

inside front cover

Praise for the Second Edition
One of the greatest and most complete books about ASP.NET Core!

—Delcoigne Vincent, Wavenet

Fantastic book. The topics are explained clearly and thoroughly. It’s well

written and researched. If you want a thorough understanding of ASP.NET

Core, this is where you need to start.

—Luis Moux, EMO

A comprehensive training and reference for ASP.NET Core with a touch of

history of the .NET realm for .NET newcomers as well as .NET seniors.

—Jean-François Morin, Laval University

The most comprehensive ASP.NET Core book on the market. It covers just

about everything you need to learn to quickly become productive in the

often-confusing and fast-changing world of .NET Core.

—Filip Wojcieszyn, Sonova AG

One of the best books to learn the ins and outs of ASP.NET Core with

confidence.

—Raushan Jha, Microsoft

Includes comprehensive information that prepares you to deliver robust

and reliable real industry-standard applications.

—Daniel Vásquez, RWS

Excellent book with a thorough explanation of basic concepts and lots of

tips for best practices. Highly recommended.

—Ruben Vandeginste, PeopleWare

Andrew Lock provides excellent insight into how to use ASP.NET Core. He

provides clear, in-depth practical examples to solidify concepts described

throughout the book. This book is a must have for .NET developers.

—Foster Haines, Foster’s Website Company

ASP.NET Core in Action
Third Edition

Andrew Lock

To comment go to liveBook

Manning

Shelter Island

https://livebook.manning.com/book/asp-net-core-in-action-third-edition/discussion

For more information on this and other Manning titles go to
www.manning.com

https://www.manning.com/

Copyright

For online information and ordering of these and other

Manning books, please visit www.manning.com. The

publisher offers discounts on these books when ordered in

quantity.

For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2023 by Manning Publications Co. All rights

reserved.

No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by means

electronic, mechanical, photocopying, or otherwise, without

prior written permission of the publisher.

Many of the designations used by manufacturers and sellers

to distinguish their products are claimed as trademarks.

Where those designations appear in the book, and Manning

https://www.manning.com/
mailto:orders@manning.com

Publications was aware of a trademark claim, the

designations have been printed in initial caps or all caps.

♾ Recognizing the importance of preserving what has been

written, it is Manning’s policy to have the books we publish

printed on acid-free paper, and we exert our best efforts to

that end. Recognizing also our responsibility to conserve the

resources of our planet, Manning books are printed on

paper that is at least 15 percent recycled and processed

without the use of elemental chlorine.

Manning Publications Co.

20 Baldwin Road Technical

PO Box 761

Shelter Island, NY 11964

Development editor: Marina Michaels

Technical editor: Filip Wojcieszyn

Review editor: Adriana Sabo

Production editor: Kathleen Rossland

Copy editor: Keir Simpson

Proofreader: Jason Everett

Technical proofreader: Tanya Wilke

Typesetter: Gordan Salinović

Cover designer: Marija Tudor

ISBN: 9781633438620

contents
front matter

preface
acknowledgments
about this book
about the author
about the cover illustration

1 Getting started with ASP.NET Core
1.1 What is ASP.NET Core?
1.2 What types of applications can you build?
1.3 Choosing ASP.NET Core
1.4 How does ASP.NET Core work?

How does an HTTP web request work?

How does ASP.NET Core process a request?

1.5 What you’ll learn in this book

Part 1 Getting started with minimal APIs
2 Understanding ASP.NET Core

2.1 Using a web framework
2.2 Why ASP.NET Core was created
2.3 Understanding the many paradigms of ASP.NET Core
2.4 When to choose ASP.NET Core

If you’re new to .NET development

If you’re a .NET Framework developer creating a new application
Converting an existing ASP.NET application to ASP.NET Core

3 Your first application

3.1 A brief overview of an ASP.NET Core application
3.2 Creating your first ASP.NET Core application

Using a template to get started
Building the application

3.3 Running the web application
3.4 Understanding the project layout
3.5 The .csproj project file: Declaring your dependencies
3.6 Program.cs file: Defining your application
3.7 Adding functionality to your application

Adding and configuring services
Defining how requests are handled with middleware and endpoints

4 Handling requests with the middleware pipeline
4.1 Defining middleware
4.2 Combining middleware in a pipeline

Simple pipeline scenario 1: A holding page
Simple pipeline scenario 2: Handling static files

Simple pipeline scenario 3: A minimal API application

4.3 Handling errors using middleware
Viewing exceptions in development: DeveloperExceptionPage

Handling exceptions in production: ExceptionHandlerMiddleware

5 Creating a JSON API with minimal APIs

5.1 What is an HTTP API, and when should you use one?
5.2 Defining minimal API endpoints

Extracting values from the URL with routing
Mapping verbs to endpoints

Defining route handlers with functions

5.3 Generating responses with IResult
Returning status codes with Results and TypedResults

Returning useful errors with Problem Details
Converting all your responses to Problem Details

Returning other data types

5.4 Running common code with endpoint filters
Adding multiple filters to an endpoint

Filters or middleware: Which should you choose?
Generalizing your endpoint filters

Implementing the IEndpointFilter interface

5.5 Organizing your APIs with route groups
6 Mapping URLs to endpoints using routing

6.1 What is routing?
6.2 Endpoint routing in ASP.NET Core
6.3 Exploring the route template syntax

Working with parameters and literal segments

Using optional and default values
Adding additional constraints to route parameters

Matching arbitrary URLs with the catch-all parameter

6.4 Generating URLs from route parameters
Generating URLs for a minimal API endpoint with LinkGenerator

Generating URLs with IResults
Controlling your generated URLs with RouteOptions

7 Model binding and validation in minimal APIs

7.1 Extracting values from a request with model binding
7.2 Binding simple types to a request
7.3 Binding complex types to the JSON body
7.4 Arrays: Simple types or complex types?
7.5 Making parameters optional with nullables
7.6 Binding services and special types

Injecting well-known types
Injecting services

Binding file uploads with IFormFile and IFormFileCollection

7.7 Custom binding with BindAsync
7.8 Choosing a binding source
7.9 Simplifying handlers with AsParameters
7.10 Handling user input with model validation

The need for validation

Using DataAnnotations attributes for validation
Adding a validation filter to your minimal APIs

Part 2 Building complete applications
8 An introduction to dependency injection

8.1 Understanding the benefits of dependency injection
8.2 Creating loosely coupled code
8.3 Using dependency injection in ASP.NET Core
8.4 Adding ASP.NET Core framework services to the

container
8.5 Using services from the DI container

9 Registering services with dependency injection

9.1 Registering custom services with the DI container
9.2 Registering services using objects and lambdas
9.3 Registering a service in the container multiple times

Injecting multiple implementations of an interface
Injecting a single implementation when multiple services are registered

Conditionally registering services using TryAdd

9.4 Understanding lifetimes: When are services created?
Transient: Everyone is unique

Scoped: Let’s stick together
Singleton: There can be only one

Keeping an eye out for captive dependencies

9.5 Resolving scoped services outside a request
10 Configuring an ASP.NET Core application

10.1 Introducing the ASP.NET Core configuration model
10.2 Building a configuration object for your app

Adding a configuration provider in Program.cs

Using multiple providers to override configuration values
Storing configuration secrets safely

Reloading configuration values when they change

10.3 Using strongly typed settings with the options pattern
Introducing the IOptions interface

Reloading strongly typed options with IOptionsSnapshot
Designing your options classes for automatic binding

Binding strongly typed settings without the IOptions interface

10.4 Configuring an application for multiple environments
Identifying the hosting environment

Loading environment-specific configuration files
Setting the hosting environment

11 Documenting APIs with OpenAPI

11.1 Adding an OpenAPI description to your app
11.2 Testing your APIs with Swagger UI
11.3 Adding metadata to your minimal APIs
11.4 Generating strongly typed clients with NSwag

Generating a client using Visual Studio
Generating a client using the .NET Global tool

Using a generated client to call your API
Customizing the generated code

Refreshing the OpenAPI description

11.5 Adding descriptions and summaries to your endpoints
Using fluent methods to add descriptions

Using attributes to add metadata
Using XML documentation comments to add metadata

11.6 Knowing the limitations of OpenAPI
Not all APIs can be described by OpenAPI
Generated code is opinionated

Tooling often lags the specification

12 Saving data with Entity Framework Core

12.1 Introducing Entity Framework Core
What is EF Core?
Why use an object-relational mapper?

When should you choose EF Core?
Mapping a database to your application code

12.2 Adding EF Core to an application
Choosing a database provider and installing EF Core
Building a data model

Registering a data context

12.3 Managing changes with migrations
Creating your first migration

Adding a second migration

12.4 Querying data from and saving data to the database
Creating a record

Loading a list of records
Loading a single record

Updating a model with changes

12.5 Using EF Core in production applications

Part 3 Generating HTML with Razor Pages
and MVC

13 Creating a website with Razor Pages

13.1 Your first Razor Pages application
Using the Web Application template
Adding and configuring services

Generating HTML with Razor Pages
Handling request logic with page models and handlers

13.2 Exploring a typical Razor Page
13.3 Understanding the MVC design pattern
13.4 Applying the MVC design pattern to Razor Pages

Directing a request to a Razor Page and building a binding model
Executing a handler using the application model

Building HTML using the view model
Putting it all together: A complete Razor Page request

14 Mapping URLs to Razor Pages using routing
14.1 Routing in ASP.NET Core
14.2 Convention-based routing vs. explicit routing
14.3 Routing requests to Razor Pages
14.4 Customizing Razor Page route templates

Adding a segment to a Razor Page route template
Replacing a Razor Page route template completely

14.5 enerating URLs for Razor Pages
Generating URLs for a Razor Page
Generating URLs for an MVC controller

Generating URLs with LinkGenerator

14.6 Customizing conventions with Razor Pages
15 Generating responses with page handlers in Razor Pages

15.1 Razor Pages and page handlers
15.2 Selecting a page handler to invoke
15.3 Accepting parameters to page handlers
15.4 Returning IActionResult responses

PageResult and RedirectToPageResult
NotFoundResult and StatusCodeResult

15.5 Handler status codes with StatusCodePagesMiddleware
16 Binding and validating requests with Razor Pages

16.1 Understanding the models in Razor Pages and MVC
16.2 From request to binding model: Making the request

useful
Binding simple types
Binding complex types

Choosing a binding source

16.3 Validating binding models
Validation in Razor Pages

Validating on the server for safety
Validating on the client for user experience

16.4 Organizing your binding models in Razor Pages
17 Rendering HTML using Razor views

17.1 Views: Rendering the user interface
17.2 Creating Razor views

Razor views and code-behind
Introducing Razor templates

Passing data to views

17.3 Creating dynamic web pages with Razor
Using C# in Razor templates

Adding loops and conditionals to Razor templates
Rendering HTML with Raw

17.4 Layouts, partial views, and _ViewStart
Using layouts for shared markup
Overriding parent layouts using sections

Using partial views to encapsulate markup
Running code on every view with _ViewStart and _ViewImports

18 Building forms with Tag Helpers
18.1 Catering to editors with Tag Helpers
18.2 Creating forms using Tag Helpers

The Form Tag Helper
The Label Tag Helper

The Input and Textarea Tag Helpers
The Select Tag Helper

The Validation Message and Validation Summary Tag Helpers

18.3 Generating links with the Anchor Tag Helper
18.4 Cache-busting with the Append Version Tag Helper
18.5 Using conditional markup with the Environment Tag

Helper
19 Creating a website with MVC controllers

19.1 Razor Pages vs. MVC in ASP.NET Core
19.2 Your first MVC web application
19.3 Comparing an MVC controller with a Razor Page

PageModel
19.4 Selecting a view from an MVC controller
19.5 Choosing between Razor Pages and MVC controllers

The benefits of Razor Pages
When to choose MVC controllers over Razor Pages

20 Creating an HTTP API using web API controllers
20.1 Creating your first web API project
20.2 Applying the MVC design pattern to a web API
20.3 Attribute routing: Linking action methods to URLs

Combining route attributes to keep your route templates DRY
Using token replacement to reduce duplication in attribute routing

Handling HTTP verbs with attribute routing

20.4 Using common conventions with [ApiController]
20.5 Generating a response from a model

Customizing the default formatters: Adding XML support

Choosing a response format with content negotiation

20.6 Choosing between web API controllers and minimal APIs
21 The MVC and Razor Pages filter pipeline

21.1 Understanding the MVC filter pipeline
21.2 The Razor Pages filter pipeline
21.3 Filters or middleware: Which should you choose?
21.4 Creating a simple filter
21.5 Adding filters to your actions and Razor Pages
21.6 Understanding the order of filter execution

The default scope execution order
Overriding the default order of filter execution with IOrderedFilter

22 Creating custom MVC and Razor Page filters
22.1 Creating custom filters for your application

Authorization filters: Protecting your APIs
Resource filters: Short-circuiting your action methods

Action filters: Customizing model binding and action results
Exception filters: Custom exception handling for your action methods

Result filters: Customizing action results before they execute
Page filters: Customizing model binding for Razor Pages

22.2 Understanding pipeline short-circuiting
22.3 Using dependency injection with filter attributes

Part 4 Securing and deploying your
applications

23 Authentication: Adding users to your application with
Identity

23.1 Introducing authentication and authorization
Understanding users and claims in ASP.NET Core
Authentication in ASP.NET Core: Services and middleware

23.2 What is ASP.NET Core Identity?
23.3 Creating a project that uses ASP.NET Core Identity

Creating the project from a template
Exploring the template in Solution Explorer

The ASP.NET Core Identity data model
Interacting with ASP.NET Core Identity

23.4 Adding ASP.NET Core Identity to an existing project
Configuring the ASP.NET Core Identity services
Updating the EF Core data model to support Identity

Updating the Razor views to link to the Identity UI

23.5 Customizing a page in ASP.NET Core Identity’s default
UI

23.6 Managing users: Adding custom data to users
24 Authorization: Securing your application

24.1 Introduction to authorization
24.2 Authorization in ASP.NET Core

Preventing anonymous users from accessing your application
Handling unauthorized requests

24.3 Using policies for claims-based authorization
24.4 Creating custom policies for authorization

Requirements and handlers: The building blocks of a policy
Creating a policy with a custom requirement and handler

24.5 Controlling access with resource-based authorization
Manually authorizing requests with IAuthorizationService
Creating a resource-based AuthorizationHandler

24.6 Hiding HTML elements from unauthorized users
25 Authentication and authorization for APIs

25.1 Authentication for APIs and distributed applications
Extending authentication to multiple apps
Centralizing authentication in an identity provider

OpenID Connect and OAuth 2.

25.2 Understanding bearer token authentication
25.3 Adding JWT bearer authentication to minimal APIs
25.4 Using the user-jwts tool for local JWT testing

Creating JWTs with the user-jwts tool

Customizing your JWTs
Managing your local JWTs

25.5 Describing your authentication requirements to OpenAPI
25.6 Applying authorization policies to minimal API endpoints

26 Monitoring and troubleshooting errors with logging

26.1 Using logging effectively in a production app
Highlighting problems using custom log messages
The ASP.NET Core logging abstractions

26.2 Adding log messages to your application
Log level: How important is the log message?
Log category: Which component created the log?

Formatting messages and capturing parameter values

26.3 Controlling where logs are written using logging
providers

26.4 Changing log verbosity with filtering
26.5 Structured logging: Creating searchable, useful logs

Adding a structured logging provider to your app

Using scopes to add properties to your logs

27 Publishing and deploying your application
27.1 Understanding the ASP.NET Core hosting model

Running vs. publishing an ASP.NET Core app

Choosing a deployment method for your application

27.2 Publishing your app to IIS
Configuring IIS for ASP.NET Core

Preparing and publishing your application to IIS

27.3 Hosting an application in Linux
Running an ASP.NET Core app behind a reverse proxy in Linux

Preparing your app for deployment to Linux

27.4 Configuring the URLs for your application
28 Adding HTTPS to an application

28.1 Why do I need HTTPS?
28.2 Using the ASP.NET Core HTTPS development

certificates
28.3 Configuring Kestrel with a production HTTPS certificate
28.4 Enforcing HTTPS for your whole app

Enforcing HTTPS with HTTP Strict Transport Security headers
Redirecting from HTTP to HTTPS with HTTPS redirection middleware

Rejecting HTTP requests in API applications

29 Improving your application’s security
29.1 Defending against cross-site scripting (XSS) attacks
29.2 Protecting from cross-site request forgery (CSRF)

attacks
29.3 Calling your web APIs from other domains using CORS

Understanding CORS and how it works

Adding a global CORS policy to your whole app
Adding CORS to specific endpoints with EnableCors metadata

Configuring CORS policies

29.4 Exploring other attack vectors
Detecting and avoiding open redirect attacks

Avoiding SQL injection attacks with EF Core and parameterization
Preventing insecure direct object references

Protecting your users’ passwords and data

Part 5 Going further with ASP.NET Core
30 Building ASP.NET Core apps with the generic host and

Startup

30.1 Separating concerns between two files
30.2 The Program class: Building a Web Host
30.3 The Startup class: Configuring your application
30.4 Creating a custom IHostBuilder
30.5 Understanding the complexity of the generic host
30.6 Choosing between the generic host and minimal hosting

31 Advanced configuration of ASP.NET Core
31.1 Customizing your middleware pipeline

Creating simple apps with the Run extension
Branching middleware pipelines with the Map extension

Adding to the pipeline with the Use extension
Building a custom middleware component

Converting middleware into endpoint routing endpoints

31.2 Using DI with OptionsBuilder and IConfigureOptions
31.3 Using a third-party dependency injection container

32 Building custom MVC and Razor Pages components
32.1 Creating a custom Razor Tag Helper

Printing environment information with a custom Tag Helper

Creating a custom Tag Helper to conditionally hide elements
Creating a Tag Helper to convert Markdown to HTML

32.2 View components: Adding logic to partial views
32.3 Building a custom validation attribute
32.4 Replacing the validation framework with FluentValidation

Comparing FluentValidation with DataAnnotations attributes
Adding FluentValidation to your application

33 Calling remote APIs with IHttpClientFactory

33.1 Calling HTTP APIs: The problem with HttpClient
33.2 Creating HttpClients with IHttpClientFactory

Using IHttpClientFactory to manage HttpClientHandler lifetime
Configuring named clients at registration time

Using typed clients to encapsulate HTTP calls

33.3 Handling transient HTTP errors with Polly
33.4 Creating a custom HttpMessageHandler

34 Building background tasks and ser vices
34.1 Running background tasks with IHostedService

Running background tasks on a timer

Using scoped services in background tasks

34.2 Creating headless worker services using IHost
Creating a worker service from a template

Running worker services in production

34.3 Coordinating background tasks using Quartz.NET
Installing Quartz.NET in an ASP.NET Core application

Configuring a job to run on a schedule with Quartz.NET
Using clustering to add redundancy to your background tasks

35 Testing applications with xUnit
35.1 An introduction to testing in ASP.NET Core
35.2 Creating your first test project with xUnit
35.3 Running tests with dotnet test
35.4 Referencing your app from your test project
35.5 Adding Fact and Theory unit tests
35.6 Testing failure conditions

36 Testing ASP.NET Core applications

36.1 Unit testing custom middleware
36.2 Unit testing API controllers and minimal API endpoints
36.3 Integration testing: Testing your whole app in-memory

Creating a TestServer using the Test Host package
Testing your application with WebApplicationFactory

Replacing dependencies in WebApplicationFactory
Reducing duplication by creating a custom WebApplicationFactory

36.4 Isolating the database with an in-memory EF Core
provider

appendix A Preparing your development environment
appendix B Useful references
index

front matter

preface
ASP.NET has a long history; Microsoft released the first

version in 2002 as part of the original .NET Framework 1.0.

Since then, it’s been through multiple iterations, each

version bringing added features and extensibility. Each

iteration, however, was built on the same underlying

framework provided by System.Web.dll. This library is part

of the .NET Framework, so it comes preinstalled in all

versions of Windows.

This brings mixed blessings. On one hand, the ASP.NET 4.X

framework today is a reliable, battle-tested platform for

building modern applications on Windows. On the other

hand, it is limited by this reliance; changes to the

underlying System.Web.dll are far-reaching and

consequently slow to roll out, and it fundamentally excludes

the many developers who are building and deploying to

Linux or macOS.

When I began looking into ASP.NET Core, I was one of those

developers. A Windows user at heart, I was issued a Mac by

my employer, so I was stuck working in a virtual machine all

day. ASP.NET Core promised to change all that, allowing me

to develop natively on both my Windows machine and my

Mac.

I was relatively late to the party in many respects, taking

an active interest only just before the RC2 release of

ASP.NET Core. By this point there had already been eight (!)

beta releases, many of which contained significant breaking

changes. By not diving in fully until RC2, I was spared the

pain of dodgy tooling and changing APIs.

What I saw at that point really impressed me. ASP.NET Core

let developers use their existing knowledge of the .NET

Framework, and of ASP.NET MVC applications in particular,

while baking in current best practices such as dependency

injection, strongly typed configuration, and logging. On top

of that, you could build and deploy cross-platform. I was

sold.

This book came about largely due to my approach to

learning about ASP.NET Core. Rather than simply reading

documentation and blog posts, I decided to try something

new and start writing about what I learned. Each week I

would dedicate some time to exploring a new aspect of

ASP.NET Core, and I’d write a blog post about it. When the

possibility of writing a book came about, I jumped at the

chance—another excuse to dive further into the framework!

Since I started this book, a lot has changed, both with the

book and ASP.NET Core. The first major release of the

framework in June 2016 still had many rough edges, in

particular around the tooling experience. With the release of

.NET 7 in November 2022, ASP.NET Core has really come

into its own, with the APIs and tooling reaching mature

levels.

Updates to the framework in .NET 6 and .NET 7 significantly

simplified the getting-started experience for newcomers

with the introduction of minimal hosting and minimal APIs,

which provide a terser, simpler approach to writing APIs,

much closer to the experience in other languages. You can

get straight into building your app’s functionality without

having to understand architecture first.

For some experienced ASP.NET Core developers, these

changes can feel regressive and unstructured, but if you’re

one of them, I encourage you to give them a chance and to

build your own structure and patterns. For brevity and

clarity of the examples in this book, I often put the whole

code for your app in one file, but don’t think that’s how you

need to write your real applications. You’re free to create

helper methods, classes, and any structure that helps keep

your applications maintainable while taking advantage of

the performance benefits of minimal APIs.

This book covers everything you need to get started with

ASP.NET Core, whether you’re new to web development or

an existing ASP.NET developer. It focuses on the framework

itself, so I don’t go into details about client-side frameworks

such as Angular and React or technologies like Docker. I

also don’t cover all the new features in .NET 7, such as

Blazor and gRPC; instead, I provide links where you can

find more information.

In this edition, I have significantly expanded and rearranged

many chapters compared with previous editions of the

book; some chapters have been split into more manageable

sizes. The early chapters feature a lot of new content

focusing on minimal APIs and minimal hosting introduced in

.NET 6.

I find it a joy to work with ASP.NET Core apps compared

with apps using the previous version of ASP.NET, and I hope

that my passion comes through in this book!

acknowledgments
Although there is only one name on the cover of this book,

a plethora of people contributed to both its writing and

production. In this section I’d like to thank everyone who

encouraged me, contributed, and put up with me for the

past year.

First, and most important, I’d like to thank my girlfriend,

Becky. Your continual support and encouragement means

the world to me and has kept me going through such a busy

time. You’ve taken the brunt of my stress and pressure, and

I’m eternally grateful. I love you always.

I’d also like to thank my whole family for their support, in

particular my parents, Jan and Bob, for putting up with my

ranting; my sister, Amanda, for your always upbeat chats;

and of course, Goose, for diligently ensuring that I take

regular breaks for walks and tummy tickles.

On a professional level, I’d like to thank Manning for giving

me this opportunity. Brian Sawyer “discovered” me for the

first version of this book and encouraged me to tackle the

subsequent versions. Marina Michaels served as my

development editor for the third time running and again

proved to be alternately meticulous, critical, encouraging,

and enthusiastic. The book is undoubtedly better thanks to

your involvement.

Thank you to my review editor, Adriana Sabo, and to all the

reviewers: Alen Adanić, Ben McNamara, Bela Istók, Darrin

Bishop, Dennis Liabenow, Al Pezewski, Emmanouil

Chardalas, Foster Haines, Onofrei George, John Guthrie,

Jean-François Morin, Pedro Seromenho, Joe Cuevas, José

Antonio Martinez Perez, Joe Suchy, Luis Moux, Milan

Šarenac, Milorad Imbra, Nik Rimington, Nitin Ainani, Oliver

Korten, Raushan Jha, Richard Young, Rick Beerendonk, Ron

Lease, Ruben Vandeginste, Sumit K. Singh, Towhidul

Bashar, Daniel Vásquez, and Will Lopez. Your suggestions

helped make this a better book.

My thanks go to the technical editor for this book, Filip

Wojcieszyn, who is a founder and maintainer of several

popular open-source projects, frequent conference speaker,

and a Microsoft MVP. Filip provided invaluable feedback,

highlighting my incorrect assumptions and technical biases,

and ensuring technical correctness in everything I wrote.

I also wish to thank Tanya Wilke, who served as technical

proofreader. Tanya verified that the code I wrote actually

ran and made sense, working through the chapters with

formidable efficiency.

To everyone at Manning who helped get this book published

and marketed, a heartfelt thanks. I’d also like to thank all

the MEAP readers for their comments, which helped

improve the book in numerous ways.

I would have never been in a position to write this book if

not for the excellent content produced by members of the

.NET community and those I follow on social media.

Finally, thanks to all those friends who encouraged and

supported me, and showed interest generally. We may not

have been able to meet up as much as we’d like, but I look

forward to getting together for a drink as soon as it’s

possible.

about this book
This book is about the ASP.NET Core framework, what it is,

and how you can use it to build web applications. Although

some of this content is already available online, it’s

scattered around the internet in disparate documents and

blog posts. This book guides you through building your first

applications, introducing additional complexity as you

cement previous concepts.

I present each topic using relatively small examples rather

than building on a single example application through the

book. There are merits to both approaches, but I wanted to

ensure that the focus remained on the specific topics being

taught, without the mental overhead of navigating an

increasingly large project.

By the end of the book, you should have a solid

understanding of how to build apps with ASP.NET Core, its

strengths and weaknesses, and how to use its features to

build apps securely. I don’t spend a lot of time on

application architecture, but I make sure to point out best

practices, especially where I cover architecture only

superficially for the sake of brevity.

Who should read this book

This book is for C# developers who are interested in

learning a cross-platform web framework. It doesn’t assume

that you have any experience building web applications. You

may be a mobile or desktop developer, for example, though

experience with ASP.NET or another web framework is

undoubtedly beneficial.

I assume that in addition to a working knowledge of C# and

.NET, you have some knowledge of common object-oriented

practices and a basic understanding of relational databases

in general. I assume passing familiarity with HTML and CSS

and of JavaScript’s place as a client-side scripting language.

You don’t need to know any JavaScript or CSS frameworks

for this book, though ASP.NET Core works well with both if

that is your forte.

Web frameworks naturally touch on a wide range of topics,

from the database and network to visual design and client-

side scripting. I provide as much context as possible, and I

include links to sites and books where you can learn more.

How this book is organized

This book is divided into 5 parts, 36 chapters, and 2

appendices. Ideally, you will read the book cover to cover

and then use it as a reference, but I realize that this

approach won’t suit everyone. Although I use small sample

apps to demonstrate a topic, some chapters build on the

work of previous ones, so the content will make more sense

when read sequentially.

I strongly suggest reading the chapters in part 1 in

sequence, as each chapter builds on topics introduced in the

previous chapters and provides a basis for the rest of the

book. Part 2 is also best read sequentially, though most of

the chapters are independent if you wish to jump around.

Part 3, again, is best read sequentially. You’ll get the best

experience by reading the chapters in parts 4 and 5

sequentially, but many of the topics are independent, so

you can read them out of order if you prefer. But I

recommend only doing so after you’ve covered parts 1 to 3.

Part 1 provides a general introduction to ASP.NET Core,

focusing on building small JSON APIs by using the latest

features introduced in .NET 7. After we cover the basics, we

look at building minimal API applications that provide the

simplest programming model for ASP.NET Core web

applications.

Chapter 1 introduces ASP.NET Core and its place

in the web development landscape. It describes

the type of applications you can build, some of

the reasons to choose ASP.NET Core, and the

basics of web requests in an ASP.NET Core

application.

Chapter 2 looks at why you should consider using

any web framework, why ASP.NET Core was

created, and the different application paradigms

you can use with ASP.NET Core. Finally, it looks at

the situations when you should and shouldn’t

choose ASP.NET Core.

Chapter 3 walks through all the components of a

basic ASP.NET Core minimal API application,

discussing their role and how they combine to

generate a response to a web request.

Chapter 4 describes the middleware pipeline, the

main application pipeline in ASP.NET Core, which

defines how incoming requests are processed and

how a response should be generated.

Chapter 5 shows how to use minimal API

endpoints to create a JavaScript Object Notation

(JSON) HTTP API that can be called by client-side

apps, server-side apps, or mobile devices.

Chapter 6 describes the ASP.NET Core routing

system. Routing is the process of mapping

incoming request URLs to a specific handler

method, which executes to generate a response.

Chapter 7 looks at model binding in minimal APIs,

the process of mapping form data and URL

parameters passed in a request to concrete C#

objects.

Part 2 covers important topics for building fully-featured

web applications after you understand the basics:

Chapter 8 introduces the concept of dependency

injection (DI) and describes the DI container built

into ASP.NET Core.

Chapter 9 builds on chapter 8 by describing how

to register your own services with the DI

container, the patterns you can use, and how to

understand the lifetime of services the DI

container creates.

Chapter 10 discusses how to read settings and

secrets in ASP.NET Core, and how to map them to

strongly typed objects.

Chapter 11 describes how to document your APIs

using the OpenAPI standard and how this helps

with testing scenarios and for automatically

generating clients to call your APIs.

Chapter 12 introduces Entity Framework Core (EF

Core) for saving data in a relational database.

Part 3 moves away from minimal APIs and looks at how to

build server-rendered page-based HTML applications using

Razor Pages and the Model-View-Controller (MVC)

architecture:

Chapter 13 shows how to use Razor Pages to build

page-based web sites. Razor Pages are the

recommended way to build server-rendered

applications in ASP.NET Core and are designed for

page-based applications.

Chapter 14 describes the Razor Pages routing

system and how it differs from minimal APIs.

Chapter 15 looks at page handlers in Razor Pages,

which are responsible for choosing how to

respond to a request and selecting what response

to generate.

Chapter 16 looks at model binding in Razor Pages,

how it differs from minimal APIs, and the

importance of validating your models.

Chapter 17 shows how to generate HTML web

pages using the Razor template language.

Chapter 18 builds on chapter 17 by introducing

Tag Helpers, which can greatly reduce the amount

of code required to build forms and web pages.

Chapter 19 introduces MVC controllers as an

alternative approach to building both server-

rendered HTML applications and API applications.

Chapter 20 describes how to use MVC controllers

to build APIs that can be called by client-side apps

as an alternative to minimal APIs.

Chapter 21 introduces the MVC and Razor Pages

filter pipeline, shows how it works, and describes

some of the filters built into the framework.

Chapter 22 builds on chapter 21 by showing how

to create custom filters to reduce some of the

duplication in your MVC and Razor Pages

applications.

The chapters that make up part 4 cover important cross-

cutting aspects of ASP.NET Core development:

Chapter 23 describes how to add user profiles and

authentication to your application by using

ASP.NET Core Identity.

Chapter 24 builds on the previous chapter by

introducing authorization for users so you can

restrict which pages a signed-in user can access.

Chapter 25 discusses authentication and

authorization for API applications, how this differs

from authentication in HTML applications, and

how to get started with authentication in ASP.NET

Core APIs.

Chapter 26 shows how to configure logging in

your application and how to write log messages to

multiple locations.

Chapter 27 looks at how to publish your app and

configure it for a production environment.

Chapter 28 discusses the reason for adding HTTPS

to your application, how to use HTTPS when

developing locally and in production, and how to

force HTTPS for your whole application.

Chapter 29 explores some other security

considerations you should make when developing

your application and how to stay safe with

ASP.NET Core.

Part 5 looks at various topics that help you take your

ASP.NET Core applications further, including nonweb

applications, custom configuration and components, and

testing:

Chapter 30 discusses an alternative bootstrapping

approach for ASP.NET Core apps, using the

generic host and a Startup class.

Chapter 31 describes how to build and use a

variety of custom components, such as custom

middleware, and how to handle complex

configuration requirements.

Chapter 32 expands on chapter 31, showing how

to build custom Razor Page components such as

custom Tag Helpers and custom validation

attributes.

Chapter 33 discusses the IHttpClientFactory

service and how to use it to create HttpClient

instances for calling remote APIs.

Chapter 34 explores the generic IHost

abstraction, which you can use to create Windows

Services and Linux daemons. You’ll also learn to

run tasks in the background of your applications.

Chapter 35 shows how to test an ASP.NET Core

application with the xUnit testing framework.

Chapter 36 follows on from chapter 35, showing

how to test ASP.NET Core applications specifically.

It covers both unit tests and integration tests

using the Test Host.

The two appendices provide supplementary information:

Appendix A describes how to configure your

development environment, whether you’re in

Windows, Linux, or macOS.

Appendix B contains links that I’ve found useful in

learning about ASP.NET Core.

About the code

Source code is provided for all chapters except chapters 1,

2, 21, and 27, which don’t have any code. You can view the

source code for each chapter in my GitHub repository at

https://github.com/andrewlock/asp-dot-net-core-in-action-

3e. A zip file containing all the source code is also available

on the publisher’s website at

https://www.manning.com/books/asp-net-core-in-action-

third-edition. You can get executable snippets of code from

the liveBook (online) version of this book at

https://livebook.manning.com/book/asp-net-core-in-action-

third-edition.

All the code examples in this book use .NET 7 and were

built using both Visual Studio and Visual Studio Code. To

https://github.com/andrewlock/asp-dot-net-core-in-action-3e
https://github.com/andrewlock/asp-dot-net-core-in-action-3e
https://www.manning.com/books/asp-net-core-in-action-third-edition
https://www.manning.com/books/asp-net-core-in-action-third-edition
https://livebook.manning.com/book/asp-net-core-in-action-third-edition
https://livebook.manning.com/book/asp-net-core-in-action-third-edition

build and run the examples, you need to install the .NET

software development kit (SDK), as described in appendix

A.

This book contains many examples of source code, both in

numbered listings and inline with normal text. In both

cases, source code is formatted in a fixed-width font

like this to separate it from ordinary text. Sometimes

code is also in bold to highlight changes from previous

steps in the chapter, such as when a new feature adds to an

existing line of code.

In many cases, the original source code has been

reformatted; we’ve added line breaks and reworked

indentation to accommodate the available page space in the

book. In rare cases, even this was not enough, and some

listings include line-continuation markers (➥). Additionally,

comments in the source code have been removed from the

listings when the code is described in the text. Code

annotations accompany many of the listings, highlighting

important concepts.

liveBook discussion forum

Purchase of ASP.NET Core in Action, Third Edition, includes

free access to liveBook, Manning’s online reading platform.

Using liveBook’s exclusive discussion features, you can

attach comments to the book globally or to specific sections

or paragraphs. It’s a snap to make notes for yourself, ask

and answer technical questions, and receive help from the

author and other users. To access the forum, go to

https://livebook.manning.com/book/asp-net-core-in-action-

third-edition/discussion. You can also learn more about

Manning’s forums and the rules of conduct at

https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue

where a meaningful dialogue between individual readers

and between readers and the author can take place. It is

not a commitment to any specific amount of participation on

the part of the author, whose contribution to the forum

remains voluntary (and unpaid). We suggest that you try

asking the author some challenging questions lest his

interest stray! The forum and the archives of previous

discussions will be accessible on the publisher’s website as

long as the book is in print.

about the author

ANDREW LOCK is a .NET developer and Microsoft MVP. He

graduated with an engineering degree from Cambridge

https://livebook.manning.com/book/asp-net-core-in-action-third-edition/discussion
https://livebook.manning.com/book/asp-net-core-in-action-third-edition/discussion
https://livebook.manning.com/discussion

University, specializing in software engineering, and went on

to obtain a PhD in digital image processing. He has been

developing professionally with .NET since 2010, using a

wide range of technologies, including WinForms, ASP.NET

WebForms, ASP.NET MVC, ASP.NET Webpages, and most

recently ASP.NET Core. Andrew has put many ASP.NET Core

applications into production since version 1 was released in

2016. He has an active blog at https://andrewlock.net

dedicated to ASP.NET Core. This blog has frequently been

featured in the community spotlight by the ASP.NET team at

Microsoft, on the .NET blog, and in the weekly community

standups.

about the cover illustration
The caption for the illustration on the cover of ASP.NET Core

in Action, Third Edition, is “The Captain Pasha. Kapudan

pasha, admiral of the Turkish navy,” taken from a collection

published in 1802 by William Miller.

In those days, it was easy to identify where people lived

and what their trade or station in life was by their dress

alone. Manning celebrates the inventiveness and initiative of

the computer business with book covers based on the rich

diversity of regional culture centuries ago, brought back to

life by pictures from collections such as this one.

https://andrewlock.net/

1 Getting started with ASP.NET Core

This chapter covers

What is ASP.NET Core?
Things you can build with ASP.NET Core
How ASP.NET Core works

Choosing to learn and develop with a new framework is a big

investment, so it’s important to establish early on whether

it’s right for you. In this chapter, I provide some background

on ASP.NET Core: what it is, how it works, and why you

should consider it for building your web applications.

By the end of this chapter, you should have a good overview

of the benefits of ASP.NET Core, the role of .NET 7, and the

basic mechanics of how ASP.NET Core works. So without

further ado, let’s dive in!

1.1 What is ASP.NET Core?
ASP.NET Core is a cross-platform, open-source application

framework that you can use to build dynamic web

applications quickly. You can use ASP.NET Core to build

server-rendered web applications, backend server

applications, HTTP APIs that can be consumed by mobile

applications, and much more. ASP.NET Core runs on .NET 7,

which is the latest version of .NET Core—a high-

performance, cross-platform, open-source runtime.

ASP.NET Core provides structure, helper functions, and a

framework for building applications, which saves you from

having to write a lot of this code yourself. Then the ASP.NET

Core framework code calls in to your handlers, which in turn

call methods in your application’s business logic, as shown in

figure 1.1. This business logic is the core of your application.

You can interact with other services here, such as databases

or remote APIs, but your business logic typically doesn’t

depend directly on ASP.NET Core.

Figure 1.1 A typical ASP.NET Core application consists of
several layers. The ASP.NET Core framework code handles
requests from a client, dealing with the complex networking
code. Then the framework calls in to handlers (Razor Pages and
Web API controllers, for example) that you write using primitives
provided by the framework. Finally, these handlers call in to your

application’s domain logic—typically, C# classes and objects
without any dependencies that are specific to ASP.NET Core.

1.2 What types of applications can you
build?

ASP.NET Core provides a generalized web framework that

you can use to build a wide variety of applications. ASP.NET

Core includes APIs that support many paradigms:

Minimal APIs—Simple HTTP APIs that can be

consumed by mobile applications or browser-based

single-page applications.

Web APIs—An alternative approach to building

HTTP APIs that adds more structure and features

than minimal APIs.

gRPC APIs—Used to build efficient binary APIs for

server-to-server communication using the gRPC

protocol.

Razor Pages—Used to build page-based server-

rendered applications.

MVC controllers—Similar to Razor Pages. Model-

View-Controller (MVC) controller applications are

for server-based applications but without the

page-based paradigm.

Blazor WebAssembly—A browser-based single-

page application framework that uses the

WebAssembly standard, similar to JavaScript

frameworks such as Angular, React, and Vue.

Blazor Server—Used to build stateful applications,

rendered on the server, that send UI events and

page updates over WebSockets to provide the feel

of a client-side single-page application, but with

the ease of development of a server-rendered

application.

All these paradigms are based on the same building blocks

of ASP.NET Core, such as the configuration and logging

libraries, and then place extra functionality on top. The best

paradigm for your application depends on multiple factors,

including your API requirements, the details of existing

applications you need to interact with, the details of your

customers’ browsers and operating environment, and

scalability and uptime requirements. You don’t need to

choose only one of these paradigms; ASP.NET Core can

combine multiple paradigms within a single application.

1.3 Choosing ASP.NET Core
I hope that now you have a general grasp of what ASP.NET

Core is and the type of applications you can build with it. But

one question remains: should you use it? Microsoft

recommends that all new .NET web development use

ASP.NET Core, but switching to or learning a new web stack

is a big ask for any developer or company.

If you’re new to .NET development and are considering

ASP.NET Core, welcome! Microsoft is pushing ASP.NET Core

as an attractive option for web development beginners, but

taking .NET cross-platform means that it’s competing with

many other frameworks on their own turf. ASP.NET Core has

many selling points compared with other cross-platform web

frameworks:

It’s a modern, high-performance, open-source web

framework.

It uses familiar design patterns and paradigms.

C# is a great language (but you can use VB.NET or

F# if you prefer).

You can build and run on any platform.

ASP.NET Core is a reimagining of the ASP.NET framework,

built with modern software design principles on top of the

new .NET platform. Although it’s new in one sense, .NET

(previously called .NET Core) has had widespread production

use since 2016 and has drawn significantly from the mature,

stable, and reliable .NET Framework, which has been used

for more than two decades. You can rest easy knowing that

by choosing ASP.NET Core and .NET 7, you’re getting a

dependable platform as well as a full-featured web

framework.

One major selling point of ASP.NET Core and .NET 7 is the

ability to develop and run on any platform. Whether you’re

using a Mac, Windows, or Linux computer, you can run the

same ASP.NET Core apps and develop across multiple

environments. A wide range of distributions are supported

for Linux users: RHEL, Ubuntu, Debian, CentOS, Fedora, and

openSUSE, to name a few. ASP.NET Core even runs on the

tiny Alpine distribution, for truly compact deployments to

containers, so you can be confident that your operating

system of choice will be a viable option.

If you’re already a .NET developer, the choice of whether to

invest in ASP.NET Core for new applications was largely a

question of timing. Early versions of .NET Core lacked some

features that made it hard to adopt, but that problem no

longer exists in the latest versions of .NET. Now Microsoft

explicitly advises that all new .NET applications should use

.NET 7 (or newer).

Microsoft has pledged to provide bug and security fixes for

the older ASP.NET framework, but it won’t provide any more

feature updates. .NET Framework isn’t being removed, so

your old applications will continue to work, but you shouldn’t

use it for new development.

The main benefits of ASP.NET Core over the previous

ASP.NET framework are

Cross-platform development and deployment

Focus on performance as a feature

A simplified hosting model

Regular releases with a shorter release cycle

Open-source

Modular features

More application paradigm options

The option to package .NET with an app when

publishing for standalone deployments

As an existing .NET developer who’s moving to ASP.NET

Core, your ability to build and deploy cross-platform opens

the door to a whole new avenue of applications, such as

taking advantage of cheaper Linux virtual machine hosting in

the cloud, using Docker containers for repeatable continuous

integration, or writing .NET code on your Mac without

needing to run a Windows virtual machine. ASP.NET Core, in

combination with .NET 7, makes all this possible.

That’s not to say that your experience deploying ASP.NET

applications to Windows and Internet Information Services

(IIS) is wasted. On the contrary, ASP.NET Core uses many of

the same concepts as the previous ASP.NET framework, and

you can still run your ASP.NET Core applications in IIS, so

moving to ASP.NET Core doesn’t mean starting from scratch.

1.4 How does ASP.NET Core work?
I’ve covered the basics of what ASP.NET Core is, what you

can use it for, and why you should consider using it. In this

section, you’ll see how an application built with ASP.NET

Core works, from a user request for a URL to the display of a

page in the browser. To get there, first you’ll see how an

HTTP request works for any web server; then you’ll see how

ASP.NET Core extends the process to create dynamic web

pages.

1.4.1 How does an HTTP web request work?

As you know now, ASP.NET Core is a framework for building

web applications that serve data from a server. One of the

most common scenarios for web developers is building a

web app that you can view in a web browser. Figure 1.2

shows the high-level process you can expect from any web

server.

Figure 1.2 Requesting a web page. The user starts by requesting
a web page, which causes an HTTP request to be sent to the
server. The server interprets the request, generates the
necessary HTML, and sends it back in an HTTP response. Then
the browser can display the web page.

The process begins when a user navigates to a website or

types a URL in their browser. The URL or web address

consists of a hostname and a path to some resource on the

web app. Navigating to the address in the browser sends a

request from the user’s computer to the server on which the

web app is hosted, using the HTTP protocol.

DEFINITION The hostname of a website uniquely identifies its
location on the internet by mapping via the Domain Name Service
(DNS) to an IP address. Examples include microsoft.com,
www.google.co.uk, and facebook.com.

A brief primer on HTTP

Hypertext Transfer Protocol (HTTP) is the application-level protocol that powers the
web. It’s a stateless request-response protocol whereby a client machine sends a
request to a server, which sends a response in turn.

Every HTTP request consists of a verb indicating the type of the request and a path
indicating the resource to interact with. A request typically also includes headers, which
are key-value pairs, and in some cases a body, such as the contents of a form, when
sending data to the server.

An HTTP response contains a status code, indicating whether the request was
successful, and optionally headers and a body.

https://www.microsoft.com/en-us
https://www.google.co.uk/
https://www.facebook.com/

For a more detailed look at the HTTP protocol itself, as well as more examples, see
section 1.3 (“A quick introduction to HTTP”) of Go Web Programming, by Sau Sheong
Chang (Manning, 2016), at http://mng.bz/x4mB. You can also read the raw RFC
specification at https://www.rfc-editor.org/rfc/rfc9110.txt if dense text is your thing!

The request passes through the internet, potentially to the

other side of the world, until it finally makes its way to the

server associated with the given hostname, on which the

web app is running. The request is potentially received and

rebroadcast at multiple routers along the way, but only when

it reaches the server associated with the hostname is the

request processed.

When the server receives the request, it processes that

request and generates an HTTP response. Depending on the

request, this response could be a web page, an image, a

JavaScript file, a simple acknowledgment, or practically any

other file. For this example, I’ll assume that the user has

reached the home page of a web app, so the server

responds with some HTML. The HTML is added to the HTTP

response, which is sent back across the internet to the

browser that made the request.

As soon as the user’s browser begins receiving the HTTP

response, it can start displaying content on the screen, but

the HTML page may also reference other pages and links on

the server. To display the complete web page instead of a

static, colorless, raw HTML file, the browser must repeat the

request process, fetching every referenced file. HTML,

images, Cascading Style Sheets (CSS) for styling, and

JavaScript files for extra behavior are all fetched using

exactly the same HTTP request process.

http://mng.bz/x4mB
https://www.rfc-editor.org/rfc/rfc9110.txt

Pretty much all interactions that take place on the internet

are a facade over this basic process. A basic web page may

require only a few simple requests to render fully, whereas a

large modern web page may take hundreds. At this writing,

the Amazon .com home page (https://www.amazon.com)

makes 410 requests, including requests for 4 CSS files, 12

JavaScript files, and 299 image files!

Now that you have a feel for the process, let’s see how

ASP.NET Core dynamically generates the response on the

server.

1.4.2 How does ASP.NET Core process a
request?

When you build a web application with ASP.NET Core,

browsers will still be using the same HTTP protocol as before

to communicate with your application. ASP.NET Core itself

encompasses everything that takes place on the server to

handle a request, including verifying that the request is

valid, handling login details, and generating HTML.

As with the generic web page example, the request process

starts when a user’s browser sends an HTTP request to the

server, as shown in figure 1.3.

https://www.amazon.com/

Figure 1.3 How an ASP.NET Core application processes a
request. A request is received by the ASP.NET Core application,
which runs a self-hosted web server. The web server processes
the request and passes it to the body of the application, which
generates a response and returns it to the web server. The web
server sends this response to the browser.

The request is received from the network by your ASP.NET

Core application. Every ASP.NET Core application has a built-

in web server—Kestrel, by default—that is responsible for

receiving raw requests and constructing an internal

representation of the data, an HttpContext object, which

the rest of the application can use.

Your application can use the details stored in HttpContext

to generate an appropriate response to the request, which

may be to generate some HTML, to return an “access

denied” message, or to send an email, all depending on your

application’s requirements.

When the application finishes processing the request, it

returns the response to the web server. The ASP.NET Core

web server converts the representation to a raw HTTP

response and sends it to the network, which forwards it to

the user’s browser.

To the user, this process appears to be the same as for the

generic HTTP request shown in figure 1.2: the user sent an

HTTP request and received an HTTP response. All the

differences are server-side, within your application.

You’ve seen how requests and responses find their way to

and from an ASP.NET Core application, but I haven’t yet

touched on how the response is generated. Throughout this

book, we’ll look at the components that make up a typical

ASP.NET Core application and how they fit together. A lot

goes into generating a response in ASP.NET Core, typically

within a fraction of a second, but over the course of the book

we’ll step through an application slowly, covering each of the

components in detail.

1.5 What you’ll learn in this book
This book takes you on an in-depth tour of the ASP.NET Core

framework. To benefit from the book, you should be familiar

with C# or a similar object-oriented language. Basic

familiarity with web concepts such as HTML and JavaScript

will also be beneficial. You’ll learn the following:

How to build HTTP API applications using minimal

APIs

How to create page-based applications with Razor

Pages

Key ASP.NET Core concepts such as model-binding,

validation, and routing

How to generate HTML for web pages by using

Razor syntax and Tag Helpers

How to use features such as dependency injection,

configuration, and logging as your applications

grow more complex

How to protect your application by using security

best practices

Throughout the book we’ll use a variety of examples to learn

and explore concepts. The examples are generally small and

self-contained so that we can focus on a single feature at a

time.

I’ll be using Visual Studio for most of the examples in this

book, but you’ll be able to follow along using your favorite

editor or integrated development environment (IDE).

Appendix A includes details on setting up your editor or IDE

and installing the .NET 7 software development kit (SDK).

Even though the examples in this book show Windows tools,

everything you see can be achieved equally well on the

Linux or Mac platform.

TIP You can install .NET 7 from
https://dotnet.microsoft.com/download. Appendix A contains further
details on configuring your development environment to work with
ASP.NET Core and .NET 7.

In chapter 2, we’ll look in greater depth at the types of

applications you can create with ASP.NET Core. We’ll also

explore its advantages over the older ASP.NET and .NET

Framework platforms.

Summary
ASP.NET Core is a cross-platform, open-source,

high-performance web framework.

ASP.NET Core runs on .NET, previously called .NET

Core.

You can use Razor Pages or MVC controllers to

build server-rendered, page-based web

applications.

You can use minimal APIs or web APIs to build

RESTful or HTTP APIs.

You can use gRPC to build highly efficient server-

to-server RPC applications.

https://dotnet.microsoft.com/download

You can use Blazor WebAssembly to build client-

side applications that run in the browser and

Blazor Server to build stateful, server-rendered

applications that send UI updates via a WebSocket

connection.

Microsoft recommends ASP.NET Core and .NET 7 or

later for all new web development over the legacy

ASP.NET and .NET Framework platforms.

Fetching a web page involves sending an HTTP

request and receiving an HTTP response.

ASP.NET Core allows you to build responses to a

given request dynamically.

An ASP.NET Core application contains a web

server, which serves as the entry point for a

request.

Part 1 Getting started with minimal
APIs
Web applications are everywhere these days, from social

media web apps and news sites to the apps on your phone.

Behind the scenes, there’s almost always a server running a

web application or an HTTP API. Web applications are

expected to be infinitely scalable, deployed to the cloud,

and highly performant. Getting started can be

overwhelming at the best of times, and doing so with such

high expectations can be even more of a challenge.

The good news for you as a reader is that ASP.NET Core

was designed to meet those requirements. Whether you

need a simple website, a complex e-commerce web app, or

a distributed web of microservices, you can use your

knowledge of ASP.NET Core to build lean web apps that fit

your needs. ASP.NET Core lets you build and run web apps

in Windows, Linux, or macOS. It’s highly modular, so you

use only the components you need, keeping your app as

compact and performant as possible.

In part 1 you’ll go from a standing start all the way to

building your first API applications. Chapter 2 gives you a

high-level overview of ASP.NET Core, which you’ll find

especially useful if you’re new to web development in

general. You’ll get your first glimpse of a full ASP.NET Core

application in chapter 3; we’ll look at each component of

the app in turn and see how they work together to generate

a response.

Chapter 4 looks in detail at the middleware pipeline, which

defines how incoming web requests are processed and how

a response is generated. We’ll look at several standard

pieces of middleware and see how they can be combined to

create your application’s pipeline.

Chapters 5 through 7 focus on building ASP.NET Core apps

with minimal API endpoints, which are the new simplified

approach to building JSON APIs in ASP.NET Core apps. In

chapter 5 you’ll learn how to create endpoints that generate

JSON, how to use filters to extract common behavior, and

how to use route groups to organize your APIs. In chapter 6

you’ll learn about routing, the process of mapping URLs to

endpoints. And in chapter 7 you’ll learn about model binding

and validation.

There’s a lot of content in part 1, but by the end you’ll be

well on your way to building simple APIs with ASP.NET Core.

Inevitably, I’ll gloss over some of the more complex

configuration aspects of the framework, but you should get

a good understanding of minimal APIs and how you can use

them to build simple APIs. In later parts of this book, you’ll

learn how to configure your application and add extra

features, such as user profiles and database interaction.

We’ll also look at how to build other types of applications,

such as server-rendered web apps with Razor Pages.

2 Understanding ASP.NET Core

This chapter covers

Why ASP.NET Core was created
The many application paradigms of ASP.NET Core
Approaches to migrating an existing application to ASP.NET Core

In this chapter, I provide some background on ASP.NET

Core: why web frameworks are useful, why ASP.NET Core

was created, and how to choose when to use ASP.NET Core.

If you’re new to .NET development, this chapter will help you

understand the .NET landscape. If you’re already a .NET

developer, I provide guidance on whether now is the right

time to consider moving your focus to .NET Core and .NET 7,

as well as on the advantages ASP.NET Core can offer over

previous versions of ASP.NET.

2.1 Using a web framework
If you’re new to web development, it can be daunting to

move into an area with so many buzzwords and a plethora of

ever-changing products. You may be wondering whether all

those products are necessary. How hard can it be to return a

file from a server?

Well, it’s perfectly possible to build a static web application

without the use of a web framework, but its capabilities will

be limited. As soon as you want to provide any kind of

security or dynamism, you’ll likely run into difficulties, and

the original simplicity that enticed you will fade before your

eyes.

Just as desktop or mobile development frameworks can help

you build native applications, ASP.NET Core makes writing

web applications faster, easier, and more secure than trying

to build everything from scratch. It contains libraries for

common things like

Creating dynamically changing web pages

Letting users log in to your web app

Letting users use their Facebook accounts to log in

to your web app

Providing a common structure for building

maintainable applications

Reading configuration files

Serving image files

Logging requests made to your web app

The key to any modern web application is the ability to

generate dynamic web pages. A dynamic web page may

display different data depending on the current logged-in

user, or it could display content submitted by users. Without

a dynamic framework, it wouldn’t be possible to log in to

websites or to display any sort of personalized data on a

page. In short, websites like Amazon, eBay, and Stack

Overflow (shown in figure 2.1) wouldn’t be possible. Web

frameworks for creating dynamic web pages are almost as

old as the web itself, and Microsoft has created several over

the years, so why create a new one?

Figure 2.1 The Stack Overflow website
(https://stackoverflow.com) is built with ASP.NET and has almost
entirely dynamic content.

https://stackoverflow.com/

2.2 Why ASP.NET Core was created
Microsoft’s development of ASP.NET Core was motivated by

the desire to create a web framework with five main goals:

To be run and developed cross-platform

To have a modular architecture for easier

maintenance

To be developed completely as open-source

software

To adhere to web standards

To be applicable to current trends in web

development, such as client-side applications and

deployment to cloud environments

To achieve all these goals, Microsoft needed a platform that

could provide underlying libraries for creating basic objects

such as lists and dictionaries, and for performing tasks such

as simple file operations. Up to this point, ASP.NET

development had always been focused—and dependent—on

the Windows-only .NET Framework. For ASP.NET Core,

Microsoft created a lightweight platform that runs on

Windows, Linux, and macOS called .NET Core (subsequently

.NET), as shown in figure 2.2.

Figure 2.2 The relationships among ASP.NET Core, ASP.NET,
.NET Core/.NET 5+, and .NET Framework. ASP.NET Core runs on
.NET Core and .NET 5+, so it can run cross-platform. Conversely,
ASP.NET runs on .NET Framework only, so it’s tied to the
Windows OS.

DEFINITION .NET 5 was the next version of .NET Core after 3.1,
followed by .NET 6 and .NET 7. It represents a unification of .NET
Core and other .NET platforms in a single runtime and framework. It
was considered to be the future of .NET, which is why Microsoft

chose to drop the “Core” from its name. For consistency with
Microsoft’s language, I use the term .NET 5+ to refer to .NET 5, .NET
6, and .NET 7, and the term .NET Core to refer to previous versions.

.NET Core (and its successor, .NET 5+) employs many of the

same APIs as .NET Framework but is more modular. It

implements a different set of features from those in .NET

Framework, with the goal of providing a simpler

programming model and modern APIs. It’s a separate

platform rather than a fork of .NET Framework, though it

uses similar code for many of its APIs.

NOTE If you’d like to learn more about the .NET ecosystem, you can
read two posts on my blog: “Understanding the .NET ecosystem: The
evolution of .NET into .NET 7” (http://mng.bz/Ao0W) and
“Understanding the .NET ecosystem: The introduction of .NET
Standard” (http://mng.bz/ZqPZ).

The benefits and limitations of ASP.NET

ASP.NET Core is the latest evolution of Microsoft’s popular ASP.NET web framework,
released in June 2016. Previous versions of ASP.NET had many incremental updates,
focusing on high developer productivity and prioritizing backward compatibility.
ASP.NET Core bucks that trend by making significant architectural changes that
rethink the way the web framework is designed and built.

ASP.NET Core owes a lot to its ASP.NET heritage, and many features have been
carried forward from before, but ASP.NET Core is a new framework. The whole
technology stack has been rewritten, including both the web framework and the
underlying platform.

At the heart of the changes is the philosophy that ASP.NET should be able to hold its
head high when measured against other modern frameworks, but existing .NET
developers should continue to have a sense of familiarity.

http://mng.bz/Ao0W
http://mng.bz/ZqPZ

To understand why Microsoft decided to build a new framework, it’s important to
understand the benefits and limitations of the legacy ASP.NET web framework.

The first version of ASP.NET was released in 2002 as part of .NET Framework 1.0. The
ASP.NET Web Forms paradigm that it introduced differed significantly from the
conventional scripting environments of classic ASP and PHP. ASP.NET Web Forms
allowed developers to create web applications rapidly by using a graphical designer
and a simple event model that mirrored desktop application-building techniques.

The ASP.NET framework allowed developers to create new applications quickly, but
over time the web development ecosystem changed. It became apparent that
ASP.NET Web Forms suffered from many problems, especially in building larger
applications. In particular, a lack of testability, a complex stateful model, and limited
influence on the generated HTML (making client-side development difficult) led
developers to evaluate other options.

In response, Microsoft released the first version of ASP.NET MVC in 2009, based on
the Model-View-Controller (MVC) pattern, a common web pattern used in frameworks
such as Ruby on Rails, Django, and Java Spring. This framework allowed developers
to separate UI elements from application logic, made testing easier, and provided
tighter control of the HTML-generation process.

ASP.NET MVC has been through four more iterations since its first release, but all
these iterations were built on the same underlying framework provided by the System
.Web.dll file. This library is part of .NET Framework, so it comes preinstalled with all
versions of Windows. It contains all the core code that ASP.NET uses when you build a
web application.

This dependency brings both advantages and disadvantages. On one hand, the
ASP.NET framework is a reliable, battle-tested platform that’s fine for building web
applications in Windows. It provides a wide range of features that have been in
production for many years, and it’s well known by virtually all Windows web
developers.

On the other hand, this reliance is limiting. Changes to the underlying System.Web.dll
file are far-reaching and, consequently, slow to roll out, which limits the extent to which
ASP.NET is free to evolve and results in release cycles happening only every few
years. There’s also an explicit coupling with the Windows web host, Internet
Information Services (IIS), which precludes its use on non-Windows platforms.

More recently, Microsoft declared .NET Framework to be “done.” It won’t be removed
or replaced, but it also won’t receive any new features. Consequently, ASP.NET based
on System.Web.dll won’t receive new features or updates either.

In recent years, many web developers have started looking at cross-platform web
frameworks that can run on Windows as well as Linux and macOS. Microsoft felt the
time had come to create a framework that was no longer tied to its Windows legacy;
thus, ASP.NET Core was born.

With .NET 7, it’s possible to build console applications that

run cross-platform. Microsoft created ASP.NET Core to be an

additional layer on top of console applications so that

converting to a web application involves adding and

composing libraries, as shown in figure 2.3.

Figure 2.3 ASP.NET Core application model. The .NET 7 platform
provides a base console application model for running
command-line apps. Adding a web server library converts this
model to an ASP.NET Core web app. You can add other features,
such as configuration and logging, using various libraries.

When you add an ASP.NET Core web server to your .NET 7

app, your console application can run as a web application.

ASP.NET Core contains a huge number of APIs, but you’ll

rarely need all the features available to you. Some of the

features are built in and will appear in virtually every

application you create, such as the ones for reading

configuration files or performing logging. Other features are

provided by separate libraries and built on top of these base

capabilities to provide application-specific functionality, such

as third-party logins via Facebook or Google.

Most of the libraries and APIs you’ll use in ASP.NET Core are

available on GitHub, in the Microsoft .NET organization

repositories at https://github.com/dotnet/aspnetcore. You

can find the core APIs there, including the authentication

and logging APIs, as well as many peripheral libraries, such

as the third-party authentication libraries.

All ASP.NET Core applications follow a similar design for

basic configuration, but in general the framework is flexible,

leaving you free to create your own code conventions. These

common APIs, the extension libraries that build on them,

and the design conventions they promote are covered by the

somewhat-nebulous term ASP.NET Core.

2.3 Understanding the many
paradigms of ASP.NET Core

In chapter 1 you learned that ASP.NET Core provides a

generalized web framework that can be used to build a wide

variety of applications. As you may recall from section 1.2,

the main paradigms are

https://github.com/dotnet/aspnetcore

Minimal APIs—Simple HTTP APIs that can be

consumed by mobile applications or browser-based

single-page applications (SPAs)

Web APIs—An alternative approach for building

HTTP APIs that adds more structure and features

than minimal APIs

gRPC APIs—Used to build efficient binary APIs for

server-to-server communication using the gRPC

protocol

Razor Pages—Used to build page-based server-

rendered applications

MVC controllers—Similar to Razor Pages; used for

server-based applications but without the page-

based paradigm

Blazor WebAssembly—A browser-based SPA

framework using the WebAssembly standard,

similar to JavaScript frameworks such as Angular,

React, and Vue

Blazor Server—Used to build stateful applications,

rendered on the server, that send UI events and

page updates over WebSockets to provide the feel

of a client-side SPA but with the ease of

development of a server-rendered application

All these paradigms use the core functionality of ASP.NET

Core and layer the additional functionality on top. Each

paradigm is suited to a different style of web application or

API, so some may fit better than others, depending on what

sort of application you’re building.

Traditional page-based, server-side-rendered web

applications are the bread and butter of ASP.NET

development, both in the previous version of ASP.NET and

now in ASP.NET Core. The Razor Pages and MVC controller

paradigms provide two slightly different styles for building

these types of applications but have many of the same

concepts, as you’ll see in part 2. These paradigms can be

useful for building rich, dynamic websites, whether they’re

e-commerce sites, content management systems (CMSes),

or large n-tier applications. Both the open-source CMS

Orchard Core
1
 (figure 2.4) and cloudscribe

2
 CMS project, for

example, are built with ASP.NET Core.

Figure 2.4 The California School Information Services website
(https://csis.fcmat.org) is built with Orchard Core and ASP.NET
Core.

https://csis.fcmat.org/

In addition to server-rendered applications, ASP.NET core is

ideally suited to building a REST or HTTP API server.

Whether you’re building a mobile app, a JavaScript SPA

using Angular, React, Vue, or some other client-side

framework, it’s easy to create an ASP.NET Core application

to act as the server-side API by using both the minimal API

and web API paradigms built into ASP.NET Core. You’ll learn

about minimal APIs in part 1 and about web APIs in chapter

20.

DEFINITION REST stands for representational state transfer.
RESTful applications typically use lightweight and stateless HTTP
calls to read, post (create/ update), and delete data.

ASP.NET Core isn’t restricted to creating RESTful services.

It’s easy to create a web service or remote procedure call

(RPC)-style service for your application, using gRPC for

example, as shown in figure 2.5. In the simplest case, your

application might expose only a single endpoint! ASP.NET

Core is perfectly designed for building simple services,

thanks to its cross-platform support and lightweight design.

DEFINITION gRPC is a modern open-source, high-performance RPC
framework. You can read more at https://grpc.io.

https://grpc.io/

Figure 2.5 ASP.NET Core can act as the server-side application
for a variety of clients: it can serve HTML pages for traditional
web applications, act as a REST API for client-side SPA
applications, or act as an ad hoc RPC service for client
applications.

As well as server-rendered web apps, APIs, and gRPC

endpoints, ASP.NET Core includes the Blazor framework,

which can be used to build two very different styles of

application. Blazor WebAssembly (WASM) apps run directly

in your browser, in the same way as traditional JavaScript

SPA frameworks such as Angular and React. Your .NET code

is compiled to WebAssembly (https://webassembly.org) or

executes on a .NET runtime compiled for WASM, and the

browser downloads and runs it as it would a JavaScript app.

This way you can build highly interactive client-side

applications while using C# and all the .NET APIs and

libraries you already know.

By contrast, Blazor Server applications run on the server.

Each mouse click or keyboard event is sent to the server via

WebSockets. Then the server calculates the changes that

should be made to the UI and sends the required changes

back to the client, which updates the page in the browser.

The result is a “stateful” application that runs server-side but

can be used to build highly interactive SPAs. The main

downside of Blazor Server is that it requires a constant

internet connection.

https://webassembly.org/

NOTE In this book I focus on building traditional page-based, server-
side- rendered web applications and RESTful web APIs. I also show
how to create background worker services in chapter 34. For more
information on Blazor, I recommend Blazor in Action, by Chris Sainty
(Manning, 2022).

With the ability to call on all these paradigms, you can use

ASP.NET Core to build a wide variety of applications, but it’s

still worth considering whether ASP.NET Core is right for

your specific application. That decision will likely be affected

by both your experience with .NET and the application you

want to build.

2.4 When to choose ASP.NET Core
In this section I’ll describe some of the points to consider

when deciding whether to use ASP.NET Core and .NET 7

instead of legacy .NET Framework ASP.NET. In most cases

the decision will be to use ASP.NET Core, but you should

consider some important caveats.

When choosing a platform, you should consider multiple

factors, not all of which are technical. One such factor is the

level of support you can expect to receive from its creators.

For some organizations, limited support can be one of the

main obstacles to adopting open-source software. Luckily,

Microsoft has pledged to provide full support for Long Term

Support (LTS) versions of .NET and ASP.NET Core for at least

three years from the time of their release. And as all

development takes place in the open, sometimes you can

get answers to your questions from the general community

as well as from Microsoft directly.

NOTE You can view Microsoft’s official support policy at
http://mng.bz/RxXP.

When deciding whether to use ASP.NET Core, you have two

primary dimensions to consider: whether you’re already a

.NET developer and whether you’re creating a new

application or looking to convert an existing one.

2.4.1 If you’re new to .NET development

If you’re new to .NET development, you’re joining at a great

time! Many of the growing pains associated with a new

framework have been worked out, and the result is a stable,

high-performance, cross-platform application framework.

The primary language of .NET development, and of ASP.NET

Core in particular, is C#. This language has a huge following,

for good reason! As an object-oriented C-based language, it

provides a sense of familiarity to those who are used to C,

Java, and many other languages. In addition, it has many

powerful features, such as Language Integrated Query

(LINQ), closures, and asynchronous programming

constructs. The C# language is also designed in the open on

GitHub, as is Microsoft’s C# compiler, code-named Roslyn

(https://github.com/dotnet/roslyn).

NOTE I use C# throughout this book and will highlight some of the
newer features it provides, but I won’t be teaching the language from
scratch. If you want to learn C#, I recommend C# in Depth, 4th ed.,

http://mng.bz/RxXP
https://github.com/dotnet/roslyn

by Jon Skeet (Manning, 2019), and Code Like a Pro in C#, by Jort
Rodenburg (Manning, 2021).

One big advantage of ASP.NET Core and .NET 7 over .NET

Framework is that they enable you to develop and run on

any platform. With .NET 7 you can build and run the same

application on Mac, Windows, and Linux, and even deploy to

the cloud using tiny container deployments.

Built with containers in mind

Traditionally, web applications were deployed directly to a server or, more recently, to a
virtual machine. Virtual machines allow operating systems to be installed in a layer of
virtual hardware, abstracting away the underlying hardware. This approach has several
advantages over direct installation, such as easy maintenance, deployment, and
recovery. Unfortunately, virtual machines are also heavy, in terms of both file size and
resource use.

This is where containers come in. Containers are far more lightweight and don’t have
the overhead of virtual machines. They’re built in a series of layers and don’t require
you to boot a new operating system when starting a new one, so they’re quick to start
and great for quick provisioning. Containers (Docker in particular) are quickly
becoming the go-to platform for building large, scalable systems.

Containers have never been a particularly attractive option for ASP.NET applications,
but with ASP.NET Core, .NET 7, and Docker for Windows, all that is changing. A
lightweight ASP.NET Core application running on the cross-platform .NET 7 framework
is perfect for thin container deployments. You can learn more about your deployment
options in chapter 27.

In addition to running on each platform, one of the selling

points of .NET is your ability to write and compile only once.

Your application is compiled to Intermediate Language (IL)

code, which is a platform-independent format. If a target

system has the .NET 7 runtime installed, you can run

compiled IL from any platform. You can develop on a Mac or

a Windows machine, for example, and deploy exactly the

same files to your production Linux machines. This compile-

once, run-anywhere promise has finally been realized with

ASP.NET Core and .NET 7.

TIP You can go one step further and package the .NET runtime with
your app in a so-called self-contained deployment (SCD). This way,
you can deploy cross-platform, and the target machine doesn’t even
need .NET installed. With SCDs, the generated deployment files are
customized for the target machine, so you’re no longer deploying the
same files everywhere in this case.

Many of the web frameworks available today use similar

well-established design patterns, and ASP.NET Core is no

different. Ruby on Rails, for example, is known for its use of

the MVC pattern; Node.js is known for the way it processes

requests using small discrete modules (called a pipeline);

and dependency injection is available in a wide variety of

frameworks. If these techniques are familiar to you, you

should find it easy to transfer them to ASP.NET Core; if

they’re new to you, you can look forward to using industry

best practices!

NOTE Design patterns are solutions to common software design
problems. You’ll encounter a pipeline in chapter 4, dependency
injection in chapters 8 and 9, and MVC in chapter 19.

Whether you’re new to web development generally or only

with .NET, ASP.NET Core provides a rich set of features with

which you can build applications but doesn’t overwhelm you

with concepts, as the legacy ASP.NET framework did. On the

other hand, if you’re familiar with .NET, it’s worth

considering whether now is the time to take a look at

ASP.NET Core.

2.4.2 If you’re a .NET Framework developer
creating a new application

If you’re already a .NET Framework developer, you’ve likely

been aware of .NET Core and ASP.NET Core, but perhaps you

were wary about jumping in too soon or didn’t want to hit

the inevitable “version 1” problems. The good news is that

ASP.NET Core and .NET are now mature, stable platforms,

and it’s absolutely time to consider using .NET 7 for your

new apps.

As a .NET developer, if you aren’t using any Windows-

specific constructs such as the Registry, the ability to build

and deploy cross-platform opens the possibility for cheaper

Linux hosting in the cloud, or for developing natively in

macOS without the need for a virtual machine.

.NET Core and .NET 7 are inherently cross-platform, but you

can still use platform-specific features if you need to.

Windows-specific features such as the Registry and Directory

Services, for example, can be enabled with a Compatibility

Pack that makes these APIs available in .NET 5+. They’re

available only when running .NET 5+ in Windows, not Linux

or macOS, so you need to take care that such applications

run only in a Windows environment or account for the

potential missing APIs.

TIP The Windows Compatibility Pack is designed to help port code
from .NET Framework to .NET Core/.NET 5+. See
http://mng.bz/2DeX.

The hosting model for the previous ASP.NET framework was

a relatively complex one, relying on Windows IIS to provide

the web-server hosting. In a cross-platform environment,

this kind of symbiotic relationship isn’t possible, so an

alternative hosting model has been adopted—one that

separates web applications from the underlying host. This

opportunity has led to the development of Kestrel, a fast,

cross-platform HTTP server on which ASP.NET Core can run.

Instead of the previous design, whereby IIS calls into

specific points of your application, ASP.NET Core applications

are console applications that self-host a web server and

handle requests directly, as shown in figure 2.6. This hosting

model is conceptually much simpler and allows you to test

and debug your applications from the command line, though

it doesn’t necessarily remove the need to run IIS (or the

equivalent) in production.

ASP.NET Core and reverse proxies

You can expose ASP.NET Core applications directly to the internet so that Kestrel
receives requests directly from the network. That approach is fully supported. It’s more
common, however, to use a reverse proxy between the raw network and your
application. In Windows, the reverse-proxy server typically is IIS; in Linux or macOS, it
might be NGINX, HAProxy, or Apache. There’s even an ASP.NET Core-based reverse
proxy library called YARP (https://microsoft.github.io/reverse-proxy) that you can use to
build your own reverse proxy.

http://mng.bz/2DeX
https://microsoft.github.io/reverse-proxy/

A reverse proxy is software responsible for receiving requests and forwarding them to
the appropriate web server. The reverse proxy is exposed directly to the internet,
whereas the underlying web server is exposed only to the proxy. This setup has
several benefits, primarily security and performance for the web servers.

You may think that having a reverse proxy and a web server is somewhat redundant.
Why not have one or the other? Well, one benefit is the decoupling of your application
from the underlying operating system. The same ASP.NET Core web server, Kestrel,
can be cross-platform and used behind a variety of proxies without putting any
constraints on a particular implementation. Alternatively, if you wrote a new ASP.NET
Core web server, you could use it in place of Kestrel without needing to change
anything else about your application.

Another benefit of a reverse proxy is that it can be hardened against potential threats
from the public internet. Reverse proxies are often responsible for additional aspects,
such as restarting a process that has crashed. Kestrel can remain a simple HTTP
server, not having to worry about these extra features, when it’s used behind a reverse
proxy. You can think of this approach as being a simple separation of concerns: Kestrel
is concerned with generating HTTP responses, whereas the reverse proxy is
concerned with handling the connection to the internet.

Figure 2.6 The difference between hosting models in ASP.NET
(top) and ASP.NET Core (bottom). In the previous version of
ASP.NET, IIS is tightly coupled with the application. The hosting
model in ASP.NET Core is simpler; IIS hands off the request to a
self-hosted web server in the ASP.NET Core application and
receives the response but has no deeper knowledge of the
application.

NOTE By default, when running in Windows, ASP.NET Core runs
inside IIS, as shown in figure 2.6, which can provide better
performance than the reverse-proxy version. This is primarily a
deployment detail and doesn’t change the way you build ASP.NET
Core applications.

Changing the hosting model to use a built-in HTTP web

server has created another opportunity. Performance has

been something of a sore point for ASP.NET applications in

the past. It’s certainly possible to build high-performing

applications—Stack Overflow (https://stackoverflow.com) is

a testament to that fact—but the web framework itself isn’t

designed with performance as a priority, so it can end up

being an obstacle.

To make the product competitive cross-platform, the

ASP.NET team focused on making the Kestrel HTTP server as

fast as possible. TechEmpower

(https://www.techempower.com/benchmarks) has been

running benchmarks on a wide range of web frameworks

from various languages for several years now. In round 20

of the plain-text benchmarks, TechEmpower announced that

https://stackoverflow.com/
http://www.techempower.com/benchmarks

ASP.NET Core with Kestrel was among the 10 fastest of more

than 400 frameworks tested!
3

Web servers: Naming things is hard

One difficult aspect of programming for the web is the confusing array of often-
conflicting terminology. If you’ve used IIS, for example, you may have described it as a
web server or possibly a web host. Conversely, if you’ve ever built an application with
Node.js, you may have also referred to that application as a web server. Or you may
have called the physical machine on which your application runs a web server.
Similarly, you may have built an application for the internet and called it a website or a
web application, probably somewhat arbitrarily based on the level of dynamism it
displayed.

In this book, when I say web server in the context of ASP.NET Core, I’m referring to the
HTTP server that runs as part of your ASP.NET Core application. By default, this
server is the Kestrel web server, but that’s not a requirement. It’s possible to write a
replacement web server for Kestrel if you so desire.

The web server is responsible for receiving HTTP requests and generating responses.
In the previous version of ASP.NET, IIS took this role, but in ASP.NET Core, Kestrel is
the web server.

I’ll use the term web application in this book to describe ASP.NET Core applications,
regardless of whether they contain only static content or are dynamic. Either way,
these applications are accessed via the web, so that name seems to be the most
appropriate.

Many of the performance improvements made to Kestrel

came not from the ASP.NET team members themselves, but

from contributors to the open-source project on GitHub

(https://github.com/dotnet/aspnetcore). Developing in the

open means that you typically see fixes and features make

their way to production faster than you would for the

previous version of ASP.NET, which was dependent on .NET

https://github.com/dotnet/aspnetcore

Framework and Windows and, as such, had long release

cycles.

By contrast, .NET 5+ and hence ASP.NET Core are designed

to be released in small increments. Major versions will be

released on a predictable cadence, with a new version every

year and a new LTS version released every two years

(http://mng.bz/1qrg). In addition, bug fixes and minor

updates can be released as and when they’re needed.

Additional functionality is provided in NuGet packages

independent of the underlying .NET 5+ platform.

NOTE NuGet is a package manager for .NET that enables you to
import libraries into your projects. It’s equivalent to Ruby Gems, npm
for JavaScript, or Maven for Java.

To enable this approach to releases, ASP.NET Core is highly

modular, with as little coupling to other features as possible.

This modularity lends itself to a pay-for-play approach to

dependencies, where you start with a bare-bones application

and add only the libraries you require, as opposed to the

kitchen-sink approach of previous ASP.NET applications.

Even MVC is an optional package! But don’t worry—this

approach doesn’t mean that ASP.NET Core is lacking in

features, only that you need to opt into them. Some of the

key infrastructure improvements include

Middleware pipeline for defining your application’s

behavior

Built-in support for dependency injection

http://mng.bz/1qrg

Combined UI (MVC) and API (web API)

infrastructure

Highly extensible configuration system

Standardized, extensible logging system

Uses asynchronous programming by default for

built-in scalability on cloud platforms

Each of these features was possible in the previous version

of ASP.NET but required a fair amount of additional work to

set up. With ASP.NET Core, they’re all there, ready and

waiting to be connected.

Microsoft fully supports ASP.NET Core, so if you want to build

a new system, there’s no significant reason not to use it. The

largest obstacle you’re likely to come across is wanting to

use programming models that are no longer supported in

ASP.NET Core, such as Web Forms or WCF Server, as I’ll

discuss in the next section.

I hope that this section whetted your appetite to use

ASP.NET Core for building new applications. But if you’re an

existing ASP.NET developer considering whether to convert

an existing ASP.NET application to ASP.NET Core, that’s

another question entirely.

2.4.3 Converting an existing ASP.NET
application to ASP.NET Core

By contrast with new applications, an existing application

presumably already provides value, so there should always

be a tangible benefit to performing what may amount to a

significant rewrite in converting from ASP.NET to ASP.NET

Core. The advantages of adopting ASP.NET Core are much

the same as those for new applications: cross-platform

deployment, modular features, and a focus on performance.

Whether the benefits are sufficient will depend largely on the

particulars of your application, but some characteristics

make conversion more difficult:

Your application uses ASP.NET Web Forms.

Your application is built with WCF.

Your application is large, with many advanced MVC

features.

If you have an ASP.NET Web Forms application, attempting

to convert it directly to ASP.NET Core isn’t advisable. Web

Forms is inextricably tied to System.Web.dll and IIS, so it

will likely never be available in ASP.NET Core. Converting an

application to ASP.NET Core effectively involves rewriting the

application from scratch, not only shifting frameworks, but

also potentially shifting design paradigms.

All is not lost, however. Blazor server provides a stateful,

component-based application that’s similar to the Web Forms

application model. You may be able to gradually migrate

your Web Forms application page by page to an ASP.NET

Core Blazor server application.
4
 Alternatively, you could

slowly introduce web API concepts into your Web Forms

application, reducing the reliance on legacy Web Forms

constructs such as ViewState, with the goal of ultimately

moving to an ASP.NET Core web API application.

Windows Communication Foundation (WCF) is only partially

supported in ASP.NET Core. It’s possible to build client-side

WCF services using the libraries provided by ASP.NET Core

(https://github.com/dotnet/wcf) and to build server-side

WCF services by using the Microsoft-supported community-

driven project CoreWCF.
5
 These libraries don’t support all the

APIs available in .NET Framework WCF (distributed

transactions and some message security formats, for

example), so if you absolutely need those APIs, it may be

best to avoid ASP.NET Core for now.

TIP If you like WCF’s contract-based RPC-style of programming but
don’t have a hard requirement for WCF itself, consider using gRPC
instead. gRPC is a modern RPC framework with many concepts that
are similar to WCF, and it’s supported by ASP.NET Core out of the
box (http://mng.bz/wv9Q).

If your existing application is complex and makes extensive

use of the previous MVC or web API extensibility points or

message handlers, porting your application to ASP.NET Core

may be more difficult. ASP.NET Core is built with many

features similar to the previous version of ASP.NET MVC, but

the underlying architecture is different. Several of the

previous features don’t have direct replacements, so they’ll

require rethinking.

The larger the application is, the greater the difficulty you’re

likely to have converting your application to ASP.NET Core.

Microsoft itself suggests that porting an application from

ASP.NET MVC to ASP.NET Core is at least as big a rewrite as

porting from ASP.NET Web Forms to ASP.NET MVC. If that

suggestion doesn’t scare you, nothing will!

https://github.com/dotnet/wcf
http://mng.bz/wv9Q

If an application is rarely used, isn’t part of your core

business, or won’t need significant development in the near

term, I suggest that you don’t try to convert it to ASP.NET

Core. Microsoft will support .NET Framework for the

foreseeable future (Windows itself depends on it!), and the

payoff in converting these fringe applications is unlikely to

be worth the effort.

So when should you port an application to ASP.NET Core? As

I’ve already mentioned, the best opportunity to get started

is on small new greenfield projects instead of existing

applications. That said, if the existing application in question

is small or will need significant future development, porting

may be a good option.

It’s always best to work in small iterations if possible when

porting an application, rather than attempt to convert the

entire application at the same time. Luckily, Microsoft

provides tools for that purpose. A set of System.Web

adapters, a .NET-based reverse proxy called YARP (Yet

Another Reverse Proxy; http://mng.bz/qr92), and tooling

built into Visual Studio can help you implement the strangler

fig pattern (http://mng.bz/rW6J). This tooling allows you to

migrate your application one page/API at a time, reducing

the risk associated with porting an ASP.NET application to

ASP.NET Core.

In this chapter, we walked through some of the historical

context of ASP.NET Core, as well as some of the advantages

of adopting it. In chapter 3, you’ll create your first

application from a template and run it. We’ll walk through

http://mng.bz/qr92
http://mng.bz/rW6J

each of the main components that make up your application

and see how they work together to render a web page.

Summary
Web frameworks provide a way to build dynamic

web applications easily.

ASP.NET Core is a web framework built with

modern software architecture practices and

modularization as its focus.

ASP.NET Core runs on the cross-platform .NET 7

platform. You can access Windows-specific

features such as the Windows Registry by using

the Windows Compatibility Pack.

.NET 5, .NET 6, and .NET 7 are the next versions

of .NET Core after .NET Core 3.1.

ASP.NET Core is best used for new greenfield

projects.

Legacy technologies such as WCF Server and Web

Forms can’t be used directly with ASP.NET Core,

but they have analogues and supporting libraries

that can help with porting ASP.NET applications to

ASP.NET Core.

You can convert an existing ASP.NET application to

ASP.NET Core gradually by using the strangler fig

pattern, using tooling and libraries provided by

Microsoft.

ASP.NET Core apps are often protected from the

internet by a reverse-proxy server, which forwards

requests to the application.

1. Orchard Core (https://orchardcore.net). Source code at
https://github.com/OrchardCMS/OrchardCore.

2. The cloudscribe project (https://www.cloudscribe.com). Source code at
https://github.com/cloudscribe.

3. As always in web development, technology is in a constant state of flux, so these
benchmarks will evolve over time. Although ASP.NET Core may not maintain its top-10 slot,
you can be sure that performance is one of the key focal points of the ASP.NET Core team.

4. There is a community-driven effort to create Blazor versions of common WebForms
components (http://mng.bz/PzPP). Also see an e-book for Blazor for Web Forms
developers at http://mng.bz/JgDv.

5. You can find the CoreWCF libraries at https://github.com/corewcf/corewcf and details on
upgrading a WCF service to .NET 5+ at http://mng.bz/mVg2.

https://orchardcore.net/
https://github.com/OrchardCMS/OrchardCore
https://www.cloudscribe.com/
https://github.com/cloudscribe
http://mng.bz/PzPP
http://mng.bz/JgDv
https://github.com/corewcf/corewcf
http://mng.bz/mVg2

3 Your first application

This chapter covers

Creating your first ASP.NET Core web application
Running your application
Understanding the components of your application

In the previous chapters, I gave you an overview of how

ASP.NET Core applications work and when you should use them.

Now you should set up a development environment to use for

building applications.

TIP See appendix A for guidance on installing the .NET 7 software
development kit (SDK) and choosing an editor/integrated development
environment (IDE) for building ASP.NET Core apps.

In this chapter, you’ll dive right in by creating your first web app.

You’ll get to kick the tires and poke around a little to get a feel

for how it works. In later chapters, I’ll show you how to go about

customizing and building your own applications.

As you work through this chapter, you should begin to get a

grasp of the various components that make up an ASP.NET Core

application, as well as an understanding of the general

application-building process. Most applications you create will

start from a similar template, so it’s a good idea to get familiar

with the setup as soon as possible.

DEFINITION A template provides the basic code required to build an
application. You can use a template as the starting point for building your
own apps.

I’ll start by showing you how to create a basic ASP.NET Core

application using one of the Visual Studio templates. If you’re

using other tooling, such as the .NET command-line interface

(CLI), you’ll have similar templates available. I use Visual Studio

2022 and ASP.NET Core 7 with .NET 7 in this chapter, but I also

provide tips for working with the .NET CLI.

TIP You can view the application code for this chapter in the GitHub
repository for the book at http://mng.bz/5wj1.

After you’ve created your application, I’ll show you how to

restore all the necessary dependencies, compile your

application, and run it to see the output. The application will be

simple, containing the bare bones of an ASP.NET Core

application that responds with "Hello World!"

Having run your application, your next step is understanding

what’s going on! We’ll take a journey through the ASP.NET Core

application, looking at each file in the template in turn. You’ll get

a feel for how an ASP.NET Core application is laid out and see

what the C# code for the smallest possible app looks like.

As a final twist, you’ll see how to extend your application to

handle requests for static files, as well as how to create a simple

API that returns data in standard JavaScript Object Notation

(JSON) format.

At this stage, don’t worry if you find parts of the project

confusing or complicated; you’ll be exploring each section in

detail as you move through the book. By the end of the chapter,

you should have a basic understanding of how ASP.NET Core

applications are put together, from when your application is first

run to when a response is generated. Before we begin, though,

we’ll review how ASP.NET Core applications handle requests.

http://mng.bz/5wj1

3.1 A brief overview of an ASP.NET Core
application

In chapter 1, I described how a browser makes an HTTP request

to a server and receives a response, which it uses to render

HTML on the page. ASP.NET Core allows you to generate that

HTML dynamically depending on the particulars of the request,

so that (for example) you can display different data depending

on the current logged-in user.

Suppose that you want to create a web app to display

information about your company. You could create a simple

ASP.NET Core app to achieve this goal; later, you could add

dynamic features to your app. Figure 3.1 shows how the

application would handle a request for a page in your

application.

Figure 3.1 An overview of an ASP.NET Core application. The ASP.NET
Core application receives an incoming HTTP request from the
browser. Every request passes to the middleware pipeline, which
potentially modifies it and then passes it to the endpoint middleware
at the end of the pipeline to generate a response. The response
passes back through the middleware to the server and finally out to
the browser.

Much of this diagram should be familiar to you from figure 1.3 in

chapter 1; the request and response and the ASP.NET Core web

server are still there. But you’ll notice that I’ve added a reverse

proxy to show a common deployment pattern for ASP.NET Core

applications. I’ve also expanded the ASP.NET Core application

itself to show the middleware pipeline and the endpoint

middleware—the main custom part of your app that goes into

generating the response from a request.

The first port of call after the reverse proxy forwards a request is

the ASP.NET Core web server, which is the default cross-platform

Kestrel server. Kestrel takes the raw incoming network request

and uses it to generate an HttpContext object that the rest of

the application can use.

The HttpContext object

The HttpContext constructed by the ASP.NET Core web server is used by the application
as a sort of storage box for a single request. Anything that’s specific to this particular request
and the subsequent response can be associated with it and stored in it, such as properties of
the request, request-specific services, data that’s been loaded, or errors that have occurred.
The web server fills the initial HttpContext with details of the original HTTP request and
other configuration details and then passes it on to the rest of the application.

NOTE Kestrel isn’t the only HTTP server available in ASP.NET Core, but
it’s the most performant and is cross-platform. I’ll refer only to Kestrel
throughout the book. A different web server, IIS HTTP Server, is used
when running in-process in Internet Information Services (IIS). The main
alternative, HTTP.sys, runs only in Windows and can’t be used with IIS.1

Kestrel is responsible for receiving the request data and

constructing a .NET representation of the request, but it doesn’t

attempt to generate a response directly. For that task, Kestrel

hands the HttpContext to the middleware pipeline in every

ASP.NET Core application. This pipeline is a series of components

that process the incoming request to perform common

operations such as logging, handling exceptions, and serving

static files.

NOTE You’ll learn about the middleware pipeline in detail in chapter 4.

At the end of the middleware pipeline is the endpoint

middleware, which is responsible for calling the code that

generates the final response. In most applications that code will

be a Model-View-Controller (MVC), Razor Pages, or minimal API

endpoint.

Most ASP.NET Core applications follow this basic architecture,

and the example in this chapter is no different. First, you’ll see

how to create and run your application; then you’ll look at how

the code corresponds to the outline in figure 3.1. Without further

ado, let’s create an application!

3.2 Creating your first ASP.NET Core
application

In this section you’re going to create a minimal API application

that returns "Hello World!" when you call the HTTP API. This

application is about the simplest ASP.NET Core application you

can create, but it demonstrates many of the fundamental

concepts of building and running applications with .NET.

You can start building applications with ASP.NET Core in many

ways, depending on the tools and operating system you’re

using. Each set of tools has slightly different templates, but the

templates have many similarities. The example used throughout

this chapter is based on a Visual Studio 2022 template, but you

can easily follow along with templates from the .NET CLI or

Visual Studio for Mac.

NOTE As a reminder, I use Visual Studio 2022 and ASP.NET Core with
.NET 7 throughout the book.

Getting an application up and running locally typically involves

four basic steps, which we’ll work through in this chapter:

1. Generate—Create the base application from a template

to get started.

2. Restore—Restore all the packages and dependencies

to the local project folder using NuGet.

3. Build—Compile the application, and generate all the

necessary artifacts.

4. Run—Run the compiled application.

Visual Studio and the .NET CLI include many ASP.NET Core

templates for building different types of applications, such as

Minimal API applications—HTTP API applications that

return data in JSON format, which can be consumed

by single-page applications (SPAs) and mobile apps.

They’re typically used in conjunction with client-side

applications such as Angular and React.js or mobile

applications.

Razor Pages web applications—Razor Pages

applications generate HTML on the server and are

designed to be viewed by users in a web browser

directly.

MVC applications—MVC applications are similar to

Razor Pages apps in that they generate HTML on the

server and are designed to be viewed by users directly

in a web browser. They use traditional MVC controllers

instead of Razor Pages.

Web API applications—Web API applications are similar

to minimal API apps, in that they are typically

consumed by SPAs and mobile apps. Web API apps

provide additional functionality compared to minimal

APIs, at the expense of some performance and

convenience.

We’ll look at each of these application types in this book, but in

part 1 we focus on minimal APIs, so in section 3.2.1 we start by

looking at the simplest ASP.NET Core app you can create.

3.2.1 Using a template to get started

In this section you’ll use a template to create your first ASP.NET

Core minimal API application. Using a template can get you up

and running with an application quickly, automatically

configuring many of the fundamental pieces. Both Visual Studio

and the .NET CLI come with standard templates for building web

applications, console applications, and class libraries.

TIP In .NET, a project is a unit of deployment, which will be compiled into
a .dll file or an executable, for example. Each separate app is a separate
project. Multiple projects can be built and developed at the same time in a
solution.

To create your first web application, open Visual Studio, and

perform the following steps:

1. Choose Create a New Project from the splash

screen, or choose File > New > Project from the

main Visual Studio screen.

2. From the list of templates, choose ASP.NET Core

Empty; select the C# language template, as shown in

figure 3.2; and then choose Next.

Figure 3.2 The Create a New Project dialog box. Select the C#
ASP.NET Core Empty template in the list on the right side. When
you next create a new project, you can choose a template from
the Recent Project Templates list on the left side.

3. On the next screen, enter a project name, location,

and solution name, and choose Create, as shown in

figure 3.3. You might use WebApplication1 as both the

project and solution name, for example.

Figure 3.3 The Configure Your New Project dialog box. Enter a
project name, location, and solution name, and choose Next.

4. On the following screen (figure 3.4), do the following:

a. Select .NET 7.0. If this option isn’t available,

ensure that you have .NET 7 installed. See

appendix A for details on configuring your

environment.

b. Ensure that Configure for HTTPS is checked.

c. Ensure that Enable Docker is not checked.

d. Ensure that Do not use top-level statements is

not checked. (I explain top-level statements in

section 3.6.)

e. Choose Create.

Figure 3.4 The Additional Information dialog box follows the
Configure Your New Project dialog box and lets you customize

the template that will generate your application. For this starter
project, you’ll create an empty .NET 7 application that uses top-
level statements.

5. Wait for Visual Studio to generate the application from

the template. When Visual Studio finishes, an

introductory page about ASP.NET Core appears; you

should see that Visual Studio has created and added

some files to your project, as shown in figure 3.5.

Figure 3.5 Visual Studio after creating a new ASP.NET Core
application from a template. The Solution Explorer shows your newly
created project. The introductory page has helpful links for learning
about ASP.NET Core.

If you’re not using Visual Studio, you can create a similar

template by using the .NET CLI. Create a folder to hold your new

project. Open a PowerShell or cmd prompt in the folder

(Windows) or a terminal session (Linux or macOS), and run the

commands in the following listing.

Listing 3.1 Creating a new minimal API application with the .NET CLI

dotnet new sln -n WebApplication1 ❶
dotnet new web -o WebApplication1 ❷
dotnet sln add WebApplication1 ❸

❶ Creates a solution file called WebApplication1 in the current folder

❷ Creates an empty ASP.NET Core project in a subfolder, WebApplication1
❸ Adds the new project to the solution file

NOTE Visual Studio uses the concept of a solution to work with multiple
projects. The example solution consists of a single project, which is listed
in the .sln file. If you use a CLI template to create your project, you won’t
have a .sln file unless you generate it explicitly by using additional .NET
CLI templates (listing 3.1).

Whether you use Visual Studio or the .NET CLI, now you have

the basic files required to build and run your first ASP.NET Core

application.

3.2.2 Building the application

At this point, you have most of the files necessary to run your

application, but you’ve got two steps left. First, you need to

ensure all the dependencies used by your project are

downloaded to your machine, and second, you need to compile

your application so that it can be run.

The first step isn’t strictly necessary, as both Visual Studio and

the .NET CLI automatically restore packages when they create

your project, but it’s good to know what’s going on. In earlier

versions of the .NET CLI, before 2.0, you needed to restore

packages manually by using dotnet restore.

You can compile your application by choosing Build > Build

Solution, pressing the shortcut Ctrl-Shift-B, or running dotnet

build from the command line. If you build from Visual Studio,

the output window shows the progress of the build, and

assuming that everything is hunky-dory, Visual Studio compiles

your application, ready for running. You can also run the

dotnet build console commands from the Package Manager

Console in Visual Studio.

TIP Visual Studio and the .NET CLI tools build your application
automatically when you run it if they detect that a file has changed, so you
generally won’t need to perform this step explicitly yourself.

NuGet packages and the .NET CLI

One of the foundational components of .NET 7 cross-platform development is the .NET CLI,
which provides several basic commands for creating, building, and running .NET 7
applications. Visual Studio effectively calls these commands automatically, but you can also
invoke them directly from the command line if you’re using a different editor. The most
common commands used during development are

dotnet restore

dotnet build

dotnet run

Each of these commands should be run inside your project folder and will act on that project
alone. Except where explicitly noted, this is the case for all .NET CLI commands.

Most ASP.NET Core applications have dependencies on various external libraries, which are
managed through the NuGet package manager. These dependencies are listed in the
project, but the files of the libraries themselves aren’t included. Before you can build and run
your application, you need to ensure that there are local copies of each dependency on your

machine. The first command, dotnet restore, ensures that your application’s NuGet
dependencies are downloaded and the files are referenced correctly by your project.

ASP.NET Core projects list their dependencies in the project’s .csproj file, an XML file that
lists each dependency as a PackageReference node. When you run dotnet restore,
it uses this file to establish which NuGet packages to download. Any dependencies listed are
available for use in your application.

The restore process typically happens implicitly when you build or run your application, as
shown in the following figure, but it can be useful sometimes to run it explicitly, such as in
continuous-integration build pipelines.

The dotnet build command runs dotnet restore implicitly.
Similarly, dotnet run runs dotnet build and dotnet restore. If you
don’t want to run the previous steps automatically, you can use
the --no-restore and --no-build flags, as in dotnet build --no-
restore.

You can compile your application by using dotnet build, which checks for any errors in
your application and, if it finds no problems, produces output binaries that can be run with

dotnet run.

Each command contains switches that can modify its behavior. To see the full list of available
commands, run

dotnet --help

To see the options available for a particular command, such as new, run

dotnet new --help

3.3 Running the web application
You’re ready to run your first application, and you have several

ways to go about it. In Visual Studio, you can click the green

arrow on the toolbar next to WebApplication1 or press the F5

shortcut. Visual Studio will automatically open a web browser

window for you with the appropriate URL, and after a second or

two, you should see the basic "Hello World!" response, as

shown in figure 3.6.

Figure 3.6 The output of your new ASP.NET Core application. The
template chooses a random port to use for your application’s URL,
which will be opened in the browser automatically when you run
from Visual Studio.

Alternatively, instead of using Visual Studio, you can run the

application from the command line with the .NET CLI tools by

using dotnet run. Then you can open the URL in a web

browser manually, using the address provided on the command

line. Depending on whether you created your application with

Visual Studio, you may see an http:// or https:// URL.

TIP The first time you run the application from Visual Studio, you may be
prompted to install the development certificate. Doing so ensures that
your browser doesn’t display warnings about an invalid certificate.2 See
chapter 28 for more about HTTPS certificates.

This basic application has a single endpoint that returns the

plain-text response when you request the path /, as you saw in

figure 3.6. There isn’t anything more you can do with this simple

app, so let’s look at some code!

3.4 Understanding the project layout
When you’re new to a framework, creating an application from a

template can be a mixed blessing. On one hand, you can get an

application up and running quickly, with little input required on

your part. Conversely, the number of files can be overwhelming,

leaving you scratching your head working out where to start.

The basic web application template doesn’t contain a huge

number of files and folders, as shown in figure 3.7, but I’ll run

through the major ones to get you oriented.

Figure 3.7 Solution Explorer and folder on disk for a new ASP.NET
Core application. Solution Explorer also displays the Connected
Services and Dependencies nodes, which list NuGet and other
dependencies, though the folders themselves don’t exist on disk.

The first thing to notice is that the main project,

WebApplication1, is nested in a top-level directory with the

name of the solution, which is also WebApplication1 in this case.

Within this top-level folder you’ll also find the solution (.sln) file

used by Visual Studio, though this is hidden in Visual Studio’s

Solution Explorer view.

Inside the solution folder you’ll find your project folder, which

contains the most important file in your project:

WebApplication1.csproj. This file describes how to build your

project and lists any additional NuGet packages that it requires.

Visual Studio doesn’t show the .csproj file explicitly, but you can

edit it if you double-click the project name in Solution Explorer

or right-click and choose Properties from the contextual menu.

We’ll take a closer look at this project file in the next section.

Your project folder contains a subfolder called Properties, which

contains a single file: launchSettings.json. This file controls how

Visual Studio will run and debug the application. Visual Studio

shows the file as a special node in Solution Explorer, out of

alphabetical order, near the top of your project. You’ve got two

more special nodes in the project, Dependencies and Connected

Services, but they don’t have corresponding folders on disk.

Instead, they show a collection of all the dependencies, such as

NuGet packages, and remote services that the project relies on.

In the root of your project folder, you’ll find two JSON files:

appsettings.json and appsettings.Development.json. These files

provide configuration settings that are used at runtime to control

the behavior of your app.

Finally, Visual Studio shows one C# file in the project folder:

Program.cs. In section 3.6 you’ll see how this file configures and

runs your application.

3.5 The .csproj project file: Declaring
your dependencies

The .csproj file is the project file for .NET applications and

contains the details required for the .NET tooling to build your

project. It defines the type of project being built (web app,

console app, or library), which platform the project targets (.NET

Core 3.1, .NET 7 and so on), and which NuGet packages the

project depends on.

The project file has been a mainstay of .NET applications, but in

ASP.NET Core it has had a facelift to make it easier to read and

edit. These changes include

No GUIDs—Previously, globally unique identifiers

(GUIDs) were used for many things, but now they’re

rarely used in the project file.

Implicit file includes—Previously, every file in the

project had to be listed in the .csproj file to be

included in the build. Now files are compiled

automatically.

No paths to NuGet package .dll files—Previously, you

had to include the path to the .dll files contained in

NuGet packages in the .csproj, as well as list the

dependencies in a packages.config file. Now you can

reference the NuGet package directly in your .csproj,

and you don’t need to specify the path on disk.

All these changes combine to make the project file far more

compact than you’ll be used to from previous .NET projects. The

following listing shows the entire .csproj file for your sample

app.

Listing 3.2 The .csproj project file, showing SDK, target framework,
and references

<Project Sdk="Microsoft.NET.Sdk.Web"> ❶
 <PropertyGroup>

 <TargetFramework>net7.0</TargetFramework> ❷
 <Nullable>enable</Nullable> ❸
 <ImplicitUsings>enable</ImplicitUsings> ❹

 </PropertyGroup>

</Project>

❶ The SDK attribute specifies the type of project you’re building.
❷ The TargetFramework is the framework you’ll run on—in this case, .NET 7.

❸ Enables the C# 8 feature “nullable reference types”
❹ Enables the C# 10 feature “implicit using statements”

For simple applications, you probably won’t need to change the

project file much. The Sdk attribute on the Project element

includes default settings that describe how to build your project,

whereas the TargetFramework element describes the

framework your application will run on. For .NET 6.0 projects,

this element will have the net6.0 value; if you’re running on

.NET 7, this will be net7.0. You can also enable and disable

various features of the compiler, such as the C# 8 feature

nullable reference types or the C# 10 feature implicit using

statements.
3

TIP With the new csproj style, Visual Studio users can double-click a
project in Solution Explorer to edit the .csproj file without having to close
the project first.

The most common changes you’ll make to the project file are to

add more NuGet packages by using the PackageReference

element. By default, your app doesn’t reference any NuGet

packages at all.

Using NuGet libraries in your project

Even though all apps are unique in some way, they also have common requirements. Most
apps need to access a database, for example, or manipulate JSON- or XML-formatted data.
Rather than having to reinvent that code in every project, you should use existing reusable
libraries.

NuGet is the library package manager for .NET, where libraries are packaged in NuGet
packages and published to https://www.nuget.org. You can use these packages in your
project by referencing the unique package name in your .csproj file, making the package’s
namespace and classes available in your code files. You can publish (and host) NuGet
packages to repositories other than nuget.org; see https://learn.micro soft.com/en-us/nuget
for details.

You can add a NuGet reference to your project by running dotnet add package
<packagename> from inside the project folder. This command updates your project file
with a <PackageReference> node and restores the NuGet package for your project. To
install the popular Newtonsoft.Json library, for example, you would run

dotnet add package Newtonsoft.Json

This command adds a reference to the latest version of the library to your project file, as
shown next, and makes the Newtonsoft.Json namespace available in your source-code files:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

 <TargetFramework>net7.0</TargetFramework>

 <Nullable>enable</Nullable>

 <ImplicitUsings>enable</ImplicitUsings>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="NewtonSoft.Json" Version="13.0.1" />

 </ItemGroup>

</Project>

If you’re using Visual Studio, you can manage packages with the NuGet Package Manager
by right-clicking the solution name or a project and choosing Manage NuGet Packages from
the contextual menu.

As a point of interest, there’s no officially agreed-on pronunciation for NuGet. Feel free to use
the popular “noo-get” or “nugget” style, or if you’re feeling especially posh, try “noo-jay”!

The simplified project file format is much easier to edit by hand

than previous versions, which is great if you’re developing cross-

platform. But if you’re using Visual Studio, don’t feel that you

have to take this route. You can still use the GUI to add project

references, exclude files, manage NuGet packages, and so on.

Visual Studio will update the project file itself, as it always has.

https://www.nuget.org/
https://learn.microsoft.com/en-us/nuget

TIP For further details on the changes to the csproj format, see the
documentation at http://mng.bz/vnzJ.

The project file defines everything Visual Studio and the .NET

CLI need to build your app—everything, that is, except the code!

In the next section we’ll look at the file that defines your whole

ASP.NET Core application: the Program.cs file.

3.6 Program.cs file: Defining your
application

All ASP.NET Core applications start life as a .NET Console

application. As of .NET 6, that typically means a program written

with top-level statements, in which the startup code for your

application is written directly in a file instead of inside a static

void Main function.

Top-level statements

Before C# 9, every .NET program had to include a static void Main function (it could
also return int, Task, or Task<int>), typically declared in a class called Program. This
function, which must exist, defines the entry point for your program. This code runs when you
start your application, as in this example:

using System;

namespace MyApp

{

 public class Program

 {

 public static void Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 }

 }

}

http://mng.bz/vnzJ

With top-level statements you can write the body of this method directly in the file, and the
compiler generates the Main method for you.

When combined with C# 10 features such as implicit using statements, this dramatically
simplifies the entry-point code of your app to

Console.WriteLine("Hello World!");

When you use the explicit Main function you can access the command-line arguments
provided when the app was run using the args parameter. With top-level statements the
args variable is also available as a string[], even though it’s not declared explicitly. You
could echo each argument provided by using

foreach(string arg in args)

{

 Console.WriteLine(arg);

}

In .NET 7 all the default templates use top-level statements, and I use them throughout this
book. Most of the templates include an option to use the explicit Main function if you prefer
(using the --use-program-main option if you’re using the CLI). For more information on
top-level statements and their limitations, see http://mng.bz/4DZa. If you decide to switch
approaches later, you can always add or remove the Main function manually as required.

In .NET 7 ASP.NET Core applications the top-level statements

build and run a WebApplication instance, as shown in the

following listing, which shows the default Program.cs file. The

WebApplication is the core of your ASP.NET Core application,

containing the application configuration and the Kestrel server

that listens for requests and sends responses.

Listing 3.3 The default Program.cs file that configures and runs a
WebApplication

WebApplicationBuilder builder = WebApplication.CreateBuilder(args); ❶
WebApplication app = builder.Build(); ❷

app.MapGet("/", () => "Hello World!"); ❸

http://mng.bz/4DZa

app.Run(); ❹

❶ Creates a WebApplicationBuilder using the CreateBuilder method
❷ Builds and returns an instance of WebApplication from the WebApplicationBuilder

❸ Defines an endpoint for your application, which returns Hello World! when the path “/” is called
❹ Runs the WebApplication to start listening for requests and generating responses

These four lines contain all the initialization code you need to

create a web server and start listening for requests. It uses a

WebApplicationBuilder, created by the call to

CreateBuilder, to define how the WebApplication is

configured, before instantiating the WebApplication with a

call to Build().

NOTE You’ll find this pattern of using a builder object to configure a
complex object repeated throughout the ASP.NET Core framework. This
technique is useful for allowing users to configure an object, delaying its
creation until all configuration has finished. It’s also one of the patterns
described in the “Gang of Four” book Design Patterns: Elements of
Reusable Object-Oriented Software, by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides (Addison-Wesley, 1994).

In this simple application we don’t make any changes to

WebApplicationBuilder before calling Build(), but

WebApplicationBuilder configures a lot of things by default,

including

Configuration—Your app loads values from JSON files

and environment variables that you can use to control

the app’s runtime behavior, such as loading connection

strings for a database. You’ll learn more about the

configuration system in chapter 10.

Logging—ASP.NET Core includes an extensible logging

system for observability and debugging. I cover the

logging system in detail in chapter 26.

Services—Any classes that your application depends

on for providing functionality—both those used by the

framework and those specific to your application—

must be registered so that they can be instantiated

correctly at runtime. The WebApplicationBuilder

configures the minimal set of services needed for an

ASP.NET Core app. Chapters 8 and 9 look at service

configuration in detail.

Hosting—ASP.NET Core uses the Kestrel web server by

default to handle requests.

After configuring the WebApplicationBuilder you call

Build() to create a WebApplication instance. The

WebApplication instance is where you define how your

application handles and responds to requests, using two building

blocks:

Middleware—These small components execute in

sequence when the application receives an HTTP

request. They can perform a whole host of functions,

such as logging, identifying the current user for a

request, serving static files, and handling errors. We’ll

look in detail at the middleware pipeline in chapter 4.

Endpoints—Endpoints define how the response should

be generated for a specific request to a URL in your

app.

For the application in listing 3.3, we didn’t add any middleware,

but we defined a single endpoint using a call to MapGet:

app.MapGet("/", () => "Hello World!");

You use the MapGet function to define how to handle a request

that uses the GET HTTP verb. There are other Map* functions for

other HTTP verbs, such as MapPost.

DEFINITION Every HTTP request includes a verb that indicates the type
of the request. When you’re browsing a website, the default verb is GET,
which fetches a resource from the server so you can view it. The second-
most-common verb is POST, which is used to send data to the server,
such as when you’re completing a form.

The first argument passed to MapGet defines which URL path to

respond to, and the second argument defines how to generate

the response as a delegate that returns a string. In this simple

case, the arguments say “When a request is made to the path /

using the GET HTTP verb, respond with the plain-text value

Hello World!”.

DEFINITION A path is the remainder of the request URL after the domain
has been removed. For a request to www.example.org/accout/manage,
the path is /account/manage.

While you’re configuring the WebApplication and

WebApplicationBuilder the application isn’t handling HTTP

requests. Only after the call to Run() does the HTTP server

start listening for requests. At this point, your application is fully

operational and can respond to its first request from a remote

browser.

NOTE The WebApplication and WebApplicationBuilder
classes were introduced in .NET 6. The initialization code in previous

versions of ASP.NET Core was more verbose but gave you more control
of your application’s behavior. Configuration was typically split between
two classes—Program and Startup—and used different
configuration types—IHostBuilder and IHost, which have fewer
defaults than WebApplication. In chapter 30 I describe some of
these differences in more detail and show how to configure your
application by using the generic IHost instead of WebApplication.

So far in this chapter, we’ve looked at the simplest ASP.NET core

application you can build: a Hello World minimal API

application. For the remainder of this chapter, we’re going to

build on this app to introduce some fundamental concepts of

ASP.NET Core.

3.7 Adding functionality to your
application

The application setup you’ve seen so far in Program.cs consists

of only four lines of code but still shows the overall structure of a

typical ASP.NET Core app entry point, which typically consists of

six steps:

1. Create a WebApplicationBuilder instance.

2. Register the required services and configuration with

the WebApplicationBuilder.

3. Call Build() on the builder instance to create a

WebApplication instance.

4. Add middleware to the WebApplication to create a

pipeline.

5. Map the endpoints in your application.

6. Call Run() on the WebApplication to start the

server and handle requests.

The basic minimal API app shown previously in listing 3.3 was

simple enough that it didn’t need steps 2 and 4, but otherwise it

followed this sequence in its Program.cs file. The following listing

extends the default application to add more functionality, and in

doing so it uses all six steps.

Listing 3.4 The Program.cs file for a more complex example minimal
API

using Microsoft.AspNetCore.HttpLogging;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddHttpLogging(opts => ❶
 opts.LoggingFields = HttpLoggingFields.RequestProperties); ❶

builder.Logging.AddFilter(❷
 "Microsoft.AspNetCore.HttpLogging", LogLevel.Information); ❷

WebApplication app = builder.Build();

if (app.Environment.IsDevelopment()) ❸
{

 app.UseHttpLogging(); ❹
}

app.MapGet("/", () => "Hello World!");

app.MapGet("/person", () => new Person("Andrew", "Lock")); ❺

app.Run();

public record Person(string FirstName, string LastName); ❻

❶ You can customize features by adding or customizing the services of the application.

❷ Ensures that logs added by the HTTP logging middleware are visible in the log output
❸ You can add middleware conditionally, depending on the runtime environment.

❹ The HTTP logging middleware logs each request to your application in the log output.
❺ Creates a new endpoint that returns the C# object serialized as JSON

❻ Creates a record type

The application in listing 3.4 configures two new features:

When running in the Development environment,

details about each request are logged using the

HttpLoggingMiddleware.
4

Creates a new endpoint at /person that creates an

instance of the C# record called Person and serializes

it in the response as JSON.

When you run the application and send requests via a web

browser, you see details about the request displayed in the

console, as shown in figure 3.8. If you call the /person

endpoint you’ll see the JSON representation of the Person

record you created in the endpoint.

NOTE You can view the application only on the same computer that’s
running it at the moment; your application isn’t exposed to the internet yet.
You’ll learn how to publish and deploy your application in chapter 27.

Figure 3.8 Calling the /person endpoint returns a JSON-serialized
version of the Person record instance. Details about each request are
logged to the console by the HttpLoggingMiddleware.

Configuring services, logging, middleware, and endpoints is

fundamental to building ASP.NET Core applications, so the rest

of section 3.7 walks you through each of these concepts to give

you a taste of how they’re used. I won’t explain them in detail

(we have the rest of the book for that!), but you should keep in

mind how they follow on from each other and how they

contribute to the application’s configuration as a whole.

3.7.1 Adding and configuring services

ASP.NET Core uses small modular components for each distinct

feature. This approach allows individual features to evolve

separately, with only a loose coupling to others, and it’s

generally considered to be good design practice. The downside

to this approach is that it places the burden on the consumer of

a feature to instantiate it correctly. Within your application,

these modular components are exposed as one or more services

that are used by the application.

DEFINITION Within the context of ASP.Net Core, service refers to any
class that provides functionality to an application. Services could be
classes exposed by a library or code you’ve written for your application.

In an e-commerce app, for example, you might have a

TaxCalculator that calculates the tax due on a particular

product, taking into account the user’s location in the world. Or

you might have a ShippingCostService that calculates the

cost of shipping to a user’s location. A third service,

OrderTotalCalculator, might use both of these services to

work out the total price the user must pay for an order. Each

service provides a small piece of independent functionality, but

you can combine them to create a complete application. This

design methodology scenario is known as the single-

responsibility principle.

DEFINITION The single-responsibility principle (SRP) states that every
class should be responsible for only a single piece of functionality; it
should need to change only if that required functionality changes. SRP is
one of the five main design principles promoted by Robert C. Martin in
Agile Software Development, Principles, Patterns, and Practices
(Pearson, 2013).

OrderTotalCalculator needs access to an instance of

ShippingCostService and TaxCalculator. A naive

approach to this problem is to use the new keyword and create

an instance of a service whenever you need it. Unfortunately,

this approach tightly couples your code to the specific

implementation you’re using and can undo all the good you

achieved by modularizing the features in the first place. In some

cases, it may break the SRP by making you perform initialization

code in addition to using the service you created.

One solution to this problem is to make it somebody else’s

problem. When writing a service, you can declare your

dependencies and let another class fill those dependencies for

you. Then your service can focus on the functionality for which it

was designed instead of trying to work out how to build its

dependencies.

This technique is called dependency injection or the Inversion of

Control (IoC) principle, a well-recognized design pattern that is

used extensively. Typically, you’ll register the dependencies of

your application into a container, which you can use to create

any service. You can use the container to create both your own

custom application services and the framework services used by

ASP.NET Core. You must register each service with the container

before using it in your application.

NOTE I describe the dependency inversion principle and the IoC
container used in ASP.NET Core in detail in chapters 8 and 9.

In an ASP.NET Core application, this registration is performed by

using the Services property of WebApplicationBuilder.

Whenever you use a new ASP.NET Core feature in your

application, you need to come back to Program.cs and add the

necessary services. This task isn’t always as arduous as it

sounds, typically requiring only a line or two of code to configure

your applications.

In listing 3.4 we configured an optional service for the HTTP

logging middleware by using the line

builder.Services.AddHttpLogging(opts =>

 opts.LoggingFields = HttpLoggingFields.RequestProperties);

Calling AddHttpLogging() adds the necessary services for the

HTTP logging middleware to the IoC container and customizes

the options used by the middleware for what to display.

AddHttpLogging isn’t exposed directly on the Services

property; it’s an extension method that provides a convenient

way to encapsulate all the code required to set up HTTP logging.

This pattern of encapsulating setup behind extension methods is

common in ASP.NET Core.

As well as registering framework-related services, the

Services property is where you’d register any custom services

you have in your application, such as the example

TaxCalculator discussed previously. The Services property

is an IServiceCollection, which is a list of every known

service that your application will need to use. By adding a new

service to it, you ensure that whenever a class declares a

dependency on your service, the IoC container will know how to

provide it.

As well as configuring services, WebApplicationBuilder is

where you customize other cross-cutting concerns, such as

logging. In listing 3.4, I showed how you can add a logging filter

to ensure that the logs generated by the

HttpLoggingMiddleware are written to the console:

builder.Logging.AddFilter(

 "Microsoft.AspNetCore.HttpLogging", LogLevel.Information);

This line ensures that logs of severity Information or greater

created in the Microsoft .AspNetCore.HttpLogging

namespace will be included in the log output.

NOTE I show configuring log filters in code here for convenience, but this
isn’t the idiomatic approach for configuring filters in ASP.NET Core.
Typically, you control which levels are shown by adding values to
appsettings.json instead, as shown in the source code accompanying this
chapter. You’ll learn more about logging and log filtering in chapter 26.

After you call Build() on the WebApplicationBuilder

instance, you can’t register any more services or change your

logging configuration; the services defined for the

WebApplication instance are set in stone. The next step is

defining how your application responds to HTTP requests.

3.7.2 Defining how requests are handled with
middleware and endpoints

After registering your services with the IoC container on

WebApplicationBuilder and doing any further

customization, you create a WebApplication instance. You

can do three main things with the WebApplication instance:

Add middleware to the pipeline.

Map endpoints that generate a response for a request.

Run the application by calling Run().

As I described previously, middleware consists of small

components that execute in sequence when the application

receives an HTTP request. They can perform a host of functions,

such as logging, identifying the current user for a request,

serving static files, and handling errors. Middleware is typically

added to WebApplication by calling Use* extension methods.

In listing 3.4, I showed an example of adding the

HttpLoggingMiddleware to the middleware pipeline

conditionally by calling UseHttpLogging():

if (app.Environment.IsDevelopment())

{

 app.UseHttpLogging();

}

We added only a single piece of middleware to the pipeline in

this example, but when you’re adding multiple pieces of

middleware, the order of the Use* calls is important: the order

in which they’re added to the builder is the order in which they’ll

execute in the final pipeline. Middleware can use only objects

created by previous middleware in the pipeline; it can’t access

objects created by later middleware.

WARNING It’s important to consider the order of middleware when adding
it to the pipeline, as middleware can use only objects created earlier in the
pipeline.

You should also note that listing 3.4 uses the

WebApplication.Environment property (an instance of

IWebHostEnvironment) to provide different behavior when

you’re in a development environment. The

HttpLoggingMiddleware is added to the pipeline only when

you’re running in development; when you’re running in

production (or, rather, when EnvironmentName is not set to

"Development"), the HttpLoggingMiddleware will not be

added.

NOTE You’ll learn about hosting environments and how to change the
current environment in chapter 10.

The WebApplicationBuilder builds an

IWebHostEnvironment object and sets it on the

Environment property. IWebHostEnvironment exposes

several environment-related properties, such as

ContentRootPath—Location of the working directory

for the app, typically the folder in which the application

is running

WebRootPath—Location of the wwwroot folder that

contains static files

EnvironmentName—Whether the current

environment is a development or production

environment

IWebHostEnvironment is already set by the time the

WebApplication instance is created. EnvironmentName is

typically set externally by using an environment variable when

your application starts.

Listing 3.4 added only a single piece of middleware to the

pipeline, but WebApplication automatically adds more

middleware, including two of the most important and substantial

pieces of middleware in the pipeline: the routing middleware and

the endpoint middleware. The routing middleware is added

automatically to the start of the pipeline, before any of the

additional middleware added in Program.cs (so before the

HttpLoggingMiddleware). The endpoint middleware is added

to the end of the pipeline, after all the other middleware added

in Program.cs.

NOTE WebApplication adds several more pieces of middleware to
the pipeline by default. It automatically adds error-handling middleware
when you’re running in the development environment, for example. I
discuss some of this autoadded middleware in detail in chapter 4.

Together, this pair of middleware is responsible for interpreting

the request to determine which endpoint to invoke, for reading

parameters from the request, and for generating the final

response. For each request, the routing middleware uses the

request’s URL to determine which endpoint to invoke. Then the

rest of the middleware pipeline executes until the request

reaches the endpoint middleware, at which point the endpoint

middleware executes the endpoint to generate the final

response.

The routing and endpoint middleware work in tandem, using the

set of endpoints defined for your application. In listing 3.4 we

defined two endpoints:

app.MapGet("/", () => "Hello World!");

app.MapGet("/person", () => new Person("Andrew", "Lock"));

You’ve already seen the default "Hello World!" endpoint.

When you send a GET request to /, the routing middleware

selects the "Hello World!" endpoint. The request continues

down the middleware pipeline until it reaches the endpoint

middleware, which executes the lambda and returns the string

value in the response body.

The other endpoint defines a lambda to run for GET requests to

the /person path, but it returns a C# record instead of a

string. When you return a C# object from a minimal API

endpoint, the object is serialized to JSON automatically and

returned in the response body, as you saw in figure 3.8. In

chapter 6 you’ll learn how to customize this response, as well as

return other types of responses.

And there you have it. You’ve finished the tour of your first

ASP.NET Core application! Before we move on, let’s take one last

look at how our application handles a request. Figure 3.9 shows

a request to the /person path being handled by the sample

application. You’ve seen everything here already, so the process

of handling a request should be familiar. The figure shows how

the request passes through the middleware pipeline before being

handled by the endpoint middleware. The endpoint executes the

lambda method and generates the JSON response, which passes

back through the middleware to the ASP.NET Core web server

before being sent to the user’s browser.

Figure 3.9 An overview of a request to the /person URL for the
extended ASP.NET Core minimal API application. The routing
middleware routes the request to the correct lambda method. The
endpoint generates a JSON response by executing the method and
passes the response back through the middleware pipeline to the
browser.

The trip has been pretty intense, but now you have a good

overview of how an entire application is configured and how it

handles a request by using minimal APIs. In chapter 4, you’ll

take a closer look at the middleware pipeline that exists in all

ASP.NET Core applications. You’ll learn how it’s composed, how

you can use it to add functionality to your application, and how

you can use it to create simple HTTP services.

Summary
The .csproj file contains the details of how to build

your project, including which NuGet packages it

depends on. Visual Studio and the .NET CLI use this

file to build your application.

Restoring the NuGet packages for an ASP.NET Core

application downloads all your project’s dependencies

so that it can be built and run.

Program.cs is where you define the code that runs

when your app starts. You can create a

WebApplicationBuilder by using

WebApplication.CreateBuilder() and call

methods on the builder to create your application.

All services, both framework and custom application

services, must be registered with the

WebApplicationBuilder by means of the

Services property, to be accessed later in your

application.

After your services are configured you call Build()

on the WebApplicationBuilder instance to create

a WebApplication instance. You use

WebApplication to configure your app’s middleware

pipeline, to register the endpoints, and to start the

server listening for requests.

Middleware defines how your application responds to

requests. The order in which middleware is registered

defines the final order of the middleware pipeline for

the application.

The WebApplication instance automatically adds

RoutingMiddleware to the start of the middleware

pipeline and EndpointMiddleware as the last

middleware in the pipeline.

Endpoints define how a response should be generated

for a given request and are typically tied to a request’s

path. With minimal APIs, a simple function is used to

generate a response.

You can start the web server and begin accepting HTTP

requests by calling Run on the WebApplication

instance.

1. If you want to learn more about Kestrel, IIS HTTP Server, and HTTP.sys, this documentation
describes the differences among them: http://mng.bz/6DgD.

http://mng.bz/6DgD

2. You can install the development certificate in Windows and macOS. For instructions on trusting
the certificate on Linux, see your distribution’s instructions. Not all browsers (Mozilla Firefox, for
example) use the certificate store, so follow your browser’s guidelines for trusting the certificate.
If you still have difficulties, see the troubleshooting tips at http://mng.bz/o1pr.

3. You can read about the new C# features included in .NET 7 and C# 11 at http://mng.bz/nWMg.
4. You can read in more detail about HTTP logging in the documentation at http://mng.bz/QPmw.

http://mng.bz/o1pr
http://mng.bz/nWMg
http://mng.bz/QPmw

4 Handling requests with the
middleware pipeline

This chapter covers

Understanding middleware
Serving static files using middleware
Adding functionality using middleware
Combining middleware to form a pipeline
Handling exceptions and errors with middleware

In chapter 3 you had a whistle-stop tour of a complete

ASP.NET Core application to see how the components come

together to create a web application. In this chapter, we’ll

focus on one small subsection: the middleware pipeline.

In ASP.NET Core, middleware consists of C# classes or

functions that handle an HTTP request or response.

Middleware is chained together, with the output of one acting

as the input to the next to form a pipeline.

The middleware pipeline is one of the most important parts

of configuration for defining how your application behaves

and how it responds to requests. Understanding how to build

and compose middleware is key to adding functionality to

your applications.

In this chapter you’ll learn what middleware is and how to

use it to create a pipeline. You’ll see how you can chain

multiple middleware components together, with each

component adding a discrete piece of functionality. The

examples in this chapter are limited to using existing

middleware components, showing how to arrange them in

the correct way for your application. In chapter 31 you’ll

learn how to build your own middleware components and

incorporate them into the pipeline.

