

Think Bayes
SECOND EDITION

Bayesian Statistics in Python

Allen B. Downey

Think Bayes
by Allen B. Downey

Copyright © 2021 Allen B. Downey. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Jessica Haberman

Development Editor: Michele Cronin

Production Editor: Kristen Brown

Copyeditor: O’Reilly Production Services

Proofreader: Stephanie English

Indexer: Sue Klefstad

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Allen B. Downey

September 2013: First Edition

May 2021: Second Edition

http://oreilly.com/

Revision History for the Second Edition

2021-05-18: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492089469 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Think
Bayes, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

Think Bayes is available under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. The author
maintains an online version at https://greenteapress.com/wp/think-bayes.

978-1-492-08946-9

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492089469
https://greenteapress.com/wp/think-bayes

Preface

The premise of this book, and the other books in the Think X series, is that
if you know how to program, you can use that skill to learn other topics.

Most books on Bayesian statistics use math notation and present ideas using
mathematical concepts like calculus. This book uses Python code and
discrete approximations instead of continuous mathematics. As a result,
what would be an integral in a math book becomes a summation, and most
operations on probability distributions are loops or array operations.

I think this presentation is easier to understand, at least for people with
programming skills. It is also more general, because when we make
modeling decisions, we can choose the most appropriate model without
worrying too much about whether the model lends itself to mathematical
analysis.

Also, it provides a smooth path from simple examples to real-world
problems.

Who Is This Book For?
To start this book, you should be comfortable with Python. If you are
familiar with NumPy and pandas, that will help, but I’ll explain what you
need as we go. You don’t need to know calculus or linear algebra. You don’t
need any prior knowledge of statistics.

In Chapter 1, I define probability and introduce conditional probability,
which is the foundation of Bayes’s theorem. Chapter 3 introduces the
probability distribution, which is the foundation of Bayesian statistics.

In later chapters, we use a variety of discrete and continuous distributions,
including the binomial, exponential, Poisson, beta, gamma, and normal
distributions. I will explain each distribution when it is introduced, and we
will use SciPy to compute them, so you don’t need to know about their
mathematical properties.

Modeling
Most chapters in this book are motivated by a real-world problem, so they
involve some degree of modeling. Before we can apply Bayesian methods
(or any other analysis), we have to make decisions about which parts of the
real-world system to include in the model and which details we can abstract
away.

For example, in Chapter 8, the motivating problem is to predict the winner
of a soccer (football) game. I model goal-scoring as a Poisson process,
which implies that a goal is equally likely at any point in the game. That is
not exactly true, but it is probably a good enough model for most purposes.

I think it is important to include modeling as an explicit part of problem
solving because it reminds us to think about modeling errors (that is, errors
due to simplifications and assumptions of the model).

Many of the methods in this book are based on discrete distributions, which
makes some people worry about numerical errors. But for real-world
problems, numerical errors are almost always smaller than modeling errors.

Furthermore, the discrete approach often allows better modeling decisions,
and I would rather have an approximate solution to a good model than an
exact solution to a bad model.

Working with the Code
Reading this book will only get you so far; to really understand it, you have
to work with the code. The original form of this book is a series of Jupyter
notebooks. After you read each chapter, I encourage you to run the
notebook and work on the exercises. If you need help, my solutions are
available.

There are several ways to run the notebooks:

If you have Python and Jupyter installed, you can download the
notebooks and run them on your computer.

If you don’t have a programming environment where you can run
Jupyter notebooks, you can use Colab, which lets you run Jupyter
notebooks in a browser without installing anything.

To run the notebooks on Colab, start from this landing page, which has
links to all of the notebooks.

If you already have Python and Jupyter, you can download the notebooks as
a ZIP file.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does

https://oreil.ly/downey_thinkbayes
https://oreil.ly/downeyBayesNotebooks
https://oreil.ly/downeyBayesNotebooks

require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “Think
Bayes, Second Edition, by Allen B. Downey (O’Reilly). Copyright 2021
Allen B. Downey, 978-1-492-08946-9.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact O’Reilly Media at
permissions@oreilly.com.

Installing Jupyter
If you don’t have Python and Jupyter already, I recommend you install
Anaconda, which is a free Python distribution that includes all the packages
you’ll need. I found Anaconda easy to install. By default it installs files in
your home directory, so you don’t need administrator privileges. You can
download Anaconda from this site.

Anaconda includes most of the packages you need to run the code in this
book. But there are a few additional packages you need to install.

To make sure you have everything you need (and the right versions), the
best option is to create a Conda environment. Download this Conda
environment file and run the following commands to create and activate an
environment called ThinkBayes2:

conda env create -f environment.yml

conda activate ThinkBayes2

If you don’t want to create an environment just for this book, you can install
what you need using Conda. The following commands should get
everything you need:

mailto:permissions@oreilly.com
https://www.anaconda.com/products/individual
https://oreil.ly/AHjzl
https://oreil.ly/AHjzl

conda install python jupyter pandas scipy matplotlib

pip install empiricaldist

If you don’t want to use Anaconda, you will need the following packages:

Jupyter to run the notebooks, https://jupyter.org;

NumPy for basic numerical computation, https://numpy.org;

SciPy for scientific computation, https://scipy.org;

pandas for working with data, https://pandas.pydata.org;

matplotlib for visualization, https://matplotlib.org;

empiricaldist for representing distributions,
https://pypi.org/project/empiricaldist.

Although these are commonly used packages, they are not included with all
Python installations, and they can be hard to install in some environments.
If you have trouble installing them, I recommend using Anaconda or one of
the other Python distributions that include these packages.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates URLs, email addresses, filenames, and file extensions.

Bold

Indicates new and key terms.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

https://jupyter.org/
https://numpy.org/
https://scipy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://pypi.org/project/empiricaldist

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at

http://oreilly.com/
http://oreilly.com/

https://oreil.ly/thinkBayes2e.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Contributor List
If you have a suggestion or correction, please send email to
downey@allendowney.com. If I make a change based on your feedback, I
will add you to the contributor list (unless you ask to be omitted).

If you include at least part of the sentence the error appears in, that makes it
easy for me to search. Page and section numbers are fine, too, but not as
easy to work with. Thanks!

First, I have to acknowledge David MacKay’s excellent book,
Information Theory, Inference, and Learning Algorithms, which is
where I first came to understand Bayesian methods. With his
permission, I use several problems from his book as examples.

Several examples and exercises in the second edition are borrowed,
with permission, from Cameron Davidson-Pilon and one exercise
from Rasmus Bååth.

This book also benefited from my interactions with Sanjoy
Mahajan, especially in Fall 2012, when I audited his class on
Bayesian Inference at Olin College.

Many examples in this book were developed in collaboration with
students in my Bayesian Statistics classes at Olin College. In

https://oreil.ly/thinkBayes2e
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

particular, the Red Line example started as a class project by
Brendan Ritter and Kai Austin.

I wrote parts of this book during project nights with the Boston
Python User Group, so I would like to thank them for their
company and pizza.

Jasmine Kwityn and Dan Fauxsmith at O’Reilly Media proofread
the first edition and found many opportunities for improvement.

Linda Pescatore found a typo and made some helpful suggestions.

Tomasz Miasko sent many excellent corrections and suggestions.

For the second edition, I want to thank Michele Cronin and Kristen
Brown at O’Reilly Media and the technical reviewers Ravin
Kumar, Thomas Nield, Josh Starmer, and Junpeng Lao.

I am grateful to the developers and contributors of the software
libraries this book is based on, especially Jupyter, NumPy, SciPy,
pandas, PyMC, ArviZ, and Matplotlib.

Other people who spotted typos and errors include Greg Marra, Matt
Aasted, Marcus Ogren, Tom Pollard, Paul A. Giannaros, Jonathan Edwards,
George Purkins, Robert Marcus, Ram Limbu, James Lawry, Ben Kahle,
Jeffrey Law, Alvaro Sanchez, Olivier Yiptong, Yuriy Pasichnyk, Kristopher
Overholt, Max Hailperin, Markus Dobler, Brad Minch, Allen Minch,
Nathan Yee, Michael Mera, Chris Krenn, and Daniel Vianna.

Chapter 1. Probability

The foundation of Bayesian statistics is Bayes’s theorem, and the
foundation of Bayes’s theorem is conditional probability.

In this chapter, we’ll start with conditional probability, derive Bayes’s
theorem, and demonstrate it using a real dataset. In the next chapter, we’ll
use Bayes’s theorem to solve problems related to conditional probability. In
the chapters that follow, we’ll make the transition from Bayes’s theorem to
Bayesian statistics, and I’ll explain the difference.

Linda the Banker
To introduce conditional probability, I’ll use an example from a famous
experiment by Tversky and Kahneman, who posed the following question:

Linda is 31 years old, single, outspoken, and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in anti-nuclear
demonstrations. Which is more probable?

1. Linda is a bank teller.

2. Linda is a bank teller and is active in the feminist movement.

Many people choose the second answer, presumably because it seems more
consistent with the description. It seems uncharacteristic if Linda is just a
bank teller; it seems more consistent if she is also a feminist.

But the second answer cannot be “more probable”, as the question asks.
Suppose we find 1,000 people who fit Linda’s description and 10 of them
work as bank tellers. How many of them are also feminists? At most, all 10
of them are; in that case, the two options are equally probable. If fewer than

https://oreil.ly/iggYX
https://oreil.ly/iggYX

10 are, the second option is less probable. But there is no way the second
option can be more probable.

If you were inclined to choose the second option, you are in good company.
The biologist Stephen J. Gould wrote:

I am particularly fond of this example because I know that the [second]
statement is least probable, yet a little homunculus in my head continues
to jump up and down, shouting at me, “but she can’t just be a bank teller;
read the description.”

If the little person in your head is still unhappy, maybe this chapter will
help.

Probability
At this point I should provide a definition of “probability”, but that turns
out to be surprisingly difficult. To avoid getting stuck before we start, we
will use a simple definition for now and refine it later: A probability is a
fraction of a finite set.

For example, if we survey 1,000 people, and 20 of them are bank tellers, the
fraction that work as bank tellers is 0.02 or 2%. If we choose a person from
this population at random, the probability that they are a bank teller is 2%.
By “at random” I mean that every person in the dataset has the same chance
of being chosen.

With this definition and an appropriate dataset, we can compute
probabilities by counting. To demonstrate, I’ll use data from the General
Social Survey (GSS).

I’ll use pandas to read the data and store it in a DataFrame.

import pandas as pd

gss = pd.read_csv('gss_bayes.csv', index_col=0)

gss.head()

https://oreil.ly/VKSq8
https://oreil.ly/OGUSt
https://oreil.ly/bPMVj
https://oreil.ly/bPMVj
http://gss.norc.org/
http://gss.norc.org/

year age sex polviews

caseid

1 1974 21.0 1 4.0

2 1974 41.0 1 5.0

5 1974 58.0 2 6.0

6 1974 30.0 1 5.0

7 1974 48.0 1 5.0

The DataFrame has one row for each person surveyed and one column for
each variable I selected.

The columns are

caseid: Respondent id (which is the index of the table).

year: Year when the respondent was surveyed.

age: Respondent’s age when surveyed.

sex: Male or female.

polviews: Political views on a range from liberal to conservative.

partyid: Political party affiliation: Democratic, Republican, or
independent.

indus10: Code for the industry the respondent works in.

Let’s look at these variables in more detail, starting with indus10.

Fraction of Bankers
The code for “Banking and related activities” is 6870, so we can select
bankers like this:

banker = (gss['indus10'] == 6870)

banker.head()

caseid

1 False

2 False

5 False

6 True

7 False

Name: indus10, dtype: bool

The result is a pandas Series that contains the Boolean values True and
False.

If we use the sum function on this Series, it treats True as 1 and False as
0, so the total is the number of bankers:

banker.sum()

728

In this dataset, there are 728 bankers.

To compute the fraction of bankers, we can use the mean function, which
computes the fraction of True values in the Series:

banker.mean()

0.014769730168391155

About 1.5% of the respondents work in banking, so if we choose a random
person from the dataset, the probability they are a banker is about 1.5%.

The Probability Function
I’ll put the code from the previous section in a function that takes a Boolean
Series and returns a probability:

def prob(A):

 """Computes the probability of a proposition, A."""

 return A.mean()

So we can compute the fraction of bankers like this:

prob(banker)

0.014769730168391155

Now let’s look at another variable in this dataset. The values of the column
sex are encoded like this:

1 Male

2 Female

So we can make a Boolean Series that is True for female respondents and
False otherwise:

female = (gss['sex'] == 2)

And use it to compute the fraction of respondents who are women:

prob(female)

0.5378575776019476

The fraction of women in this dataset is higher than in the adult US
population because the GSS doesn’t include people living in institutions
like prisons and military housing, and those populations are more likely to
be male.

Political Views and Parties
The other variables we’ll consider are polviews, which describes the
political views of the respondents, and partyid, which describes their

https://gss.norc.org/faq

affiliation with a political party.

The values of polviews are on a seven-point scale:

1 Extremely liberal

2 Liberal

3 Slightly liberal

4 Moderate

5 Slightly conservative

6 Conservative

7 Extremely conservative

I’ll define liberal to be True for anyone whose response is “Extremely
liberal”, “Liberal”, or “Slightly liberal”:

liberal = (gss['polviews'] <= 3)

Here’s the fraction of respondents who are liberal by this definition:

prob(liberal)

0.27374721038750255

If we choose a random person in this dataset, the probability they are liberal
is about 27%.

The values of partyid are encoded like this:

0 Strong democrat

1 Not strong democrat

2 Independent, near democrat

3 Independent

4 Independent, near republican

5 Not strong republican

6 Strong republican

7 Other party

I’ll define democrat to include respondents who chose “Strong democrat”
or “Not strong democrat”:

democrat = (gss['partyid'] <= 1)

And here’s the fraction of respondents who are Democrats, by this
definition:

prob(democrat)

0.3662609048488537

Conjunction
Now that we have a definition of probability and a function that computes
it, let’s move on to conjunction.

“Conjunction” is another name for the logical and operation. If you have
two propositions, A and B, the conjunction A and B is True if both A and B
are True, and False otherwise.

If we have two Boolean Series, we can use the & operator to compute their
conjunction. For example, we have already computed the probability that a
respondent is a banker:

prob(banker)

0.014769730168391155

And the probability that they are a Democrat:

prob(democrat)

0.3662609048488537

Now we can compute the probability that a respondent is a banker and a
Democrat:

prob(banker & democrat)

https://oreil.ly/LPFCW

0.004686548995739501

As we should expect, prob(banker & democrat) is less than
prob(banker), because not all bankers are Democrats.

We expect conjunction to be commutative; that is, A & B should be the
same as B & A. To check, we can also compute prob(democrat &
banker):

prob(democrat & banker)

0.004686548995739501

As expected, they are the same.

Conditional Probability
Conditional probability is a probability that depends on a condition, but that
might not be the most helpful definition. Here are some examples:

What is the probability that a respondent is a Democrat, given that
they are liberal?

What is the probability that a respondent is female, given that they
are a banker?

What is the probability that a respondent is liberal, given that they
are female?

Let’s start with the first one, which we can interpret like this: “Of all the
respondents who are liberal, what fraction are Democrats?”

We can compute this probability in two steps:

1. Select all respondents who are liberal.

2. Compute the fraction of the selected respondents who are
Democrats.

To select liberal respondents, we can use the bracket operator, [], like this:

selected = democrat[liberal]

selected contains the values of democrat for liberal respondents, so
prob(selected) is the fraction of liberals who are Democrats:

prob(selected)

0.5206403320240125

A little more than half of liberals are Democrats. If that result is lower than
you expected, keep in mind:

1. We used a somewhat strict definition of “Democrat”, excluding
independents who “lean” Democratic.

2. The dataset includes respondents as far back as 1974; in the early
part of this interval, there was less alignment between political
views and party affiliation, compared to the present.

Let’s try the second example, “What is the probability that a respondent is
female, given that they are a banker?” We can interpret that to mean, “Of all
respondents who are bankers, what fraction are female?”

Again, we’ll use the bracket operator to select only the bankers and prob to
compute the fraction that are female:

selected = female[banker]

prob(selected)

0.7706043956043956

About 77% of the bankers in this dataset are female.

Let’s wrap this computation in a function. I’ll define conditional to take
two Boolean Series, proposition and given, and compute the
conditional probability of proposition conditioned on given:

def conditional(proposition, given):

 return prob(proposition[given])

We can use conditional to compute the probability that a respondent is
liberal given that they are female:

conditional(liberal, given=female)

0.27581004111500884

About 28% of female respondents are liberal.

I included the keyword, given, along with the parameter, female, to make
this expression more readable.

Conditional Probability Is Not Commutative
We have seen that conjunction is commutative; that is, prob(A & B) is
always equal to prob(B & A).

But conditional probability is not commutative; that is, conditional(A,
B) is not the same as conditional(B, A).

That should be clear if we look at an example. Previously, we computed the
probability a respondent is female, given that they are a banker.

conditional(female, given=banker)

0.7706043956043956

The result shows that the majority of bankers are female. That is not the
same as the probability that a respondent is a banker, given that they are
female:

conditional(banker, given=female)

0.02116102749801969

Only about 2% of female respondents are bankers.

I hope this example makes it clear that conditional probability is not
commutative, and maybe it was already clear to you. Nevertheless, it is a
common error to confuse conditional(A, B) and conditional(B, A).
We’ll see some examples later.

Condition and Conjunction
We can combine conditional probability and conjunction. For example,
here’s the probability a respondent is female, given that they are a liberal
Democrat:

conditional(female, given=liberal & democrat)

0.576085409252669

About 57% of liberal Democrats are female.

And here’s the probability they are a liberal female, given that they are a
banker:

conditional(liberal & female, given=banker)

0.17307692307692307

About 17% of bankers are liberal women.

Laws of Probability
In the next few sections, we’ll derive three relationships between
conjunction and conditional probability:

Theorem 1: Using a conjunction to compute a conditional
probability.

Theorem 2: Using a conditional probability to compute a
conjunction.

Theorem 3: Using conditional(A, B) to compute
conditional(B, A).

Theorem 3 is also known as Bayes’s theorem.

I’ll write these theorems using mathematical notation for probability:

P(A) is the probability of proposition A.

P(A and B) is the probability of the conjunction of A and B,
that is, the probability that both are true.

P(A|B) is the conditional probability of A given that B is true.
The vertical line between A and B is pronounced “given”.

With that, we are ready for Theorem 1.

Theorem 1
What fraction of bankers are female? We have already seen one way to
compute the answer:

1. Use the bracket operator to select the bankers, then

2. Use mean to compute the fraction of bankers who are female.

We can write these steps like this:

female[banker].mean()

0.7706043956043956

Or we can use the conditional function, which does the same thing:

conditional(female, given=banker)

0.7706043956043956

But there is another way to compute this conditional probability, by
computing the ratio of two probabilities:

1. The fraction of respondents who are female bankers, and

2. The fraction of respondents who are bankers.

In other words: of all the bankers, what fraction are female bankers? Here’s
how we compute this ratio:

prob(female & banker) / prob(banker)

0.7706043956043956

The result is the same. This example demonstrates a general rule that relates
conditional probability and conjunction. Here’s what it looks like in math
notation:

P (A|B) =
P(A and B)

P(B)

And that’s Theorem 1.

Theorem 2
If we start with Theorem 1 and multiply both sides by P(B), we get
Theorem 2:

P(A and B) = P(B) P(A|B)

This formula suggests a second way to compute a conjunction: instead of
using the & operator, we can compute the product of two probabilities.

Let’s see if it works for liberal and democrat. Here’s the result using &:

prob(liberal & democrat)

0.1425238385067965

And here’s the result using Theorem 2:

prob(democrat) * conditional(liberal, democrat)

0.1425238385067965

They are the same.

Theorem 3
We have established that conjunction is commutative. In math notation, that
means:

P(A and B) = P(B and A)

If we apply Theorem 2 to both sides, we have:

P(B)P(A|B) = P(A)P(B|A)

Here’s one way to interpret that: if you want to check A and B, you can do
it in either order:

1. You can check B first, then A conditioned on B, or

2. You can check A first, then B conditioned on A.

If we divide through by P(B), we get Theorem 3:

P (A|B) =
P(A)P(B|A)

P(B)

And that, my friends, is Bayes’s theorem.

To see how it works, let’s compute the fraction of bankers who are liberal,
first using conditional:

conditional(liberal, given=banker)

0.2239010989010989

Now using Bayes’s theorem:

prob(liberal) * conditional(banker, liberal) / prob(banker)

0.2239010989010989

They are the same.

The Law of Total Probability
In addition to these three theorems, there’s one more thing we’ll need to do
Bayesian statistics: the law of total probability. Here’s one form of the law,
expressed in mathematical notation:

P (A) = P (B1 and A) + P (B2 and A)

In words, the total probability of A is the sum of two possibilities: either B1

and A are true or B2 and A are true. But this law applies only if B1 and B2

are:

Mutually exclusive, which means that only one of them can be
true, and

Collectively exhaustive, which means that one of them must be
true.

As an example, let’s use this law to compute the probability that a
respondent is a banker. We can compute it directly like this:

prob(banker)

0.014769730168391155

So let’s confirm that we get the same thing if we compute male and female
bankers separately.

In this dataset all respondents are designated male or female. Recently, the
GSS Board of Overseers announced that they will add more inclusive

gender questions to the survey (you can read more about this issue, and
their decision, at https://oreil.ly/onK2P).

We already have a Boolean Series that is True for female respondents.
Here’s the complementary Series for male respondents:

male = (gss['sex'] == 1)

Now we can compute the total probability of banker like this:

prob(male & banker) + prob(female & banker)

0.014769730168391155

Because male and female are mutually exclusive and collectively
exhaustive (MECE), we get the same result we got by computing the
probability of banker directly.

Applying Theorem 2, we can also write the law of total probability like this:

P (A) = P (B1)P (A|B1) + P (B2)P (A|B2)

And we can test it with the same example:

(prob(male) * conditional(banker, given=male) +

prob(female) * conditional(banker, given=female))

0.014769730168391153

When there are more than two conditions, it is more concise to write the
law of total probability as a summation:

P (A) = ∑
i

P (Bi)P (A|Bi)

Again, this holds as long as the conditions Bi are mutually exclusive and
collectively exhaustive. As an example, let’s consider polviews, which has
seven different values:

https://oreil.ly/onK2P

B = gss['polviews']

B.value_counts().sort_index()

1.0 1442

2.0 5808

3.0 6243

4.0 18943

5.0 7940

6.0 7319

7.0 1595

Name: polviews, dtype: int64

On this scale, 4.0 represents “Moderate”. So we can compute the
probability of a moderate banker like this:

i = 4

prob(B==i) * conditional(banker, B==i)

0.005822682085615744

And we can use sum and a generator expression to compute the summation:

sum(prob(B==i) * conditional(banker, B==i)

 for i in range(1, 8))

0.014769730168391157

The result is the same.

In this example, using the law of total probability is a lot more work than
computing the probability directly, but it will turn out to be useful, I
promise.

Summary
Here’s what we have so far:

Theorem 1 gives us a way to compute a conditional probability using a
conjunction:

()

https://oreil.ly/pSYq8

P (A|B) =
P(A and B)

P(B)

Theorem 2 gives us a way to compute a conjunction using a conditional
probability:

P(A and B) = P(B)P(A|B)

Theorem 3, also known as Bayes’s theorem, gives us a way to get from
P(A|B) to P(B|A), or the other way around:

P (A|B) =
P(A)P(B|A)

P(B)

The Law of Total Probability provides a way to compute probabilities by
adding up the pieces:

P (A) = ∑
i

P (Bi)P (A|Bi)

At this point you might ask, “So what?” If we have all of the data, we can
compute any probability we want, any conjunction, or any conditional
probability, just by counting. We don’t have to use these formulas.

And you are right, if we have all of the data. But often we don’t, and in that
case, these formulas can be pretty useful—especially Bayes’s theorem. In
the next chapter, we’ll see how.

Exercises
Example 1-1.

Let’s use the tools in this chapter to solve a variation of the Linda problem.

Linda is 31 years old, single, outspoken, and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in anti-nuclear
demonstrations. Which is more probable?

1. Linda is a banker.

2. Linda is a banker and considers herself a liberal Democrat.

To answer this question, compute

The probability that Linda is a female banker,

The probability that Linda is a liberal female banker, and

The probability that Linda is a liberal female banker and a
Democrat.

Example 1-2.

Use conditional to compute the following probabilities:

What is the probability that a respondent is liberal, given that they
are a Democrat?

What is the probability that a respondent is a Democrat, given that
they are liberal?

Think carefully about the order of the arguments you pass to conditional.

Example 1-3.

There’s a famous quote about young people, old people, liberals, and
conservatives that goes something like:

If you are not a liberal at 25, you have no heart. If you are not a
conservative at 35, you have no brain.

Whether you agree with this proposition or not, it suggests some
probabilities we can compute as an exercise. Rather than use the specific
ages 25 and 35, let’s define young and old as under 30 or over 65:

https://oreil.ly/Tuwq9

young = (gss['age'] < 30)

prob(young)

0.19435991073240008

old = (gss['age'] >= 65)

prob(old)

0.17328058429701765

For these thresholds, I chose round numbers near the 20th and 80th
percentiles. Depending on your age, you may or may not agree with these
definitions of “young” and “old”.

I’ll define conservative as someone whose political views are
“Conservative”, “Slightly Conservative”, or “Extremely Conservative”.
conservative = (gss['polviews'] >= 5)

prob(conservative)

0.3419354838709677

Use prob and conditional to compute the following probabilities:

What is the probability that a randomly chosen respondent is a
young liberal?

What is the probability that a young person is liberal?

What fraction of respondents are old conservatives?

What fraction of conservatives are old?

For each statement, think about whether it is expressing a conjunction, a
conditional probability, or both.

For the conditional probabilities, be careful about the order of the
arguments. If your answer to the last question is greater than 30%, you have
it backwards!

Chapter 2. Bayes’s Theorem

In the previous chapter, we derived Bayes’s theorem:

P (A|B) =
P(A)P(B|A)

P(B)

As an example, we used data from the General Social Survey and Bayes’s
theorem to compute conditional probabilities. But since we had the
complete dataset, we didn’t really need Bayes’s theorem. It was easy
enough to compute the left side of the equation directly, and no easier to
compute the right side.

But often we don’t have a complete dataset, and in that case Bayes’s
theorem is more useful. In this chapter, we’ll use it to solve several more
challenging problems related to conditional probability.

The Cookie Problem
We’ll start with a thinly disguised version of an urn problem:

Suppose there are two bowls of cookies.

Bowl 1 contains 30 vanilla cookies and 10 chocolate cookies.

Bowl 2 contains 20 vanilla cookies and 20 chocolate cookies.

Now suppose you choose one of the bowls at random and, without
looking, choose a cookie at random. If the cookie is vanilla, what is the
probability that it came from Bowl 1?

What we want is the conditional probability that we chose from Bowl 1
given that we got a vanilla cookie, P(B1|V).

But what we get from the statement of the problem is:

https://oreil.ly/9lfxX

The conditional probability of getting a vanilla cookie, given that
we chose from Bowl 1, P(V |B1) and

The conditional probability of getting a vanilla cookie, given that
we chose from Bowl 2, P(V |B2).

Bayes’s theorem tells us how they are related:

P (B1|V) =
P (B1) P (V |B1)

P(V)

The term on the left is what we want. The terms on the right are:

P(B1), the probability that we chose Bowl 1, unconditioned by
what kind of cookie we got. Since the problem says we chose a
bowl at random, we assume P(B1) = 1/2.

P(V |B1), the probability of getting a vanilla cookie from Bowl 1,
which is 3/4.

P(V), the probability of drawing a vanilla cookie from either
bowl.

To compute P(V), we can use the law of total probability:

P (V) = P (B1) P (V |B1) + P (B2) P (V |B2)

Plugging in the numbers from the statement of the problem, we have:

P(V) = (1/2) (3/4) + (1/2) (1/2) = 5/8

We can also compute this result directly, like this:

Since we had an equal chance of choosing either bowl and the
bowls contain the same number of cookies, we had the same
chance of choosing any cookie.

Between the two bowls there are 50 vanilla and 30 chocolate
cookies, so P(V) = 5/8.

Finally, we can apply Bayes’s theorem to compute the posterior probability
of Bowl 1:

P (B1|V) = (1/2) (3/4) / (5/8) = 3/5

This example demonstrates one use of Bayes’s theorem: it provides a way
to get from P(B|A) to P(A|B). This strategy is useful in cases like this
where it is easier to compute the terms on the right side than the term on the
left.

Diachronic Bayes
There is another way to think of Bayes’s theorem: it gives us a way to
update the probability of a hypothesis, H, given some body of data, D.

This interpretation is “diachronic”, which means “related to change over
time”; in this case, the probability of the hypotheses changes as we see new
data.

Rewriting Bayes’s theorem with H and D yields:

P (H|D) =
P(H) P(D|H)

P(D)

In this interpretation, each term has a name:

P(H) is the probability of the hypothesis before we see the data,
called the prior probability, or just prior.

P(H|D) is the probability of the hypothesis after we see the data,
called the posterior.

P(D|H) is the probability of the data under the hypothesis, called
the likelihood.

P(D) is the total probability of the data, under any hypothesis.

Sometimes we can compute the prior based on background information. For
example, the Cookie Problem specifies that we choose a bowl at random
with equal probability.

In other cases the prior is subjective; that is, reasonable people might
disagree, either because they use different background information or
because they interpret the same information differently.

The likelihood is usually the easiest part to compute. In the Cookie
Problem, we are given the number of cookies in each bowl, so we can
compute the probability of the data under each hypothesis.

Computing the total probability of the data can be tricky. It is supposed to
be the probability of seeing the data under any hypothesis at all, but it can
be hard to nail down what that means.

Most often we simplify things by specifying a set of hypotheses that are:

Mutually exclusive, which means that only one of them can be
true, and

Collectively exhaustive, which means one of them must be true.

When these conditions apply, we can compute P(D) using the law of total
probability. For example, with two hypotheses, H1 and H2:

P (D) = P (H1) P (D|H1) + P (H2) P (D|H2)

And more generally, with any number of hypotheses:

P (D) = ∑
i

P (Hi) P (D|Hi)

The process in this section, using data and a prior probability to compute a
posterior probability, is called a Bayesian update.

Bayes Tables
A convenient tool for doing a Bayesian update is a Bayes table. You can
write a Bayes table on paper or use a spreadsheet, but in this section I’ll use
a pandas DataFrame.

First I’ll make an empty DataFrame with one row for each hypothesis:

import pandas as pd

table = pd.DataFrame(index=['Bowl 1', 'Bowl 2'])

Now I’ll add a column to represent the priors:

table['prior'] = 1/2, 1/2

table

prior

Bowl 1 0.5

Bowl 2 0.5

And a column for the likelihoods:

table['likelihood'] = 3/4, 1/2

table

prior likelihood

Bowl 1 0.5 0.75

Bowl 2 0.5 0.50

Here we see a difference from the previous method: we compute
likelihoods for both hypotheses, not just Bowl 1:

The chance of getting a vanilla cookie from Bowl 1 is 3/4.

The chance of getting a vanilla cookie from Bowl 2 is 1/2.

You might notice that the likelihoods don’t add up to 1. That’s OK; each of
them is a probability conditioned on a different hypothesis. There’s no
reason they should add up to 1 and no problem if they don’t.

The next step is similar to what we did with Bayes’s theorem; we multiply
the priors by the likelihoods:

table['unnorm'] = table['prior'] * table['likelihood']

table

prior likelihood unnorm

Bowl 1 0.5 0.75 0.375

Bowl 2 0.5 0.50 0.250

I call the result unnorm because these values are the “unnormalized
posteriors”. Each of them is the product of a prior and a likelihood

P (Bi) P (D|Bi)

which is the numerator of Bayes’s theorem. If we add them up, we have

P (B1) P (D|B1) + P (B2) P (D|B2)

which is the denominator of Bayes’s theorem, P(D).

So we can compute the total probability of the data like this:

prob_data = table['unnorm'].sum()

prob_data

0.625

Notice that we get 5/8, which is what we got by computing P(D) directly.

And we can compute the posterior probabilities like this:

table['posterior'] = table['unnorm'] / prob_data

table

prior likelihood unnorm posterior

Bowl 1 0.5 0.75 0.375 0.6

Bowl 2 0.5 0.50 0.250 0.4

The posterior probability for Bowl 1 is 0.6, which is what we got using
Bayes’s theorem explicitly. As a bonus, we also get the posterior probability
of Bowl 2, which is 0.4.

When we add up the unnormalized posteriors and divide through, we force
the posteriors to add up to 1. This process is called “normalization”, which
is why the total probability of the data is also called the “normalizing
constant”.

The Dice Problem
A Bayes table can also solve problems with more than two hypotheses. For
example:

Suppose I have a box with a 6-sided die, an 8-sided die, and a 12-sided
die. I choose one of the dice at random, roll it, and report that the
outcome is a 1. What is the probability that I chose the 6-sided die?

In this example, there are three hypotheses with equal prior probabilities.
The data is my report that the outcome is a 1.

If I chose the 6-sided die, the probability of the data is 1/6. If I chose the 8-
sided die, the probability is 1/8, and if I chose the 12-sided die, it’s 1/12.

Here’s a Bayes table that uses integers to represent the hypotheses:

table2 = pd.DataFrame(index=[6, 8, 12])

I’ll use fractions to represent the prior probabilities and the likelihoods.
That way they don’t get rounded off to floating-point numbers.

from fractions import Fraction

table2['prior'] = Fraction(1, 3)

table2['likelihood'] = Fraction(1, 6), Fraction(1, 8), Fraction(1, 12)

table2

prior likelihood

6 1/3 1/6

8 1/3 1/8

12 1/3 1/12

Once you have priors and likelihoods, the remaining steps are always the
same, so I’ll put them in a function:

def update(table):

 """Compute the posterior probabilities."""

 table['unnorm'] = table['prior'] * table['likelihood']

 prob_data = table['unnorm'].sum()

 table['posterior'] = table['unnorm'] / prob_data

 return prob_data

And call it like this:

prob_data = update(table2)

Here is the final Bayes table:

table2

prior likelihood unnorm posterior

6 1/3 1/6 1/18 4/9

8 1/3 1/8 1/24 1/3

12 1/3 1/12 1/36 2/9

The posterior probability of the 6-sided die is 4/9, which is a little more
than the probabilities for the other dice, 3/9 and 2/9. Intuitively, the 6-sided

die is the most likely because it had the highest likelihood of producing the
outcome we saw.

The Monty Hall Problem
Next we’ll use a Bayes table to solve one of the most contentious problems
in probability.

The Monty Hall Problem is based on a game show called Let’s Make a
Deal. If you are a contestant on the show, here’s how the game works:

The host, Monty Hall, shows you three closed doors—numbered 1,
2, and 3—and tells you that there is a prize behind each door.

One prize is valuable (traditionally a car), the other two are less
valuable (traditionally goats).

The object of the game is to guess which door has the car. If you
guess right, you get to keep the car.

Suppose you pick Door 1. Before opening the door you chose, Monty opens
Door 3 and reveals a goat. Then Monty offers you the option to stick with
your original choice or switch to the remaining unopened door.

To maximize your chance of winning the car, should you stick with Door 1
or switch to Door 2?

To answer this question, we have to make some assumptions about the
behavior of the host:

1. Monty always opens a door and offers you the option to switch.

2. He never opens the door you picked or the door with the car.

3. If you choose the door with the car, he chooses one of the other
doors at random.

Under these assumptions, you are better off switching. If you stick, you win
1/3 of the time. If you switch, you win 2/3 of the time.

If you have not encountered this problem before, you might find that
answer surprising. You would not be alone; many people have the strong
intuition that it doesn’t matter if you stick or switch. There are two doors
left, they reason, so the chance that the car is behind Door A is 50%. But
that is wrong.

To see why, it can help to use a Bayes table. We start with three hypotheses:
the car might be behind Door 1, 2, or 3. According to the statement of the
problem, the prior probability for each door is 1/3.

table3 = pd.DataFrame(index=['Door 1', 'Door 2', 'Door 3'])

table3['prior'] = Fraction(1, 3)

table3

prior

Door 1 1/3

Door 2 1/3

Door 3 1/3

The data is that Monty opened Door 3 and revealed a goat. So let’s consider
the probability of the data under each hypothesis:

If the car is behind Door 1, Monty chooses Door 2 or 3 at random,
so the probability he opens Door 3 is 1/2.

If the car is behind Door 2, Monty has to open Door 3, so the
probability of the data under this hypothesis is 1.

If the car is behind Door 3, Monty does not open it, so the
probability of the data under this hypothesis is 0.

Here are the likelihoods:

table3['likelihood'] = Fraction(1, 2), 1, 0

table3

prior likelihood

Door 1 1/3 1/2

Door 2 1/3 1

Door 3 1/3 0

Now that we have priors and likelihoods, we can use update to compute
the posterior probabilities:

update(table3)

table3

prior likelihood unnorm posterior

Door 1 1/3 1/2 1/6 1/3

Door 2 1/3 1 1/3 2/3

Door 3 1/3 0 0 0

After Monty opens Door 3, the posterior probability of Door 1 is 1/3; the
posterior probability of Door 2 is 2/3. So you are better off switching from
Door 1 to Door 2.

As this example shows, our intuition for probability is not always reliable.
Bayes’s theorem can help by providing a divide-and-conquer strategy:

1. First, write down the hypotheses and the data.

2. Next, figure out the prior probabilities.

3. Finally, compute the likelihood of the data under each hypothesis.

The Bayes table does the rest.

Summary
In this chapter we solved the Cookie Problem using Bayes’s theorem
explicitly and using a Bayes table. There’s no real difference between these
methods, but the Bayes table can make it easier to compute the total
probability of the data, especially for problems with more than two
hypotheses.

Then we solved the Dice Problem, which we will see again in the next
chapter, and the Monty Hall Problem, which you might hope you never see
again.

If the Monty Hall Problem makes your head hurt, you are not alone. But I
think it demonstrates the power of Bayes’s theorem as a divide-and-conquer
strategy for solving tricky problems. And I hope it provides some insight
into why the answer is what it is.

When Monty opens a door, he provides information we can use to update
our belief about the location of the car. Part of the information is obvious. If
he opens Door 3, we know the car is not behind Door 3. But part of the
information is more subtle. Opening Door 3 is more likely if the car is
behind Door 2, and less likely if it is behind Door 1. So the data is evidence
in favor of Door 2. We will come back to this notion of evidence in future
chapters.

In the next chapter we’ll extend the Cookie Problem and the Dice Problem,
and take the next step from basic probability to Bayesian statistics.

But first, you might want to work on the exercises.

Exercises
Example 2-1.

Suppose you have two coins in a box. One is a normal coin with heads on
one side and tails on the other, and one is a trick coin with heads on both
sides. You choose a coin at random and see that one of the sides is heads.
What is the probability that you chose the trick coin?

Example 2-2.

Suppose you meet someone and learn that they have two children. You ask
if either child is a girl and they say yes. What is the probability that both
children are girls?

Hint: Start with four equally likely hypotheses.

Example 2-3.

There are many variations of the Monty Hall Problem. For example,
suppose Monty always chooses Door 2 if he can, and only chooses Door 3
if he has to (because the car is behind Door 2).

If you choose Door 1 and Monty opens Door 2, what is the probability the
car is behind Door 3?

If you choose Door 1 and Monty opens Door 3, what is the probability the
car is behind Door 2?

Example 2-4.

M&M’s are small candy-coated chocolates that come in a variety of colors.
Mars, Inc., which makes M&M’s, changes the mixture of colors from time
to time. In 1995, they introduced blue M&M’s.

In 1994, the color mix in a bag of plain M&M’s was 30% Brown,
20% Yellow, 20% Red, 10% Green, 10% Orange, 10% Tan.

In 1996, it was 24% Blue, 20% Green, 16% Orange, 14% Yellow,
13% Red, 13% Brown.

Suppose a friend of mine has two bags of M&M’s, and he tells me that one
is from 1994 and one from 1996. He won’t tell me which is which, but he
gives me one M&M from each bag. One is yellow and one is green. What is
the probability that the yellow one came from the 1994 bag?

Hint: The trick to this question is to define the hypotheses and the data
carefully.

https://oreil.ly/AgF9q

Chapter 3. Distributions

In the previous chapter we used Bayes’s theorem to solve a Cookie
Problem; then we solved it again using a Bayes table. In this chapter, at the
risk of testing your patience, we will solve it one more time using a Pmf
object, which represents a “probability mass function”. I’ll explain what
that means, and why it is useful for Bayesian statistics.

We’ll use Pmf objects to solve some more challenging problems and take
one more step toward Bayesian statistics. But we’ll start with distributions.

Distributions
In statistics a distribution is a set of possible outcomes and their
corresponding probabilities. For example, if you toss a coin, there are two
possible outcomes with approximately equal probability. If you roll a 6-
sided die, the set of possible outcomes is the numbers 1 to 6, and the
probability associated with each outcome is 1/6.

To represent distributions, we’ll use a library called empiricaldist. An
“empirical” distribution is based on data, as opposed to a theoretical
distribution. We’ll use this library throughout the book. I’ll introduce the
basic features in this chapter and we’ll see additional features later.

Probability Mass Functions
If the outcomes in a distribution are discrete, we can describe the
distribution with a probability mass function, or PMF, which is a function
that maps from each possible outcome to its probability.

empiricaldist provides a class called Pmf that represents a probability
mass function. To use Pmf you can import it like this:

from empiricaldist import Pmf

The following example makes a Pmf that represents the outcome of a coin
toss.

coin = Pmf()

coin['heads'] = 1/2

coin['tails'] = 1/2

coin

probs

heads 0.5

tails 0.5

Pmf creates an empty Pmf with no outcomes. Then we can add new
outcomes using the bracket operator. In this example, the two outcomes are
represented with strings, and they have the same probability, 0.5.

You can also make a Pmf from a sequence of possible outcomes.

The following example uses Pmf.from_seq to make a Pmf that represents a
6-sided die.

die = Pmf.from_seq([1,2,3,4,5,6])

die

probs

1 0.166667

2 0.166667

3 0.166667

4 0.166667

5 0.166667

6 0.166667

In this example, all outcomes in the sequence appear once, so they all have
the same probability, 1/6.

More generally, outcomes can appear more than once, as in the following
example:

letters = Pmf.from_seq(list('Mississippi'))

letters

probs

M 0.090909

i 0.363636

p 0.181818

s 0.363636

The letter M appears once out of 11 characters, so its probability is 1/11.
The letter i appears 4 times, so its probability is 4/11.

Since the letters in a string are not outcomes of a random process, I’ll use
the more general term “quantities” for the letters in the Pmf.

The Pmf class inherits from a pandas Series, so anything you can do with a
Series, you can also do with a Pmf.

For example, you can use the bracket operator to look up a quantity and get
the corresponding probability:

letters['s']

0.36363636363636365

In the word “Mississippi”, about 36% of the letters are “s”.

However, if you ask for the probability of a quantity that’s not in the
distribution, you get a KeyError.

You can also call a Pmf as if it were a function, with a letter in parentheses:

letters('s')

0.36363636363636365

If the quantity is in the distribution, the results are the same. But if it is not
in the distribution, the result is 0, not an error:

letters('t')

0

With parentheses, you can also provide a sequence of quantities and get a
sequence of probabilities:

die([1,4,7])

array([0.16666667, 0.16666667, 0.])

The quantities in a Pmf can be strings, numbers, or any other type that can
be stored in the index of a pandas Series. If you are familiar with pandas,
that will help you work with Pmf objects. But I will explain what you need
to know as we go along.

The Cookie Problem Revisited
In this section I’ll use a Pmf to solve the Cookie Problem from “The Cookie
Problem”. Here’s the statement of the problem again:

Suppose there are two bowls of cookies.

Bowl 1 contains 30 vanilla cookies and 10 chocolate cookies.

Bowl 2 contains 20 vanilla cookies and 20 chocolate cookies.

Now suppose you choose one of the bowls at random and, without
looking, choose a cookie at random. If the cookie is vanilla, what is the
probability that it came from Bowl 1?

Here’s a Pmf that represents the two hypotheses and their prior probabilities:

prior = Pmf.from_seq(['Bowl 1', 'Bowl 2'])

prior

probs

Bowl 1 0.5

Bowl 2 0.5

This distribution, which contains the prior probability for each hypothesis,
is called—wait for it—the prior distribution.

To update the distribution based on new data (the vanilla cookie), we
multiply the priors by the likelihoods. The likelihood of drawing a vanilla
cookie from Bowl 1 is 3/4 and the likelihood for Bowl 2 is 1/2.

likelihood_vanilla = [0.75, 0.5]

posterior = prior * likelihood_vanilla

posterior

probs

Bowl 1 0.375

Bowl 2 0.250

The result is the unnormalized posteriors; that is, they don’t add up to 1. To
make them add up to 1, we can use normalize, which is a method provided
by Pmf:

posterior.normalize()

0.625

The return value from normalize is the total probability of the data, which
is 5/8.

posterior, which contains the posterior probability for each hypothesis, is
called—wait now—the posterior distribution.

posterior

probs

Bowl 1 0.6

Bowl 2 0.4

From the posterior distribution we can select the posterior probability for
Bowl 1:

posterior('Bowl 1')

0.6

And the answer is 0.6.

One benefit of using Pmf objects is that it is easy to do successive updates
with more data. For example, suppose you put the first cookie back (so the
contents of the bowls don’t change) and draw again from the same bowl. If
the second cookie is also vanilla, we can do a second update like this:

posterior *= likelihood_vanilla

posterior.normalize()

posterior

probs

Bowl 1 0.692308

Bowl 2 0.307692

Now the posterior probability for Bowl 1 is almost 70%. But suppose we do
the same thing again and get a chocolate cookie.

Here are the likelihoods for the new data:

likelihood_chocolate = [0.25, 0.5]

And here’s the update:

posterior *= likelihood_chocolate

posterior.normalize()

posterior

probs

Bowl 1 0.529412

Bowl 2 0.470588

Now the posterior probability for Bowl 1 is about 53%. After two vanilla
cookies and one chocolate, the posterior probabilities are close to 50/50.

101 Bowls
Next let’s solve a Cookie Problem with 101 bowls:

Bowl 0 contains 0% vanilla cookies,

Bowl 1 contains 1% vanilla cookies,

Bowl 2 contains 2% vanilla cookies,

and so on, up to

Bowl 99 contains 99% vanilla cookies, and

Bowl 100 contains all vanilla cookies.

As in the previous version, there are only two kinds of cookies, vanilla and
chocolate. So Bowl 0 is all chocolate cookies, Bowl 1 is 99% chocolate,
and so on.

Suppose we choose a bowl at random, choose a cookie at random, and it
turns out to be vanilla. What is the probability that the cookie came from
Bowl x, for each value of x?

To solve this problem, I’ll use np.arange to make an array that represents
101 hypotheses, numbered from 0 to 100:

import numpy as np

hypos = np.arange(101)

We can use this array to make the prior distribution:

prior = Pmf(1, hypos)

prior.normalize()

101

As this example shows, we can initialize a Pmf with two parameters. The
first parameter is the prior probability; the second parameter is a sequence
of quantities.

In this example, the probabilities are all the same, so we only have to
provide one of them; it gets “broadcast” across the hypotheses. Since all
hypotheses have the same prior probability, this distribution is uniform.

Here are the first few hypotheses and their probabilities:

prior.head()

probs

0 0.009901

1 0.009901

2 0.009901

The likelihood of the data is the fraction of vanilla cookies in each bowl,
which we can calculate using hypos:

likelihood_vanilla = hypos/100

likelihood_vanilla[:5]

array([0. , 0.01, 0.02, 0.03, 0.04])

Now we can compute the posterior distribution in the usual way:

posterior1 = prior * likelihood_vanilla

posterior1.normalize()

posterior1.head()

probs

0 0.000000

1 0.000198

2 0.000396

The following figure shows the prior distribution and the posterior
distribution after one vanilla cookie:

The posterior probability of Bowl 0 is 0 because it contains no vanilla
cookies. The posterior probability of Bowl 100 is the highest because it
contains the most vanilla cookies. In between, the shape of the posterior
distribution is a line because the likelihoods are proportional to the bowl
numbers.

Now suppose we put the cookie back, draw again from the same bowl, and
get another vanilla cookie. Here’s the update after the second cookie:

posterior2 = posterior1 * likelihood_vanilla

posterior2.normalize()

And here’s what the posterior distribution looks like:

After two vanilla cookies, the high-numbered bowls have the highest
posterior probabilities because they contain the most vanilla cookies; the
low-numbered bowls have the lowest probabilities.

But suppose we draw again and get a chocolate cookie. Here’s the update:

likelihood_chocolate = 1 - hypos/100

posterior3 = posterior2 * likelihood_chocolate

posterior3.normalize()

And here’s the posterior distribution:

Now Bowl 100 has been eliminated because it contains no chocolate
cookies. But the high-numbered bowls are still more likely than the low-
numbered bowls, because we have seen more vanilla cookies than
chocolate.

In fact, the peak of the posterior distribution is at Bowl 67, which
corresponds to the fraction of vanilla cookies in the data we’ve observed,
2/3.

The quantity with the highest posterior probability is called the MAP,
which stands for “maximum a posteori probability”, where “a posteori” is
unnecessary Latin for “posterior”.

To compute the MAP, we can use the Series method idxmax:

posterior3.idxmax()

67

Or Pmf provides a more memorable name for the same thing:

posterior3.max_prob()

67

As you might suspect, this example isn’t really about bowls; it’s about
estimating proportions. Imagine that you have one bowl of cookies. You
don’t know what fraction of cookies are vanilla, but you think it is equally
likely to be any fraction from 0 to 1. If you draw three cookies and two are
vanilla, what proportion of cookies in the bowl do you think are vanilla?
The posterior distribution we just computed is the answer to that question.

We’ll come back to estimating proportions in the next chapter. But first let’s
use a Pmf to solve the Dice Problem.

The Dice Problem
In the previous chapter we solved the Dice Problem using a Bayes table.
Here’s the statement of the problem:

Suppose I have a box with a 6-sided die, an 8-sided die, and a 12-sided
die.

I choose one of the dice at random, roll it, and report that the outcome is
a 1.

What is the probability that I chose the 6-sided die?

Let’s solve it using a Pmf. I’ll use integers to represent the hypotheses:

hypos = [6, 8, 12]

We can make the prior distribution like this:

prior = Pmf(1/3, hypos)

prior

probs

6 0.333333

8 0.333333

12 0.333333

As in the previous example, the prior probability gets broadcast across the
hypotheses. The Pmf object has two attributes:

qs contains the quantities in the distribution;

ps contains the corresponding probabilities.

prior.qs

array([6, 8, 12])

prior.ps

array([0.33333333, 0.33333333, 0.33333333])

Now we’re ready to do the update. Here’s the likelihood of the data for each
hypothesis:

likelihood1 = 1/6, 1/8, 1/12

And here’s the update:

posterior = prior * likelihood1

posterior.normalize()

posterior

probs

6 0.444444

8 0.333333

12 0.222222

The posterior probability for the 6-sided die is 4/9.

Now suppose I roll the same die again and get a 7. Here are the likelihoods:

likelihood2 = 0, 1/8, 1/12

The likelihood for the 6-sided die is 0 because it is not possible to get a 7 on
a 6-sided die. The other two likelihoods are the same as in the previous
update.

