WAL to get incremental
changes. This idea is depicted in Figure 3-6 and will be important in Chapter 5 when
we start talking about streaming databases.
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OLAP Push query to get changes

TableName RowCounts | Used | | MB| Total MB|
Internal event message 2344762 | 2316.52 031 2316.83
Internal operation message 2386144 | 93377 0.2 934.02
Internal event_message context 600641 | 201.98 0: 202.40 (X )
Internal object versions e 3353 0 .64
Internal executable statistics 48238 1979 0. 20.02
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Figure 3-6. A pull query is invoked by the dashboard and automatically subscribes to
changes to the view

Unfortunately, OLAP data stores don’t support asynchronous push queries. OLAP
data stores typically are dead ends in the sense that it’s hard to extract raw values
from them. They are optimized for serving analytical results, which are aggregations
or summaries of the data.

Summary

In this chapter, we introduced OLAP data stores and compared them to OLTP
databases. We also covered many of the optimization techniques for OLAP data
stores, which are used to serve analytical queries with low latency. Two of the most
important concepts to take away are:

o The importance of stateful ingestion transformations and how they prepare data
for optimized analytical queries.

o Push and pull queries and the different ways in which they serve analytical data.

In Chapter 4, these concepts will be important to understand as we go into the
concept of materialized views in detail.
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CHAPTER 4
Materialized Views

In the previous chapters, we only talked briefly about materialized views. Materialized
views will be the most important concept to understand before you can begin to
appreciate streaming databases. Materialized views in databases were first introduced
in the early 1990s. They were initially developed as a feature in some OLTP databases
to improve query performance by precomputing and storing the results of complex
queries. Materialized views provide a way to store the results of a query as a physical
table, which can be refreshed periodically or on demand to keep the data up-to-date.
This approach helps to reduce the overhead of executing expensive queries repeatedly
by allowing users to retrieve data from the materialized view instead.

In stream processing, materialized views are not only updated periodically or on
demand. They’re always refreshed asynchronously in the background. As new data
comes in, the materialized view gets updated immediately and the results are stored.
We've highlighted this pattern in previous chapters. The asynchronous refresh closely
corresponds to streaming, and synchronous refresh to batch.

Martin Kleppmann’s video titled “Turning the Database Inside-Out” describes mate-
rialized views as not only being preprocessed data but also directly built from writes
to the transaction log. Materialized views have had a significant impact on stream
processing by introducing the concept of precomputed and continuously, incremen-
tally updated query results. Materialized views address some of the challenges
in stream processing and provide benefits such as improved query performance,
reduced data duplication, and simplified analytics.

Views, Materialized Views, and Incremental Updates

With materialized views, the processing logic for generating certain query results is
separated from the mainstream processing pipeline. This separation can lead to more
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modular and manageable code, making it easier to maintain and extend the stream
processing system.

To understand materialized views, we first need to understand traditional views. Both
traditional views and materialized views live in a database. Traditional views (or just
“views”) are defined by a SQL statement that gets executed when the client selects
from the view. The results of a view don't get stored. This increases the latency for
queries that select from the view because the results are not preprocessed. To better
understand this, let’s again use an analogy: you have a smart chipmunk named Simon
(see Figure 4-1).

Figure 4-1. Chipmunk counting nuts, illustrating a traditional view

You ask Simon, “How many nuts are currently in my yard?” Simon runs out into your
yard and counts the nuts, then comes back and tells you the number. When you ask
Simon again what the count of the nuts in your yard is, he again runs out a second
time to count all of the nuts and gives you a number. Both times, you had to wait for
Simon to count the nuts before you received the number even if it did not change.
This is akin to a traditional view and is represented mathematically in Figure 4-2.

(e) I >

¥ (6:6:6:6.)

Figure 4-2. The smart chipmunk can be represented as a function that aggregates the
nuts in the yard and returns the count

You decide this isn't efficient. Instead, you instruct Simon to write the total number of
nuts on paper and store it in a box. You then ask Simon how many nuts there are, but
he can’t answer because he’s too busy looking for changes in the number of nuts in the
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yard. So you employ another chipmunk that isn’t as smart as Simon to just tell you
the number in the box. Let'’s name him Alvin. This analogy is akin to a materialized
view.

In this analogy, the chipmunks are SQL statements. The box in the second scenario
is the storage that materializes views to save the results that have been precounted. In
this same scenario, Simon (precounting the nuts) is smarter than Alvin presenting the
value in the box (see Figure 4-3). Alvin presenting the value does so with low latency
and can serve it to many clients concurrently without great effort.

Figure 4-3. Two chipmunks are used to describe a materialized view

An important part of the materialized view analogy is that Simon isn’t counting the
nuts from the first to the last nut; he’s looking for incremental changes in the number
of nuts. This includes how many were removed from the yard and how many were
added (or fell from the trees).

Incremental changes refer to the process of making small, targeted changes to exist-
ing data rather than recomputing the entire dataset from scratch. These updates are
typically applied to keep data consistent and up-to-date over time without incurring
the computational overhead of reprocessing the entire dataset.

The incremental function is represented mathematically in Figure 4-4. X represents
the current state of the nuts in the yard, and A* represents the incremental change to
the nuts in the yard. X is already stored while the smart chipmunk captures AX and
then adds to it the current state, X, to get to the next state.

To capture incremental changes, Simon always needs to be watching for new changes
asynchronously—similar to what we have in a streaming setting.
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Figure 4-4. The smart chipmunk adds incremental changes to the total nuts in the yard

Recall CDC (change data capture) from Chapter 1. CDC is a prime example of
incremental changes. To review, CDC is a technique used to capture and track
changes made to a database or data source over time by reading the WAL in an OLTP
database. Instead of processing the entire dataset from scratch, CDC identifies and
captures only the incremental changes: inserts, updates, and deletes.

Change Data Capture

There is a relationship between CDC and materialized views. Materialized views do
the hard work of precomputing by watching for incremental changes and storing
the results. Beforehand, CDC provides the incremental changes it captures from the
WAL in an OLTP database. This means we can use a materialized view to preprocess
the CDC containing incremental changes.

Going back to our chipmunk analogy, we had Simon provide a count of nuts in a
yard. Let’s extend this example a bit to say there are many types of nuts in the yard.
Each nut has these attributes:

o Color

o Location (latitude, longitude)

Nuts can change color as they age and may be moved or removed by other animals.
Simon keeps track of these changes by inserting, updating, or deleting each nut on
the list of nuts on the paper in the box. So when a client queries the list, the client
only sees the latest status of each nut in the yard.

We illustrate this scenario technically in Figure 4-5. Here are some important points
in the diagram:

o The WAL in the primary/OLTP database on the far left is replicated to create a
replica of the primary database.

» Using a CDC connector, the WAL is also written into a topic in a streaming
platform. The topic publishes the WAL of the primary database for other systems
to subscribe to.
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o Sink connectors can consume from the topic and build replicas in other database
systems.

o Stream processors can build the same database replica in their cache.

—
Sect?ar;(la ry Connector - Stream
Database processor

replica -
Database Connector

WAL Cached
replica

Figure 4-5. Replication using incremental changes

With this technique, you can build a replica of the original OLTP database from a
user-facing application in any downstream data store or stream processing engine.
We will focus on the stream processing engine primarily because it satisfies the
real-time use case and doesn't force batch semantics.

In Chapter 3, we introduced push and pull queries. If we apply the chipmunk anal-
ogy, Simon is the push query and Alvin is the pull query.

When we speak of smart (Simon) and simpler (Alvin) chipmunks,
were talking about the complexity of the SQL statement. Simon
can do complex transformations and aggregations, while Alvin
performs simple SQL lookup queries with low complexity.

Push Versus Pull Queries

Let’s expand on the chipmunk analogy. By leveraging the push query (aka Simon), we
can query the result from Alvin without having to incur the latency we get when we
compute the result synchronously.

We return to the original use case, where Simon is counting the number of nuts in the
yard. To review, Simon works asynchronously, watching for changes in the nut count
and storing any updates in the box. In a sense, Simon pushes the result into the box.
Alvin serves the contents of the box to the client synchronously. Similarly, at query
time, Alvin pulls the result from the box and serves it to the client. To summarize:

o Simon is a push query that runs asynchronously.

o Alvin is a pull query that runs synchronously.
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Simon does most of the work calculating the result so that Alvin can focus on serving
results with low latency as soon as he is queried. This works very nicely, but there’s
one drawback: the client invoking the pull query doesn’t have much flexibility in
asking more compelling questions. It only has the count of nuts to work with for
building real-time insights. What if the client wants an average count, the maximum
count, or to join multiple tables? In this case, the push query negates the ability of the
client to ask deeper questions.

In Figure 4-6, to increase query flexibility, you'll need to trade off latency because
youre forcing the serving engine to do more work. If a user-facing application
invokes the query, you want it to execute with the lowest latency because the assump-
tion is that many more end users will be using the application. Conversely, if you
want the highest flexibility so that you can slice and dice the data to gain insights,
then you should expect only a few expert end users to execute these queries.

Full ANSISQL

Discovery
Query flexibility

User-facing
applications Dashboards

Query latency

Figure 4-6. A diagram showing pull queries trade-off when adding flexibility and the
corresponding use cases

If you think about it, applications that require the lowest latencies would benefit the
most from using push queries instead of pull queries. Figure 4-7 shows how you can
balance between push and pull queries.

The box in the middle represents the materialized view. It balances the heavy lifting
of push queries with the flexibility of the pull query. How you balance push and pull
queries is up to your use case. If the box moves down along the line, the materialized
view provides less flexible queries but is more performant. Conversely, as the box
moves up, the more flexible the pull queries become, but the queries execute at higher
latencies. Together, push and pull queries work to find the right balance between
latency and flexibility (see Figure 4-8).
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Figure 4-7. As query latency nears zero, push queries are preferred

L Push query
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Figure 4-8. Pull and push queries working together to balance latency and flexibility

But is there a way for us to have both high flexibility and low latency and without
needing two SQL queries? We can do this by using materialized views that emit
changes to a WAL. This would be the client experience:

1. The client submits a push query. This query creates a materialized view.

2. The client then subscribes to the changes in the materialized view just like
subscribing to a WAL.

With this approach, the client is submitting a push query instead of a pull query. By
allowing the client to also make changes to the push query, you get the flexibility
needed for ad hoc queries. Also, by subscribing to the materialized view’s changes,
query latency is no longer an issue because the incremental changes are being pushed
to the client as they arrive. This means that the client no longer needs to invoke a pull
query and wait for its result, bringing down latency. Only one SQL query is needed
for the client to start receiving real-time analytical data.
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This pattern is difficult today because push and pull queries are typically executed in
separate systems. The push query is usually executed in the stream processor, while
the pull query is executed in the OLAP system that serves to end users. Moreover,
push and pull queries are typically authored by different teams of engineers. Stream-
ing data engineers would write the push query, while analysts or the developers of
user-facing applications invoke pull queries.

To get out of this dilemma, you’ll need a system that has:

o Stream processing capabilities like building materialized views

The ability to expose the materialized views to topics in a streaming platform,
akin to a WAL

o The ability to store data in an optimal way to serve data

o The ability to provide synchronous and asynchronous serving methods

These features are only available in streaming databases. They have the ability to
marry stream processing platforms and databases together, using the same SQL
engine for both data in motion and data at rest. We'll talk about this in greater detail
in Chapter 5.

The most common solution for real-time analytics is running a stream process-
ing platform like Apache Flink and a RTOLAP data store like Apache Pinot (see
Figure 4-9).

O) @ ®

OLTP

database Stream processor

Figure 4-9. Common solution for real-time analytics

Figure 4-9 shows the path by which data in an OLTP database travels to an RTOLAP
system for serving to a client. Let’s look closer at this architecture:

1. The entities are represented as tables in the OLTP database following domain-
driven design.

2. The application inserts, updates, or deletes records in the table. These changes
are recorded in the database WAL.

3. A CDC connector reads the WAL and writes the changes to a topic in a stream-
ing platform. The streaming platform externalizes the OLTP WAL by publishing
the changes into topics/partitions that mimic the WAL construct. These can
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be read by consumers to build replicas of the tables from the original OLTP
database.

4. The stream processor is one such system that reads the topic and builds internal
replicas of tables by using materialized views. As the materialized view gets
updated asynchronously, it outputs its changes into another topic.

5. The RTOLAP data store reads the topic that contains the output of the material-
ized view and optimizes the data for analytical queries.

In Figure 4-9, the stream processor executes the push query at step 4 and the pull
query gets invoked at step 5. Again, each query gets executed in separate systems and
authored by different engineers.

Figure 4-10 drills down to show more of the complexity and division between the
push and pull queries. The push query performs the arduous task of complex trans-
formations and stores the result in a materialized view. The materialized view records
its changes to its local store to a topic in a streaming platform that exposes the
materialized view to the serving layer that holds the RTOLAP system.

Stream processing platform
-_ Push query

Figure 4-10. A pull query pulling the result from two persisted tables through a view

Materialized
view

Serving
layer

Pull query

As a result, the end user that interfaces with the RTOLAP system doesn’t have the
flexibility to define the preprocessing logic needed to make the pull query run at low
latency (see Figure 4-11).

Hey this query is
running too slow!

What do you want
me to do?

Figure 4-11. End user trying to get a data engineer to optimize a query
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Having the end user that authors the pull query also provide optimization logic to
the streaming data would help avoid these scenarios. Unfortunately, these situations
occur very often because of the current state of streaming architectures.

The problem is exacerbated when we try to directly replicate CDC data into an
RTOLAP system.

(DCand Upsert

The term upsert is a portmanteau of the words update and insert to describe the
logic an application employs when inserting and/or updating a database table.! Upsert
describes a logic that involves an application checking to see if a record exists in a
database table. If the record exists by searching for its primary key, the record then
invokes an update statement. Otherwise, if the record does not exist, the application
invokes an insert statement to add the record to the table.

We learned that CDC data contains incremental changes like inserts, updates, and
deletes. The upsert logic handles two out of the three types of changes in a CDC
stream (we'll come back to the delete change later).?

Upsert operations can indirectly improve select query performance and accuracy
in certain scenarios. While upserts themselves are primarily focused on data modifi-
cation, they can have positive impacts on select query performance and accuracy
by maintaining data integrity and optimizing data storage. Here’s how upserts can
contribute to these improvements:

Data integrity and accuracy
Upserts help maintain data integrity by preventing duplicate records and ensur-
ing the data is accurate and consistent. When select queries retrieve data from a
database with proper upsert operations, they are more likely to return accurate
and reliable information.

Simplified pull queries
Selecting from a table with proper upsert operations simplifies the queries upon
lookup. Having to perform deduplication or filtering for the latest records com-
plicates the SQL and adds latency to its execution.

Upsert operations behave like a push query to help optimize and simplify the pull
query. It is one of the factors to control the balance between push and pull queries.
Let’s walk through a CDC scenario to help better understand this in Figure 4-12.

1 A portmanteau is a word that results from blending two or more words, or parts of words, such that the
portmanteau word expresses some combination of the meaning of its parts.

2 In many database systems the UPDATE operation consists of a DELETE and INSERT step; hence in these systems,
UPSERT also involves a DELETE operation.
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database

Figure 4-12. Steps outlining the replication to an RTOLAP data store

1. A transaction is sent from an application to either insert, update, or delete a
record in a table in an OLTP database. Let’s assume the use case is updating the
inventory of green T-shirts, so the table in question is the Products table.

2. The update is written into the WAL of the OLTP database.

3. Let’s assume that the connector reading the WAL was just started. This would
require the connector to take a current snapshot of the Products table to get the
current status.

a. If the connector doesn't have this snapshot, the downstream systems cannot
build an exact mirrored replica of the Products table.

b. By taking a snapshot of the table, the connector creates seed events that are
logically equivalent to an insert for every record in the Products table.

¢. Once this snapshot is available in the topic, we can build a table replica. You
cannot build replicas with only incremental changes.

4. When the stream processor starts up, if it’s the first time consuming the topic,
it reads it from the beginning. Otherwise, it starts reading from a stored offset.
Reading the topic from the beginning allows the stream processor to build a
replica of the Products table. Again, you cannot build a table replica with only
incremental changes.

a. Complex transformations are implemented in the stream processor. They will
require the stream processor to build a materialized view that represents a
replica of the Products table.

b. Transformation operations are done on or between tabular constructs like
materialized views. If no transformation is needed, creating a materialized
view is not necessary, and the stream can pass through directly from the input
topic to the output topic.

5. The output topic is similar to the input topic in that it holds a snapshot of the
data to seed any downstream replicas. However, it has undergone transforma-
tions executed within the stream processor. For CDC data, the contents of the
topics in this pipeline need to be able to seed downstream replicas.
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6. If the RTOLAP data store reads from the topic directly, it will need to handle the
upsert logic itself. To do so, it will also need to understand the data in the topic
to identify insert, update, and delete operations so that it can subsequently apply
them to the existing internal table.

7. This step is an alternative to step 6. In this case, the stream processor sends
the data directly to the RTOLAP data store. For RTOLAPs that do not support
upsert, the stream processor will have to execute the upsert logic instead of the
RTOLAP system.

Since upsert operations, by definition, only support inserts and updates, deletes tend
to be omitted. Some systems will implement upsert to also include delete logic.
Others, like Apache Pinot, will only flag a deleted record so that its previous versions
can be recovered. In these cases, it's important to use the RTOLAP implementation
of upsert, which requires the RTOLAP to read directly from the output topic. Some
RTOLAPs may not expose the delete feature, and the work would have to be done in
the stream processor.

Step 3 talks about holding the snapshot of the Product table in

the topic. In Chapter 1, we talked about topics having a retention

| period after which older records are truncated. A different type of

, topic is necessary for CDC data called a compacted topic, where the

truncation process preserves the latest record of each primary key.

This allows older data to be preserved, enabling materialization of
downstream table replicas, including the historical records.

In summary, there are two locations where the upsert logic can be implemented—in
the RTOLAP system or the stream processor. The simpler and preferred approach is
to have the RTOLAP read from the output topic and apply the upsert logic itself. The
output topic also provides a buffer in cases where the stream processor produces data
faster than the RTOLAP can consume.

Upsert highlights the pain of having two real-time systems grapple over or dodge
ownership of such complex logic. These pains will create further contention between
data engineers and analytical end users.

CDC can be hard to conceptualize in streaming because it takes part in so many
constructs and complex logic. For example, it’s related to WALs in an OLTP database,
it requires compacted topics in streaming platforms to keep history, it needs upsert
to simplify and speed up pull queries, and it needs to be materialized in views. The
difficulties go on when multiple systems are involved between the original OLTP
source and the RTOLAP data store just to build a replica of the Products table. As
we noted, there can be ways to consolidate these systems and help reduce redundancy
and complexity. Streaming databases are one way to achieve this consolidation.

68 | Chapter4: Materialized Views



Transformations that include enrichment will require joining multiple streams in the
stream processor. Recall the two types of streams: change streams and append-only
streams. Change streams contain change data for entities in the business domain, like
products and customers. Append-only streams contain events like the clickstream
data from the application. Let’s walk through the streaming data pipeline again to see
how to implement this.

Joining Streams

As previously stated, transformation operations are done on or between tabular
constructs that hold change streams (materialized views) and append-only streams.
Append-only streams are like change streams where the only changes allowed are
inserts. In fact, you could consider all tabular constructs in databases to be sequences
of changes going into and out of the tabular structure.

One of the main reasons you would not represent an append-only stream in a
materialized view is that materialized views have to store results. Since append-only
streams are inserts only and ever-growing, you would run out of storage space at
some point, just like you would not write click events into a database because it too
would run out of storage.

Since both change streams and append-only streams are represented as tabular con-
structs, many different streaming systems name these constructs differently. In this
book, we will use the following terms with regard to tables in a stream processor:

Append tables
A tabular construct that holds append-only streams. These constructs are not
backed by a state store. These constructs represent data that passes through the
stream processor.

Change tables
A tabular construct that represents a materialized view. Change tables are backed
by a state store.

We also need to differentiate topics in a streaming platform in the same way. Know-
ing the type of streaming data in the topics will indicate how they can be processed
or represented in a tabular construct. We use these terms to identify topics in a
streaming platform:

Append topics
Topics containing append-only data.

Change topics
Topics containing change events or CDC events. Some Kafka engineers would
also call these “table topics.”
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With these terms, we can better describe how streams are joined together, as the
logic can get confusing. It's important to use SQL as the language to define joins
and transformations because SQL is the universal language for manipulating data,
and the SQL engine needs to combine streams and databases. Sharing a SQL engine
to manipulate both data in motion and data at rest leads up to having a streaming
database.

Apache Calcite

Let’s start with joining the append table and the change table we described in Chap-
ter 2. The SQL in Example 4-1 is based on Apache Calcite, a data management
framework used to build databases using relational algebra. Relational algebra is a
formal and mathematical way of describing operations that can be performed on
relational databases. It’s a set of rules and symbols that help us manipulate and query
data stored in tables, also known as relations.

Apache Calcite contains many of the pieces that make up mathematical operations
but omits some key functions: storage of data, algorithms for processing data, and a
repository for storing metadata. If you want to build a database from scratch, Apache
Calcite is one building block to do that. In fact, many of the existing real-time systems
use Calcite: Apache Flink, Apache Pinot, Apache Kylin, Apache Druid, Apache Beam,
and Apache Hive, to name a few.

Calcite intentionally stays out of the business of storing and processing data. ...[T]his makes
it an excellent choice for mediating between applications and one or more data storage
locations and data processing engines. It is also a perfect foundation for building a database:
just add data.

—Apache Calcite documentation

This is what we'll do here—just add data. We bring back our clickstream use case
where we have three sources of data, each in its own topic in a streaming platform.

Example 4-1. Joining to table topics

CREATE SINK clickstream_enriched AS
SELECT
E.*,
C.*,
pP.*
FROM CLICK_EVENTS E @
JOIN CUSTOMERS C ON C.ip=E.ip and @
JOIN PRODUCTS P ON P.product_id=E.product_1id 0
WITH (
connector="kafka',
topic='click_customer_product',
properties.bootstrap.server="'kafka:9092"',
type='upsert',
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primary_key="'1d'

)5

© CLICK_EVENTS is an append table sourced from an append topic. It contains click
events from a user-facing application.

© CUSTOMERS is a change table sourced from a change topic. It contains change
events from an OLTP database captured using a CDC connector.

© PRODUCTS is a change table sourced from a change topic. It also contains change
events from an OLTP database via CDC connector. Here, we will assume the
product ID value was extracted from the click URL and placed into a separate
column called product_id.

As long as SQL is supported, stream processing platforms can represent data in topics
in tabular structures, so SQL and tools like Calcite can be used to define complex
transformations. Example 4-1 is an inner-join that joins together matching records
that exist in all three tables—CLICK_EVENTS, CUSTOMERS, and PRODUCTS.

The output of any streaming SQL that aggregates or joins streams is a materialized
view. In this case, we are joining:

CLICK_EVENTS
An append table containing click events

CUSTOMERS
A change table/materialized view of all customers

PRODUCTS
Another change table/materialized view of products

Here are the properties of different types of table joins:

Append table to append table

This is always windowed, or else the state store will run out of space.

Change table to change table
A window is not required because the join result could fit in the state store if it’s
appropriately sized.

Change table to append table
This is also windowed, or else the state store will run out of space.?

3 In Kafka Streams and ksqlDB, you can use materialized views (KTable or GlobalKTable) for the append table.
In this case, a window is not required because the output is again a stream.
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Notice that whenever an append-only stream is part of a join, a window is needed to
limit the data held in the state store.

In stream processing with SQL, when you perform a left join operation between
streams corresponding to an append table and a change table, the result is driven by
the append table.

In SQL, such a join looks as follows:

SELECT ...
FROM append_table_stream
LEFT JOIN change_table_stream ON join_condition;

Here, append_table_stream and change_table_stream represent the two input
streams you want to join, and join_condition specifies the condition that deter-
mines how the two streams are matched.

The left stream (append_table_stream), which is specified first in the FROM clause,
drives the result of the join. The result will contain all the events from the left stream,
and for each event in the left stream, it will include the matching events from the
right stream (change_table_stream) based on the join_condition.

Let’s illustrate this with two streams from our clickstream example: clicks and custom-
ers. Each event in the click stream represents a click with a customer ID and each
event in the customers stream represents a customer with a customer ID. To join the
two streams on the customer ID, you would write the SQL query as follows:

SELECT k.product_1id, c.customer_name
FROM click k
LEFT JOIN customers c ON k.customer_id = c.customer_id;

In this example, the click stream is the left stream, and it drives the result of the join.

For each customer event in the click stream, the query retrieves the corresponding
customer name from the customers stream based on the matching customer ID.

It's important to note that in stream processing, the join is continuous and dynamic.
As new events arrive in the input streams, the join result is continuously updated and
emitted as the result stream. This allows you to perform real-time processing and
analysis on streaming data with SQL.
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Clickstream Use Case

Let’s step back to be able to clearly understand the full diagram in Figure 4-13 step by
step.

OLTP
database

WAL

—Pm Stream :
! processor : RTOLAP ¢

([@)S@©]e

.............

Figure 4-13. Path of CDC and append-only events from the application to the RTOLAP

1. A customer updates their information.
a. The information is saved in an OLTP database.

b. A CDC process runs on the OLTP database, capturing changes to the CUSTOM
ERS table and writing them into a CDC topic. This topic is a compacted topic
that can be considered a replica of the CUSTOMERS table. This will allow for
other systems to build their replicas of the CUSTOMERS table.

2. The same customer clicks on a product on an e-commerce application.

3. The click event is written into a topic. We don't write click events into an OLTP
database because click events are only inserts. Capturing them in an OLTP
database might eventually cause the database to run out of storage.

4. The stream processor reads from the CDC and click topics.

a. These are the messages from the CUSTOMERS change table topic in the stream
processor. They are stored in a state store whose size depends on the window
size (or, in the case of, for example, Kafka Streams or ksqIDB, fully stored in a
KTable).

b. These are the messages from the CLICK_EVENTS append table topic in the
stream processor.

c. A left-join is executed between the CLICK_EVENTS append table messages and
the CUSTOMERS change table messages. The result of the join is CLICK_EVENTS
enriched with their corresponding CUSTOMER information (if it exists).
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5. The stream processor writes its output to the topics below.

a. This is a change topic and contains the CDC CUSTOMER changes. This would
be a redundant topic since the topic in 1b contains the same data. We keep it
here to keep the diagram balanced.

b. This is an append topic that contains the original CLICK_EVENT data enriched
with the CUSTOMER data.

6. Topics are pulled into the RTOLAP data store for real-time serving.

a. This is a replica of the original CUSTOMERS table in the OLTP database and
built from the change topic.

b. This contains the enriched CLICK_EVENTS data.
7. The user invokes queries against the RTOLAP data store.
a. The user can query the CUSTOMERS table directly.

b. The user can query the enriched CLICK_EVENTS data without having to join
the data themselves, as the join has already been done in the stream processor.

As we indicated earlier, you can either implement the join in the stream processor or
by the user. In this case, we decided to prejoin the CLICK_EVENTS and CUSTOMER data
to improve query performance from the user’s perspective. The hard work of joining
is done by the stream processor so that the RTOLAP can focus on fast, low-latency
queries. In this scenario, the stream processor is creating a materialized view that
gets written to the topic in 5b. The RTOLAP builds a replica of the materialized
view in itself from the topic in 5b. Within the RTOLAP database, we might have
to implement a retention scheme that deletes older enriched CLICK_EVENTS to avoid
running out of storage.

Alternatively, we could have just bypassed the stream processor and let the RTOLAP
perform the joining when the user invokes the query. This would not require building
a materialized view, and it would negate the need to manage another complex stream-
ing system. But this query would be slow and put a lot of stress on the RTOLAP
system.

So how can we reduce architectural complexity but still get the performance of
materialized views? This is where we can converge stream processing with real-time
databases—by using streaming databases.
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Summary

I'm gonna make a very bold claim [that] all the databases you've seen so far are streaming
databases.

—Mihai Budiu, “Building a Streaming Incremental View Maintenance Engine with
Calcite,” March 2023

Traditionally, stream processing and databases have been seen as distinct entities,
with stream processing systems handling real-time, continuously flowing data, and
databases managing persistent, queryable data. However, materialized views chal-
lenge this separation by bridging the gap between the two systems.

Materialized views enable the creation of precomputed, persistent summaries of data
derived from streaming sources. These views serve as caches that store computed
results or aggregations in a way that is easily queryable. This means that instead of
solely relying on stream processing systems for real-time analysis, we can leverage
materialized views to store and query summarized data without the need for continu-
ous reprocessing.

By combining the benefits of stream processing and databases, materialized views
offer several advantages. First, they provide the ability to perform complex analytics
on streaming data in a more efficient and scalable manner. Rather than reprocessing
the entire dataset for each query, materialized views store the precomputed results,
allowing for faster and more responsive querying.

Moreover, materialized views facilitate the seamless integration of streaming and
batch processing paradigms. They can be used to store intermediate results of stream
processing pipelines, providing a bridge between the continuous flow of streaming
data and the batch-oriented analytics typically performed on databases. This integra-
tion helps unify the processing models and simplifies the overall architecture of
data-intensive systems.

Overall, materialized views blur the boundaries between stream processing and
databases by allowing us to leverage persistent, queryable summaries of streaming
data. By combining the benefits of both systems, they enable efficient and scalable
real-time analytics, seamless integration of historical and real-time data, and the
convergence of streaming and batch processing paradigms. The use of materialized
views opens up exciting possibilities for building intelligent and responsive data
systems that can handle the dynamic nature of streaming data while providing fast
and flexible query capabilities.
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We've now introduced two constructs in OLTP databases that bring them close to
streaming technologies:

The WAL
A construct that captures changes to database tables.

The materialized view
An asynchronous query that preprocesses and stores data to enable low-latency
queries.

In Chapter 1, we introduced Martin Kleppmann’s quote: “turning the database inside
out” We did, in fact, turn the database inside out by:

1. Taking the WAL construct in the OLTP and publishing it to the streaming
platform, like Kafka.

2. Taking the materialized view feature and mimicking it in a stateful stream pro-
cessing platform. This relinquished the need for complex transformations from
the OLTP databases that needed to focus on capturing transactions and serving
data by externalizing them to the streaming layer.

We now have the foundation to talk about streaming databases in the next chapter.
This is where we will again turn the tables on the streaming paradigm by bringing
WALs and materialized views back into the database. In other words, we'll “turn
streaming architectures outside in”
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CHAPTER 5
Introduction to Streaming Databases

In a spreadsheet, you can put a formula in one cell (for example, the sum of cells in another
column), and whenever any input to the formula changes, the result of the formula is auto-
matically recalculated. This is exactly what we want at a data system level: when a record in
a database changes, we want any index for that record to be automatically updated, and any
cached views or aggregations that depend on the record to be automatically refreshed. You
should not have to worry about the technical details of how this refresh happens, but be able
to simply trust that it works correctly.

—Martin Kleppmann, Designing Data-Intensive Applications

In the previous chapter, we learned how to “turn the database inside out,” as Martin
Kleppmann has so aptly coined it. This involved externalizing the WAL of a database
into input change streams, creating materialized views on top of them, and writing the
processed data back into output change streams. Unlike materialized views in classic
databases, such as Oracle or Postgres, where the refresh intervals range from a few
minutes to a few hours, materialized views in stream processing platforms like Flink,
Kafka Streams, ksqlDB, or Samza could be refreshed continuously—with every new
change coming in.

