

Patterns of Distributed Systems

Unmesh Joshi

Contents

Part I. Narratives

Chapter 1. Why Distribute?

Chapter 2. Overview of the Patterns

Part II. Patterns of Data Replication

Chapter 3. Write-Ahead Log

Chapter 4. Segmented Log

Chapter 5. Low-Water Mark

Chapter 6. Leader and Followers

Chapter 7. HeartBeat

Chapter 8. Paxos

Chapter 9. Replicated Log

Chapter 10. Quorum

Chapter 11. Generation Clock

Chapter 12. High-Water Mark

Chapter 13. Singular Update Queue

Chapter 14. Request Waiting List

Chapter 15. Idempotent Receiver

Chapter 16. Follower Reads

Chapter 17. Versioned Value

Chapter 18. Version Vector

Part III. Patterns of Data Partitioning

Chapter 19. Fixed Partitions

Chapter 20. Key-Range Partitions

Chapter 21. Two Phase Commit

Part IV. Patterns of Distributed Time

Chapter 22. Lamport Clock

Chapter 23. Hybrid Clock

Chapter 24. Clock-Bound Wait

Part V. Patterns of Cluster Management

Chapter 25. Consistent Core

Chapter 26. Lease

Chapter 27. State Watch

Chapter 28. Gossip Dissemination

Chapter 29. Emergent Leader

Part VI. Patterns of communication between nodes

Chapter 30. Single Socket Channel

Chapter 31. Request Batch

Chapter 32. Request Pipeline

Bibliography

Table of Contents

Part I. Narratives

Chapter 1. Why Distribute?

The four fundamental resources
Queuing and its impact on system throughput
Partitioning - Divide and Conquer

Chapter 2. Overview of the Patterns

Keeping data resilient on a single server
Competing Updates
Dealing with the leader failing
Multiple failures need a Generation Clock
Log entries cannot be committed until they are accepted
by a Quorum
Followers commit based on a High-Water Mark
Leaders use a series of queues to remain responsive to
many clients
Followers can handle read requests to reduce load on the
leader
A large amount of data can be partitioned over multiple
nodes
Partitions can be replicated for resilience
Two phases are needed to maintain consistency across
partitions
In a distributed system, time is complicated
A Consistent Core can manage the membership of a data
cluster

Gossip Dissemination can be used to manage a cluster
without a centralized controller

">Part II. Patterns of Data Replication

Chapter 3. Write-Ahead Log

Problem
Solution
Examples

Chapter 4. Segmented Log

Problem
Solution
Examples

Chapter 5. Low-Water Mark

Problem
Solution
Examples

Chapter 6. Leader and Followers

Problem
Solution
Examples

Chapter 7. HeartBeat

Problem
Solution
Examples

Chapter 8. Paxos

Problem
Solution
Examples

Chapter 9. Replicated Log

Problem

Solution
Examples

Chapter 10. Quorum

Problem
Solution
Examples

Chapter 11. Generation Clock

Problem
Solution
Examples

Chapter 12. High-Water Mark

Problem
Solution
Examples

Chapter 13. Singular Update Queue

Problem
Solution
Examples

Chapter 14. Request Waiting List

Problem
Solution
Examples

Chapter 15. Idempotent Receiver

Problem
Solution
Examples

Chapter 16. Follower Reads

Problem
Solution
Examples

Chapter 17. Versioned Value

Problem
Solution
Examples

Chapter 18. Version Vector

Problem
Solution
Examples

">Part III. Patterns of Data Partitioning

Chapter 19. Fixed Partitions

Problem
Solution
Examples

Chapter 20. Key-Range Partitions

Problem
Solution
Examples

Chapter 21. Two Phase Commit

Problem
Solution
Examples

">Part IV. Patterns of Distributed Time

Chapter 22. Lamport Clock

Problem
Solution
Examples

Chapter 23. Hybrid Clock

Problem
Solution

Examples

Chapter 24. Clock-Bound Wait

Problem
Solution
Examples

">Part V. Patterns of Cluster Management

Chapter 25. Consistent Core

Problem
Solution
Examples

Chapter 26. Lease

Problem
Solution
Examples

Chapter 27. State Watch

Problem
Solution
Examples

Chapter 28. Gossip Dissemination

Problem
Solution
Examples

Chapter 29. Emergent Leader

Problem
Solution
Examples

">Part VI. Patterns of communication between nodes

Chapter 30. Single Socket Channel

Problem

Solution
Examples

Chapter 31. Request Batch

Problem
Solution
Examples

Chapter 32. Request Pipeline

Problem
Solution
Examples

Bibliography

Part I: Narratives

Chapter 1. Why Distribute?

The four fundamental resources
We live in a digital world. Most of what we do is available over the network
as a service. Be it ordering our favourate food or managing our finances. All
these services run on some servers somewhere. These servers store data and
do computations on that data handling user requests over the network.
Servers typically wait for user requests, then they read the data stored on the
disk into memory and process them using the CPU. CPU, Memory, Network
and Disks are the four fundamental physical resources which any
computation needs.

Consider a typical retail application exposed as a networked service. Users
can add items to the shopping cart and buy them. Users also view their order,
and can query their past orders. How many user requests will a single server
be able to process? There are many factors based on the specific type of the
application, but the upper bound will always be determined by the capacity
of these four resources.

Lets start with the network. The network bandwidth decides the maximum
limit on how much data can be transferred over the network at any given
time. Consider a network bandwidth of 1Gbps. If the application is writing
or reading 1KB records, the maximum number of requests that the network
can support is 125000. If the records are 5KB in size, the number of requests
which can be passed over the network is 25000.

The disks have a limit on the amount of data they can transfer. Following are
some example numbers with typical disk bandwidths.

This is a raw hardware limitation. But in practice, there is some software
component which handles the writes and reads. The software component
needs to handle issues like concurrent read/writes or transactions, which
further limits the number of read/write requests which can be processed on a
single server.

Disk and Network are the input/output devices. But to do any work with data
read from these needs CPU cycles to be consumed. So with 100K requests if
the CPU is at 100% of the capacity, any more requests will be waiting to be
processed for their share of CPU.

The fourth factor is that of memory. Servers load data in memory to process
it. The data from requests over the network are loaded in memory to further
process it. The data from storage is also loaded in memory to process it.
Let’s say there is 1TB of storage, the memory will typically be in GBs, so at
a time only part of the data can be loaded in memory. The whole purpose of
different kinds of storage engines is to reduce the need to load all the data in
the memory to process. Storage engines use different data structures and
maintain indexes to quickly locate the specific data items on the disk and
pick and load only those for processing. But depending on the type of the
request, more data might be loaded in memory. For example, if all the users
are searching for books they ordered in the last year, they will need to scan
through more and more data, needing more memory. If the memory is full,
again the requests need to wait for their share.

One common problem when these resources reach their physical limit is that
of queuing. More requests will need to wait to be processed. This in effect
has an adverse effect on the server’s ability to process user requests.

Queuing and its impact on system throughput
The disk, network, cpu and memory put upper bound on the number of
requests which can be processed. If the number of requests the application
needs to process goes above this upper bound, the requests start getting
queued for their share of network, disk, cpu or memory. The queuing then
increases the time it takes to process any requests.

The effect of reaching the resource limits is observed on overall throughput
of the system as following.

This is problematic to the end users. Because when they expect the system to
serve more and more users, the system actually performance starts
degrading.

The only way to make sure that the requests can be served properly is to
divide and process them on multiple servers. This allows using physically
separated CPUs, network, memory and disks for processing user requests. In
the above example, the workload needs to be partitioned in such a way that
each server serves about 500 requests.

Partitioning - Divide and Conquer

Separate business logic and data layer
One common way to divide the architectures is as following. The
architecture has two parts, a stateless part exposing functionality to the end
user. This can be a web application or more commonly a web api serving
user facing applications. The second part, the stateful part, is managed by a
database. When user load increases the stateless services are scaled
horizontally. This allows serving more and more user requests connections.
The business logic executed on the data is done separately on different
servers

This architecture works fine provided two basic assumptions hold true.

• The database can serve a request from the stateless services in less than a
few milliseconds.

• The database can handle all the connections from multiple stateless
service instances. This applications typically work around this constraint
by adding caching layers to make sure that not all the request need to go
to the database.

This architecture works very well, if most of the users can be served from
caches put at different layers in the architecture. It makes sure that, out of all
the requests, only a few requests need to reach the database layer. As nicely
stated by Roy Fielding in his thesis on REST, "best application performance
is obtained by not using the network". But caching does not work always.
When most requests are writing data there is obviously no use of caching.
With hyper personalized applications needing to always show latest
information, the use of caching is limited. As more and more users start
using the services, the assumptions start breaking down. It is caused by two
reasons.

• The size of the data grows, from few terabytes to several hundred of
terabytes to petabytes

• More and more people need to access and process that data

So the simple architecture shown above starts breaking down. The reasons it
starts breaking down is again because of the physical limits of the four
fundamental resources.

The impact on the classic architecture then looks as following:

Partitioning by Domain
One way to work around these limits is to partition the application following
the domain boundaries. The popular architectural style today is that of
Microservices [bib-microservices] Microservices architecture encourages
partitioning the architecture following the guidance from Domain Driven
Design [bib-ddd].

For example, a typical retail domain can have software systems created
following the broader areas of interests as following.

While this architecture is also sometimes termed as a ‘distributed system’ it
is not something that will be covered in this book. Even with this
architecture, some shared infrastructure components or services which need
to deal with lots of data faces similar issues as discussed in the previous
section. That is one of the reasons for the popularity of products like Kafka
[bib-kafka]. Same is true for some fundamental domain services like
customer data management getting used by every other system in the
organization. The size of data and number of requests these services need to
process start showing similar symptoms. This is one of the reasons for
popularity of distributed [nosql] [bib-nosql] databases like Cassandra [bib-
cassandra] getting commonly used.

Partioning Data
One common reason for all the issues discussed so far is size of the data and
number of requests needing to process that data. When software systems
start facing issues because the physical limits are reached,the only way to
make sure that the requests can be served properlyis to divide the data such
that requests are processed on multiple servers. This allows using physically
separated CPUs, network, memory and disks for processing requests on
smaller portions of the data.

Failures become a very important concern, when we are dealing with data. A
separate instance can not be as easily creates on a random server. It needs a
lot of care to make sure consistency the servers start in a correct state. Most
of what is discussed in this book is about this kind of systems.

A look at Failures
When there are multiple machines comprising of multiple disk drives
network iterconnects, processors and memory units, the probability of
something failing becomes an important concern. To understand why this is
the case, consider an example of probability of a hard disk failing. If a disk
disk might fail once in 1000 days, the probability of it failing on any given
day is 1/1000. Probably not a big concern. But if we have 1000 disks, the
probability of any one of that going down on a given day is 1. That means
every day any one hard disk might fail. If the partitioned data is getting
served from that disk, it will be unavailable until the disk is recovered.

To get some idea of the kind of failures, take a look at following details from
Jeaf Dean’s talk [bib-jeaf-dean-google-talk] delivered in 2009 have some
interesting failure numbers observed in Google’s data centers. Even if the
numbers are from 2009, they are good representative numbers.

So just distributing data across cluster nodes is often not enough. The
failures need to be masked as well. From end user’s perspective the system
as a whole should remain functional, even if part of it is facing some
failures.

Replication - Masking failures
To make sure that the data is available even when different kinds of failures
happen, the data is replicated on multiple machines. In case of a failure
clients can connect to a server which holds a copy of the data. But this puts
the responsibility of masking these failures on the software thats handling
user requests. The software needs to make sure that it detects failures, makes

sure that inconsistencies are not visible to the users. To be able to
successfully mask these failures, it is important to understand what errors a
software system experiences because of various hardware failures.

Common failures experienced by software systems
There are four common problems which the software systems experience
and needs to mask from the users of the system.

Process Crash
A software process can crash at any time because of various reasons. It can
crash because of some hardware failure. But can crash for reasons like
unhandled exceptions in the code. In the containerized or cloud
environments, the monitoring software can restart a process.

Network Delay
TCP/IP network protocol is asynchronous by nature. It does not give any
guaranteed upper bound on delay in delivery of the messages. This creates a
challenge for software processes commnicating over TCP/IP. They need to
figure out how much to wait for responses from other processes. If they do
not get response in time, whether they should retry or consider the other
process as failed is the question to answer.

Process Pause
A process execution can pause at any given point in time. People familiar
with garbage collecting languages like Java are familiar with the GC pause.
In the worst case scenario, this pause can be as long as tens of sends. Other
processes then need to figure out if this process has failed. The tricker
problem happens when the paused process comes out of the pause and start
sending messages to other processes, what should other processes do? If they
had marked the paused process as failed, should they ignore the messages or
process them?

Unsynchronized Clocks
The clocks in machines typically use a quartz crystal. The clock ticks are
governed by the oscillation of this quartz crystal. The oscillation frequency
can change because of temprature changes, or vibrations and cause the clock
on a given machine to either go slower or faster. This causes clocks on two
different machines to have totally different times. When processes need to
order messages or figure out which data is saved ahead of other, they can not
then rely on the system timestamp.

Defining the term "Distributed Systems"
We can now define the term distributed systems as used in this book. The
software systems which store data, runs as multiple processes across
multiple servers to coordinate and have an agreement on the state of that
data. There are various kinds of distributed systems. But the ones we will
focus on, have following characteristics.

The failure assumption here is that of ‘fail-stop’, meaning that when the
processes fail, they stop functioning and possibly restart. But they will never
process requests or respond in arbitary manner. The failures are not
‘byzantine failures’.

• They run on multiple processes possibly across physically distant
locations

• They manage data, so are inherently stateful systems

• They communicate by message passing

• They tolerate partial failures. So from end users perspective, the system
is functional even if some of these processes fail.

The patterns approach
There are many nice books, like the book by Nancy Lynch [bib-distrib-
algorithms-nancy-lynch] which discuss the theory of distributed systems.
There are few good books like Designing Data Intensive Application [bib-
intensive-data-book] which describe implementation of most mainstream
systems used today. These books are excellent in their own right, but
practicing professionals need some way to get an intuitive understanding of

these systems, which is detailed and specific enough to be able to understand
real code, but generic enough to be applicable to broad range of systems.
Patterns approach provides a nice way out.

[patterns] [bib-patterns] is an approach introduced by an architect
Christopher Alexander in his book the patterns language. The approach was
adopted in the software world and popularized by the book famously known
by the name Gang Of Four [bib-gang_of_four] book.

Patterns by their very nature provide a way to describe specific problems
which the software systems face and a concrete enough solution structure to
be able to show real code. Patterns have names. Having good names with
specific enough code level details is very powerful.

One of the key requirements for finding the patterns is to study actual code
bases. To find and document patterns in this book, code base of various
systems was studied. Kafka [bib-kafka], Cassandra [bib-cassandra],
MongoDB [bib-mongodb], [pulsar] [bib-pulsar] , etcd [bib-etcd], Zookeeper
[bib-zookeeper], CockroachDB [bib-cockroachdb], YugabyteDB [bib-
yugabyte], Akka [bib-akka], JGroups [bib-jgroups] to name a few.

The next chapter takes a tour of most of the patterns and shows how they
link together.

Chapter 2. Overview of the Patterns

by Unmesh Joshi and Martin Fowler

As discussed in the last chapter, distributing data means at least one of two
things: partitioning and replication. To start our journey through the patterns
in this book, we’ll focus on replication first

Imagine a very minimal data record, that captures how many widgets we
have in three locations.

We replicate it on three nodes: Jupiter, Saturn, and Neptune

Keeping data resilient on a single server
The first area of potential inconsistency appears with no distribution at all.
Consider a case where the data for Boston, London, and Pune are held on
different files. In this case performing a transfer of 40 widgets means
changing bos.json to reduce its count to 10 and changing pnq.json to
increase its count to 115. But what happens should Neptune crash after
changing Boston’s file but before updating Pune’s? In that case we would
have inconsistent data, destroying 40 widgets.

An effective solution to this is Write-Ahead Log. With this, the message
handler first writes all the information about the required update to a log file.
This is a single write, so is simple to ensure it’s done atomically. Once the
write is done, the handler can acknowledge to its caller that it has handled
the request. Then the handler, or other component, can read the log entry and
carry out the updates to the underlying files.

Should Neptune crash after updating Boston, the log should contain enough
information for Neptune to figure out what happened when it restarts and
restore the data to a consistent state. (In this case it would store the previous
values in the log before any updates are made to the data file.)

The log gives us resilience because, given a known prior state, the linear
sequence of changes determines the state after the log is executed. This
property is important for resilience here, but as we’ll see, it’s also very
valuable for replication too. If multiple nodes start at the same state, and
they all play the same log entries, we know they will end up at the same state
too.

Most programmers don’t use a Write-Ahead Log explicitly like this, but use
one implicitly all the time, since databases use a Write-Ahead Log to
implement transactions.

Competing Updates
Lets now consider if two different users, Alice and Bob are connecting to
two different cluster nodes to execute their requests. Alice wants to move 30
widgets from Boston to London, while Bob wants to move 40 widgets from
Boston to Pune.

How should the cluster resolve this? We can’t have any node just decide to
do an update because we’d quickly run into inconsistentcy hell as we try to
figure out how to get boston to store antimatter widgets. One of the most
straightforward approaches is Leader and Followers, where one of the nodes
is marked as the leader, and the others are considered followers. In this
situation the leader handles all updates, and broadcasts those updates to the
followers. Let’s say Neptune is the leader in this cluster, then Jupiter will
forward Alice’s A1 request to Neptune.

Neptune now gets both update requests, so it has the sole discretion as to
how to deal with them. It can process the first one it receives (Bob’s B1) and
reject A1

Dealing with the leader failing
That’s what happens most of the time, when all goes well. But the point of
getting a distributed system to work is what happens when things don’t go
well. Here’s a different case, Neptune receives B1, sends out its replication
messages. But is unable to contact Saturn. It could replicate only to Jupiter.
At this point it loses all connectivity with the other two nodes. This leaves
Jupiter and Saturn connected together, but disconnected from their leader.

So now what do these nodes do? For a start, how do they even find out
what’s broken? Neptune can’t send Jupiter and Saturn a message saying the
connection is broken... because the connection is broken. Nodes need a way
to find out when connections to their colleagues break, they do this with a
HeartBeat. Or more strictly they this with the absence of a heartbeat.

A heartbeat is a regular message sent between nodes, just to indicate they are
alive and communicating. If Saturn doesn’t receive a heartbeat from
Neptune for a period of time, Saturn marks Neptune as down. Since Neptune
is the leader, Saturn now calls for an election for a new leader.

The heartbeat gives us a way to know that Neptune has disconnected, so now
we can turn the problem of how to deal with Bob’s request. We need to
ensure that once Neptune has confirmed the update to Bob, even if Neptune
crashes, the followers can elect a new leader with B1 applied to their data.
But we also need to deal with more complication than that, as Neptune may

have received multiple messages. Consider the case where both there are
messages from both Alice (A1) and Bob (B1) handled by Neptune. Neptune
successfully replicates them both with Jupiter but is unable to contact Saturn
before it crashes

In this case how do Jupiter and Saturn deal with the fact that they have
different states?

The answer is essentially the same as discussed earlier for resilience on a
single node. If Neptune writes changes into a Write-Ahead Log and treats
replication as copying those log entries to its followers, then its followers
will be able to figure out what the correct state is by examining the log
entries.

When Jupiter and Saturn elect a new leader, they can easily tell that Jupiter’s
log has later index entries, and Saturn can easily apply those log entries to
itself to gain a consistent state with Jupiter.

This is also why Neptune can reply to Bob that the update was accepted,
even though it hadn’t heard back from Saturn. As long as a Quorum, that is a
majority, of the nodes in the cluster have successfully replicated the log
messages, then Neptune can be sure that the cluster will maintain
consistency even if the leader disconnects.

Multiple failures need a Generation Clock
We assumed here that Jupiter and Saturn can figure out whose log is most up
to date. But things can get trickier. Lets say Neptune accepted a request from
Bob to move 40 widgets from Boston to London but failed before replicating
it.

Jupiter is elected as a new leader, and accepts a request from Alice to move
30 widgets from Boston to Pune. But it also crashes before replicating the
request to other nodes.

In a while, Neptune and Jupiter come back, but before they can talk Saturn
crashes. Neptune is elected as a leader. Neptune checks with itself and
Jupiter for the log entries. It will see two separate requests at index 1, the
one from Bob which it had accepted and the one from Alice that Jupiter has
accepted. Neptune can’t tell which one it should pick.

To solve this kind of situation, we use a Generation Clock. This is a number
that increments with each leadership election and a key requirement of
Leader and Followers.

So looking at the previous scenario again, Neptune was leader for generation
1. It adds Bob’s entry in its log marking it with its generation.

When Jupiter was elected as a leader, it incremented the generation to 2. So
when it adds Alice’s entry to its log, its marked for generation 2.

Now when Neptune is again elected as a leader, it will be for generation 3.
Before it starts serving the client requests, it checks the logs of all the
available nodes for entries which are not replicated on the Quorum. We call
these entries as ‘uncommitted’, as they are not yet applied to data. We will
see how each node figures out which entries are incompletely replicated in a
while. But once the leader knows about these entries, it completes the
replication for those entries. In case of conflict it safely pick up the entry
with higher generation.

After selecting the entry with the latest generation, Neptune overwrites the
uncommitted entry in its own log with its current generation number and
replicates with Jupiter.

Every node tracks the latest generation it knows of the leader. This is helpful
in another problem that might occur. When Jupiter became leader, the
previous leader, Neptune might not have crashed, but just temporarily
disconnected. It might come back online, and send the requests to Jupiter
and Saturn. If Jupiter and Saturn have elected a new leader and accepted
requests from Alice, what should they do when they suddenly start getting
requests from Neptune? Generation Clock is useful in this case as well.
Every request is sent to cluster nodes, along with the generation clock. So
every node can always choose the requests with the higher generation and
reject the ones with the lower generation.

Log entries cannot be committed until they are
accepted by a Quorum
As seen above, entries like B1, can be overwritten if they haven’t been
successfully replicated to a Quorum of nodes in the cluster. So the leader can
not apply the request to its data store after just appending to it’s own log, it
has to wait until it gets enough acknowledgments from other nodes first.
When an update is added to a local log it is uncommitted, until the leader has
had replies from a Quorum of other nodes, at which point it becomes
committed. In the case of the example above, Neptune cannot commit B1
until it hears that at least one other node has accepted it, which point that
other node, plus Neptune itself, makes two out of three nodes - a majority
and thus a Quorum.

When Neptune, the leader, receives an update, either from a user (Bob)
directly or via a follower, it adds the uncommitted update to its log and then
sends replication messages to the other nodes. Once Saturn (for example)
replies, that means two nodes have accepted the update (Neptune and
Saturn), this is 2 out of 3 nodes, which is the majority and thus a Quorum. At
that point Neptune can commit the update.

The importance of the Quorum is that it applies to decision by the cluster.
Should a node fail, any leadership election must involve a Quorum of nodes.
Since any committed updates have also been sent to a Quorum of nodes, we
can be sure that committed updates will be visible during the election.

If Neptune receives Bob’s update (B1), replicates, gets an acknowledgment
from Saturn, and then crashes, Saturn still has a copy of B1. If the nodes
then elect Jupiter as the leader, Jupiter must apply any uncommitted updates,
that is B1, before it can start accepting new ones.

When the log is large, moving the log across nodes for leader election can be
costly. So leader-election is often optimized to elect the leader which has
most up-to-date log.

The most commonly used algorithm for Replicated Log, Raft [bib-raft],
optimizes this by electing the leader with the most up-to-date log. In the
above example this would elect Saturn as the leader.

Followers commit based on a High-Water Mark
As we’ve seen, leaders commit when they get acknowledgments from a
Quorum, but when do followers commit their log entries? In the three node
example we’ve been using, it’s obvious. Since we know the leader must have
added the log entry before it replicates, any node knows that it can commit
since it and the leader form a Quorum. But that isn’t true for larger clusters,
in a five node cluster a single follower and a leader is only 2 of 5.

A High-Water Mark solves this conundrum. Simply put, the High-Water
Mark is maintained by the leader and is equal to the index of the latest
update to be committed. The leader then adds the High-Water Mark to its
HeartBeat. Whenever a follower receives a HeartBeat, it knows can commit
all its log entries up to the High-Water Mark.

Let’s look at an example of this. Bob sends a request (B1) to Neptune.
Neptune replicates the request to Jupiter and Saturn. Jupiter acknowledges
first, allowing Neptune to increase its High-Water Mark to 1, execute the
update against its data store and return success to Bob. Saturn’s
acknowledgment is late, and since it’s not higher than the High-Water Mark,
Neptune takes no action on it.

Neptune now gets three requests from Alice (A1, A2, and A3). Neptune puts
all of these into its log and starts sending replication messages. The link
between Neptune and Saturn, however, gets tangled and Saturn doesn’t get
them. After the first two, Neptune concidentally sends out heartbeats, which
alerts followers to update their High-Water Mark. Jupiter acknowledges A1,
allowing Neptune to update its High-Water Mark to 2, execute the update
and notify Alice. But then Neptune crashes before it’s able to replicate A3.

At this point, here are the states of the nodes.

Jupiter and Saturn fail to get HeartBeat from Neptune and thus hold an
election for a new leader. Jupiter wins and gathers log entries. In doing this it
accepts that A2 reached Quorum and sets its High-Water Mark to 3. Jupiter
replicates its log to Saturn, and when Saturn gets a HeartBeat with High-
Water Mark of 3 it’s able to update its High-Water Mark and execute the
updates against its store.

At this point Alice times out of her A3 request and resends it (A3.2), which
routes to Jupiter as the new leader. Just as this happens, Neptune starts back
up again. Neptune tries to replicate A3, and is told that there’s a new
generation of leader, so Neptune now accepts that it’s a follower of Jupiter,
discarding its log down to its High-Water Mark. Jupiter sends replication
messages for A2 and A3.2. Once Jupiter gets an acknowledgment for A3.2, it
can update its High-Water Mark, execute the update, and respond to Alice.

Saturn and Neptune will update their states on the next HeartBeat from
Jupiter.

Leaders use a series of queues to remain
responsive to many clients
A leader has to handle a lot of requests from many clients. Each request
takes a fair bit of processing. This processing happens in multiple stages.
Requests need to be parsed to understand the request and its payload.
Updates need to persisted to a Write-Ahead Log, which means a write to a
durable store, and in this context "durable" means "slow". Requests may also
be acknowledgments from followers for a replication request, for these the
leader needs to find the request, check to see if it’s reached Quorum and if
so, update the High-Water Mark.

We need to ensure that that these operations don’t run into problems with
multiple threads trying to update the same data at once. Each entry on the
Write-Ahead Log needs to be written and processed in full before we start to
write another, but we don’t want clients to wait for other clients to finish
their work. But at the same time we do not want other processing stages to
be blocked while all of this is going on.

For these reasons, we use a Singular Update Queue. Most programming
languages these days will have some form of in-memory queue object,
which handles requests from multiple threads. Singular Update Queue build
on this by allowing client threads to write simple entries onto such an in-
memory queue. A separate processing thread takes entries from this work
queue, and carries out the processing we discussed above. This way the
system remains responsive to clients, but also keeps the processing of
requests in a saner, single-threaded world.

Some programming languages like Go programming langauage [bib-go-
lang], have first class support for this mechanism with channels and go-
routines.

If Alice and Bob both send messages (A1 and B1) to Neptune, they will be
handled by different message handling threads on Neptune. Each of these
put the mostly-raw message onto the work queue. The thread handling the

Replicated Log, works independently, popping from the head of the queue,
unpacking the details, adding to the log, and sending for replication.

When Jupiter acknowledges the replication, its response is handled by a
message handler, which just puts the raw message on the work queue. The

processing thread picks this message, check Quorum, marks the log entry as
committed, and updates the High-Water Mark.

Given this approach, clients receive an immediate acknowlegement that their
request has been received, but need additional mechanisms to ensure they
know when a request has been committed and acted on by the cluster. If
nothing else, they need to know if they need to retry a request if it doesn’t go
through. In a cluster like this, that update can only be confirmed once a
Quorum of nodes accepts the update. But we don’t want to leave either the
client or the message handler blocked while all this goes on. The client has
other things to do and the message handler can possibly deal with more
requests while the cluster replicates and reaches Quorum. So instead of
blocking, we use a Request Waiting List to track waiting requests and
respond to clients when the requests are actually executed before the request
is put on the work queue.

When the leader receives the request, it adds a callback to Request Waiting
List that will contain the behavior of how to notify Bob when the request
succeeds (or fails).

When Jupiter acknowledges the update, the executor notifies the Request
Waiting List, which invokes the callback, notifying Bob of the success of the
request.

But what if the leader fails before it sends an acknowledgment back to the
client? The client then doesn’t know whether the cluster still managed to
commit the request or if the leader’s failure lost the request. In those
circumstances, the client needs to retry its request, but this leads to a second
problem, as we don’t want to make the same transfer twice.

To avoid executing a retried requests again, cluster nodes ensure they are an
Idempotent Receiver. (An idempotent operation is one that can be executed
multiple times with the same effect as if it were implemented once. Adding 1
to a variable isn’t idempotent, but setting a variable to a value is.)

To implement idempotency, each client registers itself with the leader before
sending any requests. The client registration is also replicated across all the
replicas similar to any other request. The registered client assigns a unique
number to each request. The server can then use client id and unique request
number to store the responses of the executed requests. This mapping is
used, when a client repeats a request. Instead of executing the request again,
the server returns the stored response. That way, even an non-idempotent
request, such as transfer 40 widgets, can be handled in an idempotent way.

So from our example, Bob registers itself before starting to send any
requests. The registration request is replicated in the Replicated Log and a
unique client id is returned to Bob. Each cluster node maintains a table with
entries for client ids.

Bob now uses client id, "bob" to send the requests. It also assigns a unique
number to each request. Here it sends request 40-BOS-PNQ with request
number 1. Whenever the request is executed, the response is stored in the
client table.

Neptune fails, before sending the response to Bob. Jupiter and Saturn now
run a leader election as discussed in the previous section. Jupiter will
execute pending log entries. Once it executes the request 40-BOS-PNQ from
bob, it makes an entry in the client table. At this point, Bob has not received
the response, so he retries 40-BOS-PNQ again, with Jupiter. But because
Jupiter has already executed the request numbered 1 from bob, it will return
the response already stored. This way, the retried request from bob is not
executed again.

Given we are replicating an ordered log, nodes have to be careful that they
maintain the order of the entries when there is no guarantee that they will
receive messages in the right order. After all, as Mathias Verraes [bib-2-hard-
dist] pointed out - there are two hard problems in distributed systems: 2)
exactly-once delivery, 1) guaranteed order of messages, and 2) exactly-once
delivery.

Given this, any nodes involved in a Replicated Log like Raft [bib-raft] are
designed to tolerate out-of-order messages, but this adds overhead and
degrades performance. So in practice nodes maintain a Single Socket
Channel between leader and followers. Zookeeper [bib-zookeeper] or Kafka
[bib-kafka] are good examples of this implementation.

Followers can handle read requests to reduce load
on the leader
Replicating updates to followers has a couple of benefits. It’s most simple
one is that it provides a hot backup of the leader, allowing a follower to step
in should a problem occur. But the main reason to do this with a cluster is
Follower Reads: allowing followers to serve read requests. This reduces load
on the leader, allowing it to serve write requests more quickly. This benefit
doesn’t come for free, the followers will always lag the state of the leader by
the small amount of time it takes to propagate the log replication. Most of
the time, this won’t present an issue, but it is an issue in one common case.
Once Bob has has made his update, he’s likely to read the new state. Should
his read request go to Saturn there is a risk that it will beat the replication
process and Bob will read stale data.

In this situation we want to ensure Bob will read data consistent with what
he’s written, a property called read-your-writes consistency. A way to obtain
this is to use Versioned Value, storing a version number with each stored
record. When Neptune writes Bob’s update, it increments the version
associated with the data, and returns that version to Bob. When Bob reads
data, he supplies that version as part of his request. Saturn can then check the
version before responding to a read, usually waiting until it’s received that
version update.

Distributed databases such as MongoDB [bib-mongodb] and CockroachDB
[bib-cockroachdb] use Hybrid Clock to set a version in the Versioned Value
to provide this consistency. Other systems, using Replicated Log, can use
High-Water Mark. In Raft [bib-raft] followers all need to ensure their High-
Water Mark is the same as the leader before replying to requests. In Kafka
[bib-kafka], messages are produced in a log, which is implemented very
similar to Replicated Log. The log index for produced messages is returned
to the client on writes, and the client uses it for subsequent reads.

If the read request is handled by a follower, it needs to check that it has that
log-index, similar to the Versioned Value usage discussed above.

A large amount of data can be partitioned over
multiple nodes
As discussed in the first chapter, there are physical limits which determine
how much data can be handled on a single node. Beyond that we will need
the data to be split up over multiple nodes. The cluster acts as a single
database, with its data separated into partitions (also called shards) on
different nodes. Because partitioning is done primarily to work around the
physical limitations of a single server, so its important that data is as evenly
distributed as possible. As the load on the cluster grows, it is very common
to add more nodes to the cluster. So there are following key requirements for
any a partitioning scheme.

• Data should be evenly distributed across all the cluster nodes.

• It should be possible to know which cluster node stores a particular data
record, without making a request to all the nodes.

• It should be quick and easy to move part of the data to the new nodes.

Almost all data storages can be considered as key-value storages. Clients
typically store and access data records by some unique identifiers. With key-
values,an easy way to achieve the above requirements is to take hash of the
key and map it to the nodes. Hash values for keys make sure that data is
evenly distributed. If the number of partitions is known, the hash can then be
mapped to partition simply by

partition = hash_of_key % no. of partitions

While using modulo operation is easy to use, chainging the number of
partitions causes the partition for every record to change. So if we simply
use the number of partitions equal to the number of available cluster nodes,
adding just one extra node to existing cluster might need moving all the data
records across the cluster. This is definitely a no-no when we are dealing
with large amount of data. A common pattern is to instead define logical
partitions, with many more logical partitions than there are physical nodes.
To find a node for a record, you first find the record’s logical partition then
look up which node that logical partition is sitting on. The logical partition
for a record need never change, if we add a node to the cluster, we re-assign
the logical partitions instead, which only moves the records on those logical
partitions.

The most straightforward form of using logical partitions is Fixed Partitions.

For example, Akka [bib-akka] suggests you should have ten times as many
logical partitions (shards) as the number of nodes. Ignite [bib-ignite] has a
default partition count of 1024. That way mapping of data records to
partition never changes.

Consider a cluster of three nodes, Jupiter, Saturn and Neptune. We’ll use 6
logical partitions, which is a very unrealistic figure, but makes it easier to
show how they work in an example. Now, if a Bob is adding widgets to a
Pune, he will interact with the cluster via a client library running on the
client machine. This client library will initialize itself by getting the mapping
of partitions to cluster nodes (usually from a Consistent Core as discussed
above [#ClusterManagement]). The client library will first find the partition
for the key "Pune" by a simple modulo operation.

int partition = hash("pune")%6

Then it gets the node hosting this partition and forwards the request to that
node. In this case, it will send the request to Saturn.

If a new node is added, a few partitions can be moved to the new node, to
balance the load better, without needing to change the mapping of key to
partition. Let’s say a new node, Uranus is added to the cluster and Saturn is
heavily loaded possibly because the partitions it is hosting have more data.
In that case, some partitions from Saturn can be moved to Uranus.

The important point to note here is that the mapping of keys like "pune" to
partition is not changing, as the value of hash("pune")%6, will remain the

same.

The client library will need to update its partition table. It can do that
periodically or when cluster nodes return an error saying they no longer host
the given partition.

While the hash of Fixed Partitions is simple to produce, it can be limiting
because databases often need to support range queries, such as finding a list
of cities starting with ‘p’ to ‘q’. If hash of a key is used for mapping to
partitions, a range query query would need to access records from every
partition. So if these are common Key-Range Partitions are a better
approach. Key-Range Partitions uses the element of the key that appears in
common ranges as part of the partition selection algorithm. A simple, indeed
naive, example would be to define 26 partitions and map the first letter of
the key to each partition. This would allow an p..q query to access just four
partitions.

The client library will have metadata about the partitions, the key ranges,
and the nodes where the partitions are hosted. The library uses this data to
determine that the p..q range is all on partition p3. So only that specific
partition is queried by sending a request to Neptune.

One of the difficulties with Key-Range Partitions, is that key ranges might
not be known upfront. So most data systems start with a single partition, and
split the partition only once it reaches a particular size. So unlike Fixed
Partitions, the mapping from key to partition will change over time.
However splitting a partition can be done so that both partitions stay on the
same node, and data will only have to move should the partition be moved to
a different node at a later point. [hbase] [bib-hbase] is a good example of

how key-range partitions are implemented, YugabyteDB [bib-yugabyte] and
CockroachDB [bib-cockroachdb] also support Key-Range Partitions

Partitions can be replicated for resilience
While partitioning helps distributing load across the cluster, we still needs to
resolve the issues caused by failures. If a cluster node fails, all the partitions
hosted on that node are unavailable. Replicating a partition is just like
replicating unpartitioned data, so we use the same patterns for replication
that we discussed earlier, centered around Replicated Log

A typical partitioned cluster can be hundreds or thousands of logical
partitions. don’t want too much replication, because the more replicas there
are, the larger the Quorum will be, and thus the slower the response to
updates. Three or five replicas strikes a good balance between tolerating
failures and performance.

Two phases are needed to maintain consistency
across partitions
Introducing partitions adds further complexity in maintaining consistency
when the operation may span across multiple partitions. Consider Alice’s

desire to move 30 widgets from Boston to London. If Boston and London
are on different partitions then we have to maintain consistency not just
between multiple replicas of the same data, but also between the different
partitions. The Replicated Log handles the problem for replicas, but it
doesn’t help us maintain the consistency between partitions. This is a
common distributed system problem, for example Kafka [bib-kafka] runs
into this when messages need to be produced on multiple topics atomically
and MongoDB [bib-mongodb] where multiple partitions need to be updated
atomically.

Consistency across partitions is handled by using Two Phase Commit. This
nominates one of the nodes as a coordinator. Typically the node hosting the
partition for the first key of the operation is made the coordinator, in this
case the node holding Boston’s partition. Lets say Jupiter hosts the partition
for Boston, and Neptune hosts the partition for London. Since Jupiter holds
the partition for Boston, this message is routed to Jupiter, which is declared
the coordinator. As a coordinator, Jupiter needs to do all the bookkeeping for
the state of the transaction. All the information needs to be persisted on the
disk to make sure that in the event of a failure, Jupiter knows about all the
pending transactions. So it maintains a separate Write-Ahead Log to make
this information about the ongoing transaction persistent.

Jupiter tells itself to prepare to reduce Boston’s widget count. It also sends a
message to Neptune to add widgets to London. However neither change to
the data occurs yet.

Jupiter then coordinates with both the nodes, itself and Neptune to commit
the transaction. Both data stores send an accepted message back to the
coordinator. Only once both data stores have accepted the transaction does
the coordinator commit the transaction and send an OK back to Alice.

This example shows what would happen for non-replicated partitions, but
essentially the same process occurs if they are replicated. The difference is
that Jupiter and Neptune would each make the change through a Replicated
Log.

All that we have discussed about various failures is true in this case as well.
So each of the participants in two phase commit, maintain their own
Replicated Log. There is a replicated-log maintained for coordinator, and
each partition.

In a distributed system, time is complicated
Earlier, we described how need to use Versioned Value, to ensure a client
would read values consistent with what they had written. For this to work,
we need to know what order updates occur in.

On a single node it is easy to implement this by just maintaining a single
counter and incrementing it every time a modification is done to any record.
Sequence Number usage in RocksDB [bib-rocksdb-sequence-number] is a
good example of that. Lets see how this looks on a single node. Alice sends a
request to Neptune to reduce 40 widgets from Boston. This creates a new
version for boston with value 10. Alice then sends a request to add 40
widgets to London. This creates a new version, with version number 3 for
london with value 60. Alice then reads the snapshot at version 3. It obviously
expects to get boston’s value to be 10, and gets it as expected.

When records are stored across multiple nodes, then tracking which records
are stored before and after other records becomes tricky. How to increment
version numbers to make sure versions across nodes track this before after
relationship?

It is natural to think that system timestamps can be used to version the
records. Because later updates will have higher timestamps, it will naturally
track which records are updated before or after the other. But this is a big
problem in practice because despite the best efforts of time synchronization
tools, different nodes will have slightly different clocks. While these
differences are tiny in human terms, they are significant when it comes to
computer communications. We thus must assume that wall clocks are not
monotonic [time-bound-lease.xhtml#wall-clock-not-monotonic].

To see why this is a problem, lets take following example. Lets say, records
for Boston and London are stored on nodes Jupiter and Neptune respectively.
Jupiter’s clock shows time as 19:25, but Neptune’s clock is lagging behind
and shows time as 19:20. Let’s say Boston has 50 widgets at timestamp
19:25 and London has 20 widgets at timestamp 19:20 as per Jupiter and
Neptune’s clocks respectively. (We’re just using time of day for the example,
but the actual timestamp would include the date. It would also be UTC to
avoid time-zone issues.)

Alice sends a message to reduce 40 widgets from Boston. Assuming clock
has progressed 5 seconds, the new version for Boston is created at timestamp
19:30 as per Jupiter’s clock.

Alice then sends a message to Neptune, to add 40 widgets to London. This
creates a new version for London at timestamp 19:25 as per Neptune’s clock.
As we can see, even if London’s record on Neptune was updated "after"
Boston’s record on Jupiter, it got a lower timestamp.

http://time-bound-lease.xhtml/#wall-clock-not-monotonic

Now, Alice wants to read the "latest" values for Boston and London. Alice’s
request is handled by a node Saturn, which uses its own clock to see what
the ‘latest’ timestamp is. If its clock is similar to that of Neptune, it will send
read requests to Jupiter and Neptune to read values at timestamp 19:25.

Alice will be puzzled because she will see the latest value for London as 60,
but Boston’s value from Jupiter to have old value 50.

We can use a Lamport Clock to track the order of requests across cluster
nodes without relying on system timestamp. The trick is to use a simple
integer counter per node, but pass it along in requests and responses from
and to clients.

Lets take the same example as above. 40 widgets are moved from Boston to
London. Both Jupiter and Neptune maintain a simple integer counter. Every
time a record is updated, this counter is incremented. But the counter is also
passed to the client, which passes it to next operation is does on another
node.

Here, when 40 widgets are reduced from Boston, the counter at Jupiter is
incremented to 2. So a new version for Boston is created at 2. The counter
value 2, is passed to Alice. Alice passes it to Neptune when it sends a request
to add 40 widgets to London. The important part here is how the counter is
incremented on Neptune. Neptune checks its own counter and the one passed
to it in the request. It picks the greater value and then increments it to update
its own counter. This makes sure that the new version created for London
will have a version number as 3 which is greater than the version number for
Boston.

One of the issues with basic Lamport Clock is that the versions are tracked
by just an integer, with no relation to actual timestamps. For client to ask a
specific snapshot, it will always need to somehow ask for the lamport
timestamp values it can use. The other, more important issue is that when
data on two independent servers, is modified by two independent clients,
there is no way to order those versions. For example, in the following
scenario, Bob might have added 20 widgets to London before Alice added
40 widgets to Boston. There is no way to tell that looking at the logical
versions. That is why Lamport Clock is said to be partially ordered [bib-
partial-order].

Therefore, most databases need to use timestamps as versions, so that users
can query data based on actual timestamps of the node processing their
requests. To work around the problem with computer clocks, Hybrid Clock,
which combines clock time with a Lamport Clock, is used. When nodes send
messages they include the Hybrid Clock which includes the time of the
current server with a Lamport Clock counter. When Neptune receives a
message with a timestamp ahead of Neptune’s clock, it increments the
Lamport Clock part of the Hybrid Clock which ensures its operations sort
later than the received message.

With a Hybrid Clock, Alice sends a message to reduce Boston’s holding and
Jupiter records that operation with its system timestamp and a counter (

19:30, 0) which it returns to Alice. Alice then passes this on to Neptune with
its request to increase London. Neptune sees that Alice’s reported timestamp
is (19:30, 0), which is ahead of Neptune’s own clock at 19:25. Therefore,
Neptune increments the counter yielding a hybrid timestamp of (19:30,1),
which it uses for its record and acknowledgment to Alice.

This solves part of the problem. Even when Neptune’s system clock was
lagging, the records stored at Neptune after the one stored on Jupiter will
have timestamp which is higher. We still have the problem of [partial-order]
[bib-partial-order] to solve, If another client, Bob, tried to read and his
request is processed by the node, Saturn, which has the clock lagging same
as Neptune 19:25, he would see the old values for both London and Boston.
If Alice and Bob now talk to each other, they will still find they are seeing
different values for the same data.

To prevent this, we use Clock-Bound Wait, which is to wait before storing
the value long enough for all nodes’ clocks in the cluster to advance beyond
the one assigned to the records.

Consider the example in the previous section. Lets say maximum clock skew
across cluster nodes is 5 seconds. Every write operation can wait for 5
seconds before the values are stored.

So when the values at 19:30 are stored on Neptune and Jupiter, every node in
the cluster, like Saturn is guaranteed to have their clocks showing time
which higher than 19:30.

Now, if Bob is trying to read the latest value, and his request is initiated on
the node, Saturn, which has clock lagging same as Neptune. It is guaranteed
to get the value latest value for Boston, that is written at timestamp 19:30.

The important thing to note here is that because every node waits for the
maximum clock skew, The request initiating on any cluster node is
guaranteed to see the latest values irrespective of their own clock values.

The tricky part of this is knowing how much skew there is across all the
clocks in the cluster. If we don’t wait long enough, we won’t get the ordering
we need, but if wait too long we will reduce the throughput of writes

excessively. Most open source databases use a technique called as Read
Restart [clock-bound.xhtml#ReadRestart] to avoid waiting in the write
operations.

Most databases like MongoDB [bib-mongodb], YugabyteDB [bib-yugabyte]
and CockroachDB [bib-cockroachdb] use Hybrid Clock. While they can not
rely on the clock machinery to give them exact clock skew across cluster
nodes, they use Clock-Bound Wait assuming a configurable maximum clock
skew. Google developed True Time [bib-external-consistency] in its data
centers to provide a guarantee that the clock skew is no more than 7ms. This
is used by Google’s Spanner [bib-spanner] databases. AWS has a library
called ClockBound [bib-clock-bound] which has similar API to give clock
skew across cluster nodes. But at the time of writing, the AWS library, unlike
true-time, does not give guarantee on the upper bound.

A Consistent Core can manage the membership of
a data cluster
A cluster can have hundreds or thousands of nodes. Such a cluster is also
dynamic, allowing more nodes to be added to handle increasing load, or
shedding nodes due to failures or reductions in traffic. We see large clusters
regularly with Kafka [bib-kafka] or Kubernetes [bib-kubernetes] clusters and
with databases like MongoDB [bib-mongodb], Cassandra [bib-cassandra],
CockroachDB [bib-cockroachdb] or YugabyteDB [bib-yugabyte]. To
manage such a cluster, we need to keep track of which nodes are part of the
cluster. With partitioned data we to track the mapping of keys to logical
partitions and partitions to nodes. It’s important that this management data is
handled in a fault tolerant way, so that failure of one control node doesn’t
bring down the whole cluster. This management data also needs strong
consistency, otherwise we risk corruption of our data.

As we’ve seen earlier, Replicated Log is an excellent way to achieve this.
But the a Replicated Log depends on Quorum, which cannot scale to
thousands of replicas. Therefore the management of a large cluster is given
to a Consistent Core - a small set of nodes whose responsibility is to manage
a larger data cluster. The Consistent Core tracks the data cluster membership
with Lease and State Watch.

http://clock-bound.xhtml/#ReadRestart

This requirement is so common in distributed services, that some products
implement the generic functionality needed to use a Consistent Core like
Lease and State Watch. Zookeeper [bib-zookeeper] and etcd [bib-etcd] are
good examples of products which are mainly used as consistent-core. But

some systems also have their own implementation, e.g. Kafka’s raft [bib-
kafka-raft].

An example usage of Lease is for the node registration and failure detection
of cluster nodes. The ephemeral node implementation in Zookeeper [bib-
zookeeper] or lease functionality in etcd [bib-etcd] is a good example of this.
Here Jupiter, a data cluster node registers with the Consistent Core with its
unique id or name. The node entries are tracked as leases and renewed with
periodic HeartBeat.

The leader of the Consistent Core periodically checks leases which are not
refreshed. If Jupiter crashes and stops sending HeartBeat, the lease will be
removed.

Leases are replicated, so if a leader fails, the new leader of the consistent-
core will start tracking the leases. Jupiter then needs to connect with the new
leader and keep sending the heartbeats.

When a generic Consistent Core like Zookeeper [bib-zookeeper] or etcd
[bib-etcd] is used, a dedicated data cluster node uses information stored in
etcd or zookeeper to take decisions on behalf of the cluster - called a cluster
controller. Kafka Controller [bib-kafka-controller] is a good example of this.
Other nodes need to know when this particular node is down, so that
someone else can take this responsibility. To do this the data cluster node

registers a State Watch with the Consistent Core. The Consistent Core
notifies all the interested nodes when a particular node fails.

Lets say Jupiter is assuming the role of cluster controller, Neptune wants to
know when Jupiter’s lease expires. It registers its interest with the Consistent
Core by contacting the core’s leader. When the lease for Jupiter expires,
indicating that Jupiter is probably no longer up and running, the leader of the
consistent-core checks to see if any nodes need to be notified. In this case,
Neptune is notified with a "lease-deleted" event.

(Replication messages from leader to followers of the consistent-core are not
shown in the diagram.)

It’s important that Neptune receives all its events in the correct order. While
the communication protocol can sort all that out, it usually more efficient for
Neptune to connect to the Consistent Core with a Single Socket Channel.

Zookeeper [bib-zookeeper] and etcd [bib-etcd] are examples of generic
frameworks which are used by products like Kafka [bib-kafka] or
Kubernetes [bib-kubernetes]. A lot of times it is convinient for clustered
software to have their own implementation based on Replicated Log and
have decision making done in the Consistent Core itself. KIP-631 [bib-kip-
631] for Kafka [bib-kafka], the primary cluster of MongoDB [bib-
mongodb], and the master cluster of YugabyteDB [bib-yugabyte] are
examples of these.

An example of this is when a Consistent Core assigns Fixed Partitions to the
cluster nodes. Three nodes Jupiter, Neptune and Saturn register with the
consistent core. Once the registration is done, the consistent core maps
partitions evenly across the cluster nodes.

Gossip Dissemination can be used to manage a
cluster without a centralized controller
Some systems, like Cassandra [bib-cassandra], lean more towards eventual
consistency, and do not want to rely on a centralized Consistent Core. They
tolerate some inconsisncy in the cluster metadata provided it converges
quickly. The need to share metadata like total number of nodes, their
network addresses, partitions they host etc, still needs to be propogated
somehow to everyone. (As we write this, however, there is a proposal to
migrate Cassandra [bib-cassandra] to a Consistent Core.)

We discussed in the last section that there can be thousands of nodes in the
cluster. Each node has some information and it needs to make sure it reaches
every other node. It will be too much communication overhead if every node
talks to every other node. Gossip Dissemination is an interesting way out. At
regular intervals, each node picks another node at random and sends it the
information it has on the state of the cluster. This style of communication has
a nice property. In a cluster with n nodes, this information reaches every
node in time proportional to log(n). Interestingly this matches how
epidemics spread in large communities. The mathematical branch of
epidemiology studies how an epidemic or rumours spread in a society. A
disease spreads very quickly even if each person comes into contact with
only a few individuals at random. An entire population can become infected
from very few interactions. Gossip Dissemination is based on these
mathematical models from epidemiology. If nodes send information to few
other nodes regularly, even a large cluster will get that information quickly.

Say we have eight servers, each having information about a color of the
planet they are named after. We want all these servers to know about every
color.

To start with Mercury sends a gossip message to Venus.

The next time Venus sends gossip message to Neptune. It includes
everything it has in the gossip message.

Meanwhile Jupiter has sent gossip message to Mars.

Uranus gossiped to Earth.

Earth gossips to Mars.

When Neptune gossips with Mars, Mars will have colors for Mercury,
Venus, Earth, Jupiter and Mars.

This happens at regular intervals at each node and in a very small amount of
time, all nodes eventually get the same information. Consul [bib-consul] has
a very nice convergence simulator [bib-serf-convergence-simulator] which
shows how quickly the information converges with its gossip
implementation.

How is this technique used in real life? One common use is to manage group
membership in products like Cassandra [bib-cassandra]. As an example, lets
say there is a large cluster, of 100 nodes. We need all the nodes to know
about each other. The cluster nodes can achieve this by doing a repeated
communication, each time with a random node.

To start with, there is at least one special node, which needs to be known to
every one. This well-known node is called the ‘seed’ node. It can either be
configured or there can be mechanism to know about the seed node at the
startup. The ‘seed’ node is not any special node, but just one of the nodes in

the cluster. It does not implement any special functionality. It only needs to
be known to every one else.

Every node starts by first communicating with the seed node and send its
own address to seed node. Seed node, as like any other node has a scheduled
task to repeatedly send what it knows about to a randomly selected node.

Consider as an example, that Neptune is the seed node. When Jupiter starts,
it sends its own address to Neptune.

Then Saturn starts, it sends its own address to Neptune the same way.

All of Jupiter, Saturn and Neptune repeatedly pick a random node and send
it all the information that they have. So in a while, Neptune picks up Jupiter
and sends it information that it has. Now both, Neptune and Jupiter know
about Saturn.

In the next cycle, either Jupiter or Neptune might pick up Saturn and send it
all the information that they have. Now, Saturn will know about Jupiter. At
this point, all three nodes know about each other.

At this point, all of Saturn, Neptune and Jupiter have exactly the same
information.

Gossip Dissemination is a commonly used technique for information
dissemination in large clusters. Products like Cassandra [bib-cassandra],
Akka [bib-akka] and Consul [bib-consul] use it for managing group
membership information in large clusters.

Some systems like Akka [bib-akka] designate a single cluster node to act as
a cluster coordinator without running an explicit leader election. Similar to
Consistent Core, an Emergent Leader takes decisions on behalf of the
cluster. A common technique is for the nodes to be ordered based on their
age in the cluster. The node with the highest age is designated as a leader of
the cluster to take decisions. Because no explicit election is run, there can be
inconsistencies caused by problems like Split Brain
[emergentleader.xhtml#SplitBrainSituation].

http://emergentleader.xhtml/#SplitBrainSituation

Part II: Patterns of Data
Replication

Chapter 3. Write-Ahead Log

Provide durability guarantee without the storage data structures to be flushed
to disk, by persisting every state change as a command to the append only
log.

Also known as: Commit Log

Problem
Strong durability guarantee is needed even in the case of the server machines
storing data failing. Once a server agrees to perform an action, it should do
so even if it fails and restarts losing all of its in-memory state.

Solution

Store each state change as a command in a file on a hard disk. A single log is
maintained for each server process which is sequentially appended. A single
log which is appended sequentially, simplifies the handling of logs at restart
and for subsequent online operations (when the log is appended with new
commands). Each log entry is given a unique identifier. The unique log
identifier helps in implementing certain other operations on the log like
Segmented Log or cleaning the log with Low-Water Mark etc. The log
updates can be implemented with Singular Update Queue

The typical log entry structure looks like following

class WALEntry…

 private final Long entryIndex;

 private final byte[] data;

 private final EntryType entryType;

 private final long timeStamp;

The file can be read on every restart and the state can be recovered by
replaying all the log entries.