We’ll begin by looking at the concept of middleware, all the

things you can achieve with it, and how a middleware

component often maps to a cross-cutting concern. These

functions of an application cut across multiple different

layers. Logging, error handling, and security are classic

cross-cutting concerns that are required by many parts of

your application. Because all requests pass through the

middleware pipeline, it’s the preferred location to configure

and handle this functionality.

In section 4.2 I’ll explain how you can compose individual

middleware components into a pipeline. You’ll start out

small, with a web app that displays only a holding page.

From there, you’ll learn how to build a simple static-file

server that returns requested files from a folder on disk.

Next, you’ll move on to a more complex pipeline containing

multiple middleware. In this example you’ll explore the

importance of ordering in the middleware pipeline, and you’ll

see how requests are handled when your pipeline contains

multiple middleware.

In section 4.3 you’ll learn how you can use middleware to

deal with an important aspect of any application: error

handling. Errors are a fact of life for all applications, so it’s

important that you account for them when building your

app.

You can handle errors in a few ways. Errors are among the

classic cross-cutting concerns, and middleware is well placed

to provide the required functionality. In section 4.3 I’ll show

how you can handle exceptions with middleware provided by

Microsoft. In particular, you’ll learn about two different

components:

DeveloperExceptionPageMiddleware—

Provides quick error feedback when building an

application

ExceptionHandlerMiddleware—Provides a

generic error page in production so that you don’t

leak any sensitive details

You won’t see how to build your own middleware in this

chapter; instead, you’ll see that you can go a long way by

using the components provided as part of ASP.NET Core.

When you understand the middleware pipeline and its

behavior, you’ll find it much easier to understand when and

why custom middleware is required. With that in mind, let’s

dive in!

4.1 Defining middleware
The word middleware is used in a variety of contexts in

software development and IT, but it’s not a particularly

descriptive word.

In ASP.NET Core, middleware is a C# class
1
 that can handle

an HTTP request or response. Middleware can

Handle an incoming HTTP request by generating an

HTTP response

Process an incoming HTTP request, modify it, and

pass it on to another piece of middleware

Process an outgoing HTTP response, modify it, and

pass it on to another piece of middleware or to the

ASP.NET Core web server

You can use middleware in a multitude of ways in your own

applications. A piece of logging middleware, for example,

might note when a request arrived and then pass it on to

another piece of middleware. Meanwhile, a static-file

middleware component might spot an incoming request for

an image with a specific name, load the image from disk,

and send it back to the user without passing it on.

The most important piece of middleware in most ASP.NET

Core applications is the EndpointMiddleware class. This

class normally generates all your HTML and JavaScript

Object Notation (JSON) responses, and is the focus of most

of this book. Like image-resizing middleware, it typically

receives a request, generates a response, and then sends it

back to the user (figure 4.1).

Figure 4.1 Example of a middleware pipeline. Each middleware
component handles the request and passes it on to the next
middleware component in the pipeline. After a middleware
component generates a response, it passes the response back
through the pipeline. When it reaches the ASP.NET Core web
server, the response is sent to the user’s browser.

DEFINITION This arrangement—whereby a piece of middleware can
call another piece of middleware, which in turn can call another, and
so on—is referred to as a pipeline. You can think of each piece of
middleware as being like a section of pipe; when you connect all the
sections, a request flows through one piece and into the next.

One of the most common use cases for middleware is for the

cross-cutting concerns of your application. These aspects of

your application need to occur for every request, regardless

of the specific path in the request or the resource requested,

including

Logging each request

Adding standard security headers to the response

Associating a request with the relevant user

Setting the language for the current request

In each of these examples, the middleware receives a

request, modifies it, and then passes the request on to the

next piece of middleware in the pipeline. Subsequent

middleware could use the details added by the earlier

middleware to handle the request in some way. In figure

4.2, for example, the authentication middleware associates

the request with a user. Then the authorization middleware

uses this detail to verify whether the user has permission to

make that specific request to the application.

Figure 4.2 Example of a middleware component modifying a
request for use later in the pipeline. Middleware can also short-
circuit the pipeline, returning a response before the request
reaches later middleware.

If the user has permission, the authorization middleware

passes the request on to the endpoint middleware to allow it

to generate a response. If the user doesn’t have permission,

the authorization middleware can short-circuit the pipeline,

generating a response directly; it returns the response to

the previous middleware, and the endpoint middleware

never sees the request. This scenario is an example of the

chain-of-responsibility design pattern.

DEFINITION When a middleware component short-circuits the
pipeline and returns a response, it’s called terminal middleware.

A key point to glean from this example is that the pipeline is

bidirectional. The request passes through the pipeline in one

direction until a piece of middleware generates a response,

at which point the response passes back through the

pipeline, passing through each piece of middleware a second

time, in reverse order, until it gets back to the first piece of

middleware. Finally, the first/last piece of middleware passes

the response back to the ASP.NET Core web server.

The HttpContext object

I mentioned the HttpContext in chapter 3, and it’s sitting behind the scenes here,
too. The ASP.NET Core web server constructs an HttpContext for each request,
which the ASP.NET Core application uses as a sort of storage box for a single request.
Anything that’s specific to this particular request and the subsequent response can be
associated with and stored in it. Examples are properties of the request, request-
specific services, data that’s been loaded, or errors that have occurred. The web
server fills the initial HttpContext with details of the original HTTP request and
other configuration details, and then passes it on to the middleware pipeline and the
rest of the application.

All middleware has access to the HttpContext for a request. It can use this object
to determine whether the request contains any user credentials, to identify which page

the request is attempting to access, and to fetch any posted data, for example. Then it
can use these details to determine how to handle the request.

When the application finishes processing the request, it updates the HttpContext
with an appropriate response and returns it through the middleware pipeline to the web
server. Then the ASP.NET Core web server converts the representation to a raw HTTP
response and sends it back to the reverse proxy, which forwards it to the user’s
browser.

As you saw in chapter 3, you define the middleware pipeline

in code as part of your initial application configuration in

Program.cs. You can tailor the middleware pipeline

specifically to your needs; simple apps may need only a

short pipeline, whereas large apps with a variety of features

may use much more middleware. Middleware is the

fundamental source of behavior in your application.

Ultimately, the middleware pipeline is responsible for

responding to any HTTP requests it receives.

Requests are passed to the middleware pipeline as

HttpContext objects. As you saw in chapter 3, the

ASP.NET Core web server builds an HttpContext object

from an incoming request, which passes up and down the

middleware pipeline. When you’re using existing middleware

to build a pipeline, this detail is one that you’ll rarely have to

deal with. But as you’ll see in the final section of this

chapter, its presence behind the scenes provides a route to

exerting extra control over your middleware pipeline.

You can also think of your middleware pipeline as being a

series of concentric components, similar to a traditional

matryoshka (Russian) doll, as shown in figure 4.3. A request

progresses through the pipeline by heading deeper into the

stack of middleware until a response is returned. Then the

response returns through the middleware, passing through

the components in reverse order from the request.

Figure 4.3 You can also think of middleware as being a series of
nested components; a request is sent deeper into the
middleware, and the response resurfaces from it. Each
middleware component can execute logic before passing the
response on to the next middleware component and can execute
logic after the response has been created, on the way back out
of the stack.

Middleware vs. HTTP modules and HTTP
handlers

In the previous version of ASP.NET, the concept of a middleware pipeline isn’t used.
Instead, you have HTTP modules and HTTP handlers.

An HTTP handler is a process that runs in response to a request and generates the
response. The ASP.NET page handler, for example, runs in response to requests for
.aspx pages. Alternatively, you could write a custom handler that returns resized
images when an image is requested.

HTTP modules handle the cross-cutting concerns of applications, such as security,
logging, and session management. They run in response to the life-cycle events that a
request progresses through when it’s received by the server. Examples of events
include BeginRequest, AcquireRequestState, and
PostAcquireRequestState.

This approach works, but sometimes it’s tricky to reason about which modules will run
at which points. Implementing a module requires relatively detailed understanding of
the state of the request at each individual life-cycle event.

The middleware pipeline makes understanding your application far simpler. The
pipeline is defined completely in code, specifying which components should run and in
which order. Behind the scenes, the middleware pipeline in ASP.NET Core is simply a
chain of method calls, with each middleware function calling the next in the pipeline.

That’s pretty much all there is to the concept of middleware.

In the next section, I’ll discuss ways you can combine

middleware components to create an application and how to

use middleware to separate the concerns of your application.

4.2 Combining middleware in a
pipeline

Generally speaking, each middleware component has a

single primary concern; it handles only one aspect of a

request. Logging middleware deals only with logging the

request, authentication middleware is concerned only with

identifying the current user, and static-file middleware is

concerned only with returning static files.

Each of these concerns is highly focused, which makes the

components themselves small and easy to reason about.

This approach also gives your app added flexibility. Adding

static-file middleware, for example, doesn’t mean you’re

forced to have image-resizing behavior or authentication;

each of these features is an additional piece of middleware.

To build a complete application, you compose multiple

middleware components into a pipeline, as shown in section

4.1. Each middleware component has access to the original

request, as well as any changes made to the HttpContext

by middleware earlier in the pipeline. When a response has

been generated, each middleware component can inspect

and/or modify the response as it passes back through the

pipeline before it’s sent to the user. This feature allows you

to build complex application behaviors from small, focused

components.

In the rest of this section, you’ll see how to create a

middleware pipeline by combining various middleware

components. Using standard middleware components, you’ll

learn to create a holding page and to serve static files from a

folder on disk. Finally, you’ll take a look at a more complex

pipeline such as you’d get in a minimal API application with

multiple middleware, routing, and endpoints.

4.2.1 Simple pipeline scenario 1: A holding
page

For your first app in this chapter and your first middleware

pipeline, you’ll learn how to create an app consisting of a

holding page. Adding a holding page can be useful

occasionally when you’re setting up your application to

ensure that it’s processing requests without errors.

TIP Remember that you can view the application code for this book in
the GitHub repository at http://mng.bz/Y1qN.

In previous chapters, I mentioned that the ASP.NET Core

framework is composed of many small individual libraries.

You typically add a piece of middleware by referencing a

package in your application’s .csproj project file and

configuring the middleware in Program.cs. Microsoft ships

many standard middleware components with ASP.NET Core

for you to choose among; you can also use third-party

components from NuGet and GitHub, or you can build your

own custom middleware. You can find the list of built-in

middleware at http://mng.bz/Gyxq.

NOTE I discuss building custom middleware in chapter 31.

http://mng.bz/Y1qN
http://mng.bz/Gyxq

In this section, you’ll see how to create one of the simplest

middleware pipelines, consisting only of

WelcomePageMiddleware. WelcomePageMiddleware is

designed to provide a sample HTML page quickly when

you’re first developing an application, as you can see in

figure 4.4. You wouldn’t use it in a production app, as you

can’t customize the output, but it’s a single, self-contained

middleware component you can use to ensure that your

application is running correctly.

Figure 4.4 The Welcome-page middleware response. Every
request to the application, at any path, will return the same
Welcome-page response.

TIP WelcomePageMiddleware is included as part of the base
ASP.NET Core framework, so you don’t need to add a reference to
any additional NuGet packages.

Even though this application is simple, the same process

you’ve seen before occurs when the application receives an

HTTP request, as shown in figure 4.5.

Figure 4.5 WelcomePageMiddleware handles a request. The request
passes from the reverse proxy to the ASP.NET Core web server
and finally to the middleware pipeline, which generates an HTML
response.

The request passes to the ASP.NET Core web server, which

builds a representation of the request and passes it to the

middleware pipeline. As it’s the first (only!) middleware in

the pipeline, WelcomePageMiddleware receives the

request and must decide how to handle it. The middleware

responds by generating an HTML response, no matter what

request it receives. This response passes back to the

ASP.NET Core web server, which forwards it to the reverse

proxy and then to the user to display in their browser.

As with all ASP.NET Core applications, you define the

middleware pipeline in Program.cs by calling Use* methods

on the WebApplication instance. To create your first

middleware pipeline, which consists of a single middleware

component, you need a single method call. The application

doesn’t need any extra configuration or services, so your

whole application consists of the four lines in the following

listing.

Listing 4.1 Program.cs for a Welcome-page middleware pipeline

WebApplicationBuilder builder = WebApplication.CreateBuilder(args); ❶
WebApplication app = builder.Build(); ❶

app.UseWelcomePage(); ❷

app.Run(); ❸

❶ Uses the default WebApplication configuration
❷ The only custom middleware in the pipeline

❸ Runs the application to handle requests

You build up the middleware pipeline in ASP.NET Core by

calling methods on WebApplication (which implements

IApplicationBuilder). WebApplication doesn’t

define methods like UseWelcomePage itself; instead, these

are extension methods.

Using extension methods allows you to add functionality to

the WebApplication class, while keeping the

implementation isolated from it. Under the hood, the

methods typically call another extension method to add the

middleware to the pipeline. Behind the scenes, for example,

the UseWelcomePage method adds the

WelcomePageMiddleware to the pipeline by calling

UseMiddleware<WelcomePageMiddleware>();

This convention of creating an extension method for each

piece of middleware and starting the method name with Use

is designed to improve discoverability when you add

middleware to your application.
2
 ASP.NET Core includes a lot

of middleware as part of the core framework, so you can use

IntelliSense in Visual Studio and other integrated

development environments (IDEs) to view all the

middleware that’s available, as shown in figure 4.6.

Figure 4.6 IntelliSense makes it easy to view all the available
middleware to add to your middleware pipeline.

Calling the UseWelcomePage method adds the

WelcomePageMiddleware as the next middleware in the

pipeline. Although you’re using only a single middleware

component here, it’s important to remember that the order

in which you make calls to IApplicationBuilder in

Configure defines the order in which the middleware will

run in the pipeline.

WARNING When you’re adding middleware to the pipeline, always
take care to consider the order in which it will run. A component can
access only data created by middleware that comes before it in the
pipeline.

This application is the most basic kind, returning the same

response no matter which URL you navigate to, but it shows

how easy it is to define your application behavior with

middleware. Next, we’ll make things a little more interesting

by returning different responses when you make requests to

different paths.

4.2.2 Simple pipeline scenario 2: Handling
static files

In this section, I’ll show you how to create one of the

simplest middleware pipelines you can use for a full

application: a static-file application. Most web applications,

including those with dynamic content, serve some pages by

using static files. Images, JavaScript, and CSS stylesheets

are normally saved to disk during development and are

served up when requested from the special wwwroot folder

of your project, normally as part of a full HTML page

request.

DEFINITION By default, the wwwroot folder is the only folder in your
application that ASP.NET Core will serve files from. It doesn’t serve
files from other folders for security reasons. The wwwroot folder in an
ASP.NET Core project is typically deployed as is to production,
including all the files and folders it contains.

You can use StaticFileMiddleware to serve static files

from the wwwroot folder when requested, as shown in figure

4.7. In this example, an image called moon.jpg exists in the

wwwroot folder. When you request the file using the

/moon.jpg path, it’s loaded and returned as the response

to the request.

Figure 4.7 Serving a static image file using the static-file
middleware

If the user requests a file that doesn’t exist in the wwwroot

folder, such as missing.jpg, the static-file middleware won’t

serve a file. Instead, a 404 HTTP error code response will be

sent to the user’s browser, which displays its default “File

Not Found” page, as shown in figure 4.8.

NOTE How this page looks depends on your browser. In some
browsers, you may see a blank page.

Figure 4.8 Returning a 404 to the browser when a file doesn’t
exist. The requested file didn’t exist in the wwwroot folder, so
the ASP.NET Core application returned a 404 response. Then the
browser (Microsoft Edge, in this case) shows the user a default
“File Not Found” error page.

Building the middleware pipeline for this simple static-file

application is easy. The pipeline consists of a single piece of

middleware, StaticFileMiddleware, as you can see in

the following listing. You don’t need any services, so

configuring the middleware pipeline with UseStaticFiles

is all that’s required.

Listing 4.2 Program.cs for a static-file middleware pipeline

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.UseStaticFiles(); ❶

app.Run();

❶ Adds the StaticFileMiddleware to the pipeline

TIP Remember that you can view the application code for this book in
the GitHub repository at http://mng.bz/Y1qN.

When the application receives a request, the ASP.NET Core

web server handles it and passes it to the middleware

pipeline. StaticFileMiddleware receives the request

and determines whether it can handle it. If the requested file

exists, the middleware handles the request and returns the

file as the response, as shown in figure 4.9.

http://mng.bz/Y1qN

Figure 4.9 StaticFileMiddleware handles a request for a file. The
middleware checks the wwwroot folder to see if whether

requested moon.jpg file exists. The file exists, so the middleware
retrieves it and returns it as the response to the web server and,
ultimately, to the browser.

If the file doesn’t exist, the request effectively passes

through the static-file middleware unchanged. But wait—you

added only one piece of middleware, right? Surely you can’t

pass the request through to the next middleware component

if there isn’t another one.

ASP.NET Core automatically adds a dummy piece of

middleware to the end of the pipeline. This middleware

always returns a 404 response if it’s called.

TIP If no middleware generates a response for a request, the pipeline
automatically returns a simple 404 error response to the browser.

HTTP response status codes

Every HTTP response contains a status code and, optionally, a reason phrase
describing the status code. Status codes are fundamental to the HTTP protocol and
are a standardized way of indicating common results. A 200 response, for example,
means that the request was successfully answered, whereas a 404 response indicates
that the resource requested couldn’t be found. You can see the full list of standardized
status codes at https://www.rfc-editor.org/rfc/rfc9110#name-status-codes.

Status codes are always three digits long and are grouped in five classes, based on
the first digit:

1xx—Information. This code is not often used; it provides a general
acknowledgment.

2xx—Success. The request was successfully handled and processed.

3xx—Redirection. The browser must follow the provided link to allow
the user to log in, for example.

https://www.rfc-editor.org/rfc/rfc9110#name-status-codes

4xx—Client error. A problem occurred with the request. The request
sent invalid data, for example, or the user isn’t authorized to perform
the request.

5xx—Server error. A problem on the server caused the request to fail.

These status codes typically drive the behavior of a user’s browser. The browser will
handle a 301 response automatically, for example, by redirecting to the provided new
link and making a second request, all without the user’s interaction.

Error codes are in the 4xx and 5xx classes. Common codes include a 404 response
when a file couldn’t be found, a 400 error when a client sends invalid data (such as an
invalid email address), and a 500 error when an error occurs on the server. HTTP
responses for error codes may include a response body, which is content to display
when the client receives the response.

This basic ASP.NET Core application makes it easy to see the

behavior of the ASP.NET Core middleware pipeline and the

static-file middleware in particular, but it’s unlikely that your

applications will be this simple. It’s more likely that static

files will form one part of your middleware pipeline. In the

next section you’ll see how to combine multiple middleware

components as we look at a simple minimal API application.

4.2.3 Simple pipeline scenario 3: A minimal
API application

By this point, you should have a decent grasp of the

middleware pipeline, insofar as you understand that it

defines your application’s behavior. In this section you’ll see

how to combine several standard middleware components to

form a pipeline. As before, you do this in Program.cs by

adding middleware to the WebApplication object.

You’ll begin by creating a basic middleware pipeline that

you’d find in a typical ASP.NET Core minimal APIs template

and then extend it by adding middleware. Figure 4.10 shows

the output you see when you navigate to the home page of

the application—identical to the sample application in

chapter 3.

Figure 4.10 A simple minimal API application. The application
uses only four pieces of middleware: routing middleware to
choose the endpoint to run, endpoint middleware to generate
the response from a Razor Page, static-file middleware to serve
image files, and exception-handler middleware to capture any
errors.

Creating this application requires only four pieces of

middleware: routing middleware to choose a minimal API

endpoint to execute, endpoint middleware to generate the

response, static-file middleware to serve any image files

from the wwwroot folder, and exception-handler middleware

to handle any errors that might occur. Even though this

example is still a Hello World! example, this architecture

is much closer to a realistic example. The following listing

shows an example of such an application.

Listing 4.3 A basic middleware pipeline for a minimal APIs
application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

UseDeveloperExceptionPage(); ❶
app.UseStaticFiles(); ❷
app.UseRouting(); ❸

app.MapGet("/", () => "Hello World!"); ❹

app.Run();

❶ This call isn’t strictly necessary, as it’s already added by WebApplication by default.

❷ Adds the StaticFileMiddleware to the pipeline
❸ Adds the RoutingMiddleware to the pipeline

❹ Defines an endpoint for the application

The addition of middleware to WebApplication to form

the pipeline should be familiar to you now, but several points

are worth noting in this example:

Middleware is added with Use*() methods.

MapGet defines an endpoint, not middleware. It

defines the endpoints that the routing and

endpoint middleware can use.

WebApplication automatically adds some

middleware to the pipeline, such as the

EndpointMiddleware.

The order of the Use*() method calls is important

and defines the order of the middleware pipeline.

First, all the methods for adding middleware start with Use.

As I mentioned earlier, this is thanks to the convention of

using extension methods to extend the functionality of

WebApplication; prefixing the methods with Use should

make them easier to discover.

Second, it’s important to understand that the MapGet

method does not add middleware to the pipeline; it defines

an endpoint in your application. These endpoints are used by

the routing and endpoint middleware. You’ll learn more

about endpoints and routing in chapter 5.

TIP You can define the endpoints for your app by using MapGet()
anywhere in Program.cs before the call to app.Run(), but the calls
are typically placed after the middleware pipeline definition.

In chapter 3, I mentioned that WebApplication

automatically adds middleware to your app. You can see this

process in action in listing 4.3 automatically adding the

EndpointMiddleware to the end of the middleware

pipeline. WebApplication also automatically adds the

developer exception page middleware to the start of the

middleware pipeline when you’re running in development. As

a result, you can omit the call to

UseDeveloperExceptionPage() from listing 4.3, and

your middleware pipeline will be essentially the same.

WebApplication and autoadded
middleware

WebApplication and WebApplicationBuilder were introduced in .NET 6 to
try to reduce the amount of boilerplate code required for a Hello World! ASP.NET
Core application. As part of this initiative, Microsoft chose to have WebApplication
automatically add various middleware to the pipeline. This decision alleviates some of
the common getting-started pain points of middleware ordering by ensuring that, for
example, UseRouting() is always called before UseAuthorization().

Everything has trade-offs, of course, and for WebApplication the trade-off is that
it’s harder to understand exactly what’s in your middleware pipeline without having
deep knowledge of the framework code itself.

Luckily, you don’t need to worry about the middleware that WebApplication adds
for the most part. If you’re new to ASP.NET Core, generally you can accept that
WebApplication will add the middleware only when it’s necessary and safe to do
so.

Nevertheless, in some cases it may pay to know exactly what’s in your pipeline,
especially if you’re familiar with ASP.NET Core. In .NET 7, WebApplication
automatically adds some or all of the following middleware to the start of the
middleware pipeline:

HostFilteringMiddleware—This middleware is security-related.
You can read more about why it’s useful and how to configure it at
http://mng.bz/zXxa.

ForwardedHeadersMiddleware—This middleware controls how
forwarded headers are handled. You can read more about it in chapter
27.

DeveloperExceptionPageMiddleware—As already discussed,
this middleware is added when you run in a development environment.

http://mng.bz/zXxa

RoutingMiddleware—If you add any endpoints to your application,
UseRouting() runs before you add any custom middleware to your
application.

AuthenticationMiddleware—If you configure authentication, this
middleware authenticates a user for the request. Chapter 23 discusses
authentication in detail.

AuthorizationMiddleware—The authorization middleware runs
after authentication and determines whether a user is permitted to
execute an endpoint. If the user doesn’t have permission, the request is
short-circuited. I discuss authorization in detail in chapter 24.

EndpointMiddleware—This middleware pairs with the
RoutingMiddleware to execute an endpoint. Unlike the other
middleware described here, the EndpointMiddleware is added to
the end of the middleware pipeline, after any other middleware you
configure in Program.cs.

Depending on your Program.cs configuration, WebApplication may not add all this
middleware. Also, if you don’t want some of this automatic middleware to be at the
start of your middleware pipeline, generally you can override the location. In listing 4.3,
for example, we override the automatic RoutingMiddleware location by calling
UseRouting() explicitly, ensuring that routing occurs exactly where we need it.

Another important point about listing 4.3 is that the order in

which you add the middleware to the WebApplication

object is the order in which the middleware is added to the

pipeline. The order of the calls in listing 4.3 creates a

pipeline similar to that shown in figure 4.11.

Figure 4.11 The middleware pipeline for the example application
in listing 4.3. The order in which you add the middleware to
WebApplication defines the order of the middleware in the
pipeline.

The ASP.NET Core web server passes the incoming request

to the developer exception page middleware first. This

exception-handler middleware ignores the request initially;

its purpose is to catch any exceptions thrown by later

middleware in the pipeline, as you’ll see in section 4.3. It’s

important for this middleware to be placed early in the

pipeline so that it can catch errors produced by later

middleware.

The developer exception page middleware passes the

request on to the static-file middleware. The static-file

handler generates a response if the request corresponds to a

file; otherwise, it passes the request on to the routing

middleware. The routing middleware selects a minimal API

endpoint based on the endpoints defined and the request

URL, and the endpoint middleware executes the selected

minimal API endpoint. If no endpoint can handle the

requested URL, the automatic dummy middleware returns a

404 response.

In chapter 3, I mentioned that WebApplication adds the

RoutingMiddleware to the start of the middleware

pipeline automatically. So you may be wondering why I

explicitly added it to the pipeline in listing 4.3 using

UseRouting().

The answer, again, is related to the order of the middleware.

Adding an explicit call to UseRouting() tells

WebApplication not to add the RoutingMiddleware

automatically before the middleware defined in Program.cs.

This allows us to “move” the RoutingMiddleware to be

placed after the StaticFileMiddleware. Although this

step isn’t strictly necessary in this case, it’s good practice.

The StaticFileMiddleware doesn’t use routing, so it’s

preferable to let this middleware check whether the

incoming request is for a static file; if so, it can short-circuit

the pipeline and avoid the unnecessary call to the

RoutingMiddleware.

NOTE In versions 1.x and 2.x of ASP.NET Core, the routing and
endpoint middleware were combined in a single Model-View-
Controller (MVC) middleware component. Splitting the responsibilities
for routing from execution makes it possible to insert middleware
between the routing and endpoint middleware. I discuss routing
further in chapters 6 and 14.

The impact of ordering is most obvious when you have two

pieces of middleware that are listening for the same path.

The endpoint middleware in the example pipeline currently

responds to a request to the home page of the application

(with the / path) by returning the string "Hello World!",

as shown in figure 4.10. Figure 4.12 shows what happens if

you reintroduce a piece of middleware that you saw

previously, WelcomePageMiddleware, and configure it to

respond to the / path as well.

Figure 4.12 The Welcome-page middleware response. The
Welcome-page middleware comes before the endpoint
middleware, so a request to the home page returns the
Welcome-page middleware instead of the minimal API response.

As you saw in section 4.2.1, WelcomePageMiddleware is

designed to return a fixed HTML response, so you wouldn’t

use it in a production app, but it illustrates the point nicely.

In the following listing, it’s added to the start of the

middleware pipeline and configured to respond only to the

"/" path.

Listing 4.4 Adding WelcomePageMiddleware to the pipeline

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.UseWelcomePage("/"); ❶
app.UseDeveloperExceptionPage();

app.UseStaticFiles();

app.UseRouting(); ❷

app.MapGet("/", () => "Hello World!"); ❷

app.Run();

❶ WelcomePageMiddleware handles all requests to the “/” path and returns a sample HTML
response.

❷ Requests to “/” will never reach the endpoint middleware, so this endpoint won’t be called.

Even though you know that the endpoint middleware can

also handle the "/" path, WelcomePageMiddleware is

earlier in the pipeline, so it returns a response when it

receives the request to "/", short-circuiting the pipeline, as

shown in figure 4.13. None of the other middleware in the

pipeline runs for the request, so none has an opportunity to

generate a response.

Figure 4.13 Overview of the application handling a request to the
"/" path. The Welcome-page middleware is first in the
middleware pipeline, so it receives the request before any other
middleware. It generates an HTML response, short-circuiting the
pipeline. No other middleware runs for the request.

As WebApplication automatically adds

EndpointMiddleware to the end of the middleware

pipeline, the WelcomePageMiddleware will always be

ahead of it, so it always generates a response before the

endpoint can execute in this example.

TIP You should always consider the order of middleware when adding
it to WebApplication. Middleware added earlier in the pipeline
will run (and potentially return a response) before middleware added
later.

All the examples shown so far try to handle an incoming

request and generate a response, but it’s important to

remember that the middleware pipeline is bidirectional. Each

middleware component gets an opportunity to handle both

the incoming request and the outgoing response. The order

of middleware is most important for those components that

create or modify the outgoing response.

In listing 4.3, I included

DeveloperExceptionPageMiddleware at the start of

the application’s middleware pipeline, but it didn’t seem to

do anything. Error-handling middleware characteristically

ignores the incoming request as it arrives in the pipeline;

instead, it inspects the outgoing response, modifying it only

when an error has occurred. In the next section, I discuss

the types of error-handling middleware that are available to

use with your application and when to use them.

4.3 Handling errors using middleware
Errors are a fact of life when you’re developing applications.

Even if you write perfect code, as soon as you release and

deploy your application, users will find a way to break it, by

accident or intentionally! The important thing is that your

application handles these errors gracefully, providing a

suitable response to the user and not causing your whole

application to fail.

The design philosophy for ASP.NET Core is that every feature

is opt-in. So because error handling is a feature, you need to

enable it explicitly in your application. Many types of errors

could occur in your application, and you have many ways to

handle them, but in this section I focus on a single type of

error: exceptions.

Exceptions typically occur whenever you find an unexpected

circumstance. A typical (and highly frustrating) exception

you’ll no doubt have experienced before is

NullReferenceException, which is thrown when you

attempt to access a variable that hasn’t been initialized.
3
 If

an exception occurs in a middleware component, it

propagates up the pipeline, as shown in figure 4.14. If the

pipeline doesn’t handle the exception, the web server

returns a 500 status code to the user.

Figure 4.14 An exception in the endpoint middleware propagates
through the pipeline. If the exception isn’t caught by middleware
earlier in the pipeline, a 500 “Server error” status code is sent to
the user’s browser.

In some situations, an error won’t cause an exception.

Instead, middleware might generate an error status code.

One such case occurs when a requested path isn’t handled.

In that situation, the pipeline returns a 404 error.

For APIs, which typically are consumed by apps (as opposed

to end users), that result probably is fine. But for apps that

typically generate HTML, such as Razor Pages apps,

returning a 404 typically results in a generic, unfriendly page

being shown to the user, as you saw in figure 4.8. Although

this behavior is correct, it doesn’t provide a great experience

for users of these types of applications.

Error-handling middleware attempts to address these

problems by modifying the response before the app returns

it to the user. Typically, error-handling middleware returns

either details on the error that occurred or a generic but

friendly HTML page to the user. You’ll learn how to handle

this use case in chapter 13 when you learn about generating

responses with Razor Pages.

The remainder of this section looks at the two main types of

exception-handling middleware that’s available for use in

your application. Both are available as part of the base

ASP.NET Core framework, so you don’t need to reference

any additional NuGet packages to use them.

4.3.1 Viewing exceptions in development:
DeveloperExceptionPage

When you’re developing an application, you typically want

access to as much information as possible when an error

occurs somewhere in your app. For that reason, Microsoft

provides DeveloperExceptionPageMiddleware, which

you can add to your middleware pipeline by using

app.UseDeveloperExceptionPage();

NOTE As shown previously, WebApplication automatically adds
this middleware to your middleware pipeline when you’re running in
the Development environment, so you don’t need to add it
explicitly. You’ll learn more about environments in chapter 10.

When an exception is thrown and propagates up the pipeline

to this middleware, it’s captured. Then the middleware

generates a friendly HTML page, which it returns with a 500

status code, as shown in figure 4.15. This page contains a

variety of details about the request and the exception,

including the exception stack trace; the source code at the

line the exception occurred; and details on the request, such

as any cookies or headers that were sent.

Figure 4.15 The developer exception page shows details about
the exception when it occurs during the process of a request.
The location in the code that caused the exception, the source
code line itself, and the stack trace are all shown by default. You
can also click the Query, Cookies, Headers, and Routing buttons
to reveal further details about the request that caused the
exception.

Having these details available when an error occurs is

invaluable for debugging a problem, but they also represent

a security risk if used incorrectly. You should never return

more details about your application to users than absolutely

necessary, so you should use DeveloperExceptionPage

only when developing your application. The clue is in the

name!

WARNING Never use the developer exception page when running in
production. Doing so is a security risk, as it could publicly reveal
details about your application’s code, making you an easy target for
attackers. WebApplication uses the correct behavior by default
and adds the middleware only when running in development.

If the developer exception page isn’t appropriate for

production use, what should you use instead? Luckily, you

can use another type of general-purpose error-handling

middleware in production:

ExceptionHandlerMiddleware.

4.3.2 Handling exceptions in production:
ExceptionHandlerMiddleware

The developer exception page is handy when you’re

developing your applications, but you shouldn’t use it in

production, as it can leak information about your app to

potential attackers. You still want to catch errors, though;

otherwise, users will see unfriendly error pages or blank

pages, depending on the browser they’re using.

You can solve this problem by using

ExceptionHandlerMiddleware. If an error occurs in

your application, the user will see a custom error response

that’s consistent with the rest of the application but provides

only necessary details about the error. For a minimal API

application, that response could be JSON or plain text, as

shown in figure 4.16.

Figure 4.16 Using the ExceptionHandlerMiddleware, you can return
a generic error message when an exception occurs, ensuring
that you don’t leak any sensitive details about your application
in production.

For Razor Pages apps, you can create a custom error

response, such as the one shown in figure 4.17. You

maintain the look and feel of the application by using the

same header, displaying the currently logged-in user, and

displaying an appropriate message to the user instead of full

details on the exception.

Figure 4.17 A custom error page created by
ExceptionHandlerMiddleware. The custom error page can have the
same look and feel as the rest of the application by reusing
elements such as the header and footer. More important, you
can easily control the error details displayed to users.

Given the differing requirements for error handlers in

development and production, most ASP.NET Core apps add

their error-handler middleware conditionally, based on the

hosting environment. WebApplication automatically adds

the developer exception page when running in the

development hosting environment, so you typically add

ExceptionHandlerMiddleware when you’re not in the

development environment, as shown in the following listing.

Listing 4.5 Adding exception-handler middleware when in
production

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build(); ❶

if (!app.Environment.IsDevelopment()) ❷
{

 app.UseExceptionHandler("/error"); ❸
}

// additional middleware configuration

app.MapGet("/error", () => "Sorry, an error occurred"); ❹

❶ In development, WebApplication automatically adds the developer exception page
middleware.

❷ Configures a different pipeline when not running in development
❸ The ExceptionHandlerMiddleware won’t leak sensitive details when running in production.

❹ This error endpoint will be executed when an exception is handled.

As well as demonstrating how to add

ExceptionHandlerMiddleware to your middleware

pipeline, this listing shows that it’s perfectly acceptable to

configure different middleware pipelines depending on the

environment when the application starts. You could also vary

your pipeline based on other values, such as settings loaded

from configuration.

NOTE You’ll see how to use configuration values to customize the
middleware pipeline in chapter 10.

When adding ExceptionHandlerMiddleware to your

application, you typically provide a path to the custom error

page that will be displayed to the user. In the example in

listing 4.5, you used an error handling path of "/error":

app.UseExceptionHandler("/error");

ExceptionHandlerMiddleware invokes this path after it

captures an exception to generate the final response. The

ability to generate a response dynamically is a key feature of

ExceptionHandlerMiddleware; it allows you to

reexecute a middleware pipeline to generate the response

sent to the user.

Figure 4.18 shows what happens when

ExceptionHandlerMiddleware handles an exception. It

shows the flow of events when the minimal API endpoint for

the "/" path generates an exception. The final response

returns an error status code but also provides an error

string, using the "/error" endpoint.

Figure 4.18 ExceptionHandlerMiddleware handling an exception to
generate a JSON response. A request to the / path generates an
exception, which is handled by the middleware. The pipeline is
reexecuted, using the /error path to generate the JSON
response.

The sequence of events when an unhandled exception occurs

somewhere in the middleware pipeline (or in an endpoint)

after ExceptionHandlerMiddleware is as follows:

1. A piece of middleware throws an exception.

2. ExceptionHandlerMiddleware catches the

exception.

3. Any partial response that has been defined is

cleared.

4. The ExceptionHandlerMiddleware overwrites

the request path with the provided error-handling

path.

5. The middleware sends the request back down the

pipeline, as though the original request had been

for the error-handling path.

6. The middleware pipeline generates a new response

as normal.

7. When the response gets back to

ExceptionHandlerMiddleware, it modifies the

status code to a 500 error and continues to pass

the response up the pipeline to the web server.

One of the main advantages of reexecuting the pipeline for

Razor Page apps is the ability to have your error messages

integrated into your normal site layout, as shown in figure

4.17. It’s certainly possible to return a fixed response when

an error occurs without reexecuting the pipeline, but you

wouldn’t be able to have a menu bar with dynamically

generated links or display the current user’s name in the

menu, for example. By reexecuting the pipeline, you ensure

that all the dynamic areas of your application are integrated

correctly, as though the page were a standard page of your

site.

NOTE You don’t need to do anything other than add
ExceptionHandlerMiddleware to your application and
configure a valid error-handling path to enable reexecuting the
pipeline, as shown in figure 4.18. The middleware will catch the
exception and reexecute the pipeline for you. Subsequent
middleware will treat the reexecution as a new request, but previous
middleware in the pipeline won’t be aware that anything unusual
happened.

Reexecuting the middleware pipeline is a great way to keep

consistency in your web application for error pages, but you

should be aware of some gotchas. First, middleware can

modify a response generated farther down the pipeline only

if the response hasn’t yet been sent to the client. This

situation can be a problem if, for example, an error occurs

while ASP.NET Core is sending a static file to a client. In that

case, ASP.NET Core may start streaming bytes to the client

immediately for performance reasons. When that happens,

the error-handling middleware won’t be able to run, as it

can’t reset the response. Generally speaking, you can’t do

much about this problem, but it’s something to be aware of.

A more common problem occurs when the error-handling

path throws an error during the reexecution of the pipeline.

Imagine that there’s a bug in the code that generates the

menu at the top of the page in a Razor Pages app:

1. When the user reaches your home page, the code

for generating the menu bar throws an exception.

2. The exception propagates up the middleware

pipeline.

3. When reached, ExceptionHandlerMiddleware

captures it, and the pipe is reexecuted, using the

error-handling path.

4. When the error page executes, it attempts to

generate the menu bar for your app, which again

throws an exception.

5. The exception propagates up the middleware

pipeline.

6. ExceptionHandlerMiddleware has already

tried to intercept a request, so it lets the error

propagate all the way to the top of the middleware

pipeline.

7. The web server returns a raw 500 error, as though

there were no error-handling middleware at all.

Thanks to this problem, it’s often good practice to make your

error-handling pages as simple as possible to reduce the

possibility that errors will occur.

WARNING If your error-handling path generates an error, the user
will see a generic browser error. It’s often better to use a static error
page that always works than a dynamic page that risks throwing more
errors. You can see an alternative approach using a custom error
handling function in this post: http://mng.bz/0Kmx.

Another consideration when building minimal API

applications is that you generally don’t want to return

HTML. Returning an HTML page to an application that’s

expecting JSON could easily break it. Instead, the HTTP 500

status code and a JSON body describing the error are more

useful to a consuming application. Luckily, ASP.NET Core

allows you to do exactly this when you create minimal APIs

and web API controllers.

NOTE I discuss how to add this functionality with minimal APIs in
chapter 5 and with web APIs in chapter 20.

That brings us to the end of middleware in ASP.NET Core for

now. You’ve seen how to use and compose middleware to

form a pipeline, as well as how to handle exceptions in your

application. This information will get you a long way when

you start building your first ASP.NET Core applications. Later,

you’ll learn how to build your own custom middleware, as

well as how to perform complex operations on the

middleware pipeline, such as forking it in response to

specific requests. In chapter 5, you’ll look in depth at

minimal APIs and at how they can be used to build JSON

APIs.

http://mng.bz/0Kmx

Summary
Middleware has a similar role to HTTP modules and

handlers in ASP.NET but is easier to reason about.

Middleware is composed in a pipeline, with the

output of one middleware passing to the input of

the next.

The middleware pipeline is two-way: requests pass

through each middleware on the way in, and

responses pass back through in reverse order on

the way out.

Middleware can short-circuit the pipeline by

handling a request and returning a response, or it

can pass the request on to the next middleware in

the pipeline.

Middleware can modify a request by adding data to

or changing the HttpContext object.

If an earlier middleware short-circuits the pipeline,

not all middleware will execute for all requests.

If a request isn’t handled, the middleware pipeline

returns a 404 status code.

The order in which middleware is added to

WebApplication defines the order in which

middleware will execute in the pipeline.

The middleware pipeline can be reexecuted as long

as a response’s headers haven’t been sent.

When it’s added to a middleware pipeline,

StaticFileMiddleware serves any requested

files found in the wwwroot folder of your

application.

DeveloperExceptionPageMiddleware

provides a lot of information about errors during

development, but it should never be used in

production.

ExceptionHandlerMiddleware lets you

provide user-friendly custom error-handling

messages when an exception occurs in the

pipeline. It’s safe for use in production, as it

doesn’t expose sensitive details about your

application.

Microsoft provides some common middleware, and

many third-party options are available on NuGet

and GitHub.

1. Technically, middleware needs to be a function, as you’ll see in chapter 31, but it’s common
to implement middleware as a C# class with a single method.

2. The downside to this approach is that it can hide exactly which middleware is being added
to the pipeline. When the answer isn’t clear, I typically search for the source code of the
extension method directly in GitHub (https://github.com/aspnet/aspnetcore).

3. C# 8.0 introduced non-nullable reference types, which provide a way to handle null values
more clearly, with the promise of finally ridding .NET of NullReferenceExceptions!
The ASP.NET Core framework libraries in .NET 7 have fully embraced nullable reference
types. See the documentation to learn more: http:// mng.bz/7V0g.

https://github.com/aspnet/aspnetcore
http://mng.bz/7V0g

5 Creating a JSON API with minimal
APIs

This chapter covers

Creating a minimal API application to return JSON to clients
Generating responses with IResult
Using filters to perform common actions like validation
Organizing your APIs with route groups

So far in this book you’ve seen several examples of minimal

API applications that return simple Hello World!

responses. These examples are great for getting started, but

you can also use minimal APIs to build full-featured HTTP

API applications. In this chapter you’ll learn about HTTP

APIs, see how they differ from a server- rendered

application, and find out when to use them.

Section 5.2 starts by expanding on the minimal API

applications you’ve already seen. You’ll explore some basic

routing concepts and show how values can be extracted

from the URL automatically. Then you’ll learn how to handle

additional HTTP verbs such as POST and PUT, and explore

various ways to define your APIs.

In section 5.3 you’ll learn about the different return types

you can use with minimal APIs. You’ll see how to use the

Results and TypedResults helper classes to easily

create HTTP responses that use status codes like 201

Created and 404 Not Found. You’ll also learn how to

follow web standards for describing your errors by using the

built-in support for Problem Details.

Section 5.4 introduces one of the big features added to

minimal APIs in .NET 7: filters. You can use filters to build a

mini pipeline (similar to the middleware pipeline from

chapter 4) for each of your endpoints. Like middleware,

filters are great for extracting common code from your

endpoint handlers, making your handlers easier to read.

You’ll learn about the other big .NET 7 feature for minimal

APIs in section 5.5: route groups. You can use route groups

to reduce the duplication in your minimal APIs, extracting

common routing prefixes and filters, making your APIs

easier to read, and reducing boilerplate. In conjunction with

filters, route groups address many of the common

complaints raised against minimal APIs when they were

released in .NET 6.

One great aspect of ASP.NET Core is the variety of

applications you can create with it. The ability to easily build

a generalized HTTP API presents the possibility of using

ASP.NET Core in a greater range of situations than can be

achieved with traditional web apps alone. But should you

build an HTTP API, and if so, why? In the first section of this

chapter, I’ll go over some of the reasons why you may—or

may not—want to create a web API.

5.1 What is an HTTP API, and when
should you use one?

Traditional web applications handle requests by returning

HTML, which is displayed to the user in a web browser. You

can easily build applications like that by using Razor Pages

to generate HTML with Razor templates, as you’ll learn in

part 2 of this book. This approach is common and well

understood, but the modern application developer has other

possibilities to consider (figure 5.1), as you first saw in

chapter 2.

Figure 5.1 Modern developers have to consider several
consumers of their applications. As well as traditional users with
web browsers, these users could be single-page applications,
mobile applications, or other apps.

Client-side single-page applications (SPAs) have become

popular in recent years with the development of frameworks

such as Angular, React, and Vue. These frameworks typically

use JavaScript running in a web browser to generate the

HTML that users see and interact with. The server sends this

initial JavaScript to the browser when the user first reaches

the app. The user’s browser loads the JavaScript and

initializes the SPA before loading any application data from

the server.

NOTE Blazor WebAssembly is an exciting new SPA framework.
Blazor lets you write an SPA that runs in the browser like other SPAs,
but it uses C# and Razor templates instead of JavaScript by using the
new web standard, WebAssembly. I don’t cover Blazor in this book,
so to find out more, I recommend Blazor in Action, by Chris Sainty
(Manning, 2022).

Once the SPA is loaded in the browser, communication with a

server still occurs over HTTP, but instead of sending HTML

directly to the browser in response to requests, the server-

side application sends data—normally, in the ubiquitous

JavaScript Object Notation (JSON) format—to the client-side

application. Then the SPA parses the data and generates the

appropriate HTML to show to a user, as shown in figure 5.2.

The server-side application endpoint that the client

communicates with is sometimes called an HTTP API, a JSON

API, or a REST API, depending on the specifics of the API’s

design.

Figure 5.2 A sample client-side SPA using Blazor WebAssembly.
The initial requests load the SPA files into the browser, and
subsequent requests fetch data from a web API, formatted as
JSON.

DEFINITION An HTTP API exposes multiple URLs via HTTP that can
be used to access or change data on a server. It typically returns data
using the JSON format. HTTP APIs are sometimes called web APIs,
but as web API refers to a specific technology in ASP.NET Core, in
this book I use HTTP API to refer to the generic concept.

These days, mobile applications are common and, from the

server application’s point of view, similar to client-side SPAs.

A mobile application typically communicates with a server

application by using an HTTP API, receiving data in JSON

format, just like an SPA. Then it modifies the application’s UI

depending on the data it receives.

One final use case for an HTTP API is where your application

is designed to be partially or solely consumed by other

backend services. Imagine that you’ve built a web

application to send emails. By creating an HTTP API, you can

allow other application developers to use your email service

by sending you an email address and a message. Virtually all

languages and platforms have access to an HTTP library they

could use to access your service from code.

That’s all there is to an HTTP API: it exposes endpoints

(URLs) that client applications can send requests to and

retrieve data from. These endpoints are used to power the

behavior of the client apps, as well as to provide all the data

the client apps need to display the correct interface to a

user.

NOTE You have even more options when it comes to creating APIs in
ASP.NET Core. You can create remote procedure call APIs using
gRPC, for example, or provide an alternative style of HTTP API using
the GraphQL standard. I don’t cover those technologies in this book,
but you can read about gRPC at
https://docs.microsoft.com/aspnet/core/grpc and find out about
GraphQL in Building Web APIs with ASP.NET Core, by Valerio De
Sanctis (Manning, 2023).

https://docs.microsoft.com/aspnet/core/grpc/

Whether you need or want to create an HTTP API for your

ASP.NET Core application depends on the type of application

you want to build. Perhaps you’re familiar with client-side

frameworks, or maybe you need to develop a mobile

application, or you already have an SPA build pipeline

configured. In each case, you’ll most likely want to add HTTP

APIs for the client apps to access your application.

One selling point for using an HTTP API is that it can serve

as a generalized backend for all your client applications. You

could start by building a client-side application that uses an

HTTP API. Later, you could add a mobile app that uses the

same HTTP API, making little or no modification to your

ASP.NET Core code.

If you’re new to web development, HTTP APIs can also be

easier to understand initially, as they typically return only

JSON. Part 1 of this book focuses on minimal APIs so that

you can focus on the mechanics of ASP.NET Core without

needing to write HTML or CSS.

In part 3, you’ll learn how to use Razor Pages to create

server-rendered applications instead of minimal APIs.

Server-rendered applications can be highly productive.

They’re generally recommended when you have no need to

call your application from outside a web browser or when

you don’t want or need to make the effort of configuring a

client-side application.

NOTE Although there’s been an industry shift toward client-side
frameworks, server-side rendering using Razor is still relevant. Which
approach you choose depends largely on your preference for building

HTML applications in the traditional manner versus using JavaScript
(or Blazor!) on the client.

Having said that, whether to use HTTP APIs in your

application isn’t something you necessarily have to worry

about ahead of time. You can always add them to an

ASP.NET Core app later in development, as the need arises.

SPAs with ASP.NET Core

The cross-platform, lightweight design of ASP.NET Core means that it lends itself well
to acting as a backend for your SPA framework of choice. Given the focus of this book
and the broad scope of SPAs in general, I won’t be looking at Angular, React, or other
SPAs here. Instead, I suggest checking out the resources appropriate to your chosen
SPA. Books are available from Manning for all the common client-side JavaScript
frameworks, as well as Blazor:

React in Action, by Mark Tielens Thomas (Manning, 2018)

Angular in Action, by Jeremy Wilken (Manning, 2018)

Vue.js in Action, by Erik Hanchett with Benjamin Listwon (Manning,
2018)

Blazor in Action, by Chris Sainty (Manning, 2022)

After you’ve established that you need an HTTP API for your

application, creating one is easy, as it’s the default

application type in ASP.NET Core! In the next section we look

at various ways you can create minimal API endpoints and

ways to handle multiple HTTP verbs.

5.2 Defining minimal API endpoints
Chapters 3 and 4 gave you an introduction to basic minimal

API endpoints. In this section, we’ll build on those basic apps

to show how you can handle multiple HTTP verbs and

explore various ways to write your endpoint handlers.

5.2.1 Extracting values from the URL with
routing

You’ve seen several minimal API applications in this book,

but so far, all the examples have used fixed paths to define

the APIs, as in this example:

app.MapGet("/", () => "Hello World!");

app.MapGet("/person", () => new Person("Andrew", "Lock");

These two APIs correspond to the paths / and /person,

respectively. This basic functionality is useful, but typically

you need some of your APIs to be more dynamic. It’s

unlikely, for example, that the /person API would be useful

in practice, as it always returns the same Person object.

What might be more useful is an API to which you can

provide the user’s first name, and the API returns all the

users with that name.

You can achieve this goal by using parameterized routes for

your API definitions. You can create a parameter in a

minimal API route using the expression {someValue},

where someValue is any name you choose. The value will

be extracted from the request URL’s path and can be used in

the lambda function endpoint.

NOTE I introduce only the basics of extracting values from routes in
this chapter. You’ll learn a lot more about routing in chapter 6,
including why we use routing and how it fits into the ASP.NET Core
pipeline, as well as the syntax you can use.

If you create an API using the route template

/person/{name}, for example, and send a request to the

path /person/Andrew, the name parameter will have the

value "Andrew". You can use this feature to build more

useful APIs, such as the one shown in the following listing.

Listing 5.1 A minimal API that uses a value from the URL

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var people = new List<Person> ❶
{ ❶
 new("Tom", "Hanks"), ❶
 new("Denzel", "Washington"), ❶
 new("Leondardo", "DiCaprio"), ❶
 new("Al", "Pacino"), ❶
 new("Morgan", "Freeman"), ❶
}; ❶

app.MapGet("/person/{name}", (string name) => ❷
 people.Where(p => p.FirstName.StartsWith(name))); ❸

app.Run();

❶ Creates a list of people as the data for the API
❷ The route is parameterized to extract the name from the URL.

❸ The extracted value can be injected into the lambda handler.

If you send a request to /person/Al for the app defined in

listing 5.1, the name parameter will have the value "Al",

and the API will return the following JSON:

[{"firstName":"Al","lastName":"Pacino"}]

NOTE By default, minimal APIs serialize C# objects to JSON. You’ll
see how to return other types of results in section 5.3.

The ASP.NET Core routing system is quite powerful, and we’ll

explore it in more detail in chapter 6. But with this simple

capability, you can already build more complex applications.

5.2.2 Mapping verbs to endpoints

So far in this book we’ve defined all our minimal API

endpoints by using the MapGet() function. This function

matches requests that use the GET HTTP verb. GET is the

most-used verb; it’s what a browser uses when you enter a

URL in the address bar of your browser or follow a link on a

web page.

You should use GET only to get data from the server,

however. You should never use it to send data or to change

data on the server. Instead, you should use an HTTP verb

such as POST or DELETE. You generally can’t use these

verbs by navigating web pages in the browser, but they’re

easy to send from a client-side SPA or mobile app.

TIP If you’re new to web programming or are looking for a refresher,
Mozilla Developer Network (MDN), maker of the Firefox web browser,

has a good introduction to HTTP at http://mng.bz/KeMK.

In theory, each of the HTTP verbs has a well-defined

purpose, but in practice, you may see apps that only ever

use POST and GET. This is often fine for server-rendered

applications like Razor Pages, as it’s typically simpler, but if

you’re creating an API, I recommend that you use the HTTP

verbs with the appropriate semantics wherever possible.

You can define endpoints for other verbs with minimal APIs

by using the appropriate Map* functions. To map a POST

endpoint, for example, you’d use MapPost(). Table 5.1

shows the minimal API Map* methods available, the

corresponding HTTP verbs, and the typical semantic

expectations of each verb on the types of operations that the

API performs.

http://mng.bz/KeMK

Table 5.1 The minimal API map endpoints and the corresponding
HTML verbs

Method HTTP verb Expected operation
MapGet(path, handler) GET Fetch data only; no

modification of state. May be
safe to cache.

MapPost(path, handler) POST Create a new resource.

MapPut(path, handler) PUT Create or replace an existing
resource.

MapDelete(path, handler) DELETE Delete the given resource.

MapPatch(path, handler) PATCH Modify the given resource.

MapMethods(path, methods,
handler)

Multiple
verbs

Multiple operations.

Map(path, handler) All verbs Multiple operations.

MapFallback(handler) All verbs Useful for SPA fallback routes.

RESTful applications (as described in chapter 2) typically

stick close to these verb uses where possible, but some of

the actual implementations can differ, and people can easily

get caught up in pedantry. Generally, if you stick to the

expected operations described in table 5.1, you’ll create a

more understandable interface for consumers of the API.

NOTE You may notice that if you use the MapMethods() and
Map() methods listed in table 5.1, your API probably doesn’t
correspond to the expected operations of the HTTP verbs it supports,
so I avoid these methods where possible. MapFallback()
doesn’t have a path and is called only if no other endpoint matches.
Fallback routes can be useful when you have a SPA that uses client-
side routing. See http://mng.bz/9DMl for a description of the problem
and an alternative solution.

http://mng.bz/9DMl

As I mentioned at the start of section 5.2.2, testing APIs

that use verbs other than GET is tricky in the browser. You

need to use a tool that allows sending arbitrary requests

such as Postman (https://www.postman.com) or the HTTP

Client plugin in JetBrains Rider. In chapter 11 you’ll learn

how to use a tool called Swagger UI to visualize and test

your APIs.

TIP The HTTP client plugin in JetBrains Rider makes it easy to craft
HTTP requests from inside your API, and even discovers all the
endpoints in your application automatically, making them easier to
test. You can read more about it at
https://www.jetbrains.com/help/rider/Http_client_in__product__
code_editor.xhtml.

As a final note before we move on, it’s worth mentioning the

behavior you get when you call a method with the wrong

HTTP verb. If you define an API like the one in listing 5.1

app.MapGet("/person/{name}", (string name) =>

 people.Where(p => p.FirstName.StartsWith(name)));

and call it by using a POST request to /person/Al instead

of a GET request, the handler won’t run, and the response

you get will have status code 405 Method Not Allowed.

TIP You should never see this response when you’re calling the API
correctly, so if you receive a 405 response, make sure to check that
you’re using the right HTTP verb and the right path. Often when I see
a 405, I’ve used the correct verb but made a typo in the URL!

https://www.postman.com/
https://www.jetbrains.com/help/rider/Http_client_in__product__code_editor.xhtml
https://www.jetbrains.com/help/rider/Http_client_in__product__code_editor.xhtml

In all the examples in this book so far, you provide a lambda

function as the handler for an endpoint. But in section 5.2.3,

you’ll see that there are many ways to define the handler.

5.2.3 Defining route handlers with functions

For basic examples, using a lambda function as the handler

for an endpoint is often the simplest approach, but you can

take many approaches, as shown in the following listing.

This listing also demonstrates creating a simple CRUD

(Create, Read, Update, Delete) API using different HTTP

verbs, as discussed in section 5.2.1.

Listing 5.2 Creating route handlers for a simple CRUD API

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/fruit", () => Fruit.All); ❶

var getFruit = (string id) => Fruit.All[id]; ❷
app.MapGet("/fruit/{id}", getFruit); ❷

app.MapPost("/fruit/{id}", Handlers.AddFruit); ❸

Handlers handlers = new(); ❹
app.MapPut("/fruit/{id}", handlers.ReplaceFruit); ❹

app.MapDelete("/fruit/{id}", DeleteFruit); ❺

app.Run();

void DeleteFruit(string id) ❺
{

 Fruit.All.Remove(id);

}

record Fruit(string Name, int Stock)

{

 public static readonly Dictionary<string, Fruit> All = new();

};

class Handlers

{

 public void ReplaceFruit(string id, Fruit fruit) ❻
 {

 Fruit.All[id] = fruit;

 }

 public static void AddFruit(string id, Fruit fruit) ❼
 {

 Fruit.All.Add(id, fruit);

 }

}

❶ Lambda expressions are the simplest but least descriptive way to create a handler.

❷ Storing the lambda expression as a variable means you can name it—getFruit in this
case.

❸ Handlers can be static methods in any class.

❹ Handlers can also be instance methods.
❺ You can also use local functions, introduced in C# 7.0, as handler methods.

❻ Handlers can also be instance methods.
❼ Converts the response to a JsonObject

Listing 5.2 demonstrates the various ways you can pass

handlers to an endpoint by simulating a simple API for

interacting with a collection of Fruit items:

A lambda expression, as in the

MapGet("/fruit") endpoint

A Func<T, TResult> variable, as in the

MapGet("/fruit/{id}") endpoint

A static method, as in the MapPost endpoint

A method on an instance variable, as in the

MapPut endpoint

A local function, as in the MapDelete endpoint

All these approaches are functionally identical, so you can

use whichever pattern works best for you.

Each Fruit record in listing 5.2 has a Name and a Stock

level and is stored in a dictionary with an id. You call the

API by using different HTTP verbs to perform the CRUD

operations against the dictionary.

WARNING This API is simple. It isn’t thread-safe, doesn’t validate
user input, and doesn’t handle edge cases. We’ll remedy some of
those deficiencies in section 5.3.

The handlers for the POST and PUT endpoints in listing 5.2

accept both an id parameter and a Fruit parameter,

showing another important feature of minimal APIs.

Complex types—that is, types that can’t be extracted from

the URL by means of route parameters—are created by

deserializing the JSON body of a request.

NOTE By contrast with APIs built using ASP.NET and ASP.NET Core
web API controllers (which we cover in chapter 20), minimal APIs can
bind only to JSON bodies and always use the System.Text.Json
library for JSON deserialization.

Figure 5.3 shows an example of a POST request sent with

Postman. Postman sends the request body as JSON, which

the minimal API automatically deserializes into a Fruit

instance before calling the endpoint handler. You can bind

only a single object in your endpoint handler to the request

body in this way. I cover model binding in detail in chapter

7.

Figure 5.3 Sending a POST request with Postman. The minimal
API automatically deserializes the JSON in the request body to a
Fruit instance before calling the endpoint handler.

Minimal APIs leave you free to organize your endpoints any

way you choose. That flexibility is often cited as a reason to

not use them, due to the fear that developers will keep all

the functionality in a single file, as in most examples (such

as listing 5.2). In practice, you’ll likely want to extract your

endpoints to separate files so as to modularize them and

make them easier to understand. Embrace that urge; that’s

the way they were intended to be used!

Now you have a simple API, but if you try it out, you’ll

quickly run into scenarios in which your API seems to break.

In section 5.3 you learn how to handle some of these

scenarios by returning status codes.

5.3 Generating responses with IResult
You’ve seen the basics of minimal APIs, but so far, we’ve

looked only at the happy path, where you can handle the

request successfully and return a response. In this section

we look at how to handle bad requests and other errors by

returning different status codes from your API.

The API in listing 5.2 works well as long as you perform only

operations that are valid for the current state of the

application. If you send a GET request to /fruit, for

example, you’ll always get a 200 success response, but if

you send a GET request to /fruit/f1 before you create a

Fruit with the id f1, you’ll get an exception and a 500

Internal Server Error response, as shown in figure

5.4.

Figure 5.4 If you try to retrieve a fruit by using a nonexistent id
for the simplistic API in listing 5.2, the endpoint throws an
exception. This exception is handled by the
DeveloperExceptionPage-Middleware but provides a poor
experience.

Throwing an exception whenever a user requests an id that

doesn’t exist clearly makes for a poor experience all round.

A better approach is to return a status code indicating the

problem, such as 404 Not Found or 400 Bad Request.

The most declarative way to do this with minimal APIs is to

return an IResult instance.

All the endpoint handlers you’ve seen so far in this book

have returned void, a string, or a plain old CLR object

(POCO) such as Person or Fruit. There is one other type

of object you can return from an endpoint: an IResult

implementation.

In summary, the endpoint middleware handles each return

type as follows:

void or Task—The endpoint returns a 200

response with no body.

string or Task<string>—The endpoint returns

a 200 response with the string serialized to the

body as text/plain.

IResult or Task<IResult>—The endpoint

executes the IResult.ExecuteAsync method.

Depending on the implementation, this type can

customize the response, returning any status

code.

T or Task<T>—All other types (such as POCO

objects) are serialized to JSON and returned in the

body of a 200 response as application/json.

The IResult implementations provide much of the

flexibility in minimal APIs, as you’ll see in section 5.3.1.

5.3.1 Returning status codes with Results
and TypedResults

A well-designed API uses status codes to indicate to a client

what went wrong when a request failed, as well as

potentially provide more descriptive codes when a request is

successful. You should anticipate common problems that

may occur when clients call your API and return appropriate

status codes to indicate the causes to users.

ASP.NET Core exposes the simple static helper types

Results and TypedResults in the namespace

Microsoft.AspNetCore.Http. You can use these helpers

to create a response with common status codes, optionally

including a JSON body. Each of the methods on Results

and TypedResults returns an implementation of

IResult, which the endpoint middleware executes to

generate the final response.

NOTE Results and TypedResults perform the same function,
as helpers for generating common status codes. The only difference
is that the Results methods return an IResult, whereas

TypedResults return a concrete generic type, such as Ok<T>.
There’s no difference in terms of functionality, but the generic types
are easier to use in unit tests and in OpenAPI documentation, as
you’ll see in chapters 36 and 11. TypedResults were added in
.NET 7.

The following listing shows an updated version of listing 5.2,

in which we address some of the deficiencies in the API and

use Results and TypedResults to return different status

codes to clients.

Listing 5.3 Using Results and TypedResults in a minimal API

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>(); ❶

app.MapGet("/fruit", () => _fruit);

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit) ❷
 ? TypedResults.Ok(fruit) ❸
 : Results.NotFound()); ❹

app.MapPost("/fruit/{id}", (string id, Fruit fruit) =>

 _fruit.TryAdd(id, fruit) ❺
 ? TypedResults.Created($"/fruit/{id}", fruit) ❻
 : Results.BadRequest(new ❼
 { id = "A fruit with this id already exists" })); ❼

app.MapPut("/fruit/{id}", (string id, Fruit fruit) =>

{

 _fruit[id] = fruit;

 return Results.NoContent(); ❽
});

app.MapDelete("/fruit/{id}", (string id) =>

{

 _fruit.TryRemove(id, out _); ❾
 return Results.NoContent(); ❾
});

app.Run();

record Fruit(string Name, int stock);

❶ Uses a concurrent dictionary to make the API thread-safe

❷ Tries to get the fruit from the dictionary. If the ID exists in the dictionary, this returns true . .
.

❸ . . . and we return a 200 OK response, serializing the fruit in the body as JSON.

❹ If the ID doesn’t exist, returns a 404 Not Found response
❺ Tries to add the fruit to the dictionary. If the ID hasn’t been added yet. this returns true . . .

❻ . . . and we return a 201 response with a JSON body and set the Location header to the
given path.

❼ If the ID already exists, returns a 400 Bad Request response with an error message

❽ After adding or replacing the fruit, returns a 204 No Content response
❾ After deleting the fruit, always returns a 204 No Content response

Listing 5.3 demonstrates several status codes, some of

which you may not be familiar with:

200 OK—The standard successful response. It

often includes content in the body of the response

but doesn’t have to.

201 Created—Often returned when you

successfully created an entity on the server. The

Created result in listing 5.3 also includes a

Location header to describe the URL where the

entity can be found, as well as the JSON entity

itself in the body of the response.

204 No Content—Similar to a 200 response but

without any content in the response body.

400 Bad Request—Indicates that the request

was invalid in some way; often used to indicate

data validation failures.

404 Not Found—Indicates that the requested

entity could not be found.

These status codes more accurately describe your API and

can make an API easier to use. That said, if you use only

200 OK responses for all your successful responses, few

people will mind or think less of you! You can see a

summary of all the possible status codes and their expected

uses at http://mng.bz/jP4x.

NOTE The 404 status code in particular causes endless debate in
online forums. Should it be only used if the request didn’t match an
endpoint? Is it OK to use 404 to indicate a missing entity (as in the
previous example)? There are endless proponents in both camps, so
take your pick!

Results and TypedResults include methods for all the

common status code results you could need, but if you don’t

want to use them for some reason, you can always set the

status code yourself directly on the HttpResponse, as in

listing 5.4. In fact, the listing shows how to define the entire

response manually, including the status code, the content

type, and the response body. You won’t need to take this

manual approach often, but it can be useful in some

situations.

http://mng.bz/jP4x

Listing 5.4 Writing the response manually using HttpResponse

using System.Net.Mime

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/teapot", (HttpResponse response) => ❶
{

 response.StatusCode = 418; ❷
 response.ContentType = MediaTypeNames.Text.Plain; ❸
 return response.WriteAsync("I'm a teapot!"); ❹
});

app.Run();

❶ Accesses the HttpResponse by including it as a parameter in your endpoint handler
❷ You can set the status code directly on the response.

❸ Defines the content type that will be sent in the response
❹ You can write data to the response stream manually.

HttpResponse represents the response that will be sent to

the client and is one of the special types that minimal APIs

know to inject into your endpoint handlers (instead of trying

to create it by deserializing from the request body). You’ll

learn about the other types you can use in your endpoint

handlers in chapter 7.

5.3.2 Returning useful errors with Problem
Details

In the MapPost endpoint of listing 5.3, we checked to see

whether an entity with the given id already existed. If it did,

we returned a 400 response with a description of the error.

The problem with this approach is that the client—typically, a

mobile app or SPA—must know how to read and parse that

response. If each of your APIs has a different format for

errors, that arrangement can make for a confusing API.

Luckily, a web standard called Problem Details describes a

consistent format to use.

DEFINITION Problem Details is a web specification (https://www.rfc-
editor.org/rfc/rfc7807.xhtml) for providing machine-readable errors for
HTTP APIs. It defines the required and optional fields that should be
in the JSON body for errors.

ASP.NET Core includes two helper methods for generating

Problem Details responses from minimal APIs:

Results.Problem() and

Results.ValidationProblem() (plus their

TypedResults counterparts). Both of these methods

return Problem Details JSON. The only difference is that

Problem() defaults to a 500 status code, whereas

ValidationProblem() defaults to a 400 status and

requires you to pass in a Dictionary of validation errors,

as shown in the following listing.

Listing 5.5 Returning Problem Details using Results.Problem

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit", () => _fruit);

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404)); ❶

https://www.rfc-editor.org/rfc/rfc7807.xhtml
https://www.rfc-editor.org/rfc/rfc7807.xhtml

app.MapPost("/fruit/{id}", (string id, Fruit fruit) =>

 _fruit.TryAdd(id, fruit)

 ? TypedResults.Created($"/fruit/{id}", fruit)

 : Results.ValidationProblem(new Dictionary<string, string[]> ❷
 { ❷
 {"id", new[] {"A fruit with this id already exists"}} ❷
 })); ❷

❶ Returns a Problem Details object with a 404 status code

❷ Returns a Problem Details object with a 400 status code and includes the validation errors

The ProblemHttpResult returned by these methods takes

care of including the correct title and description based on

the status code, and generates the appropriate JSON, as

shown in figure 5.5. You can override the default title and

description by passing additional arguments to the

Problem() and ValidationProblem() methods.

Figure 5.5 You can return a Problem Details response by using
the Problem and ValidationProblem methods. The ValidationProblem
response shown here includes a description of the error, along
with the validation errors in a standard format. This example
shows the response when you try to create a fruit with an id that
has already been used.

Deciding on an error format is an important step whenever

you create an API, and as Problem Details is already a web

standard, it should be your go-to approach, especially for

validation errors. Next, you’ll learn how to ensure that all

your error responses are Problem Details.

5.3.3 Converting all your responses to
Problem Details

In section 5.3.2 you saw how to use the

Results.Problem() and

Results.ValidationProblem() methods in your

minimal API endpoints to return Problem Details JSON. The

only catch is that your minimal API endpoints aren’t the only

thing that could generate errors. In this section you’ll learn

how to make sure that all your errors return Problem Details

JSON, keeping the error responses consistent across your

application.

A minimal API application could generate an error response

in several ways:

Returning an error status code from an endpoint

handler

Throwing an exception in an endpoint handler,

which is caught by the

ExceptionHandlerMiddleware or the

DeveloperExceptionPageMiddleware and

converted to an error response

The middleware pipeline returning a 404 response

because a request isn’t handled by an endpoint

A middleware component in the pipeline throwing

an exception

A middleware component returning an error

response because a request requires

authentication, and no credentials were provided

There are essentially two classes of errors, which are

handled differently: exceptions and error status code

responses. To create a consistent API for consumers, we

need to make sure that both error types return Problem

Details JSON in the response.

CONVERTING EXCEPTIONS TO PROBLEM DETAILS

In chapter 4 you learned how to handle exceptions with the

ExceptionHandlerMiddleware. You saw that the

middleware catches any exceptions from later middleware

and generates an error response by executing an error-

handling path. You could add the middleware to your

pipeline with an error-handling path of "/error":

app.UseExceptionHandler("/error");

ExceptionHandlerMiddleware invokes this path after it

captures an exception to generate the final response. The

trouble with this approach for minimal APIs is that you need

a dedicated error endpoint, the sole purpose of which is to

generate a Problem Details response.

Luckily, in .NET 7, you can configure the

ExceptionHandlerMiddleware (and

DeveloperExceptionPageMiddleware) to convert an

exception to a Problem Details response automatically. In

.NET 7, you can add the new IProblemDetailsService

to your app by calling AddProblemDetails() on

WebApplicationBuilder.Services. When the

ExceptionHandlerMiddleware is configured without an

error-handling path, it automatically uses the

IProblemDetailsService to generate the response, as

shown in figure 5.6.

WARNING Calling AddProblemDetails() registers the
IProblemDetailsService service in the dependency injection
container so that other services and middleware can use it. If you
configure ExceptionHandlerMiddleware without an error-
handling path but forget to call AddProblemDetails(), you’ll
get an exception when your app starts. You’ll learn more about
dependency injection in chapters 8 and 9.

Figure 5.6 The ExceptionHandlerMiddleware catches exceptions
that occur later in the middleware pipeline. If the middleware
isn’t configured to reexecute the pipeline, it generates a Problem
Details response by using the IProblemDetailsService.

Listing 5.6 shows how to configure Problem Details

generation in your exception handlers. Add the required

IProblemDetailsService service to your app, and call

UseExceptionHandler() without providing an error-

handling path, and the middleware will generate a Problem

Details response automatically when it catches an exception.

Listing 5.6 Configuring ExceptionHandlerMiddleware to use
Problem Details

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddProblemDetails(); ❶

WebApplication app = builder.Build();

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler(); ❷
}

app.MapGet("/", void () => throw new Exception()); ❸

app.Run();

❶ Adds the IProblemDetailsService implementation

❷ Configures the ExceptionHandlerMiddleware without a path so that it uses the
IProblemDetailsService

❸ Throws an exception to demonstrate the behavior

As discussed in chapter 4, WebApplication automatically

adds the DeveloperExceptionPageMiddleware to your

app in the development environment. This middleware

similarly supports returning Problem Details when two

conditions are satisfied:

You’ve registered an IProblemDetailsService

with the app (by calling AddProblemDetails()

in Program.cs).

The request indicates that it doesn’t support HTML.

If the client supports HTML, middleware uses the

HTML developer exception page from chapter 4

instead.

The ExceptionHandlerMiddleware and

DeveloperExceptionPageMiddleware take care of

converting all your exceptions to Problem Details responses,

but you still need to think about nonexception errors, such

as the automatic 404 response generated when a request

doesn’t match any endpoints.

CONVERTING ERROR STATUS CODES TO PROBLEM

DETAILS

Returning error status codes is the common way to

communicate errors to a client with minimal APIs. To ensure

a consistent API for consumers, you should return a Problem

Details response whenever you return an error.

Unfortunately, as already mentioned, you don’t control all

the places where an error code may be created. The

middleware pipeline automatically returns a 404 response

when an unmatched request reaches the end of the pipeline,

for example.

Instead of generating a Problem Details response in your

endpoint handlers, you can add middleware to convert

responses to Problem Details automatically by using the

StatusCodePagesMiddleware, as shown in figure 5.7.

Any response that reaches the middleware with an error

status code and doesn’t already have a body has a Problem

Details body added by the middleware. The middleware

converts all error responses automatically, regardless of

whether they were generated by an endpoint or from other

middleware.

Figure 5.7 The StatusCodePagesMiddleware intercepts responses
with an error status code that have no response body and adds
a Problem Details response body.

NOTE You can also use the StatusCodePagesMiddleware to
reexecute the middleware pipeline with an error handling path, as you
can with the ExceptionHandlerMiddleware (chapter 4). This
technique is most useful for Razor Pages applications when you want
to have a different error page for specific status codes, as you’ll see
in chapter 15.

Add the StatusCodePagesMiddleware to your app by

using the UseStatusCodePages() extension method, as

shown in the following listing. Ensure that you also add the

IProblemDetailsService to your app by using

AddProblemDetails().

Listing 5.7 Using StatusCodePagesMiddleware to return Problem
Details

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddProblemDetails(); ❶

WebApplication app = builder.Build();

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler();

}

app.UseStatusCodePages(); ❷

app.MapGet("/", () => Results.NotFound()); ❸

app.Run();

❶ Adds the IProblemDetailsService implementation
❷ Adds the StatusCodePagesMiddleware

❸ The StatusCodePagesMiddleware automatically adds a Problem Details body to the 404
response.

The StatusCodePagesMiddleware, coupled with

exception-handling middleware, ensures that your API

returns a Problem Details response for all error responses.

TIP You can also customize how the Problem Details response is
generated by passing parameters to the AddProblemDetails()
method or by implementing your own
IProblemDetailsService.

So far in section 5.3, I’ve described returning objects as

JSON, returning a string as text, and returning custom

status codes and Problem Details by using Results.

Sometimes, however, you need to return something bigger,

such as a file or a binary. Luckily, you can use the

convenient Results class for that task too.

5.3.4 Returning other data types

The methods on Results and TypedResults are

convenient ways of returning common responses, so it’s only

natural that they include helpers for other common

scenarios, such as returning a file or binary data:

Results.File()—Pass in the path of the file to

return, and ASP.NET Core takes care of streaming

it to the client.

Results.Byte()—For returning binary data, you

can pass this method a byte[] to return.

Results.Stream()—You can send data to the

client asynchronously by using a Stream.

In each of these cases, you can provide a content type for

the data, and a filename to be used by the client. Browsers

offer to save binary data files using the suggested filename.

The File and Byte methods even support range requests

by specifying enableRangeProcessing as true.

DEFINITION Clients can create range requests using the Range
header to request a specific range of bytes from the server instead of
the whole file, reducing the bandwidth required for a request. When
range requests are enabled for Results.File() or
Results.Byte(), ASP.NET Core automatically handles
generating an appropriate response. You can read more about range
requests at http://mng.bz/Wzd0.

If the built-in Results helpers don’t provide the

functionality you need, you can always fall back to creating a

response manually, as in listing 5.4. If you find yourself

creating the same manual response several times, you could

consider creating a custom IResult type to encapsulate

this logic. I show how to create a custom IResult that

returns XML and registers it as an extension in this blog

post: http://mng.bz/8rNP.

http://mng.bz/Wzd0
http://mng.bz/8rNP

5.4 Running common code with
endpoint filters

In section 5.3 you learned how to use Results to return

different responses when the request isn’t valid. We’ll look at

validation in more detail in chapter 7, but in this section,

you’ll learn how to use filters to extract common code that

executes before (or after) an endpoint executes.

Let’s start by adding some extra validation to the fruit API

from listing 5.5. The following listing adds an additional

check to the MapGet endpoint to ensure that the provided

id isn’t empty and that it starts with the letter f.

Listing 5.8 Adding basic validation to minimal API endpoints

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

{

 if (string.IsNullOrEmpty(id) || !id.StartsWith('f')) ❶
 {

 return Results.ValidationProblem(new Dictionary<string, string[]>

 {

 {"id", new[] {"Invalid format. Id must start with 'f'"}}

 });

 }

 return _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404);

});

app.Run()

❶ Adds extra validation that the provided id has the required format

Even though this check is basic, it starts to clutter our

endpoint handler, making it harder to read what the

endpoint is doing. One improvement would be to move the

validation code to a helper function. But you’re still

inevitably going to clutter your endpoint handlers with calls

to methods that are tangential to the main function of your

endpoint.

NOTE Chapter 7 discusses additional validation patterns in detail.

It’s common to perform various cross-cutting activities for

every endpoint. I’ve already mentioned validation; other

cross-cutting activities include logging, authorization, and

auditing. ASP.NET Core has built-in support for some of

these features, such as authorization (chapter 24), but

you’re likely to have some common code that doesn’t fit into

the specific pigeonholes of validation or authorization.

Luckily, ASP.NET Core includes a feature in minimal APIs for

running these tangential concerns: endpoint filters. You can

specify a filter for an endpoint by calling

AddEndpointFilter()on the result of a call to MapGet

(or similar) and passing in a function to execute. You can

even add multiple calls to AddEndpointFilter(), which

builds up an endpoint filter pipeline, analogous to the

middleware pipeline. Figure 5.8 shows that the pipeline is

functionally identical to the middleware pipeline in figure

4.3.

Figure 5.8 The endpoint filter pipeline. Filters execute code and
then call next(context) to invoke the next filter in the pipeline. If
there are no more filters in the pipeline, the endpoint handler is
invoked. After the handler has executed, the filters may run
further code.

Each endpoint filter has two parameters: a context

parameter, which provides details about the selected

endpoint handler, and the next parameter, which represents

the filter pipeline. When you invoke the methodlike next

parameter by calling next(context), you invoke the

remainder of the filter pipeline. If there are no more filters in

the pipeline, you invoke the endpoint handler, as shown in

figure 5.8.

Listing 5.9 shows how to run the same validation logic you

saw in listing 5.8 in an endpoint filter. The filter function

accesses the endpoint method arguments by using the

context.GetArgument<T>() function, passing in a

position; 0 is the first argument of your endpoint handler, 1

is the second argument, and so on. If the argument isn’t

valid, the filter function returns an IResult object

response. If the argument is valid, the filter calls await

next(context) instead, executing the endpoint handler.

Listing 5.9 Using AddEndpointFilter to extract common code

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .AddEndpointFilter(ValidationHelper.ValidateId); ❶

app.Run();

class ValidationHelper

{

 internal static async ValueTask<object?> ValidateId(❷
 EndpointFilterInvocationContext context, ❸
 EndpointFilterDelegate next) ❹
 {

 var id = context.GetArgument<string>(0); ❺
 if (string.IsNullOrEmpty(id) || !id.StartsWith('f'))

 {

 return Results.ValidationProblem(

 new Dictionary<string, string[]>

 {

 {"id", new[]{"Invalid format. Id must start with 'f'"}}

 });

 }

 return await next(context); ❻

 }

 }

❶ Adds the filter to the endpoint using AddEndpointFilter
❷ The method must return a ValueTask.

❸ context exposes the endpoint method arguments and the HttpContext.
❹ next represents the filter method (or endpoint) that will be called next.

❺ You can retrieve the method arguments from the context.
❻ Calling next executes the remaining filters in the pipeline.

NOTE The EndpointFilterDelegate is a named delegate
type. It’s effectively a
Func<EndpointFilterInvocationContext,

ValueTask<object?>>.

There are many parallels between the middleware pipeline

and the filter endpoint pipeline, and we’ll explore them in

section 5.4.1.

5.4.1 Adding multiple filters to an endpoint

The middleware pipeline is typically the best place for

handling cross-cutting concerns such as logging,

authentication, and authorization, as these functions apply

to all requests. Nevertheless, it can be common to have

additional cross-cutting concerns that are endpoint-specific,

as we’ve already discussed. If you need many endpoint-

specific operations, you might consider using multiple

endpoint filters.

As you saw in figure 5.8, adding multiple filters to an

endpoint builds up a pipeline. Like the middleware pipeline,

the endpoint filter pipeline can execute code both before and

after the rest of the pipeline executes. Similarly, the filter

pipeline can short-circuit in the same way as the middleware

pipeline by returning a result and not calling next.

NOTE You’ve already seen an example of a short circuit in the filter
pipeline. In listing 5.9 we short-circuit the pipeline if the id is invalid
by returning a Problem Details object instead of calling
next(context).

As with middleware, the order in which you add filters to the

endpoint filter pipeline is important. The filters you add first

are called first in the pipeline, and filters you add last are

called last. On the return journey through the pipeline, after

the endpoint handler is invoked, the filters are called in

reverse order, as with the middleware pipeline. As an

example, consider the following listing, which adds an extra

filter to the endpoint shown in listing 5.9.

Listing 5.10 Adding multiple filters to the endpoint filter pipeline

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .AddEndpointFilter(ValidationHelper.ValidateId) ❶
 .AddEndpointFilter(async (context, next) => ❷
 {

 app.Logger.LogInformation("Executing filter..."); ❸
 object? result = await next(context); ❹
 app.Logger.LogInformation($"Handler result: {result}"); ❺
 return result; ❻
 });

app.Run();

❶ Adds the validation filter as before
❷ Adds a new filter using a lambda function

❸ Logs a message before executing the rest of the pipeline
❹ Executes the remainder of the pipeline and the endpoint handler

❺ Logs the result returned by the rest of the pipeline
❻ Returns the result unmodified

The extra filter is implemented as a lambda function and

simply writes a log message when it executes. Then it runs

the rest of the filter pipeline (which contains only the

endpoint handler in this example) and logs the result

returned by the pipeline. Chapter 26 covers logging in detail.

For this example, we’ll look at the logs written to the

console.

Figure 5.9 shows the log messages written when we send

two requests to the API in listing 5.10. The first request is

for an entry that exists, so it returns a 200 OK result. The

second request uses an invalid id format, so the first filter

rejects it. Figure 5.9 shows that neither the second filter nor

the endpoint handler runs in this case; the filter pipeline has

been short-circuited.

Figure 5.9 Sending two requests to the API from listing 5.10. The
first request is valid, so both filters execute. An invalid id is
provided in the second request, so the first filter short-circuits
the requests, and the second filter doesn’t execute.

By adding calls to AddEndpointFilter, you can create

arbitrarily large endpoint filter pipelines, but the fact that

you can doesn’t mean you should. Moving code to filters can

reduce clutter in your endpoints, but it makes the flow of

your application harder to understand. I suggest that you

avoid using filters unless you find duplicated code in multiple

endpoints, and then favor a filter over a simple method call

only if it significantly simplifies the code required.

5.4.2 Filters or middleware: Which should you
choose?

The endpoint filter pipeline is similar to the middleware

pipeline in many ways, but you should consider several

subtle differences when deciding which approach to use. The

similarities include three main parallels:

Requests pass through a middleware component

on the way in, and responses pass through again

on the way out. Similarly, endpoint filters can run

code before calling the next filter in the pipeline

and can run code after the response is generated,

as shown in figure 5.8.

Middleware can short-circuit a request by returning

a response instead of passing it on to later

middleware. Filters can also short-circuit the filter

pipeline by returning a response.

Middleware is often used for cross-cutting

application concerns, such as logging, performance

profiling, and exception handling. Filters also lend

themselves to cross-cutting concerns.

By contrast, there are three main differences between

middleware and filters:

Middleware can run for all requests; filters will run

only for requests that reach the

EndpointMiddleware and execute the

associated endpoint.

Filters have access to additional details about the

endpoint that will execute, such as the return

value of the endpoint, for example an IResult.

Middleware in general won’t see these

intermediate steps, so it sees only the generated

response.

Filters can easily be restricted to a subset of

requests, such as a single endpoint or a group of

endpoints. Middleware generally applies to all

requests (though you can achieve something

similar with custom middleware components).

That’s all well and good, but how should we interpret these

differences? When should we choose one over the other?

I like to think of middleware versus filters as a question of

specificity. Middleware is the more general concept,

operating on lower-level primitives such as HttpContext,

so it has wider reach. If the functionality you need has no

endpoint-specific requirements, you should use a

middleware component. Exception handling is a great

example; exceptions could happen anywhere in your

application, and you need to handle them, so using

exception-handling middleware makes sense.

On the other hand, if you do need access to endpoint details,

or if you want to behave differently for some requests, you

should consider using a filter. Validation is a good example.

Not all requests need the same validation. Requests for

static files, for example, don’t need parameter validation,

the way requests to an API endpoint do. Applying validation

to the endpoints via filters makes sense in this case.

TIP Where possible, consider using middleware for cross-cutting
concerns. Use filters when you need different behavior for different
endpoints or where the functionality relies on endpoint concepts such
as IResult objects.

So far, the filters we’ve looked at have been specific to a

single endpoint. In section 5.4.3 we look at creating generic

filters that you can apply to multiple endpoints.

5.4.3 Generalizing your endpoint filters

One common problem with filters is that they end up closely

tied to the implementation of your endpoint handlers. Listing

5.9, for example, assumes that the id parameter is the first

parameter in the method. In this section you’ll learn how to

create generalized versions of filters that work with multiple

endpoint handlers.

The fruit API we’ve been working with in this chapter

contains several endpoint handlers that take multiple

parameters. The MapPost handler, for example, takes a

string id parameter and a Fruit fruit parameter:

app.MapPost("/fruit/{id}", (string id, Fruit fruit) => { /* */ });

In this example, the id parameter is listed first, but there’s

no requirement for that to be the case. The parameters to

the handler could be reversed, and the endpoint would be

functionally identical:

app.MapPost("/fruit/{id}", (Fruit fruit, string id) => { /* */ });

Unfortunately, with this order, the ValidateId filter

described in listing 5.9 won’t work. The ValidateId filter

assumes that the first parameter to the handler is id, which

isn’t the case in our revised MapPost implementation.

ASP.NET Core provides a solution that uses a factory pattern

for filters. You can register a filter factory by using the

AddEndpointFilterFactory() method. A filter factory

is a method that returns a filter function. ASP.NET Core

executes the filter factory when it’s building your app and

incorporates the returned filter into the filter pipeline for the

app, as shown in figure 5.10. You can use the same filter-

factory function to emit a different filter for each endpoint,

with each filter tailored to the endpoint’s parameters.

Figure 5.10 A filter factory is a generalized way to add endpoint
filters. The factory reads details about the endpoint, such as its
method signature, and builds a filter function. This function is
incorporated into the final filter pipeline for the endpoint. The
build step means that a single filter factory can create filters for
multiple endpoints with different method signatures.

Listing 5.11 shows an example of the factory pattern in

practice. The filter factory is applied to multiple endpoints.

For each endpoint, the factory first checks for a parameter

called id; if it doesn’t exist, the factory returns next and

doesn’t add a filter to the pipeline. If the id parameter

exists, the factory returns a filter function, which is virtually

identical to the filter function in listing 5.9; the main

difference is that this filter handles a variable location of the

id parameter.

Listing 5.11 Using a filter factory to create an endpoint filter

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .AddEndpointFilterFactory(ValidationHelper.ValidateIdFactory); ❶

app.MapPost("/fruit/{id}", (Fruit fruit, string id) =>

 _fruit.TryAdd(id, fruit)

 ? TypedResults.Created($"/fruit/{id}", fruit)

 : Results.ValidationProblem(new Dictionary<string, string[]>

 {

 { "id", new[] { "A fruit with this id already exists" } }

 }))

 .AddEndpointFilterFactory(ValidationHelper.ValidateIdFactory); ❶

app.Run();

class ValidationHelper

{

 internal static EndpointFilterDelegate ValidateIdFactory(

 EndpointFilterFactoryContext context, ❷
 EndpointFilterDelegate next)

 {

 ParameterInfo[] parameters = ❸
 context.MethodInfo.GetParameters(); ❸
 int? idPosition = null;

 for (int i = 0; i < parameters.Length; i++) ❹
 { ❹
 if (parameters[i].Name == "id" && ❹
 parameters[i].ParameterType == typeof(string)) ❹
 { ❹
 idPosition = i; ❹
 break; ❹

 } ❹
 } ❹

 if (!idPosition.HasValue) ❺
 { ❺
 return next; ❺
 } ❺

 return async (invocationContext) => ❻
 {

 var id = invocationContext ❼
 .GetArgument<string>(idPosition.Value); ❼
 if (string.IsNullOrEmpty(id) || !id.StartsWith('f')) ❼
 { ❼
 return Results.ValidationProblem(❼
 new Dictionary<string, string[]> ❼
 {{ "id", new[] { "Id must start with 'f'" }}}); ❼
 } ❼

 return await next(invocationContext); ❽
 };

 }

}

❶ The filter factory can handle endpoints with different method signatures.

❷ The context parameter provides details about the endpoint handler method.
❸ GetParameters() provides details about the parameters of the handler being called.

❹ Loops through the parameters to find the string id parameter and record its position
❺ If the id parameter isn’t not found, doesn’t add a filter, but returns the remainder of the

pipeline

❻ If the id parameter exists, returns a filter function (the filter executed for the endpoint)
❼ If the id isn’t valid, returns a Problem Details result

❽ If the id is valid, executes the next filter in the pipeline

The code in listing 5.11 is more complex than anything else

we’ve seen so far, as it has an extra layer of abstraction. The

endpoint middleware passes an

EndpointFilterFactoryContext object to the factory

function, which contains extra details about the endpoint in

comparison to the context passed to a normal filter function.

Specifically, it includes a MethodInfo property and an

EndpointMetadata property.

NOTE You’ll learn about endpoint metadata in chapter 6.

The MethodInfo property can be used to control how the

filter is created based on the definition of the endpoint

handler. Listing 5.11 shows how you can loop through the

parameters to check for the details you need—a string id

parameter, in this case—and customize the filter function

you return.

If you find all these method signatures to be confusing, I

don’t blame you. Remembering the difference between an

EndpointFilterFactoryContext and

EndpointFilterInvocationContext and then trying to

satisfy the compiler with your lambda methods can be

annoying. Sometimes, you yearn for a good ol’ interface to

implement. Let’s do that now.

5.4.4 Implementing the IEndpointFilter
interface

Creating a lambda method for AddEndpointFilter() that

satisfies the compiler can be a frustrating experience,

depending on the level of support your integrated

development environment (IDE) provides. In this section

you’ll learn how to sidestep the issue by defining a class that

implements IEndpointFilter instead.

You can implement IEndpointFilter by defining a class

with an InvokeAsync() that has the same signature as

the lambda defined in listing 5.9. The advantage of using

IEndpointFilter is that you get IntelliSense and

autocompletion for the method signature. The following

listing shows how to implement an IEndpointFilter class

that’s equivalent to listing 5.9.

Listing 5.12 Implementing IEndpointFilter

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .AddEndpointFilter<IdValidationFilter>(); ❶

app.Run();

class IdValidationFilter : IEndpointFilter ❷
{

 public async ValueTask<object?> InvokeAsync(❸
 EndpointFilterInvocationContext context, ❸
 EndpointFilterDelegate next) ❸
 {

 var id = context.GetArgument<string>(0);

 if (string.IsNullOrEmpty(id) || !id.StartsWith('f'))

 {

 return Results.ValidationProblem(

 new Dictionary<string, string[]>

 {

 {"id", new[]{"Invalid format. Id must start with 'f'"}}

 });

 }

 return await next(context);

 }

}

❶ Adds the filter using the generic AddEndpointFilter method

❷ The filter must implement IEndpointFilter . . .
❸ . . . which requires implementing a single method.

Implementing IEndpointFilter is a good option when

your filters become more complex, but note that there’s no

equivalent interface for the filter-factory pattern shown in

section 5.4.3. If you want to generalize your filters with a

filter factory, you’ll have to stick to the lambda (or helper-

method) approach shown in listing 5.11.

5.5 Organizing your APIs with route
groups

One criticism levied against minimal APIs in .NET 6 was that

they were necessarily quite verbose, required a lot of

duplicated code, and often led to large endpoint handler

methods. .NET 7 introduced two new mechanisms to address

these critiques:

Filters—Introduced in section 5.4, filters help

separate validation checks and cross-cutting

functions such as logging from the important logic

in your endpoint handler functions.

Route groups—Described in this section, route

groups help reduce duplication by applying filters

and routing to multiple handlers at the same time.

When designing APIs, it’s important to maintain consistency

in the routes you use for your endpoints, which often means

duplicating part of the route pattern across multiple APIs. As

an example, all the endpoints in the fruit API described

throughout this chapter (such as in listing 5.3) start with the

route prefix /fruit:

MapGet("/fruit", () => {/* */})

MapGet("/fruit/{id}", (string id) =>

{/* */})

MapPost("/fruit/{id}", (Fruit fruit,

string id) => {/* */})

MapPut("/fruit/{id}", (Fruit fruit,

string id) => {/* */})

MapDelete("/fruit/{id}", (string id)

=> {/* */})

Additionally, the last four endpoints need to validate the id

parameter. This validation can be extracted to a helper

method and applied as a filter, but you still need to

remember to apply the filter when you add a new endpoint.

All this duplication can be removed by using route groups.

You can use route groups to extract common path segments

or filters to a single location, reducing the duplication in your

endpoint definitions. You create a route group by calling

MapGroup("/fruit") on the WebApplication instance,

providing a route prefix for the group ("/fruit", in this

case), and MapGroup() returns a RouteGroupBuilder.

When you have a RouteGroupBuilder, you can call the

same Map* extension methods on RouteGroupBuilder as

you do on WebApplication. The only difference is that all

the endpoints you define on the group will have the prefix

"/fruit" applied to each endpoint you define, as shown in

figure 5.11. Similarly, you can call AddEndpointFilter()

on a route group, and all the endpoints on the group will

also use the filter.

Figure 5.11 Using route groups to simplify the definition of
endpoints. You can create a route group by calling MapGroup()
and providing a prefix. Any endpoints created on the route
group inherit the route template prefix, as well as any filters
added to the group.

You can even create nested groups by calling MapGroup()

on a group. The prefixes are applied to your endpoints in

order, so the first MapGroup() call defines the prefix used

at the start of the route.

app.MapGroup("/fruit").MapGroup("/citrus"), for

example, would have the prefix "/fruit/citrus".

TIP If you don’t want to add a prefix but still want to use the route
group for applying filters, you can pass the prefix "/" to
MapGroup().

Listing 5.13 shows an example of rewriting the fruit API to

use route groups. It creates a top-level fruitApi, which

applies the "/fruit" prefix, and creates a nested route

group called fruitApiWithValidation for the endpoints

that require a filter. You can find the complete example

comparing the versions with and without route groups in the

source code for this chapter.

Listing 5.13 Reducing duplication with route groups

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

RouteGroupBuilder fruitApi = app.MapGroup("/fruit"); ❶

fruitApi.MapGet("/", () => _fruit); ❷

RouteGroupBuilder fruitApiWithValidation = fruitApi.MapGroup("/") ❸
 .AddEndpointFilter(ValidationHelper.ValidateIdFactory); ❹

fruitApiWithValidation.MapGet("/{id}", (string id) => ❺
 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404));

fruitApiWithValidation.MapPost("/{id}", (Fruit fruit, string id) => ❺
 _fruit.TryAdd(id, fruit)

 ? TypedResults.Created($"/fruit/{id}", fruit)

 : Results.ValidationProblem(new Dictionary<string, string[]>

 {

 { "id", new[] { "A fruit with this id already exists" } }

 }));

fruitApiWithValidation.MapPut("/{id}", (string id, Fruit fruit) => ❺
{

 _fruit[id] = fruit;

 return Results.NoContent();

});

fruitApiWithValidation.MapDelete("/fruit/{id}", (string id) => ❺
{

 _fruit.TryRemove(id, out _);

 return Results.NoContent();

});

app.Run();

❶ Creates a route group by calling MapGroup and providing a prefix

❷ Endpoints defined on the route group will have the group prefix prepended to the route.
❸ You can create nested route groups with multiple prefixes.

❹ You can add filters to the route group . . .
❺ . . . and the filter will be applied to all the endpoints defined on the route group.

In .NET 6, minimal APIs were a bit too verbose to be

generally recommended, but with the addition of route

groups and filters, minimal APIs have come into their own.

In chapter 6 you’ll learn more about routing and route

template syntax, as well as how to generate links to other

endpoints.

Summary
HTTP verbs define the semantic expectation for a

request. GET is used to fetch data, POST creates a

resource, PUT creates or replaces a resource, and

DELETE removes a resource. Following these

conventions will make your API easier to consume.

Each HTTP response includes a status code.

Common codes include 200 OK, 201 Created,

400 Bad Request, and 404 Not Found. It’s

important to use the correct status code, as clients

use these status codes to infer the behavior of

your API.

An HTTP API exposes methods or endpoints that

you can use to access or change data on a server

using the HTTP protocol. An HTTP API is typically

called by mobile or client-side web applications.

You define minimal API endpoints by calling Map*

functions on the WebApplication instance,

passing in a route pattern to match and a handler

function. The handler functions runs in response to

matching requests.

There are different extension methods for each

HTTP verb. MapGet handles GET requests, for

example, and MapPost maps POST requests. You

use these extension methods to define how your

app handles a given route and HTTP verb.

You can define your endpoint handlers as lambda

expressions, Func<T, TResult> and

Action<T> variables, local functions, instance

methods, or static methods. The best approach

depends on how complex your handler is, as well

as personal preference.

Returning void from your endpoint handler

generates a 200 response with no body by default.

Returning a string generates a text/plain

response. Returning an IResult instance can

generate any response. Any other object returned

from your endpoint handler is serialized to JSON.

This convention helps keep your endpoint handlers

succinct.

You can customize the response by injecting an

HttpResponse object into your endpoint handler

and then setting the status code and response

body. This approach can be useful if you have

complex requirements for an endpoint.

The Results and TypedResults helpers contain

static methods for generating common responses,

such as a 404 Not Found response using

Results.NotFound(). These helpers simplifying

returning common status codes.

You can return a standard Problem Details object

by using Results.Problem() and

Results.ValiationProblem(). Problem()

generates a 500 response by default (which can

be changed), and ValidationProblem()

generates a 400 response, with a list of validation

errors. These methods make returning Problem

Details objects more concise than generating the

response manually.

You can use helper methods to generate other

common result types on Results, such as

File() for returning a file from disk, Bytes()

for returning arbitrary binary data, and Stream()

for returning an arbitrary stream.

You can extract common or tangential code from

your endpoint handlers by using endpoint filters,

which can keep your endpoint handlers easy to

read.

Add a filter to an endpoint by calling

AddEndpointFilter() and providing the

lambda function to run (or use a static/instance

method). You can also implement

IEndpointFilter and call

AddEndpointFilter<T>(), where T is the

name of your implementing class.

You can generalize your filter functions by creating

a factory, using the overload of

AddEndpointFilter() that takes an

EndpointFilterFactoryContext. You can

use this approach to support endpoint handlers

with various method signatures.

You can reduce duplication in your endpoint routes

and filter configuration by using route groups. Call

MapGroup() on WebApplication, and provide a

prefix. All endpoints created on the returned

RouteGroupBuilder will use the prefix in their

route templates.

You can also call AddEndpointFilter() on

route groups. Any endpoints defined on the group

will also have the filter, as though you defined

them on the endpoint directly, removing the need

to duplicate the call on each endpoint.

6 Mapping URLs to endpoints using
routing

This chapter covers

Mapping URLs to endpoint handlers
Using constraints and default values to match URLs
Generating URLs from route parameters

In chapter 5 you learned how to define minimal APIs, how to

return responses, and how to work with filters and route

groups. One crucial aspect of minimal APIs that we touched

on only lightly is how ASP.NET Core selects a specific

endpoint from all the handlers defined, based on the

incoming request URL. This process, called routing, is the

focus of this chapter.

This chapter begins by identifying the need for routing and

why it’s useful. You’ll learn about the endpoint routing

system introduced in ASP.NET Core 3.0 and why it was

introduced, and explore the flexibility routing can bring to

the URLs you expose.

The bulk of this chapter focuses on the route template

syntax and how it can be used with minimal APIs. You’ll

learn about features such as optional parameters, default

parameters, and constraints, as well as how to extract

values from the URL automatically. Although we’re focusing

on minimal APIs in this chapter, the same routing system is

used with Razor Pages and Model-View-Controller (MVC), as

you’ll see in chapter 14.

In section 6.4 I describe how to use the routing system to

generate URLs, which you can use to create links and

redirect requests for your application. One benefit of using a

routing system is that it decouples your handlers from the

underlying URLs they’re associated with. You can use URL

generation to avoid littering your code with hardcoded URLs

like /product/view/3. Instead, you can generate the

URLs at runtime, based on the routing system. This

approach makes changing the URL for a given endpoint

easier: instead of your having to hunt down every place

where you used the endpoint’s URL, the URLs are updated

for you automatically, with no other changes required.

By the end of this chapter, you should have a much clearer

understanding of how an ASP.NET Core application works.

You can think of routing as being the glue that ties the

middleware pipeline to endpoints. With middleware,

endpoints, and routing under your belt, you’ll be writing web

apps in no time!

6.1 What is routing?
Routing is the process of mapping an incoming request to a

method that will handle it. You can use routing to control the

URLs you expose in your application. You can also use

routing to enable powerful features such as mapping

multiple URLs to the same handler and automatically

extracting data from a request’s URL.

In chapter 4 you saw that an ASP.NET Core application

contains a middleware pipeline, which defines the behavior

of your application. Middleware is well suited to handling

both cross-cutting concerns, such as logging and error

handling, and narrowly focused requests, such as requests

for images and CSS files.

To handle more complex application logic, you’ll typically use

the EndpointMiddleware at the end of your middleware

pipeline. This middleware can handle an appropriate request

by invoking a method known as a handler and using the

result to generate a response. Previous chapters described

using minimal API endpoint handlers, but there are other

types of handlers, such as MVC action methods and Razor

Pages, as you’ll learn in part 2 of this book.

One aspect that I’ve glossed over so far is how the

EndpointMiddleware selects which handler executes

when you receive a request. What makes a request

appropriate for a given handler? The process of mapping a

request to a handler is routing.

DEFINITION Routing in ASP.NET Core is the process of selecting a
specific handler for an incoming HTTP request. In minimal APIs, the
handler is the endpoint handler associated with a route. In Razor
Pages, the handler is a page handler method defined in a Razor
Page. In MVC, the handler is an action method in a controller.

In chapters 3 to 5, you saw several simple applications built

with minimal APIs. In chapter 5, you learned the basics of

routing for minimal APIs, but it’s worth exploring why

routing is useful as well as how to use it. Even a simple URL

path such as /person uses routing to determine which

handler should be executed, as shown in figure 6.1.

Figure 6.1 The router compares the request URL with a list of
configured route templates to determine which handler to
execute.

On the face of it, that seems pretty simple. You may wonder

why I need a whole chapter to explain that obvious

mapping. The simplicity of the mapping in this case belies

how powerful routing can be. If this approach, using a direct

comparison with static strings, were the only one available,

you’d be severely limited in the applications you could

feasibly build.

Consider an e-commerce application that sells multiple

products. Each product needs to have its own URL, so if you

were using a purely static routing system, you’d have only

two options:

Use a different handler for every product in your

product range. That approach would be unfeasible

for almost any realistically sized product range.

Use a single handler, and use the query string to

differentiate among products. This approach is

much more practical, but you’d end up with

somewhat-ugly URLs, such as "/product?

name=big-widget" or "/product?id=12".

DEFINITION The query string is part of a URL containing additional
data that doesn’t fit in the path. It isn’t used by the routing
infrastructure to identify which handler to execute, but ASP.NET Core
can extract values from the query string automatically in a process
called model binding, as you’ll see in chapter 7. The query string in
the preceding example is id=12.

With routing, you can have a single endpoint handler that

can handle multiple URLs without having to resort to ugly

query strings. From the point of the view of the endpoint

handler, the query string and routing approaches are similar;

the handler returns the results for the correct product

dynamically as appropriate. The difference is that with

routing, you can completely customize the URLs, as shown

in figure 6.2. This feature gives you much more flexibility

and can be important in real-life applications for search

engine optimization (SEO).

NOTE With the flexibility of routing, you can encode the hierarchy of
your site properly in your URLs, as described in Google’s SEO starter
guide at http://mng.bz/EQ2J.

http://mng.bz/EQ2J

Figure 6.2 If you use static URL-based mapping, you need a
different handler for every product in your product range. With a
query string, you can use a single handler, and the query string
contains the data. With routing, multiple URLs map to a single
handler, and a dynamic parameter captures the difference in the
URL.

As well as enabling dynamic URLs, routing fundamentally

decouples the URLs in your application from the definition of

your handlers.

File-system based routing

In one alternative to routing, the location of a handler on disk dictates the URL you use
to invoke it. The downside of this approach is that if you want to change an exposed
URL, you also need to change the location of the handler on disk.

This file-based approach may sound like a strange choice, but it has many advantages
for some apps, primarily in terms of simplicity. As you’ll see in part 2, Razor Pages is
partially file-based but also uses routing to get the best of both worlds!

With routing it’s easy to modify your exposed URLs without

changing any filenames or locations. You can also use

routing to create friendlier URLs for users, which can

improve discovery and “hackability.” All of the following

routes could point to the same handler:

/rates/view/1

/rates/view/USD

/rates/current-exchange-rate/USD

/current-exchange-rate-for-USD

This level of customization isn’t often necessary, but it’s

quite useful to have the capability to customize your app’s

URLs when you need it. In the next section we’ll look at how

routing works in practice in ASP.NET Core.

6.2 Endpoint routing in ASP.NET Core
In this section I describe how endpoint routing works in

ASP.NET Core, specifically with respect to minimal APIs and

the middleware pipeline. In chapter 14 you’ll learn how

routing is used with Razor Pages and the ASP.NET Core MVC

framework.

Routing has been part of ASP.NET Core since its inception,

but it has been through some big changes. In ASP.NET Core

2.0 and 2.1, routing was restricted to Razor Pages and the

ASP.NET Core MVC framework. There was no dedicated

routing middleware in the middleware pipeline; routing

happened only within Razor Pages or MVC components.

Unfortunately, restricting routing to the MVC and Razor

Pages infrastructure made some things a bit messy. Some

cross-cutting concerns, such as authorization, were

restricted to the MVC infrastructure and were hard to use

from other middleware in your application. That restriction

caused inevitable duplication, which wasn’t ideal.

ASP.NET Core 3.0 introduced a new routing system:

endpoint routing. Endpoint routing makes the routing

system a more fundamental feature of ASP.NET Core and no

longer ties it to the MVC infrastructure. Now Razor Pages,

MVC, and other middleware can all use the same routing

system. .NET 7 continues to use the same endpoint routing

system, which is integral to the minimal API functionality

that was introduced in .NET 6.

Endpoint routing is fundamental to all but the simplest

ASP.NET Core apps. It’s implemented with two pieces of

middleware, which you’ve already seen:

EndpointRoutingMiddleware—This

middleware chooses which registered endpoints

execute for a given request at runtime. To make it

easier to distinguish between the two types of

middleware, I’ll be referring to this middleware as

the RoutingMiddleware throughout this book.

EndpointMiddleware—This middleware is

typically placed at the end of your middleware

pipeline. The middleware executes the endpoint

selected by the RoutingMiddleware at runtime.

You register the endpoints in your application by calling

Map* functions on an IEndpointRouteBuilder instance.

In .NET 7 apps, this instance typically is a Web-

Application instance but doesn’t have to be, as you’ll see

in chapter 30.

DEFINITION An endpoint in ASP.NET Core is a handler that returns a
response. Each endpoint is associated with a URL pattern.
Depending on the type of application you’re building, minimal API
handlers, Razor Page handlers, or MVC controller action methods
typically make up the bulk of the endpoints in an application. You can
also use simple middleware as an endpoint or you could use a
health-check endpoint, for example.

WebApplication implements IEndpointRouteBuilder,

so you can register endpoints on it directly. Listing 6.1 shows

how you’d register several endpoints:

A minimal API handler using MapGet(), as you’ve

seen in previous chapters.

A health-check endpoint using

MapHealthChecks(). You can read more about

health checks at http://mng.bz/N2YD.

All Razor Pages endpoints in the application using

MapRazorPages(). You’ll learn more about

routing with Razor Pages in chapter 14.

Listing 6.1 Registering multiple endpoints with WebApplication

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddHealthChecks(); ❶
builder.Services.AddRazorPages(); ❶

WebApplication app = builder.Build();

app.MapGet("/test", () => "Hello world!"); ❷
app.MapHealthChecks("/healthz"); ❸
app.MapRazorPages(); ❹

http://mng.bz/N2YD

app.Run();

❶ Adds the services required by the health-check middleware and Razor Pages
❷ Registers a minimal API endpoint that returns “Hello World!” at the route /test

❸ Registers a health-check endpoint at the route /healthz
❹ Registers all the Razor Pages in your application as endpoints

Each endpoint is associated with a route template that

defines which URLs the endpoint should match. You can see

two route templates, "/healthz" and "/test", in listing

6.1.

DEFINITION A route template is a URL pattern that is used to match
against request URLs, which are strings of fixed values, such as
"/test" in the previous listing. They can also contain placeholders
for variables, as you’ll see in section 6.3.

The WebApplication stores the registered routes and

endpoints in a dictionary that’s shared by the

RoutingMiddleware and the EndpointMiddleware.

TIP By default, WebApplication automatically adds the
RoutingMiddleware to the start of the middleware and
EndpointMiddleware to the end of the middleware pipeline,
though you can override the location in the pipeline by calling
UseRouting() or UseEndpoints(). See section 4.2.3 for
more details about automatically added middleware.

At runtime, the RoutingMiddleware compares an

incoming request with the routes registered in the dictionary.

If the RoutingMiddleware finds a matching endpoint, it

makes a note of which endpoint was selected and attaches

that to the request’s HttpContext object. Then it calls the

next middleware in the pipeline. When the request reaches

the EndpointMiddleware, the middleware checks to see

which endpoint was selected and executes the endpoint (and

any associated endpoint filters), as shown in figure 6.3.

Figure 6.3 Endpoint routing uses a two-step process. The
RoutingMiddleware selects which endpoint to execute, and the
EndpointMiddleware executes it. If the request URL doesn’t match
a route template, the endpoint middleware won’t generate a
response.

If the request URL doesn’t match a route template, the

RoutingMiddleware doesn’t select an endpoint, but the

request still continues down the middleware pipeline. As no

endpoint is selected, the EndpointMiddleware silently

ignores the request and passes it to the next middleware in

the pipeline. The EndpointMiddleware is typically the

final middleware in the pipeline, so the “next” middleware is

normally the dummy middleware that always returns a 404

Not Found response, as you saw in chapter 4.

TIP If the request URL doesn’t match a route template, no endpoint is
selected or executed. The whole middleware pipeline is still executed,
but typically a 404 response is returned when the request reaches
the dummy 404 middleware.

The advantage of having two separate pieces of middleware

to handle this process may not be obvious at first blush.

Figure 6.3 hinted at the main benefit: all middleware placed

after the RoutingMiddleware can see which endpoint is

going to be executed before it is.

NOTE Only middleware placed after the RoutingMiddleware
can detect which endpoint is going to be executed.

Figure 6.4 shows a more realistic middleware pipeline in

which middleware is placed both before the

RoutingMiddleware and between the

RoutingMiddleware and the EndpointMiddleware.

Figure 6.4 Middleware placed before the routing middleware
doesn’t know which endpoint the routing middleware will select.
Middleware placed between the routing middleware and the
endpoint middleware can see the selected endpoint.

The StaticFileMiddleware in figure 6.4 is placed before

the RoutingMiddleware, so it executes before an

endpoint is selected. Conversely, the

AuthorizationMiddleware is placed after the

RoutingMiddleware, so it can tell which minimal API

endpoint will be executed eventually. In addition, it can

access certain metadata about the endpoint, such as its

name and the permissions required to access it.

TIP The AuthorizationMiddleware needs to know which
endpoint will be executed, so it must be placed after the
RoutingMiddleware and before the EndpointMiddleware
in your middleware pipeline. I discuss authorization in more detail in
chapter 24.

It’s important to remember the different roles of the two

types of routing middleware when building your application.

If you have a piece of middleware that needs to know which

endpoint (if any) a given request will execute, you need to

make sure to place it after the RoutingMiddleware and

before the EndpointMiddleware.

TIP If you want to place middleware before the
RoutingMiddleware, such as the
StaticFileMiddleware in figure 6.4, you need to override the
automatic middleware added by WebApplication by calling
UseRouting() at the appropriate point in your middleware
pipeline. See listing 4.3 in chapter 4 for an example.

I’ve covered how the RoutingMiddleware and

EndpointMiddleware interact to provide routing

capabilities in ASP.NET Core, but we’ve looked at only simple

route templates so far. In the next section we’ll look at some

of the many features available with route templates.

6.3 Exploring the route template
syntax

So far in this book we’ve looked at simple route templates

consisting of fixed values, such as /person and /test, as

well as using a basic route parameter such as

/fruit/{id}. In this section we explore the full range of

features available in route templates, such as default values,

optional segments, and constraints.

6.3.1 Working with parameters and literal
segments

Route templates have a rich, flexible syntax. Figure 6.5,

however, shows a simple example, similar to ones you’ve

already seen.

Figure 6.5 A simple route template showing a literal segment and
two required route parameters

The routing middleware parses a route template by splitting

it into segments. A segment is typically separated by the /

character, but it can be any valid character.

DEFINITION Segments that use a character other than / are called
complex segments. I generally recommend that you avoid them and
stick to using / as a separator. Complex segments have some
peculiarities that make them hard to use, so be sure to check the
documentation at http://mng.bz/D4RE before you use them.

Each segment is either

A literal value such as product in figure 6.5

A route parameter such as {category} and

{name} in figure 6.5

The request URL must match literal values exactly (ignoring

case). If you need to match a particular URL exactly, you can

use a template consisting only of literals.

TIP Literal segments in ASP.NET Core aren’t case-sensitive.

http://mng.bz/D4RE

Imagine that you have a minimal API in your application

defined using

app.MapGet("/About/Contact", () => {/* */})

This route template, “/About/Contact", consists only of

literal values, so it matches only the exact URL (ignoring

case). None of the following URLs would match this route

template:

/about

/about-us/contact

/about/contact/email

/about/contact-us

Route parameters are sections of a URL that may vary but

are still a match for the template. You define them by giving

them a name and placing them in braces, such as

{category} or {name}. When used in this way, the

parameters are required, so the request URL must have a

segment that they correspond to, but the value can vary.

The ability to use route parameters gives you great

flexibility. The simple route template

"/{category}/{name}" could be used to match all the

product-page URLs in an e-commerce application:

/bags/rucksack-a—Where category=bags

and name=rucksack-a

/shoes/black-size9—Where

category=shoes and name=black-size9

But note that this template would not map the following

URLs:

/socks/—No name parameter specified

/trousers/mens/formal—Extra URL segment,

formal, not found in route template

When a route template defines a route parameter and the

route matches a URL, the value associated with the

parameter is captured and stored in a dictionary of values

associated with the request. These route values typically

drive other behavior in the endpoint and can be injected into

the handlers (as you saw briefly in chapter 5) in a process

called model binding.

DEFINITION Route values are the values extracted from a URL
based on a given route template. Each route parameter in a template
has an associated route value, and the values are stored as a string
pair in a dictionary. They can be used during model binding, as you’ll
see in chapter 7.

Literal segments and route parameters are the two

cornerstones of ASP.NET Core route templates. With these

two concepts, it’s possible to build all manner of URLs for

your application. In the remainder of section 6.3 we’ll look at

additional features that let you have optional URL segments,

provide default values when a segment isn’t specified, and

place additional constraints on the values that are valid for a

given route parameter.

6.3.2 Using optional and default values

In section 6.3.1 you saw a simple route template with a

literal segment and two required routing parameters. Figure

6.6 shows a more complex route that uses several additional

features.

The literal product segment and the required {category}

parameter are the same as those in in figure 6.6. The

{name} parameter looks similar, but it has a default value

specified for it by =all. If the URL doesn’t contain a

segment corresponding to the {name} parameter, the router

will use the all value instead.

Figure 6.6 A more complex route template showing literal
segments, named route parameters, optional parameters, and
default values.

The final segment of figure 6.6, {id?}, defines an optional

route parameter called id. This segment of the URL is

optional. If this segment is present, the router captures the

value for the {id} parameter; if the segment isn’t there,

the router doesn’t create a route value for id.

You can specify any number of route parameters in your

templates, and these values will be available to you for

model binding. The complex route template shown in figure

6.6 allows you to match a greater variety of URLs by making

{name} and {id} optional and by providing a default for

{name}. Table 6.1 shows some of the URLs that this

template would match and the corresponding route values

that the router would set.

Table 6.1 URLs that would match the template of figure 6.7 and
their corresponding route values

URL Route values
/product/shoes/formal/3 category=shoes, name=formal, id=3

/product/shoes/formal category=shoes, name=formal

/product/shoes category=shoes, name=all

/product/bags/satchels category=bags, name=satchels

/product/phones category=phones, name=all

/product/computers/laptops/ABC-123 category=computers, name=laptops,

id=ABC-123

Note that there’s no way to specify a value for the optional

{id} parameter without also specifying the {category}

and {name} parameters. You can put an optional parameter

(that doesn’t have a default) only at the end of a route

template.

Using default values allows you to have multiple ways to call

the same URL, which may be desirable in some cases. Given

the route template in figure 6.6, the following two URLs are

equivalent:

/product/shoes

/product/shoes/all

Both URLs will execute the same endpoint handler, with the

same route values of category=shoes and name=all.

Using default values allows you to use shorter, more

memorable URLs in your application for common URLs but

still gives you the flexibility to match a variety of routes in a

single template.

6.3.3 Adding additional constraints to route
parameters

By defining whether a route parameter is required or

optional and whether it has a default value, you can match a

broad range of URLs with terse template syntax.

Unfortunately, in some cases this approach ends up being a

little too broad. Routing only matches URL segments to

route parameters; it doesn’t know anything about the data

you’re expecting those route parameters to contain. If you

consider a template similar to the one in figure 6.6,

"/{category}/{name=all}/{id?}", all of the following

URLs would match:

/shoes/sneakers/test

/shoes/sneakers/123

/Account/ChangePassword

/ShoppingCart/Checkout/Start

/1/2/3

These URLs are perfectly valid given the template’s syntax,

but some might cause problems for your application. These

URLs have two or three segments, so the router happily

assigns route values and matches the template when you

might not want it to! These are the route values assigned:

/shoes/sneakers/test has route values

category=shoes, name=sneakers, and

id=test.

/shoes/sneakers/123 has route values

category=shoes, name=sneakers, and

id=123.

/Account/ChangePassword has route values

category=Account, and

name=ChangePassword.

/Cart/Checkout/Start has route values

category=Cart, name=Checkout, and

id=Start.

/1/2/3 has route values category=1, name=2,

and id=3.

Typically, the router passes route values to handlers through

model binding, which you saw briefly in chapter 5 (and

which chapter 7 discusses in detail). A minimal API endpoint

defined as

app.MapGet("/fruit/{id}", (int id) => "Hello world!");

would obtain the id argument from the id route value. If

the id route parameter ends up assigned a noninteger value

from the URL, you’ll get an exception when it’s bound to the

integer id parameter.

To avoid this problem, it’s possible to add more constraints

to a route template that must be satisfied for a URL to be

considered a match. You can define constraints in a route

template for a given route parameter by using : (colon).

{id:int}, for example, would add the

IntRouteConstraint to the id parameter. For a given

URL to be considered a match, the value assigned to the id

route value must be convertible to an integer.

You can apply a large number of route constraints to route

templates to ensure that route values are convertible to

appropriate types. You can also check more advanced

constraints, such as that an integer value has a particular

minimum value, that a string value has a maximum length,

or that a value matches a given regular expression. Table

6.2 describes some of the available constraints. You can find

a more complete list online in Microsoft’s documentation at

http://mng.bz/BmRJ.

Table 6.2 A few route constraints and their behavior when
applied

Constraint Example Description Match
examples

int {qty:int} Matches any
integer

123, -123, 0

Guid {id:guid} Matches any
Guid

d071b70c-a812-

4b54-87d2-

7769528e2814

decimal {cost:decimal} Matches any
decimal value

29.99, 52,
-1.01

min(value) {age:min(18)} Matches
integer values
of 18 or greater

18, 20

length(value) {name:length(6)} Matches
string values
with a length of
6

Andrew,123456

optional int {qty:int?} Optionally
matches any
integer

123, -123, 0,
null

optional int
max(value)

{qty:int:max(10)?} Optionally
matches any
integer of
10 or less

3, -123, 0, null

http://mng.bz/BmRJ

TIP As you can see from table 6.2, you can also combine multiple
constraints by separating the constraints with colons.

Using constraints allows you to narrow down the URLs that a

given route template will match. When the routing

middleware matches a URL to a route template, it

interrogates the constraints to check that they’re all valid. If

they aren’t valid, the route template isn’t considered a

match, and the endpoint won’t be executed.

WARNING Don’t use route constraints to validate general input, such
as to check that an email address is valid. Doing so will result in 404
“Page not found” errors, which will be confusing for the user. You
should also be aware that all these built-in constraints assume
invariant culture, which may prove to be problematic if your
application uses URLs localized for other languages.

Constraints are best used sparingly, but they can be useful

when you have strict requirements on the URLs used by the

application, as they can allow you to work around some

otherwise-tricky combinations. You can even create custom

constraints, as described in the documentation at

http://mng.bz/d14Q.

Constraints and overlapping routes

If you have a well-designed set of URLs for your application, you’ll probably find that
you don’t need to use route constraints. Route constraints are most useful when you
have overlapping route templates.

http://mng.bz/d14Q

Suppose that you have an endpoint with the route template "/{number}/{name}"
and another with the template "/{product}/{id}". When a request with the URL
/shoes/123 arrives, which template is chosen? Both match, so the routing
middleware panics and throws an exception—not ideal.

Using constraints can fix this problem. If you update the first template to
"/{number:int}/{name}", the integer constraint means that the URL is no
longer a match, and the routing middleware can choose correctly. Note, however, that
the URL /123/shoes still matches both route templates, so you’re not out of the
woods.

Generally, you should avoid overlapping route templates like these, as they’re often
confusing and more trouble than they’re worth. If your route templates are well defined
so that each URL maps to a single template, ASP.NET Core routing will work without
any difficulties. Sticking to the built-in conventions as far as possible is the best way to
stay on the happy path!

We’re coming to the end of our look at route templates, but

before we move on, there’s one more type of parameter to

think about: the catch-all parameter.

6.3.4 Matching arbitrary URLs with the catch-
all parameter

You’ve seen how route templates take URL segments and

attempt to match them to parameters or literal strings.

These segments normally split around the slash character, /,

so the route parameters themselves won’t contain a slash.

What do you do if you need them to contain a slash or don’t

know how many segments you’re going to have?

Imagine that you’re building a currency-converter

application that shows the exchange rate from one currency

to one or more other currencies. You’re told that the URLs

for this page should contain all the currencies as separate

segments. Here are some examples:

/USD/convert/GBP—Show USD with exchange

rate to GBP.

/USD/convert/GBP/EUR—Show USD with

exchange rates to GBP and EUR.

/USD/convert/GBP/EUR/CAD—Show USD with

exchange rates for GBP, EUR, and CAD.

If you want to support showing any number of currencies, as

these URLs do, you need a way to capture everything after

the convert segment. You could achieve this goal by using

a catch-all parameter in the route template, as shown in

figure 6.7.

Figure 6.7 You can use catch-all parameters to match the
remainder of a URL. Catch-all parameters may include the /
character or may be an empty string.

You can declare catch-all parameters by using either one or

two asterisks inside the parameter definition, as in

{*others} and {**others}. These parameters match the

remaining unmatched portion of a URL, including any

slashes or other characters that aren’t part of earlier

parameters. They can also match an empty string. For the

USD/convert/GBP/EUR URL, the value of the route value

others would be the single string "GBP/EUR".

TIP Catch-all parameters are greedy and will capture the whole
unmatched portion of a URL. Where possible, to avoid confusion,
avoid defining route templates with catch-all parameters that overlap
other route templates.

The one- and two-asterisk versions of the catch-all

parameter behave identically when routing an incoming

request to an endpoint. The difference occurs only when

you’re generating URLs (which we’ll cover in the next

section): the one-asterisk version URL encodes forward

slashes, and the two-asterisk version doesn’t. Typically, the

round-trip behavior of the two-asterisk version is what you

want.

NOTE For examples and a comparison between the one and two-
asterisk catch-all versions, see the documentation at
http://mng.bz/rWyX.

You read that last paragraph correctly: mapping URLs to

endpoints is only half of the responsibilities of the routing

system in ASP.NET Core. It’s also used to generate URLs so

that you can reference your endpoints easily from other

parts of your application.

http://mng.bz/rWyX

6.4 Generating URLs from route
parameters

In this section we’ll look at the other half of routing:

generating URLs. You’ll learn how to generate a URL as a

string you can use in your code and how to send redirect

URLs automatically as a response from your endpoints.

One of the benefits and byproducts of using the routing

infrastructure in ASP.NET Core is that your URLs can be

somewhat fluid. You can change route templates however

you like in your application—by renaming /cart to

/basket, for example—and won’t get any compilation

errors.

Endpoints aren’t isolated, of course; inevitably, you’ll want to

include a link to one endpoint in another. Trying to manage

these links within your app manually would be a recipe for

heartache, broken links, and 404 errors. If your URLs were

hardcoded, you’d have to remember to do a find-and-replace

operation with every rename!

Luckily, you can use the routing infrastructure to generate

appropriate URLs dynamically at runtime instead, freeing

you from the burden. Conceptually, this process is almost

the exact reverse of the process of mapping a URL to an

endpoint, as shown in figure 6.8. In the routing case, the

routing middleware takes a URL, matches it to a route

template, and splits it into route values. In the URL

generation case, the generator takes in the route values and

combines them with a route template to build a URL.