The idea of “turning the database inside out” empowered us to build materialized
views offering fresher data than ever before. However, compared to a simple classic
database installation, it also required us to deal with a lot of additional complexity:
to actually make sense of the continuously updated materialized views created by
Flink, Kafka Streams, ksqlDB, or Samza, the output change streams had to be
ingested into an additional external database (e.g., a RTOLAP database like Druid,
Pinot, ClickHouse, or Rockset). So, architecturally, “turning the database inside out”
forced us to spin up and operate three systems (the streaming platform, the stream
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processor, and the external database) instead of simply having one classic database.
And, to make matters more complicated, only expensive and hard-to-find stream
processing experts could implement this—not your run-of-the-mill database expert.
Consequently, from a global perspective, the “turning the database inside out” idea
has been kept on the sidelines, only being applied for use cases like fraud detection,
where low latency really has been of paramount importance.

We believe that the idea of “turning the database inside out” was a crucial first step
toward building a bridge between the streaming and the database world and that it
has paved the way for significant advances in stream processing. But it did not go all
the way.

In this central chapter of this book, well let you jump on board a journey from
stateful stream processing, stream-based materialized views, and state stores toward
a new notion of materialized views re-based on their original formulation from the
database world. We will show you how the new streaming databases like ksqlDB,
Materialize, RisingWave, and Timeplus are about to start putting the final bricks on
the bridge between the streaming and the database world and take the next logical
step after turning the database “inside out™ to turn it “outside in” again. To get
started, let’s review the components you're familiar with from many of the diagrams
so far.

|dentifying the Streaming Database

The diagrams provided thus far mainly contain the following components, also
shown in Figure 5-1. For now, let’s ignore the connectors that are required to read
from and write to systems.

Database

Figure 5-1. Stream processing parts

@

Stream processor
Materialized view

From left to right, the components in Figure 5-1 are as follows:

o The database can be one of the three types of data stores that we talked about
so far: OLTP, RTOLAP, and the internal state stores in a stream processor. The
differences between them dictate how data is stored and queried.

—

If the external downstream database does not support reading from the streaming platform out of the box, a
fourth architectural component, a connector middleware (Kafka Connect, Striim, StreamSets, HVR, etc.), is
required on top.
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o+ The topic is a construct that mimics the WAL in an OLTP database. Topics
publish streams of data to other databases and stream processors.

o Stream processors are the applications that transform streams of data. They hold
an internal state store.

o The materialized view is a process that precomputes a result and stores it in a
database. Materialized views are created in a database or stream processor, both
of which need to have a persistence layer.

We can arrange these components to build a streaming topology that represents a
data flow. The flow we've been suggesting thus far looks like this:

Example Description

Database — Topic — Stream Processor — Topic — Database Simple flow

Until now, we've been focusing on the flows in the following—a typical real-time
analytical flow that we employed as the solution for our click events use case:

Example Description

OLTP — Topic — Stream Processor — Topic — RTOLAP OLTP database flowing to an RTOLAP
Microservice — Topic — Stream Processor — Topic — RTOLAP Microservice that captures click events flowing to
the same RTOLAP

But nothing is stopping us from doing the following, where the output is another—or
even the same—OQOLTP database. This is an important distinction that will become
apparent when we start to talk about different types of streaming databases and
materialized views later in this chapter:

Example Description

OLTP — Topic — Stream Processor — Topic — OLTP A flow whose destination is another or the same
OLTP database

In all of these flows, the exact location of the materialized view is ambiguous. There
are three components where the result of the stream is materialized:

o The stream processor creates a materialized view and stores the result in its
internal state store.

o The changes to the materialized view are pushed out to the output topic.

o Neither the stream processor’s internal state store nor the output topic can be
queried directly. Hence, the destination database pulls the changes to its own
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materialized view, which corresponds to the table. This table is optimized for
end-user analytical queries.

The only thing we know for certain is that the materialized view is not a first-class
citizen because it spans all three of the components in the middle of Figure 5-2.

: (@ O
Database Stream processor €O Dafab:se

Figure 5-2. The materialized view is stretched across multiple systems

What if we could consolidate these three components? This is an example of a
streaming database. If we converge the stream processor and the database, we no
longer need the topic to expose the changes to the materialized view in the stream
processor’s state store. Instead, the stream processor’s state store and the database will
become one and the same (see Figure 5-3).

Streaming
database

Database

Figure 5-3. Streaming database is formed when converging the stream processor and the
database

This streaming database will be able to handle both push and pull queries. If you
recall, the push query is a process that runs asynchronously in the background like a
stream processor, and the pull query is an analytical query requested by the end user.
This implies that one and the same SQL engine needs to support both push and pull
queries.

Consolidating the storage in one place solves only half of the problem. Building
a single SQL engine that supports both data at rest and data in motion is even
more difficult. The stream processing side of the streaming database might need to
change from using its internal state store to using a real database when joining and
aggregating data. Also, the objects in the streaming database may need to differentiate
between data in motion tables and data at rest tables.
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Column-Based Streaming Database

Returning to our clickstream use case, the destination of the streaming pipeline was
an RTOLAP data store. Let'’s update that diagram to use a (columnar) streaming
database in Figure 5-4.

OLTP
database

WAL

Columnar
streaming
database

©pi©y

Figure 5-4. The clickstream use case that uses a streaming database for analytical queries

This solution provides a way for users of the streaming database to author both push
and pull queries using SQL in one place. The push query would be a SQL query that
creates a materialized view, like in Example 5-1.

Example 5-1. Creating a materialized view from two streams of data

create materialized view CUSTOMER_CLICKS
as select * from CLICK_EVENTS E
join CUSTOMERS C on C.ip = C.1ip

An application could also invoke a pull query, like in Example 5-2.

Example 5-2. Application invoking a pull query that returns the customer details

select * from CLICK_EVENTS E
join CUSTOMERS C on C.ip = C.ip
where C.id = '123'

Example 5-1 gets invoked by what previously was the stream processor engine, and
Example 5-2 gets invoked by what previously was the RTOLAP SQL engine for
low-latency execution.

Row-Based Streaming Database

Figure 5-5 shows that a row-based streaming database can even become the destina-
tion of a streaming data pipeline. If you recall the differences, row-based databases,
such as OLTP databases, are optimized for fast read and write operations associated
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with transactional data like CRUD (create, retrieve, update, delete) transactions.
OLAP is optimized for analytical queries like aggregations. Why would you have a
row-based database as the destination if the use case is to perform analytical queries
against it?

Using an OLTP database for analytical workloads is generally not
recommended due to several fundamental issues like performance,
“ locking and concurrency, and resource utilization, to name a few.

\

The solution to the riddle posed in the previous paragraph is that you don’t have
to run the analytical queries against the row-based streaming databases. You still
have the option to publish the output of it to an output topic and subsequently
feed an RTOLAP database for analytical queries, as you can see on the right side
of Figure 5-5. But youre not reducing complexity by consolidating systems. You're
only replacing the stream processor with another stream processor—this time, a
row-based streaming database—and your materialized view is again stretched across
multiple streaming systems: row-based streaming database, topic, and RTOLAP.

©])

OLTP
database

WAL

Row-based I Materialized
streaming view topic HIORIE

database

0D |

[

Figure 5-5. Row-based streaming database just replaces the stream processor

By nature, streaming is a row-by-row feed of data that is better suited to work
with row-based streaming databases. The better solution for row-based streaming
databases is to keep the transformed data within the application using a pattern called
Command Query Responsibility Segregation (CQRS).

CQRS is an architectural pattern that separates the operations that read data (quer-
ies) from those that modify data (commands) into distinct components. In CQRS,
the idea is to have separate models for reading and writing data. This allows for
optimized performance and scalability, as the read and write operations can be inde-
pendently optimized for their specific requirements. CQRS can help improve system
responsiveness, enhance scalability, and enable better alignment of data models with
their intended usage.
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OLTP
database

WAL

Row-based
streaming
database

Click
topic

Figure 5-6. CQRS implemented with a row-based streaming database

In Figure 5-6, the data in the output topic is written back to the source OLTP
database. The better solution is to have the output topic update a separate database
used for only reading by the client application. This pattern provides eventual consis-
tency between write and read OLTP databases. Plus, you can even use the streaming
database accessible to the application as the read-only database in a CQRS pattern
(see Figure 5-7).

OLTP
database

WAL

Row-based
streaming
database

Figure 5-7. CQRS where the streaming database is used as the read-only database for the
application

Row-based streaming databases bring streaming a lot closer to the edge, or what
some call the web edge.

Identifying the Streaming Database | 83




The term “web edge” typically refers to the outermost layer or
boundary of a web application or service. It represents the point
of interaction between the application and the external world,
including users, clients, and other systems. The web edge is respon-
sible for handling incoming requests, processing them, and rout-
ing them to the appropriate components within the application’s
architecture.

Edge Streaming-Like Databases

So far, we've consolidated the stream processor, the topic, and the destination data-
base into a streaming database on the right side of Figure 5-8 that outlines the
column-based streaming database.
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Figure 5-8. A real-time data pipeline where streaming databases can reside

Emerging databases are starting to appear, like that on the left side of this diagram,
which is closer to the application and the web edge. We will discuss them more
in Chapter 7, when we talk about hybrid transactional and analytical processing
databases, or HTAP databases.

So far, we have spoken in detail about two types of streaming databases: row-based
and column-based. Both have the difficult task of converging SQL engines in the
stream processor and the destination database. The two SQL engines may have
different semantics that could limit what can be expressed in the SQL because the
converged SQL engine that underlies it doesn’t support them.

SQL Expressivity

SQL expressivity refers to the ability of the SQL engine to succinctly and effectively
represent complex data manipulations and queries using a concise syntax. In other
words, it measures how well SQL can capture the intent of a query or operation in a
way that is easy to understand and maintain. Merging SQL engines between a stream
processor and an OLAP or OLTP database can introduce various challenges and
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pitfalls due to the fundamental differences in their design, use cases, and performance
characteristics:

Performance mismatch
Stream processors are optimized for handling high-velocity, real-time data
streams, while OLAP databases are designed for complex analytical queries on
historical data. Merging their SQL engines might result in performance issues if
the combined engine struggles to balance the real-time requirements of stream-
ing data with the resource-intensive nature of OLAP queries.

Latency
Stream processing requires low latency for real-time processing, while OLAP
databases often prioritize query optimization over low-latency response. Trying
to achieve both low latency for streaming and high performance for analytical
queries within a single SQL engine can be challenging.

Resource allocation
Stream processors and OLAP databases have different resource requirements.
Stream processors need to process data as it arrives, potentially causing resource
contention with OLAP queries that demand substantial compute and memory
resources. Properly allocating resources becomes critical to avoid bottlenecks.

Data modeling differences
Stream processors usually work with raw or semistructured data, whereas OLAP
databases require structured, preprocessed, and well-modeled data for efficient
querying. Merging the two SQL engines might lead to conflicts in data modeling
approaches.

Data consistency
Stream processors often operate on data in motion, while OLAP databases work
with data at rest. Ensuring data consistency between these two states can be
complex, especially when merging the SQL engines to handle both.

Complexity
Combining the capabilities of stream processing and OLAP databases can lead to
a more complex system. This complexity can impact maintainability, debugging,
and overall system stability.

Data volume and retention
Stream processors may have a shorter retention period for data due to high data
volume and real-time processing requirements. OLAP databases usually store
historical data for analysis over longer periods. Deciding how to handle data
retention and integration can be challenging.
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Query optimizations
OLAP databases often provide advanced query optimization techniques for com-
plex analytical queries. Stream processors might not offer the same level of
optimization, potentially leading to suboptimal performance for OLAP queries.

Schema evolution
Stream processors may handle schema evolution more flexibly than OLAP data-
bases, which tend to require well-defined schemas. Merging their SQL engines
can result in difficulties when dealing with evolving data schemas.

Maintenance and updates
Managing updates and maintenance for a combined SQL engine that handles
both streaming and OLAP workloads can be more challenging, as updates must
account for the requirements of both use cases.

To mitigate these pitfalls, careful architectural planning, thorough performance test-
ing, and a deep understanding of the specific use cases for each SQL engine are
essential.

Merging SQL engines between OLTP and a stream processor can be easier compared
to merging SQL engines between OLAP and a stream processor. This is due to the
inherent differences in data storage and processing characteristics between OLTP and
OLAP systems:

Data format
OLTP databases typically use a row-based storage model, which is well suited
for capturing individual transactional records. Stream processors also work with
data in a row-based format as they process real-time events. This alignment in
the data model can facilitate smoother integration and compatibility.

Real-time nature
Both OLTP systems and stream processors deal with real-time data to some
extent. While the processing requirements might differ, the common focus on
real-time data handling can make it easier to merge their SQL engines.

Transaction handling
Both OLTP and stream processors may involve transactional processing, albeit
with different levels of complexity. This shared aspect can lead to better integra-
tion when it comes to handling data consistency and updates.

Event-driven
Stream processors are event driven by nature, which nicely corresponds to real-
time updates in OLTP databases. This compatibility simplifies the integration
process.

While merging SQL engines between OTLP and a stream processor might be easier
due to these shared characteristics, merging SQL engines between OLAP and a
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stream processor is more complicated due to fundamental differences in data storage,
processing, and query optimization strategies. Again, careful architectural planning
and consideration of the specific requirements of each system are crucial to success-
fully achieve integration in either scenario.

The reduction of infrastructure complexity and unified SQL engine will make devel-
opment easier for engineers, especially when debugging their materialized views.

Streaming Debuggability

Data engineers will always need to verify the logic of their SQL when writing data
pipelines. Having your materialized view stretch across three different distributed
systems (stream processor, topic, and OLAP) makes it very hard to debug. While it’s
theoretically possible to debug it by looking at the input and output topics alone,
practically, the debugging needs to be undertaken by looking at both the topics and
the external database at the same time.

Streaming databases make it easier to debug by virtue of providing a more advanced
form of materialized views compared to the (key/value) state stores of classical stream
processors. Streaming databases persist the materialized views in either a row-based
or column-based store and thus make it easier to verify the results in one place.
Debugging can also be performed faster because the data is already indexed for more
complex ad hoc queries. On the contrary, stream processors like Flink first require
the results to be written out to a database to test their validity via ad hoc queries.

Advantages of Debugging in Streaming Databases

The following are the advantages of debugging in streaming databases:

Familiar SQL interface
Many streaming databases offer a SQL-like query language for defining stream
processing operations. If youre already familiar with SQL, debugging can be
more straightforward due to the familiarity of the language.

Simpler logic
Streaming databases often provide a higher-level abstraction that simplifies com-
plex stream processing tasks. This can lead to simpler logic, which, in turn, can
make debugging easier.

Integrated ecosystem
Streaming databases are often part of a larger data ecosystem. They can help to
achieve a better integration with other data tools and monitoring solutions by
combining a stream processor and a database in one system, compared to having
to combine a separate stream processor with a separate downstream database.
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This integrated environment can aid in debugging by providing a more holistic
view of the data pipeline.

Built-in optimizations
Streaming databases might have built-in optimizations for common stream pro-
cessing patterns. These optimizations can help improve performance and relia-
bility and reduce the need for complex debugging in certain scenarios.

Easier deployment
Some streaming databases are designed for ease of deployment, which can sim-
plify the debugging process by reducing potential deployment-related issues.

SQL Is Not a Silver Bullet

SQL is a very abstract language. For some use cases, it can be advantageous to be
able to use a lower-level DSL (domain-specific language) in addition to SQL, such
as Kafka Streams (Streams DSL and Processor API) and Flink (DataStream API)
for increased expressibility. User-defined functions (UDFs) in SQL-based streaming
databases can be a mitigating factor, but only to a certain extent.

For debugging and/or profiling, especially in highly performance-critical situations,
it would also be desirable to observe the actual logical execution plan derived by the
stream processing system, for example, to inspect the state of an aggregation operator
created by a GROUP BY statement. Tooling for inspecting the execution plan of stream
processing systems is, however, still in its infancy.

Streaming Database Implementations

Table 5-1 shows a list of some of the streaming databases available at the time of this
booK’s release.

Table 5-1. Existing streaming databases

Name License State store implementation Use cases
ksqlDB Confluent Community RocksDB (LSM tree key-value (QRS, push queries
License storage)
RisingWave Apache 2 row-based CQRS, push queries, single row lookups
Materialize Business Source License row-based CQRS, push queries, single row lookups
(BSL)
Timeplus Apache 2 column-based Analytical push and pull queries
(Proton)

The streaming databases listed in Table 5-1 vary with respect to their underlying
persistence layer. The first streaming database, ksqlDB, uses state stores based on
RocksDB (LSM tree storage). ksqlDB only supports indexing by primary keys.
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While primary key/value access does yield good performance, more complex queries
require full, nonindexed scans through entire state stores, which does not scale for
nontrivial amounts of data.

A full scan, also known as a table scan, is a query operation that involves examining
and processing every record or row in a dataset, table, or database. While full scans
can be useful in certain scenarios, they often introduce various issues and challenges
when querying data. Full scans can be resource intensive and time consuming,
especially when dealing with large datasets. Processing every record in a table can
lead to slow query performance, particularly if the dataset is extensive.

The implementation of the persistence layer of a streaming database determines
the range of queries that it can support efficiently. RisingWave, Materialize, and
Timeplus make use of more database-like implementations of their persistence layers
(Timeplus, for example, uses a version of the RTOLAP database ClickHouse) with
flexible indexing schemes. This allows them to serve a large variety of pull queries
efficiently.

Streaming Database Architecture

The materialized views (the change tables) in the streaming database are held in the
state store. Conversely, the append tables are not. Either append tables pass through
cleanly or they are placed into another topic-like construct in the streaming database.

To help better summarize the architecture of a streaming database, Figure 5-9 helps
describe the path and steps that the click events and customer CDC data follow.

...................................................................................
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Figure 5-9. Path append and change streams in a streaming database
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In the first step, the click events are in an append topic in a streaming platform like
Kafka. To bring this data into the streaming database, we invoke a data definition
language (DDL) to create the table. See Example 4-1.

DDL is a subset of SQL that describes how to create, alter, and
delete database objects like tables.

In Example 5-3, we create a source table in a streaming database. This is the same
SQL example provided in Chapter 2.

Example 5-3. Create a source table from a Kafka topic for the click events

CREATE SOURCE click_events (
id integer,
ts long, (1]
url varchar, (2]
ipAddress varchar, (3]
sessionld varchar,
referrer varchar,
browser varchar

)

WITH (
connector="kafka',
topic='clicks',
properties.bootstrap.server="kafka:9092",
scan.startup.mode="earliest'

)
ROW FORMAT JSON;

© Timestamp
@ Contains product ID to be parsed out

© The ipAddress that identifies a customer

Next, we do the same with the customer CDC data in Example 5-4. Notice that in this
step, the data exists as a “pass-through” manifested as an append-only table with no
state store. The stream processors and streaming databases have no way of knowing
if the content of the topic has change data or append data. It assumes append data
because all streaming data is append data until it's materialized into a view persisted
in a state store. This is why we need step 3.
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Example 5-4. Ingest and create a table for the customers. The table’s schema uses a
Debezium CDC format, which provides before, after, and op fields.

CREATE SOURCE customers (
before ROW<id long, name varchar, email varchar, ipAddress varchar>, (1)
after ROW<id long, name varchar, email varchar, ipAddress varchar>, (2]
op varchar, (3]
ts timestamp, (4]
source <...>,

)

WITH (
connector="kafka",
topic="'customers',
properties.bootstrap.server="kafka:9092"',
scan.startup.mode="earliest'

)
ROW FORMAT JSON;

© The before field holds the state of the record before the change was made.
©® The after field holds the state of the record after the change was made.
© The op identifies the type of change: insert, update, or delete.

O The ts is the timestamp for when the change occurred.

In step 3 of Figure 5-9, we tell the streaming database to materialize the values in the
append table into a materialized view. Example 5-5 is one way of getting the latest
state of each record.

Example 5-5. Create a materialized view of the latest records using a common table
expression (CTE) and windowing

CREATE MATERIALIZED VIEW customers_mv AS
WITH ranked_customers AS (
SELECT
C.AFTER,
c.op,
c.ts,
ROW_NUMBER() OVER (PARTITION BY c.AFTER.id ORDER BY c.ts DESC) AS rn (1)
FROM customers AS c
)
SELECT * FROM ranked_customers WHERE rn = 1 AND op IS NOT 'D'; (2]
);

© This is a windowing statement that partitions the records by id and then places
them in descending order by timestamp. The ROW_NUMBER( ) assigns each instance
of an 1d a row number and guarantees record 1 is the latest record.

Streaming Database Architecture | 91



O We select only the latest record, which will have an rn value of 1. We also filter
out all deleted records where op is not D.

The output of Example 5-5 should result in a materialized view that contains the
latest state of customer data.

Some streaming databases have the ability to skip step 3 by having a custom connec-
tor that processes Debezium CDC-formatted data directly into a materialized view
(see Example 5-6).

Example 5-6. Using a Debezium connector to directly create a materialized view

CREATE SOURCE customers (
before ROW<id long, name varchar, email varchar, ipAddress varchars>,
after ROW<id long, name varchar, email varchar, ipAddress varchar>,
op varchar,
ts timestamp,
source <...>,

)

WITH (
connector="kafka-debezium-cdc', (1]
topic="'customers',
properties.bootstrap.server="'kafka:9092",
scan.startup.mode="'earliest'

)

ROW FORMAT JSON;

@ A custom connector named kafka-debezium-cdc is able to read data from a
Kafka topic and build a materialized view that only shows the latest state of the
customer’s table.

(DC Connectors

Every streaming database will have different names for their custom CDC connectors.
Do not expect the name to be kafka-debezium-cdc. You will need to refer to the
documentation to get the actual name of the connector to use.

Some streaming databases will have their own CDC connectors that bypass the topic
in the streaming platform and connect directly to the database. These connectors still
will read the WAL and build a replica of tables in the streaming database. However,
bypassing the streaming platform might be limiting if the CDC data needs to be repli-
cated to other target databases in addition to the streaming database. We'll discuss
architectural options for deploying streaming databases in more detail in Chapter 10.
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In step 4 of Figure 5-9, another materialized view is created. Example 5-7 joins the
CLICK_EVENTS table with the CUSTOMERS table, resulting in a materialized view of
customer-enriched click events.

Example 5-7. Create another materialized view of enriched click events

CREATE MATERIALIZED VIEW CLICK_EVENTS_ENRICHED AS
SELECT e.*, c.*

FROM CLICK_EVENTS e

JOIN CUSTOMERS c on e.ipAddress = c.ipAddress

We can repeat the steps taken with the CUSTOMERS table and use the PRODUCTS table to
enrich the CLICK_EVENTS with both customer and product information.

Example 5-8. Create another materialized view of enriched click events

CREATE MATERIALIZED VIEW CLICK_EVENTS_ENRICHED AS
SELECT e.*, c.*, p.*

FROM CLICK_EVENTS e

JOIN CUSTOMERS c on e.ipAddress = c.ipAddress
JOIN PRODUCTS p on e.productid = p.productid

At this point, we've arrived at step 5 of Figure 5-9. Now end users can invoke
analytical pull queries against the CLICK_EVENTS_ENRICHED materialized view. The
type of storage (row-based or columnar-based) of the streaming database will dictate
the complexity of the analytical query you can invoke. Many use cases don't require
a human to invoke the pull query. Instead, applications themselves can consume
real-time materialized views.

In some cases, applications may want to use both row and columnar streaming
databases to serve different low-latency analytical queries. This will require both
streaming databases to build replicas of the tables. If you recall, streaming platforms
enable the publishing and subscribing of CDC data to allow multiple systems to build
replicas of its tables.

ELT with Streaming Databases

In Chapter 2, we said ELT (extract, load, transform) data pipelines do not support
real-time use cases because the transformation occurs in the destination database.
The database, in this case, places the streaming data at rest, which forces batch
semantics for all downstream processing.

However, if the destination database using ELT is a streaming database, then the
pipeline can be considered still in real time. This integration between the “loading”

ELT with Streaming Databases | 93



and “transformation” parts of ELT is mediated by a topic on a streaming platform
from which the streaming database consumes the data.

There is a large ecosystem that supports ELT solutions, for example, dbt.* In combi-
nation with streaming databases, these tools can support real-time ELT for the first
time. And because streaming databases behave, on the surface, like databases and
not so much like a stream processor, ELT with streaming databases can actually
be implemented by the same teams who have previously worked on ELT in a data
warehouse. In this vein, a lot of ELT jobs that now run later in the pipeline (in the
data warehouse or lakehouse) can be moved to the real-time streaming layer.

Summary

The term streaming database converges stream processing and databases. “Databases”
is normally associated with batch processing of data. So marrying “streaming” and
“databases” also converges streaming with batching and data in motion with data at
rest.

Streaming databases bring the two constructs that Martin Kleppmann pulled out of
the database, the WAL and the materialized view, back into the database.

Database SQL engines only supported data at rest so far. By allowing the materialized
view to run asynchronously in the background, we can enable the existing SQL to
process data at rest and in motion. This transforms the database into a streaming
database.

Streaming databases differ with respect to the implementation of their persistence
layer. ksqlDB makes use of RocksDB and primary key indexes. Newer streaming
databases use a more database-like persistence layer for supporting a large set of
queries efficiently.

We also know that streaming databases support both push and pull queries. Push
is executed in the “streaming” half of a streaming database. The pull queries are
executed on the “database” half of the streaming database. If the “streaming” half of
the streaming database uses the “database” half for its state store, you have a true
streaming database.

The type of storage of the streaming database determines what type of pull query can
be served efficiently. For columnar-based databases, pull queries can be analytical,
including fast aggregations. For row-based databases, pull queries are typically more
simple lookups, like point queries.

2 Dbt (data build tool) is an open source software tool that enables data engineers and analysts to transform,
test, and deploy data transformations using SQL and Python.
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In Figure 5-10, we show a spectrum of streaming databases that range from row-
based to column-based. On the left side, pull queries are normally invoked by an
application, which are event driven and where no human is involved. On the right
side, pull queries are usually invoked by a human or a dashboard.

Event driven < » Visual driven

No human < » Human

Figure 5-10. Spectrum of streaming databases

A crucial property of streaming databases is consistency. Consistency in a database
refers to the state in which data is always valid and adheres to predefined rules and
constraints. It ensures that any transaction, whether successful or not, brings the
database from one consistent state to the next, without violating integrity rules. In a
consistent database, all data modifications follow a set of predefined rules, ensuring
the data remains accurate and reliable.

In the next chapter, we will go through the importance of consistency in streaming
databases (and also stream processors).

Summary | 95






CHAPTER 6
Consistency

If you're familiar with databases, you take consistency for granted. You know that the
results of your queries are going to be consistent with the input data. Now imagine
you dare to cross the bridge from the database to the streaming world. Can you
bank on similar consistency guarantees here, even with the additional complexity of
data arriving late and out of order, as well as the emphasis on low latency and high
throughput?

For classical stream processors, the answer is no. They guarantee a weaker form
of consistency called eventual consistency. For classical stream processing use cases,
often involving aggregations on windowed data, eventual consistency is a perfect
fit, and it also enables data pipelines with ultra-low latency, with very high through-
put, and at extremely large scale. The problem is, if you come from the database
world, eventual consistency can turn out to be a confusing and counterintuitive
experience—especially in combination with nonwindowed data.

In this chapter, we will use a toy example from the banking domain to demonstrate
what can go wrong in eventually consistent stream processors like Flink, ksqlDB, and
Proton if you just follow your intuitions from the database world.

Interestingly, some more recent stream processing systems support a stronger form of
consistency, where every output is the correct output for a subset of the inputs: inter-
nal consistency." Of these stream processing systems, we put RisingWave, Materialize,
and Pathway on the same job to see whether they allow us to solve the toy example in
a way that more closely mirrors the intuitions of a typical database engineer.

1 Jamie Brandon. “Internal Consistency in Streaming Systems,” Blog, 2021.
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The chapter continues by detailing what exactly can go wrong when following the
path of eventual consistency and how the stream processing systems providing stron-
ger consistency guarantees can actually fare better.

Finally, we turn to the question of whether it would make sense for classical stream
processors such as Flink to support stronger consistency guarantees. In other words,
how much of their low latency and high throughput would they actually have to give
up—and could it be worth it?

A Toy Example

This chapter is brought to life by a toy example adapted from Jamie Brandon’s
blog about internal consistency. The example is intentionally not a classical stream
processing use case. It is not windowed, and it requires a form of synchronization
not fully available out of the box in classical stream processing systems. The rationale
behind choosing this example is that in this book, we are interested in streaming
databases in the convergence of the streaming and the database world. And we
think that for this convergence to really take place, stream processing systems should
be able to handle nontypical, nonwindowed use cases in a way comparable to the
database world, especially with respect to consistency.

Imagine a bank with 10 accounts, where the accounts continuously transfer $1 to
other bank accounts. This looks like Table 6-1, where each “Transaction” column is a
transaction that performs a debit and a credit. The columns “Account” and “Starting
value” on the left show three accounts, namely 1, 2, and 3, with starting values of $0.
The next column, “Transaction 1,” debits account 1 and credits account 2, etc. For
every column representing a debit and credit transaction, all the rows should sum up
to zero.

Table 6-1. Debit and credit transactions

Account Starting value Transaction 1 Transaction 2 Transaction 3 Transaction 4

1 $0 -$1 -$2 -$3 -$2
2 $0 $1 $1 $2 $2
3 50 $0 $1 $1 50
Sum $0 $0 50 $0 $0

The way we test consistency is to see if the stream processor can return zero when we
sum up the balances of all the accounts. This is our invariant. Any moment the sum
does not total zero would indicate an issue with consistency.
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Transactions
We set up our toy bank example with the Python code in Example 6-1.

Example 6-1. The Python code to set up our toy bank example

import s s s
from import Cluster

c = Cluster("local")

c.create("transactions", partitions=1)

p = c.producer("transactions")

random.seed(42)

for id_int in range(0, 10000):

row_str = json.dumps({

"id": id_int,
"from_account": random.randint(0, 9),
"to_account": random.randint(0, 9),
"amount": 1,
"ts": datetime.datetime.now().isoformat(sep=

, timespec="milliseconds")
b
print(row_str)
p.produce(row_str, key=str(id_int))
time.sleep(0.01)
p.close()

Ten thousand times, every 10 milliseconds, the code produces a new message
to a (one-partition) Kafka topic called transactions, where one bank account,
from_account, transfers $1 to another bank account, to_account. We exhibit an
example message in Example 6-2.