Consider a simple in memory key-value store:

class KVStore…

 private Map<String, String> kv = new HashMap<>();

 public String get(String key) {

 return kv.get(key);

 }

 public void put(String key, String value) {

 appendLog(key, value);

 kv.put(key, value);

 }

 private Long appendLog(String key, String value) {

 return wal.writeEntry(new SetValueCommand(key, value).serializ

 }

The put action is represented as Command, which is serialized and stored in
the log before updating the in memory hashmap.

class SetValueCommand…

 final String key;

 final String value;

 final String attachLease;

 public SetValueCommand(String key, String value) {

 this(key, value, "");

 }

 public SetValueCommand(String key, String value, String attachLea

 this.key = key;

 this.value = value;

 this.attachLease = attachLease;

 }

 @Override

 public void serialize(DataOutputStream os) throws IOException {

 os.writeInt(Command.SetValueType);

 os.writeUTF(key);

 os.writeUTF(value);

 os.writeUTF(attachLease);

 }

 public static SetValueCommand deserialize(InputStream is) {

 try {

 DataInputStream dataInputStream = new DataInputStream(is);

 return new SetValueCommand(dataInputStream.readUTF(), dataIn

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

This makes sure that once the put method returns successfully, even if the
process holding the KVStore crashes, its state can be restored by reading the
log file at startup.

class KVStore…

 public KVStore(Config config) {

 this.config = config;

 this.wal = WriteAheadLog.openWAL(config);

 this.applyLog();

 }

 public void applyLog() {

 List<WALEntry> walEntries = wal.readAll();

 applyEntries(walEntries);

 }

 private void applyEntries(List<WALEntry> walEntries) {

 for (WALEntry walEntry : walEntries) {

 Command command = deserialize(walEntry);

 if (command instanceof SetValueCommand) {

 SetValueCommand setValueCommand = (SetValueCommand)comm

 kv.put(setValueCommand.key, setValueCommand.value);

 }

 }

 }

 public void initialiseFromSnapshot(SnapShot snapShot) {

 kv.putAll(snapShot.deserializeState());

 }

Implementation Considerations
It’s important to make sure that entries written to the log file are actually
persisted on the physical media. File handling libraries provided in all
programming languages provide a mechanism to force the operating system
to ‘flush’ the file changes to physical media. There is a trade off to be
considered while using flushing mechanism.

Flushing every log write to the disk gives a strong durability guarantee
(which is the main purpose of having logs in the first place), but this
severely limits performance and can quickly become a bottleneck. If
flushing is delayed or done asynchronously, it improves performance but
there is a risk of losing entries from the log if the server crashes before
entries are flushed. Most implementations use techniques like Batching, to
limit the impact of the flush operation.

The other consideration is to make sure that corrupted log files are detected
while reading the log. To handle this, log entries are generally written with
the CRC records, which then can be validated when the files are read.

Single Log files can become difficult to manage and can quickly consume all
the storage. To handle this issue, techniques like Segmented Log and Low-

Water Mark are used.

The write ahead log is append-only. Because of this behaviour, in case of
client communication failure and retries, logs can contain duplicate entries.
When the log entries are applied, it needs to make sure that the duplicates
are ignored. If the final state is something like a HashMap, where the
updates to the same key are idempotent, no special mechanism is needed. If
they’re not, there needs to be some mechanism implemented to mark each
request with a unique identifier and detect duplicates.

Compared to Event Sourcing
The use of a log of changes is similar to the log of events in Event Sourcing
[bib-event-sourcing]. Indeed when an event-sourced system uses its log to
synchronize multiple systems, it is using its log as a write-ahead log.
However an event-sourced system uses its log for more than just that, for
instance the ability to reconstruct a state at previous points in history. For
this an event sourcing log is the persistent source of truth and log entries are
kept for a long time, often indefinitely.

The entries for a write-ahead log, however, are only needed for the state
recovery. Thus they can be discarded when all the nodes have acknowledged
an update, i.e. below the Low-Water Mark.

Examples
• The log implementation in all Consensus algorithms like Zookeeper

[bib-zookeeper-wal] and RAFT [bib-etcd-wal] is similar to write ahead
log

• The storage implementation in Kafka [bib-kafka-log] follows similar
structure as that of commit logs in databases

• All the databases, including the nosql databases like Cassandra use write
ahead log technique [bib-cassandra-wal] to guarantee durability

Chapter 4. Segmented Log

Split log into multiple smaller files instead of a single large file for easier
operations.

Problem
A single log file can grow and become a performance bottleneck while its
read at the startup. Older logs are cleaned up periodically and doing cleanup
operations on a single huge file is difficult to implement

Solution
Single log is split into multiple segments. Log files are rolled after a
specified size limit.

public synchronized Long writeEntry(WALEntry entry) {

 maybeRoll();

 return openSegment.writeEntry(entry);

}

private void maybeRoll() {

 if (openSegment.

 size() >= config.getMaxLogSize()) {

 openSegment.flush();

 sortedSavedSegments.add(openSegment);

 long lastId = openSegment.getLastLogEntryIndex();

 openSegment = WALSegment.open(lastId, config.getWalDir());

 }

}

With log segmentation, there needs to be an easy way to map logical log
offsets (or log sequence numbers) to the log segment files. This can be done
in two ways:

• Each log segment name is generated by some well known prefix and
the base offset (or log sequence number).

• Each log sequence number is divided into two parts, the name of the
file and the transaction offset.

public static String createFileName(Long startIndex) {

 return logPrefix + "_" + startIndex + logSuffix;

}

public static Long getBaseOffsetFromFileName(String fileName) {

 String[] nameAndSuffix = fileName.split(logSuffix);

 String[] prefixAndOffset = nameAndSuffix[0].split("_");

 if (prefixAndOffset[0].equals(logPrefix))

 return Long.parseLong(prefixAndOffset[1]);

 return -1l;

}

With this information, the read operation is two steps. For a given offset (or
transaction id), the log segment is identified and all the log records are read
from subsequent log segments.

public synchronized List<WALEntry> readFrom(Long startIndex) {

 List<WALSegment> segments = getAllSegmentsContainingLogGreaterTha

 return readWalEntriesFrom(startIndex, segments);

}

private List<WALSegment> getAllSegmentsContainingLogGreaterThan(Lon

 List<WALSegment> segments = new ArrayList<>();

 //Start from the last segment to the first segment with starting

 //This will get all the segments which have log entries more than

 for (int i = sortedSavedSegments.size() - 1; i >= 0; i--) {

 WALSegment walSegment = sortedSavedSegments.get(i);

 segments.add(walSegment);

 if (walSegment.getBaseOffset() <= startIndex) {

 break; // break for the first segment with baseoffset less

 }

 }

 if (openSegment.getBaseOffset() <= startIndex) {

 segments.add(openSegment);

 }

 return segments;

}

Examples
• The log implementation in all Consensus implementations like

Zookeeper
[https://github.com/apache/zookeeper/blob/master/zookeeper-
server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnL
og.java] and RAFT [https://github.com/etcd-
io/etcd/blob/master/wal/wal.go] uses log segmentation.

• The storage implementation in Kafka
[https://github.com/axbaretto/kafka/blob/master/core/src/main/scala/kaf
ka/log/Log.scala] follows log segmentation.

• All the databases, including the nosql databases like Cassandra
[https://github.com/facebookarchive/cassandra/blob/master/src/org/apac
he/cassandra/db/CommitLog.java] use roll over strategy based on some
pre configured log size.

https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnLog.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnLog.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnLog.java
https://github.com/etcd-io/etcd/blob/master/wal/wal.go
https://github.com/etcd-io/etcd/blob/master/wal/wal.go
https://github.com/axbaretto/kafka/blob/master/core/src/main/scala/kafka/log/Log.scala
https://github.com/axbaretto/kafka/blob/master/core/src/main/scala/kafka/log/Log.scala
https://github.com/facebookarchive/cassandra/blob/master/src/org/apache/cassandra/db/CommitLog.java
https://github.com/facebookarchive/cassandra/blob/master/src/org/apache/cassandra/db/CommitLog.java

Chapter 5. Low-Water Mark

An index in the write ahead log showing which portion of the log can be
discarded.

Problem
The write ahead log maintains every update to persistent store. It can grow
indefinitely over time. Segmented Log allows dealing with smaller files at a
time, but total disk storage can grow indefinitely if not checked.

Solution
Have a mechanism to tell logging machinery which portion of the log can
be safely discarded. The mechanism gives the lowest offset or low water
mark, before which point the logs can be discarded. Have a task running in
the background, in a separate thread, which continuously checks which
portion of the log can be discarded and deletes the files on the disk.

this.logCleaner = newLogCleaner(config);

this.logCleaner.startup();

The Log cleaner can be implemented as a scheduled task

public void startup() {

 scheduleLogCleaning();

}

private void scheduleLogCleaning() {

 singleThreadedExecutor.schedule(() -> {

 cleanLogs();

 }, config.getCleanTaskIntervalMs(), TimeUnit.MILLISECONDS);

}

Snapshot based Low-Water Mark
Most consensus implementations like Zookeeper, or etcd (as defined in
RAFT), implement snapshot mechanisms. In this implementation, the
storage engine takes periodic snapshots. Along with snapshot, it also stores
the log index which is successfully applied. Referring to the simple key
value store implementation in the Write-Ahead Log pattern, the snapshot
can be taken as following:

public SnapShot takeSnapshot() {

 Long snapShotTakenAtLogIndex = wal.getLastLogIndex();

 return new SnapShot(serializeState(kv), snapShotTakenAtLogIndex)

}

Once a snapshot is successfully persisted on the disk, the log manager is
given the low water mark to discard the older logs.

List<WALSegment> getSegmentsBefore(Long snapshotIndex) {

 List<WALSegment> markedForDeletion = new ArrayList<>();

 List<WALSegment> sortedSavedSegments = wal.sortedSavedSegments;

 for (WALSegment sortedSavedSegment : sortedSavedSegments) {

 if (sortedSavedSegment.getLastLogEntryIndex() < snapshotIndex)

 markedForDeletion.add(sortedSavedSegment);

 }

 }

 return markedForDeletion;

}

Time based Low-Water Mark
In some systems, where log is not necessarily used to update the state of the
system, log can be discarded after a given time window, without waiting for
any other subsystem to share the lowest log index which can be removed.
For example, in systems like Kafka, logs are maintained for 7 weeks; all the
log segments which have messages older than 7 weeks are discarded. For
this implementation, each log entry also includes the timestamp when it was
created. The log cleaner can then check the last entry of each log segment,
and discard segments which are older than the configured time window.

private List<WALSegment> getSegmentsPast(Long logMaxDurationMs) {

 long now = System.currentTimeMillis();

 List<WALSegment> markedForDeletion = new ArrayList<>();

 List<WALSegment> sortedSavedSegments = wal.sortedSavedSegments;

 for (WALSegment sortedSavedSegment : sortedSavedSegments) {

 if (timeElaspedSince(now, sortedSavedSegment.getLastLogEntryTim

 markedForDeletion.add(sortedSavedSegment);

 }

 }

 return markedForDeletion;

}

private long timeElaspedSince(long now, long lastLogEntryTimestamp

 return now - lastLogEntryTimestamp;

}

Examples
• The log implementation in all Consensus algorithms like Zookeeper

[https://github.com/apache/zookeeper/blob/master/zookeeper-
server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnL
og.java] and RAFT [https://github.com/etcd-
io/etcd/blob/master/wal/wal.go] implement snapshot based log cleaning

https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnLog.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnLog.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnLog.java
https://github.com/etcd-io/etcd/blob/master/wal/wal.go
https://github.com/etcd-io/etcd/blob/master/wal/wal.go

• The storage implementation in Kafka
[https://github.com/axbaretto/kafka/blob/master/core/src/main/scala/kaf
ka/log/Log.scala] follows time based log cleaning

https://github.com/axbaretto/kafka/blob/master/core/src/main/scala/kafka/log/Log.scala
https://github.com/axbaretto/kafka/blob/master/core/src/main/scala/kafka/log/Log.scala

Chapter 6. Leader and Followers

Have a single server to coordinate replication across a set of servers.

Problem
To achieve fault tolerance in systems which manage data, the data needs to
be replicated on multiple servers.

It’s also important to give some guarantee about consistency to clients.
When data is updated on multiple servers, a decision about when to make it
visible to clients is required. Write and read Quorum is not sufficient, as
some failure scenarios can cause clients to see data inconsistently. Each
individual server does not know about the state of data on the other servers
in the quorum, It’s only when data is read from multiple servers, the
inconsistencies can be resolved. In some cases, this is not enough. Stronger
guarantees are needed about the data that is sent to the clients.

Solution
Select one server amongst the cluster as leader. The leader is responsible for
taking decisions on behalf of the entire cluster and propagating the decisions
to all the other servers.

Every server at startup looks for an existing leader. If no leader is found, it
triggers a leader election. The servers accept requests only after a leader is
selected successfully. Only the leader handles the client requests. If a request
is sent to a follower server, the follower can forward it to the leader server.

Leader Election

For smaller clusters of three to five nodes, like in the systems which
implement consensus, leader election can be implemented within the data
cluster itself without dependending on any external system. Leader election
happens at server startup. Every server starts a leader election at startup and
tries to elect a leader. The system does not accept any client requests unless a
leader is elected. As explained in the Generation Clock pattern, every leader
election also needs to update the generation number. The server can always
be in one of the three states, Leader, Follower or Looking For Leader (or
Candidate)

public enum ServerRole {

 LOOKING_FOR_LEADER,

 FOLLOWING,

 LEADING;

}

HeartBeat mechanism is used to detect if an existing leader has failed, so
that new leader election can be started.

Concurrency, Locks and State updates

State updates can be done without any hassle of manipulating
synchronization and locking by using Singular Update Queue

New leader election is started by sending each of the peer servers a message
requesting a vote.

class ReplicatedLog…

private void startLeaderElection() {

 replicationState.setGeneration(replicationState.getGeneration() +

 registerSelfVote();

 requestVoteFrom(followers);

}

Election Algorithm

ZAB and RAFT

There are two popular mainstream implementations which have leader
election algorithms with few subtle differences. Zab [bib-zab] as part of
Zookeeper implementation and leader election algorithm in Raft [bib-
raft]

There are subtle differences in things like the point at which the
generation number is incremented, the default state the server starts in
and how to make sure there are no split votes. In Zab, each server looks
for the leader at the startup, generation number is incremented only by
a leader when its elected and split vote is avoided by making sure each
server runs the same logic to choose a leader when multiple servers are
equally upto date. In the case of RAFT, servers start in the follower

state by default, expecting to get heartbeats from the existing leader. If
no heartbeat is received, they start election by incrementing the
generation number. The split vote is avoided by using randomized
timeouts before starting the election.

There are two factors which are considered while electing a leader.

• Because these systems are mostly used for data replication, it puts some
extra restrictions on which servers can win the election. Only servers,
which are the ‘most up to date’ can be a legitimate leader. For example,
in typical consensus based systems, The ‘most up to date’ is defined by
two things:

• The latest Generation Clock
• The latest log index in Write-Ahead Log

• If all the servers are equally upto date, then the leader is chosen based
following criterias:

• Some implementation specific criteria, like which server is ranked
better or has higher id. (e.g. Zab [bib-zab])

• If care is taken to make sure only one server asks for a vote at a time,
then whichever server starts the election before others. (e.g. Raft [bib-
raft])

Once a server is voted for in a given Generation Clock, the same vote is
returned for that generation always. This makes sure that some other server
requesting a vote for the same generation is not elected, when a successful
election has already happened. The handling of vote request happens as
following:

class ReplicatedLog…

VoteResponse handleVoteRequest(VoteRequest voteRequest) {

 //for higher generation request become follower.

 // But we do not know who the leader is yet.

 if (voteRequest.getGeneration() > replicationState.getGeneration(

 becomeFollower(LEADER_NOT_KNOWN, voteRequest.getGeneration());

 }

 VoteTracker voteTracker = replicationState.getVoteTracker();

 if (voteRequest.getGeneration() == replicationState.getGeneration

 if (isUptoDate(voteRequest) && !voteTracker.alreadyVoted()) {

 voteTracker.registerVote(voteRequest.getServerId());

 return grantVote();

 }

 if (voteTracker.alreadyVoted()) {

 return voteTracker.votedFor == voteRequest.getServerId() ?

 grantVote() : rejectVote();

 }

 }

 return rejectVote();

}

private boolean isUptoDate(VoteRequest voteRequest) {

 boolean result = voteRequest.getLastLogEntryGeneration() > wal.g

 || (voteRequest.getLastLogEntryGeneration() == wal.getLastLo

 voteRequest.getLastLogEntryIndex() >= wal.getLastLogIndex())

 return result;

}

The server which receives votes from the majority of the servers, transitions
to leader state. The majority is determined as discussed in Quorum. Once
elected, the leader continuously sends HeartBeat to all the followers. If
followers do not get a heartbeat in specified time interval, a new leader
election is triggered.

Leader Election using External [Linearizable] [bib-
Linearizable] Store
Running a leader election within a data cluster works well for smaller
clusters. For large data clusters, which can be upto few thousand nodes, it’s
easier to use an external store like Zookeeper or etcd. (which internally use
consensus and provide linearizability guarantees). These large clusters
typically have a server which is marked as a master or a controller node,

which makes all the decisions on behalf of the entire cluster. There are three
functionalities needed for implementing a leader election:

• A compareAndSwap instruction to set a key atomically.

• A heartbeat implementation to expire the key if no heartbeat is received
from the elected leader, so that a new election can be triggered.

• A notification mechanism to notify all the interested servers if a key
expires.

For electing the leader, each server uses the compareAndSwap instruction to
try and create a key in the external store, and whichever server succeeds
first, is elected as a leader. Depending on the external store used, the key is
created with a small time to live. The elected leader repeatedly updates the
key before the time to live value. Every server can set a watch on this key,
and servers get notified if the key expires without getting updated from the
existing leader within the time to live setting. e.g. etcd [bib-etcd] allows a
compareAndSwap operation, by allowing a set key operation only if the key
does not exist previously. In Zookeeper [bib-zookeeper] there is no explicit
compareAndSwap kind of operation supported, but it can be implemented by
trying to create a node, and expecting an exception if the node already exists.
There is no explicit time to live either, but zookeeper has a concept of
ephemeral node. The node exists until the server has an active session with
zookeeper, else the node is removed and everyone who is watching that node
is notified. For example, Zookeeper can be used to elect leader as following:

class ServerImpl…

public void startup() {

 zookeeperClient.subscribeLeaderChangeListener(this);

 elect();

}

public void elect() {

 var leaderId = serverId;

 try {

 zookeeperClient.tryCreatingLeaderPath(leaderId);

 this.currentLeader = serverId;

 onBecomingLeader();

 } catch (ZkNodeExistsException e) {

 //back off

 this.currentLeader = zookeeperClient.getLeaderId();

 }

}

All other servers watch for the liveness of the existing leader. When it is
detected that the existing leader is down, a new leader election is triggered.
The failure detection happens using the same external linearizable store used
for the leader election. This external store also has facilities to implement
group membership and failure detection mechanisms. For example,
extending the above Zookeeper based implementation, a change listener can
be configured with Zookeeper which is triggered when a change in the
existing leader node happens.

class ZookeeperClient…

public void subscribeLeaderChangeListener(IZkDataListener listener)

 zkClient.subscribeDataChanges(LeaderPath, listener);

}

Every server in the cluster subscribes for this change, and whenever the
callback is triggered, a new election is triggered again the same way shown
above.

class ServerImpl…

@Override

public void handleDataDeleted(String dataPath) throws Exception {

 elect();

}

Systems like etcd [bib-etcd] or Consul [bib-consul] can be used the same
way to implement leader election.

Why Quorum read/writes are not enough for strong consistency
guarantees
It might look like Quorum read/write, provided by Dynamo style databases
like Cassandra, is enough for getting strong consistency in case of server
failures. But that is not the case. Consider the following example. Let’s say
we have a cluster with three servers. Variable x is stored on all three servers.
(It has a replication factor of 3). Value of x = 1 at startup.

• Let’s say writer1 writes x = 2, with replication factor of 3. The write
request is sent to all the three servers. The write is successful on server1
but fails for server2 and server3. (either a network glitch or writer1 just
went into a long garbage collection pause after sending the write request
to server1.).

• Client c1 reads the value of x from server1 and server2. It gets the latest
value of x=2 because server1 has the latest value.

• Client c2 triggers a read for x. But Server1 goes down temporarily. So c1
reads it from server2, server3, which have old values for x, x=1. So c2
gets the old value even when it read it after c1 read the latest value.

This way two consecutive reads show the latest values disappearing. Once
server1 comes back up, subsequent reads will give the latest value. And
assuming the read repair or anti entropy process is running, the rest of the
servers will get the latest value as well ‘eventually’. But there is no
guarantee provided by the storage cluster to make sure that once a particular
value is visible to any clients, all subsequent reads will continue to get that
value even if a server fails.

Examples
• For systems which implement consensus, it’s important that only one

server coordinates activities for the replication process. As noted in the
paper Paxos Made Simple [bib-lamport-paxos-simple], it’s important for
the liveness of the system.

• In Raft [bib-raft] and Zab [bib-zab] consensus algorithms, leader
election is an explicit phase that happens at the startup or on the leader
failure

• viewstamped replication [bib-view-stamp-replication] algorithm has a
concept of Primary, similar to leader in other algorithms

• Kafka [bib-kafka] has a Controller [bib-kafka-controller] which is
responsible for taking all the decisions on behalf of the rest of the
cluster. It reacts to events from Zookeeper and for each partition in
Kafka, there is a designated leader broker and follower brokers. The
leader and follower selection is done by the Controller broker.

Chapter 7. HeartBeat

Show a server is available by periodically sending a message to all the other
servers.

Problem
When multiple servers form a cluster, the servers are responsible for storing
some portion of the data, based on the partitioning and replication schemes
used. Timely detection of server failures is important to make sure corrective
actions can be taken by making some other server responsible for handling
requests for the data on failed servers.

Solution

Periodically send a request to all the other servers indicating liveness of the
sending server. Select the request interval to be more than the network round
trip time between the servers. All the servers wait for the timeout interval,
which is multiple of the request interval to check for the heartbeats. In
general,

It is useful to know the network round trip times within and between
datacenters when deciding values for heartbeat interval and timeouts.
[numbers-every-programmer-should-know] [bib-numbers-every-
programmer-should-know] is a good reference.

Timeout Interval > Request Interval > Network round trip time between the
servers.

e.g. If the network round trip time between the servers is 20ms, the
heartbeats can be sent every 100ms, and servers check after 1 second to give
enough time for multiple heartbeats to be sent and not get false negatives. If
no heartbeat is received in this interval, then it declares the sending server as
failed.

Both the servers, the one sending the heartbeat and the one receiving it, have
a scheduler defined as follows. The scheduler is given a method to be
executed at a regular interval. When started, the task is scheduled to execute
the given method.

class HeartBeatScheduler…

public class HeartBeatScheduler implements Logging {

 private ScheduledThreadPoolExecutor executor = new ScheduledThrea

 private Runnable action;

 private Long heartBeatInterval;

 public HeartBeatScheduler(Runnable action, Long heartBeatInterval

 this.action = action;

 this.heartBeatInterval = heartBeatIntervalMs;

 }

 private ScheduledFuture<?> scheduledTask;

 public void start() {

 scheduledTask = executor.scheduleWithFixedDelay(new HeartBeatTa

 }

On the sending server side, the scheduler executes a method to send
heartbeat messages.

class SendingServer…

private void sendHeartbeat() throws IOException {

 socketChannel.blockingSend(newHeartbeatRequest(serverId));

}

On the receiving server, the failure detection mechanism has a similar
scheduler started. At regular intervals, it checks if the heartbeat was received
or not.

class AbstractFailureDetector…

private HeartBeatScheduler heartbeatScheduler = new HeartBeatSchedu

abstract void heartBeatCheck();

abstract void heartBeatReceived(T serverId);

The failure detector needs to have two methods:

class ReceivingServer…

private void handleRequest(Message<RequestOrResponse> request) {

 RequestOrResponse clientRequest = request.getRequest();

 if (isHeartbeatRequest(clientRequest)) {

 HeartbeatRequest heartbeatRequest = JsonSerDes.deserialize(cli

 failureDetector.heartBeatReceived(heartbeatRequest.getServerId

 sendResponse(request);

 } else {

 //processes other requests

 }

}

• A method to be called whenever the receiving server receives the
heartbeat, to tell the failure detector that heartbeat is received

• A method to periodically check the heartbeat status and detect possible
failures.

The implementation of when to mark a server as failed depends on various
criterias. There are different trade offs. In general, the smaller the heartbeat
interval, the quicker the failures are detected, but then there is higher
probability of false failure detections. So the heartbeat intervals and
interpretation of missing heartbeats is implemented as per the requirements
of the cluster. In general there are following two broad categories.

Small Clusters - e.g. Consensus Based Systems like
RAFT, Zookeeper
In all the consensus implementations, Heartbeats are sent from the leader
server to all followers servers. Every time a heartbeat is received, the
timestamp of heartbeat arrival is recorded

class TimeoutBasedFailureDetector…

@Override

public void heartBeatReceived(T serverId) {

 Long currentTime = System.nanoTime();

 heartbeatReceivedTimes.put(serverId, currentTime);

 markUp(serverId);

}

If no heartbeat is received in a fixed time window, the leader is considered
crashed, and a new server is elected as a leader. There are chances of false
failure detection because of slow processes or networks. So Generation
Clock needs to be used to detect the stale leader. This provides better
availability of the system, as crashes are detected in smaller time periods.
This is suitable for smaller clusters, typically 3 to 5 node setup which is
observed in most consensus implementations like Zookeeper or Raft.

class TimeoutBasedFailureDetector…

@Override

void heartBeatCheck() {

 Long now = System.nanoTime();

 Set<T> serverIds = heartbeatReceivedTimes.keySet();

 for (T serverId : serverIds) {

 Long lastHeartbeatReceivedTime = heartbeatReceivedTimes.get(ser

 Long timeSinceLastHeartbeat = now - lastHeartbeatReceivedTime;

 if (timeSinceLastHeartbeat >= timeoutNanos) {

 markDown(serverId);

 }

 }

}

Technical Considerations
When Single Socket Channel is used to communicate between servers, care
must be taken to make sure that the [head-of-line-blocking] [bib-head-of-
line-blocking] does not prevent heartbeat messages from being processed.
Otherwise it can cause delays long enough to falsely detect the sending
server to be down, even when it was sending heart beats at the regular
intervals. Request Pipeline can be used to make sure servers do not wait for
the response of previous requests before sending heartbeats. Sometimes,
when using Singular Update Queue, some tasks like disk writes, can cause
delays which might delay processing of timing interrupts and delay sending
heartbeats.

This can be solved by using a separate thread for sending heartbeats
asynchronously. Frameworks like Consul [bib-consul] and Akka [bib-akka]
send heartbeats asynchronously. This can be the issue on receiving servers as
well. A receiving server doing a disk write, can check the heartbeat only
after the write is complete, causing false failure detection. So the receiving
server using Singular Update Queue can reset its heartbeat-checking
mechanism to incorporate those delays. Reference implementation of Raft
[bib-raft], [log-cabin] [bib-log-cabin] does this.

Sometimes, a [local-pause] [bib-local-pause] because of some runtime-
specific events like Garbage Collection can delay the processing of
heartbeats. There needs to be a mechanism to check if the processing is
happening after a possible local pause. A simple mechanism, to use is to
check if the processing is happening after a long enough time window, e.g. 5
seconds. In that case nothing is marked as failed based on the time window,
and it’s deferred to the next cycle. Implementation in Cassandra [bib-
cassandra-local-pause-detection] is a good example of this.

Large Clusters. Gossip Based Protocols
Heartbeating, described in the previous section, does not scale to larger
clusters with a few hundred to thousand servers spanning across wide area
networks. In large clusters, two things need to be considered:

• Fixed limit on the number of messages generated per server

• The total bandwidth consumed by the heartbeat messages. It should not
consume a lot of network bandwidth. There should be an upper bound of
a few hundred kilo bytes, making sure that too many heartbeat messages
do not affect actual data transfer across the cluster.

For these reasons,all-to-all heartbeating is avoided. Failure detectors, along
with Gossip [bib-gossip] protocols for propagating failure information across
the cluster are typically used in these situations. These clusters typically take
actions like moving data across nodes in case of failures, so prefer correct
detections and tolerate some more delays (although bounded). The main
challenge is not to incorrectly detect a node as faulty because of network
delays or slow processes. A common mechanism used then, is for each
process to be assigned a suspicion number, which increments if there is no
gossip including that process in bounded time. It’s calculated based on past
statistics, and only after this suspicion number reaches a configured upper
limit, is it marked as failed.

There are two mainstream implementations: 1) Phi Accrual failure detector
(used in Akka, Cassandra) 2) SWIM with Lifeguard enhancement (used in
Hashicorp Consul, memberlist) These implementations scale over a wide
area network with thousands of machines. Akka is known to be tried for
2400 [bib-akka-2400-node-cluster] servers. Hashicorp Consul is routinely
deployed with several thousand consul servers in a group. Having a reliable
failure detector, which works efficiently for large cluster deployments and at
the same time provides some consistency guarantees, remains an area of
active development. Some recent developments in frameworks like Rapid
[bib-rapid] look promising.

Examples
• Consensus implementations like ZAB or RAFT, which work with a

small three to five node cluster, implement a fixed time window based
failure detection.

• Akka Actors and Cassandra use Phi Accrual failure detector
[http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.80.7427&rep=rep1&type=pdf].

• Hashicorp consul use gossip based failure detector SWIM
[https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
].

http://citeseerx.ist.psu.edu/viewdoc/download?
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf

Chapter 8. Paxos

by Unmesh Joshi and Martin Fowler

Use two consensus building phases to reach safe consensus even when nodes
disconnect

Problem
When multiple nodes share state, they often need to agree between themselves
on a particular value. With Leader and Followers, the leader decides and
passes its value to the followers. But if there is no leader, then the nodes need
to determine a value themselves. (Even with a leader-follower, they may need
to do this to elect a leader.)

A leader can ensure replicas safely acquire an update by using Two Phase
Commit, but without a leader we can have competing nodes attempt to gather a
Quorum. This process is further complicated because any node may fail or
disconnect. A node may achieve quorum on a value, but disconnect before it is
able to communicate this value to the entire cluster.

Solution

In the original paxos papers (1998 [bib-lamport-paxos-original] and 2001
[bib-lamport-paxos-simple]), there is no mention of the commit phase,as
the focus of the algorithm is to prove that only a single value is chosen
and it’s enough, even if only the proposer cluster node knows about the
chosen value. But in practice, all of the cluster nodes need to know about
the chosen value and there is a need for a commit phase where the
proposer communicates the decision to all of the cluster nodes.

The Paxos algorithm was developed by Leslie Lamport [bib-lamport],
published in his 1998 paper The Part-Time Parliament [bib-lamport-paxos-
original]. Paxos works in three phases to make sure multiple nodes agree on the
same value in spite of partial network or node failures. The first two phases act
to build consensus around a value, the last phase then communicates that
consensus to the remaining replicas.

• Prepare phase: establish the latest Generation Clock and gather any already
accepted values.

• Accept phase: propose a value for this generation for replicas to accept.

• Commit Phase: let all the replicas know that a value has been chosen.

In the first phase (called prepare phase), the node proposing a value (called a
proposer) contacts all the nodes in the cluster (called acceptors) and asks them
if they will promise to consider its value. Once a quorum of acceptors return
such a promise, the proposer moves onto the second phase. In the second phase
(called the accept phase) the proposer sends out a proposed value, if a quorum
1 of nodes accepts this value then the value is chosen. In the final phase (called
the commit phase), the proposer can then commit the chosen value to all the
nodes in the cluster.

1 The original description of Paxos requires majority Quorum in both the prepare and the accept phases.
Some recent work by Heidi Howard and others [bib-flexible-paxos] show that the main requirement of
Paxos is to have overlap in the quorums of the prepare and the accept phase. As long as this requirement
is fulfilled, it does not require a majority Quorum in both the phases.

Flow of the Protocol
Paxos is a difficult protocol to understand. We’ll start by showing an example
of a typical flow of the protocol, and then dig into some of the details of how it
works. We intend this explanation to provide an intuitive sense of how the
protocol works, but not as a comprehensive description to base an
implementation upon.

Here’s a very brief summary of the protocol.

Table 8.1.

Those are basic rules for paxos, but it’s very hard to understand how they
combine for an effective behavior. So here’s an example to show how this
works.

Consider a cluster of five nodes: Athens, Byzantium, Cyrene, Delphi, and
Ephesus. A client contacts the Athens node, requesting to set the name to
"alice". The Athens node now needs to initiate a Paxos interaction to see if all
the nodes will agree to this change. Athens is called the proposer, in that
Athens will propose to all the other nodes that the name of the cluster become
"alice". All the nodes in the cluster (including Athens) are "acceptors", meaning
they are capable of accepting proposals.

At the same time that Athens is proposing "alice", the node Ephesus gets a
request to set the name to "elanor". This makes Ephesus also be a proposer.

In the prepare phase the proposers begin by sending some prepare requests,
which all include a generation number. Since Paxos is intended to avoid single
points of failure, we don’t take this from a single generation clock. Instead
each node maintains its own generation clock where it combines a generation
number with a node ID. The node ID is used to break ties, so [2,a] > [1,e] >
[1,a]. Each acceptor records the latest promise it’s seen so far.

Table 8.2.

Since they haven’t seen any requests before this, they all return a promise to
the calling proposer. We call the returned value a "promise" because it indicates
that the acceptor promises to not consider any messages with an earlier
generation clock than the promised one.

Athens sends its prepare message to Cyrene. When it receives a promise in
return, this means it has now got promises from from three of the five nodes,
which represents a Quorum. Athens now shifts from sending prepare messages
to sending accept messages.

It is possible that Athens fails to receive a promise from a majority of the
cluster nodes. In that case Athens retries the prepare request by incrementing
the generation clock.

Table 8.3.

Athens now starts sending accept messages, containing the generation and the
proposed value. Athens and Byzantium accept the proposal.

Table 8.4.

Ephesus now sends a prepare message to Cyrene. Cyrene had sent a promise to
Athens, but Ephesus’s request has a higher generation, so it takes precedence.
Cyrene sends back a promise to Ephesus.

Cyrene now gets an accept request from Athens but rejects it as the generation
number is behind its promise to Ephesus.

Table 8.5.

Ephesus has now got a quorum from its prepare messages, so can move on to
sending accepts. It sends accepts to itself and to Delphi but then crashes before
it can send any more accepts.

Table 8.6.

Meanwhile, Athens has to deal with the rejection of its accept request from
Cyrene. This indicates that its quorum is no longer promised to it and thus its
proposal will fail. This will always happen to a proposer who loses its initial
quorum like this; for another proposer to achieve quorum at least one member
of the first proposer’s quorum will defect.

In a situation with a simple two phase commit, we would then expect Ephesus
to just go on and get its value chosen, but such a scheme would now be in
trouble since Ephesus has crashed. If it had a lock on a quorum of acceptors, its
crash would deadlock the whole proposal process. Paxos, however, expects this
kind of thing to happen, so Athens will make another try, this time with a
higher generation.

It sends prepare messages again, but this time with a higher generation number.
As with the first round, it gets back a trio of promises, but with an important
difference. Athens already accepted "alice" earlier, and Delphi had accepted
"elanor". Both of these acceptors return a promise, but also the value that they
already accepted, together with the generation number of that accepted
proposal. When they return that value, they update their promised generation to
[2,a] to reflect the promise they made to Athens.

Table 8.7.

Athens, with a quorum, must now move onto the accept phase, but it must
propose the already-accepted value with the highest generation, which is
"elanor", who was accepted by Delphi with a generation of [1,e], which is
greater than Athens’s acceptance of "alice" with [1,a].

Athens starts to send out accept requests, but now with "elanor" and its current
generation. Athens sends an accept request to itself, which is accepted. This is a
crucial acceptance because now there are three nodes accepting "elanor", which
is a quorum for "elanor", therefore we can consider "elanor" to be the chosen
value.

Table 8.8.

But although "elanor" is now the chosen value, nobody is yet aware of it.
Within the accept stage Athens only knows itself having "elanor" as the value,
which isn’t a quorum and Ephesus is offline. All Athens needs to do is have a
couple more accept requests accepted and it will be able to commit. But now
Athens crashes.

At this point Athens and Ephesus have now crashed. But the cluster still has a
quorum of nodes operating, so they should be able to keep working, and indeed
by following the protocol they can discover that "elanor" is the chosen value.

Cyrene gets a request to set the name to "carol", so it becomes a proposer. It’s
seen generation [2,a] so it kicks off a prepare phase with generation [3,c].
While it wishes to propose "carol" as the name, for the moment it’s just issuing
prepare requests.

Cyrene sends prepare messages to the remaining nodes in the cluster. As with
Athens’s earlier prepare phase, Cyrene gets accepted values back, so "carol"
never gets proposed as a value. As before, Delphi’s "elanor" is later than
Byzantium’s "alice", so Cyrene starts an accept phase with "elanor" and [3,c].

Table 8.9.

While I could continue to crash and wake up nodes, it’s clear now that "elanor"
will win out. As long as a quorum of nodes are up, at least one of them will
have "elanor" as its value, and any node attempting a prepare will have to
contact one node that’s accepted "elanor" in order to get a quorum for its
prepare phase. So we’ll finish with Cyrene sending out commits.

At some point Athens and Ephesus will come back online and they will
discover what the quorum has chosen.

Requests don’t need to be rejected
In the example above, we saw acceptors rejecting requests with an aged
generation. But the protocol does not require an explicit rejection like this. As
formulated, an acceptor may just ignore an out-of-date request. If this is the
case, then the protocol will still converge on a single consensus value. This is
an important feature of the protocol because, as this is a distributed system,
connections can be lost at any time, so it’s beneficial to not be dependent on
rejections to ensure the safety of the protocol. (Safety here meaning that the
protocol will choose only one value, and once chosen, it won’t be overwritten.)

Sending rejections, however, is still useful as it improves performance. The
quicker proposers find out they are old, the sooner they can start another round
with a higher generation.

Competing proposers may fail to choose
One way this protocol can go wrong is if two (or more) proposers get into a
cycle.

• alice is accepted by athens and byzantium

• elanor is prepared by all nodes, preventing alice from gaining quorum

• elanor is accepted by delphi and ephesus

• alice is prepared by all nodes, preventing elanor from gaining quorum.

• alice is accepted by athens and byzantium

• ... and so on, a situation called a livelock

The FLP Impossibility Result [bib-flp-impossibility] shows that even a single
faulty node can stop a cluster from ever choosing a value.

We can reduce the chances of this livelock happening by ensuring that
whenever a proposer needs to choose a new generation, it must wait a random
period of time. This randomness makes it likely that one proposer will be able
to get a quorum accepted before the other sends a prepare request to the full
quorum.

But we can never ensure that livelock can’t happen. This is a fundamental
trade-off: we can either ensure safety or liveness, but not both. Paxos ensures
safety first.

An example key-value store
The Paxos protocol explained here, builds consensus on a single value (often
called as single-decree Paxos). Most practical implementations used in
mainstream products like Cosmos DB [bib-cosmosdb] or Spanner [bib-
spanner] use a modification of paxos called multi-paxos which is implemented
as a Replicated Log.

But a simple key-value store can be built using basic Paxos. Cassandra [bib-
cassandra] uses basic Paxos in a similar way to implement it’s light-weight
transactions.

The key-value store maintains Paxos instance per key.

class PaxosPerKeyStore…

int serverId;

public PaxosPerKeyStore(int serverId) {

 this.serverId = serverId;

}

Map<String, Acceptor> key2Acceptors = new HashMap<String, Acceptor>()

List<PaxosPerKeyStore> peers;

The Acceptor stores the promisedGeneration, acceptedGeneration and
acceptedValue.

class Acceptor…

public class Acceptor {

 MonotonicId promisedGeneration = MonotonicId.empty();

 Optional<MonotonicId> acceptedGeneration = Optional.empty();

 Optional<Command> acceptedValue = Optional.empty();

 Optional<Command> committedValue = Optional.empty();

 Optional<MonotonicId> committedGeneration = Optional.empty();

 public AcceptorState state = AcceptorState.NEW;

 private BiConsumer<Acceptor, Command> kvStore;

When the key and value is put in the kv store, it runs the Paxos protocol.

class PaxosPerKeyStore…

int maxKnownPaxosRoundId = 1;

int maxAttempts = 4;

public void put(String key, String defaultProposal) {

 int attempts = 0;

 while(attempts <= maxAttempts) {

 attempts++;

 MonotonicId requestId = new MonotonicId(maxKnownPaxosRoundId++, se

 SetValueCommand setValueCommand = new SetValueCommand(key, default

 if (runPaxos(key, requestId, setValueCommand)) {

 return;

 }

 Uninterruptibles.sleepUninterruptibly(ThreadLocalRandom.current()

 logger.warn("Experienced Paxos contention. Attempting with higher

 }

 throw new WriteTimeoutException(attempts);

}

private boolean runPaxos(String key, MonotonicId generation, Command

 List<Acceptor> allAcceptors = getAcceptorInstancesFor(key);

 List<PrepareResponse> prepareResponses = sendPrepare(generation, al

 if (isQuorumPrepared(prepareResponses)) {

 Command proposedValue = getValue(prepareResponses, initialValue)

 if (sendAccept(generation, proposedValue, allAcceptors)) {

 sendCommit(generation, proposedValue, allAcceptors);

 }

 if (proposedValue == initialValue) {

 return true;

 }

 }

 return false;

}

public Command getValue(List<PrepareResponse> prepareResponses, Comma

 PrepareResponse mostRecentAcceptedValue = getMostRecentAcceptedValu

 Command proposedValue

 = mostRecentAcceptedValue.acceptedValue.isEmpty() ?

 initialValue : mostRecentAcceptedValue.acceptedValue.get();

 return proposedValue;

}

private PrepareResponse getMostRecentAcceptedValue(List<PrepareRespon

 return prepareResponses.stream().max(Comparator.comparing(r -> r.a

}

class Acceptor…

public PrepareResponse prepare(MonotonicId generation) {

 if (promisedGeneration.isAfter(generation)) {

 return new PrepareResponse(false, acceptedValue, acceptedGenerat

 }

 promisedGeneration = generation;

 state = AcceptorState.PROMISED;

 return new PrepareResponse(true, acceptedValue, acceptedGeneration,

}

class Acceptor…

public boolean accept(MonotonicId generation, Command value) {

 if (generation.equals(promisedGeneration) || generation.isAfter(prom

 this.promisedGeneration = generation;

 this.acceptedGeneration = Optional.of(generation);

 this.acceptedValue = Optional.of(value);

 return true;

 }

 state = AcceptorState.ACCEPTED;

 return false;

}

The value is stored in the kvstore only when it can be successfully committed.

class Acceptor…

public void commit(MonotonicId generation, Command value) {

 committedGeneration = Optional.of(generation);

 committedValue = Optional.of(value);

 state = AcceptorState.COMMITTED;

 kvStore.accept(this, value);

}

class PaxosPerKeyStore…

private void accept(Acceptor acceptor, Command command) {

 if (command instanceof SetValueCommand) {

 SetValueCommand setValueCommand = (SetValueCommand) command;

 kv.put(setValueCommand.getKey(), setValueCommand.getValue());

 }

 acceptor.resetPaxosState();

}

The paxos state needs to be persisted. It can be easily done by using a Write-
Ahead Log.

Handling multiple values.
It is important to note that Paxos is specified and proven to work on single
value. So handling multiple values with the single value Paxos protocol needs
to be done outside of the protocol specification. One alternative is to reset the
state, and store committed values separately to make sure they are not lost.

class Acceptor…

public void resetPaxosState() {

 //This implementation has issues if committed values are not stored

 //and handled separately in the prepare phase.

 //See Cassandra implementation for details.

 //https://github.com/apache/cassandra/blob/trunk/src/java/org/apache

 promisedGeneration = MonotonicId.empty();

 acceptedGeneration = Optional.empty();

 acceptedValue = Optional.empty();

}

There is an alternative, as suggested in [gryadka] [bib-gryadka], which slightly
modifies the basic Paxos to allow setting multiple values. This need for
executing steps beyond the basic algorithm is the reason that in practice
Replicated Log is preferred.

Reading the values
Paxos relies on the prepare phase to detect any uncommitted values. So if basic
Paxos is used to implement a key-value store as shown above, the read
operation also needs to run the full Paxos algorithm.

class PaxosPerKeyStore…

public String get(String key) {

 int attempts = 0;

 while(attempts <= maxAttempts) {

 attempts++;

 MonotonicId requestId = new MonotonicId(maxKnownPaxosRoundId++, se

 Command getValueCommand = new NoOpCommand(key);

 if (runPaxos(key, requestId, getValueCommand)) {

 return kv.get(key);

 }

 Uninterruptibles.sleepUninterruptibly(ThreadLocalRandom.current()

 logger.warn("Experienced Paxos contention. Attempting with higher

 }

 throw new WriteTimeoutException(attempts);

}

Examples
Cassandra [bib-cassandra] uses Paxos to implement light-weight transaction.

All the consensus algorithms like Raft [bib-raft] use basic concepts similar to
the basic Paxos. The use of Two Phase Commit, Quorum and Generation Clock
is used in a similar manner.

Chapter 9. Replicated Log

Keep the state of multiple nodes synchronized by using a write-ahead log
that is replicated to all the cluster nodes.

Problem
When multiple nodes share a state, the state needs to be synchronized. All
cluster nodes need to agree on the same state, even when some nodes crash
or get disconnected. This requires achieving consensus for each state change
request.

But achieving consensus on individual requests is not enough. Each replica
also needs to execute requests in the same order, otherwise different replicas
can get into a different final state, even if they have consensus on an
individual request.

Solution

Failure Assumptions

Different algorithms are used to build consensus over log entries
depending on the failure assumptions. The most commonly used
assumption is that of crash fault [bib-crash-fault]. With crash fault,
when a cluster node is faulty, it stops working. A more complex failure
assumption is that of byzantine fault [bib-byzantine-fault]. With
byzantine faults, faulty cluster nodes can behave arbitrarily. They might
be controlled by an adversary which keeps the node functional but

deliberately sends requests or responses with wrong data, such as a
fraudulent transaction to steal money.

Most enterprise systems such as databases, message brokers or even
enterprise blockchain products such as hyperledger fabric [bib-
hyperledger-fabric] assume crash faults. So consensus algorithms like
Raft [bib-raft] and Paxos, which are built with crash fault assumptions,
are almost always used.

Algorithms like pbft [bib-pbft] are used for systems which need to
allow byzantine failures. While the pbft algorithm uses log in a similar
way, to tolerate byzantine failure, it needs three phased execution and a
quorum of 3f + 1, where f is the number of tolerated failures.

Cluster nodes maintain a Write-Ahead Log. Each log entry stores the state
required for consensus along with the user request. They coordinate to build
consensus over log entries, so that all cluster nodes have exactly the same
Write-Ahead log. The requests are then executed sequentially following the
log. Because all cluster nodes agree on each log entry, they execute the same
requests in the same order. This ensures that all the cluster nodes share the
same state.

A fault tolerant consensus building mechanism using Quorum needs two
phases.

• A phase to establish a Generation Clock and to know about the log
entries replicated in the previous Quorum.

• A phase to replicate requests on all the cluster nodes.

Executing two phases for each state change request is not efficient. So
cluster nodes select a leader at startup. The leader election phase establishes
the Generation Clock and detects all log entries in the previous Quorum.
(The entries the previous leader might have copied to the majority of the
cluster nodes.) Once there is a stable leader, only the leader co-ordinates the
replication. Clients communicate with the leader. The leader adds each
request to the log and makes sure that it’s replicated on all the followers.
Consensus is reached once a log entry is successfully replicated to the
majority of the followers. This way, only one phase execution to reach

consensus is needed for each state change operation when there is a stable
leader.

Multi-Paxos and Raft
Multi-Paxos [bib-multi-paxos] and Raft [bib-raft] are the most popular
algorithms to implement replicated-log. Multi-Paxos is only vaguely
described in academic papers. Cloud databases such as Spanner [bib-
spanner] and Cosmos DB [bib-cosmosdb] use Multi-Paxos [bib-multi-
paxos], but the implementation details are not well documented. Raft very
clearly documents all the implementation details, and is a preferred
implementation choice in most open source systems, even though Paxos and
its variants are discussed a lot more in academia.

Following sections describe how Raft implements a replicated log.

For each log entry, the leader appends it to its local Write-Ahead log and
then sends it to all the followers.

leader (class ReplicatedLog...)

private Long appendAndReplicate(byte[] data) {

 Long lastLogEntryIndex = appendToLocalLog(data);

 replicateOnFollowers(lastLogEntryIndex);

 return lastLogEntryIndex;

}

private void replicateOnFollowers(Long entryAtIndex) {

 //FIXME: factorout as a separate method.

 oldLeaderLeaseRemainingTime = System.nanoTime() + leaderLeaseTim

 for (final FollowerHandler follower : followers) {

 replicateOn(follower, entryAtIndex); //send replication reques

 }

}

The followers handle the replication request and append the log entries to
their local logs. After successfully appending the log entries, they respond to
the leader with the index of the latest log entry they have. The response also
includes the current Generation Clock of the server.

The followers also check if the entries already exist or there are entries
beyond the ones which are being replicated. It ignores entries which are
already present. But if there are entries which are from different generations,
they remove the conflicting entries.

follower (class ReplicatedLog...)

void maybeTruncate(ReplicationRequest replicationRequest) {

 replicationRequest.getEntries().stream()

 .filter(entry -> wal.getLastLogIndex() >= entry.getEntryInde

 entry.getGeneration() != wal.readAt(entry.getEntryInd

 .forEach(entry -> wal.truncate(entry.getEntryIndex()));

}

follower (class ReplicatedLog...)

private ReplicationResponse appendEntries(ReplicationRequest replic

 List<WALEntry> entries = replicationRequest.getEntries();

 entries.stream()

 .filter(e -> !wal.exists(e))

 .forEach(e -> wal.writeEntry(e));

 return new ReplicationResponse(SUCCEEDED, serverId(), replicatio

}

The follower rejects the replication request when the generation number in
the request is lower than the latest generation the server knows about. This
notifies the leader to step down and become a follower.

follower (class ReplicatedLog...)

Long currentGeneration = replicationState.getGeneration();

if (currentGeneration > request.getGeneration()) {

 return new ReplicationResponse(FAILED, serverId(), currentGenera

}

The Leader keeps track of log indexes replicated at each server, when
responses are received. It uses it to track the log entries which are
successfully copied to the Quorum and tracks the index as a commitIndex.
commitIndex is the High-Water Mark in the log.

leader (class ReplicatedLog...)

logger.info("Updating matchIndex for " + response.getServerId() + "

updateMatchingLogIndex(response.getServerId(), response.getReplicat

var logIndexAtQuorum = computeHighwaterMark(logIndexesAtAllServers(

var currentHighWaterMark = replicationState.getHighWaterMark();

if (logIndexAtQuorum > currentHighWaterMark && logIndexAtQuorum !=

 applyLogEntries(currentHighWaterMark, logIndexAtQuorum);

 replicationState.setHighWaterMark(logIndexAtQuorum);

}

leader (class ReplicatedLog...)

Long computeHighwaterMark(List<Long> serverLogIndexes, int noOfServ

 serverLogIndexes.sort(Long::compareTo);

 return serverLogIndexes.get(noOfServers / 2);

}

leader (class ReplicatedLog...)

private void updateMatchingLogIndex(int serverId, long replicatedLo

 FollowerHandler follower = getFollowerHandler(serverId);

 follower.updateLastReplicationIndex(replicatedLogIndex);

}

leader (class ReplicatedLog...)

public void updateLastReplicationIndex(long lastReplicatedLogIndex)

 this.matchIndex = lastReplicatedLogIndex;

}

Full replication
It is important to ensure that all the cluster nodes receive all the log entries
from the leader, even when they are disconnected or they crash and come
back up. Raft has a mechanism to make sure all the cluster nodes receive all
the log entries from the leader.

With every replication request in Raft, the leader also sends the log index
and generation of the log entries which immediately precede the new entries
getting replicated. If the previous log index and term do not match with its

local log, the followers reject the request. This indicates to the leader that the
follower log needs to be synced for some of the older entries.

follower (class ReplicatedLog...)

if (!wal.isEmpty() && request.getPrevLogIndex() >= wal.getLogStartI

 generationAt(request.getPrevLogIndex()) != request.getPrevLog

 return new ReplicationResponse(FAILED, serverId(), replicationSt

}

follower (class ReplicatedLog...)

private Long generationAt(long prevLogIndex) {

 WALEntry walEntry = wal.readAt(prevLogIndex);

 return walEntry.getGeneration();

}

So the leader decrements the matchIndex and tries sending log entries at the
lower index. This continues until the followers accept the replication request.

leader (class ReplicatedLog...)

//rejected because of conflicting entries, decrement matchIndex

FollowerHandler peer = getFollowerHandler(response.getServerId());

logger.info("decrementing nextIndex for peer " + peer.getId() + " f

peer.decrementNextIndex();

replicateOn(peer, peer.getNextIndex());

This check on the previous log index and generation allows the leader to
detect two things.

• If the follower log has missing entries. For example, if the follower log
has only one entry and the leader starts replicating the third entry, the
requests will be rejected until the leader replicates the second entry.

• If the previous entries in the log are from a different generation, higher
or lower than the corresponding entries in the leader log. The leader will

try replicating entries from lower indexes until the requests get accepted.
The followers truncate the entries for which the generation does not
match.

This way, the leader tries to push its own log to all the followers
continuously by using the previous index to detect missing entries or
conflicting entries. This makes sure that all the cluster nodes eventually
receive all the log entries from the leader even when they are disconnected
for some time.

Raft does not have a separate commit message, but sends the commitIndex
as part of the normal replication requests. The empty replication requests are
also sent as heartbeats. So commitIndex is sent to followers as part of the
heartbeat requests.

Log entries are executed in the log order
Once the leader updates its commitIndex, it executes the log entries in order,
from the last value of the commitIndex to the latest value of the
commitIndex. The client requests are completed and the response is returned
to the client once the log entries are executed.

class ReplicatedLog…

private void applyLogEntries(Long previousCommitIndex, Long commitI

 for (long index = previousCommitIndex + 1; index <= commitIndex;

 WALEntry walEntry = wal.readAt(index);

 var responses = stateMachine.applyEntries(Arrays.asList(walEn

 completeActiveProposals(index, responses);

 }

}

The leader also sends the commitIndex with the heartbeat requests it sends to
the followers. The followers update the commitIndex and apply the entries
the same way.

class ReplicatedLog…

private void updateHighWaterMark(ReplicationRequest request) {

 if (request.getHighWaterMark() > replicationState.getHighWaterMa

 var previousHighWaterMark = replicationState.getHighWaterMark

 replicationState.setHighWaterMark(request.getHighWaterMark())

 applyLogEntries(previousHighWaterMark, request.getHighWaterMa

 }

}

Leader Election

It is possible that multiple cluster nodes start leader election at the same
time. To reduce the possibility of this happening, each cluster node
waits for a random amount of time before triggering the election.So
mostly only one cluster node starts the election and wins it.

Leader election is also a problem which needs all of the cluster nodes
to reach an agreement. The approach taken by Raft [bib-raft] and other
consensus algorithms is to allow not having an agreement in the worst
case. The consistency is preferred over availability in such cases. This
incident at Cloudflare [bib-cloudflare-outage] is a good example of
that. The stale leaders are also tolerated. In such cases, Generation
Clock makes sure that only one leader succeeds in getting its requests
accepted by the followers.

Leader election is the phase where log entries committed in the previous
quorum are detected. Every cluster node operates in three states: candidate,
leader or follower. The cluster nodes start in a follower state expecting a
HeartBeat from an existing leader. If a follower doesn’t hear from any leader
in a predetermined time period ,it moves to the candidate state and starts
leader-election. The leader election algorithm establishes a new Generation
Clock value. Raft refers to the Generation Clock as term.

The leader election mechanism also makes sure the elected leader has as
many up-to-date log entries stipulated by the quorum. This is an

optimization done by Raft [bib-raft] which avoids log entries from previous
Quorum being transferred to the new leader.