Here’s the update:

posterior *= likelihood2

posterior.normalize()

posterior

probs

6 0.000000

8 0.692308

12 0.307692

After rolling a 1 and a 7, the posterior probability of the 8-sided die is about
69%.

Updating Dice
The following function is a more general version of the update in the
previous section:

def update_dice(pmf, data):

 """Update pmf based on new data."""

 hypos = pmf.qs

 likelihood = 1 / hypos

 impossible = (data > hypos)

 likelihood[impossible] = 0

 pmf *= likelihood

 pmf.normalize()

The first parameter is a Pmf that represents the possible dice and their
probabilities. The second parameter is the outcome of rolling a die.

The first line selects quantities from the Pmf that represent the hypotheses.
Since the hypotheses are integers, we can use them to compute the
likelihoods. In general, if there are n sides on the die, the probability of any
possible outcome is 1/n.

However, we have to check for impossible outcomes! If the outcome
exceeds the hypothetical number of sides on the die, the probability of that
outcome is 0.

impossible is a Boolean Series that is True for each impossible outcome.
I use it as an index into likelihood to set the corresponding probabilities
to 0.

Finally, I multiply pmf by the likelihoods and normalize.

Here’s how we can use this function to compute the updates in the previous
section. I start with a fresh copy of the prior distribution:

pmf = prior.copy()

pmf

probs

6 0.333333

8 0.333333

12 0.333333

And use update_dice to do the updates:

update_dice(pmf, 1)

update_dice(pmf, 7)

pmf

probs

6 0.000000

8 0.692308

12 0.307692

The result is the same. We will see a version of this function in the next
chapter.

Summary
This chapter introduces the empiricaldist module, which provides Pmf,
which we use to represent a set of hypotheses and their probabilities.

empiricaldist is based on pandas; the Pmf class inherits from the pandas
Series class and provides additional features specific to probability mass

functions. We’ll use Pmf and other classes from empiricaldist throughout
the book because they simplify the code and make it more readable. But we
could do the same things directly with pandas.

We use a Pmf to solve the Cookie Problem and the Dice Problem, which we
saw in the previous chapter. With a Pmf it is easy to perform sequential
updates with multiple pieces of data.

We also solved a more general version of the Cookie Problem, with 101
bowls rather than two. Then we computed the MAP, which is the quantity
with the highest posterior probability.

In the next chapter, I’ll introduce the Euro Problem, and we will use the
binomial distribution. And, at last, we will make the leap from using
Bayes’s theorem to doing Bayesian statistics.

But first you might want to work on the exercises.

Exercises
Example 3-1.

Suppose I have a box with a 6-sided die, an 8-sided die, and a 12-sided die.
I choose one of the dice at random, roll it four times, and get 1, 3, 5, and 7.
What is the probability that I chose the 8-sided die?

You can use the update_dice function or do the update yourself.

Example 3-2.

In the previous version of the Dice Problem, the prior probabilities are the
same because the box contains one of each die. But suppose the box
contains 1 die that is 4-sided, 2 dice that are 6-sided, 3 dice that are 8-sided,
4 dice that are 12-sided, and 5 dice that are 20-sided. I choose a die, roll it,
and get a 7. What is the probability that I chose an 8-sided die?

Hint: To make the prior distribution, call Pmf with two parameters.

Example 3-3.

Suppose I have two sock drawers. One contains equal numbers of black and
white socks. The other contains equal numbers of red, green, and blue
socks. Suppose I choose a drawer at random, choose two socks at random,
and I tell you that I got a matching pair. What is the probability that the
socks are white?

For simplicity, let’s assume that there are so many socks in both drawers
that removing one sock makes a negligible change to the proportions.

Example 3-4.

Here’s a problem from Bayesian Data Analysis:

Elvis Presley had a twin brother (who died at birth). What is the
probability that Elvis was an identical twin?

Hint: In 1935, about 2/3 of twins were fraternal and 1/3 were identical.

https://oreil.ly/kQyL4

Chapter 4. Estimating
Proportions

In the previous chapter we solved the 101 Bowls Problem, and I admitted
that it is not really about guessing which bowl the cookies came from; it is
about estimating proportions.

In this chapter, we take another step toward Bayesian statistics by solving
the Euro Problem. We’ll start with the same prior distribution, and we’ll see
that the update is the same, mathematically. But I will argue that it is a
different problem, philosophically, and use it to introduce two defining
elements of Bayesian statistics: choosing prior distributions, and using
probability to represent the unknown.

The Euro Problem
In Information Theory, Inference, and Learning Algorithms, David MacKay
poses this problem:

A statistical statement appeared in The Guardian on Friday January 4,
2002:

When spun on edge 250 times, a Belgian one-euro coin came up heads
140 times and tails 110. “It looks very suspicious to me,” said Barry
Blight, a statistics lecturer at the London School of Economics. “If the
coin were unbiased, the chance of getting a result as extreme as that
would be less than 7%.”

But do these data give evidence that the coin is biased rather than fair?

To answer that question, we’ll proceed in two steps. First we’ll use the
binomial distribution to see where that 7% came from; then we’ll use
Bayes’s theorem to estimate the probability that this coin comes up heads.

The Binomial Distribution
Suppose I tell you that a coin is “fair”, that is, the probability of heads is
50%. If you spin it twice, there are four outcomes: HH, HT, TH, and TT. All
four outcomes have the same probability, 25%.

If we add up the total number of heads, there are three possible results: 0, 1,
or 2. The probabilities of 0 and 2 are 25%, and the probability of 1 is 50%.

More generally, suppose the probability of heads is p and we spin the coin n
times. The probability that we get a total of k heads is given by the binomial
distribution:

(
n

k
)pk(1 − p)n−k

for any value of k from 0 to n, including both. The term (n

k
) is the binomial

coefficient, usually pronounced “n choose k”.

We could evaluate this expression ourselves, but we can also use the SciPy
function binom.pmf. For example, if we flip a coin n=2 times and the
probability of heads is p=0.5, here’s the probability of getting k=1 heads:

from scipy.stats import binom

n = 2

p = 0.5

k = 1

binom.pmf(k, n, p)

0.5

Instead of providing a single value for k, we can also call binom.pmf with
an array of values:

import numpy as np

ks = np.arange(n+1)

https://oreil.ly/JViRz
https://oreil.ly/JViRz
https://oreil.ly/tQxkO
https://oreil.ly/tQxkO

ps = binom.pmf(ks, n, p)

ps

array([0.25, 0.5 , 0.25])

The result is a NumPy array with the probability of 0, 1, or 2 heads. If we
put these probabilities in a Pmf, the result is the distribution of k for the
given values of n and p.

Here’s what it looks like:

from empiricaldist import Pmf

pmf_k = Pmf(ps, ks)

pmf_k

probs

0 0.25

1 0.50

2 0.25

The following function computes the binomial distribution for given values
of n and p and returns a Pmf that represents the result:

def make_binomial(n, p):

 """Make a binomial Pmf."""

 ks = np.arange(n+1)

 ps = binom.pmf(ks, n, p)

 return Pmf(ps, ks)

Here’s what it looks like with n=250 and p=0.5:

pmf_k = make_binomial(n=250, p=0.5)

The most likely quantity in this distribution is 125:

pmf_k.max_prob()

125

But even though it is the most likely quantity, the probability that we get
exactly 125 heads is only about 5%:

pmf_k[125]

0.05041221314731537

In MacKay’s example, we got 140 heads, which is even less likely than
125:

pmf_k[140]

0.008357181724917673

In the article MacKay quotes, the statistician says, “If the coin were
unbiased the chance of getting a result as extreme as that would be less than
7%.”

We can use the binomial distribution to check his math. The following
function takes a PMF and computes the total probability of quantities
greater than or equal to threshold:

def prob_ge(pmf, threshold):

 """Probability of quantities greater than threshold."""

 ge = (pmf.qs >= threshold)

 total = pmf[ge].sum()

 return total

Here’s the probability of getting 140 heads or more:

prob_ge(pmf_k, 140)

0.033210575620022706

Pmf provides a method that does the same computation:

pmf_k.prob_ge(140)

0.033210575620022706

The result is about 3.3%, which is less than the quoted 7%. The reason for
the difference is that the statistician includes all outcomes “as extreme as”
140, which includes outcomes less than or equal to 110.

To see where that comes from, recall that the expected number of heads is
125. If we get 140, we’ve exceeded that expectation by 15. And if we get
110, we have come up short by 15.

7% is the sum of both of these “tails”, as shown in the following figure:

Here’s how we compute the total probability of the left tail:

pmf_k.prob_le(110)

0.033210575620022706

The probability of outcomes less than or equal to 110 is also 3.3%, so the
total probability of outcomes “as extreme” as 140 is 6.6%.

The point of this calculation is that these extreme outcomes are unlikely if
the coin is fair.

That’s interesting, but it doesn’t answer MacKay’s question. Let’s see if we
can.

Bayesian Estimation
Any given coin has some probability of landing heads up when spun on
edge; I’ll call this probability x. It seems reasonable to believe that x
depends on physical characteristics of the coin, like the distribution of
weight. If a coin is perfectly balanced, we expect x to be close to 50%, but
for a lopsided coin, x might be substantially different. We can use Bayes’s
theorem and the observed data to estimate x.

For simplicity, I’ll start with a uniform prior, which assumes that all values
of x are equally likely. That might not be a reasonable assumption, so we’ll
come back and consider other priors later.

We can make a uniform prior like this:

hypos = np.linspace(0, 1, 101)

prior = Pmf(1, hypos)

hypos is an array of equally spaced values between 0 and 1.

We can use the hypotheses to compute the likelihoods, like this:

likelihood_heads = hypos

likelihood_tails = 1 - hypos

I’ll put the likelihoods for heads and tails in a dictionary to make it easier to
do the update:

likelihood = {

 'H': likelihood_heads,

 'T': likelihood_tails

}

To represent the data, I’ll construct a string with H repeated 140 times and T
repeated 110 times:

dataset = 'H' * 140 + 'T' * 110

The following function does the update:

def update_euro(pmf, dataset):

 """Update pmf with a given sequence of H and T."""

 for data in dataset:

 pmf *= likelihood[data]

 pmf.normalize()

The first argument is a Pmf that represents the prior. The second argument is
a sequence of strings. Each time through the loop, we multiply pmf by the
likelihood of one outcome, H for heads or T for tails.

Notice that normalize is outside the loop, so the posterior distribution only
gets normalized once, at the end. That’s more efficient than normalizing it
after each spin (although we’ll see later that it can also cause problems with
floating-point arithmetic).

Here’s how we use update_euro:

posterior = prior.copy()

update_euro(posterior, dataset)

And here’s what the posterior looks like:

This figure shows the posterior distribution of x, which is the proportion of
heads for the coin we observed.

The posterior distribution represents our beliefs about x after seeing the
data. It indicates that values less than 0.4 and greater than 0.7 are unlikely;
values between 0.5 and 0.6 are the most likely.

In fact, the most likely value for x is 0.56, which is the proportion of heads
in the dataset, 140/250.

posterior.max_prob()

0.56

Triangle Prior
So far we’ve been using a uniform prior:

uniform = Pmf(1, hypos, name='uniform')

uniform.normalize()

But that might not be a reasonable choice based on what we know about
coins. I can believe that if a coin is lopsided, x might deviate substantially

from 0.5, but it seems unlikely that the Belgian Euro coin is so imbalanced
that x is 0.1 or 0.9.

It might be more reasonable to choose a prior that gives higher probability
to values of x near 0.5 and lower probability to extreme values.

As an example, let’s try a triangle-shaped prior. Here’s the code that
constructs it:

ramp_up = np.arange(50)

ramp_down = np.arange(50, -1, -1)

a = np.append(ramp_up, ramp_down)

triangle = Pmf(a, hypos, name='triangle')

triangle.normalize()

2500

arange returns a NumPy array, so we can use np.append to append
ramp_down to the end of ramp_up. Then we use a and hypos to make a Pmf.

The following figure shows the result, along with the uniform prior:

Now we can update both priors with the same data:

update_euro(uniform, dataset)

update_euro(triangle, dataset)

Here are the posteriors:

The differences between the posterior distributions are barely visible, and
so small they would hardly matter in practice.

And that’s good news. To see why, imagine two people who disagree
angrily about which prior is better, uniform or triangle. Each of them has
reasons for their preference, but neither of them can persuade the other to
change their mind.

But suppose they agree to use the data to update their beliefs. When they
compare their posterior distributions, they find that there is almost nothing
left to argue about.

This is an example of swamping the priors: with enough data, people who
start with different priors will tend to converge on the same posterior
distribution.

The Binomial Likelihood Function
So far we’ve been computing the updates one spin at a time, so for the Euro
Problem we have to do 250 updates.

A more efficient alternative is to compute the likelihood of the entire dataset
at once. For each hypothetical value of x, we have to compute the
probability of getting 140 heads out of 250 spins.

Well, we know how to do that; this is the question the binomial distribution
answers. If the probability of heads is p, the probability of k heads in n
spins is:

(
n

k
)pk(1 − p)n−k

And we can use SciPy to compute it. The following function takes a Pmf
that represents a prior distribution and a tuple of integers that represent the
data:

from scipy.stats import binom

def update_binomial(pmf, data):

 """Update pmf using the binomial distribution."""

 k, n = data

 xs = pmf.qs

 likelihood = binom.pmf(k, n, xs)

 pmf *= likelihood

 pmf.normalize()

The data are represented with a tuple of values for k and n, rather than a
long string of outcomes. Here’s the update:

uniform2 = Pmf(1, hypos, name='uniform2')

data = 140, 250

update_binomial(uniform2, data)

We can use allclose to confirm that the result is the same as in the
previous section except for a small floating-point round-off.

np.allclose(uniform, uniform2)

True

But this way of doing the computation is much more efficient.

Bayesian Statistics
You might have noticed similarities between the Euro Problem and the 101
Bowls Problem in “101 Bowls”. The prior distributions are the same, the
likelihoods are the same, and with the same data, the results would be the
same. But there are two differences.

The first is the choice of the prior. With 101 bowls, the uniform prior is
implied by the statement of the problem, which says that we choose one of
the bowls at random with equal probability.

In the Euro Problem, the choice of the prior is subjective; that is, reasonable
people could disagree, maybe because they have different information about
coins or because they interpret the same information differently.

Because the priors are subjective, the posteriors are subjective, too. And
some people find that problematic.

The other difference is the nature of what we are estimating. In the 101
Bowls Problem, we choose the bowl randomly, so it is uncontroversial to
compute the probability of choosing each bowl. In the Euro Problem, the
proportion of heads is a physical property of a given coin. Under some
interpretations of probability, that’s a problem because physical properties
are not considered random.

As an example, consider the age of the universe. Currently, our best
estimate is 13.80 billion years, but it might be off by 0.02 billion years in
either direction.

Now suppose we would like to know the probability that the age of the
universe is actually greater than 13.81 billion years. Under some
interpretations of probability, we would not be able to answer that question.
We would be required to say something like, “The age of the universe is not
a random quantity, so it has no probability of exceeding a particular value.”

Under the Bayesian interpretation of probability, it is meaningful and useful
to treat physical quantities as if they were random and compute
probabilities about them.

https://oreil.ly/nzBbe
https://oreil.ly/nzBbe

In the Euro Problem, the prior distribution represents what we believe about
coins in general and the posterior distribution represents what we believe
about a particular coin after seeing the data. So we can use the posterior
distribution to compute probabilities about the coin and its proportion of
heads.

The subjectivity of the prior and the interpretation of the posterior are key
differences between using Bayes’s theorem and doing Bayesian statistics.

Bayes’s theorem is a mathematical law of probability; no reasonable person
objects to it. But Bayesian statistics is surprisingly controversial.
Historically, many people have been bothered by its subjectivity and its use
of probability for things that are not random.

If you are interested in this history, I recommend Sharon Bertsch
McGrayne’s book, The Theory That Would Not Die.

Summary
In this chapter I posed David MacKay’s Euro Problem and we started to
solve it. Given the data, we computed the posterior distribution for x, the
probability a Euro coin comes up heads.

We tried two different priors, updated them with the same data, and found
that the posteriors were nearly the same. This is good news, because it
suggests that if two people start with different beliefs and see the same data,
their beliefs tend to converge.

This chapter introduces the binomial distribution, which we used to
compute the posterior distribution more efficiently. And I discussed the
differences between applying Bayes’s theorem, as in the 101 Bowls
Problem, and doing Bayesian statistics, as in the Euro Problem.

However, we still haven’t answered MacKay’s question: “Do these data
give evidence that the coin is biased rather than fair?” I’m going to leave
this question hanging a little longer; we’ll come back to it in Chapter 10.

https://oreil.ly/YBdoB

In the next chapter, we’ll solve problems related to counting, including
trains, tanks, and rabbits.

But first you might want to work on these exercises.

Exercises
Example 4-1.

In Major League Baseball (MLB), most players have a batting average
between .200 and .330, which means that their probability of getting a hit is
between 0.2 and 0.33.

Suppose a player appearing in their first game gets 3 hits out of 3 attempts.
What is the posterior distribution for their probability of getting a hit?

Example 4-2.

Whenever you survey people about sensitive issues, you have to deal with
social desirability bias, which is the tendency of people to adjust their
answers to show themselves in the most positive light. One way to improve
the accuracy of the results is randomized response.

As an example, suppose you want to know how many people cheat on their
taxes. If you ask them directly, it is likely that some of the cheaters will lie.
You can get a more accurate estimate if you ask them indirectly, like this:
Ask each person to flip a coin and, without revealing the outcome,

If they get heads, they report YES.

If they get tails, they honestly answer the question, “Do you cheat
on your taxes?”

If someone says YES, we don’t know whether they actually cheat on their
taxes; they might have flipped heads. Knowing this, people might be more
willing to answer honestly.

Suppose you survey 100 people this way and get 80 YESes and 20 NOs.
Based on this data, what is the posterior distribution for the fraction of

https://oreil.ly/JREeB
https://oreil.ly/ZCcGm

people who cheat on their taxes? What is the most likely quantity in the
posterior distribution?

Example 4-3.

Suppose you want to test whether a coin is fair, but you don’t want to spin it
hundreds of times. So you make a machine that spins the coin automatically
and uses computer vision to determine the outcome.

However, you discover that the machine is not always accurate.
Specifically, suppose the probability is y=0.2 that an actual heads is
reported as tails, or actual tails reported as heads.

If we spin a coin 250 times and the machine reports 140 heads, what is the
posterior distribution of x? What happens as you vary the value of y?

Example 4-4.

In preparation for an alien invasion, the Earth Defense League (EDL) has
been working on new missiles to shoot down space invaders. Of course,
some missile designs are better than others; let’s assume that each design
has some probability of hitting an alien ship, x.

Based on previous tests, the distribution of x in the population of designs is
approximately uniform between 0.1 and 0.4.

Now suppose the new ultra-secret Alien Blaster 9000 is being tested. In a
press conference, an EDL general reports that the new design has been
tested twice, taking two shots during each test. The results of the test are
confidential, so the general won’t say how many targets were hit, but they
report: “The same number of targets were hit in the two tests, so we have
reason to think this new design is consistent.”

Is this data good or bad? That is, does it increase or decrease your estimate
of x for the Alien Blaster 9000?

Chapter 5. Estimating Counts

In the previous chapter we solved problems that involve estimating
proportions. In the Euro Problem, we estimated the probability that a coin
lands heads up, and in the exercises, you estimated a batting average, the
fraction of people who cheat on their taxes, and the chance of shooting
down an invading alien.

Clearly, some of these problems are more realistic than others, and some are
more useful than others.

In this chapter, we’ll work on problems related to counting, or estimating
the size of a population. Again, some of the examples will seem silly, but
some of them, like the German Tank Problem, have real applications,
sometimes in life and death situations.

The Train Problem
I found the Train Problem in Frederick Mosteller’s Fifty Challenging
Problems in Probability with Solutions:

A railroad numbers its locomotives in order 1..N. One day you see a
locomotive with the number 60. Estimate how many locomotives the
railroad has.

Based on this observation, we know the railroad has 60 or more
locomotives. But how many more? To apply Bayesian reasoning, we can
break this problem into two steps:

What did we know about N before we saw the data?

For any given value of N , what is the likelihood of seeing the data
(a locomotive with number 60)?

https://oreil.ly/Dy3RM
https://oreil.ly/Dy3RM

The answer to the first question is the prior. The answer to the second is the
likelihood.

We don’t have much basis to choose a prior, so we’ll start with something
simple and then consider alternatives. Let’s assume that N is equally likely
to be any value from 1 to 1000.

Here’s the prior distribution:

import numpy as np

from empiricaldist import Pmf

hypos = np.arange(1, 1001)

prior = Pmf(1, hypos)

Now let’s figure out the likelihood of the data. In a hypothetical fleet of N
locomotives, what is the probability that we would see number 60? If we
assume that we are equally likely to see any locomotive, the chance of
seeing any particular one is 1/N .

Here’s the function that does the update:

def update_train(pmf, data):

 """Update pmf based on new data."""

 hypos = pmf.qs

 likelihood = 1 / hypos

 impossible = (data > hypos)

 likelihood[impossible] = 0

 pmf *= likelihood

 pmf.normalize()

This function might look familiar; it is the same as the update function for
the Dice Problem in the previous chapter. In terms of likelihood, the Train
Problem is the same as the Dice Problem.

Here’s the update:

data = 60

posterior = prior.copy()

update_train(posterior, data)

Here’s what the posterior looks like:

Not surprisingly, all values of N below 60 have been eliminated.

The most likely value, if you had to guess, is 60.

posterior.max_prob()

60

That might not seem like a very good guess; after all, what are the chances
that you just happened to see the train with the highest number?
Nevertheless, if you want to maximize the chance of getting the answer
exactly right, you should guess 60.

But maybe that’s not the right goal. An alternative is to compute the mean
of the posterior distribution. Given a set of possible quantities, qi, and their
probabilities, pi, the mean of the distribution is:

mean = ∑
i

piqi

Which we can compute like this:

np.sum(posterior.ps * posterior.qs)

333.41989326370776

Or we can use the method provided by Pmf:

posterior.mean()

333.41989326370776

The mean of the posterior is 333, so that might be a good guess if you want
to minimize error. If you played this guessing game over and over, using the
mean of the posterior as your estimate would minimize the mean squared
error over the long run.

Sensitivity to the Prior
The prior I used in the previous section is uniform from 1 to 1000, but I
offered no justification for choosing a uniform distribution or that particular
upper bound. We might wonder whether the posterior distribution is
sensitive to the prior. With so little data—only one observation—it is.

This table shows what happens as we vary the upper bound:

Posterior mean

Upper bound

500 207.079228

1000 333.419893

2000 552.179017

As we vary the upper bound, the posterior mean changes substantially. So
that’s bad.

When the posterior is sensitive to the prior, there are two ways to proceed:

Get more data.

Get more background information and choose a better prior.

https://oreil.ly/gPTjv
https://oreil.ly/gPTjv

With more data, posterior distributions based on different priors tend to
converge.
For example, suppose that in addition to train 60 we also see trains 30 and
90.

Here’s how the posterior means depend on the upper bound of the prior,
when we observe three trains:

Posterior mean

Upper bound

500 151.849588

1000 164.305586

2000 171.338181

The differences are smaller, but apparently three trains are not enough for
the posteriors to converge.

Power Law Prior
If more data are not available, another option is to improve the priors by
gathering more background information. It is probably not reasonable to
assume that a train-operating company with 1,000 locomotives is just as
likely as a company with only 1.

With some effort, we could probably find a list of companies that operate
locomotives in the area of observation. Or we could interview an expert in
rail shipping to gather information about the typical size of companies.

But even without getting into the specifics of railroad economics, we can
make some educated guesses. In most fields, there are many small
companies, fewer medium-sized companies, and only one or two very large
companies.

In fact, the distribution of company sizes tends to follow a power law, as
Robert Axtell reports in Science.

https://oreil.ly/KJkJm

This law suggests that if there are 1,000 companies with fewer than 10
locomotives, there might be 100 companies with 100 locomotives, 10
companies with 1,000, and possibly one company with 10,000 locomotives.

Mathematically, a power law means that the number of companies with a
given size, N , is proportional to (1/N)α, where α is a parameter that is
often near 1.

We can construct a power law prior like this:

alpha = 1.0

ps = hypos**(-alpha)

power = Pmf(ps, hypos, name='power law')

power.normalize()

For comparison, here’s the uniform prior again:

hypos = np.arange(1, 1001)

uniform = Pmf(1, hypos, name='uniform')

uniform.normalize()

1000

Here’s what a power law prior looks like, compared to the uniform prior:

Here’s the update for both priors:

dataset = [60]

update_train(uniform, dataset)

update_train(power, dataset)

And here are the posterior distributions:

The power law gives less prior probability to high values, which yields
lower posterior means, and less sensitivity to the upper bound.

Here’s how the posterior means depend on the upper bound when we use a
power law prior and observe three trains:

Posterior mean

Upper bound

500 130.708470

1000 133.275231

2000 133.997463

Now the differences are much smaller. In fact, with an arbitrarily large
upper bound, the mean converges on 134.

So the power law prior is more realistic, because it is based on general
information about the size of companies, and it behaves better in practice.

Credible Intervals
So far we have seen two ways to summarize a posterior distribution: the
value with the highest posterior probability (the MAP) and the posterior
mean. These are both point estimates, that is, single values that estimate
the quantity we are interested in.

Another way to summarize a posterior distribution is with percentiles. If
you have taken a standardized test, you might be familiar with percentiles.
For example, if your score is the 90th percentile, that means you did as well
as or better than 90% of the people who took the test.

If we are given a value, x, we can compute its percentile rank by finding
all values less than or equal to x and adding up their probabilities.

Pmf provides a method that does this computation. So, for example, we can
compute the probability that the company has less than or equal to 100
trains:

power.prob_le(100)

0.2937469222495771

With a power law prior and a dataset of three trains, the result is about 29%.
So 100 trains is the 29th percentile.

Going the other way, suppose we want to compute a particular percentile;
for example, the median of a distribution is the 50th percentile. We can
compute it by adding up probabilities until the total exceeds 0.5. Here’s a
function that does it:

def quantile(pmf, prob):

 """Compute a quantile with the given prob."""

 total = 0

 for q, p in pmf.items():

 total += p

 if total >= prob:

 return q

 return np.nan

The loop uses items, which iterates the quantities and probabilities in the
distribution. Inside the loop we add up the probabilities of the quantities in
order. When the total equals or exceeds prob, we return the corresponding
quantity.

This function is called quantile because it computes a quantile rather than
a percentile. The difference is the way we specify prob. If prob is a
percentage between 0 and 100, we call the corresponding quantity a
percentile. If prob is a probability between 0 and 1, we call the
corresponding quantity a quantile.

Here’s how we can use this function to compute the 50th percentile of the
posterior distribution:

quantile(power, 0.5)

113

The result, 113 trains, is the median of the posterior distribution.

Pmf provides a method called quantile that does the same thing. We can
call it like this to compute the 5th and 95th percentiles:

power.quantile([0.05, 0.95])

array([91., 243.])

The result is the interval from 91 to 243 trains, which implies:

The probability is 5% that the number of trains is less than or equal
to 91.

The probability is 5% that the number of trains is greater than 243.

Therefore the probability is 90% that the number of trains falls between 91
and 243 (excluding 91 and including 243). For this reason, this interval is
called a 90% credible interval.

Pmf also provides credible_interval, which computes an interval that
contains the given probability.

power.credible_interval(0.9)

array([91., 243.])

The German Tank Problem
During World War II, the Economic Warfare Division of the American
Embassy in London used statistical analysis to estimate German production
of tanks and other equipment.

The Western Allies had captured log books, inventories, and repair records
that included chassis and engine serial numbers for individual tanks.

Analysis of these records indicated that serial numbers were allocated by
manufacturer and tank type in blocks of 100 numbers, that numbers in each
block were used sequentially, and that not all numbers in each block were
used. So the problem of estimating German tank production could be
reduced, within each block of 100 numbers, to a form of the Train Problem.

Based on this insight, American and British analysts produced estimates
substantially lower than estimates from other forms of intelligence. And
after the war, records indicated that they were substantially more accurate.

They performed similar analyses for tires, trucks, rockets, and other
equipment, yielding accurate and actionable economic intelligence.

The German Tank Problem is historically interesting; it is also a nice
example of real-world application of statistical estimation.

For more on this problem, see this Wikipedia page and Ruggles and Brodie,
“An Empirical Approach to Economic Intelligence in World War II”,
Journal of the American Statistical Association, March 1947, available in
the CIA’s online reading room.

https://oreil.ly/YyfsJ
https://oreil.ly/sC3zT
https://oreil.ly/sC3zT

Informative Priors
Among Bayesians, there are two approaches to choosing prior distributions.
Some recommend choosing the prior that best represents background
information about the problem; in that case the prior is said to be
informative. The problem with using an informative prior is that people
might have different information or interpret it differently. So informative
priors might seem arbitrary.

The alternative is a so-called uninformative prior, which is intended to be
as unrestricted as possible, to let the data speak for itself. In some cases you
can identify a unique prior that has some desirable property, like
representing minimal prior information about the estimated quantity.

Uninformative priors are appealing because they seem more objective. But I
am generally in favor of using informative priors. Why? First, Bayesian
analysis is always based on modeling decisions. Choosing the prior is one
of those decisions, but it is not the only one, and it might not even be the
most subjective. So even if an uninformative prior is more objective, the
entire analysis is still subjective.

Also, for most practical problems, you are likely to be in one of two
situations: either you have a lot of data or not very much. If you have a lot
of data, the choice of the prior doesn’t matter; informative and
uninformative priors yield almost the same results. If you don’t have much
data, using relevant background information (like the power law
distribution) makes a big difference.

And if, as in the German Tank Problem, you have to make life and death
decisions based on your results, you should probably use all of the
information at your disposal, rather than maintaining the illusion of
objectivity by pretending to know less than you do.

Summary
This chapter introduced the Train Problem, which turns out to have the
same likelihood function as the Dice Problem, and which can be applied to
the German Tank Problem. In all of these examples, the goal is to estimate a
count, or the size of a population.

In the next chapter, I’ll introduce “odds” as an alternative to probabilities,
and Bayes’s rule as an alternative form of Bayes’s theorem. We’ll compute
distributions of sums and products, and use them to estimate the number of
members of Congress who are corrupt, among other problems.

But first, you might want to work on these exercises.

Exercises
Example 5-1.

Suppose you are giving a talk in a large lecture hall and the fire marshal
interrupts because they think the audience exceeds 1,200 people, which is
the safe capacity of the room.

You think there are fewer then 1,200 people, and you offer to prove it. It
would take too long to count, so you try an experiment:

You ask how many people were born on May 11 and two people
raise their hands.

You ask how many were born on May 23 and 1 person raises their
hand.

Finally, you ask how many were born on August 1, and no one
raises their hand.

How many people are in the audience? What is the probability that there are
more than 1,200 people? Hint: Remember the binomial distribution.

Example 5-2.

I often see rabbits in the garden behind my house, but it’s not easy to tell
them apart, so I don’t really know how many there are.

Suppose I deploy a motion-sensing camera trap that takes a picture of the
first rabbit it sees each day. After three days, I compare the pictures and
conclude that two of them are the same rabbit and the other is different.

How many rabbits visit my garden?

To answer this question, we have to think about the prior distribution and
the likelihood of the data:

I have sometimes seen four rabbits at the same time, so I know
there are at least that many. I would be surprised if there were more
than 10. So, at least as a starting place, I think a uniform prior from
4 to 10 is reasonable.

To keep things simple, let’s assume that all rabbits who visit my
garden are equally likely to be caught by the camera trap in a given
day. Let’s also assume it is guaranteed that the camera trap gets a
picture every day.

Example 5-3.

Suppose that in the criminal justice system, all prison sentences are either 1,
2, or 3 years, with an equal number of each. One day, you visit a prison and
choose a prisoner at random. What is the probability that they are serving a
3-year sentence? What is the average remaining sentence of the prisoners
you observe?

Example 5-4.

If I chose a random adult in the US, what is the probability that they have a
sibling? To be precise, what is the probability that their mother has had at
least one other child?

This article from the Pew Research Center provides some relevant data.

https://oreil.ly/s10fM
https://oreil.ly/Whza0
https://oreil.ly/TlNxi

Example 5-5.

The Doomsday argument is “a probabilistic argument that claims to predict
the number of future members of the human species given an estimate of
the total number of humans born so far.”

Suppose there are only two kinds of intelligent civilizations that can happen
in the universe. The “short-lived” kind go extinct after only 200 billion
individuals are born. The “long-lived” kind survive until 2,000 billion
individuals are born. And suppose that the two kinds of civilization are
equally likely. Which kind of civilization do you think we live in?

The Doomsday argument says we can use the total number of humans born
so far as data. According to the Population Reference Bureau, the total
number of people who have ever lived is about 108 billion.

Since you were born quite recently, let’s assume that you are, in fact, human
being number 108 billion. If N is the total number who will ever live and
we consider you to be a randomly-chosen person, it is equally likely that
you could have been person 1, or N , or any number in between. So what is
the probability that you would be number 108 billion?

Given this data and dubious prior, what is the probability that our
civilization will be short-lived?

https://oreil.ly/RsE21
https://oreil.ly/xklTT

Chapter 6. Odds and Addends

This chapter presents a new way to represent a degree of certainty, odds,
and a new form of Bayes’s theorem, called Bayes’s rule. Bayes’s rule is
convenient if you want to do a Bayesian update on paper or in your head. It
also sheds light on the important idea of evidence and how we can quantify
the strength of evidence.

The second part of the chapter is about “addends”, that is, quantities being
added, and how we can compute their distributions. We’ll define functions
that compute the distribution of sums, differences, products, and other
operations. Then we’ll use those distributions as part of a Bayesian update.

Odds
One way to represent a probability is with a number between 0 and 1, but
that’s not the only way. If you have ever bet on a football game or a horse
race, you have probably encountered another representation of probability,
called odds.

You might have heard expressions like “the odds are three to one”, but you
might not know what that means. The odds in favor of an event are the
ratio of the probability it will occur to the probability that it will not.

The following function does this calculation:

def odds(p):

 return p / (1-p)

For example, if my team has a 75% chance of winning, the odds in their
favor are three to one, because the chance of winning is three times the
chance of losing:

odds(0.75)

3.0

You can write odds in decimal form, but it is also common to write them as
a ratio of integers. So “three to one” is sometimes written 3 : 1.

When probabilities are low, it is more common to report the odds against
rather than the odds in favor. For example, if my horse has a 10% chance of
winning, the odds in favor are 1 : 9:

odds(0.1)

0.11111111111111112

But in that case it would be more common to say that the odds against are
9 : 1:

odds(0.9)

9.000000000000002

Given the odds in favor, in decimal form, you can convert to probability
like this:

def prob(o):

 return o / (o+1)

For example, if the odds are 3/2, the corresponding probability is 3/5:

prob(3/2)

0.6

Or if you represent odds with a numerator and denominator, you can
convert to probability like this:

def prob2(yes, no):

 return yes / (yes + no)

prob2(3, 2)

0.6

Probabilities and odds are different representations of the same information;
given either one, you can compute the other. But some computations are
easier when we work with odds, as we’ll see in the next section, and some
computations are even easier with log odds, which we’ll see later.

Bayes’s Rule
So far we have worked with Bayes’s theorem in the “probability form”:

P (H|D) =
P(H) P(D|H)

P(D)

Writing odds(A) for odds in favor of A, we can express Bayes’s theorem in
“odds form”:

odds (A|D) = odds (A)
P(D|A)

P(D|B)

This is Bayes’s rule, which says that the posterior odds are the prior odds
times the likelihood ratio. Bayes’s rule is convenient for computing a
Bayesian update on paper or in your head. For example, let’s go back to the
Cookie Problem:

Suppose there are two bowls of cookies. Bowl 1 contains 30 vanilla
cookies and 10 chocolate cookies. Bowl 2 contains 20 of each. Now
suppose you choose one of the bowls at random and, without looking,
select a cookie at random. The cookie is vanilla. What is the probability
that it came from Bowl 1?

The prior probability is 50%, so the prior odds are 1. The likelihood ratio is
3
4 / 1

2 , or 3/2. So the posterior odds are 3/2, which corresponds to
probability 3/5.

prior_odds = 1

likelihood_ratio = (3/4) / (1/2)

post_odds = prior_odds * likelihood_ratio

post_odds

1.5

post_prob = prob(post_odds)

post_prob

0.6

If we draw another cookie and it’s chocolate, we can do another update:

likelihood_ratio = (1/4) / (1/2)

post_odds *= likelihood_ratio

post_odds

0.75

And convert back to probability:

post_prob = prob(post_odds)

post_prob

0.42857142857142855

Oliver’s Blood
I’ll use Bayes’s rule to solve another problem from MacKay’s Information
Theory, Inference, and Learning Algorithms:

Two people have left traces of their own blood at the scene of a crime. A
suspect, Oliver, is tested and found to have type ‘O’ blood. The blood
groups of the two traces are found to be of type ‘O’ (a common type in the
local population, having frequency 60%) and of type ‘AB’ (a rare type,
with frequency 1%). Do these data [the traces found at the scene] give
evidence in favor of the proposition that Oliver was one of the people
[who left blood at the scene]?

https://oreil.ly/QUZjD
https://oreil.ly/QUZjD

To answer this question, we need to think about what it means for data to
give evidence in favor of (or against) a hypothesis. Intuitively, we might say
that data favor a hypothesis if the hypothesis is more likely in light of the
data than it was before.

In the Cookie Problem, the prior odds are 1, which corresponds to
probability 50%. The posterior odds are 3/2, or probability 60%. So the
vanilla cookie is evidence in favor of Bowl 1.

Bayes’s rule provides a way to make this intuition more precise. Again:

odds (A|D) = odds (A)
P(D|A)

P(D|B)

Dividing through by odds(A), we get:

odds(A|D)

odds(A)
=
P(D|A)

P(D|B)

The term on the left is the ratio of the posterior and prior odds. The term on
the right is the likelihood ratio, also called the Bayes factor.

If the Bayes factor is greater than 1, that means that the data were more
likely under A than under B. And that means that the odds are greater, in
light of the data, than they were before.

If the Bayes factor is less than 1, that means the data were less likely under
A than under B, so the odds in favor of A go down.

Finally, if the Bayes factor is exactly 1, the data are equally likely under
either hypothesis, so the odds do not change.

Let’s apply that to the problem at hand. If Oliver is one of the people who
left blood at the crime scene, he accounts for the ‘O’ sample; in that case,
the probability of the data is the probability that a random member of the
population has type ‘AB’ blood, which is 1%.

If Oliver did not leave blood at the scene, we have two samples to account
for. If we choose two random people from the population, what is the

chance of finding one with type ‘O’ and one with type ‘AB’? Well, there are
two ways it might happen:

The first person might have ‘O’ and the second ‘AB’,

Or the first person might have ‘AB’ and the second ‘O’.

The probability of either combination is (0.6)(0.01), which is 0.6%, so the
total probability is twice that, or 1.2%. So the data are a little more likely if
Oliver is not one of the people who left blood at the scene.

We can use these probabilities to compute the likelihood ratio:

like1 = 0.01

like2 = 2 * 0.6 * 0.01

likelihood_ratio = like1 / like2

likelihood_ratio

0.8333333333333334

Since the likelihood ratio is less than 1, the blood tests are evidence against
the hypothesis that Oliver left blood at the scence.

But it is weak evidence. For example, if the prior odds were 1 (that is, 50%
probability), the posterior odds would be 0.83, which corresponds to a
probability of 45%:

post_odds = 1 * like1 / like2

prob(post_odds)

0.45454545454545453

So this evidence doesn’t “move the needle” very much.

This example is a little contrived, but it demonstrates the counterintuitive
result that data consistent with a hypothesis are not necessarily in favor of
the hypothesis.

If this result still bothers you, this way of thinking might help: the data
consist of a common event, type ‘O’ blood, and a rare event, type ‘AB’
blood. If Oliver accounts for the common event, that leaves the rare event
unexplained. If Oliver doesn’t account for the ‘O’ blood, we have two
chances to find someone in the population with ‘AB’ blood. And that factor
of two makes the difference.

Example 6-1.

Suppose that based on other evidence, your prior belief in Oliver’s guilt is
90%. How much would the blood evidence in this section change your
beliefs? What if you initially thought there was only a 10% chance of his
guilt?

Addends
The second half of this chapter is about distributions of sums and results of
other operations. We’ll start with a Forward Problem, where we are given
the inputs and compute the distribution of the output. Then we’ll work on
Inverse Problems, where we are given the outputs and we compute the
distribution of the inputs.

As a first example, suppose you roll two dice and add them up. What is the
distribution of the sum? I’ll use the following function to create a Pmf that
represents the possible outcomes of a die:

import numpy as np

from empiricaldist import Pmf

def make_die(sides):

 outcomes = np.arange(1, sides+1)

 die = Pmf(1/sides, outcomes)

 return die

On a 6-sided die, the outcomes are 1 through 6, all equally likely.

die = make_die(6)

If we roll two dice and add them up, there are 11 possible outcomes, 2
through 12, but they are not equally likely. To compute the distribution of
the sum, we have to enumerate the possible outcomes.

And that’s how this function works:

def add_dist(pmf1, pmf2):

 """Compute the distribution of a sum."""

 res = Pmf()

 for q1, p1 in pmf1.items():

 for q2, p2 in pmf2.items():

 q = q1 + q2

 p = p1 * p2

 res[q] = res(q) + p

 return res

The parameters are Pmf objects representing distributions.

The loops iterate though the quantities and probabilities in the Pmf objects.
Each time through the loop q gets the sum of a pair of quantities, and p gets
the probability of the pair. Because the same sum might appear more than
once, we have to add up the total probability for each sum.

Notice a subtle element of this line:

 res[q] = res(q) + p

I use parentheses on the right side of the assignment, which returns 0 if q
does not appear yet in res. I use brackets on the left side of the assignment

to create or update an element in res; using parentheses on the left side
would not work.

Pmf provides add_dist, which does the same thing. You can call it as a
method, like this:

twice = die.add_dist(die)

Or as a function, like this:

twice = Pmf.add_dist(die, die)

And here’s what the result looks like:

If we have a sequence of Pmf objects that represent dice, we can compute
the distribution of the sum like this:

def add_dist_seq(seq):

 """Compute Pmf of the sum of values from seq."""

 total = seq[0]

 for other in seq[1:]:

 total = total.add_dist(other)

 return total

As an example, we can make a list of three dice like this:

dice = [die] * 3

And we can compute the distribution of their sum like this:

thrice = add_dist_seq(dice)

The following figure shows what these three distributions look like:

The distribution of a single die is uniform from 1 to 6.

The sum of two dice has a triangle distribution between 2 and 12.

The sum of three dice has a bell-shaped distribution between 3 and
18.

As an aside, this example demonstrates the Central Limit Theorem, which
says that the distribution of a sum converges on a bell-shaped normal
distribution, at least under some conditions.

Gluten Sensitivity
In 2015 I read a paper that tested whether people diagnosed with gluten
sensitivity (but not celiac disease) were able to distinguish gluten flour from
non-gluten flour in a blind challenge (you can read the paper here).

Out of 35 subjects, 12 correctly identified the gluten flour based on
resumption of symptoms while they were eating it. Another 17 wrongly
identified the gluten-free flour based on their symptoms, and 6 were unable
to distinguish.

https://oreil.ly/MHwoG

The authors conclude, “Double-blind gluten challenge induces symptom
recurrence in just one-third of patients.”

This conclusion seems odd to me, because if none of the patients were
sensitive to gluten, we would expect some of them to identify the gluten
flour by chance. So here’s the question: based on this data, how many of the
subjects are sensitive to gluten and how many are guessing?

We can use Bayes’s theorem to answer this question, but first we have to
make some modeling decisions. I’ll assume:

People who are sensitive to gluten have a 95% chance of correctly
identifying gluten flour under the challenge conditions, and

People who are not sensitive have a 40% chance of identifying the
gluten flour by chance (and a 60% chance of either choosing the
other flour or failing to distinguish).

These particular values are arbitrary, but the results are not sensitive to
these choices.

I will solve this problem in two steps. First, assuming that we know how
many subjects are sensitive, I will compute the distribution of the data.
Then, using the likelihood of the data, I will compute the posterior
distribution of the number of sensitive patients.

The first is the Forward Problem; the second is the Inverse Problem.

The Forward Problem
Suppose we know that 10 of the 35 subjects are sensitive to gluten. That
means that 25 are not:

n = 35

num_sensitive = 10

num_insensitive = n - num_sensitive

Each sensitive subject has a 95% chance of identifying the gluten flour, so
the number of correct identifications follows a binomial distribution.

I’ll use make_binomial, which we defined in “The Binomial Distribution”,
to make a Pmf that represents the binomial distribution:

from utils import make_binomial

dist_sensitive = make_binomial(num_sensitive, 0.95)

dist_insensitive = make_binomial(num_insensitive, 0.40)

The results are the distributions for the number of correct identifications in
each group.

Now we can use add_dist to compute the distribution of the total number
of correct identifications:

dist_total = Pmf.add_dist(dist_sensitive, dist_insensitive)

Here are the results:

We expect most of the sensitive subjects to identify the gluten flour
correctly. Of the 25 insensitive subjects, we expect about 10 to identify the
gluten flour by chance. So we expect about 20 correct identifications in
total.

This is the answer to the Forward Problem: given the number of sensitive
subjects, we can compute the distribution of the data.

The Inverse Problem
Now let’s solve the Inverse Problem: given the data, we’ll compute the
posterior distribution of the number of sensitive subjects.

Here’s how. I’ll loop through the possible values of num_sensitive and
compute the distribution of the data for each:

import pandas as pd

table = pd.DataFrame()

for num_sensitive in range(0, n+1):

 num_insensitive = n - num_sensitive

 dist_sensitive = make_binomial(num_sensitive, 0.95)

 dist_insensitive = make_binomial(num_insensitive, 0.4)

 dist_total = Pmf.add_dist(dist_sensitive, dist_insensitive)

 table[num_sensitive] = dist_total

The loop enumerates the possible values of num_sensitive. For each
value, it computes the distribution of the total number of correct
identifications, and stores the result as a column in a pandas DataFrame.

The following figure shows selected columns from the DataFrame,
corresponding to different hypothetical values of num_sensitive:

Now we can use this table to compute the likelihood of the data:

likelihood1 = table.loc[12]

loc selects a row from the DataFrame. The row with index 12 contains the
probability of 12 correct identifications for each hypothetical value of
num_sensitive. And that’s exactly the likelihood we need to do a Bayesian
update.

I’ll use a uniform prior, which implies that I would be equally surprised by
any value of num_sensitive:

hypos = np.arange(n+1)

prior = Pmf(1, hypos)

And here’s the update:

posterior1 = prior * likelihood1

posterior1.normalize()

For comparison, I also compute the posterior for another possible outcome,
20 correct identifications:

likelihood2 = table.loc[20]

posterior2 = prior * likelihood2

posterior2.normalize()

The following figure shows posterior distributions of num_sensitive based
on the actual data, 12 correct identifications, and the other possible
outcome, 20 correct identifications.

With 12 correct identifications, the most likely conclusion is that none of
the subjects are sensitive to gluten. If there had been 20 correct
identifications, the most likely conclusion would be that 11-12 of the
subjects were sensitive.

posterior1.max_prob()

0

posterior2.max_prob()

11

Summary
This chapter presents two topics that are almost unrelated except that they
make the title of the chapter catchy.

The first part of the chapter is about Bayes’s rule, evidence, and how we
can quantify the strength of evidence using a likelihood ratio or Bayes
factor.

The second part is about add_dist, which computes the distribution of a
sum. We can use this function to solve Forward and Inverse Problems; that
is, given the parameters of a system, we can compute the distribution of the
data or, given the data, we can compute the distribution of the parameters.

In the next chapter, we’ll compute distributions for minimums and
maximums, and use them to solve more Bayesian problems. But first you
might want to work on these exercises.

More Exercises
Example 6-2.

Let’s use Bayes’s rule to solve the Elvis problem from Chapter 3:

Elvis Presley had a twin brother who died at birth. What is the
probability that Elvis was an identical twin?

In 1935, about 2/3 of twins were fraternal and 1/3 were identical. The
question contains two pieces of information we can use to update this prior.

First, Elvis’s twin was also male, which is more likely if they were
identical twins, with a likelihood ratio of 2.

Also, Elvis’s twin died at birth, which is more likely if they were
identical twins, with a likelihood ratio of 1.25.

If you are curious about where those numbers come from, I wrote a blog
post about it.

Example 6-3.

The following is an interview question that appeared on glassdoor.com,
attributed to Facebook:

You’re about to get on a plane to Seattle. You want to know if you should
bring an umbrella. You call 3 random friends of yours who live there and
ask each independently if it’s raining. Each of your friends has a 2/3
chance of telling you the truth and a 1/3 chance of messing with you by
lying. All 3 friends tell you that “Yes” it is raining. What is the
probability that it’s actually raining in Seattle?

Use Bayes’s rule to solve this problem. As a prior you can assume that it
rains in Seattle about 10% of the time.

This question causes some confusion about the differences between
Bayesian and frequentist interpretations of probability; if you are curious
about this point, I wrote a blog article about it.

Example 6-4.

According to the CDC, people who smoke are about 25 times more likely to
develop lung cancer than nonsmokers.

https://oreil.ly/SPbMo
https://oreil.ly/SPbMo
https://oreil.ly/M1c1I
https://oreil.ly/uLxa8
https://oreil.ly/NOL9X

Also according to the CDC, about 14% of adults in the US are smokers. If
you learn that someone has lung cancer, what is the probability they are a
smoker?

Example 6-5.

In Dungeons & Dragons, the amount of damage a goblin can withstand is
the sum of two 6-sided dice. The amount of damage you inflict with a short
sword is determined by rolling one 6-sided die. A goblin is defeated if the
total damage you inflict is greater than or equal to the amount it can
withstand.

Suppose you are fighting a goblin and you have already inflicted 3 points of
damage. What is your probability of defeating the goblin with your next
successful attack?

Hint: You can use Pmf.add_dist to add a constant amount, like 3, to a Pmf
and Pmf.sub_dist to compute the distribution of remaining points.

Example 6-6.

Suppose I have a box with a 6-sided die, an 8-sided die, and a 12-sided die.
I choose one of the dice at random, roll it twice, multiply the outcomes, and
report that the product is 12. What is the probability that I chose the 8-sided
die?

Hint: Pmf provides a function called mul_dist that takes two Pmf objects
and returns a Pmf that represents the distribution of the product.

Example 6-7.

Betrayal at House on the Hill is a strategy game in which characters with
different attributes explore a haunted house. Depending on their attributes,
the characters roll different numbers of dice. For example, if attempting a
task that depends on knowledge, Professor Longfellow rolls 5 dice,
Madame Zostra rolls 4, and Ox Bellows rolls 3. Each die yields 0, 1, or 2
with equal probability.

https://oreil.ly/t1RlL

If a randomly chosen character attempts a task three times and rolls a total
of 3 on the first attempt, 4 on the second, and 5 on the third, which
character do you think it was?

Example 6-8.

There are 538 members of the United States Congress.