Figure 6.8 A comparison between routing and URL generation.
Routing takes in a URL and generates route values, but URL

generation uses route values to generate a URL.

You can use the LinkGenerator class to generate URLs for

your minimal APIs. You can use it in any part of your

application, so you can use it in middleware and any other

services too. LinkGenerator has various methods for

generating URLs, such as GetPathByPage and

GetPathByAction, which are used specifically for routing

to Razor Pages and MVC actions, so we’ll look at those in

chapter 14. We’re interested in the methods related to

named routes.

6.4.1 Generating URLs for a minimal API
endpoint with LinkGenerator

You’ll need to generate URLs in various places in your

application, and one common location is your minimal API

endpoints. The following listing shows how you could

generate a link to one endpoint from another by annotating

the target endpoint with a name and using the

LinkGenerator class.

Listing 6.2 Generating a URL LinkGenerator and a named
endpoint

app.MapGet("/product/{name}", (string name) => $"The product is {name}") ❶
 .WithName("product"); ❷

app.MapGet("/links", (LinkGenerator links) => ❸
{

 string link = links.GetPathByName("product", ❹
 new { name = "big-widget"}); ❹

 return $"View the product at {link}"; ❺
});

❶ The endpoint echoes the name it receives in the route template.
❷ Gives the endpoint a name by adding metadata to it

❸ References the LinkGenerator class in the endpoint handler
❹ Creates a link using the route name “product” and provides a value for the route

parameter

❺ Returns the value “View the product at /product/big-widget”

The WithName() method adds metadata to your endpoints

so that they can be referenced by other parts of your

application. In this case, we’re adding a name to the

endpoint so we can refer to it later. You’ll learn more about

metadata in chapter 11.

NOTE Endpoint names are case-sensitive (unlike the route templates
themselves) and must be globally unique. Duplicate names cause
exceptions at runtime.

The LinkGenerator is a service available anywhere in

ASP.NET Core. You can access it from your endpoints by

including it as a parameter in the handler.

NOTE You can reference the LinkGenerator in your handler
because it’s registered with the dependency injection container
automatically. You’ll learn about dependency injection in chapters 8
and 9.

The GetPathByName() method takes the name of a route

and, optionally, route data. The route data is packaged as

key-value pairs into a single C# anonymous object. If you

need to pass more than one route value, you can add more

properties to the anonymous object. Then the helper will

generate a path based on the referenced endpoint’s route

template.

Listing 6.2 shows how to generate a path. But you can also

generate a complete URL by using the GetUriByName()

method and providing values for the host and scheme, as in

this example:

links.GetUriByName("product", new { Name = "super-fancy-widget"},

 "https", new HostString("localhost"));

Also, some methods available on LinkGenerator take an

HttpContext. These methods are often easier to use in an

endpoint handler, as they extract ambient values such as the

scheme and hostname from the incoming request and reuse

them for URL generation.

WARNING Be careful when using the GetUriByName method. It’s
possible to expose vulnerabilities in your app if you use unvalidated
host values. For more information on host filtering and why it’s
important, see this post: http://mng.bz/V1d5.

In listing 6.2, as well as providing the route name, I passed

in an anonymous object to GetPathByName:

string link = links.GetPathByName("product", new { name = "big-widget"});

This object provides additional route values when generating

the URL, in this case setting the name parameter to "big-

widget".

http://mng.bz/V1d5

If a selected route explicitly includes the defined route value

in its definition, such as in the "/product/{name}" route

template, the route value will be used in the URL path,

resulting in /product/big-widget. If a route doesn’t

contain the route value explicitly, as in the "/product"

template, the route value is appended to the query string as

additional data. as in /product?name=big-widget.

6.4.2 Generating URLs with IResults

Generating URLs that link to other endpoints is common

when you’re creating a REST API, for example. But you don’t

always need to display URLs. Sometimes, you want to

redirect a user to a URL automatically. In that situation you

can use Results.RedirectToRoute() to handle the URL

generation instead.

NOTE Redirects are more common with server-rendered applications
such as Razor Pages, but they’re perfectly valid for API applications
too.

Listing 6.3 shows how you can return a response from an

endpoint that automatically redirects a user to a different

named endpoint. The RedirectToRoute() method takes

the name of the endpoint and any required route

parameters, and generates a URL in a similar way to

LinkGenerator. The minimal API framework automatically

sends the generated URL as the response, so you never see

the URL in your code. Then the user’s browser reads the URL

from the response and automatically redirects to the new

page.

Listing 6.3 Generating a redirect URL using
Results.RedirectToRoute()

app.MapGet("/test", () => "Hello world!")

 .WithName("hello"); ❶

app.MapGet("/redirect-me",

 () => Results.RedirectToRoute("hello")) ❷

❶ Annotates the route with the name “hello”

❷ Generates a response that sends a redirect to the “hello” endpoint

By default, RedirectToRoute() generates a 302 Found

response and includes the generated URL in the Location

response header. You can control the status code used by

setting the optional parameters preserveMethod and

permanent as follows:

permanent=false, preserveMethod=false—

302 Found

permanent=true, preserveMethod=false—

301 Moved Permanently

permanent=false, preserveMethod=true—

307 Temporary Redirect

permanent=true, preserveMethod=true—

308 Permanent Redirect

NOTE Each of the redirect status codes has a slightly different
semantic meaning, though in practice, many sites simply use 302.
Be careful with the permanent move status codes; they’ll cause
browsers to never call the original URL, always favoring the redirect
location. For a good explanation of these codes (and the useful 303
See Other status code), see the Mozilla documentation at
http://mng.bz/x4GB.

As well as redirecting to a specific endpoint, you can redirect

to an arbitrary URL by using the Results.Redirect()

method. This method works in the same way as

RedirectToRoute() but takes a URL instead of a route

name and can be useful for redirecting to external URLs.

Whether you’re generating URLs by using LinkGenerator

or RedirectToRoute(), you need to be careful in these

route generation methods. Make sure to provide the correct

endpoint name and any necessary route parameters. If you

get something wrong—if you have a typo in your endpoint

name or forget to include a required route parameter, for

example—the URL generated will be null. Sometimes it’s

worth checking the generated URL for null explicitly to

make sure that there are no problems.

6.4.3 Controlling your generated URLs with
RouteOptions

Your endpoint routes are the public surface of your APIs, so

you may well have opinions on how they should look. By

http://mng.bz/x4GB

default, LinkGenerator does its best to generate routes

the same way you define them; if you define an endpoint

with the route template /MyRoute, LinkGenerator

generates the path /MyRoute. But what if that path isn’t

what you want? What if you’d rather have LinkGenerator

produce prettier paths, such as /myroute or /myroute/?

In this section you’ll learn how to configure URL generation

both globally and on a case-by-case basis.

NOTE Whether to add a trailing slash to your URLs is largely a
question of taste, but the choice has some implications in terms of
both usability and search results. I typically choose to add trailing
slashes for Razor Pages applications but not for APIs. For details,
see http://mng.bz/Ao1W.

When ASP.NET Core matches an incoming URL against your

route templates by using routing, it uses a case-insensitive

comparison, as you saw in chapter 5. So if you have a route

template /MyRoute, requests to /myroute, /MYROUTE,

and even /myROUTE match. But when generating URLs,

LinkGenerator needs to choose a single version to use.

By default, it uses the same casing that you defined in your

route templates. So if you write

app.MapGet("/MyRoute", () => "Hello world!").WithName("route1");

LinkGenerator.GetPathByName("route1") returns

/MyRoute.

http://mng.bz/Ao1W

Although that’s a good default, you’d probably prefer that all

the links generated by your app be consistent. I like all my

links to be lowercase, regardless of whether I accidentally

failed to make my route template lowercase.

You can control the route generation rules by using

RouteOptions. You configure the RouteOptions for your

app using the Configure<T> extension method on

WebApplicationBuilder.Services, which updates the

RouteOptions instance for the app using the configuration

system.

NOTE You’ll learn all about the configuration system and the
Configure<T> method in chapter 10.

RouteOptions contains several configuration options, as

shown in listing 6.4. These settings control whether the URLs

your app generates are forced to be lowercase, whether the

query string should also be lowercase, and whether a trailing

slash (/) should be appended to the final URLs. In the

listing, I set the URL to be lowercased, for the trailing slash

to be added, and for the query string to remain unchanged.

NOTE In listing 6.4 the whole path is lowercased, including any route
parameter segments such as {name}. Only the query string retains
its original casing.

Listing 6.4 Configuring link generation using RouteOptions

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.Configure<RouteOptions>(o => ❶
{ ❶

 o.LowercaseUrls = true; ❶
 o.AppendTrailingSlash = true; ❶
 o.LowercaseQueryStrings = false; ❷
});

WebApplication app = builder.Build();

app.MapGet("/HealthCheck", () => Results.Ok()).WithName("healthcheck");

app.MapGet("/{name}", (string name) => name).WithName("product");

app.MapGet("/", (LinkGenerator links) =>

new []

{

 links.GetPathByName("healthcheck"), ❸
 links.GetPathByName("product", ❹
 new { Name = "Big-Widget", Q = "Test"}) ❹
});

app.Run();

❶ Configures the RouteOptions used for link generation

❷ All the settings default to false.
❸ Returns /healthcheck/

❹ Returns /big-widget/?Q=Test

Whatever default options you choose, you should try to use

them throughout your whole app, but in some cases that

may not be possible. You might have a legacy API that you

need to emulate, for example, and can’t use lowercase

URLs. In these cases, you can override the defaults by

passing an optional LinkOptions parameter to

LinkGenerator methods. The values you set in

LinkOptions override the default values set in

RouteOptions. Generating a link for the app in listing 6.4

by using

links.GetPathByName("healthcheck",

 options: new LinkOptions

 {

 LowercaseUrls = false,

 AppendTrailingSlash = false,

 });

would return the value /HealthCheck. Without the

LinkOptions parameter, GetPathByName would return

/healthcheck/.

Congratulations—you’ve made it all the way through this

detailed discussion of routing! Routing is one of those topics

that people often get stuck on when they come to building

an application, which can be frustrating. We’ll revisit routing

when we look at Razor Pages in chapter 14 and web API

controllers in chapter 20, but rest assured that this chapter

has covered all the tricky details!

In chapter 7 we’ll dive into model binding. You’ll see how the

route values generated during routing are bound to your

endpoint handler parameters and, perhaps more important,

how to validate the values you’re provided.

Summary
Routing is the process of mapping an incoming

request URL to an endpoint that executes to

generate a response. Routing provides flexibility to

your API implementations, enabling you to map

multiple URLs to a single endpoint, for example.

ASP.NET Core uses two pieces of middleware for

routing. The EndpointRoutingMiddleware and

the EndpointMiddleware. WebApplication

adds both pieces of middleware to your pipeline by

default, so typically, you don’t add them to your

application manually.

The EndpointRoutingMiddleware selects

which endpoint should be executed by using

routing to match the request URL. The

EndpointMiddleware executes the endpoint.

Having two separate middleware components

means that middleware placed between them can

react based on the endpoint that will execute when

it reaches the end of the pipeline.

Route templates define the structure of known

URLs in your application. They’re strings with

placeholders for variables that can contain optional

values and map to endpoint handlers. You should

think about your routes carefully, as they’re the

public surface of your application.

Route parameters are variable values extracted

from a request’s URL. You can use route

parameters to map multiple URLs to the same

endpoint and to extract the variable value from the

URL automatically.

Route parameters can be optional and can use

default values when a value is missing. You should

use optional and default parameters sparingly, as

they can make your APIs harder to understand,

but they can be useful in some cases. Optional

parameters must be the last segment of a route.

Route parameters can have constraints that

restrict the possible values allowed. If a route

parameter doesn’t match its constraints, the route

isn’t considered to be a match. This approach can

help you disambiguate between two similar routes,

but you shouldn’t use constraints for validation.

Use a catch-all parameter to capture the

remainder of a URL into a route value. Unlike

standard route parameters, catch-all parameters

can include slashes (/) in the captured values.

You can use the routing infrastructure to generate

URLs for your application. This approach ensures

that all your links remain correct if you change

your endpoint’s route templates.

The LinkGenerator can be used to generate

URLs from minimal API endpoints. Provide the

name of the endpoint to link to and any required

route values to generate an appropriate URL.

You can use the RedirectToRoute method to

generate URLs while also generating a redirect

response. This approach is useful when you don’t

need to reference the URL in code.

By default, URLs are generated using the same

casing as the route template and any supplied

route parameters. Instead, you can force

lowercase URLs, lowercase query strings, and

trailing slashes by customizing RouteOptions,

calling

builder.Services.Configure<RouteOption

s>().

You can change the settings for a single URL

generation by passing a LinkOptions object to

the LinkGenerator methods. These methods

can be useful when you need to differ from the

defaults for a single endpoint, such as when you’re

trying to match an existing legacy route.

7 Model binding and validation in
minimal APIs

This chapter covers

Using request values to create binding models
Customizing the model-binding process
Validating user input using DataAnnotations attributes

In chapter 6 I showed you how to define a route with

parameters—perhaps for the unique ID for a product API.

But say a client sends a request to the product API. What

then? How do you access the values provided in the request

and read the JavaScript Object Notation (JSON) in the

request body?

For most of this chapter, in sections 7.1-7.9, we’ll look at

model binding and how it simplifies reading data from a

request in minimal APIs. You’ll see how to take the data

posted in the request body or in the URL and bind it to C#

objects, which are then passed to your endpoint handler

methods as arguments. When your handler executes, it can

use these values to do something useful—return a product’s

details or change a product’s name, for example.

When your code is executing in an endpoint handler method,

you might be forgiven for thinking that you can happily use

the binding model without any further thought. Hold on,

though. Where did that data come from? From a user—and

you know users can’t be trusted! Section 7.10 focuses on

how to make sure that the user-provided values are valid

and make sense for your app.

Model binding is the process of taking the user’s raw HTTP

request and making it available to your code by populating

plain old CLR objects (POCOs), providing the input to your

endpoint handlers. We start by looking at which values in the

request are available for binding and where model binding

fits in your running app.

7.1 Extracting values from a request
with model binding

In chapters 5 and 6 you learned that route parameters can

be extracted from the request’s path and used to execute

minimal API handlers. In this section we look in more detail

at the process of extracting route parameters and the

concept of model binding.

By now, you should be familiar with how ASP.NET Core

handles a request by executing an endpoint handler. You’ve

also already seen several handlers, similar to

app.MapPost("/square/{num}", (int num) => num * num);

Endpoint handlers are normal C# methods, so the ASP.NET

Core framework needs to be able to call them in the usual

way. When handlers accept parameters as part of their

method signature, such as num in the preceding example,

the framework needs a way to generate those objects.

Where do they come from, exactly, and how are they

created?

I’ve already hinted that in most cases, these values come

from the request itself. But the HTTP request that the server

receives is a series of strings. How does ASP.NET Core turn

that into a .NET object? This is where model binding comes

in.

DEFINITION Model binding extracts values from a request and uses
them to create .NET objects. These objects are passed as method
parameters to the endpoint handler being executed.

The model binder is responsible for looking through the

request that comes in and finding values to use. Then it

creates objects of the appropriate type and assigns these

values to your model in a process called binding.

NOTE Model binding in minimal APIs (and in Razor Pages and
Model-View-Controller [MVC]) is a one-way population of objects from
the request, not the two-way data binding that desktop or mobile
development sometimes uses.

ASP.NET Core automatically creates the arguments that are

passed to your handler by using the request’s properties,

such as the request URL, any headers sent in the HTTP

request, any data explicitly POSTed in the request body, and

so on.

Model binding happens before the filter pipeline and your

endpoint handler execute, in the EndpointMiddleware, as

shown in figure 7.1. The RoutingMiddleware is

responsible for matching an incoming request to an endpoint

and for extracting the route parameter values, but all the

values at that point are strings. It’s only in the

EndpointMiddleware that the string values are

converted to the real argument types (such as int) needed

to execute the endpoint handler.

Figure 7.1 The RoutingMiddleware matches the incoming request
to an endpoint and extracts the route parameters as strings.
When the EndpointMiddleware executes the endpoint, the minimal
API infrastructure uses model binding to create the arguments
required to execute the endpoint handler, converting the string
route values to real argument types such as int.

For every parameter in your minimal API endpoint handler,

ASP.NET core must decide how to create the corresponding

arguments. Minimal APIs can use six different binding

sources to create the handler arguments:

Route values—These values are obtained from URL

segments or through default values after matching

a route, as you saw in chapter 5.

Query string values—These values are passed at

the end of the URL, not used during routing.

Header values—Header values are provided in the

HTTP request.

Body JSON—A single parameter may be bound to

the JSON body of a request.

Dependency injected services—Services available

through dependency injection can be used as

endpoint handler arguments. We look at

dependency injection in chapters 8 and 9.

Custom binding—ASP.NET Core exposes methods

for you to customize how a type is bound by

providing access to the HttpRequest object.

WARNING Unlike MVC controllers and Razor Pages, minimal APIs
do not automatically bind to the body of requests sent as forms, using
the application/ x-www-form-urlencoded mime type.
Minimal APIs will bind only to a JSON request body. If you need to
work with form data in a minimal API endpoint, you can access it on
HttpRequest.Form, but you won’t benefit from automatic
binding.

We’ll look at the exact algorithm ASP.NET Core uses to

choose which binding source to use in section 7.8, but we’ll

start by looking at how ASP.NET Core binds simple types

such as int and double.

7.2 Binding simple types to a request
When you’re building minimal API handlers, you’ll often want

to extract a simple value from the request. If you’re loading

a list of products in a category, for example, you’ll likely

need the category’s ID, and in the calculator example at the

start of section 7.1, you’ll need the number to square.

When you create an endpoint handler that contains simple

types such as int, string, and double, ASP.NET Core

automatically tries to bind the value to a route parameter, or

a query string value:

If the name of the handler parameter matches the

name of a route parameter in the route template,

ASP.NET Core binds to the associated route value.

If the name of the handler parameter doesn’t

match any parameters in the route template,

ASP.NET Core tries to bind to a query string value.

If you make a request to /products/123, for example,

this will match the following endpoint:

app.MapGet("/products/{id}", (int id) => $"Received {id}");

ASP.NET Core binds the id handler argument to the {id}

route parameter, so the handler function is called with

id=123. Conversely, if you make a request to /products?

id=456, this will match the following endpoint instead:

app.MapGet("/products", (int id) => $"Received {id}");

In this case, there’s no id parameter in the route template,

so ASP.NET Core binds to the query string instead, and the

handler function is called with id=456.

In addition to this “automatic” inference, you can force

ASP.NET Core to bind from a specific source by adding

attributes to the parameters. [FromRoute] explicitly binds

to route parameters, [FromQuery] to the query string, and

[FromHeader] to header values, as shown in figure 7.2.

Figure 7.2 Model binding an HTTP get request to an endpoint.
The [FromRoute], [FromQuery], and [FromHeader] attributes force the
endpoint parameters to bind to specific parts of the request.
Only the [FromHeader] attribute is required in this case; the route
parameter and query string would be inferred automatically.

The [From*] attributes override ASP.NET Core’s default

logic and forces the parameters to load from a specific

binding source. Listing 7.1 demonstrates three possible

[From*] attributes:

[FromQuery]—As you’ve already seen, this

attribute forces a parameter to bind to the query

string.

[FromRoute]—This attribute forces the

parameter to bind a route parameter value. Note

that if a parameter of the required name doesn’t

exist in the route template, you’ll get an exception

at runtime.

[FromHeader]—This attribute binds a parameter

to a header value in the request.

Listing 7.1 Binding simple values using [From] attributes

using Microsoft.AspNetCore.Mvc; ❶

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/products/{id}/paged",

 ([FromRoute] int id, ❷
 [FromQuery] int page, ❸
 [FromHeader(Name = "PageSize")] int pageSize) ❹
 => $"Received id {id}, page {page}, pageSize {pageSize}");

app.Run();

❶ All the [From*] attributes are in this namespace.

❷ [FromRoute] forces the argument to bind to the route value.
❸ [FromQuery] forces the argument to bind to the query string.

❹ [FromHeader] binds the argument to the specified header.

Later, you’ll see other attributes, such as [FromBody] and

[FromServices], but the preceding three attributes are

the only [From*] attributes that operate on simple types

such as int and double. I prefer to avoid using

[FromQuery] and [FromRoute] wherever possible and

rely on the default binding conventions instead, as I find that

they clutter the method signatures, and it’s generally

obvious whether a simple type is going to bind to the query

string or a route value.

TIP ASP.NET Core binds to route parameters and query string values
based on convention, but the only way to bind to a header value is
with the [FromHeader] attribute.

You may be wondering what would happen if you try to bind

a type to an incompatible value. What if you try to bind an

int to the string value "two", for example? In that case

ASP.NET Core throws a BadHttpRequestException and

returns a 400 Bad Request response.

NOTE When the minimal API infrastructure fails to bind a handler
parameter due to an incompatible format, it throws a
BadHttpRequestException and returns a 400 Bad
Request response.

I’ve mentioned several times in this section that you can

bind route values, query string values, and headers to

simple types, but what is a simple type? A simple type is

defined as any type that contains either of the following

TryParse methods, where T is the implementing type:

public static bool TryParse(string value, out T result);

public static bool TryParse(

 string value, IFormatProvider provider, out T result);

Types such as int and bool contain one (or both) these

methods. But it’s also worth noting that you can create your

own types that implement one of these methods, and they’ll

be treated as simple types, capable of binding from route

values, query string values, and headers.

Figure 7.3 shows an example of implementing a simple

strongly-typed ID
1
 that’s treated as a simple type thanks to

the TryParse method it exposes. When you send a request

to /product/p123, ASP.NET Core sees that the

ProductId type used in the endpoint handler contains a

TryParse method and that the name of the id parameter

has a matching route parameter name. It creates the id

argument by calling ProductId.TryParse() and passes

in the route value, p123.

Figure 7.3 The routing middleware matches the incoming URL to
the endpoint. The endpoint middleware attempts to bind the

route parameter id to the endpoint parameter. The endpoint
parameter type ProductId implements TryParse. If parsing is
successful, the parsed parameter is used to call the endpoint
handler. If parsing fails, the endpoint middleware returns a 400
Bad Request response.

Listing 7.2 shows how you could implement the TryParse

method for ProductId. This method creates a ProductId

from strings that consist of an integer prefixed with 'p'

(p123 or p456, for example). If the input string matches

the required format, it creates a ProductId instance and

returns true. If the format is invalid, it returns false,

binding fails, and a 400 Bad Request is returned.

Listing 7.2 Implementing TryParse in a custom type to allow
parsing from route values

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/product/{id}", (ProductId id) => $"Received {id}"); ❶
app.Run();

readonly record struct ProductId(int Id) ❷
{

 public static bool TryParse(string? s, out ProductId result) ❸
 {

 if(s is not null ❹
 && s.StartsWith('p') ❹
 && int.TryParse(❺
 s.AsSpan().Slice(1), ❻
 out int id)) ❼
 {

 result = new ProductId(id); ❽
 return true; ❽
 }

 result = default; ❾
 return false; ❾
 }

}

❶ ProductId automatically binds to route values as it implements TryParse.
❷ ProductId is a C# 10 record struct.

❸ It implements TryParse, so it’s treated as a simple type by minimal APIs.
❹ Checks that the string is not null and that the first character in the string is ‘p’ . . .

❺ and if it is, tries to parse the remaining characters as an integer
❻ Efficiently skips the first character by treating the string as a ReadOnlySpan

❼ If the string was parsed successfully, id contains the parsed value.
❽ Everything parsed successfully, so creates a new ProductId and returns true

❾ Something went wrong, so returns false and assigns a default value to the (unused) result

Using modern C# and .NET features

Listing 7.2 included some C# and .NET features that you may not have seen before,
depending on your background:

Pattern matching for null values—s is not null. Pattern matching
features have been introduced gradually into C# since C# 7. The is
not null pattern, introduced in C# 9, has some minor advantages
over the common != null expression. You can read all about pattern
matching at http://mng.bz/gBxl.

Records and struct records—readonly record struct. Records
are syntactical sugar over normal class and struct declarations,
which make declaring new types more succinct and provide
convenience methods for working with immutable types. Record structs
were introduced in C# 10. You can read more at http://mng.bz/5wWz.

Span<T> for performance—s.AsSpan(). Span<T> and
ReadOnlySpan<T> were introduced in .NET Core 2.1 and are
particularly useful for reducing allocations when working with string
values. You can read more about them at http://mng.bz/6DNy.

http://mng.bz/gBxl
http://mng.bz/5wWz
http://mng.bz/6DNy

ValueTask<T>—It’s not shown in listing 7.2, but many of the APIs in
ASP.NET Core use ValueTask instead of the more common Task for
APIs that normally complete asynchronously but may complete
asynchronously. You can read about why they were introduced and
when to use them at http://mng.bz/o1GM.

Don’t worry if you’re not familiar with these constructs. C# is a fast-moving language,
so keeping up can be tricky, but there’s generally no reason you need to use the new
features. Nevertheless, it’s useful to be able to recognize them so that you can read
and understand code that uses them.

If you’re keen to embrace new features, you might consider implementing the
IParsable interface when you implement TryParse. This interface uses the
static abstract interfaces feature, which was introduced in C# 11, and
requires implementing both a TryParse and Parse method. You can read more
about the IParsable interface in the announcement post at http://mng.bz/nW2K.

Now we’ve looked extensively at binding simple types to

route values, query strings, and headers. In section 7.3 we’ll

learn about binding to the body of a request by deserializing

JSON to complex types.

7.3 Binding complex types to the
JSON body

Model binding in minimal APIs relies on certain conventions

to simplify the code you need to write. One such convention,

which you’ve already seen, is about binding to route

parameters and query string values. Another important

convention is that minimal API endpoints assume that

requests will be sent using JSON.

http://mng.bz/o1GM
http://mng.bz/nW2K

Minimal APIs can bind the body of a request to a single

complex type in your endpoint handler by deserializing the

request from JSON. That means that if you have an endpoint

such as the one in the following listing, ASP.NET Core will

automatically deserialize the request for you from JSON,

creating the Product argument.

Listing 7.3 Automatically deserializing a JSON request from the
body

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapPost("/product", (Product product) => $"Received {product}"); ❶

app.Run();

record Product(int Id, string Name, int Stock); ❷

❶ Product is a complex type, so it’s bound to the JSON body of the request.

❷ Product doesn’t implement TryParse, so it’s a complex type.

If you send a POST request to /product for the app in

listing 7.3, you need to provide valid JSON in the request

body, such as

{ "id": 1, "Name": "Shoes", "Stock": 12 }

ASP.NET Core uses the built-in System.Text.Json library to

deserialize the JSON into a Product instance and uses it as

the product argument in the handler.

Configuring JSON binding with
System.Text.Json

The System.Text.Json library, introduced in .NET Core 3.0, provides a high-
performance, low-allocation JSON serialization library. It was designed to be
something of a successor to the ubiquitous Newtonsoft.Json library, but it trades
flexibility for performance.

Minimal APIs use System.Text.Json for both JSON deserialization (when binding to a
request’s body) and serialization (when writing results, as you saw in chapter 6). Unlike
for MVC and Razor Pages, you can’t replace the JSON serialization library used by
minimal APIs, so there’s no way to use Newtonsoft.Json instead. But you can
customize some of the library’s serialization behavior for your minimal APIs.

You can set System.Text.Json, for example, to relax some of its strictness to allow
trailing commas in the JSON and control how property names are serialized with code
like the following example:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.ConfigureRouteHandlerJsonOptions(o => {

 o.SerializerOptions.AllowTrailingCommas = true;

 o.SerializerOptions.PropertyNamingPolicy = JsonNamingPolicy.CamelCase;

 o.SerializerOptions.PropertyNameCaseInsensitive = true;

});

Typically, the automatic binding for JSON requests is

convenient, as most APIs these days are built around JSON

requests and responses. The built-in binding uses the most

performant approach and eliminates a lot of boilerplate that

you’d otherwise need to write yourself. Nevertheless, bear

several things in mind when you’re binding to the request

body:

You can bind only a single handler parameter to

the JSON body. If more than one complex

parameter is eligible to bind to the body, you’ll get

an exception at runtime when the app receives its

first request.

If the request body isn’t JSON, the endpoint

handler won’t run, and the

EndpointMiddleware will return a 415

Unsupported Media Type response.

If you try to bind to the body for an HTTP verb that

usually doesn’t send a body (GET, HEAD,

OPTIONS, DELETE, TRACE, and CONNECT), you’ll

get an exception at runtime. If you change the

endpoint in listing 7.3 to MapGet instead of

MapPost, for example, you’ll get an exception on

your first request, as shown in figure 7.4.

If you’re sure that you want to bind the body of

these requests, you can override the preceding

behavior by applying the [FromBody] attribute to

the handler parameter. I strongly advise against

this approach, though: sending a body with GET

requests is unusual, could confuse the consumers

of your API, and is discouraged in the HTTP

specification (https://www.rfc-

editor.org/rfc/rfc9110#name-get).

https://www.rfc-editor.org/rfc/rfc9110#name-get
https://www.rfc-editor.org/rfc/rfc9110#name-get

It’s uncommon to see, but you can also apply

[FromBody] to a simple type parameter to force

it to bind to the request body instead of to the

route/query string. As for complex types, the body

is deserialized from JSON into your parameter.

Figure 7.4 If you try to bind the body to a parameter for a GET
request, you’ll get an exception when your app receives its first
request.

We’ve discussed binding of both simple types and complex

types. Unfortunately, now it’s time to admit to a gray area:

arrays, which can be simple types or complex types.

7.4 Arrays: Simple types or complex
types?

It’s a little-known fact that entries in the query string of a

URL don’t have to be unique. The following URL is valid, for

example, even though it includes a duplicate id parameter:

/products?id=123&id=456

So how do you access these query string values with

minimal APIs? If you create an endpoint like

app.MapGet("/products", (int id) => $"Received {id}");

a request to /products?id=123 would bind the id

parameter to the query string, as you’d expect. But a

request that includes two id values in the query string, such

as /products?id=123&id=456, will cause a runtime

error, as shown in figure 7.5. ASP.NET Core returns a 400

Bad Request response without the handler or filter

pipeline running at all.

Figure 7.5 Attempting to bind a handler with a signature such as
(int id) to a query string that contains ?id=123&id=456 causes an
exception at runtime and a 400 Bad Request response.

If you want to handle query strings like this one, so that

users can optionally pass multiple possible values for a

parameter, you need to use arrays. The following listing

shows an example of an endpoint that accepts multiple id

values from the query string and binds them to an array.

Listing 7.4 Binding multiple values for a parameter in a query
string to an array

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/products/search",

 (int[] id) => $"Received {id.Length} ids"); ❶

app.Run();

❶ The array will bind to multiple instances of id in the query string.

If you’re anything like me, the fact that the int[] handler

parameter in listing 7.4 is called id and not ids will really

bug you. Unfortunately, you have to use id here so that the

parameter binds correctly to a query string like ?

id=123&id=456. If you renamed it ids, the query string

would need to be ?ids=123&ids=456.

Luckily, you have another option. You can control the name

of the target that a handler parameter binds to by using the

[FromQuery] and [FromRoute] attributes, similar to the

way you use [FromHeader]. For this example, you can

have the best of both worlds by renaming the handler

parameter ids and adding the [FromQuery] attribute:

app.MapGet("/products/search",

 ([FromQuery(Name = "id")] int[] ids) => $"Received {ids.Length} ids");

Now you can sleep easy. The handler parameter has a better

name, but it still binds to the query string ?

id=123&id=456 correctly.

TIP You can bind array parameters to multiple header values in the
same way that you do for as query string values, using the
[FromHeader] attribute.

The example in listing 7.4 binds an int[], but you can bind

an array of any simple type, including custom types with a

TryParse method (listing 7.2), as well as string[] and

StringValues.

NOTE StringValues is a helper type in the
Microsoft.Extensions.Primitives namespace that
represents zero, one, or many strings in an efficient way.

So where is that gray area I mentioned? Well, arrays work

as I’ve described only if

You’re using an HTTP verb that typically doesn’t

include a request body, such as GET, HEAD, or

DELETE.

The array is an array of simple types (or

string[] or StringValues).

If either of these statements is not true, ASP.NET Core will

attempt to bind the array to the JSON body of the request

instead. For POST requests (or other verbs that typically

have a request body), this process works without problems:

the JSON body is deserialized to the parameter array. For

GET requests (and other verbs without a body), it causes the

same unhandled exception you saw in figure 7.4 when a

body binding is detected in one of these verbs.

NOTE As before, when binding body parameters, you can work
around this situation for GET requests by adding an explicit
[FromBody] to the handler parameter, but you shouldn’t!

We’ve covered binding both simple types and complex types,

from the URL and the body, and we’ve even looked at some

cases in which a mismatch between what you expect and

what you receive causes errors. But what if a value you

expect isn’t there? In section 7.5 we look at how you can

choose what happens.

7.5 Making parameters optional with
nullables

We’ve described lots of ways to bind parameters to minimal

API endpoints. If you’ve been experimenting with the code

samples and sending requests, you may have noticed that if

the endpoint can’t bind a parameter at runtime, you get an

error and a 400 Bad Request response. If you have an

endpoint that binds a parameter to the query string, such as

app.MapGet("/products", (int id) => $"Received {id}");

but you send a request without a query string or with the

wrong name in the query string, such as a request to

/products?p=3, the EndpointMiddleware throws an

exception, as shown in figure 7.6. The id parameter is

required, so if it can’t bind, you’ll get an error message and

a 400 Bad Request response, and the endpoint handler

won’t run.

All parameters are required regardless of which binding

source they use, whether that’s from a route value, a query

string value, a header, or the request body. But what if you

want a handler parameter to be optional? If you have an

endpoint like this one,

app.MapGet("/stock/{id?}", (int id) => $"Received {id}");

given that the route parameter is marked optional, requests

to both /stock/123 and /stock will invoke the handler.

But in the latter case, there’ll be no id route value, and

you’ll get an error like the one shown in figure 7.6.

Figure 7.6 If a parameter can’t be bound because a value is
missing, the EndpointMiddleware throws an exception and returns

a 400 Bad Request response. The endpoint handler doesn’t run.

The way around this problem is to mark the handler

parameter as optional by making it nullable. Just as ?

signifies optional in route templates, it signifies optional in

the handler parameters. You can update the handler to use

int? instead of int, as shown in the following listing, and

the endpoint will handle both /stock/123 and /stock

without errors.

Listing 7.5 Using optional parameters in endpoint handlers

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/stock/{id?}", (int? id) => $"Received {id}"); ❶

app.MapGet("/stock2", (int? id) => $"Received {id}"); ❷

app.MapPost("/stock", (Product? product) => $"Received {product}"); ❸

app.Run();

❶ Uses a nullable simple type to indicate that the value is optional, so id is null when calling
/stock

❷ This example binds to the query string. Id will be null for the request /stock2.

❸ A nullable complex type binds to the body if it’s available; otherwise, it’s null.

If no corresponding route value or query string contains the

required value and the handler parameter is optional, the

EndpointHandler uses null as the argument when

invoking the endpoint handler. Similarly, for complex types

that bind to the request body, if the request doesn’t contain

anything in the body and the parameter is optional, the

handler will have a null argument.

WARNING If the request body contains the literal JSON value null
and the handler parameter is marked optional, the handler argument
will also be null. If the parameter isn’t marked optional, you get the
same error as though the request didn’t have a body.

It’s worth noting that you mark complex types binding to the

request body as optional by using a nullable reference type

(NRT) annotation: ?. NRTs, introduced in C# 8, are an

attempt to reduce the scourge of null-reference exceptions

in C#, colloquially known as “the billion-dollar mistake.” See

http://mng.bz/vneM.

ASP.NET Core in .NET 7 is built with the assumption that

NRTs are enabled for your project (and they’re enabled by

default in all the templates), so it’s worth using them

wherever you can. If you choose to disable NRTs explicitly,

you may find that some of your types are unexpectedly

marked optional, which can lead to some hard-to-debug

errors.

TIP Keep NRTs enabled for your minimal API endpoints wherever
possible. If you can’t use them for your whole project, consider
enabling them selectively in Program.cs (or wherever you add your
endpoints) by adding #nullable enable to the top of the file.

The good news is that ASP.NET Core includes several

analyzers built into the compiler to catch configuration

problems like the ones described in this section. If you have

an optional route parameter but forget to mark the

corresponding handler parameter as optional, for example,

integrated development environments (IDEs) such as Visual

http://mng.bz/vneM

Studio will show a hint, as shown in figure 7.7, and you’ll get

a build warning. You can read more about the built-in

analyzers at http://mng.bz/4DMV.

Figure 7.7 Visual Studio and other IDEs use analyzers to detect
potential problems with mismatched optionality.

Making your handler parameters optional is one of the

approaches you can take, whether they’re bound to route

parameters, headers, or the query string. Alternatively, you

can provide a default value for the parameter as part of the

method signature. You can’t provide default values for

parameters in lambda functions in C# 11,
2
 so the following

listing shows how to use a local function instead.

Listing 7.6 Using default values for parameters in endpoint
handlers

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/stock", StockWithDefaultValue); ❶

app.Run();

string StockWithDefaultValue(int id = 0) => $"Received {id}"; ❷

❶ The local function StockWithDefaultValue is the endpoint handler.

http://mng.bz/4DMV

❷ The id parameter binds to the query string value if it’s available; otherwise, it has the value
0.

We’ve thoroughly covered the differences between simple

types and complex types and how they bind. In section 7.6

we look at some special types that don’t follow these rules.

7.6 Binding services and special types
In this section you’ll learn how to use some of the special

types that you can bind to in your endpoint handlers. By

special, I mean types that ASP.NET Core is hardcoded to

understand or that aren’t created from the details of the

request, by contrast with the binding you’ve seen so far. The

section looks at three types of parameters:

Well-known types—that is, hard-coded types that

ASP.NET Core knows about, such as

HttpContext and HttpRequest

IFormFileCollection and IFormFile for

working with file uploads

Application services registered in

WebApplicationBuilder.Services

We start by looking at the well-known types you can bind to.

7.6.1 Injecting well-known types

Throughout this book you’ve seen examples of several well-

known types that you can inject into your endpoint handlers,

the most notable one being HttpContext. The remaining

well-known types provide shortcuts for accessing various

properties of the HttpContext object.

NOTE As described in chapter 3, HttpContext acts as a storage
box for everything related to a single a request. It contains access to
all the low-level details about the request and the response, plus any
application services and features you might need.

You can use a well-known type in your endpoint handler by

including a parameter of the appropriate type. To access the

HttpContext in your handler, for example, you could use

app.MapGet("/", (HttpContext context) => "Hello world!");

You can use the following well-known types in your minimal

API endpoint handlers:

HttpContext—This type contains all the details

on both the request and the response. You can

access everything you need from here, but often,

an easier way to access the common properties is

to use one of the other well-known types.

HttpRequest—Equivalent to the property

HttpContext.Request, this type contains all

the details about the request only.

HttpResponse—Equivalent to the property

HttpContext.Response, this type contains all

the details about the response only.

CancellationToken—Equivalent to the property

HttpContext.RequestAborted, this token is

canceled if the client aborts the request. It’s useful

if you need to cancel a long-running task, as

described in my post at http://mng.bz/QP2j.

ClaimsPrincipal—Equivalent to the property

HttpContext.User, this type contains

authentication information about the user. You’ll

learn more about authentication in chapter 23.

Stream—Equivalent to the property

HttpRequest.Body, this parameter is a

reference to the Stream object of the request.

This parameter can be useful for scenarios in

which you need to process large amounts of data

from a request efficiently, without holding it all in

memory at the same time.

PipeReader—Equivalent to the property

HttpContext.BodyReader, PipeReader

provides a higher-level API compared with

Stream, but it’s useful in similar scenarios. You

can read more about PipeReader and the

System.IO.Pipelines namespace at

http://mng.bz/XNY6.

You can access each of the latter well-known types by

navigating via an injected HttpContext object if you

prefer. But injecting the exact object you need generally

makes for code that’s easier to read.

http://mng.bz/QP2j
http://mng.bz/XNY6

7.6.2 Injecting services

I’ve mentioned several times in this book that you need to

configure various core services to work with ASP.NET Core.

Many services are registered automatically, but often, you

must add more to use extra features, such as when you

called AddHttpLogging() in chapter 3 to add request

logging to your pipeline.

NOTE Adding services to your application involves registering them
with a dependency injection (DI) container. You’ll learn all about DI
and registering services in chapters 8 and 9.

You can automatically use any registered service in your

endpoint handlers, and ASP.NET Core will inject an instance

of the service from the DI container. You saw an example in

chapter 6 when you used the LinkGenerator service in an

endpoint handler. LinkGenerator is one of the core

services registered by WebApplicationBuilder, so it’s

always available, as shown in the following listing.

Listing 7.7 Using the LinkGenerator service in an endpoint
handler

app.MapGet("/links", (LinkGenerator links) => ❶
{

 string link = links.GetPathByName("products");

 return $"View the product at {link}";

});

❶ The LinkGenerator can be used as a parameter because it’s available in the DI container.

Minimal APIs can automatically detect when a service is

available in the DI container, but if you want to be explicit,

you can also decorate your parameters with the

[FromServices] attribute:

app.MapGet("/links", ([FromServices] LinkGenerator links) =>

[FromServices] may be necessary in some rare cases if

you’re using a custom DI container that doesn’t support the

APIs used by minimal APIs. But generally, I find that I can

keep endpoints readable by avoiding the [From*] attributes

wherever possible and relying on minimal APIs to do the

right thing automatically.

7.6.3 Binding file uploads with IFormFile and
IFormFileCollection

A common feature of many websites is the ability to upload

files. This activity could be relatively infrequent, such as a

user’s uploading a profile picture to their Stack Overflow

profile, or it may be integral to the application, such as

uploading photos to Facebook.

Letting users upload files to your
application

Uploading files to websites is a common activity, but you should consider carefully
whether your application needs that ability. Whenever users can upload files, the
situation is fraught with danger.

You should be careful to treat the incoming files as potentially malicious. Don’t trust the
filename provided, take care of large files being uploaded, and don’t allow the files to

be executed on your server.

Files also raise questions about where the data should be stored: in a database, in the
filesystem, or in some other storage? None of these questions has a straightforward
answer, and you should think hard about the implications of choosing one over the
other. Better, don’t let users upload files if you don’t have to!

ASP.NET Core supports uploading files by exposing the

IFormFile interface. You can use this interface in your

endpoint handlers, and it will be populated with the details

of the file upload:

app.MapGet("/upload", (IFormFile file) => {});

You can also use an IFormFileCollection if you need to

accept multiple files:

app.MapGet("/upload", (IFormFileCollection files) =>

{

 foreach (IFormFile file in files)

 {

 }

});

The IFormFile object exposes several properties and

utility methods for reading the contents of the uploaded file,

some of which are shown here:

public interface IFormFile

{

 string ContentType { get; }

 long Length { get; }

 string FileName { get; }

 Stream OpenReadStream();

}

As you can see, this interface exposes a FileName

property, which returns the filename that the file was

uploaded with. But you know not to trust users, right? You

should never use the filename directly in your code; users

can use it to attack your website and access files that they

shouldn’t. Always generate a new name for the file before

you save it anywhere.

WARNING There are lots of potential threats to consider when
accepting file uploads from users. For more information, see
http://mng.bz/yQ9q.

The IFormFile approach is fine if users are going to be

uploading only small files. When your method accepts an

IFormFile instance, the whole content of the file is

buffered in memory and on disk before you receive it. Then

you can use the OpenReadStream method to read the data

out.

If users post large files to your website, you may start to run

out of space in memory or on disk as ASP.NET Core buffers

each of the files. In that case, you may need to stream the

files directly to avoid saving all the data at the same time.

Unfortunately, unlike the model-binding approach, streaming

large files can be complex and error-prone, so it’s outside

the scope of this book. For details, see Microsoft’s

documentation at http://mng.bz/MBgn.

TIP Don’t use the IFormFile interface to handle large file uploads,
as you may see performance problem. Be aware that you can’t rely
on users not to upload large files, so avoid file uploads when you can!

http://mng.bz/yQ9q
http://mng.bz/MBgn

For the vast majority of minimal API endpoints, the default

configuration of model binding for simple and complex types

works perfectly well. But you may find some situations in

which you need to take a bit more control.

7.7 Custom binding with BindAsync
The model binding you get out of the box with minimal APIs

covers most of the common situations that you’ll run into

when building HTTP APIs, but there are always a few edge

cases in which you can’t use it.

You’ve already seen that you can inject HttpContext into

your endpoint handlers, so you have direct access to the

request details in your handler, but often, you still want to

encapsulate the logic for extracting the data you need. You

can get the best of both worlds in minimal APIs by

implementing BindAsync in your endpoint handler

parameter types and taking advantage of completely custom

model binding. To add custom binding for a parameter type,

you must implement one of the following two static

BindAsync methods in your type T:

public static ValueTask<T?> BindAsync(HttpContext context);

public static ValueTask<T?> BindAsync(

HttpContext context, ParameterInfo parameter);

Both methods accept an HttpContext, so you can extract

anything you need from the request. But the latter case also

provides reflection details about the parameter you’re

binding. In most cases the simpler signature should be

sufficient, but you never know!

Listing 7.8 shows an example of using BindAsync to bind a

record to the request body by using a custom format. The

implementation shown in the listing assumes that the body

contains two double values, with a line break between

them, and if so, it successfully parses the SizeDetails

object. If there are any problems along the way, it returns

null.

Listing 7.8 Using BindAsync for custom model binding

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapPost("/sizes", (SizeDetails size) => $"Received {size}"); ❶

app.Run();

public record SizeDetails(double height, double width) ❷
{ ❷
 public static async ValueTask<SizeDetails?> BindAsync(❷
 HttpContext context) ❷
 {

 using var sr = new StreamReader(context.Request.Body); ❸

 string? line1 = await sr.ReadLineAsync(context.RequestAborted); ❹
 if (line1 is null) { return null; } ❺

 string? line2 = await sr.ReadLineAsync(context.RequestAborted); ❹
 if (line2 is null) { return null; } ❺

 return double.TryParse(line1, out double height) ❻
 && double.TryParse(line2, out double width) ❻
 ? new SizeDetails(height, width) ❼
 : null; ❽

 }

}

❶ No extra attributes are needed for the SizeDetails parameter, as it has a BindAsync
method.

❷ SizeDetails implements the static BindAsync method.

❸ Creates a StreamReader to read the request body
❹ Reads a line of text from the body

❺ If either line is null, indicating no content, stops processing
❻ Tries to parse the two lines as doubles

❼ If the parsing is successful, creates the SizeDetails model and returns it . . .
❽ . . . otherwise, returns null

In listing 7.8 we return null if parsing fails. The endpoint

shown will cause the EndpointMiddleware to throw a

BadHttpRequestException and return a 400 error,

because the size parameter in the endpoint is required (not

marked optional). You could have thrown an exception in

BindAsync, but it wouldn’t have been caught by the

EndpointMiddleware and would have resulted in a 500

response.

7.8 Choosing a binding source
Phew! We’ve finally covered all the ways you can bind a

request to parameters in minimal APIs. In many cases,

things should work as you expect. Simple types such as int

and string bind to route values and query string values by

default, and complex types bind to the request body. But it

can get confusing when you add attributes, BindAsync, and

TryParse to the mix!

When the minimal API infrastructure tries to bind a

parameter, it checks all the following binding sources in

order. The first binding source that matches is the one it

uses:

1. If the parameter defines an explicit binding source

using attributes such as [FromRoute],

[FromQuery], or [FromBody], the parameter

binds to that part of the request.

2. If the parameter is a well-known type such as

HttpContext, HttpRequest, Stream, or

IFormFile, the parameter is bound to the

corresponding value.

3. If the parameter type has a BindAsync()

method, use that method for binding.

4. If the parameter is a string or has an

appropriate TryParse() method (so is a simple

type):

a. If the name of the parameter matches a route

parameter name, bind to the route value.

b. Otherwise, bind to the query string.

5. If the parameter is an array of simple types, a

string[], or StringValues, and the request is

a GET or similar HTTP verb that normally doesn’t

have a request body, bind to the query string.

6. If the parameter is a known service type from the

dependency injection container, bind by injecting

the service from the container.

7. Finally, bind to the body by deserializing from

JSON.

The minimal API infrastructure follows this sequence for

every parameter in a handler and stops at the first matching

binding source.

WARNING If binding fails for the entry, and the parameter isn’t
optional, the request fails with a 400 Bad Request response.
The minimal API doesn’t try another binding source after one source
fails.

Remembering this sequence of binding sources is one of the

hardest things about minimal APIs to get your head around.

If you’re struggling to work out why a request isn’t working

as you expect, be sure to come back and check this

sequence. I once had a parameter that wasn’t binding to a

route parameter, despite its having a TryParse method.

When I checked the sequence, I realized that it also had a

BindAsync method that was taking precedence!

7.9 Simplifying handlers with
AsParameters

Before we move on, we’ll take a quick look at a .NET 7

feature for minimal APIs that can simplify some endpoint

handlers: the [AsParameters] attribute. Consider the

following GET endpoint, which binds to a route value, a

header value, and some query values:

app.MapGet("/category/{id}", (int id, int page, [FromHeader(Name = "sort")]

➥ bool? sortAsc, [FromQuery(Name = "q")] string search) => { });

I think you’ll agree that the handler parameters for this

method are somewhat hard to read. The parameters define

the expected shape of the request, which isn’t ideal. The

[AsParameters] attribute lets you wrap all these

arguments into a single class or struct, simplifying the

method signature and making everything more readable.

Listing 7.9 shows an example of converting this endpoint to

use [AsParameters] by replacing it with a record

struct. You could also use a class, record, or struct,

and you can use properties instead of constructor

parameters if you prefer. See the documentation for all the

permutations available at http://mng.bz/a1KB.

Listing 7.9 Using [AsParameters] to simplify endpoint handler
parameters

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/category/{id}",

 ([AsParameters] SearchModel model) => $"Received {model}"); ❶

app.Run();

record struct SearchModel(

 int id, ❷
 int page, ❷

http://mng.bz/a1KB

 [FromHeader(Name = "sort")] bool? sortAsc, ❷
 [FromQuery(Name = "q")] string search); ❷

❶ [AsParameters] indicates that the constructor or properties of the type should be bound,
not the type itself.

❷ Each parameter is bound as though it were written in the endpoint handler.

The same attributes and rules apply for binding an

[AsParameters] type’s constructor parameters and

binding endpoint handler parameters, so you can use

[From*] attributes, inject services and well-known types,

and read from the body. This approach can make your

endpoints more readable if you find that they’re getting a bit

unwieldy.

TIP In chapter 16 you’ll learn about model binding in MVC and Razor
Pages. You’ll be pleased to know that in those cases, the
[AsParameters] approach works out of the box without the need
for an extra attribute.

That brings us to the end of this section on model binding. If

all went well, your endpoint handler’s arguments are

created, and the handler is ready to execute its logic. It’s

time to handle the request, right? Nothing to worry about.

Not so fast! How do you know that the data you received

was valid? How do you know that you haven’t been sent

malicious data attempting a SQL injection attack or a phone

number full of letters? The binder is relatively blindly

assigning values sent in a request, which you’re happily

going to plug into your own methods. What stops nefarious

little Jimmy from sending malicious values to your

application? Except for basic safeguards, nothing is stopping

him, which is why it’s important that you always validate the

input coming in. ASP.NET Core provides a way to do this in a

declarative manner out of the box, which is the focus of

section 7.10.

7.10 Handling user input with model
validation

In this section, I discuss the following topics:

What validation is and why you need it

How to use DataAnnotations attributes to

describe the data you expect

How to validate your endpoint handler parameters

Validation in general is a big topic, one that you’ll need to

consider in every app you build. Minimal APIs don’t include

validation by default, instead opting to provide

nonprescriptive hooks via the filters you learned about in

chapter 5. This design gives you multiple options for adding

validation to your app; be sure that you do add some!

7.10.1 The need for validation

Data can come from many sources in your web application.

You could load data from files, read it from a database, or

accept values that are sent in a request. Although you may

be inclined to trust that the data already on your server is

valid (though this assumption is sometimes dangerous!),

you definitely shouldn’t trust the data sent as part of a

request.

TIP You can read more about the goals of validation, implementation
approaches, and potential attacks at http://mng.bz/gBxE.

You should validate your endpoint handler parameters before

you use them to do anything that touches your domain,

anything that touches your infrastructure, or anything that

could leak information to an attacker. Note that this warning

is intentionally vague, as there’s no defined point in minimal

APIs where validation should occur. I advise that you do it as

soon as possible in the minimal API filter pipeline.

Always validate data provided by users before you use it in

your methods. You have no idea what the browser may have

sent you. The classic example of little Bobby Tables

(https://xkcd.com/327) highlights the need to always

validate data sent by a user.

Validation isn’t used only to check for security threats,

though. It’s also needed to check for nonmalicious errors:

Data should be formatted correctly. Email fields

have a valid email format, for example.

Numbers may need to be in a particular range. You

can’t buy -1 copies of this book!

Some values may be required, but others are

optional. Name may be required for a profile, but

phone number is optional.

http://mng.bz/gBxE
https://xkcd.com/327

Values must conform to your business

requirements. You can’t convert a currency to

itself; it needs to be converted to a different

currency.

As mentioned earlier, the minimal API framework doesn’t

include anything specific to help you with these

requirements, but you can use filters to implement

validation, as you’ll see in section 7.10.3. .NET 7 also

includes a set of attributes that you can use to simplify your

validation code significantly.

7.10.2 Using DataAnnotations attributes for
validation

Validation attributes—more precisely, DataAnnotations

attributes—allow you to specify the rules that your

parameters should conform to. They provide metadata about

a parameter type by describing the sort of data the binding

model should contain, as opposed to the data itself.

You can apply DataAnnotations attributes directly to your

parameter types to indicate the type of data that’s

acceptable. This approach allows you to check that required

fields have been provided, that numbers are in the correct

range, and that email fields are valid email addresses, for

example.

Consider the checkout page for a currency-converter

application. You need to collect details about the user—their

name, email, and (optionally) phone number—so you create

an API to capture these details. The following listing shows

the outline of that API, which takes a UserModel

parameter. The UserModel type is decorated with validation

attributes that represent the validation rules for the model.

Listing 7.10 Adding DataAnnotations to a type to provide metadata

using System.ComponentModel.DataAnnotations; ❶

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapPost("/users", (UserModel user) => user.ToString()); ❷

app.Run();

public record UserModel

{

 [Required] ❸
 [StringLength(100)] ❹
 [Display(Name = "Your name")] ❺
 public string FirstName { get; set; }

 [Required]

 [StringLength(100)]

 [Display(Name = "Last name")]

 public string LastName { get; set; }

 [Required]

 [EmailAddress] ❻
 public string Email { get; set; }

 [Phone] ❼
 [Display(Name = "Phone number")]

 public string PhoneNumber { get; set; }

}

❶ Adds this using statement to use the validation attributes
❷ The API takes a UserModel parameter and binds it to the request body.

❸ Values marked Required must be provided.
❹ The StringLengthAttribute sets the maximum length for the property.

❺ Customizes the name used to describe the property

❻ Validates that the value of Email may be a valid email address

❼ Validates that the value of PhoneNumber has a valid telephone number format

Suddenly, your parameter type, which was sparse on details,

contains a wealth of information. You’ve specified that the

FirstName property should always be provided; that it

should have a maximum length of 100 characters; and that

when it’s referred to (in error messages, for example), it

should be called "Your name" instead of "FirstName".

The great thing about these attributes is that they clearly

declare the expected state of an instance of the type. By

looking at these attributes, you know what the properties

will contain, or at least should contain. Then you can then

write code after model binding to confirm that the bound

parameter is valid, as you’ll see in section 7.10.3.

You’ve got a plethora of attributes to choose among when

you apply DataAnnotations to your types. I’ve listed

some of the common ones here, but you can find more in

the System.ComponentModel.DataAnnotations

namespace. For a more complete list, I recommend using

IntelliSense in your IDE or checking the documentation at

http://mng.bz/e1Mv.

[CreditCard]—Validates that a property has a

valid credit card format

[EmailAddress]—Validates that a property has

a valid email address format

http://mng.bz/e1Mv

[StringLength(max)]—Validates that a string

has at most max number of characters

[MinLength(min)]—Validates that a collection

has at least the min number of items

[Phone]—Validates that a property has a valid

phone number format

[Range(min, max)]—Validates that a property

has a value between min and max

[RegularExpression(regex)]—Validates that

a property conforms to the regex regular

expression pattern

[Url]—Validates that a property has a valid URL

format

[Required]—Indicates that the property must

not be null

[Compare]—Allows you to confirm that two

properties have the same value (such as Email

and ConfirmEmail)

WARNING The [EmailAddress] and [Phone] attributes
validate only that the format of the value is potentially correct. They
don’t validate that the email address or phone number exists. For an
example of how to do more rigorous phone number validation, see
this post on the Twilio blog: http://mng.bz/xmZe.

http://mng.bz/xmZe

The DataAnnotations attributes aren’t new; they’ve been

part of the .NET Framework since version 3.5, and their use

in ASP.NET Core is almost the same as in the previous

version of ASP.NET. They’re also used for purposes other

than validation. Entity Framework Core (among others) uses

DataAnnotations to define the types of columns and rules

to use when creating database tables from C# classes. You

can read more about Entity Framework Core in chapter 12

and in Entity Framework Core in Action, 2nd ed., by Jon P.

Smith (Manning, 2021).

If the DataAnnotation attributes provided out of the box

don’t cover everything you need, it’s possible to write

custom attributes by deriving from the base

ValidationAttribute. You’ll see how to create a custom

validation attribute in chapter 32.

One common limitation with DataAnnotation attributes is

that it’s hard to validate properties that depend on the

values of other properties. Maybe the UserModel type from

listing 7.10 requires you to provide either an email address

or a phone number but not both, which is hard to achieve

with attributes. In this type of situation, you can implement

IValidatableObject in your models instead of, or in

addition to, using attributes. In listing 7.11, a validation rule

is added to UserModel whether the email or phone number

is provided. If it isn’t, Validate() returns a

ValidationResult describing the problem.

Listing 7.11 Implementing IValidatableObject

using System.ComponentModel.DataAnnotations;

public record CreateUserModel : IValidatableObject ❶
{

 [EmailAddress] ❷
 public string Email { get; set; }

 [Phone] ❷
 public string PhoneNumber { get; set; }

 public IEnumerable<ValidationResult> Validate(❸
 ValidationContext validationContext) ❸
 {

 if(string.IsNullOrEmpty(Email) ❹
 && string.IsNullOrEmpty(PhoneNumber)) ❹
 {

 yield return new ValidationResult(❺
 "You must provide an Email or a PhoneNumber", ❺
 New[] { nameof(Email), nameof(PhoneNumber) }); ❺
 }

 }

}

❶ Implements the IValidatableObject interface
❷ The DataAnnotation attributes continue to validate basic format requirements.

❸ Validate is the only function to implement in IValidatableObject.
❹ Checks whether the object is valid . . .

❺ . . . and if not, returns a result describing the error

IValidatableObject helps cover some of the cases that

attributes alone can’t handle, but it’s not always the best

option. The Validate function doesn’t give easy access to

your app’s services, and the function executes only if all the

DataAnnotation attribute conditions are met.

TIP DataAnnotations are good for input validation of properties
in isolation but not so good for validating complex business rules.

You’ll most likely need to perform this validation outside the
DataAnnotations framework.

Alternatively, if you’re not a fan of the DataAnnotation

attribute-based-plus-IValidatableObject approach, you

could use the popular FluentValidation library

(https://github.com/JeremySkinner/FluentValidation) in your

minimal APIs instead. Minimal APIs are completely flexible,

so you can use whichever approach you prefer.

DataAnnotations attributes provide the basic metadata

for validation, but no part of listing 7.10 or listing 7.11 uses

the validation attributes you added. You still need to add

code to read the parameter type’s metadata, check whether

the data is valid, and return an error response if it’s invalid.

ASP.NET Core doesn’t include a dedicated validation API for

that task in minimal APIs, but you can easily add it with a

small NuGet package.

7.10.3 Adding a validation filter to your
minimal APIs

Microsoft decided not to include any dedicated validation

APIs in minimal APIs. By contrast, validation is a built-in

core feature of Razor Pages and MVC. Microsoft’s reasoning

was that the company wanted to provide flexibility and

choice for users to add validation in the way that works best

for them, but didn’t want to affect performance for those

who didn’t want to use their implementation.

https://github.com/JeremySkinner/FluentValidation

Consequently, validation in minimal APIs typically relies on

the filter pipeline. As a classic cross-cutting concern,

validation is a good fit for a filter. The only downside is that

typically, you need to write your own filter rather than use

an existing API. The positive side is that validation gives you

complete flexibility, including the ability to use an alternative

validation library (such as FluentValidation) if you prefer.

Luckily, Damian Edwards, a project manager architect on the

ASP.NET Core team at Microsoft, has a NuGet package called

MinimalApis.Extensions that provides the filter for you. Using

a simple validation system that hooks into the

DataAnnotations on your models, this NuGet package

provides an extension method called

WithParameterValidation() that you can add to your

endpoints. To add the package, search for

MinimalApis.Extensions from the NuGet Package Manager in

your IDE (be sure to include prerelease versions), or run the

following, using the .NET command-line interface:

dotnet add package MinimalApis.Extensions

After you’ve added the package, you can add validation to

any of your endpoints by adding a filter using

WithParameterValidation(), as shown in listing 7.12.

After the UserModel is bound to the JSON body of the

request, the validation filter executes as part of the filter

pipeline. If the user parameter is valid, execution passes to

the endpoint handler. If the parameter is invalid, a 400 Bad

Request Problem Details response is returned containing a

description of the errors, as shown in figure 7.8.

Figure 7.8 If the data sent in the request body is not valid, the
validation filter automatically returns a 400 Bad Request response,
containing the validation errors, and the endpoint handler
doesn’t execute.

Listing 7.12 Adding validation to minimal APIs using
MinimalApis.Extensions

using System.ComponentModel.DataAnnotations;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapPost("/users", (UserModel user) => user.ToString())

 .WithParameterValidation(); ❶

app.Run();

public record UserModel ❷
{

 [Required]

 [StringLength(100)]

 [Display(Name = "Your name")]

 public string Name { get; set; }

 [Required]

 [EmailAddress]

 public string Email { get; set; }

}

❶ Adds the validation filter to the endpoint

❷ The UserModel defines its validation requirements using DataAnnotations attributes.

Listing 7.12 shows how you can validate a complex type, but

in some cases, you may want to validate simple types. You

may want to validate that the id value in the following

handler should be between 1 and 100:

app.MapGet("/user/{id}", (int id) => $"Received {id}")

 .WithParameterValidation();

Unfortunately, that’s not easy to do with DataAnnotations

attributes. The validation filter will check the int type, see

that it’s not a type that has any DataAnnotations on its

properties, and won’t validate it.

WARNING Adding attributes to the handler, as in ([Range(1,
100)] int id), doesn’t work. The attributes here are added to

the parameter, not to properties of the int type, so the validator
won’t find them.

There are several ways around this problem, but the

simplest is to use the [AsParameters] attribute you saw

in section 7.9 and apply annotations to the model. The

following listing shows how.

Listing 7.13 Adding validation to minimal APIs using
MinimalApis.Extensions

using System.ComponentModel.DataAnnotations;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapPost("/user/{id}",

 ([AsParameters] GetUserModel model) => $"Received {model.Id}") ❶
 .WithParameterValidation(); ❷

app.Run();

struct GetUserModel

{

 [Range(1, 10)] ❸
 Public int Id { get; set; } ❸
}

❶ Uses [AsParameters] to create a type than can be validated

❷ Adds the validation filter to the endpoint
❸ Adds validation attributes to your simple types

That concludes this look at model binding in minimal APIs.

You saw how the ASP.NET Core framework uses model

binding to simplify the process of extracting values from a

request and turning them into normal .NET objects you can

work with quickly. The many ways to bind may be making

your head spin, but normally, you can stick to the basics and

fall back to the more complex types as and when you need

them.

Although the discussion is short, the most important aspect

of this chapter is its focus on validation—a common concern

for all web applications. Whether you choose to use

DataAnnotations or a different validation approach, you

must make sure to validate any data you receive in all your

endpoints.

In chapter 8 we leave minimal APIs behind to look at

dependency injection in ASP.NET Core and see how it helps

create loosely coupled applications. You’ll learn how to

register the ASP.NET Core framework services with a

container, add your own services, and manage service

lifetimes.

Summary
Model binding is the process of creating the

arguments for endpoint handlers from the details

of an HTTP request. Model binding takes care of

extracting and parsing the strings in the request so

that you don’t have to.

Simple values such as int, string, and double

can bind to route values, query string values, and

headers. These values are common and easy to

extract from the request without any manual

parsing.

If a simple value fails to bind because the value in

the request is incompatible with the handler

parameter, a BadHttpRequestException is

thrown, and a 400 Bad Request response is

returned.

You can turn a custom type into a simple type by

adding a TryParse method with the signature

bool TryParse(string value, out T

result). If you return false from this method,

minimal APIs will return a 400 Bad Request

response.

Complex types bind to the request body by default

by deserializing from JSON. Minimal APIs can bind

only to JSON bodies; you can’t use model binding

to access form values.

By default, you can’t bind the body of GET

requests, as that goes against the expectations for

GET requests. Doing so will cause an exception at

runtime.

Arrays of simple types bind by default to query

string values for GET requests and to the request

body for POST requests. This difference can cause

confusion, so always consider whether an array is

the best option.

All the parameters of a handler must bind

correctly. If a parameter tries to bind to a missing

value, you’ll get a BadHttpRequestException

and a 400 Bad Request response.

You can use well-known types such as

HttpContext and any services from the

dependency injection container in your endpoint

handlers. Minimal APIs check whether each

complex type in your handler is registered as a

service in the DI container; if not, they treat it as

a complex type to bind to the request body

instead.

You can read files sent in the request by using the

IFormFile and IFormFileCollection

interfaces in your endpoint handlers. Take care

accepting file uploads with these interfaces, as

they can open your application to attacks from

users.

You can completely customize how a type binds by

using custom binding. Create a static function with

the signature public static ValueTask<T?>

BindAsync(HttpContext context), and

return the bound property. This approach can be

useful for handling complex scenarios, such as

arbitrary JSON uploads.

You can override the default binding source for a

parameter by applying [From*] attributes to your

handler parameters, such as [FromHeader],

[FromQuery], [FromBody], and

[FromServices]. These parameters take

precedence over convention-based assumptions.

You can encapsulate an endpoint handler’s

parameters by creating a type containing all the

parameters as properties or a constructor

argument and decorate the parameter with the

[AsParameters] attribute. This approach can

help you simplify your endpoint’s method

signature.

Validation is necessary to check for security

threats. Check that data is formatted correctly,

confirm that it conforms to expected values and

verify that it meets your business rules.

Minimal APIs don’t have built-in validation APIs, so

you typically apply validation via a minimal API

filter. This approach provides flexibility, as you can

implement validation in the way that suits you

best, though it typically means that you need to

use a third-party package.

The MinimalApis.Extensions NuGet package

provides a validation filter that uses

DataAnnotations attributes to declaratively

define the expected values. You can add the filter

with the extension method

WithParameterValidation().

To add custom validation of simple types with

MinimalApis.Extensions, you must create a

containing type and use the [AsParameters]

attribute.

1. I have a series discussing strongly-typed IDs and their benefits on my blog at
http://mng.bz/a1Kz.

2. C# 12, which will be released with .NET 8, should include support for default values in
lambda expressions. For more details, see http://mng.bz/AoRg.

http://mng.bz/a1Kz
http://mng.bz/AoRg

Part 2 Building complete applications
We covered a lot of ground in part 1. We saw how an

ASP.NET Core application is composed of middleware, and

we focused heavily on minimal API endpoints. We saw how

to use them to build JSON APIs, how to extract common

code by using filters and route groups, and how to validate

input data.

In part 2 we’ll dive deeper into the framework, looking at a

variety of components that we’ll inevitably need to build

more complex apps. By the end of this part, you’ll be able

to build dynamic applications and deploy them to multiple

environments, each with a different configuration, saving

data to a database.

ASP.NET Core uses dependency injection (DI) throughout its

libraries, so it’s important that you understand how this

design pattern works. In chapter 8 I introduce DI and

discuss why it’s used. In chapter 9 you’ll learn how to

configure the services in your applications to use DI.

Chapter 10 looks at the ASP.NET Core configuration system,

which lets you pass configuration values to your app from a

range of sources: JSON files, environment variables, and

many more. You’ll learn how to configure your app to use

different values depending on the environment in which it’s

running and how to bind strongly typed objects to your

configuration to reduce runtime errors.

In chapter 11 you’ll learn how to document your minimal

APIs applications by using the OpenAPI specification. Adding

an OpenAPI document to your application makes it easier

for others to interact with your app, but it has other benefits

too. You’ll learn how to use Swagger UI to test your app

from the browser and code generation to automatically

generate strongly typed libraries for interacting with your

API.

Most web applications require some sort of data storage, so

in chapter 12 I’ll introduce Entity Framework Core (EF

Core). This cross-platform library makes it easier to connect

your app to a database. EF Core is worthy of a book in and

of itself, so I’ll provide only a brief introduction and point

you to Jon P. Smith’s excellent book Entity Framework Core

in Action, 2nd ed. (Manning, 2021). I’ll also show you how

to create a database and how to insert, update, and query

simple data.

8 An introduction to dependency
injection

This chapter covers

Understanding the benefits of dependency injection
Seeing how ASP.NET Core uses dependency injection
Retrieving services from the DI container

In part 1 of this book you saw the bare bones of how to

build applications with ASP.NET Core. You learned how to

compose middleware to create your application and how to

create minimal API endpoints to handle HTTP requests. This

part gave you the tools to start building simple API

applications.

In this chapter you’ll see how to use dependency injection

(DI)—a design pattern that helps you develop loosely

coupled code—in your ASP.NET Core applications. ASP.NET

Core uses the pattern extensively, both internally in the

framework and in the applications you build, so you’ll need

to use it in all but the most trivial applications.

You may have heard of DI and possibly even used it in your

own applications. If so, this chapter shouldn’t hold many

surprises for you. If you haven’t used DI, never fear; I’ll

make sure you’re up to speed by the time the chapter is

done!

This chapter introduces DI in general, the principles it drives,

and why you should care about it. You’ll see how ASP.NET

Core has embraced DI throughout its implementation and

why you should do the same when writing your own

applications. Finally, you’ll learn how to retrieve services

from DI in your app.

When you finish this chapter, you’ll have a solid

understanding of the DI concept. In chapter 9 you’ll see how

to apply DI to your own classes. You’ll learn how to configure

your app so that the ASP.NET Core framework can create

your classes for you, removing the pain of having to create

new objects in your code manually. You’ll learn how to

control how long your objects are used and some of the

pitfalls to be aware of when you write your own applications.

In chapter 31 we’ll look at some advanced ways to use DI,

including how to wire up a third-party DI container.

For now, though, let’s get back to basics. What is DI, and

why should you care about it?

8.1 Understanding the benefits of
dependency injection

This section aims to give you a basic understanding of what

DI is and why you should care about it. The topic itself

extends far beyond the reach of this single chapter. If you

want a deeper background, I highly recommend checking

out Martin Fowler’s articles online. This article from 2004, for

example, is a classic: http://mng.bz/pPJ8.

http://mng.bz/pPJ8

TIP For a more directly applicable read with many examples in C#, I
recommend picking up Dependency Injection Principles, Practices,
and Patterns, by Steven van Deursen and Mark Seemann (Manning,
2019).

The ASP.NET Core framework has been designed from the

ground up to be modular and to adhere to good software

engineering practices. As with anything in software, what is

considered to be best practice varies over time, but for

object-oriented programming, the SOLID principles have

held up well.

DEFINITION SOLID is a mnemonic for “single responsibility principle,
open-closed, Liskov substitution, interface segregation, and
dependency inversion.” This course by Steve Smith introduces the
principles using C#: http://mng.bz/Ox1R.

On that basis, ASP.NET Core has DI (sometimes called

dependency inversion or inversion of control [IoC]) baked

into the heart of the framework. Regardless of whether you

want to use DI within your own application code, the

framework libraries themselves depend on it as a concept.

NOTE Although related, dependency injection and dependency
inversion are two different things. I cover both in a general sense in
this chapter, but for a good explanation of the differences, see this
post by Derick Bailey, titled “Dependency Injection Is NOT the Same
As the Dependency Inversion Principle”: http://mng.bz/5jvB.

When you started programming, chances are that you didn’t

use a DI framework immediately. That’s not surprising or

even a bad thing; DI adds a certain amount of extra wiring

http://mng.bz/Ox1R
http://mng.bz/5jvB

that’s often not warranted in simple applications or when

you’re getting started. But when things start to get more

complex, DI comes into its own as a great tool to help keep

that complexity under control.

Let’s consider a simple example, written without any sort of

DI. Suppose that a user has registered on your web app,

and you want to send them an email. This listing shows how

you might approach this task initially, using a minimal API

endpoint handler.

Listing 8.1 Sending an email without DI when there are no
dependencies

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/register/{username}", RegisterUser); ❶

app.Run();

string RegisterUser(string username) ❷
{

 var emailSender = new EmailSender(); ❸
 emailSender.SendEmail(username); ❹
 return $"Email sent to {username}!";

}

❶ The endpoint is called when a new user is created.

❷ The RegisterUser function is the handler for the endpoint.
❸ Creates a new instance of EmailSender

❹ Uses the new instance to send the email

In this example, the RegisterUser handler executes when

a new user registers on your app, creating a new instance of

an EmailSender class and calling SendEmail() to send

the email. The EmailSender class is the class that actually

sends the email. For the purposes of this example, you can

imagine that it looks something like this:

public class EmailSender

{

 public void SendEmail(string username)

 {

 Console.WriteLine($"Email sent to {username}!");

 }

}

Console.WriteLine stands in here for the real process of

sending the email.

NOTE Although I’m using sending email as a simple example, in
practice you may want to move this code out of your handler method.
This type of asynchronous task is well suited to using message
queues and a background process. For more details, see
http://mng.bz/Y1AB.

If the EmailSender class is as simple as the previous

example and has no dependencies, you may not see any

need to adopt a different approach to creating objects. And

to an extent, you’d be right. But what if you later update

your implementation of EmailSender so that some of the

email-sending logic is implemented by a different class?

Currently, EmailSender would need to do many things to

send an email. It would need to

Create an email message.

Configure the settings of the email server.

http://mng.bz/Y1AB

Send the email to the email server.

Doing all that in one class would go against the single-

responsibility principle (SRP), so you’d likely end up with

EmailSender depending on other services. Figure 8.1

shows how this web of dependencies might look.

RegisterUser wants to send an email using

EmailSender, but to do so, it also needs to create the

MessageFactory, NetworkClient, and

EmailServerSettings objects that EmailSender

depends on.

Figure 8.1 Dependency diagram without dependency injection.
RegisterUser indirectly depends on all the other classes, so it
must create them all.

Each class has several dependencies, so the “root” caller—in

this case, the RegisterUser handler—needs to know how

to create every class it depends on, as well as every class its

dependencies depend on. This is sometimes called the

dependency graph.

DEFINITION The dependency graph is the set of objects that must be
created to create a specific requested “root” object.

EmailSender depends on the MessageFactory and

NetworkClient objects, so they’re provided via the

constructor, as shown in the following listing.

Listing 8.2 A service with multiple dependencies

public class EmailSender

{

 private readonly NetworkClient _client; ❶
 private readonly MessageFactory _factory; ❶
 public EmailSender(MessageFactory factory, NetworkClient client) ❷
 { ❷
 _factory = factory; ❷
 _client = client; ❷
 } ❷
 public void SendEmail(string username)

 {

 var email = _factory.Create(username); ❸
 _client.SendEmail(email); ❸
 Console.WriteLine($"Email sent to {username}!");

 }

}

❶ Now the EmailSender depends on two other classes.

❷ Instances of the dependencies are provided in the constructor.
❸ The EmailSender coordinates the dependencies to create and send an email.

On top of that, the NetworkClient class that

EmailSender depends on also has a dependency on an

EmailServerSettings object:

public class NetworkClient

{

 private readonly EmailServerSettings _settings;

 public NetworkClient(EmailServerSettings settings)

 {

 _settings = settings;

 }

}

This example might feel a little contrived, but it’s common to

find this sort of chain of dependencies. In fact, if you don’t

have it in your code, it’s probably a sign that your classes

are too big and aren’t following the SRP.

So how does this affect the code in RegisterUser? The

following listing shows how you now have to send an email if

you stick to newing up objects in the handler.

Listing 8.3 Sending email without DI when you create
dependencies manually

string RegisterUser(string username)

{

 var emailSender = new EmailSender(❶
 new MessageFactory(), ❷
 new NetworkClient(❸
 new EmailServerSettings ❹
 (❹
 Host: "smtp.server.com", ❹
 Port: 25 ❹
)) ❹
);

 emailSender.SendEmail(username); ❺
 return $"Email sent to {username}!";

}

❶ To create EmailSender, you must create all its dependencies.

❷ You need a new MessageFactory.
❸ The NetworkClient also has dependencies.

❹ You’re already two layers deep, but there could feasibly be more.

❺ Finally, you can send the email.

This code is turning into something gnarly. Improving the

design of EmailSender to separate out the responsibilities

has made calling it from RegisterUser a real chore. This

code has several problems:

Not obeying the SRP—Now our code is responsible

for both creating an EmailSender object and

using it to send an email.

Considerable ceremony—Ceremony refers to code

that you have to write but that isn’t adding value

directly. Of the 11 lines of code in the

RegisterUser method, only the last two are

doing anything useful, which makes it harder to

read and harder to understand the intent of the

methods.

Tied to the implementation—If you decide to

refactor EmailSender and add another

dependency, you’d need to update every place it’s

used. Likewise, if any dependencies are refactored,

you would need to update this code too.

Hard to reuse instance—In the example code we

created new instances of all the objects. But what

if creating a new NetworkClient is

computationally expensive and we’d like to reuse

instances? We’d have to add extra code to handle

that task, further increasing the amount of

boilerplate code.

RegisterUser has an implicit dependency on the

EmailSender class, as it creates the object manually itself.

The only way to know that RegisterUser uses

EmailSender is to look at its source code. By contrast,

EmailSender has explicit dependencies on

NetworkClient and MessageFactory, which must be

provided in the constructor. Similarly, NetworkClient has

an explicit dependency on the EmailServerSettings

class.

TIP Generally speaking, any dependencies in your code should be
explicit, not implicit. Implicit dependencies are hard to reason about
and difficult to test, so you should avoid them wherever you can. DI is
useful for guiding you along this path.

DI aims to solve the problem of building a dependency graph

by inverting the chain of dependencies. Instead of the

RegisterUser handler creating its dependencies manually,

deep inside the implementation details of the code, an

already-created instance of EmailSender is passed as an

argument to the RegisterUser method.

Now, obviously something needs to create the object, so the

code to do that has to live somewhere. The service

responsible for providing the instance is called a DI container

or an IoC container, as shown in figure 8.2.

DEFINITION The DI container or IoC container is responsible for
creating instances of services. It knows how to construct an instance

of a service by creating all its dependencies and passing them to the
constructor. I’ll refer to it as a DI container throughout this book.

Figure 8.2 Dependency diagram using DI . RegisterUser indirectly
depends on all the other classes but doesn’t need to know how

to create them. The RegisterUser handler declares that it requires
EmailSender, and the container provides it.

The term DI is often used interchangeably with IoC. But DI

is a specific version of the more general principle of IoC. In

the context of ASP.NET Core,

Without IoC, you’d write the code to listen for

requests, check which handler to invoke, and then

invoke it. With IoC, the control flow is the other

way around. You register your handlers with the

framework, but it’s up to the framework to invoke

your handler. Your handler is still responsible for

creating its dependencies.

DI takes IoC one step further. As well as invoking

your handler, with DI, the framework creates all

your handler’s dependencies.

So when you use dependency injection, your

RegisterUser handler is no longer responsible for

controlling how to create an EmailSender instance.

Instead, the framework provides an EmailSender to the

handler directly.

NOTE Many DI containers are available for .NET, including Autofac,
Lamar, Unity, Ninject, and Simple Injector, and the list goes on! In
chapter 31 you’ll see how to replace the default ASP.NET Core
container with one of these alternatives.

The advantage of adopting this pattern becomes apparent

when you see how much it simplifies using dependencies.

Listing 8.4 shows how the RegisterUser handler would

look if you used DI to create EmailSender instead of

creating it manually. All the new noise has gone, and you

can focus purely on what the endpoint handler is doing:

calling EmailSender and returning a string message.

Listing 8.4 Sending an email using DI to inject dependencies

string RegisterUser(string username, EmailSender emailSender) ❶
{

 emailSender.SendEmail(username); ❷
 return $"Email sent to {username}!"; ❷
}

❶ Instead of creating the dependencies implicitly, injects them directly
❷ The handler is easy to read and understand again.

One advantage of a DI container is that it has a single

responsibility: creating objects or services. The minimal API

infrastructure asks the DI container for an instance of a

service, and the container takes care of figuring out how to

create the dependency graph, based on how you configure

it.

NOTE It’s common to refer to services when talking about DI
containers, which is slightly unfortunate, as services is one of the
most overloaded terms in software engineering! In this context, a
service refers to any class or interface that the DI container creates
when required.

The beauty of this approach is that by using explicit

dependencies, you never have to write the mess of code you

saw in listing 8.3. The DI container can inspect your

service’s constructor and work out how to write much of the

code itself. DI containers are always configurable, so if you

want to describe how to create an instance of a service

manually, you can, but by default you shouldn’t need to.

TIP ASP.NET Core supports constructor injection and injection into
endpoint handler methods out of the box. Technically, you can inject
dependencies into a service in other ways, such as by using property
injection, but these techniques aren’t supported by the built-in DI
container.

I hope that this example made the advantages of using DI in

your code apparent, but in many ways these benefits are

secondary to the main benefit of using DI. In particular, DI

helps keep your code loosely coupled by coding to

interfaces.

8.2 Creating loosely coupled code
Coupling is an important concept in object-oriented

programming, referring to how a given class depends on

other classes to perform its function. Loosely coupled code

doesn’t need to know a lot of details about a particular

component to use it.

The initial example of RegisterUser and EmailSender

was an example of tight coupling; you were creating the

EmailSender object directly and needed to know exactly

how to wire it up. On top of that, the code was difficult to

test. Any attempts to test RegisterUser would result in an

email being sent. If you were testing the controller with a

suite of unit tests, that approach would be a surefire way to

get your email server blacklisted for spam!

Taking EmailSender as a parameter and removing the

responsibility of creating the object helps reduce the

coupling in the system. If the EmailSender implementation

changes so that it has another dependency, you no longer

have to update RegisterUser at the same time.

One problem that remains is that RegisterUser is still tied

to an implementation rather than an abstraction. Coding to

abstractions (often interfaces) is a common design pattern

that helps further reduce the coupling of a system, as you’re

not tied to a single implementation. This pattern is

particularly useful for making classes testable, as you can

create stub or mock implementations of your dependencies

for testing purposes, as shown in figure 8.3.

TIP You can choose among many mocking frameworks. I’m most
familiar with Moq, but NSubstitute and FakeItEasy are also popular
options.

Figure 8.3 By coding to interfaces instead of an explicit
implementation, you can use different IEmailSender
implementations in different scenarios, such as a
MockEmailSender in unit tests.

As an example, you might create an IEmailSender

interface, which EmailSender would implement:

public interface IEmailSender

{

 public void SendEmail(string username);

}

Then RegisterUser could depend on this interface instead

of the specific EmailSender implementation, as shown in

the following listing, allowing you to use a different

implementation during unit tests, such as a

DummyEmailSender.

Listing 8.5 Using interfaces with dependency injection

string RegisterUser(string username, IEmailSender emailSender) ❶
{

 emailSender.SendEmail(username); ❷
 return $"Email sent to {username}!";

}

❶ Now you depend on IEmailSender instead of the specific EmailSender implementation.
❷ You don’t care what the implementation is as long as it implements IEmailSender.

The key point here is that the consuming code,

RegisterUser, doesn’t care how the dependency is

implemented—only that it implements the IEmailSender

interface and exposes a SendEmail method. Now the

application code is independent of the implementation.

I hope that the principles behind DI seem to be sound.

Having loosely coupled code makes it easy to change or

swap out implementations. But this still leaves a question:

how does the application know to use EmailSender in

production instead of DummyEmailSender? The process of

telling your DI container “When you need IEmailSender,

use EmailSender” is called registration.

DEFINITION You register services with a DI container so that it
knows which implementation to use for each requested service. This
registration typically takes the form “For interface X, use
implementation Y.”

Exactly how you register your interfaces and types with a DI

container can vary depending on the specific DI container

implementation, but the principles are generally the same.

ASP.NET Core includes a simple DI container out of the box,

so let’s look at how it’s used during a typical request.

8.3 Using dependency injection in
ASP.NET Core

ASP.NET Core was designed from the outset to be modular

and composable, with an almost plugin-style architecture,

which is generally complemented by DI. Consequently,

ASP.NET Core includes a simple DI container that all the

framework libraries use to register themselves and their

dependencies.

This container is used, for example, to register the minimal

API infrastructure—the formatters, the Kestrel web server,

and so on. It’s a basic container, so it exposes only a few

methods for registering services, but you have the option to

replace it with a third-party DI container that gives you

extra capabilities, such as autoregistration and setter

injection. The DI container is built into the ASP.NET Core

hosting model, as shown in figure 8.4.

Figure 8.4 The ASP.NET Core hosting model uses the DI
container to fulfill dependencies when creating minimal API
endpoint handlers.

The hosting model pulls dependencies from the DI container

when they’re needed. If the framework determines that it

must invoke RegisterHandler due to the incoming

URL/route, the RequestDelegateFactory responsible for

creating minimal APIs asks the DI container for an

IEmailSender implementation.

NOTE RequestDelegateFactory is part of the minimal API
framework that’s responsible for invoking your minimal API handlers.
You won’t use or interact with it directly, but it’s behind the scenes
interacting with the DI container. I have a detailed series exploring
this type on my blog at http://mng.bz/Gy6v. But be warned: this post
goes into far more detail than most developers will ever need (or
want)!

The DI container needs to know what to create when asked

for IEmailSender, so you must have registered an

implementation, such as EmailSender, with the container.

When an implementation is registered, the DI container can

inject it anywhere, which means that you can inject

framework-related services (such as LinkGenerator from

chapter 6) into your own custom services. It also means that

you can register alternative versions of framework services

and have the framework automatically use those versions in

place of the defaults.

Other ASP.NET Core infrastructure, such as the Model-View-

Controller (MVC) and Razor Pages frameworks (which you

learn about in part 3), uses dependency injection in a similar

way to minimal APIs. These frameworks use the DI container

to create the dependencies required by their own handlers,

such as for a Razor Page (figure 8.5).

http://mng.bz/Gy6v

Figure 8.5 The ASP.NET Core hosting model uses the DI
container to fulfill dependencies when creating Razor Pages.

The flexibility to choose exactly how and which components

you combine in your applications is one of the selling points

of DI. In section 8.4 you’ll learn how to configure DI in your

own ASP.NET Core application, using the default, built-in

container.

8.4 Adding ASP.NET Core framework
services to the container

Before ASP.NET Core, using DI was optional. By contrast, to

build all but the most trivial ASP.NET Core apps, some

degree of DI is required. As I’ve mentioned, the underlying

framework depends on it, so features such as Razor Pages

and authentication require you to configure the required

services. In this section you’ll see how to register these

framework services with the built-in container. In chapter 9

you’ll learn how to register your own services with the DI

container.

ASP.NET Core uses DI to configure both its internal

components, such as the Kestrel web server, and extra

features, such as Razor Pages. To use these components at

runtime, the DI container needs to know about all the

classes it will need. You register these services with the

Services property on the WebApplicationBuilder

instance in Program.cs.

NOTE The Services property of WebApplicationBuilder
is of type IServiceCollection. This is where you register the
collection of services that the DI container knows about.

If you’re thinking “Wait—I have to configure all the internal

components myself?”, don’t panic. Most of the core services

are registered automatically by WebApplicationBuilder,

and you don’t need to do anything else. To use other

features, such as Razor Pages or authentication, you do

need to register the components explicitly with the container

in your app, but that’s not as hard as it sounds. All the

common libraries you use expose handy extension methods

to take care of the nitty-gritty details. These extension

methods configure everything you need in one fell swoop

instead of leaving you to wire everything up manually.

The Razor Pages framework exposes the

AddRazorPages() extension method, for example, which

adds all the necessary framework services to your app.

Invoke the extension method on the Services property of

WebApplicationBuilder in Program.cs, as shown in the

following listing.

Listing 8.6 Registering the Razor Pages services with the DI
container

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages(); ❶

WebApplication app = builder.Build();

app.MapRazorPages(); ❷
app.Run();

❶ The AddRazorPages extension method adds all necessary services to the
IServiceCollection.

❷ Registers all the Razor Pages in your application as endpoints

It’s as simple as that. Under the hood, this call is registering

multiple components with the DI container, using the same

APIs you’ll see in chapter 9 for registering your own

services.

NOTE Don’t worry about the Razor Pages aspect of this code; you’ll
learn how Razor Pages work in part 3. The important point of listing
8.6 is to show how to register and enable various features in
ASP.NET Core.

Most nontrivial libraries that you add to your application will

have services that you need to add to the DI container. By

convention, each library that has necessary services should

expose an Add*() extension method that you can call on

WebApplicationBuilder.Services.

There’s no way of knowing exactly which libraries will require

you to add services to the container; it’s generally a case of

checking the documentation for any libraries you use. If you

forget to add them, you may find that the functionality

doesn’t work, or you might get a handy exception in your

logs, like the one shown in figure 8.6. Keep an eye out for

these exceptions, and be sure to register any services you

need.

Figure 8.6 If you fail to call AddRazorPages() in an application the
uses Razor Pages, you’ll get an exception when your app tries to
start.

It’s also worth noting that some of the Add*() extension

methods allow you to specify additional options when you

call them, often by way of a lambda expression. You can

think of these options as configuring the installation of a

service into your application. The AddRazorPages method,

for example, provides a wealth of options for fine-tuning its

behavior if you want to get your hands dirty, as shown by

the IntelliSense snippet in figure 8.7.

Figure 8.7 Configuring services when adding them to the service
collection. The AddRazorPages() function allows you to configure
a wealth of the internals of the framework.

It’s all very well registering services with the DI container,

but the important question is how to use the container to get

an instance of a registered service. In section 8.5 we look at

two possible ways to access these services and discuss when

you should choose one over the other.

8.5 Using services from the DI
container

In a minimal API application, you have two main ways to

access services from the DI container:

Inject services into an endpoint handler.

Access the DI container directly in Program.cs.

The first approach—injecting services into an endpoint

handler—is the most common way to access the root of a

dependency graph. You should use this approach in almost

all cases in your minimal API applications. You can inject a

service into an endpoint handler by adding it as a parameter

to your endpoint handler method, as you saw in chapters 6

and 7 when you injected a LinkGenerator instance into

your handler.

Listing 8.7 Injecting the LinkGenerator service in an endpoint
handler

app.MapGet("/links", (LinkGenerator links) => ❶
{

 string link = links.GetPathByName("products");

 return $"View the product at {link}";

});

❶ The DI container creates a LinkGenerator instance and passes it as the argument to the
handler.

The minimal API infrastructure sees that you need an

instance of the LinkGenerator, which is a service

registered in the container, and asks the DI container to

provide an instance of the service. The DI container creates

a new instance of LinkGenerator (or reuses an existing

one) and returns it to the minimal API infrastructure. Then

the LinkGenerator is passed as an argument to invoke

the endpoint handler.

NOTE Whether the DI container creates a new instance or reuses an
existing instance depends on the lifetime used to register the service.
You’ll learn about lifetimes in chapter 9.

As already mentioned, the DI container creates an entire

dependency graph. The LinkGenerator implementation

registered with the DI container declares the dependencies it

requires by having parameters in its constructor, just as the

EmailSender type from section 8.1 declared its

dependencies. When the DI container creates the

LinkGenerator, it first creates all the service’s

dependencies and uses them to create the final

LinkGenerator instance.

Injecting services into your handlers is the canonical DI

approach for minimal API endpoint handlers, but sometimes

you need to access a service outside the context of a

request. You may have lots of reasons to do this, but some

of the most common relate to working with a database or

logging. You may want to run some code when your app is

starting to update a database’s schema before the app starts

handling requests, for example. If you need to access

services in Program.cs outside the context of a request, you

can retrieve services from the DI container directly by using

the WebApplication .Services property, which exposes

the container as an IServiceProvider.

NOTE You register services with the IServiceCollection
exposed on WebApplicationBuilder.Services. You

request services with the IServiceProvider exposed on
WebApplication.Services.

The IServiceProvider acts as a service locator, so you

can request services from it directly by using

GetService() and GetRequiredService():

GetService<T>()—Returns the requested

service T if it is available in the DI container;

otherwise, returns null

GetRequiredService<T>()—Returns the

requested service T if it is available in the DI

container; otherwise, throws an

InvalidOperationException

I generally favor GetRequiredService over

GetService, as it immediately tells you whether you have

a configuration problem with your DI container by throwing

an exception, and you don’t have to handle nulls.

You can use either of these methods in Program.cs to

retrieve a service from DI. The following listing shows how

to retrieve a LinkGenerator from the DI container, but

you can access any service registered in the DI container

here.

Listing 8.8 Retrieving a service from the DI container using
WebApplication.Services

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/", () => "Hello World!");

LinkGenerator links = ❶
 app.Services.GetRequiredService<LinkGenerator>(); ❶

app.Run(); ❷

❶ Retrieves a service from the DI container using the GetRequiredService<T>() extension
method

❷ You must access services before app.Run(), as this call blocks until your app exits.

This approach, in which you call the DI container directly to

ask for a class, is called the service locator pattern.

Generally speaking, you should try to avoid this pattern in

your code; include your dependencies as constructor or

endpoint handler arguments directly, and let the DI

container provide them for you. This pattern is the only way

to access DI services in the main loop of your application in

Program.cs, however, so don’t worry about using it here.

Still, you should absolutely avoid accessing

WebApplication .Services from inside your endpoint

handlers or other types whenever possible.

NOTE You can read about the service locator antipattern in
Dependency Injection Principles, Practices, and Patterns, by Steven
van Deursen and Mark Seemann (Manning, 2019).

In this chapter we covered some of the reasons to use DI in

your applications, how to enable optional ASP.NET Core

features by adding services to the DI container, and how to

access services from the DI container by using injection into

your endpoint handlers. In chapter 9 you’ll learn about

service lifetimes and how to register your own services with

the DI container.

Summary
DI is baked into the ASP.NET Core framework. You

need to ensure that your application adds all the

framework’s dependencies for optional features in

Program.cs; otherwise, you’ll get exceptions at

runtime when the DI container can’t find the

required services.

The dependency graph is the set of objects that

must be created to create a specific requested root

object. The DI container creates all these

dependencies for you.

You should aim to use explicit dependencies

instead of implicit dependencies in most cases.

ASP.NET Core uses constructor arguments and

endpoint handler arguments to declare explicit

dependencies.

When discussing DI, the term service is used to

describe any class or interface registered with the

container.

You register services with the DI container so that

the container knows which implementation to use

for each requested service. This registration

typically takes the form “For interface X, use

implementation Y.”

You must register services with the container by

calling Add* extension methods on the

IServiceCollection exposed as

WebApplicationBuilder.Services in

Program.cs. If you forget to register a service

that’s used by the framework or in your own code,

you’ll get an InvalidOperationException at

runtime.

You can retrieve services from the DI container in

your endpoint handlers by adding a parameter of

the required type.

You can retrieve services from the DI container in

Program.cs via the service locator pattern by

calling GetService<T>() or

GetRequiredService<T>() on the

IServiceProvider exposed as

WebApplication.Services. Service location is

generally considered to be an antipattern;

generally, you shouldn’t use it inside your handler

methods, but it’s fine to use it directly inside

Program.cs.

GetService<T>() returns null if the requested

service isn’t registered with the DI container. By

contrast, GetRequiredService<T>() throws an

InvalidOperationException.

9 Registering services with
dependency injection

This chapter covers

Configuring your services to work with dependency injection
Choosing the correct lifetime for your services

In chapter 8 you learned about dependency injection (DI) in

general, why it’s useful as a pattern for developing loosely

coupled code, and its central place in ASP.NET Core. In this

chapter you’ll build on that knowledge to apply DI to your

own classes.

You’ll start by learning how to configure your app so that the

ASP.NET Core framework can create your classes for you,

removing the pain of having to create new objects manually

in your code. We look at the various patterns you can use to

register your services and some of the limitations of the

built-in DI container.

Next, you’ll learn how to handle multiple implementations of

a service. You’ll learn how to inject multiple versions of a

service, how to override a default service registration, and

how to register a service conditionally if you don’t know

whether it’s already registered.

In section 9.4 we look at how you can control for how long

your objects are used—that is, their lifetime. We explore the

differences among the three lifetime options and some of the

pitfalls to be aware of when you come to write your own

applications. Finally, in section 9.5 you’ll learn why lifetimes

are important when resolving services outside the context of

an HTTP request.

We’ll start by revisiting the EmailSender service from

chapter 8 to see how you could register the dependency

graph in your DI container.

9.1 Registering custom services with
the DI container

In this section you’ll learn how to register your own services

with the DI container. We’ll explore the difference between a

service and an implementation, and learn how to register

the EmailSender hierarchy introduced in chapter 8.

In chapter 8 I described a system for sending emails when a

new user registers in your application. Initially, the minimal

API endpoint handler RegisterUser created an instance of

EmailSender manually, using code similar to the following

listing (which you saw in chapter 8).

Listing 9.1 Creating an EmailSender instance without dependency
injection

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser); ❶

app.Run();

string RegisterUser(string username)

{

 IEmailSender emailSender = new EmailSender(❷
 new MessageFactory(), ❸
 new NetworkClient(❹
 new EmailServerSettings ❺
 (❺
 Host: "smtp.server.com", ❺
 Port: 25 ❺
)) ❺
);

 emailSender.SendEmail(username); ❻
 return $"Email sent to {username}!";

}

❶ The endpoint is called when a new user is created.
❷ To create EmailSender, you must create all its dependencies.

❸ You need a new MessageFactory.
❹ The NetworkClient also has dependencies.

❺ You’re already two layers deep, but there could feasibly be more.
❻ Finally, you can send the email.

We subsequently refactored this code to inject an instance of

IEmailSender into the handler instead, as shown in listing

9.2. The IEmailSender interface decouples the endpoint

handler from the EmailSender implementation, making it

easier to change the implementation of EmailSender (or

replace it) without having to rewrite RegisterUser.

Listing 9.2 Using IEmailSender with dependency injection in an
endpoint handler

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser); ❶

app.Run();

string RegisterUser(string username, IEmailSender emailSender) ❷
{

 emailSender.SendEmail(username); ❸
 return $"Email sent to {username}!";

}

❶ The endpoint is called when a new user is created.

❷ The IEmailSender is injected into the handler using DI.
❸ The handler uses the IEmailSender instance.

The final step in making the refactoring work is configuring

your services with the DI container. This configuration lets

the DI container know what to use when it needs to fulfill

the IEmailSender dependency. If you don’t register your

services, you’ll get an exception at runtime, like the one in

figure 9.1. This exception describes a model-binding

problem; the minimal API infrastructure tries to bind the

emailSender parameter to the request body because

IEmailSender isn’t a known service in the DI container.

Figure 9.1 If you don’t register all your required dependencies
with the DI container, you’ll get an exception at runtime, telling
you which service wasn’t registered.

To configure the application completely, you need to register

an IEmailSender implementation and all its dependencies

with the DI container, as shown in figure 9.2.

Figure 9.2 Configuring the DI container in your application
involves telling it what type to use when a given service is
requested, such as “Use EmailSender when IEmailSender is
required.”

Configuring DI consists of making a series of statements

about the services in your app, such as the following:

When a service requires IEmailSender, use an

instance of EmailSender.

When a service requires NetworkClient, use an

instance of NetworkClient.

When a service requires MessageFactory, use

an instance of MessageFactory.

NOTE You’ll also need to register the EmailServerSettings
object with the DI container. We’ll do that slightly differently in section
9.2.

These statements are made by calling various Add*

methods on the IServiceCollection exposed as the

WebApplicationBuilder.Services property. Each

Add* method provides three pieces of information to the DI

container:

Service type—TService. This class or interface

will be requested as a dependency. It’s often an

interface, such as IEmailSender, but sometimes

a concrete type, such as NetworkClient or

MessageFactory.

Implementation type—TService or

TImplementation. The container should create

this class to fulfill the dependency. It must be a

concrete type, such as EmailSender. It may be

the same as the service type, as for

NetworkClient and MessageFactory.

Lifetime—transient, singleton, or scoped. The

lifetime defines how long an instance of the service

should be used by the DI container. I discuss

lifetimes in detail in section 9.4.

DEFINITION A concrete type is a type that can be created, such as a
standard class or struct. It contrasts with a type such as an
interface or an abstract class, which can’t be created
directly.

Listing 9.3 shows how you can configure EmailSender and

its dependencies in your application by using three methods:

AddScoped<TService>, AddSingleton<TService>,

and AddScoped<TService, TImplementation>. This

code tells the DI container how to create each of the

TService instances when they’re required and which

lifetime to use.

Listing 9.3 Registering services with the DI container

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IEmailSender, EmailSender>(); ❶
builder.Services.AddScoped<NetworkClient>(); ❷
builder.Services.AddSingleton<MessageFactory>(); ❸

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser);

app.Run();

string RegisterUser(string username, IEmailSender emailSender)

{

 emailSender.SendEmail(username);

 return $"Email sent to {username}!";

}

❶ Whenever you require an IEmailSender, use EmailSender.

❷ Whenever you require a NetworkClient, use NetworkClient.
❸ Whenever you require a MessageFactory, use MessageFactory.

That’s all there is to DI! It may seem a little bit like magic,

but you’re simply giving the container instructions for

making all the parts. You give it a recipe for cooking the

chili, shredding the lettuce, and grating the cheese, so when

you ask for a burrito, it can put all the parts together and

hand you your meal!

NOTE Under the hood, the built-in ASP.NET Core DI container uses
optimized reflection to create dependencies, but different DI
containers may use other approaches. The Add* APIs are the only
way to register dependencies with the built-in container; there’s no
support for using external configuration files to configure the
container, for example.

The service type and implementation type are the same for

NetworkClient and MessageFactory, so there’s no

need to specify the same type twice in the AddScoped

method—hence, the slightly simpler signature.

NOTE The EmailSender instance is registered only as an
IEmailSender, so you can’t resolve it by requesting the specific
EmailSender implementation; you must use the
IEmailSender interface.

These generic methods aren’t the only ways to register

services with the container. You can also provide objects

directly or by using lambdas, as you’ll see in section 9.2.

9.2 Registering services using objects
and lambdas

As I mentioned in section 9.1, I didn’t quite register all the

services required by EmailSender. In the previous

examples, NetworkClient depends on

EmailServerSettings, which you’ll also need to register

with the DI container for your project to run without

exceptions.

I avoided registering this object in the preceding example

because you have to take a slightly different approach. The

preceding Add* methods use generics to specify the Type of

the class to register, but they don’t give any indication of

how to construct an instance of that type. Instead, the

container makes several assumptions that you have to

adhere to:

The class must be a concrete type.

The class must have only a single relevant

constructor that the container can use.

For a constructor to be relevant, all constructor

arguments must be registered with the container

or must be arguments with a default value.

NOTE These limitations apply to the simple built-in DI container. If
you choose to use a third-party container in your app, it may have a
different set of limitations.

The EmailServerSettings record doesn’t meet these

requirements, as it requires you to provide a Host and

Port in the constructor, which are a string and int,

respectively, without default values:

public record EmailServerSettings(string Host, int Port);

You can’t register these primitive types in the container. It

would be weird to say “For every string constructor

argument, in any type, use the "smtp.server.com"

value.”

Instead, you can create an instance of the

EmailServerSettings object yourself and provide that to

the container, as shown in the following listing. The

container uses the preconstructed object whenever an

instance of the EmailServerSettings object is required.

Listing 9.4 Providing an object instance when registering
services

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IEmailSender, EmailSender>();

builder.Services.AddScoped<NetworkClient>();

builder.Services.AddSingleton<MessageFactory>();

builder.Services.AddSingleton(

 new EmailServerSettings ❶
 (❶
 Host: "smtp.server.com", ❶
 Port: 25 ❶
)); ❶

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser);

app.Run();

❶ This instance of EmailServerSettings will be used whenever an instance is required.

This code works fine if you want to have only a single

instance of EmailServerSettings in your application; the

same object will be shared everywhere. But what if you want

to create a new object each time one is requested?

NOTE When the same object is used whenever it’s requested, it’s
known as a singleton. If you create an object and pass it to the
container, it’s always registered as a singleton. You can also register
any class using the AddSingleton<T>() method, and the
container will use only one instance throughout your application. I
discuss singletons and other lifetimes in detail in section 9.4. The
lifetime is how long the DI container should use a given object to fulfill
a service’s dependencies.

Instead of providing a single instance that the container will

always use, you can provide a function that the container

invokes when it needs an instance of the type, as shown in

figure 9.3.

Figure 9.3 You can register a function with the DI container that
will be invoked whenever a new instance of a service is required.

NOTE Figure 9.3 is an example of the factory pattern, in which you
define how a type is created. Note that the factory functions must be
synchronous; you can’t create types asynchronously by (for example)
using async.

The easiest way to register a service using the factory

pattern is with a lambda function (an anonymous delegate),

in which the container creates a new

EmailServerSettings object whenever it’s needed, as

shown in the following listing.

Listing 9.5 Using a lambda factory function to register a
dependency

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IEmailSender, EmailSender>();

builder.Services.AddScoped<NetworkClient>();

builder.Services.AddSingleton<MessageFactory>();

builder.Services.AddScoped(❶
 provider => ❷
 new EmailServerSettings ❸
 (❸
 Host: "smtp.server.com", ❸
 Port: 25 ❸
)); ❸

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser);

app.Run();

❶ Because you’re providing a function to create the object, you aren’t restricted to a
singleton.

❷ The lambda is provided an instance of IServiceProvider.

❸ The constructor is called every time an EmailServerSettings object is required instead of
only once.

In this example, I changed the lifetime of the created

EmailServerSettings object to scoped instead of

singleton and provided a factory lambda function that

returns a new EmailServerSettings object. Every time

the container requires a new EmailServerSettings, it

executes the function and uses the new object it returns.

When you use a lambda to register your services, you’re

given an IServiceProvider instance at runtime, called

provider in listing 9.5. This instance is the public API of

the DI container itself, which exposes the GetService<T>

() and GetRequiredService<T>() extension methods

you saw in chapter 8. If you need to obtain dependencies to

create an instance of your service, you can reach into the

container at runtime in this way, but you should avoid doing

so if possible.

TIP Avoid calling GetService<T>() and
GetRequiredService<T>() in your factory functions if
possible. Instead, favor constructor injection; it’s more performant and
simpler to reason about.

Open generics and dependency injection

As already mentioned, you couldn’t use the generic registration methods with
EmailServerSettings because it uses primitive dependencies (in this case,
string and int) in its constructor. Neither can you use the generic registration
methods to register open generics.

Open generics are types that contain a generic type parameter, such as Repository
<T>. You normally use this sort of type to define a base behavior that you can use with
multiple generic types. In the Repository<T> example, you might inject
IRepository <Customer> into your services, which should inject an instance of
DbRepository <Customer>, for example.

To register these types, you must use a different overload of the Add* methods, as in
this example:

builder.Services.AddScoped(typeof(IRespository<>), typeof(DbRepository<>));

This code ensures that whenever a service constructor requires IRespository<T>,
the container injects an instance of DbRepository<T>.

At this point, all your dependencies are registered. But your

Program.cs is starting to look a little messy, isn’t it? The

choice is entirely down to personal preference, but I like to

group my services into logical collections and create

extension methods for them, as in listing 9.6. This approach

creates an equivalent to the framework’s

AddRazorPages() extension method—a nice, simple

registration API. As you add more features to your app, I

think you’ll appreciate it too.

Listing 9.6 Creating an extension method to tidy up adding
multiple services

public static class EmailSenderServiceCollectionExtensions

{

 public static IServiceCollection AddEmailSender(

 this IServiceCollection services) ❶
 {

 services.AddScoped<IEmailSender, EmailSender>(); ❷
 services.AddSingleton<NetworkClient>(); ❷
 services.AddScoped<MessageFactory>(); ❷
 services.AddSingleton(❷
 new EmailServerSettings ❷
 (❷
 host: "smtp.server.com", ❷
 port: 25 ❷
)); ❷
 return services; ❸
 }

}

❶ Creates an extension method on IServiceCollection by using the “this” keyword

❷ Cuts and pastes your registration code from Program.cs
❸ By convention, returns the IServiceCollection to allow method chaining

With the preceding extension method created, the following

listing shows that your startup code is much easier to grok!

Listing 9.7 Using an extension method to register your services

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEmailSender(); ❶

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser);

app.Run();

❶ The extension method registers all the services associated with the EmailSender.

So far, you’ve seen how to register the simple DI cases in

which you have a single implementation of a service. In

some scenarios, you may have multiple implementations of

an interface. In section 9.3 you’ll see how to register these

with the container to match your requirements.

9.3 Registering a service in the
container multiple times

One advantage of coding to interfaces is that you can create

multiple implementations of a service. Suppose that you

want to create a more generalized version of

IEmailSender so that you can send messages via Short

Message Service (SMS) or Facebook, as well as by email.

You create the interface for it as follows,

public interface IMessageSender

{

 public void SendMessage(string message);

}

as well as several implementations: EmailSender,

SmsSender, and FacebookSender. But how do you

register these implementations in the container? And how

can you inject these implementations into your

RegisterUser handler? The answers vary slightly,

depending on whether you want to use all the

implementations in your consumer or only one.

9.3.1 Injecting multiple implementations of an
interface

Suppose that you want to send a message using each of the

IMessageSender implementations whenever a new user

registers so that they get an email, an SMS text, and a

Facebook message, as shown in figure 9.4.

Figure 9.4 When a user registers with your application, they call
the RegisterUser handler. This handler sends them an email, an

SMS text, and a Facebook message using the IMessageSender
classes.

The easiest way to achieve this goal is to register all the

service implementations in your DI container and have it

inject one of each type into the RegisterUser endpoint

handler. Then RegisterUser can use a simple foreach

loop to call SendMessage() on each implementation, as

shown in figure 9.5.

Figure 9.5 You can register multiple implementations of a service
with the DI container, such as IEmailSender in this example. You
can retrieve an instance of each of these implementations by
requiring IEnumerable<IMessageSender> in the RegisterUser handler.

You register multiple implementations of the same service

with a DI container in exactly the same way as for single

implementations, using the Add* extension methods as in

this example:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IMessageSender, EmailSender>();

builder.Services.AddScoped<IMessageSender, SmsSender>();

builder.Services.AddScoped<IMessageSender, FacebookSender>();

Then you can inject IEnumerable<IMessageSender> into

RegisterUser, as shown in listing 9.8. The container

injects an array of IMessageSender containing one of each

of the implementations you have registered, in the same

order as you registered them. Then you can use a standard

foreach loop and call SendMessage on each

implementation.

Listing 9.8 Injecting multiple implementations of a service into
an endpoint

string RegisterUser(

 string username,

 IEnumerable<IMessageSender> senders) ❶
{

 foreach(var sender in senders) ❷
 { ❷
 Sender.SendMessage($”Hello {username}!”); ❷
 } ❷

 return $"Welcome message sent to {username}";

}

❶ Requests an IEnumerable injects an array of IMessageSender
❷ Each IMessageSender in the IEnumerable is a different implementation.

WARNING You must use IEnumerable<T> as the handler
parameter type to inject all the registered types of a service, T. Even
though this parameter will be injected as a T[] array, you can’t use
T[] or ICollection<T> as your constructor argument. Doing so

will cause an InvalidOperationException, similar to that in
figure 9.1.

It’s simple enough to inject all the registered

implementations of a service, but what if you need only one?

How does the container know which one to use?

9.3.2 Injecting a single implementation when
multiple services are registered

Suppose that you’ve already registered all the

IMessageSender implementations. What happens if you

have a service that requires only one of them? Consider this

example:

public class SingleMessageSender

{

 private readonly IMessageSender _messageSender;

 public SingleMessageSender(IMessageSender messageSender)

 {

 _messageSender = messageSender;

 }

}

Of the three implementations available, the container needs

to pick a single IMessageSender to inject into this service.

It does this by using the last registered implementation:

FacebookSender from the previous example.

NOTE The DI container will use the last registered implementation of
a service when resolving a single instance of the service.

This feature can be particularly useful for replacing built-in

DI registrations with your own services. If you have a

custom implementation of a service that you know is

registered within a library’s Add* extension method, you can

override that registration by registering your own

implementation afterward. The DI container will use your

implementation whenever a single instance of the service is

requested.

The main disadvantage of this approach is that you still end

up with multiple implementations registered; you can inject

an IEnumerable<T> as before. Sometimes you want to

register a service conditionally so that you always have only

a single registered implementation.

9.3.3 Conditionally registering services using
TryAdd

Sometimes you want to add an implementation of a service

only if one hasn’t already been added. This approach is

particularly useful for library authors; they can create a

default implementation of an interface and register it only if

the user hasn’t already registered their own implementation.

You can find several extension methods for conditional

registration in the

Microsoft.Extensions.DependencyInjection.Exte

nsions namespace, such as TryAddScoped. This method

checks whether a service has been registered with the

container before calling AddScoped on the implementation.

Listing 9.9 shows how you can add SmsSender conditionally

if there are no existing IMessageSender implementations.

As you initially register EmailSender, the container ignores

the SmsSender registration, so it isn’t available in your app.

Listing 9.9 Conditionally adding a service using TryAddScoped

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IMessageSender, EmailSender>(); ❶
builder.Services.TryAddScoped<IMessageSender, SmsSender>(); ❷

❶ EmailSender is registered with the container.
❷ There’s already an IMessageSender implementation, so SmsSender isn’t registered.

Code like this doesn’t often make a lot of sense at the

application level, but it can be useful if you’re building

libraries for use in multiple apps. The ASP.NET Core

framework, for example, uses TryAdd* in many places,

which lets you easily register alternative implementations of

internal components in your own application if you want.

You can also replace a previously registered implementation

by using the Replace() extension method. Unfortunately,

the API for this method isn’t as friendly as the TryAdd

methods. To replace a previously registered

IMessageSender with SmsSender, you’d use

builder.Services.Replace(new ServiceDescriptor(

 typeof(IMessageSender), typeof(SmsSender), ServiceLifetime.Scoped

));

TIP When using Replace, you must provide the same lifetime that
was used to register the service that’s being replaced.

We’ve pretty much covered registering dependencies but

touched only vaguely on one important aspect: lifetimes.

Understanding lifetimes is crucial in working with DI

containers, so it’s important to pay close attention to them

when registering your services with the container.

9.4 Understanding lifetimes: When are
services created?

Whenever the DI container is asked for a particular

registered service, such as an instance of

IMessageSender, it can do either of two things to fulfill the

request:

Create and return a new instance of the service.

Return an existing instance of the service.

The lifetime of a service controls the behavior of the DI

container with respect to these two options. You define the

lifetime of a service during DI service registration. The

lifetime dictates when a DI container reuses an existing

instance of the service to fulfill service dependencies and

when it creates a new one.

DEFINITION The lifetime of a service is how long an instance of a
service should live in a container before the container creates a new
instance.

It’s important to get your head around the implications for

the different lifetimes used in ASP.NET Core, so this section

looks at each lifetime option and when you should use it. In

particular, you’ll see how the lifetime affects how often the

DI container creates new objects. In section 9.4.4 I’ll show

you an antipattern of lifetimes to watch out for, in which a

short-lifetime dependency is captured by a long-lifetime

dependency. This antipattern can cause some hard-to-debug

issues, so it’s important to bear in mind when configuring

your app.

In ASP.NET Core, you can specify one of three lifetimes when

registering a service with the built-in container:

Transient—Every time a service is requested, a

new instance is created. Potentially, you can have

different instances of the same class within the

same dependency graph.

Scoped—Within a scope, all requests for a service

give you the same object. For different scopes, you

get different objects. In ASP.NET Core, each web

request gets its own scope.

Singleton—You always get the same instance of

the service, regardless of scope.

NOTE These concepts align well with most other DI containers, but
the terminology may differ. If you’re familiar with a third-party DI
container, be sure you understand how the lifetime concepts align
with the built-in ASP.NET Core DI container.

To illustrate the behavior of each lifetime, I use a simple

example in this section. Suppose that you have

DataContext, which has a connection to a database, as

shown in listing 9.10. It has a single property, RowCount,

which represents the number of rows in the Users table of

a database. For the purposes of this example, we emulate

calling the database by setting the number of rows randomly

when the DataContext object is created, so you always

get the same value every time you call RowCount on a

given DataContext instance. Different instances of

DataContext return different RowCount values.

Listing 9.10 DataContext generating a random RowCount on
creation

class DataContext

{

 public int RowCount { get; } ❶
 = Random.Shared.Next(1, 1_000_000_000); ❷
}

❶ The property is read-only, so it always returns the same value.
❷ Generates a random number between 1 and 1,000,000,000

You also have a Repository class that has a dependency

on the DataContext, as shown in the next listing. It also

exposes a RowCount property, but this property delegates

the call to its instance of DataContext. Whatever value

DataContext was created with, the Repository displays

the same value.

Listing 9.11 Repository service that depends on an instance of
DataContext

public class Repository

{

 private readonly DataContext _dataContext; ❶
 public Repository(DataContext dataContext) ❶
 { ❶
 _dataContext = dataContext; ❶
 } ❶
 public int RowCount => _dataContext.RowCount; ❷
}

❶ An instance of DataContext is provided using DI.
❷ RowCount returns the same value as the current instance of DataContext.

Finally, you have your endpoint handler, RowCounts, which

takes a dependency on both Repository and on

DataContext directly. When the minimal API infrastructure

creates the arguments needed to call RowCounts, the DI

container injects an instance of DataContext and an

instance of Repository. To create Repository, it must

create a second instance of DataContext. Over the course

of two requests, four instances of DataContext will be

required, as shown in figure 9.6.

Figure 9.6 The DI container uses two instances of DataContext for
each request. Depending on the lifetime with which the
DataContext type is registered, the container might create one,
two, or four instances of DataContext.

The RowCounts handler retrieves the value of RowCount

returned from both Repository and DataContext and

then returns them as a string, similar to the code in listing

9.12. The sample code associated with this book also

records and displays the values from previous requests so

you can easily track how the values change with each

request.

Listing 9.12 The RowCounts handler depends on DataContext and
Repository

static string RowCounts(❶
 DataContext db, ❶
 Repository repository) ❶
{

 int dbCount = db.RowCount; ❷
 int repositoryCount = repository.RowCount; ❷

 return: $"DataContext: {dbCount}, Repository: {repositoryCount}"; ❸
}

❶ DataContext and Repository are created using DI.
❷ When invoked, the page handler retrieves and records RowCount from both

dependencies.

❸ The counts are returned in the response.

The purpose of this example is to explore the relationships

among the four DataContext instances, depending on the

lifetimes you use to register the services with the container.

I’m generating a random number in DataContext as a way

of uniquely identifying a DataContext instance, but you

can think of this example as being a point-in-time snapshot

of, say, the number of users logged on to your site or the

amount of stock in a warehouse.

I’ll start with the shortest-lived lifetime (transient), move on

to the common scoped lifetime, and then take a look at

singletons. Finally, I’ll show an important trap you should be

on the lookout for when registering services in your own

apps.

9.4.1 Transient: Everyone is unique

In the ASP.NET Core DI container, transient services are

always created new whenever they’re needed to fulfill a

dependency. You can register your services using the

AddTransient extension methods:

builder.Services.AddTransient<DataContext>();

builder.Services.AddTransient<Repository>();

When you register services this way, every time a

dependency is required, the container creates a new one.

This behavior of the container for transient services applies

both between requests and within requests; the

DataContext injected into the Repository will be a

different instance from the one injected into the RowCounts

handler.

NOTE Transient dependencies can result in different instances of the
same type within a single dependency graph.

Figure 9.7 shows the results you get from calling the API

repeatedly when you use the transient lifetime for both

services. You can see that every value is different, both

within a request and between requests. Note that figure 9.7

was generated using the source code for this chapter, which

is based on the listings in this chapter, but also displays the

results from previous requests to make the behavior easier

to observe.

Figure 9.7 When registered using the transient lifetime, all
DataContext objects are different, as you see by the fact that all
the values are different within and between requests.

Transient lifetimes can result in the creation of a lot of

objects, so they make the most sense for lightweight

services with little or no state. Using the transient lifetime is

equivalent to calling new every time you need a new object,

so bear that in mind when using it. You probably won’t use

the transient lifetime often; the majority of your services will

probably be scoped instead.

9.4.2 Scoped: Let’s stick together

The scoped lifetime states that a single instance of an object

will be used within a given scope, but a different instance

will be used between different scopes. In ASP.NET Core, a

scope maps to a request, so within a single request, the

container will use the same object to fulfill all dependencies.

In the row-count example, within a single request (a single

scope) the same DataContext is used throughout the

dependency graph. The DataContext injected into the

Repository is the same instance as the one injected into

the RowCounts handler.

In the next request, you’re in a different scope, so the

container creates a new instance of DataContext, as

shown in figure 9.8. A different instance means a different

RowCount for each request, as you can see. As before,

figure 9.8 also shows the counts for previous requests.

Figure 9.8 Scoped dependencies use the same instance of
DataContext within a single request but a new instance for a
separate request. Consequently, the RowCounts are identical
within a request.

You can register dependencies as scoped by using the

AddScoped extension methods. In this example, I

registered DataContext as scoped and left Repository

as transient, but you’d get the same results in this case if

both were scoped:

builder.Services.AddScoped<DataContext>();

Due to the nature of web requests, you’ll often find services

registered as scoped dependencies in ASP.NET Core.

Database contexts and authentication services are common

examples of services that should be scoped to a request—

anything that you want to share across your services within

a single request but that needs to change between requests.

NOTE If your scoped or transient services implement IDisposable,
the DI container automatically disposes them when the scope ends.

Generally speaking, you’ll find a lot of services registered

using the scoped lifetime—especially anything that uses a

database, anything that’s dependent on details of the HTTP

request, or anything that uses a scoped service. But some

services don’t need to change between requests, such as a

service that calculates the area of a circle or returns the

current time in different time zones. For these services, a

singleton lifetime might be more appropriate.

9.4.3 Singleton: There can be only one

The singleton is a pattern that came before DI; the DI

container provides a robust and easy-to-use implementation

of it. The singleton is conceptually simple: an instance of the

service is created when it’s first needed (or during

registration, as in section 9.2), and that’s it. You’ll always

get the same instance injected into your services.

The singleton pattern is particularly useful for objects that

are expensive to create, contain data that must be shared

across requests, or don’t hold state. The latter two points

are important: any service registered as a singleton should

be thread-safe.

WARNING Singleton services must be thread-safe in a web
application, as they’ll typically be used by multiple threads during
concurrent requests.

Let’s consider what using singletons means for the row-

count example. We can update the registration of

DataContext to be a singleton:

builder.Services.AddSingleton<DataContext>();

Then we can call the RowCounts handler and observe the

results in figure 9.9. We can see that every instance has

returned the same value, indicating that the same instance

of DataContext is used in every request, both when

injected directly into the endpoint handler and when

referenced transitively by Repository.

Figure 9.9 Any service registered as a singleton always returns
the same instance. Consequently, all the calls to the RowCounts
handler return the same value, both within a request and
between requests.

Singletons are convenient for objects that need to be shared

or that are immutable and expensive to create. A caching

service should be a singleton, as all requests need to share

the service. It must be thread-safe, though. Similarly, you

might register a settings object loaded from a remote server

as a singleton if you load the settings once at startup and

reuse them through the lifetime of your app.

On the face of it, choosing a lifetime for a service may not

seem to be too tricky. But an important gotcha can come

back to bite you in subtle ways, as you’ll see in section

9.4.4.

9.4.4 Keeping an eye out for captive
dependencies

Suppose that you’re configuring the lifetime for the

DataContext and Repository examples. You think about

the suggestions I’ve provided and decide on the following

lifetimes:

DataContext—Scoped, as it should be shared for

a single request

Repository—Singleton, as it has no state of its

own and is thread-safe, so why not?

WARNING This lifetime configuration is to explore a bug. Don’t use it
in your code; if you do, you’ll experience a similar problem!

Unfortunately, you’ve created a captive dependency because

you’re injecting a scoped object, DataContext, into a

singleton, Repository. As it’s a singleton, the same

Repository instance is used throughout the lifetime of the

app, so the DataContext that was injected into it will also

hang around, even though a new one should be used with

every request. Figure 9.10 shows this scenario, in which a

new instance of DataContext is created for each scope but

the instance inside Repository hangs around for the

lifetime of the app.

Figure 9.10 DataContext is registered as a scoped dependency,
but Repository is a singleton. Even though you expect a new
DataContext for every request, Repository captures the injected
DataContext and causes it to be reused for the lifetime of the app.

Captive dependencies can cause subtle bugs that are hard to

root out, so you should always keep an eye out for them.

These captive dependencies are relatively easy to introduce,

so always think carefully when registering a singleton

service.

WARNING A service should use only dependencies that have a
lifetime longer than or equal to the service’s lifetime. A service
registered as a singleton can safely use only singleton dependencies.
A service registered as scoped can safely use scoped or singleton
dependencies. A transient service can use dependencies with any
lifetime.

At this point, I should mention one glimmer of hope in this

cautionary tale: ASP.NET Core automatically checks for these

kinds of captive dependencies and throws an exception on

application startup if it detects them, or on first use of a

captive dependency, as shown in figure 9.11.

Figure 9.11 When ValidateScopes is enabled, the DI container
throws an exception when it creates a service with a captive

dependency. By default, this check is enabled only for
development environments.

This scope validation check has a performance cost, so by

default it’s enabled only when your app is running in a

development environment, but it should help you catch most

problems of this kind. You can enable or disable this check

regardless of environment by configuring the

ValidateScopes option on your

WebApplicationBuilder in Program.cs by using the

Host property, as shown in the following listing.

Listing 9.13 Setting the ValidateScopes property to always
validate scopes

WebApplicationBuilder builder = WebApplication.CreateBuilder(args); ❶

builder.Host.UseDefaultServiceProvider(o => ❷
{

 o.ValidateScopes = true; ❸
 o.ValidateOnBuild = true; ❹
});

❶ The default builder sets ValidateScopes to validate only in development environments.

❷ You can override the validation check with the UseDefaultServiceProvider extension.
❸ Setting this to true will validate scopes in all environments, which has performance

implications.

❹ ValidateOnBuild checks that every registered service has all its dependencies registered.

Listing 9.13 shows another setting you can enable,

ValidateOnBuild, which goes one step further. When the

setting is enabled, the DI container checks on application

startup that it has dependencies registered for every service

it needs to build. If it doesn’t, it throws an exception and

shuts down the app, as shown in figure 9.12, letting you

know about the misconfiguration. This setting also has a

performance cost, so it’s enabled only in development

environments by default, but it’s useful for pointing out any

missed service registrations.