New leader election is started by sending each of the peer servers a message
requesting a vote.

class ReplicatedLog…

private void startLeaderElection() {

 replicationState.setGeneration(replicationState.getGeneration()

 registerSelfVote();

 requestVoteFrom(followers);

}

Once a server is voted for in a given Generation Clock, the same vote is
returned for that generation always. This ensures that some other server
requesting a vote for the same generation is not elected, when a successful
election has already happened. The handling of the vote request happens as
follows:

class ReplicatedLog…

VoteResponse handleVoteRequest(VoteRequest voteRequest) {

 //for higher generation request become follower.

 // But we do not know who the leader is yet.

 if (voteRequest.getGeneration() > replicationState.getGeneration(

 becomeFollower(LEADER_NOT_KNOWN, voteRequest.getGeneration());

 }

 VoteTracker voteTracker = replicationState.getVoteTracker();

 if (voteRequest.getGeneration() == replicationState.getGeneration

 if (isUptoDate(voteRequest) && !voteTracker.alreadyVoted()) {

 voteTracker.registerVote(voteRequest.getServerId());

 return grantVote();

 }

 if (voteTracker.alreadyVoted()) {

 return voteTracker.votedFor == voteRequest.getServerId() ?

 grantVote() : rejectVote();

 }

 }

 return rejectVote();

}

private boolean isUptoDate(VoteRequest voteRequest) {

boolean result = voteRequest.getLastLogEntryGeneration() > wal.get

 || (voteRequest.getLastLogEntryGeneration() == wal.getLastLogE

 voteRequest.getLastLogEntryIndex() >= wal.getLastLogIndex());

return result;

}

The server which receives votes from the majority of the servers transitions
to the leader state. The majority is determined as discussed in Quorum. Once
elected, the leader continuously sends a HeartBeat to all of the followers. If
the followers don’t receive a HeartBeat in a specified time interval, a new
leader election is triggered.

Log entries from previous generation
As discussed in the above section, the first phase of the consensus
algorithms detects the existing values, which had been copied on the
previous runs of the algorithm. The other key aspect is that these values are
proposed as the values with the latest generation of the leader. The second
phase decides that the value is committed only if the values are proposed for
the current generation. Raft never updates generation numbers for the
existing entries in the log. So if the leader has log entries from the older
generation which are missing from some of the followers, it can not mark
those entries as committed just based on the majority quorum. That is
because some other server which may not be available now, can have an
entry at the same index with higher generation. If the leader goes down
without replicating an entry from its current generation, those entries can get
overwritten by the new leader. So in Raft, the new leader must commit at
least one entry in its term. It can then safely commit all the previous entries.
Most practical implementations of Raft try to commit a no-op entry
immediately after a leader election, before the leader is considered ready to

serve client requests. Refer to [raft-phd] [bib-raft-phd] section 3.6.1 for
details.

An example leader-election
Consider five servers, athens, byzantium, cyrene, delphi and ephesus.
ephesus is the leader for generation 1. It has replicated entries to itself,
delphi and athens.

At this point, ephesus and delphi get disconnected from the rest of the
cluster.

byzantium has the least election timeout, so it triggers the election by
incrementing its Generation Clock to 2. cyrene has its generation less than 2
and it also has same log entry as byzantium. So it grants the vote. But athens
has an extra entry in its log. So it rejects the vote.

Because byzantium can not get a majority 3 votes, it loses the election and
moves back to follower state.

athens times out and triggers the election next. It increments the Generation
Clock to 3 and sends vote request to byzantium and cyrene. Because both
byzantium and cyrene have lower generation number and less log entries
than athens, they both grant the vote to athens. Once athens gets majority of
the votes, it becomes the leader and starts sending HeartBeats to byzantium
and cyrene. Once byzantium and cyrene receive a heartbeat from the leader
at higher generation, they increment their generation. This confirms the
leadership of athens. athens then replicates its own log to byzantium and
cyrene.

athens now replicates Entry2 from generation 1 to byzantium and cyrene.
But because it’s an entry from the previous generation, it does not update the
commitIndex even when Entry2 is successfully replicated on the majority
quorum.

athens appends a no-op entry to its local log. After this new entry in
generation 3 is successfully replicated, it updates the commitIndex

If ephesus comes back up or restores network connectivity and sends request
to cyrene. Because cyrene is now at generation 3, it rejects the requests.
ephesus gets the new term in the rejection response, and steps down to be a
follower.

Technical Considerations
Following are some of the important technical considerations for any
replicated log mechanism.

• The first phase of any consensus building mechanism needs to know
about the log entries which might be replicated on the previous Quorum.
The leader needs to know about all such log entries and make sure that
they are replicated on each cluster node.

Raft makes sure that the cluster node with as up-to-date a log as the
quorum of the servers is elected as a leader, so log entries do not need to
be passed from other cluster nodes to the new leader.
It is possible that some entries are conflicting. In this case, the
conflicting entries from the follower log are overwritten.

• It is possible that some cluster nodes in the cluster lag behind, either
because they crash and restart or get disconnected from the leader. The
leader needs to track each cluster node and make sure that it sends all the
missing entries.

Raft maintains a state per cluster node to know the log index to which
the log entries are successfully copied to each node. The replication
requests to each cluster node are sent with all the entries from that log
index, making sure that each cluster node gets all the log entries.

• How the client interacts with the replicated log to find the leader is
implemented is discussed in the Consistent Core. The cluster detecting
duplicate requests in case of client retries is handled by the Idempotent
Receiver.

• The logs are generally compacted by using Low-Water Mark. A snapshot
of the store backed by replicated log is taken periodically, say after a few
thousand entries are applied. The log is then discarded to the index at
which the snapshot is taken. The slow followers or the newly added
servers, which need the full log to be sent, are sent the snapshot instead
of individual log entries.

• One of the key assumptions here is that all the requests need to be
strictly ordered. This might not be the requirement always. For example
a key value store might not require ordering across requests for different
keys. In such situations, it is possible to run a different consensus
instance per key. It then also removes the need to have a single leader for
all the requests.

EPaxos [bib-epaxos] is an algorithm which does not rely on a single
leader for ordering of requests.
In partitioned databases like MongoDB [bib-mongodb], a replicated log
is maintained per partition. So requests are ordered per partition, but not
across partitions.

Push vs Pull
In the Raft [bib-raft] replication mechanism explained here, the leader
pushes all the log entries to followers. It is also possible to have followers
pull the log entries. The Raft implementation [bib-kafka-raft] in Kafka [bib-
kafka] follows pull-based replication.

What goes in the log?
The replicated log mechanism is used for a wide variety of applications,
from a key-value store to blockchain [bib-blockchain].

For a key-value store, the entries in the log are about setting key-values. For
a Lease the entries are about setting up named leases. For a blockchain, the
entries are the blocks in a blockchain which need to be served to all the peers
in the same order. For databases like MongoDB [bib-mongodb], the entries
are the data that needs to be consistently replicated.

More generally, the requests which make state changes are placed in the log.

Bypassing the log for read requests
Replicated Log generally acts as a Write-Ahead Log for a data store.
Datastores are expected to handle lot more read requests than write requests.
Read requests are more latency sensitive. So most replicated-log
implementations like etcd [bib-etcd] which uses Raft [bib-raft] or Zookeeper
[bib-zookeeper] serve read requests directly from the key-value stores
without going through the replicated-log, thus, avoid log replication
overhead.

One of the key issues because of this is that the read requests can return
older values if the leader is disconnected from the rest of the cluster. With

the standard log replication, the leader won’t be able to execute any request
which are put in the log unilatery. This provides the safety because of
following things.

• Leader won’t be able to execute requests unless it can replicate it on the
Quorum nodes.

• Quorum makes sure that requests which reach quorum, are not lost

• Log provides strict ordering of the requests. So when a request is
executed, it is guaranteed to see the results of the immediately previous
request.

When this mechanism is avoided, it can run into subtle issues. For read
requests on a key-value store, this can result in getting older values and
missing on latest updates even when clients read from the node which it
thinks as the leader, expecting to always get the latest values.

Consider three nodes as before, athens, byzantium and cyrene. athens is the
leader. All three nodes have an existing value for title as ‘Nitroservices’

Lets say, athens gets disconnected from the rest of the cluster. byzantium and
cyrene then run an election and cyrene is the new leader. athens wont know
that it is disconnected, unless it receives some communication, either a
heartbeat or a response from the new leader asking it to step down. Alice
communicates with cyrene and updates the title to ‘Microservices’. After
some time, Bob communicates with athens to read the latest value of ‘title’.
cyrene still think that its the leader.So returns what it thinks as the latest
value. Bob ends up reading the old value, after Alice has successfully
updated the value, even when Bob thinks that it has read the value from a
legitimate leader.

Products like etcd [bib-etcd] and Consul [bib-consul] were known to have
these issues [bib-etcd-read-issue], which were later fixed. Zookeeper [bib-
zookeeper], specifically documents this limitation, and provides no
guarantee about getting the latest values in the read requests.

There are two solutions to work around this issue.

• Before serving the read request, the leader can send the heartbeat
message to followers. If serves the read request only if it gets a
successful response from the Quorum of the followers. This guarantees
that there is this leader is still the valid leader. Raft [bib-raft] documents
a mechanism which works the same way.

In the above example, when Bob’s request is handled by athens, it sends
the HeartBeat to other nodes. If it can not reach the Quorum, then it
steps down and returns error to Bob.

• The network round trip for heartbeats per read request, can be too much
of a cost to pay, particularly if the cluster is geo-distributed, with servers
placed in distant geographic regions. So often, another solution is used
where the leader implements a leader lease [bib-yugabytedb-leader-
lease]. This solution depends on the monotonic clocks [bib-linux-clock-
gettime]. This makes sure that the old leader steps down if it detects that
it is disconnected from the cluster. No other leader is allowed to serve
the requests while there is a possibility of older leader still being around.

The leader maintains a time interval called leaderLeaseTimeout within
which it expects to get a successful response from the followers. When
the leader gets a successful response from the followers for its requests,
it marks the time at which it got the successful response from each
follower.

Before serving the read request, it checks if it could contact with the
Quorum of the followers within the leaderLeaseTimeout. It serves the
read request if it had received successful response from enough
followers. This proves that the cluster does not yet have another leader.
Let say, leaderLeaseTimeout is 5 seconds. Bob’s request is received by

athens at 17:55. It had received responses from cyrene at 17:52. For a
three node cluster, athens and cyrene form a quorum. So athens confirms
that it could reach quorum within last 5 seconds.

Now, athens did not receive any response after the response from cyrene
at 17:52. If Bob sends a read request at 18:00, athens detects that it has
not received responses from Quorum of the servers, it steps down, and
rejects the read requests.

As discussed in this consul post [bib-consul-leader-lease], the
electionTimeout is kept higher than the leaderLeaseTimeout. Followers
also keep store the known leader address, which they reset only when
electionTimeout period elapses without a HeartBeat from the leader. The
followers do not grant vote to any of the vote requests, if they have a
known leader.

These two things make sure that as long as the existing leader thinks that
it has a leader lease, not other node can win an election, and there can be
no other leader.
This implementation assumes that [clock-drift] [bib-clock-drift] across
monotonic clocks [bib-linux-clock-gettime] in a cluster is bounded. And
electionTimeout on followers will not elapse faster than the
leaderLeasetimeout elapses on the leader.
Products like YugabyteDB [bib-yugabyte], etcd [bib-etcd], and Consul
[bib-consul] implement a leader lease [bib-yugabytedb-leader-lease] to
ensure that there are never two leaders serving the read and write
requests.

Examples
Replicated log is the mechanism used by Raft [bib-raft], Multi-Paxos [bib-
multi-paxos], Zab [bib-zab] and viewstamped replication [bib-view-stamp-
replication] protocols. The technique is called state machine replication [bib-
state-machine-replication] where replicas execute the same commands in the
same order. Consistent Core is often built with state machine replication.

Blockchain implementations like hyperledger fabric [bib-hyperledger-fabric]
have an ordering component which is based on a replicated log mechanism.
Previous versions of hyperledger fabric used Kafka [bib-kafka] for ordering
of the blocks in the blockchain. Recent versions use Raft [bib-raft] for the
same purpose.

Chapter 10. Quorum

Avoid two groups of servers making independent decisions, by requiring
majority for taking every decision.

Problem

Safety and Liveness

Liveness is the property of the system which says that system always
makes progress. Safety is the property which says that the system is
always in the correct state. If we focus only on safety, then the system
as a whole might not make progress. If we focus only on liveness, then
safety might be compromised.

In a distributed system, whenever a server takes any action, it needs to
ensure that in the event of a crash the results of the actions are available to
the clients. This can be achieved by replicating the result to other servers in
the cluster. But that leads to the question: how many other servers need to
confirm the replication before the original server can be confident that the
update is fully recognized. If the original server waits for too many
replications, then it will respond slowly - reducing liveness. But if it doesn’t
have enough replications, then the update could be lost - a failure of safety.
It’s critical to balance between the overall system performance and system
continuity.

Solution
A cluster agrees that it’s received an update when a majority of the nodes in
the cluster have acknowledged the update. We call this number a quorum. So
if we have a cluster of five nodes, we need a quorum of three. (For a cluster
of n nodes, the quorum is n/2 + 1.)

The need for a quorum indicates how many failures can be tolerated - which
is the size of the cluster minus the quorum. A cluster of five nodes can
tolerate two of them failing. In general, if we want to tolerate ‘f’ failures we
need a cluster size of 2f + 1

Consider following two examples that need a quorum:

• Updating data in a cluster of servers. High-Water Mark is used to
ensure only data which is guaranteed to be available on the majority of
servers is visible to clients.

• Leader election. In Leader and Followers, a leader is selected only if it
gets votes from a majority of the servers.

Deciding on number of servers in a cluster

• In his book Guide to Reliable and Scalable Distributed Systems [bib-
birman] Dr. Kenneth Birman builds on the analysis done by Dr. Jim
Gray for the world of relational databases. Dr. Birman states that the
throughput of quorum-based systems can go down as O(1 / n ** 2),
where ‘n’ is the number of servers in a cluster.

• Zookeeper [bib-zookeeper-wait-free] and other consensus based
systems are known to have lower write throughput when number of
servers in a cluster go beyond five

• In his talk Applying The Universal Scalability Law to Distributed
Systems [bib-usl-to-dist-sys], Dr. Neil Gunther shows, how the
throughput of the system goes down with the number of coordinating
servers in a cluster

The cluster can function only if majority of servers are up and running. In
systems doing data replication, there are two things to consider:

Every time data is written to the cluster, it needs to be copied to multiple
servers. Every additional server adds some overhead to complete this write.
The latency of data write is directly proportional to the number of servers
forming the quorum. As we will see below, doubling the number of servers
in a cluster will reduce throughput to half of the value for the original
cluster.

The number of server failures tolerated is dependent on the size of the
cluster. But just adding one more server to an existing cluster doesn’t always
give more fault tolerance: adding one server to a three server cluster doesn’t
increase failure tolerance.

• The throughput of write operations.

• The number of failures which need to be tolerated.

Considering these two factors, most practical quorum-based systems have
cluster sizes of three or five. A five-server cluster tolerates two server
failures and has tolerable data write throughput of few thousand requests per
second.

Here is an example of how to choose the number of servers, based on the
number of tolerated failures and approximate impact on the throughput. The
throughput column shows approximate relative throughput to highlight how
throughput degrades with the number of servers. The number will vary from
system to system. As an example, readers can refer to the actual throughput
data published in Raft Thesis [bib-raft-phd] and the original Zookeeper
paper [bib-zookeeper-hunt-paper].

Examples
• All the consensus implementations like Zab [bib-zab], Raft [bib-raft],

Paxos [bib-paxos] are quorum based.

• Even in systems which don’t use consensus, quorum is used to make
sure the latest update is available to at least one server in case of failures
or network partition. For instance, in databases like Cassandra [bib-
cassandra], a database update can be configured to return success only
after a majority of the servers have updated the record successfully.

Chapter 11. Generation Clock

A monotonically increasing number indicating the generation of the server.

Also known as: Term

Also known as: Epoch

Also known as: Generation

Problem
In Leader and Followers setup, there is a possibility of the leader being
temporarily disconnected from the followers. There might be a garbage
collection pause in the leader process, or a temporary network disruption
which disconnects the leader from the follower. In this case the leader
process is still running, and after the pause or the network disruption is over,
it will try sending replication requests to the followers. This is dangerous, as
meanwhile the rest of the cluster might have selected a new leader and
accepted requests from the client. It is important for the rest of the cluster to
detect any requests from the old leader. The old leader itself should also be
able to detect that it was temporarily disconnected from the cluster and take
necessary corrective action to step down from leadership.

Solution

Generation Clock pattern is an example of a Lamport timestamp [bib-
lamport-timestamp]: a simple technique used to determine ordering of
events across a set of processes, without depending on a system clock.
Each process maintains an integer counter, which is incremented after

every action the process performs. Each process also sends this integer
to other processes along with the messages processes exchange. The
process receiving the message sets its own integer counter by picking
up the maximum between its own counter and the integer value of the
message. This way, any process can figure out which action happened
before the other by comparing the associated integers. The comparison
is possible for actions across multiple processes as well, if the messages
were exchanged between the processes. Actions which can be
compared this way are said to be ‘causally related’.

Maintain a monotonically increasing number indicating the generation of the
server. Every time a new leader election happens, it should be marked by
increasing the generation. The generation needs to be available beyond a
server reboot, so it is stored with every entry in the Write-Ahead Log. As
discussed in High-Water Mark, followers use this information to find
conflicting entries in their log.

At startup, the server reads the last known generation from the log.

class ReplicatedLog…

this.replicationState = new ReplicationState(config, wal.getLastLog

With Leader and Followers servers increment the generation every time
there’s a new leader election.

class ReplicatedLog…

private void startLeaderElection() {

 replicationState.setGeneration(replicationState.getGeneration()

 registerSelfVote();

 requestVoteFrom(followers);

}

The servers send the generation to other servers as part of the vote requests.
This way, after a successful leader election, all the servers have the same

generation. Once the leader is elected, followers are told about the new
generation

follower (class ReplicatedLog...)

private void becomeFollower(int leaderId, Long generation) {

 replicationState.reset();

 replicationState.setGeneration(generation);

 replicationState.setLeaderId(leaderId);

 transitionTo(ServerRole.FOLLOWING);

}

Thereafter, the leader includes the generation in each request it sends to the
followers. It includes it in every HeartBeat message as well as the
replication requests sent to followers.

Leader persists the generation along with every entry in its Write-Ahead Log

leader (class ReplicatedLog...)

Long appendToLocalLog(byte[] data) {

 Long generation = replicationState.getGeneration();

 return appendToLocalLog(data, generation);

}

Long appendToLocalLog(byte[] data, Long generation) {

 var logEntryId = wal.getLastLogIndex() + 1;

 var logEntry = new WALEntry(logEntryId, data, EntryType.DATA, gen

 return wal.writeEntry(logEntry);

}

This way, it is also persisted in the follower log as part of the replication
mechanism of Leader and Followers

If a follower gets a message from a deposed leader, the follower can tell
because its generation is too low. The follower then replies with a failure
response.

follower (class ReplicatedLog...)

Long currentGeneration = replicationState.getGeneration();

if (currentGeneration > request.getGeneration()) {

 return new ReplicationResponse(FAILED, serverId(), currentGenera

}

When a leader gets such a failure response, it becomes a follower and
expects communication from the new leader.

Old leader (class ReplicatedLog...)

if (!response.isSucceeded()) {

 if (response.getGeneration() > replicationState.getGeneration())

 becomeFollower(LEADER_NOT_KNOWN, response.getGeneration());

 return;

 }

Consider the following example. In the three server cluster, leader1 is the
existing leader. All the servers in the cluster have the generation as 1.
Leader1 sends continuous heartbeats to the followers. Leader1 has a long
garbage collection pause, for say 5 seconds. The followers did not get a
heartbeat, and timeout to elect a new leader. The new leader increments the
generation to 2. After the garbage collection pause is over, leader1 continues
sending the requests to other servers. The followers and the new leader
which are at generation 2, reject the request and send a failure response with
generation 2. leader1 handles the failure response and steps down to be a
follower, with generation updated to 2.

Examples
Raft [bib-raft] uses the concept of a Term for marking the leader generation.

In Zookeeper [bib-zab], an epoch number is maintained as part of every
transaction id. So every transaction persisted in Zookeeper has a generation
marked by epoch.

In Cassandra [bib-cassandra] each server stores a generation number which
is incremented every time a server restarts. The generation information is
persisted in the system keyspace and propagated as part of the gossip
messages to other servers. The servers receiving the gossip message can then
compare the generation value it knows about and the generation value in the
gossip message. If the generation in the gossip message is higher, it knows
that the server was restarted and then discards all the state it has maintained
for that server and asks for the new state.

In Kafka [bib-kafka] an epoch number is created and stored in Zookeeper
every time a new Controller is elected for a kafka cluster. The epoch is
included in every request that is sent from controller to other servers in the
cluster. Another epoch called LeaderEpoch [bib-kafka-leader-epoch] is
maintained to know if the followers a partition are lagging behind in their
High-Water Mark.

Chapter 12. High-Water Mark

An index in the write ahead log showing the last successful replication.

Also known as: CommitIndex

Problem
The Write-Ahead Log pattern is used to recover state after the server crashes
and restarts. But a write-ahead log is not enough to provide availability in
case of server failure. If a single server fails, then clients won’t be able to
function until the server restarts. To get a more available system, we can
replicate the log on multiple servers. Using Leader and Followers the leader
replicates all its log entries to a Quorum of followers. Now should the leader
fail, a new leader can be elected, and clients can mostly continue to work
with the cluster as before. But there are still a couple things that can go
wrong:

• The leader can fail before sending its log entries to any followers.

• The leader can fail after sending log entries to some followers, but could
not send it to the majority of followers.

In these error scenarios, some followers can be missing entries in their logs,
and some followers can have more entries than others. So it becomes
important for each follower to know what part of the log is safe to be made
available to the clients.

Solution
The high-water mark is an index into the log file that records the last log
entry that is known to have successfully replicated to a Quorum of followers.

The leader also passes on the high-water mark to its followers during its
replication. All servers in the cluster should only transmit data to clients that
reflects updates that are below the high-water mark.

Here’s the sequence of operations.

For each log entry, the leader appends it to its local write ahead log, and then
sends it to all the followers.

leader (class ReplicatedLog...)

private Long appendAndReplicate(byte[] data) {

 Long lastLogEntryIndex = appendToLocalLog(data);

 replicateOnFollowers(lastLogEntryIndex);

 return lastLogEntryIndex;

}

private void replicateOnFollowers(Long entryAtIndex) {

 //FIXME: factorout as a separate method.

 oldLeaderLeaseRemainingTime = System.nanoTime() + leaderLeaseTim

 for (final FollowerHandler follower : followers) {

 replicateOn(follower, entryAtIndex); //send replication reques

 }

}

The followers handle the replication request and append the log entries to
their local logs. After successfully appending the log entries, they respond to
the leader with the index of the latest log entry they have. The response also
includes the current Generation Clock of the server.

follower (class ReplicatedLog...)

private ReplicationResponse appendEntries(ReplicationRequest replic

 List<WALEntry> entries = replicationRequest.getEntries();

 entries.stream()

 .filter(e -> !wal.exists(e))

 .forEach(e -> wal.writeEntry(e));

 return new ReplicationResponse(SUCCEEDED, serverId(), replicatio

}

The Leader keeps track of log indexes replicated at each server, when
responses are received.

class ReplicatedLog…

logger.info("Updating matchIndex for " + response.getServerId() + "

updateMatchingLogIndex(response.getServerId(), response.getReplicat

var logIndexAtQuorum = computeHighwaterMark(logIndexesAtAllServers(

var currentHighWaterMark = replicationState.getHighWaterMark();

if (logIndexAtQuorum > currentHighWaterMark && logIndexAtQuorum !=

 applyLogEntries(currentHighWaterMark, logIndexAtQuorum);

 replicationState.setHighWaterMark(logIndexAtQuorum);

}

The high-water mark can be calculated by looking at the log indexes of all
the followers and the log of the leader itself, and picking up the index which
is available on the majority of the servers.

class ReplicatedLog…

Long computeHighwaterMark(List<Long> serverLogIndexes, int noOfServ

 serverLogIndexes.sort(Long::compareTo);

 return serverLogIndexes.get(noOfServers / 2);

}

A subtle problem can come up with leader election. We must ensure all
the servers in the cluster have an up-to-date log before any server sends
data to clients.

There is a subtle issue in the case where the existing leader fails before
propagating the high-water mark to all the followers. RAFT does this
by appending a no-op entry to the leader’s log after a successful leader
election, and only serves clients once this is confirmed by its followers.
In ZAB, the new leader explicitly tries to push all its entries to all the
followers before starting to serve the clients.

The leader propagates the high-water mark to the followers either as part of
the regular HeartBeat or as separate requests. The followers then set their
high-water mark accordingly.

Any client can read the log entries only till the high-water mark. Log entries
beyond the high-water mark are not visible to clients as there is no
confirmation that the entries are replicated, and so they might not be
available if the leader fails, and some other server is elected as a leader.

class ReplicatedLog…

public WALEntry readEntry(long index) {

 if (index > replicationState.getHighWaterMark()) {

 throw new IllegalArgumentException("Log entry not available");

 }

 return wal.readAt(index);

}

Log Truncation
When a server joins the cluster after crash/restart, there is always a
possibility of having some conflicting entries in its log. So whenever a
server joins the cluster, it checks with the leader of the cluster to know which
entries in the log are potentially conflicting. It then truncates the log to the
point where entries match with the leader,and then updates the log with the
subsequent entries to ensure its log matches the rest of the cluster.

Consider the following example. The client sends requests to add four
entries in the log. The leader successfully replicates three entries, but fails
after adding entry4 to its own log. One of the followers is elected as a new
leader and accepts more entries from the client. When the failed leader joins
the cluster again, it has entry4 which is conflicting. So it needs to truncate its
log till entry3, and then add entry5 to match the log with the rest of the
cluster.

Any server which restarts or rejoins the cluster after a pause, finds the new
leader. It then explicitly asks for the current high-water mark, truncates its
log to high-water mark, and then gets all the entries beyond high-water mark
from the leader. Replication algorithms like RAFT have ways to find out
conflicting entries by checking log entries in its own log with the log entries
in the request. The entries with the same log index, but at lower Generation
Clock, are removed.

class ReplicatedLog…

void maybeTruncate(ReplicationRequest replicationRequest) {

 replicationRequest.getEntries().stream()

 .filter(entry -> wal.getLastLogIndex() >= entry.getEntryInde

 entry.getGeneration() != wal.readAt(entry.getEntryInd

 .forEach(entry -> wal.truncate(entry.getEntryIndex()));

}

A simple implementation to support log truncation is to keep a map of log
indexes and file position. Then the log can be truncated at a given index, as
following:

class WALSegment…

public synchronized void truncate(Long logIndex) throws IOExceptio

 var filePosition = entryOffsets.get(logIndex);

 if (filePosition == null) throw new IllegalArgumentException("No

 fileChannel.truncate(filePosition);

 truncateIndex(logIndex);

}

private void truncateIndex(Long logIndex) {

 entryOffsets.entrySet().removeIf(entry -> entry.getKey() >= logI

}

Examples
• All the consensus algorithms use the concept of high-water mark to

know when to apply the proposed state mutations. e.g. In the RAFT [bib-
raft] consensus algorithm, high-water mark is called ‘CommitIndex’.

• In Kafka replication protocol [bib-kafka-replication-protocol], there is a
separate index maintained called ‘high-water mark’. Consumers can see
entries only until the high-water mark.

• Apache BookKeeper [bib-bookkeeper] has a concept of ‘last add
confirmed [bib-bookkeeper-protocol]’, which is the entry which is
successfully replicated on quorum of bookies.

Chapter 13. Singular Update Queue

Use a single thread to process requests asynchronously to maintain order
without blocking the caller.

Problem
When the state needs to be updated by multiple concurrent clients, we need
it to be safely updated with one at a time changes. Consider the example of
the Write-Ahead Log pattern. We need entries to be processed one at a time,
even if several concurrent clients are trying to write. Generally locks are
used to protect against concurrent modifications. But if the tasks being
performed are time consuming, like writing to a file, blocking all the other
calling threads until the task is completed can have severe impact on overall
system throughput and latency. It is important to make effective use of
compute resources, while still maintaining the guarantee of one at a time
execution.

Solution
Implement a workqueue and a single thread working off the queue. Multiple
concurrent clients can submit state changes to the queue. But a single thread
works on state changes. This can be naturally implemented with goroutines
and channels in languages like golang.

A typical Java implementation looks like following:

The implementation shown here is by using Java’s Thread class, just to
demonstrate basic code structure. It is possible to use Java’s
ExecutorService with single thread, to achieve the same. You can refer
to book Java Concurrency In Practice [bib-java-concurrency-in-
practice] to know more about using ExecutorService.

A SingularUpdateQueue has a queue and a function to be applied for work
items in the queue. It extends from java.lang.Thread, to make sure that it has

its own single thread of execution.

public class SingularUpdateQueue<Req, Res> extends Thread implement

 private ArrayBlockingQueue<RequestWrapper<Req, Res>> workQueue

 = new ArrayBlockingQueue<RequestWrapper<Req, Res>>(100);

 private Function<Req, Res> handler;

 private volatile boolean isRunning = false;

Clients submit requests to the queue on their own threads. The queue wraps
each request in a simple wrapper to combine it with a future, returning the
future to the client so that the client can react once the request is eventually
completed.

class SingularUpdateQueue…

public CompletableFuture<Res> submit(Req request) {

 try {

 var requestWrapper = new RequestWrapper<Req, Res>(request);

 workQueue.put(requestWrapper);

 return requestWrapper.getFuture();

 }

 catch (InterruptedException e) {

 throw new RuntimeException(e);

 }

}

class RequestWrapper<Req, Res> {

 private final CompletableFuture<Res> future;

 private final Req request;

 public RequestWrapper(Req request) {

 this.request = request;

 this.future = new CompletableFuture<Res>();

 }

 public CompletableFuture<Res> getFuture() { return future; }

 public Req getRequest() { return request; }

The elements in the queue are processed by the single dedicated thread that
SingularUpdateQueue inherits from Thread. The queue allows multiple
concurrent producers to add the tasks for execution. The queue
implementation should be thread safe, and should not add a lot of overhead
under contention. The execution thread picks up requests from the queue and
process them one at a time. The CompletableFuture is completed with the
response of the task execution.

class SingularUpdateQueue…

@Override

public void run() {

 isRunning = true;

 while(isRunning) {

 Optional<RequestWrapper<Req, Res>> item = take();

 item.ifPresent(requestWrapper -> {

 try {

 Res response = handler.apply(requestWrapper.getRequest())

 requestWrapper.complete(response);

 } catch (Exception e) {

 requestWrapper.completeExceptionally(e);

 }

 });

 }

}

class RequestWrapper…

public void complete(Res response) {

 future.complete(response);

}

public void completeExceptionally(Exception e) {

 e.printStackTrace();

 getFuture().completeExceptionally(e);

}

It’s useful to note that we can put a timeout while reading items from the
queue, instead of blocking it indefinitely. It allows us to exit the thread if
needed, with isRunning set to false, and the queue will not block indefinitely
if it’s empty, blocking the execution thread. So we use the poll method with
a timeout, instead of the take method, which blocks indefinitely. This gives
us the ability to shutdown the thread of execution cleanly.

class SingularUpdateQueue…

private Optional<RequestWrapper<Req, Res>> take() {

 try {

 return Optional.ofNullable(workQueue.poll(2, TimeUnit.MILLISECO

 } catch (InterruptedException e) {

 return Optional.empty();

 }

}

public void shutdown() {

 this.isRunning = false;

}

For example, a server processing requests from multiple clients and updating
write ahead log, can have use a SingularUpdateQueue as following.

A client of the SingularUpdateQueue would set it up by specifying its
paramaterized types and the function to run when processing the message
from the queue. For this example, we’re using a consumer of requests for a
write ahead log. There is a single instance of this consumer, which will
control access to the log data structure. The consumer needs to put each
request into a log and then return a response. The response message can only
be sent after the message has been put into the log. We use a
SingularUpdateQueue to ensure there’s a reliable ordering for these actions.

public class WalRequestConsumer implements Consumer<Message<Request

 private final SingularUpdateQueue<Message<RequestOrResponse>, Mes

 private final WriteAheadLog wal;

 public WalRequestConsumer(Config config) {

 this.wal = WriteAheadLog.openWAL(config);

 walWriterQueue = new SingularUpdateQueue<>((message) -> {

 wal.writeEntry(serialize(message));

 return responseMessage(message);

 });

 startHandling();

}

private void startHandling() { this.walWriterQueue.start(); }

The consumer’s accept method takes messages, puts them on the queue and
after each message is processed, sends a response. This method is run on the
caller’s thread, allowing many callers to invoke accept at the same time.

@Override

public void accept(Message message) {

 CompletableFuture<Message<RequestOrResponse>> future = walWriterQ

 future.whenComplete((responseMessage, error) -> {

 sendResponse(responseMessage);

 });

}

Choice of the queue
The choice of the queue data structure is an important one to be made. On
JVM, there are various data structures available to chose from:

As the name suggests, this is an array-backed blocking queue. This is used
when a fixed bounded queue needs to be created. Once the queue fills up, the
producer will block. This provides blocking backpressure and is helpful
when we have slow consumers and fast producers

ConcurrentLinkedQueue can be used when we do not have consumers
waiting for the producer, but there is some coordinator which schedules
consumers only after tasks are queued onto the ConcurrentLinkedQueue.

This is mostly used when unbounded queuing needs to be done, without
blocking the producer. We need to be careful with this choice, as the queue
might fill up quickly if no backpressure techniques are implemented and can
go on consuming all the memory

As discussed in LMAX Disruptor, sometimes, task processing is latency
sensitive. So much so, that copying tasks between processing stages with
ArrayBlockingQueue can add to latencies which are not acceptable.
RingBuffer [bib-lmax] can be used in these cases to pass tasks between
stages.

• ArrayBlockingQueue (Used in Kafka request queue)

• ConcurrentLinkedQueue along with ForkJoinPool (Used in Akka Actors
mailbox implementation)

• LinkedBlockingDeque (Used By Zookeeper and Kafka response queue)

• RingBuffer (Used in LMAX Disruptor,)

Using Channels and Lightweight Threads.
This can be a natural fit for languages or libraries which support lightweight
threads along with the concept of channels (e.g. golang, kotlin). All the
requests are passed to a single channel to be processed. There is a single
goroutine which processes all the messages to update state. The response is
then written to a separate channel, and processed by separate goroutine to
send it back to clients. As seen in the following code, the requests to update
key value are passed onto a single shared request channel.

func (s *server) putKv(w http.ResponseWriter, r *http.Request) {

 kv, err := s.readRequest(r, w)

 if err != nil {

 log.Panic(err)

 return

 }

 request := &requestResponse{

 request: kv,

 responseChannel: make(chan string),

 }

 s.requestChannel <- request

 response := s.waitForResponse(request)

 w.Write([]byte(response))

}

The requests are processed in a single goroutine to update all the state.

func (s* server) Start() error {

 go s.serveHttp()

 go s.singularUpdateQueue()

 return nil

}

func (s *server) singularUpdateQueue() {

 for {

 select {

 case e := <-s.requestChannel:

 s.updateState(e)

 e.responseChannel <- buildResponse(e);

 }

}

}

Backpressure
Backpressure can be an important concern when a work queue is used to
communicate between threads. In case the consumer is slow and the
producer is fast, the queue might fill up fast. Unless some precautions are
taken, it might run out of memory with a large number of tasks filling up the
queue. Generally, the queue is kept bounded with sender blocking if the

queue is full. For example, java.util.concurrent.ArrayBlockingQueue has
two methods to add elements. put method blocks the producer if the array is
full. add method throws IllegalStateException if queue is full, but doesn’t
block the producer. It’s important to know the semantics of the methods
available for adding tasks to the queue. In the case of ArrayBlockingQueue,
put method should be used to block the sender and provide backpressure by
blocking. Frameworks like reactive-streams can help implement a more
sophisticated backpressure mechanism from consumer to the producer.

Other Considerations
Most of the time the processing needs to be done with chaining multiple
tasks together. The results of a SingularUpdateQueue execution need to be
passed to other stages. e.g. As shown in the WalRequestConsumer above,
after the records are written to the write ahead log, the response needs to be
sent over the socket connection. This can be done by executing the future
returned by SingularUpdateQueue on a separate thread. It can submit the
task to other SingularUpdateQueue as well.

Sometimes, as part of the task execution in the SingularUpdateQueue,
external service calls need to be made and the state of the
SingularUpdateQueue is updated by the response of the service call. It’s
important in this scenario that no blocking network calls are made or it
blocks the only thread which is processing all the tasks. The calls are made
asynchronously. Care must be taken to not access the SingularUpdateQueue
state in the future callback of the asynchronous service call because this can
happen in a separate thread, defeating the purpose of doing all state changes
in SingularUpdateQueue by single thread. The result of the call should be
added to the work queue similar to other events or requests.

• Task Chaining.

• Making External Service Calls.

Examples
All the consensus implementations like Zookeeper(ZAB) or etcd (RAFT)
need requests to be processed in strict order, one at a time. They use a

similar code structure.

• The Zookeeper implementation of request processing pipeline
[https://github.com/apache/zookeeper/blob/master/zookeeper-
server/src/main/java/org/apache/zookeeper/server/SyncRequestProcessor
.java] is done with single threaded request processors

• Controller
[https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller
+Redesign] in Apache Kafka, which needs to update state based on to
multiple concurrent events from zookeeper, handles them in a single
thread with all the event handlers submitting the events in a queue

• Cassandra
[https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cass
andra/concurrent/Stage.java], which uses SEDA [bib-seda] architecture,
uses single threaded stages to update its Gossip state.

• Etcd [https://github.com/etcd-io/etcd/blob/master/etcdserver/raft.go] and
other go-lang based implementation have a single goroutine working off
a request channel to update its state

• LMAX-Diruptor architecture [bib-lmax] follows Single Writer Principle
[bib-single-writer] to avoid mutual exclusion while updating local state.

https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/SyncRequestProcessor.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/SyncRequestProcessor.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/SyncRequestProcessor.java
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Redesign
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Redesign
https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cassandra/concurrent/Stage.java
https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cassandra/concurrent/Stage.java
https://github.com/etcd-io/etcd/blob/master/etcdserver/raft.go

Chapter 14. Request Waiting List

Track client requests which require responses after the criteria to respond is
met based on responses from other cluster nodes.

Problem
A cluster node needs to communicate with other cluster nodes to replicate
data while processing a client request. A response from all other cluster
nodes or a Quorum is needed before responding to clients.

Communication to other cluster nodes is done asynchronously.
Asynchronous communication allows patterns like Request Pipeline and
Request Batch to be used.

So the cluster node receives and processes responses from multiple other
cluster nodes asynchronously. It then needs to correlate them to check if the
Quorum for a particular client request is reached.

Solution
The cluster node maintains a waiting list which maps a key and a callback
function. The key is chosen depending on the specific criteria to invoke the
callback. For example if it needs to be invoked whenever a message from
other cluster node is received, it can be the Correlation Identifer [bib-
correlation-id] of the message. In the case of Replicated Log it is the High-
Water Mark. The callback handles the response and decides if the client
request can be fulfilled.

Consider the example of a key-value store where, data is replicated on
multiple servers. Here, Quorum can be used to decide when a replication can
be considered successful to initiate a response to the client. The cluster node

then tracks the requests sent to other cluster nodes, and a callback is
registered with each request. Each request is marked with a Correlation
Identifer [bib-correlation-id], which is used to map response to the request.
The waiting list is then notified to invoke the callback when the response
from other cluster nodes are received.

For the sake of this example, let’s call our three cluster nodes athens,
byzantium and cyrene. The client connects with athens to store "title" as
"Microservices". Athens replicates it on byzantium and cyrene; so it sends a
request to itself to store the key-value and sends requests to both byzantium
and cyrene concurrently. To track responses, athens creates a
WriteQuorumResponseCallback and adds it to the waiting list for each of the
requests sent.

For every response received, the WriteQuorumResponseCallback is invoked
to handle the response. It checks whether the required number of responses
have been received. Once the response is received from byzantium, the
quorum is reached and the pending client request is completed. Cyrene can
respond later, but the response can be sent to the client without waiting for it.

The code looks like the sample below: Note that every cluster node
maintains its own instance of a waiting list. The waiting list tracks the key
and associated callback and stores the timestamp at which the callback was
registered. The timestamp is used to check whether the callbacks need to be
expired if responses haven’t been received within the expected time.

public class RequestWaitingList<Key, Response> {

 private Map<Key, CallbackDetails> pendingRequests = new Concurren

 public void add(Key key, RequestCallback<Response> callback) {

 pendingRequests.put(key, new CallbackDetails(callback, clock.na

 }

class CallbackDetails {

 RequestCallback requestCallback;

 long createTime;

 public CallbackDetails(RequestCallback requestCallback, long crea

 this.requestCallback = requestCallback;

 this.createTime = createTime;

 }

 public RequestCallback getRequestCallback() {

 return requestCallback;

 }

 public long elapsedTime(long now) {

 return now - createTime;

 }

}

public interface RequestCallback<T> {

 void onResponse(T r);

 void onError(Throwable e);

}

It is asked to handle the response or error once the response has been
received from the other cluster node.

class RequestWaitingList…

public void handleResponse(Key key, Response response) {

 if (!pendingRequests.containsKey(key)) {

 return;

 }

 CallbackDetails callbackDetails = pendingRequests.remove(key);

 callbackDetails.getRequestCallback().onResponse(response);

}

class RequestWaitingList…

public void handleError(int requestId, Throwable e) {

 CallbackDetails callbackDetails = pendingRequests.remove(requestI

 callbackDetails.getRequestCallback().onError(e);

}

The waiting list can then be used to handle quorum responses with the
implementation looking something like this:

static class WriteQuorumCallback implements RequestCallback<Request

 private final int quorum;

 private volatile int expectedNumberOfResponses;

 private volatile int receivedResponses;

 private volatile int receivedErrors;

 private volatile boolean done;

 private final RequestOrResponse request;

 private final ClientConnection clientConnection;

 public WriteQuorumCallback(int totalExpectedResponses, RequestOrR

 this.expectedNumberOfResponses = totalExpectedResponses;

 this.quorum = expectedNumberOfResponses / 2 + 1;

 this.request = clientRequest;

 this.clientConnection = clientConnection;

 }

 @Override

 public void onResponse(RequestOrResponse response) {

 receivedResponses++;

 if (receivedResponses == quorum && !done) {

 respondToClient("Success");

 done = true;

 }

 }

 @Override

 public void onError(Throwable t) {

 receivedErrors++;

 if (receivedErrors == quorum && !done) {

 respondToClient("Error");

 done = true;

 }

 }

 private void respondToClient(String response) {

 clientConnection.write(new RequestOrResponse(RequestId.SetValue

 }

}

Whenever a cluster node sends requests to other nodes, it adds a callback to
the waiting list mapping with the Correlation Identifer [bib-correlation-id] of
the request sent.

class ClusterNode…

private void handleSetValueClientRequestRequiringQuorum(List<InetAd

 int totalExpectedResponses = replicas.size();

 RequestCallback requestCallback = new WriteQuorumCallback(totalEx

 for (InetAddressAndPort replica : replicas) {

 int correlationId = nextRequestId();

 requestWaitingList.add(correlationId, requestCallback);

 try {

 SocketClient client = new SocketClient(replica);

 client.sendOneway(new RequestOrResponse(RequestId.SetValueRe

 } catch (IOException e) {

 requestWaitingList.handleError(correlationId, e);

 }

 }

}

Once the response is received, the waiting list is asked to handle it:

class ClusterNode…

private void handleSetValueResponse(RequestOrResponse response) {

 requestWaitingList.handleResponse(response.getCorrelationId(), re

}

The waiting list will then invoke the associated WriteQuorumCallback. The
WriteQuorumCallback instance verifies if the quorum responses have been
received and invokes the callback to respond to the client.

Expiring Long Pending Requests
Sometimes, responses from the other cluster nodes are delayed. In these
instances the waiting list generally has a mechanism to expire requests after
a timeout:

class RequestWaitingList…

private SystemClock clock;

private ScheduledExecutorService executor = Executors.newSingleThre

private long expirationIntervalMillis = 2000;

public RequestWaitingList(SystemClock clock) {

 this.clock = clock;

 executor.scheduleWithFixedDelay(this::expire, expirationIntervalM

}

private void expire() {

 long now = clock.nanoTime();

 List<Key> expiredRequestKeys = getExpiredRequestKeys(now);

 expiredRequestKeys.stream().forEach(expiredRequestKey -> {

 CallbackDetails request = pendingRequests.remove(expiredRequest

 request.requestCallback.onError(new TimeoutException("Request e

 });

}

private List<Key> getExpiredRequestKeys(long now) {

 return pendingRequests.entrySet().stream().filter(entry -> entry.

}

Examples
Cassandra [bib-cassandra] uses asynchronous message passing for internode
communication. It uses Quorum and processes response messages
asynchronously the same way.

Kafka [bib-kafka] tracks the pending requests using a data structure called
[kafka-purgatory] [bib-kafka-purgatory].

etcd [bib-etcd] maintains a wait list to respond to client requests in a similar
way [bib-etcd-wait].

Chapter 15. Idempotent Receiver

Identify requests from clients uniquely so they can ignore duplicate requests
when client retries

Problem
Clients send requests to servers but might not get a response. It’s impossible
for clients to know if the response was lost or the server crashed before
processing the request. To make sure that the request is processed, the client
has to re-send the request.

If the server had already processed the request and crashed after that servers
will get duplicate requests from clients, when the client retries.

Solution

At-most once, At-least once and Exactly Once actions

Depending on how the client interacts with the server, the guarantee of
whether the server will do certain action is predetermined. If a client
experiences a failure after the request is sent, and before receiving the
response, there can be three possibilities.

If the client doesn’t retry the request in case of failure, the server
might have processed the request, or might have failed before
processing the request. So the request is processed at the most once on
the server.

If the client retries the request, and the server had processed it before
communication failure, it might process it again. So the request is
processed at least once, but can be processed multiple times on the
server.

With idempotent receiver, even with multiple client retries, the server
processes the request only once. So to achieve ‘exactly once’ actions,
its important to have idempotent receivers.

Identify a client uniquely by assigning a unique id to each client. Before
sending any requests, the client registers itself with the server.

class ConsistentCoreClient…

private void registerWithLeader() {

 RequestOrResponse request

 = new RequestOrResponse(RequestId.RegisterClientRequest.getId

 correlationId.incrementAndGet());

 //blockingSend will attempt to create a new connection if there

 RequestOrResponse response = blockingSend(request);

 RegisterClientResponse registerClientResponse

 = JsonSerDes.deserialize(response.getMessageBodyJson(),

 RegisterClientResponse.class);

this.clientId = registerClientResponse.getClientId();

}

When the server receives a client registration request, it assigns a unique id
to the client. If the server is a Consistent Core, it can assign the Write-
Ahead Log index as a client identifier.

class ReplicatedKVStore…

private Map<Long, Session> clientSessions = new ConcurrentHashMap<>

private RegisterClientResponse registerClient(WALEntry walEntry) {

 Long clientId = walEntry.getEntryIndex();

 //clientId to store client responses.

 clientSessions.put(clientId, new Session(clock.nanoTime()));

 return new RegisterClientResponse(clientId);

}

The server creates a session to store responses for the requests for the
registered client. It also tracks the time at which the session is created, so
that inactive sessions can be discarded as explained in later sections.

public class Session {

 long lastAccessTimestamp;

 Queue<Response> clientResponses = new ArrayDeque<>();

 public Session(long lastAccessTimestamp) {

 this.lastAccessTimestamp = lastAccessTimestamp;

 }

 public long getLastAccessTimestamp() {

 return lastAccessTimestamp;

 }

 public Optional<Response> getResponse(int requestNumber) {

 return clientResponses.stream().

 filter(r -> requestNumber == r.getRequestNumber()).findFi

 }

 private static final int MAX_SAVED_RESPONSES = 5;

 public void addResponse(Response response) {

 if (clientResponses.size() == MAX_SAVED_RESPONSES) {

 clientResponses.remove(); //remove the oldest request

 }

 clientResponses.add(response);

 }

 public void refresh(long nanoTime) {

 this.lastAccessTimestamp = nanoTime;

 }

}

For a Consistent Core, the client registration request is also replicated as
part of the consensus algorithm. So the client registration is available even
if the existing leader fails. The server then also stores responses sent to the
client for subsequent requests.

Idempotent and Non-Idempotent requests

It is important to note that some of the requests are by nature
idempotent. For example, setting a key and a value in a key-value
store, is naturally idempotent. Even if the same key and value is set
multiple times, it doesn’t create a problem.

On the other hand, creating a Lease is not idempotent. If a lease is
already created, a retried request to create a lease will fail. This is a
problem. Consider the following scenario. A client sends a request to
create a lease; the server creates a lease successfully, but then crashes,
or the connection fails before the response is sent to the client. The
client creates the connection again, and retries creating the lease;
because the server already has a lease with the given name, it returns
an error. So the client thinks that it doesn’t have a lease. This is clearly
not the behaviour we expect to have.

With idempotent receiver, the client will send the lease request with
the same request number. Because the response from the already
processed request is saved on the server, the same response is returned.
This way, if the client could successfully create a lease before the
connection failed, it will get the response after it retries the same
request.

For every non-idempotent request (see sidebar) that the server receives, it
stores the response in the client session after successful execution.

class ReplicatedKVStore…

private Response applyRegisterLeaseCommand(WALEntry walEntry, Regi

 logger.info("Creating lease with id " + command.getName()

 + "with timeout " + command.getTimeout()

 + " on server " + getReplicatedLog().getServerId());

 try {

 leaseTracker.addLease(command.getName(),

 command.getTimeout());

 Response success = Response.success(walEntry.getEntryIndex());

 if (command.hasClientId()) {

 Session session = clientSessions.get(command.getClientId())

 session.addResponse(success.withRequestNumber(command.getReq

 }

 return success;

 } catch (DuplicateLeaseException e) {

 return Response.error(DUPLICATE_LEASE_ERROR, e.getMessage(), wa

 }

}

The client sends the client identifier with each request that is sent to the
server. The client also keeps a counter to assign request numbers to each
request sent to the server.

class ConsistentCoreClient…

int nextRequestNumber = 1;

public void registerLease(String name, Duration ttl) throws Duplica

 RegisterLeaseRequest registerLeaseRequest

 = new RegisterLeaseRequest(clientId, nextRequestNumber, name

 nextRequestNumber++; //increment request number for next request

 var serializedRequest = serialize(registerLeaseRequest);

 logger.info("Sending RegisterLeaseRequest for " + name);

 RequestOrResponse requestOrResponse = blockingSendWithRetries(se

 Response response = JsonSerDes.deserialize(requestOrResponse.getM

 if (response.error == Errors.DUPLICATE_LEASE_ERROR) {

 throw new DuplicateLeaseException(name);

 }

}

private static final int MAX_RETRIES = 3;

private RequestOrResponse blockingSendWithRetries(RequestOrResponse

 for (int i = 0; i <= MAX_RETRIES; i++) {

 try {

 //blockingSend will attempt to create a new connection is the

 return blockingSend(request);

 } catch (NetworkException e) {

 resetConnectionToLeader();

 logger.error("Failed sending request " + request + ". Try "

 }

 }

 throw new NetworkException("Timed out after " + MAX_RETRIES + "

}

When the server receives a request, it checks if the request with the given
request number from the same client is already processed. If it finds the
saved response, it returns the same response to the client, without
processing the request again.

class ReplicatedKVStore…

private Response applyWalEntry(WALEntry walEntry) {

 Command command = deserialize(walEntry);

 if (command.hasClientId()) {

 Session session = clientSessions.get(command.getClientId());

 Optional<Response> savedResponse = session.getResponse(command

 if(savedResponse.isPresent()) {

 return savedResponse.get();

 } //else continue and execute this command.

 }

Expiring the saved client requests
The requests stored per client cannot be stored forever. There are multiple
ways the requests can be expired. In the reference implementation [bib-
logcabin-raft] for Raft, the client keeps a separate number to note the
request number for which the response is successfully received. This
number is then sent with each request to the server. The server can safely
discard any requests with request number less than this number.

If a client is guaranteed to send the next request only after receiving the
response for the previous request, the server can safely remove all previous
requests once it gets a new request from the client. There is a problem when
Request Pipeline is used, as there can be multiple in-flight requests for
which client might not have received the response. If the server knows the
maximum number of in-flight requests a client can have, it can store only
those many responses, and remove all the other responses. For example,
Kafka [bib-kafka] can have a maximum of five in-flight requests for its
producer, so it stores a maximum of five previous responses.

class Session…

private static final int MAX_SAVED_RESPONSES = 5;

public void addResponse(Response response) {

 if (clientResponses.size()== MAX_SAVED_RESPONSES) {

 clientResponses.remove(); //remove the oldest request

 }

 clientResponses.add(response);

}

Removing the registered clients

It is important to note that this mechanism to detect duplicate
messages is only applicable for client retries on connection failures. If
a client fails and is restarted, it will be registered again, so no
deduplication is achieved across client restarts.

It is also not aware of any application level logic. So if an application
sends multiple requests, which are considered duplicate at the
application-level, there is no way for the storage server
implementation to know about it. The application needs to handle it
independently.

The client’s session is not kept on the server forever. A server can have
maximum time to live for the client sessions it stores. Clients send a
HeartBeat periodically. If there are no HeartBeats from the client during
this time to live, the client’s state on the server can be removed.

The server starts a scheduled task to periodically check for expired sessions
and remove the sessions which are expired.

class ReplicatedKVStore…

private long heartBeatIntervalMs = TimeUnit.SECONDS.toMillis(10);

private long sessionTimeoutNanos = TimeUnit.MINUTES.toNanos(5);

private void startSessionCheckerTask() {

 scheduledTask = executor.scheduleWithFixedDelay(()->{

 removeExpiredSession();

 }, heartBeatIntervalMs, heartBeatIntervalMs, TimeUnit.MILLISECOND

}

private void removeExpiredSession() {

 long now = System.nanoTime();

 for (Long clientId : clientSessions.keySet()) {

 Session session = clientSessions.get(clientId);

 long elapsedNanosSinceLastAccess = now - session.getLastAccessT

 if (elapsedNanosSinceLastAccess > sessionTimeoutNanos) {

 clientSessions.remove(clientId);

 }

 }

}

Examples
Raft [bib-raft] has reference implementation to have idempotency for
providing linearizable actions.

Kafka [bib-kafka] allows Idempotent Producer [bib-kafka-idempotent-
producer] which allows clients to retry requests and ignores duplicate
requests.

Zookeeper [bib-zookeeper] has the concept of Sessions, and zxid, which
allows clients to recover. Hbase has a [hbase-recoverable-zookeeper] [bib-
hbase-recoverable-zookeeper] wrapper, which implements idempotent
actions following the guidelines of [zookeeper-error-handling] [bib-
zookeeper-error-handling]

Chapter 16. Follower Reads

Serve read requests from followers to achieve better throughput and lower
latency

Problem
When using the Leader and Followers pattern, it’s possible that the leader
may get overloaded if too many requests are sent to it. Furthermore in a
multi-datacenter setup, where the client is in a remote datacenter, requests to
the leader will be subject to additional latency.

Solution
While the write requests need to go to the leader to maintain consistency, the
read-only requests can instead go to the nearest follower. This is particularly
useful when clients are mostly read-only.

It is important to note that clients reading from followers can get old values.
There will always be a replication lag between the leader and the follower,
even in the systems which implement consensus algorithms like Raft [bib-
raft]. That’s because even when the leader knows about which values are
committed, it needs another message to communicate it to the follower. So
reading from follower servers is used only in situations where slightly older
values are tolerated.