Example 6-2. An example message/transaction

{
"id": 42,
"from_account": 3,
"to_account": 0,
"amount": 1,
"ts": "2023-10-24 23:27:57.603"
}

Analyzing the Transactions

We now put SQL on the job to analyze the transactions further. We first set up two
views aggregating the credits and debits of the accounts: the credits are the sum of
the money transferred to the account and, analogously, the debits are the sum of the
money transferred from it (Example 6-3).
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Example 6-3. Setting up the views for credits and debits

CREATE VIEW credits AS
SELECT
to_account as account,
SUM(amount) as credits
FROM transactions
GROUP BY to_account;

CREATE VIEW debits(account, debits) AS
SELECT
from_account as account,
SUM(amount) as debits
FROM transactions
GROUP BY from_account;

Next, we calculate the balance of an account, its credits minus its debits:

CREATE VIEW balance AS
SELECT
credits.account AS account,
credits - debits AS balance
FROM credits
INNER JOIN debits ON credits.account = debits.account;

Finally, we create a view that sums up the balances of all accounts. Since no money
can appear out of the blue, and no money can be lost, that sum should always be
0 and give us the invariant to test the behavior of stream processors and streaming
databases with respect to consistency:

CREATE VIEW total(total) AS
SELECT SUM(balance) FROM balance;

Comparing Consistency Across Stream Processing Systems

Now how do some of the existing stream processing systems fare when confronted
with the toy bank example? We take a look at six of them:

« Flink SQL « RisingWave
* ksqlDB » Materialize
« Proton (Timeplus) o Pathway

Flink SQL

We start out with Flink, one of the most popular stream processing systems. Because
in this book, we are primarily interested in SQL-based streaming databases, we make
use of Flink’s SQL layer/API Flink SQL (we used version 1.19.0).
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In Flink SQL, we first set up a connection to the source topic transactions:

CREATE TABLE transactions (
id BIGINT,
from_account INT,
to_account INT,
amount DOUBLE,
ts TIMESTAMP(3)

) WITH (
'connector' = 'kafka',
"topic' = 'transactions',
'properties.bootstrap.servers' = 'localhost:9092',
'properties.group.id' = 'transactions_flink',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json',
'json.fail-on-missing-field' = 'true',
'json.ignore-parse-errors' = 'false'

);

In the next step, we create the views credits, debits, balance, and total:

CREATE VIEW credits(account, credits) AS
SELECT
to_account as account,
SUM(amount) as credits
FROM
transactions
GROUP BY
to_account;

CREATE VIEW debits(account, debits) AS
SELECT
from_account as account,
SUM(amount) as debits
FROM
transactions
GROUP BY
from_account;

CREATE VIEW balance(account, balance) AS
SELECT
credits.account,
credits - debits as balance
FROM
credits,
debits
WHERE
credits.account = debits.account;

CREATE VIEW total(total) AS
SELECT
SUM(balance)
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FROM
balance;

As our last step, we write back the results from the view total to a sink Kafka topic
called total_flinksql:

CREATE TABLE total_sink (
total DOUBLE,
PRIMARY KEY (total) NOT ENFORCED
) WITH (
'connector' = 'upsert-kafka',
'property-version' = 'universal',
'properties.bootstrap.servers' = 'localhost:9092',
"topic' = 'total_flink',
'key.format' = 'json',
'value.format' = 'json',
'properties.group.id’' = 'total_flink'
);

INSERT INTO total_sink SELECT * FROM total;

Now let’s have a look at the dataflow graph for our Flink SQL code in Figure 6-1.
You see the transactions source table on the left, which is then split into the two
aggregations for credits and debits. Then, these two aggregations are JOINed into
balance before the sum of the balances of all accounts is calculated in total.

- \ 'GroupAggregate[13] —>‘
Source: transaction[1] GroupAggregate[4] Join[10] -> Calc[11] |__| ConstraintEnforcer
-> (Calc[2], Calc[6]) -’:8 § _§ [14] -> total_sink
Parallelism: 1 = parallelism:1 [T|  Parallelism:1 3 L2l K
Backpressured (max): N/A Backpressured (max): N/A [®]Backpressured (max): N/A[®| committer
Busy (max): /A Busy (max): N/A Busy (max): N/A Parallelism: 1
p < Backpressured (max): N/A
GroupAggregate[8] Busy (max): N/A
\ J
Hash Parallelism: 1 Hash
—> Backpressured (max): N/A
Busy (max): N/A

Figure 6-1. The dataflow graph of Flink SQL code for the toy example

A dataflow graph/topology similar to Figure 6-1 is used inside all
the compared stream processing systems here, including ksqlDB,
Proton, RisingWave, Materialize, and Pathway.

To run the example in Flink SQL, we first set up the tables and views before we
run the Python code to set up 10,000 transactions in our toy bank—and see what
happens. If we came from the database world, we would expect nothing serious to
happen—the result topic should, like the view total, always return the total sum 0.
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Lets visualize the results calculated by Flink SQL from the Kafka topic
total_flinksql in Figure 6-2.

400

200 gt Nt . e

Total
é

-200: g -t e P | o

-400 —

-600 .

18:48:45 18:49:00 18:49:15 18:49:30

Timestamp

18:49:45 18:50:00 18:50:15

Figure 6-2. Visualization of the sink Kafka topic total_flinksql

In Figure 6-2, we see almost 80,000 messages (!), wildly oscillating between +400 and
-600 as the total sum of balances of all accounts. When the input stream eventually
stops after 10,000 messages, however, Flink SQL does converge on the correct, consis-
tent sum, 0, as shown in Table 6-2.

Table 6-2. The last few messages in the total_flinksql sink Kafka topic

Offset Total

79936 3.0
79937 40.0
79938 40.0
79939 -2.0
79940 =20
79941 -103.0
79942 -103.0
79943 1.0
79944 1.0
79945 -83.0
79946  -83.0
79947 0.0
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The reason for this behavior is a design choice for Flink SQL—namely, on a high
level, to support eventual consistency over internal consistency, which goes hand in
hand with the choice for low latency over consistency. In the eventual consistency
model, it suffices if the result of the stream processing is not always consistent, but
“consistent at some later time” In our case, “at some later time” is exactly the point
in time when the Python code stops pushing new messages into the source topic
transactions.

The eventual consistency model has the clear benefit of keeping latency as low
as possible and is an ideal model for windowed stream processing, which is what
Flink and Flink SQL are most commonly used for. However, in our case, it leads
to a dilemma. We have an unbounded, nonwindowed use case here, and we can
never be sure whether the intermediate result Flink SQL returns is correct unless
we stop the input stream. But we cannot stop the input stream at any time, at least
not in a productive setting, as we cannot forbid our imaginary customers to make
transactions...

With version 1.19, Flink has introduced so-called MiniBatch for JOIN operators.
MiniBatch, if configured correctly for the use case at hand, not only dramatically
improves its performance but also helps in achieving a higher degree of consistency.
We will go into this later in this chapter.

ksqIDB

Our next stream processor/streaming database is ksqIDB from Confluent (we used
version 7.6.0). Many see ksqlDB as the first streaming database (its first version was
released in 2017). This chapter focuses on SQL-based stream processing systems, so
we include only ksqlDB in this chapter and not its underlying library, Kafka Streams.

Again, we first set up a connection to the source topic transactions in Example 6-4.

Example 6-4. Setting up the table transactions in ksqlDB

CREATE TABLE transactions (
id VARCHAR PRIMARY KEY,
from_account INT,
to_account INT,
amount DOUBLE,
ts VARCHAR
) WITH (
kafka_topic = 'transactions',
value_format = 'json',
partitions = 1,
timestamp = 'ts',
timestamp_format = 'yyyy-MM-dd HH:mm:ss.SSS'
)
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In the next step, we create the views credits, debits, balance, and total, each
corresponding to a ksqlDB TABLE:

CREATE TABLE credits WITH (

kafka_topic = 'credits',
value_format = 'json'

) AS

SELECT

to_account AS account,
SUM(amount) AS credits
FROM
transactions
GROUP BY
to_account EMIT CHANGES; @

CREATE TABLE debits WITH (
kafka_topic = 'debits',
value_format = 'json'

) AS
SELECT
from_account AS account,
SUM(amount) AS debits
FROM
transactions
GROUP BY
from_account EMIT CHANGES;

CREATE TABLE balance WITH (
kafka_topic = 'balance',
value_format = 'json'
) AS
SELECT
credits.account AS account,
credits - debits AS balance
FROM
credits
INNER JOIN debits ON credits.account = debits.account EMIT CHANGES;

CREATE TABLE total WITH (
kafka_topic = 'total_ksqldb',
value_format = 'json'

) AS
SELECT
'foo',
SUM(balance)
FROM
balance
GROUP BY
'"foo' EMIT CHANGES;

© EMIT CHANGES informs ksqlDB that the query is a push query.
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When we set up the table total, we sink the resulting total sums of the balances of all
accounts into a sink Kafka topic total_ksqldb.

Now, as we did for Flink SQL, we first set up the tables in ksqlDB and then run the
Python code to create 10,000 transactions. Then, we visualize the results calculated by
ksqlDB from the Kafka topic total_ksqldb (see Figure 6-3).

Figure 6-3. The sink Kafka topic total_ksqldb

Similar to Figure 6-2, we see a lot of messages (almost 40,000), still wildly oscillating
around 0 (between +100 and -100). Again, when the input stream stops after 10,000
messages, ksqlDB does converge on the correct, consistent sum 0, as the last couple of
Kafka messages in the sink Kafka topic total_ksqldb show:

Offset Total

39905  -6.0
39906 -78.0
39907 5.0
39908  68.0
39909 4.0
39910 3.0
39911 3.0
39912 7.0
39913 =20
39914 -10.0
39915 -1.0
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Offset Total

39916 -26.0
39917 0.0

The reason for this behavior of ksglDB is the same as for Flink SQL—ksqIDB has
adopted the model of eventual consistency (or, as it is called in the context of Katka
Streams/ksqlD3B, continuous refinement). In the case of our example, ksqlDB leads us
into the same dilemma as Flink SQL: unless we stop the input stream, we never know
which of the intermediate results is actually correct.

Proton (Timeplus)

In this section, we look at Proton, the open source streaming database underlying
Timeplus. The setup for Proton starts by creating a STREAM to connect to the input
Kafka topic transactions in Example 6-5.

Example 6-5. Setting up the input STREAM in Proton

CREATE EXTERNAL STREAM transactions(
id 1int,
from_account int,
to_account int,
amount int,
ts datetime64

) SETTINGS
type = 'kafka',
brokers = 'broker:29092',
topic = 'transactions',
data_format = 'JSONEachRow';

In the next step, we set up the views credits, debits, and balance in Example 6-6.

Example 6-6. Setting up the views credits, debits, and balance in Proton

CREATE EXTERNAL STREAM transactions(
id int,
from_account int,
to_account int,
amount int,
ts datetime64
) SETTINGS type = 'kafka',
brokers = 'broker:29092',
topic = 'transactions',
data_format = 'JSONEachRow';

CREATE VIEW credits AS
SELECT
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now64() as ts,
to_account as account,
sum(amount) as credits
FROM
transactions
GROUP BY
to_account EMIT PERIODIC 100ms;

CREATE VIEW debits AS
SELECT
now64() as ts,
from_account as account,
sum(amount) as debits
FROM
transactions
GROUP BY
from_account EMIT PERIODIC 100ms;

CREATE VIEW balance AS
SELECT
c.account,
credits - debits as balance
FROM
changelog(credits, account, ts, true) AS c
JOIN changelog(debits, account, ts, true) AS d ON c.account = d.account;

Now that we have these views in place, all that remains to be done in Example 6-7 is
creating the output STREAM sinking out the results to the sink Kafka topic total_pro
ton and the materialized view total.

Example 6-7. Setting up the output STREAM and the MATERIALIZED VIEW total in
Proton

CREATE EXTERNAL STREAM total_s(total int) SETTINGS type = 'kafka',
brokers = 'broker:29092',

topic = 'total_proton',

data_format = 'JSONEachRow';

CREATE MATERIALIZED VIEW total INTO total_s AS
SELECT

sum(balance) as total
FROM

balance;
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We see only 56 messages in the result topic, moving around between -10 and 9.
When the input stream stops after all 10,000 messages, Proton converges to the
correct sum: 0. This can be observed when looking at the last few messages in the
sink Kafka topic total_proton (Table 6-3).

Table 6-3. The last few messages in the total_proton sink Kafka topic

Offset Total

48
49
50
51
52
5 -9
54

55 0

O v v v v

In Figure 6-4, we present the visualized results for Proton, where you easily spot the
last, correct total sum, 0, on the right because the resulting sink topic is relatively
small.

75

21:14:00 21:14:15 21:14:30 21:14:45 21:15:00 21:15:15 21:15:30 21:15:45
Timestamp

Figure 6-4. Visualization of the sink Kafka topic total_proton

Comparing Consistency Across Stream Processing Systems | 109



Again, as with Flink and ksqlDB, the underlying model is eventual consistency, and
the dilemma we end up in is similar—even though we get less extreme errors in the
intermediate results, we still have to stop the input stream to make sure we end up
with the correct result.

RisingWave

Next up is RisingWave, a streaming database with PostgreSQL wire protocol compati-
bility. We set up the example for RisingWave as follows. We first create a table fed by
our input Kafka topic transactions:

CREATE TABLE IF NOT EXISTS transactions (
id INT,
from_account INT,
to_account INT,
amount INT,
ts TIMESTAMP
) WITH (
connector = 'kafka',
topic = 'transactions',
properties.bootstrap.server = 'broker:29092',
scan.startup.mode = 'earliest',
scan.startup.timestamp_millis = '140000000'
) ROW FORMAT JSON;

Secondly, we set up the views in Example 6-8.

Example 6-8. Setting up the views credits, debits, balance, and total in RisingWave

CREATE VIEW accounts AS
SELECT

from_account AS account
FROM

transactions
UNION
SELECT

to_account
FROM

transactions;

CREATE VIEW credits AS
SELECT
transactions.to_account AS account,
SUM(transactions.amount) AS credits
FROM
transactions
LEFT JOIN accounts ON transactions.to_account = accounts.account
GROUP BY
to_account;
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CREATE VIEW debits AS
SELECT
transactions.from_account AS account,
SUM(transactions.amount) AS debits
FROM
transactions
LEFT JOIN accounts ON transactions.from_account = accounts.account
GROUP BY
from_account;

CREATE VIEW balance AS
SELECT
credits.account AS account,
credits - debits AS balance
FROM
credits
INNER JOIN debits ON credits.account = debits.account;

CREATE VIEW total AS
SELECT

sum(balance)
FROM

balance;

And finally, we sink the view total into the topic total_risingwave:

CREATE SINK total_sink
FROM
total WITH (
connector = 'kafka',
properties.bootstrap.server = 'broker:29092',
topic = 'total_risingwave',
type = 'append-only',
force_append_only = 'true'

H

We then set up the tables and views in RisingWave and run the Python code to create
10,000 transactions. The visualized results for RisingWave are as shown in Figure 6-5.

We end up with 105 messages in the sink topic, which is a bit more than what we got
with Proton, and much less than what Flink SQL and ksqlDB produced. But, more
importantly, each of the messages gives us the correct result: 0.
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Timestamp

Figure 6-5. Visualization of the sink Kafka topic total_risingwave

Materialize

Our fifth stream processing system is Materialize, another streaming database offer-
ing a PostgreSQL-compatible API like RisingWave. We first create a table fed by our
input Kafka topic transactions.

CREATE CONNECTION kafka_connection TO kafka (broker 'broker:29092');

CREATE SOURCE transactions_source

FROM
kafka connection kafka_connection (TOPIC 'transactions', START OFFSET (0)) KEY FORMAT
TEXT VALUE FORMAT TEXT INCLUDE KEY ENVELOPE UPSERT WITH (SIZE = '1');

CREATE VIEW transactions AS

SELECT
((text :: jsonb) ->> 'id') :: string AS id,
((text :: jsonb) ->> 'from_account') :: int AS from_account,
((text :: jsonb) ->> 'to_account') :: int AS to_account,

((text :: jsonb) ->> 'amount') :: int AS amount,
((text :: jsonb) ->> 'ts') :: timestamp AS ts,
key

FROM
transactions_source;
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Then, we set up the views in Example 6-9.

Example 6-9. Setting up the views credits, debits, balance, and total in Materialize

CREATE VIEW accounts AS
SELECT

from_account AS account
FROM

transactions
UNION
SELECT

to_account
FROM

transactions;

CREATE VIEW credits AS
SELECT
transactions.to_account AS account,
SUM(transactions.amount) AS credits
FROM
transactions
LEFT JOIN accounts ON transactions.to_account = accounts.account
GROUP BY
to_account;

CREATE VIEW debits AS
SELECT
transactions.from_account AS account,
SUM(transactions.amount) AS debits
FROM
transactions
LEFT JOIN accounts ON transactions.from_account = accounts.account
GROUP BY
from_account;

CREATE VIEW balance AS
SELECT
credits.account AS account,
credits - debits AS balance
FROM
credits
INNER JOIN debits ON credits.account = debits.account;

CREATE VIEW total AS
SELECT

SuM(balance)
FROM

balance;
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And finally, we sink the view total into the topic total_materialize:

CREATE SINK total_sink

FROM
total INTO kafka connection kafka_connection (TOPIC 'total_materialize')
FORMAT JSON ENVELOPE DEBEZIUM WITH (SIZE = '1');

We can now run the toy example by first setting up the sources and views in Material-
ize and then executing the Python code to create 10,000 transactions. The visualized
results for Materialize are shown in Figure 6-6.

Total
o

2022-01  2022-07 2023-01 2023-07  2024-01 2024-07  2025-01  2025-07  2026-01
Timestamp

Figure 6-6. The Kafka topic total_materialize

Materialize only outputs one message to the sink Kafka topic, and this message
contains the correct result, 0, whenever we run it. We will go into more detail about
how Materialize achieves this below.

Pathway

Pathway is actually more of a stream processing library for Python and not a full-
fledged streaming database. We still added it to this chapter to show that consistency
can be achieved using a stream processor as well and that a streaming database is not
a requirement.

What’s more, it's a stream processor that uses Python as the imperative language
to author streaming pipelines. The Python code in Example 6-10 contains SQL
statements similar to those used for Flink SQL, ksqlDB, Proton, RisingWave, and
Materialize, except the source and destination of the results are defined in Python +
SQL instead of just SQL.
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Example 6-10. Setting up the example in Python with Pathway
#!/bin/python
import pathway as pw

rdkafka_settings = { (1]
"bootstrap.servers": "localhost:56512",
"group.id": "pw",

"session.timeout.ms": "6000"

}

class InputSchema(pw.Schema): (2]
id: int
from_account: int
to_account: int
amount: int
ts: str

t = pw.lo.kafka.read( (3]
rdkafka_settings,
topic="transactions",
schema=InputSchema,
format="json",
autocommit_duration_ms=1000

)

credits = pw.sql( (4]
SELECT to_account, sum(amount) as credits
FROM T GROUP BY to_account
T

debits = pw.sql( (5]
SELECT from_account, sum(amount) as debits
FROM T GROUP BY from_account
s Tot)

balance = pw.sql( (6]
SELECT CC.to_account, credits - debits as balance
FROM CC
join DD on CC.to_account = DD.from_account
mrr’ CC=credits, DD=debits)

total = pw.sql( (7]
SELECT sum(balance) as total FROM BB
""" BB=balance)
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pw.1lo.kafka.write( (8]
total,
rdkafka_settings=rdkafka_settings,
topic_name='total_pathway',
format="json")

pw.run() (o)

The connection information to Kafka.

The schema of the transactions being consumed.

t represents the streaming transactions coming from Kafka.
The credits table.

The debits table.

The balance after the debits are subtracted from credits.
The total that will be used to emit to Kafka.

The result in a Kafka topic named total_pathway.

® 6 ¢ © 6 6 o ©

Run the dataflow asynchronously.

The result of running this application is a single record written to the total_pathway
topic in Kafka (see Example 6-11).

Example 6-11. The single record written to the result topic total_pathway

{
"total": 0, @
"dLFFT: 1,
"time": 1698960910176
}

© This is the value of the record with a total of 0.

The visualization of the sink topic in Figure 6-7 shows exactly the same behavior as
Materialize.
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Figure 6-7. The Kafka topic balance

Out-of-Order Messages

To model more realistic conditions, we modified the Python code from Example 6-1
to produce about 1/10 of the messages out of order. From the 10,000 messages, about
1,000 were out-of-order. We obtained almost the same results as in the trivial case
without any late-arriving/out of order messages for Flink SQL, ksqlDB, and Proton,
and exactly the same results for RisingWave, Materialize, and Pathway.

Going Beyond Eventual Consistency

After you have seen how the five stream processing systems have fared, there are a
number of unanswered questions:

« Why do the eventually consistent Flink SQL, ksqlDB, and Proton fail our toy
example?
« How do the internally consistent RisingWave, Materialize, and Pathway pass it?

e And what can we learn from that—can we even derive a workaround for Flink
SQL, ksqlDB, and Proton?

Why Do Eventually Consistent Stream Processors Fail
the Toy Example?

Lets trace back to what we did in our toy example. We first created the two views
credits and debits. Up until this point, all was still fine. But once we joined the two
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views in the view balance, the JOIN operators of Flink SQL, ksqIDB, and Proton did
not correctly match up the data coming in from the views credits and debits.

To understand how this happened, we restrict ourselves to four transactions:

1. Transfer $1 from account 0 to account 1.
2. Transfer $1 from account 0 to account 2.
3. Transfer $1 from account 1 to account 2.

4. Transfer $1 from account 2 to account 0.

Now let’s see what can happen in an eventually consistent stream processing system
like Flink SQL, ksqlDB, and Proton.

Since the two inputs of the JOIN operator in the balance view are not synchronized,
a possible scenario is that the credits view emits its results earlier than the debits
view, which results in the balance view combining its inputs as follows:

1. balance combines the first result of the credits view with the first result of the
debits view.

2. balance combines the second result of credits with the first result of debits.
3. balance combines the third result of credits with the first result of debits.

4. balance combines the fourth result of credits with the first result of debits.

What happens here can be likened to a race condition illustrated in Figure 6-8, where
the four transactions can be seen on the left and the results in the credits and
debits views are shown in the middle. On the right, you can see the results in the
balance view and corresponding sums in the total view. In the credits, debits,
and balance parts of the diagram, "0:1" stands for “account 0, value 1, "2:1" stands
for “account 2, value 1, and so on (where “value” is either credits, debits, or
balance, depending on the position in the diagram).

Credits
)
0:0
1:1
2:0 Balance
: \——/
Transactions R 0:-1 0:-1 0:-1 0:0 Total
0->1 0->2 1->12->0 289%° ) 1:1 1:1 1:1 1:1 0123
. 2:0 2:1 2:2 2:2

N R o
[cIcIT
NP o
o OoN
N R o
@Rk N
NP o
[N

Figure 6-8. Incorrect intermediate results: credits emits faster than debits
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The four combinations of results from credits and debits into balance are indica-
ted by the dotted lines. The three rightmost dotted lines indicate incorrect combina-
tions, and the three rightmost results indicate incorrect results in balance and total.
As you can see, while the first result (in boldface) of the balance view (where the first
result of credits is correctly joined with the first result of debits) is correct, the next
three results are incorrect and break our invariant of the total sum of the balances
having to be 0. Since the credits view has emitted its results earlier than the debits
view, the resulting wrong total calculations yield positive results (1, 2, and 3).

For further illustration, let’s look at another possible scenario. Here, the debits view
emits its results faster than the credits view:

1. balance combines the first result of the credits view with the first result of the
debits view.

2. balance combines the first result of credits with the second result of debits.

3. balance combines the first result of credits with the third result of debits.

4. balance combines the first result of credits with the fourth result of debits.

Credits

Balance

Transactions 0:-1 0:-2 0:-2

0 ->10->21->12->0 1:1 1:1 1:0
2:0 2:0 2:0

Debits

Figure 6-9. Incorrect intermediate results: debits emits faster than credits

Here, the debits view has emitted its results earlier than the credits view, and
consequently, the resulting wrong total calculations yield negative results (-1, -2, and
-3). Let’s delve deeper into what could have caused this.

Early emission from nonmonotonic operators

The main goal of eventually consistent stream processing systems is low latency. To
achieve this goal, one of the design decisions made by Flink SQL and ksqlDB is to
emit results as early as possible. As a side note, this also caused these systems to emit
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so many messages into the sink Kafka topic (almost 80,000 for Flink SQL and almost
40,000 for ksqlDB).2

Proton, though also eventually consistent, emitted many fewer messages (56). For
most classical stream processing use cases, this behavior is fine, but for nonwindowed
data, this can become a failure mode, called early emission from nonmonotonic opera-
tors in Brandon’s blog.

Early emission of results doesn't pose a problem for monotonic operators such as
filters. But it can be problematic for nonmonotonic operators, as we see in the
example. Here, nonmonotonic operators such as JOINs and UNIONs cannot just “com-
bine what they get as early as they get it” from both of their inputs and then emit
these intermediate results. They have to make sure that they only combine aligned,
synchronized inputs.

MiniBatch, as used in Proton and also optionally in Flink 1.19+, can be a cure for this
failure pattern, as we will discuss later, as can be caching for ksqlDB.

Combining streams without synchronization

In fact, what leads to the eventually consistent stream processing systems breaking
our toy example is a combination of “early emission from nonmonotonic operators”
and these operators not synchronizing their inputs (combining streams without syn-
chronization in Brandon’s blog).

What goes wrong is that the transactions of our toy bank, which actually correspond
to database transactions here, are lost as soon as we JOIN the credits and debits
views in the balance view. Essentially, the JOIN operators in Flink SQL, ksqlDB, and,
to an extent, Proton just JOIN whatever comes in from both input views—and if it
falls foul to the race condition and any of the two input views provides its inputs
faster than the other, we get incorrect/inconsistent results (as shown in Figures 6-8
and 6-9).

A common response to the need for synchronization is that this form of synchroniza-
tion implies requiring a global lock, just like in a database, and such a global lock
would not scale. In fact, using a global lock for synchronization is only one option
(the simplest and least scalable). There are ways for achieving synchronization in a
concurrent and scalable way, as we will see in the following sections.

2 These numbers of intermediate results can be significantly reduced by optimizing the Flink SQL and ksqIDB
configurations (e.g., MiniBatch for Flink SQL, KTable caches, and/or commit interval for ksqIDB) for this
particular use case. We simply used the defaults.
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How Do Internally Consistent Stream Processing Systems
Pass the Toy Example?

As we have seen, the key to getting our toy example right is to be able to combine
streams with synchronization. Intuitively, we have to make sure that only those
results from credits and debits that belong together—or, in other words, correspond
to the same transaction in the transactions source Kafka topic—are combined.

The graphs showing the results in the total topics indicated that RisingWave (Fig-
ure 6-5), Materialize (Figure 6-6), and Pathway (Figure 6-7) might have found a way
to implement this. But how?

RisingWave

RisingWave makes use of the concept of barriers, inspired by the checkpoint barriers
of Flink. Essentially, barriers are control records containing epochs (timestamps),
which are automatically injected periodically (e.g., every second) into all sources.
In RisingWave, barriers are used as version numbers for data. Operators are only
allowed to emit the result associated with a specific version once the same ver-
sion/barrier has been received from all inputs.

Flink uses barriers for consistent checkpointing. RisingWave, on the other hand, also
fully exploits the fact that it is a streaming database and not just a stream processor,
and thus has full control over its persistence layer, including the checkpoints. Rising-
Wave can thus go beyond Flink in this regard and can use the checkpointing barriers
not only for checkpointing itself but also for versioning in an adaptation of the
concept of snapshot isolation from the database world.

Let’s visualize what happens with our four transactions and how RisingWave would
process them. In Figure 6-10, we inject barriers after each of the transactions, signi-
fied by the vertical lines. Each of the barriers has its own version indicated by the
subscripts (1, 2, 3, 4). During processing in RisingWave, the transaction barriers
are forwarded to the next operators. Now when the balance view is calculated, the
barriers are used to ensure that inputs from the credits and debits views are only
combined if both of them precede the same barrier (i.e., have the same version).

Going Beyond Eventual Consistency | 121



[0 -> 1|0

Transactions
-> 2|1 -> 1|2 -> 0

1

l2 l3 l4

Credits

Debits

Balance
0:-1]0:-2] 0:-2] 0:-2 Total
1:1 J1:1 | 1:0 | 1:0 olololo
2:0 |2:0 2:0 2:-1
1 234
oLk

Figure 6-10. Using transaction barriers to ensure consistency

In principle, barriers can also be injected less frequently. Consider the diagram in
Figure 6-11, where we only inject one for every two messages in the transactions.

0

Transactions

->1 0 ->2f1->12

-> 0

Credits

]

1
Debits

Figure 6-11. Using (less frequent) transaction barriers to ensure consistency

The frequency of injection of these epoch barriers in RisingWave has direct conse-
quences with respect to latency and memory consumption. Increased frequency of
injection reduces end-to-end latency, but at the cost of more memory consumption
because maintaining more versions of the data consumes more memory.

At first glance, barriers resemble watermarks known from stream
processors like Flink by also being control records in the dataflow
graph. However, barriers and watermarks have slightly different
semantics. With barriers, operators can only emit results once they
have reached the same barrier for all inputs. With watermarks,
operators can only proceed once they encounter a watermark. A
watermark signals that all events up to a certain timestamp should

have arrived.
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Materialize

Materialize is based on Differential Dataflow (DD).?> Data in DD is always versioned
and all of DD’s operators respect these versions. Hence, the diagram in Figure 6-12
for Materialize is very similar to Figure 6-10, with the only difference being that
the data is versioned out of the box—DD doesn’t need any additional concepts like
barriers.

Credits

- Balance
Transactions 0:-1 0:-2 0:-2 0:-2 Total
0->10->21->12->0 1:1 1:1  1:0 1: 6 6 0 0
vi V2 V3 v4 2:0 2:0 2:0 2:- vl v2v3 v4
vl V2 v3

Debits

Figure 6-12. How DD/Materialize ensures consistency through versions of data

Operator synchronization in DD is thus achieved as follows:

1. Each datum is accompanied with a version (in Figure 6-12, they are called “v1,
((Vz,)’ ((V3:) and ((V4)’)‘

2. Operators can only combine data of the same version.

In this way, DD also implements a form of snapshot isolation and can pass our toy
example.

Pathway

Like Materialize, Pathway is also based on DD and thus also uses versioning to
achieve the operator input synchronization required for passing our toy example
challenge. We included Pathway to show that this form of consistency can be
achieved not only by a streaming database but also by a stream processing library
with an internally consistent underlying engine like DD.

3 Derek G. Murray et al., “Naiad: A Timely Dataflow System,” Proceedings of SOSP’13: The 24th ACM
Symposium on Operating Systems Principles.
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How Can We Fix Eventually Consistent Stream Processing
Systems to Pass the Toy Example?

We have seen that one of the key features of internally consistent stream processing
systems is their ability to synchronize the inputs of their binary, nonmonotonic
operators such as UNIONs and JOINs, either by barriers (RisingWave) or versions (DD,
Materialize, Pathway). More abstractly, the keys to the “global-lock-free synchroniza-
tion kingdom” are efficient systems of semantically meaningful timestamps allowing
for decoupled progress to happen across the stream processing topology.

Can we use this insight to derive a fix to make Flink SQL also pass our toy example?*

How Flink SQL can pass the toy example

For Flink SQL, there are indeed ways to pass our toy example. One is to make explicit
use of the timestamp field ts in the WHERE clause of the balance view to JOIN the
credits and debits only if the ts field of credits and debits matches.” We display
the changes to the Flink SQL code in Example 6-12.

Example 6-12. Setting up the views balance and total in Flink SQL using an explicit
ts field for operator input synchronization

CREATE VIEW credits(account, credits, ts) AS
SELECT
to_account as account,
sum(amount) as credits,
ts
FROM
transactions
GROUP BY
to_account,
ts;

CREATE VIEW debits(account, debits, ts) AS
SELECT
from_account as account,
sum(amount) as debits,
ts
FROM
transactions
GROUP BY
from_account,

4 We have tried to implement a similar fix for ksqIDB but failed because of ksqlDB’s limited SQL syntax. It’s
probably possible to implement the fix with Kafka Streams using its lower-level ProcessorAPI.