Figure 9.12 When ValidateOnBuild is enabled, the DI container
checks on app startup that it can create all the registered
services. If it finds a service it can’t create, it throws an
exception. By default, this check is enabled only for
development environments.

WARNING Unfortunately, the container can’t catch everything. For a
list of caveats and exceptions, see this post from my blog:
http://mng.bz/QmwG.

http://mng.bz/QmwG

We’ve almost covered everything about dependency

injection now, and there’s only one more thing to consider:

how to resolve scoped services on app startup in

Program.cs.

9.5 Resolving scoped services outside
a request

In chapter 8 I said that there are two main ways to resolve

services from the DI container for minimal API applications:

Injecting services into an endpoint handler

Accessing the DI container directly in Program.cs

You’ve seen the first of those approaches several times now

in this chapter. In chapter 8 you saw that you can access

services in Program.cs by calling

GetRequiredService<T>() on

WebApplication.Services:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var settings = app.Services.GetRequiredService<EmailServerSettings>();

It’s important, however, that you resolve only singleton

services this way. The IServiceProvider exposed as

WebApplication.Services is the root DI container for

your app. Services resolved this way live for the lifetime of

your app, which is fine for singleton services but typically

isn’t the behavior you want for scoped or transient services.

WARNING Don’t resolve scoped or transient services directly from
WebApplication.Services. This approach can lead to
leaking of memory, as the objects are kept alive till the app exits and
aren’t garbage-collected.

Instead, you should only resolve scoped and transient

services from an active scope. A new scope is created

automatically for every HTTP request, but when you’re

resolving services from the DI container directly in

Program.cs (or anywhere else that’s outside the context of

an HTTP request), you need to create (and dispose of) a

scope manually.

You can create a new scope by calling CreateScope() or

CreateAsyncScope() on IServiceProvider, which

returns a disposable IServiceScope object, as shown in

figure 9.13. IServiceScope also exposes an

IServiceProvider property, but any services resolved

from this provider are disposed of automatically when you

dispose the IServiceScope, ensuring that all the

resources held by the scoped and transient services are

released correctly.

Figure 9.13 To resolve scoped or transient services manually,
you must create an IServiceScope object by calling CreateScope()
on WebApplication.Services. Any scoped or transient services
resolved from the DI container exposed as
IServiceScope.ServiceProvider are disposed of automatically
when you dispose of the IServiceScope object.

The following listing shows how you can resolve a scoped

service in Program.cs using the pattern in figure 9.13. This

pattern ensures that the scoped DataContext object is

disposed of correctly before the call to app.Run().

Listing 9.14 Resolving a scoped service using IServiceScope in
Program.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<DataContext>(); ❶

WebApplication app = builder.Build();

await using (var scope = app.Services.CreateAsyncScope()) ❷
{

 var dbContext = ❸
 scope.ServiceProvider.GetRequiredService<DataContext>(); ❸
 Console.WriteLine($"Retrieved scope: {dbContext.RowCount}");

} ❹

app.Run();

❶ DataContext is registered as scoped, so it shouldn’t be resolved directly from
app.Services.

❷ Creates an IServiceScope

❸ Resolves the scoped service from the scoped container
❹ When the IServiceScope is disposed, all resolved services are also disposed.

This example uses the async form CreateAsyncScope()

instead of CreateScope(), which you generally should

favor whenever possible. CreateAsyncScope was

introduced in .NET 6 to fix an edge case related to

IAsyncDisposable (introduced in .NET Core 3.0). You can

read more about this scenario on my blog at

http://mng.bz/zXGB.

With that, you’ve reached the end of this introduction to DI

in ASP.NET Core. Now you know how to register your own

services with the DI container, and ideally, you have a good

understanding of the three service lifetimes used in .NET. DI

http://mng.bz/zXGB

appears everywhere in .NET, so it’s important to try to get

your head around it.

In chapter 10 we’ll look at the ASP.NET Core configuration

model. You’ll see how to load settings from a file at runtime,

store sensitive settings safely, and make your application

behave differently depending on which machine it’s running

on. We’ll even use a bit of DI; it gets everywhere in ASP.NET

Core!

Summary
When registering your services, you describe three

things: the service type, the implementation type,

and the lifetime. The service type defines which

class or interface will be requested as a

dependency. The implementation type is the class

the container should create to fulfill the

dependency. The lifetime is how long an instance

of the service should be used for.

You can register a service by using generic

methods if the class is concrete and all its

constructor arguments are registered with the

container or have default values.

You can provide an instance of a service during

registration, which will register that instance as a

singleton. This approach can be useful when you

already have an instance of the service available.

You can provide a lambda factory function that

describes how to create an instance of a service

with any lifetime you choose. You can take this

approach when your services depend on other

services that are accessible only when your

application is running.

Avoid calling GetService() or

GetRequiredService() in your factory

functions if possible. Instead, favor constructor

injection; it’s more performant and simpler to

reason about.

You can register multiple implementations for a

service. Then you can inject IEnumerable<T> to

get access to all the implementations at runtime.

If you inject a single instance of a multiple-

registered service, the container injects the last

implementation registered.

You can use the TryAdd* extension methods to

ensure that an implementation is registered only if

no other implementation of the service has been

registered. This approach can be useful for library

authors to add default services while still allowing

consumers to override the registered services.

You define the lifetime of a service during DI

service registration to dictate when a DI container

will reuse an existing instance of the service to

fulfill service dependencies and when it will create

a new one.

A transient lifetime means that every time a

service is requested, a new instance is created.

A scoped lifetime means that within a scope, all

requests for a service will give you the same

object. For different scopes, you’ll get different

objects. In ASP.NET Core, each web request gets

its own scope.

You’ll always get the same instance of a singleton

service, regardless of scope.

A service should use only dependencies with a

lifetime longer than or equal to the lifetime of the

service. By default, ASP.NET Core performs scope

validation to check for errors like this one and

throws an exception when it finds them, but this

feature is enabled only in development

environments, as it has a performance cost.

To access scoped services in Program.cs, you must

first create an IServiceScope object by calling

CreateScope() or CreateAsyncScope() on

WebApplication .Services. You can resolve

services from the

IServiceScope.ServiceProvider property.

When you dispose IServiceScope, any scoped

or transient services resolved from the scope are

also disposed.

10 Configuring an ASP.NET Core
application

This chapter covers

Loading settings from multiple configuration providers
Storing sensitive settings safely
Using strongly typed settings objects
Using different settings in different hosting environments

In part 1 of this book, you learned the basics of getting an

ASP.NET Core app up and running, and how to use minimal API

endpoints to create an HTTP API. When you start building real

applications, you’ll quickly find that you want to tweak various

settings at deploy time without necessarily having to recompile

your application. This chapter looks at how you can achieve this

task in ASP.NET Core by using configuration.

I know. Configuration sounds boring, right? But I have to

confess that the configuration model is one of my favorite parts

of ASP.NET Core; it’s so easy to use and so much more elegant

than some approaches in old versions of .NET Framework. In

section 10.2 you’ll learn how to load values from a plethora of

sources—JavaScript Object Notation (JSON) files, environment

variables, and command-line arguments—and combine them

into a unified configuration object.

On top of that, ASP.NET Core makes it easy to bind this

configuration to strongly typed options objects—simple plain old

CLR object (POCO) classes that are populated from the

configuration object, which you can inject into your services, as

you’ll see in section 10.3. Binding to strongly typed options

objects lets you nicely encapsulate settings for different features

in your app.

In the final section of this chapter, you’ll learn about the ASP.NET

Core hosting environments. You often want your app to run

differently in different situations, such as running it on your

developer machine compared with deploying it to a production

server. These situations are known as environments. When the

app knows the environment in which it’s running, it can load a

different configuration and vary its behavior accordingly.

Before we get to that topic, let’s cover the basics. What is

configuration, why do we need it, and how does ASP.NET Core

handle these requirements?

10.1 Introducing the ASP.NET Core
configuration model

In this section I provide a brief description of configuration and

what you can use it for in ASP.NET Core applications.

Configuration is the set of external parameters provided to an

application that controls the application’s behavior in some way.

It typically consists of a mixture of settings and secrets that the

application loads at runtime.

DEFINITION A setting is any value that changes the behavior of your
application. A secret is a special type of setting that contains sensitive
data, such as a password, an API key for a third-party service, or a
connection string.

The obvious things to consider before we get started are why we

need app configuration and what sort of things we need to

configure. Normally, you move anything that you can consider to

be a setting or a secret out of your application code. That way,

you can change these values at deploy time easily without

having to recompile your application.

You might have an application that shows the locations of your

bricks-and-mortar stores. You could have a setting for the

connection string to the database in which you store the details

on the stores, but also settings such as the default location to

display on a map, the default zoom level to use, and the API key

for accessing the Google Maps API (figure 10.1). Storing these

settings and secrets outside your compiled code is good practice,

as it makes it easy to tweak them without having to recompile

your code.

Figure 10.1 You can store the default map location, zoom level, and

mapping API Key in configuration and load them at runtime. It’s
important to keep secrets such as API keys in configuration out of
your code.

There’s also a security aspect: you don’t want to hardcode

secret values such as API keys or passwords into your code,

where they could be committed to source control and made

publicly available. Even values embedded in your compiled

application can be extracted, so it’s best to externalize them

whenever possible.

Virtually every web framework provides a mechanism for loading

configuration, and the old .NET Framework version of ASP.NET

was no different. It used the <appsettings> element in a

web.config file to store key-value configuration pairs. At runtime

you’d use the static (*wince*) ConfigurationManager to

load the value for a given key from the file. You could do more

advanced things using custom configuration sections, but doing

so was painful and so was rarely used, in my experience.

ASP.NET Core gives you a totally revamped experience. At the

most basic level, you’re still specifying key-value pairs as

strings, but instead of getting those values from a single file,

now you can load them from multiple sources. You can load

values from files, but now they can be in any format you like:

JSON, XML, YAML, and so on. Further, you can load values from

environment variables, from command-line arguments, from a

database, or from a remote service. Or you can create your own

custom configuration provider.

DEFINITION ASP.NET Core uses configuration providers to load key-
value pairs from a variety of sources. Applications can use multiple
configuration providers.

The ASP.NET Core configuration model also has the concept of

overriding settings. Each configuration provider can define its

own settings, or it can overwrite settings from a previous

provider. You’ll see this incredibly useful feature in action in

section 10.2.

ASP.NET Core makes it simple to bind these key-value pairs,

which are defined as strings, to POCO-setting classes that you

define in your code. This model of strongly typed configuration,

described in section 10.3, makes it easy to group settings

logically around a given feature and lends itself well to unit

testing.

Before we get to strongly typed settings, we’ll look at how you

load the settings and secrets for your app, whether they’re

stored in JSON files, environment variables, or command-line

arguments.

10.2 Building a configuration object for
your app

In this section we’ll get into the meat of the configuration

system. You’ll learn how to load settings from multiple sources,

how they’re stored internally in ASP.NET Core, and how settings

can override other values to produce layers of configuration.

You’ll also learn how to store secrets securely while ensuring

that they’re still available when you run your app.

ASP.NET Core’s configuration model has been essentially the

same since .NET Core 1.0, but in .NET 6, ASP.NET Core

introduced the ConfigurationManager class.

ConfigurationManager simplifies common patterns for

working with configuration by implementing both of the two

main configuration-related interfaces:

IConfigurationBuilder and IConfigurationRoot.

NOTE IConfigurationBuilder describes how to construct the
final configuration representation for your app, and
IConfigurationRoot holds the config- uration values themselves.

You describe your configuration by adding

IConfigurationProviders to the

ConfigurationManager. Configuration providers describe

how to load the key-value pairs from a particular source, such as

a JSON file or environment variables (figure 10.2). When you

add a provider, the ConfigurationManager queries it and

adds all the values returned to the IConfigurationRoot

implementation.

Figure 10.2 Using ConfigurationManager to populate IConfiguration.
Configuration providers are added to the ConfigurationManager with
extension methods. The manager queries the provider and adds all

the returned values to the IConfigurationRoot, which implements
IConfiguration.

NOTE Adding a provider to the ConfigurationManager adds the
configuration values to the IConfigurationRoot instance, which
implements IConfiguration. You’ll generally work with the
IConfiguration interface in your code.

ASP.NET Core ships with configuration providers for loading data

from common locations:

JSON files

Extensible Markup Language (XML) files

Environment variables

Command-line arguments

Initialization (INI) files

If these providers don’t fit your requirements, you can find a

host of alternatives on GitHub and NuGet, and it’s not difficult to

create your own custom provider. You could use the official

Microsoft Azure Key Vault provider NuGet package or the YAML

file provider I wrote.

NOTE The Azure Key Vault provider is available on NuGet at
http://mng.bz/ 0KrN, and you can find my YAML provider on GitHub at
http://mng.bz/Yqdj.

In many cases, the default providers are sufficient. In particular,

most templates start with an appsettings.json file, which

contains a variety of settings depending on the template you

choose. The following listing shows the default file generated by

the ASP.NET Core 7.0 Empty template without authentication.

http://mng.bz/0KrN
http://mng.bz/Yqdj

Listing 10.1 Default appsettings.json file created by an ASP.NET Core
Empty template

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft.AspNetCore": "Warning"

 }

 },

 "AllowedHosts": "*"

}

As you can see, this file contains mostly settings to control

logging, but you can add extra configuration for your app here

too.

WARNING Don’t store sensitive values—such as passwords, API keys,
and connection strings—in this file. You’ll see how to store these values
securely in section 10.2.3.

Adding your own configuration values involves adding a key-

value pair to the JSON. It’s a good idea to namespace your

settings by creating a base object for related settings, as in the

MapSettings object shown in the following listing.

Listing 10.2 Adding configuration values to an appsettings.json file

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "MapSettings": { ❶
 "DefaultZoomLevel": 9, ❷
 "DefaultLocation": { ❸
 "latitude": 50.500, ❸
 "longitude": -4.000 ❸

 }

 }

}

❶ Nest all the configuration under the MapSettings key.

❷ Values can be numbers in the JSON file, but they’ll be converted to strings when they’re read.
❸ You can create deeply nested structures to organize your configuration values better.

I’ve nested the new configuration inside the MapSettings

parent key to create a section that will be useful later for binding

values to a POCO object. I also nested the latitude and

longitude keys under the DefaultLocation key. You can

create any structure of values you like; the configuration

provider will read them fine. Also, you can store the values as

any data type—numbers, in this case—but be aware that the

provider will read and store them internally as strings.

TIP The configuration keys are not case-sensitive in your app, so bear
that fact in mind when loading from providers in which the keys are case-
sensitive. If you have a YAML file with keys name and NAME, for
example, only one will appear in the final IConfiguration.

Now that you have a configuration file, it’s time for your app to

load it into the ConfigurationManager.

10.2.1 Adding a configuration provider in
Program.cs

As you’ve seen throughout this book, ASP.NET Core (from .NET 6

onward) uses the WebApplicationBuilder class to bootstrap

your application. As part of the bootstrap process,

WebApplicationBuilder creates a

ConfigurationManager instance and exposes it as the

property Configuration.

TIP You can access the ConfigurationManager directly on
WebApplicationBuilder .Configuration and
WebApplication.Configuration. Both properties reference the
same ConfigurationManager instance.

WebApplicationBuilder adds several default configuration

providers to the ConfigurationManager, which we’ll look at

in more detail throughout this chapter:

JSON file provider—Loads settings from an optional

JSON file called appsettings.json. It also loads settings

from an optional environment-specific JSON file called

appsettings.ENVIRONMENT.json. I show how to use

environment-specific files in section 10.4.

User Secrets—Loads secrets that are stored safely

during development.

Environment variables—Loads environment variables

as configuration variables, which are great for storing

secrets in production.

Command-line arguments—Uses values passed as

arguments when you run your app.

The ConfigurationManager is configured with all these

sources automatically, but you can easily add more providers.

You can also start from scratch and clear the default providers as

shown in the following listing, which completely customizes

where configuration is loaded from.

Listing 10.3 Loading appsettings.json by clearing the configuration
sources

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Configuration.Sources.Clear(); ❶
builder.Configuration.AddJsonFile("appsettings.json", optional: true); ❷

WebApplication app = builder.Build();

app.MapGet("/", () => app.Configuration.AsEnumerable()); ❸

app.Run();

❶ Clears the providers configured by default in WebApplicationBuilder
❷ Adds a JSON configuration provider, providing the name of the configuration file

❸ Returns all the configuration key-value pairs for display purposes

This example added a single JSON configuration provider by

calling the AddJsonFile() extension method and providing a

filename. It also set the value of optional to true, telling the

configuration provider to skip files that it can’t find at runtime

instead of throwing FileNotFoundException. When the

provider is added, the ConfigurationManager requests all

the available values from the provider and adds them to the

IConfiguration implementation.

ConfigurationBuilder vs.
ConfigurationManager

Before .NET 6 and the introduction of ConfigurationManager, configuration in
ASP.NET Core was implemented with ConfigurationBuilder. You’d add configuration
providers to the builder type the same way you do with ConfigurationManager, but the
configuration values weren’t loaded until you called Build(), which created the final
IConfigurationRoot object.

By contrast, in .NET 6 and .NET 7 ConfigurationManager acts as both the builder and
the final IConfigurationRoot. When you add a new configuration provider, the
configuration values are added to the IConfigurationRoot immediately, without the
need to call Build() first.

The ConfigurationBuilder approach using the builder pattern is cleaner in some
ways, as it has a clearer separation of concerns, but the common use patterns for
configuration mean that the new ConfigurationManager approach is often easier to
use.

If you prefer, you can still use the builder pattern by accessing
WebApplicationBuilder.Host.ConfigureAppConfiguration. You can read
about some of these patterns and the differences between the two approaches on my blog at
http://mng.bz/Ke4j.

You can access the IConfiguration object directly in

Program.cs, as in listing 10.3, but the

ConfigurationManager is also registered as

IConfiguration in the dependency injection (DI) container,

so you can inject it into your classes and endpoint handlers. You

could rewrite the endpoint handler in listing 10.3 as the

following, and the IConfiguration object would be injected

into the handler using DI:

app.MapGet("/", (IConfiguration config) => config.AsEnumerable());

NOTE The ConfigurationManager implements
IConfigurationRoot, which also implements
IConfiguration. The ConfigurationManager is registered in
the DI container as an IConfiguration, not an
IConfigurationRoot.

You’ve seen how to add values to the ConfigurationManager

by using providers such as the JSON file provider, and listing

http://mng.bz/Ke4j

10.3 showed an example of iterating over every configuration

value, but normally you want to retrieve a specific configuration

value.

IConfiguration stores configuration as a set of key-value

string pairs. You can access any value by its key, using

standard dictionary syntax. You could use

var zoomLevel = builder.Configuration["MapSettings:DefaultZoomLevel"];

to retrieve the configured zoom level for your application (using

the settings shown in listing 10.2). Note that I used a colon (:)

to designate a separate section. Similarly, to retrieve the

latitude key, you could use

var lat = builder.Configuration["MapSettings:DefaultLocation:Latitude"];

NOTE If the requested configuration key doesn’t exist, you get a null
value.

You can also grab a whole section of the configuration by using

the GetSection (section) method, which returns an

IConfigurationSection, which also implements

IConfiguration. This method grabs a chunk of the

configuration and resets the namespace. Another way to get the

latitude key is

var lat = builder.Configuration

 .GetSection("MapSettings")["DefaultLocation:Latitude"];

Accessing setting values this way is useful in Program.cs when

you’re defining your application. When you’re setting up your

application to connect to a database, for example, you’ll often

load a connection string from the IConfiguration object.

You’ll see a concrete example in chapter 12, which looks at

Entity Framework Core.

If you need to access the configuration object in places other

than Program.cs, you can use DI to inject it as a dependency

into your service’s constructor. But accessing configuration by

using string keys this way isn’t particularly convenient; you

should try to use strongly typed configuration instead, as you’ll

see in section 10.3.

So far, this process probably feels a bit too convoluted and run-

of-the-mill to load settings from a JSON file, and I’ll grant you

that it is. Where the ASP.NET Core configuration system shines is

when you have multiple providers.

10.2.2 Using multiple providers to override
configuration values

You’ve seen how to add a configuration provider to the

ConfigurationManager and retrieve the configuration values,

but so far, you’ve configured only a single provider. When you

add providers, it’s important to consider the order in which you

add them, as that defines the order in which the configuration

values will be added to the underlying dictionary. Configuration

values from later providers overwrite values with the same key

from earlier providers.

NOTE This sentence bears repeating: the order in which you add
configuration providers to ConfigurationManager is important.
Later configuration providers can overwrite the values of earlier providers.

Think of the configuration providers as adding layers of

configuration values to a stack, where each layer may overlap

some or all of the layers below, as shown in figure 10.3. If the

new provider contains any keys that are already known to the

ConfigurationManager, they overwrite the old values to

create the final set of configuration values stored in

IConfiguration.

TIP Instead of thinking in layers, you can think of the
ConfigurationManager as a simple dictionary. When you add a
provider, you’re setting some key-value pairs. When you add a second
provider, the provider can add new keys or overwrite the value of existing
keys.

Figure 10.3 Each configuration provider adds a layer of values to
ConfigurationBuilder. Calling Build() collapses that configuration.
Later providers overwrite configuration values with the same keys
from earlier providers.

Update your code to load configuration from three different

configuration providers—two JSON providers and an

environment variable provider—by adding them to

ConfigurationManager as shown in the following listing.

Listing 10.4 Loading from multiple providers in Program.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Configuration.Sources.Clear();

builder.Configuration ❶
 .AddJsonFile("sharedSettings.json", optional: true); ❶
builder.Configuration.AddJsonFile("appsettings.json", optional: true);

builder.Configuration.AddEnvironmentVariables(); ❷

WebApplication app = builder.Build();

app.MapGet("/", () => app.Configuration.AsEnumerable());

app.Run();

❶ Loads configuration from a different JSON configuration file before the appsettings.json file

❷ Adds the machine’s environment variables as a configuration provider

This layered design can be useful for several things.

Fundamentally, it allows you to aggregate configuration values

from multiple sources into a single, cohesive object. To cement

this design in place, consider the configuration values in figure

10.4.

Figure 10.4 The final IConfiguration includes the values from each of
the providers. Both appsettings.json and the environment variables
include the MyAppConnString key. As the environment variables are
added later, that configuration value is used.

Most of the settings in each provider are unique and are added

to the final IConfiguration. But the "MyAppConnString"

key appears both in appsettings.json and as an environment

variable. Because the environment variable provider is added

after the JSON providers, the environment variable configuration

value is used in IConfiguration.

The ability to collate configuration from multiple providers is

handy on its own, but this design is especially useful for

handling sensitive configuration values, such as connection

strings and passwords. Section 10.2.3 shows how to deal with

this problem, both locally on your development machine and on

production servers.

10.2.3 Storing configuration secrets safely

As soon as you build a nontrivial app, you’ll find that you need to

store some sort of sensitive data as a setting somewhere. This

data could be a password, a connection string, or an API key for

a remote service, for example.

Storing these values in appsettings.json is generally a bad idea,

as you should never commit secrets to source control; the

number of secret API keys people have committed to GitHub is

scary! Instead, it’s much better to store these values outside

your project folder, where they won’t get committed accidentally.

You can do this in a few ways, but the easiest and most common

approaches are to use environment variables for secrets on your

production server and User Secrets locally. Neither approach is

truly secure, in that neither stores values in an encrypted

format. If your machine is compromised, attackers will be able

to read the stored values because they’re stored in plain text.

These approaches are intended mainly to help you avoid

committing secrets to source control.

TIP Azure Key Vault is a secure alternative, in that it stores the values
encrypted in Azure, but you still need to use User Secrets and
environment variables to store the Azure Key Vault connection details.
See the documentation for instructions on using Azure Key Vault in your
apps http://mng.bz/BR7v. Another popular option is Vault by Hashicorp
(www.vaultproject.io), which can be run on-premises or in the cloud.

Whichever approach you use to store your application secrets,

make sure that you aren’t storing them in source control. Even

private repositories may not stay private forever, so it’s best to

err on the side of caution.

STORING SECRETS IN ENVIRONMENT VARIABLES IN
PRODUCTION

You can add the environment variable configuration provider by

using the AddEnvironmentVariables extension method, as

you saw in listing 10.4. This method adds all the environment

variables on your machine as key-value pairs to

ConfigurationManager.

NOTE The WebApplicationBuilder adds the environment
variable provider to the ConfigurationManager by default.

You can create the same hierarchical sections in environment

variables that you typically see in JSON files by using a colon (:)

or a double underscore (__) to demarcate a section, as in

MapSettings:MaxNumberOfPoints or

MapSettings__MaxNumberOfPoints.

TIP Some environments, such as Linux, don’t allow the colon in
environment variables. You must use the double-underscore approach in

http://mng.bz/BR7v
http://www.vaultproject.io/

these environments instead. A double underscore in an environment
variable is converted to a colon when it’s imported into the
IConfiguration object. You should always use the colon when
retrieving values from an IConfiguration in your app.

The environment-variable approach is particularly useful when

you’re publishing your app to a self-contained environment, such

as a dedicated server, Azure, or a Docker container. You can set

environment variables on your production machine or on your

Docker container, and the provider reads them at runtime,

overriding the defaults specified in your appsettings.json files.

TIP For instructions on setting environment variables for your operating
system, see Microsoft’s “Use multiple environments in ASP.NET Core”
documentation at http://mng.bz/d4OD.

For a development machine, environment variables are less

useful, as all your apps would use the same values. If you set

the ConnectionStrings__ DefaultConnection

environment variable, for example, that variable would be added

to every app you run locally, which sounds like more of a hassle

than a benefit!

TIP To avoid collisions, you can add only environment variables that have
a given prefix, such as
AddEnvironmentVariables("SomePrefix"). The prefix is
removed from the key before it’s added to the
ConfigurationManager, so the variable
SomePrefix_MyValue is added to configuration as MyValue.

For development scenarios, you can use the User Secrets

Manager, which effectively adds per-app environment variables,

http://mng.bz/d4OD

so you can have different settings for each app but store them in

a different location from the app itself.

STORING SECRETS WITH THE USER SECRETS MANAGER IN
DEVELOPMENT

The idea behind User Secrets is to simplify storing per-app

secrets outside your app’s project tree. This approach is similar

to environment variables, but you use a unique key for each app

to keep the secrets segregated.

WARNING The secrets aren’t encrypted, so don’t consider them to be
secure. Nevertheless, it’s an improvement on storing them in your project
folder.

Setting up User Secrets takes a bit more effort than using

environment variables, as you need to configure a tool to read

and write them, add the User Secrets configuration provider, and

define a unique key for your application. To add User Secrets to

your app, follow these steps:

1. WebApplicationBuilder adds the User Secrets

provider by default. The .NET SDK includes a global

tool for working with secrets from the command line.

2. If you’re using Visual Studio, right-click your project

and choose Manage User Secrets from the

contextual menu. This command opens an editor for a

secrets.json file in which you can store your key-value

pairs as though it were an appsettings.json file, as

shown in figure 10.5.

Figure 10.5 Choose Manage User Secrets to open an editor for
the User Secrets app. You can use this file to store secrets when
developing your app locally. These secrets are stored outside

your project folder, so they won’t be committed to source
control accidentally.

3. Add a unique identifier to your .csproj file. Visual

Studio does this automatically when you choose

Manage User Secrets, but if you’re using the command

line, you’ll need to add it yourself. Typically, you’d use

a unique ID, such as a globally unique identifier

(GUID):

<PropertyGroup>

 <UserSecretsId>96eb2a39-1ef9-4d8e-8b20-8e8bd14038aa</UserSecretsId>

</PropertyGroup>

You can also generate the UserSecretsId property with a

random value using the .NET command-line interface (CLI)

by running the following command from your project folder:

dotnet user-secrets init

4. Add User Secrets by using the command line

dotnet user-secrets set "MapSettings:GoogleMapsApiKey" F5RJT9GFHKR7

or edit the secret.json file directly by using your favorite

editor. The exact location of this file depends on your

operating system and may vary. Check the documentation

for details at http://mng.bz/ryAg.

NOTE The Secret Manager tool is included in the .NET CLI, but you can
also use the CLI to install additional .NET tools. You can find more about
.NET tools in general in Microsoft’s “How to manage .NET tools”
documentation: http://mng.bz/VdmX.

Phew! That’s a lot of setup, and if you’re adding providers to

ConfigurationManager manually, you’re not done yet! You

http://mng.bz/ryAg
http://mng.bz/VdmX

need to update your app to load the User Secrets at runtime by

using the AddUserSecrets extension method:

if (builder.Environment.IsDevelopment())

{

 builder.Configuration.AddUserSecrets<Program>();

}

NOTE You should use the User Secrets provider only in development, not
in production, so in the preceding snippet you add the provider
conditionally to ConfigurationManager. In production you should
use environment variables or Azure Key Vault, as discussed earlier. All
this is configured correctly by default when you use the default
WebApplicationBuilder.

The AddUserSecrets method has several overloads, but the

simplest is a generic method that you can call by passing your

application’s Program class as a generic argument, as shown in

the preceding example. The User Secrets provider needs to read

the UserSecretsId property that you (or Visual Studio) added

to the .csproj file. The Program class acts as a simple marker to

indicate which assembly contains this property.

NOTE If you’re interested, the .NET SDK uses the UserSecretsId
property in your .csproj file to generate an assembly-level
UserSecretsIdAttribute. Then the provider reads this attribute
at runtime to determine the UserSecretsId of the app and generates
the path to the secrets.json file.

And there you have it—safe storage of your secrets outside your

project folder during development. This cautious approach may

seem like overkill, but if you have anything you consider to be

remotely sensitive that you need to load into configuration, I

strongly urge you to use environment variables or User Secrets.

It’s almost time to leave configuration providers behind, but

before we do, I’d like to show you the ASP.NET Core

configuration system’s party trick: reloading files on the fly.

10.2.4 Reloading configuration values when they
change

Besides security, not having to recompile your application every

time you want to tweak a value is one of the advantages of

using configuration and settings. In the previous version of

ASP.NET, changing a setting by editing web.config would cause

your app to restart. This feature beats having to recompile, but

waiting for the app to start up before it could serve requests was

a bit of a drag.

In ASP.NET Core, you finally get the ability to edit a file and have

the configuration of your application update automatically,

without your having to recompile or restart. An often-cited

scenario in which you might find this ability useful is when you’re

trying to debug an app you have in production. You typically

configure logging to one of several levels:

Error

Warning

Information

Debug

Each of these settings is more verbose than the last, but it also

provides more context. By default, you might configure your app

to log only warning and error-level logs in production so that you

don’t generate too many superfluous log entries. Conversely, if

you’re trying to debug a problem, you want as much information

as possible, so you may want to use the debug log level.

Being able to change configuration at runtime means that you

can easily switch on extra logs when you encounter a problem

and switch them back afterward by editing your appsettings.json

file.

NOTE Reloading is generally available only for file-based configuration
providers, such as the JSON provider, as opposed to the environment
variable provider, for example.

You can enable the reloading of configuration files when you add

any of the file-based providers to your

ConfigurationManager. The Add*File extension methods

include an overload with a reloadOnChange parameter. If this

parameter is set to true, the app monitors the filesystem for

changes to the file and triggers a complete rebuild of the

IConfiguration, if needs be. The following listing shows how

to add configuration reloading to the appsettings.json file added

manually to the ConfigurationManager.

Listing 10.5 Reloading appsettings.json when the file changes

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Configuration.Sources.Clear();

builder.Configuration

 .AddJsonFile(

 "appsettings.json",

 optional: true,

 reloadOnChange: true); ❶

WebApplication app = builder.Build();

app.MapGet("/", () => app.Configuration.AsEnumerable());

app.Run();

❶ IConfiguration will be rebuilt if the appsettings.json file changes.

Throughout section 10.2, you’ve seen how to customize the

ConfigurationManager providers by clearing the default

sources and adding your own, but in most cases, that won’t be

necessary. As described in section 10.2.1, the default providers

added by WebApplicationBuilder are normally good enough

unless you want to add a new provider, such as Azure Key Vault.

As a bonus, WebApplicationBuilder configures the

appsettings.json with reloadOnChange:true by default. It’s

worth sticking with the defaults initially and clear the sources

and start again only if you really need to.

WARNING Adding a file configuration source using
reloadOnChange:true isn’t entirely free, as ASP.NET Core sets up
a file watcher in the background. Normally, this situation isn’t problematic,
but if you set up a configuration watching thousands of files, you could run
into difficulties!

In listing 10.5, any changes you make to the file will be mirrored

in the IConfiguration. But as I said at the start of this

chapter, IConfiguration isn’t the preferred way to pass

settings around in your application. Instead, as you’ll see in

section 10.3, you should favor strongly typed objects.

10.3 Using strongly typed settings with
the options pattern

In this section you’ll learn about strongly typed configuration

and the options pattern, the preferred way of accessing

configuration in ASP.NET Core. By using strongly typed

configuration, you can avoid problems with typos when

accessing configuration. It also makes classes easier to test, as

you can use simple POCO objects for configuration instead of

relying on the IConfiguration abstraction.

Most of the examples I’ve shown so far have been about how to

get values into IConfiguration, as opposed to how to use

them. You’ve seen that you can access a key by using the

builder.Configuration["key"] dictionary syntax, but

using string keys this way feels messy and prone to typos,

and the value retrieved is always a string, so you often need

to convert it to another type. Instead, ASP.NET Core promotes

the use of strongly typed settings—POCO objects that you define

and create and that represent a small collection of settings,

scoped to a single feature in your app.

The following listing shows the map settings for your store

locator component and display settings to customize the home

page of the app. They’re separated into two different objects

with "MapSettings" and "AppDisplaySettings" keys,

corresponding to the different areas of the app that they affect.

Listing 10.6 Separating settings into different objects in
appsettings.json

{

 "MapSettings": { ❶
 "DefaultZoomLevel": 6, ❶
 "DefaultLocation": { ❶
 "latitude": 50.500, ❶
 "longitude": -4.000 ❶
 }

 },

 "AppDisplaySettings": { ❷
 "Title": "Acme Store Locator", ❷
 "ShowCopyright": true ❷
 }

}

❶ Settings related to the store locator section of the app

❷ General settings related to displaying the app

The simplest approach to exposing the home-page settings in an

endpoint handler is to inject IConfiguration into the

endpoint handler and access the values by using the dictionary

syntax:

app.MapGet("/display-settings", (Iconfiguration config) =>

{

 string title = config["AppDisplaySettings:Title"];

 bool showCopyright = bool.Parse(

 config["AppDisplaySettings:ShowCopyright"]);

 return new { title, showCopyright };

});

But you don’t want to do this; there are too many strings for my

liking! And that bool.Parse? Yuck! Instead, you can use

custom strongly typed objects, with all the type safety and

IntelliSense goodness that brings, as shown in the following

listing.

Listing 10.7 Injecting strongly typed options into a handler using
IOptions<T>

app.MapGet("/display-settings",

 (IOptions<AppDisplaySettings> options) => ❶
{

 AppDisplaySettings settings = options.Value; ❷
 string title = settings.Title; ❸
 bool showCopyright = settings.ShowCopyright; ❹

 return new { title, showCopyright };

});

❶ You can inject a strongly typed options class using the IOptions<> wrapper interface.

❷ The Value property exposes the POCO settings object.
❸ The settings object contains properties that are bound to configuration values at runtime.

❹ The binder can also convert string values directly to built-in types.

The ASP.NET Core configuration system includes a binder, which

can take a collection of configuration values and bind them to a

strongly typed object, called an options class. This binding is

similar to the concept of JSON deserialization for creating types

from chapter 6 and the model binding used by Model-View-

Controller (MVC) and Razor Pages, which you’ll learn about in

part 3.

Section 10.3.1 shows how to set up the binding of configuration

values to a POCO options class, and section 10.3.2 shows how to

make sure that it reloads when the underlying configuration

values change. We’ll look at the different sorts of objects you

can bind in section 10.3.3.

10.3.1 Introducing the IOptions interface

ASP.NET Core introduced strongly typed settings as a way of

letting configuration code adhere to the single-responsibility

principle (SRP) and to allow the injection of configuration classes

as explicit dependencies. Such settings also make testing easier;

instead of having to create an instance of IConfiguration to

test a service, you can create an instance of the POCO options

class.

The AppDisplaySettings class shown in the previous

example could be simple, exposing only the values related to the

home page:

public class AppDisplaySettings

{

 public string Title { get; set; }

 public bool ShowCopyright { get; set; }

}

Your options classes need to be nonabstract and have a public

parameterless constructor to be eligible for binding. The binder

sets any public properties that match configuration values, as

you’ll see in section 10.3.3.

TIP You’re not restricted to built-in types such as string and bool; you
can use nested complex types too. The options system binds sections to
complex properties. See the associated source code for examples.

To help facilitate the binding of configuration values to your

custom POCO options classes, ASP.NET Core introduces the

IOptions<T> interface, a simple interface with a single

property, Value, that contains your configured POCO options

class at runtime. Options classes are configured as services in

Program.cs , as shown in the following listing.

Listing 10.8 Configuring the options classes using Configure<T> in
Startup.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.Configure<MapSettings>(

 builder.Configuration.GetSection("MapSettings")); ❶

builder.Services.Configure<AppDisplaySettings>(

 builder.Configuration.GetSection("AppDisplaySettings")); ❷

❶ Binds the MapSettings section to the POCO options class MapSettings
❷ Binds the AppDisplaySettings section to the POCO options class AppDisplaySettings

TIP You don’t have to use the same name for both the section and class,
as I do in listing 10.8; it’s simply a convention I like to follow. With this
convention, you can also use the nameof() operator to further reduce
the chance of typos, such as by calling
GetSection(nameof(MapSettings)).

Each call to Configure<T> sets up the following series of

actions internally:

1. Creates an instance of ConfigureOptions<T>,

which indicates that IOptions<T> should be

configured based on configuration.

If Configure<T> is called multiple times, multiple

ConfigureOptions<T> objects will be used, all of which

can be applied to create the final object in much the same

way that IConfiguration is built from multiple layers.

2. Each ConfigureOptions<T> instance binds a

section of IConfiguration to an instance of the T

POCO class, setting any public properties on the

options class based on the keys in the provided

ConfigurationSection.

Remember that the section name ("MapSettings" in

listing 10.8) can have any value; it doesn’t have to match

the name of your options class.

3. The IOptions<T> interface is registered in the DI

container as a singleton, with the final bound POCO

object in the Value property.

This last step lets you inject your options classes into handlers

and services by injecting IOptions<T>, as you saw in listing

10.7, giving you encapsulated, strongly typed access to your

configuration values. No more magic strings. Woo-hoo!

WARNING If you forget to call Configure<T> and inject
IOptions<T> into your services, you won’t see any errors, but the T
options class won’t be bound to anything and will have only default values
in its properties.

The binding of the T options class to ConfigurationSection

happens when you first request IOptions<T>. The object is

registered in the DI container as a singleton, so it’s bound only

once.

This setup has one catch: you can’t use the reloadOnChange

parameter I described in section 10.2.4 to reload your strongly

typed options classes when using IOptions<T>.

IConfiguration will still be reloaded if you edit your

appsettings.json files, but it won’t propagate to your options

class.

If that fact seems like a step backward or even a deal-breaker,

don’t worry. IOptions<T> has a cousin,

IOptionsSnapshot<T>, for such an occasion.

10.3.2 Reloading strongly typed options with
IOptionsSnapshot

In section 10.3.1, you used IOptions<T> to provide strongly

typed access to configuration. Using IOptions<T> to provide

strongly typed access to configuration provided a nice

encapsulation of the settings for a particular service, but with a

specific drawback: the options class never changes, even if you

modify the underlying configuration file from which it was

loaded, such as appsettings.json.

This situation isn’t always a problem (you generally shouldn’t be

modifying files on live production servers anyway), but if you

need this functionality, you can use the

IOptionsSnapshot<T> interface. Conceptually,

IOptionsSnaphot<T> is identical to IOptions<T> in that it’s

a strongly typed representation of a section of configuration. The

difference is when and how often the POCO options objects are

created when they’re used:

IOptions<T>—The instance is created once, when

first needed. It always contains the configuration from

when the object instance was first created.

IOptionsSnapshot<T>—A new instance is created,

when needed, if the underlying configuration has

changed since the last instance was created.

WARNING IOptionsSnapshot<T> is registered as a scoped
service, so you can’t inject it into singleton services; if you do, you’ll have
a captive dependency, as discussed in chapter 9. If you need a singleton
version of IOptionsSnapshot<T>, you can use a similar interface,

IOptionsMonitor<T>. See this blog post for details:
http://mng.bz/9Da7.

IOptionsSnaphot<T> is set up for your options classes

automatically at the same time as IOptions<T>, so you can

use it in your services in exactly the same way. The following

listing shows how you could update your display-settings API so

that you always get the latest configuration values in your

strongly typed AppDisplaySettings options class.

Listing 10.9 Injecting reloadable options using IOptionsSnapshot<T>

app.MapGet("/display-settings",

 (IOptionsSnapshot<AppDisplaySettings> options) => ❶
{

 AppDisplaySettings settings = options.Value; ❷

 return new

 {

 title = settings.Title, ❸
 showCopyright = settings.ShowCopyright, ❸
 };

});

❶ IOptionsSnapshot<T> updates automatically if the underlying configuration values change.

❷ The Value property exposes the POCO settings object, the same as for IOptions<T>.
❸ The settings match the configuration values at that point in time instead of at first run.

As IOptionsSnapshot<AppDisplaySettings> is registered

as a scoped service, it’s re- created at every request. If you edit

the settings file and cause IConfiguration to reload,

IOptionsSnapshot<AppDisplaySettings> shows the new

values on the next request. A new AppDisplaySettings

object is created with the new configuration values and is used

for all future DI—until you edit the file again, of course!

http://mng.bz/9Da7

Reloading your settings automatically is as simple as that:

update your code to use IOptionsSnapshot<T> instead of

IOptions<T> wherever you need it. But be aware that this

change isn’t free. You’re rebinding and reconfiguring your

options object with every request, which may have performance

implications. In practice, reloading settings isn’t common in

production, so you may decide that the developer convenience

isn’t worth the performance impact.

An important consideration in using the options pattern is the

design of your POCO options classes themselves. These classes

typically are simple collections of properties, but there are a few

things to bear in mind so that you don’t get stuck debugging

why the binding seemingly hasn’t worked.

10.3.3 Designing your options classes for
automatic binding

I’ve already touched on some of the requirements for POCO

classes to work with the IOptions<T> binder, but there are a

few rules to remember. The first key point is that the binder

creates instances of your options classes by using reflection, so

your POCO options classes need to

Be nonabstract

Have a default (public parameterless) constructor

If your classes satisfy these two points, the binder will loop

through all the properties on your class and bind any that it can.

In the broadest sense, the binder can bind any property that

Is public

Has a getter (the binder won’t write set-only

properties)

Has a setter or, for complex types, a non-null value

Isn’t an indexer

Listing 10.10 shows two extensive options class with a host of

different types of properties. All the properties on

BindableOptions are valid to bind, and all the properties on

UnbindableOptions are not.

Listing 10.10 An options class containing binding and nonbinding
properties

public class BindableOptions

{

 public string String { get; set; } ❶
 public int Integer { get; set; } ❶
 public SubClass Object { get; set; } ❶
 public SubClass ReadOnly { get; } = new SubClass(); ❶
 public Dictionary<string, SubClass> Dictionary { get; set; } ❷
 public List<SubClass> List { get; set; } ❷
 public IDictionary<string, SubClass> IDictionary { get; set; } ❷
 public IEnumerable<SubClass> IEnumerable { get; set; } ❷
 public ICollection<SubClass> ReadOnlyCollection { get; } ❷
 = new List<SubClass>(); ❷

 public class SubClass

 {

 public string Value { get; set; }

 }

}

public class UnbindableOptions

{

 internal string NotPublic { get; set; } ❸
 public SubClass SetOnly { set => _setOnly = value; } ❸
 public SubClass NullReadOnly { get; } = null; ❸
 public SubClass NullPrivateSetter { get; private set; } = null; ❸
 public SubClass this[int i] { ❸
 get => _indexerList[i]; ❸
 set => _indexerList[i] = value; ❸

 }

 public List<SubClass> NullList { get; } ❹
 public Dictionary<int, SubClass> IntegerKeys { get; set; } ❹
 public IEnumerable<SubClass> ReadOnlyEnumerable { get; } ❹
 = new List<SubClass>(); ❹

 public SubClass _setOnly = null; ❺
 private readonly List<SubClass> _indexerList ❺
 = new List<SubClass>(); ❺

 public class SubClass

 {

 public string Value { get; set; }

 }

}

❶ The binder can bind simple and complex object types, and read-only properties with a default.
❷ The binder will also bind collections, including interfaces.

❸ The binder can’t bind nonpublic, set-only, null-read-only, or indexer properties.
❹ These collection properties can’t be bound.

❺ The backing fields for implementing SetOnly and Indexer properties—not bound directly

As shown in the listing, the binder generally supports collections

—both implementations and interfaces. If the collection property

is already initialized, the binder uses the initialized value;

otherwise, the binder may be able to create the collection

instance automatically. If your property implements any of the

following interfaces, the binder creates a List<> of the

appropriate type as the backing object:

IReadOnlyList<>

IReadOnlyCollection<>

ICollection<>

IEnumerable<>

WARNING You can’t bind to an IEnumerable<> property that has
already been initialized, as this interface doesn’t expose an Add function,

and the binder won’t replace the backing value. You can bind to an
IEnumerable<> if you leave its initial value null.

Similarly, the binder creates a Dictionary<,> as the backing

field for properties with dictionary interfaces as long as they use

string, enum, or integer (int, short, byte, and so on)

keys:

IDictionary<,>

IReadOnlyDictionary<,>

WARNING You can’t bind dictionaries that use non-string or non-
integer keys, such as custom classes or double. For examples of
binding collection types, see the associated source code for this book.

Clearly, there are quite a few nuances here, but if you stick to

the simple cases from the preceding example, you’ll be fine. Be

sure to check for typos in your JSON files! You could also

consider using explicit options validation, as described in this

post: http://mng.bz/jPjr.

TIP The options pattern is most commonly used to bind POCO classes to
configuration, but you can also configure your strongly typed settings
classes in code by providing a lambda to the Configure function, as in
services .Configure<TestOptions>(opt => opt.Value
= true).

The Options pattern is used throughout ASP.NET Core, but not

everyone is a fan. In section 10.3.4 you’ll see how to use

strongly typed settings and the configuration binder without the

Options pattern.

http://mng.bz/jPjr

10.3.4 Binding strongly typed settings without
the IOptions interface

The IOptions interface is canonical in ASP.NET Core; it’s used

by the core ASP.NET Core libraries and has various convenience

functions for binding strongly typed settings, as you’ve already

seen. In many cases, however, the IOptions interface doesn’t

give many benefits for consumers of the strongly typed settings

objects. Services must take a dependency on the IOptions

interface but then immediately extract the real object by calling

IOptions<T>.Value. This situation can be especially annoying

if you’re building a reusable library that isn’t inherently tied to

ASP.NET Core, as you must expose the IOptions<T> interface

in all your public APIs.

Luckily, the configuration binder that maps IConfiguration

objects to strongly typed settings objects isn’t inherently tied to

IOptions. Listing 10.11 shows how you can bind a strongly

typed settings object to a configuration section manually,

register it with the DI container, and inject the MapSettings

object directly into a handler or service without the additional

ceremony required to use IOptions<MapSettings>.

Listing 10.11 Configuring strongly typed settings without IOptions in
Program.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

var settings = new MapSettings (); ❶
builder.Configuration.GetSection("MapSettings").Bind(settings); ❷
builder.Services.AddSingleton(settings); ❸

WebApplication app = builder.Build();

app.MapGet("/", (MapSettings mapSettings) => mapSettings); ❹

app.Run();

❶ Creates a new instance of the MapSettings object

❷ Binds the MapSettings section in IConfiguration to the settings object
❸ Registers the settings object as a singleton

❹ Injects the MapSettings object directly using DI

Alternatively, you can register the IOptions type in the DI

container but then use a lambda to additionally register

MapSettings as a singleton so it can be directly injected, as

shown in listing 10.12.

Listing 10.12 Configuring strongly typed settings for direct injection

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.Configure<MapSettings>(❶
 builder.Configuration.GetSection("MapSettings")); ❶
builder.Services.AddSingleton(provider => ❷
 provider.GetRequiredService<IOptions<MapSettings>>().Value); ❷

WebApplication app = builder.Build();

app.MapGet("/", (MapSettings mapSettings) => mapSettings); ❸

app.Run();

❶ Configures the IOptions as normal
❷ Registers the MapSettings object in DI by delegating to the IOptions registration

❸ Injects the MapSettings object directly DI

If you use either of these approaches, you won’t benefit from

the ability to reload strongly typed settings without further work

or from some of the more advanced uses of IOptions, but in

most cases, that’s not a big problem. I’m a fan of these

approaches generally, but as always, consider what you’re losing

before adopting them wholeheartedly.

TIP In chapter 31 I show one such advanced scenario in which you
configure an IOptions object using services in your DI container. For
other scenarios, see Microsoft’s “Options pattern in ASP.NET Core”
documentation at http://mng.bz/DR7y, or see the various IOptions
posts on my blog, such as this one: http://mng.bz/l1Aj.

That brings us to the end of this section on strongly typed

settings. In section 10.4 we’ll look at how you can change your

settings dynamically at runtime, based on the environment in

which your app is running.

10.4 Configuring an application for
multiple environments

In this section you’ll learn about hosting environments in

ASP.NET Core. You’ll learn how to set and determine which

environment an application is running in and how to change

which configuration values are used, based on the environment.

Using environments lets you switch easily among different sets

of configuration values in production compared with

development, for example.

Any application that makes it to production will likely have to run

in multiple environments. If you’re building an application with

database access, for example, you’ll probably have a small

database running on your machine that you use for

development. In production, you’ll have a completely different

database running on a server somewhere else.

Another common requirement is to have different amounts of

logging depending on where your app is running. In

development, it’s great to generate lots of logs, which help with

http://mng.bz/DR7y
http://mng.bz/l1Aj

debugging, but when you get to production, too many logs can

be overwhelming. You’ll want to log warnings, errors, and maybe

information-level logs, but definitely not debug-level logs!

To handle these requirements, you need to make sure that your

app loads different configuration values depending on the

environment it’s running in: load the production database

connection string when in production, and so on. You need to

consider three aspects:

How your app identifies the environment it’s running in

How you load different configuration values based on

the current environment

How to change the environment for a particular

machine

This section tackles these aspects in turn so that you can easily

tell your development machine apart from your production

servers and act accordingly.

10.4.1 Identifying the hosting environment

When you create a WebApplicationBuilder instance in

Program.cs, it automatically sets up the hosting environment for

your application. By default, WebApplicationBuilder uses,

perhaps unsurprisingly, an environment variable to identify the

current environment. The WebApplicationBuilder looks for

a magic environment variable called

ASPNETCORE_ENVIRONMENT, uses it to create an

IHostEnvironment object, and exposes it as

WebApplicationBuilder.Environment.

NOTE You can use either the DOTNET_ENVIRONMENT or
ASPNETCORE_ENVIRONMENT environment variable. The
ASPNETCORE_ value overrides the DOTNET_ value if both are set. I
use the ASPNETCORE_ version throughout this book.

The IHostEnvironment interface exposes several useful

properties about the running context of your app. The

ContentRootPath property, for example, tells the application

in which directory it can find any configuration files, such as

appsettings.json. This folder is typically the one in which the

application is running.

TIP ContentRootPath is not where you store static files that the
browser can access directly; that’s the WebRootPath, typically
wwwroot. WebRootPath is also exposed on the Environment
property via the IWebHostEnvironment interface.

The IHostEnvironment.EnvironmentName property is what

interests us in this section. It’s set to the value of the

ASPNETCORE_ENVIRONMENT environment variable, so it can be

any value, but you should stick to three commonly used values

in most cases:

"Development"

"Staging"

"Production"

ASP.NET Core includes several helper methods for working with

these three values, so you’ll have an easier time if you stick to

them. In particular, whenever you’re testing whether your app is

running in a particular environment, you should use one of the

following extension methods:

IHostEnvironment.IsDevelopment()

IHostEnvironment.IsStaging()

IHostEnvironment.IsProduction()

IHostEnvironment.IsEnvironment(string

environmentName)

All these methods make sure that they do case-insensitive

checks of the environment variable, so you won’t get any wonky

errors at runtime if you don’t capitalize the environment variable

value.

TIP Where possible, use the IHostEnvironment extension methods
instead of direct string comparison with EnvironmentName, as the
methods provide case-insensitive matching.

IHostEnvironment doesn’t do anything other than expose the

details of your current environment, but you can use it in

various ways. In chapter 4 you saw that WebApplication adds

the DeveloperExceptionMiddleware to your middleware

pipeline only in the development environment. Now you know

where WebApplication was getting its information about the

environment: IHostEnvironment.

You can use a similar approach to customize which configuration

values you load at runtime by loading different files when

running in development versus production. This approach is

common; it’s included out of the box in most ASP.NET Core

templates and by default when you use the default

ConfigurationManager included with

WebApplicationBuilder.

10.4.2 Loading environment-specific
configuration files

The EnvironmentName value is determined early in the

process of bootstrapping your application, before the default

ConfigurationManager is fully populated by

WebApplicationBuilder. As a result, you can dynamically

change which configuration providers are added to the builder

and, hence, which configuration values are loaded when the

IConfiguration is built.

A common pattern is to have an optional, environment-specific

appsettings .ENVIRONMENT.json file that’s loaded after the

default appsettings.json file. The following listing shows how you

could achieve this task if you’re customizing the

ConfigurationManager in Program.cs, but it’s also effectively

what WebApplication-Builder does by default.

Listing 10.13 Adding environment-specific appsettings.json files

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

IHostEnvironment env = builder.Environment; ❶

builder.Configuration.Sources.Clear();

builder.Configuration

 .AddJsonFile(

 "appsettings.json",

 optional: false) ❷
 .AddJsonFile(❸
 $”appsettings.{env.EnvironmentName}.json”, ❸
 Optional: true); ❸

WebApplication app = builder.Build();

app.MapGet("/", () =>"Hello world!");

app.Run();

❶ The current IHostEnvironment is available on WebApplicationBuilder.
❷ It’s common to make the base appsettings.json compulsory.

❸ Adds an optional environment-specific JSON file where the filename varies with the environment

With this pattern, a global appsettings.json file contains settings

applicable to most environments. Additional optional JSON files

called appsettings.Development.json, appsettings.Staging.json,

and appsettings.Production.json are subsequently added to

ConfigurationManager, depending on the current

EnvironmentName.

Any settings in these files will overwrite values from the global

appsettings.json if they have the same key, as you’ve seen

previously. Using environment-specific settings files lets you do

things like set the logging to be verbose only in the development

environment and switch to more selective logs in production.

Another common pattern is to add or remove configuration

providers depending on the environment. You might use the

User Secrets provider when developing locally, for example, but

Azure Key Vault in production. Listing 10.14 shows how you can

use IHostEnvironment to include the User Secrets provider

conditionally only in development. Again,

WebApplicationBuilder uses this pattern by default.

Listing 10.14 Conditionally including the User Secrets configuration
provider

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

IHostEnvironment env = builder.Environment;

builder.Configuration.Sources.Clear();

builder.Configuration

 .AddJsonFile(

 "appsettings.json",

 optional: false)

 .AddJsonFile(

 $"appsettings.{env}.json",

 Optional: true);

if(env.IsDevelopment()) ❶
{

 builder.Configuration.AddUserSecrets<Program>(); ❷
}

WebApplication app = builder.Build();

app.MapGet("/", () =>"Hello world!");

app.Run();

❶ Extension methods make checking the environment simple and explicit.

❷ In Staging and Production, the User Secrets provider won’t be used.

As already mentioned, it’s also common to customize your

application’s middleware pipeline based on the environment. In

chapter 4 you learned that WebApplication adds the

DeveloperExceptionPageMiddleware conditionally when

developing locally. The following listing shows how you can use

IHostEnvironment to control your pipeline in this way so that

when you’re in staging or production, your app uses

ExceptionHandlerMiddleware instead.

Listing 10.15 Using the hosting environment to customize your
middleware pipeline

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.AddProblemDetails(); ❶

WebApplication app = builder.Build();

if (!builder.Environment.IsDevelopment()) ❷
{ ❷

 app.UseExceptionHandler(); ❷
} ❷

app.MapGet("/", () =>"Hello world!");

app.Run();

❶ Adds the problem details service to the DI container for use by the ExceptionHandlerMiddleware
❷ When not in development, the pipeline uses ExceptionHandlerMiddleware.

NOTE In listing 10.15 you added the Problem Details services to the DI
container so that the ExceptionHandlerMiddleware can
generate a Problem Details response automatically. As you’re adding the
extra middleware only in Staging and Production, you could add the
services conditionally to the DI container too instead of always adding
them as we did here.

You can inject IHostEnvironment anywhere in your app, but I

advise against using it in your own services outside Program.cs.

It’s far better to use the configuration providers to customize

strongly typed settings based on the current hosting

environment and inject these settings into your application

instead.

As useful as it is, setting IHostEnvironment with an

environment variable can be a little cumbersome if you want to

switch back and forth among different environments during

testing. Personally, I’m always forgetting how to set environment

variables on the various operating systems I use. The final skill

I’d like to teach you is how to set the hosting environment when

you’re developing locally.

10.4.3 Setting the hosting environment

In this section I show you a couple of ways to set the hosting

environment when you’re developing. These techniques make it

easy to test a specific app’s behavior in different environments

without having to change the environment for all the apps on

your machine.

If your ASP.NET Core application can’t find an

ASPNETCORE_ENVIRONMENT environment variable when it

starts up, it defaults to a production environment, as shown in

figure 10.6. So when you deploy to production, you’ll be using

the correct environment by default.

Figure 10.6 By default, ASP.NET Core applications run in the
production hosting environment. You can override this default by
setting the ASPNETCORE_ENVIRONMENT variable.

TIP By default, the current hosting environment is logged to the console at
startup, which can be useful for checking that the environment variable
has been picked up correctly.

Another option is to use a launchSettings.json file to control the

environment. All the default ASP.NET Core applications include

this file in the Properties folder. LaunchSettings.json defines

profiles for running your application.

TIP You can use profiles to run your application with different environment
variables. You can also use profiles to emulate running on Windows
behind Internet Information Services (IIS) by using the IIS Express profile.
I rarely use this profile, even in Windows, and always choose the http or
https profile.

Listing 10.16 shows a typical launchSettings.json file that

defines three profiles: http, https, and IIS Express. The

first two profiles are equivalent to using dotnet run to run the

project. The http profile listens only for http:// requests,

whereas https listens for both http:// and https://. The

IIS Express profile can be used only in Windows and uses IIS

Express to run your application.

Listing 10.16 A typical launchSettings.json file defining three profiles

{

 "iisSettings": { ❶
 "windowsAuthentication": false, ❶
 "anonymousAuthentication": true, ❶
 "iisExpress": { ❶
 "applicationUrl": "http://localhost:53846", ❶
 "sslPort": 44399 ❶
 }

 },

 "profiles": {

 "http": { ❷
 "commandName": "Project", ❸
 "dotnetRunMessages": true, ❹
 "launchBrowser": true, ❺
 "applicationUrl": "http://localhost:5063", ❻
 "environmentVariables": { ❼
 "ASPNETCORE_ENVIRONMENT": "Development" ❼
 } ❼
 },

 "https": { ❽
 "commandName": "Project",

 "dotnetRunMessages": true,

 "launchBrowser": true,

 "applicationUrl": "https://localhost:7202;http://localhost:5063", ❾
 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

 "IIS Express": { ❿
 "commandName": "IISExpress",

 "launchBrowser": true,

 "environmentVariables": { ⓫
 "ASPNETCORE_ENVIRONMENT": "Development" ⓫
 } ⓫
 }

 }

}

❶ Defines settings for running behind IIS or using the IIS Express profile

❷ The “http” profile is used by default in macOS.
❸ The “project” command is equivalent to calling dotnet run on the project.

❹ If true, gives feedback when dotnet run is executing a build or restore
❺ If true, launches the browser when you run the application

❻ Defines the URLs the application will listen on in this profile
❼ Defines custom environment variables for the profile and sets the environment to Development

❽ The https profile is used by default in Visual Studio in Windows.
❾ The https profile listens on both http:// and https:// URLs.

❿ Runs the application behind IIS Express (Windows only)
⓫ Each profile can have different environment variables.

The advantage of using the launchSettings.json file locally is that

it allows you to set local environment variables for a project. In

listing 10.16 the environment is set to the development

environment, for example. Setting environment variables with

launchSettings.json means you can use different environment

variables for each project and even for each profile, and store

them in source control.

You can choose a profile to use in Visual Studio by choosing it

from the drop-down menu next to the Debug button on the

toolbar, as shown in figure 10.7. You can choose a profile to run

from the command line by using dotnet run --launch-

profile <Profile Name>. If you don’t specify a profile, the

first profile listed in launchSettings .json is used. If you don’t

want to use any profile, you must explicitly ignore the

launchSettings.json file by using dotnet run --no-launch-

profile.

Figure 10.7 You can select the profile to use from Visual Studio by
choosing it from the Debug drop-down menu. Visual Studio defaults
to using the https profile.

If you’re using Visual Studio, you can edit the

launchSettings.json file visually: double-click the Properties

node, choose the Debug tab, and choose Open debug launch

profiles UI. You can see in figure 10.8 that the

ASPNETCORE_ENVIRONMENT is set to Development; any

changes made on this tab are mirrored in launchSettings.json.

Figure 10.8 You can use Visual Studio to edit the launchSettings.json
file, if you prefer. Changes will be mirrored between the
launchSettings.json file and the Properties dialog box.

The launchSettings.json file is intended for local development

only; by default, the file isn’t deployed to production servers.

Although you can deploy and use the file in production, doing so

generally isn’t worth the hassle. Environment variables are a

better fit.

One final trick I’ve used to set the environment in production is

to use command-line arguments. You could set the environment

to staging like this:

dotnet run --no-launch-profile --environment Staging

Note that you also have to pass --no-launch-profile if

there’s a launchSettings.json file; otherwise, the values in the

file take precedence.

That brings us to the end of this chapter on configuration.

Configuration isn’t glamorous, but it’s an essential part of all

apps. The ASP.NET Core configuration provider model handles a

wide range of scenarios, letting you store settings and secrets in

a variety of locations.

Simple settings can be stored in appsettings.json, where they’re

easy to tweak and modify during development, and they can be

overwritten by using environment-specific JSON files.

Meanwhile, your secrets and sensitive settings can be stored

outside the project file in the User Secrets manager or as

environment variables. This approach gives you both flexibility

and safety—as long as you don’t go writing your secrets to

appsettings.json!

In chapter 11 we take a look at the OpenAPI specification and

how you can use it for documenting your APIs, testing your

endpoints, and generating strongly typed clients.

Summary
Anything that could be considered to be a setting or a

secret is normally stored as a configuration value.

Externalizing these values means that you can change

them without recompiling your app.

ASP.NET Core uses configuration providers to load key-

value pairs from a variety of sources. Applications can

use many configuration providers.

You can add configuration providers to an instance of

ConfigurationManager by using extension

methods such as AddJsonFile().

The order in which you add providers to

ConfigurationManager is important; subsequent

providers replace the values of the same settings

defined in earlier providers while preserving unique

settings.

ASP.NET Core includes built-in providers for JSON files,

XML files, environment files, and command-line

arguments, among others. NuGet packages exist for

many other providers, such as YAML files and Azure

Key Vault.

ConfigurationManager implements

IConfiguration as well as

IConfigurationBuilder, so you can retrieve

configuration values from it directly.

Configuration keys aren’t case-sensitive, so you must

take care not to lose values when loading settings

from case-sensitive sources such as YAML.

You can retrieve settings from IConfiguration

directly by using the indexer syntax, such as

Configuration["MySettings:Value"]. This

technique is often useful for accessing configuration

values in Program.cs.

WebApplicationBuilder automatically configures a

ConfigurationManager with JSON, environment

variables, command-line arguments, and User Secret

providers. This combination provides in-repository

storage in JSON files, secret storage in both

development and production, and the ability to

override settings easily at runtime.

In production, store secrets in environment variables

to reduce the chance of incorrectly exposing the

secrets in your code repository. These secrets can be

loaded after your file-based settings in the

configuration builder.

On development machines, the User Secrets Manager

is a more convenient tool than using environment

variables. It stores secrets in your operating system’s

user profile, outside the project folder, reducing the

risk of accidentally exposing secrets in your code

repository.

Be aware that neither environment variables nor the

User Secrets Manager tool encrypts secrets. They

merely store them in locations that are less likely to be

made public, as they’re outside your project folder.

File-based providers such as the JSON provider can

reload configuration values automatically when the file

changes, allowing you to update configuration values

in real time without restarting your app.

Use strongly typed POCO options classes to access

configuration in your app. Using strongly typed options

reduces coupling in your app and ensures that classes

are dependent only on the configuration values they

use.

Use the Configure<T>() extension method in

ConfigureServices to bind your POCO options

objects to ConfigurationSection. Alternatively,

you can configure IOptions<T> objects in code

instead of using configuration values by passing a

lambda to the Configure() method.

You can inject the IOptions<T> interface into your

services by using DI. You can access the strongly

typed options object on the Value property.

IOptions<T> values are registered in DI as

singletons, so they remain the same even if the

underlying configuration changes.

If you want to reload your POCO options objects when

your configuration changes, use the

IOptionsSnapshot<T> interface instead. These

instances are registered in DI with a scoped lifetime,

so they’re re-created for every request. Using the

IOptionsSnapshot<T> interface has performance

implications due to binding to the options object

repeatedly, so use it only when that cost is acceptable.

Applications running in different environments, such as

development versus production, often require different

configuration values. ASP.NET Core determines the

current hosting environment by using the

ASPNETCORE_ENVIRONMENT environment variable. If

this variable isn’t set, the environment is assumed to

be production.

You can set the hosting environment locally by using

the launchSettings.json file, which allows you to scope

environment variables to a specific project.

The current hosting environment is exposed as an

IHostEnvironment interface. You can check for

specific environments by using IsDevelopment(),

IsStaging(), and IsProduction(). Then you can

use the IHostEnvironment object to load files

specific to the current environment, such as

appsettings.Production.json.

11 Documenting APIs with OpenAPI

This chapter covers

Understanding OpenAPI and seeing why it’s useful
Adding an OpenAPI description to your app
Improving your OpenAPI descriptions by adding metadata to
endpoints
Generating a C# client from your OpenAPI description

In this chapter I introduce the OpenAPI specification for

describing RESTful APIs, demonstrate how to use OpenAPI to

describe a minimal API application, and discuss some of the

reasons you might want to do so.

In section 11.1 you’ll learn about the OpenAPI specification itself

and where it fits in to an ASP.NET Core application. You’ll learn

about the libraries you can use to enable OpenAPI

documentation generation in your app and how to expose the

document using middleware.

Once you have an OpenAPI document, you’ll see how to do

something useful with it in section 11.2, where we add Swagger

UI to your app. Swagger UI uses your app’s OpenAPI document

to generate a UI for testing and inspecting the endpoints in your

app, which can be especially useful for local testing.

After seeing your app described in Swagger UI, it’s time to head

back to the code in section 11.3. OpenAPI and Swagger UI need

rich metadata about your endpoints to provide the best

functionality, so we look at some of the basic metadata you can

add to your endpoints.

In section 11.4 you’ll learn about one of the best tooling features

that comes from creating an OpenAPI description of your app:

automatically generated clients. Using a third-party library called

NSwag, you’ll learn how to automatically generate C# code and

classes for interacting with your API based on the OpenAPI

description you added in the previous sections. You’ll learn how

to generate your client, customize the generated code, and

rebuild the client when your app’s OpenAPI description changes.

Finally, in section 11.5, you’ll learn more ways to add metadata

to your endpoints to give the best experience for your generated

clients. You’ll learn how to add summaries and descriptions to

your endpoints by using method calls and attributes and by

extracting the XML documentation comments from your C#

code.

Before we consider those advanced scenarios, we’ll look at the

OpenAPI specification, what it is, and how you can add an

OpenAPI document to your app.

11.1 Adding an OpenAPI description to
your app

OpenAPI (previously called Swagger) is a language-agnostic

specification for describing RESTful APIs. At its core, OpenAPI

describes the schema of a JavaScript Object Notation (JSON)

document which in turn describes the URLs available in your

application, how to invoke them, and the data types they return.

In this section you’ll learn how to generate an OpenAPI

document for your minimal API application.

Providing an OpenAPI document for your application makes it

possible to add various types of automation for your app. You

can do the following things, for example:

Explore your app using Swagger UI (section 11.2).

Generate strongly-typed clients for interacting with

your app (section 11.4).

Automatically integrate into third-party services such

as Azure API Management.

NOTE If you’re familiar with SOAP from the old ASP.NET days, you can
think of OpenAPI as being the HTTP/REST equivalent of Web Service
Description Language (WSDL). Just as a .wsdl file described your XML
SOAP services, so the OpenAPI document describes your REST API.

ASP.NET Core includes some support for OpenAPI documents out

of the box, but to take advantage of them you’ll need to use a

third-party library. The two best-known libraries to use are called

NSwag and Swashbuckle. In this chapter I use Swashbuckle to

add an OpenAPI document to an ASP.NET Core app. You can

read how to use NSwag instead at http://mng.bz/6Dmy.

NOTE NSwag and Swashbuckle provide similar functionality for
generating OpenAPI documents, though you’ll find slight differences in
how to use them and in the features they support. NSwag also supports
client generation, as you’ll see in section 11.4.

Add the Swashbuckle.AspNetCore NuGet package to your project

by using the NuGet Package Manager in Visual Studio, or use the

.NET CLI by running

dotnet add package Swashbuckle.AspNetCore

http://mng.bz/6Dmy

from your project’s folder. Swashbuckle uses ASP.NET Core

metadata services to retrieve information about all the endpoints

in your application and to generate an OpenAPI document. Then

this document is served by middleware provided by

Swashbuckle, as shown in figure 11.1. Swashbuckle also

includes middleware for visualizing your OpenAPI document, as

you’ll see in section 11.2.

Figure 11.1 Swashbuckle uses ASP.NET Core metadata services to
retrieve information about the endpoints in your application and
builds an OpenAPI document. The OpenAPI middleware serves this

document when requested. Swashbuckle also includes optional
middleware for visualizing the OpenAPI document using Swagger UI.

After installing Swashbuckle, configure your application to

generate an OpenAPI document as shown in listing 11.1. This

listing shows a reduced version of the fruit API from chapter

5, with only the GET and POST methods included for simplicity.

The OpenAPI-related additions are in bold.

NOTE Swashbuckle uses the old Swagger nomenclature rather than
OpenAPI in its method names. You should think of OpenAPI as the name
of the specification and Swagger as the name of the tooling related to
OpenAPI, as described in this post: http://mng.bz/o18M.

Listing 11.1 Adding OpenAPI support to a minimal API app using
Swashbuckle

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer(); ❶
builder.Services.AddSwaggerGen(); ❷

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.UseSwagger(); ❸
app.UseSwaggerUI(); ❹

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404));

app.MapPost("/fruit/{id}", (string id, Fruit fruit) =>

 _fruit.TryAdd(id, fruit)

 ? TypedResults.Created($"/fruit/{id}", fruit)

 : Results.ValidationProblem(new Dictionary<string, string[]>

 {

 { "id", new[] { "A fruit with this id already exists" } }

 }));

http://mng.bz/o18M

app.Run();

record Fruit(string Name, int Stock);

❶ Adds the endpoint-discovery features of ASP.NET Core that Swashbuckle requires
❷ Adds the Swashbuckle services required for creating OpenApi Documents

❸ Adds middleware to expose the OpenAPI document for your app
❹ Adds middleware that serves the Swagger UI

With the changes in this listing, your application exposes an

OpenAPI description of its endpoints. If you run the app and

navigate to /swagger/v1/swagger.json, you’ll find a large JSON

file, similar to the one shown in figure 11.2. This file is the

OpenAPI Document description of your application.

Figure 11.2 The OpenAPI Document for the app described in listing
11.1, generated with NSwag

The OpenAPI document includes a general description of your

app, such as a title and version, as well as specific details about

each of the endpoints. In figure 11.2, for example, the

/fruit/{id} endpoint describes the fact that it needs a GET

verb and takes an id parameter in the path.

You can change some of the document values, such as the title,

by adding configuration to the AddSwaggerGen() method. You

can set the title of the app to "Fruitify" and add a

description for the document:

builder.Services.AddSwaggerGen(x =>

 x.SwaggerDoc("v1", new OpenApiInfo()

 {

 Title = "Fruitify",

 Description = "An API for interacting with fruit stock",

 Version = "1.0"

 }));

You can also change settings such as the path used to expose

the document and various minutia about how Swashbuckle

generates the final JSON. See the documentation for details:

http://mng.bz/OxQR.

All that is clever, but if you’re shrugging and asking “So what?”,

where OpenAPI really shines is the hooks it provides for other

tooling. And you’ve already added one such piece of tooling to

your app: Swagger UI.

11.2 Testing your APIs with Swagger UI
In this section you’ll learn about Swagger UI

(https://swagger.io/tools/swagger-ui), an open-source web UI

that makes it easy to visualize and test your OpenAPI apps. In

some ways you can think of Swagger UI as being a light version

of Postman, which I used in previous chapters to interact with

minimal API applications. Swagger UI provides an easy way to

http://mng.bz/OxQR
https://swagger.io/tools/swagger-ui

view all the endpoints in your application and send requests to

them. Postman provides many extra features, such as creating

collections and sharing them with your team, but if all you’re

trying to do is test your application locally, Swagger UI is a great

option.

You can add Swagger UI to your ASP.NET Core application using

Swashbuckle by calling

app.UseSwaggerUI()

to add the Swagger UI middleware, as you saw in listing 11.1.

The Swagger UI middleware automatically integrates with the

OpenAPI document middleware and exposes the Swagger UI

web UI in your app at the path /swagger by default. Navigate to

/swagger in your app, and you see a page like the one in figure

11.3.

Figure 11.3 The Swagger UI endpoint for the app. With this UI you
can view all the endpoints in your app, the schema of objects that

are sent and returned, and even test the APIs by providing
parameters and sending requests.

Swagger UI lists all the endpoints described in the OpenAPI

document, the schema of objects that are sent to and received

from each API, and all the possible responses that each endpoint

can return. You can even test an API from the UI by choosing

Try it out, entering a value for the parameter, and choosing

Execute. Swagger UI shows the command executed, the

response headers, and the response body (figure 11.4).

Figure 11.4 You can send requests using the Swagger UI by
choosing an API, entering the required parameters, and choosing
Execute. Swagger UI shows the response received.

Swagger UI is a useful tool for exploring your APIs and can

replace a tool like Postman in some cases. But the examples

we’ve shown so far reveal a problem with our API: the responses

described for the GET endpoint in figure 11.3 mentioned a 200

response, but our execution in figure 11.4 reveals that it can

also return a 404. To solve that documentation problem, we

need to add extra metadata to our APIs.

11.3 Adding metadata to your minimal
APIs

Metadata is information about an API that doesn’t change the

execution of the API itself. You used metadata in chapter 5 when

you added names to your endpoints, using WithName(), so

that you could reference them by using LinkGenerator. The

name doesn’t change anything about how the endpoint

executes, but it provides information for other features to hook

into.

Currently, you can add three broad categories of metadata to

minimal API endpoints:

Routing metadata—As you’ve already seen, the

WithName() methods adds a globally unique name to

an endpoint that’s used for URL generation.

Metadata for other middleware—Several pieces of

middleware can be customized on a per-request basis

by adding metadata to an endpoint. When the

middleware runs, it checks the selected endpoint’s

metadata and acts accordingly. Examples include

authorization, hostname filtering, and output caching.

OpenAPI metadata—OpenAPI document generation is

driven by the metadata exposed by endpoints, which

in turn controls the UI exposed by Swagger UI.

We look at how to add authorization metadata to your endpoints

in chapter 25, so for now we’ll focus on improving the OpenAPI

description of your app using metadata. You can provide a lot of

details to document your APIs, some of which Swashbuckle uses

during OpenAPI generation and some of which it doesn’t. The

following listing shows how to add a tag for each API and how to

explicitly describe the responses that are returned, using

Produces().

Listing 11.2 Adding OpenAPI metadata to improve endpoint
documentation

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.UseSwagger();

app.UseSwaggerUI();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .WithTags("fruit") ❶
 .Produces<Fruit>() ❷
 .ProducesProblem(404); ❸

app.MapPost("/fruit/{id}", (string id, Fruit fruit) =>

 _fruit.TryAdd(id, fruit)

 ? TypedResults.Created($"/fruit/{id}", fruit)

 : Results.ValidationProblem(new Dictionary<string, string[]>

 {

 { "id", new[] { "A fruit with this id already exists" } }

 }))

 .WithTags("fruit") ❹
 .Produces<Fruit>(201) ❺
 .ProducesValidationProblem(); ❻

app.Run();

record Fruit(string Name, int stock);

❶ Adding a tag groups the endpoints in Swagger UI. Each endpoint can have multiple tags.
❷ The endpoint can return a Fruit object. When not specified, a 200 response is assumed.

❸ If the id isn’t found, the endpoint returns a 404 Problem Details response.
❹ Adding a tag groups the endpoints in Swagger UI. Each endpoint can have multiple tags.

❺ This endpoint also returns a Fruit object but uses a 201 response instead of 200.
❻ If the ID already exists, it returns a 400 Problem Details response with validation errors.

With these changes, Swagger UI shows the correct responses for

each endpoint, as shown in figure 11.5. It also groups the

endpoints under the tag "fruit" instead of the default tag

inferred from the project name when no tags are provided.

Figure 11.5 Swagger UI groups the endpoints in your application
based on the Tag metadata attached to them. The UI uses the
metadata added by calling Produces() to document the expected
return types and status codes for each endpoint.

If adding all this extra metadata feels like a bit of a chore, don’t

worry. Adding the extra OpenAPI metadata is optional,

necessary only if you plan to expose your OpenAPI document for

others to consume. If all you want is an easy way to test your

minimal APIs, you can go a long way without many of these

extra method calls.

TIP Remember that you can also use route groups (described in chapter
5) to apply metadata to multiple APIs at the same time.

One of the strongest arguments for making your OpenAPI

descriptions as rich as possible is that it makes the tooling

around your API easier to use. Swagger UI is one example. But

an arguably even more useful tool lets you automatically

generate C# clients for interacting with your APIs.

11.4 Generating strongly typed clients
with NSwag

In this section you’ll learn how to use your OpenAPI description

to automatically generate a client class that you can use to call

your API from another C# project. You’ll create a console

application, use a .NET tool to generate a C# client for

interacting with your API, and finally customize the generated

types. The generated code includes automatic serialization and

deserialization of request types, and makes interacting with your

API from another C# project much easier than the alternative

method of crafting HTTP requests manually.

NOTE Generating a strongly typed client is optional. It makes it easier to
consume your APIs from C#, but if you don’t need this functionality, you
can still test your APIs by using Postman or another HTTP client.

You could use any of several tools to automatically generate a

C# client from an OpenAPI description, such as OpenAPI

Generator (http://mng.bz/Y1wB), but in this chapter I use

NSwag. You may remember from section 11.1 that NSwag can

be used instead of Swashbuckle to generate an OpenAPI

description for your API. But unlike Swashbuckle, NSwag also

http://mng.bz/Y1wB

contains a client generator. NSwag is also the default library

used by both Visual Studio and the Microsoft .NET OpenAPI

global tool to generate C# client code.

Code generation based on an OpenAPI description works via the

process shown in figure 11.6. First, Visual Studio or the .NET

tool downloads the OpenAPI description JSON file so that it’s

available locally. The code generation tool reads the OpenAPI

description, identifies all the endpoints and schemas described

by the document, and generates a C# client class that you can

use to call the API described in the document. The code

generation tool hooks into the build process so that any time the

local OpenAPI description file changes, the code generator runs

to regenerate the client.

Figure 11.6 Visual Studio or a .NET tool downloads the OpenAPI
description locally and installs the code-generation tool from NuGet.
When your project builds, the generation tool reads the OpenAPI
description and generates a C# class for interacting with the API.

You can generate clients by using Visual Studio, as shown in

section 11.4.1, or a .NET tool, as shown in section 11.4.2. Both

approaches produce the same result, so your choice is a matter

of personal preference.

11.4.1 Generating a client using Visual Studio

In this section I show how to generate a client by using Visual

Studio’s built-in support. For this section I assume that you have

a simple .NET 7 console app that needs to interact with your

minimal API app.

NOTE In the sample code for this chapter, both applications are in the
same solution for simplicity, but they don’t need to be. You don’t even
need the source code for the API; as long as you have the OpenAPI
description of an API, you can generate a client for it.

To generate the client, follow these steps:

1. Ensure that the API application is running and that the

OpenAPI description JSON file is accessible. Note the

URL at which the JSON file is exposed. If you’re

following along with the source code for the book, run

the OpenApiExample project.

2. In the client project, right-click the project file and

then choose Add > Service Reference from the

contextual menu, as shown in figure 11.7. This

command opens the Add Service Reference dialog box.

Figure 11.7 Adding a service reference using Visual Studio.
Right-click the project that will call the API, and choose Add >
Service Reference.

3. In the Add Service Reference dialog box, select

OpenAPI and then choose Next. On the Add New

OpenAPI Service Reference page, enter the URL where

the OpenAPI document is located. Enter a namespace

for the generated code and a name for the generated

client class, as shown in figure 11.8, and then choose

Finish.

Figure 11.8 Adding an OpenAPI service reference using Visual
Studio. Add the link to the OpenAPI document, the code

generation parameters, and click Finish. Visual Studio
downloads the OpenAPI document and saves it to the project to
use for code generation.

The Service Reference Configuration Progress screen shows

the changes Visual Studio makes to your application, such as

installing various NuGet packages and downloading the

OpenAPI document.

TIP If you’re running the sample code with Visual Studio, you can find the
OpenAPI document at https://localhost:7186/swagger/v1/swagger.json.
This location is also displayed in the Swagger UI.

After performing these steps, look at the csproj file of your

console app. You’ll see that several NuGet package references

were added, as well as a new <OpenApiReference> element,

as shown in listing 11.3.

Listing 11.3 Adding a service reference for OpenAPI client generation
with Visual Studio

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net7.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 <Nullable>enable</Nullable>

 </PropertyGroup>

 <ItemGroup>

 <OpenApiReference ❶
 Include="OpenAPIs\swagger.json"

 CodeGenerator="NSwagCSharp"

 Namespace="Fruit"

 ClassName="FruitClient">

 <SourceUri>https://localhost:7186/swagger/v1/swagger.json</SourceUri>

 </OpenApiReference>

 </ItemGroup>

 <ItemGroup>

 <PackageReference ❷
 Include="Microsoft.Extensions.ApiDescription.Client"

 Version="3.0.0">

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 </PackageReference>

 <PackageReference Include="Newtonsoft.Json" Version="13.0.1" />

 <PackageReference Include="NSwag.ApiDescription.Client"

 Version="13.0.5">

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 </PackageReference>

 </ItemGroup>

</Project>

❶ Defines where the OpenAPI description was loaded from and code generation settings
❷ Extra NuGet packages are required by the code generator.

Theoretically, this code should be everything you need to

generate the client. Unfortunately, Visual Studio adds some out-

of-date packages that you’ll need to update before your project

will build, as follows:

1. Update NSwag.ApiDescription.Client to the latest

version (currently, 13.18.2). This package does the

code generation based on the OpenAPI description.

2. Update Microsoft.Extensions.ApiDescription.Client to

the latest version (7.0.0 at the time of the .NET 7

release). This package is referenced transitively by

NSwag.ApiDescription.Client anyway, so you don’t

have to reference it directly, but doing so ensures that

you have the latest version of the package.

NOTE By default, the generated client uses Newtonsoft.Json to serializes
the requests and responses. In section 11.4.4 you’ll see how to replace it
with the built-in System.Text.Json.

After you make these changes, your project should look similar

to the following listing.

Listing 11.4 Updating package versions for OpenAPI generation

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net7.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 <Nullable>enable</Nullable>

 </PropertyGroup>

 <ItemGroup>

 <OpenApiReference

 Include="OpenAPIs\swagger.json"

 CodeGenerator="NSwagCSharp"

 Namespace="Fruit"

 ClassName="FruitClient">

 <SourceUri>https://localhost:7186/swagger/v1/swagger.json</SourceUri>

 </OpenApiReference>

 </ItemGroup>

 <ItemGroup>

 <PackageReference

 Include="Microsoft.Extensions.ApiDescription.Client"

 Version="7.0.0"> ❶
 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 </PackageReference>

 <PackageReference Include="Newtonsoft.Json" Version="13.0.1" />

 <PackageReference Include="NSwag.ApiDescription.Client"

 Version="13.18.2"> ❶
 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 </PackageReference>

 </ItemGroup>

</Project>

❶ Updates to the latest version

With the packages updated, you can build your project and

generate the FruitClient. In section 11.4.3 you’ll see how to

use this client to call your API, but first we’ll look at how to

generate the client with a .NET global tool if you’re not using

Visual Studio.

11.4.2 Generating a client using the .NET Global
tool

In this section you’ll learn how to generate a client from an

OpenAPI definition by using a .NET global tool instead of Visual

Studio. The result is essentially the same, so if you’ve followed

the steps in section 11.4.1 in Visual Studio, you can skip this

section.

NOTE You don’t have to use Visual Studio or a .NET tool. Ultimately ,you
need a csproj file that looks like listing 11.4 and an OpenAPI definition
JSON file in your project, so if you’re happy editing the project file and
downloading the definition manually, you can take that approach. Visual
Studio and the .NET tool simplify and automate some of these steps.

As in section 11.4.1, the instructions in 11.4.2 assume that you

have a console app that needs to call your API, that the API is

accessible, and that it has an OpenAPI description. To generate a

client by using NSwag, follow these steps:

1. Ensure that the API application is running and that the

OpenAPI description JSON file is accessible. Note the

URL at which the JSON file is exposed. In the source

code associated with the book, run the

OpenApiExample project.

2. Install the .NET OpenAPI tool (http://mng.bz/GyOv)

globally by running

dotnet tool install -g Microsoft.dotnet-openapi

http://mng.bz/GyOv

3. From the project folder of your console app, add an

OpenAPI reference by using the following command,

substituting the path to the OpenAPI document and

the location to download the JSON file to:

dotnet openapi add url http://localhost:5062/swagger/v1/swagger.json

➥ --output-file OpenAPIs\fruit.json

TIP If you’re running the sample code by using dotnet run, you
can find the OpenAPI document at the preceding URL. This location
is also displayed in the Swagger UI.

4. Update the packages added to your project by running

the following commands from the project folder:

dotnet add package NSwag.ApiDescription.Client

dotnet add package Microsoft.Extensions.ApiDescription.Client

dotnet add package Newtonsoft.Json

After you run all these steps, your OpenAPI description file

should have been downloaded to OpenAPIs\fruit.json, and your

project file should look similar to the following listing (elements

added by the tool highlighted in bold).

Listing 11.5 Adding an OpenAPI reference using the .NET OpenAPI
tool

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net7.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 <Nullable>enable</Nullable>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference

 Include="Microsoft.Extensions.ApiDescription.Client"

 Version="7.0.0">

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 <PrivateAssets>all</PrivateAssets>

 </PackageReference>

 <PackageReference Include="Newtonsoft.Json" Version="13.0.1" />

 <PackageReference Include="NSwag.ApiDescription.Client"

 Version="13.18.2">

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 <PrivateAssets>all</PrivateAssets>

 </PackageReference>

 </ItemGroup>

 <ItemGroup>

 <OpenApiReference Include="OpenAPIs\fruit.json"

 SourceUrl="http://localhost:5062/swagger/v1/swagger.json" />

 </ItemGroup>

</Project>

Other than minor ordering differences, the main difference

between the Visual Studio approach and the .NET tool approach

is that Visual Studio lets you specify the class name and

namespace for your new client, whereas the .NET Tool uses the

default values. For consistency, add the ClassName and

Namespace attributes to the <OpenApiReference> element

added by the tool:

<OpenApiReference Include="OpenAPIs\fruit.json"

 SourceUrl="http://localhost:5062/swagger/v1/swagger.json"

 Namespace="Fruit"

 ClassName="FruitClient" />

In section 11.4.4 you’ll learn how to customize the generated

code further, but before we get to that topic, let’s look at the

generated FruitClient and how to use it.

11.4.3 Using a generated client to call your API

So far, you’ve been taking my word for it that a client is

magically generated for your application, so in this section you

get to try it out. The NSwag.ApiDescription.Client package added

to your project works with the

Microsoft.Extensions.ApiDescription.Client package to read the

OpenAPI description file in your project. From this description it

can work out what APIs you have and what types you need to

serialize to and from. Finally, it outputs a C# class with the class

name and namespace you specified in the OpenApiReference

element.

NOTE The generated file is typically saved to your project’s obj folder.
After building your project, you can find the fruitClient.cs file in this folder.
Alternatively, use Visual Studio’s Go To Definition (F12) functionality on an
instance of FruitClient to navigate to the code in your integrated
development environment (IDE).

To use the FruitClient to call your API, you must create an

instance of it, passing in the base address of your API and an

HttpClient instance. Then you can send HTTP requests to the

discovered endpoints. A client generated from the OpenAPI

description of the simple minimal API in listing 11.2, for

example, would have methods called FruitPOSTAsync() and

FruitGETASync(), corresponding to the two exposed

methods, as shown in the following listing.

Listing 11.6 Calling the API from listing 11.2 using a generated client

using Fruit; ❶

var client = new FruitClient(❷
 "https://localhost:7186", ❸
 new HttpClient()); ❹

Fruit.Fruit created = await client.FruitPOSTAsync("123", ❺
 new Fruit.Fruit { Name = "Banana", Stock = 100 }); ❻
Console.WriteLine($"Created {created.Name}");

Fruit.Fruit fetched = await client.FruitGETAsync("123"); ❼
Console.WriteLine($"Fetched {fetched.Name}");

❶ The code is generated in the Fruit namespace.

❷ Uses the generated FruitClient
❸ Specifies the base address of the API

❹ The provided HttpClient is used to call the API.
❺ Calls the MapPost endpoint of the API

❻ The Fruit type is generated automatically by NSwag.
❼ Calls the MapGet endpoint of the API

This code is simultaneously impressive and somewhat horrible:

It’s impressive that you’re able to generate all the

boilerplate code for interacting with the API. You don’t

have to do any string interpolation to calculate the

path. You don’t have to serialize the request body or

deserialize the response. You don’t have to check for

error status codes. The generated code takes care of

all those tasks.

Those FruitPOSTAsync and FruitGETAsync

methods have really ugly names!

Luckily, you can fix the ugly method names: improve your API’s

OpenAPI definition by adding WithName() to every API. The

name you provide for your endpoint is used as the OperationID

in the OpenAPI description; then NSwag uses it to generate the

client methods. This scenario is a prime example of adding more

metadata to your OpenAPI, making the tooling better for your

consumers.

As well as improve your OpenAPI description, you can customize

the code generation directly, as you’ll see in the next section.

11.4.4 Customizing the generated code

In this section you’ll learn about some of the customization

options available with the NSwag generator and why you might

want to use them. I look at three customization options in this

section:

Using System.Text.Json instead of Newtonsoft.Json for

JSON serialization

Generating an interface for the generated client

implementation

Not requiring an explicit BaseAddress parameter in

the constructor

By default, NSwag uses Newtonsoft.Json to serialize requests

and deserialize responses. Newtonsoft.Json is a popular, battle-

hardened JSON library, but .NET 7 has a built-in JSON library,

System.Text.Json, that ASP.NET Core uses by default for JSON

serialization. Instead of using two JSON libraries, you may want

to replace the serialization used in your client to use

System.Text.Json.

When NSwag generates a client, it marks the class as partial,

which means that you can define your own partial class

FruitClient (for example) and add any methods that you

think are useful to the client. The generated client also provides

partial methods that act as hooks just before a request is sent or

received.

DEFINITION Partial methods in C# (http://mng.bz/zXEB) are void-
returning methods that don’t have an implementation. You can define the
implementation of the method in a separate partial class file. If you don’t

http://mng.bz/zXEB

define the implementation, the method is removed at compile time, so you
use partial methods as highly performant event handlers.

Extending your generated clients is useful, but during testing it’s

common to also want to substitute your generated client by

using interfaces. Interfaces let you substitute fake or mock

versions of a service so that your tests aren’t calling the API for

real, as you learned in chapter 8. NSwag can help with this

process by automatically generating an IFruitClient

interface that the FruitClient implements.

Finally, providing a base address where the API is hosted makes

sense on the face of it. But as we discussed in chapter 9,

primitive constructor arguments such as string and int don’t

play well with dependency injection. Given that HttpClient

contains a BaseAddress property, you can configure NSwag to

not require that the base address be passed as a constructor

argument and instead set it on the HttpClient type directly.

This approach helps in dependency injection (DI) scenarios, as

you’ll see when we discuss IHttpClientFactory in chapter

33.

These three seemingly unrelated options are all configured in

NSwag in the same way: by adding an Options element to the

<OpenApiReference> element in your project file. The options

are provided as command-line switches and must be provided

on one line, without line breaks. The switches for the three

settings described are

/UseBaseUrl:false—When false, NSwag

removes the baseUrl parameter from the generated

client’s constructor and instead relies on HttpClient

to have the correct base address. It defaults to true.

/GenerateClientInterfaces:true—When true,

NSwag generates an interface for the client, containing

all the endpoints. The generated client implements this

interface. It defaults to false.

/JsonLibrary:SystemTextJson—This switch

specifies the JSON serialization library to use. It

defaults to using Newtonsoft.Json.

TIP A vast number of configuration options is available for NSwag. I find
that the best documentation is available in the NSwag .NET tool. You can
install the tool by using dotnet tool install -g
NSwag.ConsoleCore, and you can view the available options by
running nswag help openapi2csclient.

You can set all three of these options by adding an <Options>

element to the <OpenApiReference> element, as shown in

the following listing. Make sure that you open and close both

elements correctly so the XML stays valid; it’s an easy mistake

to make when editing by hand!

Listing 11.7 Customizing NSwag generator options

<OpenApiReference Include="OpenAPIs\fruit.json"

 SourceUrl="http://localhost:5062/swagger/v1/swagger.json"

 Namespace="Fruit"

 ClassName="FruitClient" >

 <Options>/UseBaseUrl:false /GenerateClientInterfaces:true

 ➥ /JsonLibrary:SystemTextJson</Options> ❶
</OpenApiReference> ❷

❶ Customizes the options NSwag uses for code generation

❷ Make sure to close the outer XML element to keep the XML valid.

You’d be forgiven for thinking that after making these changes,

NSwag would update the generated code next time you build.

Unfortunately, it’s not necessarily that simple. NSwag watches

for changes to the OpenAPI description JSON file saved in your

project and will regenerate the code any time the file changes,

but it won’t necessarily update when you change options in your

csproj file. Even worse, doing a clean or rebuild similarly has no

effect. If you find yourself in this situation, it’s best to delete the

obj folder for your project to ensure that everything regenerates

correctly.

TIP Another option is to make a tiny change in the OpenAPI document so
that NSwag updates the generated code when you build your project.
Then you can revert the OpenAPI document change.

After you’ve persuaded NSwag to regenerate the client, you

should update your code to use the new features. You can

remove the Newtonsoft.Json reference from your csproj file and

update your Program.cs as shown in the following listing.

Listing 11.8 Using the updated NSwag client

using Fruit;

IFruitClient client = new FruitClient(❶
 new HttpClient() { BaseAddress = ❷
 new Uri("https://localhost:7186") }); ❷

Fruit.Fruit created = await client.FruitPOSTAsync("123",

 new Fruit.Fruit { Name = "Banana", Stock = 100 });

Console.WriteLine($"Created {created.Name}");

Fruit.Fruit fetched = await client.FruitGETAsync("123");

Console.WriteLine($"Fetched {fetched.Name}");

❶ FruitClient now implements IFruitClient.

❷ Sets the base address on HttpClient instead of passing as a constructor argument

If you updated the operation IDs for your API endpoints using

WithName(), you may be a little surprised to see that you still

have the ugly FruitPOSTAsync and FruitGETAsync

methods, even though you regenerated the client. That’s

because the OpenAPI description saved to your project is

downloaded only once, when you initially add it. Let’s look at

how to update the local OpenAPI document to reflect the

changes to your remote API.

11.4.5 Refreshing the OpenAPI description

In this section you’ll learn how to update the OpenAPI

description document saved to your project that’s used for

generation. This document doesn’t update automatically, so the

client generated by NSwag may not reflect the latest OpenAPI

description for your API.

Whether you used Visual Studio (as in section 11.4.1) or the

.NET OpenAPI tool (as in section 11.4.2), the OpenAPI

description saved as a JSON file to your project is a point-in-

time snapshot of the API. If you add more metadata to your API,

you need to download the OpenAPI description to your project

again.

TIP My preferred approach is low-tech: I simply navigate to the OpenAPI
description in the browser, copy the JSON contents, and paste it into the
JSON file in my project.

If you don’t want to update the OpenAPI description manually,

you can use Visual Studio or the .NET OpenAPI tool to refresh

the saved document for you.

WARNING If you originally used Visual Studio, you can’t refresh the
document by using the OpenAPI tool and vice versa. The reason is that
Visual Studio uses the SourceUri attribute on the
OpenApiReference element and the .NET tool uses the
SourceUrl attribute. And yes, that situation is arbitrary and annoying!

To update your OpenAPI description by using Visual Studio,

follow these steps:

1. Ensure that your API is running and that the OpenAPI

description document is available.

2. Navigate to the connected services page for your

project by choosing Project > Connected Services

> Manage Connected Services.

3. Select the overflow button next to your OpenAPI

reference and choose Refresh, as shown in figure

11.9. Then choose Yes in the dialog box to update

your OpenAPI document.

Figure 11.9 Updating the OpenAPI description for an API. Choose
Refresh to download the OpenAPI description again and save it to
your project. Then NSwag will generate an updated client on the next
build.

To update your OpenAPI description by using the .NET OpenAPI

tool, follow these steps:

1. Ensure that your API is running and that the OpenAPI

description document is available.

2. From your project folder, run the following command,

using the same URL you used to add the OpenAPI

description originally:

dotnet openapi refresh http://localhost:5062/swagger/v1/swagger.json

After updating your OpenAPI description by using either Visual

Studio or the .NET tool, build your application to trigger NSwag

to regenerate your client. Any changes you made to your

OpenAPI description (such as adding operation IDs) will be

reflected in the generated code.

I think that client generation is the killer app for OpenAPI

descriptions, but it works best when you use metadata to add

extensive documentation to your APIs. In section 11.5 you’ll

learn how to go one step further by adding summaries and

descriptions to your endpoints.

11.5 Adding descriptions and summaries
to your endpoints

In this section you’ll learn how to add extra descriptions and

summaries to your OpenAPI description document. Tools such as

Swagger UI and NSwag use these extra descriptions and

summaries to provide a better developer experience working

with your API. You’ll also learn about alternative ways to add

metadata to your minimal API endpoints.

11.5.1 Using fluent methods to add descriptions

Whilst working with your minimal API endpoints and calling

methods such as WithName() and WithTags(), you may have

noticed the methods WithSummary() and

WithDescription(). These methods add metadata to your

endpoint in exactly the same way as the other With* methods,

but unfortunately, they don’t update your OpenAPI description

without some extra changes.

To make use of the summary and description metadata, you

must add an extra NuGet package,

Microsoft.AspNetCore.OpenApi, and call WithOpenApi() on

your endpoint. This method ensures that the summary and

description metadata are added correctly to the OpenAPI

description when Swashbuckle generates the document. Add this

package via the NuGet package manager or the .NET CLI by

calling

dotnet add package Microsoft.AspNetCore.OpenApi

from the project folder. Then update your endpoints to add

summaries and/or descriptions, making sure to call

WithOpenApi(), as shown in the following listing.

Listing 11.9 Adding summaries and descriptions to endpoints using
WithOpenApi()

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

WebApplication app = builder.Build();

app.UseSwagger();

app.UseSwaggerUI();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .WithName("GetFruit")

 .WithTags("fruit")

 .Produces<Fruit>()

 .ProducesProblem(404)

 .WithSummary("Fetches a fruit") ❶
 .WithDescription("Fetches a fruit by id, or returns 404" + ❷
 " if no fruit with the ID exists") ❷
 .WithOpenApi(); ❸

app.Run();

record Fruit(string Name, int Stock);

❶ Adds a summary to the endpoint

❷ Adds a description to the endpoint
❸ Exposes the metadata added by summary and description to the OpenAPI description

With these changes, Swagger UI reflects the extra metadata, as

shown in figure 11.10. NSwag also uses the summary as a

documentation comment when it generates the endpoints on the

client. You can see in figure 11.10, however, that one piece of

documentation is missing: a description of the parameter id.

Figure 11.10 The summary and description metadata displayed in the
Swagger UI. Note that no description is displayed for the id
parameter.

Unfortunately, you don’t have a particularly elegant way to add

documentation for your parameters. The suggested approach is

to use an overload of the WithOpenApi() method, which takes

a lambda method where you can add a description for the

parameter:

.WithOpenApi(o =>

{

 o.Parameters[0].Description = "The id of the fruit to fetch";

 o.Summary = "Fetches a fruit";

 return o;

});

This example shows that you can use the WithOpenApi()

method to set any of the OpenAPI metadata for the endpoint, so

you can use this single method to set (for example) the

summary and tags instead of using the dedicated

WithSummary() or WithTags() method.

Adding all this metadata undoubtedly documents your API in

more detail and makes your generated code easier to

understand. But if you’re anything like me, the sheer number of

methods you have to call makes it hard to see where your

endpoint ends and the metadata begins! In section 11.5.2 we’ll

look at an alternative approach that involves using attributes.

11.5.2 Using attributes to add metadata

I’m a fan of fluent interfaces in many cases, as I feel that they

make code easier to understand. But the endpoint metadata

extensions, such as those shown in listing 11.9, go to extremes.

It’s hard to understand what the endpoint is doing with all the

noise from the metadata methods! Ever since version 1.0, C#

has had a canonical way to add metadata to code—attributes—

and you can replace your endpoint extension methods with

dedicated attributes if you prefer.

Almost all the extension methods that you add to your endpoint

have an equivalent attribute you can use instead. These

attributes should be applied directly to the handler method (the

lambda function, if that’s what you’re using). Listing 11.10

shows the equivalent of listing 11.9, using attributes instead of

fluent methods where possible. The WithOpenApi() method is

the only call that can’t be replaced; it must be included so that

Swashbuckle reads the OpenAPI metadata correctly.

Listing 11.10 Using attributes to describe your API

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

WebApplication app = builder.Build();

app.UseSwagger();

app.UseSwaggerUI();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}",

 [EndpointName("GetFruit")] ❶
 [EndpointSummary("Fetches a fruit")] ❶
 [EndpointDescription("Fetches a fruit by id, or returns 404" + ❶
 " if no fruit with the ID exists")] ❶
 [ProducesResponseType(typeof(Fruit), 200)] ❶
 [ProducesResponseType(typeof(HttpValidationProblemDetails), 404, ❶
 "application/problem+json")] ❶
 [Tags("fruit")] ❶
 (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .WithOpenApi(o =>

 {

 o.Parameters[0].Description = "The id of the fruit to fetch";

 return o;

 });

app.Run();

record Fruit(string Name, int Stock);

❶ You can use attributes instead of fluent method calls.

Whether you think listing 11.10 is better than listing 11.9 is

largely a matter of taste, but the reality is that neither is

particularly elegant. In both cases the metadata significantly

obscures the intent of the API, so it’s important to consider

which metadata is worth adding and which is unnecessary noise.

That balance may shift depending on who your audience is

(internal or external customers), how mature your API is, and

how much you can extract to helper functions.

11.5.3 Using XML documentation comments to
add metadata

One understandable complaint about both the attribute and

method approaches for attaching OpenAPI metadata is that the

summary and parameter descriptions are divorced from the

endpoint handler to which they apply. In this section you’ll see

how an alternative approach that uses Extensible Markup

Language (XML) documentation comments.

Every C# developer user will be used to the handy descriptions

about methods and parameters you get in your IDE from

IntelliSense. You can add these descriptions to your own

methods by using XML documentation comments, for example:

/// <summary>

/// Adds one to the provided value and returns it

/// </summary>

/// <param name="value">The value to increment</param>

public int Increment(int value) => value + 1;

In your IDE—whether that’s Visual Studio, JetBrains Rider, or

Visual Studio Code—this description appears when you try to

invoke the method. Wouldn’t it be nice to use the same syntax

to define the summary and parameter descriptions for our

OpenAPI endpoints? Well, the good news is that we can!

WARNING The use of XML documentation comments is only partially
supported in .NET 7. These comments work only when you have static or
instance method endpoint handlers, not lambda methods or local
functions. You can find the issue tracking full support for XML comments
at https://github.com/dotnet/aspnetcore/issues/39927.

https://github.com/dotnet/aspnetcore/issues/39927

Swashbuckle can use the XML comments you add to your

endpoint handlers as the descriptions for your OpenAPI

description. When enabled, the .NET SDK generates an XML file

containing all your documentation comments. Swashbuckle can

read this file on startup and use it to generate the OpenAPI

descriptions, as shown in figure 11.11.

Figure 11.11 You can configure a .NET application to export
documentation comments to a dedicated XML file when it builds.
Swashbuckle reads this documentation file at runtime, combining it
with the attribute and fluent method metadata for an endpoint to
generate the final OpenAPI description.

To enable XML documentation comment extraction for your

OpenAPI description document you must do three things:

1. Enable documentation generation for your project. Add

the <GenerateDocumentationFile> inside a

<PropertyGroup> in your csproj file, and set it to

true:

<PropertyGroup>

 <GenerateDocumentationFile>true</GenerateDocumentationFile>

</PropertyGroup>

2. Configure Swashbuckle to read the generated XML

document in SwaggerGen():

builder.Services.AddSwaggerGen(opts =>

{

 var file = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";

 opts.IncludeXmlComments(

 Path.Combine(AppContext.BaseDirectory, file));

});

3. Use a static or instance method handler and add the

XML comments, as shown in the following listing.

Listing 11.11 Adding documentation comments to an endpoint
handler

using Microsoft.AspNetCore.Mvc;

using System.Collections.Concurrent;

using System.Reflection;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen(opts => ❶
{

 var file = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";

 opts.IncludeXmlComments(Path.Combine(AppContext.BaseDirectory, file));

});

WebApplication app = builder.Build();

app.UseSwagger();

app.UseSwaggerUI();

var _fruit = new ConcurrentDictionary<string, Fruit>();

var handler = new FruitHandler(fruit); ❷
app.MapGet("/fruit/{id}", handler.GetFruit) ❷
 .WithName("GetFruit"); ❸

app.Run();

record Fruit(string Name, int Stock);

internal class FruitHandler

{

 private readonly ConcurrentDictionary<string, Fruit> _fruit;

 public FruitHandler(ConcurrentDictionary<string, Fruit> fruit)

 {

 _fruit = fruit;

 }

 /// <summary>

 /// Fetches a fruit by id, or returns 404 if it does not exist ❹
 /// </summary> ❹
 /// <param name="id" >The ID of the fruit to fetch</param> ❹
 /// <response code="200">Returns the fruit if it exists</response> ❹
 /// <response code="404">If the fruit doesn't exist</response> ❹
 [ProducesResponseType(typeof(Fruit), 200)] ❺

 [ProducesResponseType(typeof(HttpValidationProblemDetails), ❺
 404, "application/problem+json")] ❺
 [Tags("fruit")] ❺
 public IResult GetFruit(string id)

 => _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404);

}

❶ Enables XML comments for your OpenAPI descriptions

❷ You must use static or instance handlers, not lambda methods.
❸ You can add extra metadata by using methods.

❹ The XML comments are used in the OpenAPI description.
❺ You can also add extra metadata by using attributes on the handler method.

I like the XML comment approach, as it feels much more natural

for C# and the comments are often deemphasized in IDEs,

reducing visual clutter. You’ll still need to use attributes and/or

fluent methods to fully describe your endpoints for OpenAPI, but

every little bit helps!

As I’ve mentioned several times, how far you go with your

OpenAPI description is up to you and how much value you get

from it. If you want to use OpenAPI only for local testing with

Swagger UI, it doesn’t make sense to clutter your code with lots

of extra metadata. In fact, in those cases it would be best to add

the swagger services and middleware conditionally only when

you’re in development, as in this example:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

if(builder.Environment.IsDevelopment())

{

 builder.Services.AddEndpointsApiExplorer();

 builder.Services.AddSwaggerGen();

}

WebApplication app = builder.Build();

if(app.Environment.IsDevelopment())

{

 app.UseSwagger();

 app.UseSwaggerUI();

}

app.Run();

On the other hand, if you’re generating C# clients for calling

your API or exposing your API for public consumption, the more

metadata you add, the better! It’s also worth noting that you

can add OpenAPI descriptions for all the endpoints in your

application, not only your minimal API endpoints. When you

create web API controllers in chapter 20, you can include them,

too.

11.6 Knowing the limitations of OpenAPI
In this chapter I’ve described the benefits of OpenAPI, both for

simple testing with Swagger UI and for code generation. But like

most things in software, it’s not all sweetness and light. OpenAPI

and Swagger have limitations that you may run into, particularly

as your APIs increase in complexity. In this section I describe

some of the challenges to watch out for.

11.6.1 Not all APIs can be described by OpenAPI

The OpenAPI specification is meant to describe your API so that

any client knows how to call it. Unfortunately, OpenAPI can’t

describe all APIs, which isn’t an accident. The OpenAPI

specification says “Not all services can be described by OpenAPI

—this specification is not intended to cover every possible style

of REST APIs.” So, the important question is which APIs can’t it

describe?

One classic example is an API that follows the REST design

known as Hypertext As the Engine of Application State

(HATEOAS). In this design, each request to an API endpoint

includes a list of links describing the actions you can take and

the paths to use for each action, enabling clients to discover

which actions are available for a given resource. The server can

add or remove links dynamically, depending on the state of the

resource and which user is making the request.

TIP Martin Fowler has a great description of the REST maturity models, in
which HATEOAS is the highest level of maturity, at http://mng.bz/0K1N.

HATEOAS generally introduces more complexity than is

worthwhile for small projects, but it’s a great way to decouple

your client-side applications from your server APIs so that they

can evolve separately. This approach can be invaluable when you

have large or independent teams. The problem for OpenAPI is

that it wasn’t designed for these kinds of dynamic APIs. OpenAPI

wants to know up front what the responses are for each of your

endpoints, which isn’t information that you can give it if you’re

following HATEOAS.

In a different scenario, you may have multiple backend APIs,

each with its own OpenAPI specification. You expose a single,

unified API gateway app, with which all your clients interact.

Unfortunately, even though each backend API has an OpenAPI

specification, there’s no easy way to combine the APIs into a

single unified document that you can expose in your API

gateway and which clients can use for testing and code

generation.

Another common problem centers on securing your APIs with

authentication and authorization. The OpenAPI specification

contains a section about describing your authentication

requirements, and Swagger UI supports them. Where things fall

down is if you’re using any extensions to the common

http://mng.bz/0K1N

authentication protocols or advanced features. Although some of

these workflows are possible, in some cases Swagger UI simply

may not support your workflow, rendering Swagger UI unusable.

11.6.2 Generated code is opinionated

At the end of section 11.4 I said that code generation is the

killer feature for Open API documents, and in many cases it is.

That statement, however, assumes that you like the generated

code. If the tooling you use—whether that’s NSwag or some

other code generator—doesn’t generate the code you want, you

may find yourself spending a lot of effort customizing and

tweaking the output. At some point and for some APIs, it may

be simpler and easier to write your own client!

NOTE A classic complaint (with which I sympathize) is the use of
exceptions for process flow whenever an error or unexpected status code
is returned. Not all errors are exceptional, throwing exceptions is relatively
expensive computationally, and it often means that every call made with a
client needs custom exception handling. This design sometimes makes
code generation seem more like a burden than a benefit.

Another, subtler issue arises when you use code generation with

two separate but related OpenAPI documents, such as a

products API and a cart API. If you use the techniques in this

chapter to generate the clients and then try to follow this simple

sequence, you’ll run into trouble:

1. Retrieve a Product instance from the products API by

using ProductsClient.Get().

2. Send the retrieved Product to the cart API by using

CartClient.Add(Product).

Unfortunately, the generated Product type retrieved from the

products API is a different type from the generated Product

type that the CartClient requires, so this code won’t compile.

Even if the type has the same properties and is serialized to the

same JSON when it’s sent to the client, C# considers the objects

to be different types and won’t let them swap places. You must

copy the values manually from the first Product instance to a

new instance. These complaints are mostly small niggles and

paper cuts, but they can add up when you run into them often.

11.6.3 Tooling often lags the specification

Another factor to consider is the many groups that are involved

in generating an OpenAPI document and generating a client:

The Open API specification is a community-driven

project written by the OpenAPI Initiative group.

Microsoft provides the tooling built into ASP.NET Core

for supplying the metadata about your API endpoints.

Swashbuckle is an open-source project that uses the

ASP.NET Core metadata to generate an OpenAPI-

compatible document.

NSwag is an open-source project that takes an

OpenAPI-compatible document and generates clients

(and has many other features!).

Swagger UI is an open-source project for interacting

with APIs based on the OpenAPI document.

Some of these projects have direct dependencies on others

(everything depends on the OpenAPI specification, for example),

but they may evolve at difference paces. If Swashbuckle doesn’t

support some new feature of the OpenAPI specification, it won’t

appear in your documents, and NSwag won’t be able to use it.

Most of the tools provide ways to override the behavior to work

around these rough edges, but the reality is that if you’re using

newer or less popular features, you may have more difficulty

persuading all the tools in your tool chain to play together nicely.

Overall, the important thing to remember is that OpenAPI

documents may work well if you have simple requirements or

want to use Swagger UI only for testing. In these cases, there’s

little investment required to add OpenAPI support, and it can

improve your workflow, so you might find it worthwhile to try.

If you have more complex requirements, are creating an API

that OpenAPI can’t easily describe or aren’t a fan of the code

generation, it may not be worth your time to invest heavily in

OpenAPI for your documents.

TIP If you’re a fan of code generation but prefer more of a remote
procedure call (RPC) style of programming, it’s worthwhile to look at
gRPC. Code generation for gRPC is robust, supported across multiple
languages, and has great support in .NET. You can read more in the
documentation at https://learn.microsoft.com/aspnet/core/grpc.

In chapter 12 we’ll take a brief look at the new object-relational

mapper that fits well with ASP.NET Core: Entity Framework Core.

You’ll get only a taste of it in this book, but you’ll learn how to

load and save data, build a database from your code, and

migrate the database as your code evolves.

https://learn.microsoft.com/aspnet/core/grpc

Summary
OpenAPI is a specification for describing HTTP APIs in

a machine-readable format, as a JSON document. You

can use this document to drive other tooling, such as

code generators or API testers.

You can add OpenAPI document generation to an

ASP.NET Core app by using the NSwag or Swashbuckle

NuGet package. These packages work with ASP.NET

Core services to read metadata about all the endpoints

in your application to build an OpenAPI document.

The Swashbuckle Swagger middleware exposes the

OpenAPI Document for your application at the path

/swagger/v1/swagger.json by default. Exposing

the document in this way makes it easy for other tools

to understand the endpoints in your application.

You can explore and test your API by using Swagger

UI. The Swashbuckle Swagger UI middleware exposes

the UI at the path /swagger by default. You can use

Swagger UI to explore your API, send test requests to

your endpoints, and check how well your API is

documented.

You can customize the OpenAPI description of your

endpoints by adding metadata. You can provide tags,

for example, by calling WithTags() on an endpoint

and specify that an endpoint returns a type T with a

201 status code using Produces<T>(201). Adding

metadata improves your API’s OpenAPI description,

which in turn improves tooling such as Swagger UI.

You can use NSwag to generate a C# client from an

OpenAPI description. This approach takes care of using

the correct paths to call the API, substituting

parameters in the path, and serializing and

deserializing requests to the API, removing much of

the boilerplate associated with interacting with an API.

You can add code generation to your project by using

Visual Studio or the .NET API tool or by making

manual changes to your project. Visual Studio and the

.NET tool automate downloading the OpenAPI

description to your local project and adding the

necessary NuGet packages. You should update the

NuGet packages to the latest versions to ensure that

you have the latest bug or security fixes.

NSwag automatically generates a C# method name on

the main client class for each endpoint in the OpenAPI

description. If the endpoint’s OperationID is missing,

NSwag generates a name, which may not be optimal.

You can specify the OperationID to use for an endpoint

in your OpenAPI description by calling WithName()

on the endpoint.

You can customize the client NSwag generates by

adding an <Options> element inside the

<OpenApiReference> in your .csproj file. These

options are specified as command-line switches such

as /JsonLibrary:SystemTextJson. You can

change many things about the generated code with

these switches, such as the serialization library to use

and whether to generate an interface for the client.

If the OpenAPI description for a remote API changes,

you need to download the document to your project

again for the generated client to reflect these changes.

If you originally added the OpenAPI reference by using

Visual Studio, you should use Visual Studio to refresh

the document, and the same applies to the .NET API

tool. NSwag automatically updates the generated code

when the downloaded OpenAPI document changes.

You can add an OpenAPI summary and description to

an endpoint by installing the

Microsoft.AspNetCore.OpenApi package, calling

WithOpenApi() on the endpoint, and adding calls to

WithSummary() or WithDescription(). This

metadata is shown in Swagger UI, and NSwag uses

the summary to generate documentation comments in

the C# client.

You can use attributes instead of fluent methods to

add OpenAPI metadata if you prefer. This approach

sometimes helps improve readability of your

endpoints. You must still call WithOpenApi() on the

endpoint to read the metadata attributes.

You can use XML documentation comments to

document your OpenAPIs to reduce the clutter of extra

method calls and attributes. To use this approach, you

must enable documentation generation for the project,

configure Swashbuckle to read the XML documentation

file on startup, and use static or instance handler

methods instead of lambda methods.

Not all APIs can be described by the OpenAPI

specification. Some styles, such as HATEOAS, are

naturally dynamic and don’t lend themselves to the

static design of OpenAPI. You may also have difficulty

with complex authentication requirements, as well as

combining OpenAPI documents. In these cases, you

may find that OpenAPI brings little value to your

application.

12 Saving data with Entity Framework
Core

This chapter covers

Understanding what Entity Framework Core is and why you
should use it
Adding Entity Framework Core to an ASP.NET Core application
Building a data model and using it to create a database
Querying, creating, and updating data with Entity Framework
Core

Most applications that you’ll build with ASP.NET Core require

storing and loading some kind of data. Even the examples so

far in this book have assumed that you have some sort of

data store—storing exchange rates, user shopping carts, or

the locations of physical stores. I’ve glossed over this topic

for the most part, but typically you’ll store this data in a

database.

Working with databases can be a rather cumbersome

process. You have to manage connections to the database,

translate data from your application to a format the

database can understand, and handle a plethora of other

subtle problems. You can manage this complexity in a

variety of ways, but I’m going to focus on using a library

built for modern .NET: Entity Framework Core (EF Core). EF

Core is a library that lets you quickly and easily build

database access code for your ASP.NET Core applications.

It’s modeled on the popular Entity Framework 6.x library,

but it has significant changes that make it stand alone in its

own right as more than an upgrade.

The aim of this chapter is to provide a quick overview of EF

Core and show how you can use it in your applications to

query and save to a database quickly. You’ll learn enough to

connect your app to a database and manage schema

changes to the database, but I won’t be going into great

depth on any topics.

NOTE For an in-depth look at EF Core, I recommend Entity
Framework Core in Action, 2nd ed., by Jon P. Smith (Manning, 2021).
Alternatively, you can read about EF Core on the Microsoft
documentation website at https://docs.microsoft.com/ef/core.

Section 12.1 introduces EF Core and explains why you may

want to use it in your applications. You’ll learn how the

design of EF Core helps you iterate quickly on your database

structure and reduce the friction of interacting with a

database.

In section 12.2 you’ll learn how to add EF Core to an

ASP.NET Core app and configure it by using the ASP.NET

Core configuration system. You’ll see how to build a model

for your app that represents the data you’ll store in the

database and how to hook it into the ASP.NET Core DI

container.

NOTE For this chapter I use SQLite, a small, fast, cross-platform
database engine, but none of the code shown in this chapter is
specific to SQLite. The code sample for the book also includes a

https://docs.microsoft.com/ef/core

version using SQL Server Express’s LocalDB feature. This version is
installed as part of Visual Studio 2022 (when you choose the
ASP.NET and Web Development workload), and it provides a
lightweight SQL Server engine. You can read more about LocalDB at
http://mng.bz/5jEa.

No matter how carefully you design your original data

model, the time will come when you need to change it. In

section 12.3 I show how you can easily update your model

and apply these changes to the database itself, using EF

Core for all the heavy lifting.

When you have EF Core configured and a database created,

section 12.4 shows how to use it in your application code.

You’ll see how to create, read, update, and delete (CRUD)

records, and you’ll learn about some of the patterns to use

when designing your data access.

In section 12.5 I highlight a few of the problems you’ll want

to take into consideration when using EF Core in a

production app. A single chapter on EF Core can offer only a

brief introduction to all the related concepts, so if you

choose to use EF Core in your own applications—especially if

you’re using such a data access library for the first time—I

strongly recommend reading more after you have the basics

from this chapter.

Before we get into any code, let’s look at what EF Core is,

what problems it solves, and when you may want to use it.

http://mng.bz/5jEa

12.1 Introducing Entity Framework
Core

Database access code is ubiquitous across web applications.

Whether you’re building an e-commerce app, a blog, or the

Next Big Thing™, chances are that you’ll need to interact

with a database.

Unfortunately, interacting with databases from app code is

often a messy affair, and you can take many approaches. A

task as simple as reading data from a database, for

example, requires handling network connections, writing

SQL statements, and handling variable result data. The .NET

ecosystem has a whole array of libraries you can use for this

task, ranging from the low-level ADO.NET libraries to higher-

level abstractions such as EF Core.

In this section, I describe what EF Core is and the problem

it’s designed to solve. I cover the motivation for using an

abstraction such as EF Core and how it helps bridge the gap

between your app code and your database. As part of that

discussion, I present some of the tradeoffs you’ll make by

using EF Core in your apps, which should help you decide

whether it’s right for your purposes. Finally, we’ll take a look

at an example EF Core mapping, from app code to database,

to get a feel for EF Core’s main concepts.

12.1.1 What is EF Core?

EF Core is a library that provides an object-oriented way to

access databases. It acts as an object-relational mapper

(ORM), communicating with the database for you and

mapping database responses to .NET classes and objects, as

shown in figure 12.1.

Figure 12.1 EF Core maps .NET classes and objects to database
concepts such as tables and rows.

DEFINITION With an object-relational mapper (ORM), you can
manipulate a database with object-oriented concepts such as classes

and objects by mapping them to database concepts such as tables
and columns.

EF Core is based on, but distinct from, the existing Entity

Framework libraries (currently up to version 6.x). It was

built as part of the .NET Core push to work cross-platform,

but with additional goals in mind. In particular, the EF Core

team wanted to make a highly performant library that could

be used with a wide range of databases.

There are many types of databases, but probably the most

commonly used family is relational databases, accessed via

Structured Query Language (SQL). This is the bread and

butter of EF Core; it can map Microsoft SQL Server, SQLite,

MySQL, Postgres, and many other relational databases. It

even has a cool in-memory feature you can use when testing

to create a temporary database. EF Core uses a provider

model, so support for other relational databases can be

plugged in later as they become available.

NOTE As of .NET Core 3.0, EF Core also works with nonrelational,
NoSQL, or document databases like Cosmos DB, too. I’m going to
consider mapping only to relational databases in this book, however,
as that’s the most common requirement in my experience.
Historically, most data access, especially in the .NET ecosystem, has
used relational databases, so it generally remains the most popular
approach.

That discussion covers what EF Core is but doesn’t dig into

why you’d want to use it. Why not access the database

directly by using the traditional ADO.NET libraries? Most of

the arguments for using EF Core can be applied to ORMs in

general, so what are the advantages of an ORM?

12.1.2 Why use an object-relational mapper?

One of the biggest advantages of an ORM is the speed with

which it allows you to develop an application. You can stay in

the familiar territory of object-oriented .NET, often without

needing to manipulate a database directly or write custom

SQL.

Suppose that you have an e-commerce site, and you want to

load the details of a product from the database. Using low-

level database access code, you’d have to open a connection

to the database; write the necessary SQL with the correct

table and column names; read the data over the connection;

create a plain old CLR object (POCO) to hold the data; and

set the properties on the object, converting the data to the

correct format manually as you go. Sounds painful, right?

An ORM such as EF Core takes care of most of this work for

you. It handles the connection to the database, generates

the SQL, and maps data back to your POCO objects. All you

need to provide is a LINQ query describing the data you

want to retrieve.

ORMs serve as high-level abstractions over databases, so

they can significantly reduce the amount of plumbing code

you need to write to interact with a database. At the most

basic level, they take care of mapping SQL statements to

objects, and vice versa, but most ORMs take this process a

step further and provide additional features.

ORMs like EF Core keep track of which properties have

changed on any objects they retrieve from the database,

which lets you load an object from the database by mapping

it from a database table, modify it in .NET code, and then

ask the ORM to update the associated record in the

database. The ORM works out which properties have

changed and issues update statements for the appropriate

columns, saving you a bunch of work.

As is so often the case in software development, using an

ORM has its drawbacks. One of the biggest advantages of

ORMs is also their Achilles’ heel: they hide the database

from you. Sometimes this high level of abstraction can lead

to problematic database query patterns in your apps. A

classic example is the N+1 problem, in which what should be

a single database request turns into separate requests for

every single row in a database table.

Another commonly cited drawback is performance. ORMs are

abstractions over several concepts, so they inherently do

more work than if you were to handcraft every piece of data

access in your app. Most ORMs, EF Core included, trade

some degree of performance for ease of development.

That said, if you’re aware of the pitfalls of ORMs, you can

often drastically simplify the code required to interact with a

database. As with anything, if the abstraction works for you,

use it; otherwise, don’t. If you have only minimal database

access requirements or need the best performance you can

get, an ORM such as EF Core may not be the right fit.

An alternative is to get the best of both worlds: use an ORM

for the quick development of the bulk of your application,

and fall back to lower-level APIs such as ADO.NET for those

few areas that prove to be bottlenecks. That way, you can

get good-enough performance with EF Core, trading

performance for development time, and optimize only those

areas that need it.

NOTE These days, the performance aspect is one of the weaker
arguments against ORMs. EF Core uses many database tricks and
crafts clean SQL queries, so unless you’re a database expert, you
may find that it outperforms even your handcrafted ADO.NET queries!

Even if you decide to use an ORM in your app, many ORMs

are available for .NET, of which EF Core is one. Whether EF

Core is right for you depends on the features you need and

the tradeoffs you’re willing to make to get them. Section

12.1.3 compares EF Core with Microsoft’s other offering,

Entity Framework, but you could consider many other

alternatives, such as Dapper and NHibernate, each of which

has its own set of tradeoffs.

12.1.3 When should you choose EF Core?

Microsoft designed EF Core as a reimagining of the mature

Entity Framework 6.x (EF 6.x) ORM, which it released in

2008. With many years of development behind it, EF 6.x was

a stable and feature-rich ORM, but it’s no longer under

active development.