Suppose we audit their investment portfolios and find that 312 of them
outperform the market. Let’s assume that an honest member of Congress
has only a 50% chance of outperforming the market, but a dishonest
member who trades on inside information has a 90% chance. How many
members of Congress are honest?

Chapter 7. Minimum, Maximum,
and Mixture

In the previous chapter we computed distributions of sums. In this chapter,
we’ll compute distributions of minimums and maximums, and use them to
solve both Forward and Inverse Problems.

Then we’ll look at distributions that are mixtures of other distributions,
which will turn out to be particularly useful for making predictions.

But we’ll start with a powerful tool for working with distributions, the
cumulative distribution function.

Cumulative Distribution Functions
So far we have been using probability mass functions to represent
distributions. A useful alternative is the cumulative distribution function,
or CDF.

As an example, I’ll use the posterior distribution from the Euro Problem,
which we computed in “Bayesian Estimation”.

Here’s the uniform prior we started with:

import numpy as np

from empiricaldist import Pmf

hypos = np.linspace(0, 1, 101)

pmf = Pmf(1, hypos)

data = 140, 250

And here’s the update:

from scipy.stats import binom

def update_binomial(pmf, data):

 """Update pmf using the binomial distribution."""

 k, n = data

 xs = pmf.qs

 likelihood = binom.pmf(k, n, xs)

 pmf *= likelihood

 pmf.normalize()

update_binomial(pmf, data)

The CDF is the cumulative sum of the PMF, so we can compute it like this:

cumulative = pmf.cumsum()

Here’s what it looks like, along with the PMF:

The range of the CDF is always from 0 to 1, in contrast with the PMF,
where the maximum can be any probability.

The result from cumsum is a pandas Series, so we can use the bracket
operator to select an element:

cumulative[0.61]

0.9638303193984253

The result is about 0.96, which means that the total probability of all
quantities less than or equal to 0.61 is 96%.

To go the other way—to look up a probability and get the corresponding
quantile—we can use interpolation:

from scipy.interpolate import interp1d

ps = cumulative.values

qs = cumulative.index

interp = interp1d(ps, qs)

interp(0.96)

array(0.60890171)

The result is about 0.61, so that confirms that the 96th percentile of this
distribution is 0.61.

empiricaldist provides a class called Cdf that represents a cumulative
distribution function. Given a Pmf, you can compute a Cdf like this:

cdf = pmf.make_cdf()

make_cdf uses np.cumsum to compute the cumulative sum of the
probabilities.

You can use brackets to select an element from a Cdf:

cdf[0.61]

0.9638303193984253

But if you look up a quantity that’s not in the distribution, you get a
KeyError.

To avoid this problem, you can call a Cdf as a function, using parentheses.
If the argument does not appear in the Cdf, it interpolates between
quantities.

cdf(0.615)

array(0.96383032)

Going the other way, you can use quantile to look up a cumulative
probability and get the corresponding quantity:

cdf.quantile(0.9638303)

array(0.61)

Cdf also provides credible_interval, which computes a credible interval
that contains the given probability:

cdf.credible_interval(0.9)

array([0.51, 0.61])

CDFs and PMFs are equivalent in the sense that they contain the same
information about the distribution, and you can always convert from one to
the other. Given a Cdf, you can get the equivalent Pmf like this:

pmf = cdf.make_pmf()

make_pmf uses np.diff to compute differences between consecutive
cumulative probabilities.

One reason Cdf objects are useful is that they compute quantiles efficiently.
Another is that they make it easy to compute the distribution of a maximum
or minimum, as we’ll see in the next section.

Best Three of Four
In Dungeons & Dragons, each character has six attributes: strength,
intelligence, wisdom, dexterity, constitution, and charisma.

To generate a new character, players roll four 6-sided dice for each attribute
and add up the best three. For example, if I roll for strength and get 1, 2, 3,

4 on the dice, my character’s strength would be the sum of 2, 3, and 4,
which is 9.

As an exercise, let’s figure out the distribution of these attributes. Then, for
each character, we’ll figure out the distribution of their best attribute.

I’ll import two functions from the previous chapter: make_die, which
makes a Pmf that represents the outcome of rolling a die, and
add_dist_seq, which takes a sequence of Pmf objects and computes the
distribution of their sum.

Here’s a Pmf that represents a 6-sided die and a sequence with three
references to it:

from utils import make_die

die = make_die(6)

dice = [die] * 3

And here’s the distribution of the sum of three dice:

from utils import add_dist_seq

pmf_3d6 = add_dist_seq(dice)

Here’s what it looks like:

If we roll four dice and add up the best three, computing the distribution of
the sum is a bit more complicated. I’ll estimate the distribution by
simulating 10,000 rolls.

First I’ll create an array of random values from 1 to 6, with 10,000 rows and
4 columns:

n = 10000

a = np.random.randint(1, 7, size=(n, 4))

To find the best three outcomes in each row, I’ll use sort with axis=1,
which sorts the rows in ascending order:

a.sort(axis=1)

Finally, I’ll select the last three columns and add them up:

t = a[:, 1:].sum(axis=1)

Now t is an array with a single column and 10,000 rows. We can compute
the PMF of the values in t like this:

pmf_best3 = Pmf.from_seq(t)

The following figure shows the distribution of the sum of three dice,
pmf_3d6, and the distribution of the best three out of four, pmf_best3:

As you might expect, choosing the best three out of four tends to yield
higher values.

Next we’ll find the distribution for the maximum of six attributes, each the
sum of the best three of four dice.

Maximum
To compute the distribution of a maximum or minimum, we can make good
use of the cumulative distribution function. First, I’ll compute the Cdf of
the best three of four distribution:

cdf_best3 = pmf_best3.make_cdf()

Recall that Cdf(x) is the sum of probabilities for quantities less than or
equal to x. Equivalently, it is the probability that a random value chosen
from the distribution is less than or equal to x.

Now suppose I draw 6 values from this distribution. The probability that all
6 of them are less than or equal to x is Cdf(x) raised to the 6th power,
which we can compute like this:

cdf_best3**6

If all 6 values are less than or equal to x, that means that their maximum is
less than or equal to x. So the result is the CDF of their maximum. We can
convert it to a Cdf object, like this:

from empiricaldist import Cdf

cdf_max6 = Cdf(cdf_best3**6)

The following figure shows the CDFs for the three distributions we have
computed.

Cdf provides max_dist, which does the same computation, so we can also
compute the Cdf of the maximum like this:

cdf_max_dist6 = cdf_best3.max_dist(6)

In the next section we’ll find the distribution of the minimum. The process
is similar, but a little more complicated. See if you can figure it out before
you go on.

Minimum
In the previous section we computed the distribution of a character’s best
attribute. Now let’s compute the distribution of the worst.

To compute the distribution of the minimum, we’ll use the complementary
CDF, which we can compute like this:

prob_gt = 1 - cdf_best3

As the variable name suggests, the complementary CDF is the probability
that a value from the distribution is greater than x. If we draw 6 values from
the distribution, the probability that all 6 exceed x is:

prob_gt6 = prob_gt**6

If all 6 exceed x, that means their minimum exceeds x, so prob_gt6 is the
complementary CDF of the minimum. And that means we can compute the
CDF of the minimum like this:

prob_le6 = 1 - prob_gt6

The result is a pandas Series that represents the CDF of the minimum of
six attributes. We can put those values in a Cdf object like this:

cdf_min6 = Cdf(prob_le6)

Here’s what it looks like, along with the distribution of the maximum:

Cdf provides min_dist, which does the same computation, so we can also
compute the Cdf of the minimum like this:

cdf_min_dist6 = cdf_best3.min_dist(6)

And we can confirm that the differences are small:

np.allclose(cdf_min_dist6, cdf_min6)

True

In the exercises at the end of this chapter, you’ll use distributions of the
minimum and maximum to do Bayesian inference. But first we’ll see what

happens when we mix distributions.

Mixture
In this section I’ll show how we can compute a distribution that is a mixture
of other distributions. I’ll explain what that means with some simple
examples; then, more usefully, we’ll see how these mixtures are used to
make predictions.

Here’s another example inspired by Dungeons & Dragons:

Suppose your character is armed with a dagger in one hand and a
short sword in the other.

During each round, you attack a monster with one of your two
weapons, chosen at random.

The dagger causes one 4-sided die of damage; the short sword
causes one 6-sided die of damage.

What is the distribution of damage you inflict in each round?

To answer this question, I’ll make a Pmf to represent the 4-sided and 6-sided
dice:

d4 = make_die(4)

d6 = make_die(6)

Now, let’s compute the probability you inflict 1 point of damage.

If you attacked with the dagger, it’s 1/4.

If you attacked with the short sword, it’s 1/6.

Because the probability of choosing either weapon is 1/2, the total
probability is the average:

prob_1 = (d4(1) + d6(1)) / 2

prob_1

0.20833333333333331

For the outcomes 2, 3, and 4, the probability is the same, but for 5 and 6,
it’s different, because those outcomes are impossible with the 4-sided die.

prob_6 = (d4(6) + d6(6)) / 2

prob_6

0.08333333333333333

To compute the distribution of the mixture, we could loop through the
possible outcomes and compute their probabilities.

But we can do the same computation using the + operator:

mix1 = (d4 + d6) / 2

Here’s what the mixture of these distributions looks like:

Now suppose you are fighting three monsters:

One has a club, which causes one 4-sided die of damage.

One has a mace, which causes one 6-sided die.

And one has a quarterstaff, which also causes one 6-sided die.

Because the melee is disorganized, you are attacked by one of these
monsters each round, chosen at random. To find the distribution of the
damage they inflict, we can compute a weighted average of the
distributions, like this:

mix2 = (d4 + 2*d6) / 3

This distribution is a mixture of one 4-sided die and two 6-sided dice.
Here’s what it looks like:

In this section we used the + operator, which adds the probabilities in the
distributions, not to be confused with Pmf.add_dist, which computes the
distribution of the sum of the distributions.

To demonstrate the difference, I’ll use Pmf.add_dist to compute the
distribution of the total damage done per round, which is the sum of the two
mixtures:

total_damage = Pmf.add_dist(mix1, mix2)

And here’s what it looks like:

General Mixtures
In the previous section we computed mixtures in an ad hoc way. Now we’ll
see a more general solution. In future chapters, we’ll use this solution to
generate predictions for real-world problems, not just role-playing games.
But if you’ll bear with me, we’ll continue the previous example for one
more section.

Suppose three more monsters join the combat, each of them with a battle
axe that causes one 8-sided die of damage. Still, only one monster attacks
per round, chosen at random, so the damage they inflict is a mixture of:

One 4-sided die,

Two 6-sided dice, and

Three 8-sided dice.

I’ll use a Pmf to represent a randomly chosen monster:

hypos = [4,6,8]

counts = [1,2,3]

pmf_dice = Pmf(counts, hypos)

pmf_dice.normalize()

pmf_dice

probs

4 0.166667

6 0.333333

8 0.500000

This distribution represents the number of sides on the die we’ll roll and the
probability of rolling each one. For example, one of the six monsters has a
dagger, so the probability is 1/6 that we roll a 4-sided die.

Next I’ll make a sequence of Pmf objects to represent the dice:

dice = [make_die(sides) for sides in hypos]

To compute the distribution of the mixture, I’ll compute the weighted
average of the dice, using the probabilities in pmf_dice as the weights.

To express this computation concisely, it is convenient to put the
distributions into a pandas DataFrame:

import pandas as pd

pd.DataFrame(dice)

1 2 3 4

0.250000 0.250000 0.250000 0.250000

0.166667 0.166667 0.166667 0.166667

0.125000 0.125000 0.125000 0.125000

The result is a DataFrame with one row for each distribution and one
column for each possible outcome. Not all rows are the same length, so
pandas fills the extra spaces with the special value NaN, which stands for
“not a number”. We can use fillna to replace the NaN values with 0:

pd.DataFrame(dice).fillna(0)

1 2 3 4

0.250000 0.250000 0.250000 0.250000

0.166667 0.166667 0.166667 0.166667

0.125000 0.125000 0.125000 0.125000

The next step is to multiply each row by the probabilities in pmf_dice,
which turns out to be easier if we transpose the matrix so the distributions
run down the columns rather than across the rows:

df = pd.DataFrame(dice).fillna(0).transpose()

Now we can multiply by the probabilities in pmf_dice:

df *= pmf_dice.ps

df

1 0.041667 0.055556 0.0625

2 0.041667 0.055556 0.0625

3 0.041667 0.055556 0.0625

4 0.041667 0.055556 0.0625

5 0.000000 0.055556 0.0625

6 0.000000 0.055556 0.0625

7 0.000000 0.000000 0.0625

8 0.000000 0.000000 0.0625

And add up the weighted distributions:

df.sum(axis=1)

The argument axis=1 means we want to sum across the rows. The result is
a pandas Series.

Putting it all together, here’s a function that makes a weighted mixture of
distributions:

def make_mixture(pmf, pmf_seq):

 """Make a mixture of distributions."""

 df = pd.DataFrame(pmf_seq).fillna(0).transpose()

 df *= np.array(pmf)

 total = df.sum(axis=1)

 return Pmf(total)

The first parameter is a Pmf that maps from each hypothesis to a probability.
The second parameter is a sequence of Pmf objects, one for each hypothesis.
We can call it like this:

mix = make_mixture(pmf_dice, dice)

And here’s what it looks like:

In this section I used pandas so that make_mixture is concise, efficient, and
hopefully not too hard to understand. In the exercises at the end of the
chapter, you’ll have a chance to practice with mixtures, and we will use
make_mixture again in the next chapter.

Summary
This chapter introduces the Cdf object, which represents the cumulative
distribution function (CDF).

A Pmf and the corresponding Cdf are equivalent in the sense that they
contain the same information, so you can convert from one to the other. The
primary difference between them is performance: some operations are faster
and easier with a Pmf; others are faster with a Cdf.

In this chapter we used Cdf objects to compute distributions of maximums
and minimums; these distributions are useful for inference if we are given a
maximum or minimum as data. You will see some examples in the
exercises, and in future chapters. We also computed mixtures of
distributions, which we will use in the next chapter to make predictions.

But first you might want to work on these exercises.

Exercises
Example 7-1.

When you generate a Dungeons & Dragons character, instead of rolling
dice, you can use the “standard array” of attributes, which is 15, 14, 13, 12,
10, and 8. Do you think you are better off using the standard array or
(literally) rolling the dice?

Compare the distribution of the values in the standard array to the
distribution we computed for the best three out of four:

Which distribution has higher mean? Use the mean method.

Which distribution has higher standard deviation? Use the std
method.

The lowest value in the standard array is 8. For each attribute, what
is the probability of getting a value less than 8? If you roll the dice

six times, what’s the probability that at least one of your attributes
is less than 8?

The highest value in the standard array is 15. For each attribute,
what is the probability of getting a value greater than 15? If you
roll the dice six times, what’s the probability that at least one of
your attributes is greater than 15?

Example 7-2.

Suppose you are fighting three monsters:

One is armed with a short sword that causes one 6-sided die of
damage,

One is armed with a battle axe that causes one 8-sided die of
damage, and

One is armed with a bastard sword that causes one 10-sided die of
damage.

One of the monsters, chosen at random, attacks you and does 1 point of
damage.

Which monster do you think it was? Compute the posterior probability that
each monster was the attacker.

If the same monster attacks you again, what is the probability that you
suffer 6 points of damage?

Hint: Compute a posterior distribution as we have done before and pass it as
one of the arguments to make_mixture.

Example 7-3.

Henri Poincaré was a French mathematician who taught at the Sorbonne
around 1900. The following anecdote about him is probably fiction, but it
makes an interesting probability problem.

Supposedly Poincaré suspected that his local bakery was selling loaves of
bread that were lighter than the advertised weight of 1 kg, so every day for

a year he bought a loaf of bread, brought it home and weighed it. At the end
of the year, he plotted the distribution of his measurements and showed that
it fit a normal distribution with mean 950 g and standard deviation 50 g. He
brought this evidence to the bread police, who gave the baker a warning.

For the next year, Poincaré continued to weigh his bread every day. At the
end of the year, he found that the average weight was 1000 g, just as it
should be, but again he complained to the bread police, and this time they
fined the baker.

Why? Because the shape of the new distribution was asymmetric. Unlike
the normal distribution, it was skewed to the right, which is consistent with
the hypothesis that the baker was still making 950 g loaves, but deliberately
giving Poincaré the heavier ones.

To see whether this anecdote is plausible, let’s suppose that when the baker
sees Poincaré coming, he hefts n loaves of bread and gives Poincaré the
heaviest one. How many loaves would the baker have to heft to make the
average of the maximum 1000 g?

Chapter 8. Poisson Processes

This chapter introduces the Poisson process, which is a model used to
describe events that occur at random intervals. As an example of a Poisson
process, we’ll model goal-scoring in soccer, which is American English for
the game everyone else calls “football”. We’ll use goals scored in a game to
estimate the parameter of a Poisson process; then we’ll use the posterior
distribution to make predictions.

And we’ll solve the World Cup Problem.

The World Cup Problem
In the 2018 FIFA World Cup final, France defeated Croatia 4 goals to 2.
Based on this outcome:

1. How confident should we be that France is the better team?

2. If the same teams played again, what is the chance France would
win again?

To answer these questions, we have to make some modeling decisions.

First, I’ll assume that for any team against another team there is
some unknown goal-scoring rate, measured in goals per game,
which I’ll denote with the Python variable lam or the Greek letter λ
, pronounced “lambda”.

Second, I’ll assume that a goal is equally likely during any minute
of a game. So, in a 90-minute game, the probability of scoring
during any minute is λ/90.

Third, I’ll assume that a team never scores twice during the same
minute.

https://oreil.ly/d5de3

Of course, none of these assumptions is completely true in the real world,
but I think they are reasonable simplifications. As George Box said, “All
models are wrong; some are useful” (https://oreil.ly/oeTQU).

In this case, the model is useful because if these assumptions are true, at
least roughly, the number of goals scored in a game follows a Poisson
distribution, at least roughly.

The Poisson Distribution
If the number of goals scored in a game follows a Poisson distribution with
a goal-scoring rate, λ, the probability of scoring k goals is

λ
k exp (−λ) / k!

for any non-negative value of k.

SciPy provides a poisson object that represents a Poisson distribution. We
can create one with λ = 1.4 like this:

from scipy.stats import poisson

lam = 1.4

dist = poisson(lam)

type(dist)

scipy.stats._distn_infrastructure.rv_frozen

The result is an object that represents a “frozen” random variable and
provides pmf, which evaluates the probability mass function of the Poisson
distribution.

k = 4

dist.pmf(k)

0.039471954028253146

https://oreil.ly/oeTQU
https://oreil.ly/n4IYT

This result implies that if the average goal-scoring rate is 1.4 goals per
game, the probability of scoring 4 goals in a game is about 4%.

We’ll use the following function to make a Pmf that represents a Poisson
distribution:

from empiricaldist import Pmf

def make_poisson_pmf(lam, qs):

 """Make a Pmf of a Poisson distribution."""

 ps = poisson(lam).pmf(qs)

 pmf = Pmf(ps, qs)

 pmf.normalize()

 return pmf

make_poisson_pmf takes as parameters the goal-scoring rate, lam, and an
array of quantities, qs, where it should evaluate the Poisson PMF. It returns
a Pmf object.

For example, here’s the distribution of goals scored for lam=1.4, computed
for values of k from 0 to 9:

import numpy as np

lam = 1.4

goals = np.arange(10)

pmf_goals = make_poisson_pmf(lam, goals)

And here’s what it looks like:

The most likely outcomes are 0, 1, and 2; higher values are possible but
increasingly unlikely. Values above 7 are negligible. This distribution shows
that if we know the goal-scoring rate, we can predict the number of goals.

Now let’s turn it around: given a number of goals, what can we say about
the goal-scoring rate?

To answer that, we need to think about the prior distribution of lam, which
represents the range of possible values and their probabilities before we see
the score.

The Gamma Distribution
If you have ever seen a soccer game, you have some information about lam.
In most games, teams score a few goals each. In rare cases, a team might
score more than 5 goals, but they almost never score more than 10.

Using data from previous World Cups, I estimate that each team scores
about 1.4 goals per game, on average. So I’ll set the mean of lam to be 1.4.

For a good team against a bad one, we expect lam to be higher; for a bad
team against a good one, we expect it to be lower.

To model the distribution of goal-scoring rates, I’ll use a gamma
distribution, which I chose because:

1. The goal scoring rate is continuous and non-negative, and the
gamma distribution is appropriate for this kind of quantity.

2. The gamma distribution has only one parameter, alpha, which is
the mean. So it’s easy to construct a gamma distribution with the
mean we want.

3. As we’ll see, the shape of the gamma distribution is a reasonable
choice, given what we know about soccer.

And there’s one more reason, which I will reveal in Chapter 18.

https://oreil.ly/jAYJ5
https://oreil.ly/77sAa
https://oreil.ly/77sAa

SciPy provides gamma, which creates an object that represents a gamma
distribution. And the gamma object provides provides pdf, which evaluates
the probability density function (PDF) of the gamma distribution.

Here’s how we use it:

from scipy.stats import gamma

alpha = 1.4

qs = np.linspace(0, 10, 101)

ps = gamma(alpha).pdf(qs)

The parameter, alpha, is the mean of the distribution. The qs are possible
values of lam between 0 and 10. The ps are probability densities, which
we can think of as unnormalized probabilities.

To normalize them, we can put them in a Pmf and call normalize:

from empiricaldist import Pmf

prior = Pmf(ps, qs)

prior.normalize()

The result is a discrete approximation of a gamma distribution. Here’s what
it looks like:

This distribution represents our prior knowledge about goal scoring: lam is
usually less than 2, occasionally as high as 6, and seldom higher than that.

As usual, reasonable people could disagree about the details of the prior, but
this is good enough to get started. Let’s do an update.

The Update
Suppose you are given the goal-scoring rate, λ, and asked to compute the
probability of scoring a number of goals, k. That is precisely the question
we answered by computing the Poisson PMF.

For example, if λ is 1.4, the probability of scoring 4 goals in a game is:

lam = 1.4

k = 4

poisson(lam).pmf(4)

0.039471954028253146

Now suppose we are have an array of possible values for λ; we can
compute the likelihood of the data for each hypothetical value of lam, like
this:

lams = prior.qs

k = 4

likelihood = poisson(lams).pmf(k)

And that’s all we need to do the update. To get the posterior distribution, we
multiply the prior by the likelihoods we just computed and normalize the
result.

The following function encapsulates these steps:

def update_poisson(pmf, data):

 """Update Pmf with a Poisson likelihood."""

 k = data

 lams = pmf.qs

 likelihood = poisson(lams).pmf(k)

 pmf *= likelihood

 pmf.normalize()

The first parameter is the prior; the second is the number of goals.

In the example, France scored 4 goals, so I’ll make a copy of the prior and
update it with the data:

france = prior.copy()

update_poisson(france, 4)

Here’s what the posterior distribution looks like, along with the prior:

The data, k=4, makes us think higher values of lam are more likely and
lower values are less likely. So the posterior distribution is shifted to the
right.

Let’s do the same for Croatia:

croatia = prior.copy()

update_poisson(croatia, 2)

And here are the results:

Here are the posterior means for these distributions:

print(croatia.mean(), france.mean())

1.6999765866755225 2.699772393342308

The mean of the prior distribution is about 1.4. After Croatia scores 2 goals,
their posterior mean is 1.7, which is near the midpoint of the prior and the
data. Likewise after France scores 4 goals, their posterior mean is 2.7.

These results are typical of a Bayesian update: the location of the posterior
distribution is a compromise between the prior and the data.

Probability of Superiority
Now that we have a posterior distribution for each team, we can answer the
first question: How confident should we be that France is the better team?

In the model, “better” means having a higher goal-scoring rate against the
opponent. We can use the posterior distributions to compute the probability
that a random value drawn from France’s distribution exceeds a value
drawn from Croatia’s.

One way to do that is to enumerate all pairs of values from the two
distributions, adding up the total probability that one value exceeds the
other:

def prob_gt(pmf1, pmf2):

 """Compute the probability of superiority."""

 total = 0

 for q1, p1 in pmf1.items():

 for q2, p2 in pmf2.items():

 if q1 > q2:

 total += p1 * p2

 return total

This is similar to the method we use in “Addends” to compute the
distribution of a sum. Here’s how we use it:

prob_gt(france, croatia)

0.7499366290930155

Pmf provides a function that does the same thing:

Pmf.prob_gt(france, croatia)

0.7499366290930174

The results are slightly different because Pmf.prob_gt uses array operators
rather than for loops.

Either way, the result is close to 75%. So, on the basis of one game, we
have moderate confidence that France is actually the better team.

Of course, we should remember that this result is based on the assumption
that the goal-scoring rate is constant. In reality, if a team is down by one
goal, they might play more aggressively toward the end of the game,
making them more likely to score, but also more likely to give up an
additional goal.

As always, the results are only as good as the model.

Predicting the Rematch
Now we can take on the second question: If the same teams played again,
what is the chance Croatia would win? To answer this question, we’ll
generate the “posterior predictive distribution”, which is the number of
goals we expect a team to score.

If we knew the goal-scoring rate, lam, the distribution of goals would be a
Poisson distribution with parameter lam. Since we don’t know lam, the
distribution of goals is a mixture of a Poisson distributions with different
values of lam.

First I’ll generate a sequence of Pmf objects, one for each value of lam:

pmf_seq = [make_poisson_pmf(lam, goals)

 for lam in prior.qs]

The following figure shows what these distributions look like for a few
values of lam.

The predictive distribution is a mixture of these Pmf objects, weighted with
the posterior probabilities. We can use make_mixture from “General
Mixtures” to compute this mixture:

from utils import make_mixture

pred_france = make_mixture(france, pmf_seq)

Here’s the predictive distribution for the number of goals France would
score in a rematch:

This distribution represents two sources of uncertainty: we don’t know the
actual value of lam, and even if we did, we would not know the number of
goals in the next game.

Here’s the predictive distribution for Croatia:

pred_croatia = make_mixture(croatia, pmf_seq)

We can use these distributions to compute the probability that France wins,
loses, or ties the rematch:

win = Pmf.prob_gt(pred_france, pred_croatia)

win

0.5703522415934519

lose = Pmf.prob_lt(pred_france, pred_croatia)

lose

0.26443376257235873

tie = Pmf.prob_eq(pred_france, pred_croatia)

tie

0.16521399583418947

Assuming that France wins half of the ties, their chance of winning the
rematch is about 65%:

win + tie/2

0.6529592395105466

This is a bit lower than their probability of superiority, which is 75%. And
that makes sense, because we are less certain about the outcome of a single
game than we are about the goal-scoring rates. Even if France is the better
team, they might lose the game.

The Exponential Distribution
As an exercise at the end of this notebook, you’ll have a chance to work on
the following variation on the World Cup Problem:

In the 2014 FIFA World Cup, Germany played Brazil in a semifinal
match. Germany scored after 11 minutes and again at the 23 minute
mark. At that point in the match, how many goals would you expect
Germany to score after 90 minutes? What was the probability that they
would score 5 more goals (as, in fact, they did)?

In this version, notice that the data is not the number of goals in a fixed
period of time, but the time between goals.

To compute the likelihood of data like this, we can take advantage of the
theory of Poisson processes again. If each team has a constant goal-scoring
rate, we expect the time between goals to follow an exponential
distribution.

If the goal-scoring rate is λ, the probability of seeing an interval between
goals of t is proportional to the PDF of the exponential distribution:

λ exp (−λt)

https://oreil.ly/aJvpl
https://oreil.ly/aJvpl

Because t is a continuous quantity, the value of this expression is not a
probability; it is a probability density. However, it is proportional to the
probability of the data, so we can use it as a likelihood in a Bayesian
update.

SciPy provides expon, which creates an object that represents an
exponential distribution. However, it does not take lam as a parameter in the
way you might expect, which makes it awkward to work with. Since the
PDF of the exponential distribution is so easy to evaluate, I’ll use my own
function:

def expo_pdf(t, lam):

 """Compute the PDF of the exponential distribution."""

 return lam * np.exp(-lam * t)

To see what the exponential distribution looks like, let’s assume again that
lam is 1.4; we can compute the distribution of t like this:

lam = 1.4

qs = np.linspace(0, 4, 101)

ps = expo_pdf(qs, lam)

pmf_time = Pmf(ps, qs)

pmf_time.normalize()

25.616650745459093

And here’s what it looks like:

It is counterintuitive, but true, that the most likely time to score a goal is
immediately. After that, the probability of each successive interval is a little
lower.

With a goal-scoring rate of 1.4, it is possible that a team will take more than
one game to score a goal, but it is unlikely that they will take more than two
games.

Summary
This chapter introduces three new distributions, so it can be hard to keep
them straight. Let’s review:

If a system satisfies the assumptions of a Poisson model, the
number of events in a period of time follows a Poisson distribution,
which is a discrete distribution with integer quantities from 0 to
infinity. In practice, we can usually ignore low-probability
quantities above a finite limit.

Also under the Poisson model, the interval between events follows
an exponential distribution, which is a continuous distribution with
quantities from 0 to infinity. Because it is continuous, it is
described by a probability density function (PDF) rather than a
probability mass function (PMF). But when we use an exponential
distribution to compute the likelihood of the data, we can treat
densities as unnormalized probabilities.

The Poisson and exponential distributions are parameterized by an
event rate, denoted λ or lam.

For the prior distribution of λ, I used a gamma distribution, which
is a continuous distribution with quantities from 0 to infinity, but I
approximated it with a discrete, bounded PMF. The gamma
distribution has one parameter, denoted α or alpha, which is also
its mean.

I chose the gamma distribution because the shape is consistent with our
background knowledge about goal-scoring rates. There are other
distributions we could have used; however, we will see in Chapter 18 that
the gamma distribution can be a particularly good choice.

But we have a few things to do before we get there, starting with these
exercises.

Exercises
Example 8-1.

Let’s finish the exercise we started:

In the 2014 FIFA World Cup, Germany played Brazil in a semifinal
match. Germany scored after 11 minutes and again at the 23 minute
mark. At that point in the match, how many goals would you expect
Germany to score after 90 minutes? What was the probability that they
would score 5 more goals (as, in fact, they did)?

Here are the steps I recommend:

1. Starting with the same gamma prior we used in the previous
problem, compute the likelihood of scoring a goal after 11 minutes
for each possible value of lam. Don’t forget to convert all times
into games rather than minutes.

2. Compute the posterior distribution of lam for Germany after the
first goal.

3. Compute the likelihood of scoring another goal after 12 more
minutes and do another update. Plot the prior, posterior after one
goal, and posterior after two goals.

4. Compute the posterior predictive distribution of goals Germany
might score during the remaining time in the game, 90-23 minutes.
Note: You will have to think about how to generate predicted goals
for a fraction of a game.

5. Compute the probability of scoring 5 or more goals during the
remaining time.

Example 8-2.

Returning to the first version of the World Cup Problem, suppose France
and Croatia play a rematch. What is the probability that France scores first?

Example 8-3.

In the 2010-11 National Hockey League (NHL) Finals, my beloved Boston
Bruins played a best-of-seven championship series against the despised
Vancouver Canucks. Boston lost the first two games 0-1 and 2-3, then won
the next two games 8-1 and 4-0. At this point in the series, what is the
probability that Boston will win the next game, and what is their probability
of winning the championship?

To choose a prior distribution, I got some statistics from
http://www.nhl.com, specifically the average goals per game for each team
in the 2010-11 season. The distribution is well modeled by a gamma
distribution with mean 2.8.

In what ways do you think the outcome of these games might violate the
assumptions of the Poisson model? How would these violations affect your
predictions?

http://www.nhl.com/

Chapter 9. Decision Analysis

This chapter presents a problem inspired by the game show The Price is
Right. It is a silly example, but it demonstrates a useful process called
Bayesian decision analysis.

As in previous examples, we’ll use data and prior distribution to compute a
posterior distribution; then we’ll use the posterior distribution to choose an
optimal strategy in a game that involves bidding.

As part of the solution, we will use kernel density estimation (KDE) to
estimate the prior distribution, and a normal distribution to compute the
likelihood of the data.

And at the end of the chapter, I pose a related problem you can solve as an
exercise.

The Price Is Right Problem
On November 1, 2007, contestants named Letia and Nathaniel appeared on
The Price is Right, an American television game show. They competed in a
game called “The Showcase”, where the objective is to guess the price of a
collection of prizes. The contestant who comes closest to the actual price,
without going over, wins the prizes.

Nathaniel went first. His showcase included a dishwasher, a wine cabinet, a
laptop computer, and a car. He bid $26,000.

Letia’s showcase included a pinball machine, a video arcade game, a pool
table, and a cruise of the Bahamas. She bid $21,500. The actual price of
Nathaniel’s showcase was $25,347. His bid was too high, so he lost. The
actual price of Letia’s showcase was $21,578.

She was only off by $78, so she won her showcase and, because her bid was
off by less than 250, she also won Nathaniel’s showcase.

https://oreil.ly/3HumB

For a Bayesian thinker, this scenario suggests several questions:

1. Before seeing the prizes, what prior beliefs should the contestants
have about the price of the showcase?

2. After seeing the prizes, how should the contestants update those
beliefs?

3. Based on the posterior distribution, what should the contestants
bid?

The third question demonstrates a common use of Bayesian methods:
decision analysis.

This problem is inspired by an example in Cameron Davidson-Pilon’s book,
Probablistic Programming and Bayesian Methods for Hackers.

The Prior
To choose a prior distribution of prices, we can take advantage of data from
previous episodes. Fortunately, fans of the show keep detailed records.

For this example, I downloaded files containing the price of each showcase
from the 2011 and 2012 seasons and the bids offered by the contestants.

The following function reads the data and cleans it up a little:

import pandas as pd

def read_data(filename):

 """Read the showcase price data."""

 df = pd.read_csv(filename, index_col=0, skiprows=[1])

 return df.dropna().transpose()

I’ll read both files and concatenate them:

df2011 = read_data('showcases.2011.csv')

df2012 = read_data('showcases.2012.csv')

df = pd.concat([df2011, df2012], ignore_index=True)

https://oreil.ly/sBWRR
https://oreil.ly/IEbjn
https://oreil.ly/GKH0F

Here’s what the dataset looks like:

df.head(3)

Showcase 1 Showcase 2 Bid 1 Bid 2

0 50969.0 45429.0 42000.0 34000.0

1 21901.0 34061.0 14000.0 59900.0

2 32815.0 53186.0 32000.0 45000.0

The first two columns, Showcase 1 and Showcase 2, are the values of the
showcases in dollars. The next two columns are the bids the contestants
made. The last two columns are the differences between the actual values
and the bids.

Kernel Density Estimation
This dataset contains the prices for 313 previous showcases, which we can
think of as a sample from the population of possible prices.

We can use this sample to estimate the prior distribution of showcase prices.
One way to do that is kernel density estimation (KDE), which uses the
sample to estimate a smooth distribution. If you are not familiar with KDE,
you can read about it online.

SciPy provides gaussian_kde, which takes a sample and returns an object
that represents the estimated distribution.

The following function takes sample, makes a KDE, evaluates it at a given
sequence of quantities, qs, and returns the result as a normalized PMF.

from scipy.stats import gaussian_kde

from empiricaldist import Pmf

def kde_from_sample(sample, qs):

 """Make a kernel density estimate from a sample."""

 kde = gaussian_kde(sample)

https://mathisonian.github.io/kde

 ps = kde(qs)

 pmf = Pmf(ps, qs)

 pmf.normalize()

 return pmf

We can use it to estimate the distribution of values for Showcase 1:

import numpy as np

qs = np.linspace(0, 80000, 81)

prior1 = kde_from_sample(df['Showcase 1'], qs)

Here’s what it looks like:

Example 9-1.

Use this function to make a Pmf that represents the prior distribution for
Showcase 2, and plot it.

Distribution of Error
To update these priors, we have to answer these questions:

What data should we consider and how should we quantify it?

Can we compute a likelihood function? That is, for each
hypothetical price, can we compute the conditional likelihood of
the data?

To answer these questions, I will model each contestant as a price-guessing
instrument with known error characteristics. In this model, when the
contestant sees the prizes, they guess the price of each prize and add up the
prices. Let’s call this total guess.

Now the question we have to answer is, “If the actual price is price, what
is the likelihood that the contestant’s guess would be guess?”

Equivalently, if we define error = guess – price, we can ask, “What is
the likelihood that the contestant’s guess is off by error?”

To answer this question, I’ll use the historical data again. For each
showcase in the dataset, let’s look at the difference between the contestant’s
bid and the actual price:

sample_diff1 = df['Bid 1'] - df['Showcase 1']

sample_diff2 = df['Bid 2'] - df['Showcase 2']

To visualize the distribution of these differences, we can use KDE again:

qs = np.linspace(-40000, 20000, 61)

kde_diff1 = kde_from_sample(sample_diff1, qs)

kde_diff2 = kde_from_sample(sample_diff2, qs)

Here’s what these distributions look like:

It looks like the bids are too low more often than too high, which makes
sense. Remember that under the rules of the game, you lose if you overbid,

so contestants probably underbid to some degree deliberately.

For example, if they guess that the value of the showcase is $40,000, they
might bid $36,000 to avoid going over.

It looks like these distributions are well modeled by a normal distribution,
so we can summarize them with their mean and standard deviation.

For example, here is the mean and standard deviation of Diff for Player 1:

mean_diff1 = sample_diff1.mean()

std_diff1 = sample_diff1.std()

print(mean_diff1, std_diff1)

-4116.3961661341855 6899.909806377117

Now we can use these differences to model the contestant’s distribution of
errors. This step is a little tricky because we don’t actually know the
contestant’s guesses; we only know what they bid.

So we have to make some assumptions:

I’ll assume that contestants underbid because they are being
strategic, and that on average their guesses are accurate. In other
words, the mean of their errors is 0.

But I’ll assume that the spread of the differences reflects the actual
spread of their errors. So, I’ll use the standard deviation of the
differences as the standard deviation of their errors.

Based on these assumptions, I’ll make a normal distribution with
parameters 0 and std_diff1. SciPy provides an object called norm that
represents a normal distribution with the given mean and standard
deviation:

from scipy.stats import norm

error_dist1 = norm(0, std_diff1)

The result is an object that provides pdf, which evaluates the probability
density function of the normal distribution.

For example, here is the probability density of error=-100, based on the
distribution of errors for Player 1:

error = -100

error_dist1.pdf(error)

5.781240564008691e-05

By itself, this number doesn’t mean very much, because probability
densities are not probabilities. But they are proportional to probabilities, so
we can use them as likelihoods in a Bayesian update, as we’ll see in the
next section.

Update
Suppose you are Player 1. You see the prizes in your showcase and your
guess for the total price is $23,000.

From your guess I will subtract away each hypothetical price in the prior
distribution; the result is your error under each hypothesis.

guess1 = 23000

error1 = guess1 - prior1.qs

Now suppose we know, based on past performance, that your estimation
error is well modeled by error_dist1. Under that assumption we can
compute the likelihood of your error under each hypothesis:

likelihood1 = error_dist1.pdf(error1)

The result is an array of likelihoods, which we can use to update the prior:

posterior1 = prior1 * likelihood1

posterior1.normalize()

Here’s what the posterior distribution looks like:

Because your initial guess is in the lower end of the range, the posterior
distribution has shifted to the left. We can compute the posterior mean to
see by how much:

prior1.mean(), posterior1.mean()

(30299.488817891375, 26192.024002392536)

Before you saw the prizes, you expected to see a showcase with a value
close to $30,000. After making a guess of $23,000, you updated the prior
distribution. Based on the combination of the prior and your guess, you now
expect the actual price to be about $26,000.

Example 9-2.

Now suppose you are Player 2. When you see your showcase, you guess
that the total price is $38,000.

Use diff2 to construct a normal distribution that represents the distribution
of your estimation errors.

Compute the likelihood of your guess for each actual price and use it to
update prior2.

Plot the posterior distribution and compute the posterior mean. Based on the
prior and your guess, what do you expect the actual price of the showcase to

be?

Probability of Winning
Now that we have a posterior distribution for each player, let’s think about
strategy.

First, from the point of view of Player 1, let’s compute the probability that
Player 2 overbids. To keep it simple, I’ll use only the performance of past
players, ignoring the value of the showcase.

The following function takes a sequence of past bids and returns the
fraction that overbid.

def prob_overbid(sample_diff):

 """Compute the probability of an overbid."""

 return np.mean(sample_diff > 0)

Here’s an estimate for the probability that Player 2 overbids:

prob_overbid(sample_diff2)

0.29073482428115016

Now suppose Player 1 underbids by $5,000. What is the probability that
Player 2 underbids by more?

The following function uses past performance to estimate the probability
that a player underbids by more than a given amount, diff:

def prob_worse_than(diff, sample_diff):

 """Probability opponent diff is worse than given diff."""

 return np.mean(sample_diff < diff)

Here’s the probability that Player 2 underbids by more than $5,000:

prob_worse_than(-5000, sample_diff2)

0.38338658146964855

And here’s the probability they underbid by more than $10,000:

prob_worse_than(-10000, sample_diff2)

0.14376996805111822

We can combine these functions to compute the probability that Player 1
wins, given the difference between their bid and the actual price:

def compute_prob_win(diff, sample_diff):

 """Probability of winning for a given diff."""

 # if you overbid you lose

 if diff > 0:

 return 0

 # if the opponent overbids, you win

 p1 = prob_overbid(sample_diff)

 # or if their bid is worse than yours, you win

 p2 = prob_worse_than(diff, sample_diff)

 # p1 and p2 are mutually exclusive, so we can add them

 return p1 + p2

Here’s the probability that you win, given that you underbid by $5,000:

compute_prob_win(-5000, sample_diff2)

0.6741214057507987

Now let’s look at the probability of winning for a range of possible
differences:

xs = np.linspace(-30000, 5000, 121)

ys = [compute_prob_win(x, sample_diff2)

 for x in xs]

Here’s what it looks like:

If you underbid by $30,000, the chance of winning is about 30%, which is
mostly the chance your opponent overbids.

As your bids gets closer to the actual price, your chance of winning
approaches 1.

And, of course, if you overbid, you lose (even if your opponent also
overbids).

Example 9-3.

Run the same analysis from the point of view of Player 2. Using the sample
of differences from Player 1, compute:

1. The probability that Player 1 overbids.

2. The probability that Player 1 underbids by more than $5,000.

3. The probability that Player 2 wins, given that they underbid by
$5,000.

Then plot the probability that Player 2 wins for a range of possible
differences between their bid and the actual price.

Decision Analysis
In the previous section we computed the probability of winning, given that
we have underbid by a particular amount.

In reality the contestants don’t know how much they have underbid by,
because they don’t know the actual price.

But they do have a posterior distribution that represents their beliefs about
the actual price, and they can use that to estimate their probability of
winning with a given bid.

The following function takes a possible bid, a posterior distribution of
actual prices, and a sample of differences for the opponent.

It loops through the hypothetical prices in the posterior distribution and, for
each price:

1. Computes the difference between the bid and the hypothetical
price,

2. Computes the probability that the player wins, given that
difference, and

3. Adds up the weighted sum of the probabilities, where the weights
are the probabilities in the posterior distribution.

def total_prob_win(bid, posterior, sample_diff):

 """Computes the total probability of winning with a given bid.

 bid: your bid

 posterior: Pmf of showcase value

 sample_diff: sequence of differences for the opponent

 returns: probability of winning

 """

 total = 0

 for price, prob in posterior.items():

 diff = bid - price

 total += prob * compute_prob_win(diff, sample_diff)

 return total

This loop implements the law of total probability:

P (win) = ∑
price

P (price) P (win | price)

Here’s the probability that Player 1 wins, based on a bid of $25,000 and the
posterior distribution posterior1:

total_prob_win(25000, posterior1, sample_diff2)

0.4842210945439812

Now we can loop through a series of possible bids and compute the
probability of winning for each one:

bids = posterior1.qs

probs = [total_prob_win(bid, posterior1, sample_diff2)

 for bid in bids]

prob_win_series = pd.Series(probs, index=bids)

Here are the results:

And here’s the bid that maximizes Player 1’s chance of winning:

prob_win_series.idxmax()

21000.0

prob_win_series.max()

0.6136807192359474

Recall that your guess was $23,000. Using your guess to compute the
posterior distribution, the posterior mean is about $26,000. But the bid that
maximizes your chance of winning is $21,000.

Example 9-4.

Do the same analysis for Player 2.

Maximizing Expected Gain
In the previous section we computed the bid that maximizes your chance of
winning. And if that’s your goal, the bid we computed is optimal.

But winning isn’t everything. Remember that if your bid is off by $250 or
less, you win both showcases. So it might be a good idea to increase your
bid a little: it increases the chance you overbid and lose, but it also increases
the chance of winning both showcases.

Let’s see how that works out. The following function computes how much
you will win, on average, given your bid, the actual price, and a sample of
errors for your opponent.

def compute_gain(bid, price, sample_diff):

 """Compute expected gain given a bid and actual price."""

 diff = bid - price

 prob = compute_prob_win(diff, sample_diff)

 # if you are within 250 dollars, you win both showcases

 if -250 <= diff <= 0:

 return 2 * price * prob

 else:

 return price * prob

For example, if the actual price is $35,000 and you bid $30,000, you will
win about $23,600 worth of prizes on average, taking into account your
probability of losing, winning one showcase, or winning both.

compute_gain(30000, 35000, sample_diff2)

23594.249201277955

In reality we don’t know the actual price, but we have a posterior
distribution that represents what we know about it. By averaging over the
prices and probabilities in the posterior distribution, we can compute the
expected gain for a particular bid.

In this context, “expected” means the average over the possible showcase
values, weighted by their probabilities.

def expected_gain(bid, posterior, sample_diff):

 """Compute the expected gain of a given bid."""

 total = 0

 for price, prob in posterior.items():

 total += prob * compute_gain(bid, price, sample_diff)

 return total

For the posterior we computed earlier, based on a guess of $23,000, the
expected gain for a bid of $21,000 is about $16,900:

expected_gain(21000, posterior1, sample_diff2)

16923.59933856512

But can we do any better?

To find out, we can loop through a range of bids and find the one that
maximizes expected gain:

bids = posterior1.qs

gains = [expected_gain(bid, posterior1, sample_diff2) for bid in bids]

expected_gain_series = pd.Series(gains, index=bids)

Here are the results:

Here is the optimal bid:

expected_gain_series.idxmax()

22000.0

With that bid, the expected gain is about $17,400:

expected_gain_series.max()

17384.899584430797

Recall that your initial guess was $23,000. The bid that maximizes the
chance of winning is $21,000. And the bid that maximizes your expected
gain is $22,000.

Example 9-5.

Do the same analysis for Player 2.

Summary
There’s a lot going on this this chapter, so let’s review the steps:

1. First we used KDE and data from past shows to estimate prior
distributions for the values of the showcases.

2. Then we used bids from past shows to model the distribution of
errors as a normal distribution.

3. We did a Bayesian update using the distribution of errors to
compute the likelihood of the data.

4. We used the posterior distribution for the value of the showcase to
compute the probability of winning for each possible bid, and
identified the bid that maximizes the chance of winning.

5. Finally, we used probability of winning to compute the expected
gain for each possible bid, and identified the bid that maximizes
expected gain.

Incidentally, this example demonstrates the hazard of using the word
“optimal” without specifying what you are optimizing. The bid that
maximizes the chance of winning is not generally the same as the bid that
maximizes expected gain.

Discussion
When people discuss the pros and cons of Bayesian estimation, as
contrasted with classical methods sometimes called “frequentist”, they often
claim that in many cases Bayesian methods and frequentist methods
produce the same results.

In my opinion, this claim is mistaken because Bayesian and frequentist
method produce different kinds of results:

The result of frequentist methods is usually a single value that is
considered to be the best estimate (by one of several criteria) or an
interval that quantifies the precision of the estimate.

The result of Bayesian methods is a posterior distribution that
represents all possible outcomes and their probabilities.

Granted, you can use the posterior distribution to choose a “best” estimate
or compute an interval. And in that case the result might be the same as the
frequentist estimate.

But doing so discards useful information and, in my opinion, eliminates the
primary benefit of Bayesian methods: the posterior distribution is more
useful than a single estimate, or even an interval.

The example in this chapter demonstrates the point. Using the entire
posterior distribution, we can compute the bid that maximizes the
probability of winning, or the bid that maximizes expected gain, even if the
rules for computing the gain are complicated (and nonlinear).

With a single estimate or an interval, we can’t do that, even if they are
“optimal” in some sense. In general, frequentist estimation provides little
guidance for decision-making.

If you hear someone say that Bayesian and frequentist methods produce the
same results, you can be confident that they don’t understand Bayesian
methods.

More Exercises
Example 9-6.

When I worked in Cambridge, Massachusetts, I usually took the subway to
South Station and then a commuter train home to Needham. Because the
subway was unpredictable, I left the office early enough that I could wait up
to 15 minutes and still catch the commuter train.

When I got to the subway stop, there were usually about 10 people waiting
on the platform. If there were fewer than that, I figured I just missed a train,
so I expected to wait a little longer than usual. And if there there more than
that, I expected another train soon.

But if there were a lot more than 10 passengers waiting, I inferred that
something was wrong, and I expected a long wait. In that case, I might
leave and take a taxi.

We can use Bayesian decision analysis to quantify the analysis I did
intuitively. Given the number of passengers on the platform, how long
should we expect to wait? And when should we give up and take a taxi?

My analysis of this problem is in redline.ipynb, which is in the
repository for this book. Click here to run this notebook on Colab.

Example 9-7.

This exercise is inspired by a true story. In 2001, I created Green Tea Press
to publish my books, starting with Think Python. I ordered 100 copies from
a short-run printer and made the book available for sale through a
distributor.

After the first week, the distributor reported that 12 copies were sold. Based
on that report, I thought I would run out of copies in about 8 weeks, so I got
ready to order more. My printer offered me a discount if I ordered more
than 1,000 copies, so I went a little crazy and ordered 2,000.

A few days later, my mother called to tell me that her copies of the book
had arrived. Surprised, I asked how many. She said 10.

It turned out I had sold only two books to non-relatives. And it took a lot
longer than I expected to sell 2,000 copies.

The details of this story are unique, but the general problem is something
almost every retailer has to figure out. Based on past sales, how do you
predict future sales? And based on those predictions, how do you decide
how much to order and when?

Often the cost of a bad decision is complicated. If you place a lot of small
orders rather than one big one, your costs are likely to be higher. If you run
out of inventory, you might lose customers. And if you order too much, you
have to pay the various costs of holding inventory.

So, let’s solve a version of the problem I faced. It will take some work to set
up the problem; the details are in the notebook for this chapter.

https://oreil.ly/HpHG3
https://greenteapress.com/

Chapter 10. Testing

In “The Euro Problem” I presented a problem from David MacKay’s book,
Information Theory, Inference, and Learning Algorithms:

A statistical statement appeared in The Guardian on Friday, January 4,
2002:

When spun on edge 250 times, a Belgian one-euro coin came up heads
140 times and tails 110. “It looks very suspicious to me,” said Barry
Blight, a statistics lecturer at the London School of Economics. “If the
coin were unbiased, the chance of getting a result as extreme as that
would be less than 7%.”

But do these data give evidence that the coin is biased rather than fair?

We started to answer this question in Chapter 4; to review, our answer was
based on these modeling decisions:

If you spin a coin on edge, there is some probability, x, that it will
land heads up.

The value of x varies from one coin to the next, depending on how
the coin is balanced and possibly other factors.