5 In the real world, however, it’s very hard to keep timestamps in different records exactly the same; hence
synchronizing on the ts field could be a brittle fix.
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ts;

CREATE VIEW balance(account, balance) AS
SELECT
credits.account,
credits - debits as balance
FROM
credits,
debits
WHERE
credits.account = debits.account
AND credits.ts = debits.ts;

With this fix, the size of the Flink SQL sink topic total_flinksql_ts goes down
from about 80,000 to 1, without any intermediate results. Now, it only includes one

message with the correct sum, 0, just like Materialize and Pathway, as you can see in
Figure 6-13.

0.04

0.02
=
S 0.00

-0.02

-0.04

2022-01  2022-07 2023-01 2023-07 2024-01 2024-07 2025-01 2025-07  2026-01
Timestamp

Figure 6-13. The Kafka topic total_flinksql_ts

Why this fix can be problematic

By having identified the key feature of internally consistent stream processing sys-
tems that helped them solve our toy example, we could also solve it with Flink SQL
by adding explicit operator input synchronization via timestamps. So is eventual
consistency strong enough for stream processing after all2 Why would we need a
stronger form of consistency at all?
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The fix for Flink SQL to pass our toy example can be problematic in a number of
ways that are not immediately obvious. It does work perfectly for a toy example, but:

By adding the timestamp (ts) to the GROUP BY in Example 6-12, we create an
unboundedly growing internal state store for the aggregation, which would lead
to Flink exhausting its memory at a later stage.

o As we stated in the introduction to this chapter, an engineer coming over from
the database world would have a hard time understanding why their intuitive
solution creates 80,000 mostly incorrect results in Flink SQL and why they would
have to fix any of their perfectly fine-looking, intuitive SQL code at all.

o Explicitly “bolting on” consistency on an eventually consistent system can only
be done on a case-by-case basis. Each new use case can require a different fix.

o Fixes like this can still lead to subtle inconsistencies. Assume you have not one
but two input topics, transactionsl and transactions2—one holding bank
accounts 0 to 4, and the other bank accounts 5 to 9. Now, what if a transaction
from transactionsl has the same timestamp as a transaction from transac
tions2? Then you couldn’t stop Flink SQL from combining wrong inputs any
longer. Once again, you would have to search for a fix of your fix (e.g., include
the transaction ID in the JOIN clause, etc.).

Taken together, it seems that eventually consistent stream processing systems can
often be fixed to behave more consistently, but the level of consistency that you can
reach is entirely up to you, the engineer—and can change with the next JOIN that you
have to implement on top of your existing SQL code. Consistent stream processing
on nonwindowed data can be done in eventually consistent stream processors, but it’s
almost guaranteed to be more time consuming and error prone and, on top, hardly
accessible to anybody outside the small circle of stream processing experts. It’s far too
easy to get inconsistent results even though the SQL code looks perfectly fine at first
glance.

MiniBatch in Flink 1.19+

Flink 1.19 introduced MiniBatch semantics for JOINs. If activated and configured in
a way that fits the use case at hand, MiniBatch can not only significantly improve the
performance of Flink but also lead up to a much higher level of consistency.

MiniBatch is an optimization to buffer input records to reduce state access. We have
experimented with various configurations for MiniBatch and found out that for the
toy example of this chapter, it’s a very effective cure for the “inconsistency” that we
experienced before.
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To activate MiniBatch, three parameters have to be configured:

SET 'table.exec.mini-batch.enabled' = 'true';
SET 'table.exec.mini-batch.allow-latency' = '5S';

SET 'table.exec.mini-batch.size' = '5000';

The configuration item table.exec.mini-batch.allow-latency sets the maximum
latency for the MiniBatch optimization to buffer input records to the JOIN operators.
table.exec.mini-batch.size sets the maximum number of input records to be
buffered. MiniBatch is then triggered with the allowed latency interval and when the
maximum number of records is reached.

We found out that if table.exec.mini-batch.size is set to 1, Flink still outputs the
same number of records (almost 80,000), most of them incorrect, to the sink topic.
This is not surprising, since that setting essentially disables MiniBatch, and Flink
returns to its default behavior. If we increase the batch size to 10, we already get a
massive reduction of output messages (403), and when we go up to 50 or more, only
one message is written out to the sink topic—giving us the correct result, 0. This
consistent result still holds when we send out the transactions out of order.

Hence, it seems that MiniBatch not only is a performance optimization but also
impacts the level of consistency of Flink. Keep in mind, however, that it doesn’t turn
Flink from an eventually consistent into an internally consistent stream processor.
And to be fair, in the Flink documentation, MiniBatch is described as a performance
optimization only. To get advantages in terms of consistency, MiniBatch needs to be
tuned to the right configuration, and even then, it doesn't guarantee a truly higher
level of consistency in all circumstances.

Consistency Versus Latency

The elephant in the room—the question you as a reader have probably asked yourself
already—is about latency. How much of the low latency of an eventually consistent
stream processing system do we have to sacrifice to achieve the stronger level of
internal consistency?

Before we answer that question, let’s distinguish two different kinds of “latency”:

Processing time latency
The time required for a stream processing system to come up with any answer to
a query.

End-to-end latency
The time required for a stream processing system to come up with a consistent
answer to a query.

Consistency Versus Latency | 127



Internally consistent stream processing systems have higher latencies than eventually
consistent ones when it comes to pure processing time. For most nonclassic stream
processing use cases, like those involving JOINs on nonwindowed data, however,
users are more interested in end-to-end latency. In the extreme case of our toy exam-
ple, we observed that all three internally consistent stream processing systems were
able to come up with a consistent result after much less than a second—compared to
never for the eventually consistent systems (unless you stop the input stream or fix
your SQL in some way)...

To conclude, in an ideal world, newer versions of Flink SQL, ksqlDB, and Proton
would include a switch to turn internal consistency on and off—so that users could
easily choose their desired trade-off:

o Switch on internal consistency for use cases involving nonwindowed/unbounded
data and where ultra-low latency is not required.

o Switch off internal consistency and revert to eventual consistency for classical
stream processing use cases involving windowed data and where ultra-low
latency is required.

This would allow them to keep their current processing model for ultra-low latency
use cases, and, at the same time, enable them to treat nonwindowed data in a more
consistent way, allowing practitioners to seamlessly move from and to the database
and the streaming worlds without having to explicitly bolt on consistency as an
afterthought.

Summary

You have seen that while being perfectly suited for classical low-latency, high-
throughput use cases at scale involving windowed data, classical eventually consistent
stream processing systems have their drawbacks:

« They can be hard to apply for use cases involving nonwindowed data.

« Engineers coming from the database world cannot stick to their tried and tested
SQL intuitions and formulas.

We think that these are two of the biggest roadblocks for the broader adoption not
only of stream processing systems, but also of streaming in general. If you are coming
from the database world, would you bother to work with a system that can turn
perfectly fine-looking SQL into such inconsistent chaos as we observed for our toy
example? Of course, consistency can be bolted on, for example, by complicating the
SQL code with additional conditions, watermark definitions, etc., but this can usually
only be done reliably by a small minority of expensive and hard-to-find stream
processing experts.
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Internally consistent stream processing systems such as RisingWave, Materialize, and
Pathway provide stronger consistency guarantees. They could solve our toy example
out of the box by offering a higher level of abstraction (and a less leaky abstraction)
on the difficult concepts dealing with time that are behind stream processing. Thus,
these systems have the potential to democratize stream processing for those who dare
to come over from the database to the streaming world and to significantly extend the
streaming market as a whole.

As for latency with respect to processing time, internally consistent stream processing
systems cannot outperform eventually consistent ones. When you look at the often
more important metric of end-to-end latency though, they can.

In the next chapter, we move into the space of hybrid data systems that is highly
related to streaming databases.
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CHAPTER7
Emergence of Other Hybrid Data Systems

In this chapter, we broaden our focus to include the greater landscape of hybrid
systems that have surfaced in response to the growing demands of modern real-time
event-driven applications. While these systems are not streaming databases as we
defined them in this book, they share qualities and features that bridge between rela-
tional, analytical, and streaming workloads. We will explore the motivations behind
their development, the innovative techniques they employ, and the specific use cases
that make them relevant. More importantly, we will discuss the niches these other
hybrid databases cover. This understanding will allow us to uncover the trends that
databases are following to provide real-time analytics.

It's important to acknowledge that a streaming database is also an example of a hybrid
system. Hybrid systems take at least two perspectives, and in the streaming database
case, the two perspectives are stream processing and the database.

Appreciating the perspectives of hybrid systems will reveal the problems that they
try to solve and how. In this book, we define streaming databases from the stream
processing perspective as follows: a streaming database is a stream processor that
exposes its state store for clients to issue pull queries.

An alternative definition created from the database perspective is as follows: a
streaming database is a database that can consume and emit streams as well as
execute materialized views asynchronously.

By defining the hybrid system from both perspectives, you will expand the hybrid
system’s accessibility to other engineers and use cases. Consistency in stream pro-
cessing is an example of this. Streaming database engineers were forced to see the
database perspective, through which the lack of consistency in some established
stream processors was then identified.
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State stores can be implemented in many ways: key-value, row-based, and column-
based. The implementation of the state store determines the supportable use cases
that can range from high consistency requirements to low-latency analytical queries.

Interestingly, streaming databases are just one example of emerging hybrid and
converging systems, reducing infrastructure complexity and increasing developer
accessibility.

Data Planes

Let’s better understand these emerging systems by creating a Venn diagram (Fig-
ure 7-1) of where real-time systems live today. This will help in discerning the
different use cases (we'll cover these use cases in more detail in Chapter 11) and
deployment models in real-time analytical scenarios.

The diagram will make us see not only the streaming but also the database perspec-
tive. For example, our definition of a streaming database at the beginning of this
chapter was from a stream processing perspective. We can change this definition to a
database perspective: a streaming database is a database that can consume and emit
streams as well as execute materialized views asynchronously.

Respecting all perspectives will also provide hints as to what the next-generation
databases might look like.

Operational data plane Analytical data plane

OLAP

Streaming
OLTP
database

Streaming
OLAP
database

Streaming data plane

Figure 7-1. The streaming plane
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The Venn diagram also helps us to improve our understanding of the role of stream-
ing systems in the analytical ecosystem. Figure 7-1 presents a diagram of the two data
planes that we already know: the operational plane and the analytical data plane.

The diagram adds a third plane: the streaming data plane. This data plane has always
existed but was never acknowledged. It is the only data plane where data is mostly
in motion. The other planes hold data at rest. Where the operational and analytical
planes overlap with the streaming planes is where we have both data at rest and data
in motion. This is where the streaming databases lie. We will address the other areas
of overlap later in this chapter.

The streaming data plane connects the operational and analytical aspects of data pro-
cessing. It captures and processes real-time data, allowing it to flow seamlessly into
the analytical plane, storing, analyzing, and using it for insights and decision-making.
Hence, it acts as a bridge to enable organizations to make quicker, data-driven
decisions based on the combination of real-time and historical data.

To review, the operational plane holds OLTP databases, which are consistent and
use row-based storage. This plane also contains the applications that use the OLTP
database. The analytical plane includes OLAP databases, which are columnar based
and eventually consistent storage. These OLAP databases are optimized to serve
analytical queries.

The streaming plane holds source connectors that bring data at rest into data in
motion. They also have sink connectors that write streaming data into RTOLAP
databases for low-latency serving. The streaming plane leverages platforms like Kafka
and Kafka Connect to replicate and serve streaming data. Stateful stream processors
and streaming databases are also contained in the streaming plane.

Let’s take a closer look at just the streaming plane in Figure 7-2. In Chapter 6, you
learned about the consistency spectrum of stream processors. Figure 7-2 shows a
detailed version of just the streaming plane circle from Figure 7-1. Figure 7-2 divides
strictly consistent stream processors from those that would be eventually consistent,
starting from the left to the right, as well as the storage types from top to bottom.

Streaming data travels from the left to the right in Figure 7-2, as it makes its way
from the operational plane to the analytical plane. Keep in mind that connectors and
streaming platforms like Kafka also live in the streaming plane.

As always with Venn diagrams, the interesting parts are where the circles overlap.
Let’s look at the overlap between the operational and analytical data planes next.
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Figure 7-2. The streaming plane

Hybrid Transactional/Analytical Database

Streaming OLTP databases (row-based storage) converge the stream processing in
the streaming plane with the OLTP database in the operational plane. This is
where the row-based, consistent streaming databases reside (e.g., RisingWave and
Materialize).

Streaming OLAP databases (column-based storage) converge the characteristics of an
OLAP database in the analytical plane with the stream processing characteristics of
the streaming plane. These databases are optimized for complex analytical queries
using indexing and columnar storage and have eventual consistency characteristics.
Proton resides in this area.

The overlap between operational and analytical (without streaming) represents
hybrid transactional/analytical processing (HTAP) databases (see Figure 7-3). These
databases can handle both OLTP and OLAP workloads. This idea was conceived by
Gartner in 2014.

HTAP is an emerging application architecture that “breaks the wall” between transac-
tion processing and analytics. It enables more informed and “in business real-time”
decision-making.
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Figure 7-3. HTAP database is a hybrid OLTP/OLAP database without stream processing

You may be asking, “Wasn’t there a reason why OLTP and OLAP workloads were
separated to begin with? Wasn't this wall placed there intentionally?”

There are two storage types in an HTAP database: in-memory and persistent. Gart-
ner’s HTAP database design can execute analytical queries on “in-flight” transactions
that are performing writes. What enables HTAP databases to do both workloads is
leveraging an in-memory database. For OLTP workloads, HTAP databases satisty
ACID properties with transactions and persistent writes. See Figure 7-4.

Writes ——— Analytical queries

------ In-memory

Persistent store

Figure 7-4. HTAP internal architecture defined by Gartner

Hybrid Transactional/Analytical Database | 135



Exposing the in-memory storage to serve analytical queries is very similar to what
streaming databases do. The difference with HTAP is that it doesn’t support stream
processing. Some HTAP databases also do not support materialized views that run
asynchronously, which takes away any stream processing-like features.

HTAP databases can effectively serve simple real-time analytics because they can
serve queries from their in-memory store directly to the application, which performs
writes. Table 7-1 shows some existing HTAP databases available in the market as of
this writing.

Table 7-1. HTAP databases in the market as of writing

Name Vendor Storage implementation

Unistore Snowflake  All data in a hybrid table is put in both row store and columnar store. Data, when changed, is
synchronously changed in the row store and asynchronously flushed to columnar store.

SingleStoreDB  SingleStore  SingleStoreDB supports two types of tables: on-disk column-based (which they call
Columnstore; this is the default table type for SingleStoreDB Cloud) and in-memory row-based.
Columnstore is also known as Universal Storage.

TiDB PingCAP  TiDB supports transactional key-value store and columnar store. TiKV is a distributed and
transactional key-value database, which provides transactional APIs with ACID compliance.
TiFlash is the analytical extension in the TiDB family that powers TiDB via columnar storage and
a massively parallel processing (MPP) query engine.

HydraDB Hydra Open source database that supports transactional row-based store called heap tables and
column-based storage layouts, which is the default layout.

The HTAP databases in Figure 7-4 do not follow the HTAP design proposed by
Gartner. Under the storage implementation of Figure 7-4, every HTAP database
incorporates both row-based and column-based storage. No in-flight, in-memory
transactions are used to serve analytical queries.

Using HTAP databases effectively defeats the need for a streaming plane—this sug-
gests that you can do all real-time data work within an HTAP database.

HTAP databases do have some limitations that prevent them from taking over real-
time analytics. They are monolithic solutions that cannot hold historical data like the
pure OLAP systems can. Historical data can be terabytes or even petabytes of data. It’s
a better solution to use when you don’t need to keep historical data. Alternatively, you
can keep both an OLAP and HTAP database in your infrastructure, which brings you
back to the data divide we spoke of earlier in this book.

HTAP databases can better serve analytics to applications in the operational plane
rather than running complex ad hoc analytical queries for data analysts. You will need
to extract an aggregated history from the OLAP system, which reduces the size of
history to one that the HTAP can accommodate. Again, you still have the data divide
that the HTAP attempts to remove.
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Figure 7-5 just shows the overlaps in the middle of the Venn diagram. As you can see,
the overlaps form a flower with three petals: HTAP, streaming OLTP, and streaming
OLAP databases.

Hybrid databases emerged to solve real-time analytical problems involving scalabil-
ity and optimization that tend to require more or different infrastructure. More
infrastructure leads to more data integration and movement of data before real-time
analytics can be served to applications.

Streaming
OLTP
database

Streaming
OLAP
database

Figure 7-5. The triad of hybrid databases

The center of the flower (or the pistil) is still undefined at this point in the chapter,
but we can start to infer what it means to implement a database that exists in the
pistil. Before we do, other hybrid databases found on the operational plane need to be
discussed because they don't fall nicely into our Venn model as easily.

Other Hybrid Databases

During our research for this book, we encountered many streaming-like databases
that did not fit cleanly into our streaming or HTAP database definitions. These other
hybrid databases combine unique features that solve problems that normally are
solved with streaming systems you would find in the streaming plane.

Table 7-2. Other hybrid databases

Name Hybrid systems Description

PeerDB  Postgres OLTP database  PeerDB is a Postgres-first data-movement platform that makes moving data in and
+ stream processor out of Postgres fast and simple. It enables you to sync, transform, and load it into
an OLAP system. Materialized views would have to be created in the OLTP database,
so it doesn’t meet our definition of a streaming database but still falls within the
streaming OLTP database category.

Epsio Postgres OLTP database  Epsio plugs into existing databases and constantly updates results for queries you
+ external asynchronous  define whenever the underlying data changes, without ever recalculating the entire
materialized view dataset. This approach allows Epsio to provide instant and always up-to-date results

for complex queries while significantly reducing costs.
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Name Hybrid systems Description

Turso SQLite OLTP database +  Turso allows you to develop locally and replicate globally to many locations around
streaming platform the world, exposing synchronous access to data instead of asynchronous access like
Kafka.
Redpanda Streaming Platform + Developers can bring their own query engines to query the data in Redpanda’s tiered
Apache Iceberg storage without moving them across different systems, reducing their infrastructure
(database) footprint on analytics.

Motivations for Hybrid Systems

Stream processing systems/vendors want to bring the database experience to stream-
ing to help negate its stigma of being too hard and complex to adopt. Stream process-
ing has often been associated with complexity, especially for those not well versed in
the intricacies of real-time data processing. Stream processing systems and vendors
aim to bridge this knowledge gap by providing a more user-friendly experience, akin
to working with traditional databases. This involves simplifying the APIs, providing
user-friendly interfaces, and offering tools that are more intuitive for a broader range
of users.

The stigma of stream processing being too hard to adopt has discouraged many
organizations from fully embracing real-time data analytics. By bringing the database
experience to stream processing, vendors are attempting to reduce the barriers to
entry, making it more accessible and approachable for businesses across various
industries.

The scarcity of skilled data engineers who can effectively work with stream process-
ing systems has also been a significant hurdle. Simplifying the adoption of stream
processing by providing a familiar database-like environment can help organizations
leverage real-time data analytics without extensive, specialized expertise.

Conversely, OLTP databases are trying to adopt features specific to OLAP databases
so that they can better serve analytical queries at the operational plane. OLTP data-
bases are also being pushed to adopt streaming features to meet the growing demand
for real-time data analytics. These features avoid the round trip to the analytical
plane, which, to many, is full of complex and unfamiliar infrastructure.

Many organizations operate in a distributed environment, and ensuring data consis-
tency across multiple databases and systems can be challenging. OLTP databases
are incorporating streaming features to make data replication and synchronization
simpler. By leveraging streaming, they can propagate changes in real time, reducing
the likelihood of data inconsistencies.

From the database perspective, database technologies recognize these needs but do
not recognize they are characteristics of streaming.
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The common goal every hybrid system has in the Venn diagram in Figure 7-1 is pro-
viding real-time analytics with less infrastructure and greater accessibility to engineers.

Many of these hybrid systems are based on an OLTP database partially because
they are closer to the application facing the user and, in turn, more real time. It’s
becoming more so that delivering real-time analytics requires bringing data analytics
closer to the operational plane, if not completely within it. Streaming systems need
to recognize this to better understand their needs and to improve the reputation of
being too difficult to implement.

The Influence of PostgreSQL on Hybrid Databases

Many of the hybrid databases are based on PostgreSQL (or Postgres), which is a very
popular OLTP database. Postgres and its protocol are used by many of the more
popular hybrid databases today: RisingWave, Materialize, Hydra, PeerDB, and Epsio.

Postgres” popularity and its community can be attributed to several additional factors
listed in Table 7-3.

Table 7-3. Postgres popularity factors

Factor Description

Extensibility Postgres’ extensible architecture allows developers to create custom data types, operators, and
functions, making it suitable for a wide range of applications and industries.

Performance The community invests in optimizing the database engine, resulting in competitive performance and

optimization efficient query processing.

Third-party A rich ecosystem of third-party tools, libraries, and extensions has developed around Postgres, further

ecosystem enhancing its capabilities and flexibility.

Enterprise Many large organizations and enterprises have adopted Postgres for their critical applications, which

adoption contributes to its credibility and popularity.

Global reach Postgres is not tied to a specific region or industry, making it appealing to a wide and diverse user base
around the world.

The combination of open source principles, a welcoming and engaged community,
robust development practices, and a feature-rich database engine has made Postgres
a popular and enduring project in the world of relational databases. As its popularity
continues to grow, expect more hybrid databases to provide a database experience
that looks and feels like Postgres.

Near-Edge Analytics

Bringing analytics to the operational plane is a move to make data insights more
accessible and responsive to end users. This approach is primarily driven by the
goal of reducing latency, thereby enabling quicker decision-making in real-time sce-
narios. Hybrid databases play a pivotal role in this effort, as they aim to provide
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analytical capabilities without the need to replicate the entire analytical plane. Users,
in many cases, do not require access to the entirety of the data repository. Instead,
they demand only the specific and relevant subset of data necessary to inform their
immediate, real-time decisions. This optimized data delivery ensures that valuable
insights can be obtained swiftly.

Some analytical workloads will never make it to the operational plane because the
analytical workloads often:

 Aggregate large amounts of historical data that is stored in the OLAP databases.
These can be petabytes of data not suitable for operational infrastructure.

o Train machine learning models that require specialized systems, which do not
exist on the operational plane.

o Require highly distributed systems that can partition the data for massively
parallel processing, which, again, the operational plane does not fully support.

+ Need the flexibility to execute ad hoc queries that serve data to users internally.
Externally user-facing analytics do not possess this flexibility and often have to
request additional metrics to show in their applications.

The goal of every real-time system is to find the easiest and optimal approach to
get real-time analytics to end users without ballooning costs in infrastructure and
resources. It’s the hybrid databases that have the features to do this. Real-time is
defining the next generation of hybrid databases. As more databases support real-
time features, they become more hybrid by nature.

Next-Generation Hybrid Databases

Figure 7-6 provides a visual representation of the current landscape of real-time
systems. It serves as a snapshot of the technologies and solutions that organizations
are using today to meet their real-time data processing needs. These overlap zones
that form petals are where the latest trends and innovations in real-time analytics
are most pronounced. They include HTAP, streaming OLTP databases, and streaming
OLAP databases.

The center of Figure 7-6 identifies the next generation of real-time databases. Next-
generation databases will have features of all three data planes, including:

o Stateful stream processing

o Columnar storage for analytical workloads

« Consistency for operational workloads
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Figure 7-6. Next-generation databases

As of the publishing of this book, no databases exist within the next-generation area
of Figure 7-6. Databases that fall within the petals would need to add the respective
missing features to qualify for next-generation status. For example:

o HTAP databases can add Incremental View Maintenance (IVM), acting like a
stateful stream processor. They also would need to integrate with streaming
platforms like Kafka. We will cover IVM in Chapter 11.

« Streaming OLTP databases only need to provide column-based storage. They can
achieve this by incorporating an embedded OLAP database like DuckDB. We will
cover embedded OLAP databases in Chapter 8.

o Streaming OLAP databases can add consistency to their stream processors so
that they can better participate in the actual logic of the application.

Existing hybrid systems are at the forefront of real-time analytics, offering organiza-
tions a versatile and more holistic means of handling their data needs in a dynamic
and data-driven environment. The innovative spirit of these hybrid systems is pro-
pelling real-time analytics into new territories, where the lines between relational,
analytical, and streaming workloads start to blur, and organizations can extract even
more value from their data assets.

As further innovation leads to further evolution of these hybrid systems, we believe
that each system will continue on the same path of adding features to reduce infra-
structure, latency, and overall complexity.
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Next, we'll delve deeper into the additional features that existing real-time hybrid
databases can use to achieve next-generation status.

Next-Generation Streaming OLTP Databases

Next-generation streaming OLTP databases have three areas in which they can con-
tinue to improve. The first is refining their data consistency models. Data consistency
in stream processing is necessary to participate in the application logic. As more engi-
neers are beginning to understand the issues with consistency in stream processing
and the higher requirements for accuracy when presenting the analytics to users, the
more streaming OLTP databases will need to improve consistency in the analytics
they output.

The second is improving access to change data or the WAL. CDC use cases require
connectors running in dedicated and distributed clusters. This increases complexity
and the amount of maintenance to the overall architecture. To simplify this process,
emitting CDC transactions from their WAL to a streaming platform like Kafka is a
feature already leveraged by databases like PeerDB and CockroachDB.

By emitting changes, database systems negate the need to build connectors for every
possible integration point to ingest and egress data. Development of these connec-
tors is time- and cost-consuming. It also limits the system to a few use cases at
a time or until it becomes financially beneficial to develop one. In addition, some
CDC connectors are often hard to manage, causing issues like out-of-memory or
out-of-disk-space exceptions. Self-emitting CDC events natively can prevent issues
encountered when using external CDC solutions. See Figure 7-7.

Figure 7-7. Next-generation streaming OLTP will push CDC data directly into a Kafka-
compliant topic

Thirdly, streaming OLTP databases will start incorporating columnar storage formats
for analytical workloads to provide analytical data to applications. This doesn’t mean
streaming OLTP databases will begin to hold all historical data. OLTP databases
cannot store such large volumes of data. Streaming OLTP databases will need to
provide a subset of the historical data from the OLAP system, either by streaming or
batching (batching is allowed since the data is not real time). The subset of historical
data will be limited to only the data within the application’s domain context. This
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approach ensures that streaming OLTP databases can support analytical workloads
without becoming overwhelmed by historical data storage requirements.

Next-Generation Streaming RTOLAP Databases

Existing RTOLAP databases currently do not have stream processing capabilities.
Proton is the only solution that converges stream processing and an OLAP system.
Its stream processor provides more advanced ingestion features and can balance push
and pull queries.

Most existing RTOLAPs rely heavily on external stream processors, increasing the
complexity and maintenance work for the entire real-time architecture.

In Chapter 4, we stated that data engineers often author the push queries, while
data analysts write the pull queries. These two roles do not coordinate well because
both are usually located in separate teams. Adding stream processing at ingestion will
make RTOLAPs less dependent on external stream processors.

Moreover, external stream processors like Flink often publish data such that multiple
consumers can subscribe. Usually, the data format requires additional transforma-
tions to meet the specific needs of the data analysts downstream. Putting these
particular transformations into the push query will allow the stream processor system
to also publish data for one particular subscriber.

Expect existing RTOLAP databases to adopt better ingestion by incorporating stream
processing and providing push-query capabilities to the data analysts.

Next-Generation HTAP Databases

The next generation of HTAP databases will leverage their hybrid storage capabilities
by incorporating IVM. IVM is a method for sustaining materialized views, where it
asynchronously calculates and applies only incremental modifications to the views
instead of reevaluating its entire contents. As we described in the earlier chapters, a
materialized view that runs asynchronously is very much akin to stream processing.

By implementing IVM, HTAP databases can transform transactions from row-based
to column-based form for low-latency analytical queries without the need to egress
data.

Expect HTAP databases also to gain the ability to ingress limited historical data
from the analytical plane. This will provide limited historical context to the real-time
analytical data that they are serving.
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Summary

We comprehensively discussed the diverse array of hybrid databases that exhibit
real-time features, allowing you to make informed decisions when selecting the
correct database for your specific real-time data processing needs. The data planes
Venn diagram that we examined throughout the chapter helped illustrate the unique
qualities of existing systems and how they converge to the right solution.

By definition, you may assume the convergence of systems is going to make data
architectures less distributed and more monolithic. Monolithic systems tend to be
inflexible and less scalable. In the following chapters, we'll discuss how systems are
distributed today and how hybrid systems can avoid becoming too monolithic.
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CHAPTER 8
Zero-ETL or Near-Zero-ETL

In Chapter 7, we introduced emerging hybrid databases that provide alternative
solutions to supporting real-time analytics. These systems reduce infrastructure and
make data more accessible to analytical workloads. Since hybrid systems converge
systems that are traditionally distributed, there is a supposition that hybrid systems
lean toward a monolithic system. Monolithic systems are usually known for lacking
modularity and scalability when performing data workloads.

Ironically, breaking up a monolithic data system will return us to decomposing a
database and turning it inside out to scale the individual components specifically.
This isn’t necessarily a negative solution. In this book, we have been proposing
putting these systems back into the database to reduce complexity and cost, which are
traditionally associated with large distributed systems.

ETL is how we move data around from system to system, transforming it along the
way. So far, we have used a form of ETL called streaming SQL. In this chapter, we will
talk about how to balance complexity and scalability in the implementation of ETL by
taking a look at existing systems and patterns used today to distribute and scale data
workloads.

ETL Model

Figure 8-1 shows existing ETL solutions from no ETL in HTAP databases at the top
to the turn-the-database-inside-out distributed solution at the bottom. The lower the
solution is on the triangle, the more distributed and complex it becomes. Likewise,
at the top, solutions are more centralized and monolithic, and they become more
decentralized and modular as you move to the bottom.

145



LD

Stream processing

~———~

RTOLAP

Decentralized,

ACID Columnar

Figure 8-1. The increasing ETL model

On the left side of the triangle are transactional databases, while on the right are
columnar databases. Midway down the triangle, you’ll find zero-ETL.

Zero-ETL

Zero-ETL is a pattern first defined by Amazon Web Services (AWS) to simplify data
integration from an OLTP database to an OLAP database. In its proposal, zero-ETL is
defined as follows:

[A] set of integrations that eliminates or minimizes the need to build ETL data
pipelines. Extract, transform, and load (ETL) is the process of combining, cleaning,
and normalizing data from different sources to get it ready for analytics, artificial
intelligence (AI) and machine learning (ML) workloads.

—AWS, “What Is Zero ETL?”

Zero-ETL refers to an approach or concept in data integration and analytics that aims
to minimize or even eliminate the need for traditional ETL processes. The traditional
ETL process involves extracting data from source systems, transforming it to meet
the requirements of the target system, and then loading it into the destination. See
Figure 8-2 for an architecture summary.
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Figure 8-2. AWS’s zero-ETL architecture for Amazon Aurora and Redshift

AWS’s zero-ETL solution amounts to a managed integration between Amazon’s OLTP
database called Aurora and Amazon’s data warehouse called Redshift. Near-real-time
analytics can be implemented within minutes. It's a fully managed solution for mak-
ing transactional data available in Redshift after it’s written to Aurora.