EF Core, released in 2016, is a comparatively new project.

The APIs of EF Core are designed to be close to those of EF

6.x—though they aren’t identical—but the core components

have been completely rewritten. You should consider EF Core

to be distinct from EF 6.x; upgrading directly from EF 6.x to

EF Core is nontrivial.

Although Microsoft supports both EF Core and EF 6.x, EF 6.x

isn’t recommended for new .NET applications. There’s little

reason to start a new application with EF 6.x these days, but

the exact tradeoffs will depend largely on your specific app.

If you decide to choose EF 6.x instead of EF Core, make sure

that you understand what you’re sacrificing. Also make sure

that you keep an eye on the guidance and feature

comparison from the EF team at http://mng.bz/GxgA.

If you decide to use an ORM for your app, EF Core is a great

contender. It’s also supported out of the box by various

other subsystems of ASP.NET Core. In chapter 23 you’ll see

how to use EF Core with the ASP.NET Core Identity

authentication system for managing users in your apps.

Before I get into the nitty-gritty of using EF Core in your

app, I’ll describe the application we’re going to be using as

the case study for this chapter. I’ll go over the application

and database details and discuss how to use EF Core to

communicate between the two.

http://mng.bz/GxgA

12.1.4 Mapping a database to your
application code

EF Core focuses on the communication between an

application and a database, so to show it off, you need an

application. This chapter uses the example of a simple

cooking app API that lists recipes and lets you retrieve a

recipe’s ingredients, as shown in figure 12.2. Users can list

all recipes, add new ones, edit recipes, and delete old ones.

Figure 12.2 The recipe app provides an API for managing
recipes. You can view, update, and delete recipes, as well as

create new ones.

This API is obviously a simple one, but it contains all the

database interactions you need with its two entities: Recipe

and Ingredient.

DEFINITION An entity is a .NET class that’s mapped by EF Core to
the database. These are classes you define, typically as POCO
classes, that can be saved and loaded by mapping to database
tables using EF Core.

When you interact with EF Core, you’ll be using primarily

POCO entities and a database context that inherits from the

DbContext EF Core class. The entity classes are the object-

oriented representations of the tables in your database; they

represent the data you want to store in the database. You

use the DbContext in your application both to configure EF

Core and access the database at runtime.

NOTE You can potentially have multiple DbContexts in your
application and even configure them to integrate with different
databases.

When your application first uses EF Core, EF Core creates an

internal representation of the database based on the

DbSet<T> properties on your application’s DbContext and

the entity classes themselves, as shown in figure 12.3.

Figure 12.3 EF Core creates an internal model of your
application’s data model by exploring the types in your code. It

adds all the types referenced in the DbSet<> properties on your
app’s DbContext and any linked types.

For the recipe app, EF Core builds a model of the Recipe

class because it’s exposed on the AppDbContext as a

DbSet<Recipe>. Furthermore, EF Core loops through all

the properties of Recipe, looking for types it doesn’t know

about, and adds them to its internal model. In the app, the

Ingredients collection on Recipe exposes the

Ingredient entity as an ICollection<Ingredient>,

so EF Core models the entity appropriately.

EF Core maps each entity to a table in the database, but it

also maps the relationships between the entities. Each recipe

can have many ingredients, but each ingredient (which has a

name, quantity, and unit) belongs to one recipe, so this is a

many-to-one relationship. EF Core uses that knowledge to

correctly model the equivalent many-to-one database

structure.

NOTE Two different recipes, such as fish pie and lemon chicken, may
use an ingredient that has both the same name and quantity, such as
the juice of one lemon, but they’re fundamentally two different
instances. If you update the lemon chicken recipe to use two lemons,
you wouldn’t want this change to automatically update the fish pie
recipe to use two lemons, too!

EF Core uses the internal model it builds when interacting

with the database to ensure that it builds the correct SQL to

create, read, update, and delete entities.

Right—it’s about time for some code! In section 12.2, you’ll

start building the recipe app. You’ll see how to add EF Core

to an ASP.NET Core application, configure a database

provider, and design your application’s data model.

12.2 Adding EF Core to an application
In this section we focus on getting EF Core installed and

configured in your ASP.NET Core recipe API app. You’ll learn

how to install the required NuGet packages and build the

data model for your application. As we’re talking about EF

Core in this chapter, I’m not going to go into how to create

the application in general. I created a simple minimal API

app as the basis—nothing fancy.

TIP The sample code for this chapter shows the state of the
application at three points in this chapter: at the end of section 12.2,
at the end of section 12.3, and at the end of the chapter. It also
includes examples using both LocalDB and SQLite providers.

Interaction with EF Core in the example app occurs in a

service layer that encapsulates all the data access outside

your minimal API endpoint handlers, as shown in figure

12.4. This design keeps your concerns separated and makes

your services testable.

Figure 12.4 Handling a request by loading data from a database
using EF Core. Interaction with EF Core is restricted to
RecipeService; the endpoint doesn’t access EF Core directly.

Adding EF Core to an application is a multistep process:

1. Choose a database provider, such as Postgres,

SQLite, or MS SQL Server.

2. Install the EF Core NuGet packages.

3. Design your app’s DbContext and entities that

make up your data model.

4. Register your app’s DbContext with the ASP.NET

Core DI container.

5. Use EF Core to generate a migration describing

your data model.

6. Apply the migration to the database to update the

database’s schema.

This process may seem a little daunting already, but I’ll walk

through steps 1-4 in sections 12.2.1-12.2.3 and steps 5-6 in

section 12.3, so it won’t take long. Given the space

constraints of this chapter, I stick to the default conventions

of EF Core in the code I show you. EF Core is far more

customizable than it may initially appear to be, but I

encourage you to stick to the defaults wherever possible,

which will make your life easier in the long run.

The first step in setting up EF Core is deciding which

database you’d like to interact with. It’s likely that a client or

your company’s policy will dictate this decision, but giving

some thought to it is still worthwhile.

12.2.1 Choosing a database provider and
installing EF Core

EF Core supports a range of databases by using a provider

model. The modular nature of EF Core means that you can

use the same high-level API to program against different

underlying databases; EF Core knows how to generate the

necessary implementation-specific code and SQL

statements.

You’ll probably have a database in mind when you start your

application, and you’ll be pleased to know that EF Core has

most of the popular ones covered. Adding support for a

given database involves adding the correct NuGet package

to your .csproj file, such as the following:

PostgreSQL—

Npgsql.EntityFrameworkCore.PostgreSQL

Microsoft SQL Server—

Microsoft.EntityFrameworkCore.SqlServer

MySQL—MySql.Data.EntityFrameworkCore

SQLite—Microsoft.EntityFrameworkCore.SQLite

Some of the database provider packages are maintained by

Microsoft, some are maintained by the open-source

community, and some (such as the Oracle provider) require

a paid license, so be sure to check your requirements. You

can find a list of providers at

https://docs.microsoft.com/ef/core/providers.

You install a database provider in your application in the

same way as any other library: by adding a NuGet package

to your project’s .csproj file and running dotnet restore

from the command line (or letting Visual Studio

automatically restore for you).

https://docs.microsoft.com/ef/core/providers

EF Core is inherently modular, so you’ll need to install

multiple packages. I’m using the SQLite database provider,

so I’ll be using the SQLite packages:

Microsoft.EntityFrameworkCore.SQLite—This

package is the main database provider package for

using EF Core at runtime. It also contains a

reference to the main EF Core NuGet package.

Microsoft.EntityFrameworkCore.Design—This

package contains shared build-time components

for EF Core, required for building the EF Core data

model for your app.

TIP You’ll also want to install tooling to help create and update your
database. I show how to install these tools in section 12.3.1.

Listing 12.1 shows the recipe app’s .csproj file after adding

the EF Core packages. Remember, you add NuGet packages

as PackageReference elements.

Listing 12.1 Installing EF Core in an ASP.NET Core application

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

 <TargetFramework>net7.0</TargetFramework> ❶
 <Nullable>enable</Nullable>

 <ImplicitUsings>enable</ImplicitUsings>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference ❷
 Include="Microsoft.EntityFrameworkCore.SQLite" ❷
 Version="7.0.0" /> ❷
 <PackageReference ❸
 Include="Microsoft.EntityFrameworkCore.Design" ❸

 Version="7.0.0" > ❸
 <IncludeAssets>runtime; build; native; contentfiles; ❹
 Analyzers; buildtransitive</IncludeAssets> ❹
 <PrivateAssets>all</PrivateAssets> ❹
 </PackageReference>

 </ItemGroup>

❶ The app targets .NET 7.0.
❷ Installs the appropriate NuGet package for your selected DB

❸ Contains shared design-time components for EF Core
❹ Added automatically by NuGet

With these packages installed and restored, you have

everything you need to start building the data model for

your application. In section 12.2.2 we’ll create the entity

classes and the DbContext for your recipe app.

12.2.2 Building a data model

In section 12.1.4 I showed an overview of how EF Core

builds up its internal model of your database from the

DbContext and entity models. Apart from this discovery

mechanism, EF Core is flexible in letting you define your

entities the way you want to, as POCO classes.

Some ORMs require your entities to inherit from a specific

base class or require you to decorate your models with

attributes that describe how to map them. EF Core heavily

favors a convention over configuration approach, as you can

see in listing 12.2, which shows the Recipe and

Ingredient entity classes for your app.

TIP The required keyword, used on several properties in listing
12.2, was introduced in C# 11. It’s used here to prevent warnings
about uninitialized non-nullable values. You can read more about how
EF Core interacts with non-nullable types in the documentation at
http://mng.bz/Keoj.

Listing 12.2 Defining the EF Core entity classes

public class Recipe

{

 public int RecipeId { get; set; }

 public required string Name { get; set; }

 public TimeSpan TimeToCook { get; set; }

 public bool IsDeleted { get; set; }

 public required string Method { get; set; }

 public required ICollection<Ingredient> Ingredients { get; set; } ❶
}

public class Ingredient

{

 public int IngredientId { get; set; }

 public int RecipeId { get; set; }

 public required string Name { get; set; }

 public decimal Quantity { get; set; }

 public required string Unit { get; set; }

}

❶ A Recipe can have many Ingredients, represented by ICollection.

These classes conform to certain default conventions that EF

Core uses to build up a picture of the database it’s mapping.

The Recipe class, for example, has a RecipeId property,

and the Ingredient class has an IngredientId property.

EF Core identifies this pattern of an Id suffix as indicating

the primary key of the table.

DEFINITION The primary key of a table is a value that uniquely
identifies the row among all the others in the table. It’s often an int
or a Guid.

http://mng.bz/Keoj

Another convention visible here is the RecipeId property

on the Ingredient class. EF Core interprets this property

to be a foreign key pointing to the Recipe class. When

considered with ICollection<Ingredient> on the

Recipe class, this property represents a many-to-one

relationship, in which each recipe has many ingredients but

each ingredient belongs to a single recipe (figure 12.5).

Figure 12.5 Many-to-one relationships in code are translated to
foreign key relationships between tables.

DEFINITION A foreign key on a table points to the primary key of a
different table, forming a link between the two rows.

Many other conventions are at play here, such as the names

EF Core will assume for the database tables and columns or

the database column types it will use for each property, but

I’m not going to discuss them here. The EF Core

documentation contains details about all these conventions,

as well as how to customize them for your application; see

https://docs.microsoft.com/ef/core/modeling.

TIP You can also use DataAnnotations attributes to decorate
your entity classes, controlling things like column naming and
string length. EF Core will use these attributes to override the
default conventions.

As well as defining the entities, you define the DbContext

for your application. The DbContext is the heart of EF Core

in your application, used for all your database calls. Create a

custom DbContext, in this case called AppDbContext, and

derive from the DbContext base class, as shown in listing

12.3. This class exposes the DbSet<Recipe> so that EF

Core can discover and map the Recipe entity. You can

expose multiple instances of DbSet<> in this way for each

of the top-level entities in your application.

Listing 12.3 Defining the application DbContext

public class AppDbContext : DbContext

{

 public AppDbContext(DbContextOptions<AppDbContext> options) ❶
 : base(options) { } ❶
 public DbSet<Recipe> Recipes { get; set; } ❷
}

❶ The constructor options object, containing details such as the connection string

https://docs.microsoft.com/ef/core/modeling/

❷ You’ll use the Recipes property to query the database.

The AppDbContext for your app is simple, containing a list

of your root entities, but you can do a lot more with it in a

more complex application. If you wanted to, you could

customize how EF Core maps entities to the database, but

for this app you’re going to use the defaults.

NOTE You didn’t list Ingredient on AppDbContext, but EF
Core models it correctly as it’s exposed on the Recipe. You can still
access the Ingredient objects in the database, but you must
navigate via the Recipe entity’s Ingredients property to do so,
as you’ll see in section 12.4.

For this simple example, your data model consists of these

three classes: AppDbContext, Recipe, and Ingredient.

The two entities are mapped to tables and their columns to

properties, and you use the AppDbContext to access them.

NOTE This code-first approach is typical, but if you have an existing
database, you can automatically generate the EF entities and
DbContext instead. (You can find more information in Microsoft’s
“reverse engineering” article at http://mng.bz/mgd4.)

The data model is complete, but you’re not quite ready to

use it: your ASP.NET Core app doesn’t know how to create

your AppDbContext, and your AppDbContext needs a

connection string so that it can talk to the database. In

section 12.2.3 we tackle both of these problems, and we

finish setting up EF Core in your ASP.NET Core app.

http://mng.bz/mgd4

12.2.3 Registering a data context

As with any other service in ASP.Net Core, you should

register your AppDbContext with the dependency injection

(DI) container. When registering your context, you also

configure the database provider and set the connection

string so that EF Core knows how to talk with the database.

You register the AppDbContext with the

WebApplicationBuilder in Program.cs. EF Core provides

a generic AddDbContext<T> extension method for this

purpose; the method takes a configuration function for a

DbContextOptionsBuilder instance. This builder can set

a host of internal properties of EF Core and lets you replace

all the internal services of EF Core if you want.

The configuration for your app is, again, nice and simple, as

you can see in the following listing. You set the database

provider with the UseSqlite extension method, made

available by the Microsoft.EntityFrameworkCore.SQLite

package, and pass it a connection string.

Listing 12.4 Registering a DbContext with the DI container

using Microsoft.EntityFrameworkCore;

WebApplicationBuillder builder = WebApplication.CreateBuilder(args);

var connString = builder.Configuration ❶
 .GetConnectionString("DefaultConnection"); ❶

Builder.Services.AddDbContext<AppDbContext>(❷
 options => options.UseSqlite(connString)); ❸

WebApplication app = builder.Build();

app.Run();

❶ The connection string is taken from configuration, from the ConnectionStrings section.

❷ Registers your app’s DbContext by using it as the generic parameter
❸ Specifies the database provider in the customization options for the DbContext.

NOTE If you’re using a different database provider, such as a
provider for SQL Server, you need to call the appropriate Use*
method on the options object when registering your
AppDbContext.

The connection string is a typical secret, as I discussed in

chapter 10, so loading it from configuration makes sense. At

runtime the correct configuration string for your current

environment is used, so you can use different databases

when developing locally and in production.

TIP You can configure your AppDbContext’s connection string in
other ways, such as with the OnConfiguring method, but I
recommend the method shown here for ASP.NET Core websites.

Now you have a DbContext, named AppDbContext,

registered as a scoped service with the DI container (typical

for database-related services), and a data model

corresponding to your database. Codewise, you’re ready to

start using EF Core, but the one thing you don’t have is a

database! In section 12.3 you’ll see how you can easily use

the .NET CLI to ensure that your database stays up to date

with your EF Core data model.

12.3 Managing changes with
migrations

In this section you’ll learn how to generate SQL statements

to keep your database’s schema in sync with your

application’s data model, using migrations. You’ll learn how

to create an initial migration and use it to create the

database. Then you’ll update your data model, create a

second migration, and use it to update the database

schema.

Managing schema changes for databases, such as when you

need to add a new table or a new column, is notoriously

difficult. Your application code is explicitly tied to a particular

version of a database, and you need to make sure that the

two are always in sync.

DEFINITION Schema refers to how the data is organized in a
database, including the tables, columns, and relationships among
them.

When you deploy an app, normally you can delete the old

code/executable and replace it with the new code. Job done.

If you need to roll back a change, delete that new code, and

deploy an old version of the app.

The difficulty with databases is that they contain data, so

blowing it away and creating a new database with every

deployment isn’t possible. A common best practice is to

version a database’s schema explicitly along with your

application’s code. You can do this in many ways, but

typically you need to store the SQL script that takes the

database from the previous schema to the new schema.

Then you can use a library such as DbUp

(https://github.com/DbUp/DbUp) or FluentMigrator

(https://github.com/fluentmigrator/fluentmigrator) to keep

track of which scripts have been applied and ensure that

your database schema is up to date. Alternatively, you can

use external tools to manage this task.

EF Core provides its own version of schema management

called migrations. Migrations provide a way to manage

changes to a database schema when your EF Core data

model changes.

DEFINITION A migration is a C# code file in your application that
defines how the data model changed—which columns were added,
new entities, and so on. Migrations provide a record over time of how
your database schema evolved as part of your application, so the
schema is always in sync with your app’s data model.

You can use command-line tools to create a new database

from the migrations or to update an existing database by

applying new migrations to it. You can even roll back a

migration, which updates a database to a previous schema.

WARNING Applying migrations modifies the database, so you must
always be aware of data loss. If you remove a table from the
database using a migration and then roll back the migration, the table
will be re-created, but the data it previously contained will be gone
forever!

https://github.com/DbUp/DbUp
https://github.com/fluentmigrator/fluentmigrator

In this section, you’ll see how to create your first migration

and use it to create a database. Then you’ll update your data

model, create a second migration, and use it to update the

database schema.

12.3.1 Creating your first migration

Before you can create migrations, you need to install the

necessary tooling. You have two primary ways to do this:

Package manager console—You can use PowerShell

cmdlets inside Visual Studio’s Package Manager

Console (PMC). You can install them directly from

the PMC or by adding the

Microsoft.EntityFrameworkCore.Tools package to

your project.

.NET tool—You can use cross-platform, command-

line tooling that extends the .NET SDK. You can

install the EF Core .NET tool globally for your

machine by running dotnet tool install --

global dotnet-ef.

In this book I use the cross-platform .NET tools, but if you’re

familiar with EF 6.x or prefer to use the Visual Studio PMC,

there are equivalent commands for the steps you’re going to

take (http://mng.bz/9DK7). You can check that the .NET

tool installed correctly by running dotnet ef, which should

produce a help screen like the one shown in figure 12.6.

http://mng.bz/9DK7

Figure 12.6 Running the dotnet ef command to check that the
.NET EF Core tools are installed correctly

TIP If you get the No executable found matching
command ‘dotnet-ef’ message when running the preceding
command, make sure that you installed the global tool by using
dotnet tool install --global dotnet-ef. In
general, you need to run the dotnet ef tools from the project
folder in which you registered your AppDbContext—not from the
solution-folder level.

With the tools installed and your database context

configured, you can create your first migration by running

the following command from inside your web project folder

and providing a name for the migration (in this case,

InitialSchema):

dotnet ef migrations add InitialSchema

This command creates three files in the Migrations folder in

your project:

Migration file—This file, with the

Timestamp_MigrationName.cs format, describes

the actions to take on the database, such as

creating a table or adding a column. Note that the

commands generated here are database-provider-

specific, based on the database provider

configured in your project.

Migration designer.cs file—This file describes EF

Core’s internal model of your data model at the

point in time when the migration was generated.

AppDbContextModelSnapshot.cs—This file

describes EF Core’s current internal model. This

file is updated when you add another migration, so

it should always be the same as the current

(latest) migration. EF Core can use

AppDbContextModelSnapshot.cs to determine a

database’s previous state when creating a new

migration without interacting with the database

directly.

These three files encapsulate the migration process, but

adding a migration doesn’t update anything in the database

itself. For that task, you must run a different command to

apply the migration to the database.

TIP You can, and should, look inside the migration file EF Core
generates to check what it will do to your database before running the
following commands. Better safe than sorry!

You can apply migrations in any of four ways:

Using the .NET tool

Using the Visual Studio PowerShell cmdlets

In code, by obtaining an instance of your

AppDbContext from the DI container and calling

context.Database.Migrate()

By generating a migration bundle application (see

http://mng.bz/jPyr)

Which method is best for you depends on how you designed

your application, how you’ll update your production

database, and what your personal preference is. I’ll use the

.NET tool for now, but I discuss some of these considerations

in section 12.5. You can apply migrations to a database by

running

dotnet ef database update

from the project folder of your application. I won’t go into

the details on how this command works, but it performs four

steps:

1. Builds your application

2. Loads the services configured in your app’s

Program.cs, including AppDbContext

http://mng.bz/jPyr

3. Checks whether the database in the

AppDbContext connection string exists and if

not, creates it

4. Updates the database by applying any unapplied

migrations

If everything is configured correctly, as in section 12.2,

running this command sets you up with a shiny new

database like the one shown in figure 12.7.

Figure 12.7 Applying migrations to a database creates the
database if it doesn’t exist and updates the database to match
EF Core’s internal data model. The list of applied migrations is
stored in the __EFMigrationsHistory table.

NOTE If you get an error message saying No project was
found when running these commands, check that you’re running
them in your application’s project folder, not the top-level solution
folder.

When you apply the migrations to the database, EF Core

creates the necessary tables in the database and adds the

appropriate columns and keys. You may have also noticed

the __EFMigrationsHistory table, which EF Core uses to store

the names of migrations that it’s applied to the database.

Next time you run dotnet ef database update, EF Core

can compare this table with the list of migrations in your app

and apply only the new ones to your database.

In section 12.3.2 we’ll look at how migrations make it easy

to change your data model and update the database schema

without having to re-create the database from scratch.

12.3.2 Adding a second migration

Most applications inevitably evolve due to increased scope or

simple maintenance. Adding properties to your entities,

adding new entities , and removing obsolete classes are all

likely.

EF Core migrations make this evolution simple. Suppose that

you decide to highlight vegetarian and vegan dishes in your

recipe app by exposing IsVegetarian and IsVegan

properties on the Recipe entity (listing 12.5). Change your

entities to your desired state, generate a migration, and

apply it to the database, as shown in figure 12.8.

Figure 12.8 Creating a second migration and applying it to the
database using the command-line tools

Listing 12.5 Adding properties to the Recipe entity

public class Recipe

{

 public int RecipeId { get; set; }

 public required string Name { get; set; }

 public TimeSpan TimeToCook { get; set; }

 public bool IsDeleted { get; set; }

 public required string Method { get; set; }

 public bool IsVegetarian { get; set; }

 public bool IsVegan { get; set; }

 public required ICollection<Ingredient> Ingredients { get; set; }

}

As shown in figure 12.8, after changing your entities, you

need to update EF Core’s internal representation of your

data model. You perform this update exactly the same way

that you did for the first migration, by calling dotnet ef

migrations add and providing a name for the migration:

dotnet ef migrations add ExtraRecipeFields

This command creates a second migration in your project by

adding the migration file and its .designer.cs snapshot file; it

also updates AppDbContextModelSnapshot.cs (figure 12.9).

Figure 12.9 Adding a second migration adds a new migration file
and a migration Designer.cs file. It also updates

AppDbContextModelSnapshot to match the new migration’s
Designer.cs file.

As before, this command creates the migration’s files but

doesn’t modify the database. You can apply the migration

and update the database by running

dotnet ef database update

This command compares the migrations in your application

with the __EFMigrationsHistory table in your database to see

which migrations are outstanding; then it runs them. EF

Core runs the 20220825201452_ExtraRecipeFields

migration, adding the IsVegetarian and IsVegan fields

to the database, as shown in figure 12.10.

Figure 12.10 Applying the ExtraRecipeFields migration to the
database adds the IsVegetarian and IsVegan fields to the Recipes
table.

Using migrations is a great way to ensure that your database

is versioned along with your app code in source control. You

can easily check out your app’s source code for a historical

point in time and re-create the database schema your

application used at that point.

Migrations are easy to use when you’re working alone or

deploying to a single web server, but even in these cases,

you have important things to consider when deciding how to

manage your databases. For apps with multiple web servers

using a shared database or for containerized applications,

you have even more things to think about.

This book is about ASP.NET Core, not EF Core, so I don’t

want to dwell on database management much. But section

12.5 points out some of the things you need to bear in mind

when using migrations in production.

In section 12.4 we’ll get back to the meaty stuff: defining

our business logic and performing CRUD operations on the

database.

12.4 Querying data from and saving
data to the database

Let’s review where you are in creating the recipe application:

You created a simple data model consisting of

recipes and ingredients.

You generated migrations for the data model to

update EF Core’s internal model of your entities.

You applied the migrations to the database so that

its schema matches EF Core’s model.

In this section you’ll build the business logic for your

application by creating a RecipeService. This service

handles querying the database for recipes, creating new

recipes, and modifying existing ones. As this app has a

simple domain, I’ll be using RecipeService to handle all

the requirements, but in your own apps you may have

multiple services that cooperate to provide the business

logic.

NOTE For simple apps, you may be tempted to move this logic into
your endpoint handlers or Razor Pages. This approach may be fine
for tiny apps, but I encourage you to resist the urge generally;
extracting your business logic to other services decouples the HTTP-
centric nature of your handlers from the underlying business logic,
whichoften makes your business logic easier to test and more
reusable.

Our database doesn’t have any data in it yet, so we’d better

start by creating a recipe.

12.4.1 Creating a record

In this section you’re going to build functionality to let users

create a recipe by using the API. Clients send all the details

of the recipe in the body of a POST request to an endpoint in

your app. The endpoint uses model binding and validation

attributes to confirm that the request is valid, as you learned

in chapter 7.

If the request is valid, the endpoint handler calls

RecipeService to create the new Recipe object in the

database. As EF Core is the topic of this chapter, I’m going

to focus on this service alone, but you can always check out

the source code for this book if you want to see how

everything fits together in a minimal API application.

The business logic for creating a recipe in this application is

simple: there is no logic! Copy the properties from the

command binding model provided in the endpoint handler to

a Recipe entity and its Ingredients, add the Recipe

object to AppDbContext, and save it in the database, as

shown in figure 12.11.

Figure 12.11 Calling the POST endpoint and creating a new entity.
A Recipe is created from the CreateRecipeCommand model and is
added to the DbContext. EF Core generates the SQL to add a new
row to the Recipes table in the database.

WARNING Many simple, equivalent sample applications using EF or
EF Core allow you to bind directly to the Recipe entity as the model
in your endpoint. Unfortunately, this approach exposes a security
vulnerability known as overposting, which is bad practice. If you want

to avoid the boilerplate mapping code in your applications, consider
using a library such as AutoMapper (http://automapper.org). For more
details on overposting, see my blog post on the subject at
http://mng.bz/d48O.

Creating an entity in EF Core involves adding a new row to

the mapped table. For your application, whenever you create

a new Recipe, you also add the linked Ingredient

entities. EF Core takes care of linking all these entities

correctly by creating the correct RecipeId for each

Ingredient in the database.

All interactions with EF Core and the database start with an

instance of AppDbContext, which typically is DI-injected

via the constructor. Creating a new entity requires three

steps:

1. Create the Recipe and Ingredient entities.

2. Add the entities to EF Core’s list of tracked entities

using _context.Add(entity).

3. Execute the SQL INSERT statements against the

database, adding the necessary rows to the

Recipe and Ingredient tables, by calling

_context.SaveChangesAsync().

TIP There are sync and async versions of most of the EF Core
commands that involve interacting with the database, such as
SaveChanges() and SaveChangesAsync(). In general, the

http://automapper.org/
http://mng.bz/d48O

async versions will allow your app to handle more concurrent
connections, so I tend to favor them whenever I can use them.

Listing 12.6 shows these three steps in practice. The bulk of

the code in this example involves copying properties from

CreateRecipeCommand to the Recipe entity. The

interaction with the AppDbContext consists of only two

methods: Add() and SaveChangesAsync().

Listing 12.6 Creating a Recipe entity in the database in
RecipeService

readonly AppDbContext _context; ❶
public async Task<int> CreateRecipe(CreateRecipeCommand cmd) ❷
{

 var recipe = new Recipe ❸
 { ❸
 Name = cmd.Name, ❸
 TimeToCook = new TimeSpan(❸
 cmd.TimeToCookHrs, cmd.TimeToCookMins, 0), ❸
 Method = cmd.Method, ❸
 IsVegetarian = cmd.IsVegetarian, ❸
 IsVegan = cmd.IsVegan, ❸
 Ingredients = cmd.Ingredients.Select(i => ❸
 new Ingredient ❹
 { ❹
 Name = i.Name, ❹
 Quantity = i.Quantity, ❹
 Unit = i.Unit, ❹
 }).ToList() ❹
 };

 _context.Add(recipe); ❺
 await _context.SaveChangesAsync(); ❻
 return recipe.RecipeId; ❼
}

❶ An instance of the AppDbContext is injected in the class constructor using DI.

❷ CreateRecipeCommand is passed in from the endpoint handler.

❸ Creates a Recipe by mapping from the command object to the Recipe entity
❹ Maps each CreateIngredientCommand onto an Ingredient entity

❺ Tells EF Core to track the new entities
❻ Tells EF Core to write the entities to the database; uses the async version of the

command

❼ EF Core populates the RecipeId field on your new Recipe when it’s saved.

If a problem occurs when EF Core tries to interact with your

database—you haven’t run the migrations to update the

database schema, for example—this code throws an

exception. I haven’t shown it here, but it’s important to

handle these exceptions in your application so you don’t

present an ugly error message to user when things go

wrong.

Assuming that all goes well, EF Core updates all the

autogenerated IDs of your entities (RecipeId on Recipe,

and both RecipeId and IngredientId on Ingredient).

Return the recipe ID to the endpoint handler so the handler

can use it—to return the ID in the API response, for

example.

TIP The DbContext type is an implementation of both the unit-of-
work and repository patterns, so you generally don’t need to
implement these patterns manually in your apps. You can read more
about these patterns at https://martinfowler.com/eaaCatalog.

And there you have it. You’ve created your first entity with

EF Core. In section 12.4.2 we’ll look at loading these entities

from the database so you can fetch them all in a list.

https://martinfowler.com/eaaCatalog/

12.4.2 Loading a list of records

Now that you can create recipes, you need to write the code

to view them. Luckily, loading data is simple in EF Core,

relying heavily on LINQ methods to control the fields you

need. For your app, you’ll create a method on

RecipeService that returns a summary view of a recipe,

consisting of RecipeId, Name, and TimeToCook as a

RecipeSummaryViewModel, as shown in figure 12.12.

Figure 12.12 Calling the GET list endpoint and querying the
database to retrieve a list of RecipeSummaryViewModels. EF Core
generates the SQL to retrieve the necessary fields from the
database and maps them to view model objects.

NOTE Creating a view model is technically a UI concern rather than a
business-logic concern. I’m returning a view model directly from
RecipeService here mostly to hammer home the fact that you
shouldn’t be using EF Core entities directly in your endpoint’s public
API. Alternatively, you might return the Recipe entity directly from

the RecipeService and then build and return the
RecipeSummaryViewModel inside your endpoint handler code.

The GetRecipes method in RecipeService is

conceptually simple and follows a common pattern for

querying an EF Core database, as shown in figure 12.13. EF

Core uses a fluent chain of LINQ commands to define the

query to return on the database. The DbSet<Recipe>

property on AppDataContext is an IQueryable, so you

can use all the usual Select() and Where() clauses that

you would with other IQueryable providers. EF Core

converts these LINQ methods into a SQL statement to query

the database when you call an execute function such as

ToListAsync(), ToArrayAsync(), or SingleAsync(),

or their non-async brethren.

Figure 12.13 The three parts of an EF Core database query

You can also use the Select() extension method to map to

objects other than your entities as part of the SQL query.

You can use this technique to query the database efficiently

by fetching only the columns you need.

Listing 12.7 shows the code to fetch a list of

RecipeSummaryViewModels, following the same basic

pattern as figure 12.12. It uses a Where LINQ expression to

filter out recipes marked as deleted and a Select clause to

map to the view models. The ToListAsync() command

instructs EF Core to generate the SQL query, execute it on

the database, and build RecipeSummaryViewModels from

the data returned.

Listing 12.7 Loading a list of items using EF Core in
RecipeService

public async Task<ICollection<RecipeSummaryViewModel>> GetRecipes()

{

 return await _context.Recipes ❶
 .Where(r => !r.IsDeleted)

 .Select(r => new RecipeSummaryViewModel ❷
 { ❷
 Id = r.RecipeId, ❷
 Name = r.Name, ❷
 TimeToCook = $"{r.TimeToCook.TotalMinutes}mins" ❷
 })

 .ToListAsync(); ❸
}

❶ A query starts from a DbSet property.
❷ EF Core queries only the Recipe columns it needs to map the view model correctly.

❸ Executes the SQL query and creates the final view models

Notice that in the Select method you convert the

TimeToCook property from a TimeSpan to a string by

using string interpolation:

TimeToCook = $"{r.TimeToCook.TotalMinutes}mins"

I said before that EF Core converts the series of LINQ

expressions to SQL, but that statement is a half-truth: EF

Core can’t or doesn’t know how to convert some expressions

to SQL. In those cases, such as this example, EF Core finds

the fields from the DB that it needs to run the expression on

the client side, selects them from the database, and then

runs the expression in C#. This approach lets you combine

the power and performance of database-side evaluation

without compromising the functionality of C#.

WARNING Client-side evaluation is both powerful and useful but has
the potential to cause problems. In general, recent versions of EF
Core throw an exception if a query requires dangerous client-side
evaluation, ensuring (for example) that you can’t accidentally return
all records to the client before filtering. For more examples, including
ways to avoid these problems, see the documentation at
http://mng.bz/zxP6.

At this point, you have a list of records displaying a

summary of the recipe’s data, so the obvious next step is

loading the detail for a single record.

12.4.3 Loading a single record

For most intents and purposes, loading a single record is the

same as loading a list of records. Both approaches have the

same common structure you saw in figure 12.13, but when

you’re loading a single record, you typically use a Where

clause that restricts the data to a single entity.

Listing 12.8 shows the code to fetch a recipe by ID, following

the same basic pattern as before (figure 12.12). It uses a

Where() LINQ expression to restrict the query to a single

http://mng.bz/zxP6

recipe, where RecipeId == id, and a Select clause to

map to RecipeDetailViewModel. The

SingleOrDefaultAsync() clause causes EF Core to

generate the SQL query, execute it on the database, and

build the view model.

NOTE SingleOrDefaultAsync()throws an exception if the
previous Where clause returns more than one record.

Listing 12.8 Loading a single item using EF Core in RecipeService

public async Task<RecipeDetailViewModel> GetRecipeDetail(int id) ❶
{

 return await _context.Recipes ❷
 .Where(x => x.RecipeId == id) ❸
 .Select(x => new RecipeDetailViewModel ❹
 { ❹
 Id = x.RecipeId, ❹
 Name = x.Name, ❹
 Method = x.Method, ❹
 Ingredients = x.Ingredients ❺
 .Select(item => new RecipeDetailViewModel.Item ❺
 { ❺
 Name = item.Name, ❺
 Quantity = $"{item.Quantity} {item.Unit}" ❺
 }) ❺
 })

 .SingleOrDefaultAsync(); ❻
}

❶ The id of the recipe to load is passed as a parameter.

❷ As before, a query starts from a DbSet property.
❸ Limits the query to the recipe with the provided id

❹ Maps the Recipe to a RecipeDetailViewModel
❺ Loads and maps linked Ingredients as part of the same query

❻ Executes the query and maps the data to the view model

Notice that as well as mapping the Recipe to a

RecipeDetailViewModel, you map the related

Ingredients for a Recipe, as though you’re working with

the objects directly in memory. One advantage of using an

ORM is that you can easily map child objects and let EF Core

decide how best to build the underlying queries to fetch the

data.

NOTE EF Core logs all the SQL statements it runs as
LogLevel.Information events by default, so you can easily
see what queries are running against the database.

Your app is definitely shaping up. You can create new

recipes, view them all in a list, and drill down to view

individual recipes with their ingredients and method. Soon,

though, someone’s going to introduce a typo and want to

change their data, so you’ll have to implement the U in

CRUD: update.

12.4.4 Updating a model with changes

Updating entities when they’ve changed generally is the

hardest part of CRUD operations, as there are so many

variables. Figure 12.14 shows an overview of this process as

it applies to your recipe app.

Figure 12.14 Updating an entity involves three steps: read the
entity using EF Core, update the properties of the entity, and call
SaveChangesAsync() on the DbContext to generate the SQL to
update the correct rows in the database.

I’m not going to handle the relationship aspect in this book

because that problem generally is complex, and how you

tackle it depends on the specifics of your data model.

Instead, I’ll focus on updating properties on the Recipe

entity itself.

NOTE For a detailed discussion of handling relationship updates in
EF Core, see Entity Framework Core in Action, 2nd ed., by Jon P.
Smith (Manning, 2021; http://mng.bz/w9D2).

For web applications, when you update an entity you

typically follow the steps outlined in figure 12.14:

1. Read the entity from the database.

2. Modify the entity’s properties.

3. Save the changes to the database.

You’ll encapsulate these three steps in a method on

RecipeService called UpdateRecipe. This method takes

an UpdateRecipeCommand parameter and contains the

code to change the Recipe entity.

NOTE As with the Create command, you don’t modify the entities
directly in the minimal API endpoint handler, ensuring that you keep
the UI/API concern separate from the business logic.

Listing 12.9 shows the RecipeService.UpdateRecipe

method, which updates the Recipe entity. It performs the

three steps we defined previously to read, modify, and save

the entity. I’ve extracted the code to update the recipe with

the new values to a helper method for clarity.

Listing 12.9 Updating an existing entity with EF Core in
RecipeService

http://mng.bz/w9D2

public async Task UpdateRecipe(UpdateRecipeCommand cmd)

{

 var recipe = await _context.Recipes.FindAsync(cmd.Id); ❶
 if(recipe is null) { ❷
 throw new Exception("Unable to find the recipe"); ❷
 } ❷
 UpdateRecipe(recipe, cmd); ❸
 await _context.SaveChangesAsync(); ❹
}

static void UpdateRecipe(Recipe recipe, UpdateRecipeCommand cmd) ❺
{ ❺
 recipe.Name = cmd.Name; ❺
 recipe.TimeToCook = ❺
 new TimeSpan(cmd.TimeToCookHrs, cmd.TimeToCookMins, 0); ❺
 recipe.Method = cmd.Method; ❺
 recipe.IsVegetarian = cmd.IsVegetarian; ❺
 recipe.IsVegan = cmd.IsVegan; ❺
} ❺

❶ Find is exposed directly by Recipes and simplifies reading an entity by id.

❷ If an invalid id is provided, recipe will be null.
❸ Sets the new values on the Recipe entity

❹ Executes the SQL to save the changes to the database
❺ A helper method for setting the new properties on the Recipe entity

In this example I read the Recipe entity using the

FindAsync(id) method exposed by DbSet. This simple

helper method loads an entity by its ID—in this case,

RecipeId. I could have written a similar query with LINQ:

_context.Recipes.Where(r=>r.RecipeId == cmd.Id).FirstOrDefault();

Using FindAsync() or Find() is a little more declarative

and concise, however.

TIP Find is a bit more complicated. Find first checks to see
whether the entity is already being tracked in EF Core’s
DbContext. If so (because the entity was previously loaded in this
request), the entity is returned immediately without calling the
database. Using Find can obviously be faster if the entity is tracked,
but it can be slower if you know that the entity isn’t being tracked yet.

You may wonder how EF Core knows which columns to

update when you call SaveChangesAsync(). The simplest

approach would be to update every column. If the field

hasn’t changed, it doesn’t matter if you write the same value

again. But EF Core is cleverer than that.

EF Core internally tracks the state of any entities it loads

from the database and creates a snapshot of all the entity’s

property values so that it can track which ones have

changed. When you call SaveChanges(), EF Core

compares the state of any tracked entities (in this case, the

Recipe entity) with the tracking snapshot. Any properties

that have been changed are included in the UPDATE

statement sent to the database, and unchanged properties

are ignored.

NOTE EF Core provides other mechanisms to track changes, as well
as options to disable change tracking. See the documentation or
chapter 3 of Jon P. Smith’s Entity Framework Core in Action, 2nd ed.,
(Manning, 2021; http://mng.bz/q9PJ) for details. You can view which
details the DbContext is tracking by accessing
DbContext.ChangeTracer.DebugView, as described in the
documentation at http://mng.bz/8rlz.

http://mng.bz/q9PJ
http://mng.bz/8rlz

With the ability to update recipes, you’re almost done with

your recipe app. “But wait!” I hear you cry. “We haven’t

handled the D in CRUD: delete!” That’s true, but in reality,

I’ve found only a few occasions to delete data. Let’s consider

the requirements for deleting a recipe from the application:

You need to provide an API that deletes a recipe.

After a recipe is deleted, it must not appear in the

recipe list and can’t be retrieved.

You could achieve these requirements by deleting the recipe

from the database, but the problem with data is that when

it’s gone, it’s gone! What if a user accidentally deletes a

record? Also, deleting a row from a relational database

typically has implications on other entities. You can’t delete a

row from the Recipe table in your application, for example,

without also deleting all the Ingredient rows that

reference it, thanks to the foreign-key constraint on

Ingredient.RecipeId.

EF Core can easily handle these true deletion scenarios for

you with the DbContext .Remove(entity) command,

but often what you mean when you find a need to delete

data is to archive it or hide it from the UI. A common

approach to handling this scenario is to include some sort of

“Is this entity deleted?” flag on your entity, such as the

IsDeleted flag I included on the Recipe entity:

public bool IsDeleted { get; set; }

If you take this approach, deleting data suddenly becomes

simpler, as it’s nothing more than an update to the entity—

no more problems of lost data and no more referential-

integrity problems.

NOTE The main exception I’ve found to this pattern is when you’re
storing your users’ personally identifying information. In these cases,
you may be duty-bound (and potentially legally bound) to scrub their
information from your database on request.

With this approach, you can create a delete method on

RecipeService that updates the IsDeleted flag, as

shown in listing 12.10. In addition, make sure that you have

Where() clauses in all the other methods in your

RecipeService to ensure you can’t return a deleted

Recipe, as you saw in listing 12.9 for the GetRecipes()

method.

Listing 12.10 Marking entities as deleted in EF Core

public async Task DeleteRecipe(int recipeId)

{

 var recipe = await _context.Recipes.FindAsync(recipeId); ❶
 if(recipe is null) { ❷
 throw new Exception("Unable to find the recipe"); ❷
 } ❷
 recipe.IsDeleted = true; ❸
 await _context.SaveChangesAsync(); ❹
}

❶ Fetches the Recipe entity by id

❷ If an invalid id is provided, recipe will be null.
❸ Marks the Recipe as deleted

❹ Executes the SQL to save the changes to the database

This approach satisfies the requirements—it removes the

recipe from exposure by the API—but it simplifies several

things. This soft-delete approach won’t work for all

scenarios, but I’ve found it to be a common pattern in

projects I’ve worked on.

TIP EF Core has a handy feature called global query filters. These
filters allow you to specify a Where clause at the model level. You
could ensure, for example, that EF Core never loads Recipes for
which IsDeleted is true. This feature is also useful for
segregating data in a multitenant environment. See the
documentation for details: http://mng.bz/EQxd.

We’re almost at the end of this chapter on EF Core. We’ve

covered the basics of adding EF Core to your project and

using it to simplify data access, but you’ll likely need to learn

more about EF Core as your apps become more complex. In

the final section of this chapter, I’d like to pinpoint a few

things you need to take into consideration before using EF

Core in your own applications so that you’ll be familiar with

some of the problems you’ll face as your apps grow.

12.5 Using EF Core in production
applications

This book is about ASP.NET Core, not EF Core, so I didn’t

want to spend too much time exploring EF Core. This

chapter should’ve given you enough information to get up

and running, but you definitely need to learn more before

http://mng.bz/EQxd

you even think about putting EF Core into production. As

I’ve said several times, I recommend reading Entity

Framework Core in Action, 2nd ed., by Jon P. Smith

(Manning, 2021), or exploring the EF Core documentation

site at https://docs.microsoft.com/ef/core.

The following topics aren’t essential for getting started with

EF Core, but you’ll quickly run up against them if you build a

production-ready app. This section isn’t a prescriptive guide

to tackling each of these items, but more a set of things to

consider before you dive into production:

Scaffolding of columns—EF Core uses conservative

values for things like string columns by allowing

strings of large or unlimited length. In practice,

you may want to restrict these and other data

types to sensible values.

Validation—You can decorate your entities with

DataAnnotations validation attributes, but EF

Core won’t validate the values automatically before

saving to the database. This behavior differs from

EF 6.x behavior, in which validation was automatic.

Handling concurrency—EF Core provides a few

ways to handle concurrency, which occurs when

multiple users attempt to update an entity at the

same time. One partial solution is to use

Timestamp columns on your entities.

https://docs.microsoft.com/ef/core/

Handling errors—Databases and networks are

inherently flaky, so you’ll always have to account

for transient errors. EF Core includes various

features to maintain connection resiliency by

retrying on network failures.

Synchronous vs. asynchronous—EF Core provides

both synchronous and asynchronous commands

for interacting with the database. Often, async is

better for web apps, but this argument has

nuances that make it impossible to recommend

one approach over the other in all situations.

EF Core is a great tool for being productive in writing data-

access code, but some aspects of working with a database

are unavoidably awkward. Database management is one of

the thorniest problems to tackle. Most web applications use

some sort of database, so the following problems are likely

to affect ASP.NET Core developers at some point:

Automatic migrations—If you deploy your app to

production automatically as part of some sort of

DevOps pipeline, you’ll inevitably need some way

to apply migrations to a database automatically.

You can tackle this situation in several ways, such

as scripting the .NET tool, applying migrations in

your app’s startup code, using EF Core bundles, or

using a custom tool. Each approach has its pros

and cons.

Multiple web hosts—One specific consideration is

whether you have multiple web servers hosting

your app, all pointing to the same database. If so,

applying migrations in your app’s startup code

becomes harder, as you must ensure that only one

app can migrate the database at a time.

Making backward-compatible schema changes—A

corollary of the multiple-web-host approach is that

you’ll often be in a situation in which your app

accesses a database that has a newer schema

than the app thinks. Normally, you should

endeavor to make schema changes backward-

compatible wherever possible.

Storing migrations in a different assembly—In this

chapter I included all my logic in a single project,

but in larger apps, data access is often in a

different project from the web app. For apps with

this structure, you must use slightly different

commands when using .NET CLI or PowerShell

cmdlets.

Seeding data—When you first create a database,

you often want it to have some initial seed data,

such as a default user. EF 6.x had a mechanism for

seeding data built in, whereas EF Core requires

you to seed your database explicitly yourself.

How you choose to handle each of these problems depends

on the infrastructure and the deployment approach you take

with your app. None is particularly fun to tackle, but all are

unfortunate necessities. Take heart, though; all these

problems can be solved one way or another!

That brings us to the end of this chapter on EF Core and part

2 of the book. In part 3 we move away from minimal APIs to

look at building server-rendered page-based applications

with Razor Pages.

Summary
EF Core is an ORM that lets you interact with a

database by manipulating standard POCO classes

called entities in your application, reducing the

amount of SQL and database knowledge you need

to be productive.

EF Core maps entity classes to tables, properties

on the entity to columns in the tables, and

instances of entity objects to rows in these tables.

Even if you use EF Core to avoid working with a

database directly, you need to keep this mapping

in mind.

EF Core uses a database-provider model that lets

you change the underlying database without

changing any of your object manipulation code. EF

Core has database providers for Microsoft SQL

Server, SQLite, PostgreSQL, MySQL, and many

others.

EF Core is cross-platform and has good

performance for an ORM, but it has a different

feature set from EF 6.x. Nevertheless, EF Core is

recommended for all new applications after EF 6.x.

EF Core stores an internal representation of the

entities in your application and how they map to

the database, based on the DbSet<T> properties

on your application’s DbContext. EF Core builds a

model based on the entity classes themselves and

any other entities they reference.

You add EF Core to your app by adding a NuGet

database provider package. You should also install

the design packages for EF Core, which works in

conjunction with the .NET tools to generate and

apply migrations to a database.

EF Core includes many conventions for how

entities are defined, such as primary keys and

foreign keys. You can customize how entities are

defined declaratively, by using

DataAnnotations, or by using a fluent API.

Your application uses a DbContext to interact

with EF Core and the database. You register it with

a DI container using AddDbContext<T>, defining

the database provider and providing a connection

string. This approach makes your DbContext

available in the DI container throughout your app.

EF Core uses migrations to track changes to your

entity definitions. They’re used to ensure that your

entity definitions, EF Core’s internal model, and

the database schema match.

After changing an entity, you can create a

migration using either the .NET tool or Visual

Studio PowerShell cmdlets. To create a new

migration with the .NET command-line interface,

run dotnet ef migrations add NAME in your

project folder, where NAME is the name you want

to give the migration. This command compares

your current DbContext snapshot with the

previous version and generates the necessary SQL

statements to update your database.

You can apply the migration to the database by

using dotnet ef database update. This

command creates the database if it doesn’t

already exist and applies any outstanding

migrations.

EF Core doesn’t interact with the database when it

creates migrations—only when you update the

database explicitly—so you can still create

migrations when you’re offline.

You can add entities to an EF Core database by

creating a new entity, e, calling

_context.Add(e) on an instance of your

application’s data context, _context, and calling

_context.SaveChangesAsync(). This

technique generates the necessary SQL INSERT

statements to add the new rows to the database.

You can load records from a database by using the

DbSet<T> properties on your app’s DbContext.

These properties expose the IQueryable

interface so you can use LINQ statements to filter

and transform the data in the database before it’s

returned.

Updating an entity consists of three steps: reading

the entity from the database, modifying the entity,

and saving the changes to the database. EF Core

keeps track of which properties have changed so

that it can optimize the SQL it generates.

You can delete entities in EF Core by using the

Remove method, but you should consider carefully

whether you need this function. Often, a soft

delete using an IsDeleted flag on entities is

safer and easier to implement.

This chapter covers only a subset of the problems

you must consider when using EF Core in your

applications. Before using it in a production app,

you should consider (among other things) the data

types generated for fields, validation, handling

concurrency, the seeding of initial data, handling

migrations on a running application, and handling

migrations in a web-farm scenario.

Part 3 Generating HTML with Razor
Pages and MVC
In parts 1 and 2 we looked in detail at how to create

JavaScript Object Notation (JSON) API applications using

minimal APIs. You learned how to configure your app from

multiple sources, how to use dependency injection to

reduce coupling in your app, and how to document your

APIs with OpenAPI.

API apps are everywhere these days. Mobile apps use

them; client-side single-page applications (SPAs) like

Angular, React, and Blazor use them; even other apps use

them for server-to-server communication. But in many

cases you don’t need separate server-side and client-side

apps. You could create a server-rendered app instead.

With server-rendering, your application generates the HTML

on the server and the browser displays this HTML directly in

the browser; no extra client-side framework is required. You

can still add dynamic client-side behavior by using

JavaScript, but fundamentally each page in your app is a

standalone request and response, creating a simpler

developer experience.

In part 3 you’ll learn about the Razor Pages and Model-

View-Controller (MVC) frameworks that ASP.NET Core uses

to create server-rendered apps. In chapters 13 through 16

we’ll examine the behavior of the Razor Pages framework

itself, along with routing and model binding. In chapters 17

and 18 we’ll look at how you can build the UI for your

application by using the Razor syntax and Tag Helpers so

that users can navigate and interact with your app.

In chapter 19 you’ll learn how to use the Model-View-

Controller (MVC) framework directly instead of Razor Pages.

You’ll learn how to use MVC controllers to build server-

rendered apps and when to choose MVC controllers instead

of Razor Pages. In chapter 20 you’ll learn to how to use

MVC controllers to build API applications, as an alternative

to minimal APIs. Finally, in chapters 21 and 22 you’ll learn

how to refactor your apps to extract common code out of

your Razor Pages and API controllers using filters.

13 Creating a website with Razor
Pages

This chapter covers

Getting started with Razor Pages
Introducing Razor Pages and the Model-View-Controller (MVC)
design pattern
Using Razor Pages in ASP.NET Core

So far in this book you’ve built one type of ASP.NET Core

application: minimal API apps that return JavaScript Object

Notation (JSON). In this chapter you’ll learn how to build

server-rendered, page-based applications using Razor Pages.

Most ASP.NET Core apps fall into one of three categories:

An API designed for consumption by another

machine or in code—Web apps often serve as an

API to backend server processes, to a mobile app,

or to a client framework for building single-page

applications (SPAs). In this case your application

serves data in machine-readable formats such as

JSON or Extensible Markup Language (XML)

instead of the human-focused HTML output.

An HTML web application designed for direct use

by users—If the application is consumed directly

by users, as in a traditional web application, Razor

Pages is responsible for generating the web pages

that the user interacts with. It handles requests for

URLs, receives data posted via forms, and

generates the HTML that enables users to view and

navigate your app.

Both an HTML web application and an API—It’s

also possible to have applications that serve both

needs, which can let you cater to a wider range of

clients while sharing logic in your application.

In this chapter you’ll learn how ASP.NET Core uses Razor

Pages to handle the second of these options: creating

server-side rendered HTML pages. We’ll get started quickly,

using a template to create a simple Razor Pages application

and comparing the features of a Razor Pages app with the

minimal API apps you’ve seen so far. In section 13.2 we look

at a more complex example of a Razor Page.

Next, we take a step back in section 13.3 to look at the MVC

design pattern. I discuss some of the benefits of using this

pattern, and you’ll learn why it’s been adopted by so many

web frameworks as a model for building maintainable

applications.

In section 13.4 you’ll learn how the MVC design pattern

applies to ASP.NET Core. The MVC pattern is a broad concept

that can be applied in a variety of situations, but the use

case in ASP.NET Core is specifically as a UI abstraction. You’ll

see how Razor Pages implements the MVC design pattern

and builds on top of the ASP.NET Core MVC framework.

In this chapter I’ll try to prepare you for each of the

upcoming topics, but you may find that some of the behavior

feels a bit like magic at this stage. Try not to become too

concerned about exactly how all the Razor Pages pieces tie

together yet; focus on the specific concepts being addressed

and how they tie into concepts you’ve already met. We’ll

start by creating a Razor Pages app to explore.

13.1 Your first Razor Pages application
In this section you’ll get started with Razor Pages by

creating a new application from a template. After you’ve

created the app and had a look around, we’ll look at some of

the similarities and differences compared with a minimal API

application. You’ll learn about the extra middleware added in

the default template, look at how HTML is generated by

Razor Pages, and take a look at the Razor Page equivalent of

minimal API endpoint handlers: page handlers.

13.1.1 Using the Web Application template

Using a template is a quick way to get an application

running, so we’ll take that approach using the ASP.NET Core

Web App template. To create a Razor Pages application in

Visual Studio, perform the following steps:

1. Choose Create a New Project from the splash

screen or choose File > New > Project from the

main Visual Studio screen.

2. From the list of templates, choose ASP.NET Core

Web App, ensuring you select the C# language

template.

3. On the next screen, enter a project name,

location, and solution name, and click Next. You

might use WebApplication1 as both the project and

solution name, for example.

4. On the following screen (figure 13.1), do the

following:

Select .NET 7.0. If this option isn’t available,

ensure that you have .NET 7 installed. See

appendix A for details on configuring your

environment.

Ensure that Configure for HTTPS is checked.

Ensure that Enable Docker is unchecked.

Ensure that Do Not Use Top-level

Statements is unchecked.

Choose Create.

Figure 13.1 The additional information screen. This screen
follows the Configure Your New Project dialog box and lets you
customize the template that generates your application.

If you’re not using Visual Studio, you can create a similar

template using the .NET command-line interface (CLI).

Create a folder to hold your new project. Open a PowerShell

or cmd prompt in the folder (on Windows) or a terminal

session (on Linux or macOS), and run the commands in the

following listing.

Listing 13.1 Creating a new Razor Page application with the .NET
CLI

dotnet new sln -n WebApplication1 ❶
dotnet new razor -o WebApplication1 ❷
dotnet sln add WebApplication1 ❸

❶ Creates a solution file called WebApplication1 in the current folder

❷ Creates an ASP.NET Core Razor Pages project in a subfolder, WebApplication1
❸ Adds the new project to the solution file

Whether you use Visual Studio or the .NET CLI, now you can

build and run your application. Press F5 to run your app

using Visual Studio, or use dotnet run in the project

folder. This command opens the appropriate URL in a web

browser and displays the basic Welcome page, shown in

figure 13.2.

Figure 13.2 The output of your new Razor Pages application. The
template chooses a random port to use for your application’s
URL, which is opened automatically in the browser when you
run the app.

By default, this page shows a simple Welcome banner and a

link to the official Microsoft documentation for ASP.NET Core.

At the top of the page are two links: Home and Privacy. The

Home link is the page you’re currently on. Clicking Privacy

takes you to a new page, shown in figure 13.3. As you’ll see

in section 13.1.3, you can use Razor Pages in your

application to define these two pages and build the HTML

they display.

Figure 13.3 The Privacy page of your application. You can
navigate between the two pages of the application using the
Home and Privacy links in the application’s header. The app
generates the content of the pages using Razor Pages.

At this point, you should notice a couple of things:

The header containing the links and the application

title, WebApplication1, is the same on both pages.

The title of the page, as shown in the tab of the

browser, changes to match the current page. You’ll

see how to achieve these features in chapter 17,

when we discuss the rendering of HTML using

Razor templates.

There isn’t any more to the user experience of the

application at this stage. Click around a little, and when

you’re happy with the behavior of the application, return to

your editor, and look at the files included in the template.

This Razor Pages app has much the same structure as the

minimal API applications you’ve created throughout this

book, as shown in figure 13.4. The overall structure is

identical apart from two extra folders you haven’t seen

before:

Pages folder—This folder contains the Razor Pages

files that define the various pages in your web

app, including the Home and Privacy pages you’ve

already seen.

wwwroot folder—This folder is special in that it’s

the only folder in your application that browsers

are allowed to access directly when browsing your

web app. You can store your Cascading Style

Sheets (CSS), JavaScript, images, or static HTML

files here, and the static file middleware will serve

them to browsers when requested. The template

creates subfolders inside wwwroot, but you don’t

have to use them; you can structure your static

files however you want inside wwwroot.

Figure 13.4 Comparing the project structure of a minimal API
app with a Razor Pages app. The Razor Pages app contains all
the same files and folders, as well as the Pages folder for the
Razor Page definitions and the wwwroot file for static files that
are served directly to the browser.

Aside from these extra files, the only other difference

between a Razor Pages app and a minimal API app is the

Program.cs file. In section 13.1.2 you’ll see that the Razor

Pages app uses the same basic structure in Program.cs but

adds the extra services and middleware used in a typical

Razor Pages app.

13.1.2 Adding and configuring services

One of the nice things about working with ASP.NET Core

applications is that the setup code is quite similar even for

completely different application models. No matter whether

you’re creating a Razor Pages application or using minimal

APIs, your Program.cs contains the same six steps:

1. Create a WebApplicationBuilder instance.

2. Register the required services with the

WebApplicationBuilder.

3. Call Build() on the builder instance to create a

WebApplication instance.

4. Add middleware to the WebApplication to

create a pipeline.

5. Map the endpoints in your application.

6. Call Run() on the WebApplication to start the

server and handle requests.

The following listing shows the Program.cs file for the Razor

Pages app. This file uses a lot more middleware than you’ve

seen previously, but the overall structure should be familiar.

Listing 13.2 The Program.cs file for a Razor Pages app

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages(); ❶

WebApplication app = builder.Build();

if (!app.Environment.IsDevelopment()) ❷
{ ❷
 app.UseExceptionHandler("/Error"); ❷
 app.UseHsts() ❷
} ❷

app.UseHttpsRedirection(); ❸
app.UseStaticFiles(); ❸
app.UseRouting(); ❸
app.UseAuthorization(); ❸

app.MapRazorPages(); ❹

app.Run();

❶ Registers the required services to use the Razor Pages feature

❷ Conditionally adds middleware depending on the runtime environment
❸ Additional middleware can be added to the middleware pipeline.

❹ Registers each Razor Page as an endpoint in your application

In chapter 4 you learned about middleware and the

importance of ordering when adding middleware to the

pipeline. This example adds six pieces of middleware to the

pipeline, two of which are added only when not running in

development:

ExceptionHandlerMiddleware—You learned

about this middleware in chapters 4 and 5. This

middleware catches exceptions thrown by

middleware later in the pipeline and generates a

friendly error page.

HstsMiddleware—This middleware sets security

headers in your response, in line with industry

best practices. See chapter 28 for details about it

and other security-related middleware.

HttpsRedirectionMiddleware—This

middleware ensures that your application responds

only to secure (HTTPS) requests and is an industry

best practice. We’ll look at HTTPS in chapter 28.

StaticFileMiddleware—As you saw in chapter

4, this middleware serves requests for static files

(such as .css and .js files) from the wwwroot folder

in your app.

RoutingMiddleware—The routing middleware is

responsible for selecting the endpoint for an

incoming request. WebApplication adds it by

default, but as discussed in chapter 4, adding it

explicitly ensures that it runs after the

StaticFileMiddleware.

AuthorizationMiddleware—This middleware

controls whether an endpoint is allowed to run

based on the user making the request, but

requires you also to configure authentication for

your application. You’ll learn more about

authentication in chapter 23 and authorization in

chapter 24.

In addition to the middleware added explicitly,

WebApplication automatically adds some extra

middleware (as discussed in chapter 4), such as the

EndpointMiddleware, which is automatically added to the

end of the middleware pipeline. As with minimal APIs, the

RoutingMiddleware selects which endpoint handler to

execute, and the EndpointMiddleware executes the

handler to generate a response.

Together, this pair of middleware is responsible for

interpreting the request to determine which Razor Page to

invoke, for reading parameters from the request, and for

generating the final HTML. Little configuration is required;

you need only add the middleware to the pipeline and

specify that you want to use Razor Page endpoints by calling

MapRazorPages. For each request, the routing middleware

uses the request’s URL to determine which Razor Page to

invoke. Then the endpoint middleware executes the Razor

Page to generate the HTML response.

When the application is configured, it can start handling

requests. But how does it handle them? In section 13.1.3

you’ll get a glimpse at Razor Pages and how they generate

HTML.

13.1.3 Generating HTML with Razor Pages

When an ASP.NET Core application receives a request, it

progresses through the middleware pipeline until a

middleware component handles it. Normally, the routing

middleware matches a request URL’s path to a configured

route, which defines which Razor Page to invoke, and the

endpoint middleware invokes it.

Razor Pages are stored in .cshtml files (a portmanteau of .cs

and .xhtml) within the Pages folder of your project. In

general, the routing middleware maps request URL paths to

a single Razor Page by looking in the Pages folder of your

project for a Razor Page with the same path. If you look

back at figure 13.3, for example, you see that the Privacy

page of your app corresponds to the path /Privacy in the

browser’s address bar. If you look inside the Pages folder of

your project, you’ll find the Privacy.cshtml file, shown in the

following listing.

Listing 13.3 The Privacy.cshtml Razor Page

@page ❶
@model PrivacyModel ❷
@{

 ViewData["Title"] = "Privacy Policy"; ❸
}

<h1>@ViewData["Title"]</h1> ❹

<p>Use this page to detail your site's privacy policy.</p> ❺

❶ Indicates that this is a Razor Page

❷ Links the Razor Page to a specific PageModel
❸ C# code that doesn’t write to the response

❹ HTML with dynamic C# values written to the response
❺ Standalone, static HTML

Razor Pages use a templating syntax called Razor that

combines static HTML with dynamic C# code and HTML

generation. The @page directive on the first line of the Razor

Page is the most important. This directive must always be

placed on the first line of the file, as it tells ASP.NET Core

that the .cshtml file is a Razor Page. Without it, you won’t be

able to view your page correctly.

The next line of the Razor Page defines which PageModel in

your project the Razor Page is associated with:

@model PrivacyModel

In this case the PageModel is called PrivacyModel, and it

follows the standard convention for naming Razor Page

models. You can find this class in the Privacy.cshtml.cs file in

the Pages folder of your project, as shown in figure 13.5.

Visual Studio nests these files underneath the Razor Page

.cshtml files in Solution Explorer. We’ll look at the page

model in section 13.1.4.

Figure 13.5 By convention, page models for Razor Pages are
placed in a file with the same name as the Razor Page, with a .cs
suffix appended. Visual Studio nests these files below the Razor
Page in Solution Explorer.

In addition to the @page and @model directives, static HTML

is always valid in a Razor Page and will be rendered as is in

the response:

<p>Use this page to detail your site’s privacy policy.</p>

You can also write ordinary C# code in Razor templates by

using this construct:

@{ /* C# code here */ }

Any code between the curly braces will be executed but

won’t be written to the response. In the listing, you’re

setting the title of the page by writing a key to the

ViewData dictionary, but you aren’t writing anything to the

response at this point:

@{

 ViewData["Title"] = "Privacy Policy";

}

Another feature shown in this template is that you can

dynamically write C# variables and expressions to the HTML

stream using the @ symbol. This ability to combine dynamic

and static markup is what gives Razor Pages their power. In

the example, you’re fetching the "Title" value from the

ViewData dictionary and writing the value to the response

inside an <h1> tag:

<h1>@ViewData["Title"]</h1>

At this point, you might be a little confused by the template

in listing 13.3 when it’s compared with the output shown in

figure 13.3. The title and the static HTML content appear in

both the listing and figure, but some parts of the final web

page don’t appear in the template. How can that be?

Razor Pages have the concept of layouts, which are base

templates that define the common elements of your

application, such as headers and footers. The HTML of the

layout combines with the Razor Page template to produce

the final HTML that’s sent to the browser. Layouts prevent

you from having to duplicate code for the header and footer

in every page, and mean that if you need to tweak

something, you’ll need to do it in only one place.

NOTE I cover Razor templates, including layouts, in detail in chapter
17. You can find layouts in the Pages/Shared folder of your project.

As you’ve already seen, you can include C# code in your

Razor Pages by using curly braces @{ }, but generally

speaking, you’ll want to limit the code in your .cshtml file to

presentational concerns only. Complex logic, code to access

services such as a database, and data manipulation should

be handled in the PageModel instead.

13.1.4 Handling request logic with page
models and handlers

As you’ve already seen, the @page directive in a .cshtml file

marks the page as a Razor Page, but most Razor Pages also

have an associated page model. By convention, this page

model is placed in a file commonly known as a code-behind

file that has a .cs extension, as you saw in figure 13.5. Page

models should derive from the PageModel base class, and

they typically contain one or more methods called page

handlers that define how to handle requests to the Razor

Page.

DEFINITION A page handler is the Razor Pages equivalent of a
minimal API endpoint handler; it’s a method that runs in response to a
request. Razor Page models must be derived from the PageModel
class. They can contain multiple page handlers, though typically they
contain only one or two.

The following listing shows the page model for the

Privacy.cshtml Razor Page, located in the file

Privacy.cshtml.cs.

Listing 13.4 The PrivacyModel in Privacy.cshtml.cs: A Razor Page
page model

public class PrivacyModel: PageModel ❶
{

 private readonly ILogger<PrivacyModel> _logger; ❷
 public PrivacyModel(ILogger<PrivacyModel> logger) ❷
 { ❷
 _logger = logger; ❷
 } ❷

 public void OnGet() ❸
 {

 }

}

❶ Razor Pages must inherit from PageModel.

❷ You can use dependency injection to provide services in the constructor.
❸ The default page handler is OnGet. Returning void indicates HTML should be generated.

This page model is extremely simple, but it demonstrates a

couple of important points:

Page handlers are driven by convention.

Page models can use dependency injection (DI) to

interact with other services.

Page handlers are typically named by convention, based on

the HTTP verb they respond to. They return either void,

indicating that the Razor Page’s template should be

rendered, or an IActionResult that contains other

instructions for generating the response, such as redirecting

the user to a different page.

The PrivacyModel contains a single handler, OnGet, which

indicates that it should run in response to GET requests for

the page. As the method returns void, executing the

handler executes the associated Razor template for the page

to generate the HTML.

NOTE Razor Pages are focused on building page-based apps, so
you typically want to return HTML rather than JSON or XML. You can
also use an IActionResult to return any sort of data, to redirect
users to a new page, or to send an error. You’ll learn more about
IActionResults in chapter 15.

DI is used to inject an ILogger<PrivacyModel> instance

into the constructor of the page model the same way you

would inject a service into a minimal API endpoint handler.

The service is unused in this example, but you’ll learn all

about ILogger in chapter 26.

Clearly, the PrivacyModel page model doesn’t do much in

this case, and you may be wondering why it’s worth having.

If all page models do is tell the Razor Page to generate

HTML, why do we need them at all?

The key thing to remember here is that now you have a

framework for performing arbitrarily complex functions in

response to a request. You could easily update the handler

method to load data from the database, send an email, add

a product to a basket, or create an invoice—all in response

to a simple HTTP request. This extensibility is where a lot of

the power in Razor Pages (and the MVC pattern in general)

lies.

The other important point is that you’ve separated the

execution of these methods from the generation of the

HTML. If the logic changes, and you need to add behavior to

a page handler, you don’t need to touch the HTML

generation code, so you’re less likely to introduce bugs.

Conversely, if you need to change the UI slightly (change the

color of the title, for example), your handler method logic is

safe.

And there you have it—a complete ASP.NET Core Razor

Pages application! Before we move on, let’s take one last

look at how your application handles a request. Figure 13.6

shows a request to the /Privacy path being handled by the

sample application. You’ve seen everything here already, so

the process of handling a request should be familiar. The

figure shows how the request passes through the

middleware pipeline before being handled by the endpoint

middleware. The Privacy.cshtml Razor Page executes the

OnGet handler and generates the HTML response, which

passes back through the middleware to the ASP.NET Core

web server before being sent to the user’s browser.

Figure 13.6 An overview of a request to the /Privacy URL for the
sample ASP.NET Razor Pages application. The routing
middleware routes the request to the OnGet handler of the
Privacy.cshtml.cs Razor Page. The Razor Page generates an
HTML response by executing the Razor template in
Privacy.cshtml and passes the response back through the
middleware pipeline to the browser.

We’ve reached the end of this section working through the

template, so you have a good overview of how an entire

Razor Pages application is configured and how it handles a

request using Razor Pages. In section 13.2 we take the basic

Razor Pages in the default template a bit further, looking at a

more complex example.

13.2 Exploring a typical Razor Page
The Razor Pages programming model was introduced in

ASP.NET Core 2.0 as a way to build server-side rendered

page-based websites. It builds on top of the ASP.NET Core

infrastructure to provide a streamlined experience, using

conventions where possible to reduce the amount of

boilerplate code and configuration required. In this section

we’ll look at a more complex page model to better

understand the overall design of Razor Pages.

In listing 13.4 you saw a simple Razor Page that didn’t

contain any logic; instead, it only rendered the associated

Razor view. This pattern may be common if you’re building a

content-heavy marketing website, for example, but more

commonly your Razor Pages will contain some logic, load

data from a database, or use forms to allow users to submit

information.

To give you more of a flavor of how typical Razor Pages

work, in this section we look briefly at a slightly more

complex Razor Page. This page is taken from a to-do list

application and is used to display all the to-do items for a

given category. We’re not focusing on the HTML generation

at this point, so the following listing shows only the

PageModel code-behind file for the Razor Page.

Listing 13.5 A Razor Page for viewing all to-do items in a given
category

public class CategoryModel : PageModel

{

 private readonly ToDoService _service; ❶
 public CategoryModel(ToDoService service) ❶
 {

 _service = service;

 }

 public ActionResult OnGet(string category) ❷
 {

 Items = _service.GetItemsForCategory(category); ❸
 return Page(); ❹
 }

 public List<ToDoListModel> Items { get; set; } ❺
}

❶ The ToDoService is provided in the model constructor using DI.

❷ The OnGet handler takes a parameter, category.
❸ The handler calls out to the ToDoService to retrieve data and sets the Items property.

❹ Returns a PageResult indicating the Razor view should be rendered

❺ The Razor View can access the Items property when it’s rendered.

This example is still relatively simple, but it demonstrates a

variety of features compared with the basic example from

listing 13.4:

The page handler, OnGet, accepts a method

parameter, category. This parameter is

automatically populated using values from the

incoming request via model binding, similar to the

way binding works with minimal APIs. I discuss

Razor Pages model binding in detail in chapter 16.

The handler doesn’t interact with the database

directly. Instead, it uses the category value

provided to interact with the ToDoService, which

is injected as a constructor argument using DI.

The handler returns Page() at the end of the

method to indicate that the associated Razor view

should be rendered. The return statement is

optional in this case; by convention, if the page

handler is a void method, the Razor view will still

be rendered, behaving as though you called

return Page() at the end of the method.

The Razor View has access to the

CategoryModel instance, so it can access the

Items property that’s set by the handler. It uses

these items to build the HTML that is ultimately

sent to the user.

The pattern of interactions in the Razor Page of listing 13.5

shows a common pattern. The page handler is the central

controller for the Razor Page. It receives an input from the

user (the category method parameter); calls out to the

“brains” of the application (the ToDoService); and passes

data (by exposing the Items property) to the Razor view,

which generates the HTML response. If you squint, this

pattern looks like the MVC design pattern.

Depending on your background in software development,

you may have come across the MVC pattern in some form.

In web development, MVC is a common paradigm, used in

frameworks such as Django, Rails, and Spring MVC. But as

it’s such a broad concept, you can find MVC in everything

from mobile apps to rich-client desktop applications. I hope

that indicates the benefits of the pattern when it’s used

correctly! In section 13.3 we’ll look at the MVC pattern in

general and how ASP.NET Core uses it.

13.3 Understanding the MVC design
pattern

The MVC design pattern is a common pattern for designing

apps that have UIs. The MVC pattern has many

interpretations, each of which focuses on a slightly different

aspect of the pattern. The original MVC design pattern was

specified with rich-client graphical user interface (GUI) apps

in mind, rather than web applications, so it uses terminology

and paradigms associated with a GUI environment.

Fundamentally, though, the pattern aims to separate the

management and manipulation of data from its visual

representation.

Before I dive too far into the design pattern itself, let’s

consider a typical Razor Pages request. Imagine that a user

requests the Razor Page from listing 13.5 that displays a to-

do list category. Figure 13.7 shows how a Razor Page

handles different aspects of a request, all of which combine

to generate the final response.

Figure 13.7 Requesting a to-do list page for a Razor Pages
application. A different component handles each aspect of the
request.

In general, three components make up the MVC design

pattern:

Model—The data that needs to be displayed—the

global state of the application. It’s accessed via the

ToDoService in listing 13.5.

View—The template that displays the data

provided by the model.

Controller—Updates the model and provides the

data for display to the view. This role is taken by

the page handler in Razor Pages—the OnGet

method in listing 13.5.

Each component of the MVC design pattern is responsible for

a single aspect of the overall system, which, when

combined, generates a UI. The to-do list example considers

MVC in terms of a web application using Razor Pages, but a

generalized request could be equivalent to the click of a

button in a desktop GUI application.

In general, the order of events when an application responds

to a user interaction or request is as follows:

1. The controller (the Razor Page handler) receives

the request.

2. Depending on the request, the controller either

fetches the requested data from the application

model using injected services or updates the data

that makes up the model.

3. The controller selects a view to display and passes

a representation of the model (the view model) to

it.

4. The view uses the data contained in the model to

generate the UI.

When we describe MVC in this format, the controller (the

Razor Page handler) serves as the entry point for the

interaction. The user communicates with the controller to

instigate an interaction. In web applications, this interaction

takes the form of an HTTP request, so when a request to a

URL is received, the controller handles it.

Depending on the nature of the request, the controller may

take a variety of actions, but the key point is that the actions

are undertaken using the application model. The model here

contains all the business logic for the application, so it’s able

to provide requested data or perform actions.

NOTE In this description of MVC, the model is considered to be a
complex beast, containing all the logic for how to perform an action,
as well as any internal state. The Razor Page PageModel class is
not the model we’re talking about! Unfortunately, as in all software
development, naming things is hard.

Consider a request to view a product page for an e-

commerce application. The controller would receive the

request and know how to contact some product service

that’s part of the application model. This service might fetch

the details of the requested product from a database and

return them to the controller.

Alternatively, imagine that a controller receives a request to

add a product to the user’s shopping cart. The controller

would receive the request and most likely would invoke a

method on the model to request that the product be added.

Then the model would update its internal representation of

the user’s cart, by adding (for example) a new row to a

database table holding the user’s data.

TIP You can think of each Razor Page handler as being a mini
controller focused on a single page. Every web request is another

independent call to a controller that orchestrates the response.
Although there are many controllers, all the handlers interact with the
same application model.

After the model has been updated, the controller needs to

decide what response to generate. One of the advantages of

using the MVC design pattern is that the model representing

the application’s data is decoupled from the final

representation of that data, called the view. The controller is

responsible for deciding whether the response should

generate an HTML view, whether it should send the user to a

new page, or whether it should return an error page.

One of the advantages of the model’s being independent of

the view is that it improves testability. UI code is classically

hard to test, as it’s dependent on the environment; anyone

who has written UI tests simulating a user clicking buttons

and typing in forms knows that it’s typically fragile. By

keeping the model independent of the view, you can ensure

that the model stays easily testable, without any

dependencies on UI constructs. As the model often contains

your application’s business logic, this is clearly a good thing!

The view can use the data passed to it by the controller to

generate the appropriate HTML response. The view is

responsible only for generating the final representation of

the data; it’s not involved in any of the business logic.

This is all there is to the MVC design pattern in relation to

web applications. Much of the confusion related to MVC

seems to stem from slightly different uses of the term for

slightly different frameworks and types of applications. In

section 13.4 I’ll show how the ASP.NET Core framework uses

the MVC pattern with Razor Pages, along with more

examples of the pattern in action.

13.4 Applying the MVC design pattern
to Razor Pages

In section 13.3 I discussed the MVC pattern as it’s typically

used in web applications; Razor Pages use this pattern. But

ASP.NET Core also includes a framework called ASP.NET Core

MVC. This framework (unsurprisingly) closely mirrors the

MVC design pattern, using controllers containing action

methods in place of Razor Pages and page handlers. Razor

Pages builds directly on top of the underlying ASP.NET Core

MVC framework, using the MVC framework under the hood

for their behavior.

If you prefer, you can avoid Razor Pages and work with the

MVC framework directly in ASP.NET Core. This option was

the only one in early versions of ASP.NET Core and the

previous version of ASP.NET.

TIP I look in greater depth at choosing between Razor Pages and the
MVC framework in chapter 19.

In this section we look in greater depth at how the MVC

design pattern applies to Razor Pages in ASP.NET Core. This

section will also help clarify the role of various features of

Razor Pages.

Do Razor Pages use MVC or MVVM?

Occasionally, I’ve seen people describe Razor Pages as using the Model-View-View
Model (MVVM) design pattern rather than the MVC design pattern. I don’t agree, but
it’s worth being aware of the differences.

MVVM is a UI pattern that is often used in mobile apps, desktop apps, and some
client-side frameworks. It differs from MVC in that there is a bidirectional interaction
between the view and the view model. The view model tells the view what to display,
but the view can also trigger changes directly on the view model. It’s often used with
two-way data binding where a view model is bound to a view.

Some people consider the Razor Pages PageModel to be filling this role, but I’m not
convinced. Razor Pages definitely seems based on the MVC pattern to me (it’s based
on the ASP.NET Core MVC framework after all!), and it doesn’t have the same two-way
binding that I would expect with MVVM.

As you’ve seen in previous chapters, ASP.NET Core

implements Razor Page endpoints using a combination of

RoutingMiddleware and EndpointMiddleware, as

shown in figure 13.8. When a request has been processed by

earlier middleware (and assuming that none has handled the

request and short-circuited the pipeline), the routing

middleware selects which Razor Page handler should be

executed, and the endpoint middleware executes the page

handler.

Figure 13.8 The middleware pipeline for a typical ASP.NET Core
application. The request is processed by middleware in
sequence. If the request reaches the routing middleware, the
middleware selects an endpoint, such as a Razor Page, to

execute. The endpoint middleware executes the selected
endpoint.

As you’ve seen in earlier chapters, middleware often handles

cross-cutting concerns or narrowly defined requests, such as

requests for files. For requirements that fall outside these

functions or that have many external dependencies, a more

robust framework is required. Razor Pages (and/or ASP.NET

Core MVC) can provide this framework, allowing interaction

with your application’s core business logic and the

generation of a UI. It handles everything from mapping the

request to an appropriate page handler (or controller action

method) to generating the HTML response.

In the traditional description of the MVC design pattern,

there’s only a single type of model, which holds all the non-

UI data and behavior. The controller updates this model as

appropriate and then passes it to the view, which uses it to

generate a UI.

One of the problems when discussing MVC is the vague and

ambiguous terms that it uses, such as controller and model.

Model in particular is such an overloaded term that it’s often

difficult to be sure exactly what it refers to; is it an object, a

collection of objects, or an abstract concept? Even ASP.NET

Core uses the word model to describe several related but

different components, as you’ll see later in this chapter.

13.4.1 Directing a request to a Razor Page
and building a binding model

The first step when your app receives a request is routing

the request to an appropriate Razor Page handler in the

routing middleware. Let’s think again about the category to-

do list page in listing 13.5. On that page, you’re displaying a

list of items that have a given category label. If you’re

looking at the list of items with a category of Simple, you’d

make a request to the /category/Simple path.

Routing maps a request URL, /category/Simple, against

the route patterns registered with your application. You’ve

seen how this process works for minimal APIs, and it’s the

same for Razor Pages; each route template corresponds to a

Razor Page endpoint. You’ll learn more about routing with

Razor Pages in chapter 14.

TIP I’m using the term Razor Page to refer to the combination of the
Razor view and the PageModel that includes the page handler.
Note that PageModel class is not the model we’re referring to when
describing the MVC pattern. It fulfills other roles, as you’ll see later in
this section.

When a page handler is selected in the routing middleware,

the request continues down the middleware pipeline until it

reaches the endpoint middleware, where the Razor Page

executes.

First, the binding model (if applicable) is generated. This

model is built from the incoming request, based on the

properties of the PageModel marked for binding and the

method parameters required by the page handler, as shown

in figure 13.9. A binding model is normally one or more

standard C# objects and works similarly to the way it works

in minimal APIs, as you saw in chapter 6. We’ll look at Razor

Page binding models in detail in chapter 16.

Figure 13.9 Routing a request to a Razor Page and building a
binding model. A request to the /category/Simple URL results in
the execution of the CategoryModel.OnGet page handler, passing in
a populated binding model, category.

DEFINITION A binding model is one or more objects that act as a
container for the data provided in a request—data that’s required by a
page handler.

In this case, the binding model is a simple string,

category, that’s bound to the "Simple" value. This value

is provided in the request URL’s path. A more complex

binding model could have been used, with multiple

properties populated with values from the route template,

the query string, and the request body.

NOTE The binding model for Razor Pages is conceptually equivalent
to all the parameters you pass in to a minimal API endpoint that are
populated from the request.

The binding model in this case corresponds to the method

parameter of the OnGet page handler. An instance of the

Razor Page is created using its constructor, and the binding

model is passed to the page handler when it executes, so it

can be used to decide how to respond. For this example, the

page handler uses it to decide which to-do items to display

on the page.

13.4.2 Executing a handler using the
application model

The role of the page handler as the controller in the MVC

pattern is to coordinate the generation of a response to the

request it’s handling. That means it should perform only a

limited number of actions. In particular, it should

Validate that the data contained in the binding

model is valid for the request.

Invoke the appropriate actions on the application

model using services.

Select an appropriate response to generate based

on the response from the application model.

Figure 13.10 shows the page handler invoking an

appropriate method on the application model. Here, you can

see that the application model is a somewhat-abstract

concept that encapsulates the remaining non-UI parts of

your application. It contains the domain model, several

services, and the database interaction.

Figure 13.10 When executed, an action invokes the appropriate
methods in the application model.

DEFINITION The domain model encapsulates complex business
logic in a series of classes that don’t depend on any infrastructure
and are easy to test.

The page handler typically calls into a single point in the

application model. In our example of viewing a to-do list

category, the application model might use a variety of

services to check whether the current user is allowed to view

certain items, to search for items in the given category, to

load the details from the database, or to load a picture

associated with an item from a file. Assuming that the

request is valid, the application model returns the required

details to the page handler. Then it’s up to the page handler

to choose a response to generate.

13.4.3 Building HTML using the view model

When the page handler has called out to the application

model that contains the application business logic, it’s time

to generate a response. A view model captures the details

necessary for the view to generate a response.

DEFINITION A view model in the MVC pattern is all the data required
by the view to render a UI. It’s typically some transformation of the
data contained in the application model, plus extra information
required to render the page, such as the page’s title.

The term view model is used extensively in ASP.NET Core

MVC, where it typically refers to a single object that is

passed to the Razor view to render. With Razor Pages,

however, the Razor view can access the Razor Page’s page

model class directly. Therefore, the Razor Page PageModel

typically acts as the view model in Razor Pages, with the

data required by the Razor view exposed via properties, as

you saw in listing 13.5.

NOTE Razor Pages use the PageModel class itself as the view
model for the Razor view by exposing the required data as properties.

The Razor view uses the data exposed in the page model to

generate the final HTML response. Finally, this data is sent

back through the middleware pipeline and out to the user’s

browser, as shown in figure 13.11.

Figure 13.11 The page handler builds a view model by setting
properties on the PageModel. It’s the view that generates the
response.

It’s important to note that although the page handler selects

whether to execute the view and the data to use, it doesn’t

control what HTML is generated. The view itself decides what

the content of the response will be.

13.4.4 Putting it all together: A complete
Razor Page request

Now that you’ve seen the steps that go into handling a

request in ASP.NET Core using Razor Pages, let’s put them

together from request to response. Figure 13.12 shows how

the steps combine to handle the request to display the list of

to-do items for the Simple category. The traditional MVC

pattern is still visible in Razor Pages, made up of the page

handler (controller), the view, and the application model.

Figure 13.12 A complete Razor Pages request for the list of to-
dos in the Simple category

By now, you may be thinking this whole process seems

rather convoluted. So many steps to display some HTML!

Why not allow the application model to create the view

directly, rather than have to go on a dance back and forth

with the page handler method? The key benefit throughout

this process is the separation of concerns:

The view is responsible only for taking some data

and generating HTML.

The application model is responsible only for

executing the required business logic.

The page handler (controller) is responsible only

for validating the incoming request and selecting

which response is required, based on the output of

the application model.

By having clearly defined boundaries, it’s easier to update

and test each of the components without depending on any

of the others. If your UI logic changes, you won’t necessarily

have to modify any of your business logic classes, so you’re

less likely to introduce errors in unexpected places.

The dangers of tight coupling

it’s generally a good idea to reduce coupling between logically separate parts of your
application as much as possible. This makes it easier to update your application
without causing adverse effects or requiring modifications in seemingly unrelated
areas. Applying the MVC pattern is one way to help with this goal.

As an example of when coupling rears its head, I remember a case a few years ago
when I was working on a small web app. In our haste, we hadn’t decoupled our
business logic from our HTML generation code properly, but initially there were no
obvious problems. The code worked, so we shipped it!

A few months later, someone new started working on the app and immediately
“helped” by renaming an innocuous spelling error in a class in the business layer.
Unfortunately, the names of those classes had been used to generate our HTML code,
so renaming the class caused the whole website to break in users’ browsers! Suffice it
to say that we made a concerted effort to apply the MVC pattern thereafter and ensure
that we had a proper separation of concerns.

The examples shown in this chapter demonstrate the bulk of

the Razor Pages functionality. It has additional features,

such as the filter pipeline, which I cover in chapters 21 and

22, and I discuss binding models in greater depth in chapter

16, but the overall behavior of the system is the same.

Similarly, in chapter 19 I look at MVC controllers and explain

why I don’t recommend them over Razor Pages for server-

rendered applications. By contrast, in chapter 20 I discuss

how you can use the MVC design pattern when you’re

generating machine-readable responses using Web API

controllers. The process is for all intents and purposes

identical to the MVC pattern you’ve already seen.

I hope that by this point, you’re sold on Razor Pages and

their overall design using the MVC pattern. The page handler

methods on a Razor Page are invoked in response to a

request and select the type of response to generate by

returning an IActionResult.

An aspect I’ve touched on only vaguely is how the

RoutingMiddleware decides which Razor Page and

handler to invoke for a given request. You don’t want to

have a Razor Page for every URL in an app. It would be

difficult to have, for example, a different page per product in

an e-shop; every product would need its own Razor Page! In

chapter 14 you’ll see how to define routes for your Razor

Pages, how to add constraints to your routes, and how they

deconstruct URLs to match a single handler.

Summary
Razor Pages are located in the Pages folder of a

project and by default are named according to the

URL path they handle. Privacy.cshtml, for example,

handles the path /Privacy. This convention

makes it easy to quickly add new pages.

Razor Pages must contain the @page directive as

the first line of the .cshtml file. Without this

directive, ASP.NET Core won’t recognize it as a

Razor Page, and it won’t appear as an endpoint in

your app.

Page models derive from the PageModel base

class and contain page handlers. Page handlers are

methods named using conventions that indicate

the HTTP verb they handle. OnGet, for example,

handles the GET verb. Page handlers are

equivalent to minimal API endpoint handlers; they

run in response to a given request.

Razor templates can contain standalone C#,

standalone HTML, and dynamic HTML generated

from C# values. By combining all three, you can

build highly dynamic applications.

The MVC design pattern allows for a separation of

concerns between the business logic of your

application, the data that’s passed around, and the

display of data in a response. This reduces

coupling between the different layers of your

application.

Razor Pages should inherit from the PageModel

base class and contain page handlers. The routing

middleware selects a page handler based on the

incoming request’s URL, the HTTP verb, and the

request’s query string.

Page handlers generally should delegate to

services to handle the business logic required by a

request instead of performing the changes

themselves. This ensures a clean separation of

concerns that aids testing and improves

application structure.

14 Mapping URLs to Razor Pages
using routing

This chapter covers

Routing requests to Razor Pages
Customizing Razor Page route templates
Generating URLs for Razor Pages

In chapter 13 you learned about the Model-View-Controller

(MVC) design pattern and how ASP.NET Core uses it to

generate the UI for an application using Razor Pages. Razor

Pages contain page handlers that act as mini controllers for

a request. The page handler calls the application model to

retrieve or save data. Then the handler passes data from the

application model to the Razor view, which generates an

HTML response.

Although not part of the MVC design pattern per se, one

crucial part of Razor Pages is selecting which Razor Page to

invoke in response to a given request. Razor Pages use the

same routing system as minimal APIs (introduced in chapter

6); this chapter focuses on how routing works with Razor

Pages.

I start this chapter with a brief reminder about how routing

works in ASP.NET Core. I’ll touch on the two pieces of

middleware that are crucial to endpoint routing in .NET 7

and the approach Razor Pages uses of mixing conventions

with explicit route templates.

In section 14.3 we look at the default routing behavior of

Razor Pages, and in section 14.4 you’ll learn how to

customize the behavior by adding or changing route

templates. Razor Pages have access to the same route

template features that you learned about in chapter 6, and

in section 14.4 you’ll learn how to them.

In section 14.5 I describe how to use the routing system to

generate URLs for Razor Pages. Razor Pages provide some

helper methods to simplify URL generation compared with

minimal APIs, so I compare the two approaches and discuss

the benefits of each.

Finally, in section 14.6 I describe how to customize the

conventions Razor Pages uses, giving you complete control

of the URLs in your application. You’ll see how to change the

built-in conventions, such as using lowercase for your URLs,

as well as how to write your own convention and apply it

globally to your application.

By the end of this chapter you should have a much clearer

understanding of how an ASP.NET Core application works.

You can think of routing as the glue that ties the middleware

pipeline to Razor Pages and the MVC framework. With

middleware, Razor Pages, and routing under your belt, you’ll

be writing web apps in no time!

14.1 Routing in ASP.NET Core
In chapter 6 we looked in detail at routing and some of the

benefits it brings, such as the ability to have multiple URLs

pointing to the same endpoint and extracting segments from

the URL. You also learned how it’s implemented in ASP.NET

Core apps, using two pieces of middleware:

EndpointMiddleware—You use this middleware

to register the endpoints in the routing system

when you start your application. The middleware

executes one of the endpoints at runtime.

RoutingMiddleware—This middleware chooses

which of the endpoints registered by the

EndpointMiddleware should execute for a

given request at runtime.

The EndpointMiddleware is where you register all the

endpoints in your app, including minimal APIs, Razor Pages,

and MVC controllers. It’s easy to register all the Razor Pages

in your application using the MapRazorPages() extension

method, as shown in the following listing.

Listing 14.1 Registering Razor Pages in Startup.Configure

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages(); ❶

var app = builder.Build();

app.UseStaticFiles();

app.UseRouting(); ❷
app.UseAuthorization();

app.MapRazorPages(); ❸

app.Run();

❶ Adds the required Razor Pages services to dependency injection

❷ Adds the RoutingMiddleware to the middleware pipeline
❸ Registers all the Razor Pages in the application with the EndpointMiddleware

Each endpoint, whether it’s a Razor Page or a minimal API,

has an associated route template that defines which URLs

the endpoint should match. The EndpointMiddleware

stores these route templates and endpoints in a dictionary,

which it shares with the RoutingMiddleware. At runtime

the RoutingMiddleware compares the incoming request

with the routes in the dictionary and selects the matching

endpoint. When the request reaches the

EndpointMiddleware, the middleware checks to see

which endpoint was selected and executes it, as shown in

figure 14.1.

Figure 14.1 Endpoint routing uses a two-step process. The
RoutingMiddleware selects which endpoint to execute, and the
EndpointMiddleware executes it. If the request URL doesn’t match
a route template, the endpoint middleware will not generate a
response.

As discussed in chapter 6, the advantage of having two

separate pieces of middleware to handle this process is that

any middleware placed after the RoutingMiddleware can

see which endpoint is going to be executed before it is. You’ll

see this benefit in action when we look at authorization in

chapter 24.

Routing in ASP.NET Core uses the same infrastructure and

middleware whether you’re building minimal APIs, Razor

Pages, or MVC controllers, but there are some differences in

how you define the mapping between your route templates

and your handlers in each case. In section 14.2 you’ll learn

the different approaches each paradigm takes.

14.2 Convention-based routing vs.
explicit routing

Routing is a key part of ASP.NET Core, as it maps the

incoming request’s URL to a specific endpoint to execute.

You have two ways to define these URL-endpoint mappings

in your application:

Using global, convention-based routing

Using explicit routing, where each endpoint is

mapped with a single route template

Which approach you use typically depends on whether you’re

using minimal APIs, Razor Pages, or MVC controllers and

whether you’re building an API or a website (using HTML).

These days I lean heavily toward explicit routing, as you’ll

see.

Convention-based routing is defined globally for your

application. You can use convention-based routes to map

endpoints (MVC controller actions specifically) to URLs, but

those MVC controllers must adhere strictly to the

conventions you define. Traditionally, applications using MVC

controllers to generate HTML tend to use this approach to

routing. The downside of this approach is that customizing

URLs for a subset of controllers and actions is tricky.

Alternatively, you can use explicit routing to tie a given URL

to a specific endpoint. You’ve seen this approach with

minimal APIs, where each endpoint is directly associated

with a route template. You can also use explicit routing with

MVC controllers by placing [Route] attributes on the action

methods themselves, hence explicit-routing is also often

called attribute-routing.

Explicit routing provides more flexibility than convention-

based based routing, as you can explicitly define the route

template for every action method. Explicit routing is

generally more verbose than the convention-based

approach, as it requires applying attributes to every action

method in your application. Despite this, the extra flexibility

can be useful, especially when building APIs.

Somewhat confusingly, Razor Pages use conventions to

generate explicit routes! In many ways this combination

gives you the best of both worlds: the predictability and

terseness of convention-based routing with the easy

customization of explicit routing. There are tradeoffs to each

of the approaches, as shown in table 14.1.

Table 14.1 The advantages and disadvantages of the routing

styles available in ASP.NET Core

Routing style Typical use Advantages Disadvantages
Convention-
based routes

HTML-
generating MVC
controllers

Terse definition
in one location
in your
application.
Forces a
consistent layout
of MVC
controllers.

Routes are
defined in a
different place
from your
controllers.
Overriding the
route
conventions can
be tricky and
error-prone.
Adds an extra
layer of
indirection when
routing a
request.

Explicit routes Minimal API
endpoints
Web API MVC
controllers

Gives complete
control of route
templates for
every endpoint.
Routes are
defined next to
the endpoint
they execute.

Verbose
compared with
convention-
based routing.
Can be easy to
overcustomize
route templates.
Route templates
may be
scattered
throughout your
application
rather than
defined in one
location.

Convention-
based
generation of
explicit routes

Razor Pages Encourages
consistent set of
exposed URLs.
Terse when you
stick to the
conventions.

Possible to
overcustomize
route templates.
You must
calculate what
the route

Easily override
the route
template for a
single page.
Customize
conventions
globally to
change exposed
URLs.

template for a
page is, rather
than its being
explicitly defined
in your app.

So which approach should you use? I believe that

convention-based routing is not worth the effort in 99

percent of cases and that you should stick to explicit routing.

If you’re following my advice to use Razor Pages for server-

rendered applications, you’re already using explicit routing

under the covers. Also, if you’re creating APIs using minimal

APIs or MVC controllers, explicit routing is the best option

and the recommended approach.

The only scenario where convention-based routing is used

traditionally is if you’re using MVC controllers to generate

HTML. But if you’re following my advice from chapter 13,

you’ll be using Razor Pages for HTML-generating applications

and falling back to MVC controllers only when necessary, as I

discuss in more detail in chapter 19. For consistency, I would

often stick with explicit routing with attributes in that

scenario too.

NOTE For the reasons above, this book focuses on explicit/attribute
routing. For details on convention-based routing, see Microsoft’s
“Routing to controller actions in ASP.NET Core” documentation at
http://mng.bz/ZP0O.

http://mng.bz/ZP0O

You learned about routing and route templates in chapter 6

in the context of minimal APIs. The good news is that

exactly the same patterns and features are available with

Razor Pages. The main difference with minimal APIs is that

Razor Pages use conventions to generate the route template

for a page, though you can easily change the template on a

page-by-page basis. In section 14.3 we look at the default

conventions and how routing maps a request’s URL to a

Razor Page in detail.

14.3 Routing requests to Razor Pages
As I mentioned in section 14.2, Razor Pages use explicit

routing by creating route templates based on conventions.

ASP.NET Core creates a route template for every Razor Page

in your app during app startup, when you call

MapRazorPages() in Program.cs:

app.endpoints.MapRazorPages();

For every Razor Page in your application, the framework

uses the path of the Razor Page file relative to the Razor

Pages root directory (Pages/), excluding the file extension

(.cshtml). If you have a Razor Page located at the path

Pages/Products/View.cshtml, the framework creates a

route template with the value "Products/View", as shown

in figure 14.2.

Figure 14.2 By default, route templates are generated for Razor
Pages based on the path of the file relative to the root directory,
Pages.

Requests to the URL /products/view match the route

template "Products/View", which in turn corresponds to

the View.cshtml Razor Page in the Pages/Products folder. The

RoutingMiddleware selects the View.cshtml Razor Page

as the endpoint for the request, and the

EndpointMiddleware executes the page’s handler when

the request reaches it in the middleware pipeline.

NOTE Remember that routing is not case-sensitive, so the request
URL will match even if it has a different URL casing from the route
template.

In chapter 13 you learned that Razor Page handlers are the

methods that are invoked on a Razor Page, such as OnGet.

When we say “a Razor Page is executed,” we really mean “an

instance of the Razor Page’s PageModel is created, and a

page handler on the model is invoked.” Razor Pages can

have multiple page handlers, so once the

RoutingMiddleware selects a Razor Page, the

EndpointMiddleware still needs to choose which handler

to execute. You’ll learn how the framework selects which

page handler to invoke in chapter 15.

By default, each Razor Page creates a single route template

based on its file path. The exception to this rule is for Razor

Pages that are called Index.cshtml. Index.cshtml pages

create two route templates, one ending with "Index" and

the other without this suffix. If you have a Razor Page at the

path Pages/ToDo/Index.cshtml, you have two route

templates that point to the same page:

"ToDo"

"ToDo/Index"

When either of these routes is matched, the same

Index.cshtml Razor Page is selected. If your application is

running at the URL https://example.org, you can view the

page by executing https://example.org/ToDo or

https://example.org/ToDo/Index.

WARNING You must watch out for overlapping routes when using
Index.cshtml pages. For example, if you add the
Pages/ToDo/Index.cshtml page in the above example you must not
add a Pages/ToDo.cshtml page, as you’ll get an exception at runtime
when you navigate to /todo, as you’ll see in section 14.6.

As a final example, consider the Razor Pages created by

default when you create a Razor Pages application by using

Visual Studio or running dotnet new razor using the .NET

command-line interface (CLI), as we did in chapter 13. The

standard template includes three Razor Pages in the Pages

directory:

Pages/Error.cshtml

Pages/Index.cshtml

Pages/Privacy.cshtml

That creates a collection of four routes for the application,

defined by the following templates:

"" maps to Index.cshtml.

"Index" maps to Index.cshtml.

"Error" maps to Error.cshtml.

"Privacy" maps to Privacy.cshtml.

At this point, Razor Page routing probably feels laughably

trivial, but this is the basics that you get for free with the

default Razor Pages conventions, which are often sufficient

for a large portion of any website. At some point, though,

you’ll find you need something more dynamic, such as using

route parameters to include an ID in the URL. This is where

the ability to customize your Razor Page route templates

becomes useful.

14.4 Customizing Razor Page route
templates

The route templates for a Razor Page are based on the file

path by default, but you’re also able to customize or replace

the final template for each page. In this section I show how

to customize the route templates for individual pages so you

can customize your application’s URLs and map multiple

URLs to a single Razor Page.

You may remember from chapter 6 that route templates

consist of both literal segments and route parameters, as

shown in figure 14.3. By default, Razor Pages have URLs

consisting of a series of literal segments, such as

"ToDo/Index".

Figure 14.3 A simple route template showing a literal segment
and two required route parameters

Literal segments and route parameters are the two

cornerstones of ASP.NET Core route templates, but how can

you customize a Razor Page to use one of these patterns? In

section 14.4.1 you’ll see how to add a segment to the end of

a Razor Page’s route template, and in section 14.4.2 you’ll

see how to replace the route template completely.

14.4.1 Adding a segment to a Razor Page
route template

To customize the Razor Page route template, you update the

@page directive at the top of the Razor Page’s .cshtml file.

This directive must be the first thing in the Razor Page file

for the page to be registered correctly.

To add an extra segment to a Razor Page’s route template,

add a space followed by the extra route template segment,

after the @page statement. To add "Extra" to a Razor

Page’s route template, for example, use

@page "Extra"

This appends the provided route template to the default

template generated for the Razor Page. The default route

template for the Razor Page at Pages/Privacy.xhtml, for

example, is "Privacy". With the preceding directive, the

new route template for the page would be

"Privacy/Extra".

The most common reason for customizing a Razor Page’s

route template like this is to add a route parameter. You

could have a single Razor Page for displaying the products in

an e-commerce site at the path Pages/Products.cshtml

and use a route parameter in the @page directive

@page "{category}/{name}"

This would give a final route template of

Products/{category}/{name}, which would match all

the following URLs:

/products/bags/white-rucksack

/products/shoes/black-size9

/Products/phones/iPhoneX

NOTE You can use the same routing features you learned about in
chapter 6 with Razor Pages, including optional parameters, default
parameters, and constraints.

It’s common to add route segments to the Razor Page

template like this, but what if that’s not enough? Maybe you

don’t want to have the /products segment at the start of

the preceding URLs, or you want to use a completely custom

URL for a page. Luckily, that’s just as easy to achieve.

14.4.2 Replacing a Razor Page route template
completely

You’ll be most productive working with Razor Pages if you

can stick to the default routing conventions where possible,

adding extra segments for route parameters where

necessary. But sometimes you need more control. That’s

often the case for important pages in your application, such

as the checkout page for an e-commerce application or even

product pages, as you saw in the previous section.

To specify a custom route for a Razor Page, prefix the route

with / in the @page directive. To remove the "product/"

prefix from the route templates in section 14.4.1, use this

directive:

@page "/{category}/{name}"

Note that this directive includes the "/" at the start of the

route, indicating that this is a custom route template,

instead of an addition. The route template for this page will

be "{category}/{name}" no matter which Razor Page it

is applied to.

Similarly, you can create a static custom template for a page

by starting the template with a "/" and using only literal

segments:

@page "/checkout"

Wherever you place your checkout Razor Page within the

Pages folder, using this directive ensures that it always has

the route template "checkout", so it always matches the

request URL /checkout.

TIP You can also think of custom route templates that start with “/” as
absolute route templates, whereas other route templates are relative
to their location in the file hierarchy.

It’s important to note that when you customize the route

template for a Razor Page, both when appending to the

default and when replacing it with a custom route, the

default template is no longer valid. If you use the

"checkout" route template above on a Razor Page located

at Pages/Payment.cshtml, you can access it only by

using the URL /checkout; the URL /Payment is no longer

valid and won’t execute the Razor Page.

TIP Customizing the route template for a Razor Page using the
@page directive replaces the default route template for the page. In
section 14.6 I show how you can add extra routes while preserving
the default route template.

In this section you learned how to customize the route

template for a Razor Page. For the most part, routing to

Razor Pages works like minimal APIs, the main difference

being that the route templates are created using

conventions. When it comes to the other half of routing—

generating URLs—Razor Pages and minimal APIs are also

similar, but Razor Pages gives you some nice helpers.

14.5 Generating URLs for Razor Pages
In this section you’ll learn how to generate URLs for your

Razor Pages using the IUrlHelper that’s part of the Razor

Pages PageModel type. You’ll also learn to use the

LinkGenerator service you saw in chapter 6 for

generating URLs with minimal APIs.

One of the benefits of using convention-based routing in

Razor Pages is that your URLs can be somewhat fluid. If you

rename a Razor Page, the URL associated with that page

also changes. Renaming the Pages/Cart.cshtml page to

Pages/Basket/ View.cshtml, for example, causes the

URL you use to access the page to change from /Cart to

/Basket/View.

To track these changes (and to avoid broken links), you can

use the routing infrastructure to generate the URLs that you

output in your Razor Page HTML and that you include in your

HTTP responses. In chapter 6 you saw how to generate URLs

for your minimal API endpoints, and in this section, you’ll

see how to do the same for your Razor Pages. I also describe

how to generate URLs for MVC controllers, as the

mechanism is virtually identical to that used by Razor Pages.

14.5.1 Generating URLs for a Razor Page

You’ll need to generate URLs in various places in your

application, and one common location is in your Razor Pages

and MVC controllers. The following listing shows how you

could generate a link to the

Pages/Currency/View.cshtml Razor Page, using the

Url helper from the PageModel base class.

Listing 14.2 Generating a URL using IUrlHelper and the Razor
Page name

public class IndexModel : PageModel ❶
{

 public void OnGet()

 {

 var url = Url.Page("Currency/View", new { code = "USD" }); ❷
 }

}

❶ Deriving from PageModel gives access to the Url property.

❷ You provide the relative path to the Razor Page, along with any additional route values.

The Url property is an instance of IUrlHelper that allows

you to easily generate URLs for your application by

referencing other Razor Pages by their file path.

NOTE IUrlHelper is a wrapper around the LinkGenerator
class you learned about in chapter 6. IUrlHelper adds some
shortcuts for generating URLs based on the current request.

IUrlHelper exposes a Page() method to which you pass

the name of the Razor Page and any additional route data as

an anonymous object. Then the helper generates a URL

based on the referenced page’s route template.

TIP You can provide the relative file path to the Razor Page, as
shown in listing 14.2. Alternatively, you can provide the absolute file
path (relative to the Pages folder) by starting the path with a "/",
such as "/Currency/View".

IUrlHelper has several different overloads of the Page()

method. Some of these methods allow you to specify a

specific page handler, others let you generate an absolute

URL instead of a relative URL, and some let you pass in

additional route values.

In listing 14.2, as well as providing the file path I passed in

an anonymous object, new { code = "USD" }. This object

provides additional route values when generating the URL, in

this case setting the code parameter to "USD", as you did

when generating URLs for minimal APIs with

LinkGenerator in chapter 6. As before, the code value is

used in the URL directly if it corresponds to a route

parameter. Otherwise, it’s appended as additional data in the

query string.

Generating URLs based on the page you want to execute is

convenient, and it’s the usual approach taken in most cases.

If you’re using MVC controllers for your APIs, the process is

much the same as for Razor Pages, though the methods are

slightly different.

14.5.2 Generating URLs for an MVC controller

Generating URLs for MVC controllers is similar to Razor

Pages. The main difference is that you use the Action

method on the IUrlHelper, and you provide an MVC

controller name and action name instead of a page path.

NOTE I’ve covered MVC controllers only in passing, as I generally
don’t recommend them over Razor Pages or minimal APIs, so don’t
worry too much about them. We’ll come back to MVC controllers in
chapters 19 and 20; the main reason for mentioning them here is to
point out how similar MVC controllers are to Razor Pages.

The following listing shows an MVC controller generating a

link from one action method to another, using the Url

helper from the Controller base class.

Listing 14.3 Generating a URL using IUrlHelper and the action
name

public class CurrencyController : Controller ❶
{

 [HttpGet("currency/index")] ❷
 public IActionResult Index()

 {

 var url = Url.Action("View", "Currency", ❸
 new { code = "USD" }); ❸
 return Content($"The URL is {url}"); ❹
 }

 [HttpGet("currency/view/{code}")]

 public IActionResult View(string code) ❺
 {

 /* method implementation*/

 }

}

❶ Deriving from Controller gives access to the Url property.

❷ Explicit route templates using attributes
❸ You provide the action and controller name to generate, along with any additional route

values.

❹ Returns “The URL is /Currency/View/USD”
❺ The URL generated a route to this action method.

You can call the Action and Page methods on

IUrlHelper from both Razor Pages and MVC controllers, so

you can generate links back and forth between them if you

need to. The important question is, what is the destination

of the URL? If the URL you need refers to a Razor Page, use

the Page() method. If the destination is an MVC action, use

the Action() method.

TIP Instead of using strings for the name of the action method, use
the C# 6 nameof operator to make the value refactor-safe, such as
nameof(View).

If you’re routing to an action in the same controller, you can

use a different overload of Action() that omits the

controller name when generating the URL. The IUrlHelper

uses ambient values from the current request and overrides

them with any specific values you provide.

DEFINITION Ambient values are the route values for the current
request. They include Controller and Action when called from
an MVC controller and Page when called from a Razor Page.
Ambient values can also include additional route values that were set
when the action or Razor Page was initially located using routing.

See Microsoft’s “Routing in ASP.NET Core” documentation for further
details: http://mng.bz/OxoE.

IUrlHelper can make it simpler to generate URLs by

reusing ambient values from the current request, though it

also adds a layer of complexity, as the same method

arguments can give a different generated URL depending on

the page the method is called from.

If you need to generate URLs from parts of your application

outside the Razor Page or MVC infrastructure, you won’t be

able to use the IUrlHelper helper. Instead, you can use

the LinkGenerator class.

14.5.3 Generating URLs with LinkGenerator

In chapter 6 I described how to generate links to minimal

API endpoints using the LinkGenerator class. By contrast

with IUrlHelper, LinkGenerator requires that you

always provide sufficient arguments to uniquely define the

URL to generate. This makes it more verbose but also more

consistent and has the advantage that it can be used

anywhere in your application. This differs from

IUrlHelper, which should be used only inside the context

of a request.

If you’re writing your Razor Pages and MVC controllers

following the advice from chapter 13, you should be trying to

keep your Razor Pages relatively simple. That requires you

http://mng.bz/OxoE

to execute your application’s business and domain logic in

separate classes and services.

For the most part, the URLs your application uses shouldn’t

be part of your domain logic. That makes it easier for your

application to evolve over time or even to change

completely. You may want to create a mobile application that

reuses the business logic from an ASP.NET Core app, for

example. In that case, using URLs in the business logic

wouldn’t make sense, as they wouldn’t be correct when the

logic is called from the mobile app!

TIP Where possible, try to keep knowledge of the frontend application
design out of your business logic. This pattern is known generally as
the Dependency Inversion principle.

Unfortunately, sometimes that separation is not possible, or

it makes things significantly more complicated. One example

might be when you’re creating emails in a background

service; it’s likely you’ll need to include a link to your

application in the email. The LinkGenerator class lets you

generate that URL so that it updates automatically if the

routes in your application change.

As you saw in chapter 6, the LinkGenerator class is

available everywhere in your application, so you can use it

inside middleware, minimal API endpoints, or any other

services. You can use it from Razor Pages and MVC too, if

you want, though the IUrlHelper is often more convenient

and hides some details of using the LinkGenerator.

You’ve already seen how to generate links to minimal API

endpoints with LinkGenerator using methods like

GetPathByName() and GetUriByName().

LinkGenerator has various analogous methods for

generating URLs for Razor Pages and MVC actions, such as

GetPathByPage(), GetPathByAction(), and

GetUriByPage(), as shown in the following listing.

Listing 14.4 Generating URLs using the LinkGeneratorClass

public class CurrencyModel : PageModel

{

 private readonly LinkGenerator _link; ❶
 public CurrencyModel(LinkGenerator linkGenerator) ❶
 { ❶
 _link = linkGenerator; ❶
 } ❶

 public void OnGet ()

 {

 var url1 = Url.Page("Currency/View", new { id = 5 }); ❷
 var url3 = _link.GetPathByPage(❸
 HttpContext, ❸
 "/Currency/View", ❸
 values: new { id = 5 }); ❸
 var url2 = _link.GetPathByPage(❹
 "/Currency/View", ❹
 values: new { id = 5 }); ❹
 var url4 = _link.GetUriByPage(❺
 page: "/Currency/View", ❺
 handler: null, ❺
 values: new { id = 5 }, ❺
 scheme: "https", ❺
 host: new HostString("example.com")); ❺
 }

}

❶ LinkGenerator can be accessed using dependency injection.

❷ You can generate relative paths using Url.Page. You can use relative or absolute Page
paths.

❸ GetPathByPage is equivalent to Url.Page and generates a relative URL.
❹ Other overloads don’t require an HttpContext.

❺ GetUriByPage generates an absolute URL instead of a relative URL.

WARNING As always, you need to be careful when generating URLs,
whether you’re using IUrlHelper or LinkGenerator. If you
get anything wrong—use the wrong path or don’t provide a required
route parameter—the URL generated will be null.

At this point we’ve covered mapping request URLs to Razor

Pages and generating URLs, but most of the URLs we’ve

used have been kind of ugly. If seeing capital letters in your

URLs bothers you, the next section is for you. In section

14.6 we customize the conventions your application uses to

calculate route templates.

14.6 Customizing conventions with
Razor Pages

Razor Pages is built on a series of conventions that are

designed to reduce the amount of boilerplate code you need

to write. In this section you’ll see some of the ways you can

customize those conventions. By customizing the

conventions Razor Pages uses in your application, you get

full control of your application’s URLs without having to

customize every Razor Page’s route template manually.

By default, ASP.NET Core generates URLs that match the

filenames of your Razor Pages very closely. The Razor Page

located at the path Pages/Products/ProductDetails

.cshtml, for example, corresponds to the route template

Products/ProductDetails.

These days, it’s not common to see capital letters in URLs.

Similarly, words in URLs are usually separated using kebab-

case rather than PascalCase—product-details instead of

ProductDetails. Finally, it’s also common to ensure that

your URLs always end with a slash, for example

—/product-details/ instead of /product-details.

Razor Pages gives you complete control of the conventions

your application uses to generate route templates, but these

are some of the common changes I often make.

You saw how to make some of these changes in chapter 6,

by customizing the RouteOptions for your application. You

can make your URLs lowercase and ensure that they already

have a trailing slash as shown in the following listing.

Listing 14.5 Configuring routing conventions using RouteOptions
in Program.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages();

builder.Services.Configure<RouteOptions>(o => ❶
{ ❶
 o.LowercaseUrls = true; ❶
 o.LowercaseQueryStrings = true; ❶
 o.AppendTrailingSlash = true; ❶
});

WebApplication app = builder.Build();

app.MapRazorPages();

app.Run();

❶ Changes the conventions used to generate URLs. By default, these properties are false.

To use kebab-case for your application, annoyingly you must

create a custom parameter transformer. This is a somewhat

advanced topic, but it’s relatively simple to implement in this

case. The following listing shows how you can create a

parameter transformer that uses a regular expression to

replace PascalCase values in a generated URL with kebab-

case.

Listing 14.6 Creating a kebab-case parameter transformer

public class KebabCaseParameterTransformer ❶
 : IOutboundParameterTransformer ❶
{

 public string TransformOutbound(object? value)

 {

 if (value is null) return null; ❷

 return Regex.Replace(value.ToString(), ❸
 "([a-z])([A-Z])", "$1-$2").ToLower(); ❸
 }

}

❶ Creates a class that implements the parameter transformer interface

❷ Guards against null values to prevent runtime exceptions
❸ The regular expression replaces PascalCase patterns with kebab-case.

Source generators in .NET 7

One of the exciting features introduced in C# 9 was source generators. Source
generators are a compiler feature that let you inspect code as it’s compiled and
generate new C# files on the fly, which are included in the compilation. Source

generators have the potential to dramatically reduce the boilerplate required for some
features and to improve performance by relying on compile-time analysis instead of
runtime reflection.

.NET 6 introduced several source generator implementations, such as a high-
performance logging API, which I discuss in this post: http://mng.bz/Y1GA. Even the
Razor compiler used to compile .cshtml files was rewritten to use source generators!

In .NET 7, many new source generators were added. One such generator is the
regular-expression generator, which can improve performance of your Regex
instances, such as the one in listing 14.6. In fact, if you’re using an IDE like Visual
Studio, you should see a code fix suggesting that you use the new pattern. After you
apply the code fix, listing 14.6 should look like the following instead, which is
functionally identical but will likely be faster:

partial class KebabCaseParameterTransformer : IOutboundParameterTransformer

{

 public string? TransformOutbound(object? value)

 {

 if (value is null) return null;

 return MyRegex().Replace(value.ToString(), "$1-$2").ToLower();

 }

 [GeneratedRegex("([a-z])([A-Z])")]

 private static partial Regex MyRegex();

}

If you’d like to know more about how this source generator works and how it can
improve performance, see this post at http://mng.bz/GyEO. If you’d like to learn more
about source generators, or even write your own, see my series on the process at
http://mng.bz/zX4Q.

You can register the parameter transformer in your

application with the AddRazorPagesOptions() extension

method in Program.cs. This method is chained after the

AddRazorPages() method and can be used to customize

the conventions used by Razor Pages. The following listing

shows how to register the kebab-case transformer. It also

http://mng.bz/Y1GA
http://mng.bz/GyEO
http://mng.bz/zX4Q

shows how to add an extra page route convention for a

given Razor Page.

Listing 14.7 Registering a parameter transformer using
RazorPagesOptions

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages()

 .AddRazorPagesOptions(opts => ❶
 {

 opts.Conventions.Add(❷
 new PageRouteTransformerConvention(❷
 new KebabCaseParameterTransformer())); ❷
 opts.Conventions.AddPageRoute(❸
 "/Search/Products/StartSearch", "/search-products"); ❸
 });

WebApplication app = builder.Build();

app.MapRazorPages();

app.Run();

❶ AddRazorPagesOptions can be used to customize the conventions used by Razor Pages

❷ Registers the parameter transformer as a convention used by all Razor Pages
❸ AddPageRoute adds a route template to Pages/Search/Products/StartSearch.cshtml.

The AddPageRoute() convention adds an alternative way

to execute a single Razor Page. Unlike when you customize

the route template for a Razor Page using the @page

directive, using AddPageRoute() adds an extra route

template to the page instead of replacing the default. That

means there are two route templates that can access the

page.

TIP Even the name of the Pages root folder is a convention that you
can customize! You can customize it by setting the

RootDirectory property inside the
AddRazorPageOptions() configuration lambda.

If you want even more control of your Razor Pages route

templates, you can implement a custom convention by

implementing the IPageRouteModelConvention

interface and registering it as a custom convention.

IPageRouteModelConvention is one of three powerful

Razor Pages interfaces which let you customize how your

Razor Pages app works:

IPageRouteModelConvention—Used to

customize the route templates for all the Razor

Pages in your app.

IPageApplicationModelConvention—Used

to customize how the Razor Page is processed,

such as to add filters to your Razor Page

automatically. You’ll learn about filters in Razor

Pages in chapters 21 and 22.

IPageHandlerModelConvention—Used to

customize how page handlers are discovered and

selected.

These interfaces are powerful, as they give you access to all

the internals of your Razor Page conventions and

configuration. You can use the

IPageRouteModelConvention, for example, to rewrite all

the route templates for your Razor Pages or to add routes

automatically. This is particularly useful if you need to

localize an application so that you can use URLs in multiple

languages, all of which map to the same Razor Page.

Listing 14.8 shows a simple example of an

IPageRouteModelConvention that adds a fixed prefix,

"page", to all the routes in your application. If you have a

Razor Page at Pages/Privacy.cshtml, with a default route

template of "Privacy", after adding the following

convention it would also have the route template

"page/Privacy”.

Listing 14.8 Creating a custom IPageRouteModelConvention

public class PrefixingPageRouteModelConvention

 : IpageRouteModelConvention ❶
{

 public void Apply(PageRouteModel model) ❷
 {

 var selectors = model.Selectors

 .Select(selector => new SelectorModel ❸
 { ❸
 AttributeRouteModel = new AttributeRouteModel ❸
 { ❸
 Template = AttributeRouteModel.CombineTemplates(❸
 "page", ❸
 selector.AttributeRouteModel!.Template), ❸
 } ❸
 }) ❸
 .ToList();

 foreach(var newSelector in selectors) ❹
 {

 model.Selectors.Add(newSelector);

 }

 }

}

❶ The convention implements IPageRouteModelConvention.

❷ ASP.NET Core calls Apply on app startup.

❸ Creates a new SelectorModel, defining a new route template for the page
❹ Adds the new selector to the page’s route template collection

You can add the convention to your application inside the

call to AddRazorPagesOptions(). The following applies

the contention to all pages:

builder.Services.AddRazorPages().AddRazorPagesOptions(opts =>

{

 opts.Conventions.Add(new PrefixingPageRouteModelConvention());

});

There are many ways you can customize the conventions in

your Razor Page applications, but a lot of the time that’s not

necessary. If you do find you need to customize all the

pages in your application in some way, Microsoft’s “Razor

Pages route and app conventions in ASP.NET Core”

documentation contains further details on everything that’s

available: http://mng.bz/A0BK.

Conventions are a key feature of Razor Pages, and you

should lean on them whenever you can. Although you can

override the route templates for individual Razor Pages

manually, as you’ve seen in previous sections, I advise

against it where possible. In particular,

Avoid replacing the route template with an

absolute path in a page’s @page directive.

Avoid adding literal segments to the @page

directive. Rely on the file hierarchy instead.

http://mng.bz/A0BK

Avoid adding additional route templates to a Razor

Page with the AddPageRoute() convention.

Having multiple URLs to access a page can often

be confusing.

Do add route parameters to the @page directive to

make your routes dynamic, as in @page "

{name}".

Do consider using global conventions when you

want to change the route templates for all your

Razor Pages, such as using kebab-case, as you

saw earlier.

In a nutshell, these rules say “Stick to the conventions.” The

danger, if you don’t, is that you may accidentally create two

Razor Pages that have overlapping route templates.

Unfortunately, if you end up in that situation, you won’t get

an error at compile time. Instead, you’ll get an exception at

runtime when your application receives a request that

matches multiple route templates, as shown in figure 14.4.

Figure 14.4 If multiple Razor Pages are registered with
overlapping route templates, you’ll get an exception at runtime
when the router can’t work out which one to select.

We’ve covered pretty much everything about routing to

Razor Pages now. For the most part, routing to Razor Pages

works like minimal APIs, the main difference being that the

route templates are created using conventions. When it

comes to the other half of routing—generating URLs—Razor

Pages and minimal APIs are also similar, but Razor Pages

gives you some nice helpers.

Congratulations—you’ve made it all the way through this

detailed discussion on Razor Page routing! I hope you

weren’t too fazed by the differences from minimal API

routing. We’ll revisit routing again when I describe how to

create Web APIs in chapter 20, but rest assured that we’ve

already covered all the tricky details in this chapter!

Routing controls how incoming requests are bound to your

Razor Page, but we haven’t seen where page handlers come

into it. In chapter 15 you’ll learn all about page handlers—

how they’re selected, how they generate responses, and

how to handle error responses gracefully.

Summary
Routing is the process of mapping an incoming

request URL to an endpoint that will execute to

generate a response. Each Razor Page is an

endpoint, and a single page handler executes for

each request.

You can define the mapping between URLs and

endpoint in your application using either

convention-based routing or explicit routing.

Minimal APIs use explicit routing, where each

endpoint has a corresponding route template. MVC

controllers often use conventional routing in which

a single pattern matches multiple controllers but

may also use explicit/attribute routing. Razor

Pages lies in between; it uses conventions to

generate explicit route templates for each page.

By default, each Razor Page has a single route

template that matches its path inside the Pages

folder, so the Razor Page

Pages/Products/View.cshtml has route template

Products/View. These file-based defaults make

it easy to visualize the URLs your application

exposes.

Index.cshtml Razor Pages have two route

templates, one with an /Index suffix and one

without. Pages/Products/Index.cshtml, for

example, has two route templates:

Products/Index and Products. This is in

keeping with the common behavior of index.xhtml

files in traditional HTML applications.

You can add segments to a Razor Page’s template

by appending it to the @page directive, as in

@page "{id}". Any extra segments are

appended to the Razor Page’s default route

template. You can include both literal and route

template segments, which can be used to make

your Razor Pages dynamic. You can replace the

route template for a Razor Page by starting the

template with a "/", as in @page "/contact".

You can use IUrlHelper to generate URLs as a

string based on an action name or Razor Page.

IUrlHelper can be used only in the context of a

request and uses ambient routing values from the

current request. This makes it easier to generate

links for Razor Pages in the same folder as the

currently executing request but also adds

inconsistency, as the same method call generates

different URLs depending on where it’s called.

The LinkGenerator can be used to generate

URLs from other services in your application,

where you don’t have access to an HttpContext

object. The LinkGenerator methods are more

verbose than the equivalents on IUrlHelper, but

they are unambiguous as they don’t use ambient

values from the current request.

You can control the routing conventions used by

ASP.NET Core by configuring the RouteOptions

object, such as to force all URLs to be lowercase or

to always append a trailing slash.

You can add extra routing conventions for Razor

Pages by calling AddRazorPagesOptions()

after AddRazorPages() in Program.cs. These

conventions can control how route parameters are

displayed and can add extra route templates for

specific Razor Pages.

15 Generating responses with page
handlers in Razor Pages

This chapter covers

Selecting which page handler in a Razor Page to invoke for a
request
Returning an IActionResult from a page handler
Handling status code errors with StatusCodePagesMiddleware

In chapter 14 you learned how the routing system selects a

Razor Page to execute based on its associated route

template and the request URL, but each Razor Page can

have multiple page handlers. In this chapter you’ll learn all

about page handlers, their responsibilities, and how a single

Razor Page selects which handler to execute for a request.