Starting with a uniform prior distribution for x, we updated it with the given
data, 140 heads and 110 tails. Then we used the posterior distribution to
compute the most likely value of x, the posterior mean, and a credible
interval.

But we never really answered MacKay’s question: “Do these data give
evidence that the coin is biased rather than fair?”

In this chapter, finally, we will.

https://oreil.ly/ZxSO7

Estimation
Let’s review the solution to the Euro Problem from “The Binomial
Likelihood Function”. We started with a uniform prior:

import numpy as np

from empiricaldist import Pmf

xs = np.linspace(0, 1, 101)

uniform = Pmf(1, xs)

And we used the binomial distribution to compute the probability of the
data for each possible value of x:

from scipy.stats import binom

k, n = 140, 250

likelihood = binom.pmf(k, n, xs)

We computed the posterior distribution in the usual way:

posterior = uniform * likelihood

posterior.normalize()

And here’s what it looks like:

Again, the posterior mean is about 0.56, with a 90% credible interval from
0.51 to 0.61:

print(posterior.mean(),

 posterior.credible_interval(0.9))

0.5595238095238095 [0.51 0.61]

The prior mean was 0.5, and the posterior mean is 0.56, so it seems like the
data is evidence that the coin is biased.

But, it turns out not to be that simple.

Evidence
In “Oliver’s Blood”, I said that data are considered evidence in favor of a
hypothesis, A, if the data are more likely under A than under the
alternative, B; that is if

P(D|A) > P(D|B)

Furthermore, we can quantify the strength of the evidence by computing the
ratio of these likelihoods, which is known as the Bayes factor and often
denoted K:

K =
P(D|A)

P(D|B)

So, for the Euro Problem, let’s consider two hypotheses, fair and biased,
and compute the likelihood of the data under each hypothesis.

If the coin is fair, the probability of heads is 50%, and we can compute the
probability of the data (140 heads out of 250 spins) using the binomial
distribution:

k = 140

n = 250

like_fair = binom.pmf(k, n, p=0.5)

like_fair

https://oreil.ly/641Na

0.008357181724917673

That’s the probability of the data, given that the coin is fair.

But if the coin is biased, what’s the probability of the data? That depends on
what “biased” means. If we know ahead of time that “biased” means the
probability of heads is 56%, we can use the binomial distribution again:

like_biased = binom.pmf(k, n, p=0.56)

like_biased

0.05077815959517949

Now we can compute the likelihood ratio:

K = like_biased / like_fair

K

6.075990838368387

The data are about 6 times more likely if the coin is biased, by this
definition, than if it is fair.

But we used the data to define the hypothesis, which seems like cheating.
To be fair, we should define “biased” before we see the data.

Uniformly Distributed Bias
Suppose “biased” means that the probability of heads is anything except
50%, and all other values are equally likely.

We can represent that definition by making a uniform distribution and
removing 50%:

biased_uniform = uniform.copy()

biased_uniform[0.5] = 0

biased_uniform.normalize()

To compute the total probability of the data under this hypothesis, we
compute the conditional probability of the data for each value of x:

xs = biased_uniform.qs

likelihood = binom.pmf(k, n, xs)

Then multiply by the prior probabilities and add up the products:

like_uniform = np.sum(biased_uniform * likelihood)

like_uniform

0.0039004919277704267

So that’s the probability of the data under the “biased uniform” hypothesis.

Now we can compute the likelihood ratio of the data under the fair and
biased uniform hypotheses:

K = like_fair / like_uniform

K

2.1425968518013954

The data are about two times more likely if the coin is fair than if it is
biased, by this definition of “biased”.

To get a sense of how strong that evidence is, we can apply Bayes’s rule.
For example, if the prior probability is 50% that the coin is biased, the prior
odds are 1, so the posterior odds are about 2.1 to 1 and the posterior
probability is about 68%.

prior_odds = 1

posterior_odds = prior_odds * K

posterior_odds

2.1425968518013954

def prob(o):

 return o / (o+1)

posterior_probability = prob(posterior_odds)

posterior_probability

0.6817918278551125

Evidence that “moves the needle” from 50% to 68% is not very strong.

Now suppose “biased” doesn’t mean every value of x is equally likely.
Maybe values near 50% are more likely and values near the extremes are
less likely. We could use a triangle-shaped distribution to represent this
alternative definition of “biased”:

ramp_up = np.arange(50)

ramp_down = np.arange(50, -1, -1)

a = np.append(ramp_up, ramp_down)

triangle = Pmf(a, xs, name='triangle')

triangle.normalize()

As we did with the uniform distribution, we can remove 50% as a possible
value of x (but it doesn’t make much difference if we skip this detail):

biased_triangle = triangle.copy()

biased_triangle[0.5] = 0

biased_triangle.normalize()

Here’s what the triangle prior looks like, compared to the uniform prior:

Example 10-1.

Now compute the total probability of the data under this definition of
“biased” and compute the Bayes factor, compared with the fair hypothesis.
Is the data evidence that the coin is biased?

Bayesian Hypothesis Testing
What we’ve done so far in this chapter is sometimes called “Bayesian
hypothesis testing” in contrast with statistical hypothesis testing.

In statistical hypothesis testing, we compute a p-value, which is hard to
define concisely, and use it to determine whether the results are
“statistically significant”, which is also hard to define concisely.

The Bayesian alternative is to report the Bayes factor, K, which
summarizes the strength of the evidence in favor of one hypothesis or the
other.

Some people think it is better to report K than a posterior probability
because K does not depend on a prior probability. But as we saw in this
example, K often depends on a precise definition of the hypotheses, which
can be just as controversial as a prior probability.

In my opinion, Bayesian hypothesis testing is better because it measures the
strength of the evidence on a continuum, rather that trying to make a binary
determination. But it doesn’t solve what I think is the fundamental problem,
which is that hypothesis testing is not asking the question we really care
about.

To see why, suppose you test the coin and decide that it is biased after all.
What can you do with this answer? In my opinion, not much. In contrast,
there are two questions I think are more useful (and therefore more
meaningful):

Prediction: Based on what we know about the coin, what should
we expect to happen in the future?

https://oreil.ly/RYihR

Decision-making: Can we use those predictions to make better
decisions?

At this point, we’ve seen a few examples of prediction. For example, in
Chapter 8 we used the posterior distribution of goal-scoring rates to predict
the outcome of soccer games.

And we’ve seen one previous example of decision analysis: In Chapter 9
we used the distribution of prices to choose an optimal bid on The Price is
Right.

So let’s finish this chapter with another example of Bayesian decision
analysis, the Bayesian Bandit strategy.

Bayesian Bandits
If you have ever been to a casino, you have probably seen a slot machine,
which is sometimes called a “one-armed bandit” because it has a handle
like an arm and the ability to take money like a bandit.

The Bayesian Bandit strategy is named after one-armed bandits because it
solves a problem based on a simplified version of a slot machine.

Suppose that each time you play a slot machine, there is a fixed probability
that you win. And suppose that different machines give you different
probabilities of winning, but you don’t know what the probabilities are.

Initially, you have the same prior belief about each of the machines, so you
have no reason to prefer one over the others. But if you play each machine a
few times, you can use the results to estimate the probabilities. And you can
use the estimated probabilities to decide which machine to play next.

At a high level, that’s the Bayesian Bandit strategy. Now let’s see the
details.

Prior Beliefs
If we know nothing about the probability of winning, we can start with a
uniform prior:

xs = np.linspace(0, 1, 101)

prior = Pmf(1, xs)

prior.normalize()

Supposing we are choosing from four slot machines, I’ll make four copies
of the prior, one for each machine:

beliefs = [prior.copy() for i in range(4)]

Here’s what the prior distributions look like for the four machines:

plot(beliefs)

The Update
Each time we play a machine, we can use the outcome to update our beliefs.
The following function does the update.

likelihood = {

 'W': xs,

 'L': 1 - xs

}

def update(pmf, data):

 """Update the probability of winning."""

 pmf *= likelihood[data]

 pmf.normalize()

This function updates the prior distribution in place. pmf is a Pmf that
represents the prior distribution of x, which is the probability of winning.

data is a string, either W if the outcome is a win or L if the outcome is a
loss.

The likelihood of the data is either xs or 1-xs, depending on the outcome.

Suppose we choose a machine, play 10 times, and win once. We can
compute the posterior distribution of x, based on this outcome, like this:

bandit = prior.copy()

for outcome in 'WLLLLLLLLL':

 update(bandit, outcome)

Here’s what the posterior looks like:

Multiple Bandits
Now suppose we have four machines with these probabilities:

actual_probs = [0.10, 0.20, 0.30, 0.40]

Remember that as a player, we don’t know these probabilities.

The following function takes the index of a machine, simulates playing the
machine once, and returns the outcome, W or L.

from collections import Counter

count how many times we've played each machine

counter = Counter()

def play(i):

 """Play machine i.

 i: index of the machine to play

 returns: string 'W' or 'L'

 """

 counter[i] += 1

 p = actual_probs[i]

 if np.random.random() < p:

 return 'W'

 else:

 return 'L'

counter is a Counter, which is a kind of dictionary we’ll use to keep track
of how many times each machine is played.

Here’s a test that plays each machine 10 times:

for i in range(4):

 for _ in range(10):

 outcome = play(i)

 update(beliefs[i], outcome)

Each time through the inner loop, we play one machine and update our
beliefs.

Here’s what our posterior beliefs look like:

Here are the actual probabilities, posterior means, and 90% credible
intervals:

Actual P(win) Posterior mean Credible interval

0 0.1 0.250 [0.08, 0.47]

1 0.2 0.250 [0.08, 0.47]

2 0.3 0.500 [0.27, 0.73]

3 0.4 0.417 [0.2, 0.65]

We expect the credible intervals to contain the actual probabilities most of
the time.

Explore and Exploit
Based on these posterior distributions, which machine do you think we
should play next? One option would be to choose the machine with the
highest posterior mean.

That would not be a bad idea, but it has a drawback: since we have only
played each machine a few times, the posterior distributions are wide and
overlapping, which means we are not sure which machine is the best; if we

focus on one machine too soon, we might choose the wrong machine and
play it more than we should.

To avoid that problem, we could go to the other extreme and play all
machines equally until we are confident we have identified the best
machine, and then play it exclusively.

That’s not a bad idea either, but it has a drawback: while we are gathering
data, we are not making good use of it; until we’re sure which machine is
the best, we are playing the others more than we should.

The Bayesian Bandits strategy avoids both drawbacks by gathering and
using data at the same time. In other words, it balances exploration and
exploitation.

The kernel of the idea is called Thompson sampling: when we choose a
machine, we choose at random so that the probability of choosing each
machine is proportional to the probability that it is the best.

Given the posterior distributions, we can compute the “probability of
superiority” for each machine.

Here’s one way to do it. We can draw a sample of 1,000 values from each
posterior distribution, like this:

samples = np.array([b.choice(1000)

 for b in beliefs])

samples.shape

(4, 1000)

The result has 4 rows and 1,000 columns. We can use argmax to find the
index of the largest value in each column:

indices = np.argmax(samples, axis=0)

indices.shape

(1000,)

https://oreil.ly/YgExH

The Pmf of these indices is the fraction of times each machine yielded the
highest values:

pmf = Pmf.from_seq(indices)

pmf

probs

0 0.048

1 0.043

2 0.625

3 0.284

These fractions approximate the probability of superiority for each
machine. So we could choose the next machine by choosing a value from
this Pmf.

pmf.choice()

1

But that’s a lot of work to choose a single value, and it’s not really
necessary, because there’s a shortcut.

If we draw a single random value from each posterior distribution and
select the machine that yields the highest value, it turns out that we’ll select
each machine in proportion to its probability of superiority.

That’s what the following function does.

def choose(beliefs):

 """Use Thompson sampling to choose a machine.

 Draws a single sample from each distribution.

 returns: index of the machine that yielded the highest value

 """

 ps = [b.choice() for b in beliefs]

 return np.argmax(ps)

This function chooses one value from the posterior distribution of each
machine and then uses argmax to find the index of the machine that yielded
the highest value.

Here’s an example:

choose(beliefs)

3

The Strategy
Putting it all together, the following function chooses a machine, plays
once, and updates beliefs:

def choose_play_update(beliefs):

 """Choose a machine, play it, and update beliefs."""

 # choose a machine

 machine = choose(beliefs)

 # play it

 outcome = play(machine)

 # update beliefs

 update(beliefs[machine], outcome)

To test it out, let’s start again with a fresh set of beliefs and an empty
Counter:

beliefs = [prior.copy() for i in range(4)]

counter = Counter()

If we run the bandit algorithm 100 times, we can see how beliefs gets
updated:

num_plays = 100

for i in range(num_plays):

 choose_play_update(beliefs)

plot(beliefs)

The following table summarizes the results:

Actual P(win) Posterior mean Credible interval

0 0.1 0.107 [0.0, 0.31]

1 0.2 0.269 [0.14, 0.42]

2 0.3 0.293 [0.18, 0.41]

3 0.4 0.438 [0.3, 0.58]

The credible intervals usually contain the actual probabilities of winning.
The estimates are still rough, especially for the lower-probability machines.
But that’s a feature, not a bug: the goal is to play the high-probability
machines most often. Making the estimates more precise is a means to that
end, but not an end itself.

More importantly, let’s see how many times each machine got played:

Actual P(win) Times played

0 0.1 7

1 0.2 24

2 0.3 39

3 0.4 30

If things go according to plan, the machines with higher probabilities
should get played more often.

Summary
In this chapter we finally solved the Euro Problem, determining whether the
data support the hypothesis that the coin is fair or biased. We found that the
answer depends on how we define “biased”. And we summarized the results
using a Bayes factor, which quantifies the strength of the evidence.

But the answer wasn’t satisfying because, in my opinion, the question
wasn’t interesting. Knowing whether the coin is biased is not useful unless
it helps us make better predictions and better decisions.

As an example of a more interesting question, we looked at the One-Armed
Bandit problem and a strategy for solving it, the Bayesian Bandit algorithm,
which tries to balance exploration and exploitation, that is, gathering more
information and making the best use of the information we have.

As an exercise, you’ll have a chance to explore adaptive strategies for
standardized testing.

Bayesian bandits and adaptive testing are examples of Bayesian decision
theory, which is the idea of using a posterior distribution as part of a
decision-making process, often by choosing an action that minimizes the
costs we expect on average (or maximizes a benefit).

The strategy we used in “Maximizing Expected Gain” to bid on The Price
is Right is another example.

https://oreil.ly/KnMeS
https://oreil.ly/KnMeS

These strategies demonstrate what I think is the biggest advantage of
Bayesian methods over classical statistics. When we represent knowledge in
the form of probability distributions, Bayes’s theorem tells us how to
change our beliefs as we get more data, and Bayesian decision theory tells
us how to make that knowledge actionable.

More Exercises
Example 10-2.

Standardized tests like the SAT are often used as part of the admission
process at colleges and universities. The goal of the SAT is to measure the
academic preparation of the test-takers; if it is accurate, their scores should
reflect their actual ability in the domain of the test.

Until recently, tests like the SAT were taken with paper and pencil, but now
students have the option of taking the test online. In the online format, it is
possible for the test to be “adaptive”, which means that it can choose each
question based on responses to previous questions.

If a student gets the first few questions right, the test can challenge them
with harder questions. If they are struggling, it can give them easier
questions. Adaptive testing has the potential to be more “efficient”, meaning
that with the same number of questions an adaptive test could measure the
ability of a tester more precisely.

To see whether this is true, we will develop a model of an adaptive test and
quantify the precision of its measurements.

Details of this exercise are in the notebook.

https://oreil.ly/AdzPO
https://oreil.ly/b20lk
https://oreil.ly/b20lk

Chapter 11. Comparison

This chapter introduces joint distributions, which are an essential tool for
working with distributions of more than one variable.

We’ll use them to solve a silly problem on our way to solving a real
problem. The silly problem is figuring out how tall two people are, given
only that one is taller than the other. The real problem is rating chess
players (or participants in other kinds of competition) based on the outcome
of a game.

To construct joint distributions and compute likelihoods for these problems,
we will use outer products and similar operations. And that’s where we’ll
start.

Outer Operations
Many useful operations can be expressed as the “outer product” of two
sequences, or another kind of “outer” operation. Suppose you have
sequences like x and y:

x = [1, 3, 5]

y = [2, 4]

The outer product of these sequences is an array that contains the product of
every pair of values, one from each sequence. There are several ways to
compute outer products, but the one I think is the most versatile is a “mesh
grid”.

NumPy provides a function called meshgrid that computes a mesh grid. If
we give it two sequences, it returns two arrays:

import numpy as np

X, Y = np.meshgrid(x, y)

The first array contains copies of x arranged in rows, where the number of
rows is the length of y:

X

array([[1, 3, 5],

 [1, 3, 5]])

The second array contains copies of y arranged in columns, where the
number of columns is the length of x:

Y

array([[2, 2, 2],

 [4, 4, 4]])

Because the two arrays are the same size, we can use them as operands for
arithmetic functions like multiplication:

X * Y

array([[2, 6, 10],

 [4, 12, 20]])

This is result is the outer product of x and y. We can see that more clearly if
we put it in a DataFrame:

import pandas as pd

df = pd.DataFrame(X * Y, columns=x, index=y)

df

1 3 5

2 2 6 10

4 4 12 20

The values from x appear as column names; the values from y appear as
row labels. Each element is the product of a value from x and a value from
y.

We can use mesh grids to compute other operations, like the outer sum,
which is an array that contains the sum of elements from x and elements
from y:

X + Y

array([[3, 5, 7],

 [5, 7, 9]])

We can also use comparison operators to compare elements from x with
elements from y:

X > Y

array([[False, True, True],

 [False, False, True]])

The result is an array of Boolean values.

It might not be obvious yet why these operations are useful, but we’ll see
examples soon. With that, we are ready to take on a new Bayesian problem.

How Tall Is A?
Suppose I choose two people from the population of adult males in the US;
I’ll call them A and B. If we see that A is taller than B, how tall is A?

To answer this question:

1. I’ll use background information about the height of men in the US
to form a prior distribution of height,

2. I’ll construct a joint prior distribution of height for A and B (and
I’ll explain what that is),

3. Then I’ll update the prior with the information that A is taller, and

4. From the joint posterior distribution I’ll extract the posterior
distribution of height for A.

In the US the average height of male adults is 178 cm and the standard
deviation is 7.7 cm. The distribution is not exactly normal, because nothing
in the real world is, but the normal distribution is a pretty good model of the
actual distribution, so we can use it as a prior distribution for A and B.

Here’s an array of equally-spaced values from 3 standard deviations below
the mean to 3 standard deviations above (rounded up a little):

mean = 178

qs = np.arange(mean-24, mean+24, 0.5)

SciPy provides a function called norm that represents a normal distribution
with a given mean and standard deviation, and provides pdf, which
evaluates the probability density function (PDF) of the normal distribution:

from scipy.stats import norm

std = 7.7

ps = norm(mean, std).pdf(qs)

Probability densities are not probabilities, but if we put them in a Pmf and
normalize it, the result is a discrete approximation of the normal
distribution.

from empiricaldist import Pmf

prior = Pmf(ps, qs)

prior.normalize()

Here’s what it looks like:

This distribution represents what we believe about the heights of A and B
before we take into account the data that A is taller.

Joint Distribution
The next step is to construct a distribution that represents the probability of
every pair of heights, which is called a joint distribution. The elements of
the joint distribution are

P(Ax and By)

which is the probability that A is x cm tall and B is y cm tall, for all values
of x and y.

At this point all we know about A and B is that they are male residents of the
US, so their heights are independent; that is, knowing the height of A
provides no additional information about the height of B.

In that case, we can compute the joint probabilities like this:

P (Ax and By) = P (Ax) P (By)

Each joint probability is the product of one element from the distribution of
x and one element from the distribution of y.

So if we have Pmf objects that represent the distribution of height for A and
B, we can compute the joint distribution by computing the outer product of
the probabilities in each Pmf.

The following function takes two Pmf objects and returns a DataFrame that
represents the joint distribution.

def make_joint(pmf1, pmf2):

 """Compute the outer product of two Pmfs."""

 X, Y = np.meshgrid(pmf1, pmf2)

 return pd.DataFrame(X * Y, columns=pmf1.qs, index=pmf2.qs)

The column names in the result are the quantities from pmf1; the row labels
are the quantities from pmf2.

In this example, the prior distributions for A and B are the same, so we can
compute the joint prior distribution like this:

joint = make_joint(prior, prior)

joint.shape

(96, 96)

The result is a DataFrame with possible heights of A along the columns,
heights of B along the rows, and the joint probabilities as elements.

If the prior is normalized, the joint prior is also normalized.

joint.to_numpy().sum()

1.0

To add up all of the elements, we convert the DataFrame to a NumPy array
before calling sum. Otherwise, DataFrame.sum would compute the sums of
the columns and return a Series.

Visualizing the Joint Distribution
The following function uses pcolormesh to plot the joint distribution.

import matplotlib.pyplot as plt

def plot_joint(joint, cmap='Blues'):

 """Plot a joint distribution with a color mesh."""

 vmax = joint.to_numpy().max() * 1.1

 plt.pcolormesh(joint.columns, joint.index, joint,

 cmap=cmap,

 vmax=vmax,

 shading='nearest')

 plt.colorbar()

 decorate(xlabel='A height in cm',

 ylabel='B height in cm')

Here’s what the joint prior distribution looks like:

As you might expect, the probability is highest (darkest) near the mean and
drops off farther from the mean.

Another way to visualize the joint distribution is a contour plot:

def plot_contour(joint):

 """Plot a joint distribution with a contour."""

 plt.contour(joint.columns, joint.index, joint,

 linewidths=2)

 decorate(xlabel='A height in cm',

 ylabel='B height in cm')

Each line represents a level of equal probability.

Likelihood
Now that we have a joint prior distribution, we can update it with the data,
which is that A is taller than B.

Each element in the joint distribution represents a hypothesis about the
heights of A and B. To compute the likelihood of every pair of quantities, we
can extract the column names and row labels from the prior, like this:

x = joint.columns

y = joint.index

And use them to compute a mesh grid:

X, Y = np.meshgrid(x, y)

X contains copies of the quantities in x, which are possible heights for A. Y
contains copies of the quantities in y, which are possible heights for B. If we
compare X and Y, the result is a Boolean array:

A_taller = (X > Y)

A_taller.dtype

dtype('bool')

To compute likelihoods, I’ll use np.where to make an array with 1 where
A_taller is True and 0 elsewhere:

a = np.where(A_taller, 1, 0)

To visualize this array of likelihoods, I’ll put in a DataFrame with the
values of x as column names and the values of y as row labels:

likelihood = pd.DataFrame(a, index=x, columns=y)

Here’s what it looks like:

The likelihood of the data is 1 where X > Y and 0 elsewhere.

The Update
We have a prior, we have a likelihood, and we are ready for the update. As
usual, the unnormalized posterior is the product of the prior and the
likelihood.

posterior = joint * likelihood

I’ll use the following function to normalize the posterior:

def normalize(joint):

 """Normalize a joint distribution."""

 prob_data = joint.to_numpy().sum()

 joint /= prob_data

 return prob_data

normalize(posterior)

And here’s what it looks like:

All pairs where B is taller than A have been eliminated. The rest of the
posterior looks the same as the prior, except that it has been renormalized.

Marginal Distributions
The joint posterior distribution represents what we believe about the heights
of A and B given the prior distributions and the information that A is taller.

From this joint distribution, we can compute the posterior distributions for A
and B. To see how, let’s start with a simpler problem.

Suppose we want to know the probability that A is 180 cm tall. We can
select the column from the joint distribution where x=180:

column = posterior[180]

column.head()

154.0 0.000010

154.5 0.000013

155.0 0.000015

155.5 0.000019

156.0 0.000022

Name: 180.0, dtype: float64

This column contains posterior probabilities for all cases where x=180; if
we add them up, we get the total probability that A is 180 cm tall.

column.sum()

0.03017221271570807

It’s about 3%.

Now, to get the posterior distribution of height for A, we can add up all of
the columns, like this:

column_sums = posterior.sum(axis=0)

column_sums.head()

154.0 0.000000e+00

154.5 1.012260e-07

155.0 2.736152e-07

155.5 5.532519e-07

156.0 9.915650e-07

dtype: float64

The argument axis=0 means we want to add up the columns.

The result is a Series that contains every possible height for A and its
probability. In other words, it is the distribution of heights for A.

We can put it in a Pmf like this:

marginal_A = Pmf(column_sums)

When we extract the distribution of a single variable from a joint
distribution, the result is called a marginal distribution. The name comes

from a common visualization that shows the joint distribution in the middle
and the marginal distributions in the margins.

Here’s what the marginal distribution for A looks like:

Similarly, we can get the posterior distribution of height for B by adding up
the rows and putting the result in a Pmf:

row_sums = posterior.sum(axis=1)

marginal_B = Pmf(row_sums)

Here’s what it looks like:

Let’s put the code from this section in a function:

def marginal(joint, axis):

 """Compute a marginal distribution."""

 return Pmf(joint.sum(axis=axis))

marginal takes as parameters a joint distribution and an axis number:

If axis=0, it returns the marginal of the first variable (the one on
the x-axis);

If axis=1, it returns the marginal of the second variable (the one
on the y-axis).

So we can compute both marginals like this:

marginal_A = marginal(posterior, axis=0)

marginal_B = marginal(posterior, axis=1)

Here’s what they look like, along with the prior:

As you might expect, the posterior distribution for A is shifted to the right
and the posterior distribution for B is shifted to the left.

We can summarize the results by computing the posterior means:

prior.mean()

177.99516026921506

print(marginal_A.mean(), marginal_B.mean())

182.3872812342168 173.6028600023339

Based on the observation that A is taller than B, we are inclined to believe
that A is a little taller than average, and B is a little shorter.

Notice that the posterior distributions are a little narrower than the prior. We
can quantify that by computing their standard deviations:

prior.std()

7.624924796641578

print(marginal_A.std(), marginal_B.std())

6.270461177645469 6.280513548175111

The standard deviations of the posterior distributions are a little smaller,
which means we are more certain about the heights of A and B after we
compare them.

Conditional Posteriors
Now suppose we measure A and find that he is 170 cm tall. What does that
tell us about B?

In the joint distribution, each column corresponds to a possible height for A.
We can select the column that corresponds to height 170 cm like this:

column_170 = posterior[170]

The result is a Series that represents possible heights for B and their
relative likelihoods. These likelihoods are not normalized, but we can
normalize them like this:

cond_B = Pmf(column_170)

cond_B.normalize()

0.004358061205454471

Making a Pmf copies the data by default, so we can normalize cond_B
without affecting column_170 or posterior. The result is the conditional
distribution of height for B given that A is 170 cm tall.

Here’s what it looks like:

The conditional posterior distribution is cut off at 170 cm, because we have
established that B is shorter than A, and A is 170 cm.

Dependence and Independence
When we constructed the joint prior distribution, I said that the heights of A
and B were independent, which means that knowing one of them provides
no information about the other. In other words, the conditional probability
P(Ax|By) is the same as the unconditional probability P(Ax).

But in the posterior distribution, A and B are not independent. If we know
that A is taller than B, and we know how tall A is, that gives us information
about B.

The conditional distribution we just computed demonstrates this
dependence.

Summary
In this chapter we started with the “outer” operations, like outer product,
which we used to construct a joint distribution.

In general, you cannot construct a joint distribution from two marginal
distributions, but in the special case where the distributions are
independent, you can.

We extended the Bayesian update process and applied it to a joint
distribution. Then from the posterior joint distribution we extracted
marginal posterior distributions and conditional posterior distributions.

As an exercise, you’ll have a chance to apply the same process to a problem
that’s a little more difficult and a lot more useful, updating a chess player’s
rating based on the outcome of a game.

Exercises
Example 11-1.

Based on the results of the previous example, compute the posterior
conditional distribution for A given that B is 180 cm.

Hint: Use loc to select a row from a DataFrame.

Example 11-2.

Suppose we have established that A is taller than B, but we don’t know how
tall B is. Now we choose a random woman, C, and find that she is shorter
than A by at least 15 cm. Compute posterior distributions for the heights of
A and C.

The average height for women in the US is 163 cm; the standard deviation
is 7.3 cm.

Example 11-3.

The Elo rating system is a way to quantify the skill level of players for
games like chess.

It is based on a model of the relationship between the ratings of players and
the outcome of a game. Specifically, if RA is the rating of player A and RB

is the rating of player B, the probability that A beats B is given by the logistic
function:

P (A beats B) =
1

1 + 10(RB−RA)/400

The parameters 10 and 400 are arbitrary choices that determine the range of
the ratings. In chess, the range is from 100 to 2,800.

Notice that the probability of winning depends only on the difference in
rankings. As an example, if RA exceeds RB by 100 points, the probability
that A wins is:
1 / (1 + 10**(-100/400))

0.6400649998028851

Suppose A has a current rating of 1,600, but we are not sure it is accurate.
We could describe their true rating with a normal distribution with mean
1,600 and standard deviation 100, to indicate our uncertainty.

And suppose B has a current rating of 1,800, with the same level of
uncertainty.

Then A and B play and A wins. How should we update their ratings?

https://oreil.ly/KooQn
https://oreil.ly/1BlBZ
https://oreil.ly/1BlBZ

Chapter 12. Classification

Classification might be the most well-known application of Bayesian
methods, made famous in the 1990s as the basis of the first generation of
spam filters.

In this chapter, I’ll demonstrate Bayesian classification using data collected
and made available by Dr. Kristen Gorman at the Palmer Long-Term
Ecological Research Station in Antarctica (see Gorman, Williams, and
Fraser, “Ecological Sexual Dimorphism and Environmental Variability
within a Community of Antarctic Penguins (Genus Pygoscelis)”, March
2014). We’ll use this data to classify penguins by species.

Penguin Data
I’ll use pandas to load the data into a DataFrame:

import pandas as pd

df = pd.read_csv('penguins_raw.csv')

df.shape

(344, 17)

The dataset contains one row for each penguin and one column for each
variable.

Three species of penguins are represented in the dataset: Adélie, Chinstrap
and Gentoo.

The measurements we’ll use are:

Body Mass in grams (g).

Flipper Length in millimeters (mm).

https://oreil.ly/SsIt7
https://oreil.ly/hTOM9
https://oreil.ly/hTOM9
https://oreil.ly/hTOM9
https://oreil.ly/hTOM9

Culmen Length in millimeters.

Culmen Depth in millimeters.

If you are not familiar with the word “culmen”, it refers to the top margin of
the beak.

These measurements will be most useful for classification if there are
substantial differences between species and small variation within species.
To see whether that is true, and to what degree, I’ll plot cumulative
distribution functions (CDFs) of each measurement for each species.

The following function takes the DataFrame and a column name. It returns
a dictionary that maps from each species name to a Cdf of the values in the
column named colname.

def make_cdf_map(df, colname, by='Species2'):

 """Make a CDF for each species."""

 cdf_map = {}

 grouped = df.groupby(by)[colname]

 for species, group in grouped:

 cdf_map[species] = Cdf.from_seq(group, name=species)

 return cdf_map

Here’s what the distributions look like for culmen length:

It looks like we can use culmen length to identify Adélie penguins, but the
distributions for the other two species almost entirely overlap.

https://oreil.ly/jWXzg
https://oreil.ly/jWXzg

Here are the distributions for flipper length:

Using flipper length, we can distinguish Gentoo penguins from the other
two species. So with just these two features, it seems like we should be able
to classify penguins with some accuracy.

All of these CDFs show the sigmoid shape characteristic of the normal
distribution; I will take advantage of that observation in the next section.

Normal Models
Let’s use these features to classify penguins. We’ll proceed in the usual
Bayesian way:

1. Define a prior distribution with the three possible species and a
prior probability for each,

2. Compute the likelihood of the data for each hypothetical species,
and then

3. Compute the posterior probability of each hypothesis.

To compute the likelihood of the data under each hypothesis, I’ll use the
data to estimate the parameters of a normal distribution for each species.

The following function takes a DataFrame and a column name; it returns a
dictionary that maps from each species name to a norm object.

norm is defined in SciPy; it represents a normal distribution with a given
mean and standard deviation.

from scipy.stats import norm

def make_norm_map(df, colname, by='Species2'):

 """Make a map from species to norm object."""

 norm_map = {}

 grouped = df.groupby(by)[colname]

 for species, group in grouped:

 mean = group.mean()

 std = group.std()

 norm_map[species] = norm(mean, std)

 return norm_map

For example, here’s the dictionary of norm objects for flipper length:

flipper_map = make_norm_map(df, 'Flipper Length (mm)')

flipper_map.keys()

dict_keys(['Adelie', 'Chinstrap', 'Gentoo'])

Now suppose we measure a penguin and find that its flipper is 193 cm.
What is the probability of that measurement under each hypothesis?

The norm object provides pdf, which computes the probability density
function (PDF) of the normal distribution. We can use it to compute the
likelihood of the observed data in a given distribution.

data = 193

flipper_map['Adelie'].pdf(data)

0.054732511875530694

The result is a probability density, so we can’t interpret it as a probability.
But it is proportional to the likelihood of the data, so we can use it to update
the prior.

Here’s how we compute the likelihood of the data in each distribution:

hypos = flipper_map.keys()

likelihood = [flipper_map[hypo].pdf(data) for hypo in hypos]

likelihood

[0.054732511875530694, 0.05172135615888162, 5.8660453661990634e-05]

Now we’re ready to do the update.

The Update
As usual I’ll use a Pmf to represent the prior distribution. For simplicity,
let’s assume that the three species are equally likely.

from empiricaldist import Pmf

prior = Pmf(1/3, hypos)

prior

probs

Adelie 0.333333

Chinstrap 0.333333

Gentoo 0.333333

Now we can do the update in the usual way:

posterior = prior * likelihood

posterior.normalize()

posterior

probs

Adelie 0.513860

Chinstrap 0.485589

Gentoo 0.000551

A penguin with a 193 mm flipper is unlikely to be a Gentoo, but might be
either an Adélie or a Chinstrap (assuming that the three species were
equally likely before the measurement).

The following function encapsulates the steps we just ran. It takes a Pmf
representing the prior distribution, the observed data, and a map from each
hypothesis to the distribution of the feature.

def update_penguin(prior, data, norm_map):

 """Update hypothetical species."""

 hypos = prior.qs

 likelihood = [norm_map[hypo].pdf(data) for hypo in hypos]

 posterior = prior * likelihood

 posterior.normalize()

 return posterior

The return value is the posterior distribution.

Here’s the previous example again, using update_penguin:

posterior1 = update_penguin(prior, 193, flipper_map)

posterior1

probs

Adelie 0.513860

Chinstrap 0.485589

Gentoo 0.000551

As we saw in the CDFs, flipper length does not distinguish strongly
between Adélie and Chinstrap penguins.

But culmen length can make this distinction, so let’s use it to do a second
round of classification. First we estimate distributions of culmen length for
each species like this:

culmen_map = make_norm_map(df, 'Culmen Length (mm)')

Now suppose we see a penguin with culmen length 48 mm. We can use this
data to update the prior:

posterior2 = update_penguin(prior, 48, culmen_map)

posterior2

probs

Adelie 0.001557

Chinstrap 0.474658

Gentoo 0.523785

A penguin with culmen length 48 mm is about equally likely to be a
Chinstrap or a Gentoo.

Using one feature at a time, we can often rule out one species or another,
but we generally can’t identify species with confidence. We can do better
using multiple features.

Naive Bayesian Classification
To make it easier to do multiple updates, I’ll use the following function,
which takes a prior Pmf, a sequence of measurements and a corresponding
sequence of dictionaries containing estimated distributions.

def update_naive(prior, data_seq, norm_maps):

 """Naive Bayesian classifier

 prior: Pmf

 data_seq: sequence of measurements

 norm_maps: sequence of maps from species to distribution

 returns: Pmf representing the posterior distribution

 """

 posterior = prior.copy()

 for data, norm_map in zip(data_seq, norm_maps):

 posterior = update_penguin(posterior, data, norm_map)

 return posterior

It performs a series of updates, using one variable at a time, and returns the
posterior Pmf. To test it, I’ll use the same features we looked at in the
previous section: culmen length and flipper length.

colnames = ['Flipper Length (mm)', 'Culmen Length (mm)']

norm_maps = [flipper_map, culmen_map]

Now suppose we find a penguin with flipper length 193 mm and culmen
length 48. Here’s the update:

data_seq = 193, 48

posterior = update_naive(prior, data_seq, norm_maps)

posterior

probs

Adelie 0.003455

Chinstrap 0.995299

Gentoo 0.001246

It is almost certain to be a Chinstrap:

posterior.max_prob()

'Chinstrap'

We can loop through the dataset and classify each penguin with these two
features:

import numpy as np

df['Classification'] = np.nan

for i, row in df.iterrows():

 data_seq = row[colnames]

 posterior = update_naive(prior, data_seq, norm_maps)

 df.loc[i, 'Classification'] = posterior.max_prob()

This loop adds a column called Classification to the DataFrame; it
contains the species with the maximum posterior probability for each
penguin.

So let’s see how many we got right:

valid = df['Classification'].notna()

valid.sum()

342

same = df['Species2'] == df['Classification']

same.sum()

324

There are 344 penguins in the dataset, but two of them are missing
measurements, so we have 342 valid cases. Of those, 324 are classified
correctly, which is almost 95%:

same.sum() / valid.sum()

0.9473684210526315

The following function encapsulates these steps.

def accuracy(df):

 """Compute the accuracy of classification."""

 valid = df['Classification'].notna()

 same = df['Species2'] == df['Classification']

 return same.sum() / valid.sum()

The classifier we used in this section is called “naive” because it ignores
correlations between the features. To see why that matters, I’ll make a less
naive classifier: one that takes into account the joint distribution of the
features.

Joint Distributions
I’ll start by making a scatter plot of the data:

import matplotlib.pyplot as plt

def scatterplot(df, var1, var2):

 """Make a scatter plot."""

 grouped = df.groupby('Species2')

 for species, group in grouped:

 plt.plot(group[var1], group[var2],

 label=species, lw=0, alpha=0.3)

 decorate(xlabel=var1, ylabel=var2)

Here’s a scatter plot of culmen length and flipper length for the three
species:

var1 = 'Flipper Length (mm)'

var2 = 'Culmen Length (mm)'

scatterplot(df, var1, var2)

Within each species, the joint distribution of these measurements forms an
oval shape, at least roughly. The orientation of the ovals is along a diagonal,
which indicates that there is a correlation between culmen length and
flipper length.

If we ignore these correlations, we are assuming that the features are
independent. To see what that looks like, I’ll make a joint distribution for

each species assuming independence.

The following function makes a discrete Pmf that approximates a normal
distribution.

def make_pmf_norm(dist, sigmas=3, n=101):

 """Make a Pmf approximation to a normal distribution."""

 mean, std = dist.mean(), dist.std()

 low = mean - sigmas * std

 high = mean + sigmas * std

 qs = np.linspace(low, high, n)

 ps = dist.pdf(qs)

 pmf = Pmf(ps, qs)

 pmf.normalize()

 return pmf

We can use it, along with make_joint, to make a joint distribution of
culmen length and flipper length for each species:

from utils import make_joint

joint_map = {}

for species in hypos:

 pmf1 = make_pmf_norm(flipper_map[species])

 pmf2 = make_pmf_norm(culmen_map[species])

 joint_map[species] = make_joint(pmf1, pmf2)

The following figure compares a scatter plot of the data to the contours of
the joint distributions, assuming independence.

The contours of a joint normal distribution form ellipses. In this example,
because the features are uncorrelated, the ellipses are aligned with the axes.
But they are not well aligned with the data.

We can make a better model of the data, and use it to compute better
likelihoods, with a multivariate normal distribution.

Multivariate Normal Distribution
As we have seen, a univariate normal distribution is characterized by its
mean and standard deviation.

A multivariate normal distribution is characterized by the means of the
features and the covariance matrix, which contains variances, which
quantify the spread of the features, and the covariances, which quantify the
relationships among them.

We can use the data to estimate the means and covariance matrix for the
population of penguins. First I’ll select the columns we want:

features = df[[var1, var2]]

And compute the means:

mean = features.mean()

mean

Flipper Length (mm) 200.915205

Culmen Length (mm) 43.921930

dtype: float64

We can also compute the covariance matrix:

cov = features.cov()

cov

Flipper Length (mm) Culmen Length (mm)

Flipper Length (mm) 197.731792 50.375765

Culmen Length (mm) 50.375765 29.807054

The result is a DataFrame with one row and one column for each feature.
The elements on the diagonal are the variances; the elements off the
diagonal are covariances.

By themselves, variances and covariances are hard to interpret. We can use
them to compute standard deviations and correlation coefficients, which are
easier to interpret, but the details of that calculation are not important right
now.

Instead, we’ll pass the covariance matrix to multivariate_normal, which
is a SciPy function that creates an object that represents a multivariate
normal distribution.

As arguments it takes a sequence of means and a covariance matrix:

from scipy.stats import multivariate_normal

multinorm = multivariate_normal(mean, cov)

The following function makes a multivariate_normal object for each
species.

def make_multinorm_map(df, colnames):

 """Make a map from each species to a multivariate normal."""

 multinorm_map = {}

 grouped = df.groupby('Species2')

 for species, group in grouped:

 features = group[colnames]

 mean = features.mean()

 cov = features.cov()

 multinorm_map[species] = multivariate_normal(mean, cov)

 return multinorm_map

Here’s how we make this map for the first two features, flipper length and
culmen length:

multinorm_map = make_multinorm_map(df, [var1, var2])

The following figure shows a scatter plot of the data along with the
contours of the multivariate normal distribution for each species:

Because the multivariate normal distribution takes into account the
correlations between features, it is a better model for the data. And there is
less overlap in the contours of the three distributions, which suggests that
they should yield better classifications.

A Less Naive Classifier
In a previous section we used update_penguin to update a prior Pmf based
on observed data and a collection of norm objects that model the
distribution of observations under each hypothesis. Here it is again:

def update_penguin(prior, data, norm_map):

 """Update hypothetical species."""

 hypos = prior.qs

 likelihood = [norm_map[hypo].pdf(data) for hypo in hypos]

 posterior = prior * likelihood

 posterior.normalize()

 return posterior

Last time we used this function, the values in norm_map were norm objects,
but it also works if they are multivariate_normal objects.

We can use it to classify a penguin with flipper length 193 and culmen
length 48:

data = 193, 48

update_penguin(prior, data, multinorm_map)

probs

Adelie 0.002740

Chinstrap 0.997257

Gentoo 0.000003

A penguin with those measurements is almost certainly a Chinstrap.

Now let’s see if this classifier does any better than the naive Bayesian
classifier. I’ll apply it to each penguin in the dataset:

df['Classification'] = np.nan

for i, row in df.iterrows():

 data = row[colnames]

 posterior = update_penguin(prior, data, multinorm_map)

 df.loc[i, 'Classification'] = posterior.idxmax()

And compute the accuracy:

accuracy(df)

0.9532163742690059

It turns out to be only a little better: the accuracy is 95.3%, compared to
94.7% for the naive Bayesian classifier.

Summary
In this chapter, we implemented a naive Bayesian classifier, which is
“naive” in the sense that it assumes that the features it uses for classification

are independent.

To see how bad that assumption is, we also implemented a classifier that
uses the multivariate normal distribution to model the joint distribution of
the features, which includes their dependencies.

In this example, the non-naive classifier is only marginally better. In one
way, that’s disappointing. After all that work, it would have been nice to see
a bigger improvement. But in another way, it’s good news. In general, a
naive Bayesian classifier is easier to implement and requires less
computation. If it works nearly as well as a more complex algorithm, it
might be a good choice for practical purposes.

Speaking of practical purposes, you might have noticed that this example
isn’t very useful. If we want to identify the species of a penguin, there are
easier ways than measuring its flippers and beak.

But there are scientific uses for this type of classification. One of them is
the subject of the research paper we started with: sexual dimorphism, that
is, differences in shape between male and female animals.

In some species, like angler fish, males and females look very different. In
other species, like mockingbirds, they are difficult to tell apart. And
dimorphism is worth studying because it provides insight into social
behavior, sexual selection, and evolution.

One way to quantify the degree of sexual dimorphism in a species is to use
a classification algorithm like the one in this chapter. If you can find a set of
features that makes it possible to classify individuals by sex with high
accuracy, that’s evidence of high dimorphism.

As an exercise, you can use the dataset from this chapter to classify
penguins by sex and see which of the three species is the most dimorphic.

https://oreil.ly/xk0KF

Exercises
Example 12-1.

In my example I used culmen length and flipper length because they
seemed to provide the most power to distinguish the three species. But
maybe we can do better by using more features.

Make a naive Bayesian classifier that uses all four measurements in the
dataset: culmen length and depth, flipper length, and body mass. Is it more
accurate than the model with two features?

Example 12-2.

One of the reasons the penguin dataset was collected was to quantify sexual
dimorphism in different penguin species, that is, physical differences
between male and female penguins. One way to quantify dimorphism is to
use measurements to classify penguins by sex. If a species is more
dimorphic, we expect to be able to classify them more accurately.

As an exercise, pick a species and use a Bayesian classifier (naive or not) to
classify the penguins by sex. Which features are most useful? What
accuracy can you achieve?

Chapter 13. Inference

Whenever people compare Bayesian inference with conventional
approaches, one of the questions that comes up most often is something
like, “What about p-values?” And one of the most common examples is the
comparison of two groups to see if there is a difference in their means.

In classical statistical inference, the usual tool for this scenario is a
Student’s t-test, and the result is a p-value. This process is an example of
null hypothesis significance testing.

A Bayesian alternative is to compute the posterior distribution of the
difference between the groups. Then we can use that distribution to answer
whatever questions we are interested in, including the most likely size of
the difference, a credible interval that’s likely to contain the true difference,
the probability of superiority, or the probability that the difference exceeds
some threshold.

To demonstrate this process, I’ll solve a problem borrowed from a statistical
textbook: evaluating the effect of an educational “treatment” compared to a
control.

Improving Reading Ability
We’ll use data from a PhD dissertation in educational psychology written in
1987, which was used as an example in a statistics textbook from 1989 and
published on DASL, a web page that collects data stories.

Here’s the description from DASL:

https://oreil.ly/fvdWj
https://oreil.ly/fvdWj
https://oreil.ly/fvdWj
https://oreil.ly/rsG85
https://oreil.ly/GRRnL
https://oreil.ly/5AW5n
https://oreil.ly/OvDQA
https://oreil.ly/K4Eev

An educator conducted an experiment to test whether new directed
reading activities in the classroom will help elementary school pupils
improve some aspects of their reading ability. She arranged for a third
grade class of 21 students to follow these activities for an 8-week period.
A control classroom of 23 third graders followed the same curriculum
without the activities. At the end of the 8 weeks, all students took a
Degree of Reading Power (DRP) test, which measures the aspects of
reading ability that the treatment is designed to improve.

The dataset is available here. I’ll use pandas to load the data into a
DataFrame:

import pandas as pd

df = pd.read_csv('drp_scores.csv', skiprows=21, delimiter='\t')

df.head(3)

Treatment Response

0 Treated 24

1 Treated 43

2 Treated 58

The Treatment column indicates whether each student was in the treated or
control group. The Response is their score on the test.

I’ll use groupby to separate the data for the Treated and Control groups:

grouped = df.groupby('Treatment')

responses = {}

for name, group in grouped:

 responses[name] = group['Response']

Here are CDFs of the scores for the two groups and summary statistics:

https://oreil.ly/FFdP5

There is overlap between the distributions, but it looks like the scores are
higher in the treated group. The distribution of scores is not exactly normal
for either group, but it is close enough that the normal model is a reasonable
choice.

So I’ll assume that in the entire population of students (not just the ones in
the experiment), the distribution of scores is well modeled by a normal
distribution with unknown mean and standard deviation. I’ll use mu and
sigma to denote these unknown parameters, and we’ll do a Bayesian update
to estimate what they are.

Estimating Parameters
As always, we need a prior distribution for the parameters. Since there are
two parameters, it will be a joint distribution. I’ll construct it by choosing
marginal distributions for each parameter and computing their outer
product.

As a simple starting place, I’ll assume that the prior distributions for mu and
sigma are uniform. The following function makes a Pmf object that
represents a uniform distribution.

from empiricaldist import Pmf

def make_uniform(qs, name=None, **options):

 """Make a Pmf that represents a uniform distribution."""

 pmf = Pmf(1.0, qs, **options)

 pmf.normalize()

 if name:

 pmf.index.name = name

 return pmf

make_uniform takes as parameters:

An array of quantities, qs, and

A string, name, which is assigned to the index so it appears when
we display the Pmf.

Here’s the prior distribution for mu:

import numpy as np

qs = np.linspace(20, 80, num=101)

prior_mu = make_uniform(qs, name='mean')

I chose the lower and upper bounds by trial and error. I’ll explain how when
we look at the posterior distribution.

Here’s the prior distribution for sigma:

qs = np.linspace(5, 30, num=101)

prior_sigma = make_uniform(qs, name='std')

Now we can use make_joint to make the joint prior distribution:

from utils import make_joint

prior = make_joint(prior_mu, prior_sigma)

And we’ll start by working with the data from the control group:

data = responses['Control']

data.shape

(23,)

In the next section we’ll compute the likelihood of this data for each pair of
parameters in the prior distribution.

Likelihood
We would like to know the probability of each score in the dataset for each
hypothetical pair of values, mu and sigma. I’ll do that by making a 3-
dimensional grid with values of mu on the first axis, values of sigma on the
second axis, and the scores from the dataset on the third axis:

mu_mesh, sigma_mesh, data_mesh = np.meshgrid(

 prior.columns, prior.index, data)

mu_mesh.shape

(101, 101, 23)

Now we can use norm.pdf to compute the probability density of each score
for each hypothetical pair of parameters:

from scipy.stats import norm

densities = norm(mu_mesh, sigma_mesh).pdf(data_mesh)

densities.shape

(101, 101, 23)

The result is a 3-D array. To compute likelihoods, I’ll multiply these
densities along axis=2, which is the axis of the data:

likelihood = densities.prod(axis=2)

likelihood.shape

(101, 101)

The result is a 2-D array that contains the likelihood of the entire dataset for
each hypothetical pair of parameters.

We can use this array to update the prior, like this:

from utils import normalize

posterior = prior * likelihood

normalize(posterior)

posterior.shape

(101, 101)

The result is a DataFrame that represents the joint posterior distribution.

The following function encapsulates these steps.

def update_norm(prior, data):

 """Update the prior based on data."""

 mu_mesh, sigma_mesh, data_mesh = np.meshgrid(

 prior.columns, prior.index, data)

 densities = norm(mu_mesh, sigma_mesh).pdf(data_mesh)

 likelihood = densities.prod(axis=2)

 posterior = prior * likelihood

 normalize(posterior)

 return posterior

Here are the updates for the control and treatment groups:

data = responses['Control']

posterior_control = update_norm(prior, data)

data = responses['Treated']

posterior_treated = update_norm(prior, data)

And here’s what they look like:

Along the x-axis, it looks like the mean score for the treated group is higher.
Along the y-axis, it looks like the standard deviation for the treated group is
lower.

If we think the treatment causes these differences, the data suggest that the
treatment increases the mean of the scores and decreases their spread. We
can see these differences more clearly by looking at the marginal
distributions for mu and sigma.