Finding The Nearest Replica
Cluster nodes maintain additional metadata about their location.

class ReplicaDescriptor…

public class ReplicaDescriptor {

 public ReplicaDescriptor(InetAddressAndPort address, String regio

 this.address = address;

 this.region = region;

 }

 InetAddressAndPort address;

 String region;

 public InetAddressAndPort getAddress() {

 return address;

 }

 public String getRegion() {

 return region;

 }

}

The cluster client can then pick up the local replica based its own region.

class ClusterClient…

public List<String> get(String key) {

 List<ReplicaDescriptor> allReplicas = allFollowerReplicas(key);

 ReplicaDescriptor nearestFollower = findNearestFollowerBasedOnLoc

 GetValueResponse getValueResponse = sendGetRequest(nearestFollowe

 return getValueResponse.getValue();

}

ReplicaDescriptor findNearestFollowerBasedOnLocality(List<ReplicaDe

 List<ReplicaDescriptor> sameRegionFollowers = matchLocality(follo

 List<ReplicaDescriptor> finalList = sameRegionFollowers.isEmpty()

 return finalList.get(0);

}

private List<ReplicaDescriptor> matchLocality(List<ReplicaDescripto

 return followers.stream().filter(rd -> clientRegion.equals(rd.reg

}

For example, if there are two follower replicas, one in the region us-west and
the other in the region us-east. The client from us-east region, will be
connected to the us-east replica.

class CausalKVStoreTest…

@Test

public void getFollowersInSameRegion() {

 List<ReplicaDescriptor> followers = createReplicas("us-west", "us

 ReplicaDescriptor nearestFollower = new ClusterClient(followers,

 assertEquals(nearestFollower.getRegion(), "us-east");

}

The cluster client or a co-ordinating cluster node can also track latencies
observed with cluster nodes. It can send period heartbeats to capture the
latencies, and use that to pick up a follower with minimum latency. To do a
more fair selection, products like MongoDB [bib-mongodb] or
CockroachDB [bib-cockroachdb] calculate latencies as a moving average
[bib-moving-average]. Cluster nodes generally maintain a Single Socket
Channel to communicate with other cluster nodes. Single Socket Channel
needs a HeartBeat to keep the connection alive. So capturing latencies and
calculating the moving average can be easily implemented.

class WeightedAverage…

public class WeightedAverage {

 long averageLatencyMs = 0;

 public void update(long heartbeatRequestLatency) {

 //Example implementation of weighted average as used in Mongodb

 //The running, weighted average round trip time for heartbeat m

 // Weighted 80% to the old round trip time, and 20% to the new

 averageLatencyMs = averageLatencyMs == 0

 ? heartbeatRequestLatency

 : (averageLatencyMs * 4 + heartbeatRequestLatency) / 5;

}

public long getAverageLatency() {

 return averageLatencyMs;

}

}

class ClusterClient…

private Map<InetAddressAndPort, WeightedAverage> latencyMap = new H

private void sendHeartbeat(InetAddressAndPort clusterNodeAddress) {

 try {

 long startTimeNanos = System.nanoTime();

 sendHeartbeatRequest(clusterNodeAddress);

 long endTimeNanos = System.nanoTime();

 WeightedAverage heartbeatStats = latencyMap.get(clusterNodeAddr

 if (heartbeatStats == null) {

 heartbeatStats = new WeightedAverage();

 latencyMap.put(clusterNodeAddress, new WeightedAverage());

 }

 heartbeatStats.update(endTimeNanos - startTimeNanos);

 } catch (NetworkException e) {

 logger.error(e);

 }

}

This latency information can then be used to pick up the follower with the
least network latency.

class ClusterClient…

ReplicaDescriptor findNearestFollower(List<ReplicaDescriptor> allFo

 List<ReplicaDescriptor> sameRegionFollowers = matchLocality(allFo

 List<ReplicaDescriptor> finalList

 = sameRegionFollowers.isEmpty() ? allFollowers

 :sameRegionFollowers;

 return finalList.stream().sorted((r1, r2) -> {

 if (!latenciesAvailableFor(r1, r2)) {

 return 0;

 }

 return Long.compare(latencyMap.get(r1).getAverageLatency(),

 latencyMap.get(r2).getAverageLatency());

 }).findFirst().get();

}

private boolean latenciesAvailableFor(ReplicaDescriptor r1, Replica

 return latencyMap.containsKey(r1) && latencyMap.containsKey(r2);

}

Disconnected Or Slow Followers
A follower might get disconnected from the leader and stop getting updates.
In some cases, followers can suffer with slow disks impeding the overall
replication process, which causes the follower to lag behind the leader.
Followers can track if it has not heard from the leader in a while, and stop
serving user requests.

For example, products like MongoDB [bib-mongodb] allow selecting a
replica with a maximum allowed lag time. [bib-mongodb-max-staleness] If
the replica lags behind the leader beyond this maximum time, it’s not
selected to serve the requests. In Kafka [bib-kafka] if the follower detects the
offset asked by the consumer is too large, it responds with
OFFSET_OUT_OF_RANGE error. The consumer is then expected to
communicate with the leader [bib-kafka-follower-fetch].

Read Your Own Writes

Causal Consistency

When an event A in a system happens before another event B, it is said
to have causal relationship. This causal relationship means that A might
have some role in causing B.

For a data storage system, the events are about writing and reading
values. To provide causal consistency, the storage system needs to track
happens-before relationship between read and write events. Lamport
Clock and its variants are used for this purpose.

Reading from the follower servers can be problematic, as it can give
surprising results in common scenarios where a client writes something and
then immediately tries to read it.

Consider a client who notices that some book data erroneously has "title":
"Nitroservices". It corrects this by a write, "title": "Microservices", which
goes to the leader. It then immediately reads back the value but the read
request goes to a follower, which may not have been updated yet.

This can be a common problem. For example, untill very recently [bib-aws-
strong-consistency] Amazon S3 did not prevent this.

To fix this issue, with each write, the server stores not just the new value, but
also a monotonically increasing version stamp. The stamp can be a High-
Water Mark or a Hybrid Clock. The server returns this version stamp of the
stored value in the response to the write request. Then, should the client wish
to read the value later, it includes the version stamp as part of its read
request. Should the read request go to a follower, it checks its stored value to
see if it is equal or later than the requested version stamp. If it isn’t, it waits
until it has an up-to-date version before returning the value. By doing this
clients will always read a value that’s consistent with a value they write -
which is often referred to as read-your-writes consistency.

(TODO: Is this a usage of ?)

The flow of requests happens as shown below: To correct a wrongly written
value, "title": "Microservices" is written to the leader. The leader returns
version 2, to the client in the response. When the client tries to read the value
for "title", it passes the version number 2 in the request. The follower server
which receives the request checks if its own version number is up-to-date.
Because the version number at the follower server is still 1, it waits till it
gets that version from the leader. Once it has the matching (or later) version,
it completes the read request, and returns the value "Microservices".

The code for the key value store looks as follows. It is important to note that
the follower can be lagging behind too much or be disconnected from the
leader. So it does not wait indefinitely. There is a configured timeout value.
If the follower server can not get the updates within timeout, an error
response is returned to the client. The client can then retry reading from
other followers.

class ReplicatedKVStore…

Map<Integer, CompletableFuture> waitingRequests = new ConcurrentHas

public CompletableFuture<Optional<String>> get(String key, int atVe

 if(this.replicatedLog.getRole() == ServerRole.FOLLOWING) {

 //check if we have the version with us;

 if (!isVersionUptoDate(atVersion)) {

 //wait till we get the latest version.

 CompletableFuture<Optional<String>> future = new Completable

 //Timeout if version does not progress to required version

 //before followerWaitTimeout ms.

 future.orTimeout(config.getFollowerWaitTimeoutMs(), TimeUnit

 waitingRequests.put(atVersion, future);

 return future;

 }

 }

 return CompletableFuture.completedFuture(mvccStore.get(key, atVer

}

private boolean isVersionUptoDate(int atVersion) {

 return version >= atVersion;

}

Once the key value store progresses to the version the client requested, it can
send the response to the client.

class ReplicatedKVStore…

private Response applyWalEntry(WALEntry walEntry) {

 Command command = deserialize(walEntry);

 if (command instanceof SetValueCommand) {

 return applySetValueCommandsAndCompleteClientRequests((SetValu

 }

 throw new IllegalArgumentException("Unknown command type " + comm

}

private Response applySetValueCommandsAndCompleteClientRequests(Set

 version = version + 1;

 getLogger().info(replicatedLog.getServerId() + " Setting key valu

 mvccStore.put(new VersionedKey(setValueCommand.getKey(), version)

 completeWaitingFuturesIfFollower(version, setValueCommand.getValu

 Response response = Response.success(version);

 return response;

}

private void completeWaitingFuturesIfFollower(int version, String v

 CompletableFuture completableFuture = waitingRequests.remove(vers

 if (completableFuture != null) {

 logger.info("Completing pending requests for version " + versi

 completableFuture.complete(Optional.of(value));

 }

}

Linearizable Reads
Sometimes read requests need to get the latest available data. The replication
lag cannot be tolerated. In these cases, the read requests need to be
redirected to the leader. This is a common design issue tackled by the
Consistent Core [consistentcore.xhtml#SerializabilityAndLinearizability]

Examples
[neo4j] [bib-neo4j] allows causal clusters [bib-neo4j-causal-cluster] to be set
up. Every write operation returns a bookmark, which can be passed when
executing queries against read replicas. The bookmark ensures that the client
will always get the values written at the bookmark

http://consistentcore.xhtml/#SerializabilityAndLinearizability

MongoDB [bib-mongodb] maintains causal consistency [bib-mongodb-
causal-consistency] in its replica sets. The write operations return an
operationTime; this is passed in the subsequent read requests to make sure
read requests return the writes which happened before the read request.

CockroachDB [bib-cockroachdb] allows clients to read from follower
servers. [bib-cockroachdb-follower-read] The leader servers publish the
latest timestamps at which the writes are completed on the leader, called
closed timestamps. The followers allow reading the values if it has values at
the closed timestamp.

Kafka [bib-kafka] allows consuming the messages from the follower
brokers. [bib-kafka-follower-fetch] The followers know about the High-
Water Mark at the leader. In kafka’s design, instead of waiting for the latest
updates, the broker returns a OFFSET_NOT_AVAILABLE error to the
consumers and expects consumers to retry.

Chapter 17. Versioned Value

Store every update to a value with a new version, to allow reading historical
values.

Problem
In a distributed system, nodes need to be able to tell which value for a key is
the most recent. Sometimes they need to know past values so they can react
properly to changes in a value

Solution
Store a version number with each value. The version number is incremented
for every update. This allows every update to be converted to new write
without blocking a read. Clients can read historical values at a specific
version number.

Consider a simple example of a replicated key value store. The leader of the
cluster handles all the writes to the key value store. It saves the write
requests in Write-Ahead Log. The Write Ahead Log is replicated using
Leader and Followers. The Leader applies entries from the Write Ahead Log
at High-Water Mark to the key value store. This is a standard replication
method called as state machine replication [bib-state-machine-replication].
Most data systems backed by consensus algorithm like Raft are implemented
this way. In this case, the key value store keeps an integer version counter. It
increments the version counter every time the key value write command is
applied from the Write Ahead Log. It then constructs the new key with the
incremented version counter. This way no existing value is updated, but
every write request keeps on appending new values to the backing store.

class ReplicatedKVStore…

int version = 0;

MVCCStore mvccStore = new MVCCStore();

@Override

public CompletableFuture<Response> put(String key, String value) {

 return replicatedLog.propose(new SetValueCommand(key, value));

}

private Response applySetValueCommand(SetValueCommand setValueComma

 getLogger().info("Setting key value " + setValueCommand);

 version = version + 1;

 mvccStore.put(new VersionedKey(setValueCommand.getKey(), version)

 Response response = Response.success(version);

 return response;

}

(TODO: MF: should there be something here about the scope of the version
number? Do we version every field of a record, or the whole
record/aggregate?)

Ordering Of Versioned Keys

Embedded data stores like [rocksdb] [bib-rocksdb] or [boltdb] [bib-
boltdb] are commonly used as storage layers of databases. In these
storages, all data is logically arranged in sorted order of keys, very
similar to the implementation shown here. Because these storages use
byte array based keys and values, it’s important to have the order
maintained when the keys are serialized to byte arrays.

Because quickly navigating to the best matching versions is an important
implementation concern, the versioned keys are arranged in such a way as to
form a natural ordering by using version number as a suffix to the key. This
maintains an order that fits well with the underlying data structure. For

example, if there are two versions of a key, key1 and key2, key1 will be
ordered before key2.

To store the versioned key values, a data structure, such as skip list, that
allows quick navigation to the nearest matching versions is used. In Java the
mvcc storage can be built as following:

class MVCCStore…

public class MVCCStore {

 NavigableMap<VersionedKey, String> kv = new ConcurrentSkipListMap

 public void put(VersionedKey key, String value) {

 kv.put(key, value);

 }

To work with the navigable map, the versioned key is implemented as
follows. It implements a comparator to allow natural ordering of keys.

class VersionedKey…

public class VersionedKey implements Comparable<VersionedKey> {

 private String key;

 private long version;

 public VersionedKey(String key, long version) {

 this.key = key;

 this.version = version;

 }

 public String getKey() {

 return key;

 }

 public long getVersion() {

 return version;

 }

 @Override

 public int compareTo(VersionedKey other) {

 int keyCompare = this.key.compareTo(other.key);

 if (keyCompare != 0) {

 return keyCompare;

 }

 return Long.compare(this.version, other.version);

 }

}

This implementation allows getting values for a specific version using the
navigable map API.

class MVCCStore…

public Optional<String> get(final String key, final int readAt) {

 Map.Entry<VersionedKey, String> entry = kv.floorEntry(new Version

 return (entry == null)? Optional.empty(): Optional.of(entry.getVa

}

Consider an example where there are four versions of a key stored at version
numbers 1, 2, 3 and 5. Depending on the version used by clients to read
values, the nearest matching version of the key is returned.

The version at which the specific key value is stored is returned to the client.
The client can then use this version to read the values. The overall working
is as follows.

Reading multiple versions
Sometimes clients need to get all the versions from a given version number.
For example, in State Watch the client needs to get all the events from a
specific version.

The cluster node can store additional index structures to store all the versions
for a key.

class IndexedMVCCStore…

public class IndexedMVCCStore {

NavigableMap<String, List<Integer>> keyVersionIndex = new TreeMap<>

NavigableMap<VersionedKey, String> kv = new TreeMap<>();

ReadWriteLock rwLock = new ReentrantReadWriteLock();

int version = 0;

public int put(String key, String value) {

 rwLock.writeLock().lock();

 try {

 version = version + 1;

 kv.put(new VersionedKey(key, version), value);

 updateVersionIndex(key, version);

 return version;

 } finally {

 rwLock.writeLock().unlock();

 }

}

private void updateVersionIndex(String key, int newVersion) {

 List<Integer> versions = getVersions(key);

 versions.add(newVersion);

 keyVersionIndex.put(key, versions);

}

private List<Integer> getVersions(String key) {

 List<Integer> versions = keyVersionIndex.get(key);

 if (versions == null) {

 versions = new ArrayList<>();

 keyVersionIndex.put(key, versions);

 }

 return versions;

}

Then a client API can be provided to read values from a specific version or
for a version range.

class IndexedMVCCStore…

public List<String> getRange(String key, final int fromRevision, in

 rwLock.readLock().lock();

 try {

 List<Integer> versions = keyVersionIndex.get(key);

 Integer maxRevisionForKey = versions.stream().max(Integer::com

 Integer revisionToRead = maxRevisionForKey > toRevision ? toRe

 SortedMap<VersionedKey, String> versionMap = kv.subMap(new Ver

 getLogger().info("Available version keys " + versionMap + ". R

 return new ArrayList<>(versionMap.values());

 } finally {

 rwLock.readLock().unlock();

 }

}

Care must be taken to use appropriate locking while updating and reading
from the index.

There is an alternate implementation possible to save a list of all the
versioned values with the key, as used in Gossip Dissemination to avoid
unnecessary state exchange. [gossip-
dissemination.xhtml#AvoidingUnnecessaryStateExchange]

http://gossip-dissemination.xhtml/#AvoidingUnnecessaryStateExchange
http://gossip-dissemination.xhtml/#AvoidingUnnecessaryStateExchange

MVCC and Transaction Isolation
Databases use Versioned Value to implement [mvcc] [bib-mvcc] and
[transaction-isolation] [bib-transaction-isolation].

Concurrency Control is about how locking is used when there are multiple
concurrent requests accessing the same data. When locks are used to
synchronize access, all the other requests are blocked until a request holding
the lock is complete and the lock released. With Versioned Value, every
write request adds a new record. This allows usage of non-blocking data
structures to store the values.

Transaction isolation levels, such as Snapshot Isolation [bib-snapshot-
isolation], can be naturally implemented as well. When a client starts reading
at a particular version, it’s guaranteed to get the same value every time it
reads from the database, even if there are concurrent write transactions
which commit a different value between multiple read requests.

Using RocksDb like storage engines
It is very common to use [rocksdb] [bib-rocksdb] or similar embedded
storage engines as a storage backend for data stores. For example, etcd [bib-

etcd] uses [boltdb] [bib-boltdb], CockroachDB [bib-cockroachdb] earlier
used [rocksdb] [bib-rocksdb] and now uses a go-lang clone of RocksDb
called [pebble] [bib-pebble].

These storage engines provide implementation suitable for storing versioned
values. They internally use skip lists the same way described in the above
section and rely on the ordering of keys. There is a way to provide custom
comparator for ordering keys.

class VersionedKeyComparator…

public class VersionedKeyComparator extends Comparator {

 public VersionedKeyComparator() {

 super(new ComparatorOptions());

 }

 @Override

 public String name() {

 return "VersionedKeyComparator";

 }

 @Override

 public int compare(Slice s1, Slice s2) {

 VersionedKey key1 = VersionedKey.deserialize(ByteBuffer.wrap(s1

 VersionedKey key2 = VersionedKey.deserialize(ByteBuffer.wrap(s2

 return key1.compareTo(key2);

 }

}

The implementation using [rocksdb] [bib-rocksdb] can be done as follows:

class RocksDBStore…

private final RocksDB db;

public RocksDBStore(File cacheDir) {

 Options options = new Options();

 options.setKeepLogFileNum(30);

 options.setCreateIfMissing(true);

 options.setLogFileTimeToRoll(TimeUnit.DAYS.toSeconds(1));

 options.setComparator(new VersionedKeyComparator());

 try {

 db = RocksDB.open(options, cacheDir.getPath());

 } catch (RocksDBException e) {

 throw new RuntimeException(e);

 }

}

public void put(String key, int version, String value) throws Rocks

 VersionedKey versionKey = new VersionedKey(key, version);

 db.put(versionKey.serialize(), value.getBytes());

}

public String get(String key, int readAtVersion) {

 RocksIterator rocksIterator = db.newIterator();

 rocksIterator.seekForPrev(new VersionedKey(key, readAtVersion).se

 byte[] valueBytes = rocksIterator.value();

 return new String(valueBytes);

}

Examples
etc3d [bib-etcd3] uses mvcc backend with a single integer representing a
version.

MongoDB [bib-mongodb] and CockroachDB [bib-cockroachdb] use mvcc
backend with a hybrid logical clock.

Chapter 18. Version Vector

Maintain a list of counters, one per cluster node, to detect concurrent updates

Problem
If multiple servers allow the same key to be updated, its important to detect
when the values are concurrently updated across a set of replicas.

Solution
Each key value is associated with a version vector [bib-version-vector] that
maintains a number for each cluster node.

In essence, a version vector is a set of counters, one for each node. A version
vector for three nodes (blue, green, black) would look something like [blue:
43, green: 54, black: 12]. Each time a node has an internal update, it updates
its own counter, so an update in the green node would change the vector to
[blue: 43, green: 55, black: 12]. Whenever two nodes communicate, they
synchronize their vector stamps, allowing them to detect any simultaneous
updates.

The difference with Vector Clock

[vector-clock] [bib-vector-clock] implementation is similar. But vector
clocks are used to track every event occurring on the server. In contrast,
version vectors are used to detect concurrent updates to same key
across a set of replicas. So an instance of a version vector is stored per
key and not per server. Databases like [riak] [bib-riak] use the term
version vector instead of vector clock for their implementation [bib-

riak-vector-clock]. Refer to [version-vectors-are-not-vector-clocks]
[bib-version-vectors-are-not-vector-clocks] for more details.

A typical version vector implementation is as follows:

class VersionVector…

private final TreeMap<String, Long> versions;

public VersionVector() {

 this(new TreeMap<>());

}

public VersionVector(TreeMap<String, Long> versions) {

 this.versions = versions;

}

public VersionVector increment(String nodeId) {

 TreeMap<String, Long> versions = new TreeMap<>();

 versions.putAll(this.versions);

 Long version = versions.get(nodeId);

 if(version == null) {

 version = 1L;

 } else {

 version = version + 1L;

 }

 versions.put(nodeId, version);

 return new VersionVector(versions);

}

Each value stored on the server is associated with a version vector

class VersionedValue…

public class VersionedValue {

 String value;

 VersionVector versionVector;

 public VersionedValue(String value, VersionVector versionVector)

 this.value = value;

 this.versionVector = versionVector;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 VersionedValue that = (VersionedValue) o;

 return Objects.equal(value, that.value) && Objects.equal(versio

 }

 @Override

 public int hashCode() {

 return Objects.hashCode(value, versionVector);

 }

Comparing version vectors
Version vectors are compared by comparing version number for each node.
A version vector is considered higher than the other if both of the version
vectors have version number for the same cluster nodes and each version
number is higher than the one in the other vector and vice versa. If the
neither vector has all of the version numbers higher or if they have version
numbers for different cluster nodes, they are considered concurrent.

Here are some example comparisons

The comparison is implemented as follows:

public enum Ordering {

 Before,

 After,

 Concurrent

}

class VersionVector…

//This is exact code for Voldermort implementation of VectorClock c

//https://github.com/voldemort/voldemort/blob/master/src/java/volde

public static Ordering compare(VersionVector v1, VersionVector v2)

 if(v1 == null || v2 == null)

 throw new IllegalArgumentException("Can’t compare null vector

 // We do two checks: v1 <= v2 and v2 <= v1 if both are true then

 boolean v1Bigger = false;

 boolean v2Bigger = false;

 SortedSet<String> v1Nodes = v1.getVersions().navigableKeySet();

 SortedSet<String> v2Nodes = v2.getVersions().navigableKeySet();

 SortedSet<String> commonNodes = getCommonNodes(v1Nodes, v2Nodes);

 // if v1 has more nodes than common nodes

 // v1 has clocks that v2 does not

 if(v1Nodes.size() > commonNodes.size()) {

 v1Bigger = true;

 }

 // if v2 has more nodes than common nodes

 // v2 has clocks that v1 does not

 if(v2Nodes.size() > commonNodes.size()) {

 v2Bigger = true;

 }

 // compare the common parts

 for(String nodeId: commonNodes) {

 // no need to compare more

 if(v1Bigger && v2Bigger) {

 break;

 }

 long v1Version = v1.getVersions().get(nodeId);

 long v2Version = v2.getVersions().get(nodeId);

 if(v1Version > v2Version) {

 v1Bigger = true;

 } else if(v1Version < v2Version) {

 v2Bigger = true;

 }

 }

 /*

 * This is the case where they are equal. Consciously return BEFOR

 * that the we would throw back an ObsoleteVersionException for on

 * writes with the same clock.

 */

 if(!v1Bigger && !v2Bigger)

 return Ordering.Before;

 /* This is the case where v1 is a successor clock to v2 */

 else if(v1Bigger && !v2Bigger)

 return Ordering.After;

 /* This is the case where v2 is a successor clock to v1 */

 else if(!v1Bigger && v2Bigger)

 return Ordering.Before;

 /* This is the case where both clocks are parallel to one anoth

 else

 return Ordering.Concurrent;

}

private static SortedSet<String> getCommonNodes(SortedSet<String> v

 // get clocks(nodeIds) that both v1 and v2 has

 SortedSet<String> commonNodes = Sets.newTreeSet(v1Nodes);

 commonNodes.retainAll(v2Nodes);

 return commonNodes;

}

public boolean descents(VersionVector other) {

 return other.compareTo(this) == Ordering.Before;

}

Using version vector in a key value store
The version vector can be used in a key value storage as follows. A list of
versioned values is needed, as there can be multiple values which are
concurrent.

class VersionVectorKVStore…

public class VersionVectorKVStore {

 Map<String, List<VersionedValue>> kv = new HashMap<>();

When a client wants to store a value, it first reads the latest known version
for the given key. It then picks up the cluster node to store the value, based
on the key. While storing the value, the client passes back the known
version. The request flow is shown in the following diagram. There are two
servers named blue and green. For the key "name", blue is the primary
server.

In the leader-less replication scheme, the client or a coordinator node picks
up the node to write data based on the key. The version vector is updated
based on the primary cluster node that the key maps to. A value with the
same version vector is copied on the other cluster nodes for replication. If
the cluster node mapping to the key is not available, the next node is chosen.
The version vector is only incremented for the first cluster node the value is
saved to. All the other nodes save the copy of the data. The code for
incrementing version vector in databases like [voldemort] [bib-voldemort]
looks like this:

class ClusterClient…

public void put(String key, String value, VersionVector existingVer

 List<Integer> allReplicas = findReplicas(key);

 int nodeIndex = 0;

 List<Exception> failures = new ArrayList<>();

 VersionedValue valueWrittenToPrimary = null;

 for (; nodeIndex < allReplicas.size(); nodeIndex++) {

 try {

 ClusterNode node = clusterNodes.get(nodeIndex);

 //the node which is the primary holder of the key value is re

 valueWrittenToPrimary = node.putAsPrimary(key, value, existin

 break;

 } catch (Exception e) {

 //if there is exception writing the value to the node, try oth

 failures.add(e);

 }

}

if (valueWrittenToPrimary == null) {

 throw new NotEnoughNodesAvailable("No node succeeded in writing

}

//Succeded in writing the first node, copy the same to other nodes

nodeIndex++;

for (; nodeIndex < allReplicas.size(); nodeIndex++) {

 ClusterNode node = clusterNodes.get(nodeIndex);

 node.put(key, valueWrittenToPrimary);

}

}

The node acting as a primary is the one which increments the version
number.

public VersionedValue putAsPrimary(String key, String value, Versio

 VersionVector newVersion = existingVersion.increment(nodeId);

 VersionedValue versionedValue = new VersionedValue(value, newVers

 put(key, versionedValue);

 return versionedValue;

}

public void put(String key, VersionedValue value) {

 versionVectorKvStore.put(key, value);

}

As can be seen in the above code, it is possible for different clients to update
the same key on different nodes for instance when a client cannot reach a
specific node. This creates a situation where different nodes have different
values which are considered ‘concurrent’ according to their version vector.

As shown in the following diagram, both client1 and client2 are trying to
write to the key, "name". If client1 cannot write to server green, the green
server will be missing the value written by client1. When client2 tries to
write, but fails to connect to server blue, it will write on server green. The
version vector for the key "name", will reflect that the servers, blue and
green, have concurrent writes.

Therefore the version vector based storage keeps multiple versions for any
key, when the versions are considered concurrent.

class VersionVectorKVStore…

public void put(String key, VersionedValue newValue) {

 List<VersionedValue> existingValues = kv.get(key);

 if (existingValues == null) {

 existingValues = new ArrayList<>();

 }

 rejectIfOldWrite(key, newValue, existingValues);

 List<VersionedValue> newValues = merge(newValue, existingValues);

 kv.put(key, newValues);

}

//If the newValue is older than existing one reject it.

private void rejectIfOldWrite(String key, VersionedValue newValue,

 for (VersionedValue existingValue : existingValues) {

 if (existingValue.descendsVersion(newValue)) {

 throw new ObsoleteVersionException("Obsolete version for ke

 + "’: " + newValue.versionVector);

 }

 }

}

//Merge new value with existing values. Remove values with lower ve

//If the old value is neither before or after (concurrent) with the

private List<VersionedValue> merge(VersionedValue newValue, List<Ve

 List<VersionedValue> retainedValues = removeOlderVersions(newValu

 retainedValues.add(newValue);

 return retainedValues;

}

private List<VersionedValue> removeOlderVersions(VersionedValue new

 List<VersionedValue> retainedValues = existingValues

 .stream()

 .filter(v -> !newValue.descendsVersion(v)) //keep versions wh

 .collect(Collectors.toList());

 return retainedValues;

}

If concurrent values are detected while reading from multiple nodes, an error
is thrown, allowing the client to do possible conflict resolution.

Resolving conflicts
If multiple versions are returned from different replicas, vector clock
comparison can allow the latest value to be detected.

class ClusterClient…

public List<VersionedValue> get(String key) {

 List<Integer> allReplicas = findReplicas(key);

 List<VersionedValue> allValues = new ArrayList<>();

 for (Integer index : allReplicas) {

 ClusterNode clusterNode = clusterNodes.get(index);

 List<VersionedValue> nodeVersions = clusterNode.get(key);

 allValues.addAll(nodeVersions);

 }

 return latestValuesAcrossReplicas(allValues);

}

private List<VersionedValue> latestValuesAcrossReplicas(List<Versio

 List<VersionedValue> uniqueValues = removeDuplicates(allValues);

 return retainOnlyLatestValues(uniqueValues);

}

private List<VersionedValue> retainOnlyLatestValues(List<VersionedV

 for (int i = 0; i < versionedValues.size(); i++) {

 VersionedValue v1 = versionedValues.get(i);

 versionedValues.removeAll(getPredecessors(v1, versionedValues))

 }

 return versionedValues;

}

private List<VersionedValue> getPredecessors(VersionedValue v1, Lis

 List<VersionedValue> predecessors = new ArrayList<>();

 for (VersionedValue v2 : versionedValues) {

 if (!v1.sameVersion(v2) && v1.descendsVersion(v2)) {

 predecessors.add(v2);

 }

 }

 return predecessors;

}

private List<VersionedValue> removeDuplicates(List<VersionedValue>

 return allValues.stream().distinct().collect(Collectors.toList())

}

Just doing conflict resolution based on version vectors is not enough when
there are concurrent updates. So it’s important to allow clients to provide
application-specific conflict resolvers. A conflict resolver can be provided by
the client while reading a value.

public interface ConflictResolver {

 VersionedValue resolve(List<VersionedValue> values);

}

class ClusterClient…

public VersionedValue getResolvedValue(String key, ConflictResolver

 List<VersionedValue> versionedValues = get(key);

 return resolver.resolve(versionedValues);

}

For example, [riak] [bib-riak] allows applications to provide conflict
resolvers as explained here [bib-riak-conflict-resolver].

Last Write Wins (LWW) Conflict Resolution

Cassandra and LWW

Cassandra [bib-cassandra], while architecturally same as [riak] [bib-
riak] or [voldemort] [bib-voldemort], does not use version vectors at
all, and supports only last write wins conlict resolution strategy.
Casasndra being a column family database, rather than a simple key
value store, it stores timestamp with each column, as opposed to a
value as a whole. While this takes the burden of doing conflict
resolution away from the users, users need to make sure that the [ntp]
[bib-ntp] service is configured and working correctly across cassandra
nodes. In the worst case scenario, some latest values can get
overwritten by the older values because of clock drifts.

While the version vector allows detection of concurrent writes across a
different set of servers, they do not by themselves provide any help to clients
in figuring out which value to choose in case of conflicts. The burden is on
the client to do the resolution. Sometimes clients prefer for the key value
store to do conflict resolution based on the timestamp. While there are
known issues with timestamps across servers, the simplicity of this approach

makes it a preferred choice for clients, even with the risk of losing some
updates because of issues with timestamps across servers. They rely fully on
the services like NTP to be well configured and working across the cluster.
Databases like [riak] [bib-riak] and [voldemort] [bib-voldemort] allow users
to select the ‘last write wins’ conflict resolution strategy.

To support LWW conflict resolution, a timestamp is stored with each value
while its written.

class TimestampedVersionedValue…

class TimestampedVersionedValue {

 String value;

 VersionVector versionVector;

 long timestamp;

 public TimestampedVersionedValue(String value, VersionVector vers

 this.value = value;

 this.versionVector = versionVector;

 this.timestamp = timestamp;

 }

While reading the value, the client can use the timestamp to pick up the
latest value. The version vector is completely ignored in this case.

class ClusterClient…

public Optional<TimestampedVersionedValue> getWithLWWW(List<Timesta

 return values.stream().max(Comparator.comparingLong(v -> v.timest

}

Read repair
While allowing any cluster node to accept write requests improves
availability, it’s important that eventually all of the replicas have the same
data. One of the common methods to repair replicas happens when the client
reads the data.

When the conflicts are resolved, it’s also possible to detect which nodes have
older versions. The nodes with older versions can be sent the latest versions
as part of the read request handling from the client. This is called as read
repair.

Consider a scenario shown in the following diagram. Two nodes, blue and
green, have values for a key "name". The green node has the latest version
with version vector [blue: 1, green:1]. When the values are read from both
the replicas, blue and green, they are compared to find out which node is
missing the latest version, and a put request with the latest version is sent to
the cluster node.

Allowing concurrent updates on the same cluster
node
There is a possibility of two clients writing concurrently to the same node. In
the default implementation shown above, the second write will be rejected.
The basic implementation with the version number per cluster node is not
enough in this case.

Consider the following scenario. With two clients trying to update the same
key, the second client will get an exception, as the version it passes in its put
request is stale.

A database like [riak] [bib-riak] gives flexibility to clients to allow these
kind of concurrent writes and prefer not getting error responses.

Using Client IDs instead of Server IDs
If each cluster client can have a unique ID, client ID can be used. A version
number is stored per client ID. Every time a client writes a value, it first
reads the existing version, increments the number associated with the client
ID and writes it to the server.

class ClusterClient…

private VersionedValue putWithClientId(String clientId, int nodeInd

 ClusterNode node = clusterNodes.get(nodeIndex);

 VersionVector newVersion = version.increment(clientId);

 VersionedValue versionedValue = new VersionedValue(value, newVers

 node.put(key, versionedValue);

 return versionedValue;

}

Because each client increments its own counter, concurrent writes create
sibling values on the servers, but concurrent writes never fail.

The above mentioned scenario, which gives error to second client, works as
following:

Dotted version vectors
One of the major problems with client ID based version vectors is that the
size of the version vector is directly dependent on the number of clients. This
causes cluster nodes to accumulate too many concurrent values for a given
key over time. The problem is called as sibling explosion [bib-sibling-
explosion]. To solve this issue and still allow cluster node based version
vectors, [riak] [bib-riak] uses a variant of version vector called dotted
version vector [bib-dvv].

Examples
[voldemort] [bib-voldemort] uses version vector in the way described here.
It allows timestamp based last write wins conflict resolution.

[riak] [bib-riak] started by using client ID based version vectors, but moved
to cluster node based version vectors and eventually to dotted version
vectors. Riak also supports last write wins conflict resolution based on the
system timestamp.

Cassandra [bib-cassandra] does not use version vectors, It supports only last
write wins conflict resolution based on system timestamp.

Part III: Patterns of Data
Partitioning

Chapter 19. Fixed Partitions

Keep the number of partitions fixed to keep the mapping of data to the
partition unchanged when size of a cluster changes.

Problem
To split data across a set of cluster nodes, each data item needs to be mapped
to them. There are two requirements for mapping the data to the cluster
nodes.

• The distribution should be uniform

• It should possible to know which cluster node stores a particular data
item, without making a request to all the nodes

Considering a key value store, which is a good proxy for many storage
systems, both requirements can be fulfilled by using the hash of the key and
using what’s called the modulo operation to map it to a cluster node. So if
we consider a three node cluster,we can map keys Alice, Bob, Mary and
Philip like this:

However, this method creates a problem when the cluster size changes. If
two more nodes are added to the cluster, we will have five nodes. The
mapping will then look like this:

The way almost all the keys are mapped changes. Even by adding only a few
new cluster nodes, all the data needs to be moved. When the data size is
large, this is undesirable.

Solution

A message broker like Kafka [bib-kafka] needs an ordering guarantee
for the data per partition. With fixed partitions, the data per partition
doesn’t change even when partitions are moved around the cluster
nodes when new nodes are added.This maintains the ordering of data
per partition.

One of the most commonly used solution is to map data to logical partitions.
Logical partitions are mapped to the cluster nodes. Even if cluster nodes are
added or removed, the mapping of data to partitions doesn’t change. The
cluster is launched with a preconfigured number of partitions say, for the
sake of this example, 1024. This number does not change when new nodes
are added to the cluster. So the way data is mapped to partitions using the
hash of the key remains the same.

It’s important that partitions are evenly distributed across cluster nodes.
When partitions are moved to new nodes, it should be relatively quick with
only a smaller portion of the data movement. Once configured, the partition
number won’t change; this mean it should have enough room for future
growth of data volumes.

So the number of partitions selected should be significantly higher than the
number of cluster nodes. For example, Akka [bib-akka] suggests you should
have number of shards ten times the number of nodes. partitioning in Apache
Ignite [bib-ignite-partitioning] has it’s default value as 1024. Hazelcast [bib-
hazelcast] has a default value of 271 for cluster size smaller than 100.

Data storage or retrieval is then a two step process.

• First, you find the partition for the given data item

• Then you find the cluster node where the partition is stored

To balance data across the cluster nodes when new ones are added, some of
the partitions can be moved to the new nodes.

Choosing the hash function
It’s critical to choose the hashing method which gives the same hash values
independent of the platform and runtime. For example, programming
languages like Java provide a hash for every object. However, it’s important
to note that hash value is dependent on the JVM runtime. So two different
JVMs could give a different hash for the same key. To tackle this, hashing
algorithms like MD5 hash or Murmur hash are used.

class HashingUtil…

public static BigInteger hash(String key)

{

 try

 {

 MessageDigest messageDigest = MessageDigest.getInstance("MD5");

 return new BigInteger(messageDigest.digest(key.getBytes()));

 }

 catch (Exception e)

 {

 throw new RuntimeException(e);

 }

}

The keys are not mapped to nodes, but to partitions. Considering there are 9
partitions, the table looks like following. With the addition of new nodes to
the cluster, the mapping of a key to partition does not change.

Mapping partitions to cluster nodes
Partitions need to be mapped to cluster nodes. The mapping also needs to be
stored and made accessible to the clients. It’s common to use a dedicated
Consistent Core; this handles both. The dedicated Consistent Core acts as a
coordinator which keeps track of all nodes in the cluster and maps partitions
to nodes. It also stores the mapping in a fault tolerant way by using a
Replicated Log. The master cluster in YugabyteDB [bib-yugabyte] or
controller implementation [bib-kip-631] in Kafka are both good examples of
this.

Peer-to-peer systems like Akka [bib-akka] or Hazelcast [bib-hazelcast] also
need a particular cluster node to act as an coordinator. They use Emergent
Leader as the coordinator.

Systems like Kubernetes [bib-kubernetes] use a generic Consistent Core like
etcd [bib-etcd]. They need to elect one of the cluster nodes to play the role of

coordinator as discussed here.
[leaderfollower.xhtml#LeaderElectionUsingExternallinearizableStore]

Tracking Cluster Membership

Each cluster node will register itself with the consistent-core. It also
periodically sends a HeartBeat to allow the Consistent Core detect node
failures.

class KVStore…

http://leaderfollower.xhtml/#LeaderElectionUsingExternallinearizableStore

public void start() {

 socketListener.start();

 requestHandler.start();

 network.sendAndReceive(coordLeader, new RegisterClusterNodeReques

 scheduler.scheduleAtFixedRate(()->{

 network.send(coordLeader, new HeartbeatMessage(generateMessageI

 }, 200, 200, TimeUnit.MILLISECONDS);

}

The coordinator handles the registration and then stores member
information.

class ClusterCoordinator…

ReplicatedLog replicatedLog;

Membership membership = new Membership();

TimeoutBasedFailureDetector failureDetector = new TimeoutBasedFailu

private void handleRegisterClusterNodeRequest(Message message) {

 logger.info("Registering node " + message.from);

 CompletableFuture completableFuture = registerClusterNode(message

 completableFuture.whenComplete((response, error) -> {

 logger.info("Sending register response to node " + message.from

 network.send(message.from, new RegisterClusterNodeResponse(mess

 });

}

public CompletableFuture registerClusterNode(InetAddressAndPort add

 return replicatedLog.propose(new RegisterClusterNodeCommand(addre

}

When a registration is committed in the Replicated Log, the membership will
be updated.

class ClusterCoordinator…

private void applyRegisterClusterNodeEntry(RegisterClusterNodeComma

 updateMembership(command.memberAddress);

}

class ClusterCoordinator…

private void updateMembership(InetAddressAndPort address) {

 membership = membership.addNewMember(address);

 failureDetector.heartBeatReceived(address);

}

The coordinator maintains a list of all nodes that are part of the cluster:

class Membership…

public class Membership {

 List<Member> liveMembers = new ArrayList<>();

 List<Member> failedMembers = new ArrayList<>();

 public boolean isFailed(InetAddressAndPort address) {

 return failedMembers.stream().anyMatch(m -> m.address.equals(ad

 }

class Member…

public class Member implements Comparable<Member> {

 InetAddressAndPort address;

 MemberStatus status;

The coordinator will detect cluster node failures using a mechanism similar
to Lease. If a cluster node stops sending the heartbeat, the node will be
marked as failed.

class ClusterCoordinator…

@Override

public void onBecomingLeader() {

 scheduledTask = executor.scheduleWithFixedDelay(this::checkMember

 1000,

 1000,

 TimeUnit.MILLISECONDS);

 failureDetector.start();

}

private void checkMembership() {

 List<Member> failedMembers = getFailedMembers();

 if (!failedMembers.isEmpty()) {

 replicatedLog.propose(new MemberFailedCommand(failedMembers));

 }

}

private List<Member> getFailedMembers() {

 List<Member> liveMembers = membership.getLiveMembers();

 return liveMembers.stream()

 .filter(m -> failureDetector.isMonitoring(m.getAddress()) &&

 .collect(Collectors.toList());

}

An example scenario
Consider that there are three data servers athens, byzantium and cyrene.
Considering there are 9 partitions, the flow looks like following.

The client can then use the partition table to map a given key to a particular
cluster node.

Now a new cluster node - ‘ephesus’ - is added to the cluster. The admin
triggers a reassignment and the coordinator checks which nodes are
underloaded by checking the partition table. It figures out that ephesus is the
node which is underloaded, and decides to allocate partition 7 to it, moving
it from athens. The coordinator stores the migrations and then sends the
request to athens to move partition 7 to ephesus. Once the migration is
complete, athens lets the coordinator know. The coordinator then updates the
partition table.

Assigning Partitions To Cluster Nodes

For data stores like Kafka [bib-kafka] or Hazelcast [bib-hazelcast]
which have logical storage structures like topics, caches or tables, the
partitions are created at the same time as the tables, topics or caches.
The expectation is that, the storage structures will be created after all
nodes in the cluster are launched and have registered with the
Consistent Core.

The coordinator assigns partitions to cluster nodes which are known at that
point in time. If it’s triggered every time a new cluster node is added, it
might map partitions too early until the cluster reaches a stable state. This is
why the coordinator should be configured to wait until the cluster reaches a
minimum size.

The first time the partition assignment is done, it can simply be done in a
round robin fashion. Ignite [bib-ignite] uses a more sophisticated mapping
using [rendezvous_hashing] [bib-rendezvous_hashing]

class ClusterCoordinator…

CompletableFuture assignPartitionsToClusterNodes() {

 if (!minimumClusterSizeReached()) {

 return CompletableFuture.failedFuture(new NotEnoughClusterNode

 }

 return initializePartitionAssignment();

}

private boolean minimumClusterSizeReached() {

 return membership.getLiveMembers().size() >= MINIMUM_CLUSTER_SIZE

}

private CompletableFuture initializePartitionAssignment() {

 partitionAssignmentStatus = PartitionAssignmentStatus.IN_PROGRESS

 PartitionTable partitionTable = arrangePartitions();

 return replicatedLog.propose(new PartitiontableCommand(partitionT

}

public PartitionTable arrangePartitions() {

 PartitionTable partitionTable = new PartitionTable();

 List<Member> liveMembers = membership.getLiveMembers();

 for (int partitionId = 1; partitionId <= noOfPartitions; partitio

 int index = partitionId % liveMembers.size();

 Member member = liveMembers.get(index);

 partitionTable.addPartition(partitionId, new PartitionInfo(part

 }

 return partitionTable;

}

The replication log makes the partition table persistent.

class ClusterCoordinator…

PartitionTable partitionTable;

PartitionAssignmentStatus partitionAssignmentStatus = PartitionAssi

private void applyPartitionTableCommand(PartitiontableCommand comma

 this.partitionTable = command.partitionTable;

 partitionAssignmentStatus = PartitionAssignmentStatus.ASSIGNED;

 if (isLeader()) {

 sendMessagesToMembers(partitionTable);

 }

}

Once the partition assignment is persisted, the coordinator sends messages to
all cluster nodes to tell each node which partitions it now owns.

class ClusterCoordinator…

List<Integer> pendingPartitionAssignments = new ArrayList<>();

private void sendMessagesToMembers(PartitionTable partitionTable) {

 Map<Integer, PartitionInfo> partitionsTobeHosted = partitionTable

 partitionsTobeHosted.forEach((partitionId, partitionInfo) -> {

 pendingPartitionAssignments.add(partitionId);

 HostPartitionMessage message = new HostPartitionMessage(request

 logger.info("Sending host partition message to " + partitionInf

 scheduler.execute(new RetryableTask(partitionInfo.hostedOn, net

 });

}

The controller will keep trying to reach nodes continuously until its message
is successful.

class RetryableTask…

static class RetryableTask implements Runnable {

 Logger logger = LogManager.getLogger(RetryableTask.class);

 InetAddressAndPort address;

 Network network;

 ClusterCoordinator coordinator;

 Integer partitionId;

 int attempt;

 private Message message;

 public RetryableTask(InetAddressAndPort address, Network network,

 this.address = address;

 this.network = network;

 this.coordinator = coordinator;

 this.partitionId = partitionId;

 this.message = message;

 }

 @Override

 public void run() {

 attempt++;

 try {

 //stop trying if the node is failed.

 if (coordinator.isSuspected(address)) {

 return;

 }

 logger.info("Sending " + message + " to=" + address);

 network.send(address, message);

 } catch (Exception e) {

 logger.error("Error trying to send ");

 scheduleWithBackOff();

 }

 }

 private void scheduleWithBackOff() {

 scheduler.schedule(this, getBackOffDelay(attempt), TimeUnit.MIL

 }

 private long getBackOffDelay(int attempt) {

 long baseDelay = (long) Math.pow(2, attempt);

 long jitter = randomJitter();

 return baseDelay + jitter;

 }

 private long randomJitter() {

 int i = new Random(1).nextInt();

 i = i < 0 ? i * -1 : i;

 long jitter = i % 50;

 return jitter;

 }

}

When cluster node receives the request to create the partition, it creates one
with the given partition id. If we imagine this happening within a simple
key-value store, its implementation will look something like this:

class KVStore…

Map<Integer, Partition> allPartitions = new ConcurrentHashMap<>();

private void handleHostPartitionMessage(Message message) {

 Integer partitionId = ((HostPartitionMessage) message).getPartiti

 addPartitions(partitionId);

 logger.info("Adding partition " + partitionId + " to " + listenAd

 network.send(message.from, new HostPartitionAcks(message.messageI

}

public void addPartitions(Integer partitionId) {

 allPartitions.put(partitionId, new Partition(partitionId));

}

class Partition…

SortedMap<String, String> kv = new TreeMap<>();

private Integer partitionId;

Once the coordinator receives the message that the partition has been
successfully created, it persists it in the replicated log and updates the
partition status to be online.

class ClusterCoordinator…

private void handleHostPartitionAck(Message message) {

 int partitionId = ((HostPartitionAcks) message).getPartitionId();

 pendingPartitionAssignments.remove(Integer.valueOf(partitionId));

 logger.info("Received host partition ack from " + message.from +

 CompletableFuture future = replicatedLog.propose(new UpdatePartit

 future.join();

}

Once the High-Water Mark is reached, and the record is applied, the
partition’s status will be updated.

class ClusterCoordinator…

private void updateParitionStatus(UpdatePartitionStatusCommand comm

 removePendingRequest(command.partitionId);

 logger.info("Changing status for " + command.partitionId + " to "

 logger.info(partitionTable.toString());

 partitionTable.updateStatus(command.partitionId, command.status);

}

Client Interface
If we again consider the example of a simple key and value store, if a client
needs to store or get a value for a particular key, it can do so by following
these steps:

• The client applies the hash function to the key and finds the relevant
partition based on the total number of partitions.

• The client gets the partition table from the coordinator and finds the
cluster node that is hosting the partition. The client also periodically
refreshes the partition table.

Kafka [bib-kafka] faced an issue [bib-kafka-metadata-issue] in which
all the producer/consumers were fetching partition metadata from
Zookeeper [bib-zookeeper] and decided to make metadata available on
all the brokers.

A similar issue [bib-yb-metadata-issue] was also observed in
YugabyteDB [bib-yugabyte]

Clients fetching a partition table from the coordinator can quickly lead to
bottlenecks, especially if all requests are being served by a single
coordinator leader. That is why it is common practice to keep metadata
available on all cluster nodes. The coordinator can either push metadata to
cluster nodes, or cluster nodes can pull it from the coordinator. Clients can
then connect with any cluster node to refresh the metadata.

This is generally implemented inside the client library provided by the key
value store, or by client request handling (which happens on the cluster
nodes.)

class Client…

public void put(String key, String value) throws IOException {

 Integer partitionId = findPartition(key, noOfPartitions);

 InetAddressAndPort nodeAddress = getNodeAddressFor(partitionId);

 sendPutMessage(partitionId, nodeAddress, key, value);

}

private InetAddressAndPort getNodeAddressFor(Integer partitionId) {

 PartitionInfo partitionInfo = partitionTable.getPartition(partiti

 InetAddressAndPort nodeAddress = partitionInfo.getAddress();

 return nodeAddress;

}

private void sendPutMessage(Integer partitionId, InetAddressAndPort

 PartitionPutMessage partitionPutMessage = new PartitionPutMessage

 SocketClient socketClient = new SocketClient(address);

 socketClient.blockingSend(new RequestOrResponse(RequestId.Partiti

 JsonSerDes.serialize(partitionPutMessage

}

public String get(String key) throws IOException {

 Integer partitionId = findPartition(key, noOfPartitions);

 InetAddressAndPort nodeAddress = getNodeAddressFor(partitionId);

 return sendGetMessage(partitionId, key, nodeAddress);

}

private String sendGetMessage(Integer partitionId, String key, Inet

 PartitionGetMessage partitionGetMessage = new PartitionGetMessage

 SocketClient socketClient = new SocketClient(address);

 RequestOrResponse response = socketClient.blockingSend(new Reques

 PartitionGetResponseMessage partitionGetResponseMessage = JsonSer

 return partitionGetResponseMessage.getValue();

}

Moving partitions to newly added members
When new nodes are added to a cluster, some partitions can be moved to
other nodes. This can be done automatically once a new cluster node is

added. But it can involve a lot of data being moved across the cluster node,
which is why an administrator will typically trigger the repartitioning. One
simple method to do this is to calculate the average number of partitions
each node should host and then move the additional partitions to the new
node. For example, if the number of partitions is 30 and there are three
existing nodes in the cluster, each node should host 10 partitions. If a new
node is added, the average per node is about 7. The coordinator will
therefore try to move three partitions from each cluster node to the new one.

class ClusterCoordinator…

List<Migration> pendingMigrations = new ArrayList<>();

boolean reassignPartitions() {

 if (partitionAssignmentInProgress()) {

 logger.info("Partition assignment in progress");

 return false;

 }

 List<Migration> migrations = repartition(this.partitionTable);

 CompletableFuture proposalFuture = replicatedLog.propose(new Migr

 proposalFuture.join();

 return true;

}

public List<Migration> repartition(PartitionTable partitionTable) {

 int averagePartitionsPerNode = getAveragePartitionsPerNode();

 List<Member> liveMembers = membership.getLiveMembers();

 var overloadedNodes = partitionTable.getOverloadedNodes(averagePa

 var underloadedNodes = partitionTable.getUnderloadedNodes(average

 var migrations = tryMovingPartitionsToUnderLoadedMembers(averageP

 return migrations;

}

private List<Migration> tryMovingPartitionsToUnderLoadedMembers(int

 Map<InetAddressAndPort,

 Map<InetAddressAndPort,

 List<Migration> migrations = new ArrayList<>();

 for (InetAddressAndPort member : overloadedNodes.keySet()) {

 var partitions = overloadedNodes.get(member);

 var toMove = partitions.subList(averagePartitionsPerNode, parti

 overloadedNodes.put(member, partitions.subList(0, averagePartit

 ArrayDeque<Integer> moveQ = new ArrayDeque<Integer>(toMove.part

 while (!moveQ.isEmpty() && nodeWithLeastPartitions(underloadedN

 assignToNodesWithLeastPartitions(migrations, member, moveQ, u

 }

 if (!moveQ.isEmpty()) {

 overloadedNodes.get(member).addAll(moveQ);

 }

 }

 return migrations;

}

int getAveragePartitionsPerNode() {

 return noOfPartitions / membership.getLiveMembers().size();

}

The coordinator will persist the computed migrations in the replicated log
and then send requests to move partitions across the cluster nodes.

private void applyMigratePartitionCommand(MigratePartitionsCommand

 logger.info("Handling partition migrations " + command.migrations

 for (Migration migration : command.migrations) {

 RequestPartitionMigrationMessage message = new RequestPartition

 pendingMigrations.add(migration);

 if (isLeader()) {

 scheduler.execute(new RetryableTask(migration.fromMember, ne

 }

 }

}

When a cluster node receives a request to migrate, it will mark the partition
as migrating. This stops any further modifications to the partition. It will
then send the entire partition data to the target node.

class KVStore…

private void handleRequestPartitionMigrationMessage(RequestPartitio

 Migration migration = message.getMigration();

 Integer partitionId = migration.getPartitionId();

 InetAddressAndPort toServer = migration.getToMember();

 if (!allPartitions.containsKey(partitionId)) {

 return;// The partition is not available with this node.

 }

 Partition partition = allPartitions.get(partitionId);

 partition.setMigrating();

 network.send(toServer, new MovePartitionMessage(requestNumber++,

}

The cluster node that receives the request will add the new partition to itself
and return an acknowledgement.

class KVStore…

private void handleMovePartition(Message message) {

 MovePartitionMessage movePartitionMessage = (MovePartitionMessage

 Partition partition = movePartitionMessage.getPartition();

 allPartitions.put(partition.getId(), partition);

 network.send(message.from, new PartitionMovementComplete(message.

 new Migration(movePartitionMessage.getMigrateFrom(), movePart

}

The cluster node previously owned the partition will then send the migration
complete message to the cluster coordinator.

class KVStore…

private void handlePartitionMovementCompleteMessage(PartitionMoveme

 allPartitions.remove(message.getMigration().getPartitionId());

 network.send(coordLeader, new MigrationCompleteMessage(requestNum

 message.getMigration()));

}

The cluster coordinator will then mark the migration as complete. The
change will be stored in the replicated log.

class ClusterCoordinator…

private void handleMigrationCompleteMessage(MigrationCompleteMessag

 MigrationCompleteMessage migrationCompleteMessage = message;

 CompletableFuture propose = replicatedLog.propose(new MigrationCo

 propose.join();

}

class ClusterCoordinator…

private void applyMigrationCompleted(MigrationCompletedCommand comm

 pendingMigrations.remove(command.getMigration());

 logger.info("Completed migration " + command.getMigration());

 logger.info("pendingMigrations = " + pendingMigrations);

 partitionTable.migrationCompleted(command.getMigration());

}

class PartitionTable…

public void migrationCompleted(Migration migration) {

 this.addPartition(migration.partitionId, new PartitionInfo(migrat

}

Alternative Solution-Partitions proportional to
number of nodes
There is an alternative to fixed partitions, as popularized by Cassandra [bib-
cassandra], is to have the number of partitions proportional to the number of
nodes in the cluster.