In section 15.3 we look at some of the ways of retrieving

values from an HTTP request in a page handler. Much like

minimal APIs, page handlers can accept method arguments

that are bound to values in the HTTP request, but Razor

Pages can also bind the request to properties on the

PageModel.

In section 15.4 you’ll learn how to return IActionResult

objects from page handlers. Then you look at some of the

common IActionResult types that you’ll return from

page handlers for generating HTML and redirect responses.

Finally, in section 15.5 you’ll learn how to use the

StatusCodePagesMiddleware to improve the error

status code responses in your middleware pipeline. This

middleware intercepts error responses such as basic 404

responses and reexecutes the middleware pipeline to

generate a pretty HTML response for the error. This gives

users a much nicer experience when they encounter an error

browsing your Razor Pages app.

We’ll start by taking a quick look at the responsibilities of a

page handler before we move on to see how the Razor Page

infrastructure selects which page handler to execute.

15.1 Razor Pages and page handlers
In chapter 13 I described the Model-View-Controller (MVC)

design pattern and showed how it relates to ASP.NET Core.

In this design pattern, the “controller” receives a request

and is the entry point for UI generation. For Razor Pages,

the entry point is the page handler that resides in a Razor

Page’s PageModel. A page handler is a method that runs in

response to a request.

The responsibility of a page handler is generally threefold:

Confirm that the incoming request is valid.

Invoke the appropriate business logic

corresponding to the incoming request.

Choose the appropriate kind of response to return.

A page handler doesn’t need to perform all these actions,

but at the very least it must choose the kind of response to

return. Page handlers typically return one of three things:

A PageResult object—This causes the associated

Razor view to generate an HTML response.

Nothing (the handler returns void or Task)—This

is the same as the previous case, causing the

Razor view to generate an HTML response.

A RedirectToPageResult—This indicates that

the user should be redirected to a different page in

your application.

These are the most common results for Razor Pages, but I

describe some additional options in section 15.4.

It’s important to realize that a page handler doesn’t

generate a response directly; it selects the type of response

and prepares the data for it. For example, returning a

PageResult doesn’t generate any HTML at that point; it

merely indicates that a view should be rendered. This is in

keeping with the MVC design pattern in which it’s the view

that generates the response, not the controller.

TIP The page handler is responsible for choosing what sort of
response to send; the view engine in the MVC framework uses the
result to generate the response.

It’s also worth bearing in mind that page handlers generally

shouldn’t be performing business logic directly. Instead, they

should call appropriate services in the application model to

handle requests. If a page handler receives a request to add

a product to a user’s cart, it shouldn’t manipulate the

database or recalculate cart totals directly, for example.

Instead, it should make a call to another class to handle the

details. This approach of separating concerns ensures that

your code stays testable and maintainable as it grows.

15.2 Selecting a page handler to
invoke

In chapter 14 I said routing is about mapping URLs to an

endpoint, which for Razor Pages means a page handler. But

I’ve mentioned several times that Razor Pages can contain

multiple page handlers. In this section you’ll learn how the

EndpointMiddleware selects which page handler to

invoke when it executes a Razor Page.

As you saw in chapter 14, the path of a Razor Page on disk

controls the default route template for a Razor Page. For

example, the Razor Page at the path Pages/Products/

Search.cshtml has a default route template of

Products/Search. When a request is received with the

URL /products/search, the RoutingMiddleware

selects this Razor Page, and the request passes through the

middleware pipeline to the EndpointMiddleware. At this

point, the EndpointMiddleware must choose which page

handler to execute, as shown in figure 15.1.

Figure 15.1 The routing middleware selects the Razor Page to
execute based on the incoming request URL. Then the endpoint
middleware selects the endpoint to execute based on the HTTP
verb of the request and the presence (or lack) of a handler route
value.

Consider the Razor Page SearchModel shown in listing

15.1. This Razor Page has three handlers: OnGet,

OnPostAsync, and OnPostCustomSearch. The bodies of

the handler methods aren’t shown, as we’re interested only

in how the EndpointMiddleware chooses which handler

to invoke.

Listing 15.1 Razor Page with multiple page handlers

public class SearchModel : PageModel

{

 public void OnGet() ❶
 {

 // Handler implementation

 }

 public Task OnPostAsync() ❷
 {

 // Handler implementation

 }

 public void OnPostCustomSearch() ❸
 {

 // Handler implementation

 }

}

❶ Handles GET requests

❷ Handles POST requests. The async suffix is optional and is ignored for routing purposes.
❸ Handles POST requests where the handler route value has the value CustomSearch

Razor Pages can contain any number of page handlers, but

only one runs in response to a given request. When the

EndpointMiddleware executes a selected Razor Page, it

selects a page handler to invoke based on two variables:

The HTTP verb used in the request (such as GET,

POST, or DELETE)

The value of the handler route value

The handler route value typically comes from a query

string value in the request URL, such as /Search?

handler=CustomSearch. If you don’t like the look of

query strings (I don’t!), you can include the {handler}

route parameter in your Razor Page’s route template. For the

Search page model in listing 15.2, you could update the

page’s directive to

@page "{handler?}"

This would give a complete route template something like

"Search/{handler?}", which would match URLs such as

/Search and /Search/CustomSearch.

The EndpointMiddleware uses the handler route value

and the HTTP verb together with a standard naming

convention to identify which page handler to execute, as

shown in figure 15.2. The handler parameter is optional

and is typically provided as part of the request’s query string

or as a route parameter, as described earlier. The async

suffix is also optional and is often used when the handler

uses asynchronous programming constructs such as Task or

async/await.

Figure 15.2 Razor Page handlers are matched to a request based
on the HTTP verb and the optional handler parameter.

NOTE The async suffix naming convention is suggested by Microsoft,
though it is unpopular with some developers. NServiceBus provides a
reasoned argument against it here (along with Microsoft’s advice):
http://mng.bz/e59P.

Based on this convention, we can now identify what type of

request each page handler in listing 15.1 corresponds to:

OnGet—Invoked for GET requests that don’t

specify a handler value

OnPostAsync—Invoked for POST requests that

don’t specify a handler value; returns a Task, so

it uses the Async suffix, which is ignored for

routing purposes

OnPostCustomSearch—Invoked for POST

requests that specify a handler value of

"CustomSearch"

The Razor Page in listing 15.1 specifies three handlers, so it

can handle only three verb-handler pairs. But what happens

http://mng.bz/e59P

if you get a request that doesn’t match these, such as a

request using the DELETE verb, a GET request with a

nonblank handler value, or a POST request with an

unrecognized handler value?

For all these cases, the EndpointMiddleware executes an

implicit page handler instead. Implicit page handlers contain

no logic; they simply render the Razor view. For example, if

you sent a DELETE request to the Razor Page in listing 15.1,

the EndpointMiddleware would execute an implicit

handler. The implicit page handler is equivalent to the

following handler code:

public void OnDelete() { }

DEFINITION If a page handler does not match a request’s HTTP verb
and handler value, an implicit page handler is executed that renders
the associated Razor view. Implicit page handlers take part in model
binding and use page filters but execute no logic.

There’s one exception to the implicit page handler rule: if a

request uses the HEAD verb, and there is no corresponding

OnHead handler, the EndpointMiddleware executes the

OnGet handler instead (if it exists).

NOTE HEAD requests are typically sent automatically by the browser
and don’t return a response body. They’re often used for security
purposes, as you’ll see in chapter 28.

Now that you know how a page handler is selected, you can

think about how it’s executed.

15.3 Accepting parameters to page
handlers

In chapter 7 you learned about the intricacies of model

binding in minimal API endpoint handlers. Like minimal APIs,

Razor Page page handlers can use model binding to easily

extract values from the request. You’ll learn the details of

Razor Page model binding in chapter 16; in this section you’ll

learn about the basic mechanics of Razor Page model

binding and the basic options available.

When working with Razor Pages, you’ll often want to extract

values from an incoming request. If the request is for a

search page, the request might contain the search term and

the page number in the query string. If the request is

POSTing a form to your application, such as a user logging

in with their username and password, those values may be

encoded in the request body. In other cases, there will be no

values, such as when a user requests the home page for

your application.

DEFINITION The process of extracting values from a request and
converting them to .NET types is called model binding. I discuss
model binding for Razor Pages in detail in chapter 16.

ASP.NET Core can bind two different targets in Razor Pages:

Method arguments—If a page handler has method

parameters, the arguments are bound and created

from values in the request.

Properties marked with a [BindProperty]

attribute—Any properties on the PageModel

marked with this attribute are bound to the

request. By default, this attribute does nothing for

GET requests.

Model-bound values can be simple types, such as strings and

integers, or they can be complex types, as shown in the

following listing. If any of the values provided in the request

are not bound to a property or page handler argument, the

additional values will go unused.

Listing 15.2 Example Razor Page handlers

public class SearchModel : PageModel

{

 private readonly SearchService _searchService; ❶
 public SearchModel(SearchService searchService) ❶
 { ❶
 _searchService = searchService; ❶
 } ❶

 [BindProperty] ❷
 public BindingModel Input { get; set; } ❷
 public List<Product> Results { get; set; } ❸

 public void OnGet() ❹
 { ❹
 } ❹

 public IActionResult OnPost(int max) ❺
 {

 if (ModelState.IsValid) ❻

 { ❻
 Results = _searchService.Search(Input.SearchTerm, max); ❻
 return Page(); ❻
 } ❻
 return RedirectToPage("./Index"); ❻
 }

}

❶ The SearchService is injected from DI for use in page handlers.
❷ Properties decorated with the [BindProperty] attribute are model-bound.

❸ Undecorated properties are not model-bound.
❹ The page handler doesn’t need to check if the model is valid. Returning void renders the

view.

❺ The max parameter is model-bound using values in the request.
❻ If the request was not valid, the method indicates the user should be redirected to the

Index page.

In this example, the OnGet handler doesn’t require any

parameters, and the method is simple: it returns void,

which means the associated Razor view will be rendered. It

could also have returned a PageResult; the effect would

have been the same. Note that this handler is for HTTP GET

requests, so the Input property decorated with

[BindProperty] is not bound.

TIP To bind properties for GET requests too, use the
SupportsGet property of the attribute, as in
[BindProperty(SupportsGet = true)].

The OnPost handler, conversely, accepts a parameter max

as an argument. In this case it’s a simple type, int, but it

could also be a complex object. Additionally, as this handler

corresponds to an HTTP POST request, the Input property

is also model-bound to the request.

NOTE Unlike most .NET classes, you can’t use method overloading
to have multiple page handlers on a Razor Page with the same
name.

When a page handler uses model-bound properties or

parameters, it should always check that the provided model

is valid using ModelState.IsValid. The ModelState

property is exposed as a property on the base PageModel

class and can be used to check that all the bound properties

and parameters are valid. You’ll see how the process works

in chapter 16 when you learn about validation.

Once a page handler establishes that the arguments

provided to a page handler method are valid, it can execute

the appropriate business logic and handle the request. In the

case of the OnPost handler, this involves calling the injected

SearchService and setting the result on the Results

property. Finally, the handler returns a PageResult by

calling the helper method on the PageModel base class:

return Page();

If the model isn’t valid, as indicated by

ModelState.IsValid, you don’t have any results to

display! In this example, the action returns a

RedirectToPageResult using the RedirectToPage()

helper method. When executed, this result sends a 302

Redirect response to the user, which will cause their browser

to navigate to the Index Razor Page.

Note that the OnGet method returns void in the method

signature, whereas the OnPost method returns an

IActionResult. This is required in the OnPost method to

allow the C# to compile (as the Page() and

RedirectToPage() helper methods return different

types), but it doesn’t change the final behavior of the

methods. You could easily have called Page() in the OnGet

method and returned an IActionResult, and the behavior

would be identical.

TIP If you’re returning more than one type of result from a page
handler, you’ll need to ensure that your method returns an
IActionResult.

In listing 15.2 I used Page() and RedirectToPage()

methods to generate the return value. IActionResult

instances can be created and returned using the normal new

syntax of C#:

return new PageResult()

However, the Razor Pages PageModel base class also

provides several helper methods for generating responses,

which are thin wrappers around the new syntax. It’s

common to use the Page() method to generate an

appropriate PageResult, the RedirectToPage() method

to generate a RedirectToPageResult, or the

NotFound() method to generate a NotFoundResult.

TIP Most IActionResult implementations have a helper method
on the base PageModel class. They’re typically named Type, and
the result generated is called TypeResult. For example, the
StatusCode() method returns a StatusCodeResult
instance.

In the next section we’ll look in more depth at some of the

common IActionResult types.

15.4 Returning IActionResult
responses

In the previous section, I emphasized that page handlers

decide what type of response to return, but they don’t

generate the response themselves. It’s the IActionResult

returned by a page handler that, when executed by the

Razor Pages infrastructure using the view engine, generates

the response.

WARNING Note that the interface type is IActionResult not
IResult. IResult is used in minimal APIs and should generally
be avoided in Razor Pages (and MVC controllers). In .NET 7,
IResult types returned from Razor Pages or MVC controllers
execute as expected, but they don’t have all the same features as

IActionResult, so you should favor IActionResult in
Razor Pages.

IActionResults are a key part of the MVC design pattern.

They separate the decision of what sort of response to send

from the generation of the response. This allows you to test

your action method logic to confirm that the right sort of

response is sent for a given input. You can then separately

test that a given IActionResult generates the expected

HTML, for example.

ASP.NET Core has many types of IActionResult, such as

PageResult—Generates an HTML view for the

associated page in Razor Pages and returns a 200

HTTP response.

ViewResult—Generates an HTML view for a

given Razor view when using MVC controllers and

returns a 200 HTTP response.

PartialViewResult—Renders part of an HTML

page using a given Razor view and returns a 200

HTTP result; typically used with MVC controllers

and AJAX requests.

RedirectToPageResult—Sends a 302 HTTP

redirect response to automatically send a user to

another page.

RedirectResult—Sends a 302 HTTP redirect

response to automatically send a user to a

specified URL (doesn’t have to be a Razor Page).

FileResult—Returns a file as the response. This

is a base class with several derived types:

FileContentResult—Returns a byte[] as

a file response to the browser

FileStreamResult—Returns the contents of

a Stream as a file response to the browser

PhysicalFileResult—Returns the contents

of a file on disk as a file response to the

browser

ContentResult—Returns a provided string as

the response.

StatusCodeResult—Sends a raw HTTP status

code as the response, optionally with associated

response body content.

NotFoundResult—Sends a raw 404 HTTP status

code as the response.

Each of these, when executed by Razor Pages, generates a

response to send back through the middleware pipeline and

out to the user.

TIP When you’re using Razor Pages, you generally won’t use some
of these action results, such as ContentResult and
StatusCodeResult. It’s good to be aware of them, though, as

you will likely use them if you are building Web APIs with MVC
controllers, as you’ll see in chapter 20.

In sections 15.4.1-15.4.3 I give a brief description of the

most common IActionResult types that you’ll use with

Razor Pages.

15.4.1 PageResult and RedirectToPageResult

When you’re building a traditional web application with Razor

Pages, usually you’ll be using PageResult, which generates

an HTML response from the Razor Page’s associated Razor

view. We’ll look at how this happens in detail in chapter 17.

You’ll also commonly use the various redirect-based results

to send the user to a new web page. For example, when you

place an order on an e-commerce website, you typically

navigate through multiple pages, as shown in figure 15.3.

The web application sends HTTP redirects whenever it needs

you to move to a different page, such as when a user

submits a form. Your browser automatically follows the

redirect requests, creating a seamless flow through the

checkout process.

Figure 15.3 A typical POST, REDIRECT, GET flow through a website. A
user sends their shopping basket to a checkout page, which
validates its contents and redirects to a payment page without
the user’s having to change the URL manually.

In this flow, whenever you return HTML you use a

PageResult; when you redirect to a new page, you use a

RedirectToPageResult.

TIP Razor Pages are generally designed to be stateless, so if you
want to persist data between multiple pages, you need to place it in a
database or similar store. If you want to store data for a single
request, you may be able to use TempData, which stores small
amounts of data in cookies for a single request. See the
documentation for details: http://mng.bz/XdXp.

15.4.2 NotFoundResult and StatusCodeResult

As well as sending HTML and redirect responses, you’ll

occasionally need to send specific HTTP status codes. If you

request a page for viewing a product on an e-commerce

application, and that product doesn’t exist, a 404 HTTP

status code is returned to the browser, and you’ll typically

see a “Not found” web page. Razor Pages can achieve this

behavior by returning a NotFoundResult, which returns a

raw 404 HTTP status code. You could achieve a similar result

using StatusCodeResult and setting the status code

returned explicitly to 404.

http://mng.bz/XdXp

Note that NotFoundResult doesn’t generate any HTML; it

only generates a raw 404 status code and returns it through

the middleware pipeline. This generally isn’t a great user

experience, as the browser typically displays a default page,

such as that shown in figure 15.4.

Figure 15.4 If you return a raw 404 status code without any
HTML, the browser will render a generic default page instead.
The message is of limited utility to users and may leave many of
them confused or thinking that your web application is broken.

Returning raw status codes is fine when you’re building an

API, but for a Razor Pages application, this is rarely good

enough. In section 15.5 you’ll learn how you can intercept

this raw 404 status code after it’s been generated and

provide a user-friendly HTML response for it instead.

15.5 Handler status codes with
StatusCodePagesMiddleware

In chapter 4 we discussed error handling middleware, which

is designed to catch exceptions generated anywhere in your

middleware pipeline, catch them, and generate a user-

friendly response. In this section you’ll learn about an

analogous piece of middleware that intercepts error HTTP

status codes: StatusCodePagesMiddleware.

Your Razor Pages application can return a wide range of

HTTP status codes that indicate some sort of error state.

You’ve seen previously that a 500 “server error” is sent

when an exception occurs and isn’t handled and that a 404

“file not found” error is sent when you return a

NotFoundResult from a page handler. 404 errors are

particularly common, often occurring when a user enters an

invalid URL.

TIP 404 errors are often used to indicate that a specific requested
object was not found. For example, a request for the details of a
product with an ID of 23 might return a 404 if no such product exists.

They’re also generated automatically if no endpoint in your
application matches the request URL.

Returning “raw” status codes without additional content is

generally OK if you’re building a minimal API or web API

application. But as mentioned before, for apps consumed

directly by users such as Razor Pages apps, this can result in

a poor user experience. If you don’t handle these status

codes, users will see a generic error page, as you saw in

figure 15.4, which may leave many confused users thinking

your application is broken. A better approach is to handle

these error codes and return an error page that’s in keeping

with the rest of your application or at least doesn’t make

your application look broken.

Microsoft provides StatusCodePagesMiddleware for

handling this use case. As with all error handling

middleware, you should add it early in your middleware

pipeline, as it will handle only errors generated by later

middleware components.

You can use the middleware several ways in your

application. The simplest approach is to add the middleware

to your pipeline without any additional configuration, using

app.UseStatusCodePages();

With this method, the middleware intercepts any response

that has an HTTP status code that starts with 4xx or 5xx

and has no response body. For the simplest case, where you

don’t provide any additional configuration, the middleware

adds a plain-text response body, indicating the type and

name of the response, as shown in figure 15.5. This is

arguably worse than the default message at this point, but it

is a starting point for providing a more consistent experience

to users.

Figure 15.5 Status code error page for a 404 error. You generally
won’t use this version of the middleware in production, as it
doesn’t provide a great user experience, but it demonstrates that
the error codes are being intercepted correctly.

A more typical approach to using

StatusCodePagesMiddleware in production is to

reexecute the pipeline when an error is captured, using a

similar technique to the ExceptionHandlerMiddleware.

This allows you to have dynamic error pages that fit with the

rest of your application. To use this technique, replace the

call to UseStatusCodePages with the following extension

method:

app.UseStatusCodePagesWithReExecute("/{0}");

This extension method configures

StatusCodePagesMiddleware to reexecute the pipeline

whenever a 4xx or 5xx response code is found, using the

provided error handling path. This is similar to the way

ExceptionHandlerMiddleware reexecutes the pipeline,

as shown in figure 15.6.

Figure 15.6 StatusCodePagesMiddleware reexecuting the pipeline to
generate an HTML body for a 404 response. A request to the /
path returns a 404 response, which is handled by the status code
middleware. The pipeline is reexecuted using the /404 path to
generate the HTML response.

Note that the error handling path "/{0}" contains a format

string token, {0}. When the path is reexecuted, the

middleware replaces this token with the status code number.

For example, a 404 error would reexecute the /404 path.

The handler for the path (typically a Razor Page, but it can

be any endpoint) has access to the status code and can

optionally tailor the response, depending on the status code.

You can choose any error handling path as long as your

application knows how to handle it.

With this approach in place, you can create different error

pages for different error codes, such as the 404-specific

error page shown in figure 15.7. This technique ensures that

your error pages are consistent with the rest of your

application, including any dynamically generated content,

while also allowing you to tailor the message for common

errors.

Figure 15.7 An error status code page for a missing file. When an
error code is detected (in this case, a 404 error), the middleware
pipeline is reexecuted to generate the response. This allows
dynamic portions of your web page to remain consistent on
error pages.

WARNING As I mentioned in chapter 4, if your error handling path
generates an error, the user will see a generic browser error. To
mitigate this, it’s often better to use a static error page that will always
work rather than a dynamic page that risks throwing more errors.

The UseStatusCodePagesWithReExecute() method is

great for returning a friendly error page when something

goes wrong in a request, but there’s a second way to use the

StatusCodePagesMiddleware. Instead of reexecuting

the pipeline to generate the error response, you can redirect

the browser to the error page instead, by calling

app.UseStatusCodePagesWithRedirects("/{0}");

As for the reexecute version, this method takes a format

string that defines the URL to generate the response.

However, whereas the reexecute version generates the error

response for the original request, the redirect version

returns a 302 response initially, directing the browser to

send a second request, this time for the error URL, as shown

in figure 15.8. This second request generates the error page

response, returning it with a 200 status code.

Figure 15.8 StatusCodePagesMiddleware returning redirects to
generate error pages. A request to the / path returns a 404
response, which is intercepted by the status code middleware
and converted to a 302 response. The browser makes a second
request using the /404 path to generate the HTML response.

Whether you use the reexecute or redirect method, the

browser ultimately receives essentially the same HTML.

However, there are some important differences:

With the reexecute approach, the original status

code (such as a 404) is preserved. The browser

sees the error page HTML as the response to the

original request. If the user refreshes the page,

the browser makes a second request for the

original path.

With the redirect approach, the original status

code is lost. The browser treats the redirect and

second request as two separate requests and

doesn’t “know” about the error. If the user

refreshes the page, the browser makes a request

for the same error path; it doesn’t resend the

original request.

In most cases, I find the reexecute approach to be more

useful, as it preserves the original error and typically has the

behavior that users expect. There may be some cases where

the redirect approach is useful, however, such as when an

entirely different application generates the error page.

TIP Favor using UseStatusCodePagesWithReExecute over
the redirect approach when the same app is generating the error
page HTML for your app.

You can use StatusCodePagesMiddleware in

combination with other exception handling middleware by

adding both to the pipeline.

StatusCodePagesMiddleware modifies the response only

if no response body has been written. So if another

component, such as ExceptionHandlerMiddleware,

returns a message body along with an error code, it won’t be

modified.

NOTE StatusCodePagesMiddleware has additional
overloads that let you execute custom middleware when an error
occurs instead of reexecuting the middleware pipeline. You can read
about this approach at http://mng.bz/0K66.

Error handling is essential when developing any web

application; errors happen, and you need to handle them

gracefully. The StatusCodePagesMiddleware is

practically a must-have for any production Razor Pages app.

In chapter 16 we’ll dive into model binding. You’ll see how

the route values generated during routing are bound to your

page handler parameters, and perhaps more important, how

to validate the values you’re provided.

http://mng.bz/0K66

Summary
A Razor Page page handler is the method in the

Razor Page PageModel class that is executed

when a Razor Page handles a request.

Page handlers should ensure that the incoming

request is valid, call in to the appropriate domain

services to handle the request, and then choose

the kind of response to return. They typically don’t

generate the response directly; instead, they

describe how to generate the response.

Page handlers should generally delegate to

services to handle the business logic required by a

request instead of performing the changes

themselves. This ensures a clean separation of

concerns that aids testing and improves

application structure.

When a Razor Page is executed, a single page

handler is invoked based on the HTTP verb of the

request and the value of the handler route value.

If no page handler is found, an “implicit” handler is

used instead, simply rendering the content of the

Razor Page.

Page handlers can have parameters whose values

are taken from properties of the incoming request

in a process called model binding. Properties

decorated with [BindProperty] can also be

bound to the request. These are the canonical

ways of reading values from the HTTP request

inside your Razor Page.

By default, properties decorated with

[BindProperty] are not bound for GET

requests. To enable binding, use

[BindProperty(SupportsGet = true)].

Page handlers can return a PageResult or void

to generate an HTML response. The Razor Page

infrastructure uses the associated Razor view to

generate the HTML and returns a 200 OK

response.

You can send users to a different Razor Page using

a RedirectToPageResult. It’s common to send

users to a new page as part of the POST-

REDIRECT-GET flow for handling user input via

forms

The PageModel base class exposes many helper

methods for creating an IActionResult, such as

Page() which creates a PageResult, and

RedirectToPage() which creates a

RedirectToPageResult. These methods are

simple wrappers around calling new on the

corresponding IActionResult type.

StatusCodePagesMiddleware lets you provide

user-friendly custom error handling messages

when the pipeline returns a raw error response

status code. This is important for providing a

consistent user experience when status code

errors are returned, such as 404 errors when a

URL is not matched to an endpoint.

16 Binding and validating requests with
Razor Pages

This chapter covers

Using request values to create binding models
Customizing the model-binding process
Validating user input using DataAnnotations attributes

In chapter 7 we looked at the process of model binding and

validation in minimal APIs. In this chapter we look at the Razor

Pages equivalent: extracting values from a request using

model binding and validating user input.

In the first half of this chapter, we look at using binding

models to retrieve those parameters from the request so that

you can use them in your Razor Pages by creating C# objects.

These objects are passed to your Razor Page handlers as

method parameters or are set as properties on your Razor

Page PageModel.

Once your code is executing in a page handler method, you

can’t simply use the binding model without any further

thought. Any time you’re using data provided by a user, you

need to validate it! The second half of the chapter focuses on

how to validate your binding models with Razor Pages.

We covered model binding and validation for minimal APIs in

chapter 7, and conceptually, binding and validation are the

same for Razor Pages. However, the details and mechanics of

both binding and validation are quite different for Razor Pages.

The binding models populated by the Razor Pages

infrastructure are passed to page handlers when they execute.

Once the page handler has run, you’re all set up to use the

output models in ASP.NET Core’s implementation of Model-

View-Controller (MVC): the view models and API models.

These are used to generate a response to the user’s request.

We’ll cover them in chapters 19 and 20.

Before we go any further, let’s recap the MVC design pattern

and how binding models fit into ASP.NET Core.

16.1 Understanding the models in Razor
Pages and MVC

In this section I describe how binding models fit into the MVC

design pattern we covered in chapter 13. I describe the

difference between binding models and the other “model”

concepts in the MVC pattern and how they’re each used in

ASP.NET Core.

MVC is all about the separation of concerns. The premise is

that isolating each aspect of your application to focus on a

single responsibility reduces the interdependencies in your

system. This separation makes it easier to make changes

without affecting other parts of your application.

The classic MVC design pattern has three independent

components:

Model—The data to display and the methods for

updating this data

View—Displays a representation of data that makes

up the model

Controller—Calls methods on the model and selects

a view

In this representation, there’s only one model, the application

model, which represents all the business logic for the

application as well as how to update and modify its internal

state. ASP.NET Core has multiple models, which takes the

single-responsibility principle (SRP) one step further than

some views of MVC.

In chapter 13 we looked at an example of a to-do list

application that can show all the to-do items for a given

category and username. With this application, you make a

request to a URL that’s routed using

todo/listcategory/{category}/{username}. This

returns a response showing all the relevant to-do items, as

shown in figure 16.1.

Figure 16.1 A basic to-do list application that displays to-do list
items. A user can filter the list of items by changing the category
and username parameters in the URL.

The application uses the same MVC constructs you’ve already

seen, such as routing to a Razor Page handler, as well as

various models. Figure 16.2 shows how a request to this

application maps to the MVC design pattern and how it

generates the final response, including additional details

around the model binding and validation of the request.

Figure 16.2 The MVC pattern in ASP.NET Core handling a request
to view a subset of items in a to-do list Razor Pages application

ASP.NET Core Razor Pages uses several models, most of which

are plain old CLR objects (POCOs), and the application model,

which is more of a concept around a collection of services.

Each of the models in ASP.NET Core is responsible for handling

a different aspect of the overall request:

Binding model—The binding model is all the

information that’s provided by the user when making

a request, as well as additional contextual data. This

includes things like route parameters parsed from

the URL, the query string, and form or JavaScript

Object Notation (JSON) data in the request body.

The binding model itself is one or more POCO

objects that you define. Binding models in Razor

Pages are typically defined by creating a public

property on the page’s PageModel and decorating it

with the [BindProperty] attribute. They can also

be passed to a page handler as parameters.

For this example, the binding model would include the

name of the category, open, and the username, andrew.

The Razor Pages infrastructure inspects the binding model

before the page handler executes to check whether the

provided values are valid, though the page handler

executes even if they’re not, as you’ll see when we discuss

validation in section 16.3.

Application model—The application model isn’t really

an ASP.NET Core model at all. It’s typically a whole

group of different services and classes and is more

of a concept—anything needed to perform some sort

of business action in your application. It may include

the domain model (which represents the thing your

app is trying to describe) and database models

(which represent the data stored in a database), as

well as any other, additional services.

In the to-do list application, the application model would

contain the complete list of to-do items, probably stored in

a database, and would know how to find only those to-do

items in the open category assigned to andrew.

Page model—The PageModel of a Razor Page serves

two main functions: it acts as the controller for the

application by exposing page handler methods, and

it acts as the view model for a Razor view. All the

data required for the view to generate a response is

exposed on the PageModel, such as the list of to-

dos in the open category assigned to andrew.

The PageModel base class that you derive your Razor

Pages from contains various helper properties and

methods. One of these, the ModelState property,

contains the result of the model validation as a series of

key-value pairs. You’ll learn more about validation and the

ModelState property in section 16.3.

These models make up the bulk of any Razor Pages

application, handling the input, business logic, and output of

each page handler. Imagine you have an e-commerce

application that allows users to search for clothes by sending

requests to the /search/{query} URL, where {query}

holds their search term:

Binding model—This would take the {query} route

parameter from the URL and any values posted in

the request body (maybe a sort order, or the number

of items to show), and bind them to a C# class,

which typically acts as a throwaway data transport

class. This would be set as a property on the

PageModel when the page handler is invoked.

Application model—This is the services and classes

that perform the logic. When invoked by the page

handler, this model would load all the clothes that

match the query, applying the necessary sorting and

filters, and return the results to the controller.

Page model—The values provided by the application

model would be set as properties on the Razor

Page’s PageModel, along with other metadata, such

as the total number of items available or whether

the user can currently check out. The Razor view

would use this data to render the Razor view to

HTML.

The important point about all these models is that their

responsibilities are well defined and distinct. Keeping them

separate and avoiding reuse helps ensure that your application

stays agile and easy to update.

The obvious exception to this separation is the PageModel, as

it is where the binding models and page handlers are defined,

and it also holds the data required for rendering the view.

Some people may consider the apparent lack of separation to

be sacrilege, but it’s not generally a problem. The lines of

demarcation are pretty apparent. So long as you don’t try to,

for example, invoke a page handler from inside a Razor view,

you shouldn’t run into any problems!

Now that you’ve been properly introduced to the various

models in ASP.NET Core, it’s time to focus on how to use

them. This chapter looks at the binding models that are built

from incoming requests—how are they created, and where do

the values come from?

16.2 From request to binding model:
Making the request useful

In this section you will learn

How ASP.NET Core creates binding models from a

request

How to bind simple types, like int and string, as

well as complex classes

How to choose which parts of a request are used in

the binding model

By now, you should be familiar with how ASP.NET Core handles

a request by executing a page handler on a Razor Page. Page

handlers are normal C# methods, so the ASP.NET Core

framework needs to be able to call them in the usual way. The

process of extracting values from the request and creating C#

objects from them is called model binding.

Any publicly settable properties on your Razor Page’s

PageModel (in the .cshtml.cs file for your Razor Page), that

are decorated with the [BindProperty] attribute are

created from the incoming request using model binding, as

shown in listing 16.1. Similarly, if your page handler method

has any parameters, these are also created using model

binding.

WARNING Properties decorated with [BindProperty] must have
a public setter; otherwise, binding will silently fail.

Listing 16.1 Model binding requests to properties in a Razor Page

public class IndexModel: PageModel

{

 [BindProperty] ❶
 public string Category { get; set; } ❶

 [BindProperty(SupportsGet = true)] ❷
 public string Username { get; set; } ❷

 public void OnGet()

 {

 }

 public void OnPost(ProductModel model) ❸
 {

 }

}

❶ Properties decorated with [BindProperty] take part in model binding.
❷ Properties are not model-bound for GET requests unless you use SupportsGet.

❸ Parameters to page handlers are also model-bound when that handler is selected.

As described in chapter 15 and shown in the preceding listing,

PageModel properties are not model-bound for GET requests,

even if you add the [BindProperty] attribute. For security

reasons, only requests using verbs like POST and PUT are

bound. If you do want to bind GET requests, you can set the

SupportsGet property on the [BindProperty] attribute to

opt in to model binding.

Which part is the binding model?

Listing 16.1 shows a Razor Page that uses multiple binding models: the Category
property, the Username property, and the ProductModel parameter (in the OnPost
handler) are all model-bound.

Using multiple models in this way is fine, but I prefer to use an approach that keeps all the
model binding in a single, nested class, which I often call InputModel. With this
approach, the Razor Page in listing 16.1 could be written as follows:

public class IndexModel: PageModel

{

 [BindProperty]

 public InputModel Input { get; set; }

 public void OnGet()

 {

 }

 public class InputModel

 {

 public string Category { get; set; }

 public string Username { get; set; }

 public ProductModel Model { get; set; }

 }

}

This approach has some organizational benefits that you’ll learn more about in section
16.4.

ASP.NET Core automatically populates your binding models for

you using properties of the request, such as the request URL,

any headers sent in the HTTP request, any data explicitly

POSTed in the request body, and so on.

NOTE In this chapter I describe how to bind your models to an incoming
request, but I don’t show how Razor Pages uses your binding models to
help generate that request using HTML forms. In chapter 17 you’ll learn
about Razor syntax, which renders HTML, and in chapter 18 you’ll learn
about Razor Tag Helpers, which generate form fields based on your
binding model.

By default, ASP.NET Core uses three different binding sources

when creating your binding models in Razor Pages. It looks

through each of these in order and takes the first value it finds

(if any) that matches the name of the binding model:

Form values—Sent in the body of an HTTP request

when a form is sent to the server using a POST

Route values—Obtained from URL segments or

through default values after matching a route, as

you saw in chapter 14

Query string values—Passed at the end of the URL,

not used during routing

WARNING Even though conceptually similar, the Razor Page binding
process works quite differently from the approach used by minimal
APIs.

The model binding process for Razor Pages is shown in figure

16.3. The model binder checks each binding source to see

whether it contains a value that could be set on the model.

Alternatively, the model can choose the specific source the

value should come from, as you’ll see in section 16.2.3. Once

each property is bound, the model is validated and is set as a

property on the PageModel or passed as a parameter to the

page handler. You’ll learn about the validation process in the

second half of this chapter.

Figure 16.3 Model binding involves mapping values from binding
sources, which correspond to different parts of a request.

NOTE In Razor Pages, different properties of a complex model can be
model-bound to different sources. This differs from minimal APIs, where
the whole object would be bound from a single source, and “partial”

binding is not possible. Razor Pages also bind to form bodies by
default, while minimal APIs cannot. These differences are partly for
historical reasons and partly because minimal APIs opts for
performance over convenience in this respect.

PageModel properties or page handler
parameters?

There are three ways to use model binding in Razor Pages:

Decorate properties on your PageModel with the [BindProperty]
attribute.

Add parameters to your page handler method.

Decorate the whole PageModel with [BindProperties].

Which of these approaches should you choose?

The answer to this question is largely a matter of taste. Setting properties on the
PageModel and marking them with [BindProperty] is the approach you’ll see most
often in examples. If you use this approach, you’ll be able to access the binding model
when the view is rendered, as you’ll see in chapters 17 and 18.

The second approach, adding parameters to page handler methods, provides more
separation between the different MVC stages, because you won’t be able to access the
parameters outside the page handler. On the downside, if you do need to display those
values in the Razor view, you’ll have to copy the parameters across manually to
properties that can be accessed in the view.

I avoid the final approach, decorating the PageModel itself with [BindProperties].
With this approach, every property on your PageModel takes part in model binding. I
don’t like the indirection this gives and the risk of accidentally binding properties I didn’t
want to be model-bound.

The approach I choose tends to depend on the specific Razor Page I’m building. If I’m
creating a form, I will favor the [BindProperty] approach, as I typically need access
to the request values inside the Razor view. For simple pages, where the binding model is
a product ID, for example, I tend to favor the page handler parameter approach for its

simplicity, especially if the handler is for a GET request. I give some more specific advice
on my approach in section 16.4.

Figure 16.4 shows an example of a request creating the

ProductModel method argument using model binding for the

example shown at the start of this section:

public void OnPost(ProductModel product)

Figure 16.4 Using model binding to create an instance of a model
that’s used to execute a Razor Page

The Id property has been bound from a URL route parameter,

but the Name and SellPrice properties have been bound

from the request body. The big advantage of using model

binding is that you don’t have to write the code to parse

requests and map the data yourself. This sort of code is

typically repetitive and error-prone, so using the built-in

conventional approach lets you focus on the important aspects

of your application: the business requirements.

TIP Model binding is great for reducing repetitive code. Take advantage
of it whenever possible, and you’ll rarely find yourself having to access
the Request object directly.

If you need to, the capabilities are there to let you completely

customize the way model binding works, but it’s relatively rare

that you’ll find yourself needing to dig too deep into this. For

the majority of cases, it works as is, as you’ll see in the

remainder of this section.

16.2.1 Binding simple types

We’ll start our journey into model binding by considering a

simple Razor Page handler. The next listing shows a simple

Razor Page that takes one number as a method parameter and

squares it by multiplying the number by itself.

Listing 16.2 A Razor Page accepting a simple parameter

public class CalculateSquareModel : PageModel

{

 public void OnGet(int number) ❶
 {

 Square = number * number; ❷
 }

 public int Square { get; set; } ❸
}

❶ The method parameter is the binding model.
❷ A more complex example would do this work in an external service, in the application model.

❸ The result is exposed as a property and is used by the view to generate a response.

In chapters 6 and 14, you learned about routing and how it

selects a Razor Page to execute. You can update the route

template for the Razor Page to be "CalculateSquare/

{number}" by adding a {number} segment to the Razor

Page’s @page directive in the .cshtml file:

@page "{number}"

When a client requests the URL /CalculateSquare/5, the

Razor Page framework uses routing to parse it for route

parameters. This produces the route value pair

number=5

The Razor Page’s OnGet page handler contains a single

parameter—an integer called number—which is your binding

model. When ASP.NET Core executes this page handler

method, it will spot the expected parameter, flick through the

route values associated with the request, and find the

number=5 pair. Then it can bind the number parameter to

this route value and execute the method. The page handler

method itself doesn’t care where this value came from; it goes

along its merry way, calculating the square of the value and

setting it on the Square property.

The key thing to appreciate is that you didn’t have to write any

extra code to try to extract the number from the URL when

the method executed. All you needed to do was create a

method parameter (or public property) with the right name

and let model binding do its magic.

Route values aren’t the only values the Razor Pages model

binder can use to create your binding models. As you saw

previously, the framework will look through three default

binding sources to find a match for your binding models:

Form values

Route values

Query string values

Each of these binding sources store values as name-value

pairs. If none of the binding sources contains the required

value, the binding model is set to a new, default instance of

the type instead. The exact value the binding model will have

in this case depends on the type of the variable:

For value types, the value will be default(T). For

an int parameter this would be 0, and for a bool it

would be false.

For reference types, the type is created using the

default (parameterless) constructor. For custom

types like ProductModel, that will create a new

object. For nullable types like int? or bool?, the

value will be null.

For string types, the value will be null.

WARNING It’s important to consider the behavior of your page handler
when model binding fails to bind your method parameters. If none of the
binding sources contains the value, the value passed to the method
could be null or could unexpectedly have a default value (for value
types).

Listing 16.2 showed how to bind a single method parameter.

Let’s take the next logical step and look at how you’d bind

multiple method parameters.

Let’s say you’re building a currency converter application. As

the first step you need to create a method in which the user

provides a value in one currency, and you must convert it to

another. You first create a Razor Page called Convert.cshtml

and then customize the route template for the page using the

@page directive to use an absolute path containing two route

values:

@page "/{currencyIn}/{currencyOut}"

Then you create a page handler that accepts the three values

you need, as shown in the following listing.

Listing 16.3 A Razor Page handler accepting multiple binding
parameters

public class ConvertModel : PageModel

{

 public void OnGet(

 string currencyIn,

 string currencyOut,

 int qty

)

 {

 /* method implementation */

 }

}

As you can see, there are three different parameters to bind.

The question is, where will the values come from and what will

they be set to? The answer is, it depends! Table 16.1 shows a

whole variety of possibilities. All these examples use the same

route template and page handler, but depending on the data

sent, different values will be bound. The actual values might

differ from what you expect, as the available binding sources

offer conflicting values!

Table 16.1 Binding request data to page handler parameters from
multiple binding sources

URL (route values) HTTP body data
(form values)

Parameter values
bound

/GBP/USD currencyIn=GBP

currencyOut=USD qty=0

/GBP/USD?currencyIn=CAD QTY=50 currencyIn=GBP

currencyOut=USD qty=50

/GBP/USD?qty=100 qty=50 currencyIn=GBP

currencyOut=USD qty=50

/GBP/USD?qty=100 currencyIn=CAD&

currencyOut=EUR&qty=50

currencyIn=CAD

currencyOut=EUR qty=50

For each example, be sure you understand why the bound

values have the values that they do. In the first example, the

qty value isn’t found in the form data, in the route values, or

in the query string, so it has the default value of 0. In each of

the other examples, the request contains one or more

duplicated values; in these cases, it’s important to bear in

mind the order in which the model binder consults the binding

sources. By default, form values will take precedence over

other binding sources, including route values!

NOTE The default model binder isn’t case-sensitive, so a binding value
of QTY=50 will happily bind to the qty parameter.

Although this may seem a little overwhelming, it’s relatively

unusual to be binding from all these different sources at once.

It’s more common to have your values all come from the

request body as form values, maybe with an ID from URL

route values. This scenario serves as more of a cautionary tale

about the knots you can twist yourself into if you’re not sure

how things work under the hood.

In these examples, you happily bound the qty integer

property to incoming values, but as I mentioned earlier, the

values stored in binding sources are all strings. What types

can you convert a string to?

The model binder will convert pretty much any primitive .NET

type such as int, float, decimal (and string obviously),

any custom type that has a TryParse method (like minimal

APIs, as you saw in chapter 7) plus anything that has a

TypeConverter.

NOTE TypeConverters can be found in the
System.ComponentModel.TypeConverter package. You can read more
about them in Microsoft’s “Type conversion in .NET” documentation:
http://mng.bz/A0GK.

There are a few other special cases that can be converted from

a string, such as Type, but thinking of it as built-in types only

will get you a long way there!

http://mng.bz/A0GK

16.2.2 Binding complex types

If it seems like only being able to bind simple built-in types is

a bit limiting, you’re right! Luckily, that’s not the case for the

model binder. Although it can only convert strings directly to

those simple types, it’s also able to bind complex types by

traversing any properties your binding models expose, binding

each of those properties to strings instead.

If this doesn’t make you happy straight off the bat, let’s look

at how you’d have to build your page handlers if simple types

were your only option. Imagine a user of your currency

converter application has reached a checkout page and is

going to exchange some currency. Great! All you need now is

to collect their name, email address, and phone number.

Unfortunately, your page handler method would have to look

something like this:

public IActionResult OnPost(

 string firstName, string lastName,

 string phoneNumber, string email)

Yuck! Four parameters might not seem that bad right now, but

what happens when the requirements change and you need to

collect other details? The method signature will keep growing.

The model binder will bind the values quite happily, but it’s not

exactly clean code. Using the [BindProperty] approach

doesn’t really help either; you still have to clutter your

PageModel with lots of properties and attributes!

SIMPLIFYING METHOD PARAMETERS BY BINDING TO

COMPLEX OBJECTS

A common pattern for any C# code when you have many

method parameters is to extract a class that encapsulates the

data the method requires. If extra parameters need to be

added, you can add a new property to this class. This class

becomes your binding model, and it might look something like

the following listing.

Listing 16.4 A binding model for capturing a user’s details

public class UserBindingModel

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Email { get; set; }

 public string PhoneNumber { get; set; }

}

NOTE In this book I primarily use class instead of record for my
binding models, but you can use record if you prefer. I find the
terseness that the record positional syntax provides is lost if you
want to add attributes to properties, such as to add validation attributes,
as you’ll see in section 16.3. You can see the required syntax for
positional property attributes in the documentation at
http://mng.bz/Kex0.

With this model, you can update your page handler’s method

signature to

public IActionResult OnPost(UserBindingModel user)

http://mng.bz/Kex0

Alternatively, using the [BindProperty] approach, create a

property on the PageModel:

[BindProperty]

public UserBindingModel User { get; set; }

Now you can simplify the page handler signature even further:

public IActionResult OnPost()

Functionally, the model binder treats this new complex type a

little differently. Rather than look for parameters with a value

that matches the parameter name (user, or User for the

property), the model binder creates a new instance of the

model using new UserBindingModel().

NOTE You don’t have to use custom classes for your methods; it
depends on your requirements. If your page handler needs only a single
integer, it makes more sense to bind to the simple parameter.

Next, the model binder loops through all the properties your

binding model has, such as FirstName and LastName in

listing 16.4. For each of these properties, it consults the

collection of binding sources and attempts to find a name-

value pair that matches. If it finds one, it sets the value on the

property and moves on to the next.

TIP Although the name of the model isn’t necessary in this example, the
model binder will also look for properties prefixed with the name of the
property, such as user.FirstName and user.LastName for a
property called User. You can use this approach when you have
multiple complex parameters to a page handler or multiple complex

[BindProperty] properties. In general, for simplicity, you should
avoid this situation if possible. As for all model binding, the casing of the
prefix does not matter.

Once all the properties that can be bound on the binding

model are set, the model is passed to the page handler (or the

[BindProperty] property is set), and the handler is

executed as usual. The behavior from this point on is identical

to when you have lots of individual parameters—you’ll end up

with the same values set on your binding model—but the code

is cleaner and easier to work with.

TIP For a class to be model-bound, it must have a default public
constructor. You can bind only properties that are public and settable.

With this technique you can bind complex hierarchical models

whose properties are themselves complex models. As long as

each property exposes a type that can be model-bound, the

binder can traverse it with ease.

BINDING COLLECTIONS AND DICTIONARIES

As well as binding to ordinary custom classes and primitives,

you can bind to collections, lists, and dictionaries. Imagine you

had a page in which a user selected all the currencies they

were interested in; you’d display the rates for all those

selected, as shown in figure 16.5.

Figure 16.5 The select list in the currency converter application
sends a list of selected currencies to the application. Model
binding binds the selected currencies and customizes the view for
the user to show the equivalent cost in the selected currencies.

To achieve this, you could create a page handler that accepts a

List<string> type, such as

public void OnPost(List<string> currencies);

You could then POST data to this method by providing values

in several different formats:

currencies[index]—Where currencies is the

name of the parameter to bind and index is the

index of the item to bind, such as currencies[0]=

GBP¤cies[1]=USD.

[index]—If you’re binding to a single list (as in this

example), you can omit the name of the parameter,

such as [0]=GBP&[1]=USD.

currencies—Alternatively, you can omit the

index and send currencies as the key for every

value, such as

currencies=GBP¤cies=USD.

The key values can come from route values and query values,

but it’s far more common to POST them in a form. Dictionaries

can use similar binding, where the dictionary key replaces the

index both when the parameter is named and when it’s

omitted.

TIP In the previous example I showed a collection using the built-in
string type, but you can also bind collections of complex type, such
as a List<UserBindingModel>.

If this all seems a bit confusing, don’t feel too alarmed. If

you’re building a traditional web application and using Razor

views to generate HTML, the framework will take care of

generating the correct names for you. As you’ll see in chapter

18, the Razor view ensures that any form data you POST is

generated in the correct format.

BINDING FILE UPLOADS WITH IFORMFILE

Razor Pages supports users uploading files by exposing the

IFormFile and IFormFileCollection interfaces. You can

use these interfaces as your binding model, either as a method

parameter to your page handler or using the

[BindProperty] approach, and they will be populated with

the details of the file upload:

public void OnPost(IFormFile file);

If you need to accept multiple files, you can use

IFormFileCollection, IEnumerable <IFormFile>, or

List<IFormFile>:

public void OnPost(IEnumerable<IFormFile> file);

You already learned how to use IFormFile in chapter 7 when

you looked at minimal API binding. The process is the same for

Razor Pages. I’ll reiterate one point here: if you don’t need

users to upload files, great! There are so many potential

threats to consider when handling files—from malicious

attacks, to accidental denial-of-service vulnerabilities—that I

avoid them whenever possible.

For the vast majority of Razor Pages, the default configuration

of model binding for simple and complex types works perfectly

well, but you may find some situations where you need to take

a bit more control. Luckily, that’s perfectly possible, and you

can completely override the process if necessary by replacing

the ModelBinders used in the guts of the framework.

However, it’s rare to need that level of customization. I’ve

found it’s more common to want to specify which binding

source to use for a page’s binding instead.

16.2.3 Choosing a binding source

As you’ve already seen, by default the ASP.NET Core model

binder attempts to bind your binding models from three

binding sources: form data, route data, and the query string.

Occasionally, you may find it necessary to specifically declare

which binding source to bind to. In other cases, these three

sources won’t be sufficient at all. The most common scenarios

are when you want to bind a method parameter to a request

header value or when the body of a request contains JSON-

formatted data that you want to bind to a parameter. In these

cases, you can decorate your binding models with attributes

that say where to bind from, as shown in the following listing.

Listing 16.5 Choosing a binding source for model binding

public class PhotosModel: PageModel

{

 public void OnPost(

 [FromHeader] string userId, ❶
 [FromBody] List<Photo> photos) ❷
 {

 /* method implementation */

 }

}

❶ The userId is bound from an HTTP header in the request.

❷ The list of photo objects is bound to the body of the request, typically in JSON format.

In this example, a page handler updates a collection of photos

with a user ID. There are method parameters for the ID of the

user to be tagged in the photos, userId, and a list of Photo

objects to tag, photos.

Rather than binding these method parameters using the

standard binding sources, I’ve added attributes to each

parameter, indicating the binding source to use. The

[FromHeader] attribute has been applied to the userId

parameter. This tells the model binder to bind the value to an

HTTP request header value called userId.

We’re also binding a list of photos to the body of the HTTP

request by using the [FromBody] attribute. This tells the

binder to read JSON from the body of the request and bind it

to the List<Photo> method parameter.

WARNING Developers coming from .NET Framework and the legacy
version of ASP.NET should take note that the [FromBody] attribute
is explicitly required when binding to JSON requests in Razor Pages.
This differs from the legacy ASP.NET behavior, in which no attribute
was required.

You aren’t limited to binding JSON data from the request body.

You can use other formats too, depending on which

InputFormatters you configure the framework to use. By

default, only a JSON input formatter is configured. You’ll see

how to add an XML formatter in chapter 20, when I discuss

web APIs.

TIP Automatic binding of multiple formats from the request body is one
of the features specific to Razor Pages and MVC controllers, which is
missing from minimal APIs.

You can use a few different attributes to override the defaults

and to specify a binding source for each binding model (or

each property on the binding model). These are the same

attributes you used in chapter 7 with minimal APIs:

[FromHeader]—Bind to a header value.

[FromQuery]—Bind to a query string value.

[FromRoute]—Bind to route parameters.

[FromForm]—Bind to form data posted in the body

of the request. This attribute is not available in

minimal APIs.

[FromBody]—Bind to the request’s body content.

You can apply each of these to any number of handler method

parameters or properties, as you saw in listing 16.5, with the

exception of the [FromBody] attribute. Only one value may

be decorated with the [FromBody] attribute. Also, as form

data is sent in the body of a request, the [FromBody] and

[FromForm] attributes are effectively mutually exclusive.

TIP Only one parameter may use the [FromBody] attribute. This
attribute consumes the incoming request as HTTP request bodies can
be safely read only once.

As well as these attributes for specifying binding sources,

there are a few attributes for customizing the binding process

even further:

[BindNever]—The model binder will skip this

parameter completely. You can use this attribute to

prevent mass assignment, as discussed in these two

posts on my blog: http://mng.bz/QvfG and

http://mng.bz/Vd90.

[BindRequired]—If the parameter was not

provided or was empty, the binder will add a

validation error.

[FromServices]—This is used to indicate the

parameter should be provided using dependency

injection (DI). This attribute isn’t required in most

cases, as .NET 7 is smart enough to know that a

parameter is a service registered in DI, but you can

be explicit if you prefer.

In addition, you have the [ModelBinder] attribute, which

puts you into “God mode” with respect to model binding. With

this attribute, you can specify the exact binding source,

override the name of the parameter to bind to, and specify the

type of binding to perform. It’ll be rare that you need this one,

but when you do, at least it’s there!

By combining all these attributes, you should find you’re able

to configure the model binder to bind to pretty much any

request data your page handler wants to use. In general,

though, you’ll probably find you rarely need to use them; the

defaults should work well for you in most cases.

That brings us to the end of this section on model binding. At

the end of the model binding process, your page handler

should have access to a populated binding model, and it’s

http://mng.bz/QvfG
http://mng.bz/Vd90

ready to execute its logic. But before you use that user input

for anything, you must always validate your data, which is the

focus of the second half of this chapter. Razor Pages

automatically does validation for you out-of-the-box, but you

have to actually check the results.

16.3 Validating binding models
In this section I discuss how validation works in Razor Pages.

You already learned how important it is to validate user input

in chapter 7, as well as how you can use DataAnnotation

attributes to declaratively describe your validation

requirements of a model. In this section you’ll learn how to

reuse this knowledge to validate your Razor Page binding

models. The good news is that validation is built into the Razor

Pages framework.

16.3.1 Validation in Razor Pages

In chapter 7 you learned that validation is an essential part of

any web application. Nevertheless, minimal APIs don’t have

any direct support for validation in the framework; you have to

layer it on top using filters and additional packages.

In Razor Pages, validation is built in. Validation occurs

automatically after model binding but before the page handler

executes, as you saw in figure 16.2. Figure 16.6 shows a more

compact view of where model validation fits in this process,

demonstrating how a request to a checkout page that requests

a user’s personal details is bound and validated.

Figure 16.6 Validation occurs after model binding but before the
page handler executes. The page handler executes whether or not
validation is successful.

As discussed in chapter 7, validation isn’t only about

protecting against security threats, it’s also about ensuring

that

Data is formatted correctly. (Email fields have a valid

email format.)

Numbers are in a particular range. (You can’t buy -1

copies of a product.)

Required values are provided while others are

optional. (Name may be required, but phone number

is optional.)

Values conform to your business requirements. (You

can’t convert a currency to itself, it needs to be

converted to a different currency.)

It might seem like some of these can be dealt with easily

enough in the browser. For example, if a user is selecting a

currency to convert to, don’t let them pick the same currency;

and we’ve all seen the “please enter a valid email address”

messages.

Unfortunately, although this client-side validation is useful for

users, as it gives them instant feedback, you can never rely on

it, as it will always be possible to bypass these browser

protections. It’s always necessary to validate the data as it

arrives at your web application using server-side validation.

WARNING Always validate user input on the server side of your
application.

If that feels a little redundant, like you’ll be duplicating logic

and code between your client and server applications, I’m

afraid you’re right. It’s one of the unfortunate aspects of web

development; the duplication is a necessary evil. Fortunately,

ASP.NET Core provides several features to try to reduce this

burden.

TIP Blazor, the new C# single-page application (SPA) framework,
promises to solve some of these problems. For details, see
http://mng.bz/9D51 and Blazor in Action, by Chris Sainty (Manning,
2021).

If you had to write this validation code fresh for every app, it

would be tedious and likely error-prone. Luckily, you can use

DataAnnotations attributes to declaratively describe the

validation requirements for your binding models. The following

listing, first shown in chapter 7, shows how you can decorate a

binding model with various validation attributes. This expands

on the example you saw earlier in listing 16.4.

Listing 16.6 Adding DataAnnotations to a binding model to provide
metadata

public class UserBindingModel

{

 [Required] ❶
 [StringLength(100)] ❷
 [Display(Name = "Your name")] ❸
 public string FirstName { get; set; }

 [Required]

 [StringLength(100)]

 [Display(Name = "Last name")]

 public string LastName { get; set; }

 [Required]

 [EmailAddress] ❹
 public string Email { get; set; }

 [Phone] ❺
 [Display(Name = "Phone number")]

 public string PhoneNumber { get; set; }

}

❶ Values marked Required must be provided.

❷ The StringLengthAttribute sets the maximum length for the property.
❸ Customizes the name used to describe the property

http://mng.bz/9D51

❹ Validates that the value of Email is a valid email address

❺ Validates that the value of PhoneNumber has a valid telephone format

For validation requirements that don’t lend themselves to

attributes, such as when the validity of one property depends

on the value of another, you can implement

IValidatableObject, as described in chapter 7.

Alternatively, you can use a different validation framework,

such as FluentValidation, as you’ll see in chapter 32.

Whichever validation approach you use, it’s important to

remember that these techniques don’t protect your application

by themselves. The Razor Pages framework automatically

executes the validation code after model binding, but it

doesn’t do anything different if validation fails! In the next

section we’ll look at how to check the validation result on the

server and handle the case where validation has failed.

16.3.2 Validating on the server for safety

Validation of the binding model occurs before the page handler

executes, but note that the handler always executes, whether

the validation failed or succeeded. It’s the responsibility of the

page handler to check the result of the validation.

NOTE Validation happens automatically, but handling validation failures
is the responsibility of the page handler.

The Razor Pages framework stores the output of the validation

attempt in a property on the PageModel called ModelState.

This property is a ModelStateDictionary object, which

contains a list of all the validation errors that occurred after

model binding, as well as some utility properties for working

with it.

As an example, listing 16.7 shows the OnPost page handler

for the Checkout.cshtml Razor Page. The Input property is

marked for binding and uses the UserBindingModel type

shown previously in listing 16.6. This page handler doesn’t do

anything with the data currently, but the pattern of checking

ModelState early in the method is the key takeaway here.

Listing 16.7 Checking model state to view the validation result

public class CheckoutModel : PageModel ❶
{

 [BindProperty] ❷
 public UserBindingModel Input { get; set; } ❷

 public IActionResult OnPost() ❸
 {

 if (!ModelState.IsValid) ❹
 {

 return Page(); ❺
 }

 /* Save to the database, update user, return success */ ❻

 return RedirectToPage("Success");

 }

}

❶ The ModelState property is available on the PageModel base class.

❷ The Input property contains the model-bound data.
❸ The binding model is validated before the page handler is executed.

❹ If there were validation errors, IsValid will be false.
❺ Validation failed, so redisplay the form with errors and finish the method early.

❻ Validation passed, so it’s safe to use the data provided in the model.

If the ModelState property indicates that an error occurred,

the method immediately calls the Page() helper method. This

returns a PageResult that ultimately generates HTML to

return to the user, as you saw in chapter 15. The view uses

the (invalid) values provided in the Input property to

repopulate the form when it’s displayed, as shown in figure

16.7. Also, helpful messages for the user are added

automatically, using the validation errors in the ModelState

property.

Figure 16.7 When validation fails, you can redisplay the form to
display ModelState validation errors to the user. Note that the Your
Name field has no associated validation errors, unlike the other
fields.

NOTE The error messages displayed on the form are the default values
for each validation attribute. You can customize the message by setting
the Error-Message property on any of the validation attributes. For
example, you could customize a [Required] attribute using
[Required(ErrorMessage="Required")].

If the request is successful, the page handler returns a

RedirectToPageResult (using the RedirectToPage()

helper method) that redirects the user to the Success.cshtml

Razor Page. This pattern of returning a redirect response after

a successful POST is called the POST-REDIRECT-GET pattern.

POST-REDIRECT-GET

The POST-REDIRECT-GET design pattern is a web development pattern that prevents
users from accidentally submitting the same form multiple times. Users typically submit a
form using the standard browser POST mechanism, sending data to the server. This is the
normal way by which you might take a payment, for example.

If a server takes the naive approach and responds with a 200 OK response and some
HTML to display, the user will still be on the same URL. If the user refreshes their
browser, they will be making an additional POST to the server, potentially making another
payment! Browsers have some mechanisms to prevent this, such as in the following
figure, but the user experience isn’t desirable.

Refreshing a browser window after a POST causes a warning
message to be shown to the user

The POST-REDIRECT-GET pattern says that in response to a successful POST, you
should return a REDIRECT response to a new URL, which will be followed by the browser
making a GET to the new URL. If the user refreshes their browser now, they’ll be
refreshing the final GET call to the new URL. No additional POST is made, so no
additional payments or side effects should occur.

This pattern is easy to achieve in ASP.NET Core applications using the pattern shown in
listing 16.7. By returning a RedirectToPageResult after a successful POST, your
application will be safe if the user refreshes the page in their browser.

You might be wondering why ASP.NET Core doesn’t handle

invalid requests for you automatically; if validation has failed,

and you have the result, why does the page handler get

executed at all? Isn’t there a risk that you might forget to

check the validation result?

This is true, and in some cases the best thing to do is to make

the generation of the validation check and response automatic.

In fact, this is exactly the approach we will use for web APIs

using MVC controllers with the [ApiController] attribute

when we cover them in chapter 20.

For Razor Pages apps, however, you typically still want to

generate an HTML response, even when validation failed. This

allows the user to see the problem and potentially correct it.

This is much harder to make automatic.

For example, you might find you need to load additional data

before you can redisplay the Razor Page, such as loading a list

of available currencies. That becomes simpler and more

explicit with the ModelState.IsValid pattern. Trying to do

that automatically would likely end up with you fighting

against edge cases and workarounds.

Also, by including the IsValid check explicitly in your page

handlers, it’s easier to control what happens when additional

validation checks fail. For example, if the user tries to update a

product, the DataAnnotation validation won’t know whether

a product with the requested ID exists, only whether the ID

has the correct format. By moving the validation to the

handler method, you can treat data and business rule

validation failures in the same way.

TIP You can also add extra validation errors to the collection, such as
business rule validation errors that come from a different system. You

can add errors to ModelState by calling AddModelError(),
which will be displayed to users on the form alongside the
DataAnnotation attribute errors.

I hope I’ve hammered home how important it is to validate

user input in ASP.NET Core, but just in case: VALIDATE! There,

we’re good. Having said that, performing validation only on

the server can leave users with a slightly poor experience.

How many times have you filled out a form online, submitted

it, gone to get a snack, and come back to find out you

mistyped something and have to redo it? Wouldn’t it be nicer

to have that feedback immediately?

16.3.3 Validating on the client for user
experience

You can add client-side validation to your application in a few

different ways. HTML5 has several built-in validation behaviors

that many browsers use. If you display an email address field

on a page and use the “email” HTML input type, the browser

automatically stops you from submitting an invalid format, as

shown in figure 16.8. Your application doesn’t control this

validation; it’s built into modern HTML5 browsers.

Figure 16.8 By default, modern browsers automatically validate
fields of the email type before a form is submitted.

NOTE HTML5 constraint validation support varies by browser. For
details on the available constraints, see the Mozilla documentation
(http://mng.bz/daX3) and http://mng.bz/XNo1.

The alternative approach to validation is to perform client-side

validation by running JavaScript on the page and checking the

values the user entered before submitting the form. This is the

most common approach used in Razor Pages.

I’ll go into detail on how to generate the client-side validation

helpers in chapter 18, where you’ll see the DataAnnotation

attributes come to the fore once again. By decorating a view

model with these attributes, you provide the necessary

metadata to the Razor engine for it to generate the

appropriate validation HTML.

With this approach, the user sees any errors with their form

immediately, even before the request is sent to the server, as

http://mng.bz/daX3
http://mng.bz/XNo1

shown in figure 16.9. This gives a much shorter feedback

cycle, providing a better user experience.

Figure 16.9 With client-side validation, clicking Submit triggers
validation to be shown in the browser before the request is sent to
the server. As shown in the right pane, no request is sent.

If you’re building an SPA, the onus is on the client-side

framework to validate the data on the client side before

posting it to the API. The API must still validate the data when

it arrives at the server, but the client-side framework is

responsible for providing the smooth user experience.

When you use Razor Pages to generate your HTML, you get

much of this validation code for free. Razor Pages

automatically configures client-side validation for most of the

built-in attributes without requiring additional work, as you’ll

see in chapter 18.

Unfortunately, if you’ve used custom

ValidationAttributes, these will run only on the server

by default; you need to do some additional wiring up of the

attribute to make it work on the client side too. Despite this,

custom validation attributes can be useful for handling

common validation scenarios in your application, as you’ll see

in chapter 31.

The model binding framework in ASP.NET Core gives you a lot

of options on how to organize your Razor Pages: page handler

parameters or PageModel properties; one binding model or

multiple; options for where to define your binding model

classes. In the next section I give some advice on how I like to

organize my Razor Pages.

16.4 Organizing your binding models in
Razor Pages

In this section I give some general advice on how I like to

configure the binding models in my Razor Pages. If you follow

the patterns in this section, your Razor Pages will follow a

consistent layout, making it easier for others to understand

how each Razor Page in your app works.

NOTE This advice is just personal preference, so feel free to adapt it if
there are aspects you don’t agree with. The important thing is to
understand why I make each suggestion, and to take that on board.
Where appropriate, I deviate from these guidelines too!

Model binding in ASP.NET Core has a lot of equivalent

approaches to take, so there is no “correct” way to do it.

Listing 16.8 shows an example of how I would design a simple

Razor Page. This Razor Page displays a form for a product with

a given ID and allows you to edit the details using a POST

request. It’s a much longer sample than we’ve looked at so far,

but I highlight the important points.

Listing 16.8 Designing an edit product Razor Page

public class EditProductModel : PageModel

{

 private readonly ProductService _productService; ❶
 public EditProductModel(ProductService productService) ❶
 { ❶
 _productService = productService; ❶
 } ❶

 [BindProperty] ❷
 public InputModel Input { get; set; } ❷

 public IActionResult OnGet(int id) ❸
 {

 var product = _productService.GetProduct(id); ❹

 Input = new InputModel ❺
 { ❺
 Name = product.ProductName, ❺
 Price = product.SellPrice, ❺
 }; ❺
 return Page(); ❺
 }

 public IActionResult OnPost(int id) ❻
 {

 if (!ModelState.IsValid) ❼
 { ❼
 return Page(); ❼
 } ❼

 _productService.UpdateProduct(id, Input.Name, Input.Price); ❽

 return RedirectToPage("Index"); ❾
 }

 public class InputModel ❿
 { ❿
 [Required] ❿
 public string Name { get; set; } ❿

 [Range(0, int.MaxValue)] ❿
 public decimal Price { get; set; } ❿
 } ❿
}

❶ The ProductService is injected using DI and provides access to the application model.

❷ A single property is marked with BindProperty.
❸ The id parameter is model-bound from the route template for both OnGet and OnPost

handlers.

❹ Loads the product details from the application model
❺ Builds an instance of the InputModel for editing in the form from the existing product’s details

❻ The id parameter is model-bound from the route template for both OnGet and OnPost
handlers.

❼ If the request was not valid, redisplays the form without saving

❽ Updates the product in the application model using the ProductService
❾ Redirects to a new page using the POST-REDIRECT-GET pattern

❿ Defines the InputModel as a nested class in the Razor Page

This page shows the PageModel for a typical “edit form.”

These are common in many line-of-business applications,

among others, and it’s a scenario that Razor Pages works well

for. You’ll see how to create the HTML side of forms in chapter

18.

NOTE The purpose of this example is to highlight the model-binding
approach. The code is overly simple from a logic point of view. For
example, it doesn’t check that the product with the provided ID exists or
include any error handling.

This form shows several patterns related to model binding that

I try to adhere to when building Razor Pages:

Bind only a single property with [BindProperty].

I favor having a single property decorated with

[BindProperty] for model binding in general.

When more than one value needs to be bound, I

create a separate class, InputModel, to hold the

values, and I decorate that single property with

[BindProperty]. Decorating a single property like

this makes it harder to forget to add the attribute,

and it means all your Razor Pages use the same

pattern.

Define your binding model as a nested class. I define

the InputModel as a nested class inside my Razor

Page. The binding model is normally highly specific

to that single page, so doing this keeps everything

you’re working on together. Additionally, I normally

use that exact class name, InputModel, for all my

pages. Again, this adds consistency to your Razor

Pages.

Don’t use [BindProperties]. In addition to the

[BindProperty] attribute, there is a

[BindProperties] attribute (note the different

spelling) that can be applied to the Razor Page

PageModel directly. This will cause all properties in

your model to be model-bound, which can leave you

open to overposting attacks if you’re not careful. I

suggest you don’t use the [BindProperties]

attribute and stick to binding a single property with

[BindProperty] instead.

Accept route parameters in the page handler. For

simple route parameters, such as the id passed into

the OnGet and OnPost handlers in listing 16.8, I

add parameters to the page handler method itself.

This avoids the clunky SupportsGet=true syntax

for GET requests.

Always validate before using data. I said it before, so

I’ll say it again: validate user input!

That concludes this look at model binding in Razor Pages. You

saw how the ASP.NET Core framework uses model binding to

simplify the process of extracting values from a request and

turning them into normal .NET objects you can work with

quickly. The most important aspect of this chapter is the focus

on validation. This is a common concern for all web

applications, and the use of DataAnnotations can make it

easy to add validation to your models.

In the next chapter we’ll continue our journey through Razor

Pages by looking at how to create views. In particular, you’ll

learn how to generate HTML in response to a request using the

Razor templating engine.

Summary
Razor Pages uses three distinct models, each

responsible for a different aspect of a request. The

binding model encapsulates data sent as part of a

request. The application model represents the state

of the application. The PageModel is the backing

class for the Razor Page, and it exposes the data

used by the Razor view to generate a response.

Model binding extracts values from a request and

uses them to create .NET objects the page handler

can use when they execute. Any properties on the

PageModel marked with the [BindProperty]

attribute and method parameters of the page

handlers will take part in model binding.

By default, there are three binding sources for Razor

Pages: POSTed form values, route values, and the

query string. The binder will interrogate these

sources in order when trying to bind your binding

models.

When binding values to models, the names of the

parameters and properties aren’t case-sensitive.

You can bind to simple types or to the properties of

complex types. Simple types must be convertible

from strings to be bound automatically, such as

numbers, dates, Boolean values, and custom types

with a TryParse method.

To bind complex types, the types must have a

default constructor and public, settable properties.

The Razor Pages model binder binds each property

of a complex type using values from the binding

sources.

You can bind collections and dictionaries using the

[index]=value and [key] =value syntax,

respectively.

You can customize the binding source for a binding

model using [From*] attributes applied to the

method, such as [FromHeader] and [FromBody].

These can be used to bind to nondefault binding

sources, such as headers or JSON body content. The

[FromBody] attribute is always required when

binding to a JSON body.

Validation is necessary to check for security threats.

Check that data is formatted correctly and confirm

that it conforms to expected values and that it meets

your business rules.

Validation in Razor Pages occurs automatically after

model binding, but you must manually check the

result of the validation and act accordingly in your

page handler by interrogating the

ModelState.IsValid property.

Client-side validation provides a better user

experience than server-side validation alone, but you

should always use server-side validation. Client-side

validation typically uses JavaScript and attributes

applied to your HTML elements to validate form

values.

17 Rendering HTML using Razor views

This chapter covers

Creating Razor views to display HTML to a user
Using C# and the Razor markup syntax to generate HTML
dynamically
Reusing common code with layouts and partial views

It’s easy to get confused between the terms involved in Razor

PagessPageModel, page handlers, Razor views—especially as

some of the terms describe concrete features, and others

describe patterns and concepts. We’ve touched on all these

terms in detail in previous chapters, but it’s important to get

them straight in your mind:

Razor Pages—Razor Pages generally refers to the

page-based paradigm that combines routing, model

binding, and HTML generation using Razor views.

Razor Page—A single Razor Page represents a single

page or endpoint. It typically consists of two files: a

.cshtml file containing the Razor view and a

.cshtml.cs file containing the page’s PageModel.

PageModel—The PageModel for a Razor Page is

where most of the action happens. It’s where you

define the binding models for a page, which extracts

data from the incoming request. It’s also where you

define the page’s page handlers.

Page handler—Each Razor Page typically handles a

single route, but it can handle multiple HTTP verbs

such as GET and POST. Each page handler typically

handles a single HTTP verb.

Razor view—Razor views (also called Razor

templates) are used to generate HTML. They are

typically used in the final stage of a Razor Page to

generate the HTML response to send back to the

user.

In the previous four chapters, I covered a whole cross section

of Razor Pages, including the Model-View-Controller (MVC)

design pattern, the Razor Page PageModel, page handlers,

routing, and binding models. This chapter covers the last part

of the MVC pattern: using a view to generate the HTML that’s

delivered to the user’s browser.

In ASP.NET Core, views are normally created using the Razor

markup syntax (sometimes described as a templating

language), which uses a mixture of HTML and C# to generate

the final HTML. This chapter covers some of the features of

Razor and how to use it to build the view templates for your

application. Generally speaking, users will have two sorts of

interactions with your app: they’ll read data that your app

displays, and they’ll send data or commands back to it. The

Razor language contains several constructs that make it simple

to build both types of applications.

When displaying data, you can use the Razor language to

easily combine static HTML with values from your PageModel.

Razor can use C# as a control mechanism, so adding

conditional elements and loops is simple—something you

couldn’t achieve with HTML alone.

The normal approach to sending data to web applications is

with HTML forms. Virtually every dynamic app you build will

use forms; some applications will be pretty much nothing but

forms! ASP.NET Core and the Razor templating language

include Tag Helpers that make generating HTML forms easy.

NOTE You’ll get a brief glimpse of Tag Helpers in section 17.1, but I
explore them in detail in chapter 18.

In this chapter we’ll be focusing primarily on displaying data

and generating HTML using Razor rather than creating forms.

You’ll see how to render values from your PageModel to the

HTML, and how to use C# to control the generated output.

Finally, you’ll learn how to extract the common elements of

your views into subviews called layouts and partial views, and

how to compose them to create the final HTML page.

17.1 Views: Rendering the user
interface

In this section I provide a quick introduction to rendering

HTML using Razor views. We’ll recap the MVC design pattern

used by Razor Pages and where the view fits in. Then I’ll show

how Razor syntax allows you to mix C# and HTML to generate

dynamic UIs.

As you know from earlier chapters on the MVC design pattern,

it’s the job of the Razor Page’s page handler to choose what to

return to the client. For example, if you’re developing a to-do

list application, imagine a request to view a particular to-do

item, as shown in figure 17.1.

Figure 17.1 Handling a request for a to-do list item using ASP.NET
Core Razor Pages. The page handler builds the data required by
the view and exposes it as properties on the PageModel. The view
generates HTML based only on the data provided; it doesn’t need
to know where that data comes from.

A typical request follows the steps shown in figure 17.1:

The middleware pipeline receives the request, and

the routing middleware determines the endpoint to

invoke—in this case, the View Razor Page in the

ToDo folder.

The model binder (part of the Razor Pages

framework) uses the request to build the binding

models for the page, as you saw in chapter 16. The

binding models are set as properties on the Razor

Page or are passed to the page handler method as

arguments when the handler is executed. The page

handler checks that you passed a valid id for the to-

do item and marks the ModelState as valid if so.

If the request is valid, the page handler calls out to

the various services that make up the application

model. This might load the details about the to-do

from a database or from the filesystem, returning

them to the handler. As part of this process, either

the application model or the page handler itself

generates values to pass to the view and sets them

as properties on the Razor Page PageModel.

Once the page handler has executed, the PageModel

should contain all the data required to render a view. In

this example, it contains details about the to-do itself, but

it might also contain other data, such as how many to-dos

you have left, whether you have any to-dos scheduled for

today, your username, and so on—anything that controls

how to generate the end UI for the request.

The Razor view template uses the PageModel to

generate the final response and returns it to the user

via the middleware pipeline.

A common thread throughout this discussion of MVC is the

separation of concerns MVC brings, and it’s no different when

it comes to your views. It would be easy enough to generate

the HTML directly in your application model or in your

controller actions, but instead you delegate that responsibility

to a single component: the view.

But even more than that, you separate the data required to

build the view from the process of building it by using

properties on the PageModel. These properties should

contain all the dynamic data the view needs to generate the

final output.

TIP Views shouldn’t call methods on the PageModel. The view should
generally only be accessing data that has already been collected and
exposed as properties.

Razor Page handlers indicate that the Razor view should be

rendered by returning a PageResult (or by returning void),

as you saw in chapter 15. The Razor Pages infrastructure

executes the Razor view associated with a given Razor Page to

generate the final response. The use of C# in the Razor

template means you can dynamically generate the final HTML

sent to the browser. This allows you to, for example, display

the name of the current user in the page, hide links the

current user doesn’t have access to, or render a button for

every item in a list.

Imagine your boss asks you to add a page to your application

that displays a list of the application’s users. You should also

be able to view a user from the page or create a new one, as

shown in figure 17.2.

Figure 17.2 The use of C# in Razor lets you easily generate
dynamic HTML that varies at runtime. In this example, using a
foreach loop inside the Razor view dramatically reduces the
duplication in the HTML that you would otherwise have to write.

With Razor templates, generating this sort of dynamic content

is simple. Listing 17.1 shows a template that could be used to

generate the interface in figure 17.2. It combines standard

HTML with C# statements and uses Tag Helpers to generate

the form elements.

Listing 17.1 A Razor template to list users and a form for adding a
new user

@page

@model IndexViewModel

<div class="row"> ❶
<div class="col-md-6"> ❶
<form method="post">

 <div class="form-group">

 <label asp-for="NewUser"></label> ❷
 <input class="form-control" asp-for="NewUser" /> ❷
 ❷
 </div>

 <div class="form-group">

 <button type="submit"

 class="btn btn-success">Add</button>

 </div>

</form>

</div>

</div>

<h4>Number of users: @Model.ExistingUsers.Count</h4> ❸
<div class="row">

<div class="col-md-6">

<ul class="list-group">

@foreach (var user in Model.ExistingUsers) ❹
{

<li class="list-group-item d-flex justify-content-between">

 @user

 <a class="btn btn-info"

 asp-page="ViewUser" ❺
 asp-route-userName="@user">View ❺

}

</div>

</div>

❶ Normal HTML is sent to the browser unchanged.

❷ Tag Helpers attach to HTML elements to create forms.

❸ Values can be written from C# objects to the HTML.
❹ C# constructs such as for loops can be used in Razor.

❺ Tag Helpers can also be used outside forms to help in other HTML generation.

This example demonstrates a variety of Razor features.

There’s a mixture of HTML that’s written unmodified to the

response output, and there are various C# constructs used to

generate HTML dynamically. In addition, you can see several

Tag Helpers. These look like normal HTML attributes that start

with asp-, but they’re part of the Razor language. They can

customize the HTML element they’re attached to, changing

how it’s rendered. They make building HTML forms much

simpler than they would be otherwise. Don’t worry if this

template is a bit overwhelming at the moment; we’ll break it

all down as you progress through this chapter and the next.

Razor Pages are compiled when you build your application.

Behind the scenes, they become another C# class in your

application. It’s also possible to enable runtime compilation of

your Razor Pages. This allows you to modify your Razor Pages

while your app is running without having to explicitly stop and

rebuild. This can be handy when developing locally, but it’s

best avoided when you deploy to production. You can read

how to enable this at http://mng.bz/jP2P.

NOTE As with most things in ASP.NET Core, it’s possible to swap out
the Razor templating engine and replace it with your own server-side
rendering engine. You can’t replace Razor with a client-side framework
like Angular or React. If you want to take this approach, you’d use
minimal APIs or web API controllers instead and a separate client-side
framework.

http://mng.bz/jP2P

In the next section we’ll look in more detail at how Razor

views fit into the Razor Pages framework and how you can

pass data from your Razor Page handlers to the Razor view to

help build the HTML response.

17.2 Creating Razor views
In this section we’ll look at how Razor views fit into the Razor

Pages framework. You’ll learn how to pass data from your

page handlers to your Razor views and how you can use that

data to generate dynamic HTML.

With ASP.NET Core, whenever you need to display an HTML

response to the user, you should use a view to generate it.

Although it’s possible to directly generate a string from your

page handlers, which will be rendered as HTML in the browser,

this approach doesn’t adhere to the MVC separation of

concerns and will quickly leave you tearing your hair out.

NOTE Some middleware, such as the WelcomePageMiddleware
you saw in chapter 4, may generate HTML responses without using a
view, which can make sense in some situations. But your Razor Page
and MVC controllers should always generate HTML using views.

Instead, by relying on Razor views to generate the response,

you get access to a wide variety of features, as well as editor

tooling to help. This section serves as a gentle introduction to

Razor views, the things you can do with them, and the various

ways you can pass data to them.

17.2.1 Razor views and code-behind

In this book you’ve already seen that Razor Pages typically

consist of two files:

The .cshtml file, commonly called the Razor view

The .cshtml.cs file, commonly called the code-

behind, which contains the PageModel

The Razor view contains the @page directive, which makes it a

Razor Page, as you’ve seen previously. Without this directive,

the Razor Pages framework will not route requests to the

page, and the file is ignored for most purposes.

DEFINITION A directive is a statement in a Razor file that changes the
way the template is parsed or compiled. Another common directive is
the @using newNamespace directive, which makes objects in the
newNamespace namespace available.

The code-behind .cshtml.cs file contains the PageModel for

an associated Razor Page. It contains the page handlers that

respond to requests, and it is where the Razor Page typically

interacts with other parts of your application.

Even though the .cshtml and .cshtml.cs files have the same

name, such as ToDoItem.cshtml and ToDoItem.cshtml.cs, it’s

not the filename that’s linking them. But if it’s not by filename,

how does the Razor Pages framework know which PageModel

is associated with a given Razor Page view file?

At the top of each Razor Page, after the @page directive, is

the @model directive with a Type, indicating which

PageModel is associated with the Razor view. The following

directives indicate that the ToDoItemModel is the

PageModel associated with the Razor Page:

@page

@model ToDoItemModel

Once a request is routed to a Razor Page, as covered in

chapter 14, the framework looks for the @model directive to

decide which PageModel to use. Based on the PageModel

selected, it then binds to any properties in the PageModel

marked with the [BindProperty] attribute (as we covered

in chapter 16) and executes the appropriate page handler

(based on the request’s HTTP verb, as described in chapter

15).

NOTE Technically, the PageModel and @model directive are
optional. If you don’t specify a PageModel, the framework executes
an implicit page handler, as you saw in chapter 15, and renders the
view directly. It’s also possible to combine the .cshtml and .cshtml.cs
files into a single .cshtml file. You can read more about this approach in
Razor Pages in Action, by Mike Brind (Manning, 2022).

In addition to the @page and @model directives, the Razor

view file contains the Razor template that is executed to

generate the HTML response.

17.2.2 Introducing Razor templates

Razor view templates contain a mixture of HTML and C# code

interspersed with one another. The HTML markup lets you

easily describe exactly what should be sent to the browser,

whereas the C# code can be used to dynamically change what

is rendered. The following listing shows an example of Razor

rendering a list of strings representing to-do items.

Listing 17.2 Razor template for rendering a list of strings

@page

@{ ❶
 var tasks = new List<string> ❶
 { "Buy milk", "Buy eggs", "Buy bread" }; ❶
} ❶
<h1>Tasks to complete</h1> ❷

@for(var i=0; i< tasks.Count; i++) ❸
{ ❸
 var task = tasks[i]; ❸
 @i - @task ❸
} ❸

❶ Arbitrary C# can be executed in a template. Variables remain in scope throughout the page.

❷ Standard HTML markup will be rendered to the output unchanged.
❸ Mixing C# and HTML allows you to create HTML dynamically at runtime.

The pure HTML sections in this template are in the angle

brackets. The Razor engine copies this HTML directly to the

output, unchanged, as though you were writing a normal

HTML file.

NOTE The ability of Razor syntax to know when you are switching
between HTML and C# can be both uncanny and infuriating at times. I
discuss how to control this transition in section 17.3.

As well as HTML, you can see several C# statements in there.

The advantage of being able to, for example, use a for loop

rather than having to explicitly write out each element

should be self-evident. I’ll dive a little deeper into more of the

C# features of Razor in the next section. When rendered, the

template in listing 17.2 produces the following HTML.

Listing 17.3 HTML output produced by rendering a Razor template

<h1>Tasks to complete</h1> ❶
 ❶
 0 - Buy milk ❷
 1 - Buy eggs ❷
 2 - Buy bread ❷
 ❸

❶ HTML from the Razor template is written directly to the output.
❷ The elements are generated dynamically by the for loop, based on the data provided.

❸ HTML from the Razor template is written directly to the output.

As you can see, the final output of a Razor template after it’s

rendered is simple HTML. There’s nothing complicated left,

only straight HTML markup that can be sent to the browser

and rendered. Figure 17.3 shows how a browser would render

it.

Figure 17.3 Razor templates can be used to generate the HTML
dynamically at runtime from C# objects. In this case, a for loop is
used to create repetitive HTML elements.

In this example, I hardcoded the list values for simplicity; no

dynamic data was provided. This is often the case on simple

Razor Pages, like those you might have on your home page;

you need to display an almost static page. For the rest of your

application, it will be far more common to have some sort of

data you need to display, typically exposed as properties on

your PageModel.

17.2.3 Passing data to views

In ASP.NET Core, you have several ways of passing data from

a page handler in a Razor Page to its view. Which approach is

best depends on the data you’re trying to pass through, but in

general you should use the mechanisms in the following order:

PageModel properties—You should generally expose

any data that needs to be displayed as properties on

your PageModel. Any data that is specific to the

associated Razor view should be exposed this way.

The PageModel object is available in the view when

it’s rendered, as you’ll see shortly.

ViewData—This is a dictionary of objects with

string keys that can be used to pass arbitrary data

from the page handler to the view. In addition, it

allows you to pass data to layout files, as you’ll see

in section 17.4. Layout files are the main reason for

using ViewData instead of setting properties on the

PageModel.

TempData—TempData is a dictionary of objects

with string keys, similar to ViewData, that is

stored until it’s read in a different request. This is

commonly used to temporarily persist data when

using the POST-REDIRECT-GET pattern. By default

TempData stores the data in an encrypted cookie,

but other storage options are available, as described

in the documentation at http://mng.bz/Wzx1.

http://mng.bz/Wzx1

HttpContext—Technically, the HttpContext

object is available in both the page handler and

Razor view, so you could use it to transfer data

between them. But don’t—there’s no need for it with

the other methods available to you.

@inject services—You can use dependency

injection (DI) to make services available in your

views, though this should normally be used

sparingly. Using the directive @inject Service

myService injects a variable called myService of

type Service from the DI container, which you can

use in your Razor view.

Far and away the best approach for passing data from a page

handler to a view is to use properties on the PageModel.

There’s nothing special about the properties themselves; you

can store anything there to hold the data you require.

NOTE Many frameworks have the concept of a data context for binding
UI components. The PageModel is a similar concept, in that it
contains values to display in the UI, but the binding is one-directional;
the PageModel provides values to the UI, and once the UI is built and
sent as a response, the PageModel is destroyed.

As I described in section 17.2.1, the @model directive at the

top of your Razor view describes which Type of PageModel is

associated with a given Razor Page. The PageModel

associated with a Razor Page contains one or more page

handlers and exposes data as properties for use in the Razor

view, as shown in the following listing.

Listing 17.4 Exposing data as properties on a PageModel

public class ToDoItemModel : PageModel ❶
{

 public List<string> Tasks { get; set; } ❷
 public string Title { get; set; } ❷

 public void OnGet(int id)

 {

 Title = "Tasks for today"; ❸
 Tasks = new List<string> ❸
 { ❸
 "Get fuel", ❸
 "Check oil", ❸
 "Check tyre pressure" ❸
 }; ❸
 }

}

❶ The PageModel is passed to the Razor view when it executes.

❷ The public properties can be accessed from the Razor view.
❸ Building the required data: this would normally call out to a service or database to load the

data.

You can access the PageModel instance itself from the Razor

view using the Model property. For example, to display the

Title property of the ToDoItemModel in the Razor view,

you’d use <h1>@Model.Title</h1>. This would render the

string provided in the ToDoItemModel.Title property,

producing the <h1>Tasks for today</h1> HTML.

TIP Note that the @model directive should be at the top of your view,
immediately after the @page directive, and it has a lowercase m. The
Model property can be accessed anywhere in the view and has an
uppercase M.

In most cases, using public properties on your PageModel is

the way to go; it’s the standard mechanism for passing data

between the page handler and the view. But in some

circumstances, properties on your PageModel might not be

the best fit. This is often the case when you want to pass data

between view layouts. You’ll see how this works in section

17.4.

A common example is the title of the page. You need to

provide a title for every page in your application, so you could

create a base class with a Title property and make every

PageModel inherit from it. But that’s cumbersome, so a

common approach for this situation is to use the ViewData

collection to pass data around.

In fact, the standard Razor Page templates use this approach

by default, by setting values on the ViewData dictionary from

within the view itself:

@{

 ViewData["Title"] = "Home Page";

}

<h2>@ViewData["Title"].</h2>

This template sets the value of the "Title" key in the

ViewData dictionary to "Home Page" and then fetches the

key to render in the template. This set and immediate fetch

might seem superfluous, but as the ViewData dictionary is

shared throughout the request, it makes the title of the page

available in layouts, as you’ll see later. When rendered, the

preceding template would produce the following output:

<h2>Home Page.</h2>

You can also set values in the ViewData dictionary from your

page handlers in two different ways, as shown in the following

listing.

Listing 17.5 Setting ViewData values using an attribute

public class IndexModel: PageModel

{

 [ViewData] ❶
 public string Title { get; set; }

 public void OnGet()

 {

 Title = "Home Page"; ❷
 ViewData["Subtitle"] = "Welcome"; ❸
 }

}

❶ Properties marked with the [ViewData] attribute are set in the ViewData.
❷ The value of ViewData[“Title”] will be set to “Home Page”.

❸ You can set keys in the ViewData dictionary directly.

You can display the values in the template in the same way as

before:

<h1>@ViewData["Title"]</h3>

<h2>@ViewData["Subtitle"]</h3>

TIP I don’t find the [ViewData] attribute especially useful, but it’s
another feature to look out for. Instead, I create a set of global, static
constants for any ViewData keys, and I reference those instead of
typing "Title" repeatedly. You’ll get IntelliSense for the values,
they’re refactor-safe, and you’ll avoid hard-to-spot typos.

As I mentioned previously, there are mechanisms besides

PageModel properties and ViewData that you can use to

pass data around, but these two are the only ones I use

personally, as you can do everything you need with them. As a

reminder, always use PageModel properties where possible,

as you benefit from strong typing and IntelliSense. Only fall

back to ViewData for values that need to be accessed outside

of your Razor view.

You’ve had a small taste of the power available to you in Razor

templates, but in the next section we’ll dive a little deeper into

some of the available C# capabilities.

17.3 Creating dynamic web pages with
Razor

You might be glad to know that pretty much anything you can

do in C# is possible in Razor syntax. Under the covers, the

.cshtml files are compiled into normal C# code (with string

for the raw HTML sections), so whatever weird and wonderful

behavior you need can be created!

Having said that, just because you can do something doesn’t

mean you should. You’ll find it much easier to work with, and

maintain, your files if you keep them as simple as possible.

This is true of pretty much all programming, but I find it to be

especially so with Razor templates.

This section covers some of the more common C# constructs

you can use. If you find you need to achieve something a bit

more exotic, refer to the Razor syntax documentation at

http://mng.bz/8rMw.

17.3.1 Using C# in Razor templates

One of the most common requirements when working with

Razor templates is to render a value you’ve calculated in C# to

the HTML. For example, you might want to print the current

year to use with a copyright statement in your HTML, to give

this result:

<p>Copyright 2022 ©</p>

Or you might want to print the result of a calculation:

<p>The sum of 1 and 2 is <i>3</i><p>

You can do this in two ways, depending on the exact C# code

you need to execute. If the code is a single statement, you can

use the @ symbol to indicate you want to write the result to

the HTML output, as shown in figure 17.4. You’ve already seen

this used to write out values from the PageModel or from

ViewData.

http://mng.bz/8rMw

Figure 17.4 Writing the result of a C# expression to HTML. The @
symbol indicates where the C# code begins, and the expression
ends at the end of the statement, in this case at the space.

If the C# you want to execute is something that needs a

space, you need to use parentheses to demarcate the C#, as

shown in figure 17.5.

Figure 17.5 When a C# expression contains whitespace, you must
wrap it in parentheses using @() so the Razor engine knows where
the C# stops and HTML begins.

These two approaches, in which C# is evaluated and written

directly to the HTML output, are called Razor expressions.

TIP If you want to write a literal @ character rather than a C#
expression, use a second @ character: @@.

Sometimes you’ll want to execute some C#, but you don’t

need to output the values. We used this technique when we

were setting values in ViewData:

@{

 ViewData["Title"] = "Home Page";

}

This example demonstrates a Razor code block, which is

normal C# code, identified by the @{} structure. Nothing is

written to the HTML output here; it’s all compiled as though

you’d written it in any other normal C# file.

TIP When you execute code within code blocks, it must be valid C#, so
you need to add semicolons. Conversely, when you’re writing values
directly to the response using Razor expressions, you don’t need them.
If your output HTML breaks unexpectedly, keep an eye out for missing
or rogue extra semicolons.

Razor expressions are one of the most common ways of

writing data from your PageModel to the HTML output. You’ll

see the other approach, using Tag Helpers, in the next chapter.

Razor’s capabilities extend far further than this, however, as

you’ll see in section 17.3.2, where you’ll learn how to include

traditional C# structures in your templates.

17.3.2 Adding loops and conditionals to Razor
templates

One of the biggest advantages of using Razor templates over

static HTML is the ability to generate the output dynamically.

Being able to write values from your PageModel to the HTML

using Razor expressions is a key part of that, but another

common use is loops and conditionals. With these, you can

hide sections of the UI, or produce HTML for every item in a

list, for example.

Loops and conditionals include constructs such as if and for

loops. Using them in Razor templates is almost identical to C#,

but you need to prefix their usage with the @ symbol. In case

you’re not getting the hang of Razor yet, when in doubt, throw

in another @!

One of the big advantages of Razor in the context of ASP.NET

Core is that it uses languages you’re already familiar with: C#

and HTML. There’s no need to learn a whole new set of

primitives for some other templating language: it’s the same

if, foreach, and while constructs you already know. And

when you don’t need them, you’re writing raw HTML, so you

can see exactly what the user is getting in their browser.

In listing 17.6, I’ve applied a few of these techniques in a

template to display a to-do item. The PageModel has a bool

IsComplete property, as well as a List<string> property

called Tasks, which contains any outstanding tasks.

Listing 17.6 Razor template for rendering a ToDoItemViewModel

@page

@model ToDoItemModel ❶
<div>

 @if (Model.IsComplete)

 { ❷
 Well done, you’re all done! ❷
 } ❷
 else

 {

 The following tasks remain:

 @foreach (var task in Model.Tasks) ❸
 {

 @task ❹
 }

 }

</div>

❶ The @model directive indicates the type of PageModel in Model.

❷ The if control structure checks the value of the PageModel’s IsComplete property at runtime.
❸ The foreach structure will generate the elements once for each task in Model.Tasks.

❹ A Razor expression is used to write the task to the HTML output.

This code definitely lives up to the promise of mixing C# and

HTML! There are traditional C# control structures, such as if

and foreach, that you’d expect in any normal C# program,

interspersed with the HTML markup that you want to send to

the browser. As you can see, the @ symbol is used to indicate

when you’re starting a control statement, but you generally let

the Razor template infer when you’re switching back and forth

between HTML and C#.

The template shows how to generate dynamic HTML at

runtime, depending on the exact data provided. If the model

has outstanding Tasks, the HTML generates a list item for

each task, producing output something like that shown in

figure 17.6.

Figure 17.6 The Razor template generates a item for each
remaining task, depending on the data passed to the view at
runtime. You can use an if block to render completely different
HTML depending on the values in your model.

IntelliSense and tooling support

The mixture of C# and HTML might seem hard to read in the book, and that’s a
reasonable complaint. It’s also another valid argument for trying to keep your Razor
templates as simple as possible.

Luckily, if you’re using an editor like Visual Studio or Visual Studio Code, the tooling can
help somewhat. Visual Studio highlights the transition between the C# portions of the
code and the surrounding HTML, though this is less pronounced in recent versions of
Visual Studio.

Visual Studio highlights the @ symbols where C# transitions
to HTML and uses C# syntax coloring for C# code. This makes
the Razor templates somewhat easier to read that than the
pure plain text.

Although the ability to use loops and conditionals is powerful—they’re one of the
advantages of Razor over static HTML—they also add to the complexity of your view. Try
to limit the amount of logic in your views to make them as easy to understand and
maintain as possible.

A common trope of the ASP.NET Core team is that they try to

ensure you “fall into the pit of success” when building an

application. This refers to the idea that by default, the easiest

way to do something should be the correct way of doing it.

This is a great philosophy, as it means you shouldn’t get

burned by, for example, security problems if you follow the

standard approaches. Occasionally, however, you may need to

step beyond the safety rails; a common use case is when you

need to render some HTML contained in a C# object to the

output, as you’ll see in the next section.

17.3.3 Rendering HTML with Raw

In the previous example, we rendered the list of tasks to HTML

by writing the string task using the @task Razor

expression. But what if the task variable contains HTML you

want to display, so instead of "Check oil" it contains "

Check oil"? If you use a Razor

expression to output this as you did previously, you might

hope to get this:

Check oil

But that’s not the case. The HTML generated comes out like

this:

Check oil

Hmm, looks odd, right? What’s happened here? Why did the

template not write your variable to the HTML, like it has in

previous examples? If you look at how a browser displays this

HTML, like in figure 17.7, I hope that it makes more sense.

Figure 17.7 The second item, "Check oil" has
been HTML-encoded, so the elements are visible to the
user as part of the task. This prevents any security problems, as
users can’t inject malicious scripts into your HTML.

Razor templates HTML-encode C# expressions before they’re

written to the output stream. This is primarily for security

reasons; writing out arbitrary strings to your HTML could allow

users to inject malicious data and JavaScript into your website.

Consequently, the C# variables you print in your Razor

template get written as HTML-encoded values.

NOTE Razor also renders non-ASCII Unicode characters, such as ó
and è, as HTML entities: ó and è. You can customize
this behavior using WebEncoderOptions in Program.cs, as in this
example: builder.Services
.Configure<WebEncoderOptions>(o =>

o.AllowCharacter('ó')).

In some cases, you might need to directly write out HTML

contained in a string to the response. If you find yourself in

this situation, first, stop. Do you really need to do this? If the

values you’re writing have been entered by a user, or were

created based on values provided by users, there’s a serious

risk of creating a security hole in your website.

If you really need to write the variable out to the HTML

stream, you can do so using the Html property on the view

page and calling the Raw method:

@Html.Raw(task)

With this approach, the string in task is directly written to the

output stream, without encoding, producing the HTML you

originally wanted, Check oil

, which renders as shown in figure 17.8.

Figure 17.8 The second item, "Check oil" has been
output using Html.Raw(), so it hasn’t been HTML-encoded. The
 elements result in the second item being shown in bold
instead. Using Html.Raw() in this way should be avoided where
possible, as it is a security risk.

WARNING Using Html.Raw on user input creates a security risk that
users could use to inject malicious code into your website. Avoid using
Html.Raw if possible.

The C# constructs shown in this section can be useful, but

they can make your templates harder to read. It’s generally

easier to understand the intention of Razor templates that are

predominantly HTML markup rather than C#.

In the previous version of ASP.NET, these constructs, and in

particular the Html helper property, were the standard way to

generate dynamic markup. You can still use this approach in

ASP.NET Core by using the various HtmlHelper methods on

the Html property, but these have largely been superseded by

a cleaner technique: Tag Helpers.

NOTE I discuss Tag Helpers and how to use them to build HTML forms
in chapter 18. HtmlHelper is essentially obsolete, though it’s still
available if you prefer to use it.

Tag Helpers are a useful feature that’s new to Razor in

ASP.NET Core, but many other features have been carried

through from the legacy (.NET Framework) ASP.NET. In the

next section of this chapter, you’ll see how you can create

nested Razor templates and use partial views to reduce the

amount of duplication in your views.

17.4 Layouts, partial views, and
_ViewStart

In this section you’ll learn about layouts and partial views,

which allow you to extract common code to reduce duplication.

These files make it easier to make changes to your HTML that

affect multiple pages at once. You’ll also learn how to run

common code for every Razor Page using _ViewStart and

_ViewImports, and how to include optional sections in your

pages.

Every HTML document has a certain number of elements that

are required: <html>, <head>, and <body>. As well, there

are often common sections that are repeated on every page of

your application, such as the header and footer, as shown in

figure 17.9. Also, each page in your application will probably

reference the same CSS and JavaScript files.

Figure 17.9 A typical web application has a block-based layout,
where some blocks are common to every page of your application.
The header block will likely be identical across your whole
application, but the sidebar may be identical only for the pages in
one section. The body content will differ for every page in your
application.

All these different elements add up to a maintenance

nightmare. If you had to include these manually in every view,

making any changes would be a laborious, error-prone process

involving editing every page. Instead, Razor lets you extract

these common elements into layouts.

DEFINITION A layout in Razor is a template that includes common
code. It can’t be rendered directly, but it can be rendered in conjunction
with normal Razor views.

By extracting your common markup into layouts, you can

reduce the duplication in your app. This makes changes easier,

makes your views easier to manage and maintain, and is

generally good practice!

17.4.1 Using layouts for shared markup

Layout files are, for the most part, normal Razor templates

that contain markup common to more than one page. An

ASP.NET Core app can have multiple layouts, and layouts can

reference other layouts. A common use for this is to have

different layouts for different sections of your application. For

example, an e-commerce website might use a three-column

view for most pages but a single-column layout when you

come to the checkout pages, as shown in figure 17.10.

Figure 17.10 The https://manning.com website uses different
layouts for different parts of the web application. The product
pages use a three-column layout, but the cart page uses a single-
column layout.

You’ll often use layouts across many different Razor Pages, so

they’re typically placed in the Pages/Shared folder. You can

name them anything you like, but there’s a common

convention to use _Layout.cshtml as the filename for the base

layout in your application. This is the default name used by the

Razor Page templates in Visual Studio and the .NET CLI.

TIP A common convention is to prefix your layout files with an
underscore (_) to distinguish them from standard Razor templates in
your Pages folder. Placing them in Pages/Shared means you can refer
to them by the short name, such as "_Layout", without having to
specify the full path to the layout file.

https://manning.com/

A layout file looks similar to a normal Razor template, with one

exception: every layout must call the @RenderBody()

function. This tells the templating engine where to insert the

content from the child views. A simple layout is shown in

listing 17.7. Typically, your application references all your CSS

and JavaScript files in the layout and includes all the common

elements, such as headers and footers, but this example

includes pretty much the bare minimum HTML.

Listing 17.7 A basic _Layout.cshtml file calling RenderBody

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>@ViewData["Title"]</title> ❶
 <link rel="stylesheet" href="~/css/site.css" /> ❷
</head>

<body>

 @RenderBody() ❸
</body>

</html>

❶ ViewData is the standard mechanism for passing data to a layout from a view.
❷ Elements common to every page, such as your CSS, are typically found in the layout.

❸ Tells the templating engine where to insert the child view’s content

As you can see, the layout file includes the required elements,

such as <html> and <head>, as well as elements you need

on every page, such as <title> and <link>. This example

also shows the benefit of storing the page title in ViewData;

the layout can render it in the <title> element so that it

shows in the browser’s tab, as shown in figure 17.11.

Figure 17.11 The content of the <title> element is used to name
the tab in the user’s browser, in this case Home Page.

NOTE Layout files are not standalone Razor Pages and do not take
part in routing, so they do not start with the @page directive.

Views can specify a layout file to use by setting the Layout

property inside a Razor code block, as shown in the following

listing.

Listing 17.8 Setting the Layout property from a view

@{

 Layout = "_Layout"; ❶
 ViewData["Title"] = "Home Page"; ❷
}

<h1>@ViewData["Title"]</h1> ❸
<p>This is the home page</p> ❸

❶ Sets the layout for the page to _Layout.cshtml

❷ ViewData is a convenient way of passing data from a Razor view to the layout.
❸ The content in the Razor view to render inside the layout

Any contents in the view are be rendered inside the layout,

where the call to @RenderBody() occurs. Combining the two

previous listings generates the following HTML.

Listing 17.9 Rendered output from combining a view with its layout

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>Home Page</title> ❶
 <link rel="stylesheet" href="/css/site.css" />

</head>

<body>

 <h1>Home Page</h1> ❷
 <p>This is the home page</p> ❷
</body>

<html>

❶ ViewData set in the view is used to render the layout.
❷ The RenderBody call renders the contents of the view.

Judicious use of layouts can be extremely useful in reducing

the duplication between pages. By default, layouts provide

only a single location where you can render content from the

view, at the call to @RenderBody. In cases where this is too

restrictive, you can render content using sections.

17.4.2 Overriding parent layouts using sections

A common requirement when you start using multiple layouts

in your application is to be able to render content from child

views in more than one place in your layout. Consider the case

of a layout that uses two columns. The view needs a

mechanism for saying “render this content in the left column”

and “render this other content in the right column.” This is

achieved using sections.

NOTE Remember, all the features outlined in this chapter are specific to
Razor, which is a server-side rendering engine. If you’re using a client-
side single-page application (SPA) framework to build your application,
you’ll likely handle these requirements in other ways, within the client.

Sections provide a way of organizing where view elements

should be placed within a layout. They’re defined in the view

using an @section definition, as shown in the following

listing, which defines the HTML content for a sidebar separate

from the main content, in a section called Sidebar. The

@section can be placed anywhere in the file, top or bottom,

wherever is convenient.

Listing 17.10 Defining a section in a view template

@{

 Layout = "_TwoColumn";

}

@section Sidebar { ❶
 <p>This is the sidebar content</p> ❶
} ❶
<p>This is the main content </p> ❷

❶ All content inside the braces is part of the Sidebar section, not the main body content.
❷ Any content not inside an @section will be rendered by the @RenderBody call.

The section is rendered in the parent layout with a call to

@RenderSection(). This renders the content contained in

the child section into the layout. Sections can be either

required or optional. If they’re required, a view must declare

the given @section; if they’re optional, they can be omitted,

and the layout will skip them. Skipped sections won’t appear

in the rendered HTML. The following listing shows a layout that

has a required section called Sidebar and an optional section

called Scripts.

Listing 17.11 Rendering a section in a layout file,
_TwoColumn.cshtml

@{

 Layout = "_Layout"; ❶
}

<div class="main-content">

 @RenderBody() ❷
</div>

<div class="side-bar">

 @RenderSection("Sidebar", required: true) ❸
</div>

@RenderSection("Scripts", required: false) ❹

❶ This layout is nested inside a layout itself.
❷ Renders all the content from a view that isn’t part of a section

❸ Renders the Sidebar section; if the Sidebar section isn’t defined in the view, throws an error
❹ Renders the Scripts section; if the Scripts section isn’t defined in the view, ignores it

TIP It’s common to have an optional section called Scripts in your
layout pages. This can be used to render additional JavaScript that’s
required by some views but isn’t needed on every view. A common
example is the jQuery Unobtrusive Validation scripts for client-side
validation. If a view requires the scripts, it adds the appropriate
@section Scripts to the Razor markup.

You may notice that the previous listing defines a Layout

property, even though it’s a layout itself, not a view. This is

perfectly acceptable and lets you create nested hierarchies of

layouts, as shown in figure 17.12.

Figure 17.12 Multiple layouts can be nested to create complex
hierarchies. This allows you to keep the elements common to all
views in your base layout and extract layout common to multiple
views into sub-layouts.

TIP Most websites these days need to be responsive, so they work on a
wide variety of devices. You generally shouldn’t use layouts for this.
Don’t serve different layouts for a single page based on the device
making the request. Instead, serve the same HTML to all devices, and
use CSS on the client side to adapt the display of your web page as
required.

As well as the simple optional/required flags for sections,

Razor Pages have several other messages that you can use for

flow control in your layout pages:

IsSectionDefined(string section)—Returns

true if a Razor Page has defined the named section.

IgnoreSection(string section)—Ignores an

unrendered section. If a section is defined in a page

but not rendered, the Razor Page throws an

exception unless the section is ignored.

IgnoreBody()—Ignores the unrendered body of

the Razor Page. Layouts must call either

RenderBody() or IgnoreBody(); otherwise, they

will throw an InvalidOperationException.

Layout files and sections provide a lot of flexibility for building

sophisticated UIs, but one of their most important uses is in

reducing the duplication of code in your application. They’re

perfect for avoiding duplication of content that you’d need to

write for every view. But what about those times when you

find you want to reuse part of a view somewhere else? For

those cases, you have partial views.

17.4.3 Using partial views to encapsulate
markup

Partial views are exactly what they sound like: part of a view.

They provide a means of breaking up a larger view into

smaller, reusable chunks. This can be useful for both reducing

the complexity in a large view by splitting it into multiple

partial views or for allowing you to reuse part of a view inside

another.

Most web frameworks that use server-side rendering have this

capability. Ruby on Rails has partial views, Django has

inclusion tags, and Zend has partials. These all work in the

same way, extracting common code into small, reusable

templates. Even client-side templating engines such as

Mustache and Handlebars, used by client-side frameworks like

Angular and Ember, have similar “partial view” concepts.

Consider a to-do list application again. You might find you

have a Razor Page called ViewToDo.cshtml that displays a

single to-do with a given id. Later, you create a new Razor

Page, RecentToDos.cshtml, that displays the five most recent

to-do items. Instead of copying and pasting the code from one

page to the other, you could create a partial view, called

_ToDo.cshtml, as in the following listing.

Listing 17.12 Partial view _ToDo.cshtml for displaying a
ToDoItemViewModel

@model ToDoItemViewModel ❶
<h2>@Model.Title</h2> ❷
 ❷
 @foreach (var task in Model.Tasks) ❷
 { ❷
 @task ❷
 } ❷
 ❷

❶ Partial views can bind to data in the Model property, like a normal Razor Page uses a
PageModel.

❷ The content of the partial view, which previously existed in the ViewToDo.cshtml file

Partial views are a bit like Razor Pages without the

PageModel and handlers. Partial views are purely about

rendering small sections of HTML rather than handling

requests, model binding, and validation, and calling the

application model. They are great for encapsulating small

usable bits of HTML that you need to generate on multiple

Razor Pages.

Both the ViewToDo.cshtml and RecentToDos.cshtml Razor

Pages can render the _ToDo.cshtml partial view, which handles

generating the HTML for a single class. Partial views are

rendered using the <partial /> Tag Helper, providing the

name of the partial view to render and the data (the model) to

render. For example, the RecentToDos .cshtml view could

achieve this as shown in the following listing.

Listing 17.13 Rendering a partial view from a Razor Page

@page ❶
@model RecentToDoListModel ❷

@foreach(var todo in Model.RecentItems) ❸
{

 <partial name="_ToDo" model="todo" /> ❹
}

❶ This is a Razor Page, so it uses the @page directive. Partial views do not use @page.

❷ The PageModel contains the list of recent items to render.
❸ Loops through the recent items. todo is a ToDoItemViewModel, as required by the partial

view.

❹ Uses the partial tag helper to render the _ToDo partial view, passing in the model to render

When you render a partial view without providing an absolute

path or file extension, such as _ToDo in listing 17.13, the

framework tries to locate the view by searching the Pages

folder, starting from the Razor Page that invoked it. For

example, if your Razor Page is located at

Pages/Agenda/ToDos/RecentToDos.chstml, the

framework would look in the following places for a file called

_ToDo.chstml:

Pages/Agenda/ToDos/ (the current Razor Page’s

folder)

Pages/Agenda/

Pages/

Pages/Shared/

Views/Shared/

The first location that contains a file called _ToDo.cshtml will

be selected. If you include the .cshtml file extension when you

reference the partial view, the framework will look only in the

current Razor Page’s folder. Also, if you provide an absolute

path to the partial, such as /Pages/Agenda/ToDo.cshtml,

that’s the only place the framework will look.

TIP As with most of Razor Pages, the search locations are conventions
that you can customize. If you find the need, you can customize the
paths as shown here: http://mng.bz/nM9e.

The Razor code contained in a partial view is almost identical

to a standard view. The main difference is the fact that partial

views are called only from other views. The other difference is

that partial views don’t run _ViewStart.cshtml when they

execute. You’ll learn about _ViewStart.cshtml shortly in section

17.4.4.

NOTE Like layouts, partial views are typically named with a leading
underscore.

http://mng.bz/nM9e

Child actions in ASP.NET Core

In the legacy .NET Framework version of ASP.NET, there was the concept of a child
action. This was an MVC controller action method that could be invoked from inside a
view. This was the main mechanism for rendering discrete sections of a complex layout
that had nothing to do with the main action method. For example, a child action method
might render the shopping cart in the corner of every page on an e-commerce site.

This approach meant you didn’t have to pollute every page’s view model with the view
model items required to render the shopping cart, but it fundamentally broke the MVC
design pattern by referencing controllers from a view.

In ASP.NET Core, child actions are no more. View components have replaced them.
These are conceptually quite similar in that they allow both the execution of arbitrary code
and the rendering of HTML, but they don’t directly invoke controller actions. You can think
of them as a more powerful partial view that you should use anywhere a partial view
needs to contain significant code or business logic. You’ll see how to build a small view
component in chapter 32.

Partial views aren’t the only way to reduce duplication in your

view templates. Razor also allows you to put common

elements such as namespace declarations and layout

configuration in centralized files. In the next section you’ll see

how to wield these files to clean up your templates.

17.4.4 Running code on every view with
_ViewStart and _ViewImports

Due to the nature of views, you’ll inevitably find yourself

writing certain things repeatedly. If all your views use the

same layout, adding the following code to the top of every

page feels a little redundant:

@{

 Layout = "_Layout";

}

Similarly, if you find you need to reference objects from a

different namespace in your Razor views, then having to add

@using WebApplication1.Models to the top of every

page can get to be a chore. Fortunately, ASP.NET Core includes

two mechanisms for handling these common tasks:

_ViewImports.cshtml and _ViewStart.cshtml.

IMPORTING COMMON DIRECTIVES WITH _VIEWIMPORTS

The _ViewImports.cshtml file contains directives that are

inserted at the top of every Razor view. This can include things

like the @using and @model statements that you’ve already

seen—basically any Razor directive. For example, to avoid

adding a @using statement to every view, you can include it

in _ViewImports.cshtml instead of in your Razor Pages, as

shown in the following listing.

Listing 17.14 A typical _ViewImports.cshtml file importing
additional namespaces

@using WebApplication1 ❶
@using WebApplication1.Pages ❶
@using WebApplication1.Models ❷
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers ❸

❶ The default namespace of your application and the Pages folder
❷ Adds this directive to avoid placing it in every view

❸ Makes Tag Helpers available in your views, added by default

The _ViewImports.cshtml file can be placed in any folder, and

it will apply to all views and subfolders in that folder. Typically,

it’s placed in the root Pages folder so that it applies to every

Razor Page and partial view in your app.

It’s important to note that you should only put Razor directives

in _ViewImports .cshtml; you can’t put any old C# in there. As

you can see in the previous listing, this is limited to things like

@using or the @addTagHelper directive that you’ll learn

about in chapter 18. If you want to run some arbitrary C# at

the start of every view in your application, such as to set the

Layout property, you should use the _ViewStart.cshtml file

instead.

RUNNING CODE FOR EVERY VIEW WITH _VIEWSTART

You can easily run common code at the start of every Razor

Page by adding a _ViewStart.cshtml file to the Pages folder in

your application. This file can contain any Razor code, but it’s

typically used to set the Layout for all the pages in your

application, as shown in the following listing. Then you can

omit the Layout statement from all pages that use the

default layout. If a view needs to use a nondefault layout, you

can override it by setting the value in the Razor Page itself.

Listing 17.15 A typical _ViewStart.cshtml file setting the default
layout

@{

 Layout = "_Layout";

}

Any code in the _ViewStart.cshtml file runs before the view

executes. Note that _ViewStart .cshtml runs only for Razor

Page views; it doesn’t run for layouts or partial views. Also

note that the names for these special Razor files are enforced

and can’t be changed by conventions.

WARNING You must use the names _ViewStart.cshtml and
_ViewImports.cshtml for the Razor engine to locate and execute them
correctly. To apply them to all your app’s pages, add them to the root of
the Pages folder, not to the Shared subfolder.

You can specify additional _ViewStart.cshtml or

_ViewImports.cshtml files to run for a subset of your views by

including them in a subfolder in Pages. The files in the

subfolders run after the files in the root Pages folder.

Partial views, layouts, and AJAX

This chapter describes using Razor to render full HTML pages server-side, which are then
sent to the user’s browser in traditional web apps. A common alternative approach when
building web apps is to use a JavaScript client-side framework to build an SPA, which
renders the HTML client-side in the browser.

One of the technologies SPAs typically use is AJAX (Asynchronous JavaScript and XML),
in which the browser sends requests to your ASP.NET Core app without reloading a whole
new page. It’s also possible to use AJAX requests with apps that use server-side
rendering. To do so, you’d use JavaScript to request an update for part of a page.

If you want to use AJAX with an app that uses Razor, you should consider making
extensive use of partial views. Then you can expose these via additional Razor Page
handlers, as shown in this article: http://mng.bz/vzB1. Using AJAX can reduce the overall
amount of data that needs to be sent back and forth between the browser and your app,
and it can make your app feel smoother and more responsive, as it requires fewer full-
page loads. But using AJAX with Razor can add complexity, especially for larger apps. If
you foresee yourself making extensive use of AJAX to build a highly dynamic web app,

http://mng.bz/vzB1

you might want to consider using minimal APIs or web API controllers with a client-side
framework, or consider using Blazor instead.

That concludes our first look at rendering HTML using the

Razor templating engine. In the next chapter you’ll learn about

Tag Helpers and how to use them to build HTML forms, a

staple of modern web applications. Tag Helpers are one of the

biggest improvements to Razor in ASP.NET Core over legacy

ASP.NET, so getting to grips with them will make editing your

views an overall more pleasant experience!

Summary
Razor is a templating language that allows you to

generate dynamic HTML using a mixture of HTML

and C#. This provides the power of C# without your

having to build up an HTML response manually using

strings.

Razor Pages can pass strongly typed data to a Razor

view by setting public properties on the PageModel.

To access the properties on the view model, the view

should declare the model type using the @model

directive.

Page handlers can pass key-value pairs to the view

using the ViewData dictionary. This is useful for

implicitly passing shared data to layouts and partial

views.

Razor expressions render C# values to the HTML

output using @ or @(). You don’t need to include a

semicolon after the statement when using Razor

expressions.

Razor code blocks, defined using @{}, execute C#

without outputting HTML. The C# in Razor code

blocks must be complete statements, so it must

include semicolons.

Loops and conditionals can be used to easily

generate dynamic HTML in templates, but it’s a good

idea to limit the number of if statements in

particular, to keep your views easy to read.

If you need to render a string as raw HTML you

can use Html.Raw, but do so sparingly; rendering

raw user input can create a security vulnerability in

your application.

Tag Helpers allow you to bind your data model to

HTML elements, making it easier to generate

dynamic HTML while staying editor-friendly.

You can place HTML common to multiple views in a

layout to reduce duplication. The layout will render

any content from the child view at the location

@RenderBody is called.

Encapsulate commonly used snippets of Razor code

in a partial view. A partial view can be rendered

using the <partial /> tag.

_ViewImports.cshtml can be used to include

common directives, such as @using statements, in

every view.

_ViewStart.cshtml is called before the execution of

each Razor Page and can be used to execute code

common to all Razor Pages, such as setting a default

layout page. It doesn’t execute for layouts or partial

views.

_ViewImports.cshtml and _ViewStart.cshtml are

hierarchical. Files in the root folder execute first,

followed by files in controller-specific view folders.

18 Building forms with Tag Helpers

This chapter covers

Building forms easily with Tag Helpers
Generating URLs with the Anchor Tag Helper
Using Tag Helpers to add functionality to Razor

In chapter 17 you learned about Razor templates and how to use

them to generate the views for your application. By mixing HTML

and C#, you can create dynamic applications that can display

different data based on the request, the logged-in user, or any

other data you can access.

Displaying dynamic data is an important aspect of many web

applications, but it’s typically only half of the story. As well as

needing to display data to the user, you often need the user to

be able to submit data back to your application. You can use

data to customize the view or to update the application model by

saving it to a database, for example. For traditional web

applications, this data is usually submitted using an HTML form.

In chapter 16 you learned about model binding, which is how

you accept the data sent by a user in a request and convert it to

C# objects that you can use in your Razor Pages. You also

learned about validation and how important it is to validate the

data sent in a request. You used DataAnnotations attributes

to define the rules associated with your models, as well as

associated metadata like the display name for a property.

The final aspect we haven’t yet looked at is how to build the

HTML forms that users use to send this data in a request. Forms

are one of the key ways users will interact with your application

in the browser, so it’s important they’re both correctly defined

for your application and user-friendly. ASP.NET Core provides a

feature to achieve this, called Tag Helpers.

Tag Helpers are additions to Razor syntax that you use to

customize the HTML generated in your templates. Tag Helpers

can be added to an otherwise-standard HTML element, such as

an <input>, to customize its attributes based on your C#

model, saving you from having to write boilerplate code. Tag

Helpers can also be standalone elements and can be used to

generate completely customized HTML.

NOTE Remember that Razor, and therefore Tag Helpers, are for server-
side HTML rendering. You can’t use Tag Helpers directly in frontend
frameworks like Angular and React.

If you’ve used legacy (.NET Framework) ASP.NET before, Tag

Helpers may sound reminiscent of HTML Helpers, which could

also be used to generate HTML based on your C# classes. Tag

Helpers are the logical successor to HTML Helpers, as they

provide a more streamlined syntax than the previous, C#-

focused helpers. HTML Helpers are still available in ASP.NET

Core, so if you’re converting some old templates to ASP.NET

Core, you can still use them. But if you’re writing new Razor

templates, I recommend using only Tag Helpers, as they should

cover everything you need. I don’t cover HTML Helpers in this

book.

In this chapter you’ll primarily learn how to use Tag Helpers

when building forms. They simplify the process of generating

correct element names and IDs so that model binding can occur

seamlessly when the form is sent back to your application. To

put them into context, you’re going to carry on building the

currency converter application that you’ve seen in previous

chapters. You’ll add the ability to submit currency exchange

requests to it, validate the data, and redisplay errors on the

form using Tag Helpers to do the legwork for you, as shown in

figure 18.1.

Figure 18.1 The currency converter application forms, built using Tag
Helpers. The labels, drop-down lists, input elements, and validation
messages are all generated using Tag Helpers.

As you develop the application, you’ll meet the most common

Tag Helpers you’ll encounter when working with forms. You’ll

also see how you can use Tag Helpers to simplify other common

tasks, such as generating links, conditionally displaying data in

your application, and ensuring that users see the latest version

of an image file when they refresh their browser.

To start, I’ll talk a little about why you need Tag Helpers when

Razor can already generate any HTML you like by combining C#

and HTML in a file.

18.1 Catering to editors with Tag Helpers
One of the common complaints about the mixture of C# and

HTML in Razor templates is that you can’t easily use standard

HTML editing tools with them; all the @ and {} symbols in the

C# code tend to confuse the editors. Reading the templates can

be similarly difficult for people; switching paradigms between C#

and HTML can be a bit jarring sometimes.

This arguably wasn’t such a problem when Visual Studio was the

only supported way to build ASP.NET websites, as it could

obviously understand the templates without any problems and

helpfully colorize the editor. But with ASP.NET Core going cross-

platform, the desire to play nicely with other editors reared its

head again.

This was one of the big motivations for Tag Helpers. They

integrate seamlessly into the standard HTML syntax by adding

what look to be attributes, typically starting with asp-*. They’re

most often used to generate HTML forms, as shown in the

following listing. This listing shows a view from the first iteration

of the currency converter application, in which you choose the

currencies and quantity to convert.

Listing 18.1 User registration form using Tag Helpers

@page ❶
@model ConvertModel ❶
<form method="post">

 <div class="form-group">

 <label asp-for="CurrencyFrom"></label> ❷
 <input class="form-control" asp-for="CurrencyFrom" /> ❸
 ❹
 </div>

 <div class="form-group">

 <label asp-for="Quantity"></label> ❷
 <input class="form-control" asp-for="Quantity" /> ❸
 ❹
 </div>

 <div class="form-group">

 <label asp-for="CurrencyTo"></label> ❷
 <input class="form-control" asp-for="CurrencyTo" /> ❸
 ❹
 </div>

 <button type="submit" class="btn btn-primary">Submit</button>

</form>

❶ This is the view for the Razor Page Convert.cshtml. The Model type is ConvertModel.
❷ asp-for on Labels generates the caption for labels based on the view model.

❸ asp-for on Inputs generates the correct type, value, name, and validation attributes for the
model.

❹ Validation messages are written to a span using Tag Helpers.

At first glance, you might not even spot the Tag Helpers, they

blend in so well with the HTML! This makes it easy to edit the

files with any standard HTML text editor. But don’t be concerned

that you’ve sacrificed readability in Visual Studio. As you can see

in figure 18.2, elements with Tag Helpers are distinguishable

from the standard HTML <div> element and the standard HTML

class attribute on the <input> element. The C# properties of

the view model being referenced (CurrencyFrom, in this case)

are also displayed differently from “normal” HTML attributes.

And of course you get IntelliSense, as you’d expect. Most other

integrated development environments (IDEs) also include syntax

highlighting and IntelliSense support.

Figure 18.2 In Visual Studio, Tag Helpers are distinguishable from
normal elements by being bold and a different color from standard
HTML elements and attributes.

Tag Helpers are extra attributes on standard HTML elements (or

new elements entirely) that work by modifying the HTML

element they’re attached to. They let you easily integrate your

server-side values, such as those exposed on your PageModel,

with the generated HTML.

Notice that listing 18.1 doesn’t specify the captions to display in

the labels. Instead, you declaratively use asp-

for="CurrencyFrom" to say “For this <label>, use the

CurrencyFrom property to work out what caption to use.”

Similarly, for the <input> elements, Tag Helpers are used to

Automatically populate the value from the PageModel

property.

Choose the correct id and name, so that when the

form is POSTed back to the Razor Page, the property

model-binds correctly.

Choose the correct input type to display (for example,

a number input for the Quantity property).

Display any validation errors, as shown in figure 18.3.

Figure 18.3 Tag Helpers hook into the metadata provided by
DataAnnotations attributes, as well as the property types
themselves. The Validation Tag Helper can even populate error
messages based on the ModelState, as you saw in chapter 16.