Posterior Marginal Distributions
I’ll use marginal, which we saw in “Marginal Distributions”, to extract the
posterior marginal distributions for the population means:

from utils import marginal

pmf_mean_control = marginal(posterior_control, 0)

pmf_mean_treated = marginal(posterior_treated, 0)

Here’s what they look like:

In both cases the posterior probabilities at the ends of the range are near
zero, which means that the bounds we chose for the prior distribution are
wide enough.

Comparing the marginal distributions for the two groups, it looks like the
population mean in the treated group is higher. We can use prob_gt to
compute the probability of superiority:

Pmf.prob_gt(pmf_mean_treated, pmf_mean_control)

0.980479025187326

There is a 98% chance that the mean in the treated group is higher.

Distribution of Differences
To quantify the magnitude of the difference between groups, we can use
sub_dist to compute the distribution of the difference:

pmf_diff = Pmf.sub_dist(pmf_mean_treated, pmf_mean_control)

There are two things to be careful about when you use methods like
sub_dist. The first is that the result usually contains more elements than
the original Pmf. In this example, the original distributions have the same
quantities, so the size increase is moderate.

len(pmf_mean_treated), len(pmf_mean_control), len(pmf_diff)

(101, 101, 879)

In the worst case, the size of the result can be the product of the sizes of the
originals.

The other thing to be careful about is plotting the Pmf. In this example, if
we plot the distribution of differences, the result is pretty noisy:

There are two ways to work around that limitation. One is to plot the CDF,
which smooths out the noise:

cdf_diff = pmf_diff.make_cdf()

The other option is to use kernel density estimation (KDE) to make a
smooth approximation of the PDF on an equally-spaced grid, which is what
this function does:

from scipy.stats import gaussian_kde

def kde_from_pmf(pmf, n=101):

 """Make a kernel density estimate for a PMF."""

 kde = gaussian_kde(pmf.qs, weights=pmf.ps)

 qs = np.linspace(pmf.qs.min(), pmf.qs.max(), n)

 ps = kde.evaluate(qs)

 pmf = Pmf(ps, qs)

 pmf.normalize()

 return pmf

kde_from_pmf takes as parameters a Pmf and the number of places to
evaluate the KDE.

It uses gaussian_kde, which we saw in “Kernel Density Estimation”,
passing the probabilities from the Pmf as weights. This makes the estimated
densities higher where the probabilities in the Pmf are higher.

Here’s what the kernel density estimate looks like for the Pmf of differences
between the groups:

kde_diff = kde_from_pmf(pmf_diff)

The mean of this distribution is almost 10 points on a test where the mean is
around 45, so the effect of the treatment seems to be substantial:

pmf_diff.mean()

9.954413088940848

We can use credible_interval to compute a 90% credible interval:

pmf_diff.credible_interval(0.9)

array([2.4, 17.4])

Based on this interval, we are pretty sure the treatment improves test scores
by 2 to 17 points.

Using Summary Statistics
In this example the dataset is not very big, so it doesn’t take too long to
compute the probability of every score under every hypothesis. But the
result is a 3-D array; for larger datasets, it might be too big to compute
practically.

Also, with larger datasets the likelihoods get very small, sometimes so
small that we can’t compute them with floating-point arithmetic. That’s
because we are computing the probability of a particular dataset; the
number of possible datasets is astronomically big, so the probability of any
of them is very small.

An alternative is to compute a summary of the dataset and compute the
likelihood of the summary. For example, if we compute the mean and
standard deviation of the data, we can compute the likelihood of those
summary statistics under each hypothesis.

As an example, suppose we know that the actual mean of the population, μ,
is 42 and the actual standard deviation, σ, is 17.

mu = 42

sigma = 17

Now suppose we draw a sample from this distribution with sample size
n=20, and compute the mean of the sample, which I’ll call m, and the
standard deviation of the sample, which I’ll call s.

And suppose it turns out that:

n = 20

m = 41

s = 18

The summary statistics, m and s, are not too far from the parameters μ and σ
, so it seems like they are not too unlikely.

To compute their likelihood, we will take advantage of three results from
mathematical statistics:

Given μ and σ, the distribution of m is normal with parameters μ
and σ/√n;

The distribution of s is more complicated, but if we compute the
transform t = ns2/σ2, the distribution of t is chi-squared with
parameter n − 1; and

According to Basu’s theorem, m and s are independent.

So let’s compute the likelihood of m and s given μ and σ.

First I’ll create a norm object that represents the distribution of m:

dist_m = norm(mu, sigma/np.sqrt(n))

This is the “sampling distribution of the mean”. We can use it to compute
the likelihood of the observed value of m, which is 41.

like1 = dist_m.pdf(m)

like1

https://oreil.ly/c5q5v

0.10137915138497372

Now let’s compute the likelihood of the observed value of s, which is 18.
First, we compute the transformed value t:

t = n * s**2 / sigma**2

t

22.422145328719722

Then we create a chi2 object to represent the distribution of t:

from scipy.stats import chi2

dist_s = chi2(n-1)

Now we can compute the likelihood of t:

like2 = dist_s.pdf(t)

like2

0.04736427909437004

Finally, because m and s are independent, their joint likelihood is the
product of their likelihoods:

like = like1 * like2

like

0.004801750420548287

Now we can compute the likelihood of the data for any values of μ and σ,
which we’ll use in the next section to do the update.

Update with Summary Statistics
Now we’re ready to do an update. I’ll compute summary statistics for the
two groups:

summary = {}

for name, response in responses.items():

 summary[name] = len(response), response.mean(), response.std()

summary

{'Control': (23, 41.52173913043478, 17.148733229699484),

 'Treated': (21, 51.476190476190474, 11.00735684721381)}

The result is a dictionary that maps from group name to a tuple that
contains the sample size, n, the sample mean, m, and the sample standard
deviation s, for each group.

I’ll demonstrate the update with the summary statistics from the control
group:

n, m, s = summary['Control']

I’ll make a mesh with hypothetical values of mu on the x-axis and values of
sigma on the y-axis:

mus, sigmas = np.meshgrid(prior.columns, prior.index)

mus.shape

(101, 101)

Now we can compute the likelihood of seeing the sample mean, m, for each
pair of parameters:

like1 = norm(mus, sigmas/np.sqrt(n)).pdf(m)

like1.shape

(101, 101)

And we can compute the likelihood of the sample standard deviation, s, for
each pair of parameters:

ts = n * s**2 / sigmas**2

like2 = chi2(n-1).pdf(ts)

like2.shape

(101, 101)

Finally, we can do the update with both likelihoods:

posterior_control2 = prior * like1 * like2

normalize(posterior_control2)

To compute the posterior distribution for the treatment group, I’ll put the
previous steps in a function:

def update_norm_summary(prior, data):

 """Update a normal distribution using summary statistics."""

 n, m, s = data

 mu_mesh, sigma_mesh = np.meshgrid(prior.columns, prior.index)

 like1 = norm(mu_mesh, sigma_mesh/np.sqrt(n)).pdf(m)

 like2 = chi2(n-1).pdf(n * s**2 / sigma_mesh**2)

 posterior = prior * like1 * like2

 normalize(posterior)

 return posterior

Here’s the update for the treatment group:

data = summary['Treated']

posterior_treated2 = update_norm_summary(prior, data)

And here are the results:

Visually, these posterior joint distributions are similar to the ones we
computed using the entire dataset, not just the summary statistics. But they
are not exactly the same, as we can see by comparing the marginal
distributions.

Comparing Marginals
Again, let’s extract the marginal posterior distributions:

from utils import marginal

pmf_mean_control2 = marginal(posterior_control2, 0)

pmf_mean_treated2 = marginal(posterior_treated2, 0)

And compare them to results we got using the entire dataset (the dashed
lines):

The posterior distributions based on summary statistics are similar to the
posteriors we computed using the entire dataset, but in both cases they are
shorter and a little wider.

That’s because the update with summary statistics is based on the implicit
assumption that the distribution of the data is normal. But it’s not; as a
result, when we replace the dataset with the summary statistics, we lose
some information about the true distribution of the data. With less
information, we are less certain about the parameters.

Summary
In this chapter we used a joint distribution to represent prior probabilities
for the parameters of a normal distribution, mu and sigma. And we updated
that distribution two ways: first using the entire dataset and the normal
PDF; then using summary statistics, the normal PDF, and the chi-square
PDF. Using summary statistics is computationally more efficient, but it
loses some information in the process.

Normal distributions appear in many domains, so the methods in this
chapter are broadly applicable. The exercises at the end of the chapter will
give you a chance to apply them.

Exercises
Example 13-1.

Looking again at the posterior joint distribution of mu and sigma, it seems
like the standard deviation of the treated group might be lower; if so, that
would suggest that the treatment is more effective for students with lower
scores.

But before we speculate too much, we should estimate the size of the
difference and see whether it might actually be 0.

Extract the marginal posterior distributions of sigma for the two groups.
What is the probability that the standard deviation is higher in the control
group?

Compute the distribution of the difference in sigma between the two
groups. What is the mean of this difference? What is the 90% credible
interval?

Example 13-2.

An effect size is a statistic intended to quantify the magnitude of a
phenomenon. If the phenomenon is a difference in means between two
groups, a common way to quantify it is Cohen’s effect size, denoted d.

If the parameters for Group 1 are (μ1,σ1), and the parameters for Group 2
are (μ2,σ2), Cohen’s effect size is

d =
μ1 − μ2

(σ1 + σ2)/2

Use the joint posterior distributions for the two groups to compute the
posterior distribution for Cohen’s effect size.

Example 13-3.

This exercise is inspired by a question that appeared on Reddit.

https://oreil.ly/LDmTY
https://oreil.ly/ZthGE

An instructor announces the results of an exam like this: “The average score
on this exam was 81. Out of 25 students, 5 got more than 90, and I am
happy to report that no one failed (got less than 60).”

Based on this information, what do you think the standard deviation of
scores was?

You can assume that the distribution of scores is approximately normal.
And let’s assume that the sample mean, 81, is actually the population mean,
so we only have to estimate sigma.

Hint: To compute the probability of a score greater than 90, you can use
norm.sf, which computes the survival function, also known as the
complementary CDF, or 1 – cdf(x).

Example 13-4.

The Variability Hypothesis is the observation that many physical traits are
more variable among males than among females, in many species.

It has been a subject of controversy since the early 1800s, which suggests
an exercise we can use to practice the methods in this chapter. Let’s look at
the distribution of heights for men and women in the U.S. and see who is
more variable.

I used 2018 data from the CDC’s Behavioral Risk Factor Surveillance
System (BRFSS), which includes self-reported heights from 154,407 men
and 254,722 women.

Here’s what I found:

The average height for men is 178 cm; the average height for
women is 163 cm. So men are taller on average; no surprise there.

For men the standard deviation is 8.27 cm; for women it is 7.75
cm. So in absolute terms, men’s heights are more variable.

But to compare variability between groups, it is more meaningful to use the
coefficient of variation (CV), which is the standard deviation divided by the
mean. It is a dimensionless measure of variability relative to scale.

https://oreil.ly/bFkI7
https://oreil.ly/xhFLF
https://oreil.ly/xhFLF
https://oreil.ly/yAMmQ

For men CV is 0.0465; for women it is 0.0475. The coefficient of variation
is higher for women, so this dataset provides evidence against the
Variability Hypothesis. But we can use Bayesian methods to make that
conclusion more precise.

Use these summary statistics to compute the posterior distribution of mu and
sigma for the distributions of male and female height. Use Pmf.div_dist
to compute posterior distributions of CV. Based on this dataset and the
assumption that the distribution of height is normal, what is the probability
that the coefficient of variation is higher for men? What is the most likely
ratio of the CVs and what is the 90% credible interval for that ratio?

Chapter 14. Survival Analysis

This chapter introduces “survival analysis”, which is a set of statistical
methods used to answer questions about the time until an event. In the
context of medicine it is literally about survival, but it can be applied to the
time until any kind of event, or instead of time it can be about space or
other dimensions.

Survival analysis is challenging because the data we have are often
incomplete. But as we’ll see, Bayesian methods are particularly good at
working with incomplete data.

As examples, we’ll consider two applications that are a little less serious
than life and death: the time until light bulbs fail and the time until dogs in a
shelter are adopted. To describe these “survival times”, we’ll use the
Weibull distribution.

The Weibull Distribution
The Weibull distribution is often used in survival analysis because it is a
good model for the distribution of lifetimes for manufactured products, at
least over some parts of the range.

SciPy provides several versions of the Weibull distribution; the one we’ll
use is called weibull_min. To make the interface consistent with our
notation, I’ll wrap it in a function that takes as parameters λ, which mostly
affects the location or “central tendency” of the distribution, and k, which
affects the shape.

from scipy.stats import weibull_min

def weibull_dist(lam, k):

 return weibull_min(k, scale=lam)

https://oreil.ly/tj7hO

As an example, here’s a Weibull distribution with parameters λ = 3 and k =
0.8:

lam = 3

k = 0.8

actual_dist = weibull_dist(lam, k)

The result is an object that represents the distribution. Here’s what the
Weibull CDF looks like with those parameters:

actual_dist provides rvs, which we can use to generate a random sample
from this distribution:

data = actual_dist.rvs(10)

data

array([0.80497283, 2.11577082, 0.43308797, 0.10862644, 5.17334866,

 3.25745053, 3.05555883, 2.47401062, 0.05340806, 1.08386395])

So, given the parameters of the distribution, we can generate a sample. Now
let’s see if we can go the other way: given the sample, we’ll estimate the
parameters.

Here’s a uniform prior distribution for λ:

from utils import make_uniform

lams = np.linspace(0.1, 10.1, num=101)

prior_lam = make_uniform(lams, name='lambda')

And a uniform prior for k:

ks = np.linspace(0.1, 5.1, num=101)

prior_k = make_uniform(ks, name='k')

I’ll use make_joint to make a joint prior distribution for the two
parameters:

from utils import make_joint

prior = make_joint(prior_lam, prior_k)

The result is a DataFrame that represents the joint prior, with possible
values of λ across the columns and values of k down the rows.

Now I’ll use meshgrid to make a 3-D mesh with λ on the first axis
(axis=0), k on the second axis (axis=1), and the data on the third axis
(axis=2):

lam_mesh, k_mesh, data_mesh = np.meshgrid(

 prior.columns, prior.index, data)

Now we can use weibull_dist to compute the PDF of the Weibull
distribution for each pair of parameters and each data point:

densities = weibull_dist(lam_mesh, k_mesh).pdf(data_mesh)

densities.shape

(101, 101, 10)

The likelihood of the data is the product of the probability densities along
axis=2.

likelihood = densities.prod(axis=2)

likelihood.sum()

2.0938302958838208e-05

Now we can compute the posterior distribution in the usual way:

from utils import normalize

posterior = prior * likelihood

normalize(posterior)

The following function encapsulates these steps. It takes a joint prior
distribution and the data, and returns a joint posterior distribution:

def update_weibull(prior, data):

 """Update the prior based on data."""

 lam_mesh, k_mesh, data_mesh = np.meshgrid(

 prior.columns, prior.index, data)

 densities = weibull_dist(lam_mesh, k_mesh).pdf(data_mesh)

 likelihood = densities.prod(axis=2)

 posterior = prior * likelihood

 normalize(posterior)

 return posterior

Here’s how we use it:

posterior = update_weibull(prior, data)

And here’s a contour plot of the joint posterior distribution:

It looks like the range of likely values for λ is about 1 to 4, which contains
the actual value we used to generate the data, 3. And the range for k is about
0.5 to 1.5, which contains the actual value, 0.8.

Incomplete Data
In the previous example we were given 10 random values from a Weibull
distribution, and we used them to estimate the parameters (which we
pretended we didn’t know).

But in many real-world scenarios, we don’t have complete data; in
particular, when we observe a system at a point in time, we generally have
information about the past, but not the future.

As an example, suppose you work at a dog shelter and you are interested in
the time between the arrival of a new dog and when it is adopted. Some
dogs might be snapped up immediately; others might have to wait longer.
The people who operate the shelter might want to make inferences about
the distribution of these residence times.

Suppose you monitor arrivals and departures over 8 weeks, and 10 dogs
arrive during that interval. I’ll assume that their arrival times are distributed
uniformly, so I’ll generate random values like this:

start = np.random.uniform(0, 8, size=10)

start

array([0.78026881, 6.08999773, 1.97550379, 1.1050535 , 2.65157251,

 0.66399652, 5.37581665, 6.45275039, 7.86193532, 5.08528588])

Now let’s suppose that the residence times follow the Weibull distribution
we used in the previous example. We can generate a sample from that
distribution like this:

duration = actual_dist.rvs(10)

duration

array([0.80497283, 2.11577082, 0.43308797, 0.10862644, 5.17334866,

 3.25745053, 3.05555883, 2.47401062, 0.05340806, 1.08386395])

I’ll use these values to construct a DataFrame that contains the arrival and
departure times for each dog, called start and end:

import pandas as pd

d = dict(start=start, end=start+duration)

obs = pd.DataFrame(d)

For display purposes, I’ll sort the rows of the DataFrame by arrival time:

obs = obs.sort_values(by='start', ignore_index=True)

obs

start end

0 0.663997 3.921447

1 0.780269 1.585242

2 1.105053 1.213680

3 1.975504 2.408592

4 2.651573 7.824921

5 5.085286 6.169150

6 5.375817 8.431375

7 6.089998 8.205769

8 6.452750 8.926761

9 7.861935 7.915343

Notice that several of the lifelines extend past the observation window of 8
weeks. So if we observed this system at the beginning of Week 8, we would
have incomplete information. Specifically, we would not know the future
adoption times for Dogs 6, 7, and 8.

I’ll simulate this incomplete data by identifying the lifelines that extend past
the observation window:

censored = obs['end'] > 8

censored is a Boolean Series that is True for lifelines that extend past
Week 8.

Data that is not available is sometimes called “censored” in the sense that it
is hidden from us. But in this case it is hidden because we don’t know the
future, not because someone is censoring it.

For the lifelines that are censored, I’ll modify end to indicate when they are
last observed and status to indicate that the observation is incomplete:

obs.loc[censored, 'end'] = 8

obs.loc[censored, 'status'] = 0

Now we can plot a “lifeline” for each dog, showing the arrival and
departure times on a time line:

And I’ll add one more column to the table, which contains the duration of
the observed parts of the lifelines:

obs['T'] = obs['end'] - obs['start']

What we have simulated is the data that would be available at the beginning
of Week 8.

Using Incomplete Data
Now, let’s see how we can use both kinds of data, complete and incomplete,
to infer the parameters of the distribution of residence times.

First I’ll split the data into two sets: data1 contains residence times for
dogs whose arrival and departure times are known; data2 contains
incomplete residence times for dogs who were not adopted during the
observation interval.

data1 = obs.loc[~censored, 'T']

data2 = obs.loc[censored, 'T']

For the complete data, we can use update_weibull, which uses the PDF of
the Weibull distribution to compute the likelihood of the data.

posterior1 = update_weibull(prior, data1)

For the incomplete data, we have to think a little harder. At the end of the
observation interval, we don’t know what the residence time will be, but we
can put a lower bound on it; that is, we can say that the residence time will
be greater than T.

And that means that we can compute the likelihood of the data using the
survival function, which is the probability that a value from the distribution
exceeds T.

The following function is identical to update_weibull except that it uses
sf, which computes the survival function, rather than pdf.

def update_weibull_incomplete(prior, data):

 """Update the prior using incomplete data."""

 lam_mesh, k_mesh, data_mesh = np.meshgrid(

 prior.columns, prior.index, data)

 # evaluate the survival function

 probs = weibull_dist(lam_mesh, k_mesh).sf(data_mesh)

 likelihood = probs.prod(axis=2)

 posterior = prior * likelihood

 normalize(posterior)

 return posterior

Here’s the update with the incomplete data:

posterior2 = update_weibull_incomplete(posterior1, data2)

And here’s what the joint posterior distribution looks like after both
updates:

Compared to the previous contour plot, it looks like the range of likely
values for λ is substantially wider. We can see that more clearly by looking
at the marginal distributions.

posterior_lam2 = marginal(posterior2, 0)

posterior_k2 = marginal(posterior2, 1)

Here’s the posterior marginal distribution for λ compared to the distribution
we got using all complete data:

The distribution with some incomplete data is substantially wider.

As an aside, notice that the posterior distribution does not come all the way
to 0 on the right side. That suggests that the range of the prior distribution is
not wide enough to cover the most likely values for this parameter. If I were
concerned about making this distribution more accurate, I would go back
and run the update again with a wider prior.

Here’s the posterior marginal distribution for k:

In this example, the marginal distribution is shifted to the left when we have
incomplete data, but it is not substantially wider.

In summary, we have seen how to combine complete and incomplete data to
estimate the parameters of a Weibull distribution, which is useful in many
real-world scenarios where some of the data are censored.

In general, the posterior distributions are wider when we have incomplete
data, because less information leads to more uncertainty.

This example is based on data I generated; in the next section we’ll do a
similar analysis with real data.

Light Bulbs
In 2007 researchers ran an experiment to characterize the distribution of
lifetimes for light bulbs. Here is their description of the experiment:

An assembly of 50 new Philips (India) lamps with the rating 40 W, 220 V
(AC) was taken and installed in the horizontal orientation and uniformly
distributed over a lab area 11 m x 7 m.

The assembly was monitored at regular intervals of 12 h to look for
failures. The instants of recorded failures were [recorded] and a total of
32 data points were obtained such that even the last bulb failed.

We can load the data into a DataFrame like this:

df = pd.read_csv('lamps.csv', index_col=0)

df.head()

h f K

i

0 0 0 50

1 840 2 48

2 852 1 47

3 936 1 46

4 960 1 45

Column h contains the times when bulbs failed in hours; Column f contains
the number of bulbs that failed at each time. We can represent these values
and frequencies using a Pmf, like this:

https://oreil.ly/WEbsd

from empiricaldist import Pmf

pmf_bulb = Pmf(df['f'].to_numpy(), df['h'])

pmf_bulb.normalize()

50

Because of the design of this experiment, we can consider the data to be a
representative sample from the distribution of lifetimes, at least for light
bulbs that are lit continuously.

Assuming that these data are well modeled by a Weibull distribution, let’s
estimate the parameters that fit the data. Again, I’ll start with uniform priors
for λ and k:

lams = np.linspace(1000, 2000, num=51)

prior_lam = make_uniform(lams, name='lambda')

ks = np.linspace(1, 10, num=51)

prior_k = make_uniform(ks, name='k')

For this example, there are 51 values in the prior distribution, rather than
the usual 101. That’s because we are going to use the posterior distributions
to do some computationally intensive calculations. They will run faster with
fewer values, but the results will be less precise.

As usual, we can use make_joint to make the prior joint distribution:

prior_bulb = make_joint(prior_lam, prior_k)

Although we have data for 50 light bulbs, there are only 32 unique lifetimes
in the dataset. For the update, it is convenient to express the data in the form
of 50 lifetimes, with each lifetime repeated the given number of times. We
can use np.repeat to transform the data:

data_bulb = np.repeat(df['h'], df['f'])

len(data_bulb)

50

Now we can use update_weibull to do the update:

posterior_bulb = update_weibull(prior_bulb, data_bulb)

Here’s what the posterior joint distribution looks like:

To summarize this joint posterior distribution, we’ll compute the posterior
mean lifetime.

Posterior Means
To compute the posterior mean of a joint distribution, we’ll make a mesh
that contains the values of λ and k:

lam_mesh, k_mesh = np.meshgrid(

 prior_bulb.columns, prior_bulb.index)

Now for each pair of parameters we’ll use weibull_dist to compute the
mean:

means = weibull_dist(lam_mesh, k_mesh).mean()

means.shape

(51, 51)

The result is an array with the same dimensions as the joint distribution.

Now we need to weight each mean with the corresponding probability from
the joint posterior:

prod = means * posterior_bulb

Finally we compute the sum of the weighted means:

prod.to_numpy().sum()

1412.7242774305005

Based on the posterior distribution, we think the mean lifetime is about
1,413 hours.

The following function encapsulates these steps:

def joint_weibull_mean(joint):

 """Compute the mean of a joint distribution of Weibulls."""

 lam_mesh, k_mesh = np.meshgrid(

 joint.columns, joint.index)

 means = weibull_dist(lam_mesh, k_mesh).mean()

 prod = means * joint

 return prod.to_numpy().sum()

Posterior Predictive Distribution
Suppose you install 100 light bulbs of the kind in the previous section, and
you come back to check on them after 1,000 hours. Based on the posterior
distribution we just computed, what is the distribution of the number of
bulbs you find dead?

If we knew the parameters of the Weibull distribution for sure, the answer
would be a binomial distribution.

For example, if we know that λ = 1550 and k = 4.25, we can use
weibull_dist to compute the probability that a bulb dies before you
return:

lam = 1550

k = 4.25

t = 1000

prob_dead = weibull_dist(lam, k).cdf(t)

prob_dead

0.14381685899960547

If there are 100 bulbs and each has this probability of dying, the number of
dead bulbs follows a binomial distribution.

from utils import make_binomial

n = 100

p = prob_dead

dist_num_dead = make_binomial(n, p)

But that’s based on the assumption that we know λ and k, and we don’t.
Instead, we have a posterior distribution that contains possible values of
these parameters and their probabilities.

So the posterior predictive distribution is not a single binomial; instead it is
a mixture of binomials, weighted with the posterior probabilities.

We can use make_mixture to compute the posterior predictive distribution.
It doesn’t work with joint distributions, but we can convert the DataFrame
that represents a joint distribution to a Series, like this:

posterior_series = posterior_bulb.stack()

posterior_series.head()

k lambda

1.0 1000.0 8.146763e-25

 1020.0 1.210486e-24

 1040.0 1.738327e-24

 1060.0 2.418201e-24

 1080.0 3.265549e-24

dtype: float64

The result is a Series with a MultiIndex that contains two “levels”: the
first level contains the values of k; the second contains the values of lam.

With the posterior in this form, we can iterate through the possible
parameters and compute a predictive distribution for each pair:

pmf_seq = []

for (k, lam) in posterior_series.index:

 prob_dead = weibull_dist(lam, k).cdf(t)

 pmf = make_binomial(n, prob_dead)

 pmf_seq.append(pmf)

Now we can use make_mixture, passing as parameters the posterior
probabilities in posterior_series and the sequence of binomial
distributions in pmf_seq:

from utils import make_mixture

post_pred = make_mixture(posterior_series, pmf_seq)

Here’s what the posterior predictive distribution looks like, compared to the
binomial distribution we computed with known parameters:

The posterior predictive distribution is wider because it represents our
uncertainty about the parameters as well as our uncertainty about the
number of dead bulbs.

Summary
This chapter introduces survival analysis, which is used to answer questions
about the time until an event, and the Weibull distribution, which is a good
model for “lifetimes” (broadly interpreted) in a number of domains.

We used joint distributions to represent prior probabilities for the
parameters of the Weibull distribution, and we updated them three ways:
knowing the exact duration of a lifetime, knowing a lower bound, and
knowing that a lifetime fell in a given interval.

These examples demonstrate a feature of Bayesian methods: they can be
adapted to handle incomplete, or “censored”, data with only small changes.
As an exercise, you’ll have a chance to work with one more type of
censored data, when we are given an upper bound on a lifetime.

The methods in this chapter work with any distribution with two
parameters. In the exercises, you’ll have a chance to estimate the
parameters of a two-parameter gamma distribution, which is used to
describe a variety of natural phenomena.

And in the next chapter we’ll move on to models with three parameters!

Exercises
Example 14-1.

Using data about the lifetimes of light bulbs, we computed the posterior
distribution from the parameters of a Weibull distribution, λ and k, and the
posterior predictive distribution for the number of dead bulbs, out of 100,
after 1,000 hours.

Now suppose you do the experiment: You install 100 light bulbs, come back
after 1,000 hours, and find 20 dead light bulbs. Update the posterior
distribution based on this data. How much does it change the posterior
mean?

Example 14-2.

In this exercise, we’ll use one month of data to estimate the parameters of a
distribution that describes daily rainfall in Seattle. Then we’ll compute the
posterior predictive distribution for daily rainfall and use it to estimate the
probability of a rare event, like more than 1.5 inches of rain in a day.

According to hydrologists, the distribution of total daily rainfall (for days
with rain) is well modeled by a two-parameter gamma distribution.

When we worked with the one-parameter gamma distribution in “The
Gamma Distribution”, we used the Greek letter α for the parameter.

For the two-parameter gamma distribution, we will use k for the “shape
parameter”, which determines the shape of the distribution, and the Greek
letter θ or theta for the “scale parameter”.

I suggest you proceed in the following steps:

1. Construct a prior distribution for the parameters of the gamma
distribution. Note that k and θ must be greater than 0.

2. Use the observed rainfalls to update the distribution of parameters.

3. Compute the posterior predictive distribution of rainfall, and use it
to estimate the probability of getting more than 1.5 inches of rain
in one day.

Chapter 15. Mark and
Recapture

This chapter introduces “mark and recapture” experiments, in which we
sample individuals from a population, mark them somehow, and then take a
second sample from the same population. Seeing how many individuals in
the second sample are marked, we can estimate the size of the population.

Experiments like this were originally used in ecology, but turn out to be
useful in many other fields. Examples in this chapter include software
engineering and epidemiology.

Also, in this chapter we’ll work with models that have three parameters, so
we’ll extend the joint distributions we’ve been using to three dimensions.

But first, grizzly bears.

The Grizzly Bear Problem
In 1996 and 1997 researchers deployed bear traps in locations in British
Columbia and Alberta, Canada, in an effort to estimate the population of
grizzly bears. They describe the experiment in this article.

The “trap” consists of a lure and several strands of barbed wire intended to
capture samples of hair from bears that visit the lure. Using the hair
samples, the researchers use DNA analysis to identify individual bears.

During the first session, the researchers deployed traps at 76 sites.
Returning 10 days later, they obtained 1,043 hair samples and identified 23
different bears. During a second 10-day session they obtained 1,191
samples from 19 different bears, where 4 of the 19 were from bears they
had identified in the first batch.

https://oreil.ly/aJOdC

To estimate the population of bears from this data, we need a model for the
probability that each bear will be observed during each session. As a
starting place, we’ll make the simplest assumption, that every bear in the
population has the same (unknown) probability of being sampled during
each session.

With these assumptions we can compute the probability of the data for a
range of possible populations.

As an example, let’s suppose that the actual population of bears is 100.

After the first session, 23 of the 100 bears have been identified. During the
second session, if we choose 19 bears at random, what is the probability
that 4 of them were previously identified?

I’ll define:

N : actual population size, 100.

K: number of bears identified in the first session, 23.

n: number of bears observed in the second session, 19 in the
example.

k: number of bears in the second session that were previously
identified, 4.

For given values of N , K, and n, the probability of finding k previously-
identified bears is given by the hypergeometric distribution:

(
K

k
)(

N − K

n − k
)/(

N

n
)

where the binomial coefficient, (K
k
), is the number of subsets of size k we

can choose from a population of size K.

To understand why, consider:

https://oreil.ly/6flcf
https://oreil.ly/JO7Hi

The denominator, (N
n
), is the number of subsets of n we could

choose from a population of N bears.

The numerator is the number of subsets that contain k bears from
the previously identified K and n − k from the previously unseen
N − K.

SciPy provides hypergeom, which we can use to compute this probability
for a range of values of k:

import numpy as np

from scipy.stats import hypergeom

N = 100

K = 23

n = 19

ks = np.arange(12)

ps = hypergeom(N, K, n).pmf(ks)

The result is the distribution of k with given parameters N , K, and n.
Here’s what it looks like:

The most likely value of k is 4, which is the value actually observed in the
experiment.
That suggests that N = 100 is a reasonable estimate of the population,
given this data.

We’ve computed the distribution of k given N , K, and n. Now let’s go the
other way: given K, n, and k, how can we estimate the total population, N?

The Update
As a starting place, let’s suppose that, prior to this study, an expert estimates
that the local bear population is between 50 and 500, and equally likely to
be any value in that range.

I’ll use make_uniform to make a uniform distribution of integers in this
range:

import numpy as np

from utils import make_uniform

qs = np.arange(50, 501)

prior_N = make_uniform(qs, name='N')

prior_N.shape

(451,)

So that’s our prior.

To compute the likelihood of the data, we can use hypergeom with
constants K and n, and a range of values of N:

Ns = prior_N.qs

K = 23

n = 19

k = 4

likelihood = hypergeom(Ns, K, n).pmf(k)

We can compute the posterior in the usual way:

posterior_N = prior_N * likelihood

posterior_N.normalize()

0.07755224277106727

And here’s what it looks like:

The most likely value is 109:

posterior_N.max_prob()

109

But the distribution is skewed to the right, so the posterior mean is
substantially higher:

posterior_N.mean()

173.79880627085637

And the credible interval is quite wide:

posterior_N.credible_interval(0.9)

array([77., 363.])

This solution is relatively simple, but it turns out we can do a little better if
we model the unknown probability of observing a bear explicitly.

Two-Parameter Model
Next we’ll try a model with two parameters: the number of bears, N, and the
probability of observing a bear, p.

We’ll assume that the probability is the same in both rounds, which is
probably reasonable in this case because it is the same kind of trap in the
same place.

We’ll also assume that the probabilities are independent; that is, the
probability a bear is observed in the second round does not depend on
whether it was observed in the first round. This assumption might be less
reasonable, but for now it is a necessary simplification.

Here are the counts again:

K = 23

n = 19

k = 4

For this model, I’ll express the data in a notation that will make it easier to
generalize to more than two rounds:

k10 is the number of bears observed in the first round but not the
second,

k01 is the number of bears observed in the second round but not
the first, and

k11 is the number of bears observed in both rounds.

Here are their values:

k10 = 23 - 4

k01 = 19 - 4

k11 = 4

Suppose we know the actual values of N and p. We can use them to compute
the likelihood of this data.

For example, suppose we know that N=100 and p=0.2. We can use N to
compute k00, which is the number of unobserved bears:

N = 100

observed = k01 + k10 + k11

k00 = N - observed

k00

62

For the update, it will be convenient to store the data as a list that represents
the number of bears in each category:

x = [k00, k01, k10, k11]

x

[62, 15, 19, 4]

Now, if we know p=0.2, we can compute the probability a bear falls in each
category. For example, the probability of being observed in both rounds is
p*p, and the probability of being unobserved in both rounds is q*q (where
q=1-p).

p = 0.2

q = 1-p

y = [q*q, q*p, p*q, p*p]

y

[0.6400000000000001,

 0.16000000000000003,

 0.16000000000000003,

 0.04000000000000001]

Now the probability of the data is given by the multinomial distribution:

N !

∏xi!
∏ y

xi

i

https://oreil.ly/JVK5H

where N is actual population, x is a sequence with the counts in each
category, and y is a sequence of probabilities for each category.

SciPy provides multinomial, which provides pmf, which computes this
probability. Here is the probability of the data for these values of N and p:

from scipy.stats import multinomial

likelihood = multinomial.pmf(x, N, y)

likelihood

0.0016664011988507257

That’s the likelihood if we know N and p, but of course we don’t. So we’ll
choose prior distributions for N and p, and use the likelihoods to update it.

The Prior
We’ll use prior_N again for the prior distribution of N, and a uniform prior
for the probability of observing a bear, p:

qs = np.linspace(0, 0.99, num=100)

prior_p = make_uniform(qs, name='p')

We can make a joint distribution in the usual way:

from utils import make_joint

joint_prior = make_joint(prior_p, prior_N)

joint_prior.shape

(451, 100)

The result is a pandas DataFrame with values of N down the rows and
values of p across the columns. However, for this problem it will be
convenient to represent the prior distribution as a 1-D Series rather than a
2-D DataFrame. We can convert from one format to the other using stack:

from empiricaldist import Pmf

joint_pmf = Pmf(joint_prior.stack())

joint_pmf.head(3)

probs

N p

50

0.00 0.000022

0.01 0.000022

0.02 0.000022

The result is a Pmf whose index is a MultiIndex. A MultiIndex can have
more than one column; in this example, the first column contains values of
N and the second column contains values of p.

The Pmf has one row (and one prior probability) for each possible pair of
parameters N and p. So the total number of rows is the product of the
lengths of prior_N and prior_p.

Now we have to compute the likelihood of the data for each pair of
parameters.

The Update
To allocate space for the likelihoods, it is convenient to make a copy of
joint_pmf:

likelihood = joint_pmf.copy()

As we loop through the pairs of parameters, we compute the likelihood of
the data as in the previous section, and then store the result as an element of
likelihood:

observed = k01 + k10 + k11

for N, p in joint_pmf.index:

 k00 = N - observed

 x = [k00, k01, k10, k11]

 q = 1-p

 y = [q*q, q*p, p*q, p*p]

 likelihood[N, p] = multinomial.pmf(x, N, y)

Now we can compute the posterior in the usual way:

posterior_pmf = joint_pmf * likelihood

posterior_pmf.normalize()

We’ll use plot_contour again to visualize the joint posterior distribution.
But remember that the posterior distribution we just computed is
represented as a Pmf, which is a Series, and plot_contour expects a
DataFrame.

Since we used stack to convert from a DataFrame to a Series, we can use
unstack to go the other way:

joint_posterior = posterior_pmf.unstack()

And here’s what the result looks like:

The most likely values of N are near 100, as in the previous model. The
most likely values of p are near 0.2.

The shape of this contour indicates that these parameters are correlated. If p
is near the low end of the range, the most likely values of N are higher; if p
is near the high end of the range, N is lower.

Now that we have a posterior DataFrame, we can extract the marginal
distributions in the usual way:

from utils import marginal

posterior2_p = marginal(joint_posterior, 0)

posterior2_N = marginal(joint_posterior, 1)

Here’s the posterior distribution for N based on the two-parameter model,
along with the posterior we got using the one-parameter (hypergeometric)
model:

With the two-parameter model, the mean is a little lower and the 90%
credible interval is a little narrower.

The Lincoln Index Problem
In an excellent blog post, John D. Cook wrote about the Lincoln index,
which is a way to estimate the number of errors in a document (or program)
by comparing results from two independent testers. Here’s his presentation
of the problem:

https://oreil.ly/YfzzJ

Suppose you have a tester who finds 20 bugs in your program. You want
to estimate how many bugs are really in the program. You know there are
at least 20 bugs, and if you have supreme confidence in your tester, you
may suppose there are around 20 bugs. But maybe your tester isn’t very
good. Maybe there are hundreds of bugs. How can you have any idea
how many bugs there are? There’s no way to know with one tester. But if
you have two testers, you can get a good idea, even if you don’t know
how skilled the testers are.

Suppose the first tester finds 20 bugs, the second finds 15, and they find 3
in common; how can we estimate the number of bugs?

This problem is similar to the Grizzly Bear Problem, so I’ll represent the
data in the same way:

k10 = 20 - 3

k01 = 15 - 3

k11 = 3

But in this case it is probably not reasonable to assume that the testers have
the same probability of finding a bug. So I’ll define two parameters, p0 for
the probability that the first tester finds a bug, and p1 for the probability that
the second tester finds a bug.

I will continue to assume that the probabilities are independent, which is
like assuming that all bugs are equally easy to find. That might not be a
good assumption, but let’s stick with it for now.

As an example, suppose we know that the probabilities are 0.2 and 0.15.

p0, p1 = 0.2, 0.15

We can compute the array of probabilities, y, like this:

def compute_probs(p0, p1):

 """Computes the probability for each of 4 categories."""

 q0 = 1-p0

 q1 = 1-p1

 return [q0*q1, q0*p1, p0*q1, p0*p1]

y = compute_probs(p0, p1)

y

[0.68, 0.12, 0.17, 0.03]

With these probabilities, there is a 68% chance that neither tester finds the
bug and a 3% chance that both do.

Pretending that these probabilities are known, we can compute the posterior
distribution for N. Here’s a prior distribution that’s uniform from 32 to 350
bugs:

qs = np.arange(32, 350, step=5)

prior_N = make_uniform(qs, name='N')

prior_N.head(3)

probs

N

32 0.015625

37 0.015625

42 0.015625

I’ll put the data in an array, with 0 as a place-keeper for the unknown value
k00:

data = np.array([0, k01, k10, k11])

And here are the likelihoods for each value of N, with ps as a constant:

likelihood = prior_N.copy()

observed = data.sum()

x = data.copy()

for N in prior_N.qs:

 x[0] = N - observed

 likelihood[N] = multinomial.pmf(x, N, y)

We can compute the posterior in the usual way:

posterior_N = prior_N * likelihood

posterior_N.normalize()

0.0003425201572557094

And here’s what it looks like:

With the assumption that p0 and p1 are known to be 0.2 and 0.15, the
posterior mean is 102 with 90% credible interval (77, 127). But this result is
based on the assumption that we know the probabilities, and we don’t.

Three-Parameter Model
What we need is a model with three parameters: N, p0, and p1. We’ll use
prior_N again for the prior distribution of N, and here are the priors for p0
and p1:

qs = np.linspace(0, 1, num=51)

prior_p0 = make_uniform(qs, name='p0')

prior_p1 = make_uniform(qs, name='p1')

Now we have to assemble them into a joint prior with three dimensions. I’ll
start by putting the first two into a DataFrame:

joint2 = make_joint(prior_p0, prior_N)

joint2.shape

(64, 51)

Now I’ll stack them, as in the previous example, and put the result in a Pmf:

joint2_pmf = Pmf(joint2.stack())

joint2_pmf.head(3)

probs

N p0

32

0.00 0.000306

0.02 0.000306

0.04 0.000306

We can use make_joint again to add in the third parameter:

joint3 = make_joint(prior_p1, joint2_pmf)

joint3.shape

(3264, 51)

The result is a DataFrame with values of N and p0 in a MultiIndex that
goes down the rows and values of p1 in an index that goes across the
columns.

Now I’ll apply stack again:

joint3_pmf = Pmf(joint3.stack())

joint3_pmf.head(3)

probs

N p0 p1

32 0.0

0.00 0.000006

0.02 0.000006

0.04 0.000006

The result is a Pmf with a three-column MultiIndex containing all possible
triplets of parameters.

The number of rows is the product of the number of values in all three
priors, which is almost 170,000:

joint3_pmf.shape

(166464,)

That’s still small enough to be practical, but it will take longer to compute
the likelihoods than in the previous examples.

Here’s the loop that computes the likelihoods; it’s similar to the one in the
previous section:

likelihood = joint3_pmf.copy()

observed = data.sum()

x = data.copy()

for N, p0, p1 in joint3_pmf.index:

 x[0] = N - observed

 y = compute_probs(p0, p1)

 likelihood[N, p0, p1] = multinomial.pmf(x, N, y)

We can compute the posterior in the usual way:

posterior_pmf = joint3_pmf * likelihood

posterior_pmf.normalize()

8.941088283758206e-06

Now, to extract the marginal distributions, we could unstack the joint
posterior as we did in the previous section. But Pmf provides a version of
marginal that works with a Pmf rather than a DataFrame. Here’s how we
use it to get the posterior distribution for N:

posterior_N = posterior_pmf.marginal(0)

And here’s what it looks like:

105.7656173219623

The posterior mean is 105 bugs, which suggests that there are still many
bugs the testers have not found.

Here are the posteriors for p0 and p1:

Comparing the posterior distributions, the tester who found more bugs
probably has a higher probability of finding bugs. The posterior means are
about 23% and 18%. But the distributions overlap, so we should not be too
sure.

This is the first example we’ve seen with three parameters. As the number
of parameters increases, the number of combinations increases quickly. The

method we’ve been using so far, enumerating all possible combinations,
becomes impractical if the number of parameters is more than 3 or 4.

However, there are other methods that can handle models with many more
parameters, as we’ll see in Chapter 19.

Summary
The problems in this chapter are examples of mark and recapture
experiments, which are used in ecology to estimate animal populations.
They also have applications in engineering, as in the Lincoln Index
Problem. And in the exercises you’ll see that they are used in epidemiology,
too.

This chapter introduces two new probability distributions:

The hypergeometric distribution is a variation of the binomial
distribution in which samples are drawn from the population
without replacement.

The multinomial distribution is a generalization of the binomial
distribution where there are more than two possible outcomes.

Also in this chapter, we saw the first example of a model with three
parameters. We’ll see more in subsequent chapters.

Exercises
Example 15-1.

In an excellent paper, Anne Chao explains how mark and recapture
experiments are used in epidemiology to estimate the prevalence of a
disease in a human population based on multiple incomplete lists of cases.

One of the examples in that paper is a study “to estimate the number of
people who were infected by hepatitis in an outbreak that occurred in and
around a college in northern Taiwan from April to July 1995.”

https://oreil.ly/wW98J
https://oreil.ly/9yzPi

Three lists of cases were available:

1. 135 cases identified using a serum test.

2. 122 cases reported by local hospitals.

3. 126 cases reported on questionnaires collected by epidemiologists.

In this exercise, we’ll use only the first two lists; in the next exercise we’ll
bring in the third list.

Make a joint prior and update it using this data, then compute the posterior
mean of N and a 90% credible interval.

Example 15-2.

Now let’s do the version of the problem with all three lists. Here’s the data
from Chou’s paper:

Hepatitis A virus list

P Q E Data

1 1 1 k111 =28

1 1 0 k110 =21

1 0 1 k101 =17

1 0 0 k100 =69

0 1 1 k011 =18

0 1 0 k010 =55

0 0 1 k001 =63

0 0 0 k000 =??

Write a loop that computes the likelihood of the data for each pair of
parameters, then update the prior and compute the posterior mean of N.
How does it compare to the results using only the first two lists?

Chapter 16. Logistic
Regression

This chapter introduces two related topics: log odds and logistic regression.

In “Bayes’s Rule”, we rewrote Bayes’s theorem in terms of odds and
derived Bayes’s rule, which can be a convenient way to do a Bayesian
update on paper or in your head. In this chapter, we’ll look at Bayes’s rule
on a logarithmic scale, which provides insight into how we accumulate
evidence through successive updates.

That leads directly to logistic regression, which is based on a linear model
of the relationship between evidence and the log odds of a hypothesis. As
an example, we’ll use data from the Space Shuttle to explore the
relationship between temperature and the probability of damage to the O-
rings.

As an exercise, you’ll have a chance to model the relationship between a
child’s age when they start school and their probability of being diagnosed
with attention deficit hyperactivity disorder (ADHD).

Log Odds
When I was in grad school, I signed up for a class on the Theory of
Computation. On the first day of class, I was the first to arrive. A few
minutes later, another student arrived.

At the time, about 83% of the students in the computer science program
were male, so I was mildly surprised to note that the other student was
female.

When another female student arrived a few minutes later, I started to think I
was in the wrong room. When a third female student arrived, I was

https://oreil.ly/JGnGY

confident I was in the wrong room. And as it turned out, I was.

I’ll use this anecdote to demonstrate Bayes’s rule on a logarithmic scale and
show how it relates to logistic regression.

Using H to represent the hypothesis that I was in the right room, and F to
represent the observation that the first other student was female, we can
write Bayes’s rule like this:

O (H|F) = O (H)
P(F |H)

P(F |notH)

Before I saw the other students, I was confident I was in the right room, so I
might assign prior odds of 10:1 in favor:

O(H) = 10

If I was in the right room, the likelihood of the first female student was
about 17%. If I was not in the right room, the likelihood of the first female
student was more like 50%:

P(F |H)

P(F |notH)
= 17/50

So the likelihood ratio is close to 1/3. Applying Bayes’s rule, the posterior
odds were

O(H|F) = 10/3

After two students, the posterior odds were

O(H|FF) = 10/9

And after three students:

O(H|FFF) = 10/27

At that point, I was right to suspect I was in the wrong room.

The following table shows the odds after each update, the corresponding
probabilities, and the change in probability after each step, expressed in
percentage points.

odds prob prob diff

prior 10.000000 0.909091 --

1 student 3.333333 0.769231 -13.986014

2 students 1.111111 0.526316 -24.291498

3 students 0.370370 0.270270 -25.604552

Each update uses the same likelihood, but the changes in probability are not
the same. The first update decreases the probability by about 14 percentage
points, the second by 24, and the third by 26. That’s normal for this kind of
update, and in fact it’s necessary; if the changes were the same size, we
would quickly get into negative probabilities.

The odds follow a more obvious pattern. Because each update multiplies
the odds by the same likelihood ratio, the odds form a geometric sequence.
And that brings us to consider another way to represent uncertainty: log
odds, which is the logarithm of odds, usually expressed using the natural
log (base e).

Adding log odds to the table:

odds prob prob diff log odds

prior 10.000000 0.909091 -- 2.302585

1 student 3.333333 0.769231 -13.986014 1.203973

2 students 1.111111 0.526316 -24.291498 0.105361

3 students 0.370370 0.270270 -25.604552 -0.993252

You might notice:

When probability is greater than 0.5, odds are greater than 1, and
log odds are positive.

When probability is less than 0.5, odds are less than 1, and log
odds are negative.

You might also notice that the log odds are equally spaced. The change in
log odds after each update is the logarithm of the likelihood ratio.

np.log(1/3)

-1.0986122886681098

That’s true in this example, and we can show that it’s true in general by
taking the log of both sides of Bayes’s rule:

log O (H|F) =log O (H)+ log
P(F |H)

P(F |notH)

On a log odds scale, a Bayesian update is additive. So if F x means that x
female students arrive while I am waiting, the posterior log odds that I am
in the right room are:

log O (H|F x) =log O (H) + x log
P(F |H)

P(F |notH)

This equation represents a linear relationship between the log likelihood
ratio and the posterior log odds.

In this example the linear equation is exact, but even when it’s not, it is
common to use a linear function to model the relationship between an
explanatory variable, x, and a dependent variable expressed in log odds,
like this:

log O (H|x) = β0 + β1x

where β0 and β1 are unknown parameters:

The intercept, β0, is the log odds of the hypothesis when x is 0.

The slope, β1, is the log of the likelihood ratio.

This equation is the basis of logistic regression.

The Space Shuttle Problem
As an example of logistic regression, I’ll solve a problem from Cameron
Davidson-Pilon’s book, Bayesian Methods for Hackers. He writes:

On January 28, 1986, the twenty-fifth flight of the US space shuttle
program ended in disaster when one of the rocket boosters of the shuttle
Challenger exploded shortly after lift-off, killing all 7 crew members. The
presidential commission on the accident concluded that it was caused by
the failure of an O-ring in a field joint on the rocket booster, and that this
failure was due to a faulty design that made the O-ring unacceptably
sensitive to a number of factors including outside temperature. Of the
previous 24 flights, data were available on failures of O-rings on 23 (one
was lost at sea), and these data were discussed on the evening preceding
the Challenger launch, but unfortunately only the data corresponding to
the 7 flights on which there was a damage incident were considered
important and these were thought to show no obvious trend.

The dataset is originally from this paper, but also available from Davidson-
Pilon.

Here are the first few rows:

Date Temperature Damage

0 1981-04-12 66 0

1 1981-11-12 70 1

2 1982-03-22 69 0

4 1982-01-11 68 0

5 1983-04-04 67 0

The columns are:

Date: The date of launch,

https://oreil.ly/ocqjc
https://oreil.ly/Ths7X
https://oreil.ly/d0VAE
https://oreil.ly/d0VAE

Temperature: Outside temperature in Fahrenheit (F), and

Damage: 1 if there was a damage incident and 0 otherwise.

There are 23 launches in the dataset, 7 with damage incidents.