The number of partitions increases when new nodes are added to the cluster.
This technique is also sometimes called as [consistent-hashing] [bib-

consistent-hashing] It requires storing a randomly generated hash per
partition, and needs to search through the sorted list of hashes, taking more
time compared to O(1) computation of no. of partitions % hash. This
technique is also shown to create some imbalance in data assigned to
partitions, so most data systems use fixed-partitions technique.

The basic mechanism works as following. Each node is assigned a random
integer token. This value is typically generated as hash of a random GUID.
For example, Cassandra [bib-cassandra] generates it as following:

static final Random random = new Random();

public static ByteBuffer guidAsBytes()

{

 String s_id = getLocalHost();

 StringBuilder sbValueBeforeMD5 = new StringBuilder();

 long rand = random.nextLong();

 sbValueBeforeMD5.append(s_id)

 .append(":")

 .append(Long.toString(System.currentTimeMillis()))

 .append(":")

 .append(Long.toString(rand));

 String valueBeforeMD5 = sbValueBeforeMD5.toString();

 return ByteBuffer.wrap(hash(valueBeforeMD5.getBytes()));

}

private static String getLocalHost() {

 String s_id = null;

 try {

 s_id = InetAddress.getLocalHost().toString();

 } catch (UnknownHostException e) {

 throw new RuntimeException(e);

 }

 return s_id;

}

public static byte[] hash(byte[] data)

{

 byte[] result = null;

 try

 {

 MessageDigest messageDigest = MessageDigest.getInstance("MD5");

 result = messageDigest.digest(data);

 } catch (NoSuchAlgorithmException e) {

 throw new RuntimeException(e);

 }

 return result;

}

The client maps the key to the cluster nodes as following.

• It computes the hash of the key

• It then gets the sorted list of all the available tokens. It then searches the
lowest token value, that is higher than the hash of the key. The cluster
node owning that token is the node storing the given key.

• Because the list is considered as circular, any hash value of the key,
greater than the last token in the list, maps to the first token.

The code for this looks as following:

class TokenMetadata…

public Node getNodeFor(BigInteger keyHash) {

 List<BigInteger> tokens = sortedTokens();

 BigInteger token = searchToken(tokens, keyHash);

 return tokenToNodeMap.get(token);

}

private static BigInteger searchToken(List<BigInteger> tokens, BigI

 int index = Collections.binarySearch(tokens, keyHash);

 if (index < 0) {

 index = (index + 1) * (-1);

 if (index >= tokens.size())

 index = 0;

 }

 BigInteger token = tokens.get(index);

 return token;

}

List<BigInteger> sortedTokens() {

 List<BigInteger> tokens = new ArrayList<>(tokenToNodeMap.keySet()

 Collections.sort(tokens);

 return tokens;

}

To see how this works we take some example values for tokens. Consider a
three node cluster, with athens, byzantium and cyrene each having token
values as 10, 20 and 30 respectively.

For this example, imagine this metadata stored with the Consistent Core.
The client library gets the token metadata, and uses it to map given key to
the cluster node.

Adding new node to the cluster
The main advantage of this scheme is that we have more partitions when
new nodes are added to the cluster.

Consider a new node, delphi added to the cluster, with a random token
assigned to it as 40. We can see that athens, which was hosting all the keys
with hashes above 30, now needs to move the keys with hashes between 30
and 40 to the new node. So all the keys do not need to be moved, but only a
small portion needs to be moved to the new node.

As before, lets consider a Consistent Core is tracking the cluster membership
and mapping partitions to the cluster nodes. When delphi registers with the
Consistent Core, it first figures out which existing nodes are affected
because of this new addition. In our example, athens needs to move part of
the data to the new node. The Consistent Core tells athens to move all the
keys with hashes between 30 and 40 to delphi. After the movement is
complete, delphi’s token is added to token metadata.

This basic technique of assigning a single token to each node has shown to
create data imbalance. When a new node is added, it also puts the burden of
moving data on one of the existing nodes. For this reason Cassandra [bib-
cassandra] changed its design to have multiple random tokens [bib-
cassandra-vnode] assigned to nodes. This allows more even distribution of
data. When a new node is added to the cluster, a small amount of data is
moved from multiple existing nodes, avoiding a load on single node.

Considering the same example as above, instead of single token, each of
athens, byzantium and cyrene can have three tokens each. Three number of
tokens is taken to simplify the example. The default value for Cassandra
[bib-cassandra] was 256. The tokens are randomly allocated to nodes. It is
important to note that tokens assigned to nodes are randomly generated
GUID hashes, so they are not contiguous. If contiguous numbers like
10,20,30 are assigned to each node, it will have similar problem as single
token per node, when a new node is added.

When a new node delphi is added, with tokens say, 40, 50 and 200, The key
ranges athens and byzantium are responsible for changes. Range (130,10] on
athens is split with delphi owning keys with hashes between (130,200].
Range (30,60] on byzantium is split with delphi owning keys with hashes
between (40,50] Keys in the range (130,200] from athens and (40,50] from
byzantium are moved to delphi.

Examples
In Kafka [bib-kafka] each topic is created with a fixed number of partitions

Shard allocation in Akka [bib-akka-shard-allocation] has a fixed number of
shards configured. The guideline is to have the number of shards to be 10
times the size of the cluster

In-memory data grid products like partitioning in Apache Ignite [bib-ignite-
partitioning] and partitioning in Hazelcast [bib-hazelcast-partitioning] have a
fixed number of partitions that are configured for their caches.

Chapter 20. Key-Range Partitions

Partition data in sorted key ranges to efficiently handle range queries.

Problem
To split data across a set of cluster nodes, each data item needs to be mapped
to one. If users want to query a range of keys, specifying only the start and
end key, all partitions will need to be queried in order for the values to be
acquired. Querying every partition for a single request is far from optimal.

If we take an key value store example, we can store the author names using
hash based mapping. (as used in Fixed Partitions).

If a user wants to get values for a range of names, - beginning with, say,
letter ‘a’ to ‘f’ - there’s no way to know which partitions we should fetch
data from if the hash of the key is being used to map keys to partitions. All
partitions need to be queried to get the values required.

Solution
Create logical partitions for keys ranges in a sorted order. The partitions can
then be mapped to cluster nodes. To query a range of data, the client can get
all partitions that contain keys from a given range and query only those
specific partitions to get the values required.

Predefining key ranges
If we already know the whole key space and distribution of keys, the ranges
for partitions can be specified upfront.

Let’s return to our simple key value store with string keys and values. In this
example we are storing author names and their books. If we know the author
name distribution upfront, we can then define partition splits at specific
letters - let’s say, in this instance, ‘b’ and ‘d’.

The start and end of the entire key range needs to be specifically marked. We
can use an empty string to mark the lowest and the highest key. The ranges
will be created like this:

The range will be represented by a start and an end key

class Range…

private String startKey;

private String endKey;

The cluster coordinator creates ranges from the specified split points. The
partitions will then be assigned to cluster nodes.

class ClusterCoordinator…

PartitionTable createPartitionTableFor(List<String> splits) {

 List<Range> ranges = createRangesFromSplitPoints(splits);

 return arrangePartitions(ranges, membership.getLiveMembers());

}

List<Range> createRangesFromSplitPoints(List<String> splits) {

 List<Range> ranges = new ArrayList<>();

 String startKey = Range.MIN_KEY;

 for (String split : splits) {

 String endKey = split;

 ranges.add(new Range(startKey, endKey));

 startKey = split;

 }

 ranges.add(new Range(startKey, Range.MAX_KEY));

 return ranges;

}

PartitionTable arrangePartitions(List<Range> ranges, List<Member> l

 PartitionTable partitionTable = new PartitionTable();

 for (int i = 0; i < ranges.size(); i++) {

 //simple round-robin assignment.

 Member member = liveMembers.get(i % liveMembers.size());

 int partitionId = newPartitionId();

 Range range = ranges.get(i);

 PartitionInfo partitionInfo = new PartitionInfo(partitionId, me

 partitionTable.addPartition(partitionId, partitionInfo);

 }

 return partitionTable;

}

The consistent core, acting as a cluster coordinator, stores the mapping in a
fault tolerant way by using a Replicated Log. The implementation is similar
to the one explained in the pattern fixed partitions.
[fixedpartitions.xhtml#MappingThePartitionsToClusterNodes]

Client Interface
If a client needs to store or get a value for a particular key in a key-value
store, it needs to follow these steps

class Client…

public List<String> getValuesInRange(Range range) throws IOExceptio

 PartitionTable partitionTable = getPartitionTable();

 List<PartitionInfo> partitionsInRange = partitionTable.getPartiti

 List<String> values = new ArrayList<>();

 for (PartitionInfo partitionInfo : partitionsInRange) {

 List<String> partitionValues = sendGetRangeMessage(partitionInf

 values.addAll(partitionValues);

 }

 return values;

}

private PartitionTable getPartitionTable() throws IOException {

 GetPartitionTableResponse response = sendGetPartitionTableRequest

 return response.getPartitionTable();

}

private List<String> sendGetRangeMessage(int partitionId, Range ran

 GetAllInRangeRequest partitionGetMessage = new GetAllInRangeReque

 GetAllInRangeResponse response = sendGetRangeRequest(address, par

 return response.getValues();

}

class PartitionTable…

public List<PartitionInfo> getPartitionsInRange(Range range) {

 List<PartitionInfo> allPartitions = getAllPartitions();

 List<PartitionInfo> partitionsInRange = allPartitions.stream().fi

 return partitionsInRange;

}

class Range…

public boolean isOverlapping(Range range) {

 return this.contains(range.startKey) || range.contains(this.start

}

public boolean contains(String key) {

 return key.compareTo(startKey) >= 0 &&

 (endKey.equals(Range.MAX_KEY) || endKey.compareTo(key) > 0);

}

class Partition…

public List<String> getAllInRange(Range range) {

 return kv.subMap(range.getStartKey(), range.getEndKey()).values()

}

Storing a value
To store a key value, the client needs to find the right partition for a given
key. Once a partition is found, the request is sent to the cluster node that is
hosting that partition.

class Client…

public void put(String key, String value) throws IOException {

 PartitionInfo partition = findPartition(key);

 sendPutMessage(partition.getPartitionId(), partition.getAddress()

}

private PartitionInfo findPartition(String key) {

 return partitionTable.getPartitionFor(key);

}

An example scenario
Let’s explore this with another example.Consider three data servers: athens,
byzantium and cyrene. The partitions splits are defined as "b" and "d". The
three ranges will be created like this:

The coordinator then creates three partitions for these ranges and maps them
to the cluster nodes.

If a client now wants to get all the values for names starting with "a" and "c",
it gets all the partitions which have key ranges containing keys starting with
"a" and "c". It then sends requests to only those partitions to get the values.

Auto splitting ranges
Often it can be difficult to know what the suitable split points are upfront.In
these instances, we can implement auto-splitting.

Here, the coordinator will create only one partition with a key range which
includes all the key space.

class ClusterCoordinator…

private CompletableFuture initializeRangePartitionAssignment(List<S

 partitionAssignmentStatus = PartitionAssignmentStatus.IN_PROGRESS

 PartitionTable partitionTable = splits.isEmpty() ?

 createPartitionTableWithOneRange():createPartitionTableFor(spl

 return replicatedLog.propose(new PartitiontableCommand(partitionT

}

public PartitionTable createPartitionTableWithOneRange() {

 PartitionTable partitionTable = new PartitionTable();

 List<Member> liveMembers = membership.getLiveMembers();

 Member member = liveMembers.get(0);

 Range firstRange = new Range(Range.MIN_KEY, Range.MAX_KEY);

 int partitionId = newPartitionId();

 partitionTable.addPartition(partitionId, new PartitionInfo(partit

 return partitionTable;

}

Each partition can be configured with a fixed maximum size. A background
task then runs on each cluster node to track the size of the partitions. When a
partition reaches its maximum size, it’s split into two partitions, each one
being approximately half the size of the original.

class KVStore…

public void scheduleSplitCheck() {

 scheduler.scheduleAtFixedRate(()->{

 splitCheck();

 }, 1000, 1000, TimeUnit.MILLISECONDS);

}

public void splitCheck() {

 for (Integer partitionId : allPartitions.keySet()) {

 splitCheck(allPartitions.get(partitionId));

 }

}

int MAX_PARTITION_SIZE = 1000;

public void splitCheck(Partition partition) {

 String middleKey = partition.getMiddleKeyIfSizeCrossed(MAX_PARTIT

 if (!middleKey.isEmpty()) {

 logger.info("Partition " + partition.getId() + " reached size

 network.send(coordLeader, new SplitTriggerMessage(partition.ge

 }

}

Calculating partition size and Finding the middle
key

Scanning the complete partition to find the split key is resource
intensive. This is why databases like TiKV [bib-tikv] store the size of
the partition and corresponding key in the data store. The middle key
can then be found without scanning the full partition.

Databases like YugabyteDB [bib-yb] or [hbase] [bib-hbase] which use a
store per partition find an approximate mid key by scanning through
the metadata of the store files.

Getting the size of the partition and finding the middle key is dependent on
what storage engines are being used. A simple way of dong this can be to
just scan through the entire partition to calculate its size. TiKV [bib-tikv]
initially used this approach. To be able to split the tablet, the key which is
situated at the mid point needs to be found as well. To avoid scanning
through the partition twice, a simple implementation can get the middle key
if the size is more than the configured maximum.

class Partition…

public String getMiddleKeyIfSizeCrossed(int partitionMaxSize) {

 int kvSize = 0;

 for (String key : kv.keySet()) {

 kvSize += key.length() + kv.get(key).length();

 if (kvSize >= partitionMaxSize / 2) {

 return key;

 }

 }

 return "";

}

The coordinator, handling the split trigger message update the key range
metadata for the original partition, and creates a new partition metadata for
the split range.

class ClusterCoordinator…

private void handleSplitTriggerMessage(SplitTriggerMessage message)

 logger.info("Handling SplitTriggerMessage " + message.getPartitio

 splitPartition(message.getPartitionId(), message.getSplitKey());

}

public CompletableFuture splitPartition(int partitionId, String spl

 logger.info("Splitting partition " + partitionId + " at key " + s

 PartitionInfo parentPartition = partitionTable.getPartition(parti

 Range originalRange = parentPartition.getRange();

 List<Range> splits = originalRange.split(splitKey);

 Range shrunkOriginalRange = splits.get(0);

 Range newRange = splits.get(1);

 return replicatedLog.propose(new SplitPartitionCommand(partitionI

}

After the partitions metadata is stored successfully, it sends a message to the
cluster node that is hosting the parent partition to split the parent partition’s
data.

class ClusterCoordinator…

private void applySplitPartitionCommand(SplitPartitionCommand comma

 PartitionInfo originalPartition = partitionTable.getPartition(com

 Range originalRange = originalPartition.getRange();

 if (!originalRange.coveredBy(command.getUpdatedRange().getStartKe

 logger.error("The original range start and end keys "+ origina

 return;

 }

 originalPartition.setRange(command.getUpdatedRange());

 PartitionInfo newPartitionInfo = new PartitionInfo(newPartitionId

 partitionTable.addPartition(newPartitionInfo.getPartitionId(), ne

 //send requests to cluster nodes if this is the leader node.

 if (isLeader()) {

 var message = new SplitPartitionMessage(command.getOriginalPar

 scheduler.execute(new RetryableTask(originalPartition.getAddre

 }

}

class Range…

public boolean coveredBy(String startKey, String endKey) {

 return getStartKey().equals(startKey)

 && getEndKey().equals(endKey);

}

The cluster node splits the original partition and creates a new partition. The
data from the original partition is then copied to the new partition. It then
responds to the coordinator telling that the split is complete.

class KVStore…

private void handleSplitPartitionMessage(SplitPartitionMessage spli

 splitPartition(splitPartitionMessage.getPartitionId(),

 splitPartitionMessage.getSplitKey(),

 splitPartitionMessage.getSplitPartitionId());

 network.send(coordLeader,

 new SplitPartitionResponseMessage(splitPartitionMessage.getPa

 splitPartitionMessage.getPartitionId(),

 splitPartitionMessage.getSplitPartitionId(),

 splitPartitionMessage.messageId, listenAddress));

}

private void splitPartition(int parentPartitionId, String splitKey,

 Partition partition = allPartitions.get(parentPartitionId);

 Partition splitPartition = partition.splitAt(splitKey, newPartiti

 logger.info("Adding new partition " + splitPartition.getId() + "

 allPartitions.put(splitPartition.getId(), splitPartition);

}

class Partition…

public Partition splitAt(String splitKey, int newPartitionId) {

 List<Range> splits = this.range.split(splitKey);

 Range shrunkOriginalRange = splits.get(0);

 Range splitRange = splits.get(1);

 SortedMap<String, String> partition1Kv =

 (range.getStartKey().equals(Range.MIN_KEY))

 ? kv.headMap(splitKey)

 : kv.subMap(range.getStartKey(), splitKey);

 SortedMap<String, String> partition2Kv =

 (range.getEndKey().equals(Range.MAX_KEY))

 ? kv.tailMap(splitKey)

 : kv.subMap(splitKey, range.getEndKey());

 this.kv = partition1Kv;

 this.range = shrunkOriginalRange;

 return new Partition(newPartitionId, partition2Kv, splitRange);

}

class Range…

public List<Range> split(String splitKey) {

 return Arrays.asList(new Range(startKey, splitKey), new Range(spl

}

Once the coordinator receives the message, it marks the partitions as online

class ClusterCoordinator…

private void handleSplitPartitionResponse(SplitPartitionResponseMes

 replicatedLog.propose(new UpdatePartitionStatusCommand(message.ge

}

One of the possible issues that can arise when trying to modify the existing
partition is that the client cannot cache and always needs to get the latest
partition metadata before it can send any requests to the cluster node. Data
stores use Generation Clock for partitions; this is updated every single time a
partition is split. Any client requests with an older generation number will be
rejected. Clients can then reload the partition table from the coordinator and
retry the request. This ensures that clients that possess older metadata don’t
get the wrong results. YugabyteDB [bib-yb] chooses to create two separate
new partitions and marks the original as explained in their Automatic table
splitting design. [bib-yb-automatic-table-splitting].

Example Scenario
Consider an example where the cluster node athens holds partition P1
covering the entire key range. The maximum partition size is configured to
be 10 bytes. The SplitCheck detects the size has grown beyond 10, and finds
the approximate middle key to be bob. It then sends a message to the cluster
coordinator, asking it to create metadata for the split partition. Once this
metadata has been successfully created by the coordinator, the coordinator
then asks athens to split partition P1 and passes it the partitionId from the
metadata. Athens can then shrink P1 and create a new partition, copying the
data from P1 to the new partition. After the partition has been successfully
created it sends confirmation to the coordinator. The coordinator then marks
the new partition as online.

Load based splitting
With auto-splitting, we only ever begin with one range. This means all client
requests go to a single server even if there are other nodes in the cluster. All
requests will continue to go to the single server that is hosting the single
range until the range is split and moved to other servers. This is why
sometimes splitting on parameters such as total nunmber of requests, or
CPU, and memory usage are also used to trigger a partition split. Modern
databases like CockroachDB [bib-cockroachdb] and YugabyteDB [bib-yb]
support load based plitting. More details can be found in their documentation
at [cockroach-load-splitting] [bib-cockroach-load-splitting] and [yb-load-
splitting] [bib-yb-load-splitting]

Examples
Databases like [hbase] [bib-hbase], CockroachDB [bib-cockroachdb],
YugabyteDB [bib-yb] and TiKV [bib-tikv] support range partitioning.

Chapter 21. Two Phase Commit

Update resources on multiple nodes in one atomic operation.

Problem
When data needs to be atomically stored on multiple cluster nodes, Cluster
nodes cannot make the data accessible to clients before the decision of other
cluster nodes is known. Each node needs to know if other nodes successfully
stored the data or they failed.

Solution

Comparison with Paxos and Replicated Log

Paxos and Replicated log implementations also have two phases of
execution. But the key difference is that these consensus algorithms are
used when all the cluster nodes involved store the same values.

Two phase commit works across cluster nodes storing different values.
For example, across different partitions of a database. Each partition
can be using Replicated Log to replicate the state involved in two phase
commit.

The essence of two phase commit, unsurprisingly, is that it carries out an
update in two phases:

• the first, prepare, asks each node if it’s able to promise to carry out the
update

• the second, commit, actually carries it out.

As part of the prepare phase, each node participating in the transaction
acquires whatever it needs to assure that it will be able to do the commit in
the second phase, for instance any locks that are required. Once each node is
able to ensure it can commit in the second phase, it lets the coordinator
know, effectively promising the coordinator that it can and will commit in
the second phase. If any node is unable to make that promise, then the
coordinator tells all nodes to rollback, releasing any locks they have, and the
transaction is aborted. Only if all the participants agree to go ahead does the
second phase commence, at which point it’s expected they will all
successfully update.

Considering a simple distributed key value store implementation, the two
phase commit protocol works as follows.

The transactional client creates a unique identifier called a transaction
identifier. The client also keeps track of other details like the transaction start
time. This is used, as described later by the locking mechanism, to prevent
deadlocks. The unique id, along with the additional details like the start
timestamp, that the client tracks is used to refer the transaction across the
cluster nodes. The client maintains a transaction reference as follows, which
is passed along with every request from the client to other cluster nodes.

class TransactionRef…

private UUID txnId;

private long startTimestamp;

 public TransactionRef(long startTimestamp) {

 this.txnId = UUID.randomUUID();

 this.startTimestamp = startTimestamp;

}

class TransactionClient…

TransactionRef transactionRef;

public TransactionClient(ReplicaMapper replicaMapper, SystemClock s

 this.clock = systemClock;

 this.transactionRef = new TransactionRef(clock.now());

 this.replicaMapper = replicaMapper;

}

One of the cluster nodes acts as a coordinator which tracks the status of the
transaction on behalf of the client. In a key-value store, it is generally the
cluster node holding data for one of the keys. It is generally picked up as the
cluster node storing data for the first key used by the client.

Before storing any value, the client communicates with the coordinator to
notify it about the start of the transaction. Because the coordinator is one of
the cluster nodes storing values, it is picked up dynamically when the client
initiates a get or put operation with a specific key.

class TransactionClient…

private TransactionalKVStore coordinator;

private void maybeBeginTransaction(String key) {

 if (coordinator == null) {

 coordinator = replicaMapper.serverFor(key);

 coordinator.begin(transactionRef);

 }

}

The transaction coordinator keeps track of the status of the transaction. It
records every change in a Write-Ahead Log to make sure that the details are
available in case of a crash.

class TransactionCoordinator…

Map<TransactionRef, TransactionMetadata> transactions = new Concurr

WriteAheadLog transactionLog;

public void begin(TransactionRef transactionRef) {

 TransactionMetadata txnMetadata = new TransactionMetadata(transac

 transactionLog.writeEntry(txnMetadata.serialize());

 transactions.put(transactionRef, txnMetadata);

}

class TransactionMetadata…

private TransactionRef txn;

private List<String> participatingKeys = new ArrayList<>();

private TransactionStatus transactionStatus;

The example code shows that every put request goes to the respective
servers. But because the values are not made visible until the
transaction commits, they can very well be buffered on the client side
until the client decides to commit, to optimize on the network round
trips.

The client sends each key which is part of the transaction to the coordinator.
This way the coordinator tracks all the keys which are part of the transaction.
The coordinator records the keys which are part of the transaction in the
transaction metadata.The keys then can be used to know about all of the
cluster nodes which are part of the transaction. Because each key-value is
generally replicated with the Replicated Log, the leader server handling the
requests for a particular key might change over the lifetime of the
transaction, so the keys are tracked instead of the actual server addresses.
The client then sends the put or get requests to the server holding the data for
the key. The server is picked based on the partitioning strategy. The thing to
note is that the client directly communicates with the server and not through
the coordinator. This avoids sending data twice over the network, from client
to coordinator, and then from coordinator to the respective server.

The keys then can be used to know about all the cluster nodes which are part
of the transaction. Because each key-value is generally replicated with
Replicated Log, the leader server handling the requests for a particular key
might change over the life time of the transaction, so keys are tracked, rather
than the actual server addresses.

class TransactionClient…

public CompletableFuture<String> get(String key) {

 maybeBeginTransaction(key);

 coordinator.addKeyToTransaction(transactionRef, key);

 TransactionalKVStore kvStore = replicaMapper.serverFor(key);

 return kvStore.get(transactionRef, key);

}

public void put(String key, String value) {

 maybeBeginTransaction(key);

 coordinator.addKeyToTransaction(transactionRef, key);

 replicaMapper.serverFor(key).put(transactionRef, key, value);

}

class TransactionCoordinator…

public synchronized void addKeyToTransaction(TransactionRef transac

 TransactionMetadata metadata = transactions.get(transactionRef);

 if (!metadata.getParticipatingKeys().contains(key)) {

 metadata.addKey(key);

 transactionLog.writeEntry(metadata.serialize());

 }

}

The cluster node handling the request detects that the request is part of a
transaction with the transaction ID. It manages the state of the transaction,
where it stores the key and the value in the request. The key values are not
directly made available to the key value store, but stored separately.

class TransactionalKVStore…

public void put(TransactionRef transactionRef, String key, String v

 TransactionState state = getOrCreateTransactionState(transactionR

 state.addPendingUpdates(key, value);

}

Locks and Transaction Isolation

Problems with non-serializable isolation

Because the serializable isolation levels has impact on overall
performance, mostly because of the locks held for the duration of the
transaction, most data stores provide relaxed isolation levels, where the
locks are released earlier. This is a problem particularly when clients
need to do read-modify-write operations. The operations can potentially
overwrite the values from the previous transactions. So modern
datastores like Spanner [bib-spanner] or CockroachDB [bib-
cockroachdb] provide serializable isolation.

The requests also take a lock on the keys. Particularly, the get requests take a
read lock and the put requests take a write lock. The read locks are taken as
the values are read.

class TransactionalKVStore…

public CompletableFuture<String> get(TransactionRef txn, String key

 CompletableFuture<TransactionRef> lockFuture

 = lockManager.acquire(txn, key, LockMode.READ);

 return lockFuture.thenApply(transactionRef -> {

 getOrCreateTransactionState(transactionRef);

 return kv.get(key);

 });

}

synchronized TransactionState getOrCreateTransactionState(Transacti

 TransactionState state = this.ongoingTransactions.get(txnRef);

 if (state == null) {

 state = new TransactionState();

 this.ongoingTransactions.put(txnRef, state);

 }

 return state;

}

The write locks can be taken only when the transaction is about to commit
and the values are to be made visible in the key value store. Until then, the
cluster node can just track the modified values as pending operations.

Delaying locking decreases the chances of conflicting transactions.

class TransactionalKVStore…

public void put(TransactionRef transactionRef, String key, String v

 TransactionState state = getOrCreateTransactionState(transactionR

 state.addPendingUpdates(key, value);

}

The key design decision is about which values are made visible to the
concurrent transactions. Different transaction isolation levels give
different levels of visibility. For example in strictly serial transactions,
read requests are blocked till the transaction doing the write completes.
To improve performance, data stores can get around two-phase-locking,
and release locks earlier. But then consistency of the data is
compromised. There are a a lot of different choices [bib-database-
consistency] defined by different isolation levels that data stores
provide.

It is important to note that the locks are long lived and not released when the
request completes. They are released only when the transaction commits.
This technique of holding locks for the duration of the transaction and
releasing them only when the transaction commits or rolls back is called
two-phase-locking [bib-two-phase-locking]. Two-phase locking is critical in
providing the serializable isolation level. Serializable meaning that the
effects of the transactions are visible as if they are executed one at a time.

Deadlock Prevention
Usage of locks can cause deadlocks where two transactions wait for each
other to release the locks. Deadlocks can be avoided if transactions are not

allowed to wait and aborted when the conflicts are detected. There are
different strategies used to decide which transactions are aborted and which
are allowed to continue.

The lock manager implements these wait policies as follows:

class LockManager…

WaitPolicy waitPolicy;

The WaitPolicy decides what to do when there are conflicting requests.

public enum WaitPolicy {

 WoundWait,

 WaitDie,

 Error

}

The lock is an object which tracks the transactions which currently own the
lock and the ones which are waiting for the lock.

class Lock…

Queue<LockRequest> waitQueue = new LinkedList<>();

List<TransactionRef> owners = new ArrayList<>();

LockMode lockMode;

When a transaction requests to acquire a lock, the lock manager grants the
lock immediately if there are no conflicting transactions already owning the
lock.

class LockManager…

public synchronized CompletableFuture<TransactionRef> acquire(Trans

 return acquire(txn, key, lockMode, new CompletableFuture<>());

}

CompletableFuture<TransactionRef> acquire(TransactionRef txnRef,

 String key,

 LockMode askedLockMode,

 CompletableFuture<TransactionRef> lockFutur

 Lock lock = getOrCreateLock(key);

logger.debug("acquiring lock for = " + txnRef + " on key = " + key

if (lock.isCompatible(txnRef, askedLockMode)) {

 lock.addOwner(txnRef, askedLockMode);

 lockFuture.complete(txnRef);

 logger.debug("acquired lock for = " + txnRef);

 return lockFuture;

}

if (lock.isLockedBy(txnRef) && lock.lockMode == askedLockMode) {

 lockFuture.complete(txnRef);

 logger.debug("Lock already acquired lock for = " + txnRef);

 return lockFuture;

}

class Lock…

public boolean isCompatible(TransactionRef txnRef, LockMode lockMod

 if(hasOwner()) {

 return (inReadMode() && lockMode == LockMode.READ)

 || isOnlyOwner(txnRef);

 }

 return true;

}

If there are conflicts, the lock manager acts depending on the wait policy.

Error On Conflict
If the wait policy is to error out, it will throw an error and the calling
transaction will rollback and retry after a random timeout.

class LockManager…

private CompletableFuture<TransactionRef> handleConflict(Lock lock,

 TransactionRef txnRef,

 String key,

 LockMode askedLockMode,

 CompletableFuture<TransactionRef> l

 switch (waitPolicy) {

 case Error: {

 lockFuture.completeExceptionally(new WriteConflictException(t

 return lockFuture;

 }

 case WoundWait: {

 return lock.woundWait(txnRef, key, askedLockMode, lockFuture,

 }

 case WaitDie: {

 return lock.waitDie(txnRef, key, askedLockMode, lockFuture, t

 }

 }

 throw new IllegalArgumentException("Unknown waitPolicy " + waitPo

}

In case of contention when there are a lot of user transactions trying to
acquire locks, if all of them need to restart, it severely limits the systems
throughput. Data stores try to make sure that there are minimal transaction
restarts.

A common technique is to assign a unique ID to transactions and order them.
For example, Spanner [bib-spanner] assigns unique IDs [bib-spanner-
concurrency] to transactions in such a way that they can be ordered. The
technique is very similar to the one discussed in Paxos to order requests
across cluster nodes. Once the transactions can be ordered, there are two
techniques used to avoid deadlock, but still allow transactions to continue
without restarting

The transaction reference is created in such a way that it can be compared
and ordered with other transaction references. The easiest method is to
assign a timestamp to each transaction and compare based on the timestamp.

class TransactionRef…

boolean after(TransactionRef otherTransactionRef) {

 return this.startTimestamp > otherTransactionRef.startTimestamp;

}

But in distributed systems, wall clocks are not monotonic [time-bound-
lease.xhtml#wall-clock-not-monotonic], so a different method like assigning
unique IDs to transactions in such a way that they can be ordered is used.
Along with ordered IDs, the age of each is tracked to be able to order the
transactions. Spanner [bib-spanner] orders transactions by tracking the age
of each transaction in the system.

To be able to order all the transactions, each cluster node is assigned a
unique ID. The client picks up the coordinator at the start of the transaction
and gets the transaction ID from the coordinator The cluster node acting as a
coordinator generates transaction IDs as follows.

class TransactionCoordinator…

private int requestId;

public MonotonicId begin() {

 return new MonotonicId(requestId++, config.getServerId());

}

class MonotonicId…

public class MonotonicId implements Comparable<MonotonicId> {

 public int requestId;

 int serverId;

 public MonotonicId(int requestId, int serverId) {

 this.serverId = serverId;

 this.requestId = requestId;

 }

 public static MonotonicId empty() {

 return new MonotonicId(-1, -1);

 }

 public boolean isAfter(MonotonicId other) {

 if (this.requestId == other.requestId) {

http://time-bound-lease.xhtml/#wall-clock-not-monotonic
http://time-bound-lease.xhtml/#wall-clock-not-monotonic

 return this.serverId > other.serverId;

 }

 return this.requestId > other.requestId;

}

class TransactionClient…

private void beginTransaction(String key) {

 if (coordinator == null) {

 coordinator = replicaMapper.serverFor(key);

 MonotonicId transactionId = coordinator.begin();

 transactionRef = new TransactionRef(transactionId, clock.nanoT

 }

}

The client tracks the age of the transaction by recording the elapsed time
since the beginning of the transaction.

class TransactionRef…

public void incrementAge(SystemClock clock) {

 age = clock.nanoTime() - startTimestamp;

}

The client increments the age, every time a get or a put request is sent to the
servers. The transactions are then ordered as per their age. The transaction id
is used to break the ties when there are same age transactions.

class TransactionRef…

public boolean isAfter(TransactionRef other) {

 return age == other.age?

 this.id.isAfter(other.id)

 :this.age > other.age;

}

Wound-Wait
In the wound-wait [bib-wound-wait] method, if there is a conflict, the
transaction reference asking for the lock is compared to all the transactions
currently owning the lock. If the lock owners are all younger than the
transaction asking for the lock, all of those transactions are aborted. But if
the transaction asking the lock is younger than the ones owning the
transaction, it waits for the lock

class Lock…

public CompletableFuture<TransactionRef> woundWait(TransactionRef t

 String key,

 LockMode askedLockMode,

 CompletableFuture<TransactionRef> lockF

 LockManager lockManager) {

 if (allOwningTransactionsStartedAfter(txnRef) && !anyOwnerIsPrepa

 abortAllOwners(lockManager, key, txnRef);

 return lockManager.acquire(txnRef, key, askedLockMode, lockFut

 }

 LockRequest lockRequest = new LockRequest(txnRef, key, askedLockM

 lockManager.logger.debug("Adding to wait queue = " + lockRequest)

 addToWaitQueue(lockRequest);

 return lockFuture;

}

class Lock…

private boolean allOwningTransactionsStartedAfter(TransactionRef tx

 return owners.stream().filter(o -> !o.equals(txn)).allMatch(owner

}

One of the key things to notice is that if the transaction owning the lock is
already in the prepared state of two-phase-commit, it is not aborted.

Wait-Die
The wait-die [bib-wait-die] method works in the opposite way to wound-
wait [bib-wound-wait]. If the lock owners are all younger than the
transaction asking for the lock, then the transaction waits for the lock. But if
the transaction asking for the lock is younger than the ones owning the
transaction, the transaction is aborted.

class Lock…

public CompletableFuture<TransactionRef> waitDie(TransactionRef txn

 String key,

 LockMode askedLockMode,

 CompletableFuture<TransactionRef> lockF

 LockManager lockManager) {

 if (allOwningTransactionsStartedAfter(txnRef)) {

 addToWaitQueue(new LockRequest(txnRef, key, askedLockMode, loc

 return lockFuture;

 }

 lockManager.abort(txnRef, key);

 lockFuture.completeExceptionally(new WriteConflictException(txnRe

 return lockFuture;

}

Wound-wait mechanism generally has fewer restarts [bib-comparing-wait-
die-and-wound-wait] compared to the wait-die method. So data stores like
Spanner [bib-spanner] use the wound-wait [bib-wound-wait] method.

When the owner of the transaction releases a lock, the waiting transactions
are granted the lock.

class LockManager…

private void release(TransactionRef txn, String key) {

 Optional<Lock> lock = getLock(key);

 lock.ifPresent(l -> {

 l.release(txn, this);

 });

}

class Lock…

public void release(TransactionRef txn, LockManager lockManager) {

 removeOwner(txn);

 if (hasWaiters()) {

 LockRequest lockRequest = getFirst(lockManager.waitPolicy);

 lockManager.acquire(lockRequest.txn, lockRequest.key, lockRequ

 }

}

Commit and Rollback
Once the client successfully reads without facing any conflicts and writes all
the key values, it initiates the commit request by sending a commit request to
the coordinator.

class TransactionClient…

public CompletableFuture<Boolean> commit() {

 return coordinator.commit(transactionRef);

}

The transaction coordinator records the state of the transaction as preparing
to commit. The coordinator implements the commit handling in two phases.

• It first sends the prepare request to each of the participants.

• Once it receives a successful response from all the participants, the
coordinator marks the transaction as prepared to complete. Then it sends
the commit request to all the participants.

class TransactionCoordinator…

public CompletableFuture<Boolean> commit(TransactionRef transaction

 TransactionMetadata metadata = transactions.get(transactionRef);

 metadata.markPreparingToCommit(transactionLog);

 List<CompletableFuture<Boolean>> allPrepared = sendPrepareRequest

 CompletableFuture<List<Boolean>> futureList = sequence(allPrepare

 return futureList.thenApply(result -> {

 if (!result.stream().allMatch(r -> r)) {

 logger.info("Rolling back = " + transactionRef);

 rollback(transactionRef);

 return false;

 }

 metadata.markPrepared(transactionLog);

 sendCommitMessageToParticipants(transactionRef);

 metadata.markCommitComplete(transactionLog);

 return true;

 });

}

public List<CompletableFuture<Boolean>> sendPrepareRequestToPartic

 TransactionMetadata transactionMetadata = transactions.get(trans

 var transactionParticipants = getParticipants(transactionMetadat

 return transactionParticipants.keySet()

 .stream()

 .map(server -> server.handlePrepare(transactionRef))

 collect(Collectors.toList());

}

private void sendCommitMessageToParticipants(TransactionRef transac

 TransactionMetadata transactionMetadata = transactions.get(transa

 var participantsForKeys = getParticipants(transactionMetadata.get

 participantsForKeys.keySet().stream()

 .forEach(kvStore -> {

 List<String> keys = participantsForKeys.get(kvStore);

 kvStore.handleCommit(transactionRef, keys);

 });

}

private Map<TransactionalKVStore, List<String>> getParticipants(Lis

 return participatingKeys.stream()

 .map(k -> Pair.of(serverFor(k), k))

 .collect(Collectors.groupingBy(Pair::getKey, Collectors.mapp

}

The cluster node receiving the prepare requests do two things:

• It tries to grab the write locks for all of the keys.

• Once successful, it writes all of the changes to the write-ahead log.

If it can successfully do these, it can guarantee that there are no conflicting
transactions, and even in the case of a crash the cluster node can recover all
the required state to complete the transaction.

class TransactionalKVStore…

public synchronized CompletableFuture<Boolean> handlePrepare(Transa

 try {

 TransactionState state = getTransactionState(txn);

 if (state.isPrepared()) {

 return CompletableFuture.completedFuture(true); //already p

 }

 if (state.isAborted()) {

 return CompletableFuture.completedFuture(false); //aborted

 }

 Optional<Map<String, String>> pendingUpdates = state.getPendin

 CompletableFuture<Boolean> prepareFuture = prepareUpdates(txn,

 return prepareFuture.thenApply(ignored -> {

 Map<String, Lock> locksHeldByTxn = lockManager.getAllLocksFo

 state.markPrepared();

 writeToWAL(new TransactionMarker(txn, locksHeldByTxn, Transa

 return true;

 });

 } catch (TransactionException| WriteConflictException e) {

 logger.error(e);

 }

 return CompletableFuture.completedFuture(false);

}

private CompletableFuture<Boolean> prepareUpdates(TransactionRef tx

 if (pendingUpdates.isPresent()) {

 Map<String, String> pendingKVs = pendingUpdates.get();

 CompletableFuture<List<TransactionRef>> lockFuture = acquireLo

 return lockFuture.thenApply(ignored -> {

 writeToWAL(txn, pendingKVs);

 return true;

 });

 }

 return CompletableFuture.completedFuture(true);

}

TransactionState getTransactionState(TransactionRef txnRef) {

 return ongoingTransactions.get(txnRef);

}

private void writeToWAL(TransactionRef txn, Map<String, String> pen

 for (String key : pendingUpdates.keySet()) {

 String value = pendingUpdates.get(key);

 wal.writeEntry(new SetValueCommand(txn, key, value).serialize

 }

}

private CompletableFuture<List<TransactionRef>> acquireLocks(Transa

 List<CompletableFuture<TransactionRef>> lockFutures = new ArrayLi

 for (String key : keys) {

 CompletableFuture<TransactionRef> lockFuture = lockManager.acqu

 lockFutures.add(lockFuture);

 }

 return sequence(lockFutures);

}

When the cluster node receives the commit message from the coordinator, it
is safe to make the key-value changes visible. The cluster node does three
things while committing the changes:

• It marks the transaction as committed. Should the cluster node fail at this
point, it knows the outcome of the transaction, and can repeat the
following steps.

• It applies all the changes to the key-value storage

• It releases all the acquired locks.

class TransactionalKVStore…

public synchronized void handleCommit(TransactionRef transactionRef

 if (!ongoingTransactions.containsKey(transactionRef)) {

 return; //this is a no-op. Already committed.

 }

 if (!lockManager.hasLocksFor(transactionRef, keys)) {

 throw new IllegalStateException("Transaction " + transactionRe

 }

 writeToWAL(new TransactionMarker(transactionRef, TransactionStatu

 applyPendingUpdates(transactionRef);

 releaseLocks(transactionRef, keys);

}

private void removeTransactionState(TransactionRef txnRef) {

 ongoingTransactions.remove(txnRef);

}

private void applyPendingUpdates(TransactionRef txnRef) {

 TransactionState state = getTransactionState(txnRef);

 Optional<Map<String, String>> pendingUpdates = state.getPendingUp

 apply(txnRef, pendingUpdates);

}

private void apply(TransactionRef txnRef, Optional<Map<String, Stri

 if (pendingUpdates.isPresent()) {

 Map<String, String> pendingKv = pendingUpdates.get();

 apply(pendingKv);

 }

 removeTransactionState(txnRef);

}

private void apply(Map<String, String> pendingKv) {

 for (String key : pendingKv.keySet()) {

 String value = pendingKv.get(key);

 kv.put(key, value);

 }

}

private void releaseLocks(TransactionRef txn, List<String> keys) {

 lockManager.release(txn, keys);

}

private Long writeToWAL(TransactionMarker transactionMarker) {

 return wal.writeEntry(transactionMarker.serialize());

}

The rollback is implemented in a similar way. If there is any failure, the
client communicates with the coordinator to rollback the transaction.

class TransactionClient…

public void rollback() {

 coordinator.rollback(transactionRef);

}

The transaction coordinator records the state of the transaction as preparing
to rollback. Then it forwards the rollback request to all of the servers which
stored the values for the given transaction. Once all of the requests are
successful, the coordinator marks the transaction rollback as complete.In
case the coordinator crashes after the transaction is marked as ‘prepared to
rollback’, it can keep on sending the rollback messages to all the
participating cluster nodes.

class TransactionCoordinator…

public void rollback(TransactionRef transactionRef) {

 transactions.get(transactionRef).markPrepareToRollback(this.trans

 sendRollbackMessageToParticipants(transactionRef);

 transactions.get(transactionRef).markRollbackComplete(this.transa

}

private void sendRollbackMessageToParticipants(TransactionRef trans

 TransactionMetadata transactionMetadata = transactions.get(transa

 var participants = getParticipants(transactionMetadata.getPartici

 for (TransactionalKVStore kvStore : participants.keySet()) {

 List<String> keys = participants.get(kvStore);

 kvStore.handleRollback(transactionMetadata.getTxn(), keys);

 }

}

The cluster nodes receiving the rollback request does three things:

• It records the state of the transaction as rolled back in the write-ahead
log.

• It discards the transaction state.

• It releases all of the locks

class TransactionalKVStore…

public synchronized void handleRollback(TransactionRef transactionR

 if (!ongoingTransactions.containsKey(transactionRef)) {

 return; //no-op. Already rolled back.

 }

 writeToWAL(new TransactionMarker(transactionRef, TransactionStatu

 this.ongoingTransactions.remove(transactionRef);

 this.lockManager.release(transactionRef, keys);

}

Idempotent Operations
In case of network failures, the coordinator can retry calls to prepare,
commit or abort. So these operations need to be idempotent
[idempotentreceiver.xhtml#IdempotentAndNon-idempotentRequests].

An Example Scenario

Atomic Writes
Consider the following scenario. Paula Blue has a truck and Steven Green
has a backhoe. The availability and the booking status of the truck and the
backhoe are stored on a distributed key-value store. Depending on how the
keys are mapped to servers, Blue’s truck and Green’s backhoe bookings are
stored on separate cluster nodes. Alice is trying to book a truck and backhoe
for the construction work she is planning to start on a Monday. She needs
both the truck and the backhoe to be available.

The booking scenario happens as follows.

Alice checks the availability of Blue’s truck and Green’s backhoe. by
reading the keys ‘truck_booking_monday’ and ‘backhoe_booking_monday’

http://idempotentreceiver.xhtml/#IdempotentAndNon-idempotentRequests

If the values are empty, the booking is free. She reserves the truck and the
backhoe. It is important that both the values are set atomically. If there is any
failure, then none of the values is set.

The commit happens in two phases. The first server Alice contacts acts as
the coordinator and executes the two phases.

The coordinator is a separate participant in the protocol, and is shown that
way on the sequence diagram. However usually one of the servers (Blue or
Green) acts as the coordinator, thus playing two roles in the interaction.

Conflicting Transactions
Consider a scenario where another person, Bob, is also trying to book a truck
and backhoe for construction work on the same Monday.

The booking scenario happens as follows:

• Both Alice and Bob read the keys ‘truck_booking_monday’ and
‘backhoe_booking_monday’

• Both see that the values are empty, meaning the booking is free.

• Both try to book the truck and the backhoe.

The expectation is that, only Alice or Bob, should be able to book, because
the transactions are conflicting. In case of errors, the whole flow needs to be
retried and hopefully, one will go ahead with the booking. But in no
situation, should booking be done partially. Either both bookings should be
done or neither is done.

The scenario gets into a deadlock situation because both the
transactions depend on the locks held by others. The way out is for
transactions to back-out and fail. The example implementation shown
here will fail the transaction if it detects a conflicting transaction held
holding a lock for a given key.

To check the availability, both Alice and Bob start a transaction and contact
Blue and Green’s servers respectively to check for the availability. Blue
holds a read lock for the key "truck_booking_on_monday" and Green holds
a read lock for the key "backhoe_booking_on_monday". Because read locks
are shared, both Alice and Bob can read the values.

Alice and Bob see that both the bookings are available on Monday. So they
reserve by sending the put requests to servers. Both the servers hold the put
requests in the temporary storage.

When Alice and Bob decide to commit the transactions- assuming that Blue
acts as a coordinator- it triggers the two-phase commit protocol and sends
the prepare requests to itself and Green.

For Alice’s request it tries to grab a write lock for the key
‘truck_booking_on_monday’, which it can not get, because there is a
conflicting read lock grabbed by another transaction. So Alice’s transaction
fails in the prepare phase. The same thing happens with Bob’s request.

Transactions can be retried with a retry loop as follows:

class TransactionExecutor…

public boolean executeWithRetry(Function<TransactionClient, Boolean

 for (int attempt = 1; attempt <= maxRetries; attempt++) {

 TransactionClient client = new TransactionClient(replicaMapper,

 try {

 boolean checkPassed = txnMethod.apply(client);

 Boolean successfullyCommitted = client.commit().get();

 return checkPassed && successfullyCommitted;

 } catch (Exception e) {

 logger.error("Write conflict detected while executing." + cli

 client.rollback();

 randomWait(); //wait for random interval

 }

 }

 return false;

}

The example booking code for Alice and Bob will look as follows:

class TransactionalKVStoreTest…

@Test

public void retryWhenConflict() {

 List<TransactionalKVStore> allServers = createTestServers(WaitPol

 TransactionExecutor aliceTxn = bookTransactionally(allServers, "A

 TransactionExecutor bobTxn = bookTransactionally(allServers, "Bob

 TestUtils.waitUntilTrue(() -> (aliceTxn.isSuccess() && !bobTxn.is

}

 private TransactionExecutor bookTransactionally(List<Transactiona

 List<String> bookingKeys = Arrays.asList("truck_booking_on_mond

 TransactionExecutor t1 = new TransactionExecutor(allServers);

 t1.executeAsyncWithRetry(txnClient -> {

 if (txnClient.isAvailable(bookingKeys)) {

 txnClient.reserve(bookingKeys, user);

 return true;

 }

 return false;

 }, systemClock);

 return t1;

}

In this case one of the transactions will eventually succeed and the other will
back out.

While it is very easy to implement, with Error WaitPolicy , there will be
multiple transaction restarts,reducing the overall throughput. As explained in
the above section, if Wound-Wait policy is used it will have fewer
transaction restarts. In the above example, only one transaction will possibly
restart instead of both restarting in case of conflicts.

Using Versioned Value
It is very constraining to have conflicts for all the read and write operations,
particularly so when the transactions can be read-only. It is optimal if read-
only transactions can work without holding any locks and still guarantee that
the values read in a transaction do not change with a concurrent read-write
transaction.

Data-stores generally store multiple versions of the values, as described in
Versioned Value. The version used is the timestamp following Lamport
Clock. Mostly a Hybrid Clock is used in databases like MongoDB [bib-
mongodb] or CockroachDB [bib-cockroachdb]. To use it with the two-phase
commit protocol, the trick is that every server participating in the transaction
sends the timestamp it can write the values at, as response to the prepare
request. The coordinator chooses the maximum of these timestamps as a
commit timestamp and sends it along with the value. The participating
servers then save the value at the commit timestamp. This allows read-only
requests to be executed without holding locks, because it’s guaranteed that
the value written at a particular timestamp is never going to change.

Consider a simple example as follows. Philip is running a report to read all
of the bookings that happened until timestamp 2. If it is a long-running
operation holding a lock, Alice, who is trying to book a truck, will be
blocked until Philip’s work completes. With Versioned Value Philip’s get

requests, which are part of a read-only operation, can continue at timestamp
2, while Alice’s booking continues at timestamp 4.

Note that read requests which are part of a read-write transaction, still need
to hold a lock.

The example code with Lamport Clock looks as follows:

class MvccTransactionalKVStore…

public String readOnlyGet(String key, long readTimestamp) {

 adjustServerTimestamp(readTimestamp);

 return kv.get(new VersionedKey(key, readTimestamp));

}

public CompletableFuture<String> get(TransactionRef txn, String key

 adjustServerTimestamp(readTimestamp);

 CompletableFuture<TransactionRef> lockFuture = lockManager.acquir

 return lockFuture.thenApply(transactionRef -> {

 getOrCreateTransactionState(transactionRef);

 return kv.get(key);

 });

}

private void adjustServerTimestamp(long readTimestamp) {

 this.timestamp = readTimestamp > this.timestamp ? readTimestamp:t

}

public void put(TransactionRef txnId, String key, String value) {

 timestamp = timestamp + 1;

 TransactionState transactionState = getOrCreateTransactionState(t

 transactionState.addPendingUpdates(key, value);

}

class MvccTransactionalKVStore…

private long prepare(TransactionRef txn, Optional<Map<String, Strin

 if (pendingUpdates.isPresent()) {

 Map<String, String> pendingKVs = pendingUpdates.get();

 acquireLocks(txn, pendingKVs);

 timestamp = timestamp + 1; //increment the timestamp for write

 writeToWAL(txn, pendingKVs, timestamp);

 }

 return timestamp;

}

class MvccTransactionCoordinator…

public long commit(TransactionRef txn) {

 long commitTimestamp = prepare(txn);

 TransactionMetadata transactionMetadata = transactions.get(txn

 transactionMetadata.markPreparedToCommit(commitTimestamp, this

 sendCommitMessageToAllTheServers(txn, commitTimestamp, transac

 transactionMetadata.markCommitComplete(transactionLog);

 return commitTimestamp;

}

public long prepare(TransactionRef txn) throws WriteConflictExcepti

 TransactionMetadata transactionMetadata = transactions.get(txn);

 Map<MvccTransactionalKVStore, List<String>> keysToServers = getPa

 List<Long> prepareTimestamps = new ArrayList<>();

 for (MvccTransactionalKVStore store : keysToServers.keySet()) {

 List<String> keys = keysToServers.get(store);

 long prepareTimestamp = store.prepare(txn, keys);

 prepareTimestamps.add(prepareTimestamp);

 }

 return prepareTimestamps.stream().max(Long::compare).orElse(txn.g

}

All the participating cluster nodes then store the key-values at the commit
timestamp.

class MvccTransactionalKVStore…

public void commit(TransactionRef txn, List<String> keys, long comm

 if (!lockManager.hasLocksFor(txn, keys)) {

 throw new IllegalStateException("Transaction should hold all th

 }

 adjustServerTimestamp(commitTimestamp);

 applyPendingOperations(txn, commitTimestamp);

 lockManager.release(txn, keys);

 logTransactionMarker(new TransactionMarker(txn, TransactionStatus

}

private void applyPendingOperations(TransactionRef txnId, long comm

 Optional<TransactionState> transactionState = getTransactionState

 if (transactionState.isPresent()) {

 TransactionState t = transactionState.get();

 Optional<Map<String, String>> pendingUpdates = t.getPendingUpd

 apply(txnId, pendingUpdates, commitTimestamp);

 }

}

private void apply(TransactionRef txnId, Optional<Map<String, Strin

 if (pendingUpdates.isPresent()) {

 Map<String, String> pendingKv = pendingUpdates.get();

 apply(pendingKv, commitTimestamp);

 }

 ongoingTransactions.remove(txnId);

}

private void apply(Map<String, String> pendingKv, long commitTimest

 for (String key : pendingKv.keySet()) {

 String value = pendingKv.get(key);

 kv.put(new VersionedKey(key, commitTimestamp), value);

 }

}

Technical Considerations
There is another subtle issue to be tackled here. Once a particular response is
returned at a given timestamp, no write should happen at a lower timestamp
than the one received in the read request. This is achieved by different

techniques. Google Percolator [bib-percolator] and datastores like TiKV
[bib-tikv] inspired by Percolator use a separate server called Timestamp
oracle which is guaranteed to give monotonic timestamps. Databases like
MongoDB [bib-mongodb] or CockroachDB [bib-cockroachdb] use Hybrid
Clock to guarantee it because every request will adjust the hybrid clock on
each server to be the most up-todate. The timestamp is also advanced
monotonically with every write request. Finally, the commit phase picks up
the maximum timestamp across the set of participating servers, making sure
that the write will always follow a previous read request.

It is important to note that, if the client is reading at a timestamp value lower
than the one at which server is writing to, it is not an issue. But if the client
is reading at a timestamp while the server is about to write at a particular
timestamp, then it is a problem. If servers detect that a client is reading at a
timestamp which the server might have an in-flight writes (the ones which
are only prepared), the servers reject the write. CockroachDB [bib-
cockroachdb] throws error an if a read happens at a timestamp for which
there is an ongoing transaction. Spanner [bib-spanner] reads have a phase
where the client gets the time of the last successful write on a particular
partition. If a client reads at a higher timestamp, the read requests wait till
the writes happen at that timestamp.

Using Replicated Log
To improve fault tolerance cluster nodes use Replicated Log. The
coordinator uses Replicated Log to store the transaction log entries.

Considering the example of Alice and Bob in the above section, the Blue
servers will be a group of servers, so are the Green servers. All the booking
data will be replicated across a set of servers. Each request which is part of
the two-phase commit goes to the leader of the server group. The replication
is implemented using Replicated Log.

The client communicates with the leader of each server group. The
replication is necessary only when the client decides to commit the
transaction, so it happens as part of the prepare request.

The coordinator replicates every state change to replicated log as well.

Multi-Raft is very different thing than Multi-Paxos [bib-multi-paxos].
Multi-Paxos refers to a single Replicated Log. multiple Paxos
instances, with a Paxos instance per log entry. Multi-Raft refers to
multiple Replicated Logs.