Tag Helpers can perform a variety of functions by modifying the

HTML elements they’re applied to. This chapter introduces

several common Tag Helpers and how to use them, but it’s not

an exhaustive list. I don’t cover all the helpers that come out of

the box in ASP.NET Core (there are more coming with every

release!), and you can easily create your own, as you’ll see in

chapter 32. Alternatively, you could use those published by

others on NuGet or GitHub.

WebForms flashbacks

For those who used ASP.NET back in the day of WebForms, before the advent of the Model-
View-Controller (MVC) pattern for web development, Tag Helpers may be triggering bad
memories. Although the asp- prefix is somewhat reminiscent of ASP.NET Web Server
control definitions, never fear; the two are completely different beasts.

Web Server controls were added directly to a page’s backing C# class and had a broad
scope that could modify seemingly unrelated parts of the page. Coupled with that, they had a
complex life cycle that was hard to understand and debug when things weren’t working. The
perils of trying to work with that level of complexity haven’t been forgotten, and Tag Helpers
aren’t the same.

Tag Helpers don’t have a life cycle; they participate in the rendering of the element to which
they’re attached, and that’s it. They can modify the HTML element they’re attached to, but
they can’t modify anything else on your page, making them conceptually much simpler. An
additional capability they bring is the ability to have multiple Tag Helpers acting on a single
element—something Web Server controls couldn’t easily achieve.

Overall, if you’re writing Razor templates, you’ll have a much more enjoyable experience if
you embrace Tag Helpers as integral to its syntax. They bring a lot of benefits without
obvious downsides, and your cross-platform-editor friends will thank you!

18.2 Creating forms using Tag Helpers
In this section you’ll learn how to use some of the most useful

Tag Helpers: Tag Helpers that work with forms. You’ll learn how

to use them to generate HTML markup based on properties of

your PageModel, creating the correct id and name attributes,

and setting the value of the element to the model property’s

value (among other things). This capability significantly reduces

the amount of markup you need to write manually.

Imagine you’re building the checkout page for the currency

converter application, and you need to capture the user’s details

on the checkout page. In chapter 16 you built a

UserBindingModel model (shown in listing 18.2), added

DataAnnotations attributes for validation, and saw how to

model-bind it in a POST to a Razor Page. In this chapter you’ll

see how to create the view for it by exposing the

UserBindingModel as a property on your PageModel.

WARNING With Razor Pages, you often expose the same object in your
view that you use for model binding. When you do this, you must be
careful to not include sensitive values (that shouldn’t be edited) in the
binding model, to prevent mass-assignment attacks on your app. You can
read more about these attacks on my blog at http://mng.bz/RXw0.

Listing 18.2 UserBindingModel for creating a user on a checkout page

public class UserBindingModel

{

 [Required]

 [StringLength(100, ErrorMessage = "Maximum length is {1}")]

 [Display(Name = "Your name")]

 public string FirstName { get; set; }

 [Required]

 [StringLength(100, ErrorMessage = "Maximum length is {1}")]

 [Display(Name = "Last name")]

 public string LastName { get; set; }

 [Required]

 [EmailAddress]

 public string Email { get; set; }

 [Phone(ErrorMessage = "Not a valid phone number.")]

 [Display(Name = "Phone number")]

 public string PhoneNumber { get; set; }

}

http://mng.bz/RXw0

The UserBindingModel is decorated with various

DataAnnotations attributes. In chapter 16 you saw that these

attributes are used during model validation when the model is

bound to a request, before the page handler is executed. These

attributes are also used by the Razor templating language to

provide the metadata required to generate the correct HTML

when you use Tag Helpers.

You can use the pattern I described in chapter 16, exposing a

UserBindindModel as an Input property of your

PageModel, to use the model for both model binding and in

your Razor view:

public class CheckoutModel: PageModel

{

 [BindProperty]

 public UserBindingModel Input { get; set; }

}

With the help of the UserBindingModel property, Tag Helpers,

and a little HTML, you can create a Razor view that lets the user

enter their details, as shown in figure 18.4.

Figure 18.4 The checkout page for an application. The HTML is
generated based on a UserBindingModel, using Tag Helpers to render
the required element values, input types, and validation messages.

The Razor template to generate this page is shown in listing

18.3. This code uses a variety of tag helpers, including

A Form Tag Helper on the <form> element

Label Tag Helpers on the <label>

Input Tag Helpers on the <input>

Validation Message Tag Helpers on validation

elements for each property in the

UserBindingModel

Listing 18.3 Razor template for binding to UserBindingModel on the
checkout page

@page

@model CheckoutModel ❶
@{

 ViewData["Title"] = "Checkout";

}

<h1>@ViewData["Title"]</h1>

<form asp-page="Checkout"> ❷
 <div class="form-group">

 <label asp-for="Input.FirstName"></label> ❸
 <input class="form-control" asp-for="Input.FirstName" />

 </div>

 <div class="form-group">

 <label asp-for="Input.LastName"></label>

 <input class="form-control" asp-for="Input.LastName" />

 </div>

 <div class="form-group">

 <label asp-for="Input.Email"></label>

 <input class="form-control" asp-for="Input.Email" /> ❹

 </div>

 <div class="form-group">

 <label asp-for="Input.PhoneNumber"></label>

 <input class="form-control" asp-for="Input.PhoneNumber" />

 ❺
 </div>

 <button type="submit" class="btn btn-primary">Submit</button>

</form>

❶ The CheckoutModel is the PageModel, which exposes a UserBindingModel on the Input
property.

❷ Form Tag Helpers use routing to determine the URL the form will be posted to.

❸ The Label Tag Helper uses DataAnnotations on a property to determine the caption to display.
❹ The Input Tag Helper uses DataAnnotations to determine the type of input to generate.

❺ The Validation Tag Helper displays error messages associated with the given property.

You can see the HTML markup that this template produces in

listing 18.4, which renders in the browser as you saw in figure

18.4. You can see that each of the HTML elements with a Tag

Helper has been customized in the output: the <form> element

has an action attribute, the <input> elements have an id

and name based on the name of the referenced property, and

both the <input> and have data-* attributes for

validation.

Listing 18.4 HTML generated by the Razor template on the checkout
page

<form action="/Checkout" method="post">

 <div class="form-group">

 <label for="Input_FirstName">Your name</label>

 <input class="form-control" type="text"

 data-val="true" data-val-length="Maximum length is 100"

 id="Input_FirstName" data-val-length-max="100"

 data-val-required="The Your name field is required."

 Maxlength="100" name="Input.FirstName" value="" />

 <span data-valmsg-for="Input.FirstName"

 class="field-validation-valid" data-valmsg-replace="true">

 </div>

 <div class="form-group">

 <label for="Input_LastName">Your name</label>

 <input class="form-control" type="text"

 data-val="true" data-val-length="Maximum length is 100"

 id="Input_LastName" data-val-length-max="100"

 data-val-required="The Your name field is required."

 Maxlength="100" name="Input.LastName" value="" />

 <span data-valmsg-for="Input.LastName"

 class="field-validation-valid" data-valmsg-replace="true">

 </div>

 <div class="form-group">

 <label for="Input_Email">Email</label>

 <input class="form-control" type="email" data-val="true"

 data-val-email="The Email field is not a valid e-mail address."

 Data-val-required="The Email field is required."

 Id="Input_Email" name="Input.Email" value="" />

 <span class="text-danger field-validation-valid"

 data-valmsg-for="Input.Email" data-valmsg-replace="true">

 </div>

 <div class="form-group">

 <label for="Input_PhoneNumber">Phone number</label>

 <input class="form-control" type="tel" data-val="true"

 data-val-phone="Not a valid phone number." Id="Input_PhoneNumber"

 name="Input.PhoneNumber" value="" />

 <span data-valmsg-for="Input.PhoneNumber"

 class="text-danger field-validation-valid"

 data-valmsg-replace="true">

 </div>

 <button type="submit" class="btn btn-primary">Submit</button>

 <input name="__RequestVerificationToken" type="hidden"

 value="CfDJ8PkYhAINFx1JmYUVIDWbpPyy_TRUNCATED" />

</form>

Wow, that’s a lot of markup! If you’re new to working with

HTML, this might all seem a little overwhelming, but the

important thing to notice is that you didn’t have to write most of

it! The Tag Helpers took care of most of the plumbing for you.

That’s basically Tag Helpers in a nutshell; they simplify the fiddly

mechanics of building HTML forms, leaving you to concentrate

on the overall design of your application instead of writing

boilerplate markup.

NOTE If you’re using Razor to build your views, Tag Helpers will make
your life easier, but they’re entirely optional. You’re free to write raw HTML
without them or to use the legacy HTML Helpers.

Tag Helpers simplify and abstract the process of HTML

generation, but they generally try to do so without getting in

your way. If you need the final generated HTML to have a

particular attribute, you can add it to your markup. You can see

that in the previous listings where class attributes are defined

on <input> elements, such as <input class="form-

control" asp-for="Input.FirstName" />. They pass

untouched from Razor to the HTML output.

TIP This is different from the way HTML Helpers worked in legacy
ASP.NET; HTML helpers often require jumping through hoops to set
attributes in the generated markup.

Even better, you can also override attributes that are normally

generated by a Tag Helper, like the type attribute on an

<input> element. For example, if the FavoriteColor

property on your PageModel was a string, by default Tag

Helpers would generate an <input> element with

type="text". Updating your markup to use the HTML5 color

picker type is trivial; set the type explicitly in your Razor view:

<input type="color" asp-for="FavoriteColor" />

TIP HTML5 adds a huge number of features, including lots of form
elements that you may not have come across before, such as range
inputs and color pickers. You can read about them on the Mozilla
Developer Network website at http://mng.bz/qOc1.

For the remainder of section 18.2, you’ll build the currency

converter Razor templates from scratch, adding Tag Helpers as

you find you need them. You’ll probably find you use most of the

common form Tag Helpers in every application you build, even if

it’s on a simple login page.

http://mng.bz/qOc1

18.2.1 The Form Tag Helper

The first thing you need to start building your HTML form is,

unsurprisingly, the <form> element. In listing 18.3 the <form>

element was augmented with an asp-page Tag Helper

attribute:

<form asp-page="Checkout">

The Tag Helper adds action and method attributes to the final

HTML, indicating which URL the form should be sent to when it’s

submitted and the HTTP verb to use:

<form action="/Checkout" method="post">

Setting the asp-page attribute allows you to specify a different

Razor Page in your application that the form will be posted to

when it’s submitted. If you omit the asp-page attribute, the

form will post back to the same URL it was served from. This is

common with Razor Pages. You normally handle the result of a

form post in the same Razor Page that is used to display it.

WARNING If you omit the asp-page attribute, you must add the
method="post" attribute manually. It’s important to add this attribute
so the form is sent using the POST verb instead of the default GET verb.
Using GET for forms can be a security risk.

The asp-page attribute is added by a FormTagHelper. This

Tag Helper uses the value provided to generate a URL for the

action attribute, using the URL generation features of routing

that I described in chapters 5 and 14.

NOTE Tag Helpers can make multiple attributes available on an element.
Think of them like properties on a Tag Helper configuration object. Adding
a single asp- attribute activates the Tag Helper on the element. Adding
more attributes lets you override further default values of its
implementation.

The Form Tag Helper makes several other attributes available on

the <form> element that you can use to customize the

generated URL. I hope you’ll remember that you can set route

values when generating URLs. For example, if you have a Razor

Page called Product.cshtml that uses the directive

@page "{id}"

the full route template for the page would be

"Product/{id}". To generate the URL for this page correctly,

you must provide the {id} route value. How can you set that

value using the Form Tag Helper?

The Form Tag Helper defines an asp-route-* wildcard

attribute that you can use to set arbitrary route parameters. Set

the * in the attribute to the route parameter name. For

example, to set the id route parameter, you’d set the asp-

route-id value. If the ProductId property of your

PageModel contains the id value you require, you could use

<form asp-page="Product" asp-route-id="@Model.ProductId">

Based on the route template of the Product.cshtml Razor Page

(and assuming ProductId=5 in this example), this would

generate the following markup:

<form action="/Product/5" method="post">

You can add as many asp-route-* attributes as necessary to

your <form> to generate the correct action URL. You can also

set the Razor Page handler to use the asp-page-handler

attribute. This ensures that the form POST will be handled by

the handler you specify.

NOTE The Form Tag Helper has many additional attributes, such as
asp-action and asp-controller, that you generally won’t use
with Razor Pages. Those are useful only if you’re using MVC controllers
with views. In particular, look out for the asp-route attribute—this is
not the same as the asp-route-* attribute. The former is used to
specify a named route (such as a named minimal API endpoint), and the
latter is used to specify the route values to use during URL generation.

The main job of the Form Tag Helper is to generate the action

attribute, but it performs one additional important function:

generating a hidden <input> field needed to prevent cross-site

request forgery (CSRF) attacks.

DEFINITION Cross-site request forgery (CSRF) attacks are a website
exploit that can allow actions to be executed on your website by an
unrelated malicious website. You’ll learn about them in detail in chapter
29.

You can see the generated hidden <input> at the bottom of the

<form> in listing 18.4; it’s named

__RequestVerificationToken and contains a seemingly

random string of characters. This field won’t protect you on its

own, but I’ll describe in chapter 29 how it’s used to protect your

website. The Form Tag Helper generates it by default, so you

generally won’t need to worry about it, but if you need to disable

it, you can do so by adding asp-antiforgery="false" to

your <form> element.

The Form Tag Helper is obviously useful for generating the

action URL, but it’s time to move on to more interesting

elements—those that you can see in your browser!

18.2.2 The Label Tag Helper

Every <input> field in your currency converter application

needs to have an associated label so the user knows what the

<input> is for. You could easily create those yourself, manually

typing the name of the field and setting the for attribute as

appropriate, but luckily there’s a Tag Helper to do that for you.

The Label Tag Helper is used to generate the caption (the visible

text) and the for attribute for a <label> element, based on

the properties in the PageModel. It’s used by providing the

name of the property in the asp-for attribute:

<label asp-for="FirstName"></label>

The Label Tag Helper uses the [Display] DataAnnotations

attribute that you saw in chapter 16 to determine the

appropriate value to display. If the property you’re generating a

label for doesn’t have a [Display] attribute, the Label Tag

Helper uses the name of the property instead. Consider this

model in which the FirstName property has a [Display]

attribute, but the Email property doesn’t:

public class UserModel

{

 [Display(Name = "Your name")]

 public string FirstName { get; set; }

 public string Email { get; set; }

}

The following Razor

<label asp-for="FirstName"></label>

<label asp-for="Email"></label>

would generate this HTML:

<label for="FirstName">Your name</label>

<label for="Email">Email</label>

The inner text inside the <label> element uses the value set in

the [Display] attribute, or the property name in the case of

the Email property. Also note that the for attribute has been

generated with the name of the property. This is a key bonus of

using Tag Helpers; it hooks in with the element IDs generated by

other Tag Helpers, as you’ll see shortly.

NOTE The for attribute is important for accessibility. It specifies the ID of
the element to which the label refers. This is important for users who are
using a screen reader, for example, as they can tell what property a form
field relates to.

As well as properties on the PageModel, you can also reference

sub-properties on child objects. For example, as I described in

chapter 16, it’s common to create a nested class in a Razor

Page, expose that as a property, and decorate it with the

[BindProperty] attribute:

public class CheckoutModel: PageModel

{

 [BindProperty]

 public UserBindingModel Input { get; set; }

}

You can reference the FirstName property of the

UserBindingModel by “dotting” into the property as you

would in any other C# code. Listing 18.3 shows more examples

of this.

<label asp-for="Input.FirstName"></label>

<label asp-for="Input.Email"></label>

As is typical with Tag Helpers, the Label Tag Helper won’t

override values that you set yourself. If, for example, you don’t

want to use the caption generated by the helper, you could

insert your own manually. The code

<label asp-for="Email">Please enter your Email</label>

would generate this HTML:

<label for="Email">Please enter your Email</label>

As ever, you’ll generally have an easier time with maintenance if

you stick to the standard conventions and don’t override values

like this, but the option is there. Next up is a biggie: the Input

and Textarea Tag Helpers.

18.2.3 The Input and Textarea Tag Helpers

Now you’re getting into the meat of your form: the <input>

elements that handle user input. Given that there’s such a wide

array of possible input types, there’s a variety of ways they can

be displayed in the browser. For example, Boolean values are

typically represented by a checkbox type <input> element,

whereas integer values would use a number type <input>

element, and a date would use the date type, as shown in

figure 18.5.

Figure 18.5 Various input element types. The exact way in which
each type is displayed varies by browser.

To handle this diversity, the Input Tag Helper is one of the most

powerful Tag Helpers. It uses information based on both the type

of the property (bool, string, int, and so on) and any

DataAnnotations attributes applied to it ([EmailAddress]

and [Phone], among others) to determine the type of the

input element to generate. The DataAnnotations are also

used to add data-val-* client-side validation attributes to the

generated HTML.

Consider the Email property from listing 18.2 that was

decorated with the [EmailAddress] attribute. Adding an

<input> is as simple as using the asp-for attribute:

<input asp-for="Input.Email" />

The property is a string, so ordinarily the Input Tag Helper

would generate an <input> with type="text". But the

addition of the [EmailAddress] attribute provides additional

metadata about the property. Consequently, the Tag Helper

generates an HTML5 <input> with type="email":

<input type="email" id="Input_Email" name="Input.Email"

 value="test@example.com" data-val="true"

 data-val-email="The Email Address field is not a valid e-mail address."

 Data-val-required="The Email Address field is required."

 />

You can take a whole host of things away from this example.

First, the id and name attributes of the HTML element have

been generated from the name of the property. The value of the

id attribute matches the value generated by the Label Tag

Helper in its for attribute, Input_Email. The value of the

name attribute preserves the “dot” notation, Input.Email, so

that model binding works correctly when the field is POSTed to

the Razor Page.

Also, the initial value of the field has been set to the value

currently stored in the property ("test@example.com", in this

case). The type of the element has also been set to the HTML5

email type, instead of using the default text type.

Perhaps the most striking addition is the swath of data-val-*

attributes. These can be used by client-side JavaScript libraries

such as jQuery to provide client-side validation of your

DataAnnotations constraints. Client-side validation provides

instant feedback to users when the values they enter are invalid,

providing a smoother user experience than can be achieved with

server-side validation alone, as I described in chapter 16.

Client-side validation

To enable client-side validation in your application, you need to add some jQuery libraries to
your HTML pages. In particular, you need to include the jQuery, jQuery-validation, and
jQuery-validation-unobtrusive JavaScript libraries. You can do this in several ways, but the
simplest is to include the script files at the bottom of your view using

<script src="~/lib/jquery-validation/dist/jquery.validate.min.js"></script>

<script src="~/lib/jquery-validation-unobtrusive/

➥ jquery.validate.unobtrusive.min.js"></script>

The default templates include these scripts for you in a handy partial template that you can
add to your page in a Scripts section. If you’re using the default layout and need to add

client-side validation to your view, add the following section somewhere on your view:

@section Scripts{

 @Html.Partial("_ValidationScriptsPartial")

}

This partial view references files in your wwwroot folder. The default layout template includes
jQuery itself. If you don’t need to use jQuery in your application, you may want to consider a
small alternative validation library called aspnet-client-validation. I describe why you might
consider this library and how to use it in this blog post: http://mng.bz/V1pX.

You can also load these files, whether you’re using jQuery or aspnet-client-validation, from a
content delivery network (CDN). If you want to take this approach, you should consider
scenarios where the CDN is unavailable or compromised, as I discuss in this blog post:
http://mng.bz/2e6d.

The Input Tag Helper tries to pick the most appropriate template

for a given property based on DataAnnotations attributes or

the type of the property. Whether this generates the exact

<input> type you need may depend, to an extent, on your

application. As always, you can override the generated type by

adding your own type attribute to the element in your Razor

template. Table 18.1 shows how some of the common data types

are mapped to <input> types and how the data types

themselves can be specified.

http://mng.bz/V1pX
http://mng.bz/2e6d

Table 18.1 Common data types, how to specify them, and the input
element type they map to

Data type How it’s specified Input element type
byte, int, short, long,

uint

Property type number

decimal, double, float Property type text

bool Property type checkbox

string Property type,
[DataType(DataType.Text)]

attribute

text

HiddenInput [HiddenInput] attribute hidden

Password [Password] attribute password

Phone [Phone] attribute tel

EmailAddress [EmailAddress] attribute email

Url [Url] attribute url

Date DateTime property type,
[DataType(DataType.Date)]

attribute

datetime-local

The Input Tag Helper has one additional attribute that can be

used to customize the way data is displayed: asp-format.

HTML forms are entirely string-based, so when the value of an

<input> is set, the Input Tag Helper must take the value stored

in the property and convert it to a string. Under the covers,

this performs a string.Format() on the property’s value,

passing in the format string.

The Input Tag Helper uses a default format string for each

different data type, but with the asp-format attribute, you can

set the specific format string to use. For example, you could

ensure that a decimal property, Dec, is formatted to three

decimal places with the following code:

<input asp-for="Dec" asp-format="{0:0.000}" />

If the Dec property had a value of 1.2, this would generate

HTML similar to

<input type="text" id="Dec" name="Dec" value="1.200">

Alternatively, you can define the format to use by adding the

[DisplayFormat] attribute to the model property:

[DisplayFormat("{0:0.000}")]

public decimal Dec { get; set; }

NOTE You may be surprised that decimal and double types are
rendered as text fields and not as number fields. This is due to several
technical reasons, predominantly related to the way different cultures
render decimal points and number group separators. Rendering as text
avoids errors that would appear only in certain browser-culture
combinations.

In addition to the Input Tag Helper, ASP.NET Core provides the

Textarea Tag Helper. This works in a similar way, using the asp-

for attribute, but it’s attached to a <textarea> element

instead:

<textarea asp-for="BigtextValue"></textarea>

This generates HTML similar to the following. Note that the

property value is rendered inside the element, and data-val-*

validation elements are attached as usual:

<textarea data-val="true" id="BigtextValue" name="BigtextValue"

 data-val-length="Maximum length 200." data-val-length-max="200"

 data-val-required="The Multiline field is required." >This is some text,

I'm going to display it

in a text area</textarea>

I hope that this section has hammered home how much typing

Tag Helpers can cut down on, especially when using them in

conjunction with DataAnnotations for generating validation

attributes. But this is more than reducing the number of

keystrokes required; Tag Helpers ensure that the markup

generated is correct and has the correct name, id, and format

to automatically bind your binding models when they’re sent to

the server.

With <form>, <label>, and <input> under your belt, you’re

able to build most of your currency converter forms. Before we

look at displaying validation messages, there’s one more

element to look at: the <select>, or drop-down, input.

18.2.4 The Select Tag Helper

As well as <input> fields, a common element you’ll see on web

forms is the <select> element, or drop-down lists and list

boxes. Your currency converter application, for example, could

use a <select> element to let you pick which currency to

convert from a list.

By default, this element shows a list of items and lets you select

one, but there are several variations, as shown in figure 18.6. As

well as the normal drop-down list, you could show a list box, add

multiselection, or display your list items in groups.

Figure 18.6 Some of the many ways to display <select> elements
using the Select Tag Helper.

To use <select> elements in your Razor code, you’ll need to

include two properties in your PageModel: one property for the

list of options to display and one to hold the value (or values)

selected. For example, listing 18.5 shows the properties on the

PageModel used to create the three leftmost select lists shown

in figure 18.6. Displaying groups requires a slightly different

setup, as you’ll see shortly.

Listing 18.5 View model for displaying select element drop-down
lists and list boxes

public class SelectListsModel: PageModel

{

 [BindProperty] ❶
 public class InputModel Input { get; set; } ❶

 public IEnumerable<SelectListItem> Items { get; set; } ❷
 = new List<SelectListItem> ❷
 { ❷
 new SelectListItem{Value = "csharp", Text="C#"}, ❷
 new SelectListItem{Value = "python", Text= "Python"}, ❷
 new SelectListItem{Value = "cpp", Text="C++"}, ❷
 new SelectListItem{Value = "java", Text="Java"}, ❷
 new SelectListItem{Value = "js", Text="JavaScript"}, ❷
 new SelectListItem{Value = "ruby", Text="Ruby"}, ❷
 }; ❷

 public class InputModel

 {

 public string SelectedValue1 { get; set; } ❸
 public string SelectedValue2 { get; set; } ❸
 public IEnumerable<string> MultiValues { get; set; } ❹
 }

}

❶ The InputModel for binding the user’s selections to the select boxes

❷ The list of items to display in the select boxes
❸ These properties will hold the values selected by the single-selection select boxes.

❹ To create a multiselect list box, use an IEnumerable<>.

This listing demonstrates several aspects of working with

<select> lists:

SelectedValue1/SelectedValue2—Used to hold

the value selected by the user. They’re model-bound to

the value selected from the drop-down list/list box and

used to preselect the correct item when rendering the

form.

MultiValues—Used to hold the selected values for a

multiselect list. It’s an IEnumerable, so it can hold

more than one selection per <select> element.

Items—Provides the list of options to display in the

<select> elements. Note that the element type must

be SelectListItem, which exposes the Value and

Text properties, to work with the Select Tag Helper.

This isn’t part of the InputModel, as we don’t want

to model-bind these items to the request; they would

normally be loaded directly from the application model

or hardcoded. The order of the values in the Items

property controls the order of items in the <select>

list.

NOTE The Select Tag Helper works only with SelectListItem
elements. That means you’ll normally have to convert from an application-
specific list set of items (for example, a List<string> or
List<MyClass>) to the UI-centric List<SelectListItem>.

The Select Tag Helper exposes the asp-for and asp-items

attributes that you can add to <select> elements. As for the

Input Tag Helper, the asp-for attribute specifies the property

in your PageModel to bind to. The asp-items attribute

provides the IEnumerable <SelectListItem> to display the

available <option> elements.

TIP It’s common to want to display a list of enum options in a <select>
list. This is so common that ASP.NET Core ships with a helper for
generating a SelectListItem for any enum. If you have an enum of

the TEnum type, you can generate the available options in your view
using asp-items="Html .GetEnumSelectList<TEnum>()".

The following listing shows how to display a drop-down list, a

single-selection list box, and a multiselection list box. It uses the

PageModel from the previous listing, binding each <select>

list value to a different property but reusing the same Items list

for all of them.

Listing 18.6 Razor template to display a select element in three ways

@page

@model SelectListsModel

<select asp-for="Input.SelectedValue1" ❶
 asp-items="Model.Items"></select> ❶
<select asp-for="Input.SelectedValue2" ❷
 asp-items="Model.Items" size="4"></select> ❷
<select asp-for="Input.MultiValues"

 asp-items="Model.Items"></select> ❸

❶ Creates a standard drop-down select list by binding to a standard property in asp-for

❷ Creates a single-select list box of height 4 by providing the standard HTML size attribute
❸ Creates a multiselect list box by binding to an IEnumerable property in asp-for

I hope you can see that the Razor for generating a drop-down

<select> list is almost identical to the Razor for generating a

multiselect <select> list. The Select Tag Helper takes care of

adding the multiple HTML attribute to the generated output if

the property it’s binding to is an IEnumerable.

WARNING The asp-for attribute must not include the Model. prefix.
The asp-items attribute, on the other hand, must include it if
referencing a property on the PageModel. The asp-items attribute
can also reference other C# items, such as objects stored in ViewData,
but using a PageModel property is the best approach.

You’ve seen how to bind three types of select lists so far, but the

one I haven’t yet covered from figure 18.6 is how to display

groups in your list boxes using <optgroup> elements. Luckily,

nothing needs to change in your Razor code; you have to update

only how you define your SelectListItems.

The SelectListItem object defines a Group property that

specifies the SelectListGroup the item belongs to. The

following listing shows how you could create two groups and

assign each list item to a “dynamic” or “static” group, using a

PageModel similar to that shown in listing 18.5. The final list

item, C#, isn’t assigned to a group, so it will be displayed as

normal, without an <optgroup>.

Listing 18.7 Adding Groups to SelectListItems to create optgroup
elements

public class SelectListsModel: PageModel

{

 [BindProperty]

 public IEnumerable<string> SelectedValues { get; set; } ❶
 public IEnumerable<SelectListItem> Items { get; set; }

 public SelectListsModel() ❷
 {

 var dynamic = new SelectListGroup { Name = "Dynamic" }; ❸
 var @static = new SelectListGroup { Name = "Static" }; ❸
 Items = new List<SelectListItem>

 {

 new SelectListItem {

 Value= "js",

 Text="Javascript",

 Group = dynamic ❹
 },

 new SelectListItem {

 Value= "cpp",

 Text="C++",

 Group = @static ❹
 },

 new SelectListItem {

 Value= "python",

 Text="Python",

 Group = dynamic ❹
 },

 new SelectListItem { ❺
 Value= "csharp", ❺
 Text="C#", ❺
 }

 };

 }

}

❶ Holds the selected values where multiple selections are allowed
❷ Initializes the list items in the constructor

❸ Creates a single instance of each group to pass to SelectListItems
❹ Sets the appropriate group for each SelectListItem

❺ If a SelectListItem doesn’t have a Group, it won’t be added to an <optgroup>.

With this in place, the Select Tag Helper generates <optgroup>

elements as necessary when rendering the Razor to HTML. The

Razor template

@page

@model SelectListsModel

<select asp-for="SelectedValues" asp-items="Model.Items"></select>

would be rendered to HTML as follows:

<select id="SelectedValues" name="SelectedValues" multiple="multiple">

 <optgroup label="Dynamic">

 <option value="js">JavaScript</option>

 <option value="python">Python</option>

 </optgroup>

 <optgroup label="Static">

 <option value="cpp">C++</option>

 </optgroup>

 <option value="csharp">C#</option>

</select>

Another common requirement when working with <select>

elements is to include an option in the list that indicates that no

value has been selected, as shown in figure 18.7. Without this

extra option, the default <select> drop-down will always have

a value, and it will default to the first item in the list.

Figure 18.7 Without a “not selected” option, the <select> element will
always have a value. This may not be the behavior you desire if you
don’t want an <option> to be selected by default.

You can achieve this in one of two ways: you could add the “not

selected” option to the available SelectListItems, or you

could add the option to the Razor manually, such as by using

<select asp-for="SelectedValue" asp-items="Model.Items">

 <option Value="">**Not selected**</option>

</select>

This will add an extra <option> at the top of your <select>

element, with a blank Value attribute, allowing you to provide a

“no selection” option for the user.

TIP Adding a “no selection” option to a <select> element is so
common that you might want to create a partial view to encapsulate this
logic.

With the Input Tag Helper and Select Tag Helper under your belt,

you should be able to create most of the forms that you’ll need.

You have all the pieces you need to create the currency

converter application now, with one exception.

Remember that whenever you accept input from a user, you

should always validate the data. The Validation Tag Helpers

provide a way for you to display model validation errors to the

user on your form without having to write a lot of boilerplate

markup.

18.2.5 The Validation Message and Validation
Summary Tag Helpers

In section 18.2.3 you saw that the Input Tag Helper generates

the necessary data-val-* validation attributes on form input

elements themselves. But you also need somewhere to display

the validation messages. This can be achieved for each property

in your view model using the Validation Message Tag Helper

applied to a by using the asp-validation-for

attribute:

When an error occurs during client-side validation, the

appropriate error message for the referenced property is

displayed in the , as shown in figure 18.8. This

element is also used to show appropriate validation messages if

server-side validation fails when the form is redisplayed.

Figure 18.8 Validation messages can be shown in an associated
 by using the Validation Message Tag Helper.

Any errors associated with the Email property stored in

ModelState are rendered in the element body, and the

appropriate attributes to hook into jQuery validation are added:

<span class="field-validation-valid" data-valmsg-for="Email"

 data-valmsg-replace="true">The Email Address field is required.

The validation error shown in the element is removed or

replaced when the user updates the Email <input> field and

client-side validation is performed.

NOTE For more details on ModelState and server-side validation, see
chapter 16.

As well as display validation messages for individual properties,

you can display a summary of all the validation messages in a

<div> with the Validation Summary Tag Helper, shown in figure

18.9. This renders a containing a list of the ModelState

errors.

Figure 18.9 Form showing validation errors. The Validation Message
Tag Helper is applied to , close to the associated input. The
Validation Summary Tag Helper is applied to a <div>, normally at the
top or bottom of the form.

The Validation Summary Tag Helper is applied to a <div> using

the asp-validation-summary attribute and providing a

ValidationSummary enum value, such as

<div asp-validation-summary="All"></div>

The ValidationSummary enum controls which values are

displayed, and it has three possible values:

None—Don’t display a summary. (I don’t know why

you’d use this.)

ModelOnly—Display only errors that are not

associated with a property.

All—Display errors associated with either a property

or the model.

The Validation Summary Tag Helper is particularly useful if you

have errors associated with your page that aren’t specific to a

single property. These can be added to the model state by using

a blank key, as shown in listing 18.8. In this example, the

property validation passed, but we provide additional model-

level validation to check that we aren’t trying to convert a

currency to itself.

Listing 18.8 Adding model-level validation errors to the ModelState

public class ConvertModel : PageModel

{

 [BindProperty]

 public InputModel Input { get; set; }

 [HttpPost]

 public IActionResult OnPost()

 {

 if(Input.CurrencyFrom == Input.CurrencyTo) ❶
 {

 ModelState.AddModelError(❷
 string.Empty, ❷
 "Cannot convert currency to itself"); ❷

 }

 if (!ModelState.IsValid) ❸
 { ❸
 return Page(); ❸
 } ❸

 //store the valid values somewhere etc

 return RedirectToPage("Checkout");

 }

}

❶ Can’t convert currency to itself
❷ Adds model-level error, not tied to a specific property, by using empty key

❸ If there are any property-level or model-level errors, displays them

Without the Validation Summary Tag Helper, the model-level

error would still be added if the user used the same currency

twice, and the form would be redisplayed. Unfortunately, there

would have been no visual cue to the user indicating why the

form did not submit. Obviously, that’s a problem! By adding the

Validation Summary Tag Helper, the model-level errors are

shown to the user so they can correct the problem, as shown in

figure 18.10.

Figure 18.10 Model-level errors are only displayed by the Validation
Summary Tag Helper. Without one, users won’t have any indication
that there were errors on the form and so won’t be able to correct
them.

NOTE For simplicity, I added the validation check to the page handler. An
alternative approach would be to create a custom validation attribute or
use IValidatableObject (described in chapter 7). That way, your
handler stays lean and sticks to the single- responsibility principle (SRP).
You’ll see how to create a custom validation attribute in chapter 32.

This section covered most of the common Tag Helpers available

for working with forms, including all the pieces you need to build

the currency converter forms. They should give you everything

you need to get started building forms in your own applications.

But forms aren’t the only area in which Tag Helpers are useful;

they’re generally applicable any time you need to mix server-

side logic with HTML generation.

One such example is generating links to other pages in your

application using routing-based URL generation. Given that

routing is designed to be fluid as you refactor your application,

keeping track of the exact URLs the links should point to would

be a bit of a maintenance nightmare if you had to do it by hand.

As you might expect, there’s a Tag Helper for that: the Anchor

Tag Helper.

18.3 Generating links with the Anchor
Tag Helper

In chapters 6 and 15, I showed how you could generate URLs for

links to other pages in your application using LinkGenerator

and IUrlHelper. Views are another common place where you

need to generate links, normally by way of an <a> element with

an href attribute pointing to the appropriate URL.

In this section I show how you can use the Anchor Tag Helper to

generate the URL for a given Razor Page using routing.

Conceptually, this is almost identical to the way the Form Tag

Helper generates the action URL, as you saw in section 18.2.1.

For the most part, using the Anchor Tag Helper is identical too;

you provide asp-page and asp-page-handler attributes,

along with asp-route-* attributes as necessary. The default

Razor Page templates use the Anchor Tag Helper to generate the

links shown in the navigation bar using the code in the following

listing.

Listing 18.9 Using the Anchor Tag Helper to generate URLs in
_Layout.cshtml

<ul class="navbar-nav flex-grow-1">

 <li class="nav-item">

 <a class="nav-link text-dark"

 asp-area="" asp-page="/Index">Home

 <li class="nav-item">

 <a class="nav-link text-dark"

 asp-area="" asp-page="/Privacy">Privacy

As you can see, each <a> element has an asp-page attribute.

This Tag Helper uses the routing system to generate an

appropriate URL for the <a>, resulting in the following markup:

<ul class="nav navbar-nav">

 <li class="nav-item">

 Home

 <li class="nav-item">

 Privacy

 t

The URLs use default values where possible, so the Index Razor

Page generates the simple "/" URL instead of "/Index".

If you need more control over the URL generated, the Anchor

Tag Helper exposes several additional properties you can set,

which are used during URL generation. The attributes most often

used with Razor Pages are

asp-page—Sets the Razor Page to execute.

asp-page-handler—Sets the Razor Page handler to

execute.

asp-area—Sets the area route parameter to use.

Areas can be used to provide an additional layer of

organization to your application.
1

asp-host—If set, the generated link points to the

provided host and generates an absolute URL instead

of a relative URL.

asp-protocol—Sets whether to generate an http or

https link. If set, it generates an absolute URL instead

of a relative URL.

asp-route-*—Sets the route parameters to use

during generation. Can be added multiple times for

different route parameters.

By using the Anchor Tag Helper and its attributes, you generate

your URLs using the routing system, as described in chapters 5

and 14. This reduces the duplication in your code by removing

the hardcoded URLs you’d otherwise need to embed in all your

views.

If you find yourself writing repetitive code in your markup,

chances are someone has written a Tag Helper to help with it.

The Append Version Tag Helper in the following section is a great

example of using Tag Helpers to reduce the amount of fiddly

code required.

18.4 Cache-busting with the Append
Version Tag Helper

A common problem with web development, both when

developing and when an application goes into production, is

ensuring that browsers are all using the latest files. For

performance reasons, browsers often cache files locally and

reuse them for subsequent requests rather than calling your

application every time a file is requested.

Normally, this is great. Most of the static assets in your site

rarely change, so caching them significantly reduces the burden

on your server. Think of an image of your company logo. How

often does that change? If every page shows your logo, caching

the image in the browser makes a lot of sense.

But what happens if it does change? You want to make sure

users get the updated assets as soon as they’re available. A

more critical requirement might be if the JavaScript files

associated with your site change. If users end up using cached

versions of your JavaScript, they might see strange errors, or

your application might appear broken to them.

This conundrum is a common one in web development, and one

of the most common ways for handling it is to use a cache-

busting query string.

DEFINITION A cache-busting query string adds a query parameter to a
URL, such as ?v=1. Browsers will cache the response and use it for
subsequent requests to the URL. When the resource changes, the query
string is also changed, such as to ?v=2. Browsers will see this as a
request for a new resource and make a fresh request.

The biggest problem with this approach is that it requires you to

update a URL every time an image, CSS, or JavaScript file

changes. This is a manual step that requires updating every

place the resource is referenced, so it’s inevitable that mistakes

are made. Tag Helpers to the rescue! When you add a

<script>, , or <link> element to your application, you

can use Tag Helpers to automatically generate a cache-busting

query string:

<script src="~/js/site.js" asp-append-version="true"></script>

The asp-append-version attribute will load the file being

referenced and generate a unique hash based on its contents.

This is then appended as a unique query string to the resource

URL:

<script src="/js/site.js?v=EWaMeWsJBYWmL2g_KkgXZQ5nPe"></script>

As this value is a hash of the file contents, it remains unchanged

as long as the file isn’t modified, so the file will be cached in

users’ browsers. But if the file is modified, the hash of the

contents changes and so does the query string. This ensures

that browsers are always served the most up-to-date files for

your application without your having to worry about updating

every URL manually whenever you change a file.

So far in this chapter you’ve seen how to use Tag Helpers for

forms, link generation, and cache busting. You can also use Tag

Helpers to conditionally render different markup depending on

the current environment. This uses a technique you haven’t seen

yet, where the Tag Helper is declared as a completely separate

element.

18.5 Using conditional markup with the
Environment Tag Helper

In many cases, you want to render different HTML in your Razor

templates depending on whether your website is running in a

development or production environment. For example, in

development you typically want your JavaScript and CSS assets

to be verbose and easy to read, but in production you’d process

these files to make them as small as possible. Another example

might be the desire to apply a banner to the application when

it’s running in a testing environment, which is removed when

you move to production, as shown in figure 18.11.

Figure 18.11 The warning banner will be shown whenever you’re
running in a testing environment, to make it easy to distinguish from
production.

You’ve already seen how to use C# to add if statements to

your markup, so it would be perfectly possible to use this

technique to add an extra div to your markup when the current

environment has a given value. If we assume that the env

variable contains the current environment, you could use

something like this:

@if(env == "Testing" || env == "Staging")

{

 <div class="warning">You are currently on a testing environment</div>

}

There’s nothing wrong with this, but a better approach would be

to use the Tag Helper paradigm to keep your markup clean and

easy to read. Luckily, ASP.NET Core comes with the

EnvironmentTagHelper, which can be used to achieve the

same result in a slightly clearer way:

<environment include="Testing,Staging">

 <div class="warning">You are currently on a testing environment</div>

</environment>

This Tag Helper is a little different from the others you’ve seen

before. Instead of augmenting an existing HTML element using

an asp- attribute, the whole element is the Tag Helper. This Tag

Helper is completely responsible for generating the markup, and

it uses an attribute to configure it.

Functionally, this Tag Helper is identical to the C# markup

(where the env variable contains the hosting environment, as

described in chapter 10), but it’s more declarative in its function

than the C# alternative. You’re obviously free to use either

approach, but personally I like the HTML-like nature of Tag

Helpers.

We’ve reached the end of this chapter on Tag Helpers, and with

it, we’ve finished our main look at building traditional web

applications that display HTML to users. In the last part of the

book, we’ll revisit Razor templates when you learn how to build

custom components like custom Tag Helpers and view

components. For now, you have everything you need to build

complex Razor layouts; the custom components can help tidy up

your code down the line.

Part 3 of this book has been a whistle-stop tour of how to build

Razor Page applications with ASP.NET Core. You now have the

basic building blocks to start making server-rendered ASP.NET

Core applications. Before we move on to discussing security in

part 4 of this book, I’ll take a couple of chapters to discuss

building apps with MVC controllers.

I’ve talked about MVC controllers a lot in passing, but in chapter

19 you’ll learn why I recommend Razor Pages over MVC

controllers for server-rendered apps. Nevertheless, there are

some situations for which MVC controllers make sense.

Summary
With Tag Helpers, you can bind your data model to

HTML elements, making it easier to generate dynamic

HTML while remaining editor friendly.

As with Razor in general, Tag Helpers are for server-

side rendering of HTML only. You can’t use them

directly in frontend frameworks, such as Angular or

React.

Tag Helpers can be standalone elements or can attach

to existing HTML using attributes. This lets you both

customize HTML elements and add entirely new

elements.

Tag Helpers can customize the elements they’re

attached to, add additional attributes, and customize

how they’re rendered to HTML. This can greatly reduce

the amount of markup you need to write.

Tag Helpers can expose multiple attributes on a single

element. This makes it easier to configure the Tag

Helper, as you can set multiple, separate values.

You can add the asp-page and asp-page-handler

attributes to the <form> element to set the action

URL using the URL generation feature of Razor Pages.

You specify route values to use during routing with the

Form Tag Helper using asp-route-* attributes.

These values are used to build the final URL or are

passed as query data.

The Form Tag Helper also generates a hidden field that

you can use to prevent CSRF attacks. This is added

automatically and is an important security measure.

You can attach the Label Tag Helper to a <label>

using asp-for. It generates an appropriate for

attribute and caption based on the [Display]

DataAnnotation attribute and the PageModel

property name.

The Input Tag Helper sets the type attribute of an

<input> element to the appropriate value based on a

bound property’s Type and any DataAnnotation

attributes applied to it. It also generates the data-

val-* attributes required for client-side validation.

This significantly reduces the amount of HTML code

you need to write.

To enable client-side validation, you must add the

necessary JavaScript files to your view for jQuery

validation and unobtrusive validation.

The Select Tag Helper can generate drop-down

<select> elements as well as list boxes, using the

asp-for and asp-items attributes. To generate a

multiselect <select> element, bind the element to an

IEnumerable property on the view model. You can

use these approaches to generate several different

styles of select box.

The items supplied in asp-for must be an

IEnumerable<SelectListItem>. If you try to bind

another type, you’ll get a compile-time error in your

Razor view.

You can generate an

IEnumerable<SelectListItem> for an enum

TEnum using the

Html.GetEnumSelectList<TEnum>() helper

method. This saves you having to write the mapping

code yourself.

The Select Tag Helper generates <optgroup>

elements if the items supplied in asp-for have an

associated SelectListGroup on the Group

property. Groups can be used to separate items in

select lists.

Any extra additional <option> elements added to the

Razor markup are passed through to the final HTML

unchanged. You can use these additional elements to

easily add a “no selection” option to the <select>

element.

The Validation Message Tag Helper is used to render

the client- and server-side validation error messages

for a given property. This gives important feedback to

your users when elements have errors. Use the asp-

validation-for attribute to attach the Validation

Message Tag Helper to a .

The Validation Summary Tag Helper displays validation

errors for the model, as well as for individual

properties. You can use model-level properties to

display additional validation that doesn’t apply to just

one property. Use the asp-validation-summary

attribute to attach the Validation Summary Tag Helper

to a <div>.

You can generate <a> URLs using the Anchor Tag

Helper. This helper uses routing to generate the href

URL using asp-page, asp-page-handler, and

asp-route-* attributes, giving you the full power of

routing.

You can add the asp-append-version attribute to

<link>, <script>, and elements to provide

cache-busting capabilities based on the file’s contents.

This ensures users cache files for performance

reasons, yet still always get the latest version of files.

You can use the Environment Tag Helper to

conditionally render different HTML based on the app’s

current execution environment. You can use this to

render completely different HTML in different

environments if you wish.

1. I don’t cover areas in detail in this book. They’re an optional aspect of MVC that are often only
used on large projects. You can read about them here: http://mng.bz/3X64.

http://mng.bz/3X64

19 Creating a website with MVC
controllers

This chapter covers

Creating a Model-View-Controller (MVC) application
Choosing between Razor Pages and MVC controllers
Returning Razor views from MVC controllers

In this book I’ve focused on Razor Pages over MVC

controllers for server-rendered HTML apps, as I consider

Razor Pages to be the preferable paradigm in most cases. In

this chapter we dig a bit more into exactly why I consider

Razor Pages to be the right choice and take a brief look at

the alternative.

In section 19.2 you’ll create a default MVC application using

a template so you can familiarize yourself with the general

project layout of an MVC application. We’ll look at some of

the differences between an MVC application and a Razor

Pages app, as well as the many similarities.

Next, I’ll dig into why I find Razor Pages to be a preferable

application model compared with MVC controllers. You’ll

learn about the improved developer ergonomics of Razor

Pages compared with MVC controllers, as well as the cases

in which MVC controllers are nevertheless the right choice.

In section 19.4 you’ll learn about rendering Razor views

using MVC controllers. You’ll learn how the MVC framework

relies on conventions to locate view files and how to override

these by selecting a specific Razor view template to render.

Finally, you’ll see the full view selection algorithm in all its

glory.

19.1 Razor Pages vs. MVC in ASP.NET
Core

In this book I focus on Razor Pages, but I have also

mentioned that Razor Pages use the ASP.NET Core MVC

framework behind the scenes and that you can choose to

use the MVC framework directly if you wish. Additionally, if

you’re creating an API for working with mobile or client-side

apps, and you don’t want to (or can’t) use minimal APIs, you

may well use the MVC framework directly by creating web

API controllers.

NOTE I look at how to build web APIs with the MVC framework in
chapter 20.

So what are the differences between Razor Pages and the

MVC framework, and when should you choose one or the

other?

If you’re new to ASP.NET Core, the answer is pretty simple:

use Razor Pages for server-side rendered applications, and

use minimal APIs (or web API controllers) for building APIs.

There are nuances to this advice, which I discuss in section

19.5, but that distinction will serve you well for now.

Naming is hard, again

Microsoft have a long history of creating a framework and naming it after a generic
concept: MVC, Web Forms, Web Pages, Multi-platform App UI, and so on. It’s frankly
incredible that Blazor survived! Web API is no different.

In legacy ASP.NET, Microsoft created a web API framework, which was similar in
design to the existing MVC framework, but also was not interoperable. You therefore
had MVC controllers, which were controller classes used with the MVC framework to
generate HTML, and web API controllers, which were controller classes used with the
web API framework, to generate JavaScript Object Notation (JSON) or Extensible
Markup Language (XML).

In ASP.NET Core, Microsoft merged these two parallel stacks into a single ASP.NET
Core MVC framework. Controllers in ASP.NET Core can generate both HTML and
JSON/XML; there is no separation. Nevertheless, it’s common for a controller to be
dedicated to either HTML generation or JSON/XML. For that reason, the names MVC
controller and web API controller are often used to refer to the two general types of
controller: MVC for HTML and web API for JSON/XML.

In this book when I refer to web API controllers, I’m talking about standard ASP.NET
Core controllers that are generating API responses. This may be described elsewhere
as a web API application using MVC controllers or as a web API application. All three
cases refer to the same concept: an HTTP API built using ASP.NET Core controllers.

Before we can get to comparisons, though, we should take a

brief look at the ASP.NET Core MVC framework itself.

Understanding the similarities and differences between MVC

controllers and Razor Pages can be useful, as you’ll likely

find a use for MVC controllers at some point, even if you use

Razor Pages most of the time.

19.2 Your first MVC web application
In this section you’ll learn how to create your first MVC web

application, which server-renders HTML pages using MVC

controllers and Razor views. We use a template to create the

app and compare the generated code to see how it differs

from a Razor Pages application.

We’ll again use a template to get an application up and

running quickly. This time we’ll use the ASP.NET Core Web

App (Model-View-Controller) template. To create the

application in Visual Studio, follow these steps:

1. Choose File > New.

2. In the Create a new project dialog box, select

the ASP.NET Core Web App (Model-View-

Controller) template.

3. In the Configure your new project dialog box,

enter your project name and review the

Additional information box, shown in figure

19.1.

4. Choose Create. If you’re using the command-line

interface (CLI), you can create a similar template

using dotnet new mvc.

Figure 19.1 The Additional information screen for the MVC
template. This screen follows on from the Configure your new
project dialog box and lets you customize the template that
generates your application.

The MVC template configures the ASP.NET Core project to

use MVC controllers with Razor views. As always, you

configure your app to use MVC controllers in Program.cs, as

shown in listing 19.1. If you compare this template with your

Razor Pages projects, you’ll see that the web API project

uses AddControllersWithViews() instead of

AddRazorPages(). The MVC controllers are mapped as

endpoints by calling MapControllerRoute(). This

method maps all the controllers in your app and configures a

default conventional route for them. We discussed

conventional routing in chapter 14, and I will discuss it again

shortly.

Listing 19.1 Program.cs for the default MVC project

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllersWithViews(); ❶

WebApplication app = builder.Build();

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Home/Error"); ❷
 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

app.MapControllerRoute(❸
 name: "default", ❸
 pattern: "{controller=Home}/{action=Index}/{id?}"); ❹

app.Run();

❶ AddControllersWithViews adds the services for MVC controllers with Razor Views.
❷ The exception handler path differs from the default Razor Pages path of /Error.

❸ Adds all MVC controllers in your application using conventional routing
❹ Defines the default conventional route pattern

Much of the configuration for an MVC application is the same

as for Razor Pages. The middleware configuration is

essentially identical, which isn’t that surprising considering

that MVC and Razor Pages are the same type of application:

a server-rendered app returning HTML. The main difference,

as you’ll see in section 19.3, is in the project structure.

Before we go any further, run the MVC application by

pressing F5 in Visual Studio or by running dotnet run in

the project folder. The application should look remarkably

familiar; it’s essentially identical to the Razor Pages version

of the application you created in chapter 13, as shown in

figure 19.2.

Figure 19.2 The default MVC application. The resulting
application is identical to the Razor Pages equivalent created in
chapter 13.

The output of the MVC app is identical to the default Razor

Pages app, but the infrastructure used to generate the

response differs. Instead of a Razor Page PageModel and

page handler, MVC uses the concept of controllers and action

methods. The following listing shows the HomeController

class from the default application. Each nonabstract, public

method is an action that runs in response to a request.

You can ensure that a candidate method is not treated as an

action method by decorating it with the [NonAction]

attribute.

Listing 19.2 The HomeController for the default MVC app

public class HomeController : Controller ❶
{

 private readonly ILogger<HomeController> _logger;

 public HomeController(Ilogger<HomeController> logger)

 {

 _logger = logger;

 }

 public IActionResult Index() ❷
 {

 return View(); ❸
 }

 public IActionResult Privacy()

 {

 return View();

 }

 [ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, ❹
 NoStore = true)] ❹
 public IActionResult Error()

 {

 return View(new ErrorViewModel ❺
 { ❺
 RequestId = Activity.Current?.Id ❺
 ?? HttpContext.TraceIdentifier ❺
 });

 }

}

❶ MVC Controllers often inherit from the Controller base class.

❷ Action methods are the endpoints that run in response to requests.
❸ Returning View() renders a Razor view.

❹ You can apply filters to actions, as you’ll learn in chapters 21 and 22.

❺ Any object returned with View is passed to the Razor view as a view model.

DEFINITION An action (or action method) is a method that runs in
response to a request. An MVC controller is a class that contains one
or more logically grouped action methods.

Each of the three action methods calls View() and returns

the result. This returns a ViewResult, which instructs the

MVC framework to render a Razor view for the action. You’ll

learn more about this process in section 19.4. The Error

action method also sets an object in the call to View(). This

is the view model, which is passed to the Razor view when

it’s rendered.

NOTE MVC controllers use explicit view models to pass data to a
Razor view rather than expose the data as properties on themselves
(as Razor Pages do with page models). This provides a clearer
separation between the various “models” than in Razor Pages,
though both cases use the same general MVC design pattern.

Another big difference between Razor Pages and MVC

controllers is that MVC controllers typically use conventional

routing, as opposed to the explicit routing used by Razor

Pages. I touched on conventional routing and how it differs

from explicit routing in chapter 14, but you can see it in

action in this MVC application.

Conventional routing defines one or more route template

patterns, which are used for all the MVC controllers in your

app. The default route template, shown in listing 19.1,

consists of three optional segments:

"{controller=Home}/{action=Index}/{id?}"

Conventional routes must describe which controller and

action should run for any given request, so they must

include controller and action route parameters at a

minimum. When a request is received, ASP.NET Core

matches the route template and from that calculates which

MVC controller and action method to use. For example, the

default route would match all the following URLs:

/Home/Privacy—Executes the

HomeController.Privacy() action

/Home—Executes the HomeController.Index()

action

/customer/list—Executes the

CustomerController.List() action

/products/view/123—Executes the

ProductsController.View() action, with the

route parameter id=123

With conventional routing, a single route template maps to

multiple endpoints, whereas in explicit routing, one or more

route templates typically map to a single endpoint. There

are subtleties in both cases, but in general conventional

routing is terser, and explicit routing is more expressive.

NOTE As I mentioned in chapter 14, I won’t discuss conventional
routing any further in this book. It is often used only with MVC
controllers, but even then, I generally prefer to use explicit routing

with attributes. I describe how to use attribute routing in chapter 20
when I discuss web API controllers.

Once you’ve familiarized yourself with a basic MVC

application you will likely have spotted many of the

similarities and differences between the MVC framework and

Razor Pages. In the next section we look at one aspect of

this: MVC controllers and their Razor Page PageModel

equivalent.

19.3 Comparing an MVC controller
with a Razor Page PageModel

In chapter 13 we looked at the MVC design pattern, and at

how it applies to Razor Pages in ASP.NET Core. Perhaps

unsurprisingly, you can use MVC controllers with the MVC

design pattern in almost exactly the same way.

As mentioned in section 19.2, MVC controllers and actions

are analogous to their Razor Pages counterparts of

PageModel and page handlers. Figure 19.3 makes this

clearer; it is the MVC controller equivalent of the Razor

Pages version from chapter 13.

Figure 19.3 A complete MVC controller request for a category.
The MVC controller pattern is almost identical to that of Razor
Pages, which was shown in figure 13.12. The controller is

equivalent to a Razor Page, and the action is equivalent to a
page handler.

In chapter 13 I showed a simple Razor Page PageModel for

displaying all the to-do items in a given category in a to-do

list application. The following listing reproduces that Razor

Pages code from listing 13.5 for your convenience.

Listing 19.3 A Razor Page for viewing all to-do items in a given
category

public class CategoryModel : PageModel

{

 private readonly ToDoService _service;

 public CategoryModel(ToDoService service)

 {

 _service = service;

 }

 public ActionResult OnGet(string category)

 {

 Items = _service.GetItemsForCategory(category);

 return Page();

 }

 public List<ToDoListModel> Items { get; set; }

}

The MVC equivalent of this Razor Page is shown in listing

19.4. In the MVC framework, controllers are often used to

aggregate similar actions, so the controller in this case is

called ToDoController, as it would typically contain

additional action methods for working with to-do items, such

as actions to view a specific item or to create a new one.

Listing 19.4 An MVC controller for viewing all to-do items in a
given category

public class ToDoController : Controller

{

 private readonly ToDoService _service; ❶
 public ToDoController(ToDoService service) ❶
 {

 _service = service;

 }

 public ActionResult Category(string id) ❷
 {

 var items = _service.GetItemsForCategory(id); ❸
 return View(items); ❹
 }

 public ActionResult Create(ToDoListModel model) ❺
 { ❺
 // ... ❺
 } ❺
}

❶ The ToDoService is provided in the controller constructor using dependency injection.

❷ The Category action method takes a parameter, id.
❸ The action method calls out to the ToDoService to retrieve data and build a view model.

❹ Returns a ViewResult indicating the Razor view should be rendered, passing in the view
model

❺ MVC controllers often contain multiple action methods that respond to different requests.

Aside from some naming differences, the ToDoController

looks similar to the Razor Page equivalent from listing 19.3:

They both use dependency injection to access

services.

Both handlers (page handler and action method)

accept parameters created using model binding in

exactly the same way.

Both interact with the application model in the

same way to handle the request.

They both create a view model for rendering the

Razor view.

One of the main differences between Razor Pages and MVC

controllers is in the final step: rendering the Razor view. In

the next section you’ll see how to render Razor views from

your MVC controller actions, how the views differ from the

Razor views you’ve seen with Razor Pages, and how the

framework locates the correct Razor view to render.

19.4 Selecting a view from an MVC
controller

This section covers

How MVC controllers use ViewResults to render

Razor views

How to create a new Razor view

How the framework locates a Razor view to render

One of the major differences between MVC controllers and

Razor Pages is how the page handler or action method

chooses a Razor view to render. For Razor Pages, it’s easy;

the page renders the Razor view associated with the page.

For MVC controllers it’s more complicated, so it’s important

to understand how you choose which view to render once an

action method has executed. Figure 19.4 shows a zoomed-in

view of this process, right after the action has invoked the

application model and received some data back.

Figure 19.4 The process of generating HTML from an MVC
controller using a ViewResult. This is similar to the process for a
Razor Page. The main difference is that for Razor Pages, the

view is an integral part of the Razor Page; for MVC controllers,
the view must be located at runtime.

Some of this figure should be familiar; it’s the bottom half of

figure 19.3 (with a couple of additions). It shows that the

MVC controller action method uses a ViewResult object to

indicate that a Razor view should be rendered. This

ViewResult contains the name of the Razor view template

to render and a view model, an arbitrary plain old CLR object

(POCO) class containing the data to render.

NOTE ViewResult is the MVC equivalent of a Razor Page’s
PageResult. The main difference is that a ViewResult
includes a view name to render and a model to pass to the view
template, while a PageResult always renders the Razor Page’s
associated view and always passes the PageModel to the view
template.

After returning a ViewResult from an action method, the

control flow passes back to the MVC framework, which uses

a series of heuristics to locate the view, based on the

template name provided.

Once it locates the Razor view template, the Razor engine

passes the view model from the ViewResult to the view

and executes the template to generate the final HTML. This

final step, rendering the HTML, is essentially the same

process as for Razor Pages.

You can add a new Razor view template to your application

in Visual Studio by right-clicking the folder you wish to add

the view to in Solution Explorer. Choose Add > New Item

and then select Razor View - Empty from the dialog, as

shown in figure 19.5. If you aren’t using Visual Studio,

create a blank new file in the Views folder with the file

extension .cshtml.

Figure 19.5 The Add New Item dialog box. Choosing Razor View -
Empty adds a new Razor view template file to your application.

Razor view files are almost identical to the Razor Page

.cshtml files you saw in chapter 17. The only difference is

that Razor view files must not specify a @page directive at

the top of the file. Aside from that, they’re identical; you can

use the same syntax, partial views, layouts, and view

models as you can with Razor Pages.

The following listing, for example, shows part of the

Error.cshtml Razor view for the default MVC template. This is

all recognizable as standard Razor syntax.

Listing 19.5 A Razor view

@model ErrorViewModel ❶
@{

 ViewData["Title"] = "Error"; ❷
}

<h1 class="text-danger">Error.</h1> ❸
<h2 class="text-danger">An error occurred while

 processing your request.</h2>

@if (Model.ShowRequestId) ❹
{

 <p>

 Request ID: <code>@Model.RequestId</code> ❺
 </p>

}

❶ Razor views may specify a view model.
❷ You can access ViewData, and execute arbitrary C# statements.

❸ Standard HTML is written directly to the output.
❹ You can use standard Razor control statements and can access the view model using

Model.

❺ You can write C# expressions using @.

With your view template created, you now need to execute

it. In most cases you won’t create a ViewResult directly in

your action methods. Instead, you’ll use one of the View()

helper methods on the Controller base class. These

helper methods simplify passing in a view model and

selecting a view template, but there’s nothing magic about

them; all they do is create ViewResult objects.

In the simplest case you can call the View method without

any arguments, as shown in the following listing, taken from

the default MVC application. The View() helper method

returns a ViewResult that uses conventions to find the

view template to render and does not supply a view model

when executing the view.

Listing 19.6 Returning ViewResult from an action method using
default conventions

public class HomeController : Controller ❶
{

 public IActionResult Index()

 {

 return View(); ❷
 }

}

❶ Inheriting from the Controller base class makes the View helper methods available.

❷ The View helper method returns a ViewResult.

In this example, the View helper method returns a

ViewResult without specifying the name of the template to

run. Instead, the name of the template to use is based on

the name of the controller and the name of the action

method. Given that the controller is called

HomeController and the method is called Index, by

default the Razor template engine looks for a template at

the Views/Home/Index.cshtml location, as shown in figure

19.6.

Figure 19.6 View files are located at runtime based on naming
conventions. Razor view files reside in a folder based on the
name of the associated MVC controller and are named with the
name of the action method that requested them. Views in the
Shared folder can be used by any controller.

This is another case of using conventions in MVC to reduce

the amount of boilerplate you have to write. As always, the

conventions are optional. You can also explicitly pass the

name of the template to run as a string to the View

method. For example, if the Index method in listing 19.6

instead returned View("ListView"), the templating

engine would look for a template called ListView.cshtml

instead. You can even specify the complete path to the view

file, relative to your application’s root folder, such as

View("Views/global.cshtml"), which would look for

the template at the Views/global .chtml location.

NOTE When specifying the absolute path to a view, you must include
both the top-level Views folder and the .cshtml file extension in the
path. This is similar to the rules for locating partial view templates.

The process of locating an MVC Razor view is similar to the

process of locating a partial view to render, which you

learned about in chapter 17. The framework searches in

multiple locations to find the requested view. The difference

is that for Razor Pages the search process happens only for

partial view rendering, as the main Razor view to render is

already known; it’s the Razor Page’s view template.

Figure 19.7 shows the complete process used by the MVC

framework to locate the correct View template to execute

when a ViewResult is returned from an MVC controller. It’s

possible for more than one template to be eligible, such as if

an Index.chstml file exists in both the Home and Shared

folders. Similar to the rules for locating partial views, the

engine uses the first template it finds.

Figure 19.7 A flow chart describing how the Razor templating
engine locates the correct view template to execute. Avoiding
the complexity of this diagram is one of the reasons I
recommend using Razor Pages wherever possible!

TIP You can modify all these conventions, including the algorithm
shown in figure 19.8, during initial configuration. In fact, you can
replace the whole Razor templating engine if you really want to!

You may find it tempting to explicitly provide the name of

the view file you want to render in your controller; if so, I’d

encourage you to fight that urge. You’ll have a much simpler

time if you embrace the conventions as they are and go with

the flow. That extends to anyone else who looks at your

code; if you stick to the standard conventions, there’ll be a

comforting familiarity when they look at your app. That can

only be a good thing!

As well as providing a view template name, you can also

pass an object to act as the view model for the Razor view.

This object should match the type specified in the view’s

@model directive, and it’s accessed in exactly the same way

as for Razor Pages; using the Model property.

TIP All the other ways of passing data to the view I described in
chapter 17 are available in MVC controllers too. You should generally
favor the view model where possible, but you can also use
ViewData, TempData, or @inject services, for example.

The following listing shows two examples of passing a view

model to a view.

Listing 19.7 Returning ViewResult from an action method using
default conventions

public class ToDoController : Controller

{

 public IActionResult Index()

 {

 var listViewModel = new ToDoListModel(); ❶
 return View(listViewModel); ❷
 }

 public IActionResult View(int id)

 {

 var viewModel = new ViewToDoModel();

 return View("ViewToDo", viewModel); ❸
 }

}

❶ Creates an instance of the view model to pass to the Razor view
❷ The view model is passed as an argument to View.

❸ You can provide the view template name at the same time as the view model.

Once the Razor view template has been located, the view is

rendered using the Razor syntax you learned about in

chapters 17 and 18. You can use all the features you’ve

already seen—layouts, partial views, _ViewImports, and

_ViewStart, for example. From the point of view of the Razor

view, there’s no difference between a Razor Pages view and

an MVC Razor view.

Now you’ve had a brief overview of an MVC application, we

can look in more depth about when to choose MVC

controllers over Razor Pages.

19.5 Choosing between Razor Pages
and MVC controllers

Throughout this book, I have said that you should generally

choose Razor Pages for server-rendered applications instead

of using MVC controllers. In this section I show the

difference between Razor Pages and MVC controllers from a

project structure point of view and defend my reasoning. I

also describe the cases where MVC controllers are a good

choice.

If you’re familiar with legacy .NET Framework ASP.NET or

earlier versions of ASP.NET Core, you may already be

familiar and comfortable with MVC controllers. If you’re

unsure whether to stick to what you know or switch to Razor

Pages, this section should help you choose. Developers

coming from those backgrounds often have misconceptions

about Razor Pages initially (as I did!), incorrectly equating

them with Web Forms and overlooking their underlying basis

of the MVC framework. This section attempts to set the

record straight.

Indeed, architecturally, Razor Pages and MVC are essentially

equivalent, as they both use the MVC design pattern. The

most obvious differences relate to where the files are placed

in your project, as I discuss in the next section.

19.5.1 The benefits of Razor Pages

In section 19.5 I showed that the code for an MVC controller

looks similar to the code for a Razor Page PageModel. If

that’s the case, what benefit is there to using Razor Pages?

In this section I discuss some of the pain points of MVC

controllers and how Razor Pages attempts to address them.

Razor Pages are not Web Forms

A common argument I hear from existing ASP.NET developers against Razor Pages is
“Oh, they’re just Web Forms.” That sentiment misses the mark in many ways, but it’s
common enough that it’s worth addressing directly.

Web Forms was a web-programming model that was released as part of .NET
Framework 1.0 in 2002. It attempted to provide a highly productive experience for
developers moving from desktop development to the web for the first time.

Web Forms are much maligned now, but their weaknesses only became apparent
later. Web Forms attempted to hide the complexities of the web from you, to give you
the impression of developing a desktop app. That often resulted in apps that were
slow, with lots of interdependencies, and that were hard to maintain.

Web Forms provided a page-based programming model, which is why Razor Pages
sometimes gets associated with them. However, as you’ve seen, Razor Pages is
based on the MVC design pattern, and it exposes the intrinsic features of the web
without trying to hide them from you.

Razor Pages optimizes certain flows using conventions, but it’s not trying to build a
stateful application model over the top of a stateless web application, in the way that
Web Forms did.

If you were a fan of Web Forms’ stateful application model, you should consider Blazor
Server, which uses a similar paradigm but embraces the web instead of fighting
against it. You can read more about the similarities at http://mng.bz/7Dy9.

http://mng.bz/7Dy9

In MVC, a single controller can have multiple action

methods. Each action handles a different request and

generates a different response. The grouping of multiple

actions in a controller is somewhat arbitrary, but it’s typically

used to group actions related to a specific entity or resource:

to-do list items in this case. A more complete version of the

ToDoController in listing 19.4 might include action

methods for listing all to-do items, for creating new items,

and for deleting items, for example. Unfortunately, you can

often find that your controllers become large and bloated,

with many dependencies.
1

NOTE You don’t have to make your controllers very large like this. It’s
just a common pattern. You could, for example, create a separate
controller for every action instead.

Another pitfall of MVC controllers is the way they’re typically

organized in your project. Most action methods in a

controller need an associated Razor view, for generating the

HTML, and a view model for passing data to the view. The

MVC approach in .NET traditionally groups classes by type

(controller, view, view model), while the Razor Page

approach groups by function; everything related to a specific

page is co-located.

Figure 19.8 compares the file layout for a simple Razor

Pages project with the MVC equivalent. Using Razor Pages

means much less scrolling up and down between the

controller, views, and view model folders whenever you’re

working on a particular page. Everything you need is found

in two files, the .cshtml Razor view and the (nested)

.cshtml.cs PageModel file.

Figure 19.8 Comparing the folder structure for an MVC project
with the folder structure for a Razor Pages project

There are additional differences between MVC and Razor

Pages, which I have highlighted throughout the book, but

this layout difference is really the biggest win. Razor Pages

embraces the fact that you’re building a page-based

application and optimizes your workflow by keeping

everything related to a single page together.

TIP You can think of each Razor Page as a mini controller focused on
a single page. Page handlers are functionally equivalent to MVC
controller action methods.

This layout also has the benefit of making each page a

separate class. This contrasts with the MVC approach of

making each page an action on a given controller. Each

Razor Page is cohesive for a particular feature, such as

displaying a to-do item. MVC controllers contain action

methods that handle multiple different features for a more

abstract concept, such as all the features related to to-do

items.

NOTE ASP.NET Core is eminently customizable, so you don’t have to
group your MVC applications by type; it’s simply the default state and
the easy path. In fact, if you do choose to use MVC controllers, I
strongly suggest grouping using feature folders instead. This MSDN
article provides a good introduction: http://mng.bz/mVOr.

Another important point is that Razor Pages doesn’t lose any

of the separation of concerns that MVC has. The view part of

Razor Pages is still concerned only with rendering HTML, and

the handler is the coordinator that calls out to the

application model. The only real difference is the lack of the

explicit view model that you have in MVC, but it’s perfectly

possible to emulate this in Razor Pages if that’s a deal-

breaker for you.

http://mng.bz/mVOr

The benefits of using Razor Pages are particularly noticeable

when you have content websites, such as marketing

websites, where you’re mostly displaying static data and

there’s no real logic. In that case, MVC adds complexity

without any real benefits, as there’s not really any logic in

the controllers at all. Another great use case is when you’re

creating forms for users to submit data. Razor Pages is

especially optimized for this scenario, as you saw in previous

chapters.

Clearly, I’m a fan of Razor Pages, but that’s not to say

they’re perfect for every situation. In the next section I

discuss some of the cases when you might choose to use

MVC controllers in your application. Bear in mind it’s not an

either-or choice; it’s possible to use MVC controllers, Razor

Pages, and even minimal APIs in the same application, and

in many cases that may be the best option.

19.5.2 When to choose MVC controllers over
Razor Pages

Razor Pages are great for building page-based server-side

rendered applications. But not all applications fit that mold,

and even some applications that do fall in that category

might be best developed using MVC controllers instead of

Razor Pages. These are a few such scenarios:

When you don’t want to render views—Razor

Pages are best for page-based applications, where

you’re rendering a view for the user. If you’re

building an HTTP API, you should use minimal APIs

or MVC (web API) controllers instead. You’ll learn

about web API controllers in chapter 20.

When you’re converting an existing MVC

application to ASP.NET Core—If you already have a

legacy ASP.NET application that you’re converting

to ASP.NET Core or an app using an early version

of ASP.NET Core that you’re updating, you’re likely

using MVC controllers. It’s probably not worth

converting your existing MVC controllers to Razor

Pages in this case. It makes more sense to keep

your existing code and consider whether to do new

development in the application with Razor Pages.

When you’re doing a lot of partial page updates—

It’s possible to use JavaScript in an MVC

application to avoid doing full page navigations by

updating only part of the page at a time. This

approach, halfway between fully server-side

rendered and a client-side application, may be

easier to achieve with MVC controllers than Razor

Pages. On the other hand, you can easily mix

Razor Pages and MVC controllers, using Razor

Pages where appropriate and MVC controllers for

the partial view results.

When not to use Razor Pages or MVC
controllers

Typically, you’ll use either Razor Pages or MVC controllers to write most of the UI logic
for an app. You’ll use it to define the APIs and pages in your application and to define
how they interface with your business logic. Razor Pages and MVC provide an
extensive framework and include a great deal of functionality to help build your apps
quickly and efficiently. But they’re not suited to every app.

Providing so much functionality necessarily comes with a certain degree of
performance overhead. For typical line-of-business apps, the productivity gains from
using MVC or Razor Pages often outweighs any performance effect. But if you’re
building a JSON API you will likely want to consider minimal APIs for the performance
improvements. For server-to-server APIs or nonbrowser clients, an alternative protocol
like gRPC (https://docs.microsoft.com/aspnet/core/grpc) may be a good fit. You might
also consider protocols like GraphQL, as discussed in Building Web APIs in ASP.NET
Core, by Valerio De Sanctis (Manning, 2023).

Alternatively, if you’re building an app with real-time functionality, you’ll probably want
to consider using WebSockets instead of traditional HTTP requests. ASP.NET Core
SignalR can be used to add real-time functionality to your app by providing an
abstraction over WebSockets. SignalR also provides simple transport fallbacks and a
remote procedure call (RPC) app model. For details, see the documentation at
https://docs.microsoft.com/aspnet/core/signalr.

Another option available in ASP.NET Core 7 is Blazor. This framework allows you to
build interactive client-side web applications by using the WebAssembly standard to
run .NET code directly in your browser or by using a stateful model with SignalR. See
Blazor in Action, by Chris Sainty (Manning, 2022), for more details.

I hope that by this point you’re sold on Razor Pages and

their overall design using the MVC pattern. Nevertheless,

using MVC controllers makes sense in some situations, so it’s

worth bearing that in mind. Another important point to

https://docs.microsoft.com/aspnet/core/grpc
https://docs.microsoft.com/aspnet/core/signalr

remember is that you can include both MVC controllers and

Razor Pages in the same application if you need them.

You’ve learned about MVC controllers as an alternative to

Razor Pages, and in part 1 of this book you learned about

using minimal APIs to build JSON APIs. Web API controllers

sit somewhere in between; they use MVC controllers but

generate JSON and other machine-friendly format data, not

HTML. In chapter 20 you’ll learn why you might choose to

use web API controllers over minimal APIs and how to build

a web API application.

Summary
An action (or action method) is a method that runs

in response to a request. An MVC controller is a

class that contains one or more logically grouped

action methods.

To use MVC controllers in an ASP.NET Core

application, call AddControllersWithViews()

on your WebApplicationBuilder. This adds all

the required services for MVC controllers and

Razor view rendering to the dependency injection

container.

MVC controllers typically use conventional routing

to select an MVC controller and action method.

Instead of associating a route template with each

action method in your application, conventional

routing specifies one or more route template

patterns that map to multiple endpoints.

Conventional routes must define a controller

and action route parameter to determine the

action to execute.

You can return IActionResult instances from

MVC controllers and they are executed in the same

way as for Razor Pages. The most commonly

returned type is ViewResult, using the View()

helper method, which instructs the framework to

render a Razor view.

ViewResult may contain the name of the view to

render and optionally a view model object to use

when rendering the view. If the view name is not

provided, a view is chosen using conventions.

By convention, MVC Razor views are named the

same as the action method that invokes them.

They reside either in a folder with the same name

as the action method’s controller or in the Shared

folder.

MVC controllers contain multiple action methods,

typically grouped around a high-level entity or

resource. In contrast, Razor Pages groups all the

page handlers for a single page in one place,

grouping around a page/feature instead of an

entity. This gives improved developer ergonomics

when working on an endpoint.

MVC controllers may make sense over Razor Pages

if you are upgrading an application that already

uses MVC controllers or if your application is using

a lot of partial page updates.

1. Before moving to Razor Pages, the ASP.NET Core template that includes user login
functionality contained two such controllers, each containing more than 20 action methods
and more than 500 lines of code!

20 Creating an HTTP API using web
API controllers

This chapter covers

Creating a web API controller to return JavaScript Object
Notation (JSON) to clients
Using attribute routing to customize your URLs
Generating a response using content negotiation
Applying common conventions with the [ApiController] attribute

In chapters 13 through 19 you worked through each layer of

a server-side rendered ASP.NET Core application, using

Razor Pages and Model-View-Controller (MVC) controllers to

render HTML to the browser. In part 1 of this book you saw a

different type of ASP.NET Core application, using minimal

APIs to serve JSON for client-side SPAs or mobile apps. In

this chapter you’ll learn about web API controllers, which fit

somewhere in between!

You can apply much of what you’ve already learned to web

API controllers; they use the same routing system as

minimal APIs and the same MVC design pattern, model

binding, and validation as Razor Pages and MVC controllers.

In this chapter you’ll learn how to define web API controllers

and actions, and see how similar they are to the Razor Pages

and controllers you already know. You’ll learn how to create

an API model to return data and HTTP status codes in

response to a request, in a way that client apps can

understand.

After exploring how the MVC design pattern applies to web

API controllers, you’ll see how a related topic works with

web APIs: routing. We’ll look at how explicit attribute routing

works with action methods, touching on many of the same

concepts we covered in chapters 6 and 14.

One of the big features added in ASP.NET Core 2.1 was the

[ApiController] attribute. This attribute applies several

common conventions used in web APIs, reducing the amount

of code you must write yourself. In section 20.5 you’ll learn

how automatic 400 Bad Requests for invalid requests,

model-binding parameter inference, and ProblemDetails

support make building APIs easier and more consistent.

You’ll also learn how to format the API models returned by

your action methods using content negotiation, to ensure

that you generate a response that the calling client can

understand. As part of this, you’ll learn how to add support

for additional format types, such as Extensible Markup

Language (XML), so that you can generate XML responses if

the client requests it.

Finally, I discuss some of the differences between API

controllers and minimal API applications, and when you

should choose one over the other. Before we get to that, we

look at how to get started. In section 20.1 you’ll see how to

create a web API project and add your first API controller.

20.1 Creating your first web API
project

In this section you’ll learn how to create an ASP.NET Core

web API project and create your first web API controllers.

You’ll see how to use controller action methods to handle

HTTP requests and how to use ActionResults to generate

a response.

NOTE As I mentioned previously, a web API project is a standard
ASP.NET Core project, which uses the MVC framework and web API
controllers.

Some people think of the MVC design pattern as applying

only to applications that render their UI directly, like the

Razor views you’ve seen in previous chapters or MVC

controllers with Razor views. However, in ASP.NET Core, I

feel the MVC pattern applies equally well when building a

web API. For web APIs, the view part of the MVC pattern

involves generating a machine-friendly response rather than

a user-friendly response.

As a parallel to this, you create web API controllers in

ASP.NET Core in the same way you create traditional MVC

controllers. The only thing that differentiates them from a

code perspective is the type of data they return. MVC

controllers typically return a ViewResult; web API

controllers generally return raw .NET objects from their

action methods, or an IActionResult instance such as

StatusCodeResult, as you saw in chapter 15.

You can create a new web API project in Visual Studio using

the same process you’ve seen previously in Visual Studio.

Choose File > New, and in the Create a new project

dialog box, select the ASP.NET Core Web API template.

Enter your project name in the Configure your new

project dialog box, and review the Additional

Information box, shown in figure 20.1, before choosing

Create. If you’re using the command-line interface (CLI),

you can create a similar template using dotnet new

webapi.

Figure 20.1 The Additional information screen. This screen
follows on from the Configure your new project dialog box and

lets you customize the template that generates your application.

The web API template configures the ASP.NET Core project

for web API controllers only in Program.cs, as shown in

listing 20.1. If you compare this template with the MVC

controller project in chapter 19, you’ll see that the web API

project uses AddControllers() instead of

AddControllersWithViews(). This adds only the

services needed for controllers but omits the services for

rendering Razor views. Also, the API controllers are added

using MapControllers() instead of

MapControllerRoute(), as web API controller typically

use explicit routing instead of conventional routing. The

default web API template also adds the OpenAPI services

and endpoints required by the Swagger UI, as you saw in

chapter 11.

Listing 20.1 Program.cs for the default web API project

sWebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers(); ❶

builder.Services.AddEndpointsApiExplorer(); ❷
builder.Services.AddSwaggerGen(); ❷

WebApplication app = builder.Build();

if (app.Environment.IsDevelopment())

{

 app.UseSwagger(); ❸
 app.UseSwaggerUI(); ❸
}

app.UseHttpsRedirection();

app.UseAuthorization();

app.MapControllers(); ❹

app.Run();

❶ AddControllers adds the necessary services for web API controllers to your application.

❷ Adds services required to generate the Swagger/OpenAPI specification document
❸ Adds Swagger UI middleware for exploring your web API endpoints

❹ MapControllers configures the web API controller actions in your app as endpoints.

The program in listing 20.1 instructs your application to find

all the web API controllers in your application and configure

them in the EndpointMiddleware. Each action method

becomes an endpoint and can receive requests when the

RoutingMiddleware maps an incoming URL to the action

method.

NOTE Technically, you can include Razor Pages, minimal APIs, and
web API controllers in the same app, but I prefer to keep them
separate where possible. There are certain aspects (such as error
handling and authentication) that are made easier by keeping them
separate. Of course, running two separate applications has its own
difficulties!

You can add a web API controller to your project by creating

a new .cs file anywhere in your project. Traditionally, this file

is placed in a folder called Controllers, but that’s not a

technical requirement.

TIP Vertical slice architecture and feature folders are (fortunately)
becoming more popular in .NET circles. With these approaches, you
organize your project based on features instead of technical concepts
like controllers and models.

Listing 20.2 shows an example of a simple controller, with a

single endpoint, that returns an IEnumerable<string>

when executed. This example highlights the similarity with

traditional MVC controllers (using action methods and a base

class) and minimal APIs (returning the response object

directly to be serialized later).

Listing 20.2 A simple web API controller

[ApiController] ❶
public class FruitController : ControllerBase ❷
{

 List<string> _fruit = new List<string> ❸
 { ❸
 "Pear", ❸
 "Lemon", ❸
 "Peach" ❸
 }; ❸
 [HttpGet("fruit")] ❹
 public IEnumerable<string> Index() ❺
 { ❻
 return _fruit; ❻
 } ❻
}

❶ The [ApiController] attribute opts in to common conventions.
❷ The ControllerBase class provides helper functions.

❸ This would typically come from a dependency injection (DI) injected service instead.
❹ The [HttpGet] attribute defines the route template used to call the action.

❺ The name of the action method, Index, isn’t used for routing. It can be anything you like.
❻ The controller exposes a single action method that returns the list of fruit.

When invoked, this endpoint returns the list of strings

serialized to JSON, as shown in figure 20.2.

Figure 20.2 Testing the web API in listing 20.2 by accessing the
URL in the browser. A GET request is made to the /fruit URL,
which returns a List<string> that is serialized to JSON.

Web API controllers typically use the [ApiController]

attribute (introduced in .NET Core 2.1) and derive from the

ControllerBase class. The base class provides several

helper methods for generating results, and the

[ApiController] attribute automatically applies some

common conventions, as you’ll see in section 20.5.

TIP The Controller base class is typically used when you use
MVC controllers with Razor views. You don’t need to return Razor
views with web API controllers, so ControllerBase is the better
option.

In listing 20.2 you can see that the action method, Index,

returns a list of strings directly from the action method.

When you return data from an action like this, you’re

providing the API model for the request. The client will

receive this data. It’s formatted into an appropriate

response, a JSON representation of the list in the case of

figure 20.2, and sent back to the browser with a 200 OK

status code.

TIP Web API controllers format data as JSON by default. You’ll see
how to format the returned data in other ways in section 20.6. Minimal
API endpoints that return data directly (rather than via an IResult)
will format data only as JSON; there are no other options.

The URL at which a web API controller action is exposed is

handled in the same way as for traditional MVC controllers

and Razor Pages: using routing. The

[HttpGet("fruit")] attribute applied to the Index

method indicates that the method should use the route

template "fruit" and should respond to HTTP GET

requests. You’ll learn more about attribute routing in section

20.4, but it’s similar to the minimal API routing that you’re

already familiar with.

In listing 20.2 data is returned directly from the action

method, but you don’t have to do that. You’re free to return

an IActionResult instead, and often this is required.

Depending on the desired behavior of your API, you

sometimes want to return data, and other times you may

want to return a raw HTTP status code, indicating whether

the request was successful. For example, if an API call is

made requesting details of a product that does not exist, you

might want to return a 404 Not Found status code.

NOTE This is similar to the patterns you used in minimal APIs. But
remember, minimal APIs use IResult, web API controllers, MVC
controllers, and Razor Pages use IActionResult.

Listing 20.3 shows an example of where you must return an

IActionResult. It shows another action on the same

FruitController as before. This method exposes a way

for clients to fetch a specific fruit by an id, which we’ll

assume for this example is an index into the list of _fruit

you defined in the previous listing. Model binding is used to

set the value of the id parameter from the request.

NOTE API controllers use the same model binding infrastructure as
Razor Pages to bind action method parameters to the incoming
request. Model binding and validation work the same way you saw in
chapter 16: you can bind the request to simple primitives, as well as
to complex C# objects. The only difference is that there isn’t a
PageModel with [BindProperty] properties; you can bind
only to action method parameters.

Listing 20.3 A web API action returning IActionResult to handle
error conditions

[HttpGet("fruit/{id}")] ❶
public ActionResult<string> View(int id) ❷
{

 if (id >= 0 && id < _fruit.Count) ❸
 {

 return _fruit[id]; ❹
 }

 return NotFound(); ❺
}

❶ Defines the route template for the action method
❷ The action method returns an ActionResult<string>, so it can return a string or an

IActionResult.

❸ An element can be returned only if the id value is a valid _fruit element index.
❹ Returning the data directly returns the data with a 200 status code.

❺ NotFound returns a NotFoundResult, which sends a 404 status code.

In the successful path for the action method, the id

parameter has a value greater than 0 and less than the

number of elements in _fruit. When that’s true, the value

of the element is returned to the caller. As in listing 20.2,

this is achieved by simply returning the data directly, which

generates a 200 status code and returns the element in the

response body, as shown in figure 20.3. You could also have

returned the data using an OkResult, by returning

Ok(_fruit[id]), using the Ok helper method on the

ControllerBase class; under the hood, the result is

identical.

Figure 20.3 Data returned from an action method is serialized
into the response body, and it generates a response with status
code 200 OK.

NOTE Some people get uneasy when they see the phrase helper
method, but there’s nothing magic about the ControllerBase
helpers; they’re shorthand for creating a new IActionResult of a
given type. You don’t have to take my word for it, though. You can
always view the source code for the base class on GitHub at
http://mng.bz/5wQB.

If the id is outside the bounds of the _fruit list, the

method calls NotFound() to create a NotFoundResult.

When executed, this method generates a 404 Not Found

status code response. The [ApiController] attribute

http://mng.bz/5wQB

automatically converts the response into a standard

ProblemDetails instance, as shown in figure 20.4.

Figure 20.4 The [ApiController] attribute converts error
responses (in this case a 404 response) into the standard
ProblemDetails format.

One aspect you might find confusing from listing 20.3 is that

for the successful case, we return a string, but the method

signature of View says we return an

ActionResult<string>. How is that possible? Why isn’t

there a compiler error?

The generic ActionResult<T> uses some fancy C#

gymnastics with implicit conversions to make this possible.

Using ActionResult<T> has two benefits:

You can return either an instance of T or an

ActionResult implementation like

NotFoundResult from the same method. This

can be convenient, as in listing 20.3.

It enables better integration with ASP.NET Core’s

OpenAPI support.

You’re free to return any type of ActionResult from your

web API controllers, but you’ll commonly return

StatusCodeResult instances, which set the response to a

specific status code, with or without associated data.

NotFoundResult and OkResult both derive from

StatusCodeResult, for example. Another commonly used

status code is 400 Bad Request, which is normally

returned when the data provided in the request fails

validation. You can generate this using a

BadRequestResult, but in many cases the

[ApiController] attribute can automatically generate

400 responses for you, as you’ll see in section 20.5.

TIP You learned about various ActionResults in chapter 15.
BadRequestResult, OkResult, and NotFoundResult all
inherit from StatusCodeResult and set the appropriate status
code for their type (400, 200, and 404, respectively). Using these
wrapper classes makes the intention of your code clearer than relying
on other developers to understand the significance of the various
status code numbers.

Once you’ve returned an ActionResult (or other object)

from your controller, it’s serialized to an appropriate

response. This works in several ways, depending on

The formatters that your app supports

The data you return from your method

The data formats the requesting client can handle

You’ll learn more about formatters and serializing data in

section 20.6, but before we go any further, it’s worth

zooming out a little and exploring the parallels between

traditional server-side rendered applications and web API

endpoints. The two are similar, so it’s important to establish

the patterns that they share and where they differ.

20.2 Applying the MVC design pattern
to a web API

In ASP.NET Core, the same underlying framework is used in

conjunction with web API controllers, Razor Pages, and MVC

controllers with views. You’ve already seen this yourself; the

web API FruitController you created in section 20.2

looks similar to the MVC controllers you saw in chapter 19.

Consequently, even if you’re building an application that

consists entirely of web APIs, using no server-side rendering

of HTML, the MVC design pattern still applies. Whether

you’re building traditional web applications or web APIs, you

can structure your application virtually identically.

By now I hope you’re nicely familiar with how ASP.NET Core

handles a request. But in case you’re not, figure 20.5 shows

how the framework handles a typical Razor Pages request

after it passes through the middleware pipeline. This

example shows how a request to view the available fruit on

a traditional grocery store website might look.

Figure 20.5 Handling a request to a traditional Razor Pages
application, in which the view generates an HTML response
that’s sent back to the user. This diagram should be familiar by
now!

The RoutingMiddleware routes the request to view all the

fruit listed in the apples category to the Fruit.cshtml Razor

Page. The EndpointMiddleware then constructs a binding

model, validates it, sets it as a property on the Razor Page’s

PageModel, and sets the ModelState property on the

PageModel base class with details of any validation errors.

The page handler interacts with the application model by

calling into services, talking to a database, and fetching any

necessary data.

Finally, the Razor Page executes its Razor view using the

PageModel to generate the HTML response. The response

returns through the middleware pipeline and out to the

user’s browser.

How would this change if the request came from a client-

side or mobile application? If you want to serve machine-

readable JSON instead of HTML, what is different for web API

controllers? As shown in figure 20.6, the answer is “very

little.” The main changes are related to switching from Razor

Pages to controllers and actions, but as you saw in chapter

19, both approaches use the same general paradigms.

Figure 20.6 A call to a web API endpoint in an e-commerce
ASP.NET Core web application. The ghosted portion of the
diagram is identical to figure 20.5.

As before, the routing middleware selects an endpoint to

invoke based on the incoming URL. For API controllers this is

a controller and action instead of a Razor Page.

After routing comes model-binding, in which the binder

creates a binding model and populates it with values from

the request. Web API controllers often accept data in more

formats than Razor Pages, such as XML, but otherwise the

model-binding process is the same as for the Razor Pages

request. Validation also occurs in the same way, and the

ModelState property on the ControllerBase base class

is populated with any validation errors.

NOTE Web APIs use input formatters to accept data sent to them in a
variety of formats. Commonly these formats are JSON or XML, but
you can create input formatters for any sort of type, such as CSV. I
show how to enable the XML input formatter in section 20.6. You can
see how to create a custom input formatter at http://mng.bz/e5gG.

The action method is the equivalent of the Razor Page

handler; it interacts with the application model in the same

way. This is an important point; by separating the behavior

of your app into an application model instead of

incorporating it into your pages and controllers themselves,

you’re able to reuse the business logic of your application

with multiple UI paradigms.

http://mng.bz/e5gG

TIP Where possible, keep your page handlers and controllers as
simple as practicable. Move all your business logic decisions into the
services that make up your application model, and keep your Razor
Pages and API controllers focused on the mechanics of interacting
with a user or client.

After the application model has returned the data necessary

to service the request—the fruit objects in the apples

category—you see the first significant difference between

API controllers and Razor Pages. Instead of adding values to

the PageModel to be used in a Razor view, the action

method creates an API model. This is analogous to the

PageModel, but rather than containing data used to

generate an HTML view, it contains the data that will be sent

back in the response.

DEFINITION View models and PageModels contain both the data
required to build a response and metadata about how to build the
response. API models typically contain only the data to be returned in
the response.

When we looked at the Razor Pages app, we used the

PageModel in conjunction with a Razor view template to

build the final response. With the web API app, we use the

API model in conjunction with an output formatter. An output

formatter, as the name suggests, serializes the API model

into a machine-readable response, such as JSON or XML.

The output formatter forms the V in the web API version of

MVC by choosing an appropriate representation of the data

to return.

Finally, as for the Razor Pages app, the generated response

is sent back through the middleware pipeline, passing

through each of the configured middleware components, and

back to the original caller.

I hope the parallels between Razor Pages and web APIs are

clear. The majority of the behavior is identical; only the

response varies. Everything from when the request arrives

to the interaction with the application model is similar

between the paradigms.

Most of the differences between Razor Pages and web APIs

have less to do with the way the framework works under the

hood and are instead related to how the different paradigms

are used. For example, in the next section you’ll learn how

the routing constructs you learned about in chapters 6 and

15 are used with web APIs, using attribute routing.

20.3 Attribute routing: Linking action
methods to URLs

In this section you’ll learn about attribute routing: the

mechanism for associating web API controller actions with a

given route template. You’ll see how to associate controller

actions with specific HTTP verbs like GET and POST and how

to avoid duplication in your templates.

We covered route templates in depth in chapter 6 in the

context of minimal APIs, and again in chapter 14 with Razor

Pages, and you’ll be pleased to know that you use exactly

the same route templates with API controllers. The only

difference is how you specify the templates. With Razor

Pages you use the @page directive, and with minimal APIs

you use MapGet() or MapPost(), whereas with API

controllers you use routing attributes.

NOTE All three paradigms use explicit routing under the hood. The
alternative, conventional routing, is typically used with traditional MVC
controllers and views, as described in chapter 19. As I’ve mentioned,
I don’t recommend using that approach generally, so I don’t cover
conventional routing in this book.

With attribute routing, you decorate each action method in

an API controller with an attribute and provide the

associated route template for the action method, as shown

in the following listing.

Listing 20.4 Attribute routing example

public class HomeController: Controller

{

 [Route("")] ❶
 public IActionResult Index()

 {

 /* method implementation*/

 }

 [Route("contact")] ❷
 public IActionResult Contact()

 {

 /* method implementation*/

 }

}

❶ The Index action will be executed when the / URL is requested.
❷ The Contact action will be executed when the /contact URL is requested.

Each [Route] attribute defines a route template that

should be associated with the action method. In the example

provided, the / URL maps directly to the Index method and

the /contact URL maps to the Contact method.

Attribute routing maps URLs to a specific action method, but

a single action method can still have multiple route

templates and hence can correspond to multiple URLs. Each

template must be declared with its own RouteAttribute,

as shown in this listing, which shows the skeleton of a web

API for a car-racing game.

Listing 20.5 Attribute routing with multiple attributes

public class CarController

{

 [Route("car/start")] ❶
 [Route("car/ignition")] ❶
 [Route("start-car")] ❶
 public IActionResult Start() ❷
 {

 /* method implementation*/

 }

 [Route("car/speed/{speed}")] ❸
 ❸
 public IActionResult SetCarSpeed(int speed)

 {

 /* method implementation*/

 }

}

❶ The Start method will be executed when any of these route templates is matched.

❷ The name of the action method has no effect on the route template.
❸ The RouteAttribute template can contain route parameters, in this case {speed}.

The listing shows two different action methods, both of

which can be accessed from multiple URLs. For example, the

Start method will be executed when any of the following

URLs is requested:

/car/start

/car/ignition

/start-car

These URLs are completely independent of the controller and

action method names; only the value in the

RouteAttribute matters.

NOTE By default, the controller and action name have no bearing on
the URLs or route templates when RouteAttributes are used.

The templates used in route attributes are standard route

templates, the same as you used in chapter 6. You can use

literal segments, and you’re free to define route parameters

that will extract values from the URL, as shown by the

SetCarSpeed method in listing 20.5. That method defines

two route templates, both of which define a route parameter,

{speed}.

TIP I’ve used multiple [Route] attributes on each action in this
example, but it’s best practice to expose your action at a single URL.
This will make your API easier to understand and for other
applications to consume.

As in all parts of ASP.NET Core, route parameters represent

a segment of the URL that can vary. As with minimal APIs,

and Razor Pages, the route parameters in your

RouteAttribute templates can

Be optional

Have default values

Use route constraints

For example, you could update the SetCarSpeed method in

the previous listing to constrain {speed} to an integer and

to default to 20 like so:

[Route("car/speed/{speed=20:int}")]

[Route("set-speed/{speed=20:int}")]

public IActionResult SetCarSpeed(int speed)

NOTE As discussed in chapter 6, don’t use route constraints for
validation. For example, if you call the preceding "set-
speed/{speed=20:int}" route with an invalid value for speed,
/set-speed/oops, you will get a 404 Not Found response, as
the route does not match. Without the int constraint, you would
receive the more sensible 400 Bad Request response.

If you managed to get your head around routing in chapter

6, routing with web API controllers shouldn’t hold any

surprises for you. One thing you might begin noticing when

you start using attribute routing with web API controllers is

the amount you repeat yourself. Minimal APIs use route

groups to reduce duplication, and Razor Pages removes a lot

of the repetition by using conventions to calculate route

templates based on the Razor Page’s filename. So what can

we use with web API controllers?

20.3.1 Combining route attributes to keep
your route templates DRY

Adding route attributes to all of your web API controllers can

get a bit tedious, especially if you’re mostly following

conventions where your routes have a standard prefix, such

as "api" or the controller name. Generally, you’ll want to

ensure that you don’t repeat yourself (DRY) when it comes

to these strings. The following listing shows two action

methods with several [Route] attributes. (This is for

demonstration purposes only. Stick to one per action if you

can!)

Listing 20.6 Duplication in RouteAttribute templates

public class CarController

{

 [Route("api/car/start")] ❶
 [Route("api/car/ignition")] ❶
 [Route("start-car")]

 public IActionResult Start()

 {

 /* method implementation*/

 }

 [Route("api/car/speed/{speed}")] ❶
 [Route("set-speed/{speed}")]

 public IActionResult SetCarSpeed(int speed)

 {

 /* method implementation*/

 }

}

❶ Multiple route templates use the same “api/car” prefix.

There’s quite a lot of duplication here; you’re adding

"api/car" to most of your routes. Presumably, if you

decided to change this to "api/vehicles", you’d have to

go through each attribute and update it. Code like that is

asking for a typo to creep in!

To alleviate this pain, it’s possible to apply

RouteAttributes to controllers, in addition to action

methods. When a controller and an action method both have

a route attribute, the overall route template for the method

is calculated by combining the two templates.

Listing 20.7 Combining RouteAttribute templates

[Route("api/car")]

public class CarController

{

 [Route("start")] ❶
 [Route("ignition")] ❷
 [Route("/start-car")] ❸
 public IActionResult Start()

 {

 /* method implementation*/

 }

 [Route("speed/{speed}")] ❹
 [Route("/set-speed/{speed}")] ❺
 public IActionResult SetCarSpeed(int speed)

 {

 /* method implementation*/

 }

}

❶ Combines to give “api/car/start”
❷ Combines to give “api/car/ignition”

❸ Does not combine because it starts with /; gives the “start-car” template
❹ Combines to give “api/car/speed/{speed}”

❺ Does not combine because it starts with /; gives the “set-speed/{speed}” template

Combining attributes in this way can reduce some of the

duplication in your route templates and makes it easier to

add or change the prefixes (such as switching "car" to

"vehicle") for multiple action methods. To ignore the

RouteAttribute on the controller and create an absolute

route template, start your action method route template

with a slash (/). Using a controller RouteAttribute

reduces a lot of the duplication, but you can go one better

by using token replacement.

20.3.2 Using token replacement to reduce
duplication in attribute routing

The ability to combine attribute routes is handy, but you’re

still left with some duplication if you’re prefixing your routes

with the name of the controller, or if your route templates

always use the action name. If you wish, you can simplify

even further!

Attribute routes support the automatic replacement of

[action] and [controller] tokens in your attribute

routes. These will be replaced with the name of the action

and the controller (without the “Controller” suffix),

respectively. The tokens are replaced after all attributes

have been combined, which can be useful when you have

controller inheritance hierarchies. This listing shows how you

can create a BaseController class that applies a

consistent route template prefix to all the web API

controllers in your application.

Listing 20.8 Token replacement in RouteAttributes

[Route("api/[controller]")] ❶
public abstract class BaseController { } ❷

public class CarController : BaseController

{

 [Route("[action]")] ❸
 [Route("ignition")] ❹
 [Route("/start-car")] ❺
 public IActionResult Start()

 {

 /* method implementation*/

 }

}

❶ You can apply attributes to a base class, and derived classes will inherit them.
❷ Token replacement happens last, so [controller] is replaced with “car” not “base”.

❸ Combines and replaces tokens to give the “api/car/start” template
❹ Combines and replaces tokens to give the “api/car/ignition” template

❺ Does not combine with base attributes because it starts with /, so it remains as “start-car”

WARNING If you use token replacement for [controller] or
[action], remember that renaming classes and methods will
change your public API. If that worries you, you can stick to using
static strings like "car" instead.

When combined with everything you learned in chapter 6,

we’ve covered pretty much everything there is to know

about attribute routing. There’s just one more thing to

consider: handling different HTTP request types like GET and

POST.

20.3.3 Handling HTTP verbs with attribute
routing

In Razor Pages, the HTTP verb, such as GET or POST, isn’t

part of the routing process. The RoutingMiddleware

determines which Razor Page to execute based solely on the

route template associated with the Razor Page. It’s only

when a Razor Page is about to be executed that the HTTP

verb is used to decide which page handler to execute:

OnGet for the GET verb, or OnPost for the POST verb, for

example.

Web API controllers work like minimal API endpoints: the

HTTP verb takes part in the routing process itself. So a GET

request may be routed to one action, and a POST request

may be routed to a different action, even if the request used

the same URL.

The [Route] attribute we’ve used so far responds to all

HTTP verbs. Instead, an action should typically only handle a

single verb. Instead of the [Route] attribute, you can use

[HttpPost] to handle POST requests

[HttpGet] to handle GET requests

[HttpPut] to handle PUT requests

There are similar attributes for all the standard HTTP verbs,

like DELETE and OPTIONS. You can use these attributes

instead of the [Route] attribute to specify that an action

method should correspond to a single verb, as shown in the

following listing.

Listing 20.9 Using HTTP verb attributes with attribute routing

public class AppointmentController

{

 [HttpGet("/appointments")] ❶
 public IActionResult ListAppointments() ❶
 { ❶
 /* method implementation */ ❶
 } ❶

 [HttpPost("/appointments")] ❷
 public IActionResult CreateAppointment() ❷
 { ❷
 /* method implementation */ ❷
 } ❷
}

❶ Executed only in response to GET /appointments

❷ Executed only in response to POST /appointments

If your application receives a request that matches the route

template of an action method but doesn’t match the

required HTTP verb, you’ll get a 405 Method not allowed

error response. For example, if you send a DELETE request

to the /appointments URL in the previous listing, you’ll

get a 405 error response.

When you’re building web API controllers, there is some

code that you’ll find yourself writing repeatedly. The

[ApiController] attribute is designed to handle some of

this for you and reduce the amount of boilerplate you need.

20.4 Using common conventions with
[ApiController]

In this section you’ll learn about the [ApiController]

attribute and how it can reduce the amount of code you

need to write to create consistent web API controllers. You’ll

learn about the conventions it applies, why they’re useful,

and how to turn them off if you need to.

The [ApiController] attribute was introduced in .NET

Core 2.1 to simplify the process of creating web API

controllers. To understand what it does, it’s useful to look at

an example of how you might write a web API controller

without the [ApiController] attribute and compare that

with the code required to achieve the same thing with the

attribute.

Listing 20.10 Creating a web API controller without the
[ApiController] attribute

public class FruitController : ControllerBase

{

 List<string> _fruit = new List<string> ❶
 { ❶
 "Pear", "Lemon", "Peach" ❶
 }; ❶

 [HttpPost("fruit")] ❷
 public ActionResult Update([FromBody] UpdateModel model) ❸
 {

 if (!ModelState.IsValid) ❹
 { ❹
 return BadRequest(❹
 new ValidationProblemDetails(ModelState)); ❹

 } ❹

 if (model.Id < 0 || model.Id > _fruit.Count)

 {

 return NotFound(new ProblemDetails() ❺
 { ❺
 Status = 404, ❺
 Title = "Not Found", ❺
 Type = "https://tools.ietf.org/html/rfc7231" ❺
 + "#section-6.5.4", ❺
 }); ❺
 } ❺
 _fruit[model.Id] = model.Name; ❻
 return Ok(); ❻
 }

 public class UpdateModel

 {

 public int Id { get; set; }

 [Required] ❼
 public string Name { get; set; } ❼
 }

}

❶ The list of strings serves as the application model in this example.

❷ Web APIs use attribute routing to define the route templates.
❸ The [FromBody] attribute indicates that the parameter should be bound to the request

body.

❹ You need to check if model validation succeeded and return a 400 response if it failed.
❺ If the data sent does not contain a valid ID, returns a 404 ProblemDetails response

❻ Updates the model and returns a 200 Response
❼ UpdateModel is valid only if the Name value is provided, as set by the [Required] attribute.

This example demonstrates many common features and

patterns used with web API controllers:

Web API controllers read data from the body of a

request, typically sent as JSON. To ensure the

body is read as JSON and not as form values, you

have to apply the [FromBody] attribute to the

method parameters to ensure it is model-bound

correctly.

As discussed in chapter 16, after model binding,

the model is validated, but it’s up to you to act on

the validation results. You should return a 400

Bad Request response if the values provided

failed validation. You typically want to provide

details of why the request was invalid: this is done

in listing 20.10 by returning a

ValidationProblemDetails object in the

response body, built from the ModelState.

Whenever you return an error status, such as a

404 Not Found, where possible you should

return details of the problem that will allow the

caller to diagnose the issue. The

ProblemDetails class is the recommended way

of doing that in ASP.NET Core.

The code in listing 20.10 is representative of what you might

see in an ASP.NET Core API controller before .NET Core 2.1.

The introduction of the [ApiController] attribute in .NET

Core 2.1 (and subsequent refinement in later versions)

makes this same code much simpler, as shown in the

following listing.

Listing 20.11 Creating a web API controller with the
[ApiController] attribute

[ApiController] ❶
public class FruitController : ControllerBase

{

 List<string> _fruit = new List<string>

 {

 "Pear", "Lemon", "Peach"

 };

 [HttpPost("fruit")]

 public ActionResult Update(UpdateModel model) ❷
 { ❸
 if (model.Id < 0 || model.Id > _fruit.Count)

 {

 return NotFound(); ❹
 }

 _fruit[model.Id] = model.Name;

 return Ok();

 }

 public class UpdateModel

 {

 public int Id { get; set; }

 [Required]

 public string Name { get; set; }

 }

}

❶ Adding the [ApiController] attribute applies several conventions common to API
controllers.

❷ The [FromBody] attribute is assumed for complex action method parameters.

❸ The model validation is automatically checked, and if invalid, returns a 400 response.
❹ Error status codes are automatically converted to a ProblemDetails object.

If you compare listing 20.10 with listing 20.11, you’ll see

that all the bold code in listing 20.10 can be removed and

replaced with the [ApiController] attribute in listing

20.11. The [ApiController] attribute automatically

applies several conventions to your controllers:

Attribute routing—You must use attribute routing

with your controllers; you can’t use conventional

routing—not that you would, as we’ve discussed

this approach only for API controllers anyway.

Automatic 400 responses—I said in chapter 16

that you should always check the value of

ModelState.IsValid in your Razor Page

handlers and MVC actions, but the

[ApiController] attribute does this for you by

adding a filter, as we did with minimal APIs in

chapter 7. We’ll cover MVC filters in detail in

chapters 21 and 22.

Model binding source inference—Without the

[ApiController] attribute, complex types are

assumed to be passed as form values in the

request body. For web APIs, it’s much more

common to pass data as JSON, which ordinarily

requires adding the [FromBody] attribute. The

[ApiController] attribute takes care of that for

you.

ProblemDetails for error codes—You often want

to return a consistent set of data when an error

occurs in your API. The [ApiController]

attribute intercepts any error status codes

returned by your controller (for example, a 404

Not Found response), and converts them to

ProblemDetails responses.

When it was introduced, a key feature of the

[ApiController] attribute was the Problem Details

support, but as I described in chapter 5, the same automatic

conversion to Problem Details is now supported by the

default ExceptionHandlerMiddleware and

StatusCodePagesMiddleware. Nevertheless, the

[ApiController] conventions can significantly reduce the

amount of boilerplate code you have to write and ensure

that validation failures are handled automatically, for

example.

As is common in ASP.NET Core, you will be most productive

if you follow the conventions rather than trying to fight

them. However, if you don’t like some of the conventions

introduced by [ApiController], or want to customize

them, you can easily do so.

You can customize the web API controller conventions your

application uses by calling

ConfigureApiBehaviorOptions() on the

IMvcBuilder object returned from the

AddControllers() method in your Program.cs file. For

example, you could disable the automatic 400 responses on

validation failure, as shown in the following listing.

Listing 20.12 Customizing [ApiAttribute] behaviors

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers();

 .ConfigureApiBehaviorOptions(options => ❶
 {

 options.SuppressModelStateInvalidFilter = true; ❷
 });

// ...

❶ Controls which conventions are applied by providing a configuration lambda

❷ This would disable the automatic 400 responses for invalid requests.

TIP You can disable all the automatic features enabled by the
[ApiController] attribute, but I encourage you to stick to the
defaults unless you really need to change them. You can read more
about disabling features in the documentation at
https://docs.microsoft.com/aspnet/core/web-api.

The ability to customize each aspect of your web API

controllers is one of the key differentiators with minimal

APIs. In the next section you’ll learn how to control the

format of the data returned by your web API controllers—

whether that’s JSON, XML, or a different, custom format.

https://docs.microsoft.com/aspnet/core/web-api

20.5 Generating a response from a
model

This brings us to the final topic in this chapter: formatting a

response. It’s common for API controllers to return JSON

these days, but that’s not always the case. In this section

you’ll learn about content negotiation and how to enable

additional output formats such as XML.

Consider this scenario: you’ve created a web API action

method for returning a list of cars, as in the following listing.

It invokes a method on your application model, which hands

back the list of data to the controller. Now you need to

format the response and return it to the caller.

Listing 20.13 A web API controller to return a list of cars

[ApiController]

public class CarsController : Controller

{

 [HttpGet("api/cars")] ❶
 public IEnumerable<string> ListCars() ❷
 {

 return new string[] ❸
 { "Nissan Micra", "Ford Focus" }; ❸
 }

}

❶ The action is executed with a request to GET /api/cars.

❷ The API model containing the data is an IEnumerable<string>.
❸ This data would normally be fetched from the application model.

You saw in section 20.2 that it’s possible to return data

directly from an action method, in which case the

middleware formats it and returns the formatted data to the

caller. But how does the middleware know which format to

use? After all, you could serialize it as JSON, as XML, or even

with a simple ToString() call.

WARNING Remember that in this chapter I’m talking only about web
API controller responses. Minimal APIs support only automatic
serialization to JSON, nothing else.

The process of determining the format of data to send to

clients is known generally as content negotiation (conneg).

At a high level, the client sends a header indicating the types

of content it can understand—the Accept header—and the

server picks one of these, formats the response, and sends a

Content-Type header in the response, indicating which

type it chose.

The Accept and Content-Type headers

The Accept header is sent by a client as part of a request to indicate the type of
content that the client can handle. It consists of a number of MIME types, with optional
weightings (from 0 to 1) to indicate which type would be preferred. For example, the
application/json,text/xml;q=0.9,text/plain;q=0.6 header indicates
that the client can accept JSON, XML, and plain text, with weightings of 1.0, 0.9, and
0.6, respectively. JSON has a weighting of 1.0, as no explicit weighting was provided.
The weightings can be used during content negotiation to choose an optimal
representation for both parties.

The Content-Type header describes the data sent in a request or response. It
contains the MIME type of the data, with an optional character encoding. For example,
the application/json; charset=utf-8 header would indicate that the body
of the request or response is JSON, encoded using UTF-8.

For more on MIME types, see the Mozilla documentation: http://mng.bz/gop8. You can
find the RFC for content negotiation at http://mng.bz/6DXo.

You’re not forced into sending only a Content-Type the

client expects, and in some cases, you may not even be able

to handle the types it requests. What if a request stipulates

that it can accept only Microsoft Excel spreadsheets? It’s

unlikely you’d support that, even if that’s the only Accept

type the request contains.

When you return an API model from an action method,

whether directly (as in listing 20.13) or via an OkResult or

other StatusCodeResult, ASP.NET Core always returns

something in the response. If it can’t honor any of the types

stipulated in the Accept header, it will fall back to returning

JSON by default. Figure 20.7 shows that even though XML

was requested, the API controller formatted the response as

JSON.

http://mng.bz/gop8
http://mng.bz/6DXo

Figure 20.7 Even though the request was made with an Accept
header of text/xml, the response returned was JSON, as the
server was not configured to return XML.

WARNING In legacy ASP.NET, objects were serialized to JSON using
PascalCase, where properties start with a capital letter. In ASP.NET
Core, objects are serialized using camelCase by default, where
properties start with a lowercase letter.

However the data is sent, it’s serialized by an

IOutputFormatter implementation. ASP.NET Core ships

with a limited number of output formatters out of the box,

but as always, it’s easy to add additional ones or change the

way the defaults work.

20.5.1 Customizing the default formatters:
Adding XML support

As with most of ASP.NET Core, the Web API formatters are

completely customizable. By default, only formatters for

plain text (text/plain), HTML (text/html), and JSON

(application/json) are configured. Given the common

use case of single-page application (SPAs) and mobile

applications, this will get you a long way. But sometimes you

need to be able to return data in a different format, such as

XML.

Newtonsoft.Json vs. System.Text.Json

Newtonsoft.Json, also known as Json.NET, has for a long time been the canonical way
to work with JSON in .NET. It’s compatible with every version of .NET under the sun,
and it will no doubt be familiar to virtually all .NET developers. Its reach was so great
that even ASP.NET Core took a dependency on it!

That all changed with the introduction of a new library in ASP.NET Core 3.0, System
.Text.Json, which focuses on performance. In .NET Core 3.0 onward, ASP.NET Core
uses System.Text.Json by default instead of Newtonsoft.Json.

The main difference between the libraries is that System.Text.Json is picky about its
JSON. It will generally only deserialize JSON that matches its expectations. For
example, System.Text.Json won’t deserialize JSON that uses single quotes around
strings; you have to use double quotes.

If you’re creating a new application, this is generally not a problem; you quickly learn to
generate the correct JSON. But if you’re converting an application to ASP.NET Core or

are sending JSON to a third party you don’t control, these limitations can be real
stumbling blocks.

Luckily, you can easily switch back to the Newtonsoft.Json library instead. Install the
Microsoft.AspNetCore.Mvc.NewtonsoftJson package into your project and update the
AddControllers() method in Program.cs to the following:

builder.Services.AddControllers()

 .AddNewtonsoftJson();

This will switch ASP.NET Core’s formatters to use Newtonsoft.Json behind the scenes,
instead of System.Text.Json. For more details on the differences between the libraries,
see Microsoft’s article “Compare Newtonsoft.Json to System.Text.Json, and migrate to
System.Text.Json”: http://mng.bz/0mRJ. For more advice on when to switch to the
Newtonsoft.Json formatter, see the section “Add Newtonsoft.Json-based JSON format
support” in Microsoft’s “Format response data in ASP.NET Core Web API”
documentation: http://mng.bz/zx11.

You can add XML output to your application by adding an

output formatter. You configure your application’s formatters

in Program.cs by customizing the IMvcBuilder object

returned from AddControllers(). To add the XML output

formatter, use the following:

services.AddControllers()

 .AddXmlSerializerFormatters();

NOTE Technically, this also adds an XML input formatter, which
means your application can now receive XML in requests too.
Previously, sending a request with XML in the body would respond
with a 415 Unsupported Media Type response. For a
detailed look at formatters, including creating a custom formatter, see
the documentation at http://mng.bz/e5gG.

http://mng.bz/0mRJ
http://mng.bz/zx11
http://mng.bz/e5gG

With this simple change, your API controllers can now

format responses as XML as well as JSON. Running the same

request as shown in figure 20.7 with XML support enabled

means the app will respect the text/xml accept header.

The formatter serializes the string array to XML as

requested instead of defaulting to JSON, as shown in figure

20.8.

Figure 20.8 With the XML output formatters added, the Accept
header’s text/xml value is respected, and the response is
serialized to XML.

This is an example of content negotiation, where the client

has specified which formats it can handle and the server

selects one of those, based on what it can produce. This

approach is part of the HTTP protocol, but there are some

quirks to be aware of when relying on it in ASP.NET Core.

You won’t often run into these, but if you’re not aware of

them when they hit you, they could have you scratching

your head for hours!

20.5.2 Choosing a response format with
content negotiation

Content negotiation is where a client says which types of

data it can accept using the Accept header and the server

picks the best one it can handle. Generally speaking, this

works as you’d hope: the server formats the data using a

type the client can understand.

The ASP.NET Core implementation has some special cases

that are worth bearing in mind:

By default, ASP.NET Core returns only

application/json, text/plain, and

text/html MIME types. You can add

IOutputFormatters to make other types

available, as you saw in the previous section for

text/xml.

By default, if you return null as your API model,

whether from an action method or by passing

null in a StatusCodeResult, the middleware

returns a 204 No Content response.

When you return a string as your API model, if

no Accept header is set, ASP.NET Core formats

the response as text/plain.

When you use any other class as your API model,

and there’s no Accept header or none of the

supported formats was requested, the first

formatter that can generate a response is used

(typically JSON by default).

If the middleware detects that the request is

probably from a browser (the Accept header

contains */*), it will not use conneg. Instead, it

formats the response as though an Accept

header was not provided, using the default

formatter (typically JSON).

These defaults are relatively sane, but they can certainly bite

you if you’re not aware of them. That last point in particular,

where the response to a request from a browser is virtually

always formatted as JSON, has certainly caught me out

when trying to test XML requests locally!

As you should expect by now, all these rules are

configurable; you can easily change the default behavior in

your application if it doesn’t fit your requirements. For

example, the following listing, shows how you can force the

middleware to respect the browser’s Accept header and

remove the text/plain formatter for strings.

Listing 20.14 Customizing MVC to respect the browser’s Accept
header in web APIs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers(options => ❶
{

 options.RespectBrowserAcceptHeader = true; ❷
 options.OutputFormatters.RemoveType<StringOutputFormatter>(); ❸
});

❶ AddControllers has an overload that takes a lambda function.

❷ False by default; several other properties are also available to be set.
❸ Removes the output formatter that formats strings as text/plain

In most cases, conneg should work well for you out of the

box, whether you’re building an SPA or a mobile application.

In some cases, you may find you need to bypass the usual

conneg mechanisms for specific action methods, and there

are various ways to achieve this, but I won’t cover them in

this book as I’ve found I rarely need to use them. For

details, see Microsoft’s “Format response data in ASP.NET

Core Web API” documentation: http://mng.bz/zx11.

At this point we’ve covered the main points of using API

controllers, but you probably still have one major question:

why would I use web API controllers over minimal APIs?

That’s a great question, and one we’ll look at in section 20.6.

http://mng.bz/zx11

20.6 Choosing between web API
controllers and minimal APIs

In part 1 of this book you learned all about using minimal

APIs to build a JSON API. Minimal APIs are the new kid on

the block, being introduced in .NET 6, but they are growing

up quickly. With all the new features introduced in .NET 7

(discussed in chapter 5), minimal APIs are emerging as a

great way to build HTTP APIs in modern .NET.

By contrast, web API controllers have been around since day

one. They were introduced in their current form in ASP.NET

Core 1.0 and were heavily inspired by the web API

framework from legacy ASP.NET. The designs, patterns, and

concepts used by web API controllers haven’t changed much

since then, so if you’ve ever used web API controllers, they

should look familiar in .NET 7.

The difficult question in .NET 7 is if you need to build an API,

which should you use, minimal APIs or web API controllers?

Both have their pros and cons, and a large part of the

decision will be personal preference, but to help your

decision, you should ask yourself several questions:

1. Do you need to return data in multiple formats

using content negotiation?

2. Is performance critical to your application?

3. Do you have complex filtering requirements?

4. Is this a new project?

5. Do you already have experience with web API

controllers?

6. Do you prefer convention over configuration?

Questions 1-3 in this list are focused on technical differences

between minimal APIs and web API controllers. Web API

controllers support conneg, which allows clients to request

data be returned in a particular format: JSON, XML, or CSV,

for example, as you learned in section 20.5. Web API

controllers support this feature out of the box, so if it’s

crucial for your application, it may be better to choose web

API controllers over minimal APIs.

TIP If you want to use conneg with minimal APIs, it’s possible but not
built in. I show how to add conneg to minimal APIs using the open-
source library Carter on my blog: http://mng.bz/o12d.

Question 2 is about performance. Everyone wants the most

performant app, but there’s a real question of how important

it is. Are you going to be regularly benchmarking your

application and looking for any regressions? If so, minimal

APIs are probably going to be a better choice, as they’re

often more performant than web API controllers.

The MVC framework that web API controllers use relies on a

lot of conventions and reflection for discovering your

controllers and a complex filter pipeline. These are obviously

highly optimized, but if you’re writing an application where

you need to squeeze out every little bit of throughput,

minimal APIs will likely help get you there more easily. For

most applications, the overhead of the MVC framework will

be negligible when compared with any database or network

http://mng.bz/o12d

access in your app, so this is worth worrying about only for

performance-sensitive apps.

Question 3 focuses on filtering. You learned about filtering

with minimal APIs in chapter 5: filters allow you to attach a

processing pipeline to your minimal API endpoints and can

be used to do things like automatic validation. Web API

controllers (as well as MVC controllers and Razor Pages) also

have a filter pipeline, but it’s much more complex than the

simple pipeline used by minimal APIs, as you’ll see in

chapters 21 and 22.

In most cases the filtering provided by minimal APIs will be

perfectly adequate for your needs. The main cases where

minimal API filtering will fall down will be when you already

have an application that uses web API controllers and want

to reuse some complex filters. In these cases, there may be

no way to translate your existing web API filters to minimal

API filters. If the filtering is important, then you may need to

stick with web API controllers.

This leads to question 4: are you building a new application

or working on an existing application? If this is a new

application, I would be strongly in favor of using minimal

APIs. Minimal APIs are conceptually simpler than web API

controllers, are faster because of this, and are receiving a lot

of improvements from the ASP.NET Core team. If there’s no

other compelling reason to choose web API controllers in

your new project, I suggest defaulting to minimal APIs.

On the other hand, if you have an existing web API

controller application, I would be strongly inclined to stick

with web API controllers. While it’s perfectly possible to mix

minimal APIs and web API controllers in the same

application, I would favor consistency over using the new

hotness.

Question 5 considers how familiar you already are with web

API controllers. If you’re coming from legacy ASP.NET or

have already used web API controllers in ASP.NET Core and

need to be productive quickly, you might decide to stick with

web API controllers.

I consider this one of the weaker arguments, as minimal

APIs are conceptually simpler than web API controllers; if

you already know web API controllers, you will likely pick up

minimal APIs easily. That said, the differences in the model

binding approaches can be a little confusing, and you may

decide it’s not worth the investment or frustration if things

don’t work as you expect.

The final question comes down entirely to taste and

preference: do you like minimal APIs? Web API controllers

heavily follow the “convention over configuration” paradigm

(though not to the extent of MVC controllers and Razor

Pages). By contrast, you must be far more explicit with

minimal APIs. Minimal APIs also don’t enforce any particular

grouping, unlike web API controllers, which all follow the

“action methods in a controller class” pattern.

Different people prefer different approaches. Web API

controllers mean less manual wiring up of components, but

this necessarily means more magic and more rigidity around

how you structure your applications.

By contrast, minimal API endpoints must be explicitly added

to the WebApplication instance, but this also means you

have more flexibility around how to group your endpoints.

You can put all your endpoints in Program.cs, create natural

groupings for them in separate classes, or create a file per

endpoint or any pattern you choose.

TIP You can also more easily layer on helper frameworks to minimal
APIs, such as Carter (https://github.com/CarterCommunity/Carter),
which can provide some structure and support functionality if you
want it.

Overall, the choice is up to you whether web API controllers

or minimal APIs are better for your application. Table 20.1

summarizes the questions and where you should favor one

approach over the other, but the final choice is up to you!

https://github.com/CarterCommunity/Carter

Table 20.1 Choosing between minimal APIs with web API
controllers

Question Minimal APIs Web API controllers
1. Do you need
conneg?

Can’t use conneg out of
the box

Built-in and extensible

2. How critical is
performance?

More performant than
web API controllers

Less performant than
minimal APIs

3. Complex filtering? Have a simple,
extensible filter pipeline

Have a complex,
nonlinear, filter pipeline

4. Is this a new project? Minimal APIs are getting
many new features and
are a focus of the
ASP.NET Core team.

The MVC framework is
receiving small new
features, but is less of a
focus.

5. Do you have
experience with web
API controllers?

Minimal APIs share
many of the same
concepts, but have
subtle differences in
model binding.

Web API controllers
may be familiar to users
of legacy ASP.NET or
older ASP.NET Core
versions.

6. Do you prefer
convention over
configuration?

Requires a lot of explicit
configuration

Convention- and
discovery-based, which
can appear more
magical when you’re
unfamiliar

That brings us to the end of this chapter on web APIs. In the

next chapter we’ll look at one of more advanced topics of

MVC and Razor Pages: the filter pipeline and how you can

use it to reduce duplication in your code. The good news is

that it’s similar to minimal API filters in principle. The bad

news is that it’s far more complicated!

Summary
Web API action methods can return data directly or

can use ActionResult<T> to generate an

arbitrary response. If you return more than one

type of result from an action method, the method

signature must return ActionResult<T>.

The data returned by a web API action is

sometimes called an API model. It contains the

data that will be serialized and send back to the

client. This differs from view models and

PageModels, which contain both data and

metadata about how to generate the response.

Web APIs are associated with route templates by

applying RouteAttributes to your action

methods. These give you complete control over

the URLs that make up your application’s API.