The following figure shows the relationship between damage and
temperature:

When the outside temperature was below 65 degrees F, there was always
damage to the O-rings. When the temperature was above 65 degrees F, there
was usually no damage.

Based on this figure, it seems plausible that the probability of damage is
related to temperature. If we assume this probability follows a logistic
model, we can write

log O (H|x) = β0 + β1x

where H is the hypothesis that the O-rings will be damaged, x is
temperature, and β0 and β1 are the parameters we will estimate. For reasons
I’ll explain soon, I’ll define x to be temperature shifted by an offset so its
mean is 0:

offset = data['Temperature'].mean().round()

data['x'] = data['Temperature'] - offset

offset

70.0

And for consistency I’ll create a copy of the Damage columns called y:

data['y'] = data['Damage']

Before doing a Bayesian update, I’ll use statsmodels to run a
conventional (non-Bayesian) logistic regression:

import statsmodels.formula.api as smf

formula = 'y ~ x'

results = smf.logit(formula, data=data).fit(disp=False)

results.params

Intercept -1.208490

x -0.232163

dtype: float64

results contains a “point estimate” for each parameter, that is, a single
value rather than a posterior distribution.

The intercept is about -1.2, and the estimated slope is about -0.23. To see
what these parameters mean, I’ll use them to compute probabilities for a
range of temperatures. Here’s the range:

inter = results.params['Intercept']

slope = results.params['x']

xs = np.arange(53, 83) - offset

We can use the logistic regression equation to compute log odds:

log_odds = inter + slope * xs

And then convert to probabilities:

odds = np.exp(log_odds)

ps = odds / (odds + 1)

Converting log odds to probabilities is a common enough operation that it
has a name, expit, and SciPy provides a function that computes it:

from scipy.special import expit

ps = expit(inter + slope * xs)

Here’s what the logistic model looks like with these estimated parameters:

At low temperatures, the probability of damage is high; at high
temperatures, it drops off to near 0.

But that’s based on conventional logistic regression. Now we’ll do the
Bayesian version.

Prior Distribution
I’ll use uniform distributions for both parameters, using the point estimates
from the previous section to help me choose the upper and lower bounds:

from utils import make_uniform

qs = np.linspace(-5, 1, num=101)

prior_inter = make_uniform(qs, 'Intercept')

qs = np.linspace(-0.8, 0.1, num=101)

prior_slope = make_uniform(qs, 'Slope')

We can use make_joint to construct the joint prior distribution:

from utils import make_joint

joint = make_joint(prior_inter, prior_slope)

The values of intercept run across the columns, and the values of slope
run down the rows.

For this problem, it will be convenient to “stack” the prior so the parameters
are levels in a MultiIndex:

from empiricaldist import Pmf

joint_pmf = Pmf(joint.stack())

joint_pmf.head()

probs

Slope Intercept

-0.8

-5.00 0.000098

-4.94 0.000098

-4.88 0.000098

joint_pmf is a Pmf with two levels in the index, one for each parameter.
That makes it easy to loop through possible pairs of parameters, as we’ll see
in the next section.

Likelihood
To do the update, we have to compute the likelihood of the data for each
possible pair of parameters.

To make that easier, I’m going to group the data by temperature, x, and
count the number of launches and damage incidents at each temperature:

grouped = data.groupby('x')['y'].agg(['count', 'sum'])

grouped.head()

count sum

x

-17.0 1 1

-13.0 1 1

-12.0 1 1

-7.0 1 1

-4.0 1 0

The result is a DataFrame with two columns: count is the number of
launches at each temperature; sum is the number of damage incidents. To be
consistent with the parameters of the binomial distributions, I’ll assign them
to variables named ns and ks:

ns = grouped['count']

ks = grouped['sum']

To compute the likelihood of the data, let’s assume temporarily that the
parameters we just estimated, slope and inter, are correct.

We can use them to compute the probability of damage at each launch
temperature, like this:

xs = grouped.index

ps = expit(inter + slope * xs)

ps contains the probability of damage for each launch temperature,
according to the model.

Now, for each temperature we have ns, ps, and ks; we can use the binomial
distribution to compute the likelihood of the data.

from scipy.stats import binom

likes = binom.pmf(ks, ns, ps)

likes

array([0.93924781, 0.85931657, 0.82884484, 0.60268105, 0.56950687,

 0.24446388, 0.67790595, 0.72637895, 0.18815003, 0.8419509 ,

 0.87045398, 0.15645171, 0.86667894, 0.95545945, 0.96435859,

 0.97729671])

Each element of likes is the probability of seeing k damage incidents in n
launches if the probability of damage is p. The likelihood of the whole
dataset is the product of this array:

likes.prod()

0.0004653644508250066

That’s how we compute the likelihood of the data for a particular pair of
parameters. Now we can compute the likelihood of the data for all possible
pairs:

likelihood = joint_pmf.copy()

for slope, inter in joint_pmf.index:

 ps = expit(inter + slope * xs)

 likes = binom.pmf(ks, ns, ps)

 likelihood[slope, inter] = likes.prod()

To initialize likelihood, we make a copy of joint_pmf, which is a
convenient way to make sure that likelihood has the same type, index,
and data type as joint_pmf.

The loop iterates through the parameters. For each possible pair, it uses the
logistic model to compute ps, computes the likelihood of the data, and
assigns the result to a row in likelihood.

The Update
Now we can compute the posterior distribution in the usual way:

posterior_pmf = joint_pmf * likelihood

posterior_pmf.normalize()

If we unstack the posterior Pmf we can make a contour plot of the joint
posterior distribution:

The ovals in the contour plot are aligned along a diagonal, which indicates
that there is some correlation between slope and inter in the posterior
distribution.

But the correlation is weak, which is one of the reasons we subtracted off
the mean launch temperature when we computed x; centering the data
minimizes the correlation between the parameters.

Example 16-1.

To see why this matters, go back and set offset=60 and run the analysis
again. The slope should be the same, but the intercept will be different. And
if you plot the joint distribution, the contours you get will be elongated,
indicating stronger correlation between the estimated parameters.

In theory, this correlation is not a problem, but in practice it is. With
uncentered data, the posterior distribution is more spread out, so it’s harder
to cover with the joint prior distribution. Centering the data maximizes the
precision of the estimates; with uncentered data, we have to do more
computation to get the same precision.

Marginal Distributions
Finally, we can extract the marginal distributions:

from utils import marginal

marginal_inter = marginal(joint_posterior, 0)

marginal_slope = marginal(joint_posterior, 1)

Here’s the posterior distribution of inter:

And here’s the posterior distribution of slope:

Transforming Distributions
Let’s interpret these parameters. Recall that the intercept is the log odds of
the hypothesis when x is 0, which is when temperature is about 70 degrees
F (the value of offset). So we can interpret the quantities in
marginal_inter as log odds.

To convert them to probabilities, I’ll use the following function, which
transforms the quantities in a Pmf by applying a given function:

def transform(pmf, func):

 """Transform the quantities in a Pmf."""

 ps = pmf.ps

 qs = func(pmf.qs)

 return Pmf(ps, qs, copy=True)

If we call transform and pass expit as a parameter, it transforms the log
odds in marginal_inter into probabilities and returns the posterior
distribution of inter expressed in terms of probabilities:

marginal_probs = transform(marginal_inter, expit)

Pmf provides a transform method that does the same thing:

marginal_probs = marginal_inter.transform(expit)

Here’s the posterior distribution for the probability of damage at 70 degrees
F:

The mean of this distribution is about 22%, which is the probability of
damage at 70 degrees F, according to the model.

This result shows the second reason I defined x to be zero when
temperature is 70 degrees F; this way, the intercept corresponds to the
probability of damage at a relevant temperature, rather than 0 degrees F.

Now let’s look more closely at the estimated slope. In the logistic model,
the parameter β1 is the log of the likelihood ratio.

So we can interpret the quantities in marginal_slope as log likelihood
ratios, and we can use exp to transform them to likelihood ratios (also
known as Bayes factors):

marginal_lr = marginal_slope.transform(np.exp)

The result is the posterior distribution of likelihood ratios; here’s what it
looks like:

The mean of this distribution is about 0.75, which means that each
additional degree Fahrenheit provides evidence against the possibility of
damage, with a likelihood ratio (Bayes factor) of 0.75.

Notice:

I computed the posterior mean of the probability of damage at 70
degrees F by transforming the marginal distribution of the intercept
to the marginal distribution of probability, and then computing the
mean.

I computed the posterior mean of the likelihood ratio by
transforming the marginal distribution of slope to the marginal
distribution of likelihood ratios, and then computing the mean.

This is the correct order of operations, as opposed to computing the
posterior means first and then transforming them.

Predictive Distributions
In the logistic model, the parameters are interpretable, at least after
transformation. But often what we care about are predictions, not
parameters. In the Space Shuttle Problem, the most important prediction is,
“What is the probability of O-ring damage if the outside temperature is 31
degrees F?”

To make that prediction, I’ll draw a sample of parameter pairs from the
posterior distribution:

sample = posterior_pmf.choice(101)

The result is an array of 101 tuples, each representing a possible pair of
parameters. I chose this sample size to make the computation fast.
Increasing it would not change the results much, but they would be a little
more precise.

To generate predictions, I’ll use a range of temperatures from 31 degrees F
(the temperature when the Challenger launched) to 82 degrees F (the
highest observed temperature):

temps = np.arange(31, 83)

xs = temps - offset

The following loop uses xs and the sample of parameters to construct an
array of predicted probabilities:

pred = np.empty((len(sample), len(xs)))

for i, (slope, inter) in enumerate(sample):

 pred[i] = expit(inter + slope * xs)

The result has one column for each value in xs and one row for each
element of sample.

In each column, I’ll compute the median to quantify the central tendency
and a 90% credible interval to quantify the uncertainty.

np.percentile computes the given percentiles; with the argument axis=0,
it computes them for each column:

low, median, high = np.percentile(pred, [5, 50, 95], axis=0)

The results are arrays containing predicted probabilities for the lower bound
of the 90% CI, the median, and the upper bound of the CI.

Here’s what they look like:

According to these results, the probability of damage to the O-rings at 80
degrees F is near 2%, but there is some uncertainty about that prediction;
the upper bound of the CI is around 10%.

At 60 degrees F, the probability of damage is near 80%, but the CI is even
wider, from 48% to 97%.

But the primary goal of the model is to predict the probability of damage at
31 degrees F, and the answer is at least 97%, and more likely to be more
than 99.9%.

One conclusion we might draw is this: if the people responsible for the
Challenger launch had taken into account all of the data, and not just the
seven damage incidents, they could have predicted that the probability of
damage at 31 degrees F was nearly certain. If they had, it seems likely they
would have postponed the launch.

At the same time, if they considered the previous figure, they might have
realized that the model makes predictions that extend far beyond the data.
When we extrapolate like that, we have to remember not just the
uncertainty quantified by the model, which we expressed as a credible
interval; we also have to consider the possibility that the model itself is
unreliable.

This example is based on a logistic model, which assumes that each
additional degree of temperature contributes the same amount of evidence

in favor of (or against) the possibility of damage. Within a narrow range of
temperatures, that might be a reasonable assumption, especially if it is
supported by data. But over a wider range, and beyond the bounds of the
data, reality has no obligation to stick to the model.

Empirical Bayes
In this chapter I used statsmodels to compute the parameters that
maximize the probability of the data, and then used those estimates to
choose the bounds of the uniform prior distributions. It might have occurred
to you that this process uses the data twice, once to choose the priors and
again to do the update. If that bothers you, you are not alone. The process I
used is an example of what’s called the Empirical Bayes method, although I
don’t think that’s a particularly good name for it.

Although it might seem problematic to use the data twice, in these
examples, it is not. To see why, consider an alternative: instead of using the
estimated parameters to choose the bounds of the prior distribution, I could
have used uniform distributions with much wider ranges. In that case, the
results would be the same; the only difference is that I would spend more
time computing likelihoods for parameters where the posterior probabilities
are negligibly small.

So you can think of this version of Empirical Bayes as an optimization that
minimizes computation by putting the prior distributions where the
likelihood of the data is worth computing. This optimization doesn’t affect
the results, so it doesn’t “double-count” the data.

Summary
So far we have seen three ways to represent degrees of confidence in a
hypothesis: probability, odds, and log odds. When we write Bayes’s rule in
terms of log odds, a Bayesian update is the sum of the prior and the

https://oreil.ly/zCxCm

likelihood; in this sense, Bayesian statistics is the arithmetic of hypotheses
and evidence.

This form of Bayes’s theorem is also the foundation of logistic regression,
which we used to infer parameters and make predictions. In the Space
Shuttle Problem, we modeled the relationship between temperature and the
probability of damage, and showed that the Challenger disaster might have
been predictable. But this example is also a warning about the hazards of
using a model to extrapolate far beyond the data.

In the exercises below you’ll have a chance to practice the material in this
chapter, using log odds to evaluate a political pundit and using logistic
regression to model diagnosis rates for attention deficit hyperactivity
disorder (ADHD).

In the next chapter we’ll move from logistic regression to linear regression,
which we will use to model changes over time in temperature, snowfall, and
the marathon world record.

More Exercises
Example 16-2.

Suppose a political pundit claims to be able to predict the outcome of
elections, but instead of picking a winner, they give each candidate a
probability of winning. With that kind of prediction, it can be hard to say
whether it is right or wrong.

For example, suppose the pundit says that Alice has a 70% chance of
beating Bob, and then Bob wins the election. Does that mean the pundit was
wrong?

One way to answer this question is to consider two hypotheses:

H: The pundit’s algorithm is legitimate; the probabilities it produces
are correct in the sense that they accurately reflect the candidates’
probabilities of winning.

not H: The pundit’s algorithm is bogus; the probabilities it
produces are random values with a mean of 50%.

If the pundit says Alice has a 70% chance of winning, and she does, that
provides evidence in favor of H with likelihood ratio 70/50.

If the pundit says Alice has a 70% chance of winning, and she loses, that’s
evidence against H with a likelihood ratio of 50/30.

Suppose we start with some confidence in the algorithm, so the prior odds
are 4 to 1. And suppose the pundit generates predictions for three elections:

In the first election, the pundit says Alice has a 70% chance of
winning and she does.

In the second election, the pundit says Bob has a 30% chance of
winning and he does.

In the third election, the pundit says Carol has a 90% chance of
winning and she does.

What is the log likelihood ratio for each of these outcomes? Use the log-
odds form of Bayes’s rule to compute the posterior log odds for H after
these outcomes. In total, do these outcomes increase or decrease your
confidence in the pundit?

If you are interested in this topic, you can read more about it in this blog
post.

Example 16-3.

An article in the New England Journal of Medicine reports results from a
study that looked at the diagnosis rate of attention deficit hyperactivity
disorder (ADHD) as a function of birth month: “Attention Deficit–
Hyperactivity Disorder and Month of School Enrollment”.

They found that children born in June, July, and August were substantially
more likely to be diagnosed with ADHD, compared to children born in
September, but only in states that use a September cutoff for children to

https://oreil.ly/ZA6GD
https://oreil.ly/ZA6GD
https://oreil.ly/wmdXg
https://oreil.ly/wmdXg

enter kindergarten. In these states, children born in August start school
almost a year younger than children born in September. The authors of the
study suggest that the cause is “age-based variation in behavior that may be
attributed to ADHD rather than to the younger age of the children”.

Use the methods in this chapter to estimate the probability of diagnosis as a
function of birth month. The notebook for this chapter provides the data and
some suggestions for getting started.

Chapter 17. Regression

In the previous chapter we saw several examples of logistic regression,
which is based on the assumption that the likelihood of an outcome,
expressed in the form of log odds, is a linear function of some quantity
(continuous or discrete).

In this chapter we’ll work on examples of simple linear regression, which
models the relationship between two quantities. Specifically, we’ll look at
changes over time in snowfall and the marathon world record.

The models we’ll use have three parameters, so you might want to review
the tools we used for the three-parameter model in Chapter 15.

More Snow?
I am under the impression that we don’t get as much snow around here as
we used to. By “around here” I mean Norfolk County, Massachusetts,
where I was born, grew up, and currently live. And by “used to” I mean
compared to when I was young, like in 1978 when we got 27 inches of
snow and I didn’t have to go to school for a couple of weeks.

Fortunately, we can test my conjecture with data. Norfolk County happens
to be the location of the Blue Hill Meteorological Observatory, which keeps
the oldest continuous weather record in North America.

Data from this and many other weather stations is available from the
National Oceanic and Atmospheric Administration (NOAA). I collected
data from the Blue Hill Observatory from May 11, 1967 to May 11, 2020.

We can use pandas to read the data into DataFrame:

import pandas as pd

df = pd.read_csv('2239075.csv', parse_dates=[2])

https://oreil.ly/3sstj
https://oreil.ly/3sstj
https://oreil.ly/uGQhF
https://oreil.ly/Bes2k

The columns we’ll use are:

DATE, which is the date of each observation,

SNOW, which is the total snowfall in inches.

I’ll add a column that contains just the year part of the dates:

df['YEAR'] = df['DATE'].dt.year

And use groupby to add up the total snowfall in each year:

snow = df.groupby('YEAR')['SNOW'].sum()

The following figure shows total snowfall during each of the complete
years in my lifetime:

Looking at this plot, it’s hard to say whether snowfall is increasing,
decreasing, or unchanged. In the last decade, we’ve had several years with
more snow than 1978, including 2015, which was the snowiest winter in the
Boston area in modern history, with a total of 141 inches.

This kind of question—looking at noisy data and wondering whether it is
going up or down—is precisely the question we can answer with Bayesian
regression.

Regression Model
The foundation of regression (Bayesian or not) is the assumption that a time
series like this is the sum of two parts:

1. A linear function of time, and

2. A series of random values drawn from a distribution that is not
changing over time.

Mathematically, the regression model is

y = ax + b + ϵ

where y is the series of measurements (snowfall in this example), x is the
series of times (years) and ϵ is the series of random values.

a and b are the slope and intercept of the line through the data. They are
unknown parameters, so we will use the data to estimate them.

We don’t know the distribution of ϵ, so we’ll make the additional
assumption that it is a normal distribution with mean 0 and unknown
standard deviation, σ.
To see whether this assumption is reasonable, I’ll plot the distribution of
total snowfall and a normal model with the same mean and standard
deviation.

Here’s a Pmf object that represents the distribution of snowfall:

from empiricaldist import Pmf

pmf_snowfall = Pmf.from_seq(snow)

And here are the mean and standard deviation of the data:

mean, std = pmf_snowfall.mean(), pmf_snowfall.std()

mean, std

(64.19038461538462, 26.288021984395684)

I’ll use the norm object from SciPy to compute the CDF of a normal
distribution with the same mean and standard deviation:

from scipy.stats import norm

dist = norm(mean, std)

qs = pmf_snowfall.qs

ps = dist.cdf(qs)

Here’s what the distribution of the data looks like compared to the normal
model:

We’ve had more winters below the mean than expected, but overall this
looks like a reasonable model.

Least Squares Regression
Our regression model has three parameters: slope, intercept, and standard
deviation of ϵ. Before we can estimate them, we have to choose priors. To
help with that, I’ll use statsmodels to fit a line to the data by least squares
regression.

First, I’ll use reset_index to convert snow, which is a Series, to a
DataFrame:

data = snow.reset_index()

data.head(3)

https://oreil.ly/Xs46r
https://oreil.ly/Xs46r

YEAR SNOW

0 1968 44.7

1 1969 99.2

2 1970 66.8

The result is a DataFrame with two columns, YEAR and SNOW, in a format
we can use with statsmodels.

As we did in the previous chapter, I’ll center the data by subtracting off the
mean:

offset = data['YEAR'].mean().round()

data['x'] = data['YEAR'] - offset

offset

1994.0

And I’ll add a column to data so the dependent variable has a standard
name:

data['y'] = data['SNOW']

Now, we can use statsmodels to compute the least squares fit to the data
and estimate slope and intercept:

import statsmodels.formula.api as smf

formula = 'y ~ x'

results = smf.ols(formula, data=data).fit()

results.params

Intercept 64.446325

x 0.511880

dtype: float64

The intercept, about 64 inches, is the expected snowfall when x=0, which is
the beginning of 1994. The estimated slope indicates that total snowfall is

increasing at a rate of about 0.5 inches per year.

results also provides resid, which is an array of residuals, that is, the
differences between the data and the fitted line. The standard deviation of
the residuals is an estimate of sigma:

results.resid.std()

25.385680731210616

We’ll use these estimates to choose prior distributions for the parameters.

Priors
I’ll use uniform distributions for all three parameters:

import numpy as np

from utils import make_uniform

qs = np.linspace(-0.5, 1.5, 51)

prior_slope = make_uniform(qs, 'Slope')

qs = np.linspace(54, 75, 41)

prior_inter = make_uniform(qs, 'Intercept')

qs = np.linspace(20, 35, 31)

prior_sigma = make_uniform(qs, 'Sigma')

I made the prior distributions different lengths for two reasons. First, if we
make a mistake and use the wrong distribution, it will be easier to catch the
error if they are all different lengths.

Second, it provides more precision for the most important parameter,
slope, and spends less computational effort on the least important, sigma.

In “Three-Parameter Model” we made a joint distribution with three
parameters. I’ll wrap that process in a function:

from utils import make_joint

def make_joint3(pmf1, pmf2, pmf3):

 """Make a joint distribution with three parameters."""

 joint2 = make_joint(pmf2, pmf1).stack()

 joint3 = make_joint(pmf3, joint2).stack()

 return Pmf(joint3)

And use it to make a Pmf that represents the joint distribution of the three
parameters:

prior = make_joint3(prior_slope, prior_inter, prior_sigma)

prior.head(3)

probs

Slope Intercept Sigma

-0.5 54.0

20.0 0.000015

20.5 0.000015

21.0 0.000015

The index of Pmf has three columns, containing values of slope, inter,
and sigma, in that order.

With three parameters, the size of the joint distribution starts to get big.
Specifically, it is the product of the lengths of the prior distributions. In this
example, the prior distributions have 51, 41, and 31 values, so the length of
the joint prior is 64,821.

Likelihood
Now we’ll compute the likelihood of the data. To demonstrate the process,
let’s assume temporarily that the parameters are known.

inter = 64

slope = 0.51

sigma = 25

I’ll extract the xs and ys from data as Series objects:

xs = data['x']

ys = data['y']

And compute the “residuals”, which are the differences between the actual
values, ys, and the values we expect based on slope and inter:

expected = slope * xs + inter

resid = ys - expected

According to the model, the residuals should follow a normal distribution
with mean 0 and standard deviation sigma. So we can compute the
likelihood of each residual value using norm from SciPy:

densities = norm(0, sigma).pdf(resid)

The result is an array of probability densities, one for each element of the
dataset; their product is the likelihood of the data.

likelihood = densities.prod()

likelihood

1.3551948769061074e-105

As we saw in the previous chapter, the likelihood of any particular dataset
tends to be small. If it’s too small, we might exceed the limits of floating-
point arithmetic. When that happens, we can avoid the problem by
computing likelihoods under a log transform. But in this example that’s not
necessary.

The Update
Now we’re ready to do the update. First, we need to compute the likelihood
of the data for each possible set of parameters:

likelihood = prior.copy()

for slope, inter, sigma in prior.index:

 expected = slope * xs + inter

 resid = ys - expected

 densities = norm.pdf(resid, 0, sigma)

 likelihood[slope, inter, sigma] = densities.prod()

This computation takes longer than many of the previous examples. We are
approaching the limit of what we can do with grid approximations.

Nevertheless, we can do the update in the usual way:

posterior = prior * likelihood

posterior.normalize()

The result is a Pmf with a three-level index containing values of slope,
inter, and sigma. To get the marginal distributions from the joint posterior,
we can use Pmf.marginal, which we saw in “Three-Parameter Model”:

posterior_slope = posterior.marginal(0)

posterior_inter = posterior.marginal(1)

posterior_sigma = posterior.marginal(2)

Here’s the posterior distribution for sigma:

The most likely values for sigma are near 26 inches, which is consistent
with our estimate based on the standard deviation of the data.

However, to say whether snowfall is increasing or decreasing, we don’t
really care about sigma. It is a “nuisance parameter”, so-called because we
have to estimate it as part of the model, but we don’t need it to answer the
questions we are interested in.

Nevertheless, it is good to check the marginal distributions to make sure

The location is consistent with our expectations, and

The posterior probabilities are near 0 at the extremes of the range,
which indicates that the prior distribution covers all parameters
with non-negligible probability.

In this example, the posterior distribution of sigma looks fine.

Here’s the posterior distribution of inter:

The posterior mean is about 64 inches, which is the expected amount of
snow during the year at the midpoint of the range, 1994.

And finally, here’s the posterior distribution of slope:

The posterior mean is about 0.51 inches, which is consistent with the
estimate we got from least squared regression.

The 90% credible interval is from 0.1 to 0.9, which indicates that our
uncertainty about this estimate is pretty high. In fact, there is still a small
posterior probability (about 2%) that the slope is negative.

However, it is more likely that my conjecture was wrong: we are actually
getting more snow around here than we used to, increasing at a rate of about
a half-inch per year, which is substantial. On average, we get an additional
25 inches of snow per year than we did when I was young.

This example shows that with slow-moving trends and noisy data, your
instincts can be misleading.

Now, you might suspect that I overestimate the amount of snow when I was
young because I enjoyed it, and underestimate it now because I don’t. But
you would be mistaken.

During the Blizzard of 1978, we did not have a snowblower and my brother
and I had to shovel. My sister got a pass for no good reason. Our driveway
was about 60 feet long and three cars wide near the garage. And we had to
shovel Mr. Crocker’s driveway, too, for which we were not allowed to
accept payment. Furthermore, as I recall it was during this excavation that I
accidentally hit my brother with a shovel on the head, and it bled a lot
because, you know, scalp wounds.

Anyway, the point is that I don’t think I overestimate the amount of snow
when I was young because I have fond memories of it.

Marathon World Record
For many running events, if you plot the world record pace over time, the
result is a remarkably straight line. People, including me, have speculated
about possible reasons for this phenomenon.

People have also speculated about when, if ever, the world record time for
the marathon will be less than two hours. (Note: In 2019, Eliud Kipchoge
ran the marathon distance in under two hours, which is an astonishing
achievement that I fully appreciate, but for several reasons it did not count
as a world record.)

So, as a second example of Bayesian regression, we’ll consider the world
record progression for the marathon (for male runners), estimate the
parameters of a linear model, and use the model to predict when a runner
will break the two-hour barrier.

In the notebook for this chapter, you can see how I loaded and cleaned the
data. The result is a DataFrame that contains the following columns (and
additional information we won’t use):

date, which is a pandas Timestamp representing the date when the
world record was broken, and

speed, which records the record-breaking pace in mph.

Here’s what the results look like, starting in 1970:

https://oreil.ly/ZcDvx

The data points fall approximately on a line, although it’s possible that the
slope is increasing.

To prepare the data for regression, I’ll subtract away the approximate
midpoint of the time interval, 1995:

offset = pd.to_datetime('1995')

timedelta = table['date'] - offset

When we subtract two Timestamp objects, the result is a “time delta”,
which we can convert to seconds and then to years:

data['x'] = timedelta.dt.total_seconds() / 3600 / 24 / 365.24

As in the previous example, I’ll use least squares regression to compute
point estimates for the parameters, which will help with choosing priors:

import statsmodels.formula.api as smf

formula = 'y ~ x'

results = smf.ols(formula, data=data).fit()

results.params

Intercept 12.460507

x 0.015464

dtype: float64

The estimated intercept is about 12.5 mph, which is the interpolated world
record pace for 1995. The estimated slope is about 0.015 mph per year,
which is the rate the world record pace is increasing, according to the
model.

Again, we can use the standard deviation of the residuals as a point estimate
for sigma:

results.resid.std()

0.04139961220193225

These parameters give us a good idea where we should put the prior
distributions.

The Priors
Here are the prior distributions I chose for slope, intercept, and sigma:

qs = np.linspace(0.012, 0.018, 51)

prior_slope = make_uniform(qs, 'Slope')

qs = np.linspace(12.4, 12.5, 41)

prior_inter = make_uniform(qs, 'Intercept')

qs = np.linspace(0.01, 0.21, 31)

prior_sigma = make_uniform(qs, 'Sigma')

And here’s the joint prior distribution:

prior = make_joint3(prior_slope, prior_inter, prior_sigma)

prior.head()

probs

Slope Intercept Sigma

0.012 12.4

0.010000 0.000015

0.016667 0.000015

0.023333 0.000015

Now we can compute likelihoods as in the previous example:

xs = data['x']

ys = data['y']

likelihood = prior.copy()

for slope, inter, sigma in prior.index:

 expected = slope * xs + inter

 resid = ys - expected

 densities = norm.pdf(resid, 0, sigma)

 likelihood[slope, inter, sigma] = densities.prod()

Now we can do the update in the usual way:

posterior = prior * likelihood

posterior.normalize()

And unpack the marginals:

posterior_slope = posterior.marginal(0)

posterior_inter = posterior.marginal(1)

posterior_sigma = posterior.marginal(2)

Here’s the posterior distribution of inter:

The posterior mean is about 12.5 mph, which is the world record marathon
pace the model predicts for the midpoint of the date range, 1994.

And here’s the posterior distribution of slope:

The posterior mean is about 0.015 mph per year, or 0.15 mph per decade.

That’s interesting, but it doesn’t answer the question we’re interested in:
when will there be a two-hour marathon? To answer that, we have to make
predictions.

Prediction
To generate predictions, I’ll draw a sample from the posterior distribution of
parameters, then use the regression equation to combine the parameters
with the data.

Pmf provides choice, which we can use to draw a random sample with
replacement, using the posterior probabilities as weights:

sample = posterior.choice(101)

The result is an array of tuples. Looping through the sample, we can use the
regression equation to generate predictions for a range of xs:

xs = np.arange(-25, 50, 2)

pred = np.empty((len(sample), len(xs)))

for i, (slope, inter, sigma) in enumerate(sample):

 epsilon = norm(0, sigma).rvs(len(xs))

 pred[i] = inter + slope * xs + epsilon

Each prediction is an array with the same length as xs, which I store as a
row in pred. So the result has one row for each sample and one column for
each value of x.

We can use percentile to compute the 5th, 50th, and 95th percentiles in
each column:

low, median, high = np.percentile(pred, [5, 50, 95], axis=0)

To show the results, I’ll plot the median of the predictions as a line and the
90% credible interval as a shaded area:

The dashed line shows the two-hour marathon pace, which is 13.1 miles per
hour. Visually we can estimate that the prediction line hits the target pace
between 2030 and 2040.

To make this more precise, we can use interpolation to see when the
predictions cross the finish line. SciPy provides interp1d, which does
linear interpolation by default.

from scipy.interpolate import interp1d

future = np.array([interp1d(high, xs)(13.1),

 interp1d(median, xs)(13.1),

 interp1d(low, xs)(13.1)])

The median prediction is 2036, with a 90% credible interval from 2032 to
2043. So there is about a 5% chance we’ll see a two-hour marathon before
2032.

Summary
This chapter introduces Bayesian regression, which is based on the same
model as least squares regression; the difference is that it produces a
posterior distribution for the parameters rather than point estimates.

In the first example, we looked at changes in snowfall in Norfolk County,
Massachusetts, and concluded that we get more snowfall now than when I
was young, contrary to my expectation.

In the second example, we looked at the progression of world record pace
for the men’s marathon, computed the joint posterior distribution of the
regression parameters, and used it to generate predictions for the next 20
years.

These examples have three parameters, so it takes a little longer to compute
the likelihood of the data. With more than three parameters, it becomes
impractical to use grid algorithms.

In the next few chapters, we’ll explore other algorithms that reduce the
amount of computation we need to do a Bayesian update, which makes it
possible to use models with more parameters.

But first, you might want to work on these exercises.

Exercises
Example 17-1.

I am under the impression that it is warmer around here than it used to be.
In this exercise, you can put my conjecture to the test.

We’ll use the same dataset we used to model snowfall; it also includes daily
low and high temperatures in Norfolk County, Massachusetts, during my
lifetime. The details are in the notebook for this chapter.

1. Use statsmodels to generate point estimates for the regression
parameters.

2. Choose priors for slope, intercept, and sigma based on these
estimates, and use make_joint3 to make a joint prior distribution.

3. Compute the likelihood of the data and compute the posterior
distribution of the parameters.

4. Extract the posterior distribution of slope. How confident are we
that temperature is increasing?

5. Draw a sample of parameters from the posterior distribution and
use it to generate predictions up to 2067.

6. Plot the median of the predictions and a 90% credible interval
along with the observed data.

Does the model fit the data well? How much do we expect annual average
temperatures to increase over my (expected) lifetime?

Chapter 18. Conjugate Priors

In the previous chapters we have used grid approximations to solve a
variety of problems. One of my goals has been to show that this approach is
sufficient to solve many real-world problems. And I think it’s a good place
to start because it shows clearly how the methods work.

However, as we saw in the previous chapter, grid methods will only get you
so far. As we increase the number of parameters, the number of points in the
grid grows (literally) exponentially. With more than 3-4 parameters, grid
methods become impractical.

So, in the remaining three chapters, I will present three alternatives:

1. In this chapter, we’ll use conjugate priors to speed up some of the
computations we’ve already done.

2. In the next chapter, I’ll present Markov chain Monte Carlo
(MCMC) methods, which can solve problems with tens of
parameters, or even hundreds, in a reasonable amount of time.

3. And in the last chapter, we’ll use Approximate Bayesian
Computation (ABC) for problems that are hard to model with
simple distributions.

We’ll start with the World Cup Problem.

The World Cup Problem Revisited
In Chapter 8, we solved the World Cup Problem using a Poisson process to
model goals in a soccer game as random events that are equally likely to
occur at any point during a game.

We used a gamma distribution to represent the prior distribution of λ, the
goal-scoring rate. And we used a Poisson distribution to compute the

probability of k, the number of goals scored.

Here’s a gamma object that represents the prior distribution:

from scipy.stats import gamma

alpha = 1.4

dist = gamma(alpha)

And here’s a grid approximation:

import numpy as np

from utils import pmf_from_dist

lams = np.linspace(0, 10, 101)

prior = pmf_from_dist(dist, lams)

Here’s the likelihood of scoring 4 goals for each possible value of lam:

from scipy.stats import poisson

k = 4

likelihood = poisson(lams).pmf(k)

And here’s the update:

posterior = prior * likelihood

posterior.normalize()

0.05015532557804499

So far, this should be familiar. Now we’ll solve the same problem using the
conjugate prior.

The Conjugate Prior
In “The Gamma Distribution”, I presented three reasons to use a gamma
distribution for the prior and said there was a fourth reason I would reveal
later. Well, now is the time.

The other reason I chose the gamma distribution is that it is the “conjugate
prior” of the Poisson distribution, so-called because the two distributions
are connected or coupled, which is what “conjugate” means.

In the next section I’ll explain how they are connected, but first I’ll show
you the consequence of this connection, which is that there is a remarkably
simple way to compute the posterior distribution.

However, to demonstrate it, we have to switch from the one-parameter
version of the gamma distribution to the two-parameter version. Since the
first parameter is called alpha, you might guess that the second parameter
is called beta.

The following function takes alpha and beta and makes an object that
represents a gamma distribution with those parameters:

def make_gamma_dist(alpha, beta):

 """Makes a gamma object."""

 dist = gamma(alpha, scale=1/beta)

 dist.alpha = alpha

 dist.beta = beta

 return dist

Here’s the prior distribution with alpha=1.4 again and beta=1:

alpha = 1.4

beta = 1

prior_gamma = make_gamma_dist(alpha, beta)

prior_gamma.mean()

1.4

Now I claim without proof that we can do a Bayesian update with k goals
just by making a gamma distribution with parameters alpha+k and beta+1:

def update_gamma(prior, data):

 """Update a gamma prior."""

 k, t = data

 alpha = prior.alpha + k

 beta = prior.beta + t

 return make_gamma_dist(alpha, beta)

Here’s how we update it with k=4 goals in t=1 game:

data = 4, 1

posterior_gamma = update_gamma(prior_gamma, data)

After all the work we did with the grid, it might seem absurd that we can do
a Bayesian update by adding two pairs of numbers. So let’s confirm that it
works.

I’ll make a Pmf with a discrete approximation of the posterior distribution:

posterior_conjugate = pmf_from_dist(posterior_gamma, lams)

The following figure shows the result along with the posterior we computed
using the grid algorithm:

They are the same other than small differences due to floating-point
approximations.

What the Actual?
To understand how that works, we’ll write the PDF of the gamma prior and
the PMF of the Poisson likelihood, then multiply them together, because

that’s what the Bayesian update does. We’ll see that the result is a gamma
distribution, and we’ll derive its parameters.

Here’s the PDF of the gamma prior, which is the probability density for
each value of λ, given parameters α and β:

λα−1e−λβ

I have omitted the normalizing factor; since we are planning to normalize
the posterior distribution anyway, we don’t really need it.

Now suppose a team scores k goals in t games. The probability of this data
is given by the PMF of the Poisson distribution, which is a function of k
with λ and t as parameters:

λke−λt

Again, I have omitted the normalizing factor, which makes it clearer that
the gamma and Poisson distributions have the same functional form. When
we multiply them together, we can pair up the factors and add up the
exponents. The result is the unnormalized posterior distribution,

λα−1+ke−λ(β+t)

which we can recognize as an unnormalized gamma distribution with
parameters α + k and β + t.

This derivation provides insight into what the parameters of the posterior
distribution mean: α reflects the number of events that have occurred; β
reflects the elapsed time.

Binomial Likelihood
As a second example, let’s look again at the Euro Problem. When we solved
it with a grid algorithm, we started with a uniform prior:

from utils import make_uniform

xs = np.linspace(0, 1, 101)

uniform = make_uniform(xs, 'uniform')

We used the binomial distribution to compute the likelihood of the data,
which was 140 heads out of 250 attempts:

from scipy.stats import binom

k, n = 140, 250

xs = uniform.qs

likelihood = binom.pmf(k, n, xs)

Then we computed the posterior distribution in the usual way:

posterior = uniform * likelihood

posterior.normalize()

We can solve this problem more efficiently using the conjugate prior of the
binomial distribution, which is the beta distribution.

The beta distribution is bounded between 0 and 1, so it works well for
representing the distribution of a probability like x. It has two parameters,
called alpha and beta, that determine the shape of the distribution.

SciPy provides an object called beta that represents a beta distribution. The
following function takes alpha and beta and returns a new beta object:

import scipy.stats

def make_beta(alpha, beta):

 """Makes a beta object."""

 dist = scipy.stats.beta(alpha, beta)

 dist.alpha = alpha

 dist.beta = beta

 return dist

It turns out that the uniform distribution, which we used as a prior, is the
beta distribution with parameters alpha=1 and beta=1. So we can make a
beta object that represents a uniform distribution, like this:

alpha = 1

beta = 1

prior_beta = make_beta(alpha, beta)

Now let’s figure out how to do the update. As in the previous example,
we’ll write the PDF of the prior distribution and the PMF of the likelihood
function, and multiply them together. We’ll see that the product has the
same form as the prior, and we’ll derive its parameters.

Here is the PDF of the beta distribution, which is a function of x with α and
β as parameters:

xα−1(1 − x)β−1

Again, I have omitted the normalizing factor, which we don’t need because
we are going to normalize the distribution after the update.

And here’s the PMF of the binomial distribution, which is a function of k
with n and x as parameters:

xk(1 − x)n−k

Again, I have omitted the normalizing factor. Now when we multiply the
beta prior and the binomial likelihood, the result is

xα−1+k(1 − x)β−1+n−k

which we recognize as an unnormalized beta distribution with parameters
α + k and β + n − k.

So if we observe k successes in n trials, we can do the update by making a
beta distribution with parameters alpha+k and beta+n-k. That’s what this
function does:

def update_beta(prior, data):

 """Update a beta distribution."""

 k, n = data

 alpha = prior.alpha + k

 beta = prior.beta + n - k

 return make_beta(alpha, beta)

Again, the conjugate prior gives us insight into the meaning of the
parameters; α is related to the number of observed successes; β is related to
the number of failures.

Here’s how we do the update with the observed data:

data = 140, 250

posterior_beta = update_beta(prior_beta, data)

To confirm that it works, I’ll evaluate the posterior distribution for the
possible values of xs and put the results in a Pmf:

posterior_conjugate = pmf_from_dist(posterior_beta, xs)

And we can compare the posterior distribution we just computed with the
results from the grid algorithm:

They are the same other than small differences due to floating-point
approximations.

The examples so far are problems we have already solved, so let’s try
something new.

Lions and Tigers and Bears
Suppose we visit a wild animal preserve where we know that the only
animals are lions and tigers and bears, but we don’t know how many of
each there are. During the tour, we see three lions, two tigers, and one bear.
Assuming that every animal had an equal chance to appear in our sample,
what is the probability that the next animal we see is a bear?

To answer this question, we’ll use the data to estimate the prevalence of
each species, that is, what fraction of the animals belong to each species. If
we know the prevalences, we can use the multinomial distribution to
compute the probability of the data. For example, suppose we know that the
fraction of lions, tigers, and bears is 0.4, 0.3, and 0.3, respectively.

In that case the probability of the data is:

from scipy.stats import multinomial

data = 3, 2, 1

n = np.sum(data)

ps = 0.4, 0.3, 0.3

multinomial.pmf(data, n, ps)

0.10368

Now, we could choose a prior for the prevalences and do a Bayesian update
using the multinomial distribution to compute the probability of the data.

But there’s an easier way, because the multinomial distribution has a
conjugate prior: the Dirichlet distribution.

The Dirichlet Distribution
The Dirichlet distribution is a multivariate distribution, like the multivariate
normal distribution we used in “Multivariate Normal Distribution” to
describe the distribution of penguin measurements.

In that example, the quantities in the distribution are pairs of flipper length
and culmen length, and the parameters of the distribution are a vector of
means and a matrix of covariances.

In a Dirichlet distribution, the quantities are vectors of probabilities, x, and
the parameter is a vector, α.

An example will make that clearer. SciPy provides a dirichlet object that
represents a Dirichlet distribution. Here’s an instance with α = 1, 2, 3:

from scipy.stats import dirichlet

alpha = 1, 2, 3

dist = dirichlet(alpha)

Since we provided three parameters, the result is a distribution of three
variables. Suppose we draw a random value from this distribution, like this:

dist.rvs()

array([[0.46414019, 0.16853117, 0.36732863]])

The result is an array of three values. They are bounded between 0 and 1,
and they always add up to 1, so they can be interpreted as the probabilities
of a set of outcomes that are mutually exclusive and collectively exhaustive.

Let’s see what the distributions of these values look like. I’ll draw 1,000
random vectors from this distribution, like this:

sample = dist.rvs(1000)

The result is an array with 1,000 rows and three columns. I’ll compute the
Cdf of the values in each column:

from empiricaldist import Cdf

cdfs = [Cdf.from_seq(col)

 for col in sample.transpose()]

The result is a list of Cdf objects that represent the marginal distributions of
the three variables. Here’s what they look like:

Column 0, which corresponds to the lowest parameter, contains the lowest
probabilities. Column 2, which corresponds to the highest parameter,
contains the highest probabilities.

As it turns out, these marginal distributions are beta distributions. The
following function takes a sequence of parameters, alpha, and computes
the marginal distribution of variable i:

def marginal_beta(alpha, i):

 """Compute the ith marginal of a Dirichlet distribution."""

 total = np.sum(alpha)

 return make_beta(alpha[i], total-alpha[i])

We can use it to compute the marginal distribution for the three variables:

marginals = [marginal_beta(alpha, i)

 for i in range(len(alpha))]

The following plot shows the CDF of these distributions as gray lines and
compares them to the CDFs of the samples:

This confirms that the marginals of the Dirichlet distribution are beta
distributions. And that’s useful because the Dirichlet distribution is the
conjugate prior for the multinomial likelihood function.

If the prior distribution is Dirichlet with parameter vector alpha and the
data is a vector of observations, data, the posterior distribution is Dirichlet
with parameter vector alpha + data.

As an exercise at the end of this chapter, you can use this method to solve
the Lions and Tigers and Bears problem.

Summary
After reading this chapter, if you feel like you’ve been tricked, I understand.
It turns out that many of the problems in this book can be solved with just a
few arithmetic operations. So why did we go to all the trouble of using grid
algorithms?

Sadly, there are only a few problems we can solve with conjugate priors; in
fact, this chapter includes most of the ones that are useful in practice.

For the vast majority of problems, there is no conjugate prior and no
shortcut to compute the posterior distribution. That’s why we need grid
algorithms and the methods in the next two chapters, Approximate Bayesian
Computation (ABC) and Markov chain Monte Carlo methods (MCMC).

Exercises
Example 18-1.

In the second version of the World Cup Problem, the data we use for the
update is not the number of goals in a game, but the time until the first goal.
So the probability of the data is given by the exponential distribution rather
than the Poisson distribution.

But it turns out that the gamma distribution is also the conjugate prior of the
exponential distribution, so there is a simple way to compute this update,
too. The PDF of the exponential distribution is a function of t with λ as a
parameter:

λe−λt

Multiply the PDF of the gamma prior by this likelihood, confirm that the
result is an unnormalized gamma distribution, and see if you can derive its
parameters.

Write a few lines of code to update prior_gamma with the data from this
version of the problem, which was a first goal after 11 minutes and a second
goal after an additional 12 minutes.

Example 18-2.

For problems like the Euro Problem where the likelihood function is
binomial, we can do a Bayesian update with just a few arithmetic
operations, but only if the prior is a beta distribution.

If we want a uniform prior, we can use a beta distribution with alpha=1 and
beta=1. But what can we do if the prior distribution we want is not a beta
distribution? For example, in “Triangle Prior” we also solved the Euro
Problem with a triangle prior, which is not a beta distribution.

In these cases, we can often find a beta distribution that is a good-enough
approximation for the prior we want. See if you can find a beta distribution
that fits the triangle prior, then update it using update_beta.

Use pmf_from_dist to make a Pmf that approximates the posterior
distribution and compare it to the posterior we just computed using a grid
algorithm. How big is the largest difference between them?

Example 18-3.

3Blue1Brown is a YouTube channel about math; if you are not already
aware of it, I recommend it highly. In this video the narrator presents this
problem:

You are buying a product online and you see three sellers offering the
same product at the same price. One of them has a 100% positive rating,
but with only 10 reviews. Another has a 96% positive rating with 50 total
reviews. And yet another has a 93% positive rating, but with 200 total
reviews.

Which one should you buy from?

Let’s think about how to model this scenario. Suppose each seller has some
unknown probability, x, of providing satisfactory service and getting a
positive rating, and we want to choose the seller with the highest value of x.

This is not the only model for this scenario, and it is not necessarily the
best. An alternative would be something like item response theory, where
sellers have varying ability to provide satisfactory service and customers
have varying difficulty of being satisfied.

But the first model has the virtue of simplicity, so let’s see where it gets us.

1. As a prior, I suggest a beta distribution with alpha=8 and beta=2.
What does this prior look like and what does it imply about sellers?

2. Use the data to update the prior for the three sellers and plot the
posterior distributions. Which seller has the highest posterior
mean?

3. How confident should we be about our choice? That is, what is the
probability that the seller with the highest posterior mean actually
has the highest value of x?

https://oreil.ly/UsGcp
https://oreil.ly/k5Fsq

4. Consider a beta prior with alpha=0.7 and beta=0.5. What does
this prior look like and what does it imply about sellers?

5. Run the analysis again with this prior and see what effect it has on
the results.

Example 18-4.

Use a Dirichlet prior with parameter vector alpha = [1, 1, 1] to solve
the Lions and Tigers and Bears problem:

Suppose we visit a wild animal preserve where we know that the only
animals are lions and tigers and bears, but we don’t know how many of
each there are.

During the tour, we see three lions, two tigers, and one bear. Assuming
that every animal had an equal chance to appear in our sample, estimate
the prevalence of each species.

What is the probability that the next animal we see is a bear?

Chapter 19. MCMC

For most of this book we’ve been using grid methods to approximate
posterior distributions. For models with one or two parameters, grid
algorithms are fast and the results are precise enough for most practical
purposes. With three parameters, they start to be slow, and with more than
three they are usually not practical.

In the previous chapter we saw that we can solve some problems using
conjugate priors. But the problems we can solve this way tend to be the
same ones we can solve with grid algorithms.

For problems with more than a few parameters, the most powerful tool we
have is MCMC, which stands for “Markov chain Monte Carlo”. In this
context, “Monte Carlo” refers to methods that generate random samples
from a distribution. Unlike grid methods, MCMC methods don’t try to
compute the posterior distribution; they sample from it instead.

It might seem strange that you can generate a sample without ever
computing the distribution, but that’s the magic of MCMC.

To demonstrate, we’ll start by solving the World Cup Problem. Yes, again.

The World Cup Problem
In Chapter 8 we modeled goal scoring in football (soccer) as a Poisson
process characterized by a goal-scoring rate, denoted λ.

We used a gamma distribution to represent the prior distribution of λ, then
we used the outcome of the game to compute the posterior distribution for
both teams.

To answer the first question, we used the posterior distributions to compute
the “probability of superiority” for France.

To answer the second question, we computed the posterior predictive
distributions for each team, that is, the distribution of goals we expect in a
rematch.

In this chapter we’ll solve this problem again using PyMC3, which is a
library that provide implementations of several MCMC methods. But we’ll
start by reviewing the grid approximation of the prior and the prior
predictive distribution.

Grid Approximation
As we did in “The Gamma Distribution” we’ll use a gamma distribution
with parameter α = 1.4 to represent the prior:

from scipy.stats import gamma

alpha = 1.4

prior_dist = gamma(alpha)

I’ll use linspace to generate possible values for λ, and pmf_from_dist to
compute a discrete approximation of the prior:

import numpy as np

from utils import pmf_from_dist

lams = np.linspace(0, 10, 101)

prior_pmf = pmf_from_dist(prior_dist, lams)

We can use the Poisson distribution to compute the likelihood of the data;
as an example, we’ll use 4 goals:

from scipy.stats import poisson

data = 4

likelihood = poisson.pmf(data, lams)

Now we can do the update in the usual way:

posterior = prior_pmf * likelihood

posterior.normalize()

0.05015532557804499

Soon we will solve the same problem with PyMC3, but first it will be useful
to introduce something new: the prior predictive distribution.

Prior Predictive Distribution
We have seen the posterior predictive distribution in previous chapters; the
prior predictive distribution is similar except that (as you might have
guessed) it is based on the prior.

To estimate the prior predictive distribution, we’ll start by drawing a sample
from the prior:

sample_prior = prior_dist.rvs(1000)

The result is an array of possible values for the goal-scoring rate, λ. For
each value in sample_prior, I’ll generate one value from a Poisson
distribution:

from scipy.stats import poisson

sample_prior_pred = poisson.rvs(sample_prior)

sample_prior_pred is a sample from the prior predictive distribution. To
see what it looks like, we’ll compute the PMF of the sample:

from empiricaldist import Pmf

pmf_prior_pred = Pmf.from_seq(sample_prior_pred)

And here’s what it looks like:

One reason to compute the prior predictive distribution is to check whether
our model of the system seems reasonable. In this case, the distribution of
goals seems consistent with what we know about World Cup football.

But in this chapter we have another reason: computing the prior predictive
distribution is a first step toward using MCMC.