In a distributed datastore, each cluster node handles multiple partitions. A
Replicated Log is maintained per partition. When Raft [bib-raft] is used as
part of replication it’s sometimes referred to as multi-raft [bib-multi-raft].

Client communicates with the leader of each partition participating in the
transaction.

Failure Handling
Two-phase commit protocol heavily relies on the coordinator node to
communicate the outcome of the transaction. Until the outcome of the
transaction is known, the individual cluster nodes cannot allow any other
transactions to write to the keys participating in the pending transaction. The
cluster nodes block until the outcome of the transaction is known. This puts
some critical requirements on the coordinator

The coordinator needs to remember the state of the transactions even in case
of a process crash.

Coordinator uses Write-Ahead Log to record every update to the state of the
transaction. This way, when the coordinator crashes and comes back up, it
can continue to work on the transactions which are incomplete.

class TransactionCoordinator…

public void loadTransactionsFromWAL() throws IOException {

 List<WALEntry> walEntries = this.transactionLog.readAll();

 for (WALEntry walEntry : walEntries) {

 TransactionMetadata txnMetadata = (TransactionMetadata) Comman

 transactions.put(txnMetadata.getTxn(), txnMetadata);

 }

 startTransactionTimeoutScheduler();

 completePreparedTransactions();

}

private void completePreparedTransactions() throws IOException {

 List<Map.Entry<TransactionRef, TransactionMetadata>> preparedTran

 = transactions.entrySet().stream().filter(entry -> entry.getVa

 for (Map.Entry<TransactionRef, TransactionMetadata> preparedTrans

 TransactionMetadata txnMetadata = preparedTransaction.getValue

 sendCommitMessageToParticipants(txnMetadata.getTxn());

 }

}

The client can fail before sending the commit message to the coordinator.

The transaction coordinator tracks when each transaction state was updated.
If no state update is received in a timeout period, which is configured, it
triggers a transaction rollback.

class TransactionCoordinator…

private ScheduledThreadPoolExecutor scheduler = new ScheduledThread

private ScheduledFuture<?> taskFuture;

private long transactionTimeoutMs = Long.MAX_VALUE; //for now.

public void startTransactionTimeoutScheduler() {

 taskFuture = scheduler.scheduleAtFixedRate(() -> timeoutTransacti

 transactionTimeoutMs,

 transactionTimeoutMs,

 TimeUnit.MILLISECONDS);

}

private void timeoutTransactions() {

 for (TransactionRef txnRef : transactions.keySet()) {

 TransactionMetadata transactionMetadata = transactions.get(txn

 long now = systemClock.nanoTime();

 if (transactionMetadata.hasTimedOut(now)) {

 sendRollbackMessageToParticipants(transactionMetadata.getTxn()

 transactionMetadata.markRollbackComplete(transactionLog);

 }

 }

}

Transactions across heterogenous systems
The solution outlined here demonstrates the two-phase commit
implementation in a homogenous system. Homogenous meaning all the
cluster nodes are part of the same system and store same kind of data. For
example a distributed data store like MongoDb or a distributed message
broker like Kafka.

Historically, two-phase commit was mostly discussed in the context of
heterogeneous systems. Most common usage of two-phase commit was with
[XA] [bib-XA] transactions. In the J2EE servers, it is very common to use
two-phase commit across a message broker and a database. The most
common usage pattern is when a message needs to be produced on a
message broker like ActiveMQ or JMS and a record needs to be
inserted/updated in a database.

As seen in the above sections, the fault tolerance of the coordinator plays a
critical role in two-phase commit implementation. In case of XA transactions
the coordinator is mostly the application process making the database and
message broker calls. The application in most modern scenarios is a stateless
microservice which is running in a containerized environment. It is not really
a suitable place to put the responsibility of the coordinator. The coordinator
needs to maintain state and recover quickly from failures to commit or
rollback, which is difficult to implement in this case.

This is the reason that while XA transactions seem so attractive, they often
run into issues in practice [bib-activemq-slow-restart] and are avoided. In the
microservices world, patterns like [transactional-outbox] [bib-transactional-
outbox] are preferred over XA transactions.

On the other hand most distributed storage systems implement two-phase
commit across a set of partitions, and it works well in practice.

Examples
Distributed databases like CockroachDB [bib-cockroachdb], MongoDB
[bib-mongodb] etc. implement two phase commit to atomically storing
values across partitions

Kafka [bib-kafka] allows producing messages across multiple partitions
atomically with the implementation similar to two phase commit.

Part IV: Patterns of Distributed
Time

Chapter 22. Lamport Clock

Use logical timestamps as a version for a value to allow ordering of values
across servers

Problem
When values are stored across multiple servers, there needs to be a way to
know which values were stored before the other. The system timestamp can
not be used, because wall clocks are not monotonic [time-bound-
lease.xhtml#wall-clock-not-monotonic] and clock values from two different
servers should not be compared.

The system timestamp, which represents the time of the day, is measured by
a clock machinery generally built with an crystal oscillator. The known
problem with this mechanism is that it can drift away from the actual time of
the day, based on how fast or slow the crystals oscillate. To fix this,
computers typically have a service like NTP [bib-ntp] which synchronizes
computer clocks with well known time sources on the internet. Because of
this, two consecutive readings of the system time on a given server can have
time going backwards.

As there is no upper bound on clock drift across servers, it is impossible to
compare timestamps on two different servers

Solution
Lamport Clock maintains a single number to represent timestamp as
following:

class LamportClock…

http://time-bound-lease.xhtml/#wall-clock-not-monotonic
http://time-bound-lease.xhtml/#wall-clock-not-monotonic

class LamportClock {

 int latestTime;

 public LamportClock(int timestamp) {

 latestTime = timestamp;

 }

Every cluster node maintains an instance of a Lamport Clock.

class Server…

MVCCStore mvccStore;

LamportClock clock;

public Server(MVCCStore mvccStore) {

 this.clock = new LamportClock(1);

 this.mvccStore = mvccStore;

}

Whenever a server carries out any write operation, it should advance the
Lamport Clock, using the `tick()` method

class LamportClock…

public int tick(int requestTime) {

 latestTime = Integer.max(latestTime, requestTime);

 latestTime++;

 return latestTime;

}

This way, the server can be sure that the write is sequenced after the request
and after any other action the server has carried out since the request was
initiated by the client. The server returns the timestamp that was used for
writing the value to the client. The requesting client then uses this timestamp
to issue any further writes to other set of servers. This way, the causal chain
of requests is maintained.

Causality, Time and Happens-Before
When an event A in a system happens before another event B, it might have
a causal relationship. Causal relationship means that A might have some role
in causing B. This ‘A happens before B’ relationship is established by
attaching a timestamp to each event. If A happens before B, the timestamp
attached to A will be lower than the timestamp attached to B. But because
we can not rely on system time, we need some way to make sure that the
happens-before relationship is maintained for the timestamp attached to the
events. Leslie Lamport [bib-laslie-lamport] suggested a solution to use
logical timestamps to track happens-before relationships, in his seminal
paper Time, Clocks and Ordering Of Events [bib-time-clocks-ordering]. So
this technique of using logical timestamps to track causality is named as the
Lamport Timestamp.

It is useful to note that in a database, events are about storing data. So
Lamport Timestamps are attached to the values stored. This also fits very
well with versioned storage mechanism discussed in Versioned Value

An example key value store
Consider an example of a simple key value store with multiple server nodes.
There are two servers, Blue and Green. Each server is responsible for storing
a specific set of keys. This is a typical scenario when data is partitioned
across a set of servers. Values are stored as Versioned Value with the
Lamport Timestamp as a version number.

The receiving server compares and updates its own timestamp and uses it to
write a versioned key value.

class Server…

public int write(String key, String value, int requestTimestamp) {

 //update own clock to reflect causality

 int writeAtTimestamp = clock.tick(requestTimestamp);

 mvccStore.put(new VersionedKey(key, writeAtTimestamp), value);

 return writeAtTimestamp;

}

The timestamp used for writing the value is returned to the client. The client
keeps track of the maximum timestamp, by updating its own timestamp. It
uses this timestamp to issue any further writes.

class Client…

LamportClock clock = new LamportClock(1);

public void write() {

 int server1WrittenAt = server1.write("name", "Alice", clock.getLa

 clock.updateTo(server1WrittenAt);

 int server2WrittenAt = server2.write("title", "Microservices", cl

 clock.updateTo(server2WrittenAt);

 assertTrue(server2WrittenAt > server1WrittenAt);

}

The sequence of requests look like following:

The same technique works even when the client is communicating with a
leader with Leader and Followers groups, with each group responsible for
specific keys. The client sends requests to the leader of the group as detailed
above. The Lamport Clock instance is maintained by the leader of the group,
and is updated exactly the same way as discussed in the previous section.

Partial Order
The values stored by Lamport Clock are only partially ordered [bib-partial-
order]. If two clients store values in two separate servers, the timestamp
values cannot be used to order the values across servers. In the following
example, the title stored by Bob on server Green is at timestamp 2. But it can
not be determined if Bob stored the title before or after Alice stored the name
on server Blue.

A single server/leader updating values
For a single leader-follower group of servers, where a leader is always
responsible for storing values, the basic implementation discussed in
Versioned Value is enough to maintain causality.

In this case, the key value store keeps an integer version counter. It
increments the version counter every time the key value write command is
applied from the Write Ahead Log. It then constructs the new key with the
incremented version counter. Only the leader is responsible for incrementing
the version counter, and followers use the same version number.

class ReplicatedKVStore…

int version = 0;

MVCCStore mvccStore = new MVCCStore();

@Override

public CompletableFuture<Response> put(String key, String value) {

 return replicatedLog.propose(new SetValueCommand(key, value));

}

private Response applySetValueCommand(SetValueCommand setValueComma

 getLogger().info("Setting key value " + setValueCommand);

 version = version + 1;

 mvccStore.put(new VersionedKey(setValueCommand.getKey(), version)

 Response response = Response.success(version);

 return response;

}

Examples
Databases like MongoDB [bib-mongodb] and CockroachDB [bib-
cockroachdb] use variants of the Lamport Clock to implement [mvcc] [bib-
mvcc] storage

Generation Clock is an example of a Lamport Clock

Chapter 23. Hybrid Clock

Use a combination of system timestamp and logical timestamp to have
versions as date-time, which can be ordered

Problem
When Lamport Clock is used as a version in Versioned Value, clients do not
know the actual date-time when the particular versions are stored. It’s useful
for clients to access versions using date-time like 01-01-2020 instead of
using integers like 1, 2, 3.

Solution
Hybrid Logical Clock [bib-hybrid-clock] provides a way to have a version
which is monotonically increasing just like a simple integer, but also has
relation with the actual date time. Hybrid clocks are used in practice by
databases like mongodb [bib-mongodb-hybridclock] or cockroachdb [bib-
cockroachdb-hybridclock].

A Hybrid Logical Clock is implemented as follows:

class HybridClock…

public class HybridClock {

 private final SystemClock systemClock;

 private HybridTimestamp latestTime;

 public HybridClock(SystemClock systemClock) {

 this.systemClock = systemClock;

 this.latestTime = new HybridTimestamp(systemClock.now(), 0);

 }

It maintains the latest time as an instance of the hybrid timestamp, which is
constructed by using system time and an integer counter.

class HybridTimestamp…

public class HybridTimestamp implements Comparable<HybridTimestamp>

 private final long wallClockTime;

 private final int ticks;

 public HybridTimestamp(long systemTime, int ticks) {

 this.wallClockTime = systemTime;

 this.ticks = ticks;

 }

 public static HybridTimestamp fromSystemTime(long systemTime) {

 return new HybridTimestamp(systemTime, -1); //initializing with

}

public HybridTimestamp max(HybridTimestamp other) {

 if (this.getWallClockTime() == other.getWallClockTime()) {

 return this.getTicks() > other.getTicks()? this:other;

 }

 return this.getWallClockTime() > other.getWallClockTime()?this:ot

}

public long getWallClockTime() {

 return wallClockTime;

}

public HybridTimestamp addTicks(int ticks) {

 return new HybridTimestamp(wallClockTime, this.ticks + ticks);

}

public int getTicks() {

 return ticks;

}

@Override

public int compareTo(HybridTimestamp other) {

 if (this.wallClockTime == other.wallClockTime) {

 return Integer.compare(this.ticks, other.ticks);

 }

 return Long.compare(this.wallClockTime, other.wallClockTime);

}

Hybrid clocks can be used exactly the same way as the Lamport Clock
versions. Every server holds an instance of a hybrid clock.

class Server…

HybridClockMVCCStore mvccStore;

HybridClock clock;

public Server(HybridClockMVCCStore mvccStore) {

 this.clock = new HybridClock(new SystemClock());

 this.mvccStore = mvccStore;

}

Every time a value is written, a hybrid timestamp is associated with it. The
trick is to check if the system time value is going back in time, if so
increment another number representing a logical part of the component to
reflect clock progress.

class HybridClock…

public synchronized HybridTimestamp now() {

 long currentTimeMillis = systemClock.now();

 if (latestTime.getWallClockTime() >= currentTimeMillis) {

 latestTime = latestTime.addTicks(1);

 } else {

 latestTime = new HybridTimestamp(currentTimeMillis, 0);

 }

 return latestTime;

}

Every write request that a server receives from the client carries a
timestamp. The receiving server compares its own timestamp to that of the
request and sets it’s own timestamp to the higher of the two

class Server…

public HybridTimestamp write(String key, String value, HybridTimest

 //update own clock to reflect causality

 HybridTimestamp writeAtTimestamp = clock.tick(requestTimestamp);

 mvccStore.put(key, writeAtTimestamp, value);

 return writeAtTimestamp;

}

class HybridClock…

public synchronized HybridTimestamp tick(HybridTimestamp requestTim

 long nowMillis = systemClock.now();

 //set ticks to -1, so that, if this is the max, the next addTicks

 HybridTimestamp now = HybridTimestamp.fromSystemTime(nowMillis);

 latestTime = max(now, requestTime, latestTime);

 latestTime = latestTime.addTicks(1);

 return latestTime;

}

private HybridTimestamp max(HybridTimestamp ...times) {

 HybridTimestamp maxTime = times[0];

 for (int i = 1; i < times.length; i++) {

 maxTime = maxTime.max(times[i]);

 }

 return maxTime;

}

The timestamp used for writing the value is returned to the client. The
requesting client updates its own timestamp and then uses this timestamp to
issue any further writes.

class Client…

HybridClock clock = new HybridClock(new SystemClock());

public void write() {

 HybridTimestamp server1WrittenAt = server1.write("name", "Alice",

 clock.tick(server1WrittenAt);

 HybridTimestamp server2WrittenAt = server2.write("title", "Micros

 assertTrue(server2WrittenAt.compareTo(server1WrittenAt) > 0);

}

Multiversion storage with Hybrid Clock
A hybrid timestamp can be used as a version when the value is stored in a
key value store. The values are stored as discussed in Versioned Value.

class HybridClockReplicatedKVStore…

private Response applySetValueCommand(VersionedSetValueCommand setV

 mvccStore.put(setValueCommand.getKey(), setValueCommand.timestamp

 Response response = Response.success(setValueCommand.timestamp);

 return response;

}

class HybridClockMVCCStore…

ConcurrentSkipListMap<HybridClockKey, String> kv = new ConcurrentSk

public void put(String key, HybridTimestamp version, String value)

 kv.put(new HybridClockKey(key, version), value);

}

class HybridClockKey…

public class HybridClockKey implements Comparable<HybridClockKey> {

 private String key;

 private HybridTimestamp version;

 public HybridClockKey(String key, HybridTimestamp version) {

 this.key = key;

 this.version = version;

 }

 public String getKey() {

 return key;

 }

 public HybridTimestamp getVersion() {

 return version;

 }

 @Override

 public int compareTo(HybridClockKey o) {

 int keyCompare = this.key.compareTo(o.key);

 if (keyCompare == 0) {

 return this.version.compareTo(o.version);

 }

 return keyCompare;

 }

The values are read exactly as discussed in the Ordering of the versioned
keys [versioned-value.xhtml#OrderingOfVersionedKeys]. The versioned
keys are arranged in such a way as to form a natural ordering by using
hybrid timestamps as a suffix to the key. This implementation enables us to
get values for a specific version using the navigable map API.

class HybridClockMVCCStore…

public Optional<String> get(String key, HybridTimestamp atTimestamp

 Map.Entry<HybridClockKey, String> versionKeys = kv.floorEntry(new

 getLogger().info("Available version keys " + versionKeys + ". Rea

 return (versionKeys == null)? Optional.empty(): Optional.of(versi

}

http://versioned-value.xhtml/#OrderingOfVersionedKeys

Using timestamp to read values
Storing values with hybrid timestamp allows users to read using system
timestamps in the past. For example, CockroachDB [bib-cockroachdb]
allows executing queries with ‘AS OF SYSTEM TIME’ clause to specify
date and time like ‘2016-10-03 12:45:00’ The values can be easily read as
following:

class HybridClockMVCCStore…

public Optional<String> getAtSystemTime(String key, String asOfSyst

 long time = Utils.parseDateTime(asOfSystemTimeClause);

 HybridTimestamp atTimestamp = new HybridTimestamp(time, 0);

 return get(key, atTimestamp);

}

Assigning timestamp to distributed transactions
Databases like MongoDB [bib-mongodb] and CockroachDB [bib-
cockroachdb] use a Hybrid Clock to maintain causality with distributed
transactions. With distributed transactions, it’s important to note that, all the
values stored as part of the transaction should be stored at the same
timestamp across the servers when the transaction commits. The requesting
server might know about a higher timestamp in the later write requests. So
the requesting server communicates with all the participating servers about
the highest timestamp it received when the transaction commits. This fits
very well with the standard [two-phase-commit] [bib-two-phase-commit]
protocol for implementing transactions.

Following is the example of how the highest timestamp is determined at
transaction commit. Assume that there are three servers. Server Blue stores
names and Server Green stores titles. There is a separate server which acts as
a coordinator. As can be seen, each server has a different local clock value.
This can be a single integer or hybrid clock. The server acting as a
coordinator starts writing to server Blue with the clock value known to it,
which is 1. But Blue’s clock is at 2, so it increments that and writes the value
at timestamp 3. Timestamp 3 is returned to the coordinator in the response.

For all subsequent requests to other servers, the coordinator uses timestamp
of 3. Server Green, receiving the timestamp value 3 in the request, but it’s
clock is at 4. So it picks up the highest value, which is 4. Increments it and
writes the value at 5 and returns timestamp 5 to the coordinator. When the
transaction commits, the coordinator uses the highest timestamp it received
to commit the transaction. All the values updated in the transaction will be
stored at this highest timestamp.

A very simplified code for timestamp handling with transactions looks like
this:

class TransactionCoordinator…

public Transaction beginTransaction() {

 return new Transaction(UUID.randomUUID().toString());

}

public void putTransactionally() {

 Transaction txn = beginTransaction();

 HybridTimestamp coordinatorTime = new HybridTimestamp(1);

 HybridTimestamp server1WriteTime

 = server1.write("name", "Alice", coordinatorTime, txn);

 HybridTimestamp server2WriteTime = server2.write("title", "Micros

 HybridTimestamp commitTimestamp = server1WriteTime.max(server2Wri

 commit(txn, commitTimestamp);

}

private void commit(Transaction txn, HybridTimestamp commitTimestam

 server1.commitTxn("name", commitTimestamp, txn);

 server2.commitTxn("title", commitTimestamp, txn);

}

Transaction implementation can also use the prepare phase of the two phase
commit protocol to learn about the highest timestamp used by each
participating server.

Examples
MongoDB [bib-mongodb] uses hybrid timestamp to maintain versions in its
MVCC storage.

CockroachDB [bib-cockroachdb] and YugabyteDB [bib-yugabyte] use
hybrid timestamp to maintain causality with distributed transactions.

Chapter 24. Clock-Bound Wait

Wait to cover the uncertainty in time across cluster nodes before reading and
writing values so values can be correctly ordered across cluster nodes.

Problem

Both Alice and Bob can ask server Green for the latest version
timestamp of the key they are trying to read. But that requires one extra
round.

If Alice and Bob are trying to read multiple keys, across a set of
servers, they will need to ask the latest version for each and pick up the
maximum value.

Consider a key-value store where values are stored with a timestamp to
designate each version. Any cluster node that handles the client request will
be able to read the latest version using the current timestamp at the request
processing node.

In the following example, the value ‘Before Dawn’ is updated to value
"After Dawn" at time 2, as per Green’s clock. Both Alice and Bob are trying
to read the latest value for ‘title’. While Alice’s request is processed by
cluster node Amber, Bob’s request is processed by cluster node Blue. Amber
has its clock lagging at 1; which means that when Alice reads the latest
value, it delivers the value ‘Before Dawn’. Blue has its clock at 2; when Bob
reads the latest value, it returns the value as "After Dawn"

This violates a consistency known as external consistency [bib-external-
consistency]. If Alice and Bob now make a phone call, Alice will be
confused; Bob will tell that the latest value is "After Dawn", while her
cluster node is showing "Before Dawn".

The same is true if Green’s clock is fast and the writes happen in ‘future’
compared to Amber’s clock.

This is a problem if system’s timestamp is used as a version for storing
values, because wall clocks are not monotonic [time-bound-
lease.xhtml#wall-clock-not-monotonic]. Clock values from two different
servers cannot and should not be compared. When Hybrid Clock is used as a
version in Versioned Value, it allows values to be ordered on a single server
as well as on different servers which are causally [bib-causal-consistency]
related. However, Hybrid Clocks (or any Lamport Clock based clocks) can
only give partial order. [lamport-clock.xhtml#PartialOrder] This means that
any values which are not causally related and stored by two different clients
across different nodes cannot be ordered. This creates a problem when using

http://time-bound-lease.xhtml/#wall-clock-not-monotonic
http://time-bound-lease.xhtml/#wall-clock-not-monotonic
http://lamport-clock.xhtml/#PartialOrder

a timestamp to read the values across cluster nodes. If the read request
originates on cluster nodes with lagging clocks, it probably won’t be able to
read the most up to date versions of given values.

Solution
Cluster nodes wait until the clock values on every node in the cluster are
guaranteed to be above the timestamp assigned to the value while reading or
writting.

If the difference betweeen clocks is very small, write requests can wait
without adding a great deal of overhead. As an example, assume the
maximum clock offset across cluster nodes is 10ms. (This means that, at any
given point in time, the slowest clock in the cluster is lagging behind t -
10ms.) To guarantee that every other cluster node has its clock set past t, the
cluster node that handle any write operation will have to wait for t + 10ms
before storing the value.

Consider a key value store with Versioned Value where each update is added
as a new value, with a timestamp used as a version. In the Alice and Bob
example mentioned above the write operation storing the title@2, will wait
until all the clocks in the cluster are at 2. This makes sure that Alice will
always see the latest value of the title even if the clock at the cluster node of
Alice is lagging behind.

Consider a slightly different scenario. Philip is updating the title to ‘After
Dawn’. Green’s clock has its time at 2. But Green knows that there might be
a server with a clock lagging behind upto 1 unit. It will therefore have to
wait in the write operation for a duration of 1 unit.

While Philip is updating the title, Bob’s read request is handled by server
Blue. Blue’s clock is at 2, so it tries to read the title at timestamp 2. At this
point Green has not yet made the value available. This means Bob gets the
value at the highest timestamp lower than 2, which is ‘Before Dawn’

Alice’s read request is handled by server Amber. Amber’s clock is at 1 so it
tries to read the title at timestamp 1. Alice gets the value ‘Before Dawn’

Once Philip’s write request completes - after the wait of max_diff is over - if
Bob now sends a new read request, server Blue will try to read the latest
value according to its clock (which has advanced to 3); this will return the
value "After Dawn"

If Alice initializes a new read request, server Amber will try to read the latest
value as per its clock - which is now at 2. It will therefore, also return the
value "After Dawn"

The main problem when trying to implement this solution is that getting the
exact time difference across cluster nodes is simply not possible with the
date/time hardware and operating systems APIs that are currently available.
Such is the nature of the challenge that Google has its own specialized date
time API called True Time [bib-external-consistency]. Similarly Amazon has
AWS Time Sync Service [bib-aws-time-sync-service] and a library called

ClockBound [bib-clock-bound]. However, these APIs are very specific to
Google and Amazon, so can’t really be scaled beyond the confines of those
organizations

Typically key value stores use Hybrid Clock to implement Versioned Value.
While it is not possible to get the exact difference between clocks, a sensible
default value can be chosen based on historical observations. Observed
values for maximum clock drift on servers across datacenters is generally
200 to 500ms.

The key-value store waits for configured max-offset before storing the value.

class KVStore…

int maxOffset = 200;

NavigableMap<HybridClockKey, String> kv = new ConcurrentSkipListMap

public void put(String key, String value) {

 HybridTimestamp writeTimestamp = clock.now();

 waitTillSlowestClockCatchesUp(writeTimestamp);

 kv.put(new HybridClockKey(key, writeTimestamp), value);

}

private void waitTillSlowestClockCatchesUp(HybridTimestamp writeTim

 var waitUntilTimestamp = writeTimestamp.add(maxOffset, 0);

 sleepUntil(waitUntilTimestamp);

}

private void sleepUntil(HybridTimestamp waitUntil) {

 HybridTimestamp now = clock.now();

 while (clock.now().before(waitUntil)) {

 var waitTime = (waitUntil.getWallClockTime() - now.getWallClock

 Uninterruptibles.sleepUninterruptibly(waitTime, TimeUnit.MILLIS

 now = clock.now();

 }

}

public String get(String key, HybridTimestamp readTimestamp) {

 return kv.get(new HybridClockKey(key, readTimestamp));

}

Read Restart
200ms is too high an interval to wait for every write request. This is why
databases like CockroachDB [bib-cockroachdb] or YugabyteDB [bib-
yugabyte] implement a check in the read requests instead.

While serving a read request, cluster nodes check if there is a version
available in the interval of readTimestamp and readTimestamp + maximum
clock drift. If the version is available - assuming the reader’s clock might be
lagging - it is then asked to restart the read request with that version.

class KVStore…

public void put(String key, String value) {

 HybridTimestamp writeTimestamp = clock.now();

 kv.put(new HybridClockKey(key, writeTimestamp), value);

}

public String get(String key, HybridTimestamp readTimestamp) {

 checksIfVersionInUncertaintyInterval(key, readTimestamp);

 return kv.floorEntry(new HybridClockKey(key, readTimestamp)).getV

}

private void checksIfVersionInUncertaintyInterval(String key, Hybri

 HybridTimestamp uncertaintyLimit = readTimestamp.add(maxOffset, 0

 HybridClockKey versionedKey = kv.floorKey(new HybridClockKey(key,

 if (versionedKey == null) {

 return;

}

 HybridTimestamp maxVersionBelowUncertainty = versionedKey.getVers

 if (maxVersionBelowUncertainty.after(readTimestamp)) {

 throw new ReadRestartException(readTimestamp, maxOffset, maxVe

 }

 ;

}

class Client…

String read(String key) {

 int attemptNo = 1;

 int maxAttempts = 5;

 while(attemptNo < maxAttempts) {

 try {

 HybridTimestamp now = clock.now();

 return kvStore.get(key, now);

 } catch (ReadRestartException e) {

 logger.info(" Got read restart error " + e + "Attempt No. " +

 Uninterruptibles.sleepUninterruptibly(e.getMaxOffset(), TimeU

 attemptNo++;

 }

 }

 throw new ReadTimeoutException("Unable to read after " + attemptN

}

In the Alice and Bob example above, if there is a version for "title" available
at timestamp 2, and Alice sends a read request with read timestamp 1, a
ReadRestartException will be thrown asking Alice to restart the read request
at readTimestamp 2.

Read restarts only happen if there is a version written in the uncertainty
interval. Write request do not need to wait.

It’s important to remember that the configured value for maximum clock
drift is an assumption, it is not guaranteed. In some cases, a bad server can
have a clock drift more than the assumed value. In such cases, the problem
will persist. [bib-ydb-causal-reverse]

Using Clock Bound APIs
Cloud providers like Google and Amazon, implement clock machinery with
atomic clocks and GPS to make sure that the clock drift across cluster nodes
is kept below a few milliseconds. As we’ve just discussed, Google has True
Time [bib-external-consistency]. AWS has AWS Time Sync Service [bib-
aws-time-sync-service] and ClockBound [bib-clock-bound].

There are two key requirements for cluster nodes to make sure these waits
are implemented correctly.

• The clock drift across cluster nodes is kept to a minimum. Google’s
True-Time keeps it below 1ms in most cases (7ms in the worst cases)

• The possible clock drift is always available in the date-time API, this
ensures programmers don’t need to guess the value.

The clock machinery on cluster nodes computes error bounds for date-time
values. Considering there is a possible error in timestamps returned by the
local system clock, the API makes the error explicit. It will give the lower as
well as the upper bound on clock values. The real time value is guaranteed to
be within this interval.

public class ClockBound {

 public final long earliest;

 public final long latest;

 public ClockBound(long earliest, long latest) {

 this.earliest = earliest;

 this.latest = latest;

 }

 public boolean before(long timestamp) {

 return timestamp < earliest;

 }

 public boolean after(long timestamp) {

 return timestamp > latest;

}

As explained in this AWS blog [bib-aws-clock-accuracy] the error is
calculated at each cluster node as ClockErrorBound. The real time values
will always be somewhere between local clock time and +-
ClockErrorBound.

The error bounds are returned whenever date-time values are asked for.

public ClockBound now() {

 return now;

}

There are two properties guaranteed by the clock-bound API

• Clock bounds should overlap across cluster nodes

• For two time values t1 and t2, if t1 is less than t2, then
clock_bound(t1).earliest is less than clock_bound(t2).latest across all
cluster nodes

Imagine we have three cluster nodes: Green, Blue and Amber. Each node
might have a different error bound. Let’s say the error on Green is 1, Blue is
2 and Amber is 3. At time=4, the clock bound across cluster nodes will look
like this:

In this scenario, two rules need to be followed to implement the commit-
wait.

• For any write operation, the clock bound’s latest value should be picked
as the timestamp. This will ensure that it is always higher than any
timestamp assigned to previous write operations (considering the second
rule below).

• The system must wait until the write timestamp is less than the clock
bound’s earliest value, before storing the value.

This is Because the earliest value is guaranteed to be lower than clock
bound’s latest values across all cluster nodes. This write operation will be
accessible to anyone reading with the clock-bound’s latest value in future.
Also, this value is guaranteed to be ordered before any other write operation
happen in future.

class KVStore…

public void put(String key, String value) {

 ClockBound now = boundedClock.now();

 long writeTimestamp = now.latest;

 addPending(writeTimestamp);

 waitUntilTimeInPast(writeTimestamp);

 kv.put(new VersionedKey(key, writeTimestamp), value);

 removePending(writeTimestamp);

}

private void waitUntilTimeInPast(long writeTimestamp) {

 ClockBound now = boundedClock.now();

 while(now.earliest < writeTimestamp) {

 Uninterruptibles.sleepUninterruptibly(now.earliest - writeTimes

 now = boundedClock.now();

 }

}

private void removePending(long writeTimestamp) {

 pendingWriteTimestamps.remove(writeTimestamp);

 try {

 lock.lock();

 cond.signalAll();

 } finally {

 lock.unlock();

 }

}

private void addPending(long writeTimestamp) {

 pendingWriteTimestamps.add(writeTimestamp);

}

If we return to the Alice and Bob example above, when the value for "title"-
"After Dawn" - is written by Philip on server Green, the put operation on
Green waits until the chosen write timestamp is below the earliest value of
the clock bound. This guarantees that every other cluster node is guaranteed
to have a higher timestamp for the latest value of the clock bound. To
illustrate, considering this scenario. Green has error bound of +-1. So, with a
put operation which starts at time 4, when it stores the value, Green will pick
up the latest value of clock bound which is 5. It then waits until the earliest
value of the clock bound is more than 5. Essentially, Green waits for the
uncertainty interval before actually storing the value in the key-value store.

When the value is made available in the key value store, that the clock
bound’s latest value is guaranteed to be higher than 5 on each and every

cluster node. This means that Bob’s request handled by Blue as well as
Alice’s request handled by Amber, are guaranteed to get the latest value of
the title.

We will get the same result if Green has ‘wider’ time bounds. The greater the
error bound, the longer the wait. If Green’s error bound is maximum, it will
continue to wait before making the values available in the key-value store.
Neither Amber nor Blue will be able to get the value until their latest time
value is past 7. When Alice gets the most up-to-date value of title at latest
time 7, every other cluster node will be guaranteed to get it at it’s latest time
value.

Read-Wait
When reading the value, the client will always pick the maximum value
from the clock bound from its cluster node.

The cluster node that is receiving the request needs to make sure that once a
response is returned at the specific request timestamp, there are no values
written at that timestamp or the lower timestamp.

If the timestamp in the request is higher than the timestamp at the server, the
cluster node will wait until the clock catches up, before returning the
response.

It will then check if there are any pending write requests at the lower
timestamp, which are not yet stored. If there are, then the read requests will
pause until the requests are complete.

The server will then read the values at the request timestamp and return the
value. This ensures that once a response is returned at a particular
timestamp, no values will ever be written at the lower timestamp. This
guarantee is called Snapshot Isolation [bib-snapshot-isolation]

class KVStore…

final Lock lock = new ReentrantLock();

Queue<Long> pendingWriteTimestamps = new ArrayDeque<>();

final Condition cond = lock.newCondition();

public Optional<String> read(long readTimestamp) {

 waitUntilTimeInPast(readTimestamp);

 waitForPendingWrites(readTimestamp);

 Optional<VersionedKey> max = kv.keySet().stream().max(Comparator.

 if(max.isPresent()) {

 return Optional.of(kv.get(max.get()));

 }

 return Optional.empty();

}

private void waitForPendingWrites(long readTimestamp) {

 try {

 lock.lock();

 while (pendingWriteTimestamps.stream().anyMatch(ts -> ts <= rea

 cond.awaitUninterruptibly();

 }

 } finally {

 lock.unlock();

 }

}

Consider this final scenario: Alice’s read request is handled by server Amber
with error bound of 3. It picks up the latest time as 7 to read the title.
Meanwhile, Philip’s write request is handled by Green (with an error bound
of +-1), it picks up 5 to store the value.

Alice’s read request waits until the earliest time at Green is past 7 and the
pending write request. It then returns the latest value with a timestamp below
7.

Examples
Google’s TrueTime API [bib-external-consistency] provides us with a clock
bound. Spanner [bib-spanner] uses it to implement commit-wait

AWS Time Sync Service [bib-aws-time-sync-service]ensures minimal clock
drifts. It is possible to use the ClockBound [bib-clock-bound] API to
implement waits to order the events across the cluster.

CockroachDB [bib-cockroachdb] implements read restart. It also has an
experimental option to use commit-wait based on the configured maximum
clock drift value.

YugabyteDB [bib-yugabyte] implements read restart based on the configured
maximum clock drift value.

Part V: Patterns of Cluster
Management

Chapter 25. Consistent Core

Maintain a smaller cluster providing stronger consistency to allow large data
cluster to coordinate server activities without implementing quorum based
algorithms.

Problem

Linearizability [bib-Linearizable] is the strongest consistency guarantee
where all the clients are guaranteed to see latest committed updates to
data. Providing linearizability along with fault tolerance needs
consensus [bib-consensus] algorithms like Raft [bib-raft], Zab [bib-zab]
or Paxos [bib-paxos] to be implemented on the servers.

While consensus algorithm is an essential requirement to implement a
Consistent Core, there are various aspects of client interaction - such as
how a client finds the leader, how duplicate requests are handled, etc -
which are important implementation decisions. There are also some
important implementation considerations regarding safety and liveness.
Paxos defines only the consensus algorithm, but these other
implementation aspects are not well documented in the Paxos literature.
Raft very clearly documents various implementation aspects, along
with a reference implementation [bib-logcabin-raft] and therefore is the
most widely used algorithm today.

When a cluster needs to handle a lot of data, it needs more and more servers.
For a cluster of servers, there are some common requirements, such as
selecting a specific server to be the master for a particular task, managing
group membership information, mapping of data partitions to the servers etc.

These requirements need strong consistency guarantee, namely
linearizability. The implementation also needs to be fault tolerant. A
common approach is to use a fault-tolerant consensus algorithms based on
Quorum. But in quorum-based systems throughput degrades with the size of
the cluster.

Solution
Implement a smaller, 3 to 5 node cluster which provides linearizability
guarantee as well as fault tolerance. 1 A separate data cluster can use the
small consistent cluster to manage metadata and for taking cluster wide
decisions with primitives like Lease. This way, the data cluster can grow to a
large number of servers, but can still do certain actions which need strong
consistency guarantees using the smaller metadata cluster.

A typical interface of consistent core looks like this:

public interface ConsistentCore {

 CompletableFuture put(String key, String value);

 List<String> get(String keyPrefix);

 CompletableFuture registerLease(String name, long ttl);

 void refreshLease(String name);

 void watch(String name, Consumer<WatchEvent> watchCallback);

}

1 Because the entire cluster depends on the Consistent Core, it is critical to be aware of the details of
the consensus algorithm used. Consensus implementations can run into liveness issues in some tricky
network partition situations. For example, a Raft cluster can be disrupted by a partitioned server,
which can continuously trigger leader election, unless special care is taken. This recent incident at
Cloudflare [bib-cloudflare-outage] is a good example to learn from.

At the minimum, Consistent Core provides a simple key value storage
mechanism. It is used to store metadata.

Metadata Storage
The storage is implemented using consensus algorithms such as Raft. It is an
example of Replicated Write Ahead Log implementation, where replication
is handled by Leader and Followers and High-Water Mark is used to track
the successful replication using Quorum

Supporting hierarchical storage
Consistent Core is generally used to store data for things like: group
membership or task distribution across servers. A common usage pattern is
to scope the type of metadata with a prefix. e.g. for group membership, the
keys will all be stored like / servers/1, servers/2 etc. For tasks assigned to
servers the keys can be /tasks/task1, / tasks/task2. This data is generally read
with all the keys with a specific prefix. For example, to get information
about all the servers in the cluster, all the keys with prefix / servers are read.

An example usage is as following:

The servers can register themselves with the Consistent Core by creating
their own key with prefix /servers.

client1.setValue("/servers/1", "{address:192.168.199.10, port:8000}

client2.setValue("/servers/2", "{address:192.168.199.11, port:8000}

client3.setValue("/servers/3", "{address:192.168.199.12, port:8000}

The clients can then get to know about all the servers in the cluster by
reading with key prefix /servers as following:

assertEquals(client1.getValue("/servers"), Arrays.asList("{address:

 "{address:192.168.199.11, port

 "{address:192.168.199.10, port

Because of this hierarchical nature of data storage, products like Zookeeper
[bib-zookeeper], [chubby] [bib-chubby] provide a file system like interface,
where users create directories and files, or nodes, with the concept of parent
and child nodes. etc3d [bib-etcd3] has a flat key space with the ability to get
a range of keys.

Handling Client Interactions
One of the key requirements for Consistent Core functionality is how a client
interacts with the core. The following aspects are critical for the clients to
work with the Consistent Core.

Finding the leader

Serializability and Linearizability

When read requests are handled by follower servers, it is possible that
clients can get stale data, as the latest commits from the leader have not
reached the followers. The order in which the updates are received by

the client is still maintained but the updates might not be most recent.
This is the [serializability] [bib-serializability] guarantee as opposed to
linearizability [bib-Linearizable]. Linearizability guarantees that every
client gets the most recent updates. Clients can work with serializability
guarantee when they just need to read metadata and can tolerate stale
metadata for a while. For operations like Lease, linearizability is
strictly needed.

If the leader is partitioned from the rest of the cluster, clients can get
stale values from the leader, Raft describes a mechanism to provide
linearizable reads. See for example etcd [bib-etcd-readindex-impl]
implementation of readIndex. YugabyteDB [bib-yugabyte] uses a
technique called [yugabyte-leader-lease] [bib-yugabyte-leader-lease] to
achieve the same.

A similar situation can happen with followers which are partitioned.
The follower may be partitioned and might not return the latest values
to the client. To make sure that the followers are not partitioned and are
up-to-date with the leader, they need to query the leader to know the
latest updates, and wait till they receive the latest updates before
responding to the client, See the proposed kafka design [bib-kafka-
enhanced-raft] for example.

It’s important that all the operations are executed on the leader, so a client
library needs to find the leader server first. There are two approaches
possible to fulfil this requirement.

Products like zookeeper and etcd implement this approach because they
allow some read-only requests to be handled by the follower servers; this
avoids a bottleneck on the leader when a large number of clients are read-
only. This reduces complexity in the clients to connect to either leader or
follower based on the type of the request.

• The follower servers in the consistent core know about the current
leader, so if the client connects to a follower, it can return the address of
the leader. The client can then directly connect to the leader identified in
the response. It should be noted that the servers might be in the middle
of leader election when the client tries to connect. In that case, servers

cannot return the leader address and the client needs to wait and try
another server.

• Servers can implement a forwarding mechanism and forward all the
client requests to the leader. This allows clients to connect to any server.
Again, if servers are in the middle of leader election, then clients need to
retry until the leader election is successful and a legitimate leader is
established.

A simple mechanism to find the leader is to try to connect to each server and
try to send a request, the server responds with a redirect response if it’s not
the leader.

private void establishConnectionToLeader(List<InetAddressAndPort> s

 for (InetAddressAndPort server : servers) {

 try {

 SingleSocketChannel socketChannel = new SingleSocketChannel(

 logger.info("Trying to connect to " + server);

 RequestOrResponse response = sendConnectRequest(socketChanne

 if (isRedirectResponse(response)) {

 redirectToLeader(response);

 break;

 } else if (isLookingForLeader(response)) {

 logger.info("Server is looking for leader. Trying next ser

 continue;

 } else { //we know the leader

 logger.info("Found leader. Establishing a new connection."

 newPipelinedConnection(server);

 break;

 }

 } catch (IOException e) {

 logger.info("Unable to connect to " + server);

 //try next server

 }

 }

}

private boolean isLookingForLeader(RequestOrResponse requestOrRespo

 return requestOrResponse.getRequestId() == RequestId.LookingForLe

}

private void redirectToLeader(RequestOrResponse response) {

 RedirectToLeaderResponse redirectResponse = deserialize(response)

 newPipelinedConnection(redirectResponse.leaderAddress);

 logger.info("Connected to the new leader "

 + redirectResponse.leaderServerId

 + " " + redirectResponse.leaderAddress

 + ". Checking connection");

}

private boolean isRedirectResponse(RequestOrResponse requestOrRespo

 return requestOrResponse.getRequestId() == RequestId.RedirectToLe

}

Just establishing TCP connection is not enough, we need to know if the
server can handle our requests. So clients send a special connection request
for the server to acknowledge if it can serve the requests or else redirect to
the leader server.

private RequestOrResponse sendConnectRequest(SingleSocketChannel so

 RequestOrResponse request

 = new RequestOrResponse(RequestId.ConnectRequest.getId(), Jso

 try {

 return socketChannel.blockingSend(request);

 } catch (IOException e) {

 resetConnectionToLeader();

 throw e;

 }

}

If an existing leader fails, the same technique is used to identify the newly
elected leader from the cluster.

Once connected, the client maintains a Single Socket Channel to the leader
server

Handling duplicate requests
In cases of failure, clients may try to connect to the new leader, resending
the requests. But if those requests were already handled by the failed leader
prior to failure, it might result in duplicates. Therefore, it’s important to have
a mechanism on the servers to ignore duplicate requests. Idempotent
Receiver pattern is used to implement duplicate detection.

Coordinating tasks across a set of servers can be done by using Lease. The
same can be used to implement group membership and failure detection
mechanism.

State Watch is used to get notifications of changes to the metadata or time
bound leases.

Examples
Google is known to use [chubby] [bib-chubby] lock service for coordination
and metadata management.

Kafka [bib-kafka] uses Zookeeper [bib-zookeeper] to manage metadata and
take decisions like leader election for cluster master. The proposed
architecture change [bib-kip-500] in Kafka will replace zookeeper with its
own Raft [bib-raft] based controller cluster.

[bookkeeper] [bib-bookkeeper] uses Zookeeper to manage cluster metadata.

Kubernetes [bib-kubernetes] uses etcd [bib-etcd] for coordination, manage
cluster metadata and group membership information.

All the big data storage and processing systems like [hdfs] [bib-hdfs],
[spark] [bib-spark], [flink] [bib-flink] use Zookeeper [bib-zookeeper] for
high availability and cluster coordination.

Chapter 26. Lease

Use time bound leases for cluster nodes to coordinate their activities.

Problem
Cluster nodes need exclusive access to certain resources. But nodes can
crash; they can be temporarily disconnected or experiencing a process pause.
Under these error scenarios, they should not keep the access to a resource
indefinitely.

Solution

Wall Clocks are not monotonic

Computers have two different mechanisms to represent time. The wall
clock time, which represents the time of the day, is measured by a clock
machinery generally built with an crystal oscillator. The known
problem with this mechanism is that it can drift away from the actual
time of the day, based on how fast or slow the crystals oscillate. To fix
this, computers typically have a service like NTP [bib-ntp] setup, which
checks the time of the day with well known time sources over the
internet and fixes the local time. Because of this, two consecutive
readings of the wall clock time in a given server can have time going
backwards. This makes the wall clock time unsuitable for measuring
the time elapsed between some events. Computers have a different
mechanism called monotonic clock, which indicates elapsed time. The
values of monotonic clock are not affected by services like NTP. Two
consecutive calls of monotonic clock are guaranteed to get the elapsed

time. So for measuring timeout values monotonic clocks are always
used. This works well on a single server. But monotonic clocks on two
different servers cannot be compared. All programming languages have
an api to read both the wall clock and the monotonic clock. e.g. In Java
System.currentMillis gives wall clock time and System.nanoTime gives
monotonic clock time.

A cluster node can ask for a lease for a limited period of time, after which it
expires. The node can renew the lease before it expires if it wants to extend
the access. Implement the lease mechanism with Consistent Core to provide
fault tolerance, and consistency. Have a ‘time to live’ value associated with
the lease. Cluster nodes can create keys in a Consistent Core with a lease
attached to it. The leases are replicated with the Leader and Followers to
provide fault tolerance. It’s the responsibility of the node which owns the
lease to periodically refresh it. HeartBeat is used by the clients to refresh the
time to live value in the consistent core. The leases are created on all the
nodes in the Consistent Core, but only the leader tracks the lease timeouts. 1
The timeouts are not tracked on the followers in the Consistent Core. This is
done because we need the leader to decide when the lease expires using its
own monotonic clock, and then let the followers know when the lease
expires. This makes sure that, like any other decision in the Consistent Core,
nodes also reach consensus about lease expiration.

1LogCabin, the reference implementation of Raft [bib-logcabin-raft-clustertime] has an interesting
concept of ClusterTime, which is a logical clock maintained for the whole Raft cluster. With all the
nodes in the cluster agreeing on the time, they can independently remove expired sessions. But it
needs heartbeat entries from leader to followers to be replicated and committed like any other log
entries.

When a node from a consistent core becomes a leader, it starts tracking
leases.

class ReplicatedKVStore…

public void onBecomingLeader() {

 leaseTracker = new LeaderLeaseTracker(this, new SystemClock(), lo

 leaseTracker.start();

}

Leader starts a scheduled task to periodically check for lease expiration

class LeaderLeaseTracker…

private ScheduledThreadPoolExecutor executor = new ScheduledThreadP

private ScheduledFuture<?> scheduledTask;

@Override

public void start() {

 scheduledTask = executor.scheduleWithFixedDelay(this::checkAndExp

 leaseCheckingInterval,

 leaseCheckingInterval,

 TimeUnit.MILLISECONDS);

}

@Override

public void checkAndExpireLeases() {

 remove(expiredLeases());

}

private void remove(Stream<String> expiredLeases) {

 expiredLeases.forEach((leaseId)->{

 //remove it from this server so that it doesnt cause trigger ag

 expireLease(leaseId);

 //submit a request so that followers know about expired leases

 submitExpireLeaseRequest(leaseId);

 });

}

private Stream<String> expiredLeases() {

 long now = System.nanoTime();

 Map<String, Lease> leases = kvStore.getLeases();

 return leases.keySet().stream()

 .filter(leaseId -> {

 Lease lease = leases.get(leaseId);

 return lease.getExpiresAt() < now;

 });

}

Followers start a no-op lease tracker.

class ReplicatedKVStore…

public void onCandidateOrFollower() {

 if (leaseTracker != null) {

 leaseTracker.stop();

 }

 leaseTracker = new FollowerLeaseTracker(this, leases);

}

The lease is represented simply as following:

public class Lease implements Logging {

 String name;

 long ttl;

 //Time at which this lease expires

 long expiresAt;

 //The keys from kv store attached with this lease

 List<String> attachedKeys = new ArrayList<>();

 public Lease(String name, long ttl, long now) {

 this.name = name;

 this.ttl = ttl;

 this.expiresAt = now + ttl;

 }

 public String getName() {

 return name;

 }

 public long getTtl() {

 return ttl;

 }

 public long getExpiresAt() {

 return expiresAt;

 }

 public void refresh(long now) {

 expiresAt = now + ttl;

 getLogger().info("Refreshing lease " + name + " Expiration time

 }

 public void attachKey(String key) {

 attachedKeys.add(key);

 }

 public List<String> getAttachedKeys() {

 return attachedKeys;

 }

}

When a node wants to create a lease, it connects with the leader of the
Consistent Core and sends a request to create a lease. The register lease
request is replicated and handled similar to other requests in Consistent
Core. The request is complete only when the High-Water Mark reaches the
log index of the request entry in the replicated log.

class ReplicatedKVStore…

private ConcurrentHashMap<String, Lease> leases = new ConcurrentHas

@Override

public CompletableFuture<Response> registerLease(String name, long

 if (leaseExists(name)) {

 return CompletableFuture

 .completedFuture(

 Response.error(DUPLICATE_LEASE_ERROR,

 "Lease with name " + name + " already exists"));

 }

 return log.propose(new RegisterLeaseCommand(name, ttl));

}

private boolean leaseExists(String name) {

 return leases.containsKey(name);

}

An important thing to note is where to validate for duplicate lease
registration. Checking it before proposing the request is not enough, as there
can be multiple in-flight requests. So the server also checks for duplicates
when the lease is registered after successful replication.

class LeaderLeaseTracker…

private Map<String, Lease> leases;

@Override

public void addLease(String name, long ttl) throws DuplicateLeaseEx

 if (leases.get(name) != null) {

 throw new DuplicateLeaseException(name);

 }

 Lease lease = new Lease(name, ttl, clock.nanoTime());

 leases.put(name, lease);

}

Like any heartbeating mechanism, there is an assumption here that the
server’s monotonic clock is not faster than the client’s monotonic clock.
To take care of any possible rate difference, clients need to be
conservative and send multiple heartbeats to the server within the
timeout interval.

For example, Zookeeper [bib-zookeeper] has a default session timeout
of 10 seconds, and uses 1/3 of the session timeout to send heartbeats.
Apache Kafka, in its new architecture [bib-kip-631-configurations]
uses 18 seconds as lease expiration time, and heartbeat is sent every 3
seconds.

The node responsible for the lease connects to the leader and refreshes the
lease before it expires. As discussed in HeartBeat, it needs to consider the
network round trip time to decide on the ‘time to live’ value, and send
refresh requests before the lease expires. The node can send refresh requests
multiple times within the ‘time to live’ time interval, to ensure that lease is
refreshed in case of any issues. But the node also needs to make sure that too
many refresh requests are not sent. It’s reasonable to send a request after
about half of the lease time is elapsed. This results in up to two refresh
requests within the lease time. The client node tracks the time with its own
monotonic clock.

class LeaderLeaseTracker…

@Override

public void refreshLease(String name) {

 Lease lease = leases.get(name);

 lease.refresh(clock.nanoTime());

}

Refresh requests are sent only to the leader of the Consistent Core, because
only the leader is responsible for deciding when the lease expires.

When the lease expires, it is removed from the leader. It’s also critical for
this information to be committed to the Consistent Core. So the leader sends
a request to expire the lease, which is handled like other requests in
Consistent Core. Once the High-Water Mark reaches the proposed expire
lease request, it’s removed from all the followers.

class LeaderLeaseTracker…

public void expireLease(String name) {

 getLogger().info("Expiring lease " + name);

 Lease removedLease = leases.remove(name);

 removeAttachedKeys(removedLease);

}

@Override

public Lease getLeaseDetails(String name) {

 return leases.get(name);

}

Attaching the lease to keys in the key value storage

Zookeeper [bib-zookeeper] has a concept of sessions and ephemeral
nodes. The sessions are implemented with the similar mechanism
explained in this pattern. Ephemeral nodes are attached to the session.
Once the session expires, all the ephemeral nodes are removed from the
storage.

A cluster needs to know if one of its nodes fails. It can do that by having the
node take a lease from the Consistent Core, and then attach it to a self-

identifying key that it stores within the Consistent Core. If the cluster node is
running, it should renew the lease at regular intervals. Should the lease
expire, the associated keys are removed. When the key is removed, an event
indicating the node failure is sent to the interested cluster node as discussed
in the State Watch pattern.

The cluster node using the Consistent Core, creates a lease by making a
network call, like following:

consistentCoreClient.registerLease("server1Lease", Duration.ofSecon

It can then attach this lease to the self-identifying key it stores in the
Consistent Core.

consistentCoreClient.setValue("/servers/1", "{address:192.168.199.1

When the Consistent Core receives the message to save the key in its key-
value store, it also attaches the key to the specified lease.

class ReplicatedKVStore…

private ConcurrentHashMap<String, Lease> leases = new ConcurrentHas

class ReplicatedKVStore…

private Response applySetValueCommand(Long walEntryId, SetValueComm

 getLogger().info("Setting key value " + setValueCommand);

 if (setValueCommand.hasLease()) {

 Lease lease = leases.get(setValueCommand.getAttachedLease());

 if (lease == null) {

 //The lease to attach is not available with the Consistent

 return Response.error(Errors.NO_LEASE_ERROR,

 "No lease exists with name "

 + setValueCommand.getAttachedLease(), 0);

 }

 lease.attachKey(setValueCommand.getKey());

 }

 kv.put(setValueCommand.getKey(), new StoredValue(setValueCommand.

Once the lease expires, the Consistent Core also removes the attached keys
from its key-value store.

class LeaderLeaseTracker…

public void expireLease(String name) {

 getLogger().info("Expiring lease " + name);

 Lease removedLease = leases.remove(name);

 removeAttachedKeys(removedLease);

}

@Override

public Lease getLeaseDetails(String name) {

 return leases.get(name);

}

private void removeAttachedKeys(Lease removedLease) {

 if (removedLease == null) {

 return;

 }

 List<String> attachedKeys = removedLease.getAttachedKeys();

 for (String attachedKey : attachedKeys) {

 getLogger().trace("Removing " + attachedKey + " with lease " +

 kvStore.remove(attachedKey);

 }

}

Handling leader failure
When the existing leader fails, a new leader for Consistent Core is elected.
Once elected, the new leader starts tracking the leases.

The new leader refreshes all the leases it knows about. Note that the leases
which were about to expire on the old leader get extended by the ‘time to
live’ value. This is not a problem, as it gives the chance for the client to
reconnect with the new leader and continue the lease.

private void refreshLeases() {

 long now = clock.nanoTime();

 this.kvStore.getLeases().values().forEach(l -> {

 l.refresh(now);

 });

}

Examples
Google’s [chubby] [bib-chubby] service implements the time-bound lease
mechanism in similar way

Zookeeper [bib-zookeeper] sessions are managed with similar mechanisms
as that of replicated leases.

The KIP-631 [bib-kip-631] in Kafka proposes use of time-bound leases to
manage group membership and failure detection of Kafka brokers.

etcd [bib-etcd] provides time bound lease facility, which is used by clients to
coordinate their activities as well as for group membership and failure
detection.

dhcp [bib-dhcp] protocol allows connecting devices to lease an IP address.
The failover protocol [bib-dhcp-failover] with multiple DHCP servers works
similar to the implementation explained here.