AWS can tightly integrate Aurora and Redshift because it owns both database prod-
ucts, and they only exist on its cloud platform. AWS is free to build native integra-
tions between any two systems they provide. The downside is that these solutions are
not available outside of AWS.

While the zero-ETL concept can offer benefits in terms of agility, reduced latency,
and cost savings, it may not be suitable for all scenarios. Most organizations, espe-
cially those with complex data integration requirements or regulatory constraints,
may still need elements of traditional ETL processes.

In Chapter 2, we stated that transforming data in the data warehouse (also called
ELT) forces batch processing semantics, which will add latency to any real-time
analytical use case. In Figure 8-2, the integration points between Aurora and Redshift
do not transform data. This implies the transformations are done in Redshift. Both
HTAP databases and zero-ETL solutions have this problem. They both need to
trigger a batch transformation process once the data reaches the data warehouse.

Alternatively, analytical queries submitted by the data analysts can include the trans-
formation required, but this will make them very slow. Ultimately, without a stream
processing component, you cannot create a materialized view to divide the analytical
workload between push and pull queries.

Zero-ETL challenges the traditional integration approach and seeks to reduce the
complexity, latency, and resource requirements associated with ETL at a cost.
Table 8-1 lists some key aspects of zero-ETL.
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Table 8-1. Zero-ETL

Key aspect Description
Real-time data Minimizing or eliminating batch processing to enable real-time or near-real-time data integration. This
integration is particularly relevant for scenarios where timely insights are crucial.

Schema-on-read Adopting a schema-on-read approach, where the data is not transformed into a predefined schema
during the ETL process but is instead interpreted at the time of analysis. This allows for more flexibility
in handling diverse and changing data.

Data virtualization ~ Leveraging data virtualization technologies that provide a unified and virtual view of data across
multiple sources without physically moving or transforming the data. This can reduce the need for
creating and maintaining a separate data warehouse.

In-database Performing transformations and analytics directly within the database systems, where the data resides,

processing avoiding the need to extract and move large datasets for processing.

Event-driven Adopting event-driven architectures, where data changes trigger immediate updates, reducing the

architecture reliance on periodic batch processes.

Modern data Embracing modern data architectures, such as data lakes and cloud-based solutions, that provide

architectures scalable and cost-effective options for managing and analyzing data without the traditional ETL
bottlenecks.

Ultimately, the decision to adopt a zero-ETL approach depends on factors such as the
nature of the data, business requirements, and the available technology landscape. It’s
important to carefully evaluate the trade-offs and choose an approach that aligns with
the organization’s goals and priorities.

If you need more of the flexibility provided by a traditional ETL pipeline, an alterna-
tive solution is to use near-zero-ETL.

Near-Zero-ETL

Near-zero-ETL still tries to limit infrastructure for ETL components without losing
the flexibility needed to support complex data integration requirements. This involves
using data systems that adopt hybrid approaches.

One solution is to leverage an OLTP database that has embedded features to send
data to other systems, without the need for self-managing connectors running on a
separate infrastructure.

Figure 8-3 shows two databases that have embedded features enabling the flexibility
needed for complex data integration. It has an OLTP database and an OLAP database.
PeerDB enables Postgres to send a stream of data to a topic on a streaming platform.
Timeplus/Proton provides the transformation needed at ingestion before it can be
served. Timeplus/Proton provides the materialized view that allows the differentia-
tion of push and pull queries. This approach provides much more flexibility for fast
real-time analytical queries.
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Figure 8-3. Near-zero-ETL using PeerDB and Timeplus/Proton

PeerDB

PeerDB is an open source solution to stream data from Postgres to data warehouses,
queues/topics, and other storage engines. Its goal is to simplify ETL by providing a
database experience when building integration to analytical systems.

In PeerDB, a PEER is a connection to a database that PeerDB can query. Peers are
created using the CREATE PEER command. See Example 8-1.

Example 8-1. Setting up a peer from another Postgres database in Peer DB

CREATE PEER source FROM POSTGRES WITH 0
(

host = 'catalog',

port = '5432',

user = 'postgres',
password = 'postgres',
database = 'source'

);

CREATE PEER sf_peer FROM SNOWFLAKE WITH (2]

(
account_1id = '<snowflake_account_identifiers',
username = '<user_name>',
private_key ='<private_key>',
password = '<password>' -- only provide when the private key is encrypted
database = '<database_name>',
schema = '<schema>',
warehouse = '<ware_house>',
role = '<role>',
query_timeout = '<query_timeout_1in_seconds>'
)

-- Query away tables in Snowflake
SELECT * FROM sf_peer.MY_SCHEMA.MY_TABLE; (3]
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© Creates a peer to another Postgres database.
© Creates a peer to a Snowflake data warehouse.
© You can select any number of tables from the peer.

The peer allows you to query any table in the peered database and join it with
transactional data. Effortless integrations between systems are effective but get com-
plicated when peered databases exist in remote regions. PEERs act as pull queries that
pull data synchronously from an analytical system. This requires both systems to
exist in the same region or data center.

In other databases, including streaming OLTP databases, you have to build data
pipelines to source data from a data warehouse or OLAP database and transfer it
into the OLTP database. Building peers with PeerDB in Postgres makes sourcing data
from the analytical plane much easier. But there are limitations.

Postgres cannot hold large amounts of data and isn’t optimized for analytical queries.
Therefore, it would not be optimal to build a materialized view using PeerDB on
Postgres. The analytical data will need to be reduced to a size that fits within the
capacity of the OLTP database. This implies that the push query performing the
heavy transformation needs to be executed externally on a stream processor. We'll
cover this later in this chapter.

Example 8-2 shows how PeerDB mirrors the data from one peer to another. The
mirror asynchronously copies data from source peer to sink peer.

Example 8-2. Creating an ETL with a PeerDB MIRROR to an analytical system

CREATE MIRROR <mirror_name> [IF NOT EXISTS] FROM
<source_peer> TO <target_peer> FOR
$$
SELECT * FROM <source_table_name> WHERE
<watermark_column> BETWEEN {{.start}} AND {{.end}}
$$
WITH (
destination_table_name = '<schema_qualified_destination_table_name>',
watermark_column = '<watermark_column>',
watermark_table_name =
'<table_on_source_on_which_watermark_filter_should_be_applied>',
mode = '<mode>',
unique_key_columns = '<unique_key_columns>"',
parallelism = <parallelism>,
refresh_interval = <refresh_interval_in_seconds>,
sync_data_format = '<sync_data_format>'
num_rows_per_partition = 100000,
initial_copy_onle = <true|false>,
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setup_watermark_table_on_destination = <true|false>,

)s

Unfortunately, the mirrors do not support transformations. Transformations will
need to be executed before or after the mirroring. Performing transformations before
the mirroring can cause extensive resource utilization for an OLTP database whose
purpose is to handle operational workloads. Moreover, this process will be executed
as a batch process, not in real time. Performing transformations after the mirroring
will also require batching semantics unless a streaming OLAP database like Proton is
used.

Proton

The Venn diagram in Chapter 7 exhibits overlapping hybrid systems. One of these
hybrid systems was a streaming OLAP database. Proton is a next-generation RTO-
LAP database that allows stateful streaming ingestion and two APIs for consum-
ing real-time analytics: asynchronous change stream and synchronous pull queries.
Complex transformations can be implemented at ingestion time to build materialized
views.

In Figure 8-3 in the previous section, PeerDB writes to a topic in a streaming
platform that is subscribed to by Proton. Proton can execute complex push queries
before the data is materialized for pull queries.

First, we create a PEER for a streaming platform—in this case, Kafka. See Example 8-3.

Example 8-3. Setting up a peer to another Postgres database in PeerDB

CREATE PEER <eh_peer_name> FROM KAFKA WITH (
bootstrap_server = '<bootstrap-servers>'

H

CREATE MIRROR <mirror_name> [IF NOT EXISTS] FROM
<source_peer> TO <target_peer> FOR
$$
SELECT * FROM <source_table_name> WHERE
<watermark_column> BETWEEN {{.start}} AND {{.end}}
$$
WITH (
destination_table_name = '<topic>'

H

In Proton, create a stream to read from Kafka. See Example 8-4.
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Example 8-4. Creating a stream from Kafka to Proton

CREATE EXTERNAL STREAM frontend_events(raw string)

SETTINGS type='kafka',
brokers="'<bootstrap-serverss>',
topic='<topic>'

All streaming databases provide two modes of output, synchronous pull queries and
asynchronous push to a topic. This gives developers two ways of bringing real-time
analytics back to the operational plane by using OLAP databases embedded in their
applications.

Embedded OLAP

There is a trend to bring smaller analytical workloads closer to the operational
plane. HTAP databases like Hydra and SingleStore provide columnar databases for
analytical workloads, for example. However, due to their limited capacity, these data-
bases cannot hold the amount of data analytical systems like Snowflake, Databricks,
ClickHouse, and Pinot can.

Conversely, bringing bulky analytical systems to the operational plane for faster serv-
ing of real-time analytics makes it harder for analytical systems to source historical
data. These are the limitations that created the data divide between operational and
analytical data planes.

Alternatively, reducing the analytical data to a size fitting to the scope of the business
domain and the capacity in the operational plane could provide a better solution.

In Figure 8-4, real-time operational data can be sent to a topic using PeerDB. Proton
can ingest and transform the data in flight with a push query leading up to a
materialized view.

The changes in the materialized view in Proton can be written to a topic for the
original application to consume and to build a local replica in an embedded OLAP
database like DuckDB or chDB.

152 | Chapter 8: Zero-ETL or Near-Zero-ETL



Build alocal replica

Stateful transformation ingestion Changes to materialized view

Streaming
OLAP
(Proton)

Figure 8-4. Streaming OLAP database reducing analytical data to be served in the
operational plane

DuckDB

DuckDB is an embedded OLAP database designed to support analytical query work-
loads. Embedded means running inside an application, for example, a microservice.
DuckDB provides the ability for users of the application to slice and dice data.

With change data coming from Proton and consumed by the microservice, a local
replica of the materialized view can be made in DuckDB, shown in Example 8-5.

Example 8-5. Installing DuckDB for use in a Python microservice
pip install duckdb

Example 8-6 is a microservice skeleton that can subscribe to a Kafka topic and UPSERT
the records into a DuckDB table. That table can then serve analytical queries via
REST API using the FastAPI Python library.
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Example 8-6. Pseudocode of a microservice that reads from Kafka and writes to
DuckDB

import duckdb

from threading import Thread, current_thread
from fastapi import BackgroundTasks, FastAPI
from confluent_kafka import Consumer

app = FastAPI()
duckdb_con = duckdb.connect('my_peristent_db.duckdb') (1)

def upsert(msg): (2]
# IMPLEMENT UPSERT LOGIC

def kafka2olap(conf): (3]
consumer = Consumer(conf)
try:
consumer.subscribe("my_data")
while running:
msg = consumer.poll(timeout=1.0)
if msg is None: continue
if msg.error():
# handle error
else:
upsert(msg)
finally:
# Close down consumer to commit final offsets.
consumer.close()

.on_event("startup")
async def initialize():
conf = # Kafka configuration
thread = Thread(
target = kafkaz2olap,
args = (conf,)
)
thread.start()

.get("/my_data/")
async def read_item(id:int): (5]
results = local_con.execute(
SELECT
id,
count(*) AS row_counter,
current_timestamp
FROM my_data
where id = ?
" lo(id,)) . fetchall()

@ Create a connection to DuckDB.
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©

Define an upsert function to insert/update to DuckDB.

]

Define a function to read from Kafka and write to DuckDB.

©

Create an asynchronous thread to read from Kafka and write to DuckDB.
FastAPI function for reading DuckDB via REST APIL.

DuckDB has a feature that can check if there is a conflict upon insertion of a record
into a table. You can use the statement INSERT OR REPLACE, which will perform an
update if the record exists.

Example 8-7. Installing UPSERT for DuckDB in Python

def upsert(msg):
# Deserialize the msg to get the column values
primary_key, coll_value, col2_value = deserialize_message(msg)

duckdb_con.execute(
INSERT OR REPLACE INTO ti1(id, coll, col2) VALUES(1, ?, ?) (1]

wnn

[primary_key, coll_value, col2_value]

);

© INSERT OR REPLACE is how you can handle UPSERT in DuckDB.

chDB

Similar to DuckDB, chDB is also an embeddable OLAP database. chDB is based
on ClickHouse. ClickHouse supports UPSERTs by leveraging engines. One particular
engine is the ReplacingMergeTree table engine. This engine removes duplicate records
during merges. ReplacingMergeTree is a good option for emulating upsert behavior
(where you want queries to return the last row inserted). See Example 8-8 for details.

Example 8-8. ClickHouse ENGINE that supports UPSERT

CREATE TABLE hackernews_rmt (
id UInt32,
author String,
comment String,
views UInt64
)
ENGINE = ReplacingMergeTree (1]
PRIMARY KEY (author, id);

SELECT *
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FROM hackernews_rmt
FINAL ©

© The ReplacingMergeTree engine that mimics upsert behavior

©® FINAL keyword that returns the latest record

Example 8-9 is an example of how to create a microservice using Flask and chDB.
Flask is an alternative to the FastAPI Python model for building microservices.

Example 8-9. chDB microservice wrapper

from flask import Flask, request
import chdb
import os

# chdb API server example with GET/POST support, compatible with play app
# for a full server example see https://github.com/metrico/chdb-server

app = Flask(__name__, static_folder="", static_url_path="")
.route('/", methods=["GET"])
def clickhouse():
query = request.args.get('query', default="", type=str)
format = request.args.get('default_format', default="JSONCompact", type=str)
if not query:
return "Query not found", 400

res = chdb.query(query, format)
return res.bytes()

.route('/", methods=["POST"])
def play():
query = request.data
format = request.args.get('default_format', default="JSONCompact", type=str)
if not query:
return "Query not found", 400

res = chdb.query(query, format)
return res.bytes()

.errorhandler(404)
def handle_404(e):
return "Not found", 404

host = os.getenv('HOST', '0.0.0.0")
port = os.getenv('PORT', 8123)
app.run(host=host, port=port)
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Data Gravity and Replication

Often analytical systems exist only in a single region or data center because analytical
infrastructure like Snowflake tends to be costly. This forces all operational systems to
send their data to a single region in a circumstance called data gravity.

Data gravity is the idea that data has mass, which is difficult to move or replicate as it
grows in size and importance. This gravity impacts data creation and exchange and,
in turn, also impacts applications, servers, and other data. The typical solution is to
only replicate reduced amounts of analytical data.

By providing the changes from the materialized view to the operational plane sys-
tems, you can distribute replicas of the real-time analytics to all the regions where the
user-facing applications are deployed.

Analytical Data Reduction

How do you reduce analytical data that represents petabytes of historical data?
Reducing the analytical data to be served in the operational plane sounds hard
but is easy because we've done it before. We can use the push and pull pattern for
materialized views.

By creating the materialized view in the analytical system located in the analytical
plane, we can stream the materialized view’s changes to the operational plane. Proton
can do exactly this. It can write changes to the materialized view into a topic. Said
topic can be then consumed by an application with an embedded OLAP for analytical
workloads. Likewise, OLTP streaming databases can also consume from the same
topic and serve from their row-based storage. However, the row-based storage may
increase the latency of analytical queries.

The near-zero-ETL approach can strike the right balance between complexity and
scalability. For completeness, let’s see what it takes to handle analytical data using a
separate stream processor and OLAP database in a lambda architecture.

Lambda Architecture

The lambda architecture is a data processing architecture designed to combine both
batch and real-time/streaming data processing. It was introduced by Nathan Marz
in his 2011 book, Big Data: Principles and Best Practices of Scalable Realtime Data
Systems (Manning), as a way to address the challenges of providing robust and
scalable data processing for big data applications. The term “lambda” is inspired by
the Greek letter, which looks like an inverted “y” and represents the dual processing
paths for batch and real-time data.
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The lambda architecture consists of three main layers:

Batch layer
This layer is responsible for handling large volumes of data in a batch-oriented
manner. It precomputes results on the entire dataset and stores them in a batch
serving layer, making it suitable for complex analytics and historical queries.
Batch processing is typically done using technologies like Apache Hadoop, which
can handle massively distributed data processing.

Speed layer
The speed layer deals with real-time data processing. It focuses on low-latency
processing and handles recent data that hasn’t yet been processed by the batch
layer. The results from the speed layer are combined with the batch layer results
to provide a complete, up-to-date view of the data. Technologies like Apache
Storm or Apache Flink are commonly used for real-time processing in the speed
layer.

Serving layer
The serving layer combines the results from the batch and speed layers to provide
a unified view of the data. It serves queries and analytics requests from users
or applications. The serving layer is often built using scalable NoSQL databases,
like Apache HBase or Apache Cassandra, to handle the read-intensive workloads
efficiently.

The lambda architecture’s strength lies in its ability to handle both batch and real-
time processing, providing a comprehensive solution for big data analytics. However,
managing and maintaining two separate processing paths can introduce complexities,
and ensuring consistency between batch and real-time views can be challenging.
Some alternative architectures, such as the kappa architecture, propose a unified
approach to stream and batch processing, aiming to simplify the overall system
design.

Using a separate stream processor and OLAP database is also an option. For example,
you can use Apache Pinot to serve petabytes of historical data with streaming data
that was transformed using Flink (or Pathway, if you prefer Python).

In Figure 8-5, the lambda architecture is represented. On the left side of the diagram
is the batch layer. On the right side of the diagram is the speed layer. The serving layer
is Apache Pinot. In the past, merging streaming data with historical data in the data
warehouse was difficult to accomplish using do-it-yourself coding. RTOLAP systems
like Pinot can more conveniently solve the difficult task to provide a single view of all
data.
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Figure 8-5. A more complex real-time data pipeline that can serve ad hoc queries on
both streaming and historical data

Apache Pinot Hybrid Tables

A Pinot hybrid table is a table composed of two internal tables, one offline and one
real-time, that share the same name. This is how Pinot can merge streaming and

historical data.

Examples 8-10 and 8-11 are REALTIME and OFFLINE table definitions for a table called

atrlineStats, respectively.

Example 8-10. Pinot REALTIME table

{

"tableName": "airlineStats",

"tableType": "REALTIME",

"tenants": {},

"segmentsConfig": {
"timeColumnName": "DaysSinceEpoch",
"retentionTimeUnit": "DAYS",
"retentionTimeValue": "5",
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"replication": "1"
1,
"tableIndexConfig": {3},
"routing": {
"segmentPrunerTypes": [
"time"
1
1,
"ingestionConfig": { @
"streamIngestionConfig": {
"streamConfigMaps": [

{
"streamType": "kafka",
"stream.kafka.topic.name": "flights-realtime",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.stream.
kafka.KafkaJSONMessageDecoder",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.
stream.kafka20.KafkaConsumerFactory",
"stream.kafka.consumer.prop.auto.offset.reset": "smallest",
"stream.kafka.zk.broker.url": "localhost:2191/kafka",
"stream.kafka.broker.list": "localhost:19092",
"realtime.segment.flush.threshold.time": "3600000",
"realtime.segment.flush.threshold.size": "50000"
}
1
1,
"transformConfigs": [ (2]
{
"columnName": "ts",
"transformFunction": "fromEpochDays(DaysSinceEpoch)"
1,
{
"columnName": "tsRaw",
"transformFunction": "fromEpochDays(DaysSinceEpoch)"
}
1
1,
"fieldConfigList": [
{
"pame": "ts",
"encodingType": "DICTIONARY",
"indexTypes": [
"TIMESTAMP"
1,
"timestampConfig": {
"granularities": [
"DAY",
"WEEK",
"MONTH"
1
}
}
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]’
"metadata": {
"customConfigs": {}
}
}

© The ingestion configuration from Kafka

® Streaming ingestion transformation

In Chapter 7, we noted that RTOLAP systems like Pinot are adding more stateful
stream processing and that next-generation OLAPs will look and act like streaming
databases. Pinot’s star-tree index is an example of this trend, which we briefly covered
in Chapter 3.

Example 8-10 shows ingestion transformations that are typically needed when sourc-
ing data from a publish-subscribe (pub-sub) system like Kafka. Data published to
a pub-sub system may be expected to support multiple subscribers and, therefore,
need to provide generic versions of the data that will satisfy many subscribers. Each
consumer will need to handle any additional transformations necessary for their
particular analytical workload.

Example 8-11. Pinot OFFLINE table

{
"tableName": "airlineStats",
"tableType": "OFFLINE",
"segmentsConfig": {
"timeColumnName": "DaysSinceEpoch",
"timeType": "DAYS",
"segmentPushType": "APPEND",
"segmentAssignmentStrategy": "BalanceNumSegmentAssignmentStrategy",
"replication": "1"
})
"tenants": {3},
"fieldConfigList": [
{
"pame": "ts",
"encodingType": "DICTIONARY",
"indexTypes": [
"TIMESTAMP"
1,
"timestampConfig": {
"granularities": [
"DAY",
"WEEK",
"MONTH"
1
}

Lambda Architecture | 161



"name": "ArrTimeBlk",
"encodingType": "DICTIONARY",
"indexes": {
"inverted": {
"enabled": "true"
}
}s

"tierOverwrites": {

"hotTier": {
"encodingType": "DICTIONARY",
"indexes": {

"bloom": {
"enabled": "true"
}
}

1,

"coldTier": {
"encodingType": "RAW",
"indexes": {

"text": {
"enabled": "true"

]’
"tableIndexConfig": {
"starTreeIndexConfigs": [ (1)
{
"dimensionsSplitOrder": [
"AirlineID",
"Origin",
"Dest"

1,

"skipStarNodeCreationForDimensions":

"functionColumnPairs": [
"COUNT__*",
"MAX__ArrDelay"

1,

"maxLeafRecords": 10

}
1,

"enableDynamicStarTreeCreation": true,
"loadMode": "MMAP",
"tierOverwrites": {

"hotTier": {
"starTreeIndexConfigs": [
{

"dimensionsSplitOrder": [

(1,
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"Carrier",
"CancellationCode",
"Origin",
"Dest"
1,
"skipStarNodeCreationForDimensions": [],
"functionColumnPairs": [
"MAX__CarrierDelay",
"AVG__CarrierDelay"
1,

"maxLeafRecords": 10

}
1
1,
"coldTier": {
"starTreeIndexConfigs": []
}
}
}’
"metadata": {
"customConfigs": {}
1,

"ingestionConfig": {
"transformConfigs": [

{
"columnName": "ts",
"transformFunction": "fromEpochDays(DaysSinceEpoch)"
1,
{
"columnName": "tsRaw",
"transformFunction": "fromEpochDays(DaysSinceEpoch)"
}
1
1,
"tierConfigs": [ (2]
{
"name": "hotTier",
"segmentSelectorType": "time",
"segmentAge": "3130d",
"storageType": "pinot_server",
"serverTag": "DefaultTenant_OFFLINE"
1,
{
"name": "coldTier",
"segmentSelectorType": "time",
"segmentAge": "3140d",
"storageType": "pinot_server",
"serverTag": "DefaultTenant_OFFLINE"
}
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© Star-tree index that preaggregates historical data to build a materialized view.
Star-tree index can be used in both real-time and offline Pinot tables.

® Pinot has tiered storage that allows it to move data to lower tiers as it ages to free
up more capacity (see Figure 8-6).

Queries

Pinot brokers

v v v
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Pinot server Pinot server Pinot server
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v

Cloud storage

LoD OOG
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Figure 8-6. Pinot tiered storage

Unlike REALTIME table definitions, which include configurations to read from a topic
from a streaming platform, OFFLINE tables do not have ingestion configurations. To
make querying streaming data possible within milliseconds of publication, REALTIME
tables are spread across multiple servers that store streaming data in volatile memory.
REALTIME and OFFLINE tables are separated and are only brought together by the
query engine.

REALTIME tables have a retention period after which data from the REALTIME servers
is offloaded to the OFFLINE servers so that the capacity of the REALTIME servers is not
exceeded.

The advantage of using an OLAP database is that you don’t need to reduce the
analytical data to fit within the capacity of an OLTP or HTAP database. Reducing
the analytical data takes away flexibility for users who need to access all of the
historical data. However, flexibility—like anything—comes with more complexity and
infrastructure costs.
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With Pinot’s tiered storage, you can offload older data to lower tiers to free up more
capacity in Pinot. If you need more historical data to perform ad hoc queries, it’s best
to leverage OLAP systems that can merge historical data with real-time data from a
stream.

Pipeline Configurations

Pinot provides the solution for merging historical and real-time data. Before reaching
Pinot, the lambda architecture data flow is started by sourcing data from an OLTP
database like Postgres using a Debezium CDC connector. If you recall, Debezium
captures change transactions from many types of transactional databases. Exam-
ple 8-12 shows a Debezium Postgres configuration.

Example 8-12. Creating a Kafka source connector in Flink

{
"name": "postgres",
"config": {
"connector.class": "io.debezium.connector.postgresql.PostgresConnector",
"tasks.max": "1",
"database.hostname": "0.0.0.0",
"database.port": "5432",
"database.user": "postgres",
"database.password": "postgres",
"database.dbname" : "postgres",
"topic.prefix": "dbserver1",
"schema.include.list": "inventory"
}
}

This connector will write change data into a topic. We can use Flink SQL as the
stream processor to transform the data. Example 8-13 shows Flink SQL sourcing
streaming data from Kafka.

Example 8-13. Creating a Kafka source connector in Flink

CREATE TABLE KafkaSource (
*id" BIGINT,
‘coll® STRING,
‘col2’ STRING,
‘ts' TIMESTAMP(3) METADATA FROM 'timestamp'

) WITH (
'connector' = 'kafka',
"topic' = 'my_data',
'properties.bootstrap.servers' = 'localhost:9092',
'properties.group.id' = 'abc',
'scan.startup.mode' = 'earliest-offset’,
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'format' = 'json'

)

Once you've sourced data from a topic, you can perform transformations using SQL.
In Flink, these are called pipelines. After the transformation is completed, the data
can be written back to a topic using the code in Example 8-14.

Example 8-14. Creating a Kafka sink in Flink SQL

CREATE TABLE KafkaSink (
‘user_1id"® BIGINT,
‘coll’ STRING,
‘col2® STRING,
‘ts® TIMESTAMP(3) METADATA FROM 'timestamp'

) WITH (
'connector' = 'kafka',
"topic' = 'my_data_transformed',
'properties.bootstrap.servers' = 'localhost:9092',
'properties.group.id' = 'testGroup',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json'

)

Pinot gives you the ability to perform ad hoc queries on the real-time data from the
topic along with historical data from a data warehouse or object store like Amazon
S3. It’s important to know that use cases involving the execution of ad hoc queries
on real-time and historical data are not intended for user-facing applications. Ad
hoc queries are intended for data analysts who are internal to the business and
discovering insights from the data. This type of capability should not be exposed to
external users, whose numbers could end up in the tens of thousands—they would
put too much resource stress on the OLAP system.

Summary

The limitations of zero-ETL emphasize its inability to achieve real-time analytics
and its tendency to impose batching semantics for push queries, lacking materialized
views. In response to these drawbacks, we introduced alternatives that support near-
zero-ETL. These also enable real-time analytics, for example, when employing Proton
to reduce real-time and historical data into a materialized view that can be written
out to a Kafka topic. We were required to build a Kafka consumer on the operational
plane to build a local replica in the embedded OLAP database. The same approach
can also be implemented with HTAP databases instead of an embedded OLAP.

The patterns proposed in this chapter depend heavily on the streaming plane of
the Venn diagram introduced in Chapter 7. In Chapter 9, we delve deeper into the
streaming plane and how it can be leveraged in architectural patterns like data mesh.
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CHAPTER9
The Streaming Plane

In the previous chapter, we explored the existing real-time systems in today’s ecosys-
tem and introduced three distinct data planes: operational, analytical, and streaming.
Both the operational and analytical planes predominantly deal with data at rest,
emphasizing static information. In contrast, the streaming plane stands out as the
sole realm characterized by data in motion.

In this chapter, we will be delving into the streaming plane and how data architects
and engineers can begin to think about its role in simplifying real-time analytics.

We have consistently interlinked terms such as asynchronous, data in motion, and
streaming, treating them as interchangeable expressions. They are synonymous with
long-running processes that do continuous transformations, simplifying and quick-
ening the retrieval of real-time analytical data for applications.

Figure 9-1 shows only the streaming plane portion of the Venn diagram shown
throughout Chapter 7. We will refer to this diagram throughout this chapter.

Streaming
OLTP
database

Streaming
OLAP
database

) Eventually
Consistent consistent
stream stream
processors processors

Streaming data plane

Figure 9-1. Streaming plane from the Venn diagram from Chapter 7
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This chapter will examine several pivotal topics to understand the intricacies of real-
time data processing on the streaming plane. Among the focal points is the concept
of analytics on the operational plane (or operational analytics), which delves into the
practice of performing analytical workloads near the applications in the operational
plane. Furthermore, we will extend to the aspects of data locality, investigating how
the geographical proximity of data to its processing environment impacts overall sys-
tem performance. Understanding data locality is instrumental for optimizing resource
utilization and minimizing latency in streaming analytics scenarios.

Another critical theme we'll explore is data replication, a fundamental strategy in
the streaming plane. Data replication involves data duplication across multiple nodes
or global regions, fostering decentralization. We will encompass the concept of data
products, inspired by data mesh. We'll discuss how real-time analytics can be har-
nessed to generate valuable data products replicated globally for local consumption.

By navigating through these salient topics, readers will understand the multifaceted
challenges and opportunities presented by the streaming plane, offering solutions
crucial for designing resilient and efficient systems within the global landscape of
streaming analytics.

Data Gravity

Think of data as a planet. As data builds mass, it attracts services and applications the
same way gravity attracts the moon to the earth and keeps you from drifting off into
space. For example, you create data when you post a message on social media. Your
message was submitted to a service that attracts interactions from your friends and
creates even more data.

In a typical data architecture that doesn’t consider the streaming plane, the opera-
tional plane would push data directly to the analytical plane. Think of the operational
plane as moons in orbit around a dense planet, which is the analytical plane. The
operational plane moons push data to the planet. As more operational plane moons
send data back to the analytical plane planet, the planet becomes a monolithic system
of historical data. Workloads start to suffer from the effects of data size, which
introduces latency.

As we stated in previous chapters, data movement from the operational to the ana-
Iytical plane is a one-directional downstream flow. Forcing the data to flow in the
opposite upstream direction is difficult. Another way of seeing this is the idea of data

gravity.
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Figure 9-2 depicts a typical data architecture without considering the streaming
plane. The operational plane exists as nodes on the outside, publishing data to the
analytical plane represented as the earth.

Operational

Analytical plane

.
®

A-

Operational Operational

Operational

Figure 9-2. The effects of data gravity on data and infrastructure

As more operational systems send their data to the analytical plane, the analytical
plane becomes a monolithic system of historical data. Workloads on the analytical
plane start to feel the effects of data size, which introduces more latency to the
analytics that it can no longer provide in real time.

The story is different if you have a data architecture with a streaming plane. Instead
of having the operational plane moons push data directly to the planet, they instead
push data to satellites within the streaming plane. These satellites provide a means
to implement analytics closer to the operational plane moons while delivering data
products to the planet. It dampens the effects of gravity. The streaming plane pro-
vides the fluidity needed to allow data to flow back into the operational plane for
user-facing analytics.