Introducing PyMC3
PyMC3 is a Python library that provides several MCMC methods. To use
PyMC3, we have to specify a model of the process that generates the data.
In this example, the model has two steps:

First we draw a goal-scoring rate from the prior distribution,

Then we draw a number of goals from a Poisson distribution.

Here’s how we specify this model in PyMC3:

import pymc3 as pm

with pm.Model() as model:

 lam = pm.Gamma('lam', alpha=1.4, beta=1.0)

 goals = pm.Poisson('goals', lam)

After importing pymc3, we create a Model object named model.

If you are not familiar with the with statement in Python, it is a way to
associate a block of statements with an object. In this example, the two
indented statements are associated with the new Model object. As a result,
when we create the distribution objects, Gamma and Poisson, they are added
to the Model.

Inside the with statement:

The first line creates the prior, which is a gamma distribution with
the given parameters.

The second line creates the prior predictive, which is a Poisson
distribution with the parameter lam.

The first parameter of Gamma and Poisson is a string variable name.

Sampling the Prior
PyMC3 provides a function that generates samples from the prior and prior
predictive distributions. We can use a with statement to run this function in
the context of the model:

with model:

 trace = pm.sample_prior_predictive(1000)

The result is a dictionary-like object that maps from the variables, lam and
goals, to the samples. We can extract the sample of lam like this:

sample_prior_pymc = trace['lam']

sample_prior_pymc.shape

(1000,)

The following figure compares the CDF of this sample to the CDF of the
sample we generated using the gamma object from SciPy:

The results are similar, which confirms that the specification of the model is
correct and the sampler works as advertised.

From the trace we can also extract goals, which is a sample from the prior
predictive distribution:

sample_prior_pred_pymc = trace['goals']

sample_prior_pred_pymc.shape

(1000,)

And we can compare it to the sample we generated using the poisson
object from SciPy.

Because the quantities in the posterior predictive distribution are discrete
(number of goals) I’ll plot the CDFs as step functions:

Again, the results are similar, so we have some confidence we are using
PyMC3 right.

When Do We Get to Inference?
Finally, we are ready for actual inference. We just have to make one small
change. Here is the model we used to generate the prior predictive
distribution:

with pm.Model() as model:

 lam = pm.Gamma('lam', alpha=1.4, beta=1.0)

 goals = pm.Poisson('goals', lam)

And here is the model we’ll use to compute the posterior distribution:

with pm.Model() as model2:

 lam = pm.Gamma('lam', alpha=1.4, beta=1.0)

 goals = pm.Poisson('goals', lam, observed=4)

The difference is that we mark goals as observed and provide the observed
data, 4.

And instead of calling sample_prior_predictive, we’ll call sample,
which is understood to sample from the posterior distribution of lam:

options = dict(return_inferencedata=False)

with model2:

 trace2 = pm.sample(500, **options)

Although the specification of these models is similar, the sampling process
is very different. I won’t go into the details of how PyMC3 works, but here
are a few things you should be aware of:

Depending on the model, PyMC3 uses one of several MCMC
methods; in this example, it uses the No U-Turn Sampler (NUTS),
which is one of the most efficient and reliable methods we have.

https://oreil.ly/8LrA2

When the sampler starts, the first values it generates are usually not
a representative sample from the posterior distribution, so these
values are discarded. This process is called “tuning”.

Instead of using a single Markov chain, PyMC3 uses multiple
chains. Then we can compare results from multiple chains to make
sure they are consistent.

Although we asked for a sample of 500, PyMC3 generated two samples of
1,000, discarded half of each, and returned the remaining 1,000. From
trace2 we can extract a sample from the posterior distribution, like this:

sample_post_pymc = trace2['lam']

And we can compare the CDF of this sample to the posterior we computed
by grid approximation:

The results from PyMC3 are consistent with the results from the grid
approximation.

Posterior Predictive Distribution
Finally, to sample from the posterior predictive distribution, we can use
sample_posterior_predictive:

with model2:

 post_pred = pm.sample_posterior_predictive(trace2)

The result is a dictionary that contains a sample of goals:

sample_post_pred_pymc = post_pred['goals']

I’ll also generate a sample from the posterior distribution we computed by
grid approximation:

sample_post = posterior.sample(1000)

sample_post_pred = poisson(sample_post).rvs()

And we can compare the two samples:

Again, the results are consistent. So we’ve established that we can compute
the same results using a grid approximation or PyMC3.

But it might not be clear why. In this example, the grid algorithm requires
less computation than MCMC, and the result is a pretty good approximation
of the posterior distribution, rather than a sample.

However, this is a simple model with just one parameter. In fact, we could
have solved it with even less computation, using a conjugate prior. The
power of PyMC3 will be clearer with a more complex model.

Happiness
Recently I read “Happiness and Life Satisfaction” by Esteban Ortiz-Ospina
and Max Roser, which discusses (among many other things) the
relationship between income and happiness, both between countries, within
countries, and over time. It cites the “World Happiness Report”, which
includes results of a multiple regression analysis that explores the
relationship between happiness and six potentially predictive factors:

Income as represented by per capita GDP

Social support

Healthy life expectancy at birth

Freedom to make life choices

Generosity

Perceptions of corruption

The dependent variable is the national average of responses to the “Cantril
ladder question” used by the Gallup World Poll:

Please imagine a ladder with steps numbered from zero at the bottom to
10 at the top. The top of the ladder represents the best possible life for
you and the bottom of the ladder represents the worst possible life for
you. On which step of the ladder would you say you personally feel you
stand at this time?

I’ll refer to the responses as “happiness”, but it might be more precise to
think of them as a measure of satisfaction with quality of life.

In the next few sections we’ll replicate the analysis in this report using
Bayesian regression.

We can use pandas to read the data into a DataFrame:

import pandas as pd

https://oreil.ly/LL9PW
https://worldhappiness.report/
https://oreil.ly/lDSXe
https://oreil.ly/CG7TB

filename = 'WHR20_DataForFigure2.1.xls'

df = pd.read_excel(filename)

The DataFrame has one row for each of 153 countries and one column for
each of 20 variables.

The column called 'Ladder score' contains the measurements of
happiness we will try to predict.

score = df['Ladder score']

Simple Regression
To get started, let’s look at the relationship between happiness and income
as represented by gross domestic product (GDP) per person.

The column named 'Logged GDP per capita' represents the natural
logarithm of GDP for each country, divided by population, corrected for
purchasing power parity (PPP):

log_gdp = df['Logged GDP per capita']

The following figure is a scatter plot of score versus log_gdp, with one
marker for each country:

https://oreil.ly/95fTi

It’s clear that there is a relationship between these variables: people in
countries with higher GDP generally report higher levels of happiness.

We can use linregress from SciPy to compute a simple regression of
these variables:

from scipy.stats import linregress

result = linregress(log_gdp, score)

And here are the results:

Slope 0.717738

Intercept -1.198646

The estimated slope is about 0.72, which suggests that an increase of one
unit in log-GDP, which is a factor of e ≈ 2.7 in GDP, is associated with an
increase of 0.72 units on the happiness ladder.

Now let’s estimate the same parameters using PyMC3. We’ll use the same
regression model as in “Regression Model”,

y = ax + b + ϵ

where y is the dependent variable (ladder score), x is the predictive variable
(log GDP) and ϵ is a series of values from a normal distribution with
standard deviation σ.

a and b are the slope and intercept of the regression line. They are unknown
parameters, so we will use the data to estimate them.

The following is the PyMC3 specification of this model:

x_data = log_gdp

y_data = score

with pm.Model() as model3:

 a = pm.Uniform('a', 0, 4)

 b = pm.Uniform('b', -4, 4)

 sigma = pm.Uniform('sigma', 0, 2)

 y_est = a * x_data + b

 y = pm.Normal('y',

 mu=y_est, sd=sigma,

 observed=y_data)

The prior distributions for the parameters a, b, and sigma are uniform with
ranges that are wide enough to cover the posterior distributions.

y_est is the estimated value of the dependent variable, based on the
regression equation. And y is a normal distribution with mean y_est and
standard deviation sigma.

Notice how the data are included in the model:

The values of the predictive variable, x_data, are used to compute
y_est.

The values of the dependent variable, y_data, are provided as the
observed values of y.

Now we can use this model to generate a sample from the posterior
distribution:

with model3:

 trace3 = pm.sample(500, **options)

When you run the sampler, you might get warning messages about
“divergences” and the “acceptance probability”. You can ignore them for
now.

The result is an object that contains samples from the joint posterior
distribution of a, b, and sigma.

ArviZ provides plot_posterior, which we can use to plot the posterior
distributions of the parameters. Here are the posterior distributions of slope,
a, and intercept, b:

import arviz as az

with model3:

 az.plot_posterior(trace3, var_names=['a', 'b']);

The graphs show the distributions of the samples, estimated by KDE, and
94% credible intervals. In the figure, “HDI” stands for “highest-density
interval”.

The means of these samples are consistent with the parameters we
estimated with linregress.

The simple regression model has only three parameters, so we could have
used a grid algorithm. But the regression model in the happiness report has
six predictive variables, so it has eight parameters in total, including the
intercept and sigma.

It is not practical to compute a grid approximation for a model with eight
parameters. Even a coarse grid, with 20 points along each dimension, would
have more than 25 billion points. And with 153 countries, we would have to
compute almost 4 trillion likelihoods.

But PyMC3 can handle a model with eight parameters comfortably, as we’ll
see in the next section.

https://oreil.ly/dEqMw
https://oreil.ly/dEqMw

Multiple Regression
Before we implement the multiple regression model, I’ll select the columns
we need from the DataFrame:

columns = ['Ladder score',

 'Logged GDP per capita',

 'Social support',

 'Healthy life expectancy',

 'Freedom to make life choices',

 'Generosity',

 'Perceptions of corruption']

subset = df[columns]

The predictive variables have different units: log-GDP is in log-dollars, life
expectancy is in years, and the other variables are on arbitrary scales. To
make these factors comparable, I’ll standardize the data so that each
variable has mean 0 and standard deviation 1.

standardized = (subset - subset.mean()) / subset.std()

Now let’s build the model. I’ll extract the dependent variable:

y_data = standardized['Ladder score']

And the dependent variables:

x1 = standardized[columns[1]]

x2 = standardized[columns[2]]

x3 = standardized[columns[3]]

x4 = standardized[columns[4]]

x5 = standardized[columns[5]]

x6 = standardized[columns[6]]

And here’s the model. b0 is the intercept; b1 through b6 are the parameters
associated with the predictive variables:

with pm.Model() as model4:

 b0 = pm.Uniform('b0', -4, 4)

 b1 = pm.Uniform('b1', -4, 4)

 b2 = pm.Uniform('b2', -4, 4)

 b3 = pm.Uniform('b3', -4, 4)

 b4 = pm.Uniform('b4', -4, 4)

 b5 = pm.Uniform('b5', -4, 4)

 b6 = pm.Uniform('b6', -4, 4)

 sigma = pm.Uniform('sigma', 0, 2)

 y_est = b0 + b1*x1 + b2*x2 + b3*x3 + b4*x4 + b5*x5 + b6*x6

 y = pm.Normal('y',

 mu=y_est, sd=sigma,

 observed=y_data)

We could express this model more concisely using a vector of predictive
variables and a vector of parameters, but I decided to keep it simple.

Now we can sample from the joint posterior distribution:

with model4:

 trace4 = pm.sample(500, **options)

From trace4 we can extract samples from the posterior distributions of the
parameters and compute their means:

param_names = ['b1', 'b3', 'b3', 'b4', 'b5', 'b6']

means = [trace4[name].mean()

 for name in param_names]

We can also compute 94% credible intervals (between the 3rd and 97th
percentiles):

def credible_interval(sample):

 """Compute 94% credible interval."""

 ci = np.percentile(sample, [3, 97])

 return np.round(ci, 3)

cis = [credible_interval(trace4[name])

 for name in param_names]

The following table summarizes the results:

Posterior mean 94% CI

Logged GDP per capita 0.246 [0.077, 0.417]

Social support 0.224 [0.064, 0.384]

Healthy life expectancy 0.224 [0.064, 0.384]

Freedom to make life choices 0.190 [0.094, 0.291]

Generosity 0.055 [-0.032, 0.139]

Perceptions of corruption -0.098 [-0.194, -0.002]

It looks like GDP has the strongest association with happiness (or
satisfaction), followed by social support, life expectancy, and freedom.

After controlling for those other factors, the parameters of the other factors
are substantially smaller, and since the CI for generosity includes 0, it is
plausible that generosity is not substantially related to happiness, at least as
they were measured in this study.

This example demonstrates the power of MCMC to handle models with
more than a few parameters. But it does not really demonstrate the power of
Bayesian regression.

If the goal of a regression model is to estimate parameters, there is no great
advantage to Bayesian regression compared to conventional least squares
regression.

Bayesian methods are more useful if we plan to use the posterior
distribution of the parameters as part of a decision analysis process.

Summary
In this chapter we used PyMC3 to implement two models we’ve seen
before: a Poisson model of goal-scoring in soccer and a simple regression
model. Then we implemented a multiple regression model that would not
have been possible to compute with a grid approximation.

MCMC is more powerful than grid methods, but that power comes with
some disadvantages:

MCMC algorithms are fiddly. The same model might behave well
with some priors and less well with others. And the sampling
process often produces warnings about tuning steps, divergences,
“r-hat statistics”, acceptance rates, and effective samples. It takes
some expertise to diagnose and correct these issues.

I find it easier to develop models incrementally using grid
algorithms, checking intermediate results along the way. With
PyMC3, it is not as easy to be confident that you have specified a
model correctly.

For these reasons, I recommend a model development process that starts
with grid algorithms and resorts to MCMC if necessary. As we saw in the
previous chapters, you can solve a lot of real-world problems with grid
methods. But when you need MCMC, it is useful to have a grid algorithm
to compare to (even if it is based on a simpler model).

All of the models in this book can be implemented in PyMC3, but some of
them are easier to translate than others. In the exercises, you will have a
chance to practice.

Exercises
Example 19-1.

As a warm-up, let’s use PyMC3 to solve the Euro Problem. Suppose we
spin a coin 250 times and it comes up heads 140 times. What is the
posterior distribution of x, the probability of heads?

For the prior, use a beta distribution with parameters α = 1 and β = 1.

See the PyMC3 documentation for the list of continuous distributions.

https://oreil.ly/lzqYU

Example 19-2.

Now let’s use PyMC3 to replicate the solution to the Grizzly Bear Problem
in “The Grizzly Bear Problem”, which is based on the hypergeometric
distribution.

I’ll present the problem with slightly different notation, to make it
consistent with PyMC3.

Suppose that during the first session, k=23 bears are tagged. During the
second session, n=19 bears are identified, of which x=4 had been tagged.

Estimate the posterior distribution of N, the number of bears in the
environment.

For the prior, use a discrete uniform distribution from 50 to 500.

See the PyMC3 documentation for the list of discrete distributions.

Note: HyperGeometric was added to PyMC3 after version 3.8, so you
might need to update your installation to do this exercise.

Example 19-3.

In “The Weibull Distribution” we generated a sample from a Weibull
distribution with λ = 3 and k = 0.8. Then we used the data to compute a
grid approximation of the posterior distribution of those parameters.

Now let’s do the same with PyMC3.

For the priors, you can use uniform distributions as we did in Chapter 14, or
you could use HalfNormal distributions provided by PyMC3.

Note: The Weibull class in PyMC3 uses different parameters than SciPy.
The parameter alpha in PyMC3 corresponds to k, and beta corresponds to
λ.
data = [0.80497283, 2.11577082, 0.43308797, 0.10862644, 5.17334866,

 3.25745053, 3.05555883, 2.47401062, 0.05340806, 1.08386395]

https://oreil.ly/ESTCO

Example 19-4.

In “Improving Reading Ability” we used data from a reading test to
estimate the parameters of a normal distribution.

Make a model that defines uniform prior distributions for mu and sigma and
uses the data to estimate their posterior distributions.

Example 19-5.

In “The Lincoln Index Problem” we used a grid algorithm to solve the
Lincoln Index Problem as presented by John D. Cook:

Suppose you have a tester who finds 20 bugs in your program. You want
to estimate how many bugs are really in the program. You know there are
at least 20 bugs, and if you have supreme confidence in your tester, you
may suppose there are around 20 bugs. But maybe your tester isn’t very
good. Maybe there are hundreds of bugs. How can you have any idea
how many bugs there are? There’s no way to know with one tester. But if
you have two testers, you can get a good idea, even if you don’t know
how skilled the testers are.

Suppose the first tester finds 20 bugs, the second finds 15, and they find 3
in common; use PyMC3 to estimate the number of bugs.

Note: This exercise is more difficult that some of the previous ones. One of
the challenges is that the data includes k00, which depends on N:

k00 = N - num_seen

So we have to construct the data as part of the model. To do that, we can
use pm.math.stack, which makes an array:

data = pm.math.stack((k00, k01, k10, k11))

Finally, you might find it helpful to use pm.Multinomial.

Chapter 20. Approximate
Bayesian Computation

This chapter introduces a method of last resort for the most complex
problems, Approximate Bayesian Computation (ABC). I say it is a last
resort because it usually requires more computation than other methods, so
if you can solve a problem any other way, you should. However, for the
examples in this chapter, ABC is not just easy to implement; it is also
efficient.

The first example is my solution to a problem posed by a patient with a
kidney tumor. I use data from a medical journal to model tumor growth, and
use simulations to estimate the age of a tumor based on its size.

The second example is a model of cell counting, which has applications in
biology, medicine, and zymurgy (beer-making). Given a cell count from a
diluted sample, we estimate the concentration of cells.

Finally, as an exercise, you’ll have a chance to work on a fun sock-counting
problem.

The Kidney Tumor Problem
I am a frequent reader and occasional contributor to the online statistics
forum at http://reddit.com/r/statistics. In November 2011, I read the
following message:

“I have Stage IV Kidney Cancer and am trying to determine if the cancer
formed before I retired from the military. … Given the dates of retirement
and detection is it possible to determine when there was a 50/50 chance
that I developed the disease? Is it possible to determine the probability
on the retirement date? My tumor was 15.5 cm x 15 cm at detection.
Grade II.

http://reddit.com/r/statistics

I contacted the author of the message to get more information; I learned that
veterans get different benefits if it is “more likely than not” that a tumor
formed while they were in military service (among other considerations).
So I agree to help him answer his question.

Because renal tumors grow slowly, and often do not cause symptoms, they
are sometimes left untreated. As a result, doctors can observe the rate of
growth for untreated tumors by comparing scans from the same patient at
different times. Several papers have reported these growth rates.

For my analysis I used data from a paper by Zhang et al. They report
growth rates in two forms:

Volumetric doubling time, which is the time it would take for a
tumor to double in size.

Reciprocal doubling time (RDT), which is the number of doublings
per year.

The next section shows how we work with these growth rates.

A Simple Growth Model
We’ll start with a simple model of tumor growth based on two assumptions:

Tumors grow with a constant doubling time, and

They are roughly spherical in shape.

And I’ll define two points in time:

t1 is when my correspondent retired.

t2 is when the tumor was detected.

The time between t1 and t2 was about 9.0 years. As an example, let’s
assume that the diameter of the tumor was 1 cm at t1, and estimate its size
at t2.

https://oreil.ly/KemRG

I’ll use the following function to compute the volume of a sphere with a
given diameter:

import numpy as np

def calc_volume(diameter):

 """Converts a diameter to a volume."""

 factor = 4 * np.pi / 3

 return factor * (diameter/2.0)**3

Assuming that the tumor is spherical, we can compute its volume at t1:

d1 = 1

v1 = calc_volume(d1)

v1

0.5235987755982988

The median volume doubling time reported by Zhang et al. is 811 days,
which corresponds to an RDT of 0.45 doublings per year:

median_doubling_time = 811

rdt = 365 / median_doubling_time

rdt

0.45006165228113443

We can compute the number of doublings that would have happened in the
interval between t1 and t2:

interval = 9.0

doublings = interval * rdt

doublings

4.05055487053021

Given v1 and the number of doublings, we can compute the volume at t2:

v2 = v1 * 2**doublings

v2

8.676351488087187

The following function computes the diameter of a sphere with the given
volume:

def calc_diameter(volume):

 """Converts a volume to a diameter."""

 factor = 3 / np.pi / 4

 return 2 * (factor * volume)**(1/3)

So we can compute the diameter of the tumor at t2:

d2 = calc_diameter(v2)

d2

2.5494480788327483

If the diameter of the tumor was 1 cm at t1, and it grew at the median rate,
the diameter would be about 2.5 cm at t2.

This example demonstrates the growth model, but it doesn’t answer the
question my correspondent posed.

A More General Model
Given the size of a tumor at time of diagnosis, we would like to know the
distribution of its age. To find it, we’ll run simulations of tumor growth to
get the distribution of size conditioned on age. Then we’ll compute the
distribution of age conditioned on size.

The simulation starts with a small tumor and runs these steps:

1. Choose a value from the distribution of growth rates.

2. Compute the size of the tumor at the end of an interval.

3. Repeat until the tumor exceeds the maximum relevant size.

So the first thing we need is the distribution of growth rates.

Using the figures in the paper by Zhange et al., I created an array,
rdt_sample, that contains estimated values of RDT for the 53 patients in
the study.

Again, RDT stands for “reciprocal doubling time”, which is in doublings
per year. So if rdt=1, a tumor would double in volume in one year. If
rdt=2, it would double twice; that is, the volume would quadruple. And if
rdt=-1, it would halve in volume.

We can use the sample of RDTs to estimate the PDF of the distribution:

from utils import kde_from_sample

qs = np.linspace(-2, 6, num=201)

pmf_rdt = kde_from_sample(rdt_sample, qs)

Here’s what it looks like:

In the next section we will use this distribution to simulate tumor growth.

Simulation
Now we’re ready to run the simulations. Starting with a small tumor, we’ll
simulate a series of intervals until the tumor reaches a maximum size.

At the beginning of each simulated interval, we’ll choose a value from the
distribution of growth rates and compute the size of the tumor at the end.

I chose an interval of 245 days (about 8 months) because that is the median
time between measurements in the data source.

For the initial diameter I chose 0.3 cm, because carcinomas smaller than
that are less likely to be invasive and less likely to have the blood supply
needed for rapid growth (see this page on carcinoma). For the maximum
diameter I chose 20 cm.

interval = 245 / 365 # year

min_diameter = 0.3 # cm

max_diameter = 20 # cm

I’ll use calc_volume to compute the initial and maximum volumes:

v0 = calc_volume(min_diameter)

vmax = calc_volume(max_diameter)

v0, vmax

(0.014137166941154066, 4188.790204786391)

The following function runs the simulation:

import pandas as pd

def simulate_growth(pmf_rdt):

 """Simulate the growth of a tumor."""

 age = 0

 volume = v0

 res = []

 while True:

 res.append((age, volume))

 if volume > vmax:

https://oreil.ly/MPAk1

 break

 rdt = pmf_rdt.choice()

 age += interval

 doublings = rdt * interval

 volume *= 2**doublings

 columns = ['age', 'volume']

 sim = pd.DataFrame(res, columns=columns)

 sim['diameter'] = calc_diameter(sim['volume'])

 return sim

simulate_growth takes as a parameter a Pmf that represents the
distribution of RDT. It initializes the age and volume of the tumor, then runs
a loop that simulates one interval at a time.

Each time through the loop, it checks the volume of the tumor and exits if it
exceeds vmax.

Otherwise it chooses a value from pmf_rdt and updates age and volume.
Since rdt is in doublings per year, we multiply by interval to compute
the number of doublings during each interval.

At the end of the loop, simulate_growth puts the results in a DataFrame
and computes the diameter that corresponds to each volume.

Here’s how we call this function:

sim = simulate_growth(pmf_rdt)

Here are the results for the first few intervals:

sim.head(3)

age volume diameter

0 0.000000 0.014137 0.300000

1 0.671233 0.014949 0.305635

2 1.342466 0.019763 0.335441

And the last few intervals:

sim.tail(3)

age volume diameter

43 28.863014 1882.067427 15.318357

44 29.534247 2887.563277 17.667603

45 30.205479 4953.618273 21.149883

To show the results graphically, I’ll run 101 simulations:

sims = [simulate_growth(pmf_rdt) for _ in range(101)]

And plot the results:

In this figure, each thin, solid line shows the simulated growth of a tumor
over time, with diameter on a log scale. The dotted lines are at 4, 8, and 16
cm.

By reading across the dotted lines, you can get a sense of the distribution of
age at each size. For example, reading across the top line, we see that the
age of a 16 cm tumor might be as low 10 years or as high as 40 years, but it
is most likely to be between 15 and 30.

To compute this distribution more precisely, we can interpolate the growth
curves to see when each one passes through a given size. The following

function takes the results of the simulations and returns the age when each
tumor reached a given diameter:

from scipy.interpolate import interp1d

def interpolate_ages(sims, diameter):

 """Estimate the age when each tumor reached a given size."""

 ages = []

 for sim in sims:

 interp = interp1d(sim['diameter'], sim['age'])

 age = interp(diameter)

 ages.append(float(age))

 return ages

We can call this function like this:

from empiricaldist import Cdf

ages = interpolate_ages(sims, 15)

cdf = Cdf.from_seq(ages)

print(cdf.median(), cdf.credible_interval(0.9))

22.31854530374061 [13.47056554 34.49632276]

For a tumor 15 cm in diameter, the median age is about 22 years, the 90%
credible interval is between 13 and 34 years, and the probability that it
formed less than 9 years ago is less than 1%:

1 - cdf(9.0)

0.9900990099009901

But this result is based on two modeling decisions that are potentially
problematic:

In the simulations, growth rate during each interval is independent
of previous growth rates. In reality it is plausible that tumors that
have grown quickly in the past are likely to grow quickly in the
future. In other words, there is probably a serial correlation in
growth rate.

To convert from linear measure to volume, we assume that tumors
are approximately spherical.

In additional experiments, I implemented a simulation that chooses growth
rates with serial correlation; the effect is that the fast-growing tumors grow
faster and the slow-growing tumors grow slower. Nevertheless, with
moderate correlation (0.5), the probability that a 15 cm tumor is less than 9
years old is only about 1%.

The assumption that tumors are spherical is probably fine for tumors up to a
few centimeters, but not for a tumor with linear dimensions 15.5 x 15 cm.
If, as seems likely, a tumor this size is relatively flat, it might have the same
volume as a 6 cm sphere. But even with this smaller volume and correlation
0.5, the probability that this tumor is less than 9 years old is about 5%.

So even taking into account modeling errors, it is unlikely that such a large
tumor could have formed after my correspondent retired from military
service.

Approximate Bayesian Computation
At this point you might wonder why this example is in a book about
Bayesian statistics. We never defined a prior distribution or did a Bayesian
update. Why not? Because we didn’t have to.

Instead, we used simulations to compute ages and sizes for a collection of
hypothetical tumors. Then, implicitly, we used the simulation results to
form a joint distribution of age and size. If we select a column from the
joint distribution, we get a distribution of size conditioned on age. If we
select a row, we get a distribution of age conditioned on size.

So this example is like the ones we saw in Chapter 1: if you have all of the
data, you don’t need Bayes’s theorem; you can compute probabilities by
counting.

This example is a first step toward Approximate Bayesian Computation
(ABC). The next example is a second step.

Counting Cells
This example comes from this blog post, by Cameron Davidson-Pilon. In it,
he models the process biologists use to estimate the concentration of cells in
a sample of liquid. The example he presents is counting cells in a “yeast
slurry”, which is a mixture of yeast and water used in brewing beer.

There are two steps in the process:

First, the slurry is diluted until the concentration is low enough that
it is practical to count cells.

Then a small sample is put on a hemocytometer, which is a
specialized microscope slide that holds a fixed amount of liquid on
a rectangular grid.

The cells and the grid are visible in a microscope, making it possible to
count the cells accurately.

As an example, suppose we start with a yeast slurry with an unknown
concentration of cells. Starting with a 1 mL sample, we dilute it by adding it
to a shaker with 9 mL of water and mixing well. Then we dilute it again,
and then a third time. Each dilution reduces the concentration by a factor of
10, so three dilutions reduces the concentration by a factor of 1,000.

Then we add the diluted sample to the hemocytometer, which has a capacity
of 0.0001 mL spread over a 5 x 5 grid. Although the grid has 25 squares, it
is standard practice to inspect only a few of them, say 5, and report the total
number of cells in the inspected squares.

This process is simple enough, but at every stage there are sources of error:

During the dilution process, liquids are measured using pipettes
that introduce measurement error.

The amount of liquid in the hemocytometer might vary from the
specification.

https://oreil.ly/4sqI1

During each step of the sampling process, we might select more or
less than the average number of cells, due to random variation.

Davidson-Pilon presents a PyMC model that describes these errors. I’ll start
by replicating his model; then we’ll adapt it for ABC.

Suppose there are 25 squares in the grid, we count 5 of them, and the total
number of cells is 49:

total_squares = 25

squares_counted = 5

yeast_counted = 49

Here’s the first part of the model, which defines the prior distribution of
yeast_conc, which is the concentration of yeast we’re trying to estimate.

shaker1_vol is the actual volume of water in the first shaker, which should
be 9 mL, but might be higher or lower, with standard deviation 0.05 mL.
shaker2_vol and shaker3_vol are the volumes in the second and third
shakers.

import pymc3 as pm

billion = 1e9

with pm.Model() as model:

 yeast_conc = pm.Normal("yeast conc",

 mu=2 * billion, sd=0.4 * billion)

 shaker1_vol = pm.Normal("shaker1 vol",

 mu=9.0, sd=0.05)

 shaker2_vol = pm.Normal("shaker2 vol",

 mu=9.0, sd=0.05)

 shaker3_vol = pm.Normal("shaker3 vol",

 mu=9.0, sd=0.05)

Now, the sample drawn from the yeast slurry is supposed to be 1 mL, but
might be more or less. And similarly for the sample from the first shaker
and from the second shaker. The following variables model these steps:

with model:

 yeast_slurry_vol = pm.Normal("yeast slurry vol",

 mu=1.0, sd=0.01)

 shaker1_to_shaker2_vol = pm.Normal("shaker1 to shaker2",

 mu=1.0, sd=0.01)

 shaker2_to_shaker3_vol = pm.Normal("shaker2 to shaker3",

 mu=1.0, sd=0.01)

Given the actual volumes in the samples and in the shakers, we can
compute the effective dilution, final_dilution, which should be 1,000,
but might be higher or lower.

with model:

 dilution_shaker1 = (yeast_slurry_vol /

 (yeast_slurry_vol + shaker1_vol))

 dilution_shaker2 = (shaker1_to_shaker2_vol /

 (shaker1_to_shaker2_vol + shaker2_vol))

 dilution_shaker3 = (shaker2_to_shaker3_vol /

 (shaker2_to_shaker3_vol + shaker3_vol))

 final_dilution = (dilution_shaker1 *

 dilution_shaker2 *

 dilution_shaker3)

The next step is to place a sample from the third shaker in the chamber of
the hemocytomer. The capacity of the chamber should be 0.0001 mL, but
might vary; to describe this variance, we’ll use a gamma distribution, which
ensures that we don’t generate negative values:

with model:

 chamber_vol = pm.Gamma("chamber_vol",

 mu=0.0001, sd=0.0001 / 20)

On average, the number of cells in the chamber is the product of the actual
concentration, final dilution, and chamber volume. But the actual number
might vary; we’ll use a Poisson distribution to model this variance:

with model:

 yeast_in_chamber = pm.Poisson("yeast in chamber",

 mu=yeast_conc * final_dilution * chamber_vol)

Finally, each cell in the chamber will be in one of the squares we count with
probability p=squares_counted/total_squares. So the actual count
follows a binomial distribution:

with model:

 count = pm.Binomial("count",

 n=yeast_in_chamber,

 p=squares_counted/total_squares,

 observed=yeast_counted)

With the model specified, we can use sample to generate a sample from the
posterior distribution:

options = dict(return_inferencedata=False)

with model:

 trace = pm.sample(1000, **options)

And we can use the sample to estimate the posterior distribution of
yeast_conc and compute summary statistics:

posterior_sample = trace['yeast conc'] / billion

cdf_pymc = Cdf.from_seq(posterior_sample)

print(cdf_pymc.mean(), cdf_pymc.credible_interval(0.9))

2.26789764737366 [1.84164524 2.70290741]

The posterior mean is about 2.3 billion cells per mL, with a 90% credible
interval from 1.8 and 2.7.

So far we’ve been following in Davidson-Pilon’s footsteps. And for this
problem, the solution using MCMC is sufficient. But it also provides an
opportunity to demonstrate ABC.

Cell Counting with ABC
The fundamental idea of ABC is that we use the prior distribution to
generate a sample of the parameters, and then simulate the system for each

set of parameters in the sample.

In this case, since we already have a PyMC model, we can use
sample_prior_predictive to do the sampling and the simulation:

with model:

 prior_sample = pm.sample_prior_predictive(10000)

The result is a dictionary that contains samples from the prior distribution
of the parameters and the prior predictive distribution of count:

count = prior_sample['count']

print(count.mean())

39.9847

Now, to generate a sample from the posterior distribution, we’ll select only
the elements in the prior sample where the output of the simulation, count,
matches the observed data, 49:

mask = (count == 49)

mask.sum()

251

We can use mask to select the values of yeast_conc for the simulations that
yield the observed data:

posterior_sample2 = prior_sample['yeast conc'][mask] / billion

And we can use the posterior sample to estimate the CDF of the posterior
distribution:

cdf_abc = Cdf.from_seq(posterior_sample2)

print(cdf_abc.mean(), cdf_abc.credible_interval(0.9))

2.2635057237709755 [1.85861977 2.68665897]

The posterior mean and credible interval are similar to what we got with
MCMC. Here’s what the distributions look like:

The distributions are similar, but the results from ABC are noisier because
the sample size is smaller.

When Do We Get to the Approximate Part?
The examples so far are similar to Approximate Bayesian Computation, but
neither of them demonstrates all of the elements of ABC. More generally,
ABC is characterized by:

1. A prior distribution of parameters.

2. A simulation of the system that generates the data.

3. A criterion for when we should accept that the output of the
simulation matches the data.

The kidney tumor example was atypical because we didn’t represent the
prior distribution of age explicitly. Because the simulations generate a joint
distribution of age and size, we were able to get the marginal posterior
distribution of age directly from the results.

The yeast example is more typical because we represented the distribution
of the parameters explicitly. But we accepted only simulations where the
output matches the data exactly.

The result is approximate in the sense that we have a sample from the
posterior distribution rather than the posterior distribution itself. But it is
not approximate in the sense of Approximate Bayesian Computation, which
typically accepts simulations where the output matches the data only
approximately.

To show how that works, I will extend the yeast example with an
approximate matching criterion.

In the previous section, we accepted a simulation if the output is precisely
49 and rejected it otherwise. As a result, we got only a few hundred samples
out of 10,000 simulations, so that’s not very efficient.

We can make better use of the simulations if we give “partial credit” when
the output is close to 49. But how close? And how much credit?

One way to answer that is to back up to the second-to-last step of the
simulation, where we know the number of cells in the chamber, and we use
the binomial distribution to generate the final count.

If there are n cells in the chamber, each has a probability p of being
counted, depending on whether it falls in one of the squares in the grid that
get counted.

We can extract n from the prior sample, like this:

n = prior_sample['yeast in chamber']

n.shape

(10000,)

And compute p like this:

p = squares_counted/total_squares

p

0.2

Now here’s the idea: we’ll use the binomial distribution to compute the
likelihood of the data, yeast_counted, for each value of n and the fixed
value of p:

from scipy.stats import binom

likelihood = binom(n, p).pmf(yeast_counted).flatten()

When the expected count, n * p, is close to the actual count, likelihood
is relatively high; when it is farther away, likelihood is lower.

The following is a scatter plot of these likelihoods versus the expected
counts:

We can’t use these likelihoods to do a Bayesian update because they are
incomplete; that is, each likelihood is the probability of the data given n,
which is the result of a single simulation.

But we can use them to weight the results of the simulations. Instead of
requiring the output of the simulation to match the data exactly, we’ll use
the likelihoods to give partial credit when the output is close.

Here’s how: I’ll construct a Pmf that contains yeast concentrations as
quantities and the likelihoods as unnormalized probabilities.

qs = prior_sample['yeast conc'] / billion

ps = likelihood

posterior_pmf = Pmf(ps, qs)

In this Pmf, values of yeast_conc that yield outputs close to the data map
to higher probabilities. If we sort the quantities and normalize the
probabilities, the result is an estimate of the posterior distribution.

posterior_pmf.sort_index(inplace=True)

posterior_pmf.normalize()

print(posterior_pmf.mean(), posterior_pmf.credible_interval(0.9))

2.271401984584812 [1.85333758 2.71299385]

The posterior mean and credible interval are similar to the values we got
from MCMC. And here’s what the posterior distributions look like:

The distributions are similar, but the results from MCMC are a little noisier.
In this example, ABC is more efficient than MCMC, requiring less
computation to generate a better estimate of the posterior distribution. But
that’s unusual; usually ABC requires a lot of computation. For that reason,
it is generally a method of last resort.

Summary
In this chapter we saw two examples of Approximate Bayesian
Computation (ABC), based on simulations of tumor growth and cell
counting.

The definitive elements of ABC are:

1. A prior distribution of parameters.

2. A simulation of the system that generates the data.

3. A criterion for when we should accept that the output of the
simulation matches the data.

ABC is particularly useful when the system is too complex to model with
tools like PyMC. For example, it might involve a physical simulation based
on differential equations. In that case, each simulation might require
substantial computation, and many simulations might be needed to estimate
the posterior distribution.

Next, you’ll have a chance to practice with one more example.

Exercises
Example 20-1.

This exercise is based on a blog post by Rasmus Bååth, which is motivated
by a tweet from Karl Broman, who wrote:

That the first 11 socks in the laundry are distinct suggests that there are a
lot of socks.

Suppose you pull 11 socks out of the laundry and find that no two of them
make a matched pair. Estimate the number of socks in the laundry.

To solve this problem, we’ll use the model Bååth suggests, which is based
on these assumptions:

The laundry contains some number of pairs of socks, n_pairs,
plus some number of odd (unpaired) socks, n_odds.

The pairs of socks are different from each other and different from
the unpaired socks; in other words, the number of socks of each
type is either 1 or 2, never more.

https://oreil.ly/74FXm

We’ll use the prior distributions Bååth suggests, which are:

The number of socks follows a negative binomial distribution with
mean 30 and standard deviation 15.

The proportion of socks that are paired follows a beta distribution
with parameters alpha=15 and beta=2.

In the notebook for this chapter, I’ll define these priors. Then you can
simulate the sampling process and use ABC to estimate the posterior
distributions.

Index

Symbols

[] (bracket operator), Conditional Probability

probability mass functions, Probability Mass Functions

| (given), Laws of Probability

+ (plus) versus Pmf.add_dist(), Mixture

A

age of the universe, Bayesian Statistics

Anaconda distribution of Python, Installing Jupyter

Approximate Bayesian Computation (ABC)

about, Approximate Bayesian Computation, When Do We Get to the
Approximate Part?

counting cells via ABC, Cell Counting with ABC-When Do We Get to
the Approximate Part?

counting cells via MCMC, Counting Cells-Counting Cells

Kidney Tumor Problem

ABC aspect, Approximate Bayesian Computation

about, The Kidney Tumor Problem, When Do We Get to the
Approximate Part?

growth model, general, A More General Model

growth model, simple, A Simple Growth Model

simulation of growth, Simulation-Simulation

arrays

coin tossed twice, The Binomial Distribution

DataFrame converted to NumPy array, Joint Distribution

meshgrid function

comparison operators, Outer Operations, Likelihood

joint distribution construction, Joint Distribution

likelihood of height of person, Likelihood

outer product, Outer Operations, Joint Distribution

outer sum, Outer Operations

3-dimensional for reading ability, Likelihood

normal distribution of height, How Tall Is A?

np.repeat function, Light Bulbs

np.where function, Likelihood

parentheses versus brackets, Addends

3-dimensional to 2-dimensional, Likelihood

transposing DataFrame matrix, General Mixtures

triangle-shaped prior, Triangle Prior

weighted mixture of distributions, General Mixtures

ArviZ plot_posterior, Simple Regression

Axtell, Robert, Power Law Prior

B

Basu’s theorem, Using Summary Statistics

Bayes factor, Oliver’s Blood, Evidence, Bayesian Hypothesis Testing,
Transforming Distributions

Bayes tables

Cookie Problem, Bayes Tables-Bayes Tables

Dice Problem, The Dice Problem

Monty Hall Problem, The Monty Hall Problem-The Monty Hall
Problem

Bayesian Bandit strategy

about, Bayesian Bandits

multiple bandits, Multiple Bandits

prior beliefs, Bayesian Bandits

strategy put together, The Strategy

testing, The Strategy

update, The Update

which machine to play, Explore and Exploit

Bayesian decision analysis

bandit strategy (see Bayesian Bandit strategy)

instead of hypothesis testing, Bayesian Hypothesis Testing

Price Is Right Problem

about, Decision Analysis

decision analysis, Decision Analysis

distribution of errors, Distribution of Error-Distribution of Error

kernel density estimation, Kernel Density Estimation,
Distribution of Error

maximizing expected gain, Maximizing Expected Gain

modeling, Distribution of Error

prior, The Prior

probability of winning, Probability of Winning

update, Update

questions to ask, Bayesian Hypothesis Testing

Bayesian estimation in Euro Problem, Bayesian Estimation-Triangle Prior

Bayesian hypothesis testing

Bayesian Bandit strategy, The Strategy

decision analysis instead, Bayesian Hypothesis Testing

Euro Problem

about, Testing

about previous solution, Estimation-Evidence

binomial distribution, The Binomial Distribution, Estimation

modeling, Evidence

modeling triangle-shaped bias, Uniformly Distributed Bias

modeling uniform bias, Uniformly Distributed Bias

statistical versus, Bayesian Hypothesis Testing

Bayesian Methods for Hackers (Davidson-Pilon), The Price Is Right
Problem, The Space Shuttle Problem

Bayesian regression (see linear regression)

Bayesian statistics versus Bayes’s theorem, Bayesian Statistics

Bayesian updates, Diachronic Bayes

about, Diachronic Bayes, What the Actual?

Bayes tables for, Bayes Tables-Bayes Tables

Bayesian logistic regression, The Update

dictionary for ease, Bayesian Estimation

gamma distribution for, The Conjugate Prior-What the Actual?

How Tall Is Person A, The Update

log odds, Log Odds

update additive, Log Odds

Pmf objects for, The Cookie Problem Revisited

Bayesian Bandit strategy, The Update

classification of penguin data, The Update-Naive Bayesian
Classification

Cookie Problem, The Cookie Problem Revisited

Dice Problem, Updating Dice

World Cup Problem, The Update

posterior distribution location, The Update

Price Is Right Problem, Update

reading improvement groups, Improving Reading Ability-Likelihood

summary statistics, Update with Summary Statistics

snow amounts, The Update

wrong classroom, Log Odds

update additive, Log Odds

Bayes’s rule

about, Logistic Regression

Bayes’s theorem in odds form, Bayes’s Rule

Cookie Problem, Bayes’s Rule, Oliver’s Blood

Oliver’s Blood, Oliver’s Blood-Oliver’s Blood

wrong classroom, Log Odds, Log Odds

Bayes’s theorem, Theorem 3

Bayesian statistics versus, Bayesian Statistics

Cookie Problem, The Cookie Problem-The Cookie Problem

derivation of, Laws of Probability-Theorem 3

diachronic Bayes, Diachronic Bayes

example of use, Theorem 3

gluten sensitivity, Gluten Sensitivity

Forward Problem, The Forward Problem

Inverse Problem, The Inverse Problem

bears (see Grizzly Bear Problem)

beta distribution, Binomial Likelihood

Dirichlet distribution marginals as, The Dirichlet Distribution

SciPy beta function, Binomial Likelihood

bidding strategy (see Price Is Right Problem)

binomial distribution, The Binomial Distribution

beta distribution, Binomial Likelihood

Dirichlet distribution marginals as, The Dirichlet Distribution

SciPy beta function, Binomial Likelihood

binomial coefficient, The Binomial Distribution

hypergeometric distribution, The Grizzly Bear Problem

conjugate prior of, Binomial Likelihood

Euro Problem tested, The Binomial Distribution, Estimation

gluten sensitivity, Gluten Sensitivity

Forward Problem, The Forward Problem

Inverse Problem, The Inverse Problem

light bulb dead bulb prediction, Posterior Predictive Distribution

SciPy binomial function, The Binomial Distribution

binomial likelihood function, The Binomial Likelihood Function,
Estimation

conjugate priors, Binomial Likelihood

blood type problem, Oliver’s Blood-Oliver’s Blood

Boolean Series

conjunctions, Conjunction

impossible outcomes, Updating Dice

incomplete data, Incomplete Data

summing, Fraction of Bankers

probability function, The Probability Function

Box, George, The World Cup Problem

bracket operator ([]), Conditional Probability

probability mass functions, Probability Mass Functions

bugs in program (see Lincoln Index Problem)

C

cancer (see Kidney Tumor Problem)

Cantril ladder question on happiness, Happiness

CDF (see cumulative distribution function)

Cdf objects

about, Cumulative Distribution Functions, Maximum

classification of penguin data, Penguin Data

complementary CDF, Minimum

distribution of differences, Distribution of Differences

distribution, maximum of six attributes, Maximum

max_dist function, Maximum

distribution, minimum of six attributes, Minimum

min_dist function, Minimum

empiricaldist library for Cdf class, Cumulative Distribution Functions

Pmf object conversion, Cumulative Distribution Functions

reading improvement groups, Improving Reading Ability

Weibull distribution, The Weibull Distribution-The Weibull
Distribution

censored data, Incomplete Data

centering data to minimize correlation, The Update, Least Squares
Regression

Central Limit Theorem, Addends

classification of penguin data

about, Classification

cumulative distribution functions, Penguin Data

data description, Penguin Data

data source, Classification

joint distributions, Joint Distributions

scatter plot, Joint Distributions

scatter plot compared to contours, Joint Distributions

less naive Bayesian classifier, A Less Naive Classifier

loading into DataFrame, Penguin Data

multivariate normal distribution, Multivariate Normal Distribution

normal models, Normal Models, Joint Distributions

update, The Update-Naive Bayesian Classification

naive Bayesian classifier, Naive Bayesian Classification

coin fairness (see Euro Problem)

Colab to run Jupyter notebooks, Working with the Code

collectively exhaustive, The Law of Total Probability

gender as, The Law of Total Probability

law of total probability, The Law of Total Probability, Diachronic
Bayes

commutative property

conditional probability, Conditional Probability Is Not Commutative

conjunctions, Conjunction, Theorem 3

company sizes following power law, Power Law Prior

Conda environment for book code, Installing Jupyter

conditional posteriors, Conditional Posteriors

conditional probability

about, Conditional Probability

commutative property, Conditional Probability Is Not Commutative

computing, Conditional Probability

conjunction to compute, Theorem 1

conjunctions and, Condition and Conjunction

conjunction as product of probabilities, Theorem 2

relationship in math notation, Theorem 1

Linda the Banker Problem, Linda the Banker

probability function, Conditional Probability

conjugate priors

about, The Conjugate Prior

animal preserve with three parameters, Lions and Tigers and Bears

Dirichlet distribution, The Dirichlet Distribution

Euro Problem, Binomial Likelihood

World Cup Problem

gamma distribution for update, The Conjugate Prior-What the
Actual?

Poisson processes solution review, The World Cup Problem
Revisited

conjunctions, Conjunction

commutative property, Conjunction, Theorem 3

conditional probability and, Condition and Conjunction

product of probabilities, Theorem 2

relationship in math notation, Theorem 1

conditional probability computed via, Theorem 1

contour plot

joint distribution, Visualizing the Joint Distribution

Grizzly Bear two-parameter model, The Update

Weibull distribution, The Weibull Distribution

incomplete data, Using Incomplete Data

Cook, John D., The Lincoln Index Problem

Cookie Problem

Bayes tables, Bayes Tables-Bayes Tables

Bayes’s rule, Bayes’s Rule

Bayes’s theorem, The Cookie Problem-The Cookie Problem

likelihood, Diachronic Bayes

odds, Oliver’s Blood

101 Bowls Problem, 101 Bowls-101 Bowls

Euro Problem contrasted, Bayesian Statistics

Pmf objects, Distributions, The Cookie Problem Revisited-The Cookie
Problem Revisited

updated data, The Cookie Problem Revisited

prior, Diachronic Bayes

correlation minimized by centering data, The Update, Least Squares
Regression

count estimation (see counting cells; estimating counts)

Counter function, Multiple Bandits

counting cells

Approximate Bayesian Computation, Cell Counting with ABC

MCMC, Counting Cells

covariance matrix, Multivariate Normal Distribution

credible intervals, Credible Intervals, The Update

credible_interval function, Credible Intervals

cumulative distribution function (CDF)

about, Cumulative Distribution Functions

0 to 1 range, Cumulative Distribution Functions

Cdf objects (see Cdf objects)

classification of penguin data, Penguin Data

complementary CDF, Minimum

distribution as mix of distributions, Mixture-Mixture

general solution, General Mixtures-General Mixtures

distribution of differences, Distribution of Differences

empiricaldist for Cdf class, Cumulative Distribution Functions

Euro Problem, Cumulative Distribution Functions

np.diff function, Cumulative Distribution Functions

PMF conversion, Cumulative Distribution Functions

reading improvement groups, Improving Reading Ability

Weibull distribution, The Weibull Distribution-The Weibull
Distribution

D

data

classification of penguin data, Classification-A Less Naive Classifier

data source, Classification

data in hand, Bayes’s theorem not needed, Approximate Bayesian
Computation

Empirical Bayes method data reused, Empirical Bayes

empirical versus theoretical distributions, Distributions

evidence in favor of a hypothesis, Oliver’s Blood, Evidence

Bayes factor, Oliver’s Blood, Evidence, Bayesian Hypothesis
Testing, Transforming Distributions

evidence of biased coin, The Euro Problem-The Binomial Likelihood
Function

Bayes’s rule for, Uniformly Distributed Bias

groupby for data into groups, Improving Reading Ability, Likelihood,
More Snow?

GSS (General Social Survey) dataset, Probability-Political Views and
Parties, Conditional Probability, The Law of Total Probability

incomplete data, Incomplete Data-Incomplete Data

called censored, Incomplete Data

marginal distributions, Using Incomplete Data

using, Using Incomplete Data-Using Incomplete Data

informative versus uninformative prior, Informative Priors

Price Is Right prices and bids, The Prior

priors converging on same posterior, Triangle Prior

summary statistics, Using Summary Statistics

swamping the priors, Triangle Prior

updating probability with new data, Diachronic Bayes

(see also Bayesian updates)

weather records, More Snow?