Chapter 27. State Watch

Notify clients when specific values change on the server

Problem
Clients are interested in changes to the specific values on the server. It’s
difficult for clients to structure their logic if they need to poll the server
continuously to look for changes. If clients open too many connections to
the server for watching changes, it can overwhelm the server.

Solution
Allow clients to register their interest with the server for specific state
changes. The server notifies the interested clients when state changes
happen. The client maintains a Single Socket Channel with the server. The
server sends state change notifications on this channel. Clients might be
interested in multiple values, but maintaining a connection per watch can
overwhelm the server. So clients can use Request Pipeline.

Considering a simple key value store example used in Consistent Core: a
client can be interested when a value changes for a particular key or a key is
removed. There are two parts to the implementation, a client side
implementation and a server side implementation.

Client side implementation
The client accepts the key and the function to be invoked when it gets
watch events from the server. The client stores the function object for later
invocation. It then sends the request to register the watch to the server.

ConcurrentHashMap<String, Consumer<WatchEvent>> watches = new Concu

public void watch(String key, Consumer<WatchEvent> consumer) {

 watches.put(key, consumer);

 sendWatchRequest(key);

}

private void sendWatchRequest(String key) {

 requestSendingQueue.submit(new RequestOrResponse(RequestId.WatchR

 JsonSerDes.serialize(new WatchRequest(key)),

 correlationId.getAndIncrement()));

}

When a watch event is received on the connection, a corresponding
consumer is invoked

this.pipelinedConnection = new PipelinedConnection(address, request

 logger.info("Received response on the pipelined connection " + r

 if (r.getRequestId() == RequestId.WatchRequest.getId()) {

 WatchEvent watchEvent = JsonSerDes.deserialize(r.getMessageBod

 Consumer<WatchEvent> watchEventConsumer = getConsumer(watchEve

 watchEventConsumer.accept(watchEvent);

 lastWatchedEventIndex = watchEvent.getIndex(); //capture last

 }

 completeRequestFutures(r);

});

Server side implementation
When the server receives a watch registration request, it keeps the mapping
of the pipelined connection on which the request is received, and the keys.

private Map<String, ClientConnection> watches = new HashMap<>();

private Map<ClientConnection, List<String>> connection2WatchKeys =

public void watch(String key, ClientConnection clientConnection) {

 logger.info("Setting watch for " + key);

 addWatch(key, clientConnection);

}

private synchronized void addWatch(String key, ClientConnection cl

 mapWatchKey2Connection(key, clientConnection);

 watches.put(key, clientConnection);

}

private void mapWatchKey2Connection(String key, ClientConnection c

 List<String> keys = connection2WatchKeys.get(clientConnection);

 if (keys == null) {

 keys = new ArrayList<>();

 connection2WatchKeys.put(clientConnection, keys);

 }

 keys.add(key);

}

The ClientConnection wraps the socket connection to the client. It has the
following structure. This structure remains the same for both, the blocking-
IO based server and Non-blocking-IO-based server.

public interface ClientConnection {

 void write(RequestOrResponse response);

 void close();

}

There can be multiple watches registered on a single connection. So it is
important to store the mapping of connections to the list of watch keys. It is
needed when the client connection is closed, to remove all the associated
watches as following:

public void close(ClientConnection connection) {

 removeWatches(connection);

}

private synchronized void removeWatches(ClientConnection clientConn

 List<String> watchedKeys = connection2WatchKeys.remove(clientConn

 if (watchedKeys == null) {

 return;

 }

 for (String key : watchedKeys) {

 watches.remove(key);

 }

}

Using Reactive Streams [bib-reactive-streams]

The example here shows writing the events directly to the pipelined
connection. Some type of backpressure at the application level is
useful to have. If there are a lot many events getting generated, it’s
important to control the rate at which they can be sent. Keeping
producers and consumers of the events in sync is an important
consideration. This [bib-etcd-watch-channel-issue] issue in etcd is an
example of how these considerations matter in production.

[reactive-streams] [bib-reactive-streams] API makes it easier to write
code with backpressure as a first class concept. Protocols like rsocket
[bib-rsocket] provide a structured way to implement this.

When the specific events like setting a value for key happen on the server,
the server notifies all the registered clients by constructing a relevant
WatchEvent

private synchronized void notifyWatchers(SetValueCommand setValueCo

 logger.info("Looking for watches for " + setValueCommand.getKey(

 if (!hasWatchesFor(setValueCommand.getKey())) {

 return;

 }

 String watchedKey = setValueCommand.getKey();

 WatchEvent watchEvent = new WatchEvent(watchedKey,

 setValueCommand.getValue(),

 EventType.KEY_ADDED, entryId);

 notify(watchEvent, watchedKey);

}

private void notify(WatchEvent watchEvent, String watchedKey) {

 List<ClientConnection> watches = getAllWatchersFor(watchedKey);

 for (ClientConnection pipelinedClientConnection : watches) {

 try {

 getLogger().info("Notifying watcher of event "

 + watchEvent +

 " from "

 + log.getServerId());

 pipelinedClientConnection

 .write(new RequestOrResponse(RequestId.WatchRequest.get

 JsonSerDes.serialize(watchEvent)));

 } catch (NetworkException e) {

 removeWatches(pipelinedClientConnection); //remove watch if net

 }

 }

}

One of the critical things to note is that the state related to watches can be
accessed concurrently from client request handling code and from the client
connection handling code to close the connection. So all the methods
accessing watch state needs to be protected by locks.

Watches on hierarchical storage
Consistent Core mostly supports hierarchical storage. The watches can be
set on the parent nodes or prefix of a key. Any changes to the child node
triggers the watches set on the parent node. For each event, the Consistent
Core walks the path to check if there are watches setup on the parent path
and send events to all those watches.

List<ClientConnection> getAllWatchersFor(String key) {

 List<ClientConnection> affectedWatches = new ArrayList<>();

 String[] paths = key.split("/");

 String currentPath = paths[0];

 addWatch(currentPath, affectedWatches);

 for (int i = 1; i < paths.length; i++) {

 currentPath = currentPath + "/" + paths[i];

 addWatch(currentPath, affectedWatches);

 }

 return affectedWatches;

}

private void addWatch(String currentPath, List<ClientConnection> a

 ClientConnection clientConnection = watches.get(currentPath);

 if (clientConnection != null) {

 affectedWatches.add(clientConnection);

 }

}

This allows a watch to be set up on a key prefix like "servers". Any key
created with this prefix like "servers/1", "servers/2" will trigger this watch.

Because the mapping of the function to be invoked is stored with the key
prefix, it’s important to walk the hierarchy to find the function to be
invoked for the received event on the client side as well. An alternative can
be to send the path for which the event triggered along with the event, so
that the client knows which watch caused the event to be sent.

Handling Connection Failures
The connection between client and server can fail at any time. For some use
cases this is problematic as the client might miss certain events when it’s
disconnected. For example, a cluster controller might be interested in
knowing if some nodes have failed, which is indicated by events for
removal of some keys. The client needs to tell the server about the last
event it received. The client sends the last received event number when it
resets the watch again. The server is expected to send all the events it has
recorded from that event number onwards.

In the Consistent Core client, it can be done when the client re-establishes
the connection to the leader.

Pull based design in Kafka

In a typical design for watches, the server pushes watch events to
clients. Kafka [bib-kafka] follows end-to-end pull-based design. In its
new architecture [bib-kip-500], the Kafka brokers are going to
periodically pull metadata log from a Controller Quorum [bib-kip-
631] (which itself is an example of Consistent Core). The offset-based
pull mechanism allows clients to read events from the last known
offset, like any other Kafka consumer, avoiding loss of events.

private void connectToLeader(List<InetAddressAndPort> servers) {

 while (isDisconnected()) {

 logger.info("Trying to connect to next server");

 waitForPossibleLeaderElection();

 establishConnectionToLeader(servers);

 }

 setWatchesOnNewLeader();

}

private void setWatchesOnNewLeader() {

 for (String watchKey : watches.keySet()) {

 sendWatchResetRequest(watchKey);

 }

}

private void sendWatchResetRequest(String key) {

 pipelinedConnection.send(new RequestOrResponse(RequestId.SetWatch

 JsonSerDes.serialize(new SetWatchRequest(key, lastWatchedEve

}

The server numbers every event that occurs. For example, if the server is
the Consistent Core, it stores all the state changes in a strict order and every
change is numbered with the log index as discussed in Write-Ahead Log, It
is then possible for clients to ask for events starting from the specific index.

Deriving events from the key value store
The events can be generated looking at the current state of the key value
store, if it also numbers every change that happens and stores that number
with each value.

When the client re-establishes the connection to the server, it can set the
watches again also sending the last seen change number. The server can
then compare it with the one stored with the value and if it’s more than the
one client sent, it can resend the events to the client. Deriving events from
the key value store can be a bit awkward as events need to be guessed. It
might miss some events. - for instance, If a key is created and then deleted -
while the client was disconnected, the create event will be missed.

private synchronized void eventsFromStoreState(String key, long sta

 List<StoredValue> values = getValuesForKeyPrefix(key);

 for (StoredValue value : values) {

 if (values == null) {

 //the key was probably deleted send deleted event

 notify(new WatchEvent(key, EventType.KEY_DELETED), key);

 } else if (value.index > stateChangesSince) {

 //the key/value was created/updated after the last event cl

 notify(new WatchEvent(key, value.getValue(), EventType.KEY_A

 }

 }

}

Zookeeper [bib-zookeeper] uses this approach. The watches in zookeeper
are also one-time triggers by default. Once the event is triggered, clients
need to set the watch again if they want to receive further events. Some
events can be missed, before the watch is set again, so clients need to
ensure they read the latest state, so that they don’t miss any updates.

Storing Event History
It’s easier to keep a history of past events and reply to clients from the event
history. The problem with this approach is that the event history needs to be

limited, say to 1,000 events. If the client is disconnected for a longer
duration, it might miss on events which are beyond the 1,000 events
window.

A simple implementation using google guava’s EvictingQueue is as
following:

public class EventHistory implements Logging {

 Queue<WatchEvent> events = EvictingQueue.create(1000);

 public void addEvent(WatchEvent e) {

 getLogger().info("Adding " + e);

 events.add(e);

 }

 public List<WatchEvent> getEvents(String key, Long stateChangesS

 return this.events.stream()

 .filter(e -> e.getIndex() > stateChangesSince && e.getKey

 .collect(Collectors.toList());

 }

}

When the client re-establishes the connection and resets watches, the events
can be sent from history.

private void sendEventsFromHistory(String key, long stateChangesSin

 List<WatchEvent> events = eventHistory.getEvents(key, stateChange

 for (WatchEvent event : events) {

 notify(event, event.getKey());

 }

}

Using multi-version storage
To keep track of all the changes, it is possible to use multi-version storage.
It keeps track of all the versions for every key, and can easily get all the
changes from the version asked for.

etcd [bib-etcd] version 3 onwards uses this approach

Examples
Zookeeper [bib-zookeeper] has the ability to set up watches on nodes. This
is used by products like Kafka [bib-kafka] for group membership and
failure detection of cluster members.

etcd [bib-etcd] has watch implementation which is heavily used by
Kubernetes [bib-kubernetes] for its resource watch [bib-kubernetes-api]
implementation.

Chapter 28. Gossip Dissemination

Use random selection of nodes to pass on information to ensure it reaches
all the nodes in the cluster without flooding the network

Problem
In a cluster of nodes, each node needs to pass metadata information it has,
to all the other nodes in the cluster, without depending on a shared storage.
In a large cluster, if all servers communicate with all the other servers, a lot
of network bandwidth can be consumed. Information should reach all the
nodes even when some network links are experiencing issues.

Solution
Cluster nodes use gossip style communication to propagate state updates.
Each node selects a random node to pass the information it has. This is done
at a regular interval, say every 1 second. Each time, a random node is
selected to pass on the information.

Epidemics, Rumours and Computer Communication

Currently we are all experiencing how quickly a pandemic like
Covid19 spreads across the entire globe. There are mathematical
properties of epidemics which describe why they spread so fast. The
mathematical branch of epidemiology [bib-epidemiology] studies how
an epidemic or rumours spread in a society. Gossip Dissemination is
based on the mathematical models from epidemiology. The key
characteristics of an epidemic or rumours is that they spread very fast

even if each person comes into contact with only a few individuals at
random. An entire population can become infected even with very few
total interactions. More specifically, if n is the total number of people
in a given population, it takes interactions proportional to log(n) per
individual. As discussed by Professor Indranil Gupta in his Gossip
Analysis [bib-gossip-analysis], log(n) can be almost treated as a
constant.

This property of epidemic spread is very useful to spread the
information across a set of processes. Even if a given process
communicates with only a few processes at random, in a very few
communication rounds, all the nodes in the cluster will have the same
information. Hashicorp has a very nice convergence simulator [bib-
serf-convergence-simulator] to demonstrate how quickly the
information spreads the entire cluster, even with some network loss
and node failures.

In large clusters, the following things need to be considered:

• Put a fixed limit on the number of messages generated per server

• The messages should not consume a lot of network bandwidth. There
should be an upper bound of say a few hundred Kbs, making sure that
the applications’ data transfer is not impacted by too many messages
across the cluster.

• The metadata propagation should tolerate network and a few server
failures. It should reach all the cluster nodes even if a few network links
are down, or a few servers have failed.

As discussed in the sidebar, Gossip-style communication fulfills all these
requirements.

Each cluster nodes stores the metadata as a list of key value pairs associated
with each node in the cluster as following:

class Gossip…

Map<NodeId, NodeState> clusterMetadata = new HashMap<>();

class NodeState…

Map<String, VersionedValue> values = new HashMap<>();

At startup, each cluster node adds the metadata about itself, which needs to
be propagated to other nodes. An example of metadata can be the IP address
and port the node listens on, the partitions it’s responsible for, etc. The
Gossip instance needs to know about at least one other node to start the
gossip communication. The well known cluster node, which is used to
initialize the Gossip instance is called as a seed node or an introducer. Any
node can act as an introducer.

class Gossip…

public Gossip(InetAddressAndPort listenAddress,

 List<InetAddressAndPort> seedNodes,

 String nodeId) throws IOException {

 this.listenAddress = listenAddress;

 //filter this node itself in case its part of the seed nodes

 this.seedNodes = removeSelfAddress(seedNodes);

 this.nodeId = new NodeId(nodeId);

 addLocalState(GossipKeys.ADDRESS, listenAddress.toString());

 this.socketServer = new NIOSocketListener(newGossipRequestConsume

}

private void addLocalState(String key, String value) {

 NodeState nodeState = clusterMetadata.get(listenAddress);

 if (nodeState == null) {

 nodeState = new NodeState();

 clusterMetadata.put(nodeId, nodeState);

 }

 nodeState.add(key, new VersionedValue(value, incremenetVersion()

}

Each cluster node schedules a job to transmit the metadata it has to other
nodes at regular intervals.

class Gossip…

private ScheduledThreadPoolExecutor gossipExecutor = new ScheduledT

private long gossipIntervalMs = 1000;

private ScheduledFuture<?> taskFuture;

public void start() {

 socketServer.start();

 taskFuture = gossipExecutor.scheduleAtFixedRate(()-> doGossip(),

 gossipIntervalMs,

 gossipIntervalMs,

 TimeUnit.MILLISECONDS);

}

When the scheduled task is invoked, it picks up a small set of random nodes
from the list of servers from the metadata map. A small constant number,
defined as Gossip fanout, determines how many nodes to pick up as gossip
targets. If nothing is known yet, it picks up a random seed node and sends
the metadata map it has to that node.

class Gossip…

public void doGossip() {

 List<InetAddressAndPort> knownClusterNodes = liveNodes();

 if (knownClusterNodes.isEmpty()) {

 sendGossip(seedNodes, gossipFanout);

 } else {

 sendGossip(knownClusterNodes, gossipFanout);

 }

}

private List<InetAddressAndPort> liveNodes() {

 Set<InetAddressAndPort> nodes

 = clusterMetadata.values()

 .stream()

 .map(n -> InetAddressAndPort.parse(n.get(GossipKeys.ADDRESS

 .collect(Collectors.toSet());

 return removeSelfAddress(nodes);

}

Using UDP or TCP

Gossip communication assumes unreliable networks, so it can use
UDP as a transport mechanism. But cluster nodes generally need some
guarantee of quick convergence of state, and therefore use TCP-based
transport to exchange the gossip state.

private void sendGossip(List<InetAddressAndPort> knownClusterNodes

 if (knownClusterNodes.isEmpty()) {

 return;

 }

 for (int i = 0; i < gossipFanout; i++) {

 InetAddressAndPort nodeAddress = pickRandomNode(knownClusterNod

 sendGossipTo(nodeAddress);

 }

}

private void sendGossipTo(InetAddressAndPort nodeAddress) {

 try {

 getLogger().info("Sending gossip state to " + nodeAddress);

 SocketClient<RequestOrResponse> socketClient = new SocketClien

 GossipStateMessage gossipStateMessage

 = new GossipStateMessage(this.nodeId, this.clusterMetadata

 RequestOrResponse request

 = createGossipStateRequest(gossipStateMessage);

 RequestOrResponse response = socketClient.blockingSend(request

 GossipStateMessage responseState = deserialize(response);

 merge(responseState.getNodeStates());

 } catch (IOException e) {

 getLogger().error("IO error while sending gossip state to " +

 }

}

private RequestOrResponse createGossipStateRequest(GossipStateMessa

 return new RequestOrResponse(RequestId.PushPullGossipState.getId

 JsonSerDes.serialize(gossipStateMessage), correlationId++);

}

The cluster node receiving the gossip message inspects the metadata it has
and finds three things.

• The values which are in the incoming message but not available in this
node’s state map

• The values which it has but the incoming Gossip message does not have

• The higher version value is chosen when the node has the values
present in the incoming message

It then adds the missing values to its own state map. Whatever values were
missing from the incoming message, are returned as a response.

The cluster node sending the Gossip message adds the values it gets from
the gossip response to its own state.

class Gossip…

private void handleGossipRequest(org.distrib.patterns.common.Messag

 GossipStateMessage gossipStateMessage = deserialize(request.getRe

 Map<NodeId, NodeState> gossipedState = gossipStateMessage.getNode

 getLogger().info("Merging state from " + request.getClientConnect

 merge(gossipedState);

 Map<NodeId, NodeState> diff = delta(this.clusterMetadata, gossipe

 GossipStateMessage diffResponse = new GossipStateMessage(this.nod

 getLogger().info("Sending diff response " + diff);

 request.getClientConnection().write(new RequestOrResponse(Request

 JsonSerDes.serialize(diffResponse),

 request.getRequest().getCorrelationId()));

}

public Map<NodeId, NodeState> delta(Map<NodeId, NodeState> fromMap

 Map<NodeId, NodeState> delta = new HashMap<>();

 for (NodeId key : fromMap.keySet()) {

 if (!toMap.containsKey(key)) {

 delta.put(key, fromMap.get(key));

 continue;

 }

 NodeState fromStates = fromMap.get(key);

 NodeState toStates = toMap.get(key);

 NodeState diffStates = fromStates.diff(toStates);

 if (!diffStates.isEmpty()) {

 delta.put(key, diffStates);

 }

 }

 return delta;

}

public void merge(Map<NodeId, NodeState> otherState) {

 Map<NodeId, NodeState> diff = delta(otherState, this.clusterMetad

 for (NodeId diffKey : diff.keySet()) {

 if(!this.clusterMetadata.containsKey(diffKey)) {

 this.clusterMetadata.put(diffKey, diff.get(diffKey));

 } else {

 NodeState stateMap = this.clusterMetadata.get(diffKey);

 stateMap.putAll(diff.get(diffKey));

 }

 }

}

This process happens every one second at each cluster node, each time
selecting a different node to exchange the state.

Avoiding unnecessary state exchange
The above code example shows that the complete state of the node is sent in
the Gossip message. This is fine for a newly joined node, but once the state
is up to date, it’s unnecessary to send the complete state. The cluster node
just needs to send the state changes since the last gossip. For achieving this,
each node maintains a version number which is incremented every time a
new metadata entry is added locally.

class Gossip…

private int gossipStateVersion = 1;

private int incremenetVersion() {

 return gossipStateVersion++;

}

Each value in the cluster metadata is maintained with a version number.
This is an example of pattern Versioned Value.

class VersionedValue…

long version;

String value;

public VersionedValue(String value, long version) {

 this.version = version;

 this.value = value;

}

public long getVersion() {

 return version;

}

public String getValue() {

 return value;

}

Each Gossip cycle can then exchange states from a specific version.

class Gossip…

private void sendKnownVersions(InetAddressAndPort gossipTo) throws

 Map<NodeId, Long> maxKnownNodeVersions = getMaxKnownNodeVersions

 RequestOrResponse knownVersionRequest = new RequestOrResponse(Req

 JsonSerDes.serialize(new GossipStateVersions(maxKnownNodeVer

 SocketClient<RequestOrResponse> socketClient = new SocketClient(g

 socketClient.blockingSend(knownVersionRequest);

}

private Map<NodeId, Long> getMaxKnownNodeVersions() {

 return clusterMetadata.entrySet()

 .stream()

 .collect(Collectors.toMap(e -> e.getKey(), e -> e.getValue(

}

class NodeState…

public long maxVersion() {

 return values.values().stream().map(v -> v.getVersion()).max(Comp

}

The receiving node can then send the values only if the versions are greater
than the ones in the request.

class Gossip…

Map<NodeId, NodeState> getMissingAndNodeStatesHigherThan(Map<NodeId

 Map<NodeId, NodeState> delta = new HashMap<>();

 delta.putAll(higherVersionedNodeStates(nodeMaxVersions));

 delta.putAll(missingNodeStates(nodeMaxVersions));

 return delta;

}

private Map<NodeId, NodeState> missingNodeStates(Map<NodeId, Long>

 Map<NodeId, NodeState> delta = new HashMap<>();

 List<NodeId> missingKeys = clusterMetadata.keySet().stream().filt

 for (NodeId missingKey : missingKeys) {

 delta.put(missingKey, clusterMetadata.get(missingKey));

 }

 return delta;

}

private Map<NodeId, NodeState> higherVersionedNodeStates(Map<NodeId

 Map<NodeId, NodeState> delta = new HashMap<>();

 Set<NodeId> keySet = nodeMaxVersions.keySet();

 for (NodeId node : keySet) {

 Long maxVersion = nodeMaxVersions.get(node);

 NodeState nodeState = clusterMetadata.get(node);

 if (nodeState == null) {

 continue;

 }

 NodeState deltaState = nodeState.statesGreaterThan(maxVersion);

 if (!deltaState.isEmpty()) {

 delta.put(node, deltaState);

 }

}

return delta;

}

Gossip implementation in Cassandra [bib-cassandra] optimizes state
exchange with a three-way handshake, where the node receiving the gossip
message also sends the versions it needs from the sender, along with the
metadata it returns. The sender can then immediately respond with the
requested metadata. This avoids an extra message that otherwise would
have been required.

Gossip protocol used in CockroachDB [bib-cockroachdb] maintains state
for each connected node. For each connection, it maintains the last version
sent to that node, and the version received from that node. This is so that it
can send ‘state since the last sent version’ and ask for ‘state from the last
received version’.

Some other efficient alternatives can be used as well, sending a hash of the
entire Map and if the hash is the same, then doing nothing.

Criteria for node selection to Gossip
Cluster nodes randomly select the node to send the Gossip message. An
example implementation in Java can use java.util.Random as following:

class Gossip…

private Random random = new Random();

private InetAddressAndPort pickRandomNode(List<InetAddressAndPort>

 int randomNodeIndex = random.nextInt(knownClusterNodes.size());

 InetAddressAndPort gossipTo = knownClusterNodes.get(randomNodeInd

 return gossipTo;

}

There can be other considerations such as the node that is least contacted
with. For example, Gossip protocol in Cockroachdb [bib-cockroachdb-
design] selects nodes this way.

There are network-topology-aware [bib-wan-gossip] ways of Gossip target
selection that exist as well.

Any of these can be implemented modularly inside the pickRandomNode()
method.

Group Membership and Failure Detection

Eventual Consistency

Information exchange with Gossip protocols is eventually consistent
by nature. Even if its Gossip state converges very fast, there will be
some delay before a new node is recognized by the entire cluster or a
node failure is detected. The implementations using Gossip protocol
for information exchange, need to tolerate eventual consistency.

For operations which require strong consistency, Consistent Core
needs to be used.

It’s a common practice to use both in the same cluster. For example,
Consul [bib-consul] uses Gossip protocol for group membership and
failure detection, but uses a Raft-based Consistent Core to store a
strongly consistent service catalogue.

Maintaining the list of available nodes in the cluster is one of the most
common usage of Gossip protocols. There are two approaches in use.

• [swim-gossip] [bib-swim-gossip] uses a separate probing component
which continuously probes different nodes in the cluster to detect if
they are available. If it detects that the node is alive or dead, that result
is propagated to the entire cluster with Gossip communication. The
prober randomly selects a node to send the Gossip message. If the
receiving node detects that this is new information, it immediately
sends the message to a randomly selected node. This way, the failure of
a node or newly joined node in the cluster is quickly known to the
entire cluster.

• The cluster node can periodically update its own state to reflect its
heartbeat. This state is then propagated to the entire cluster through the
gossip messages exchanged. Each cluster node can then check if it has
received any update for a particular cluster node in a fixed amount of
time or else mark that node as down. In this case, each cluster node
independently determines if a node is up or down.

Handling node restarts
The versioned values does not work well if the node crashes or restarts, as
all the in-memory state is lost. More importantly, the node can have
different values for the same key. For example, the cluster node can start
with a different IP address and port, or can start with a different
configuration. Generation Clock can be used to mark generation with every
value, so that when the metadata state is sent to a random cluster node, the

receiving node can detect changes not just by the version number, but also
with the generation.

It is useful to note that this mechanism is not necessary for the core Gossip
protocol to work. But it’s implemented in practice to make sure that the
state changes are tracked correctly.

Examples
Cassandra [bib-cassandra] uses Gossip protocol for the group membership
and failure detection of cluster nodes. Metadata for each cluster node such
as the tokens assigned to each cluster node, is also transmitted using Gossip
protocol.

Consul [bib-consul] uses [swim-gossip] [bib-swim-gossip] protocol for
group membership and failure detection of consul agents.

CockroachDB [bib-cockroachdb] uses Gossip protocol to propagate node
metadata.

Blockchain implementations such as Hyperledger Fabric [bib-hyperledger-
fabric-gossip] use Gossip protocol for group membership and sending
ledger metadata.

Chapter 29. Emergent Leader

Order cluster nodes based on their age whithin the cluster to allow nodes to
select a leader without running an explicit election.

Problem
Peer-to-peer systems treat each cluster node as equal; there is no strict leader.
This means there is no explicit leader election process as happens in the
Leader and Followers pattern. Sometimes the cluster also doesn’t want to
depend on a separate Consistent Core to achieve better availability.
However, there still needs to be one cluster node acting as cluster
coordinator for tasks such as assigning data partitions to other cluster nodes
and tracking when new cluster nodes join or fail and take corrective actions.

Solution
One of the common techniques used in peer-to-peer systems is to order
cluster nodes according to their ‘age’. The oldest member of the cluster
plays the role of the coordinator for the cluster. The coordinator is
responsible for deciding on membership changes as well as making
decisions such as where Fixed Partitions should be placed across cluster
nodes.

To form the cluster, one of the cluster nodes acts as a seed node or an
introducer node. All the cluster nodes join the cluster by contacting the seed
node.

Typically different discovery mechanisms are provided to find the node
to join the cluster. For example JGroups [bib-jgroups] provides

different discovery protocols [bib-jgroups-discovery-protocols]. Akka
[bib-akka] provides several discovery mechanisms [bib-jgroups-
discovery-protocols]. as well.

Every cluster node is configured with the seed node address. When a cluster
node is started, it tries to contact the seed node to join the cluster.

class ClusterNode…

MembershipService membershipService;

public void start(Config config) {

 this.membershipService = new MembershipService(config.getListenA

 membershipService.join(config.getSeedAddress());

}

The seed node could be any of the cluster nodes. It’s configured with its own
address as the seed node address and is the first node that is started. It
immediately begins accepting requests. The age of the seed node is 1.

class MembershipService…

Membership membership;

public void join(InetAddressAndPort seedAddress) {

 int maxJoinAttempts = 5;

 for(int i = 0; i < maxJoinAttempts; i++){

 try {

 joinAttempt(seedAddress);

 return;

 } catch (Exception e) {

 logger.info("Join attempt " + i + "from " + selfAddress + " t

 }

 }

 throw new JoinFailedException("Unable to join the cluster after "

}

private void joinAttempt(InetAddressAndPort seedAddress) throws Exe

 if (selfAddress.equals(seedAddress)) {

 int membershipVersion = 1;

 int age = 1;

 updateMembership(new Membership(membershipVersion, Arrays.asLi

 start();

 return;

 }

 long id = this.messageId++;

 CompletableFuture<JoinResponse> future = new CompletableFuture<>(

 JoinRequest message = new JoinRequest(id, selfAddress);

 pendingRequests.put(id, future);

 network.send(seedAddress, message);

 JoinResponse joinResponse = Uninterruptibles.getUninterruptibly(f

 updateMembership(joinResponse.getMembership());

 start();

}

private void start() {

 heartBeatScheduler.start();

 failureDetector.start();

 startSplitBrainChecker();

 logger.info(selfAddress + " joined the cluster. Membership=" + me

}

private void updateMembership(Membership membership) {

 this.membership = membership;

}

There can be more than one seed node. But seed nodes start accepting
requests only after they themselves join the cluster. Also the cluster will be
functional if the seed node is down, but no new nodes will be able to add to
the cluster.

Non seed nodes then send the join request to the seed node. The seed node
handles the join request by creating a new member record and assigning its
age. It then updates its own membership list and sends messages to all the
existing members with the new membership list. It then waits to make sure

that the response is returned from every node, but will eventually return the
join response even if the response is delayed.

class MembershipService…

public void handleJoinRequest(JoinRequest joinRequest) {

 handlePossibleRejoin(joinRequest);

 handleNewJoin(joinRequest);

}

private void handleNewJoin(JoinRequest joinRequest) {

 List<Member> existingMembers = membership.getLiveMembers();

 updateMembership(membership.addNewMember(joinRequest.from));

 ResultsCollector resultsCollector = broadcastMembershipUpdate(exi

 JoinResponse joinResponse = new JoinResponse(joinRequest.messageI

 resultsCollector.whenComplete((response, exception) -> {

 logger.info("Sending join response from " + selfAddress + " to

 network.send(joinRequest.from, joinResponse);

 });

}

class Membership…

public Membership addNewMember(InetAddressAndPort address) {

 var newMembership = new ArrayList<>(liveMembers);

 int age = yongestMemberAge() + 1;

 newMembership.add(new Member(address, age, MemberStatus.JOINED));

 return new Membership(version + 1, newMembership, failedMembers);

}

private int yongestMemberAge() {

 return liveMembers.stream().map(m -> m.age).max(Integer::compare)

}

If a node which was already part of the cluster is trying to rejoin after a
crash, the failure detector state related to that member is cleared.

class MembershipService…

private void handlePossibleRejoin(JoinRequest joinRequest) {

 if (membership.isFailed(joinRequest.from)) {

 //member rejoining

 logger.info(joinRequest.from + " rejoining the cluster. Remov

 membership.removeFromFailedList(joinRequest.from);

 }

}

It’s then added as a new member. Each member needs to be identified
uniquely. It can be assigned a unique identifier at startup. This then provides
a point of reference that makes it possible to check if it is an existing cluster
node that is rejoining.

The membership class maintains the list of live members as well as failed
members. The members are moved from live to failed list if they stop
sending HeartBeat as explained in the failure detection section
[#FailureDetection].

class Membership…

public class Membership {

 List<Member> liveMembers = new ArrayList<>();

 List<Member> failedMembers = new ArrayList<>();

 public boolean isFailed(InetAddressAndPort address) {

 return failedMembers.stream().anyMatch(m -> m.address.equals(ad

 }

Sending membership updates to all the existing
members
Membership updates are sent to all the other nodes concurrently. The
coordinator also needs to track whether all the members successfully
received the updates.

A common technique is to send a one way request to all nodes and expect an
acknowledgement message. The cluster nodes send acknowledgement
messages to the coordinator to confirm receipt of the membership update. A
ResultCollector object can track receipt of all the messages asynchronously,
and is notified every time an acknowledgement is received for a membership
update. It completes its future once the expected acknowledgement messages
are received.

class MembershipService…

private ResultsCollector broadcastMembershipUpdate(List<Member> exi

 ResultsCollector resultsCollector = sendMembershipUpdateTo(existi

 resultsCollector.orTimeout(2, TimeUnit.SECONDS);

 return resultsCollector;

}

Map<Long, CompletableFuture> pendingRequests = new HashMap();

private ResultsCollector sendMembershipUpdateTo(List<Member> existi

 var otherMembers = otherMembers(existingMembers);

 ResultsCollector collector = new ResultsCollector(otherMembers.si

 if (otherMembers.size() == 0) {

 collector.complete();

 return collector;

 }

 for (Member m : otherMembers) {

 long id = this.messageId++;

 CompletableFuture<Message> future = new CompletableFuture();

 future.whenComplete((result, exception)->{

 if (exception == null){

 collector.ackReceived();

 }

 });

 pendingRequests.put(id, future);

 network.send(m.address, new UpdateMembershipRequest(id, selfAdd

 }

 return collector;

}

class MembershipService…

private void handleResponse(Message message) {

 completePendingRequests(message);

}

private void completePendingRequests(Message message) {

 CompletableFuture requestFuture = pendingRequests.get(message.mes

 if (requestFuture != null) {

 requestFuture.complete(message);

 }

}

class ResultsCollector…

class ResultsCollector {

 int totalAcks;

 int receivedAcks;

 CompletableFuture future = new CompletableFuture();

 public ResultsCollector(int totalAcks) {

 this.totalAcks = totalAcks;

 }

 public void ackReceived() {

 receivedAcks++;

 if (receivedAcks == totalAcks) {

 future.complete(true);

 }

 }

 public void orTimeout(int time, TimeUnit unit) {

 future.orTimeout(time, unit);

 }

 public void whenComplete(BiConsumer<? super Object, ? super Throw

 future.whenComplete(func);

 }

 public void complete() {

 future.complete("true");

 }

}

To see how ResultCollector works, consider a cluster with a set of nodes:
let’s call them athens, byzantium and cyrene. athens is acting as a
coordinator. When a new node - delphi - sends a join request to athens,
athens updates the membership and sends the updateMembership request to
byantium and cyrene. It also creates a ResultCollector object to track
acknowledgements. It records each acknowledgement received with
ResultCollector. When it receives acknowledgements from both byzantium
and cyrene, it then responds to delphi.

Frameworks like Akka [bib-akka] use Gossip Dissemination and Gossip
Convergence [bib-gossip-convergence] to track whether updates have
reached all cluster nodes.

An example scenario
Consider another three nodes. Again, we’ll call them athens, byzantium and
cyrene. athens acts as a seed node; the other two nodes are configured as
such.

When athens starts, it detects that it is itself the seed node. It immediately
initializes the membership list and starts accepting requests.

When byzantium starts, it sends a join request to athens. Note that even if
byzantium starts before athens, it will keep trying to send join requests until
it can connect to athens. Athens finally adds byzantium to the membership
list and sends the updated membership list to byzantium. Once byzantium
receives the response from athens, it can start accepting requests.

With all-to-all heartbeating, byzantium starts sending heartbeats to athens,
and athens sends heartbeat to byzantium.

cyrene starts next. It sends join requests to athens. Athens updates the
membership list and sends updated membership list to byantium. It then

sends the join response with the membership list to cyrene.

With all to all heartbeating, cyrene, athens and byzantium all send heartbeats
to each other.

Handling missing membership updates
It’s possible that some cluster nodes miss membership updates. There are
two solutions to handle this problem.

If all members are sending heartbeat to all other members, the membership
version number can be sent as part of the heartbeat. The cluster node that
handles the heartbeat can then ask for the latest membership. Frameworks
like Akka [bib-akka] which use Gossip Dissemination track convergence
[bib-akka-gossip-convergence] of the gossiped state.

class MembershipService…

private void handleHeartbeatMessage(HeartbeatMessage message) {

 failureDetector.heartBeatReceived(message.from);

 if (isCoordinator() && message.getMembershipVersion() < this.memb

 membership.getMember(message.from).ifPresent(member -> {

 logger.info("Membership version in " + selfAddress + "=" + th

 logger.info("Sending membership update from " + selfAddress +

 sendMembershipUpdateTo(Arrays.asList(member));

 });

 }

}

In the above example, if byzantium misses the membership update from
athens, it will be detected when byzantine sends the heartbeat to athens.
athens can then send the latest membership to byzantine.

Alternatively each cluster node can check the lastest membership list
periodically, -say every one second - with other cluster nodes. If any of the
nodes figure out that their member list is outdated, it can then ask for the
latest membership list so it can update it. To be able to compare membership
lists, generally a version number is maintained and incremented everytime
there is a change.

Failure Detection
Each cluster also runs a failure detector to check if heartbeats are missing
from any of the cluster nodes. In a simple case, all cluster nodes send
heartbeats to all the other nodes. But only the coordinator marks the nodes as

failed and communicates the updated membership list to all the other nodes.
This makes sure that not all nodes unilaterally deciding if some other nodes
have failed. Hazelcast [bib-hazelcast] is an example of this implementation.

class MembershipService…

private boolean isCoordinator() {

 Member coordinator = membership.getCoordinator();

 return coordinator.address.equals(selfAddress);

}

TimeoutBasedFailureDetector<InetAddressAndPort> failureDetector

 = new TimeoutBasedFailureDetector<InetAddressAndPort>(Duration.

private void checkFailedMembers(List<Member> members) {

 if (isCoordinator()) {

 removeFailedMembers();

 } else {

 //if failed member consists of coordinator, then check if this

 claimLeadershipIfNeeded(members);

 }

}

void removeFailedMembers() {

 List<Member> failedMembers = checkAndGetFailedMembers(membership.

 if (failedMembers.isEmpty()) {

 return;

 }

 updateMembership(membership.failed(failedMembers));

 sendMembershipUpdateTo(membership.getLiveMembers());

}

Avoiding all-to-all heartbeating
All-to-all heartbeating is not feasible in large clusters. Typically each node
will receive heartbeats from only a few other nodes. If a failure is detected,

it’s broadcasted to all the other nodes including the coordinator.

For example in Akka [bib-akka] a node ring is formed by sorting network
addresses and each cluster node sends heartbeats to only a few cluster nodes.
Ignite [bib-ignite] arranges all the nodes in the cluster in a ring and each
node sends heartbeat only to the node next to it. Hazelcast [bib-hazelcast]
uses all-to-all heartbeat.

Any membership changes, because of nodes being added or node failures
need to be broadcast to all the other cluster nodes. A node can connect to
every other node to send the required information. Gossip Dissemination can
be used to broadcast this information.

Split Brain Situation
Even though a single coordinator node decides when to mark another nodes
as down, there’s no explicit leader-election happening to select which node
acts as a coordinator. Every cluster node expects a heartbeat from the
existing coordinator node; if it doesn’t get a heartbeat in time, it can then
claim to be the coordinator and remove the existing coordinator from the
memberlist.

class MembershipService…

private void claimLeadershipIfNeeded(List<Member> members) {

 List<Member> failedMembers = checkAndGetFailedMembers(members);

 if (!failedMembers.isEmpty() && isOlderThanAll(failedMembers)) {

 var newMembership = membership.failed(failedMembers);

 updateMembership(newMembership);

 sendMembershipUpdateTo(newMembership.getLiveMembers());

 }

}

private boolean isOlderThanAll(List<Member> failedMembers) {

 return failedMembers.stream().allMatch(m -> m.age < thisMember().

}

private List<Member> checkAndGetFailedMembers(List<Member> members)

 List<Member> failedMembers = members

 .stream()

 .filter(member -> !member.address.equals(selfAddress) && fai

 .map(member -> new Member(member.address, member.age, member

 failedMembers.forEach(member->{

 failureDetector.remove(member.address);

 logger.info(selfAddress + " marking " + member.address + " as

 });

 return failedMembers;

}

This can create a situation where there are two or more subgroups formed in
an existing cluster, each considering the others to have failed. This is called
split-brain problem.

Consider a five node cluster, athens, byzantium, cyrene, delphi and
euphesus. If athens receives heartbeats from dephi and euphesus, but stops
getting heartbeats from byzantium, cyrene, it marks both byzantium and
cyrene as failed.

byzantium and cyrene could send heartbeats to each other, but stop receiving
heartbeats from cyrene, dephi and euphesus. byzantium being the second
oldest member of the cluster, then becomes the coordinator. So two separate
clusters are formed one with athens as the coordinator and the other with
byzantium as the coordinator.

Handling split brain
One common way to handle split brain issue is to check whether there are
enough members to handle any client request, and reject the request if there
are not enough live members. For example, Hazelcast [bib-hazelcast] allows
you to configure minimum cluster size to execute any client request.

public void handleClientRequest(Request request) {

 if (!hasMinimumRequiredSize()) {

 throw new NotEnoughMembersException("Requires minium 3 members

 }

}

private boolean hasMinimumRequiredSize() {

 return membership.getLiveMembers().size() > 3;

}

The part which has the majority of the nodes, continues to operate, but as
explained in the Hazelcast documentation, there will always be a time
window [bib-hazelcast-split-brain-time-window] in which this protection has
yet to come into effect.

The problem can be avoided if cluster nodes are not marked as down unless
it’s guaranteed that they won’t cause split brain. For example, Akka [bib-
akka] recommends that you don’t have nodes marked as down [bib-akka-
auto-downing] through the failure detector; you can instead use its split brain
resolver. [bib-akka-split-brain-resolver] component.

Recovering from split brain
The coordinator runs a periodic job to check if it can connect to the failed
nodes. If a connection can be established, it sends a special message
indicating that it wants to trigger a split brain merge.

If the receiving node is the coordinator of the subcluster, it will check to see
if the cluster that is initiating the request is part of the minority group. If it is,
it will send a merge request. The coordinator of the minority group, which
receives the merge request, will then execute the merge request on all the
nodes in the minority sub group.

class MembershipService…

splitbrainCheckTask = taskScheduler.scheduleWithFixedDelay(() -> {

 searchOtherClusterGroups();

 },

 1, 1, TimeUnit.SECONDS);

class MembershipService…

private void searchOtherClusterGroups() {

 if (membership.getFailedMembers().isEmpty()) {

 return;

 }

 List<Member> allMembers = new ArrayList<>();

 allMembers.addAll(membership.getLiveMembers());

 allMembers.addAll(membership.getFailedMembers());

 if (isCoordinator()) {

 for (Member member : membership.getFailedMembers()) {

 logger.info("Sending SplitBrainJoinRequest to " + member.addr

 network.send(member.address, new SplitBrainJoinRequest(messag

 }

 }

}

If the receiving node is the coordinator of the majority subgroup, it asks the
sending coordinator node to merge with itself.

class MembershipService…

private void handleSplitBrainJoinMessage(SplitBrainJoinRequest spli

 logger.info(selfAddress + " Handling SplitBrainJoinRequest from "

 if (!membership.isFailed(splitBrainJoinRequest.from)) {

 return;

 }

 if (!isCoordinator()) {

 return;

 }

 if(splitBrainJoinRequest.getMemberCount() < membership.getLiveMem

 //requesting node should join this cluster.

 logger.info(selfAddress + " Requesting " + splitBrainJoinReque

 network.send(splitBrainJoinRequest.from, new SplitBrainMergeMe

 } else {

 //we need to join the other cluster

 mergeWithOtherCluster(splitBrainJoinRequest.from);

 }

}

private void mergeWithOtherCluster(InetAddressAndPort otherClusterC

 askAllLiveMembersToMergeWith(otherClusterCoordinator);

 handleMerge(new MergeMessage(messageId++, selfAddress, otherClust

}

private void askAllLiveMembersToMergeWith(InetAddressAndPort mergeT

 List<Member> liveMembers = membership.getLiveMembers();

 for (Member m : liveMembers) {

 network.send(m.address, new MergeMessage(messageId++, selfAddr

 }

}

In the example discussed in the above section, when athens can
communicate with byzantium, it will ask byzantium to merge with itself.

The coordinator of the smaller subgroup, then asks all the cluster nodes
inside its group to trigger a merge. The merge operation shuts down and
rejoins the cluster nodes to the coordinator of the larger group.

class MembershipService…

private void handleMerge(MergeMessage mergeMessage) {

 logger.info(selfAddress + " Merging with " + mergeMessage.getMerg

 shutdown();

 //join the cluster again through the other cluster’s coordinator

 taskScheduler.execute(()-> {

 join(mergeMessage.getMergeToAddress());

 });

}

In the example above, byzantium and cyrene shutdown and rejoin athens to
form a full cluster again.

Comparison with Leader and Followers
It’s useful to compare this pattern with that of Leader and Followers. The
leader-follower setup, as used by patterns like Consistent Core, does not

function unless the leader is selected by running an election. This guarantees
that the Quorum of cluster nodes have an agreement about who the leader is.
In the worst case scenario, if an agreement isn’t reached, the system will be
unavailable to process any requests. In other words, it prefers consistency
over availability.

The emergent leader, on the other hand will always have some cluster node
acting as a leader for processing client requests. In this case, availability is
preferred over consistency.

Examples
In JGroups [bib-jgroups] the oldest member is the coordinator and decides
membership changes. In Akka [bib-akka] the oldest member of the cluster
runs actor singletons like shard coordinator which decide the placement of
Fixed Partitions across cluster nodes. In-memory data grids like Hazelcast
[bib-hazelcast] and Ignite [bib-ignite] have the oldest member as the cluster
coordinator.

Part VI: Patterns of
communication between nodes

Chapter 30. Single Socket Channel

Maintain order of the requests sent to a server by using a single TCP
connection.

Problem
When we are using Leader and Followers, we need to ensure that messages
between the leader and each follower are kept in order, with a retry
mechanism for any lost messages. We need to do this while keeping the cost
of new connections low, so that opening new connections doesn’t increase
the system’s latency.

Solution
Fortunately, the long-used and widely available TCP [bib-tcp] mechanism
provides all these necessary characteristics. Thus we can get the
communication we need by ensuring all communication between a follower
and its leader goes through a single socket channel. The follower then
serializes the updates from leader using a Singular Update Queue

Nodes never close the connection once it is open and continuously read it for
new requests. Nodes use a dedicated thread per connection to read and write
requests. A thread per connection isn’t needed if non blocking io [bib-java-
nio] is used.

A simple-thread based implementation will be like the following:

class SocketHandlerThread…

@Override

public void run() {

 isRunning = true;

 try {

 //Continues to read/write to the socket connection till it is

 while (isRunning) {

 handleRequest();

 }

 } catch (Exception e) {

 getLogger().debug(e);

 closeClient(this);

 }

}

private void handleRequest() {

 RequestOrResponse request = clientConnection.readRequest();

 RequestId requestId = RequestId.valueOf(request.getRequestId());

 server.accept(new Message<>(request, requestId, clientConnection)

}

public void closeConnection() {

 clientConnection.close();

}

The node reads requests and submits them to a Singular Update Queue for
processing. Once the node has processed the request it writes the response
back to the socket.

Whenever a node establishes a communication it opens a single socket
connection that’s used for all requests with the other party.

class SingleSocketChannel…

public class SingleSocketChannel implements Closeable {

 final InetAddressAndPort address;

 final int heartbeatIntervalMs;

 private Socket clientSocket;

 private final OutputStream socketOutputStream;

 private final InputStream inputStream;

 public SingleSocketChannel(InetAddressAndPort address, int heartb

 this.address = address;

 this.heartbeatIntervalMs = heartbeatIntervalMs;

 clientSocket = new Socket();

 clientSocket.connect(new InetSocketAddress(address.getAddress()

 clientSocket.setSoTimeout(heartbeatIntervalMs * 10); //set sock

 socketOutputStream = clientSocket.getOutputStream();

 inputStream = clientSocket.getInputStream();

}

public synchronized RequestOrResponse blockingSend(RequestOrRespons

 writeRequest(request);

 byte[] responseBytes = readResponse();

 return deserialize(responseBytes);

}

private void writeRequest(RequestOrResponse request) throws IOExcep

 var dataStream = new DataOutputStream(socketOutputStream);

 byte[] messageBytes = serialize(request);

 dataStream.writeInt(messageBytes.length);

 dataStream.write(messageBytes);

}

It’s important to keep a timeout on the connection so it doesn’t block
indefinitely in case of errors. We use HeartBeat to send requests periodically
over the socket channel to keep it alive. This timeout is generally kept as a
multiple of the HeartBeat interval, to allow for network round trip time and
some possible network delays. It’s reasonable to keep the connection timeout
as say 10 times that of the HeartBeat interval.

class SocketListener…

private void setReadTimeout(Socket clientSocket) throws SocketExcep

 clientSocket.setSoTimeout(config.getHeartBeatIntervalMs() * 10);

}

Sending requests over a single channel can create a problem with head of
line blocking [bib-head-of-line-blocking] issues. To avoid these, we can use
a Request Pipeline.

Examples
• Zookeeper [bib-zookeeper-internals] uses a single socket channel and a

thread per follower to do all the communication.

• Kafka [bib-kafka-replication] uses a single socket channel between
follower and leader partitions to replicate messages.

• Reference implementation of the Raft [bib-raft] consensus algorithm,
LogCabin [bib-logcabin-raft] uses single socket channel to communicate
between leader and followers

Chapter 31. Request Batch

Combine multiple requests to optimally utilise the network.

Problem
When requests are sent to cluster nodes, if a lot of requests are sent with a
small amount of data, network latency and the request processing time
(including serialization, deserialization of the request on the server side) can
add significant overhead.

For example, if a network’s capacity is 1gbps and its latency and request
processing time is, say, 100 microseconds, if the client is sending hundreds
of requests at the same time — each one just a few bytes — it will
significantly limit the overall throughput if each request needs 100
microseconds to complete.

Solution
Combine multiple requests together into a single request batch. The batch of
the request will be sent to the cluster node for processing. with each request
processed in exactly the same manner as an individual request. It will then
respond with the batch of the responses.

As an example, consider a distributed key-value store, where the client
sends requests to store multiple key-values on the server. When the client
receives a call to send the request, it does not immediately send it over the
network; instead, it keeps a queue of requests to be sent.

class Client…

LinkedBlockingQueue<RequestEntry> requests = new LinkedBlockingQueu

public CompletableFuture send(SetValueRequest setValueRequest) {

 int requestId = enqueueRequest(setValueRequest);

 CompletableFuture responseFuture = trackPendingRequest(requestId

 return responseFuture;

}

private int enqueueRequest(SetValueRequest setValueRequest) {

 int requestId = nextRequestId();

 byte[] requestBytes = serialize(setValueRequest, requestId);

 requests.add(new RequestEntry(requestBytes, clock.nanoTime()));

 return requestId;

}

private int nextRequestId() {

 return requestNumber++;

}

The time at which the request is enqued is tracked; this is later used to
decide if the request can be sent as part of the batch.

class RequestEntry…

class RequestEntry {

 byte[] serializedRequest;

 long createdTime;

 public RequestEntry(byte[] serializedRequest, long createdTime)

 this.serializedRequest = serializedRequest;

 this.createdTime = createdTime;

}

It then tracks the pending requests to be completed when a response is
received. Each request will be assigned a unique request number which can
be used to map the response and complete the requests.

class Client…

Map<Integer, CompletableFuture> pendingRequests = new ConcurrentHa

private CompletableFuture trackPendingRequest(Integer correlationId

 CompletableFuture responseFuture = new CompletableFuture();

 pendingRequests.put(correlationId, responseFuture);

 return responseFuture;

}

The client starts a separate task which continuously tracks the queued
requests.

class Client…

public Client(Config config, InetAddressAndPort serverAddress, Syst

 this.clock = clock;

 this.sender = new Sender(config, serverAddress, clock);

 this.sender.start();

}

class Sender…

@Override

public void run() {

 while (isRunning) {

 boolean maxWaitTimeElapsed = requestsWaitedFor(config.getMaxBat

 boolean maxBatchSizeReached = maxBatchSizeReached(requests);

 if (maxWaitTimeElapsed || maxBatchSizeReached) {

 RequestBatch batch = createBatch(requests);

 try {

 BatchResponse batchResponse = sendBatchRequest(batch, add

 handleResponse(batchResponse);

 } catch (IOException e) {

 batch.getPackedRequests().stream().forEach(r -> {

 pendingRequests.get(r.getCorrelationId()).completeExceptio

 });

 }

 }

}

}

private RequestBatch createBatch(LinkedBlockingQueue<RequestEntry>

 RequestBatch batch = new RequestBatch(MAX_BATCH_SIZE_BYTES);

 RequestEntry entry = requests.peek();

 while (entry != null && batch.hasSpaceFor(entry.getRequest())) {

 batch.add(entry.getRequest());

 requests.remove(entry);

 entry = requests.peek();

 }

 return batch;

}

class RequestBatch…

public boolean hasSpaceFor(byte[] requestBytes) {

 return batchSize() + requestBytes.length <= maxSize;

}

private int batchSize() {

 return requests.stream().map(r->r.length).reduce(0, Integer::sum

}

There are two checks which are generally done.

class Sender…

private boolean maxBatchSizeReached(Queue<RequestEntry> requests)

 return accumulatedRequestSize(requests) > MAX_BATCH_SIZE_BYTES;

}

private int accumulatedRequestSize(Queue<RequestEntry> requests) {

 return requests.stream().map(re -> re.size()).reduce((r1, r2) ->

}

class Sender…

private boolean requestsWaitedFor(long batchingWindowInMs) {

 RequestEntry oldestPendingRequest = requests.peek();

 if (oldestPendingRequest == null) {

 return false;

 }

 long oldestEntryWaitTime = clock.nanoTime() - oldestPendingReque

 return oldestEntryWaitTime > batchingWindowInMs;

}

• If enough requests have accumulated to fill the batch to the maximum
configured size.

• Because we cannot wait forever for the batch to be filled in, we can
configure a small amount of wait time. The sender task waits and then
checks if the request has been added before the maximum wait time.

Once any of these conditions has been fulfilled the batch request can then
be sent to the server. The server unpacks the batch request, and processes
each of the individual requests.

class Server…

private void handleBatchRequest(RequestOrResponse batchRequest, Cl

 RequestBatch batch = JsonSerDes.deserialize(batchRequest.getMessa

 List<RequestOrResponse> requests = batch.getPackedRequests();

 List<RequestOrResponse> responses = new ArrayList<>();

 for (RequestOrResponse request : requests) {

 RequestOrResponse response = handleSetValueRequest(request);

 responses.add(response);

 }

 sendResponse(batchRequest, clientConnection, new BatchResponse(re

}

private RequestOrResponse handleSetValueRequest(RequestOrResponse

 SetValueRequest setValueRequest = JsonSerDes.deserialize(request

 kv.put(setValueRequest.getKey(), setValueRequest.getValue());

 RequestOrResponse response = new RequestOrResponse(RequestId.SetV

 return response;

}

The client receives the batch response and completes all the pending
requests.

class Sender…

private void handleResponse(BatchResponse batchResponse) {

 List<RequestOrResponse> responseList = batchResponse.getResponseL

 logger.debug("Completing requests from " + responseList.get(0).ge

 responseList.stream().forEach(r -> {

 CompletableFuture completableFuture = pendingRequests.remove(r

 if (completableFuture != null) {

 completableFuture.complete(r);

 } else {

 logger.error("no pending request for " + r.getCorrelationId

 }

 });

}

Technical Considerations
The batch size should be chosen based on the size of individual messages
and available network bandwidth as well as the observed latency and
throughput improvements based on the real life load. These are configured
to some sensible defaults assuming smaller message sizes and the optimal
batch size for server side processing. For example, Kafka [bib-kafka] has a
default batch size of 16Kb. It also has a configuration parameter called
"linger.ms" with the default value of 0. However if the size of the messages
are bigger a higher batch size might work better.