In Figure 9-3, think of the data in materialized views in the streaming plane as satel-
lites in orbit around a planet (or the analytical plane). You can consume real-time
data from these materialized views like live television programs from a satellite.
Similar to watching live television programs, data in the streaming plane can be
served globally.
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Figure 9-3. Materialized views orbiting the globe via replication

The streaming plane provides the means to implement analytics closer to the opera-
tional plane while delivering the data products that make up these analytics globally.
It dampens the effects of data gravity while still providing the analytical plane with
the incremental data it needs for archiving and extensive batch processing.

Components of the Streaming Plane

Figure 9-4 shows the multiple solutions and systems in the streaming plane today.
Throughout this chapter, we will leverage this diagram to help describe the systems
that compose the streaming plane and how they facilitate data decentralization and
real-time analytics.

Figure 9-4 shows the familiar operational and analytical planes at opposite ends,
separated by the streaming plane represented as a cloud. The streaming plane is
supported by two components that comprise its foundation: a streaming platform
like Kafka and source/sink connectors. The bidirectional arrow identifies them in
Figure 9-4. It’s this foundation from which the other components in the streaming
plane consume real-time data.
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Figure 9-4. The streaming plane

Stream processors, RTOLAP databases, and streaming databases all read from Kafka
to transform and serve real-time analytical data. Stream processors and streaming
databases can also write analytical data back into Kafka, enabling them to build

replicas of the analytical data in other planes.

The streaming plane is divided into consistent and eventually consistent streaming
and real-time systems. Systems in the streaming plane migrate to their respective
consistency positions and perform the workloads near their consuming planes. To
the left of the streaming plane are operational analytics. To the right of the streaming
plane, we have internal analytics that can tolerate eventual consistency and can access

all historical data.

To summarize, here are the components of the streaming plane:

o Streaming platforms like Kafka
o Source and sink connectors

o Stream processors like Flink

o RTOLAP databases

o Streaming databases

When designing a data infrastructure for real-time analytics, architects need to
account for consistency and the personas that consume the analytics.
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Streaming Plane Infrastructure

When building the infrastructure of the operational plane, analytical plane, and
streaming plane, architects should consider separate infrastructure for each plane.
Having dedicated infrastructure for operational and analytical planes has always been
standard practice. Since the streaming plane is a new concept introduced in this
book, it might not be evident for architects to dedicate infrastructure to the streaming
plane. Instead, architects may think of deploying streaming systems into the existing
operational or analytical planes, especially since the streaming systems usually don’t
persist data for a very long time.

There are many reasons to dedicate infrastructure to systems. Table 9-1 shows just a
subset of them.

Table 9-1. Reasons for dedicating infrastructure to data systems

RN Description

Scalability As data volumes grow, architects need to design infrastructure that can scale to handle increased data loads
without compromising performance. This involves selecting appropriate hardware, databases, and other
components that can be easily scaled horizontally or vertically.

Performance Dedicated infrastructure allows architects to optimize performance for specific data-related tasks. This
includes considerations for data processing speed, query performance, and overall system responsiveness.

Reliability and  Architects design infrastructure to ensure that data systems are reliable and available when needed. This

availability involves redundancy, failover mechanisms, and disaster recovery plans to minimize downtime and data
loss.
Security Protecting sensitive data is a top priority. Dedicated infrastructure allows architects to implement robust

security measures, including access controls, encryption, and regular audits to safequard data from
unauthorized access and cyber threats.

Integration In many organizations, data systems need to integrate with various applications, services, and platforms.
Dedicated infrastructure facilitates seamless integration, ensuring that data can be shared and used across
the organization efficiently.

Compliance Depending on the industry, there may be regulatory requirements regarding how data is stored and
handled. Architects must design infrastructure that complies with these regulations to avoid legal issues
and penalties.

Cost efficiency  Allocating specific infrastructure resources for data systems allows architects to optimize costs. They can
choose the most cost-effective storage solutions, processing units, and networking components tailored to
the specific needs of the data systems.

Data Infrastructure plays a crucial role in enforcing data governance policies. Architects can design systems that
governance track and enforce data quality, integrity, and consistency, ensuring that the data is reliable and accurate.

Dedicating infrastructure centers on effective management, storage, processing, and
data accessibility. The streaming plane doesn’t store data for a long time but processes
and moves data at scale. Dedicating infrastructure to streaming systems is essential
for ensuring the effective, secure, and reliable management of data in motion, sup-
porting its various functions and strategic objectives.
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Any data persisted in the streaming plane is ephemeral—temporary or short lived.
The fluidity of the streaming plane keeps data fresh and limits the effects of data
gravity. Its processing abilities provide analytical workloads to the operational plane.

Operational Analytics

Operational analytics refers to collecting, processing, and analyzing data near the
source of data generation, typically at or near the user-facing application, rather than
relying solely on analytical plane systems. Operational analytics refers to performing
analytical workloads near the applications or microservices that generate the data.
They do so by leveraging the streaming plane’s ability to run asynchronous processes
at scale.

You may think, “Why would you execute analytical workloads on the operational
plane?” This question is reasonable, especially since there are many reasons why we
separated these workloads, which we covered in Chapter 3.

Here are some reasons for moving analytical workloads to the operational plane:

Real-time decision-making
Operational analytics enables organizations to derive insights from data in real
time. This is crucial for making quick and informed decisions that impact ongo-
ing operations.

Enhanced efficiency
By embedding analytical capabilities into operational systems, organizations can
streamline processes and reduce the need for manual intervention. Automated
analytics within operational workflows can enhance efficiency and reduce pro-
cessing time.

Improved customer experience or personalization
Real-time analytics allows organizations to personalize interactions with cus-
tomers based on their current behavior and preferences. This can significantly
enhance the overall customer experience.

Proactive issue resolution and predictive analytics
Operational analytics often includes predictive modeling, helping organizations
identify potential issues before they escalate. This proactive approach allows for
timely intervention and issue resolution.

Cost savings and resource optimization
By integrating analytics into operational systems, organizations can optimize
resource allocation, for example, human resources, inventory, or equipment. This
can lead to cost savings and improved resource utilization.
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Overall, moving analytical workloads to the operational plane is driven by the need
for agility, real-time decision-making, and the desire to extract actionable insights
directly within the context of ongoing business operations. This integration allows
organizations to become more data driven and responsive to rapidly changing condi-
tions in their operational environments.

The operational plane infrastructure would not have the storage capacity to hold all
the historical data that the analytical plane infrastructure has. Analytical workloads
executed on the operational plane have limited access to historical data. The opera-
tional systems would also be limited in scale, so even if they had access to historical
data, they could only consume a small portion.

Getting historical data from the analytical plane to be consumed by systems in the
operational plane for analytical workloads can be difficult. The effect of data gravity
is significant and applies to more than just data. It also applies to the applications that
process the data. Because of these effects, building a solution for operational analytics
can get confusing. We will cover solutions to sourcing historical data in Chapter 10.

Despite these limitations, bringing analytics closer to the application and data source
makes it a valuable pattern for the evolving real-time analytics landscape. Recalling
the toy bank use case in Chapter 6, stream processors or streaming databases used
as part of operational analytics need to be consistent. The likelihood of processing
streams of transactions asynchronously that get consumed back into the application
in real time is extremely high. The consequences of inconsistency can have drastic
effects and a loss of trust in the application, as we demonstrated in Chapter 6.

Frank McSherry (a computer scientist and chief scientist at Materialize.io) talks about
trusting streaming data. Trust unfolds into three characteristics':

Responsiveness
Refers to synchronous interactive access to analytical data, measured by query
latency, QPS, and concurrency (number of end users).

Freshness
Refers to how near real time the analytics results are. The freshness of data is
a measure of its value as time moves forward. In Figure 9-5, the scale of the
x-axis (time) is relative to the use case. It can be in hours, minutes, seconds, or
milliseconds.

Consistency
We talked about consistency in detail in Chapter 6.

1 Frank McSherry. “A Guided Tour Through Materialize’s Product Principles,” Materialize, September 22, 2023.
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Figure 9-5. The definition of real time is based on how quickly or slowly value degrades
as time progresses

In Figure 9-5, the real-time box contains data that hasn't lost all value due to time.
The x-axis (time) scale will determine the types of systems you will need to employ.
If the scale is in days or end-of-day, batch processing may suffice. If the scale is less
than an hour, you must leverage streaming systems deployed on streaming plane
infrastructure. If the scale is within 8 hours, streaming systems will prepare you for
more aggressive timelines in the future.

The streaming plane gives the operational plane all the necessities for real-time
analytical processing with streaming databases and stream processors. It provides
real-time analytics in tabular structures for the applications and their users to con-
sume. Moreover, a generic perspective of the streaming plane composed of a mesh of
connections and tables resembles a streaming database. The implementation ideas of
operational analytics align with a data mesh architecture that promotes the decentral-
ization of data and reverses the effects of data gravity.

Data Mesh

Data mesh is a conceptual framework for data architecture introduced by Zhamak
Dehghani in 2019. Departing from traditional centralized models, data mesh advo-
cates for a decentralized approach, where data is treated as a product and ownership
is distributed among different domains or business units. Each domain is responsible
for its own data, fostering autonomy and accountability. Data teams function as
product teams, managing the end-to-end lifecycle of the data they handle, includ-
ing quality, documentation, and accessibility. The infrastructure is designed to be
self-serve and empowers domain teams to independently access and manage their
data. Federated computational governance ensures adherence to common standards
and policies while allowing for localized control within each domain. This approach
aims at addressing scalability challenges in large organizations, fostering agility and
improving overall data quality.
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Pillars of a Data Mesh

Data mesh comprises four key principles, or pillars. These pillars are foundational to
designing and implementing a decentralized and scalable data architecture:

Domain-oriented decentralized data ownership
This pillar emphasizes the distribution of data ownership among different
domains or business units within an organization. Instead of having a centralized
data team, individual domains take responsibility for the data generated and used
within their specific context. This approach aligns data management with the
organizational structure, fostering autonomy and accountability.

Data as a product
The second pillar treats data as a product with its own lifecycle, quality standards,
and documentation. Data teams function as product teams, responsible for the
end-to-end management of the data they produce. This includes ensuring data
quality, providing proper documentation, and making data easily accessible to
others within the organization. Treating data as a product encourages a mindset
shift toward delivering high-quality, usable data.

Self-serve data infrastructure
The third pillar focuses on creating a self-serve data infrastructure that enables
domain teams to autonomously access and manage their own data. This involves
providing tools, platforms, and services that empower domain teams to work
with data without heavy reliance on centralized data teams. A self-serve infra-
structure supports agility and reduces bottlenecks, allowing teams to be more
responsive to their specific data needs.

Federated computational governance

The fourth pillar addresses governance by applying federated computational
governance, which involves setting, using federated councils, common standards
and policies while allowing local autonomy within each domain. This ensures
there’s a balance between enforcing organization-wide standards and providing
flexibility for individual domains to govern their data according to their specific
requirements. Federated computational governance helps maintain consistency
and compliance across the organization.

These four pillars collectively form the basis of the data mesh framework, providing
guiding principles for organizations to build scalable and agile data architectures.

By decentralizing data ownership and treating data as a product, data mesh aims to
overcome the limitations of centralized models, promoting autonomy, efficiency, and
improved governance. This approach acknowledges the dynamic and evolving nature
of data management, aligning with the need for organizations to adapt to changing
requirements and leverage data as a strategic asset.

176 | Chapter 9: The Streaming Plane



Data mesh focuses primarily on the decentralization of data, including analytical
data. Similarly, operational analytics focuses on moving analytical workloads to the
operational plane, which has the inherited side effect of decentralizing data and
analytical workloads.

Bringing analytical workloads closer to the operational plane aligns with data mesh
concepts by promoting decentralized data ownership and improving the autonomy
of domain-oriented teams. The key idea behind this alignment is to empower opera-
tional teams with direct access to analytics, enabling them to derive insights and
make data-driven decisions in real time.

Here’s how this alignment unfolds within the context of data mesh:

Domain-oriented decentralized data ownership
In a data mesh, data ownership is distributed among different domains or
business units. Bringing analytical workloads closer to the operational plane
extends this principle by allowing operational teams to own and analyze the data
generated within their specific domain. This decentralization facilitates a more
agile and context-aware approach to analytics, as operational teams have a deeper
understanding of their data.

Data as a product
Treating data as a product implies that data is not only collected and stored but
also analyzed and consumed as part of the overall data product lifecycle. Bringing
analytical workloads closer to operations ensures that the insights derived from
analytics are integrated seamlessly into operational processes. Operational teams
become responsible for the end-to-end lifecycle of their data, including its analy-
sis, interpretation, and application to drive business outcomes.

Self-serve data infrastructure
Analytical workloads often require specialized tools and platforms. By bringing
these workloads closer to the operational plane, operational teams gain more
autonomy in accessing and using analytical tools. This reduces dependencies
on centralized data teams and empowers operational teams to perform ad hoc
analyses, generate insights, and iterate on analytical processes without extensive
external support.

Federated computational governance
Analytical workloads at the operational plane need to adhere to common stand-
ards and governance policies while allowing local autonomy. Federated computa-
tional governance is essential to ensure consistency, compliance, and security.
This principle ensures that while operational teams have autonomy in their ana-
Iytics, there are overarching standards that maintain the integrity and reliability
of the organization’s data.
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In summary, aligning analytical workloads with the operational plane within the
context of a data mesh supports the core principles of decentralization, autonomy,
and treating data as a product. This alignment aims at making analytics more respon-
sive to operational needs, fostering a culture of data-driven decision-making across
different domains within an organization.

Challenge of a Data Mesh

However, implementing a data mesh is challenging due to the need for a significant
cultural shift, technical complexity, organizational silos, and skill set gaps. The cul-
tural shift involves transitioning from centralized control to a decentralized model,
emphasizing domain-oriented ownership and collaboration. Technical challenges
arise in building a self-serve data infrastructure aligned with data mesh principles,
often requiring integration with existing systems. Overcoming organizational silos
and fostering cross-functional collaboration is essential, as is addressing skill set gaps
and ensuring teams adopt a product-oriented mindset. Data quality and governance
pose challenges in balancing local autonomy with overarching standards. Effective
communication and coordination are crucial, and the incremental adoption of data
mesh practices while supporting existing infrastructure requires careful planning.

While promising, Data Mesh adoption may face hurdles related to expertise, necessitating
advanced tooling and infrastructure for self-service capabilities.

—Roland Meertens et al., “InfoQ AI, ML, and Data Engineering Trends Report:
September 2023”

Despite these challenges, the potential benefits, such as increased agility and
improved data quality, drive organizations to navigate these complexities for a suc-
cessful implementation of data mesh.

A simplified and familiar approach to data mesh can ease its adoption and simplify
its implementation, which is how streaming databases can help. Streaming databases
bring a familiar approach to data, enabling more data accessibility and a faster
adoption of data mesh architecture. They allow data products to be consumed by
multiple domains globally, accelerate iterative development, and refine data solutions
quickly.

Streaming Data Mesh with Streaming Plane
and Streaming Databases

A streaming data mesh implements all the pillars of a data mesh but is implemented
using real-time streams. It enables real-time analytics for all domain consumers.
By using streaming databases, domains can build streaming data products without
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needing to deeply understand streaming concepts—instead, they can leverage their
database knowledge also for streaming databases.”

In Chapter 7, we defined a streaming database from a database perspective as “a
database that can consume and emit streams as well as execute materialized views
asynchronously”

Streaming databases have the unique ability to emit data as streams for other stream-
ing databases to consume. You can build a network of connections between stream-
ing databases that share data. As stated, the streaming plane can be treated as a
streaming database stretched across all enterprise domains.

Figure 9-6 represents the goal of the streaming data mesh and how it’s facilitated
by the streaming plane. Streaming databases build materialized views based on repli-
cated data from other domains. They also emit their data products for different
domains to pick up.

Figure 9-6. The streaming plane uses streaming databases to consume and produce data
products as well as connectors and streaming platforms to replicate data products and
analytics

Data Locality

Consuming data locally in a data mesh has implications for both performance and
security. From a performance perspective, local consumption allows more efficient
and faster access to data. Since data is replicated from remote domains and stored
within the local domain where needed, teams can minimize latency and optimize

2 For more information, see Streaming Data Mesh (O’Reilly) and “Kafka and RisingWave”.
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data processing for their specific use cases. This can improve performance for analyt-
ical workloads, real-time processing, and other data-driven operations, as teams can
tailor their data infrastructure to meet local performance requirements. Additionally,
local consumption facilitates the scalability of data processing, as domain teams
can independently scale their infrastructure based on their specific needs without
impacting other domains.

On the security front, consuming data locally aligns with the principle of federated
computational governance within a data mesh. Security measures can be imple-
mented at the domain level, allowing each domain to enforce its own security policies
and access controls. Furthermore, domain teams can focus on securing their data
assets without compromising the entire organizations security. By implementing
security measures at the domain level and adhering to common global standards,
a data mesh improves the balance between local autonomy and the overarching
security requirements of the organization.

To get data for local use in a domain, systems that replicate data are one of the
cornerstones of a data mesh.

Data Replication

Replication is pivotal in implementing a streaming data mesh by ensuring data
reaches its destinations for local consumption. In a streaming data mesh, data is dis-
tributed among different domains, and real-time replication mechanisms are crucial
for maintaining data consistency and reliability.

Moreover, replication supports the scalability requirements of a streaming data mesh.
As data volumes and processing demands vary across domains, replication allows for
the efficient distribution of data processing workloads. By replicating relevant data
streams to the domains where they are needed, organizations can optimize resource
utilization and minimize latency, enabling each domain to scale its infrastructure
independently based on its specific operational needs. This scalability is critical for
accommodating fluctuations in data velocity and ensuring that the streaming data
mesh can adapt to evolving business requirements with agility and efficiency.

Replication in the streaming plane works by building a network of connected stream-
ing platforms. For example, Kafka has a mechanism called Mirror Maker 2.0 (MM2)
that can mirror topics from one Kafka cluster to a different remote Kafka cluster.

Example 9-1 is a sample configuration for MM2 that will mirror topics between
Kafka clusters.
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Example 9-1. Mirror Maker 2.0 configuration for mirroring topics between two Kafka
clusters

# specify any number of cluster aliases
clusters = source, destination (1]

# connection information for each cluster

# This is a comma separated host:port pairs for each cluster

# for example.

# "A_host1:9092, A_host2:9092, A_host3:9092"

# and you can see the exact host name on Ambari > Hosts

source.bootstrap.servers = kafka-source1:9092,kafka-source2:9092,kafka-source3:9092
destination.bootstrap.servers = kafka-dest1:9092,kafka-dest2:9092,kafka-dest3:9092

# enable and configure individual replication flows
source->destination.enabled = true

# regex which defines which topics gets replicated. For eg "foo-.*"
source->destination.topics = foo

groups=.*

topics.blacklist="*.internal,__.*"

# Setting replication factor of newly created remote topics
replication.factor=3

checkpoints.topic.replication.factor=1
heartbeats.topic.replication.factor=1
offset-syncs.topic.replication.factor=1

offset.storage.replication.factor=1
status.storage.replication.factor=1
config.storage.replication.factor=1

@ The names for the source and destination Kafka clusters
® The topics to mirror in the destination Kafka cluster

MM?2 mirrors topics only between two Kaftka clusters. The streaming plane can
comprise many Kafka clusters, possibly 1 to 2 per region where domains exist. One
instance of MM2 must be deployed for additional regions that want to consume
real-time data locally.

MM2 is usually implemented as a connector that runs in a Katka Connect cluster. As
mentioned earlier in this chapter, the streaming plane is built upon a foundation of
streaming platforms and connectors. It is these components that create the mesh of
streaming data.
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An alternative to MM2 is a proprietary solution called Cluster Linking (CL) provided
by Confluent. CL connects Kafka clusters and mirrors topics between them. Unlike
MM2, CL doesn’t require a Kafka Connect cluster. MM2 and CL provide solutions to
keep data in motion to minimize the effects of data gravity.

Summary

Streaming databases abstract away a significant amount of complexity of the stream-
ing plane with a simple and familiar database experience. Any operational domain
can participate in a data mesh and produce and consume real-time data products
with other domains without deep knowledge about stream processing. In the next
chapter, we will review different deployment models that will serve as a blueprint for
your real-time analytical needs.

182 | Chapter9: The Streaming Plane



CHAPTER 10
Deployment Models

This chapter will cover several deployment models for a spectrum of use cases. A key
aspect of our exploration will be to find out where leveraging streaming databases
is most advantageous and when alternative approaches might be more suitable. We
will account for all the streaming attributes we covered in the past chapters, including
consistency, workload types, storage formats, and the ideas about the streaming plane
introduced in Chapter 9.

We will focus on unraveling various architectural patterns facilitating real-time ana-
Iytics in the streaming plane. The streaming plane’s dynamic nature exposes a unique
set of strategies to harness its potential effectively. It can support a spectrum of
real-time use cases:

o At one end of the spectrum are the use cases that interact with the application
deployed in the operational plane. These streaming solutions require consistency
but have limited access to historical data.

o On the other end of the spectrum are the use cases that only deal with real-time
analytics without the need for interaction with application logic. These streaming
solutions can be eventually consistent and have access to all historical data.

Of course, different degrees of consistency and historical data can be met along
the spectrum. We'll cover the entire real-time analytical spectrum from left (consis-
tent/internally consistent solutions) to right (analytical only).

It's important for us to stress that the solutions in this chapter will leverage streaming
solutions as they come “out of the box.” This is especially important when it comes
to consistency. For streaming databases and stream processors that are eventually
consistent, it’s possible to “emulate” stronger consistency guarantees by, for example,
adding extra fields and adding them to the join logic. Implementing this also requires
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deeper knowledge of the streaming platform that goes beyond the scope of this book.
However, engineers who are familiar with databases but new to streaming will expect
a higher degree of consistency without the need to mimic it or bolt it on afterward.
With this understanding, more consistent solutions can provide the highest value
with less effort.

Consistent Streaming Database

When you need a database that can run complex asynchronous/stream processing
that participates in your application logic, you can build it with a consistent stream-
ing database. Moreover, since its also a database, you can query the output of the
asynchronous process directly from the streaming database. A consistent streaming
database can simplify your infrastructure without requiring deep streaming knowl-
edge. Solutions that satisfy this are RisingWave and Materialize.

In Figure 10-1, a consistent streaming database like RisingWave or Materialize shows
its hybrid characteristics by sitting on the border between streaming and operational
planes.

( Operational plane Streamingv Analytical )
plane plane

OLTP
O] P —
Consistent Data
—— | streaming warehouse/

lakehouse

database

\ — N AN J

Figure 10-1. Operational analytics using a consistent streaming database

The solid arrows in Figure 10-1 represent streaming data. The dashed arrows repre-
sent the read-and-write interaction between the application and databases. The con-
sistent streaming database consumes from the OLTP database and executes analytical
transformations via stream processing. The results are saved in row-based storage in
the streaming database.

This solution allows the application to write directly to the OLTP database and read
from the streaming database. It also enables the separation of resources between
reading and writing data.
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The streaming database also provides the ability to consume and aggregate data
from multiple OLTP databases and send transformed data to the data warehouse
or lakehouse (the analytical plane). The data warehouse would be used for internal
business analytics.

This solution is limited when the user-facing application needs historical data from
the data warehouse or lakehouse. Because of data gravity, receiving historical data
from the analytical plane is difficult.

The consistent streaming database also gets to its limits when complex analytical
queries are required. Those are better suited for a columnar database. Here is a
consolidated table of pros and cons associated with this solution:

Pros Cons
- Provides data freshness in milliseconds. « Lacks columnar storage, which is better for faster analytical
« There is a separation of read and write resources that can be queries.
independently and explicitly scaled up and down. « Consistent streaming databases need help receiving historical
« You can combine inputs from multiple OLTP databases (even data from the analytical plane because they cannot source it
from different vendors) into a single, consistent streaming themselves.
database. « (an struggle when the data size starts to become too large.

- Transformations can be performed incrementally, before the
data is sent to the analytical plane.

« Push and pull queries are supported in the streaming
database using the same query engine/interface.

Use this solution for use cases that need consistent stream processing that takes
part in the application logic but does not need (too much) historical data from the
analytical plane. It's also an excellent way to aggregate data from multiple OLTP
databases from different applications.

Consistent Streaming Processor and RTOLAP

Alternatively, you can use a consistent stream processor like Pathway if you prefer to
output the stream to a columnar database. Consistent stream processors can execute
push queries near the operational plane and participate in the applications logic.
They write their output into a streaming platform like Kafka, from which a RTOLAP
database (like Pinot) can consume data and then serve it.

Figure 10-2 shows how to transform data in the stream processor and write the
results to a data warehouse/lakehouse and a RTOLAP database. The RTOLAP can
also read historical data from the data warehouse/lakehouse (analytical plane), join it
with the real-time data from the consistent stream processor, and make it available
to the operational plane as low-latency pull queries. Here are the pros and cons
associated with this solution:
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Pros Cons

« (an provide data freshness in milliseconds to seconds. « Push and pull queries are separated between stream

« User-facing analytics can include all historical context processor and OLAP database, respectively. Separation of
without storing it on operational infrastructure. these queries often requires separate engineers and strict

« The columnar format in the RTOLAP database provides fast coordination between them that may prove hard to achieve
analytical workloads to the application. in practice.

« The RTOLAP and stream processor can reuse many topics on
the streaming platform.

« A consistent stream processor can play a dual role by
participating in the application’s business logic and preparing
real-time analytics.

Operational plane |l Streaming Analytical
plane plane

Dl Ml 5| RTOLAP
@ liiill k]
Data
Write . ¢ ° le warehouse/

p| Consistent »| lakehouse

OLTP streaming
processor

~—
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Figure 10-2. Consistent stream processor

Use this solution if your use case requires most or all historical data to be available
for user-facing analytics and a consistent stream processor to participate in the
application logic.

Eventually Consistent OLAP Streaming Database

If having a separate stream processor and OLAP database is making infrastructure
too complex, leveraging a streaming OLAP database like Proton is a great way
to consolidate all analytical workloads into one solution. But, because of its eventu-
ally consistent characteristics, it shouldn’t participate in the application’s logic. In
Figure 10-3, the data movement between the OLTP and the streaming database is
one directional. Applications can take advantage of the OLAP’s columnar store for
low-latency queries.
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Figure 10-3. Eventually consistent streaming OLAP database

Since Proton is a streaming database, it has the ability to write its stream processing
output to Katka. This allows other databases to consume the analytical stream to
build replicas in other databases. But since Proton embeds ClickHouse (an RTO-
LAP), it already has columnar storage and can serve analytical queries with low
latency. Outputting analytics to Kafka has the added feature of distributing analytics
to other global regions in real time. Here’s an overview of the pros and cons:

Pros Cons

« Only eventually consistent; should not take part in the
application logic.

- Data freshness in milliseconds to seconds.

« Provides more or even all historical data, providing more
context to real-time data.

« Proton can emit analytical changes to allow developers to
build replicas of the analytical results.

« Simpler solution that converges stream processing and OLAP
technologies.

« Provides a single SQL engine to build push and pull queries.

« Is less bulky.

The greatest benefit gained when using a streaming OLAP database is its ability to
balance push and pull queries from within a single query engine and interface. It
reduces the work to a single engineer, unlike the solution incorporating a separate
stream processor and an OLAP database. Proton provides a simple solution for
real-time analytics.

Use this solution to reduce the infrastructure and engineering complexity and to
allow access to more historical data for user-facing analytics.
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Eventually Consistent Stream Processor and RTOLAP

This solution is probably the most common in providing real-time analytics today. It
often involves Flink and an RTOLAP database like Pinot. See Figure 10-4.
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Figure 10-4. Eventually consistent stream processor and RTOLAP

This solution has been proven in many high-scale, real-time applications today:

Pros Cons
- Data freshness can be achieved in in milliseconds to seconds. ~ « This is a complex and bulky solution that can lead to higher
- Historical data + real-time data can be joined together to cost.

provide a complete view of analytics. « Because Flink is eventually consistent, it should not take part

in application logic.

« Since the stream processor and real-time OLAP execution
engines are separated, this solution doesn't provide a single
SQL engine for push and pull queries, which can lead to
higher engineering and organizational stress.

Use this solution when your use case requires more historical data for user-facing
analytics in your application. Consistency should not be a significant concern when
enriching fact streams with dimensional streams.

Eventually Consistent Stream Processor and HTAP

In cases where you want to keep analytical workloads near or in the operational
plane, using an HTAP database along with an OLTP database can be convenient. You
can add an eventually consistent stream processor to capture historical data to be sent
to your data warehouse or lakehouse. See Figure 10-5.
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Figure 10-5. Eventually consistent stream processor and HTAP

The stream processor can source limited historical data from the analytical plane and
provide it to the HTAP database. Because of its columnar format, it has the ability
to serve low-latency analytical queries. The amount of historical data the HTAP
database holds is typically limited and/or comes with a limited retention time. Here
are the pros and cons:

Pros Cons
« Provides data freshness in milliseconds. « Limited historical data.
« HTAP databases have columnar storage for fast analytical « Complexity increases when implementing retention for the
queries. historical data held in the HTAP database.
« Low infrastructural complexity. « The stream processor cannot take part in the application
logic.

Use this solution if your use case requires data to be fresh in milliseconds and only
requires a small subset of historical data for user-facing analytics.

ksqlDB

In Chapter 6, we discussed the consistency guarantees provided by ksqlDB (“continu-
ous refinement,” similar to “eventual consistency”). ksqlDB is based on the underlying
JVM library Katka Streams built for deployment inside microservices. Microservices
are deployed in the operational plane as part of an application backend.

We recommend using Katka Streams and ksqlDB only for simpler stream processing
operations. JOINs are hard to get right, especially when combining append-only
“streams” and changelog-like “tables” ksqlDB only supports a subset of SQL syntax
and semantics (e.g., no self-JOINs, no nested JOINs). The risk of implementing incon-
sistent logic is high, even though it’s possible to harness ksqlDB if you have a team of
well-versed stream processing experts at your disposal.
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As a result, the best use cases for ksqIDB are simpler stream processing operations on
Kafka (ksqIDB only supports Kafka as its data source and sink) that prepare data for
analytical destinations like data warehouses or data lakes. It’s also possible to use the
materialized views of ksqlDB to execute point queries, for example, for destinations
that only support batch and cannot afford the use of a full-fledged, continuously
running Kafka consumer. In this case, ksqlDB takes over the role of the consumer
that, for example, filters and preprocesses data for the batch-only system:

Pros Cons

- Data freshness. « Only supports Kafka as source/sink.

- Stream processing capabilities. « High amount of stream processing expertise required.

- Enables point queries using materialized views (TABLEs)to  « Complex stream processing operations hard to implement
support batch-only destinations. correctly.

« No support for full SQL syntax and semantics.

Incremental View Maintenance

Solutions supporting IVM, such as Feldera, PeerDB, or Epsio, can also be used to
support batch-based point queries on preprocessed, fresh data. Contrary to ksqlDB,
these solutions are more closely integrated with operational databases such as Post-
greSQL and do not require the use of Kafka as an intermediary layer.