DataFrames (see pandas)

Davidson-Pilon, Cameron, The Price Is Right Problem, The Space Shuttle
Problem, Counting Cells

decision analysis in Price Is Right, Decision Analysis

(see also Bayesian decision analysis)

degree of certainty via odds, Odds

(see also odds)

dependence and independence of heights, Dependence and Independence

diachronic Bayes’s theorem, Diachronic Bayes

Dice Problem

Bayes tables, The Dice Problem

distribution of sums

three dice, Addends

two dice, Addends-Addends

Dungeons & Dragons best three, Best Three of Four

Pmf to solve, The Dice Problem-The Dice Problem

updating dice, Updating Dice

dictionaries

classification of penguin data, Normal Models

ease of updating, Bayesian Estimation

Dirichlet distribution, The Dirichlet Distribution

marginals as beta distributions, The Dirichlet Distribution

discrete distributions and numerical errors, Modeling

distribution objects, Introducing PyMC3

distribution of differences, Distribution of Differences

plotting, Distribution of Differences

distribution of errors, Distribution of Error-Distribution of Error

distributions

about, Distributions

beta distribution, Binomial Likelihood

Dirichlet distribution marginals as, The Dirichlet Distribution

SciPy beta function, Binomial Likelihood

Cdf for maximum or minimum, Maximum-Minimum

coin tossed twice, The Binomial Distribution

company sizes following power law, Power Law Prior

conditional distribution, Conditional Posteriors

Cookie Problem

101 bowls of cookies, 101 Bowls-101 Bowls

Pmf for, The Cookie Problem Revisited-The Cookie Problem
Revisited

Pmf for updated data, The Cookie Problem Revisited

cumulative distribution function

0 to 1 range, Cumulative Distribution Functions

about, Cumulative Distribution Functions

classification of penguin data, Penguin Data

complementary CDF, Minimum

distribution of differences, Distribution of Differences

empiricaldist for Cdf class, Cumulative Distribution Functions

(see also Cdf objects)

Euro Problem, Cumulative Distribution Functions

np.diff function, Cumulative Distribution Functions

PMF conversion, Cumulative Distribution Functions

reading improvement groups, Improving Reading Ability

Weibull distribution, The Weibull Distribution-The Weibull
Distribution

Dirichlet distribution, The Dirichlet Distribution

discrete distributions, Modeling

distribution as mix of distributions, Mixture-Mixture

general solution, General Mixtures-General Mixtures

distribution of differences, Distribution of Differences

plotting, Distribution of Differences

distribution of errors, Distribution of Error-Distribution of Error

empirical versus theoretical, Distributions

exponential distribution, The Exponential Distribution

SciPy expon, The Exponential Distribution

gluten sensitivity, Gluten Sensitivity

Forward Problem, The Forward Problem

Inverse Problem, The Inverse Problem

hypergeometric distribution, The Grizzly Bear Problem

joint distributions, Comparison, Joint Distribution

(see also joint distributions)

kernel density estimation, Kernel Density Estimation

light bulb lifetime distribution, Light Bulbs-Posterior Means

dead bulb prediction, Posterior Predictive Distribution

marginal distributions, Marginal Distributions

Dirichlet marginals as beta distributions, The Dirichlet
Distribution

incomplete data, Using Incomplete Data

joint distributions to, Marginal Distributions-Marginal
Distributions

logistic regression, Bayesian, Marginal Distributions

Pmf marginal function, Three-Parameter Model

reading improvement, Likelihood

reading improvement compared, Comparing Marginals

snow amounts, The Update

median as 50th percentile, Credible Intervals

Poisson distribution, The Poisson Distribution, The Update

gamma distribution as conjugate prior, The Conjugate Prior

probability of superiority, Probability of Superiority

posterior distribution, The Cookie Problem Revisited, 101 Bowls

(see also posterior distribution)

predictive distributions

posterior, Predicting the Rematch, Posterior Predictive
Distribution, Predictive Distributions-Predictive Distributions,
Prediction

prior, Prior Predictive Distribution

prior distribution, The Cookie Problem Revisited, 101 Bowls

(see also prior distribution)

probability mass functions, Probability Mass Functions

Bayesian updates, What the Actual?

CDF conversion, Cumulative Distribution Functions

coin toss, Probability Mass Functions

empiricaldist library for Pmf class, Probability Mass Functions

(see also Pmf objects)

outcomes appearing more than once, Probability Mass Functions

sequence of possible outcomes, Probability Mass Functions

random samples from (see MCMC (Markov chain Monte Carlo))

sampling distribution of the mean, Using Summary Statistics

sums of three dice, Addends, Best Three of Four

sums of two dice, Addends-Addends

Weibull distribution, The Weibull Distribution-The Weibull
Distribution

light bulb dead bulb prediction, Posterior Predictive Distribution

weighted distributions, General Mixtures

dog shelter adoption

about, Survival Analysis

incomplete data, Incomplete Data-Incomplete Data

called censored, Incomplete Data

using, Using Incomplete Data-Using Incomplete Data

Weibull distribution, The Weibull Distribution-The Weibull
Distribution

Dungeons & Dragons dice rolls, Best Three of Four

distribution as mix of distributions, Mixture-Mixture

general solution, General Mixtures-General Mixtures

E

Empirical Bayes method using data twice, Empirical Bayes

empiricaldist library, Distributions

Cdf class, Cumulative Distribution Functions

installation, Installing Jupyter

Pmf class, Probability Mass Functions

errors in document or program (see Lincoln Index Problem)

estimating counts

counting cells via ABC, Cell Counting with ABC-When Do We Get to
the Approximate Part?

counting cells via MCMC, Counting Cells-Counting Cells

data in hand, Bayes’s theorem not needed, Approximate Bayesian
Computation

German Tank Problem, The German Tank Problem

Train Problem, The Train Problem-The Train Problem

credible intervals, Credible Intervals

power law prior, Power Law Prior

sensitivity to the prior, Sensitivity to the Prior

estimating proportions

Euro Problem

about, The Euro Problem

Bayesian estimation, Bayesian Estimation-Triangle Prior

Bayesian statistics versus Bayes’s theorem, Bayesian Statistics

binomial distribution, The Binomial Distribution

binomial likelihood function, The Binomial Likelihood Function

modeling, The Binomial Distribution, Testing

101 Bowls Problem, 101 Bowls-101 Bowls, Bayesian Statistics

Euro Problem

about, The Euro Problem

Bayesian estimation, Bayesian Estimation-Triangle Prior

binomial distribution, The Binomial Distribution

binomial coefficient, The Binomial Distribution

conjugate prior of, Binomial Likelihood

SciPy binomial function, The Binomial Distribution

unbiased coin results tested, The Binomial Distribution

binomial likelihood function, The Binomial Likelihood Function,
Estimation

conjugate prior of binomial distribution, Binomial Likelihood

cumulative distribution function, Cumulative Distribution Functions

modeling, The Binomial Distribution, Testing, Evidence

101 Bowls Problem contrasted, Bayesian Statistics

random versus nonrandom quantities, Bayesian Statistics

testing

about, Testing

modeling, Evidence

modeling triangle-shaped bias, Uniformly Distributed Bias

modeling uniform bias, Uniformly Distributed Bias

solution review, Estimation-Evidence

exponential distribution, The Exponential Distribution

probability density function of, The Exponential Distribution

SciPy expon, The Exponential Distribution

F

False value summed, Fraction of Bankers

Fifty Challenging Problems in Probability with Solutions (Mosteller), The
Train Problem

floating-point rounding avoided, The Dice Problem

Forward Problem of gluten sensitivity distribution, The Forward Problem

fraction of items

probability function computing, The Probability Function

Series of Boolean values, Fraction of Bankers

fractions to avoid floating-point rounding, The Dice Problem

G

Gallup World Poll on happiness, Happiness

gamma distribution

about, The Gamma Distribution

Bayesian updates via, The Conjugate Prior-What the Actual?

conjugate priors, The Conjugate Prior

goal-scoring rate, The Gamma Distribution

SciPy gamma function, The Gamma Distribution

generator expressions, The Law of Total Probability

German Tank Problem, The German Tank Problem

given (|), Laws of Probability

gluten sensitivity distribution, Gluten Sensitivity

Forward Problem, The Forward Problem

Inverse Problem, The Inverse Problem

goal scoring (see World Cup Problem)

Gorman, Kristen, Classification

Gould, Stephen J., Linda the Banker

Grizzly Bear Problem

about, The Grizzly Bear Problem

estimating total population, The Update

probability of observing a bear, Two-Parameter Model-The
Update

hypergeometric distribution, The Grizzly Bear Problem

modeling, The Grizzly Bear Problem

three-parameter model, Lions and Tigers and Bears

two-parameter model, Two-Parameter Model-The Update

plotting, The Update

two-parameter model, The Update

update, The Update

two-parameter model, The Update

wild animal preserve, Lions and Tigers and Bears

groupby for data into groups, Improving Reading Ability, Likelihood, More
Snow?

GSS (General Social Survey) dataset, Probability-Political Views and
Parties, Conditional Probability, The Law of Total Probability

H

happiness

about, Happiness

multiple regression via PyMC3 library, Multiple Regression

simple regression, Simple Regression

PyMC3 library, Simple Regression

SciPy linregress function, Simple Regression

Happiness and Life Satisfaction (Ortiz-Ospina and Roser), Happiness

How Tall Is Person A

about, How Tall Is A?

B height from A, Conditional Posteriors

independence of A and B, Dependence and Independence

joint distribution construction, Joint Distribution

likelihood, Likelihood

marginal distributions, Marginal Distributions-Marginal Distributions

plotting joint distribution, Visualizing the Joint Distribution

prior distribution of height, How Tall Is A?

update, The Update

hypergeometric distribution, The Grizzly Bear Problem

SciPy hypergeom function, The Grizzly Bear Problem

hypotheses

any number of

Cookie Problem with 101 bowls, 101 Bowls-101 Bowls

law of total probability, Diachronic Bayes

evidence in favor of, Oliver’s Blood, Evidence

Bayes factor, Oliver’s Blood, Evidence, Bayesian Hypothesis
Testing, Transforming Distributions

hypothesis testing, Bayesian Hypothesis Testing

(see also testing hypotheses)

decision analysis instead, Bayesian Hypothesis Testing

three hypotheses

Bayes tables, The Dice Problem, The Monty Hall Problem-The
Monty Hall Problem

coin tossed twice, The Binomial Distribution

Monty Hall Problem, The Monty Hall Problem-The Monty Hall
Problem

two hypotheses

Bayes tables, Bayes Tables-Bayes Tables

binomial distribution, The Binomial Distribution

law of total probability, Diachronic Bayes

updating probability with new data, Diachronic Bayes

(see also Bayesian updates)

I

incomplete data, Incomplete Data-Incomplete Data

called censored, Incomplete Data

marginal distributions, Using Incomplete Data

using, Using Incomplete Data-Using Incomplete Data

independence and dependence of heights, Dependence and Independence

indus10 industry code, Probability

inference

p-values, Inference

reading ability improvement

about, Improving Reading Ability

data into DataFrame, Improving Reading Ability

distribution of differences, Distribution of Differences

groupby for data into groups, Improving Reading Ability

likelihood, Likelihood

likelihood summary statistics, Using Summary Statistics

marginal distributions, Likelihood

marginal distributions compared, Comparing Marginals

prior distribution, Estimating Parameters

probability of superiority, Posterior Marginal Distributions

update, Improving Reading Ability-Likelihood

update with summary statistics, Update with Summary Statistics

statistical versus Bayesian, Inference

Information Theory, Inference, and Learning Algorithms (MacKay),
Contributor List, The Euro Problem, Oliver’s Blood, Testing

installing Jupyter, Installing Jupyter

Inverse Problem of gluten sensitivity distribution, The Inverse Problem

J

joint distributions

about, Comparison, Joint Distribution

constructing, Joint Distribution

How Tall Is Person A

about, How Tall Is A?

B height from A, Conditional Posteriors

independence of A and B, Dependence and Independence

joint distribution construction, Joint Distribution

likelihood, Likelihood

marginal distributions, Marginal Distributions-Marginal
Distributions

plotting joint distribution, Visualizing the Joint Distribution

prior distribution of height, How Tall Is A?

update, The Update

marginal distributions from, Marginal Distributions-Marginal
Distributions

outer operations, Outer Operations

comparison operators, Outer Operations, Likelihood

joint distribution construction, Joint Distribution

outer product, Outer Operations

outer sum, Outer Operations

plotting, Visualizing the Joint Distribution

contour of Pmf Series, The Update

scatter plot of penguin data, Joint Distributions

reading ability improvement, Estimating Parameters

3-dimensional, Three-Parameter Model

Jupyter notebooks

about running notebooks, Working with the Code

installing Jupyter, Installing Jupyter

K

kernel density estimation (KDE), Kernel Density Estimation, Distribution
of Error

distribution of differences plotted, Distribution of Differences

SciPy gaussian_kde function, Kernel Density Estimation, Distribution
of Differences

Kidney Tumor Problem

about, The Kidney Tumor Problem, When Do We Get to the
Approximate Part?

Approximate Bayesian Computation, Approximate Bayesian
Computation

growth model, general, A More General Model

growth model, simple, A Simple Growth Model

simulation of growth, Simulation-Simulation

L

law of total probability, The Law of Total Probability

Cookie Problem, The Cookie Problem

Price Is Right decision analysis, Decision Analysis

total probability of the data, Diachronic Bayes

least squares regression

marathon world record, Marathon World Record

snow amounts, Least Squares Regression

light bulb failure time

about, Survival Analysis

dead bulb prediction, Posterior Predictive Distribution

distribution of lifetimes, Light Bulbs-Posterior Means

incomplete data, Incomplete Data-Incomplete Data

called censored, Incomplete Data

using, Using Incomplete Data-Using Incomplete Data

Weibull distribution, The Weibull Distribution-The Weibull
Distribution

likelihood, Diachronic Bayes

Bayes tables

three hypotheses, The Dice Problem, The Monty Hall Problem-
The Monty Hall Problem

two hypotheses, Bayes Tables-Bayes Tables

Bayesian logistic regression, Likelihood

binomial likelihood function, The Binomial Likelihood Function,
Estimation

classification of penguin data, Normal Models

computing for entire dataset at once, The Binomial Likelihood
Function

dictionary to hold, Bayesian Estimation

Grizzly Bear with two parameters, The Update

How Tall Is Person A, Likelihood

B height from A, Conditional Posteriors

likelihood ratios as Bayes factors, Transforming Distributions

posterior odds, Bayes’s Rule

reading ability improvement, Likelihood

snow amounts, Likelihood

summary statistics for larger datasets, Using Summary Statistics,
Likelihood

time between goals, The Exponential Distribution

too small for floating-point arithmetic, Using Summary Statistics,
Likelihood

Train Problem, The Train Problem

uniform prior, Bayesian Estimation, Estimation

wrong classroom, Log Odds

Lincoln Index Problem, The Lincoln Index Problem-The Lincoln Index
Problem

modeling three parameters, Three-Parameter Model

modeling two testers, The Lincoln Index Problem

Linda the Banker Problem, Linda the Banker

linear regression

about, More Snow?

least squares regression

marathon world record, Marathon World Record

snow amounts, Least Squares Regression

marathon world record, Marathon World Record

mathematical model, Regression Model

residuals, Least Squares Regression

SciPy linregress function, Simple Regression

snow amounts, More Snow?-The Update

likelihood, Likelihood

priors, Priors

residuals, Least Squares Regression, Likelihood

update, The Update

locomotive count estimation, The Train Problem-The Train Problem

log odds

about, Log Odds, Regression

explanatory and dependent variables, Log Odds

probabilities from, The Space Shuttle Problem, Transforming
Distributions

SciPy expit function, The Space Shuttle Problem, Likelihood,
Transforming Distributions

Space Shuttle Problem, Likelihood, Transforming Distributions

wrong classroom, Log Odds-Log Odds

logical AND (see conjunctions)

logistic regression

about, Logistic Regression, Regression

Bayesian

likelihood, Likelihood

marginal distributions, Marginal Distributions

prior distribution, Prior Distribution

transforming distributions, Transforming Distributions

update, The Update

Empirical Bayes method, Empirical Bayes

log odds, Log Odds-Log Odds

predictive distributions, Predictive Distributions-Predictive
Distributions

Space Shuttle Problem

about, The Space Shuttle Problem

logistic regression, Bayesian, The Space Shuttle Problem-The
Update

logistic regression, non-Bayesian, The Space Shuttle Problem

modeling, Predictive Distributions

modeling, logistic model, The Space Shuttle Problem, Predictive
Distributions

predictions about O-rings, Predictive Distributions-Predictive
Distributions

statsmodels for non-Bayesian, The Space Shuttle Problem

M

MacKay, David, Contributor List, The Euro Problem, Oliver’s Blood,
Testing

MAP as highest posterior probability, 101 Bowls

coin tossed twice, The Binomial Distribution

computing, 101 Bowls

marathon world record

about, Marathon World Record

least squares regression, Marathon World Record

likelihoods, The Priors

marginal distributions, The Priors

prediction of time-barrier broken, Prediction

priors, The Priors

marginal distributions, Marginal Distributions

Dirichlet distribution marginals as beta distributions, The Dirichlet
Distribution

incomplete data, Using Incomplete Data

joint distributions to, Marginal Distributions-Marginal Distributions

logistic regression, Bayesian, Marginal Distributions

Pmf marginal function, Three-Parameter Model

reading ability improvement, Likelihood

comparing, Comparing Marginals

snow amounts, The Update

mark and recapture experiments

about, Mark and Recapture

Grizzly Bear Problem

about, The Grizzly Bear Problem

estimating total population, The Update

modeling, The Grizzly Bear Problem

modeling two parameters, Two-Parameter Model-The Update

update, The Update

update with two parameters, The Update

hypergeometric distribution, The Grizzly Bear Problem

Lincoln Index Problem, The Lincoln Index Problem-The Lincoln
Index Problem

modeling three parameters, Three-Parameter Model

modeling two testers, The Lincoln Index Problem

Markov chain (see MCMC (Markov chain Monte Carlo))

mathematical notation for probability, Laws of Probability

Bayes’s theorem, Theorem 3, Bayes’s Rule

conditional probability and conjunctions, Theorem 1

conjunctions as commutative, Theorem 3

law of total probability, The Law of Total Probability

power law, Power Law Prior

regression model, Regression Model

matplotlib

installation, Installing Jupyter

joint distribution plotted, Visualizing the Joint Distribution

scatter plot, Joint Distributions

matrix transposition, General Mixtures

maximizing expected gain, Maximizing Expected Gain

McGrayne, Sharon Bertsch, Bayesian Statistics

MCMC (Markov chain Monte Carlo)

about, MCMC

happiness

about, Happiness

multiple regression, PyMC3 library, Multiple Regression

simple regression, Simple Regression

simple regression, PyMC3 library, Simple Regression

simple regression, SciPy linregress, Simple Regression

PyMC3 library, Introducing PyMC3

about, When Do We Get to Inference?

inference, When Do We Get to Inference?

sampling the posterior predictive distribution, Posterior Predictive
Distribution

sampling the prior, Sampling the Prior

World Cup Problem, The World Cup Problem-Posterior Predictive
Distribution

gamma distribution prior, Grid Approximation

goal-scoring rate possible values, Prior Predictive Distribution

inference, When Do We Get to Inference?

Poisson process review, The World Cup Problem

predicting rematch, Posterior Predictive Distribution

PyMC3 library, Introducing PyMC3

sampling the prior, Sampling the Prior

mean function

centering data to minimize correlation, The Update, Least Squares
Regression

fraction computed via, Fraction of Bankers, Theorem 1

mean of posterior distribution, The Train Problem, Power Law Prior

Bayesian updates and, The Update

distribution skew, The Update

joint distributions, Posterior Means

multivariate normal distribution, Multivariate Normal Distribution

sampling distribution of the mean, Using Summary Statistics

mean squared error, The Train Problem

MECE (mutually exclusive and collectively exhaustive), The Law of Total
Probability

median of distribution percentile, Credible Intervals

mesh grids

comparison operators, Outer Operations

height arrays, Likelihood

likelihood of height of person, Likelihood

outer product, Outer Operations

joint distribution construction, Joint Distribution

outer sum, Outer Operations

3-dimensional for reading ability, Likelihood

Model object, Introducing PyMC3

modeling

about modeling errors, Modeling

all models wrong, The World Cup Problem

8 parameters via PyMC3, Simple Regression

Euro Problem, The Binomial Distribution, Testing, Evidence

triangle-shaped bias, Uniformly Distributed Bias

uniform bias, Uniformly Distributed Bias

gluten sensitivity distribution, Gluten Sensitivity

Grizzly Bear Problem, The Grizzly Bear Problem

two-parameter model, Two-Parameter Model-The Update

informative versus uninformative prior, Informative Priors

Kidney Tumor Problem

growth model, general, A More General Model

growth model, simple, A Simple Growth Model

Lincoln Index Problem

three parameters, Three-Parameter Model

two testers, The Lincoln Index Problem

Price Is Right Problem, Distribution of Error

Space Shuttle Problem, Predictive Distributions

logistic model, The Space Shuttle Problem, Predictive
Distributions

3 parameters

Lincoln Index Problem, Three-Parameter Model

simple regression via PyMC3, Simple Regression

snow amounts, More Snow?

wild animal preserve, Lions and Tigers and Bears

World Cup Problem, The World Cup Problem, Probability of
Superiority

PyMC3, Introducing PyMC3

monster combat (see Dungeons & Dragons)

Monte Carlo (see MCMC (Markov chain Monte Carlo))

Monty Hall Problem via Bayes tables, The Monty Hall Problem-The Monty
Hall Problem

Mosteller, Frederick, The Train Problem

MultiIndex

Bayesian logistic regression, Prior Distribution

Pmf objects, The Prior, Three-Parameter Model, Prior Distribution

Series in pandas, Posterior Predictive Distribution, The Prior

3-dimensional joint distribution, Three-Parameter Model

multinomial distribution conjugate prior, Lions and Tigers and Bears

multinomial function in SciPy, Two-Parameter Model, Three-Parameter
Model

multiple regression via PyMC3 library, Multiple Regression

multivariate Dirichlet distribution, The Dirichlet Distribution

multivariate normal distribution, Multivariate Normal Distribution

mutually exclusive, The Law of Total Probability

law of total probability, The Law of Total Probability, Diachronic
Bayes

mutually exclusive and collectively exhaustive (MECE), The Law of Total
Probability

N

NaN as not a number, General Mixtures

normal distribution

average height of male adults, How Tall Is A?

classification of penguin data, Normal Models, Joint Distributions

multivariate, Multivariate Normal Distribution

probability density as Pmf normalized, How Tall Is A?

reading improvement groups, Improving Reading Ability

SciPy norm function, How Tall Is A?, Normal Models

probability density function, How Tall Is A?, Normal Models

snow amounts, Regression Model

univariate, Multivariate Normal Distribution

update with summary statistics, Comparing Marginals

normalization, Bayes Tables

joint posterior distribution, The Update

normalizing constant, Bayes Tables

outside of dataset loop, Bayesian Estimation

Pmf function, The Cookie Problem Revisited

notebooks (Jupyter)

about running notebooks, Working with the Code

installing Jupyter, Installing Jupyter

np alias for NumPy, 101 Bowls

null hypothesis significance testing, Inference

NumPy

array of values, The Binomial Distribution

DataFrame converted to, Joint Distribution

meshgrid function outer operations, Outer Operations

normal distribution of height, How Tall Is A?

repeat function, Light Bulbs

triangle-shaped prior, Triangle Prior

weighted mixture of distributions, General Mixtures

where function, Likelihood

Cookie Problem with 101 bowls, 101 Bowls-101 Bowls

cumsum function, Cumulative Distribution Functions, Cumulative
Distribution Functions

diff function, Cumulative Distribution Functions

import as np, 101 Bowls

installation, Installing Jupyter

mean of posterior distribution, The Train Problem

O

O-rings on shuttles (see Space Shuttle Problem)

odds

about, Odds

Bayes factor, Oliver’s Blood

Bayes’s rule, Bayes’s Rule

Bayes’s theorem in odds form, Bayes’s Rule

Cookie Problem, Oliver’s Blood

Bayes’s rule, Bayes’s Rule

log odds

about, Log Odds, Regression

explanatory and dependent variables, Log Odds

probabilities from, The Space Shuttle Problem, Transforming
Distributions

SciPy expit function, The Space Shuttle Problem, Likelihood,
Transforming Distributions

Space Shuttle Problem, Likelihood, Transforming Distributions

wrong classroom, Log Odds-Log Odds

odds against an event, Odds

odds in favor of an event, Odds

Oliver’s Blood, Oliver’s Blood-Oliver’s Blood

probability from, Odds

Oliver’s Blood, Oliver’s Blood-Oliver’s Blood

101 Bowls Problem, 101 Bowls-101 Bowls

Euro Problem contrasted, Bayesian Statistics

one-armed bandits (see Bayesian Bandit strategy)

Ortiz-Ospina, Esteban, Happiness

outcomes

Dice Problem, The Dice Problem

distribution as set of possible, Distributions

outcomes appearing more than once, Probability Mass Functions

probability mass functions, Probability Mass Functions

sequence of possible outcomes, Probability Mass Functions

impossible outcomes, Updating Dice

outer operations, Outer Operations

comparison operators, Outer Operations

height arrays, Likelihood

outer product, Outer Operations

joint distribution construction, Joint Distribution

outer sum, Outer Operations

P

P(A), Laws of Probability

P(A and B), Laws of Probability

P(A | B), Laws of Probability

P(B | A) to P(A | B) via Bayes’s theorem, The Cookie Problem

p-values, Bayesian Hypothesis Testing, Inference

pandas

Bayes table in DataFrame

three hypotheses, The Dice Problem

two hypotheses, Bayes Tables-Bayes Tables

data held by DataFrame, Probability

distribution as mix of distributions, General Mixtures

gluten sensitivity Inverse Problem, The Inverse Problem

light bulb lifetime data, Light Bulbs

penguin data, Penguin Data, Normal Models

reading ability improvement, Improving Reading Ability

summing row of DataFrame, General Mixtures

transposing rows and columns, General Mixtures

DataFrame converted from Series, The Update

DataFrame converted to Series, Posterior Predictive Distribution, The
Prior

installation, Installing Jupyter

joint distribution in DataFrame, Joint Distribution

converting to Series, Posterior Predictive Distribution

3-dimensional joint distribution, Three-Parameter Model

NumPy array from DataFrame, Joint Distribution

outer product of DataFrame, Outer Operations

read .csv file of data

light bulb lifetime data, Light Bulbs

penguin data, Penguin Data

Price Is Right Problem, The Prior

reading ability, Improving Reading Ability

snow amounts, More Snow?

Series

Boolean values, Fraction of Bankers

(see also Boolean Series)

cumsum results, Cumulative Distribution Functions

DataFrame converted from, The Update

DataFrame converted to, Posterior Predictive Distribution, The
Prior

DataFrame.sum function, Joint Distribution

MAP computation, 101 Bowls

MultiIndex, Posterior Predictive Distribution, The Prior

Pmf class, Probability Mass Functions

penguin data classification

about, Classification

cumulative distribution functions, Penguin Data

data description, Penguin Data

data source, Classification

joint distributions, Joint Distributions

scatter plot, Joint Distributions

scatter plot compared to contours, Joint Distributions

less naive Bayesian classifier, A Less Naive Classifier

loading into DataFrame, Penguin Data

multivariate normal distribution, Multivariate Normal Distribution

normal models, Normal Models, Joint Distributions

update, The Update-Naive Bayesian Classification

naive Bayesian classification, Naive Bayesian Classification

percentiles

marathon world record, Prediction

summarizing posterior distribution, Credible Intervals

quantiles versus, Credible Intervals

physical quantities as random, Bayesian Statistics

plotting

distribution of differences as noisy, Distribution of Differences

joint distribution, Visualizing the Joint Distribution

contour plot, Visualizing the Joint Distribution, The Update

posterior distribution, Simple Regression

Grizzly Bear, The Update

Grizzly Bear two-parameter model, The Update

scatter plot of penguin data, Joint Distributions

contours of joint distribution compared, Joint Distributions

Weibull distribution, The Weibull Distribution

incomplete data, Using Incomplete Data

plus (+) versus Pmf.add_dist(), Mixture

Pmf objects

about, Distributions, Probability Mass Functions, The Cookie Problem
Revisited

add_dist function, Addends

plus (+) operator versus, Mixture

binomial likelihood function, The Binomial Likelihood Function,
Estimation

Cdf object conversion, Cumulative Distribution Functions

coin toss, Probability Mass Functions

coin tossed twice, The Binomial Distribution

Cookie Problem, The Cookie Problem Revisited-The Cookie Problem
Revisited

101 bowls of cookies, 101 Bowls-101 Bowls

updated data, The Cookie Problem Revisited

credible_interval function, Credible Intervals

Dice Problem, The Dice Problem-The Dice Problem

6-sided best three of four rolls, Best Three of Four

updating dice, Updating Dice

distribution as mix of distributions, Mixture-Mixture

general solution, General Mixtures-General Mixtures

distribution of differences, Distribution of Differences

plotting, Distribution of Differences

distribution of sums of two dice, Addends-Addends

empiricaldist library for Pmf class, Probability Mass Functions

joint distribution construction, Joint Distribution

light bulb lifetimes, Light Bulbs

loop iterator items(), Credible Intervals

marginal function, Three-Parameter Model

maximum posterior probability, 101 Bowls

coin tossed twice, The Binomial Distribution

mean of posterior distribution, The Train Problem

MultiIndex, The Prior, Three-Parameter Model, Prior Distribution

normal distribution of penguin data, Joint Distributions

normalize function, The Cookie Problem Revisited, Bayesian
Estimation

outcomes appearing more than once, Probability Mass Functions

percentile rank, Credible Intervals

Poisson distribution, The Poisson Distribution

posterior predictive distribution, Predicting the Rematch

probability densities as normal distribution, How Tall Is A?

probability of superiority, Probability of Superiority, Posterior
Marginal Distributions

probability that threshold exceeded, The Binomial Distribution

prob_gt function, Probability of Superiority, Posterior Marginal
Distributions

sequence of possible outcomes, Probability Mass Functions

triangle-shaped prior, Triangle Prior

uniform prior for reading ability, Estimating Parameters

point estimates from non-Bayesian logistic regression, The Space Shuttle
Problem

Poisson distribution, The Poisson Distribution, The Update

gamma distribution as conjugate prior, The Conjugate Prior

Poisson processes

about, Poisson Processes

exponential distribution, The Exponential Distribution

gamma distribution, The Gamma Distribution

Poisson distribution, The Poisson Distribution, The Update

gamma distribution as conjugate prior, The Conjugate Prior

poisson object in SciPy, The Poisson Distribution

probability of superiority, Probability of Superiority

update, The Update

posterior distribution, The Cookie Problem Revisited, 101 Bowls

Bayesian update, The Update

Euro Problem

Bayesian estimation, Bayesian Estimation, Triangle Prior,
Estimation

cumulative distribution function, Cumulative Distribution
Functions

gluten sensitivity Inverse Problem, The Inverse Problem

joint posterior distribution, The Update

posterior distributions from, Marginal Distributions

mean of, The Train Problem, Power Law Prior

parameter meanings, What the Actual?

percentiles to summarize, Credible Intervals

plotting, Simple Regression

Grizzly Bear, The Update

Grizzly Bear two-parameter model, The Update

posterior predictive distribution

light bulb lifetime, Posterior Predictive Distribution

marathon world record, Prediction

Space Shuttle O-ring damage, Predictive Distributions-Predictive
Distributions

World Cup Problem, Predicting the Rematch

sensitivity to the prior, Sensitivity to the Prior

slot machine selection, Explore and Exploit

posterior probability, Diachronic Bayes

Bayes factor reported instead of, Bayesian Hypothesis Testing

Bayes tables

three hypotheses, The Dice Problem-The Monty Hall Problem

two hypotheses, Bayes Tables-Bayes Tables

conditional posteriors, Conditional Posteriors

MAP as highest, 101 Bowls

coin tossed twice, The Binomial Distribution

computing, 101 Bowls

Pmf

Dice Problem, The Dice Problem

101 hypotheses, 101 Bowls-101 Bowls

two hypotheses, The Cookie Problem Revisited

two hypotheses, updated data, The Cookie Problem Revisited

posterior distribution, The Cookie Problem Revisited, 101 Bowls

(see also posterior distribution)

posterior mean, The Train Problem, Power Law Prior

Bayesian updates and, The Update

distribution skew, The Update

joint distributions, Posterior Means

power law prior, Power Law Prior

sensitivity to prior, Sensitivity to the Prior

posterior odds, Bayes’s Rule, Oliver’s Blood

subjective, Bayesian Statistics

Train Problem, The Train Problem

power law prior, Power Law Prior

unnormalized, Bayes Tables, The Cookie Problem Revisited

normalization, Bayes Tables, The Cookie Problem Revisited, The
Update

power law prior, Power Law Prior

predictive distributions

posterior

light bulb lifetime, Posterior Predictive Distribution

marathon world record, Prediction

Space Shuttle O-ring damage, Predictive Distributions-Predictive
Distributions

World Cup Problem, Predicting the Rematch

prior

World Cup Problem, Prior Predictive Distribution

Price Is Right Problem

about, Decision Analysis

decision analysis, Decision Analysis

distribution of errors, Distribution of Error-Distribution of Error

kernel density estimation, Kernel Density Estimation, Distribution of
Error

maximizing expected gain, Maximizing Expected Gain

modeling, Distribution of Error

prior, The Prior

probability of winning, Probability of Winning

update, Update

prior distribution, The Cookie Problem Revisited, 101 Bowls

Bayesian logistic regression, Prior Distribution

classification of penguin data, Normal Models

different lengths for snow amounts, Priors

Empirical Bayes method, Empirical Bayes

informative prior, Informative Priors

Pmf for Dice Problem, The Dice Problem

Price Is Right Problem, The Prior

kernel density estimation, Kernel Density Estimation

prior predictive distribution, Prior Predictive Distribution

reading ability improvement, Estimating Parameters

uninformative prior, Informative Priors

prior probability, Diachronic Bayes

Bayes tables

three hypotheses, The Dice Problem-The Monty Hall Problem

two hypotheses, Bayes Tables-Bayes Tables

Euro versus 101 Bowls Problems, Bayesian Statistics

Pmf

Dice Problem, The Dice Problem

101 hypotheses, 101 Bowls-101 Bowls

two hypotheses, The Cookie Problem Revisited

posterior odds, Bayes’s Rule, Oliver’s Blood

power law prior, Power Law Prior

prior distribution, The Cookie Problem Revisited, 101 Bowls

(see also prior distribution)

prior odds, Oliver’s Blood

sensitivity to the prior, Sensitivity to the Prior

subjective priors, Bayesian Statistics

swamping the priors, Triangle Prior

Train Problem, The Train Problem, Power Law Prior

triangle-shaped prior, Triangle Prior

triangle-shaped bias, Uniformly Distributed Bias

uniform prior

Bayesian Bandit strategy, Prior Beliefs

beta distribution, Binomial Likelihood

Euro Problem, Bayesian Estimation, Triangle Prior, Estimation

gluten sensitivity Inverse Problem, The Inverse Problem

reading ability improvement, Estimating Parameters

Train Problem, The Train Problem

probability

counting to compute, Probability, Approximate Bayesian Computation

dataset size, Using Summary Statistics

defining, Probability

log odds converted to, The Space Shuttle Problem

mathematical notation for, Laws of Probability

Bayes’s theorem, Theorem 3, Bayes’s Rule

conditional probability and conjunctions, Theorem 1

conjunctions as commutative, Theorem 3

law of total probability, The Law of Total Probability

power law, Power Law Prior

regression model, Regression Model

odds as degree of certainty, Odds

(see also odds)

probability from, Odds, The Space Shuttle Problem

probability function returning, The Probability Function-Political
Views and Parties

conditional probability function, Conditional Probability

random versus nonrandom quantities, Bayesian Statistics

Bayesian interpretation of random, Bayesian Statistics

probability densities, The Gamma Distribution, The Exponential
Distribution, How Tall Is A?

probability density function (PDF)

Bayesian updates, What the Actual?

gamma distribution, The Gamma Distribution

norm object returning, Normal Models

reading ability improvement, Likelihood

SciPy pdf function, How Tall Is A?

time between goals, The Exponential Distribution

probability mass functions (PMF)

about, Probability Mass Functions

Bayesian updates, What the Actual?

CDF conversion, Cumulative Distribution Functions

coin toss, Probability Mass Functions

outcomes appearing more than once, Probability Mass Functions

Pmf class (see Pmf objects)

sequence of possible outcomes, Probability Mass Functions

probability of superiority

reading ability improvement, Posterior Marginal Distributions

World Cup Problem, Probability of Superiority

proportion estimation (see estimating proportions)

PyMC3 library

about, Introducing PyMC3, When Do We Get to Inference?

happiness, Happiness-Multiple Regression

importing as pm, Introducing PyMC3

inference, When Do We Get to Inference?

Model object, Introducing PyMC3

multiple regression, Multiple Regression

sampling the prior, Sampling the Prior

simple regression, Simple Regression

World Cup Problem, The World Cup Problem-Posterior Predictive
Distribution

Python

about running notebooks, Working with the Code

Anaconda distribution, Installing Jupyter

installation, Installing Jupyter

PyMC3 library

about, Introducing PyMC3, When Do We Get to Inference?

happiness, Happiness-Multiple Regression

importing as pm, Introducing PyMC3

inference, When Do We Get to Inference?

Model object, Introducing PyMC3

multiple regression, Multiple Regression

sampling the prior, Sampling the Prior

simple regression, Simple Regression

World Cup Problem, The World Cup Problem-Posterior
Predictive Distribution

with statement, Introducing PyMC3

Q

quantiles

Cdf objects to compute, Cumulative Distribution Functions

percentiles versus, Credible Intervals

R

random distributions (see Poisson processes)

random sampling, Probability

from a distribution (see MCMC (Markov chain Monte Carlo))

Thompson sampling, Explore and Exploit

random versus nonrandom quantities, Bayesian Statistics

physical quantities as random, Bayesian Statistics

ratios of probabilities as odds, Odds

reading ability improvement

about, Improving Reading Ability

data into DataFrame, Improving Reading Ability

distribution of differences, Distribution of Differences

likelihood, Likelihood

summary statistics, Using Summary Statistics

marginal distributions, Likelihood

comparing, Comparing Marginals

prior distribution, Estimating Parameters

probability of superiority, Posterior Marginal Distributions

update, Improving Reading Ability-Likelihood

summary statistics, Update with Summary Statistics

regression, Regression Model

(see also linear regression)

PyMC3 library for multiple regression, Multiple Regression

PyMC3 library for simple regression, Simple Regression

SciPy linregress function for simple regression, Simple Regression

residuals of regression, Least Squares Regression, Likelihood, Marathon
World Record

resources

Anaconda distribution of Python, Installing Jupyter

book web page, How to Contact Us

URL with links to all notebooks, Working with the Code

Roser, Max, Happiness

rounding avoided with fractions, The Dice Problem

S

sampling distribution of the mean, Using Summary Statistics

sampling from a distribution (see MCMC (Markov chain Monte Carlo))

SciPy

beta function for beta distribution, Binomial Likelihood

binomial function, The Binomial Distribution

binomial likelihood function, The Binomial Likelihood Function

expit function, The Space Shuttle Problem, Likelihood

exponential distribution, The Exponential Distribution

gamma distribution function, The Gamma Distribution

hypergeometric distribution function, The Grizzly Bear Problem

installation, Installing Jupyter

kernel density estimation, Kernel Density Estimation, Distribution of
Differences

linregress function for simple regression, Simple Regression

multinomial function, Two-Parameter Model, Three-Parameter Model

multivariate_normal function, Multivariate Normal Distribution

norm function for normal distribution, How Tall Is A?, Normal Models

pdf function, How Tall Is A?, Normal Models

poisson object, The Poisson Distribution

Weibull distribution, The Weibull Distribution

sequence of possible outcomes, Probability Mass Functions

6-sided dice

best three of four rolls, Best Three of Four

box of three dice, The Dice Problem

Pmf to solve, The Dice Problem-The Dice Problem

distribution as mix of distributions, Mixture-Mixture

general solution, General Mixtures-General Mixtures

slot machines (see Bayesian Bandit strategy)

snow amounts

about, More Snow?

fond memories of, The Update

least squares regression, Least Squares Regression

likelihood, Likelihood

marginal distributions, The Update

normal distribution assumption, Regression Model

priors, Priors

regression model, Regression Model

update, The Update

soccer goal scoring (see World Cup Problem)

Space Shuttle Problem

about, The Space Shuttle Problem

logistic regression, Bayesian, The Space Shuttle Problem-The Update

logistic regression, non-Bayesian, The Space Shuttle Problem

modeling, Predictive Distributions

logistic model, The Space Shuttle Problem, Predictive
Distributions

predictions about O-ring damage, Predictive Distributions-Predictive
Distributions

spam filters as classification, Classification

stack function

converting DataFrame to Series, Posterior Predictive Distribution, The
Prior

Pmf with two levels in index, Prior Distribution

standard deviation

How Tall Is Person A, How Tall Is A?, Marginal Distributions

normal distribution

classification of penguin data, Normal Models

How Tall Is Person A, How Tall Is A?

multivariate, Multivariate Normal Distribution

Price Is Right Problem, Distribution of Error

snow amounts, Regression Model

univariate, Multivariate Normal Distribution

Pmf approximating normal distribution, Joint Distributions

reading ability improvement, Likelihood, Using Summary Statistics,
Update with Summary Statistics

residuals as estimate of sigma, Least Squares Regression, Marathon
World Record

snow amounts, Regression Model-The Update

sigma as nuisance parameter, The Update

statistical versus Bayesian hypothesis testing, Bayesian Hypothesis Testing

statistical versus Bayesian inference, Inference

statistics (Bayesian) versus Bayes’s theorem, Bayesian Statistics

statsmodels for non-Bayesian logistic regression, The Space Shuttle
Problem

Empirical Bayes method, Empirical Bayes

least squares regression

marathon world record, Marathon World Record

snow amounts, Least Squares Regression

Student’s t-test, Inference

summary statistics

about, Using Summary Statistics

larger datasets, Using Summary Statistics, Likelihood

likelihood of reading improvement, Using Summary Statistics

sampling distribution of the mean, Using Summary Statistics

update of reading improvement, Update with Summary Statistics

normal distribution assumption, Comparing Marginals

summing row of DataFrame, General Mixtures

sums as distributions

probability of superiority, Probability of Superiority

three dice, Addends, Best Three of Four

two dice, Addends-Addends

weighted sum of probabilities, Decision Analysis

survival analysis

about, Survival Analysis

incomplete data, Incomplete Data-Incomplete Data

called censored, Incomplete Data

using, Using Incomplete Data-Using Incomplete Data

light bulb dead bulb prediction, Posterior Predictive Distribution

light bulb lifetime distribution, Light Bulbs-Posterior Means

Weibull distribution, The Weibull Distribution-The Weibull
Distribution

swamping the priors, Triangle Prior

T

testers finding bugs in program (see Lincoln Index Problem)

testing hypotheses

Bayesian Bandit strategy, The Strategy

Bayesian versus statistical, Bayesian Hypothesis Testing

decision analysis instead, Bayesian Hypothesis Testing

Euro Problem

about, Testing

binomial distribution, The Binomial Distribution, Estimation

modeling, Evidence

modeling triangle-shaped bias, Uniformly Distributed Bias

modeling uniform bias, Uniformly Distributed Bias

solution review, Estimation-Evidence

statistical versus Bayesian, Bayesian Hypothesis Testing

theoretical versus empirical distributions, Distributions

The Theory That Would Not Die (McGrayne), Bayesian Statistics

Thompson sampling, Explore and Exploit

time delta from Timestamps, Marathon World Record

Timestamp objects, Marathon World Record

total probability of the data, Diachronic Bayes

normalizing constant, Bayes Tables

Train Problem, The Train Problem-The Train Problem

credible intervals, Credible Intervals

power law prior, Power Law Prior

sensitivity to the prior, Sensitivity to the Prior

transposing a matrix, General Mixtures

triangle-shaped prior, Triangle Prior

True value summed, Fraction of Bankers

U

uniform prior

Bayesian Bandit strategy, Prior Beliefs

beta distribution, Binomial Likelihood

Euro Problem, Bayesian Estimation, Estimation

101 Bowls Problem contrasted, Bayesian Statistics

gluten sensitivity Inverse Problem, The Inverse Problem

reading ability improvement, Estimating Parameters

Train Problem, The Train Problem

univariate normal distribution, Multivariate Normal Distribution

universe age, Bayesian Statistics

unstack function converting Series to DataFrame, The Update, The Update

updates (see Bayesian updates)

urn problem, The Cookie Problem

V

variances in covariance matrix, Multivariate Normal Distribution

visualizing (see plotting)

W

weather data, More Snow?

snow amounts, More Snow?-The Update

Weibull distribution, The Weibull Distribution-The Weibull Distribution

light bulb dead bulb prediction, Posterior Predictive Distribution

weighted distributions, General Mixtures

weighted sum of probabilities, Decision Analysis

World Cup Problem

conjugate priors

gamma distribution for update, The Conjugate Prior-What the
Actual?

Poisson processes solution review, The World Cup Problem
Revisited

MCMC via PyMC3, The World Cup Problem-Posterior Predictive
Distribution

Poisson processes

goal-scoring rate, The Gamma Distribution

number of goals given rate, The Poisson Distribution, The Update

poisson object in SciPy, The Poisson Distribution

Poisson processes, Poisson Processes

predicting rematch, Predicting the Rematch

probability of superiority, Probability of Superiority

time between goals, The Exponential Distribution

update, The Update

World Happiness Report, Happiness

Y

yeast cells counted (see counting cells)

About the Author
Allen B. Downey is a Professor of Computer Science at Olin College of
Engineering. He has taught computer science at Wellesley College, Colby
College and UC Berkeley. He has a PhD in Computer Science from UC
Berkeley and master’s and bachelor’s degrees from MIT. He is the author of
Think Python, Think Stats, Think DSP, and a blog, Probably Overthinking
It.

Colophon
The animal on the cover of Think Bayes is a red striped mullet (Mullus
surmuletus). This species of goatfish can be found in the Mediterranean
Sea, east North Atlantic Ocean, and the Black Sea. Known for its distinct
striped first dorsal fin, the red striped mullet is a favored delicacy in the
Mediterranean—along with a related goatfish, Mullus barbatus, which has a
first dorsal fin that is not striped. However, the red striped mullet tends to
be more prized and is said to taste similar to oysters.

There are stories of ancient Romans rearing the red striped mullet in ponds
—attending to, caressing, and even teaching them to feed at the sound of a
bell. These fish, generally weighing in under two pounds even when farm-
raised, were sometimes sold for their weight in silver.

When left to the wild, red mullets are small bottom-feeding fish with a
distinct double beard—known as barbels—on their lower lip, which they
use to probe the ocean floor for food. Because the red striped mullet feeds
on sandy and rocky bottoms at shallower depths, its barbels are less
sensitive than its deep water relative, the Mullus barbatus.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black and white
engraving from Meyers Kleines Lexicon. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Who Is This Book For?
	Modeling
	Working with the Code
	Installing Jupyter
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Contributor List

	1. Probability
	Linda the Banker
	Probability
	Fraction of Bankers
	The Probability Function
	Political Views and Parties
	Conjunction
	Conditional Probability
	Conditional Probability Is Not Commutative
	Condition and Conjunction
	Laws of Probability
	Theorem 1
	Theorem 2
	Theorem 3
	The Law of Total Probability

	Summary
	Exercises

	2. Bayes’s Theorem
	The Cookie Problem
	Diachronic Bayes
	Bayes Tables
	The Dice Problem
	The Monty Hall Problem
	Summary
	Exercises

	3. Distributions
	Distributions
	Probability Mass Functions
	The Cookie Problem Revisited
	101 Bowls
	The Dice Problem
	Updating Dice
	Summary
	Exercises

	4. Estimating Proportions
	The Euro Problem
	The Binomial Distribution
	Bayesian Estimation
	Triangle Prior
	The Binomial Likelihood Function
	Bayesian Statistics
	Summary
	Exercises

	5. Estimating Counts
	The Train Problem
	Sensitivity to the Prior
	Power Law Prior
	Credible Intervals
	The German Tank Problem
	Informative Priors
	Summary
	Exercises

	6. Odds and Addends
	Odds
	Bayes’s Rule
	Oliver’s Blood
	Addends
	Gluten Sensitivity
	The Forward Problem
	The Inverse Problem
	Summary
	More Exercises

	7. Minimum, Maximum, and Mixture
	Cumulative Distribution Functions
	Best Three of Four
	Maximum
	Minimum
	Mixture
	General Mixtures
	Summary
	Exercises

	8. Poisson Processes
	The World Cup Problem
	The Poisson Distribution
	The Gamma Distribution
	The Update
	Probability of Superiority
	Predicting the Rematch
	The Exponential Distribution
	Summary
	Exercises

	9. Decision Analysis
	The Price Is Right Problem
	The Prior
	Kernel Density Estimation
	Distribution of Error
	Update
	Probability of Winning
	Decision Analysis
	Maximizing Expected Gain
	Summary
	Discussion
	More Exercises

	10. Testing
	Estimation
	Evidence
	Uniformly Distributed Bias
	Bayesian Hypothesis Testing
	Bayesian Bandits
	Prior Beliefs
	The Update
	Multiple Bandits
	Explore and Exploit
	The Strategy
	Summary
	More Exercises

	11. Comparison
	Outer Operations
	How Tall Is A?
	Joint Distribution
	Visualizing the Joint Distribution
	Likelihood
	The Update
	Marginal Distributions
	Conditional Posteriors
	Dependence and Independence
	Summary
	Exercises

	12. Classification
	Penguin Data
	Normal Models
	The Update
	Naive Bayesian Classification
	Joint Distributions
	Multivariate Normal Distribution
	A Less Naive Classifier
	Summary
	Exercises

	13. Inference
	Improving Reading Ability
	Estimating Parameters
	Likelihood
	Posterior Marginal Distributions
	Distribution of Differences
	Using Summary Statistics
	Update with Summary Statistics
	Comparing Marginals
	Summary
	Exercises

	14. Survival Analysis
	The Weibull Distribution
	Incomplete Data
	Using Incomplete Data
	Light Bulbs
	Posterior Means
	Posterior Predictive Distribution
	Summary
	Exercises

	15. Mark and Recapture
	The Grizzly Bear Problem
	The Update
	Two-Parameter Model
	The Prior
	The Update
	The Lincoln Index Problem
	Three-Parameter Model
	Summary
	Exercises

	16. Logistic Regression
	Log Odds
	The Space Shuttle Problem
	Prior Distribution
	Likelihood
	The Update
	Marginal Distributions
	Transforming Distributions
	Predictive Distributions
	Empirical Bayes
	Summary
	More Exercises

	17. Regression
	More Snow?
	Regression Model
	Least Squares Regression
	Priors
	Likelihood
	The Update
	Marathon World Record
	The Priors
	Prediction
	Summary
	Exercises

	18. Conjugate Priors
	The World Cup Problem Revisited
	The Conjugate Prior
	What the Actual?
	Binomial Likelihood
	Lions and Tigers and Bears
	The Dirichlet Distribution
	Summary
	Exercises

	19. MCMC
	The World Cup Problem
	Grid Approximation
	Prior Predictive Distribution
	Introducing PyMC3
	Sampling the Prior
	When Do We Get to Inference?
	Posterior Predictive Distribution
	Happiness
	Simple Regression
	Multiple Regression
	Summary
	Exercises

	20. Approximate Bayesian Computation
	The Kidney Tumor Problem
	A Simple Growth Model
	A More General Model
	Simulation
	Approximate Bayesian Computation
	Counting Cells
	Cell Counting with ABC
	When Do We Get to the Approximate Part?
	Summary
	Exercises

	Index