Having too large a batch size will likely only offer diminishing returns. For
example having a batch size in MBs can add further overheads in terms of

processing. This is why the batch size parameter is typically tuned
according to observations made through performance testing.

A request batch is generally used along with Request Pipeline to improve
overall throughput and latency.

When the retry-backoff policy is used to send requests to cluster nodes, the
entire batch request will be retried. The cluster node might have processed
part of the batch already; so to ensure the retry works without any issues,
you should implement Idempotent Receiver.

Examples
Kafka [bib-kafka] supports the batch of the producer requests.

Batching is also used when saving data to disk. For example [bookkeeper]
[bib-bookkeeper] implements the batching in a similar way to flush the log
to the disk.

Nagel’s Algorithm [bib-tcp-nagel] is used in TCP to batch multiple smaller
packets together to improve overall network throughput.

Chapter 32. Request Pipeline

Improve latency by sending multiple requests on the connection without
waiting for the response of the previous requests.

Problem
Communicating between servers within a cluster using Single Socket
Channel can cause performance issues if requests need to wait for responses
for previous requests to be returned. To achieve better throughput and
latency, the request queue on the server should be filled enough to make sure
server capacity is fully utilized. For example, when Singular Update Queue
is used within a server, it can always accept more requests until the queue
fills up, while it’s processing a request. If only one request is sent at a time,
most of the server capacity is unnecessarily wasted.

Solution
Nodes send requests to other nodes without waiting for responses from
previous requests. This is achieved by creating two separate threads, one for
sending requests over a network channel and one for receiving responses
from the network channel.

The sender node sends the requests over the socket channel, without waiting
for response.

class SingleSocketChannel…

public void sendOneWay(RequestOrResponse request) throws IOExceptio

 var dataStream = new DataOutputStream(socketOutputStream);

 byte[] messageBytes = serialize(request);

 dataStream.writeInt(messageBytes.length);

 dataStream.write(messageBytes);

}

A separate thread is started to read responses.

class ResponseThread…

class ResponseThread extends Thread implements Logging {

 private volatile boolean isRunning = false;

 private SingleSocketChannel socketChannel;

 public ResponseThread(SingleSocketChannel socketChannel) {

 this.socketChannel = socketChannel;

 }

 @Override

 public void run() {

 try {

 isRunning = true;

 logger.info("Starting responder thread = " + isRunning);

 while (isRunning) {

 doWork();

 }

 } catch (IOException e) {

 e.printStackTrace();

 getLogger().error(e); //thread exits if stopped or there is IO

 }

}

public void doWork() throws IOException {

 RequestOrResponse response = socketChannel.read();

 logger.info("Read Response = " + response);

 processResponse(response);

}

The response handler can immediately process the response or submits it to a
Singular Update Queue

There are two issues with the request pipeline which need to be handled.

If requests are continuously sent without waiting for the response, the node
accepting the request can be overwhelmed. For this reason, there is an upper
limit on how many requests can be kept inflight at a time. Any node can send
up to the maximum number of requests to other nodes. Once the maximum
inflight requests are sent without receiving the response, no more requests
are accepted and the sender is blocked. A very simple strategy to limit
maximum inflight requests is to keep a blocking queue to keep track of

requests. The queue is initialized with the number of requests which can be
in flight. Once the response is received for a request, it’s removed from the
queue to create room for more requests. As shown in the below code, the
maximum of five inflight requests are accepted per socket connection.

class RequestLimitingPipelinedConnection…

private final Map<InetAddressAndPort, ArrayBlockingQueue<RequestOrR

private int maxInflightRequests = 5;

public void send(InetAddressAndPort to, RequestOrResponse request)

 ArrayBlockingQueue<RequestOrResponse> requestsForAddress = inflig

 if (requestsForAddress == null) {

 requestsForAddress = new ArrayBlockingQueue<>(maxInflightReque

 inflightRequests.put(to, requestsForAddress);

 }

 requestsForAddress.put(request);

The request is removed from the inflight request queue once the response is
received.

class RequestLimitingPipelinedConnection…

private void consume(SocketRequestOrResponse response) {

 Integer correlationId = response.getRequest().getCorrelationId();

 Queue<RequestOrResponse> requestsForAddress = inflightRequests.ge

 RequestOrResponse first = requestsForAddress.peek();

 if (correlationId != first.getCorrelationId()) {

 throw new RuntimeException("First response should be for the f

 }

 requestsForAddress.remove(first);

 responseConsumer.accept(response.getRequest());

}

Handling failures and also maintaining ordering guarantees becomes tricky
to implement. Let’s say there are two requests in flight. The first request
failed and retried, the server might have processed the second request before
the retried first request reaches the server. Servers need some mechanism to

make sure out of order requests are rejected. Otherwise, there’s always a risk
of messages getting re-ordered in case of failures and retries. For example,
Raft [bib-raft] always sends the previous log index that is expected with
every log entry. If the previous log index does not match, the server rejects
the request. Kafka can allow max.in.flight.requests.per.connection to be
more than one, with the idempotent producer implementation [bib-kafka-
idempotent-producer], which assigns a unique identifier to each message
batch that is sent to the broker. The broker can then check the sequence
number of the incoming request and reject the request if the requests are out
of order.

Examples
All consensus algorithm such as Zab [bib-zab] and Raft [bib-raft] allow
request pipeline support.

Kafka [bib-kafka-protocol] encourages clients to use request pipelining to
improve throughput.

Bibliography

[bib-lamport] http://lamport.org

[bib-lamport-paxos-simple] https://lamport.azurewebsites.net/pubs/paxos-
simple.pdf

[bib-lamport-paxos-original]
http://lamport.azurewebsites.net/pubs/pubs.xhtml#lamport-paxos

[bib-single-writer] https://mechanical-
sympathy.blogspot.com/2011/09/single-writer-principle.xhtml

[bib-seda] https://dl.acm.org/doi/10.1145/502034.502057

[bib-xpe] http://www.amazon.com/exec/obidos/ASIN/0321278658

[bib-lmax] https://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf

[bib-gossip] https://en.wikipedia.org/wiki/Gossip_protocol

[bib-local-pause] https://issues.apache.org/jira/browse/CASSANDRA-9183

[bib-zab]
https://zookeeper.apache.org/doc/r3.4.13/zookeeperInternals.xhtm
l#sc_atomicBroadcast

[bib-zookeeper] https://zookeeper.apache.org/

[bib-zookeeper-hunt-paper]
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.
pdf

http://lamport.org/
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
http://lamport.azurewebsites.net/pubs/pubs.xhtml#lamport-paxos
https://mechanical-sympathy.blogspot.com/2011/09/single-writer-principle.xhtml
https://mechanical-sympathy.blogspot.com/2011/09/single-writer-principle.xhtml
https://dl.acm.org/doi/10.1145/502034.502057
http://www.amazon.com/exec/obidos/ASIN/0321278658
https://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf
https://en.wikipedia.org/wiki/Gossip_protocol
https://issues.apache.org/jira/browse/CASSANDRA-9183
https://zookeeper.apache.org/doc/r3.4.13/zookeeperInternals.xhtml#sc_atomicBroadcast
https://zookeeper.apache.org/doc/r3.4.13/zookeeperInternals.xhtml#sc_atomicBroadcast
https://zookeeper.apache.org/
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf

[bib-zookeeper-internals]
https://zookeeper.apache.org/doc/r3.4.13/zookeeperInternals.xhtm
l

[bib-raft] https://raft.github.io/

[bib-raft-phd] https://web.stanford.edu/~ouster/cgi-
bin/papers/OngaroPhD.pdf

[bib-logcabin-raft] https://github.com/logcabin/logcabin

[bib-logcabin-raft-clustertime] https://ongardie.net/blog/logcabin-2015-02-
27/

[bib-Linearizable] https://jepsen.io/consistency/models/linearizable

[bib-etcd] https://etcd.io/

[bib-consul] https://www.consul.io/

[bib-kafka] https://kafka.apache.org/

[bib-kafka-raft] https://cwiki.apache.org/confluence/display/KAFKA/KIP-
595%3A+A+Raft+Protocol+for+the+Metadata+Quorum

[bib-kafka-replication-protocol] https://www.confluent.io/blog/hands-free-
kafka-replication-a-lesson-in-operational-simplicity/

[bib-kafka-protocol] https://kafka.apache.org/protocol

[bib-kafka-replication] https://kafka.apache.org/protocol

[bib-kafka-follower-fetch]
https://cwiki.apache.org/confluence/display/KAFKA/KIP-
392%3A+Allow+consumers+to+fetch+from+closest+replica

[bib-kafka-leader-epoch]
https://cwiki.apache.org/confluence/display/KAFKA/KIP-101+-

https://zookeeper.apache.org/doc/r3.4.13/zookeeperInternals.xhtml
https://zookeeper.apache.org/doc/r3.4.13/zookeeperInternals.xhtml
https://raft.github.io/
https://web.stanford.edu/~ouster/cgi-bin/papers/OngaroPhD.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/OngaroPhD.pdf
https://github.com/logcabin/logcabin
https://ongardie.net/blog/logcabin-2015-02-27/
https://ongardie.net/blog/logcabin-2015-02-27/
https://jepsen.io/consistency/models/linearizable
https://etcd.io/
https://www.consul.io/
https://kafka.apache.org/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-595%3A+A+Raft+Protocol+for+the+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-595%3A+A+Raft+Protocol+for+the+Metadata+Quorum
https://www.confluent.io/blog/hands-free-kafka-replication-a-lesson-in-operational-simplicity/
https://www.confluent.io/blog/hands-free-kafka-replication-a-lesson-in-operational-simplicity/
https://kafka.apache.org/protocol
https://kafka.apache.org/protocol
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-101+-+Alter+Replication+Protocol+to+use+Leader+Epoch+rather+than+High+Watermark+for+Truncation

+Alter+Replication+Protocol+to+use+Leader+Epoch+rather+tha
n+High+Watermark+for+Truncation

[bib-kafka-controller]
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Cont
roller+Internals

[bib-future] https://en.wikipedia.org/wiki/Futures_and_promises

[bib-tcp] https://en.wikipedia.org/wiki/Transmission_Control_Protocol

[bib-java-nio] https://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)

[bib-head-of-line-blocking] https://en.wikipedia.org/wiki/Head-of-
line_blocking

[bib-grpc] https://grpc.io/

[bib-birman] http://www.amazon.com/exec/obidos/ASIN/1447158423

[bib-applying-usl-to-dist-sys] https://speakerdeck.com/drqz/applying-the-
universal-scalability-law-to-distributed-systems?slide=68

[bib-zookeeper-wait-free]
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.
pdf

[bib-etcd-parformance] https://coreos.com/blog/performance-of-etcd.xhtml

[bib-paxos] https://en.wikipedia.org/wiki/Paxos_(computer_science)

[bib-multi-paxos] https://www.youtube.com/watch?
v=JEpsBg0AO6o&t=1920s

[bib-cassandra] http://cassandra.apache.org/

[bib-cassandra-hinted-handoff]
http://cassandra.apache.org/doc/latest/operating/hints.xhtml

https://cwiki.apache.org/confluence/display/KAFKA/KIP-101+-+Alter+Replication+Protocol+to+use+Leader+Epoch+rather+than+High+Watermark+for+Truncation
https://cwiki.apache.org/confluence/display/KAFKA/KIP-101+-+Alter+Replication+Protocol+to+use+Leader+Epoch+rather+than+High+Watermark+for+Truncation
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Internals
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Internals
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)
https://en.wikipedia.org/wiki/Head-of-line_blocking
https://en.wikipedia.org/wiki/Head-of-line_blocking
https://grpc.io/
http://www.amazon.com/exec/obidos/ASIN/1447158423
https://speakerdeck.com/drqz/applying-the-universal-scalability-law-to-distributed-systems?slide=68
https://speakerdeck.com/drqz/applying-the-universal-scalability-law-to-distributed-systems?slide=68
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
https://coreos.com/blog/performance-of-etcd.xhtml
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://www.youtube.com/watch?v=JEpsBg0AO6o&t=1920s
https://www.youtube.com/watch?v=JEpsBg0AO6o&t=1920s
http://cassandra.apache.org/
http://cassandra.apache.org/doc/latest/operating/hints.xhtml

[bib-cassandra-heartbeat]
https://issues.apache.org/jira/browse/CASSANDRA-597

[bib-cassandra-generation]
http://cassandra.apache.org/doc/latest/operating/hints.xhtml

[bib-http2] https://tools.ietf.org/html/rfc7540

[bib-fallacies-of-distributed-computing]
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

[bib-consensus]
https://en.wikipedia.org/wiki/Consensus_(computer_science)

[bib-view-stamp-replication] http://pmg.csail.mit.edu/papers/vr-
revisited.pdf

[bib-virtual-synchrony] https://www.cs.cornell.edu/ken/History.pdf

[bib-chubby] https://research.google/pubs/pub27897/

[bib-patterns] articles/writingPatterns.xhtml

[bib-alexander] https://en.wikipedia.org/wiki/Christopher_Alexander

[bib-gc]
https://en.wikipedia.org/wiki/Garbage_collection_(computer_scie
nce)

[bib-network-partition] https://en.wikipedia.org/wiki/Network_partition

[bib-acid] https://en.wikipedia.org/wiki/Network_partition

[bib-usl-to-dist-sys] https://speakerdeck.com/drqz/applying-the-universal-
scalability-law-to-distributed-systems?slide=68

[bib-usl] http://www.perfdynamics.com/Manifesto/USLscalability.xhtml

https://issues.apache.org/jira/browse/CASSANDRA-597
http://cassandra.apache.org/doc/latest/operating/hints.xhtml
https://tools.ietf.org/html/rfc7540
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Consensus_(computer_science)
http://pmg.csail.mit.edu/papers/vr-revisited.pdf
http://pmg.csail.mit.edu/papers/vr-revisited.pdf
https://www.cs.cornell.edu/ken/History.pdf
https://research.google/pubs/pub27897/
http://articles/writingPatterns.xhtml
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Network_partition
https://en.wikipedia.org/wiki/Network_partition
https://speakerdeck.com/drqz/applying-the-universal-scalability-law-to-distributed-systems?slide=68
https://speakerdeck.com/drqz/applying-the-universal-scalability-law-to-distributed-systems?slide=68
http://www.perfdynamics.com/Manifesto/USLscalability.xhtml

[bib-kafka-shutdownable-thread]
https://github.com/a0x8o/kafka/blob/master/connect/runtime/src/
main/java/org/apache/kafka/connect/util/ShutdownableThread.jav
a

[bib-zookeeper-processor-thread]
https://github.com/apache/zookeeper/blob/master/zookeeper-
server/src/main/java/org/apache/zookeeper/server/quorum/Commi
tProcessor.java

[bib-cassandra-local-pause-detection]
https://issues.apache.org/jira/browse/CASSANDRA-9183

[bib-cassandra-generation-as-timestamp]
https://issues.apache.org/jira/browse/CASSANDRA-515

[bib-log-cabin] https://github.com/logcabin/logcabin

[bib-akka] https://akka.io/

[bib-java-concurrency-in-practice]
http://www.amazon.com/exec/obidos/ASIN/0321349601

[bib-bookkeeper] https://bookkeeper.apache.org/

[bib-bookkeeper-protocol]
https://bookkeeper.apache.org/archives/docs/r4.4.0/bookkeeperPr
otocol.xhtml

[bib-designing-data-intensive-applications]
http://www.amazon.com/exec/obidos/ASIN/1449373321

[bib-lamport-timestamp] https://en.wikipedia.org/wiki/Lamport_timestamps

[bib-logical-clock] https://en.wikipedia.org/wiki/Logical_clock

[bib-aws-outage] https://aws.amazon.com/message/41926/

https://github.com/a0x8o/kafka/blob/master/connect/runtime/src/main/java/org/apache/kafka/connect/util/ShutdownableThread.java
https://github.com/a0x8o/kafka/blob/master/connect/runtime/src/main/java/org/apache/kafka/connect/util/ShutdownableThread.java
https://github.com/a0x8o/kafka/blob/master/connect/runtime/src/main/java/org/apache/kafka/connect/util/ShutdownableThread.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/CommitProcessor.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/CommitProcessor.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/CommitProcessor.java
https://issues.apache.org/jira/browse/CASSANDRA-9183
https://issues.apache.org/jira/browse/CASSANDRA-515
https://github.com/logcabin/logcabin
https://akka.io/
http://www.amazon.com/exec/obidos/ASIN/0321349601
https://bookkeeper.apache.org/
https://bookkeeper.apache.org/archives/docs/r4.4.0/bookkeeperProtocol.xhtml
https://bookkeeper.apache.org/archives/docs/r4.4.0/bookkeeperProtocol.xhtml
http://www.amazon.com/exec/obidos/ASIN/1449373321
https://en.wikipedia.org/wiki/Lamport_timestamps
https://en.wikipedia.org/wiki/Logical_clock
https://aws.amazon.com/message/41926/

[bib-github-outage] https://github.blog/2018-10-30-oct21-post-incident-
analysis/

[bib-google-outage] https://status.cloud.google.com/incident/cloud-
networking/19009

[bib-correlation-identifier]
https://www.enterpriseintegrationpatterns.com/patterns/messaging
/CorrelationIdentifier.xhtml

[bib-akka-2400-node-cluster] https://www.lightbend.com/blog/running-a-
2400-akka-nodes-cluster-on-google-compute-engine

[bib-rapid] https://www.usenix.org/conference/atc18/presentation/suresh

[bib-stat-machine-replication]
https://en.wikipedia.org/wiki/State_machine_replication

[bib-kubernetes] https://kubernetes.io/

[bib-hdfs] https://hadoop.apache.org/docs/r3.0.0/hadoop-project-
dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.xhtml

[bib-flink] https://ci.apache.org/projects/flink/flink-docs-release-
1.11/ops/jobmanager_high_availability.xhtml

[bib-spark] http://spark.apache.org/docs/latest/spark-
standalone.xhtml#standby-masters-with-zookeeper

[bib-numbers-every-programmer-should-know]
http://highscalability.com/numbers-everyone-should-know

[bib-kip-500] https://cwiki.apache.org/confluence/display/KAFKA/KIP-
500%3A+Replace+ZooKeeper+with+a+Self-
Managed+Metadata+Quorum

[bib-kip-631] https://cwiki.apache.org/confluence/display/KAFKA/KIP-
631%3A+The+Quorum-based+Kafka+Controller

https://github.blog/2018-10-30-oct21-post-incident-analysis/
https://github.blog/2018-10-30-oct21-post-incident-analysis/
https://status.cloud.google.com/incident/cloud-networking/19009
https://status.cloud.google.com/incident/cloud-networking/19009
https://www.enterpriseintegrationpatterns.com/patterns/messaging/CorrelationIdentifier.xhtml
https://www.enterpriseintegrationpatterns.com/patterns/messaging/CorrelationIdentifier.xhtml
https://www.lightbend.com/blog/running-a-2400-akka-nodes-cluster-on-google-compute-engine
https://www.lightbend.com/blog/running-a-2400-akka-nodes-cluster-on-google-compute-engine
https://www.usenix.org/conference/atc18/presentation/suresh
https://en.wikipedia.org/wiki/State_machine_replication
https://kubernetes.io/
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.xhtml
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.xhtml
https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/jobmanager_high_availability.xhtml
https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/jobmanager_high_availability.xhtml
http://spark.apache.org/docs/latest/spark-standalone.xhtml#standby-masters-with-zookeeper
http://spark.apache.org/docs/latest/spark-standalone.xhtml#standby-masters-with-zookeeper
http://highscalability.com/numbers-everyone-should-know
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-631%3A+The+Quorum-based+Kafka+Controller
https://cwiki.apache.org/confluence/display/KAFKA/KIP-631%3A+The+Quorum-based+Kafka+Controller

[bib-jepsen] https://github.com/jepsen-io/jepsen

[bib-strict-serializability] http://jepsen.io/consistency/models/strict-
serializable

[bib-database-consistency] https://jepsen.io/consistency

[bib-serializability] https://jepsen.io/consistency/models/serializable

[bib-ntp] https://en.wikipedia.org/wiki/Network_Time_Protocol

[bib-dhcp]
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Prot
ocol

[bib-dhcp-failover] https://tools.ietf.org/html/draft-ietf-dhc-failover-12

[bib-zookeeper-wal]
https://github.com/apache/zookeeper/blob/master/zookeeper-
server/src/main/java/org/apache/zookeeper/server/persistence/File
TxnLog.java

[bib-etcd-wal] https://github.com/etcd-
io/etcd/blob/master/server/wal/wal.go

[bib-cassandra-wal]
https://github.com/apache/cassandra/blob/trunk/src/java/org/apac
he/cassandra/db/commitlog/CommitLog.java

[bib-kafka-log]
https://github.com/axbaretto/kafka/blob/master/core/src/main/scal
a/kafka/log/Log.scala

[bib-etcd-watch-channel-issue] https://github.com/etcd-io/etcd/issues/11906

[bib-reactive-streams] https://www.reactive-streams.org/

[bib-rsocket] https://rsocket.io/

https://github.com/jepsen-io/jepsen
http://jepsen.io/consistency/models/strict-serializable
http://jepsen.io/consistency/models/strict-serializable
https://jepsen.io/consistency
https://jepsen.io/consistency/models/serializable
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://tools.ietf.org/html/draft-ietf-dhc-failover-12
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnLog.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnLog.java
https://github.com/apache/zookeeper/blob/master/zookeeper-server/src/main/java/org/apache/zookeeper/server/persistence/FileTxnLog.java
https://github.com/etcd-io/etcd/blob/master/server/wal/wal.go
https://github.com/etcd-io/etcd/blob/master/server/wal/wal.go
https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cassandra/db/commitlog/CommitLog.java
https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cassandra/db/commitlog/CommitLog.java
https://github.com/axbaretto/kafka/blob/master/core/src/main/scala/kafka/log/Log.scala
https://github.com/axbaretto/kafka/blob/master/core/src/main/scala/kafka/log/Log.scala
https://github.com/etcd-io/etcd/issues/11906
https://www.reactive-streams.org/
https://rsocket.io/

[bib-kubernetes-api] https://kubernetes.io/docs/reference/using-api/api-
concepts/

[bib-etcd3] https://coreos.com/blog/etcd3-a-new-etcd.xhtml

[bib-etcd3-doc] https://etcd.io/docs/v3.4.0/dev-guide/interacting_v3/

[bib-etcd-readindex-impl] https://github.com/etcd-
io/etcd/pull/6212/commits/e3e39930229830b2991ec917ec5d2ba6
25febd3f

[bib-kafka-idempotent-producer]
https://cwiki.apache.org/confluence/display/KAFKA/Idempotent
+Producer

[bib-hbase-recoverable-zookeeper]
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-
2.4.0/bk_hbase_java_api/org/apache/hadoop/hbase/zookeeper/Re
coverableZooKeeper.xhtml

[bib-zookeeper-error-handling]
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Error
Handling

[bib-cloudflare-outage] https://blog.cloudflare.com/a-byzantine-failure-in-
the-real-world/

[bib-kafka-enhanced-raft]
https://cwiki.apache.org/confluence/display/KAFKA/KIP-
650%3A+Enhance+Kafkaesque+Raft+semantics#KIP650:Enhanc
eKafkaesqueRaftsemantics-Non-leaderLinearizableRead

[bib-serf-convergence-simulator]
https://www.serf.io/docs/internals/simulator.xhtml

[bib-gossip-analysis] https://www.coursera.org/lecture/cloud-computing/1-
3-gossip-analysis-jjieX

[bib-cockroachdb] https://www.cockroachlabs.com/docs/stable/

https://kubernetes.io/docs/reference/using-api/api-concepts/
https://kubernetes.io/docs/reference/using-api/api-concepts/
https://coreos.com/blog/etcd3-a-new-etcd.xhtml
https://etcd.io/docs/v3.4.0/dev-guide/interacting_v3/
https://github.com/etcd-io/etcd/pull/6212/commits/e3e39930229830b2991ec917ec5d2ba625febd3f
https://github.com/etcd-io/etcd/pull/6212/commits/e3e39930229830b2991ec917ec5d2ba625febd3f
https://github.com/etcd-io/etcd/pull/6212/commits/e3e39930229830b2991ec917ec5d2ba625febd3f
https://cwiki.apache.org/confluence/display/KAFKA/Idempotent+Producer
https://cwiki.apache.org/confluence/display/KAFKA/Idempotent+Producer
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.4.0/bk_hbase_java_api/org/apache/hadoop/hbase/zookeeper/RecoverableZooKeeper.xhtml
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.4.0/bk_hbase_java_api/org/apache/hadoop/hbase/zookeeper/RecoverableZooKeeper.xhtml
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.4.0/bk_hbase_java_api/org/apache/hadoop/hbase/zookeeper/RecoverableZooKeeper.xhtml
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ErrorHandling
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ErrorHandling
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-650%3A+Enhance+Kafkaesque+Raft+semantics#KIP650:EnhanceKafkaesqueRaftsemantics-Non-leaderLinearizableRead
https://cwiki.apache.org/confluence/display/KAFKA/KIP-650%3A+Enhance+Kafkaesque+Raft+semantics#KIP650:EnhanceKafkaesqueRaftsemantics-Non-leaderLinearizableRead
https://cwiki.apache.org/confluence/display/KAFKA/KIP-650%3A+Enhance+Kafkaesque+Raft+semantics#KIP650:EnhanceKafkaesqueRaftsemantics-Non-leaderLinearizableRead
https://www.serf.io/docs/internals/simulator.xhtml
https://www.coursera.org/lecture/cloud-computing/1-3-gossip-analysis-jjieX
https://www.coursera.org/lecture/cloud-computing/1-3-gossip-analysis-jjieX
https://www.cockroachlabs.com/docs/stable/

[bib-cockroachdb-hybridclock]
https://www.cockroachlabs.com/docs/stable/architecture/transacti
on-layer.xhtml

[bib-cockroachdb-design]
https://github.com/cockroachdb/cockroach/blob/master/docs/desi
gn.md

[bib-kip-631-configurations]
https://cwiki.apache.org/confluence/display/KAFKA/KIP-
631%3A+The+Quorum-
based+Kafka+Controller#KIP631:TheQuorumbasedKafkaControl
ler-Configurations

[bib-swim-gossip]
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWI
M.pdf

[bib-wan-gossip] https://dl.acm.org/doi/10.1109/TPDS.2006.85

[bib-epidemiology] https://en.wikipedia.org/wiki/Epidemiology

[bib-hyperledger-fabric] https://github.com/hyperledger/fabric

[bib-hyperledger-fabric-gossip] https://hyperledger-
fabric.readthedocs.io/en/release-2.2/gossip.xhtml

[bib-mongodb-cluster-logical-clock]
https://dl.acm.org/doi/pdf/10.1145/3299869.3314049

[bib-vector-clock] https://en.wikipedia.org/wiki/Vector_clock

[bib-version-vector] https://en.wikipedia.org/wiki/Version_vector

[bib-dvv] https://riak.com/posts/technical/vector-clocks-revisited-part-2-
dotted-version-vectors/index.xhtml

[bib-version-vectors-are-not-vector-clocks]
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-

https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer.xhtml
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer.xhtml
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://cwiki.apache.org/confluence/display/KAFKA/KIP-631%3A+The+Quorum-based+Kafka+Controller#KIP631:TheQuorumbasedKafkaController-Configurations
https://cwiki.apache.org/confluence/display/KAFKA/KIP-631%3A+The+Quorum-based+Kafka+Controller#KIP631:TheQuorumbasedKafkaController-Configurations
https://cwiki.apache.org/confluence/display/KAFKA/KIP-631%3A+The+Quorum-based+Kafka+Controller#KIP631:TheQuorumbasedKafkaController-Configurations
https://cwiki.apache.org/confluence/display/KAFKA/KIP-631%3A+The+Quorum-based+Kafka+Controller#KIP631:TheQuorumbasedKafkaController-Configurations
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://dl.acm.org/doi/10.1109/TPDS.2006.85
https://en.wikipedia.org/wiki/Epidemiology
https://github.com/hyperledger/fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.2/gossip.xhtml
https://hyperledger-fabric.readthedocs.io/en/release-2.2/gossip.xhtml
https://dl.acm.org/doi/pdf/10.1145/3299869.3314049
https://en.wikipedia.org/wiki/Vector_clock
https://en.wikipedia.org/wiki/Version_vector
https://riak.com/posts/technical/vector-clocks-revisited-part-2-dotted-version-vectors/index.xhtml
https://riak.com/posts/technical/vector-clocks-revisited-part-2-dotted-version-vectors/index.xhtml
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/

vector-clocks/

[bib-riak-vector-clock] https://riak.com/posts/technical/vector-clocks-
revisited/index.xhtml?p=9545.xhtml

[bib-sibling-explosion]
https://docs.riak.com/riak/kv/2.2.3/learn/concepts/causal-
context/index.xhtml#sibling-explosion

[bib-riak-conflict-resolver]
https://docs.riak.com/riak/kv/latest/developing/usage/conflict-
resolution/java/index.xhtml

[bib-mvcc] https://en.wikipedia.org/wiki/Multiversion_concurrency_control

[bib-lamport-clock] https://en.wikipedia.org/wiki/Lamport_timestamp

[bib-partial-order] https://en.wikipedia.org/wiki/Partially_ordered_set

[bib-aws-strong-consistency] https://aws.amazon.com/about-aws/whats-
new/2020/12/amazon-s3-now-delivers-strong-read-after-write-
consistency-automatically-for-all-applications/

[bib-hybrid-clock] https://cse.buffalo.edu/tech-reports/2014-04.pdf

[bib-dynamo] https://www.allthingsdistributed.com/files/amazon-dynamo-
sosp2007.pdf

[bib-last-write-wins]
https://docs.aws.amazon.com/amazondynamodb/latest/developerg
uide/globaltables_HowItWorks.xhtml

[bib-mongodb-hybridclock]
https://www.mongodb.com/blog/post/transactions-background-
part-4-the-global-logical-clock

[bib-mongodb] https://www.mongodb.com/

https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://riak.com/posts/technical/vector-clocks-revisited/index.xhtml?p=9545.xhtml
https://riak.com/posts/technical/vector-clocks-revisited/index.xhtml?p=9545.xhtml
https://docs.riak.com/riak/kv/2.2.3/learn/concepts/causal-context/index.xhtml#sibling-explosion
https://docs.riak.com/riak/kv/2.2.3/learn/concepts/causal-context/index.xhtml#sibling-explosion
https://docs.riak.com/riak/kv/latest/developing/usage/conflict-resolution/java/index.xhtml
https://docs.riak.com/riak/kv/latest/developing/usage/conflict-resolution/java/index.xhtml
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Lamport_timestamp
https://en.wikipedia.org/wiki/Partially_ordered_set
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-write-consistency-automatically-for-all-applications/
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-write-consistency-automatically-for-all-applications/
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-write-consistency-automatically-for-all-applications/
https://cse.buffalo.edu/tech-reports/2014-04.pdf
https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables_HowItWorks.xhtml
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables_HowItWorks.xhtml
https://www.mongodb.com/blog/post/transactions-background-part-4-the-global-logical-clock
https://www.mongodb.com/blog/post/transactions-background-part-4-the-global-logical-clock
https://www.mongodb.com/

[bib-mongodb-causal-consistency]
https://docs.mongodb.com/manual/core/causal-consistency-read-
write-concerns/

[bib-voldemort] https://www.project-voldemort.com/voldemort/

[bib-riak] https://riak.com/posts/technical/vector-clocks-
revisited/index.xhtml?p=9545.xhtml

[bib-causal-consistency] https://jepsen.io/consistency/models/causal

[bib-cockroachdb-timestamp-cache]
https://www.cockroachlabs.com/docs/stable/architecture/transacti
on-layer.xhtml#timestamp-cache

[bib-cockroachdb-follower-read]
https://www.cockroachlabs.com/docs/v20.2/follower-reads.xhtml

[bib-snapshot-isolation] https://jepsen.io/consistency/models/snapshot-
isolation

[bib-transaction-isolation]
https://en.wikipedia.org/wiki/Isolation_(database_systems)

[bib-rocksdb] https://rocksdb.org/docs/getting-started.xhtml

[bib-pebble] https://github.com/cockroachdb/pebble

[bib-boltdb] https://github.com/etcd-io/bbolt#using-keyvalue-pairs

[bib-two-phase-commit] https://en.wikipedia.org/wiki/Two-
phase_commit_protocol

[bib-state-machine-replication]
https://en.wikipedia.org/wiki/State_machine_replication

[bib-laslie-lamport] https://en.wikipedia.org/wiki/Leslie_Lamport

https://docs.mongodb.com/manual/core/causal-consistency-read-write-concerns/
https://docs.mongodb.com/manual/core/causal-consistency-read-write-concerns/
https://www.project-voldemort.com/voldemort/
https://riak.com/posts/technical/vector-clocks-revisited/index.xhtml?p=9545.xhtml
https://riak.com/posts/technical/vector-clocks-revisited/index.xhtml?p=9545.xhtml
https://jepsen.io/consistency/models/causal
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer.xhtml#timestamp-cache
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer.xhtml#timestamp-cache
https://www.cockroachlabs.com/docs/v20.2/follower-reads.xhtml
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/models/snapshot-isolation
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://rocksdb.org/docs/getting-started.xhtml
https://github.com/cockroachdb/pebble
https://github.com/etcd-io/bbolt#using-keyvalue-pairs
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/State_machine_replication
https://en.wikipedia.org/wiki/Leslie_Lamport

[bib-time-clocks-ordering] https://lamport.azurewebsites.net/pubs/time-
clocks.pdf

[bib-spanner] https://cloud.google.com/spanner

[bib-neo4j] https://neo4j.com/docs/operations-manual/current/clustering/

[bib-neo4j-causal-cluster] https://neo4j.com/docs/operations-
manual/current/clustering-advanced/lifecycle/#causal-clustering-
lifecycle

[bib-moving-average] https://en.wikipedia.org/wiki/Moving_average

[bib-mongodb-max-staleness] https://docs.mongodb.com/manual/core/read-
preference-staleness/#std-label-replica-set-read-preference-max-
staleness

[bib-flp-impossibility]
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

[bib-gryadka-comparison] http://rystsov.info/2017/02/15/simple-
consensus.xhtml

[bib-gryadka] https://github.com/gryadka/js

[bib-cosmosdb] https://docs.microsoft.com/en-us/azure/cosmos-
db/introduction

[bib-byzantine-fault] https://en.wikipedia.org/wiki/Byzantine_fault

[bib-pbft] http://pmg.csail.mit.edu/papers/osdi99.pdf

[bib-blockchain] https://en.wikipedia.org/wiki/Blockchain

[bib-crash-fault] https://en.wikipedia.org/wiki/Crash_(computing)

[bib-epaxos] https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf

[bib-event-sourcing] https://martinfowler.com/eaaDev/EventSourcing.xhtml

https://lamport.azurewebsites.net/pubs/time-clocks.pdf
https://lamport.azurewebsites.net/pubs/time-clocks.pdf
https://cloud.google.com/spanner
https://neo4j.com/docs/operations-manual/current/clustering/
https://neo4j.com/docs/operations-manual/current/clustering-advanced/lifecycle/#causal-clustering-lifecycle
https://neo4j.com/docs/operations-manual/current/clustering-advanced/lifecycle/#causal-clustering-lifecycle
https://neo4j.com/docs/operations-manual/current/clustering-advanced/lifecycle/#causal-clustering-lifecycle
https://en.wikipedia.org/wiki/Moving_average
https://docs.mongodb.com/manual/core/read-preference-staleness/#std-label-replica-set-read-preference-max-staleness
https://docs.mongodb.com/manual/core/read-preference-staleness/#std-label-replica-set-read-preference-max-staleness
https://docs.mongodb.com/manual/core/read-preference-staleness/#std-label-replica-set-read-preference-max-staleness
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
http://rystsov.info/2017/02/15/simple-consensus.xhtml
http://rystsov.info/2017/02/15/simple-consensus.xhtml
https://github.com/gryadka/js
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://en.wikipedia.org/wiki/Byzantine_fault
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://en.wikipedia.org/wiki/Blockchain
https://en.wikipedia.org/wiki/Crash_(computing)
https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf
https://martinfowler.com/eaaDev/EventSourcing.xhtml

[bib-two-phase-locking] https://en.wikipedia.org/wiki/Two-phase_locking

[bib-wound-wait]
http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/8-
recv+serial/deadlock-woundwait.xhtml

[bib-wait-die]
http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/8-
recv+serial/deadlock-waitdie.xhtml

[bib-comparing-wait-die-and-wound-wait]
http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/8-
recv+serial/deadlock-compare.xhtml

[bib-external-consistency] https://cloud.google.com/spanner/docs/true-time-
external-consistency

[bib-percolator] https://research.google/pubs/pub36726/

[bib-tikv] https://tikv.org/

[bib-multi-raft] https://www.cockroachlabs.com/blog/scaling-raft/

[bib-spanner-concurrency]
https://dahliamalkhi.github.io/files/SpannerExplained-
SIGACT2013b.pdf

[bib-XA] https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

[bib-transactional-outbox]
https://microservices.io/patterns/data/transactional-outbox.xhtml

[bib-activemq-slow-restart] https://docs.aws.amazon.com/amazon-
mq/latest/developer-guide/recover-xa-transactions.xhtml

[bib-flexible-paxos] https://arxiv.org/abs/1608.06696

[bib-akka-cluster-splitbrain] https://github.com/akka/akka/issues/18554

https://en.wikipedia.org/wiki/Two-phase_locking
http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/8-recv+serial/deadlock-woundwait.xhtml
http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/8-recv+serial/deadlock-woundwait.xhtml
http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/8-recv+serial/deadlock-waitdie.xhtml
http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/8-recv+serial/deadlock-waitdie.xhtml
http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/8-recv+serial/deadlock-compare.xhtml
http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/8-recv+serial/deadlock-compare.xhtml
https://cloud.google.com/spanner/docs/true-time-external-consistency
https://cloud.google.com/spanner/docs/true-time-external-consistency
https://research.google/pubs/pub36726/
https://tikv.org/
https://www.cockroachlabs.com/blog/scaling-raft/
https://dahliamalkhi.github.io/files/SpannerExplained-SIGACT2013b.pdf
https://dahliamalkhi.github.io/files/SpannerExplained-SIGACT2013b.pdf
https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://microservices.io/patterns/data/transactional-outbox.xhtml
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/recover-xa-transactions.xhtml
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/recover-xa-transactions.xhtml
https://arxiv.org/abs/1608.06696
https://github.com/akka/akka/issues/18554

[bib-akka-gossip-convergence]
https://doc.akka.io/docs/akka/current/typed/cluster-
concepts.xhtml#gossip-convergence

[bib-aws-time-sync-service] https://aws.amazon.com/about-aws/whats-
new/2021/11/amazon-time-sync-service-generate-compare-
timestamps/

[bib-ydb-causal-reverse]
https://docs.yugabyte.com/latest/benchmark/resilience/jepsen-
testing-ysql/#rare-occurrence-of-causal-reversal

[bib-cdb-causal-reverse] https://www.cockroachlabs.com/blog/consistency-
model/

[bib-aws-clock-accuracy] https://aws.amazon.com/blogs/mt/manage-
amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-
service-and-amazon-cloudwatch-part-1/

[bib-yugabyte] https://www.yugabyte.com/

[bib-clock-bound] https://github.com/aws/clock-bound

[bib-yugabyte-leader-lease] https://blog.yugabyte.com/low-latency-reads-
in-geo-distributed-sql-with-raft-leader-leases/

[bib-hazelcast] https://hazelcast.com/

[bib-jgroups] http://www.jgroups.org/

[bib-ignite] https://ignite.apache.org/docs/latest/

[bib-ignite-partitioning] https://ignite.apache.org/docs/latest/data-
modeling/data-partitioning/

[bib-hazelcast-partitioning]
https://docs.hazelcast.com/imdg/4.2/overview/data-partitioning

https://doc.akka.io/docs/akka/current/typed/cluster-concepts.xhtml#gossip-convergence
https://doc.akka.io/docs/akka/current/typed/cluster-concepts.xhtml#gossip-convergence
https://aws.amazon.com/about-aws/whats-new/2021/11/amazon-time-sync-service-generate-compare-timestamps/
https://aws.amazon.com/about-aws/whats-new/2021/11/amazon-time-sync-service-generate-compare-timestamps/
https://aws.amazon.com/about-aws/whats-new/2021/11/amazon-time-sync-service-generate-compare-timestamps/
https://docs.yugabyte.com/latest/benchmark/resilience/jepsen-testing-ysql/#rare-occurrence-of-causal-reversal
https://docs.yugabyte.com/latest/benchmark/resilience/jepsen-testing-ysql/#rare-occurrence-of-causal-reversal
https://www.cockroachlabs.com/blog/consistency-model/
https://www.cockroachlabs.com/blog/consistency-model/
https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-service-and-amazon-cloudwatch-part-1/
https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-service-and-amazon-cloudwatch-part-1/
https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-service-and-amazon-cloudwatch-part-1/
https://www.yugabyte.com/
https://github.com/aws/clock-bound
https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
https://hazelcast.com/
http://www.jgroups.org/
https://ignite.apache.org/docs/latest/
https://ignite.apache.org/docs/latest/data-modeling/data-partitioning/
https://ignite.apache.org/docs/latest/data-modeling/data-partitioning/
https://docs.hazelcast.com/imdg/4.2/overview/data-partitioning

[bib-akka-shard-allocation]
https://doc.akka.io/docs/akka/current/typed/cluster-
sharding.xhtml#shard-allocation

[bib-kafka-metadata-issue] https://issues.apache.org/jira/browse/KAFKA-
901

[bib-yb-metadata-issue]
https://gist.github.com/jrudolph/be4e04a776414ce07de6019ccb0d
3e42

[bib-yb-rocksdb-enhancements] https://blog.yugabyte.com/enhancing-
rocksdb-for-speed-scale/

[bib-yb-range-vs-tablets] https://blog.yugabyte.com/yugabytedb-vs-
cockroachdb-bringing-truth-to-performance-benchmark-claims-
part-2/#ranges_vs_tablets

[bib-yb-tablet-splitting-issue] https://github.com/yugabyte/yugabyte-
db/issues/1004

[bib-hbase] https://hbase.apache.org/

[bib-yb] https://www.yugabyte.com/

[bib-yb-automatic-table-splitting] https://github.com/yugabyte/yugabyte-
db/blob/master/architecture/design/docdb-automatic-tablet-
splitting.md

[bib-cockroach-load-splitting]
https://www.cockroachlabs.com/docs/stable/load-based-
splitting.xhtml

[bib-yb-load-splitting] https://github.com/yugabyte/yugabyte-
db/issues/1463

[bib-gossip-convergence]
https://doc.akka.io/docs/akka/current/typed/cluster-
concepts.xhtml#gossip-convergence

https://doc.akka.io/docs/akka/current/typed/cluster-sharding.xhtml#shard-allocation
https://doc.akka.io/docs/akka/current/typed/cluster-sharding.xhtml#shard-allocation
https://issues.apache.org/jira/browse/KAFKA-901
https://issues.apache.org/jira/browse/KAFKA-901
https://gist.github.com/jrudolph/be4e04a776414ce07de6019ccb0d3e42
https://gist.github.com/jrudolph/be4e04a776414ce07de6019ccb0d3e42
https://blog.yugabyte.com/enhancing-rocksdb-for-speed-scale/
https://blog.yugabyte.com/enhancing-rocksdb-for-speed-scale/
https://blog.yugabyte.com/yugabytedb-vs-cockroachdb-bringing-truth-to-performance-benchmark-claims-part-2/#ranges_vs_tablets
https://blog.yugabyte.com/yugabytedb-vs-cockroachdb-bringing-truth-to-performance-benchmark-claims-part-2/#ranges_vs_tablets
https://blog.yugabyte.com/yugabytedb-vs-cockroachdb-bringing-truth-to-performance-benchmark-claims-part-2/#ranges_vs_tablets
https://github.com/yugabyte/yugabyte-db/issues/1004
https://github.com/yugabyte/yugabyte-db/issues/1004
https://hbase.apache.org/
https://www.yugabyte.com/
https://github.com/yugabyte/yugabyte-db/blob/master/architecture/design/docdb-automatic-tablet-splitting.md
https://github.com/yugabyte/yugabyte-db/blob/master/architecture/design/docdb-automatic-tablet-splitting.md
https://github.com/yugabyte/yugabyte-db/blob/master/architecture/design/docdb-automatic-tablet-splitting.md
https://www.cockroachlabs.com/docs/stable/load-based-splitting.xhtml
https://www.cockroachlabs.com/docs/stable/load-based-splitting.xhtml
https://github.com/yugabyte/yugabyte-db/issues/1463
https://github.com/yugabyte/yugabyte-db/issues/1463
https://doc.akka.io/docs/akka/current/typed/cluster-concepts.xhtml#gossip-convergence
https://doc.akka.io/docs/akka/current/typed/cluster-concepts.xhtml#gossip-convergence

[bib-akka-auto-downing] https://doc.akka.io/docs/akka/2.5/cluster-
usage.xhtml#auto-downing-do-not-use-

[bib-akka-split-brain-resolver] https://doc.akka.io/docs/akka-
enhancements/current/split-brain-resolver.xhtml

[bib-hazelcast-split-brain-time-window]
https://docs.hazelcast.com/imdg/4.2/network-partitioning/split-
brain-protection#time-window-for-split-brain-protection

[bib-tcp-nagel] https://en.wikipedia.org/wiki/Nagle%27s_algorithm

[bib-correlation-id]
https://www.enterpriseintegrationpatterns.com/CorrelationIdentifi
er.xhtml

[bib-kafka-purgatory] https://www.confluent.io/blog/apache-kafka-
purgatory-hierarchical-timing-wheels/

[bib-etcd-wait] https://github.com/etcd-io/etcd/blob/main/pkg/wait/wait.go

[bib-jgroups-discovery-protocols]
https://docs.jboss.org/jbossas/docs/Clustering_Guide/beta422/htm
l/jbosscache-jgroups-discovery.xhtml

[bib-akka-discovery-protocols] https://doc.akka.io/docs/akka-
management/current/bootstrap/index.xhtml

[bib-jeaf-dean-google-talk]
https://static.googleusercontent.com/media/research.google.com/e
n//people/jeff/stanford-295-talk.pdf

[bib-cassandra-cep-21]
https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-
21%3A+Transactional+Cluster+Metadata

[bib-distrib-algorithms-nancy-lynch]
https://www.elsevier.com/books/distributed-
algorithms/lynch/978-1-55860-348-6

https://doc.akka.io/docs/akka/2.5/cluster-usage.xhtml#auto-downing-do-not-use-
https://doc.akka.io/docs/akka/2.5/cluster-usage.xhtml#auto-downing-do-not-use-
https://doc.akka.io/docs/akka-enhancements/current/split-brain-resolver.xhtml
https://doc.akka.io/docs/akka-enhancements/current/split-brain-resolver.xhtml
https://docs.hazelcast.com/imdg/4.2/network-partitioning/split-brain-protection#time-window-for-split-brain-protection
https://docs.hazelcast.com/imdg/4.2/network-partitioning/split-brain-protection#time-window-for-split-brain-protection
https://en.wikipedia.org/wiki/Nagle%27s_algorithm
https://www.enterpriseintegrationpatterns.com/CorrelationIdentifier.xhtml
https://www.enterpriseintegrationpatterns.com/CorrelationIdentifier.xhtml
https://www.confluent.io/blog/apache-kafka-purgatory-hierarchical-timing-wheels/
https://www.confluent.io/blog/apache-kafka-purgatory-hierarchical-timing-wheels/
https://github.com/etcd-io/etcd/blob/main/pkg/wait/wait.go
https://docs.jboss.org/jbossas/docs/Clustering_Guide/beta422/html/jbosscache-jgroups-discovery.xhtml
https://docs.jboss.org/jbossas/docs/Clustering_Guide/beta422/html/jbosscache-jgroups-discovery.xhtml
https://doc.akka.io/docs/akka-management/current/bootstrap/index.xhtml
https://doc.akka.io/docs/akka-management/current/bootstrap/index.xhtml
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf
https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-21%3A+Transactional+Cluster+Metadata
https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-21%3A+Transactional+Cluster+Metadata
https://www.elsevier.com/books/distributed-algorithms/lynch/978-1-55860-348-6
https://www.elsevier.com/books/distributed-algorithms/lynch/978-1-55860-348-6

[bib-intensive-data-book]
https://learning.oreilly.com/library/view/designing-data-intensive-
applications/9781491903063/

[bib-microservices] https://martinfowler.com/articles/microservices.xhtml

[bib-ddd] https://martinfowler.com/bliki/DomainDrivenDesign.xhtml

[bib-sticky-sessions]
https://docs.aws.amazon.com/elasticloadbalancing/latest/applicati
on/sticky-sessions.xhtml

[bib-nosql] https://martinfowler.com/books/nosql.xhtml

[bib-gang_of_four] https://martinfowler.com/bliki/GangOfFour.xhtml

[bib-pulsar] https://pulsar.apache.org/

[bib-rocksdb-sequence-number]
https://github.com/cockroachdb/pebble/blob/master/docs/rocksdb.
md#internal-keys

[bib-go-lang] https://go.dev/

[bib-2-hard-dist]
https://twitter.com/mathiasverraes/status/632260618599403520

[bib-etcd-read-issue] https://github.com/etcd-io/etcd/issues/741

[bib-jepsen-etcd-consul] https://aphyr.com/posts/316-jepsen-etcd-and-
consul

[bib-leader-lease] https://web.stanford.edu/class/cs240/readings/89-
leases.pdf

[bib-yugabytedb-leader-lease] https://www.yugabyte.com/blog/low-latency-
reads-in-geo-distributed-sql-with-raft-leader-leases/

[bib-consul-leader-lease-issue] https://github.com/hashicorp/raft/issues/108

https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://martinfowler.com/articles/microservices.xhtml
https://martinfowler.com/bliki/DomainDrivenDesign.xhtml
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/sticky-sessions.xhtml
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/sticky-sessions.xhtml
https://martinfowler.com/books/nosql.xhtml
https://martinfowler.com/bliki/GangOfFour.xhtml
https://pulsar.apache.org/
https://github.com/cockroachdb/pebble/blob/master/docs/rocksdb.md#internal-keys
https://github.com/cockroachdb/pebble/blob/master/docs/rocksdb.md#internal-keys
https://go.dev/
https://twitter.com/mathiasverraes/status/632260618599403520
https://github.com/etcd-io/etcd/issues/741
https://aphyr.com/posts/316-jepsen-etcd-and-consul
https://aphyr.com/posts/316-jepsen-etcd-and-consul
https://web.stanford.edu/class/cs240/readings/89-leases.pdf
https://web.stanford.edu/class/cs240/readings/89-leases.pdf
https://www.yugabyte.com/blog/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
https://www.yugabyte.com/blog/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
https://github.com/hashicorp/raft/issues/108

[bib-paxos-quorum-lease] https://www.cs.cmu.edu/~dga/papers/leases-
socc2014.pdf

[bib-paxos-quorum-read] https://www.usenix.org/system/files/hotstorage19-
paper-charapko.pdf

[bib-consul-leader-lease] https://gist.github.com/armon/11059431

[bib-linux-clock-gettime] https://linux.die.net/man/2/clock_gettime

[bib-clock-drift] https://en.wikipedia.org/wiki/Clock_drift

[bib-consistent-hashing] https://en.wikipedia.org/wiki/Consistent_hashing

[bib-cassandra-vnode] https://www.datastax.com/blog/virtual-nodes-
cassandra-12

[bib-rendezvous_hashing]
https://en.wikipedia.org/wiki/Rendezvous_hashing

[bib-cassandra-improve-vnode-allocation]
https://issues.apache.org/jira/browse/CASSANDRA-7032

https://www.cs.cmu.edu/~dga/papers/leases-socc2014.pdf
https://www.cs.cmu.edu/~dga/papers/leases-socc2014.pdf
https://www.usenix.org/system/files/hotstorage19-paper-charapko.pdf
https://www.usenix.org/system/files/hotstorage19-paper-charapko.pdf
https://gist.github.com/armon/11059431
https://linux.die.net/man/2/clock_gettime
https://en.wikipedia.org/wiki/Clock_drift
https://en.wikipedia.org/wiki/Consistent_hashing
https://www.datastax.com/blog/virtual-nodes-cassandra-12
https://www.datastax.com/blog/virtual-nodes-cassandra-12
https://en.wikipedia.org/wiki/Rendezvous_hashing
https://issues.apache.org/jira/browse/CASSANDRA-7032

	Cover Page
	Title Page
	Contents
	Table of Contents
	Part I: Narratives
	Chapter 1. Why Distribute?
	The four fundamental resources
	Queuing and its impact on system throughput
	Partitioning - Divide and Conquer

	Chapter 2. Overview of the Patterns
	Keeping data resilient on a single server
	Competing Updates
	Dealing with the leader failing
	Multiple failures need a Generation Clock
	Log entries cannot be committed until they are accepted by a Quorum
	Followers commit based on a High-Water Mark
	Leaders use a series of queues to remain responsive to many clients
	Followers can handle read requests to reduce load on the leader
	A large amount of data can be partitioned over multiple nodes
	Partitions can be replicated for resilience
	Two phases are needed to maintain consistency across partitions
	In a distributed system, time is complicated
	A Consistent Core can manage the membership of a data cluster
	Gossip Dissemination can be used to manage a cluster without a centralized controller

	Part II: Patterns of Data Replication
	Chapter 3. Write-Ahead Log
	Problem
	Solution
	Examples

	Chapter 4. Segmented Log
	Problem
	Solution
	Examples

	Chapter 5. Low-Water Mark
	Problem
	Solution
	Examples

	Chapter 6. Leader and Followers
	Problem
	Solution
	Examples

	Chapter 7. HeartBeat
	Problem
	Solution
	Examples

	Chapter 8. Paxos
	Problem
	Solution
	Examples

	Chapter 9. Replicated Log
	Problem
	Solution
	Examples

	Chapter 10. Quorum
	Problem
	Solution
	Examples

	Chapter 11. Generation Clock
	Problem
	Solution
	Examples

	Chapter 12. High-Water Mark
	Problem
	Solution
	Examples

	Chapter 13. Singular Update Queue
	Problem
	Solution
	Examples

	Chapter 14. Request Waiting List
	Problem
	Solution
	Examples

	Chapter 15. Idempotent Receiver
	Problem
	Solution
	Examples

	Chapter 16. Follower Reads
	Problem
	Solution
	Examples

	Chapter 17. Versioned Value
	Problem
	Solution
	Examples

	Chapter 18. Version Vector
	Problem
	Solution
	Examples

	Part III: Patterns of Data Partitioning
	Chapter 19. Fixed Partitions
	Problem
	Solution
	Examples

	Chapter 20. Key-Range Partitions
	Problem
	Solution
	Examples

	Chapter 21. Two Phase Commit
	Problem
	Solution
	Examples

	Part IV: Patterns of Distributed Time
	Chapter 22. Lamport Clock
	Problem
	Solution
	Examples

	Chapter 23. Hybrid Clock
	Problem
	Solution
	Examples

	Chapter 24. Clock-Bound Wait
	Problem
	Solution
	Examples

	Part V: Patterns of Cluster Management
	Chapter 25. Consistent Core
	Problem
	Solution
	Examples

	Chapter 26. Lease
	Problem
	Solution
	Examples

	Chapter 27. State Watch
	Problem
	Solution
	Examples

	Chapter 28. Gossip Dissemination
	Problem
	Solution
	Examples

	Chapter 29. Emergent Leader
	Problem
	Solution
	Examples

	Part VI: Patterns of communication between nodes
	Chapter 30. Single Socket Channel
	Problem
	Solution
	Examples

	Chapter 31. Request Batch
	Problem
	Solution
	Examples

	Chapter 32. Request Pipeline
	Problem
	Solution
	Examples

	Bibliography