In addition, these solutions allow for more complex preprocessing of the data using
full and consistent SQL semantics. The downside is that they tend to be more inflexi-
ble than solutions based on Kafka. You are essentially restricted to those data sources
and sinks that are supported by the respective vendor, whereas if you use Kafka as an
intermediary layer, your choice of data sources and sinks is significantly higher.

IVM solutions can also increase the understanding of asynchronous and continuous
processing of data to IT organizations and act as a “gateway drug” for them to the
world of streaming, stream processing, and streaming databases. They can still be
operated in the same manner (e.g., PeerDB and Epsio), or even from inside the
Postgres ecosystem, but their way of operation is already close to streaming, stream
processing, and streaming databases—which might become necessary to integrate
larger architectures in larger organizations:

Pros Cons

- Data freshness. + Restricted to the sources/sinks supported by the respective
« Full SQL syntax and semantics. vendor.

« Consistency.

- Enables point queries.

« Sneaks in streaming aspects into the database world.

190 | Chapter 10: Deployment Models



Postgres Multicorn Foreign Data Wrapper

Multicorn is a PostgreSQL 9.1+ extension meant to make foreign data wrapper
(FDW) development more convenient by allowing the programmer to use the Python
programming language. This enables programmers to build, for the operational
plane, FDWs for non-Postgres databases, for example, for RTOLAP databases such as
Apache Pinot, and make the data available inside a PostgreSQL database.

If your databases on the operational plane are Postgres based, FDWs for Postgres are
definitely an option to bring the operational and the analytical planes closer together
without incurring the complexity of using, for example, a streaming platform like
Kafka and stream processing in between. However, similar to IVM in the previous
section, the problem with Multicorn is that it’s restricted to one vendor. In larger
organizations, in 99% of the cases you’ll have a plethora of database technologies on
the operational plane—not only Postgres. Hence, youd have to establish Postgres as
the central operational database, which is, in larger organizations, not achievable in
practice. Again, using a streaming platform such as Kafka as an intermediary layer
could help—if you can afford the additional complexity that this entails:

Pros Cons

« Full SQL syntax and semantics. « Requirement to use Postgres as the central database
- Consistency. technology (impractical if deployed at large scale/in large
« Access to both OLTP (Postgres), other non-Postgres OLTP organizations).

databases, and (real-time) OLAP databases within the
Postgres ecosystem (operational plane).

When to Use Code-Based Stream Processors

The processing and querying of the data can also be implemented with technologies
other than streaming databases. Classical stream processing technologies such as
Kafka Streams and Flink are still useful, especially for “hardcore” streaming use cases
such as fraud detection or inside a microservices architecture, which are typically
located on the operational plane.

The zoo of technologies for code-based stream processing has also grown consider-
ably over the past years. Now, in addition to the classical technologies, you can
also choose, for example, Quix Streams (Python, C#), Bytewax (Python), and Path-
way (Python), where, interestingly, both Bytewax and Pathway are based on the
same underlying stream processing engine used in Materialize (timely dataflow/DD).
Other new and interesting technologies in this segment are Deephaven and a Python-
based framework, GlassFlow.
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When to Use Lakehouse/Streamhouse Technologies

Lakehouse technologies such as Databricks’ Delta Tables, Apache Iceberg, or Apache
Hudi also increasingly lean into the streaming space and offer streaming and/or
stream processing features. Databricks has actually offered these features since the
beginning (Spark Structured Streaming). The new Streamhouse architecture pro-
posed by Ververica with Apache Paimon offers an even closer integration of stream
processing and processing on the data lake. A little later, Confluent announced the
feature Tableflow, which allows them to expose data on their Kafka-based streaming
platform, Confluent Cloud, as Iceberg tables. Similar to Paimon, Confluent uses Flink
to seamlessly integrate stream and batch processing.

A solution similar to Tableflow comes from the startup Streambased.io. It has built a
solution for querying Kafka topics that is, on the one hand, closely intertwined with
Kafka and, on the other, offers a database-like SQL interface based on the Trino SQL
query engine. If you use Trino on Kafka without Streambased, the performance of the
SQL queries can be painstakingly low since the query engine reads from the Kafka
topics directly. Streambased adds a Bloom filter-based index to the Kafka topics,
which is used to speed up the performance of the Trino-based queries 10x or more
(the company claims 39x on its website).

Compared to RTOLAP databases such as Pinot, Druid, or ClickHouse, Streambased
doesn’t replicate the Kafka data but only creates additional indexes—and those
indexes take up far less disk space than the actual data. The added performance
gained from the indexing then allows you to query Kafka topics “almost directly”
with very low latency. This could be another solution that enables “downward com-
patibility” of streaming and batch; you can actually query Kafka topics via REST or
JDBC (Java Database Connectivity) as if they were database tables. This can make
streaming much more accessible by making it almost invisible to the end user.

Essentially, all these developments increase the data gravity of the streaming plane.
More processing can and will be done closer to the stream, or data in motion,
and less processing has to be implemented late in the data warehouse/data lake. If
data freshness/latency is not the main concern, the processing of the data can be
seamlessly migrated from the streaming plane back to the analytical plane (and vice
versa if latency becomes more important).

Caching Technologies

There is more to choose from, of course. If you need extremely low latency, more
so than you can get with a streaming platform such as Kafka, you might also look
into caching tools such as Redis or Hazelcast. These can be located either on the
operational plane or the streaming plane, depending on how close they are integrated

192 | Chapter10: Deployment Models



with the streaming platform. Solutions like Hazelcast even offer functionalities akin
to stream processing using, for example, SQL-like syntax.

Where to Do Processing and Querying in General?

Over the course of this book, we have brought a large number of technologies into
the spotlight, some of them living on the operational plane, some on the analytical
plane, some on the streaming plane, and most of them somewhere in between.

You, as a reader of this book, are likely a practitioner. You have a task to accomplish,
and you might read this book to get new ideas about how to do that. Now can we, the
authors of this book, help you with that? Is there some more general advice that we
can give to help you select the right method and technology—and how to distribute
and scale it?

Of course, the safe answer to questions like these is to say, “it depends” And it does,
but wed love to be a bit more helpful. This section is about what “it depends” on and
what consequences you can expect from choosing particular technologies for your
task at hand.

The Four “Where” Questions

When you think of a certain task or use case, what are the most crucial factors
determining the choice of the technology to accomplish this task? Let us hark back
to our “map” or “landscape” of the data space, arranged in a Venn diagram of the
overlapping operational, analytical, and streaming planes. This map might prompt us
to think more of locations first and go from there.

As a result, when you consider your task or use case, try to pose yourself the
following four “where” questions:

1. Where is my use case located?

2. Where is the data I need for my use case?
3. Where do I process it?

4. Where do I query it?

An Analytical Use Case

Figure 10-6 represents a typical example. Consider an analytical use case where data
originally coming from operational systems needs to be queried in a business-facing
dashboard application. Hence, the answer to the first question (“Where is my use case
located?”) is “the analytical plane” Lets assume the second question is also easy to
answer—the origin of the data is on a streaming platform on the streaming plane. In
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the diagram, observe the arrow from the origin of the data (the answer to question 2)
to the use case (the answer to question 1).

Operational data plane Analytical data plane

Streaming
OLTP
database

Eventually

Consistent

A consistent
stream .

. stream
processors processors
.

.

Streaming data plane

Figure 10-6. A continuum of locations

Let’s usher in the following two “where” questions: Where do I process the data, and
where do I query it? Typically, in today’s world, the answer would be to “do both on
the analytical plane,” for example, in a data warehouse like Snowflake or a lakehouse
technology like Databricks.

But maybe such a simple (and possibly costly) answer is not for you. For us, it isn’t,
because there is, of course, not just one answer to questions 3 and 4. In fact, there is a
continuum of answers.

Let’s focus on the straight line or “path” from 2 to 1. This path signifies the continuum
of answers to questions 3 and 4. Of course, you could give simple answers and both
process and query the data on the analytical plane as well, as shown in Figure 10-7.

However, you might also consider other options. For example, you could answer
question 3 (“Where do I process the data?”) with a technology that enables you to
do the processing on the streaming plane, for example, with a stream processor like
Flink or a streaming database. And you could even push the querying of the data
(question 4) to the streaming plane if you use a streaming database, as shown in
Figure 10-8.
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Figure 10-7. Doing the processing and querying both on the analytical plane

Operational data plane Analytical data plane

Streaming
OLTP
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Consistent Even_tually
stream . consistent
.
processors stream
: processors

Streaming data plane

Figure 10-8. Doing the processing and querying closer to/on the streaming plane

So basically, the path connecting the location of your use case with the origin of the
data for your use case specifies the continuum or set of possible locations and, there-
fore, also technologies you can use to address your task. You can do the processing
and querying on any location on that path, but your choice will always have positive
and negative consequences.
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Consequences

What are those consequences? In theory, the further away from the source of the data
you do the processing (question 3) and the querying (question 4) of the data, the
more disadvantages you get. This, of course, ties in with what we wrote about data
gravity in the earlier chapters. For example, if you answer questions 3 and 4 as in
Figure 10-7 and do both on the analytical plane, close to the analytical use case, the
following will be difficult:

o Keeping the data fresh because it needs to first travel to the analytical plane
before it can be processed and then queried.

« Sharing the processed data because the processing is executed too closely to the
use case.

o+ Processing incrementally. On the analytical plane, batch processing is prevalent.
For processing to work, it'll have to go through the same data repeatedly, which
is inefficient and can prove costly, especially when using cloud data warehouse
technologies.

So why is the vast majority of the industry still doing this? Why are the answers to
questions 3 and 4 most often, “Do it on the analytical plane”? Why is, for this very
common use case, the gravity of the streaming plane still so low and the gravity of the
analytical plane so high in light of the disadvantages that we have listed?

We think one of the main reasons for that otherwise inexplicable acceptance of an
architecture with a long list of disadvantages is that stream processing (and also
querying streams) is still hard. It's hard in at least three aspects:

o Alot of streaming expertise is required—which is often not readily available.

o Even if streaming expertise is available, stream processing will still be cost-
intensive—so much so, in fact, that it outweighs the potential cost savings of
earlier and incremental processing.

« Even with streaming expertise, it’s difficult to get consistent results from stream
processing.

To turn around what we said earlier, the earlier you can do the processing, the fresher
the data will be, the more you’ll be able to share the processed data, and the more
incrementally you can process your data. But before the advent of streaming data-
bases, using stream processing was often not practical for very pragmatic reasons.

Streaming databases have the potential to change this because they work a lot more
like ordinary databases. For example, Materialize and RisingWave even use the Post-
gres wire protocol. The new stream processing engine in MongoDB can be easily
used by MongoDB experts. Hence, in both cases, much less streaming expertise is

196 | Chapter 10: Deployment Models



required. Basically, you can put your existing database/data warehouse experts on the
job, which can significantly reduce the cost of implementation of stream processing:
no additional experts have to be hired.

Turning to the fourth “where” question about querying the data, next-generation
streaming databases even offer capabilities to almost directly query streaming data
by providing materialized views. Constantly updated materialized views make for
fresher data, and by using incremental stream processing under the covers, they
can also bring down the cost of implementing your use case: since only new data
needs to be processed (and then materialized). Running queries against materialized
views avoids the need to painstakingly traverse through the same old data points
again and again. Especially for high-frequency queries, this can decrease the compute
requirements and, thus, also reduce cost significantly.

As a result, streaming databases can actually act as a game changer for the adoption
of streaming and have the potential to increase the data gravity of the streaming
plane. For a lot of use cases, at least the processing (question 3) can be moved to the
streaming plane in a way that was not possible before streaming databases surfaced.

When you combine this train of thought with the recent advent of technologies like
Streamhouse (Ververica) and Tableflow (Confluent), the data gravity of the streaming
plane will increase even further, and the lines between the three planes in our Venn
diagram will continue to blur.

Summary

This chapter discussed the various deployment and architectural models for stream-
ing databases and other hybrid technologies meandering between the operational,
analytical, and streaming planes, as well as the pros and cons of basing your architec-
ture on them.

We continued with a discussion of technologies that are less closely related to the
overarching topic of this book but still related enough to be worth mentioning.
This included code-based stream processing solutions, new developments around
streaming in the lakehouse, and caching technologies.

We generalized our recommendations of deployment models by using a set of
“where” questions. Based on the Venn diagram used throughout the later chapters
of this book, we developed these questions to help you delineate a continuum of
possibilities for locating the processing and the querying of your data.

We concluded that streaming databases could actually lead to a democratization of
stream processing and the use of streaming in general. As a result, they have the
potential to considerably increase the data gravity of the streaming plane. This is
amplified by the increasing number of features of streaming vendors (Ververica’s
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Streamhouse and Confluent’s Tableflow, etc.) and nonstreaming vendors (MongoDB,
Databricks, etc.), which position these vendors more and more in those sections of
our Venn diagram that overlap with the streaming plane.

In the next—the last—chapter, we continue this exciting train of thought about the
convergence of streaming and databases in more detail.
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CHAPTER 11
Future State of Real-Time Data

The cave you fear to enter holds the treasure you seek.
—Joseph Campbell

After delving deeply into the deployment options for streaming databases, this chap-
ter takes a step back and looks into the future state of real-time data, shaped by
one of the central topics of this book: the accelerated convergence of streaming and
databases. Streaming databases are one of the manifestations of this trend. But there’s
so much more evidence worth at least touching upon here.

We start out with graph databases and their ongoing journey toward the streaming
realm (e.g., Memgraph, thatDot), followed by nowadays, after the ChatGPT GenAlI
breakthrough, super-popular vector databases (e.g., Milvus, Weaviate). We continue
our travels through the converging lands of streaming and databases with tools for
bringing one central aspect of streaming databases, namely, Materialized Views, aka
IVM, to classical databases (Feldera, PeerDB, and Epsio). Toward the end of this
chapter, we examine the streaming functionalities of established database vendors
such as MongoDB and slowly turn our focus to the analytical plane with data ware-
houses like BigQuery, Redshift, and Snowflake that are also consequently extending
their streaming functionalities. We close this chapter by surveying the confluence of
streaming and lakehouse architectures driven by Apache Iceberg, Apache Hudi, Delta
Lake, and Apache Paimon—one of the most promising macro trends not only in the
streaming space but also in the big data space as a whole.

The Convergence of the Data Planes

Before we start our journey, let’s set the context by having another look at the Venn
diagram from Chapter 7 (Figure 11-1).
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NG
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Figure 11-1. Venn diagram of next-generation databases

The diagram illustrates the convergence of the three data planes:

o Operational data plane
o Analytical data plane

« Streaming data plane

In the first sections of this chapter, we will focus on the operational data plane, that
is, databases that are most commonly used in an operational rather than analytical
setting. We will elaborate on how various kinds of operational databases are making
their way toward the streaming data plane, namely, the shaded area where the opera-
tional and the streaming data planes overlap.

After that, we take a look at the efforts of vendors from the analytical data plane,
including data warehouses (e.g., Snowflake) and lakehouses (e.g., Databricks) to
augment their portfolio with streaming functionalities—and thereby getting closer to
the shaded area where the analytical and the streaming data planes meet. Especially
intriguing in this context is the ongoing convergence of lakehouse and streaming
architectures—this is destined to become one of the major topics in the big data space
in the years to come and will, therefore, act as the climax of this chapter.
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Graph Databases

Graph databases use underlying graph structures to enable queries on graphs that
would otherwise be hard to implement efficiently in a relational database. They
formed an important part of the NoSQL movement from the 2000s and 2010s,
which significantly broadened the database space. Popular graph databases are Neo4],
ArangoDB, and TigerGraph. Graph databases are clearly part of the operational data
plane; they are typically used for operational applications, setting them apart from
graph compute engines, which have their place on the analytical plane.

Typical use cases for graph databases are:

Social networks
Graph databases excel in modeling and querying social networks and are widely
used, for example, by Meta, X, or LinkedIn. The typical setup is that nodes
represent users and edges represent relationships between them, such as “user A
follows user B” or “user A is a friend of user B”

Recommendations
Here, relationships between users and products/content are modeled and queried
to extract personalized recommendations based on the preferences of the users.

Knowledge graphs
In this use case, graphs are employed to model relationships between pieces of
knowledge to facilitate more accurate semantic search.

Fraud detection
If combined with AI/ML, the accuracy of fraud detection mechanisms can be
noticeably improved by graph databases to improve the analysis of patterns of
connections between entities.

Supply chain
Here, nodes represent, for example, locations, products and entities, and edge
relationships and movements within the supply chain. In this context, graph
databases can be used to significantly optimize supply chains.

While established graph databases such as Neo4] and ArangoDB can be connec-
ted to streaming platforms, for example, using Kafka Connect, newer vendors like
Memgraph and thatDot have begun to offer features that allow for an even tighter
integration.

Memgraph

Memgraph offers features that enable it to directly connect to streaming platforms
such as Kafka and Pulsar to ingest the data, and it even offers support for so-called
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transformation modules to transform incoming messages to consume them correctly.
Transformation modules can either use the C API or the Python API.

Example 11-1 shows how Memgraph allows direct ingestion of data from Kafka.

Example 11-1. Directly ingesting data from Kafka in Memgraph streams

CREATE KAFKA STREAM <stream name>
TOPICS <topicl> [, <topic2>, ...]
TRANSFORM <transform procedure>
[ CONSUMER_GROUP <consumer group>]
[BATCH_INTERVAL <batch interval duration>]
[BATCH_SIZE <batch size>]
[BOOTSTRAP_SERVERS <bootstrap servers>]
[CONFIGS { <keyil>: <valuel> [, <key2>: <value2>, ...]}]
[CREDENTIALS { <keyl>: <valuel> [, <key2>: <value2>, ...]}];

START STREAM <stream name> [BATCH_LIMIT <count>] [TIMEOUT <milliseconds>];

Example 11-2 exhibits a transformation module using the Python APL

Example 11-2. Using the Memgraph Python API for transforming incoming messages
from a streaming platform

import

.transformation
def transformation(context: mgp.TransCtx,
messages: mgp.Messages
) -> mgp.Record(query=str, parameters=mgp.Nullable[mgp.Map]):
result_queries = []

for 1 in range(messages.total_messages()):
message = messages.message_at(i)
payload_as_str = message.payload().decode("utf-8")
result_queries.append(mgp.Record(
query=f"CREATE (n:MESSAGE {{timestamp: '{message.timestamp()}', payload:
'{payload_as_str}', topic: '{message.topic_name()}'}})",
parameters=None))

return result_queries

thatDot/Quine

Quine is an open source graph (database) from the vendor thatDot. Quine allows
the combination of multiple event streams into a single graph, querying for complex
event relationships, and taking action on them in real time. The Quine messag-
ing leaves out the “database” in the product name: the company actually calls its
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technology “Streaming Graph for Data Pipelines.” In the sense of this book, Quine
fully qualifies as a (graph-based) streaming database, though:

o It offers (graph-based) stream processing (standing queries), reading from
streams, and writing the results of the processing out to streams.

o It provides materialized views (graphs).

Quine enables graph processing on a far larger scale than existing graph databases,
such as Neo4] or TigerGraph, since it’s a completely distributed system based on the
concept of actors (implemented using the Scala library Pekko, a fork of Akka 2.6.1
under the covers). It also provides a pluggable storage layer supporting RocksDB,
MapDB (locally), and Cassandra (remotely).

In Example 11-3, we depict an example for using a “server-side events” ingest stream
to connect to the live stream of page revisions on Wikipedia.

Example 11-3. Ingesting a stream of “server-side events” of page revisions on Wikipedia
with Quine

curl -X "POST" "http://127.0.0.1:8080/api/v1/ingest/wikipedia-revision-create" \

-H 'Content-Type: application/json' \
-d $'{

"format": {
"query": "CREATE ($that)",
"parameter": "that",
"type": "CypherJson"

}I

"type": "ServerSentEventsIngest",
"url": "https://stream.wikimedia.org/v2/stream/mediawiki.revision-create"

} '

In the next step (Example 11-4), we create an ingest query using the Cypher graph
database language from Neo4] to load the individual events into nodes in the stream-
ing graph database.

Example 11-4. Ingest query written in Cypher to load the individual events into nodes in
the Quine graph database

MATCH (revNode),(pageNode), (dbNode), (userNode), (parentNode)
WHERE id(revNode) = idFrom('revision', S$that.rev_id)

AND id(pageNode) = idFrom('page', $that.page_1id)

AND id(dbNode) = idFrom('db', S$that.database)

AND id(userNode) = idFrom('id', $that.performer.user_id)

AND id(parentNode) = idFrom('revision', S$that.rev_parent_id)

SET revNode = S$that,
revNode.bot = $that.performer.user_is_bot,
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revNode:revision

SET parentNode.rev_1id = $that.rev_parent_id

SET pageNode.
pageNode.
pageNode.
pageNode.
pageNode.
pageNode:

id = $that.page_id,

namespace = $that.page_namespace,
title = $that.page_title,

comment = S$that.comment,

is_redirect = $that.page_1is_redirect,
page

SET dbNode.database = $that.database,

dbNode:db

SET userNode

userNode.
userNode:

= S$that.performer,
name = S$that.performer.user_text,
user

CREATE (revNode)-[:T0]->(pageNode),
(pageNode)-[ :IN]->(dbNode),
(userNode) - [ :RESPONSIBLE_FOR]->(revNode),
(parentNode)- [ :NEXT]->(revNode)

After setting up the graph from a streaming source, Quine allows setting up of a
standing query to monitor the stream for specified patterns. Based on the recognition
of these patterns, actions can be taken, such as updating the graph itself by creating
new nodes or edges, writing results out to Kafka or Amazon Kinesis, or posting the
results to a webhook. One of the crucial features of standing queries in Quine is that
they do not require the specification of time windows such as in, for example, Flink.
Standing queries essentially correspond to graph-based stream processing.

We show a standing query in Example 11-5. Standing queries consist of a pattern and
an output. The pattern defines what should be matched, and the output defines the
actions to take. Standing queries are, again, written in Cypher.

Example 11-5. Standing query written in Cypher match a pattern and take action on it

(using a file sink)
{
"pattern": {
"query":

"MATCH (n)-[:has_father]->(m) WHERE exists(n.name) AND exists(m.name)

RETURN DISTINCT strId(n) AS kidWithDad",
"type": "Cypher”

{

"file-of-results": {

1,

"outputs":
"path":
"type":

}

"kidsWithDads. jsonl",
"WriteToFile"
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}
}

To get the last 10 revision-create event nodes, you could now query Quine as in
Example 11-6.

Example 11-6. Get the last 10 revision-create event nodes from Quine

MATCH (userNode:user {user_1is_bot: false})-[:RESPONSIBLE_FOR]->(revNode:revision
{database: 'enwiki'})

RETURN DISTINCT strid(userNode) as NodelD,
revNode.page_title as Title,
revNode.performer.user_text as User

LIMIT 10

We show the result of that query in Figure 11-2.

Figure 11-2. Result of the “not-a-bot” query

Memgraph—and especially thatDot/Quine—are at the forefront of the ongoing con-
vergence of graph databases and streaming and, therefore, form a perfect example for
the confluence of the operational plane and the streaming plane.

Vector Databases

In a nutshell, vector databases are optimized for storing and querying vectors, that
is, fixed-length lists of numbers (typically, 50-1,500 per vector). Queries in a vec-
tor database typically amount to a similarity search implemented by approximate
nearest neighbor (ANN) algorithms. The vectors stored in a vector database are
high dimensional and represent features of unstructured data such as text, sound,
and video. Popular vector databases include Milvus, Weaviate, Pinecone, Vespa, and
Qdrant. Interestingly, an increasing number of existing databases have adopted vector
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database functionality as well, e.g., ClickHouse, Rockset, PostgreSQL, Cassandra,
Elastic, Redis, and SingleStore.

The idea of turning unstructured data such as text, sound, and video into vector
embeddings can be traced back as far as to Ludwig Wittgenstein’s “language game.”
In the 2010s, the two successful approaches, Word2vec from Google Research and
GloVe from Stanford University,” pushed vector embeddings into the mainstream—
and, indirectly, brought about the new category of vector databases. Large Language
Models (LLMs) like OpenAI’'s GPT models can also generate vector embeddings.

Here is a list of use cases for vector databases:

Recommendations
Similarity search can be used inside recommendation engines, for example, of
online shops to find products similar to what the user was looking for. Similarity
search can even be multimodal (e.g., textual similarity and graphic similarity).

Fraud detection
Here, similarity search is used to flag, for example, fraudulent transactions.

Chatbots/generative Al
Vector databases are useful, for example, for intent classification, retrieval-
augmented generation (RAG), etc.

Like graph databases, vector databases are most commonly used for operational
applications and are thus firmly attached to the operational plane. Our question
is now, looking back at Figure 11-1, how are vector databases moving in onto the
overlap of the operational plane and the streaming plane?

Implementing streaming ingestion into vector databases gets increasingly more com-
mon, for example, using Kafka Connect for vector databases like Pinecone and Mil-
vus. But there are other touchpoints of vector databases and streaming. Milvus 2.x,
for instance, was a complete architectural redesign from Milvus 1.x, even including
a streaming platform under the covers. On the other hand, a number of RTOLAP
databases, such as ClickHouse and Rockset, are increasingly adding support for
vector search.

Milvus 2.x: Streaming as the Central Backbone

Compared to its first, rather monolithic, “single-binary” versions, Milvus 2.x is a
complete architectural redesign build with horizontal scalability and cloud readiness

1 Ludwig Wittgenstein, Philosophical Investigations, Translated by G. E. M. Anscombe. New York: MacMillan,
1958 (1953).

2 Tomas Mikolov et al., “Efficient Estimation of Word Representations in Vector Space,” 2013. Jeffrey Penning-
ton et al., “GloVe: Global Vectors for Word Representation,” 2014.
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in mind. A very interesting aspect of the new architecture is the addition of a “mes-
sage storage” or “log broker” responsible for streaming data persistence, execution of
reliable asynchronous queries, event notification, and return of query results. It also
ensures integrity of the incremental data when the worker nodes recover from system
breakdown. Milvus goes as far as to follow the “log as data” principle: it does not
maintain a physical table but guarantees data reliability through logging persistence
and snapshot logs (Figure 11-3).
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Figure 11-3. Milvus 2.x architecture with streaming (“message storage”) as the central
backbone

Milvus 2.x also boasts unified batch and stream processing by implementing a
lambda architecture integrating the processing of incremental and historical data.
To break unbounded (stream) data down into bounded windows, Milvus embraces a
new watermark mechanism, which slices the stream data into multiple message packs
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according to write time or event time, and maintains a timeline for users to query by
time.

Taken together, Milvus 2.x shows in an exciting way how even the design of newer
databases can make deep inroads into the streaming plane. In the Milvus 2.x archi-
tecture, streaming/pub-sub is the backbone of the entire system, guaranteeing the
scalability and resilience of the vector database. It will be exciting to see other vector
databases follow suit in the near future.

RTOLAP Databases: Adding Vector Search

An increasing number of database vendors are adding vector search functionalities
to their existing database products. Examples include MongoDB, Elastic, and Single-
Store. This trend is also followed by RTOLAP databases, such as ClickHouse and
Rockset.

ClickHouse

ClickHouse uses an array column type (Array<Float32>) to model vector embed-
dings and provides functions to compute the distance between a search vector and
column values, such as cosineDistance and L2Distance. ClickHouse also offers
specially optimized ANN search algorithms such as Annoy indexes.

Contrary to specialized vector databases, ClickHouse and other RTOLAP databases
allow the combination of vector search with additional metadata filtering or aggrega-
tions on metadata. An example use case would be to perform vector search on images
that are noncopyrighted—combining vector search with filtering based on copyright
metadata.

We display an example ClickHouse SQL query combining vector search and meta-
data filtering in Example 11-7.

Example 11-7. Combining vector search and metadata filtering in ClickHouse

SELECT
url,
caption,
L2Distance(image_embedding, [<embedding>]) AS score
FROM laion_100m
WHERE (width >= 300) AND (height >= 500) AND (copyright = '') AND similarity > 0.3
ORDER BY score ASC
LIMIT 10
FORMAT Vertical

As you can see, ClickHouse allows seamless combination of metadata filtering (here,
the width and height of the images searched plus the copyright metadata) with vector
search (using L2Distance).
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Rockset

Rockset is another RTOLAP database offering support for vector search, including
simpler KNN (K-nearest neighbors) and ANN search. In Rockset, an ANN index can
be set up as in Example 11-8.

Example 11-8. Setting up an ANN index in Rockset

CREATE SIMILARITY INDEX book_catalog_embeddings_ann_index
ON FIELD commons.book_dataset:book_embedding DIMENSION 1536 as 'faiss::IVF256,Flat’;

Here we are creating an index named book_catalog_embeddings_ann_index. We
specify the dimension of the input vectors along with the type of index to create (in
this case, an IVF [inverted file] index from Faiss).

Querying Rockset using this index looks as depicted in Example 11-9.

Example 11-9. Using vector search for querying in Rockset

SELECT
book_dataset.title,
book_dataset.author
FROM
book_dataset ds
JOIN book_metadata m ON ds.isbn = m.isbn
WHERE
m.publish_date > DATE(2010, 12, 26)
and m.rating >= 4
and m.price < 50
ORDER BY
APPROX_DOT_PRODUCT( : target_embedding, ds.book_embedding) DESC
LIMIT
30

The interesting part here is in the ORDER BY clause, where the similarity search is used
to order the results of the query based on the similarity of their content.

Incremental View Maintenance

IVM is a way to keep materialized views in a relational database up-to-date in an
incremental way, where changes are continuously computed and applied on views
instead of recomputing the contents of the views from scratch. IVM can update
materialized views more efficiently than recomputation since only small parts of the
view are changed at one time.

There are two approaches with regard to timing of view maintenance: immediate
and deferred. In immediate maintenance, views are updated in the same transaction
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that its base table is modified. In deferred maintenance, views are updated after the
transaction is committed, for example, as a response to an explicit user command like
REFRESH MATERIALIZED VIEW, or periodically in the background, or only when the
view is accessed.

IVM, in its immediate maintenance form, is another road crossing the operational
and the streaming plane. In the last couple of years, a number of solutions have come
into existence in this domain, for example, pg_1ivm (a plug-in for PostgreSQL), Hydra,
PeerDB, Epsio, and, to a certain extent, also Feldera/DBSP.

pg_ivm

pg_ivm adds immediately maintained materialized views to PostgreSQL. Materialized
views are updated immediately in AFTER triggers when a base table is modified. An
example is provided in Example 11-10.

Example 11-10. Create immediately maintained materialized view in PostgreSQL with
pg_ivm

SELECT create_immv('myview', 'SELECT * FROM mytab');

pg_ivm has the advantage of being perfectly integrated with the underlying data-
base—so no additional, externalized system needs to be set up and maintained.

On the other hand, the close coupling of pg_1ivm with the operational database (Post-
greSQL) also means that it has to share the resources (compute, memory) with the
database itself. Because incremental materialized view maintenance can be expensive,
it might be more sensible to externalize it into a separate system. For use cases
where a columnar table format might be more useful, the row-based table setup of
PostgreSQL might, in addition, cause performance issues.

Hydra

Hydra supports traditional materialized views using both row and columnar tables,
as well as incremental materialized views powered by pg_ivm. Example 11-11 shows
how to set up both row-based and columnar materialized views in Hydra.

Example 11-11. Create immediately maintained materialized view in PostgreSQL with
pg_ivm

CREATE TABLE heap_table (...) USING heap;
CREATE TABLE columnar_table (...) USING columnar;

The additional flexibility of Hydra means that it can serve both use cases requiring
a row-based table structure and those requiring columnar storage. It’s also possible
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to create an externalized table in PostgreSQL and sync back to Hydra in a way
mimicking zero-ETL.

Epsio

Epsio is a tool for incremental materialized view maintenance that plugs into existing
PostgreSQL databases and constantly and incrementally updates results for queries
whenever the underlying data changes. With its incremental mode of operation,
Epsio never has to recalculate the entire dataset—allowing it to provide instant and
always up-to-date results for complex queries. Epsio supports a large subset of SQL
syntax, including most types of JOINs, CTEs, subqueries, GROUP BY, etc.

How does Epsio work in practice? In Example 11-12, we define a simple Epsio
materialized view.

Example 11-12. Define a materialized view in Epsio

CALL epsio.create_view('epsio_view',
"SELECT SUM(SALARY), d.name FROM employee_salaries e
JOIN deplartments d on e.department_id = d.id
GROUP BY d.name');

In Example 11-13, you can see how querying the materialized view works (exactly as
it does directly in a PostgreSQL database).

Example 11-13. Query a materialized view in Epsio
SELECT * FROM epsio_view;

The advantages of using a separate system, such as Epsio, instead of querying Post-
greSQL directly are manifold:

o The materialized views in Epsio are constantly incrementally updated without
having to recalculate the entire dataset.

o The performance of the source database is not impacted by its own materialized
view maintenance or continuous queries.

Feldera

Feldera is a “Continuous Analytics Platform” that allows users to run continuous
queries directly on streaming data. Essentially, it processes queries and produces
output continuously: whenever changes arrive, Feldera recomputes the query results
incrementally and only then sends the changed query results to its outputs.
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In a sense, it's a real-time ETL platform based on stream processing—driven by
the DBSP (Database Stream Processor) engine. In many ways, Feldera overlaps with
streaming databases, such as Materialize or RisingWave, but with an emphasis on
bringing data from sources to targets and without offering support for materialized
views. It can also be likened to a pure stream processing system, such as Flink,
but offers additional consistency guarantees such as, for example, Materialize (DBSP
is in many ways similar to the stream processing engine underlying Materialize,
Differential Dataflow).

Let’s see how Feldera works in practice. First, in Example 11-14, we declare some
input tables.

Example 11-14. Declare input tables in Feldera

create table VENDOR (
id bigint not null primary key,
name varchar,
address varchar

)s

create table PART (
id bigint not null primary key,
name varchar

);

create table PRICE (
part bigint not null,
vendor bigint not null,
price decimal

)

The declarations do not specify the concrete data sources. Records for the VENDOR,
PART, and PRICE tables could come from a Kafka stream, a database, or an HTTP
request. The “SQL program” can be instantiated with a data source (or even multiple
data sources) in the Feldera UI later.

In the second step, we can now write continuous queries on the input data. We show
this in Example 11-15.

Example 11-15. Write continuous queries in Feldera

-- Lowest available price for each part across all vendors.
create view LOW_PRICE (

part,

price
) as

select part, MIN(price) as price from PRICE group by part;
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-- Lowest available price for each part along with part and vendor details.

create view PREFERRED_VENDOR (

part_id,

part_name,

vendor_1id,

vendor_name,

price

) as

select
PART.id as part_id,
PART.name as part_name,
VENDOR.1d as vendor_1id,
VENDOR.name as vendor_name,
PRICE.price

from
PRICE,
PART,
VENDOR,
LOW_PRICE

where
PRICE.price = LOW_PRICE.price AND
PRICE.part = LOW_PRICE.part AND
PART.id = PRICE.part AND
VENDOR.id = PRICE.vendor;

In Feldera, queries are written as SQL views, which can be defined in terms of tables
and other views. In Example 11-15, the PREFERRED_VENDOR view is defined in terms
of the LOW_PRICE view. This flexibility enables Feldera to express, for example, deeply

nested queries.

PeerDB

PeerDB is an open source tool for streaming data from PostgreSQL to data ware-
houses (Snowflake, BigQuery), queues (Azure Event Hubs), and storage engines (S3,
GCS). Like Feldera, PeerDB does not offer materialized view maintenance directly,
but you can achieve a similar effect by synchronizing PostgreSQL databases in real
time with, for example, Snowflake, where the “materialized view” then resides in

Snowflake.

PeerDB has four modes of replication:

» Log-based
o Cursor-based (timestamp or integer)
o XMIN-based

« Streaming query

Incremental View Maintenance
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In the log-, cursor-, and XMIN-based modes, PeerDB picks up table changes from
PostgreSQL (the “source peer”) tables and brings them to the “target peer” Contrary
to similar CDC tools, PeerDB claims to be much more performant (10x faster).
PeerDB also supports “streaming query” replication for more complex replication
requirements. In this mode, you can do complex transformations of the source peer
data before sending it over to the target peer.

Let’s look at an example of how PeerDB works. The first step is to create a source and
a target peer (Example 11-16).

Example 11-16. Create source peer and target peer in PeerDB

CREATE PEER source FROM POSTGRES WITH
(

host = 'catalog',

port = '5432',

user = 'postgres',
password = 'postgres',
database = 'source'

);

CREATE PEER target FROM POSTGRES WITH
(

host = 'catalog',

port = '5432",

user = 'postgres',
password = 'postgres',
database = 'target'

);

In Example 11-17, we then kick off log-based CDC by creating a “mirror”

Example 11-17. Set up log-based CDC in PeerDB

CREATE MIRROR cdc_mirror FROM source TO target
WITH TABLE MAPPING (public.test:public.test);

This “mirror” now takes care of replicating all DML commands (INSERT, UPDATE,
DELETE) from the source to the target and makes use of a table mapping.

Setting up a streaming query is a bit more involved (Example 11-18).
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Example 11-18. Set up a streaming query in PeerDB

CREATE MIRROR grep_mirror FROM source TO target
FOR $$
SELECT id, hashint4(c1) hash_c1, hashint4(c2) hash_c2, md5(t) AS hash_t
FROM test WHERE id BETWEEN {{.start}} AND {{.end}}
$$S WITH (
watermark_table_name='public.test',
watermark_column="'1d",
num_rows_per_partition = 10000,
destination_table_name='public.test_transformed',
mode="append’

)

This streaming query masks the columns c1, c2, and t by hashing them prior to
sending them to the target.

Data Wrapping and Postgres Multicorn

In Chapter 7, we talked about PostgreSQLs rise to ubiquity, which we attributed to
several factors, like its open source nature, developer community, and extensibility,
like pg_ivm. In addition, a key factor in PostgreSQLs ubiquity is its exceptional
extensibility. This refers to its ability to be customized and expanded beyond its core
functionality, which includes features like these:

FDWs
Allow seamless integration with external data sources, making it a central hub for
diverse data.

Multicorn extension
Simplifies building custom FDWs in Python, further lowering the barrier to
entry for data integration. These features, combined with a strong community
fostering extension development, empower users to tailor PostgreSQL to their
specific needs, making it a valuable tool for many use cases.

PostgreSQL FDWs allow you to access data residing outside PostgreSQL itself, as
if it were a regular table within your database. FDWs empower you to combine
data from various sources, like other databases, files, APIs, streaming platforms, and
columnar-based databases, all using familiar SQL queries.

Multicorn is a Postgres extension used to create custom FDWs using Python. It
provides a user-friendly framework, abstracting away the complex low-level details of
FDW implementation. With Multicorn, you can focus on the specific logic required
to interact with the external data source, leaving the communication with Postgres
to the framework. Together, FDWs and Multicorn unlock flexible data integration
and streamlined development for working with diverse data sources within your
PostgreSQL environment.
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Here’s a breakdown of how to implement real-time analytics using PostgreSQL, the
Multicorn extension, and an OLAP database:

1.

Set up PostgreSQL and Multicorn:

a.

a.

a.

Install PostgreSQL. Ensure you have PostgreSQL installed and running on
your system. You can find installation instructions on the official PostgreSQL
website.

Enable Multicorn extension. Once PostgreSQL is set up, enable the Multicorn
extension using the following command:

CREATE EXTENSION IF NOT EXISTS multicorn;

. Implement a data ingestion pipeline:

Establish a connection. Create a connection between your application and the
PostgreSQL database using an appropriate library like psycopg2 for Python or
pg for Node.js.

. Capture data in real time. Implement logic in your application to capture data

in real time. This could involve:

i. Streaming data. Use libraries/frameworks that support real-time data
ingestion from various sources like Apache Kafka or message queues like
RabbitMQ.

ii. WebSockets/Server-Sent Events (SSEs). Establish real-time connections
with clients and receive data updates through WebSockets or SSEs.

iii. API calls. If data originates from external APIs, make periodic API calls to

retrieve and update the database.

. Queue, process and store data:

Queue data. Consider using temporary tables or queues within the Post-
greSQL database to buffer incoming data before processing.

. Process in-memory. For faster processing of real-time data, explore in-

memory databases or techniques like materialized views within PostgreSQL.
However, this might not be suitable for large datasets.

Transform and store data. Within your application or using triggers in Post-
greSQL, transform the received data into the desired format and store it
in appropriate tables. This might involve dimension tables for storing static
attributes and fact tables for storing measures/metrics.

Connect to an OLAP database:

a.

Choose an OLAP solution. Select an OLAP database like Apache Druid,
Apache Kylin, or ClickHouse that aligns with your specific needs and data
volume.
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b. Establish a connection. Use the provided libraries/connectors from your
chosen OLAP solution to connect to the database from your application.

c. Periodic data transfer. Set up scheduled tasks or use triggers within Post-
greSQL to periodically transfer the processed data from your PostgreSQL
database to the OLAP database. This ensures the OLAP database remains
updated with the latest data for efficient analytical queries.

Be sure to consider the following as well:

Error handling and logging
Implement proper error handling mechanisms to ensure data consistency and
data quality throughout the pipeline.

Monitoring and scaling
Monitor the performance of your system and OLAP database as the data volume
increases. Consider scaling your infrastructure as needed to handle the real-time
data flow.

Security
Secure your data pipeline by implementing authentication, authorization, and
encryption mechanisms where necessary.

Remember, this is a general guideline, and the specific implementation details will
vary based on your chosen tools, technologies, and the specific requirements of your
real-time analytics use case.

Classical Databases

The recurring topic of this chapter—and the whole book—is the ongoing conver-
gence of streaming and databases, or, in other words, the unification of data in
motion with data at rest. One of the most recent indicators for this convergence is
a new feature called Atlas Stream Processing from MongoDB, an already “classical”
NoSQL database. Atlas Stream Processing extends MongoDB with stream processing
capabilities such that MongoDB is getting close to becoming a streaming database
itself. In our Venn diagram (Figure 11-1), the location of this convergence is the over-
lap of the operational with the streaming plane—which is exactly where streaming
databases such as Materialize and RisingWave fit in.

Atlas Stream Processing adds stream processing functionalities to MongoDB that
can read from streaming platforms like Kafka and also write back the processed
data to a streaming platform. In addition, Atlas Stream Processing allows the use of
MongoDB collections as materialized views of the processed data. We display a rough
architectural diagram in Figure 11-4.
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Figure 11-4. MongoDB Atlas Stream Processing architecture

By being embedded in MongoDB, Atlas Stream Processing allows for a seamless
integration of using data in motion (through stream processing) and data at rest
(using MongoDB collections as before). The similarity of messages (typically in JSON
format) and MongoDB documents (also in a JSON-like format) makes for an even
more seamless integration—much more compared to when streaming is integrated
with a relational model, as in the SQL-based streaming databases introduced in
Chapter 5. However, Atlas Stream Processing is still in its early stages, as can be seen
from the feature matrix available on the MongoDB homepage. JOINs of any sort,
for example, aren’t yet supported. It remains to be seen how it can encroach upon
the stream processing market with established solutions like Flink, and how it can
become a direct competitor to streaming databases like Materialize and RisingWave.

Let’s see a few glimpses of Atlas Stream Processing in practice. The JavaScript code
using the MongoDB Query API shown in Example 11-19 exemplifies how to query a
Kafka topic and bring the results into a MongoDB collection.

Example 11-19. Querying a Kafka topic and sinking the result into a MongoDB
collection using Atlas Stream Processing

// define a source from the connection registry
var source = { S$source: {

connectionName: 'kafkaprod',
topic: 'stocks'
11

// create some other stages
var match = { $match: { 'exchange':'NYSE'} }

// create a sink
var sink = { Smerge: {
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into: {

connectionName: 'mongoprod',
db: 'StockDB',

col: 'TransactionHistory'

11

// try it!
var myProcessor = [source, match, sink]
sp.process(myProcessor)

Here, the source stage connects to the Kafka topic stocks, the match stage matches
only those Kafka messages whose exchange field matches with the string NYSE, and
the sink stage brings the matched messages to a materialized view, aka MongoDB
collection called TransactionHistory. The last line, beginning with sp.process,
actually starts the stream processor.

Another example shows how to use Atlas Stream Processing for windowed aggrega-
tions (Example 11-20).

Example 11-20. Executing a windowed aggregation in Atlas Stream Processing

// define a tumbling window
{
StumblingWindow: {
interval: {
size: NumberInt(60), unit: 'second'},
pipeline: [{
Sgroup: {
_id: 'Sip_source',
count_connection_reset: { $sum: 1 }
}
1
}
1,

// output has projections for convenience
{
_id: '127.0.0.1",
count_connection_reset: 60,
_stream_meta: {
sourceType: 'kafka',
windowStartTimestamp: 2023-05-18T17:07:00.000Z,
windowEndTimestamp: 2023-05-18T17:08:00.000Z
}
}
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In the code snippet in Example 11-20, we first define a tumbling window of 60
seconds and use it to count the messages of a Kafka topic.

Data Warehouses

Streaming is making large inroads not only into the database but also into the data
warehouse space. In this section, we look into three of the major players: BigQuery,
Redshift, and Snowflake—located in the overlapping section between the analytical
and the streaming plane in our Venn diagram (Figure 11-1).

BigQuery

Google’s BigQuery also supports streaming ingestion through its SDK. Similar to
Redshift, this enables BigQuery to also cover near-real-time analytics use cases where
low latency is of paramount importance. Data coming into BigQuery through stream-
ing ingestion is available for real-time analysis within a few seconds of the first
streaming insertion into a table.

Contrary to Redshift, streaming ingestion in BigQuery is not implemented via SQL,
but via an SDK for Java and Python. In Example 11-21, we show Python code
inserting table data in this fashion.

Example 11-21. Streaming ingestion (inserting rows) into BigQuery using its
Python SDK

def stream_data(dataset_name, table_name, json_data):
bigquery_client = bigquery.Client()
dataset = bigquery_client.dataset(dataset_name)
table = dataset.table(table_name)
data = json.loads(json_data)

# Reload the table to get the schema.
table.reload()

rows = [data]
errors = table.insert_data(rows)

if not errors:

print('Loaded 1 row into {}:{}'.format(dataset_name, table_name))
else:

print('Errors:")

pprint(errors)

Google Cloud Platform (GCP) also features integrations of BigQuery with its prod-
uct, Cloud Dataflow, based on Apache Beam. Data can be written to BigQuery using
Cloud Dataflow, and data from BigQuery can be sinked out to Cloud Dataflow as
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well. In addition, Google has recently announced Apache Kafka for BigQuery to easily
deploy Apache Kafka in conjunction with BigQuery in a serverless fashion.

Redshift

Redshift supports streaming ingestion for low-latency ingestion of streaming data
from Kinesis or Kafka (Amazon Managed Service for Apache Kafka, or MSK) into
materialized views. The materialized views can be configured using SQL statements
and make up the landing area for the data coming from the input stream. The data
is processed as it arrives—for example, JSON values from the Kinesis data streams or
Kafka topics can be consumed and mapped to the data columns of the materialized
views.

This feature even enables Redshift to cover near-real-time analytics use cases where
data that's continuously streamed must be processed within a short period of its
generation. Example sources are Internet of Things (IoT) devices, system telemetry
data, or clickstreams. Compared to sourcing data only indirectly from a streaming
platform by using Kinesis Data Firehose to stage it in S3 first, direct streaming
ingestion results in less complexity and lower latency.

Here is how streaming ingestion in Redshift works in practice. The crucial part is
to set up a materialized view to consume data from, for example, a Kafka topic as
displayed in Example 11-22.

Example 11-22. Creating a materialized view to consume data from a Kafka topic in

Redshift

CREATE MATERIALIZED VIEW MyView AUTO REFRESH YES AS
SELECT
kafka_partition,
kafka_offset,
kafka_timestamp_type,
kafka_timestamp,
kafka_key,
JSON_PARSE (kafka_value) as Data,
kafka_headers
FROM
MySchema. "mytopic"
WHERE
CAN_JSON_PARSE(kafka_value);

Materialized views and streaming ingestion in Redshift can be likened to materialized
views in streaming databases, such as Materialize and RisingWave, especially when
using AUTO REFRESH instead of MANUAL REFRESH. However, as the underlying architec-
ture of Redshift is not streaming based, this still is not strictly the same—contrary
to streaming databases, the refresh is still done periodically, not continuously, which
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drives up the latency of Redshift compared to a streaming database, which works fully
incrementally.

Snowflake

Snowflake has invested a lot into building features around streaming recently. As a
result, Snowflake now provides the following streaming-based capabilities:

Continuous data loading
This is about streaming ingestion, similar to Redshift and BigQuery. For that,
Snowflake provides Snowpipe Streaming and the Snowflake Connector for Katka
Connect.

Continuous data transformation
Snowflake has introduced a feature called dynamic tables for declaratively imple-
menting automated data pipelines that simplify data ingestion coupled with
processing.

Change data tracking
This is a feature implementing CDC for normal Snowflake tables and also
dynamic tables.

Let’s first look a bit deeper into Snowpipe Streaming for streaming ingestion. Similar
to BigQuery, Snowflake provides an SDK (for Java) to do that. Hence, to implement
streaming ingestion, the user needs to come up with a Java application. In Exam-
ple 11-23, we show a simplified example of how this looks in practice.

Example 11-23. Streaming ingestion (inserting rows) into Snowflake using its Java-based
SDK

[package, imports]

public class SnowflakeStreamingIngestExample {
[setup]
// Insert rows into the channel (Using insertRows API)
final int totalRowsInTable = 1000;
for (int val = 0; val < totalRowsInTable; val++) {
Map<String, Object> row = new HashMap<>();

// c1 corresponds to the column name in table
row.put("c1", val);

// Insert the row with the current offset_token
InsertValidationResponse response = channell.insertRow(row, String.valueOf(val));
if (response.hasErrors()) {

// Simply throw if there is an exception, or you can do whatever you want

// with the erroneous row

throw response.getInsertErrors().get(0).getException();
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}
}

// If needed, you can check the offset_token registered in Snowflake to
// make sure everything is committed

final int expectedOffsetTokenInSnowflake = totalRowsInTable - 1;

// O based offset_token

final int maxRetries = 10;

int retryCount = 0;

do {
String offsetTokenFromSnowflake = channell.getlLatestCommittedOffsetToken();
if (offsetTokenFromSnowflake != null
&& offsetTokenFromSnowflake.equals(String.valueOf
(expectedOffsetTokenInSnowflake))) {
System.out.println("SUCCESSFULLY inserted " + totalRowsInTable + " rows");
break;

}
retryCount++;
} while (retryCount < maxRetries);

[close]
}
}
}

Snowflake has introduced dynamic tables for declaratively building data ingestion
pipelines with SQL. Dynamic tables are similar in many ways to the materialized
views of Redshift’s streaming ingestion, and to materialized views in streaming data-
bases such as Materialize and RisingWave. Again, as for Redshift the underlying
architecture is batch- and not streaming-based. Hence, even the automatic refresh of
dynamic tables is still done periodically and not strictly continuously, as in streaming
databases, resulting in far higher latency.

Lakehouse

There’s an enormously quickly growing trend of streaming engines and stream pro-
cessing systems offering more seamless support for data lakes/lakehouses. Streaming
engines like Confluent, Redpanda, and WarpStream are moving toward offering
streaming data from their “cold” object storage layer directly, using open table
formats like Apache Iceberg. Open Source Kafka is moving there too, and Apache
Paimon, an offspring of Apache Flink, is bringing Flink-based stream processing
to the data lake, aka “Streamhouse” Confluent has already started offering Iceberg
support directly in its proprietary Confluent Cloud/Kora streaming platform and
coined the term multimodal stream to describe their ability to offer data in both
streaming and table format. With this feature, Tableflow, Flink can also be used to
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access both streaming and table/batch data. Data on Delta Lake, another open table
format, can also be processed using stream processing (Spark Structured Streaming).

In this section, we further explore this form of convergence of the analytical plane
and the streaming plane (see our Venn diagram in Figure 11-1) and close with a
discussion of the present and future relationship of streaming technologies and the
lakehouse.

Delta Lake

Like the other two most popular open table formats (Apache Iceberg and Apache
Hudi), Delta Lake is based on the columnar Parquet file format. In addition to
Parquet files, it offers a file-based transaction log for implementing ACID transac-
tions and scalable metadata handling. Since it's compatible with the Apache Spark
APIs (Spark and Delta Lake are both mainly developed by Databricks), Delta Lake
is also tightly integrated with Spark Structured Streaming for streaming and batch
processing of the data at large scale. Note that Spark Structured Streaming is using
microbatches under the hood, so strictly speaking, it’s not pure stream processing.

The open table format underlying Delta Lake is called Delta Table. In Delta Lake,
Delta Tables can serve both as sources and sinks—and in conjunction with Spark
Structured Streaming, it’s possible to implement stream processing on Delta Lake. In
Example 11-24, we display a simple example for how this looks.

Example 11-24. Using Delta Lake (Delta Tables) as a source using Spark Structured
Streaming

spark.readStream.format("delta")
.load("/tmp/delta/events")

import . . .
spark.readStream.delta("/tmp/delta/events")

In the example, the Delta table /tmp/delta/events is read as a stream using Spark
Structured Streaming. You could now add queries using arbitrary stream processing
logic, and the query would process all of the data present in the table as well as any
new data that arrives going forward.

Writing processed data back from Spark Structured Streaming to Delta Tables works
analogously (Example 11-25)

Example 11-25. Using Delta Lake (Delta Tables) as a sink using Spark Structured
Streaming.

events.writeStream
.outputMode("append")
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.option("checkpointLocation", "/tmp/delta/events/_checkpoints/")
.toTable("events")

Apache Paimon

Apache Paimon aims to be similar to Delta Lake, but instead of using microbatching
such as Delta Lake/Spark Structured Streaming, it’s built on “pure” stream processing
based on Apache Flink. The main vendor behind Paimon, Ververica, also refers to
Paimon as a Streamhouse (as opposed to a lakehouse) solution.

Contrary to Delta Lake, Iceberg, and Hudi, Paimon does not use Parquet as the
underlying columnar data format—instead, its files are based on its own format based
on an LSM (log-structured merge) tree structure. In addition to Flink, Paimon also
supports reading these files by other computation engines like Apache Hive, Apache
Spark, and Trino. Although Paimon is based on a streaming-first architecture, it also
supports a batch mode for reading and writing data.

In Example 11-26, we show how to create the Paimon tables customers and Orders,
where the latter is based on a source Kafka topic (we omitted the catalog setup for
brevity).

Example 11-26. Creating the tables customers and the temporary table Orders based
on a Kafka topic in Apache Paimon

CREATE TABLE customers (
id INT PRIMARY KEY NOT ENFORCED,
name STRING,
country STRING,
zip STRING
);

INSERT INTO customers ...

CREATE TEMPORARY TABLE Orders (
order_id INT,
total INT,
customer_id INT,
proc_time AS PROCTIME()

) WITH (
'connector' = 'kafka',
"topic' = '...',
'properties.bootstrap.servers' = '...",
'format' = 'csv'

);

Now this table can be queried, for example, with the lookup JOIN query in
Example 11-27.
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Example 11-27. Querying the table Orders using a lookup JOIN query in Apache
Paimon

SELECT o.order_id, o.total, c.country, c.zip
FROM Orders AS o

JOIN customers

FOR SYSTEM_TIME AS OF o.proc_time AS c

ON o.customer_id = c.id;

Apache Iceberg

Apache Iceberg is a very popular open table format, originally coming from Net-
flix, and supported by many vendors like Spark, Flink, Presto, Trino, Hive, Impala,
StarRocks, Doris and Pig, and Snowflake. Streaming platforms like Redpanda, Warp-
Stream, and open source Kafka also plan to include Iceberg/Parquet support to
directly access their cold data through the Iceberg APIs. Confluent Cloud/Kora has
already started to expose Kafka topics as Iceberg tables with Tableflow.

Streaming databases are also following this trend. RisingWave already supports Ice-
berg as a sink, as we exhibit in Example 11-28, where sink data is, for example,
upserted into an Iceberg table (RisingWave also supports an append-only mode).

Example 11-28. Sinking the table s1_table into an Apache Iceberg table in RisingWave

CREATE SINK s1_sink FROM s1_table
WITH (
connector = 'iceberg',
warehouse.path = 's3a://my-iceberg-bucket/path/to/warehouse,
s3.endpoint = 'https://s3.ap-southeast-1.amazonaws.com',
s3.access.key = '${ACCESS_KEY}',
s3.secret.key = '${SECRET_KEY},
database.name="'dev',
table.name="table',
primary_key="seq_id'

)s

As Iceberg is also supported by Spark Structured Streaming, in Example 11-29, we
provide an example where data is brought into an Iceberg table using Python and
Spark.

Example 11-29. Using Spark Structured Streaming to ingest data into an Apache Iceberg
table

df.writeStream \
.format("iceberg") \
.outputMode("append") \
.trigger(processingTime=WINDOW_SIZE) \
.option("path", table_id) \
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.option("fanout-enabled", "true") \
.option("checkpointLocation", checkpointPath) \
.start()

Iceberg tables can also be sources for Spark Structured Streaming (Example 11-30).

Example 11-30. Using Spark Structured Streaming to read data from an Apache Iceberg
table

spark.readStream \
.format("iceberg") \
.load(basePath) \
.start()

Apache Hudi

Apache Hudi is another popular open table format, originally developed at Uber.
Hudi also supports a number of query engines such as Apache Spark, Apache
Impala, Apache Hive, Presto, and Trino. Contrary to Iceberg, Hudi has a feature
called incremental query based on its support for record-level change streams, which
can be used to bring data from Hudi to, for example, Spark Structured Streaming
(Example 11-31).

Example 11-31. Using Spark Structured Streaming to read data from an Apache Hudi
table

spark.readStream \
.format("hudi") \
.load(basePath) \
.start()

Data from, for example, Spark Structured Streaming can also be brought into Hudji,
similar to the Iceberg example in Example 11-30. The Hudi example is shown in
Example 11-32.

Example 11-32. Using Spark Structured Streaming to write data to an Apache Hudi
table

df .writeStream
.format("hudi") \
.options(**hudi_streaming_options) \
.outputMode("append") \
.option("path", baseStreamingPath) \
.option("checkpointLocation", checkpointLocation) \
.trigger(once=True) \
.start()
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OneTable or XTable

OneTable or XTable is a new open table format built with the aim of making the
different open table formats interoperable. In that sense, it's a meta open table format.
Currently, OneTable or XTable supports Apache Iceberg, Apache Hudi, and Delta
Lake.

OneTable or XTable is especially useful for companies that use multiple open table
formats at the same time, such as Iceberg and Delta Lake—and yields an abstraction
layer that avoids copying the data back and forth between the different lakehouses.
As OneTable or XTable has been put out into the open source, support for Apache
Paimon’s table format could also be built.

The Relationship of Streaming and Lakehouses

Redpanda, WarpStream, and open source Kafka are paving the way for an increas-
ingly tight integration of streaming platforms, stream processing, and lakehouses
with their upcoming additions offering cold data from tiered storage layers (or, for
WarpStream, its only layer) directly using columnar table formats (e.g., Iceberg/
Parquet) and the “Streamhouse” idea from Apache Paimon.

As we write this book, the integration of lakehouses and streaming is still often
restricted to pure streaming ingestion. The tighter integration of streaming platforms
and open table formats on the near horizon is going to change this state of affairs
quite dramatically. One possible outcome is that a lot of data currently only stored in
the lakehouse could be moved over to the streaming platforms—avoiding additional
copying/ingestion from the streaming platform into the actual lakehouse. This would
also mean that the streaming platforms, instead of the lakehouses, would increasingly
become the “single source of truth” of the data. Or, technologies like Confluent’s
Tableflow could offer two APIs—one streaming and events, one batch and tables—to
access the same, nonduplicated data directly on the streaming platform.

In general, many SaaS data services are going the route of using cloud object stores
as lower-tier storage (or tiered storage). Using tiered storage helps enterprises offload
colder data, which saves storage costs. Many have extrapolated this idea by suggesting
using the cloud object store as the interface by which data can be served and stored—
and not the Saa$ interface itself. For example, if your SaaS provides a database and it
offloads data to the object store for cheap cold storage, why can't it just read that data
directly from said object store? Likewise, your SaaS database should be able to read
from the cloud object store. Why not then use the data I already have in the cloud
object store to be served by your Saa$S database?

What would all that mean for the technology this book is mainly about—streaming
databases? We see this as a big opportunity for them to grow. If streaming platforms
like Katka grow more and more into the role of becoming the single source of truth,
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the data processing pipelines so far only executed on the lakehouse could also move
toward the streaming platforms. And, especially for operational applications where
low end-to-end latency is of paramount concern—but actually for all use cases where
huge amounts of data have to be processed—stream processing systems and stream-
ing databases that are “streaming-native” can yield far better performance and also
enormous cost savings compared to systems like data warehouses (e.g., Snowflake) or
lakehouses (e.g., Databricks) that are built on a batch-based architecture.

Conclusion

We've come a long way in this book. You learned how streaming technologies were
influenced by features already implemented in databases. You learned that by turning
the database inside out, we were able to scale the individual parts beyond the capacity
of a single database. Most of all, you learned that bringing these technologies back
into the database (in other words, bringing database technologies outside in) helped
consolidate infrastructure and simplify the interface for engineers without losing the
scalability we learned from decomposing the database.

We have seen a plethora of indications for the ongoing convergence of streaming and
batch (databases/data lakes/lakehouses), starting with the increasingly overlapping
operational and streaming planes. Not only do more and more vendors supporting
graph and vector databases offer features for more direct integration with streaming
platforms, but a number of vendors are also providing support for incremental mate-
rialized view maintenance. Established database vendors like MongoDB are even, in
part, evolving into full-fledged streaming databases.

Even more interesting is the ongoing convergence of the analytical plane with the
streaming plane. Here, data warehouse solutions such as BigQuery, Redshift, and
Snowflake are offering more and more interesting features to directly support stream-
ing. The most interesting convergence at the moment, however, is that of streaming
and lakehouses. Here, we have observed strong pushes from both sides, from stream-
ing into the lakehouse and also vice versa, to seamlessly combine streaming with
lakehouse architectures, leading to new concepts like multimodal streams, driven by
open table formats like Apache Iceberg. We have observed that this confluence could
also be a big driver for the adoption of purely streaming-based stream processing
solutions and, of course, streaming databases.

At the time of writing this book, we are just at the beginning. We're looking forward
to finding out how this story of the convergence of the operational, analytical, and
streaming planes will actually unfold.
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