Route attributes applied to a controller combine

with the attributes on action methods to form the

final template. These are also combined with

attributes on inherited base classes. You can use

inherited attributes to reduce the amount of

duplication in the attributes, such as where you’re

using a common prefix on your routes.

By default, the controller and action name have no

bearing on the URLs or route templates when you

use attribute routing. However, you can use the "

[controller]" and "[action]" tokens in your

route templates to reduce repetition. They’ll be

replaced with the current controller and action

name.

The [HttpPost] and [HttpGet] attributes allow

you to choose between actions based on the

request’s HTTP verb when two actions correspond

to the same URL. This is a common pattern in

RESTful applications.

The [ApiController] attribute applies several

common conventions to your controllers.

Controllers decorated with the attribute

automatically bind to a request’s body instead of

using form values, automatically generate a 400

Bad Request response for invalid requests, and

return ProblemDetails objects for status code

errors. This can dramatically reduce the amount of

boilerplate code you must write.

You can control which of the conventions to apply

by using the

ConfigureApiBehaviorOptions() method

and providing a configuration lambda. This is

useful if you need to fit your API to an existing

specification, for example.

By default, ASP.NET Core formats the API model

returned from a web API controller as JSON. In

contrast to legacy ASP.NET, JSON data is serialized

using camelCase rather than PascalCase. You

should consider this change if you get errors or

missing values when using data from your API.

ASP.NET Core 3.0 onwards uses System.Text.Json,

which is a strict, high performance library for JSON

serialization and deserialization. You can replace

this serializer with the common Newtonsoft.Json

formatter by calling AddNewtonsoftJson() on

the return value from

services.AddControllers().

Content negotiation occurs when the client

specifies the type of data it can handle and the

server chooses a return format based on this. It

allows multiple clients to call your API and receive

data in a format they can understand.

By default, ASP.NET Core can return text/plain,

text/html, and application/ json, but you

can add formatters if you need to support other

formats.

You can add XML formatters by calling

AddXmlSerializerFormatters() on the

return value from

services.AddControllers() in your

Startup class. These can format the response as

XML, as well as receive XML in a request body.

Content negotiation isn’t used when the Accept

header contains */*, such as in most browsers.

Instead, your application uses the default

formatter, JSON. You can disable this option by

setting the RespectBrowserAcceptHeader

option to true when adding your controller

services in Program.cs.

You can mix web API Controllers and minimal API

endpoints in the same application, but you may

find it easier to use one or the other.

Choose web API controllers when you need content

negotiation, when you have complex filtering

requirements, when you have experience with web

controllers, or when you prefer convention over

configuration for your apps.

Choose minimal API endpoints when performance

is critical, when you prefer explicit configuration

over automatic conventions, or when you’re

starting a new app.

21 The MVC and Razor Pages filter
pipeline

This chapter covers

The filter pipeline and how it differs from middleware
The different types of filters
Filter ordering

Part 3 of this book has covered the Model-View-Controller

(MVC) and Razor Pages frameworks of ASP.NET Core in some

detail. You learned how routing is used to select a Razor

Page or action to execute. You also saw model binding,

validation, and how to generate a response by returning an

IActionResult from your actions and page handlers. In

this chapter I’m going to head deeper into the MVC/Razor

Pages frameworks and look at the filter pipeline, sometimes

called the action invocation pipeline, which is analogous to

the minimal API endpoint filter pipeline you learned about in

chapter 5.

MVC and Razor Pages use several built-in filters to handle

cross-cutting concerns, such as authorization (controlling

which users can access which action methods and pages in

your application). Any application that has the concept of

users will use authorization filters as a minimum, but filters

are much more powerful than this single use case. In

sections 21.1 and 21.2 you’ll learn about all the different

types of filters and how they combine to create the MVC

filter pipeline for a request that reaches the MVC or Razor

Pages framework.

Think of the MVC filter pipeline as a mini middleware pipeline

running inside the MVC and Razor Pages frameworks, like

the minimal API endpoint filter pipeline. Like the middleware

pipeline in ASP.NET Core, the MVC filter pipeline consists of a

series of components connected as a pipe, so the output of

one filter feeds into the input of the next. In section 21.3

we’ll look at the similarities and differences between these

two pipelines, and when you should choose one over the

other.

In section 21.4 you’ll see how to create a simple custom

filter. Rather than focus on the functionality of the filter

itself, you’ll learn how to apply it to multiple endpoints in

section 21.5. In section 21.6 you’ll see how the choice of

where you apply your attributes affects the order in which

your filters execute.

The filter pipeline is a complex topic, but it can enable some

advanced behaviors in your app and potentially reduce

overall complexity. In this chapter you’ll learn the basics of

the pipeline and how it works. In chapter 22 we dig into

practical examples of filters, looking at the filters that come

out of the box in ASP.NET Core, as well as building custom

filters to extract common code from your controllers and

Razor Pages.

Before we can start writing code, we should get to grips with

the basics of the filter pipeline. The first section of this

chapter explains what the pipeline is, why you might want to

use it, and how it differs from the middleware pipeline.

21.1 Understanding the MVC filter
pipeline

In this section you’ll learn all about the MVC filter pipeline.

You’ll see where it fits in the life cycle of a typical request

and the roles of the six types of filters available.

The filter pipeline is a relatively simple concept in that it

provides hooks into the normal MVC request, as shown in

figure 21.1. For example, say you wanted to ensure that

users can create or edit products on an e-commerce app

only if they’re logged in. The app would redirect anonymous

users to a login page instead of executing the action.

Figure 21.1 Filters run at multiple points in the EndpointMiddleware
as part of the normal handling of an MVC request. A similar
pipeline exists for Razor Page requests.

Without filters, you’d need to include the same code to check

for a logged-in user at the start of each specific action

method. With this approach, the MVC framework would still

execute the model binding and validation, even if the user

were not logged in.

With filters, you can use the hooks in the MVC request to run

common code across all requests or a subset of requests.

This way you can do a wide range of things, such as

Ensure that a user is logged in before an action

method, model binding, or validation runs.

Customize the output format of particular action

methods.

Handle model validation failures before an action

method is invoked.

Catch exceptions from an action method and

handle them in a special way.

In many ways, the MVC filter pipeline is like an extra

middleware pipeline, restricted to MVC and Razor Pages

requests only. Like middleware, filters are good for handling

cross-cutting concerns for your application and are useful

tools for reducing code duplication in many cases.

The linear view of an MVC request and the filter pipeline that

I’ve used so far doesn’t quite match up with how these

filters execute. There are five types of filters that apply to

MVC requests, each of which runs at a different stage in the

MVC framework, as shown in figure 21.2.

Figure 21.2 The MVC filter pipeline, including the five filter
stages. Some filter stages (resource, action, and result) run
twice, before and after the remainder of the pipeline.

Each filter stage lends itself to a particular use case, thanks

to its specific location in the pipeline, with respect to model

binding, action execution, and result execution:

Authorization filters—These run first in the

pipeline, so they’re useful for protecting your APIs

and action methods. If an authorization filter

deems the request unauthorized, it short-circuits

the request, preventing the rest of the filter

pipeline (or action) from running.

Resource filters—After authorization, resource

filters are the next filters to run in the pipeline.

They can also execute at the end of the pipeline, in

much the same way that middleware components

can handle both the incoming request and the

outgoing response. Alternatively, resource filters

can completely short-circuit the request pipeline

and return a response directly.

Thanks to their early position in the pipeline, resource filters

can have a variety of uses. You could add metrics to an

action method; prevent an action method from executing if

an unsupported content type is requested; or, as they run

before model binding, control the way model binding works

for that request.

Action filters—Action filters run immediately before

and after an action method is executed. As model

binding has already happened, action filters let you

manipulate the arguments to the method—before

it executes—or they can short-circuit the action

completely and return a different

IActionResult. Because they also run after the

action executes, they can optionally customize an

IActionResult returned by the action before

the action result is executed.

Exception filters—Exception filters catch exceptions

that occur in the filter pipeline and handle them

appropriately. You can use exception filters to write

custom, MVC-specific error-handling code, which

can be useful in some situations. For example, you

could catch exceptions in API actions and format

them differently from exceptions in your Razor

Pages.

Result filters—Result filters run before and after an

action method’s IActionResult is executed. You

can use result filters to control the execution of the

result or even to short-circuit the execution of the

result.

Exactly which filter you pick to implement will depend on the

functionality you’re trying to introduce. Want to short-circuit

a request as early as possible? Resource filters are a good

fit. Need access to the action method parameters? Use an

action filter.

Think of the filter pipeline as a small middleware pipeline

that lives by itself in the MVC framework. Alternatively, you

could think of filters as hooks into the MVC action invocation

process that let you run code at a particular point in a

request’s life cycle.

NOTE The design of the MVC filter pipeline is quite different from the
minimal API endpoint filter pipeline you saw in chapter 5. The
endpoint filter pipeline is linear and doesn’t have multiple types of
filters.

This section described how the filter pipeline works for MVC

and Web API controllers; Razor Pages use an almost-

identical filter pipeline.

21.2 The Razor Pages filter pipeline
The Razor Pages framework uses the same underlying

architecture as MVC and Web API controllers, so it’s perhaps

not surprising that the filter pipeline is virtually identical. The

only difference between the pipelines is that Razor Pages do

not use action filters. Instead, they use page filters, as

shown in figure 21.3.

Figure 21.3 The Razor Pages filter pipeline, including the five
filter stages. Authorization, resource, exception, and result
filters execute in exactly the same way as for the MVC pipeline.
Page filters are specific to Razor Pages and execute in three
places: after page hander selection, after model binding and
validation, and after page handler execution.

The authorization, resource, exception, and result filters are

exactly the same filters you saw for the MVC pipeline. They

execute in the same way, serve the same purposes, and can

be short-circuited in the same way.

NOTE These filters are literally the same classes shared between the
Razor Pages and MVC frameworks.

The difference with the Razor Pages filter pipeline is that it

uses page filters instead of action filters. By contrast with

other filter types, page filters run three times in the filter

pipeline:

After page handler selection—After the resource

filters have executed, a page handler is selected,

based on the request’s HTTP verb and the

{handler} route value, as you learned in chapter

15. After page handler selection, a page filter

method executes for the first time. You can’t

short-circuit the pipeline at this stage, and model

binding and validation have not yet executed.

After model binding—After the first page filter

execution, the request is model-bound to the

Razor Page’s binding models and is validated. This

execution is highly analogous to the action filter

execution for API controllers. At this point you

could manipulate the model-bound data or short-

circuit the page handler execution completely by

returning a different IActionResult.

After page handler execution—If you don’t short-

circuit the page handler execution, the page filter

runs a third and final time after the page handler

has executed. At this point you could customize

the IActionResult returned by the page

handler before the result is executed.

The triple execution of page filters makes it a bit harder to

visualize the pipeline, but you can generally think of them as

beefed-up action filters. Everything you can do with an

action filter, you can do with a page filter, and you can hook

in after page handler selection if necessary.

TIP Each execution of a filter executes a different method of the
appropriate interface, so it’s easy to know where you are in the
pipeline and to execute a filter in only one of its possible locations if
you wish.

One of the main questions I hear when people learn about

filters in ASP.NET Core is “Why do we need them?” If the

filter pipeline is like a mini middleware pipeline, why not use

a middleware component directly, instead of introducing the

filter concept? That’s an excellent point, which I’ll tackle in

the next section.

21.3 Filters or middleware: Which
should you choose?

The filter pipeline is similar to the middleware pipeline in

many ways, but there are several subtle differences that you

should consider when deciding which approach to use. The

considerations are essentially the same as those for the

minimal API endpoint filter I discussed in chapter 5. MVC

filters and middleware are similar in three ways:

Requests pass through a middleware component

on the way “in,” and responses pass through again

on the way “out.” Resource, action, and result

filters are also two-way, though authorization and

exception filters run only once for a request, and

page filters run three times.

Middleware can short-circuit a request by returning

a response instead of passing it on to later

middleware. MVC and page filters can also short-

circuit the filter pipeline by returning a response.

Middleware is often used for cross-cutting

application concerns, such as logging, performance

profiling, and exception handling. Filters also lend

themselves to cross-cutting concerns.

Filters and middleware also differ primarily in three ways:

Middleware can run for all requests; filters run only

for requests that reach the

EndpointMiddleware and execute a controller

action or Razor Page handler.

Filters have access to MVC constructs such as

ModelState and IActionResults. Middleware

in general is independent from MVC and Razor

Pages and works at a lower level, so it can’t use

these concepts.

Filters can be easily applied to a subset of

requests, such as all actions on a single controller

or a single Razor Page. Middleware generally

applies to all requests that reach a given point in

the middleware pipeline.

As for the endpoint filter pipeline, I like to think of

middleware versus MVC filters as a question of specificity.

Middleware is the more general concept, so it has the wider

reach. But if you need to access to MVC constructs or want

to behave differently for some MVC actions or Razor Pages,

you should consider using a filter.

The middleware-versus-filters argument is a subtle one, and

it doesn’t matter which you choose as long as it works for

you. You can even use middleware components inside the

MVC filter pipeline, effectively turning a middleware

component into a filter!

TIP The middleware-as-filters feature was introduced in ASP.NET
Core 1.1 and is also available in later versions. The canonical use

case is for localizing requests to multiple languages. I have a blog
series on how to use the feature here: http://mng.bz/RXa0.

Filters can be a little abstract in isolation, so in the next

section we’ll look at some code and learn how to write a

custom MVC filter in ASP.NET Core.

21.4 Creating a simple filter
In this section, I show you how to create your first filters; in

section 21.5 you’ll see how to apply them to MVC controllers

and actions. We’ll start small, creating filters that only write

to the console, but in chapter 22 we look at some more

practical examples and discuss some of their nuances.

You implement a filter for a given stage by implementing

one of a pair of interfaces, one synchronous (sync) and one

asynchronous (async):

Authorization filters—IAuthorizationFilter or

IAsyncAuthorizationFilter

Resource filters—IResourceFilter or

IAsyncResourceFilter

Action filters—IActionFilter or

IAsyncActionFilter

Page filters—IPageFilter or

IAsyncPageFilter

http://mng.bz/RXa0

Exception filters—IExceptionFilter or

IAsyncExceptionFilter

Result filters—IResultFilter or

IAsyncResultFilter

You can use any plain old CLR object (POCO) class to

implement a filter, but you’ll typically implement them as C#

attributes, which you can use to decorate your controllers,

actions, and Razor Pages, as you’ll see in section 21.5. You

can achieve the same results with either the sync or async

interface, so which you choose should depend on whether

any services you call in the filter require async support.

NOTE You should implement either the sync interface or the async
interface, not both. If you implement both, only the async interface will
be used.

Listing 21.1 shows a resource filter that implements

IResourceFilter and writes to the console when it

executes. The OnResourceExecuting method is called

when a request first reaches the resource filter stage of the

filter pipeline. By contrast, the OnResourceExecuted

method is called after the rest of the pipeline has executed:

after model binding, action execution, result execution, and

all intermediate filters have run.

Listing 21.1 Example resource filter implementing
IResourceFilter

public class LogResourceFilter : Attribute, IResourceFilter

{

 public void OnResourceExecuting(❶

 ResourceExecutingContext context) ❷
 {

 Console.WriteLine("Executing!");

 }

 public void OnResourceExecuted(❸
 ResourceExecutedContext context) ❹
 {

 Console.WriteLine("Executed");

 }

}

❶ Executed at the start of the pipeline, after authorization filters
❷ The context contains the HttpContext, routing details, and information about the current

action.

❸ Executed after model binding, action execution, and result execution
❹ Contains additional context information, such as the IActionResult returned by the action

The interface methods are simple and are similar for each

stage in the filter pipeline, passing a context object as a

method parameter. Each of the two-method sync filters has

an *Executing and an *Executed method. The type of

the argument is different for each filter, but it contains all

the details for the filter pipeline.

For example, the ResourceExecutingContext passed to

the resource filter contains the HttpContext object itself,

details about the route that selected this action, details

about the action itself, and so on. Contexts for later filters

contain additional details, such as the action method

arguments for an action filter and the ModelState.

The context object for the ResourceExecutedContext

method is similar, but it also contains details about how the

rest of the pipeline executed. You can check whether an

unhandled exception occurred, you can see if another filter

from the same stage short-circuited the pipeline, or you can

see the IActionResult used to generate the response.

These context objects are powerful and are the key to

advanced filter behaviors like short-circuiting the pipeline

and handling exceptions. We’ll make use of them in chapter

22 when we create more complex filter examples.

The async version of the resource filter requires

implementing a single method, as shown in listing 21.2. As

for the sync version, you’re passed a

ResourceExecutingContext object as an argument, and

you’re passed a delegate representing the remainder of the

filter pipeline. You must call this delegate (asynchronously)

to execute the remainder of the pipeline, which returns an

instance of ResourceExecutedContext.

Listing 21.2 Example resource filter implementing
IAsyncResourceFilter

public class LogAsyncResourceFilter : Attribute, IAsyncResourceFilter

{

 public async Task OnResourceExecutionAsync(❶
 ResourceExecutingContext context,

 ResourceExecutionDelegate next) ❷
 {

 Console.WriteLine("Executing async!"); ❸
 ResourceExecutedContext executedContext = await next(); ❹
 Console.WriteLine("Executed async!"); ❺
 }

}

❶ Executed at the start of the pipeline, after authorization filters

❷ You’re provided a delegate, which encapsulates the remainder of the filter pipeline.
❸ Called before the rest of the pipeline executes

❹ Executes the rest of the pipeline and obtains a ResourceExecutedContext instance

❺ Called after the rest of the pipeline executes

The sync and async filter implementations have subtle

differences, but for most purposes they’re identical. I

recommend implementing the sync version for simplicity,

falling back to the async version only if you need to.

You’ve created a couple of filters now, so we should look at

how to use them in the application. In the next section we’ll

tackle two specific issues: how to control which requests

execute your new filters and how to control the order in

which they execute.

21.5 Adding filters to your actions and
Razor Pages

In section 21.3 I discussed the similarities and differences

between middleware and filters. One of those differences is

that filters can be scoped to specific actions or controllers so

that they run only for certain requests. Alternatively, you can

apply a filter globally so that it runs for every MVC action

and Razor Page.

By adding filters in different ways, you can achieve several

different results. Imagine you have a filter that forces you to

log in to execute an action. How you add the filter to your

app will significantly change your app’s behavior:

Apply the filter to a single action or Razor Page.

Anonymous users could browse the app as normal,

but if they tried to access the protected action or

Razor Page, they would be forced to log in.

Apply the filter to a controller. Anonymous users

could access actions from other controllers, but

accessing any action on the protected controller

would force them to log in.

Apply the filter globally. Users couldn’t use the app

without logging in. Any attempt to access an

action or Razor Page would redirect the user to the

login page.

NOTE ASP.NET Core comes with such a filter out of the box:
AuthorizeFilter. I discuss this filter in chapter 22, and you’ll be
seeing a lot more of it in chapter 24.

As I described in the previous section, you normally create

filters as attributes, and for good reason: it makes it easy

for you to apply them to MVC controllers, actions, and Razor

Pages. In this section you’ll see how to apply

LogResourceFilter from listing 21.1 to an action, a

controller, a Razor Page, and globally. The level at which the

filter applies is called its scope.

DEFINITION The scope of a filter refers to how many different actions
it applies to. A filter can be scoped to the action method, to the
controller, to a Razor Page, or globally.

You’ll start at the most specific scope: applying filters to a

single action. The following listing shows an example of an

MVC controller that has two action methods, one with

LogResourceFilter and one without.

Listing 21.3 Applying filters to an action method

public class RecipeController : ControllerBase

{

 [LogResourceFilter] ❶
 public IActionResult Index() ❶
 { ❶
 return Ok(); ❶
 } ❶
 public IActionResult View() ❷
 { ❷
 return OK(); ❷
 } ❷
}

❶ LogResourceFilter runs as part of the pipeline when executing this action.

❷ This action method has no filters at the action level.

Alternatively, if you want to apply the same filter to every

action method, you could add the attribute at the controller

scope, as in the next listing. Every action method in the

controller uses LogResourceFilter without having to

specifically decorate each method.

Listing 21.4 Applying filters to a controller

[LogResourceFilter] ❶
public class RecipeController : ControllerBase

{

 public IActionResult Index () ❷
 { ❷
 return Ok(); ❷
 } ❷
 public IActionResult View() ❷
 { ❷

 return Ok(); ❷
 } ❷
}

❶ The LogResourceFilter is added to every action on the controller.

❷ Every action in the controller is decorated with the filter.

For Razor Pages, you can apply attributes to your

PageModel, as shown in the following listing. The filter

applies to all page handlers in the Razor Page. It’s not

possible to apply filters to a single page handler; you must

apply them at the page level.

Listing 21.5 Applying filters to a Razor Page

[LogResourceFilter] ❶
public class IndexModel : PageModel

{

 public void OnGet() ❷
 { ❷
 } ❷

 public void OnPost() ❷
 { ❷
 } ❷
}

❶ The LogResourceFilter is added to the Razor Page’s PageModel.

❷ The filter applies to every page handler in the page.

Filters you apply as attributes to controllers, actions, and

Razor Pages are automatically discovered by the framework

when your application starts up. For common attributes, you

can go one step further and apply filters globally without

having to decorate individual classes.

You add global filters in a different way from controller- or

action-scoped filters—by adding a filter directly to the MVC

services when configuring your controllers and Razor Pages.

The next listing shows three equivalent ways to add a

globally scoped filter.

Listing 21.6 Applying filters globally to an application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers(options => ❶
{

 options.Filters.Add(new LogResourceFilter()); ❷
 options.Filters.Add(typeof(LogResourceFilter)); ❸
 options.Filters.Add<LogResourceFilter>(); ❹
});

❶ Adds filters using the MvcOptions object

❷ You can pass an instance of the filter directly. . .
❸ . . . or pass in the Type of the filter and let the framework create it.

❹ Alternatively, the framework can create a global filter using a generic type parameter.

You can configure the MvcOptions by using the

AddControllers() overload. When you configure filters

globally, they apply both to controllers and to any Razor

Pages in your application. If you wish to configure a global

filter for a Razor Pages application, there isn’t an overload

for configuring the MvcOptions. Instead, you need to use

the AddMvcOptions() extension method to configure the

filters, as shown in the following listing.

Listing 21.7 Applying filters globally to a Razor Pages
application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.RazorPages() ❶
 .AddMvcOptions(options => ❷
 {

 options.Filters.Add(new LogResourceFilter()); ❸
 options.Filters.Add(typeof(LogResourceFilter)); ❸
 options.Filters.Add<LogResourceFilter>(); ❸
 });

❶ This method doesn’t let you pass a lambda to configure the MvcOptions.

❷ You must use an extension method to add the filters to the MvcOptions object.
❸ You can configure the filters in any of the ways shown previously.

With potentially three different scopes in play, you’ll often

find action methods that have multiple filters applied to

them, some applied directly to the action method and others

inherited from the controller or globally. Then the question

becomes which filter runs first.

21.6 Understanding the order of filter
execution

You’ve seen that the filter pipeline contains five stages, one

for each type of filter. These stages always run in the fixed

order I described in sections 21.1 and 21.2. But within each

stage, you can also have multiple filters of the same type

(for example, multiple resource filters) that are part of a

single action method’s pipeline. These could all have multiple

scopes, depending on how you added them, as you saw in

the preceding section.

In this section we’re thinking about the order of filters within

a given stage and how scope affects this. We’ll start by

looking at the default order and then move on to ways to

customize the order to your own requirements.

21.6.1 The default scope execution order

When thinking about filter ordering, it’s important to

remember that resource, action, and result filters implement

two methods: an *Executing before method and an

*Executed after method. On top of that, page filters

implement three methods! The order in which each method

executes depends on the scope of the filter, as shown in

figure 21.4 for the resource filter stage.

Figure 21.4 The default filter ordering within a given stage,
based on the scope of the filters. For the *Executing method,
globally scoped filters run first, followed by controller-scoped,
and finally action-scoped filters. For the *Executed method, the
filters run in reverse order.

By default, filters execute from the broadest scope (global)

to the narrowest (action) when running the *Executing

method for each stage. The filters’ *Executed methods run

in reverse order, from the narrowest scope (action) to the

broadest (global).

The ordering for Razor Pages is somewhat simpler, given

that you have only two scopes: global scope filters and

Razor Page scope filters. For Razor Pages, global scope filters

run the *Executing and PageHandlerSelected

methods first, followed by the page scope filters. For the

*Executed methods, the filters run in reverse order.

You’ll sometimes find you need a bit more control over this

order, especially if you have, for example, multiple action

filters applied at the same scope. The filter pipeline caters to

this requirement by way of the IOrderedFilter interface.

21.6.2 Overriding the default order of filter
execution with IOrderedFilter

Filters are great for extracting cross-cutting concerns from

your controller actions and Razor Page, but if you have

multiple filters applied to an action, you’ll sometimes need to

control the precise order in which they execute.

Scope can get you some of the way, but for those other

cases, you can implement IOrderedFilter. This interface

consists of a single property, Order:

public interface IOrderedFilter

{

 int Order { get; }

}

You can implement this property in your filters to set the

order in which they execute. The filter pipeline orders the

filters in each stage based on the Order property first, from

lowest to highest, and uses the default scope order to

handle ties, as shown in figure 21.5.

Figure 21.5 Controlling the filter order for a stage using the
IOrderedFilter interface. Filters are ordered by the Order property
first, and then by scope.

The filters for Order = -1 execute first, as they have the

lowest Order value. The controller filter executes first

because it has a broader scope than the action-scope filter.

The filters with Order = 0 execute next, in the default scope

order, as shown in figure 21.5. Finally, the filter with Order

= 1 executes.

By default, if a filter doesn’t implement IOrderedFilter,

it’s assumed to have Order = 0. All the filters that ship as

part of ASP.NET Core have Order = 0, so you can

implement your own filters relative to these.

NOTE You can completely customize how the filter pipeline is built by
customizing the MVC framework’s application model conventions.
These control everything about how controllers and Razor Pages are
discovered, how they’re added to the pipeline, and how filters are
discovered. This is an advanced concept, that you won’t often need,
but it may occasionally come in handy. You can read about the MVC
application model in the documentation at http://mng.bz/nWNa.

This chapter has provided a lot of background on the MVC

filter pipeline, and we covered most of the technical details

you need to use filters and create custom implementations

for your own application. In chapter 22 you’ll see some of

the built-in filters provided by ASP.NET Core, as well as some

practical examples of filters you might want to use in your

own applications.

http://mng.bz/nWNa

Summary
The filter pipeline provides hooks into an MVC

request so you can run functions at various points

within an MVC request. With filters you can run

code at specific points in the MVC process across

all requests or a subset of requests. This is

particularly useful for handling cross-cutting

concerns that are specific to MVC.

The filter pipeline executes as part of the MVC or

Razor Pages execution. It consists of authorization

filters, resource filters, action filters, page filters,

exception filters, and result filters. Each filter type

is grouped in a stage and can be used to achieve

effects specific to that stage.

Resource, action, and result filters run twice in the

pipeline: an *Executing method on the way in

and an *Executed method on the way out. Page

filters run three times: after page handler

selection, and before and after page handler

execution.

Authorization and exception filters run only once

as part of the pipeline; they don’t run after a

response has been generated.

Each type of filter has both a sync and an async

version. For example, resource filters can

implement either the IResourceFilter interface

or the IAsync-ResourceFilter interface. You

should use the synchronous interface unless your

filter needs to use asynchronous method calls.

You can add filters globally, at the controller level,

at the Razor Page level, or at the action level. This

is called the scope of the filter. Which scope you

should choose depends on how broadly you want

to apply the filter.

Within a given stage, global-scoped filters run first,

then controller-scoped, and finally action-scoped.

You can also override the default order by

implementing the IOrderedFilter interface.

Filters run from lowest to highest Order and use

scope to break ties.

22 Creating custom MVC and Razor
Page filters

This chapter covers

Creating custom filters to refactor complex action methods
Using authorization filters to protect your action methods and
Razor Pages
Short-circuiting the filter pipeline to bypass action and page
handler execution
Injecting dependencies into filters

In chapter 21 I introduced the Model-View-Controller (MVC)

and Razor Pages filter pipeline and showed where it fits into

the life cycle of a request. You learned how to apply filters to

your action method, controllers, and Razor Pages, and the

effect of scope on the filter execution order.

In this chapter you’ll take that knowledge and apply it to a

concrete example. You’ll learn to create custom filters that

you can use in your own apps and how to use them to

reduce duplicate code in your action methods.

In section 22.1 I take you through the filter types in detail,

how they fit into the MVC pipeline, and what to use them for.

For each one, I’ll provide example implementations that you

might use in your own application and describe the built-in

options available.

A key feature of filters is the ability to short-circuit a request

by generating a response and halting progression through

the filter pipeline. This is similar to the way short-circuiting

works in middleware, but there are subtle differences for

MVC filters. On top of that, the exact behavior is slightly

different for each filter, and I cover that in section 22.2.

You typically add MVC filters to the pipeline by implementing

them as attributes added to your controller classes, action

methods, and Razor Pages. Unfortunately, you can’t easily

use dependency injection (DI) with attributes due to the

limitations of C#. In section 22.3 I show you how to use the

ServiceFilterAttribute and TypeFilterAttribute

base classes to enable DI in your filters.

We covered all the background for filters in chapter 21, so in

the next section we jump straight into the code and start

creating custom MVC filters.

22.1 Creating custom filters for your
application

ASP.NET Core includes several filters that you can use out of

the box, but often the most useful filters are the custom

ones that are specific to your own apps. In this section we’ll

work through each of the six types of filters I covered in

chapter 21. I’ll explain in more detail what they’re for and

when you should use them. I’ll point out examples of these

filters that are part of ASP.NET Core itself, and you’ll see how

to create custom filters for an example application.

To give you something realistic to work with, we’ll start with

a web API controller for accessing the recipe application

from chapter 12. This controller contains two actions: one

for fetching a RecipeDetailViewModel and another for

updating a Recipe with new values. The following listing

shows your starting point for this chapter, including both

action methods.

Listing 22.1 Recipe web API controller before refactoring to use
filters

[Route("api/recipe")]

public class RecipeApiController : ControllerBase

{

 private readonly bool IsEnabled = true; ❶
 public RecipeService _service;

 public RecipeApiController(RecipeService service)

 {

 _service = service;

 }

 [HttpGet("{id}")]

 public IActionResult Get(int id)

 {

 if (!IsEnabled) { return BadRequest(); } ❷
 try

 {

 if (!_service.DoesRecipeExist(id)) ❸
 { ❸
 return NotFound(); ❸
 } ❸
 var detail = _service.GetRecipeDetail(id); ❹
 Response.GetTypedHeaders().LastModified = ❺
 detail.LastModified; ❺
 return Ok(detail); ❻
 }

 catch (Exception ex) ❼
 { ❼
 return GetErrorResponse(ex); ❼
 } ❼

 }

 [HttpPost("{id}")]

 public IActionResult Edit(

 int id, [FromBody] UpdateRecipeCommand command)

 {

 if (!IsEnabled) { return BadRequest(); } ❽
 try

 {

 if (!ModelState.IsValid) ❾
 { ❾
 return BadRequest(ModelState); ❾
 } ❾
 if (!_service.DoesRecipeExist(id)) ❿
 { ❿
 return NotFound(); ❿
 } ❿
 _service.UpdateRecipe(command); ⓫
 return Ok(); ⓫
 }

 catch (Exception ex) ⓬
 { ⓬
 return GetErrorResponse(ex); ⓬
 } ⓬
 }

 private static IActionResult GetErrorResponse(Exception ex)

 {

 var error = new ProblemDetails

 {

 Title = "An error occurred",

 Detail = context.Exception.Message,

 Status = 500,

 Type = "https://httpstatuses.com/500"

 };

 return new ObjectResult(error)

 {

 StatusCode = 500

 };

 }

}

❶ This field would be passed in as configuration and is used to control access to actions.

❷ If the API isn’t enabled, blocks further execution

❸ If the requested Recipe doesn’t exist, returns a 404 response

❹ Fetches RecipeDetailViewModel
❺ Sets the Last-Modified response header to the value in the model

❻ Returns the view model with a 200 response
❼ If an exception occurs, catches it and returns the error in an expected format, as a 500

error

❽ If the API isn’t enabled, blocks further execution
❾ Validates the binding model and returns a 400 response if there are errors

❿ If the requested Recipe doesn’t exist, returns a 404 response
⓫ Updates the Recipe from the command and returns a 200 response

⓬ If an exception occurs, catches it and returns the error in an expected format, as a 500
error

These action methods currently have a lot of code to them,

which hides the intent of each action. There’s also quite a lot

of duplication between the methods, such as checking that

the Recipe entity exists and formatting exceptions.

In this section you’re going to refactor this controller to use

filters for all the code in the methods that’s unrelated to the

intent of each action. By the end of the chapter you’ll have a

much simpler controller that’s far easier to understand, as

shown here.

Listing 22.2 Recipe web API controller after refactoring to use
filters

[Route("api/recipe")]

[ValidateModel] ❶
[HandleException] ❶
[FeatureEnabled(IsEnabled = true)] ❶
public class RecipeApiController : ControllerBase

{

 public RecipeService _service;

 public RecipeApiController(RecipeService service)

 {

 _service = service;

 }

 [HttpGet("{id}")]

 [EnsureRecipeExists] ❷
 [AddLastModifiedHeader] ❷
 public IActionResult Get(int id)

 {

 var detail = _service.GetRecipeDetail(id); ❸
 return Ok(detail); ❸
 }

 [HttpPost("{id}")]

 [EnsureRecipeExists] ❹
 public IActionResult Edit(

 int id, [FromBody] UpdateRecipeCommand command)

 {

 _service.UpdateRecipe(command); ❺
 return Ok(); ❺
 }

}

❶ The filters encapsulate the majority of logic common to multiple action methods.
❷ Placing filters at the action level limits them to a single action.

❸ The intent of the action, return a Recipe view model, is much clearer.
❹ Placing filters at the action level can control the order in which they execute.

❺ The intent of the action, update a Recipe, is much clearer.

I think you’ll have to agree that the controller in listing 22.2

is much easier to read! In this section you’ll refactor the

controller bit by bit, removing cross-cutting code to get to

something more manageable. All the filters we’ll create in

this section will use the sync filter interfaces. I’ll leave it to

you, as an exercise, to create their async counterparts. We’ll

start by looking at authorization filters and how they relate

to security in ASP.NET Core.

22.1.1 Authorization filters: Protecting your
APIs

Authentication and authorization are related, fundamental

concepts in security that we’ll be looking at in detail in

chapters 23 and 24.

DEFINITION Authentication is concerned with determining who made
a request. Authorization is concerned with what a user is allowed to
access.

Authorization filters run first in the MVC filter pipeline, before

any other filters. They control access to the action method

by immediately short-circuiting the pipeline when a request

doesn’t meet the necessary requirements.

ASP.NET Core has a built-in authorization framework that

you should use when you need to protect your MVC

application or your web APIs. You can configure this

framework with custom policies that let you finely control

access to your actions.

TIP It’s possible to write your own authorization filters by
implementing IAuthorizationFilter or
IAsyncAuthorizationFilter, but I strongly advise against
it. The ASP.NET Core authorization framework is highly configurable
and should meet all your needs.

At the heart of MVC authorization is an authorization filter,

AuthorizeFilter, which you can add to the filter pipeline

by decorating your actions or controllers with the

[Authorize] attribute. In its simplest form, adding the

[Authorize] attribute to an action, as in the following

listing, means that the request must be made by an

authenticated user to be allowed to continue. If you’re not

logged in, it will short-circuit the pipeline, returning a 401

Unauthorized response to the browser.

Listing 22.3 Adding [Authorize] to an action method

public class RecipeApiController : ControllerBase

{

 public IActionResult Get(int id) ❶
 {

 // method body

 }

 [Authorize] ❷
 public IActionResult Edit(❸
 int id, [FromBody] UpdateRecipeCommand command) ❸
 {

 // method body

 }

}

❶ The Get method has no [Authorize] attribute, so it can be executed by anyone.

❷ Adds the AuthorizeFilter to the filter pipeline using [Authorize]
❸ The Edit method can be executed only if you’re logged in.

As with all filters, you can apply the [Authorize] attribute

at the controller level to protect all the actions on a

controller, to a Razor Page to protect all the page handler

methods in a page, or even globally to protect every

endpoint in your app.

NOTE We’ll explore authorization in detail in chapter 24, including
how to add more detailed requirements so that only specific sets of

users can execute an action.

The next filters in the pipeline are resource filters. In the

next section you’ll extract some of the common code from

RecipeApiController and see how easy it is to create a

short-circuiting filter.

22.1.2 Resource filters: Short-circuiting your
action methods

Resource filters are the first general-purpose filters in the

MVC filter pipeline. In chapter 21 you saw minimal examples

of both sync and async resource filters, which logged to the

console. In your own apps, you can use resource filters for a

wide range of purposes, thanks to the fact that they execute

so early (and late) in the filter pipeline.

The ASP.NET Core framework includes a few

implementations of resource filters you can use in your

apps:

ConsumesAttribute—Can be used to restrict

the allowed formats an action method can accept.

If your action is decorated with

[Consumes("application/json")], but the

client sends the request as Extensible Markup

Language (XML), the resource filter will short-

circuit the pipeline and return a 415

Unsupported Media Type response.

SkipStatusCodePagesAttribute—This filter

prevents the StatusCodePagesMiddleware

from running for the response. This can be useful

if, for example, you have both web API controllers

and Razor Pages in the same application. You can

apply this attribute to the controllers to ensure

that API error responses are passed untouched,

but all error responses from Razor Pages are

handled by the middleware.

Resource filters are useful when you want to ensure that the

filter runs early in the pipeline, before model binding. They

provide an early hook into the pipeline for your logic so you

can quickly short-circuit the request if you need to.

Look back at listing 22.1 and see whether you can refactor

any of the code into a resource filter. One candidate line

appears at the start of both the Get and Edit methods:

if (!IsEnabled) { return BadRequest(); }

This line of code is a feature toggle that you can use to

disable the availability of the whole API, based on the

IsEnabled field. In practice, you’d probably load the

IsEnabled field from a database or configuration file so

you could control the availability dynamically at runtime, but

for this example I’m using a hardcoded value.

TIP To read more about using feature toggles in your applications,
see my series “Adding feature flags to an ASP.NET Core app” at
http://mng.bz/2e40.

http://mng.bz/2e40

This piece of code is self-contained cross-cutting logic, which

is somewhat orthogonal to the main intent of each action

method—a perfect candidate for a filter. You want to execute

the feature toggle early in the pipeline, before any other

logic, so a resource filter makes sense.

TIP Technically, you could also use an authorization filter for this
example, but I’m following my own advice of “Don’t write your own
authorization filters!”

The next listing shows an implementation of

FeatureEnabledAttribute, which extracts the logic

from the action methods and moves it into the filter. I’ve

also exposed the IsEnabled field as a property on the

filter.

Listing 22.4 The FeatureEnabledAttribute resource filter

public class FeatureEnabledAttribute : Attribute, IResourceFilter

{

 public bool IsEnabled { get; set; } ❶
 public void OnResourceExecuting(❷
 ResourceExecutingContext context) ❷
 {

 if (!IsEnabled) ❸
 { ❸
 context.Result = new BadRequestResult(); ❸
 } ❸
 }

 public void OnResourceExecuted(❹
 ResourceExecutedContext context) { } ❹
}

❶ Defines whether the feature is enabled

❷ Executes before model binding, early in the filter pipeline

❸ If the feature isn’t enabled, short-circuits the pipeline by setting the context.Result
property

❹ Must be implemented to satisfy IResourceFilter, but not needed in this case

This simple resource filter demonstrates a few important

concepts, which are applicable to most filter types:

The filter is an attribute as well as a filter. This lets

you decorate your controller, action methods, and

Razor Pages with it using

[FeatureEnabled(IsEnabled = true)].

The filter interface consists of two methods:

*Executing, which runs before model binding,

and *Executed, which runs after the result has

executed. You must implement both, even if you

only need one for your use case.

The filter execution methods provide a context

object. This provides access to, among other

things, the HttpContext for the request and

metadata about the action method or Razor Page

that was selected.

To short-circuit the pipeline, set the

context.Result property to an

IActionResult instance. The framework will

execute this result to generate the response,

bypassing any remaining filters in the pipeline and

skipping the action method (or page handler)

entirely. In this example, if the feature isn’t

enabled, you bypass the pipeline by returning

BadRequestResult, which returns a 400 error

to the client.

By moving this logic into the resource filter, you can remove

it from your action methods and instead decorate the whole

API controller with a simple attribute:

[FeatureEnabled(IsEnabled = true)]

[Route("api/recipe")]

public class RecipeApiController : ControllerBase

You’ve extracted only two lines of code from your action

methods so far, but you’re on the right track. In the next

section we’ll move on to action filters and extract two more

filters from the action method code.

22.1.3 Action filters: Customizing model
binding and action results

Action filters run just after model binding, before the action

method executes. Thanks to this positioning, action filters

can access all the arguments that will be used to execute the

action method, which makes them a powerful way of

extracting common logic out of your actions.

On top of this, they run after the action method has

executed and can completely change or replace the

IActionResult returned by the action if you want. They

can even handle exceptions thrown in the action.

NOTE Action filters don’t execute for Razor Pages. Similarly, page
filters don’t execute for action methods.

The ASP.NET Core framework includes several action filters

out of the box. One of these commonly used filters is

ResponseCacheFilter, which sets HTTP caching headers

on your action-method responses.

NOTE I have described filters as being attributes, but that’s not
always the case. For example, the action filter is called
ResponseCacheFilter, but this type is internal to the
ASP.NET Core framework. To apply the filter, you use the public
[ResponseCache] attribute instead, and the framework
automatically configures the ResponseCacheFilter as
appropriate. This separation between attribute and filter is largely an
artifact of the internal design, but it can be useful, as you’ll see in
section 22.3.

Response caching vs. output caching

Caching is a broad topic that aims to improve the performance of an application over
the naive approach. But caching can also make debugging issues difficult and may

even be undesirable in some situations. Consequently, I often apply
ResponseCacheFilter to my action methods to set HTTP caching headers that
disable caching! You can read about this and other approaches to caching in
Microsoft’s “Response caching in ASP.NET Core” documentation at
http://mng.bz/2eGd.

Note that the ResponseCacheFilter applies cache control headers only to your
outgoing responses; it doesn’t cache the response on the server. These headers tell
the client (such as a browser) whether it can skip sending a request and reuse the
response. If you have relatively static endpoints, this can massively reduce the load on
your app.

This is different from output caching, introduced in .NET 7. Output caching involves
storing a generated response on the server and reusing it for subsequent requests. In
the simplest case, the response is stored in memory and reused for appropriate
requests, but you can configure ASP.NET Core to store the output elsewhere, such as
a database.

Output caching is generally more configurable than response caching, as you can
choose exactly what to cache and when to invalidate it, but it is also much more
resource-heavy. For details on how to enable output caching for an endpoint, see the
documentation at http://mng.bz/Bmlv.

The real power of action filters comes when you build filters

tailored to your own apps by extracting common code from

your action methods. To demonstrate, I’m going to create

two custom filters for RecipeApiController:

http://mng.bz/2eGd
http://mng.bz/Bmlv

ValidateModelAttribute—This will return

BadRequestResult if the model state indicates

that the binding model is invalid and will short-

circuit the action execution. This attribute used to

be a staple of my web API applications, but the

[ApiController] attribute now handles this

(and more) for you. Nevertheless, I think it’s

useful to understand what’s going on behind the

scenes.

EnsureRecipeExistsAttribute—This uses

each action method’s id argument to validate that

the requested Recipe entity exists before the

action method runs. If the Recipe doesn’t exist,

the filter returns NotFoundResult and short-

circuits the pipeline.

As you saw in chapter 16, the MVC framework automatically

validates your binding models before executing your actions

and Razor Page handlers, but it’s up to you to decide what to

do about it. For web API controllers, it’s common to return a

400 Bad Request response containing a list of the errors,

as shown in figure 22.1.

Figure 22.1 Posting data to a web API using Postman. The data
is bound to the action method’s binding model and validated. If
validation fails, it’s common to return a 400 Bad Request response
with a list of the validation errors.

You should ordinarily use the [ApiController] attribute

on your web API controllers, which gives you this behavior

(and uses Problem Details responses) automatically. But if

you can’t or don’t want to use that attribute, you can create

a custom action filter instead. The following listing shows a

basic implementation that is similar to the behavior you get

with the [ApiController] attribute.

Listing 22.5 The action filter for validating ModelState

public class ValidateModelAttribute : ActionFilterAttribute ❶
{

 public override void OnActionExecuting(❷
 ActionExecutingContext context) ❷
 {

 if (!context.ModelState.IsValid) ❸
 {

 context.Result = ❹
 new BadRequestObjectResult(context.ModelState); ❹
 }

 }

}

❶ For convenience, you derive from the ActionFilterAttribute base class.
❷ Overrides the Executing method to run the filter before the Action executes

❸ Model binding and validation have already run at this point, so you can check the state.
❹ If the model isn’t valid, sets the Result property, which short-circuits the action execution

This attribute is self-explanatory and follows a similar

pattern to the resource filter in section 22.1.2, but with a

few interesting points:

I have derived from the abstract

ActionFilterAttribute. This class

implements IActionFilter and

IResultFilter, as well as their async

counterparts, so you can override the methods you

need as appropriate. This prevents needing to add

an unused OnActionExecuted() method, but

using the base class is entirely optional and a

matter of preference.

Action filters run after model binding has taken

place, so context.ModelState contains the

validation errors if validation failed.

Setting the Result property on context short-

circuits the pipeline. But due to the position of the

action filter stage, only the action method

execution and later action filters are bypassed; all

the other stages of the pipeline run as though the

action executed as normal.

If you apply this action filter to your

RecipeApiController, you can remove this code from

the start of both the action methods, as it will run

automatically in the filter pipeline:

if (!ModelState.IsValid)

{

 return BadRequest(ModelState);

}

You’ll use a similar approach to remove the duplicate code

that checks whether the id provided as an argument to the

action methods corresponds to an existing Recipe entity.

The following listing shows the

EnsureRecipeExistsAttribute action filter. This uses

an instance of RecipeService to check whether the

Recipe exists and returns a 404 Not Found if it doesn’t.

Listing 22.6 An action filter to check whether a Recipe exists

public class EnsureRecipeExistsAtribute : ActionFilterAttribute

{

 public override void OnActionExecuting(

 ActionExecutingContext context)

 {

 var service = context.HttpContext.RequestServices ❶
 .GetService<RecipeService>(); ❶

 var recipeId = (int) context.ActionArguments["id"]; ❷
 if (!service.DoesRecipeExist(recipeId)) ❸
 {

 context.Result = new NotFoundResult(); ❹
 }

 }

}

❶ Fetches an instance of RecipeService from the DI container
❷ Retrieves the id parameter that will be passed to the action method when it executes

❸ Checks whether a Recipe entity with the given RecipeId exists
❹ If it doesn’t exist, returns a 404 Not Found result and short-circuits the pipeline

As before, you’ve derived from ActionFilterAttribute

for simplicity and overridden the OnActionExecuting

method. The main functionality of the filter relies on the

DoesRecipeExist() method of RecipeService, so the

first step is to obtain an instance of RecipeService. The

context parameter provides access to the HttpContext

for the request, which in turn lets you access the DI

container and use RequestServices.GetService() to

return an instance of RecipeService.

WARNING This technique for obtaining dependencies is known as
service location and is generally considered to be an antipattern. In
section 22.3 I’ll show you a better way to use the DI container to
inject dependencies into your filters.

As well as RecipeService, the other piece of information

you need is the id argument of the Get and Edit action

methods. In action filters, model binding has already

occurred, so the arguments that the framework will use to

execute the action method are already known and are

exposed on context.ActionArguments.

The action arguments are exposed as

Dictionary<string, object>, so you can obtain the id

parameter using the "id" string key. Remember to cast

the object to the correct type.

TIP Whenever I see magic strings like this, I always try to replace
them by using the nameof operator. Unfortunately, nameof often
won’t work for method arguments like this, so be careful when
refactoring your code. I suggest explicitly applying the action filter to
the action method (instead of globally, or to a controller) to remind
you about that implicit coupling.

With RecipeService and id in place, it’s a case of

checking whether the identifier corresponds to an existing

Recipe entity and if not, setting context.Result to

NotFoundResult. This short-circuits the pipeline and

bypasses the action method altogether.

NOTE Remember that you can have multiple action filters running in
a single stage. Short-circuiting the pipeline by setting
context.Result prevents later filters in the stage from running
and bypasses the action method execution.

Before we move on, it’s worth mentioning a special case for

action filters. The ControllerBase base class implements

IActionFilter and IAsyncActionFilter itself. If you

find yourself creating an action filter for a single controller

and want to apply it to every action in that controller, you

can override the appropriate methods on your controller

instead, as in the following listing.

Listing 22.7 Overriding action filter methods directly on
ControllerBase

public class HomeController : ControllerBase ❶
{

 public override void OnActionExecuting(❷
 ActionExecutingContext context) ❷
 { } ❷
 public override void OnActionExecuted(❸
 ActionExecutedContext context) ❸
 { } ❸
}

❶ Derives from the ControllerBase class
❷ Runs before any other action filters for every action in the controller

❸ Runs after all other action filters for every action in the controller

If you override these methods on your controller, they’ll run

in the action filter stage of the filter pipeline for every action

on the controller. The OnActionExecuting method runs

before any other action filters, regardless of ordering or

scope, and the OnActionExecuted method runs after all

other action filters.

TIP The controller implementation can be useful in some cases, but
you can’t control the ordering related to other filters. Personally, I
generally prefer to break logic into explicit, declarative filter attributes,
but it depends on the situation, and as always, the choice is yours.

With the resource and action filters complete, your controller

is looking much tidier, but there’s one aspect in particular

that would be nice to remove: the exception handling. In the

next section we’ll look at how to create a custom exception

filter for your controller and why you might want to do this

instead of using exception handling middleware.

22.1.4 Exception filters: Custom exception
handling for your action methods

In chapter 4 I went into some depth about types of error-

handling middleware you can add to your apps. These let

you catch exceptions thrown from any later middleware and

handle them appropriately. If you’re using exception

handling middleware, you may be wondering why we need

exception filters at all.

The answer to this is pretty much the same as I outlined in

chapter 21: filters are great for cross-cutting concerns, when

you need behavior that’s specific to MVC or that should only

apply to certain routes.

Both of these can apply in exception handling. Exception

filters are part of the MVC framework, so they have access

to the context in which the error occurred, such as the

action or Razor Page that was executing. This can be useful

for logging additional details when errors occur, such as the

action parameters that caused the error.

WARNING If you use exception filters to record action method
arguments, make sure you’re not storing sensitive data in your logs,
such as passwords or credit card details.

You can also use exception filters to handle errors from

different routes in different ways. Imagine you have both

Razor Pages and web API controllers in your app, as we do in

the recipe app. What happens when an exception is thrown

by a Razor Page?

As you saw in chapter 4, the exception travels back up the

middleware pipeline and is caught by exception handler

middleware. The exception handler middleware reexecutes

the pipeline and generates an HTML error page.

That’s great for your Razor Pages, but what about exceptions

in your web API controllers? If your API throws an exception

and consequently returns HTML generated by the exception

handler middleware, that’s going to break a client that called

the API expecting a JavaScript Object Notation (JSON)

response!

TIP The added complexity introduced by having to handle these two
very different clients is the reason I prefer to create separate
applications for APIs and server-rendered apps.

Instead, exception filters let you handle the exception in the

filter pipeline and generate an appropriate response body for

API clients. The exception handler middleware intercepts

only errors without a body, so it will let the modified web API

response pass untouched.

NOTE The [ApiController] attribute converts error
StatusCodeResults to a ProblemDetails object, but it
doesn’t catch exceptions.

Exception filters can catch exceptions from more than your

action methods and page handlers. They’ll run if an

exception occurs at these times:

During model binding or validation

When the action method or page handler is

executing

When an action filter or page filter is executing

You should note that exception filters won’t catch exceptions

thrown in any filters other than action and page filters, so

it’s important that your resource and result filters don’t

throw exceptions. Similarly, they won’t catch exceptions

thrown when executing an IActionResult, such as when

rendering a Razor view to HTML.

Now that you know why you might want an exception filter,

go ahead and implement one for RecipeApiController,

as shown next. This lets you safely remove the try-catch

block from your action methods, knowing that your filter will

catch any errors.

Listing 22.8 The HandleExceptionAttribute exception filter

public class HandleExceptionAttribute : ExceptionFilterAttribute ❶
{

 public override void OnException(ExceptionContext context) ❷
 {

 var error = new ProblemDetails ❸
 { ❸
 Title = "An error occurred", ❸
 Detail = context.Exception.Message, ❸
 Status = 500, ❸
 Type = " https://httpwg.org/specs/rfc9110.xhtml#status.500" ❸

 }; ❸

 context.Result = new ObjectResult(error) ❹
 { ❹
 StatusCode = 500 ❹
 }; ❹
 context.ExceptionHandled = true; ❺
 }

}

❶ ExceptionFilterAttribute is an abstract base class that implements IExceptionFilter.

❷ There’s only a single method to override for IExceptionFilter.
❸ Building a problem details object to return in the response

❹ Creates an ObjectResult to serialize the ProblemDetails and to set the response status
code

❺ Marks the exception as handled to prevent it propagating into the middleware pipeline

It’s quite common to have an exception filter in your

application if you are mixing API controllers and Razor Pages

in your application, but they’re not always necessary. If you

can handle all the exceptions in your application with a

single piece of middleware, ditch the exception filters and go

with that instead.

You’re almost done refactoring your

RecipeApiController. You have one more filter type to

add: result filters. Custom result filters tend to be relatively

rare in the apps I’ve written, but they have their uses, as

you’ll see.

22.1.5 Result filters: Customizing action
results before they execute

If everything runs successfully in the pipeline, and there’s no

short-circuiting, the next stage of the pipeline after action

filters is result filters. These run before and after the

IActionResult returned by the action method (or action

filters) is executed.

WARNING If the pipeline is short-circuited by setting
context.Result, the result filter stage won’t run, but the
IActionResult will still be executed to generate the response.
The exceptions to this rule are action and page filters, which only
short-circuit the action execution, as you saw in chapter 21. Result
filters run as normal, as though the action or page handler itself
generated the response.

Result filters run immediately after action filters, so many of

their use cases are similar, but you typically use result filters

to customize the way the IActionResult executes. For

example, ASP.NET Core has several result filters built into its

framework:

ProducesAttribute—This forces a web API

result to be serialized to a specific output format.

For example, decorating your action method with

[Produces ("application/xml")] forces the

formatters to try to format the response as XML,

even if the client doesn’t list XML in its Accept

header.

FormatFilterAttribute—Decorating an action

method with this filter tells the formatter to look

for a route value or query string parameter called

format and to use that to determine the output

format. For example, you could call

/api/recipe/11?format=json and

FormatFilter will format the response as JSON

or call api/recipe/11?format=xml and get the

response as XML.

NOTE Remember that you need to explicitly configure the XML
formatters if you want to serialize to XML, as described in chapter 20.
For details on formatting results based on the URL, see my blog entry
on the topic: http://mng.bz/1rYV.

As well as controlling the output formatters, you can use

result filters to make any last-minute adjustments before

IActionResult is executed and the response is generated.

As an example of the kind of flexibility available, in the

following listing I demonstrate setting the LastModified

header, based on the object returned from the action. This is

a somewhat contrived example—it’s specific enough to a

single action that it likely doesn’t warrant being moved to a

result filter—but I hope you get the idea.

Listing 22.9 Setting a response header in a result filter

public class AddLastModifedHeaderAttribute : ResultFilterAttribute ❶
{

 public override void OnResultExecuting(❷
 ResultExecutingContext context) ❷

http://mng.bz/1rYV

 {

 if (context.Result is OkObjectResult result ❸
 && result.Value is RecipeDetailViewModel detail) ❹
 {

 var viewModelDate = detail.LastModified; ❺
 context.HttpContext.Response ❺
 .GetTypedHeaders().LastModified = viewModelDate; ❺
 }

 }

}

❶ ResultFilterAttribute provides a useful base class you can override.
❷ You could also override the Executed method, but the response would already be sent by

then.

❸ Checks whether the action result returned a 200 Ok result with a view model.
❹ Checks whether the view model type is RecipeDetailViewModel . . .

❺ . . . and if it is, fetches the LastModified property and sets the Last-Modified header in the
response

I’ve used another helper base class here,

ResultFilterAttribute, so you need to override only a

single method to implement the filter. Fetch the current

IActionResult, exposed on context.Result, and

check that it’s an OkObjectResult instance with a

RecipeDetailViewModel value. If it is, fetch the

LastModified field from the view model and add a Last-

Modified header to the response.

TIP GetTypedHeaders() is an extension method that provides
strongly typed access to request and response headers. It takes care
of parsing and formatting the values for you. You can find it in the
Microsoft.AspNetCore.Http namespace.

As with resource and action filters, result filters can

implement a method that runs after the result has executed:

OnResultExecuted. You can use this method, for

example, to inspect exceptions that happened during the

execution of IActionResult.

WARNING Generally, you can’t modify the response in the
OnResultExecuted method, as you may have already started
streaming the response to the client.

We’ve finished simplifying the RecipeApiController

now. By extracting various pieces of functionality to filters,

the original controller in listing 22.1 has been simplified to

the version in listing 22.2. This is obviously a somewhat

extreme and contrived demonstration, and I’m not

advocating that filters should always be your go-to option.

TIP Filters should be a last resort in most cases. Where possible, it is
often preferable to use a simple private method in a controller, or to
push functionality into the domain instead of using filters. Filters
should generally be used to extract repetitive, HTTP-related, or
common cross-cutting code from your controllers.

There’s still one more filter we haven’t looked at yet,

because it applies only to Razor Pages: page filters.

22.1.6 Page filters: Customizing model
binding for Razor Pages

As already discussed, action filters apply only to controllers

and actions; they have no effect on Razor Pages. Similarly,

page filters have no effect on controllers and actions.

Nevertheless, page filters and action filters fulfill similar

roles.

As is the case for action filters, the ASP.NET Core framework

includes several page filters out of the box. One of these is

the Razor Page equivalent of the caching action filter,

ResponseCacheFilter, called

PageResponseCacheFilter. This works identically to the

action-filter equivalent I described in section 22.1.3, setting

HTTP caching headers on your Razor Page responses.

Page filters are somewhat unusual, as they implement three

methods, as discussed in section 22.1.2. In practice, I’ve

rarely seen a page filter that implements all three. It’s

unusual to need to run code immediately after page handler

selection and before model validation. It’s far more common

to perform a role directly analogous to action filters. The

following listing shows a page filter equivalent to the

EnsureRecipeExistsAttribute action filter.

Listing 22.10 A page filter to check whether a Recipe exists

public class PageEnsureRecipeExistsAttribute : Attribute, IPageFilter ❶
{

 public void OnPageHandlerSelected(❷
 PageHandlerSelectedContext context) ❷
 {} ❷

 public void OnPageHandlerExecuting(❸
 PageHandlerExecutingContext context) ❸
 {

 var service = context.HttpContext.RequestServices ❹
 .GetService<RecipeService>();

 var recipeId = (int) context.HandlerArguments["id"]; ❺
 if (!service.DoesRecipeExist(recipeId)) ❻

 {

 context.Result = new NotFoundResult(); ❼
 }

 }

 public void OnPageHandlerExecuted(❽
 PageHandlerExecutedContext context) ❽
 {} ❽
}

❶ Implements IPageFilter and as an attribute so you can decorate the Razor Page
PageModel

❷ Executed after handler selection and before model binding—not used in this example
❸ Executed after model binding and validation, and before page handler execution

❹ Fetches an instance of RecipeService from the DI container
❺ Retrieves the id parameter that will be passed to the page handler method when it

executes

❻ Checks whether a Recipe entity with the given RecipeId exists . . .
❼ . . . and if it doesn’t exist, returns a 404 Not Found result and short-circuits the pipeline

❽ Executed after page handler execution (or short-circuiting)—not used in this example

The page filter is similar to the action filter equivalent. The

most obvious difference is the need to implement three

methods to satisfy the IPageFilter interface. You’ll

commonly want to implement the

OnPageHandlerExecuting method, which runs after

model binding and validation, and before the page handler

executes.

A subtle difference between the action filter code and the

page filter code is that the action filter accesses the model-

bound action arguments using context

.ActionArguments. The page filter uses

context.HandlerArguments in the example, but there’s

also another option.

Remember from chapter 16 that Razor Pages often bind to

public properties on the PageModel using the

[BindProperty] attribute. You can access those

properties directly instead of using magic strings by casting

a HandlerInstance property to the correct PageModel

type and accessing the property directly, as in this example:

var recipeId = ((ViewRecipePageModel)context.HandlerInstance).Id

This is similar to the way the ControllerBase class

implements IActionFilter and PageModel implements

IPageFilter and IAsyncPageFilter. If you want to

create an action filter for a single Razor Page, you could save

yourself the trouble of creating a separate page filter and

override these methods directly in your Razor Page.

TIP I generally find it’s not worth the hassle of using page filters
unless you have a common requirement. The extra level of indirection
that page filters add, coupled with the typically bespoke nature of
individual Razor Pages, means that I normally find they aren’t worth
using. Your mileage may vary, of course, but don’t jump to them as a
first option.

That brings us to the end of this detailed look at each of the

filters in the MVC pipeline. Looking back and comparing

listings 22.1 and 22.2, you can see filters allowed us to

refactor the controllers and make the intent of each action

method much clearer. Writing your code in this way makes it

easier to reason about, as each filter and action has a single

responsibility.

In the next section we’ll take a slight detour into exactly

what happens when you short-circuit a filter. I’ve described

how to do this, by setting the context.Result property

on a filter, but I haven’t described exactly what happens. For

example, what if there are multiple filters in the stage when

it’s short-circuited? Do those still run?

22.2 Understanding pipeline short-
circuiting

In this short section you’ll learn about the details of filter-

pipeline short-circuiting. You’ll see what happens to the

other filters in a stage when the pipeline is short-circuited

and how to short-circuit each type of filter.

A brief warning: the topic of filter short-circuiting can be a

little confusing. Unlike middleware short-circuiting, which is

cut-and-dried, the filter pipeline is a bit more nuanced.

Luckily, you won’t often need to dig into it, but when you do,

you’ll be glad for the detail.

You short-circuit the authorization, resource, action, page,

and result filters by setting context.Result to

IActionResult. Setting an action result in this way causes

some or all of the remaining pipeline to be bypassed. But the

filter pipeline isn’t entirely linear, as you saw in chapter 21,

so short-circuiting doesn’t always do an about-face back

down the pipeline. For example, short-circuited action filters

bypass only action method execution; the result filters and

result execution stages still run.

The other difficultly is what happens if you have more than

one filter in a stage. Let’s say you have three resource filters

executing in a pipeline. What happens if the second filter

causes a short circuit? Any remaining filters are bypassed,

but the first resource filter has already run its *Executing

command, as shown in figure 22.2. This earlier filter gets to

run its *Executed command too, with

context.Cancelled = true, indicating that a filter in that

stage (the resource filter stage) short-circuited the pipeline.

Running result filters after short-circuits
with IAlwaysRunResultFilter

Result filters are designed to wrap the execution of an IActionResult returned by
an action method or action filter so that you can customize how the action result is
executed. However, this customization doesn’t apply to the IActionResult set
when you short-circuit the filter pipeline by setting context.Result in an
authorization filter, resource filter, or exception filter.

That’s often not a problem, as many result filters are designed to handle “happy path”
transformations. But sometimes you want to make sure that a transformation is always
applied to an IActionResult, regardless of whether it was returned by an action
method or a short-circuiting filter.

For those cases, you can implement IAlwaysRunResultFilter or
IAsyncAlwaysRunResultFilter. These interfaces extend (and are identical) to
the standard result filter interfaces, so they run like normal result filters in the filter
pipeline. But these interfaces mark the filter to also run after an authorization filter,
resource filter, or exception filter short-circuits the pipeline, where standard result filters
won’t run.

You can use IAlwaysRunResultFilter to ensure that certain action results are
always updated. For example, the documentation shows how to use an
IAlwaysRunResultFilter to convert a 415 StatusCodeResult to a 422
StatusCodeResult, regardless of the source of the action result. See the
“IAlwaysRunResultFilter and IAsyncAlwaysRunResultFilter” section of Microsoft’s
“Filters in ASP.NET Core” documentation: http://mng.bz/JDo0.

Figure 22.2 The effect of short-circuiting a resource filter on
other resource filters in that stage. Later filters in the stage
won’t run at all, but earlier filters run their OnResourceExecuted
function.

Understanding which other filters run when you short-circuit

a filter can be somewhat of a chore, but I’ve summarized

each filter in table 22.1. You’ll also find it useful to refer to

the pipeline diagrams in chapter 21 to visualize the shape of

the pipeline when thinking about short circuits.

http://mng.bz/JDo0

Table 22.1 The effect of short-circuiting filters on filter-pipeline
execution

Filter type How to short-
circuit?

What else runs?

Authorization
filters

Set context.Result. Runs only IAlwaysRunResultFilters.

Resource
filters

Set context.Result. Resource-filter *Executed functions
from earlier filters run with
context.Cancelled = true. Runs
IAlwaysRunResultFilters before
executing the IActionResult.

Action filters Set context.Result. Bypasses only action method
execution. Action filters earlier in the
pipeline run their *Executed methods
with context.Cancelled = true, then
result filters, result execution, and
resource filters’ *Executed methods
all run as normal.

Page filters Set context.Result in
OnPageHandlerSelected.

Bypasses only page handler
execution. Page filters earlier in the
pipeline run their *Executed
methods with context.Cancelled =
true, then result filters, result
execution, and resource filters’
*Executed methods all run as normal.

Exception
filters

Set context.Result
and Exception.Handled
= true.

All resource-filter *Executed functions
run. Runs IAlwaysRunResultFilters
before executing the IActionResult.

Result filters Set context.Cancelled
= true.

Result filters earlier in the pipeline
run their *Executed functions with
context .Cancelled = true. All
resource-filter *Executed functions
run as normal.

The most interesting point here is that short-circuiting an

action filter (or a page filter) doesn’t short-circuit much of

the pipeline at all. In fact, it bypasses only later action filters

and the action method execution itself. By building primarily

action filters, you can ensure that other filters, such as result

filters that define the output format, run as usual, even

when your action filters short-circuit.

The last thing I’d like to talk about in this chapter is how to

use DI with your filters. You saw in chapters 8 and 9 that DI

is integral to ASP.NET Core, and in the next section you’ll see

how to design your filters so that the framework can inject

service dependencies into them for you.

22.3 Using dependency injection with
filter attributes

In this section you’ll learn how to inject services into your

filters so you can take advantage of the simplicity of DI in

your filters. You’ll learn to use two helper filters to achieve

this, TypeFilterAttribute and

ServiceFilterAttribute, and you’ll see how they can

be used to simplify the action filter you defined in section

22.1.3.

The filters we’ve created so far have been created as

attributes. This is useful for applying filters to action

methods and controllers, but it means you can’t use DI to

inject services into the constructor. C# attributes don’t let

you pass dependencies into their constructors (other than

constant values), and they’re created as singletons, so

there’s only a single instance of an attribute for the lifetime

of your app. So what happens if you need to access a

transient or scoped service from inside the singleton

attribute?

Listing 22.6 showed one way of doing this, using a pseudo-

service locator pattern to reach into the DI container and

pluck out RecipeService at runtime. This works but is

generally frowned upon as a pattern in favor of proper DI.

So how can you add DI to your filters?

The key is to split the filter in two. Instead of creating a

class that’s both an attribute and a filter, create a filter class

that contains the functionality and an attribute that tells the

framework when and where to use the filter.

Let’s apply this to the action filter from listing 22.6.

Previously, I derived from ActionFilterAttribute and

obtained an instance of RecipeService from the context

passed to the method. In the following listing I show two

classes, EnsureRecipeExistsFilter and

EnsureRecipeExistsAttribute. The filter class is

responsible for the functionality and takes in

RecipeService as a constructor dependency.

Listing 22.11 Using DI in a filter by not deriving from Attribute

public class EnsureRecipeExistsFilter : IActionFilter ❶
{

 private readonly RecipeService _service; ❷

 public EnsureRecipeExistsFilter(RecipeService service) ❷
 { ❷
 _service = service; ❷
 } ❷
 public void OnActionExecuting(ActionExecutingContext context) ❸
 { ❸
 var recipeId = (int) context.ActionArguments["id"]; ❸
 if (!_service.DoesRecipeExist(recipeId)) ❸
 { ❸
 context.Result = new NotFoundResult(); ❸
 } ❸
 } ❸

 public void OnActionExecuted(ActionExecutedContext context) { } ❹
}

public class EnsureRecipeExistsAttribute : TypeFilterAttribute ❺
{

 public EnsureRecipeExistsAttribute() ❻
 : base(typeof(EnsureRecipeExistsFilter)) {} ❻
}

❶ Doesn’t derive from an Attribute class
❷ RecipeService is injected into the constructor.

❸ The rest of the method remains the same.
❹ You must implement the Executed action to satisfy the interface.

❺ Derives from TypeFilter, which is used to fill dependencies using the DI container
❻ Passes the type EnsureRecipeExistsFilter as an argument to the base TypeFilter

constructor

EnsureRecipeExistsFilter is a valid filter; you could

use it on its own by adding it as a global filter (as global

filters don’t need to be attributes). But you can’t use it

directly by decorating controller classes and action methods,

as it’s not an attribute. That’s where

EnsureRecipeExistsAttribute comes in.

You can decorate your methods with

EnsureRecipeExistsAttribute instead. This attribute

inherits from TypeFilterAttribute and passes the Type

of filter to create as an argument to the base constructor.

This attribute acts as a factory for

EnsureRecipeExistsFilter by implementing

IFilterFactory.

When ASP.NET Core initially loads your app, it scans your

actions and controllers, looking for filters and filter factories.

It uses these to form a filter pipeline for every action in your

app, as shown in figure 22.3.

Figure 22.3 The framework scans your app on startup to find
both filters and attributes that implement IFilterFactory. At
runtime, the framework calls CreateInstance() to get an instance
of the filter.

When an action decorated with

EnsureRecipeExistsAttribute is called, the framework

calls CreateInstance() on the IFilterFactory

attribute. This creates a new instance of

EnsureRecipeExistsFilter and uses the DI container

to populate its dependencies (RecipeService).

By using this IFilterFactory approach, you get the best

of both worlds: you can decorate your controllers and

actions with attributes, and you can use DI in your filters.

Out of the box, two similar classes provide this functionality,

which have slightly different behaviors:

TypeFilterAttribute—Loads all the filter’s

dependencies from the DI container and uses them

to create a new instance of the filter.

ServiceFilterAttribute—Loads the filter

itself from the DI container. The DI container takes

care of the service lifetime and building the

dependency graph. Unfortunately, you must also

explicitly register your filter with the DI container:

builder.Services.AddTransient<EnsureRecipeExistsFilter>();

TIP You can register your services with any lifetime you choose. If
your service is registered as a singleton, you can consider setting the
IsReusable flag, as described in the documentation:
http://mng.bz/d1JD.

If you choose to use ServiceFilterAttribute instead of

TypeFilterAttribute, and register the

EnsureRecipeExistsFilter as a service in the DI

container, you can apply the ServiceFilterAttribute

directly to an action method:

[ServiceFilter(typeof(EnsureRecipeExistsFilter))]

public IActionResult Index() => Ok();

Whether you choose to use TypeFilterAttribute or

ServiceFilterAttribute is somewhat a matter of

http://mng.bz/d1JD

preference, and you can always implement a custom

IFilterFactory if you need to. The key takeaway is that

you can now use DI in your filters. If you don’t need to use

DI for a filter, implement it as an attribute directly, for

simplicity.

TIP I like to create my filters as a nested class of the attribute class
when using this pattern. This keeps all the code nicely contained in a
single file and indicates the relationship between the classes.

That brings us to the end of this chapter on the filter

pipeline. Filters are a somewhat advanced topic, in that they

aren’t strictly necessary for building basic apps, but I find

them extremely useful for ensuring that my controller and

action methods are simple and easy to understand.

In the next chapter we’ll take our first look at securing your

app. We’ll discuss the difference between authentication and

authorization, the concept of identity in ASP.NET Core, and

how you can use the ASP.NET Core Identity system to let

users register and log in to your app.

Summary
The filter pipeline executes as part of the MVC or

Razor Pages execution. It consists of authorization

filters, resource filters, action filters, page filters,

exception filters, and result filters.

ASP.NET Core includes many built-in filters, but

you can also create custom filters tailored to your

application. You can use custom filters to extract

common cross-cutting functionality out of your

MVC controllers and Razor Pages, reducing

duplication and ensuring consistency across your

endpoints.

Authorization filters run first in the pipeline and

control access to APIs. ASP.NET Core includes an

[Authorization] attribute that you can apply

to action methods so that only logged-in users can

execute the action.

Resource filters run after authorization filters and

again after an IActionResult has been

executed. They can be used to short-circuit the

pipeline so that an action method is never

executed. They can also be used to customize the

model-binding process for an action method.

Action filters run after model binding has occurred

and before an action method executes. They also

run after the action method has executed. They

can be used to extract common code out of an

action method to prevent duplication. They don’t

execute for Razor Pages, only for MVC controllers.

The ControllerBase base class also implements

IActionFilter and IAsyncActionFilter.

They run at the start and end of the action filter

pipeline, regardless of the ordering or scope of

other action filters. They can be used to create

action filters that are specific to one controller.

Page filters run three times: after page handler

selection, after model binding, and after the page

handler method executes. You can use page filters

for similar purposes as action filters. Page filters

execute only for Razor Pages; they don’t run for

MVC controllers.

Razor Page PageModels implement

IPageFilter and IAsyncPageFilter, so they

can be used to implement page-specific page

filters. These are rarely used, as you can typically

achieve similar results with simple private

methods.

Exception filters execute after action and page

filters, when an action method or page handler has

thrown an exception. They can be used to provide

custom error handling specific to the action

executed.

Generally, you should handle exceptions at the

middleware level, but you can use exception filters

to customize how you handle exceptions for

specific actions, controllers, or Razor Pages.

Result filters run before and after an

IActionResult is executed. You can use them

to control how the action result is executed or to

completely change the action result that will be

executed.

All filters can short-circuit the pipeline by setting a

response. This generally prevents the request

progressing further in the filter pipeline, but the

exact behavior varies with the type of filter that is

short-circuited.

Result filters aren’t executed when you short-

circuit the pipeline using authorization, resource,

or exception filters. You can ensure that result

filters also run for these short-circuit cases by

implementing a result filter as

IAlwaysRunResultFilter or

IAsyncAlwaysRunResultFilter.

You can use ServiceFilterAttribute and

TypeFilterAttribute to allow dependency

injection in your custom filters.

ServiceFilterAttribute requires that you

register your filter and all its dependencies with

the DI container, whereas

TypeFilterAttribute requires only that the

filter’s dependencies have been registered.

Part 4 Securing and deploying your
applications
So far in the book you’ve learned how to use minimal APIs,

Razor Pages, and Model-View-Controller (MVC) controllers

to build both server-rendered applications and APIs. You

know how to dynamically generate JavaScript Object

Notation (JSON) and HTML code based on incoming

requests, and how to use configuration and dependency

injection to customize your app’s behavior at runtime. In

part 4 you’ll learn how to add users and profiles to your app

and how to publish and secure your apps.

In chapters 23 through 25 you’ll learn how to protect your

applications with authentication and authorization. In

chapter 23 you’ll see how you can add ASP.NET Core

Identity to your apps so that users can log in and enjoy a

customized experience. You’ll learn how to protect your

Razor Pages apps using authorization in chapter 24 so that

only some users can access certain pages in your app. In

chapter 25 you’ll learn how to apply the same protections to

your minimal API and web API applications.

Adding logging to your application is one of those activities

that’s often left until after you discover a problem in

production. Adding sensible logging from the get-go will

help you quickly diagnose and fix errors as they arise.

Chapter 26 introduces the logging framework built into

ASP.NET Core. You’ll see how you can use it to write log

messages to a wide variety of locations, whether it’s the

console, a file, or a third-party remote-logging service.

By this point you’ll have all the fundamentals to build a

production application with ASP.NET Core. In chapter 27 I

cover the steps required to make your app live, including

how to publish an app to Internet Information Services

(IIS) and how to configure the URLs your app listens on.

Before you expose your application to the world, an

important part of web development is securing your app

correctly. Even if you don’t feel you have any sensitive data

in your application, you must make sure to protect your

users from attacks by adhering to security best practices.

You’ll learn how to configure HTTPS for your application in

chapter 28 and why this is a vital step for modern web

development. Similarly, in chapter 29 I describe some

common security vulnerabilities, how attackers can exploit

them, and what you can do to protect your applications.

23 Authentication: Adding users to your
application with Identity

This chapter covers

Seeing how authentication works in web apps in ASP.NET Core
Creating a project using the ASP.NET Core Identity system
Adding user functionality to an existing web app
Customizing the default ASP.NET Core Identity UI

One of the selling points of a web framework like ASP.NET Core

is the ability to provide a dynamic app, customized to individual

users. Many apps have the concept of an “account” with the

service, which you can “sign in” to and get a different

experience.

Depending on the service, an account gives you varying things.

On some apps you may have to sign in to get access to

additional features, and on others you might see suggested

articles. On an e-commerce app, you’d be able to place orders

and view your past orders; on Stack Overflow you can post

questions and answers; on a news site you might get a

customized experience based on previous articles you’ve viewed.

When you think about adding users to your application, you

typically have two aspects to consider:

Authentication—The process of creating users and

letting them log in to your app

Authorization—Customizing the experience and

controlling what users can do, based on the current

logged-in user

In this chapter I’m going to be discussing the first of these

points, authentication and membership. In the next chapter I’ll

tackle the second point, authorization. In section 23.1 I discuss

the difference between authentication and authorization, how

authentication works in a traditional ASP.NET Core web app, and

ways you can architect your system to provide sign-in

functionality. I don’t discuss API applications in detail in this

chapter, though many of the authentication principles apply to

both styles of app. I discuss API applications in chapter 25.

In section 23.2 I introduce a user-management system called

ASP.NET Core Identity (Identity for short). Identity integrates

with Entity Framework Core (EF Core) and provides services for

creating and managing users, storing and validating passwords,

and signing users in and out of your app.

In section 23.3 you’ll create an app using a default template that

includes ASP.NET Core Identity out of the box. This gives you an

app to explore and see the features Identity provides, as well as

everything it doesn’t.

Creating an app is great for seeing how the pieces fit together,

but you’ll often need to add users and authentication to an

existing app. In section 23.4 you’ll see the steps required to add

ASP.NET Core Identity to an existing app.

In sections 23.5 and 23.6 you’ll learn how to replace pages from

the default Identity UI by scaffolding individual pages. In section

23.5 you’ll see how to customize the Razor templates to

generate different HTML on the user registration page, and in

section 23.6 you’ll learn how to customize the logic associated

with a Razor Page. You’ll see how to store additional information

about a user (such as their name or date of birth) and how to

provide them permissions that you can later use to customize

the app’s behavior (if the user is a VIP, for example).

Before we look at the ASP.NET Core Identity system specifically,

let’s take a look at authentication and authorization in ASP.NET

Core—what’s happening when you sign in to a website and how

you can design your apps to provide this functionality.

23.1 Introducing authentication and
authorization

When you add sign-in functionality to your app and control

access to certain functions based on the currently signed-in user,

you’re using two distinct aspects of security:

Authentication—The process of determining who you

are

Authorization—The process of determining what you’re

allowed to do

Generally you need to know who the user is before you can

determine what they’re allowed to do, so authentication always

comes first, followed by authorization. In this chapter we’re

looking only at authentication; we’ll cover authorization in

chapter 24.

In this section I start by discussing how ASP.NET Core thinks

about users, and I cover some of the terminology and concepts

that are central to authentication. I found this to be the hardest

part to grasp when I learned about authentication, so I’ll take it

slow.

Next, we’ll look at what it means to sign in to a traditional web

app. After all, you only provide your password and sign into an

app on a single page; how does the app know the request came

from you for subsequent requests?

23.1.1 Understanding users and claims in
ASP.NET Core

The concept of a user is baked into ASP.NET Core. In chapter 3

you learned that the HTTP server, Kestrel, creates an

HttpContext object for every request it receives. This object is

responsible for storing all the details related to that request,

such as the request URL, any headers sent, and the body of the

request.

The HttpContext object also exposes the current principal for

a request as the User property. This is ASP.NET Core’s view of

which user made the request. Any time your app needs to know

who the current user is or what they’re allowed to do, it can look

at the HttpContext.User principal.

DEFINITION You can think of the principal as the user of your app.

In ASP.NET Core, principals are implemented using the

ClaimsPrincipal class, which has a collection of claims

associated with it, as shown in figure 23.1.

Figure 23.1 The principal is the current user, implemented as
ClaimsPrincipal. It contains a collection of Claims that describe the
user.

You can think about claims as properties of the current user. For

example, you could have claims for things like email, name, and

date of birth.

DEFINITION A claim is a single piece of information about a principal; it
consists of a claim type and an optional value.

Claims can also be indirectly related to permissions and

authorization, so you could have a claim called

HasAdminAccess or IsVipCustomer. These would be stored

in the same way—as claims associated with the user principal.

NOTE Earlier versions of ASP.NET used a role-based approach to
security rather than a claims-based approach. The ClaimsPrincipal
used in ASP.NET Core is compatible with this approach for legacy
reasons, but you should use the claims-based approach for new apps.

Kestrel assigns a user principal to every request that arrives at

your app. Initially, that principal is a generic, anonymous,

unauthenticated principal with no claims. How do you log in, and

how does ASP.NET Core know that you’ve logged in on

subsequent requests?

In the next section we’ll look at how authentication works in a

traditional web app using ASP.NET Core and the process of

signing into a user account.

23.1.2 Authentication in ASP.NET Core: Services
and middleware

Adding authentication to any web app involves a few moving

parts. The same general process applies whether you’re building

a traditional web app or a client-side app (though there are often

differences in the latter, as I discuss in chapter 25):

1. The client sends an identifier and a secret to the app

to identify the current user. For example, you could

send an email address (identifier) and a password

(secret).

2. The app verifies that the identifier corresponds to a

user known by the app and that the corresponding

secret is correct.

3. If the identifier and secret are valid, the app can set

the principal for the current request, but it also needs

a way of storing these details for subsequent requests.

For traditional web apps, this is typically achieved by

storing an encrypted version of the user principal in a

cookie.

This is the typical flow for most web apps, but in this section I’m

going to look at how it works in ASP.NET Core. The overall

process is the same, but it’s good to see how this pattern fits

into the services, middleware, and Model-View-Controller (MVC)

aspects of an ASP.NET Core application. We’ll step through the

various pieces at play in a typical app when you sign in as a

user, what that means, and how you can make subsequent

requests as that user.

SIGNING IN TO AN ASP.NET CORE APPLICATION

When you first arrive on a site and sign in to a traditional web

app, the app will send you to a sign-in page and ask you to

enter your username and password. After you submit the form

to the server, the app redirects you to a new page, and you’re

magically logged in! Figure 23.2 shows what’s happening behind

the scenes in an ASP.NET Core app when you submit the form.

Figure 23.2 Signing in to an ASP.NET Core application. SignInManager
is responsible for setting HttpContext.User to the new principal and
serializing the principal to the encrypted cookie.

This figure shows the series of steps from the moment you

submit the login form on a Razor Page to the point the redirect is

returned to the browser. When the request first arrives, Kestrel

creates an anonymous user principal and assigns it to the

HttpContext .User property. The request is then routed to

the Login.cshtml Razor Page, which reads the email and

password from the request using model binding.

The meaty work happens inside the SignInManager service.

This is responsible for loading a user entity with the provided

username from the database and validating that the password

they provided is correct.

WARNING Never store passwords in the database directly. They should
be hashed using a strong one-way algorithm. The ASP.NET Core Identity
system does this for you, but it’s always wise to reiterate this point!

If the password is correct, SignInManager creates a new

ClaimsPrincipal from the user entity it loaded from the

database and adds the appropriate claims, such as the email

address. It then replaces the old, anonymous

HttpContext.User principal with the new, authenticated

principal.

Finally, SignInManager serializes the principal, encrypts it, and

stores it as a cookie. A cookie is a small piece of text that’s sent

back and forth between the browser and your app along with

each request, consisting of a name and a value.

This authentication process explains how you can set the user

for a request when they first log in to your app, but what about

subsequent requests? You send your password only when you

first log in to an app, so how does the app know that it’s the

same user making the request?

AUTHENTICATING USERS FOR SUBSEQUENT REQUESTS

The key to persisting your identity across multiple requests lies

in the final step of figure 23.2, where you serialized the principal

in a cookie. Browsers automatically send this cookie with all

requests made to your app, so you don’t need to provide your

password with every request.

ASP.NET Core uses the authentication cookie sent with the

requests to rehydrate a ClaimsPrincipal and set the

HttpContext.User principal for the request, as shown in

figure 23.3. The important thing to note is when this process

happens—in the AuthenticationMiddleware.

Figure 23.3 A subsequent request after signing in to an application.
The cookie sent with the request contains the user principal, which
is validated and used to authenticate the request.

When a request containing the authentication cookie is received,

Kestrel creates the default, unauthenticated, anonymous

principal and assigns it to the HttpContext.User principal.

Any middleware that runs before the

AuthenticationMiddleware sees the request as

unauthenticated, even if there’s a valid cookie.

TIP If it looks like your authentication system isn’t working, double-check
your middleware pipeline. Only middleware that runs after
AuthenticationMiddleware will see the request as
authenticated.

The AuthenticationMiddleware is responsible for setting

the current user for a request. The middleware calls the

authentication services, which reads the cookie from the

request, decrypts it, and deserializes it to obtain the

ClaimsPrincipal created when the user logged in.

The AuthenticationMiddleware sets the

HttpContext.User principal to the new, authenticated

principal. All subsequent middleware now knows the user

principal for the request and can adjust its behavior accordingly

(for example, displaying the user’s name on the home page or

restricting access to some areas of the app).

NOTE The AuthenticationMiddleware is responsible only for
authenticating incoming requests and setting the ClaimsPrincipal if
the request contains an authentication cookie. It is not responsible for
redirecting unauthenticated requests to the login page or rejecting
unauthorized requests; that is handled by the
AuthorizationMiddleware, as you’ll see in chapter 24.

The process described so far, in which a single app authenticates

the user when they log in and sets a cookie that’s read on

subsequent requests, is common with traditional web apps, but

it isn’t the only possibility. In chapter 25 we’ll take a look at

authentication for web API applications, used by client-side and

mobile apps and at how the authentication system changes for

those scenarios.

Another thing to consider is where you store the authentication

details for users of your app. In figure 23.2 I showed the

authentication services loading the user authentication details

from your app’s database, but that’s only one option.

Another option is to delegate the authentication responsibilities

to a third-party identity provider, such as Okta, Auth0, Azure

Active Directory B2B/B2C, or even Facebook. These manage

users for you, so user information and passwords are stored in

their database rather than your own. The biggest advantage of

this approach is that you don’t have to worry about making sure

your customer data is safe; you can be pretty sure that a third

party will protect it, as it’s their whole business.

TIP Wherever possible, I recommend this approach, as it delegates
security responsibilities to someone else. You can’t lose your users’
details if you never had them! Make sure to understand the differences in
providers, however. With a provider like Auth0, you would own the profiles
created, whereas with a provider like Facebook, you don’t!

Each provider has instructions on how to integrate with their

identity services, ideally using the OpenID Connect (OIDC)

specification. This typically involves configuring some

authentication services in your application, adding some

configuration, and delegating the authentication process itself to

the external provider. These providers can be used with your API

apps too, as I discuss in chapter 25.

NOTE Hooking up your apps and APIs to use an identity provider can
require a fair amount of tedious configuration, both in the app and the
identity provider, but if you follow the provider’s documentation you should

have plain sailing. For example, you can follow the documentation for
adding authentication to a traditional web app using Microsoft’s Identity
Platform here: http://mng.bz/4D9w.

While I recommend using an external identity provider where

possible, sometimes you really want to store all the

authentication details of your users directly in your app. That’s

the approach I describe in this chapter.

ASP.NET Core Identity (sometimes shortened to Identity) is a

system that simplifies building the user-management aspect of

your app. It handles all the boilerplate for saving and loading

users to a database, as well as best practices for security, such

as user lockout, password hashing, and multifactor

authentication.

DEFINITION Multifactor authentication (MFA), and the subset two-factor
authentication (2FA) require both a password and an extra piece of
information to sign in. This could involve sending a code to a user’s phone
by Short Message Service (SMS) or using a mobile app to generate a
code, for example.

In the next section I’m going to talk about the ASP.NET Core

Identity system, the problems it solves, when you’d want to use

it, and when you might not want to use it. In section 23.3 we

take a look at some code and see ASP.NET Core Identity in

action.

23.2 What is ASP.NET Core Identity?
Whenever you need to add nontrivial behaviors to your

application, you typically need to add users and authentication.

http://mng.bz/4D9w

That means you’ll need a way of persisting details about your

users, such as their usernames and passwords.

This might seem like a relatively simple requirement, but given

that this is related to security and people’s personal details, it’s

important you get it right. As well as storing the claims for each

user, it’s important to store passwords using a strong hashing

algorithm, to allow users to use MFA where possible, and to

protect against brute-force attacks, to name a few of the many

requirements. Although it’s perfectly possible to write all the

code to do this manually and to build your own authentication

and membership system, I highly recommend you don’t.

I’ve already mentioned third-party identity providers such as

Auth0 and Azure Active Directory. These Software as a Service

(SaaS) solutions take care of the user-management and

authentication aspects of your app for you. If you’re in the

process of moving apps to the cloud generally, solutions like

these can make a lot of sense.

If you can’t or don’t want to use these third-party solutions, I

recommend you consider using the ASP.NET Core Identity

system to store and manage user details in your database.

ASP.NET Core Identity takes care of most of the boilerplate

associated with authentication, but it remains flexible and lets

you control the login process for users if you need to.

NOTE ASP.NET Core Identity is an evolution of the legacy .NET
Framework ASP.NET Identity system, with some design improvements
and update to work with ASP.NET Core.

By default, ASP.NET Core Identity uses EF Core to store user

details in the database. If you’re already using EF Core in your

project, this is a perfect fit. Alternatively, it’s possible to write

your own stores for loading and saving user details in another

way.

Identity takes care of the low-level parts of user management,

as shown in table 23.1. As you can see from this list, Identity

gives you a lot, but not everything—by a long shot!

Table 23.1 Which services are and aren’t handled by ASP.NET Core
IdentityCH23.fm

Managed by ASP.NET Core
Identity

Requires implementing by the
developer

Database schema for storing users and
claims

UI for logging in, creating, and managing
users (Razor Pages or controllers);
included in an optional package that
provides a default UI

Creating a user in the database Sending email messages

Password validation and rules Customizing claims for users (adding new
claims)

Handling user account lockout (to prevent
brute-force attacks)

Configuring third-party identity providers

Managing and generating MFA/2FA codes Integration into MFA such as sending SMS
messages, time-based one-time password
(TOTP) authenticator apps, or hardware
keys

Generating password-reset tokens

Saving additional claims to the database

Managing third-party identity providers (for
example, Facebook, Google, and Twitter)

The biggest missing piece is the fact that you need to provide all

the UI for the application, as well as tying all the individual

Identity services together to create a functioning sign-in

process. That’s a big missing piece, but it makes the Identity

system extremely flexible.

Luckily, ASP.NET Core includes a helper NuGet library,

Microsoft.AspNetCore.Identity.UI, that gives you the whole of

the UI boilerplate for free. That’s over 30 Razor Pages with

functionality for logging in, registering users, using 2FA, and

using external login providers, among other features. You can

still customize these pages if you need to, but having a whole

login process working out of the box, with no code required on

your part, is a huge win. We’ll look at this library and how you

use it in sections 23.3 and 23.4.

For that reason, I strongly recommend using the default UI as a

starting point, whether you’re creating an app or adding user

management to an existing app. But the question remains as to

when you should use Identity and when you should consider

rolling your own.

I’m a big fan of Identity when you need to store your own users,

so I tend to suggest it in most situations, as it handles a lot of

security-related things for you that are easy to mess up. I’ve

heard several arguments against it, some valid and others less

so:

I already have user authentication in my app. Great!

In that case, you’re probably right, Identity may not

be necessary. But does your custom implementation

use MFA? Do you have account lockout? If not, and if

you need to add them, considering Identity may be

worthwhile.

I don’t want to use EF Core. That’s a reasonable

stance. You could be using Dapper, some other object-

relational mapper (ORM), or even a document

database for your database access. Luckily, the

database integration in Identity is pluggable, so you

could swap out the EF Core integration and use your

own database integration libraries instead.

My use case is too complex for Identity. Identity

provides lower-level services for authentication, so you

can compose the pieces however you like. It’s also

extensible, so if you need to, for example, transform

claims before creating a principal, you can.

I don’t like the default Razor Pages UI. The default UI

for Identity is entirely optional. You can still use the

Identity services and user management but provide

your own UI for logging in and registering users.

However, be aware that although doing this gives you

a lot of flexibility, it’s also easy to introduce a security

flaw in your user-management system—the last place

you want security flaws!

I’m not using Bootstrap to style my application. The

default Identity UI uses Bootstrap as a styling

framework, the same as the default ASP.NET Core

templates. Unfortunately, you can’t easily change that,

so if you’re using a different framework or need to

customize the HTML generated, you can still use

Identity, but you’ll need to provide your own UI.

I don’t want to build my own identity system. I’m glad

to hear it. Using an external identity provider like

Azure Active Directory or Auth0 is a great way of

shifting the responsibility and risk associated with

storing users’ personal information to a third party.

Any time you’re considering adding user management to your

ASP.NET Core application, I’d recommend looking at Identity as

a great option for doing so. In the next section I’ll demonstrate

what Identity provides by creating a new Razor Pages

application using the default Identity UI. In section 23.4 we’ll

take that template and apply it to an existing app instead, and in

sections 23.5 and 23.6 you’ll see how to override the default

pages.

23.3 Creating a project that uses
ASP.NET Core Identity

I’ve covered authentication and Identity in general terms, but

the best way to get a feel for it is to see some working code. In

this section we’re going to look at the default code generated by

the ASP.NET Core templates with Identity, how the project

works, and where Identity fits in.

23.3.1 Creating the project from a template

You’ll start by using the Visual Studio templates to generate a

simple Razor Pages application that uses Identity for storing

individual user accounts in a database.

TIP You can create a similar project using the .NET CLI by running
dotnet new webapp -au Individual. The Visual Studio template
uses a LocalDB database, but the dotnet new template uses SQLite
by default. To use LocalDB instead, run dotnet new webapp -au
Individual --use-local-db.

To create the template using Visual Studio, you must be using

the 2022 version or later and have the .NET 7 software

development kit (SDK) installed. Follow these steps:

1. Choose File > New > Project or choose Create a

New Project on the splash screen.

2. From the list of templates, choose ASP.NET Core

Web Application, ensuring that you select the C#

language template.

3. On the next screen, enter a project name, location,

and a solution name, and choose Create.

4. On the Additional Information screen, change the

Authentication Type to Individual Accounts, as

shown in figure 23.4. Leave the other settings at their

defaults, and choose Create to create the application.

Visual Studio automatically runs dotnet restore to

restore all the necessary NuGet packages for the project.

Figure 23.4 Choosing the authentication mode of the new
ASP.NET Core application template in VS 2022

5. Run the application to see the default app, as shown in

figure 23.5.

Figure 23.5 The default template with individual account
authentication looks similar to the no authentication template,
with the addition of a Login widget at the top right of the page.

NOTE The Visual Studio template configures the application to use
LocalDB and includes EF Core migrations for SQL Server. If you want to
use a different database provider, you can replace the configuration and
migrations with your database of choice, as described in chapter 12.

This template should look familiar, with one twist: you now have

Register and Login buttons! Feel free to play with the template—

creating a user, logging in and out—to get a feel for the app.

Once you’re happy, look at the code generated by the template

and the boilerplate it saved you from writing.

TIP Don’t forget to run the included EF Core migrations before trying to
create users. Run dotnet ef database update from the project
folder.

23.3.2 Exploring the template in Solution
Explorer

The project generated by the template, shown in figure 23.6, is

similar to the default no-authentication template. That’s largely

due to the default UI library, which brings in a big chunk of

functionality without exposing you to the nitty-gritty details.

Figure 23.6 The project layout of the default template with individual
authentication

The biggest addition is the Areas folder in the root of your

project, which contains an Identity subfolder. Areas are

sometimes used for organizing sections of functionality. Each

area can contain its own Pages folder, which is analogous to the

main Pages folder in your application.

DEFINITION Areas are used to group Razor Pages into separate
hierarchies for organizational purposes. I rarely use areas and prefer to
create subfolders in the main Pages folder instead. The one exception is
the Identity UI, which uses a separate Identity area by default. For more

details on areas, see Microsoft’s “Areas in ASP.NET Core” documentation:
http://mng.bz/7Vw9.

The Microsoft.AspNetCore.Identity.UI package creates Razor

Pages in the Identity area. You can override any page in this

default UI by creating a corresponding page in the

Areas/Identity/Pages folder in your application. In figure 23.6,

the default template adds a _ViewStart.cshtml file that overrides

the template that is included as part of the default UI. This file

contains the following code, which sets the default Identity UI

Razor Pages to use your project’s default _Layout.cshtml file:

@{

 Layout = "/Pages/Shared/_Layout.cshtml";

}

Some obvious questions at this point are “How do you know

what’s included in the default UI?” and “Which files can you

override?” You’ll see the answers to both in section 23.5, but in

general you should try to avoid overriding files where possible.

After all, the goal with the default UI is to reduce the amount of

code you have to write!

The Data folder in your new project template contains your

application’s EF Core DbContext, called

ApplicationDbContext, and the migrations for configuring

the database schema to use Identity. I’ll discuss this schema in

more detail in section 23.3.3.

The final additional file included in this template compared with

the no-authentication version is the partial Razor view

Pages/Shared/_LoginPartial.cshtml. This provides the Register

and Login links you saw in figure 23.5, and it’s rendered in the

default Razor layout, _Layout.cshtml.

http://mng.bz/7Vw9

If you look inside _LoginPartial.cshtml, you can see how routing

works with areas by combining the Razor Page path with an

{area} route parameter using Tag Helpers. For example, the

Login link specifies that the Razor Page /Account/Login is in

the Identity area using the asp-area attribute:

<a asp-area="Identity" asp-page="/Account/Login">Login

TIP You can reference Razor Pages in the Identity area by setting
the area route value to Identity. You can use the asp-area
attribute in Tag Helpers that generate links.

In addition to viewing the new files included thanks to ASP.NET

Core Identity, open Program.cs and look at the changes there.

The most obvious change is the additional configuration, which

adds all the services Identity requires, as shown in the following

listing.

Listing 23.1 Adding ASP.NET Core Identity services to
ConfigureServices

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

string connectionString = builder.Configuration ❶
 .GetConnectionString("DefaultConnection"); ❶
builder.Services.AddDbContext<ApplicationDbContext>(options => ❶
 options.UseSqlServer(connectionString)); ❶

builder.Services.AddDatabaseDeveloperPageExceptionFilter(); ❷

builder.Services.AddDefaultIdentity<IdentityUser>(options => ❸
 options.SignIn.RequireConfirmedAccount = true) ❹
 .AddEntityFrameworkStores<ApplicationDbContext>(); ❺
builder.Services.AddRazorPages();

// remaining configuration not show

❶ ASP.NET Core Identity uses EF Core, so it includes the standard EF Core configuration.

❷ Adds optional database services to enhance the DeveloperExceptionPage

❸ Adds the Identity system, including the default UI, and configures the user type as IdentityUser
❹ Requires users to confirm their accounts (typically by email) before they log in

❺ Configures Identity to store its data in EF Core

The AddDefaultIdentity() extension method does several

things:

Adds the core ASP.NET Core Identity services.

Configures the application user type to be

IdentityUser. This is the entity model that is stored

in the database and represents a “user” in your

application. You can extend this type if you need to,

but that’s not always necessary, as you’ll see in section

23.6.

Adds the default UI Razor Pages for registering,

logging in, and managing users.

Configures token providers for generating MFA and

email confirmation tokens.

Where is the authentication middleware?

If you’re already familiar with previous versions of ASP.NET Core, you might be surprised to
notice the lack of any authentication middleware in the default template. Given everything
you’ve learned about how authentication works, that should be surprising!

The answer to this riddle is that the authentication middleware is in the pipeline, even though
you can’t see it. As I discussed in chapter 4, WebApplication automatically adds many
middleware components to the pipeline for you, including the routing middleware, the
endpoint middleware, and—yes—the authentication middleware. So the reason you don’t
see it in the pipeline is that it’s already been added.

In fact, WebApplication also automatically adds the authorization middleware to the
pipeline, but in this case the template still calls UseAuthorization(). Why? For the

same reason that the template also calls UseRouting(): to control exactly where in the
pipeline the middleware is added.

As I mentioned in chapter 4, you can override the automatically added middleware by adding
it yourself manually. It’s crucial that the authorization middleware be placed after the routing
middleware, and as mentioned in chapter 4, you typically want to place your routing
middleware after the static file middleware. As the routing middleware needs to move, so
does the authorization middleware!

Traditionally, the authentication middleware is also placed after the routing middleware,
before the authorization middleware, but this isn’t crucial. The only requirement is that it’s
placed before any middleware that requires an authenticated user, such as the authorization
middleware.

If you wish, you can move the location of the authentication middleware by calling
UseAuthentication() at the appropriate point. I prefer to be explicit where possible, so
I typically take this approach, moving it between the call to UseRouting() and
UseAuthorization():

app.UseRouting();

app.UseAuthentication();

app.UseAuthorization();

app.MapRazorPages();

app.Run();

If you don’t place the authentication middleware at the correct point in the pipeline, you can
run into strange bugs where users aren’t authenticated correctly or authorization policies
aren’t applied correctly. The templates work out of the box, but you need to take care if
you’re working with an existing application or moving middleware around.

Now that you’ve got an overview of the additions made by

Identity, we’ll look in a bit more detail at the database schema

and how Identity stores users in the database.

23.3.3 The ASP.NET Core Identity data model

Out of the box, and in the default templates, Identity uses EF

Core to store user accounts. It provides a base DbContext that

you can inherit from, called IdentityDbContext, which uses

an IdentityUser as the user entity for your application.

In the template, the app’s DbContext is called

ApplicationDbContext. If you open this file, you’ll see it’s

sparse; it inherits from the IdentityDbContext base class I

described earlier, and that’s it. What does this base class give

you? The easiest way to see is to update a database with the

migrations and take a look.

Applying the migrations is the same process as in chapter 12.

Ensure that the connection string points to where you want to

create the database, open a command prompt in your project

folder, and run this command to update the database with the

migrations:

dotnet ef database update

TIP If you see an error after running the dotnet ef command, ensure
that you have the .NET tool installed by following the instructions provided
in section 12.3.1. Also make sure that you run the command from the
project folder, not the solution folder.

If the database doesn’t exist, the command-line interface (CLI)

creates it. Figure 23.7 shows what the database looks like for

the default template.

Figure 23.7 The database schema used by ASP.NET Core Identity

TIP If you’re using MS SQL Server (or LocalDB), you can use the SQL
Server Object Explorer in Visual Studio to browse tables and objects in
your database. See Microsoft’s “How to: Connect to a Database and
Browse Existing Objects” article for details: http://mng.bz/mg8r.

That’s a lot of tables! You shouldn’t need to interact with these

tables directly (Identity handles that for you), but it doesn’t hurt

to have a basic grasp of what they’re for:

__EFMigrationsHistory—The standard EF Core

migrations table that records which migrations have

been applied.

AspNetUsers—The user profile table itself. This is

where IdentityUser is serialized to. We’ll take a

closer look at this table shortly.

AspNetUserClaims—The claims associated with a given

user. A user can have many claims, so it’s modeled as

a many-to-one relationship.

http://mng.bz/mg8r

AspNetUserLogins and AspNetUserTokens—These are

related to third-party logins. When configured, these

let users sign in with a Google or Facebook account

(for example) instead of creating a password on your

app.

AspNetUserRoles, AspNetRoles, and AspNetRoleClaims

—These tables let you define roles that multiple users

can belong to. Each role can be assigned multiple

claims. These claims are effectively inherited by a user

principal when they are assigned that role.

You can explore these tables yourself, but the most interesting

of them is the AspNetUsers table, shown in figure 23.8.

Figure 23.8 The AspNetUsers table is used to store all the details
required to authenticate a user.

Most of the columns in the AspNetUsers table are security-

related—the user’s email, password hash, whether they have

confirmed their email, whether they have MFA enabled, and so

on. By default, there are no columns for additional information,

like the user’s name.

NOTE You can see from figure 23.8 that the primary key Id is stored as a
string column. By default, Identity uses Guid for the identifier. To
customize the data type, see the “Change the primary key type” section of
Microsoft’s “Identity model customization in ASP.NET Core”
documentation: http://mng.bz/5jdB.

http://mng.bz/5jdB

Any additional properties of the user are stored as claims in the

AspNetUserClaims table associated with that user. This lets you

add arbitrary additional information without having to change

the database schema to accommodate it. Want to store the

user’s date of birth? You could add a claim to that user; there’s

no need to change the database schema. You’ll see this in action

in section 23.6, when you add a Name claim to every new user.

NOTE Adding claims is often the easiest way to extend the default
IdentityUser, but you can add properties to the IdentityUser
directly. This requires database changes but is nevertheless useful in
many situations. You can read how to add custom data using this
approach here: http://mng.bz/Xd61.

It’s important to understand the difference between the

IdentityUser entity (stored in the AspNetUsers table) and the

ClaimsPrincipal, which is exposed on HttpContext

.User. When a user first logs in, an IdentityUser is loaded

from the database. This entity is combined with additional claims

for the user from the AspNetUserClaims table to create a

ClaimsPrincipal. It’s this ClaimsPrincipal that is used

for authentication and is serialized to the authentication cookie,

not the IdentityUser.

It’s useful to have a mental model of the underlying database

schema Identity uses, but in day-to-day work, you shouldn’t

have to interact with it directly. That’s what Identity is for, after

all! In the next section we’ll look at the other end of the scale:

the UI of the app and what you get out of the box with the

default UI.

http://mng.bz/Xd61

23.3.4 Interacting with ASP.NET Core Identity

You’ll want to explore the default UI yourself to get a feel for

how the pieces fit together, but in this section I’ll highlight what

you get out of the box, as well as areas that typically require

additional attention right away.

The entry point to the default UI is the user registration page of

the application, shown in figure 23.9. The register page enables

users to sign up to your application by creating a new

IdentityUser with an email and a password. After creating an

account, users are redirected to a screen indicating that they

should confirm their email. No email service is enabled by

default, as this is dependent on your configuring an external

email service. You can read how to enable email sending in

Microsoft’s “Account confirmation and password recovery in

ASP.NET Core” documentation at http://mng.bz/6gBo. Once you

configure this, users will automatically receive an email with a

link to confirm their account.

http://mng.bz/6gBo

Figure 23.9 The registration flow for users using the default Identity
UI. Users enter an email and password and are redirected to a
“confirm your email” page. This is a placeholder page by default, but
if you enable email confirmation, this page will update appropriately.

By default, user emails must be unique (you can’t have two

users with the same email), and the password must meet

various length and complexity requirements. You can customize

these options and more in the configuration lambda of the call to

AddDefaultIdentity() in Program.cs, as shown in the

following listing.

Listing 23.2 Customizing Identity settings in ConfigureServices in
Startup.cs

builder.Services.AddDefaultIdentity<IdentityUser>(options =>

{

 options.SignIn.RequireConfirmedAccount = true; ❶
 options.Lockout.AllowedForNewUsers = true; ❷
 options.Password.RequiredLength = 12; ❸

 options.Password.RequireNonAlphanumeric = false; ❸
 options.Password.RequireDigit = false; ❸
})

.AddEntityFrameworkStores<AppDbContext>();

❶ Requires users to confirm their account by email before they can log in

❷ Enables user lockout, to prevent brute-force attacks against user passwords
❸ Updates password requirements. Current guidance is to require long passwords.

After a user has registered with your application, they need to

log in, as shown in figure 23.10. On the right side of the login

page, the default UI templates describe how you, the developer,

can configure external login providers, such as Facebook and

Google. This is useful information for you, but it’s one of the

reasons you may need to customize the default UI templates, as

you’ll see in section 23.5.

Figure 23.10 Logging in with an existing user and managing the user
account. The Login page describes how to configure external login
providers, such as Facebook and Google. The user-management
pages allow users to change their email and password and to
configure MFA.

Once a user has signed in, they can access the management

pages of the identity UI. These allow users to change their

email, change their password, configure MFA with an

authenticator app, or delete all their personal data. Most of

these functions work without any effort on your part, assuming

that you’ve already configured an email-sending service.

That covers everything you get in the default UI templates. It

may seem somewhat minimal, but it covers a lot of the

requirements that are common to almost all apps. Nevertheless,

there are a few things you’ll nearly always want to customize:

Configure an email-sending service, to enable account

confirmation and password recovery, as described in

Microsoft’s “Account confirmation and password

recovery in ASP.NET Core” documentation:

http://mng.bz/vzy7.

Add a QR code generator for the enable MFA page, as

described in Microsoft’s “Enable QR Code generation

for TOTP authenticator apps in ASP.NET Core”

documentation: http://mng.bz/4Zmw.

Customize the register and login pages to remove the

documentation link for enabling external services.

You’ll see how to do this in section 23.5. Alternatively,

you may want to disable user registration entirely, as

described in Microsoft’s “Scaffold Identity in ASP.NET

Core projects” documentation: http://mng.bz/QmMG.

Collect additional information about users on the

registration page. You’ll see how to do this in section

23.6.

There are many more ways you can extend or update the

Identity system and lots of options available, so I encourage you

to explore Microsoft’s “Overview of ASP.NET Core authentication”

at http://mng.bz/XdGv to see your options. In the next section

you’ll see how to achieve another common requirement: adding

users to an existing application.

http://mng.bz/vzy7
http://mng.bz/4Zmw
http://mng.bz/QmMG
http://mng.bz/XdGv

23.4 Adding ASP.NET Core Identity to an
existing project

In this section we’re going to add users to an existing

application. The initial app is a Razor Pages app, based on the

recipe application from chapter 12. This is a working app that

you want to add user functionality to. In chapter 24 we’ll extend

this work to restrict control regarding who’s allowed to edit

recipes on the app.

By the end of this section, you’ll have an application with a

registration page, a login screen, and a manage account screen,

like the default templates. You’ll also have a persistent widget in

the top right of the screen showing the login status of the

current user, as shown in figure 23.11.

Figure 23.11 The recipe app after adding authentication, showing the
Login widget

As in section 23.3, I’m not going to customize any of the

defaults at this point, so we won’t set up external login

providers, email confirmation, or MFA. I’m concerned only with

adding ASP.NET Core Identity to an existing app that’s already

using EF Core.

TIP It’s worth making sure you’re comfortable with the new project
templates before you go about adding Identity to an existing project.
Create a test app, and consider setting up an external login provider,
configuring an email provider, and enabling MFA. This will take a bit of
time, but it’ll be invaluable for deciphering errors when you come to
adding Identity to existing apps.

To add Identity to your app, you’ll need to do the following:

1. Add the ASP.NET Core Identity NuGet packages.

2. Add the required Identity services to the dependency

injection (DI) container.

3. Update the EF Core data model with the Identity

entities.

4. Update your Razor Pages and layouts to provide links

to the Identity UI.

This section tackles each of these steps in turn. At the end of

section 23.4 you’ll have successfully added user accounts to the

recipe app.

23.4.1 Configuring the ASP.NET Core Identity
services

You can add ASP.NET Core Identity with the default UI to an

existing app by referencing two NuGet packages:

Microsoft.AspNetCore.Identity.EntityFrameworkCore—

Provides all the core Identity services and integration

with EF Core

Microsoft.AspNetCore.Identity.UI—Provides the default

UI Razor Pages

Update your project .csproj file to include these two packages:

<PackageReference

 Include="Microsoft.AspNetCore.Identity.EntityFrameworkCore"

 Version="7.0.0" />

<PackageReference

 Include="Microsoft.AspNetCore.Identity.UI" Version="7.0.0" />

These packages bring in all the additional required dependencies

you need to add Identity with the default UI. Be sure to run

dotnet restore after adding them to your project.

Once you’ve added the Identity packages, you can update your

Program.cs file to include the Identity services, as shown in the

following listing. This is similar to the default template setup you

saw in listing 23.1, but make sure to reference your existing

AppDbContext.

Listing 23.3 Adding ASP.NET Core Identity services to the recipe app

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddDbContext<AppDbContext>(options => ❶
 options.UseSqlite(builder.Configuration ❶
 .GetConnectionString("DefaultConnection")!)); ❶

builder.Services.AddDefaultIdentity<ApplicationUser>(options => ❷
 options.SignIn.RequireConfirmedAccount = true) ❷
 .AddEntityFrameworkStores<AppDbContext>(); ❸

builder.Services.AddRazorPages();

builder.Services.AddScoped<RecipeService>();

❶ The existing service configuration is unchanged.

❷ Adds the Identity services to the DI container and uses a custom user type, ApplicationUser
❸ Makes sure you use the name of your existing DbContext app

This adds all the necessary services and configures Identity to

use EF Core. I’ve introduced a new type here,

ApplicationUser, which we’ll use to customize our user

entity later. You’ll see how to add this type in section 23.4.2.

The next step is optional: add the

AuthenticationMiddleware after the call to

UseRouting() on WebApplication, as shown in the

following listing. As I mentioned previously, the authentication

middleware is added automatically by WebApplication, so

this step is optional.

Listing 23.4 Adding AuthenticationMiddleware to the recipe app

app.UseStaticFiles(); ❶

app.UseRouting();

app.UseAuthentication(); ❷
app.UseAuthorization(); ❸

app.MapRazorPages();

app.Run

❶ StaticFileMiddleware will never see requests as authenticated, even after you sign in.
❷ Adds AuthenticationMiddleware after UseRouting() and before UseAuthorization

❸ Middleware after AuthenticationMiddleware can read the user principal from HttpContext.User.

You’ve configured your app to use Identity, so the next step is

updating EF Core’s data model. You’re already using EF Core in

this app, so you need to update your database schema to

include the tables that Identity requires.

23.4.2 Updating the EF Core data model to
support Identity

The code in listing 23.3 won’t compile, as it references the

ApplicationUser type, which doesn’t yet exist. Create the

ApplicationUser in the Data folder, using the following line:

public class ApplicationUser : IdentityUser { }

It’s not strictly necessary to create a custom user type in this

case (for example, the default templates use the raw

IdentityUser), but I find it’s easier to add the derived type

now rather than try to retrofit it later if you need to add extra

properties to your user type.

In section 23.3.3 you saw that Identity provides a DbContext

called IdentityDbContext, which you can inherit from. The

IdentityDbContext base class includes the necessary

DbSet<T> to store your user entities using EF Core.

Updating an existing DbContext for Identity is simple: update

your app’s DbContext to inherit from IdentityDbContext

(which itself inherits from DbContext), as shown in the

following listing. We’re using the generic version of the base

Identity context in this case and providing the

ApplicationUser type.

Listing 23.5 Updating AppDbContext to use IdentityDbContext

public class AppDbContext : IdentityDbContext<ApplicationUser> ❶
{

 public AppDbContext(DbContextOptions<AppDbContext> options) ❷
 : base(options) ❷

 { } ❷

 public DbSet<Recipe> Recipes { get; set; } ❷
}

❶ Updates to inherit from the Identity context instead of directly from DbContext

❷ The remainder of the class remains the same.

Effectively, by updating the base class of your context in this

way, you’ve added a whole load of new entities to EF Core’s data

model. As you saw in chapter 12, whenever EF Core’s data

model changes, you need to create a new migration and apply

those changes to the database.

At this point, your app should compile, so you can add a new

migration called AddIdentitySchema using

dotnet ef migrations add AddIdentitySchema

The final step is updating your application’s Razor Pages and

layouts to reference the default identity UI. Normally, adding 30

new Razor Pages to your application would be a lot of work, but

using the default Identity UI makes it a breeze.

23.4.3 Updating the Razor views to link to the
Identity UI

Technically, you don’t have to update your Razor Pages to

reference the pages included in the default UI, but you probably

want to add the login widget to your app’s layout at a minimum.

You’ll also want to make sure that your Identity Razor Pages use

the same base Layout.cshtml as the rest of your application.

We’ll start by fixing the layout for your Identity pages. Create a

file at the “magic” path

Areas/Identity/Pages/_ViewStart.cshtml, and add the

following contents:

@{ Layout = "/Pages/Shared/_Layout.cshtml"; }

This sets the default layout for your Identity pages to your

application’s default layout. Next, add a _LoginPartial.cshtml file

in Pages/Shared to define the login widget, as shown in the

following listing. This is pretty much identical to the template

generated by the default template, but it uses our custom

ApplicationUser instead of the default IdentityUser.

Listing 23.6 Adding a _LoginPartial.cshtml to an existing app

@using Microsoft.AspNetCore.Identity

@using RecipeApplication.Data; ❶
@inject SignInManager<ApplicationUser> SignInManager ❷
@inject UserManager<ApplicationUser> UserManager ❷

<ul class="navbar-nav">

@if (SignInManager.IsSignedIn(User))

{

 <li class="nav-item">

 <a class="nav-link text-dark" asp-area="Identity"

 asp-page="/Account/Manage/Index" title="Manage">

 Hello @User.Identity.Name!

 <li class="nav-item">

 <form class="form-inline" asp-page="/Account/Logout"

 asp-route-returnUrl="@Url.Page("/", new { area = "" })"

 asp-area="Identity" method="post" >

 <button class="nav-link btn btn-link text-dark"

 type="submit">Logout</button>

 </form>

}

else

{

 <li class="nav-item">

 <a class="nav-link text-dark" asp-area="Identity"

 asp-page="/Account/Register">Register

 <li class="nav-item">

 <a class="nav-link text-dark" asp-area="Identity"

 asp-page="/Account/Login">Login

}

❶ Updates to your project’s namespace that contains ApplicationUser

❷ The default template uses IdentityUser. Update to use ApplicationUser instead.

This partial shows the current login status of the user and

provides links to register or sign in. All that remains is to render

the partial by calling

<partial name="_LoginPartial" />

in the main layout file of your app, _Layout.cshtml.

And there you have it: you’ve added Identity to an existing

application. The default UI makes doing this relatively simple,

and you can be sure you haven’t introduced any security holes

by building your own UI!

As I described in section 23.3.4, there are some features that

the default UI doesn’t provide and you need to implement

yourself, such as email confirmation and MFA QR code

generation. It’s also common to find that you want to update a

single page here and there. In the next section I’ll show how you

can replace a page in the default UI, without having to rebuild

the entire UI yourself.

23.5 Customizing a page in ASP.NET
Core Identity’s default UI

In this section you’ll learn how to use scaffolding to replace

individual pages in the default Identity UI. You’ll learn to scaffold

a page so that it overrides the default UI, allowing you to

customize both the Razor template and the PageModel page

handlers.

Having Identity provide the whole UI for your application is great

in theory, but in practice there are a few wrinkles, as you saw in

section 23.3.4. The default UI provides as much as it can, but

there are some things you may want to tweak. For example,

both the login and register pages describe how to configure

external login providers for your ASP.NET Core applications, as

you saw in figures 23.12 and 23.13. That’s useful information for

you as a developer, but it’s not something you want to be

showing to your users. Another often-cited requirement is the

desire to change the look and feel of one or more pages.

Luckily, the default Identity UI is designed to be incrementally

replaceable, so you can override a single page without having to

rebuild the entire UI yourself. On top of that, both Visual Studio

and the .NET CLI have functions that allow you to scaffold any

(or all) of the pages in the default UI so that you don’t have to

start from scratch when you want to tweak a page.

DEFINITION Scaffolding is the process of generating files in your project
that serve as the basis for customization. The Identity scaffolder adds
Razor Pages in the correct locations so they override equivalent pages
with the default UI. Initially, the code in the scaffolded pages matches that
in the default Identity UI, but you are free to customize it.

As an example of the changes you can easily make, we’ll

scaffold the registration page and remove the additional

information section about external providers. The following steps

describe how to scaffold the Register.cshtml page in Visual

Studio:

1. Add the

Microsoft.VisualStudio.Web.CodeGeneration.Design

and Microsoft .EntityFrameworkCore.Tools NuGet

packages to your project file, if they’re not already

added. Visual Studio uses these packages to scaffold

your application correctly, and without them you may

get an error running the scaffolder:

<PackageReference Version="7.0.0"

 Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" />

<PackageReference Version="7.0.0"

 Include="Microsoft.EntityFrameworkCore.Tools" />

2. Ensure that your project builds. If it doesn’t build, the

scaffolder will fail before adding your new pages.

3. Right-click your project, and choose Add > New

Scaffolded Item from the contextual menu.

4. In the selection dialog box, choose Identity from the

category, and choose Add.

5. In the Add Identity dialog box, select the

Account/Register page, and select your application’s

AppDbContext as the Data context class, as shown in

figure 23.12. Choose Add to scaffold the page.

Figure 23.12 Using Visual Studio to scaffold Identity pages. The
generated Razor Pages will override the versions provided by
the default UI.

TIP To scaffold the registration page using the .NET CLI, install the
required tools and packages as described in Microsoft’s “Scaffold Identity
in ASP.NET Core projects” documentation: http://mng.bz/QPRv. Then run
dotnet aspnet-codegenerator identity -dc

http://mng.bz/QPRv

RecipeApplication.Data.AppDbContext --files
"Account.Register".

Visual Studio builds your application and then generates the

Register.cshtml page for you, placing it in the

Areas/Identity/Pages/Account folder. It also generates several

supporting files, as shown in figure 23.13. These are required

mostly to ensure that your new Register.cshtml page can

reference the remaining pages in the default Identity UI.

Figure 23.13 The scaffolder generates the Register.cshtml Razor
Page, along with supporting files required to integrate with the
remainder of the default Identity UI.

We’re interested in the Register.cshtml page, as we want to

customize the UI on the Register page, but if we look inside the

code-behind page, Register.cshtml.cs, we see how much

complexity the default Identity UI is hiding from us. It’s not

insurmountable (we’ll customize the page handler in section

23.6), but it’s always good to avoid writing code if we can help

it.

Now that you have the Razor template in your application, you

can customize it to your heart’s content. The downside is that

you’re now maintaining more code than you were with the

default UI. You didn’t have to write it, but you may still have to

update it when a new version of ASP.NET Core is released.

I like to use a bit of a trick when it comes to overriding the

default Identity UI like this. In many cases, you don’t want to

change the page handlers for the Razor Page—only the Razor

view. You can achieve this by deleting the Register.cshtml.cs

PageModel file, and pointing your newly scaffolded .cshtml file

at the original PageModel, which is part of the default UI NuGet

package.

The other benefit of this approach is that you can delete some of

the other files that were autoscaffolded. In total, you can make

the following changes:

Update the @model directive in Register.cshtml to

point to the default UI PageModel:

@model

➥ Microsoft.AspNetCore.Identity.UI.V5.Pages.Account.Internal.RegisterModel

Update Areas/Identity/Pages/_ViewImports.cshtml to

the following:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Delete

Areas/Identity/Pages/_ValidationScriptsPartial.cshtml.

Delete

Areas/Identity/Pages/Account/Register.cshtml.cs.

Delete

Areas/Identity/Pages/Account/_ViewImports.cshtml.

After making all these changes, you’ll have the best of both

worlds: you can update the default UI Razor Pages HTML without

taking on the responsibility of maintaining the default UI code-

behind.

TIP In the source code for the book, you can see these changes in action,
where the Register view has been customized to remove the references
to external identity providers.

Unfortunately, it’s not always possible to use the default UI

PageModel. Sometimes you need to update the page handlers,

such as when you want to change the functionality of your

Identity area rather than only the look and feel. A common

requirement is needing to store additional information about a

user, as you’ll see in the next section.

23.6 Managing users: Adding custom
data to users

In this section you’ll see how to customize the

ClaimsPrincipal assigned to your users by adding claims to

the AspNetUserClaims table when the user is created. You’ll also

see how to access these claims in your Razor Pages and

templates.

Often, the next step after adding Identity to an application is

customizing it. The default templates require only an email and

password to register. What if you need more details, like a

friendly name for the user? Also, I’ve mentioned that we use

claims for security, so what if you want to add a claim called

IsAdmin to certain users?

You know that every user principal has a collection of claims, so

conceptually, adding any claim requires adding it to the user’s

collection. There are two main times that you would want to

grant a claim to a user:

For every user, when they register on the app—For

example, you might want to add a Name field to the

Register form and add that as a claim to the user

when they register.

Manually, after the user has registered—This is

common for claims used as permissions, where an

existing user might want to add an IsAdmin claim to

a specific user after they have registered on the app.

In this section I’ll show you the first approach, automatically

adding new claims to a user when they’re created. The latter

approach is more flexible and ultimately is the approach many

apps will need, especially line-of-business apps. Luckily, there’s

nothing conceptually difficult to it; it requires a simple UI that

lets you view users and add a claim through the same

mechanism I’ll show here.

TIP Another common approach is to customize the IdentityUser
entity, by adding a Name property, for example. This approach is
sometimes easier to work with if you want to give users the ability to edit
that property. Microsoft’s “Add, download, and delete custom user data to
Identity in an ASP.NET Core project” documentation describes the steps
required to achieve that: http://mng.bz/aoe7.

http://mng.bz/aoe7

Let’s say you want to add a new Claim to a user, called

FullName. A typical approach would be as follows:

1. Scaffold the Register.cshtml Razor Page, as you did in

section 23.5.

2. Add a Name field to the InputModel in the

Register.cshtml.cs PageModel.

3. Add a Name input field to the Register.cshtml Razor

view template.

4. Create the new ApplicationUser entity as before in

the OnPost() page handler by calling CreateAsync

on UserManager<ApplicationUser>.

5. Add a new Claim to the user by calling

UserManager.AddClaimAsync().

6. Continue the method as before, sending a confirmation

email or signing the user in if email confirmation is not

required.

Steps 1-3 are fairly self-explanatory and require only updating

the existing templates with the new field. Steps 4-6 take place in

Register.cshtml.cs in the OnPostAsync() page handler, which

is summarized in the following listing. In practice, the page

handler has more error checking, boilerplate, extra features, and

abstraction. I’ve simplified the code in listing 23.7 to focus on

the additional lines that add the extra Claim to the

ApplicationUser; you can find the full code in the sample

code for this chapter.

Listing 23.7 Adding a custom claim to a new user in the
Register.cshtml.cs page

public async Task<IActionResult> OnPostAsync(string returnUrl = null)

{

 if (ModelState.IsValid)

 {

 var user = new ApplicationUser { ❶
 UserName = Input.Email, Email = Input.Email }; ❶
 var result = await _userManager.CreateAsync(❷
 user, Input.Password); ❷
 if (result.Succeeded)

 {

 var claim = new Claim("FullName", Input.Name); ❸
 await _userManager.AddClaimAsync(user, claim); ❹
 var code = await _userManager ❺
 .GenerateEmailConfirmationTokenAsync(user); ❺
 await _emailSender.SendEmailAsync(❺
 Input.Email, "Confirm your email", code); ❺
 await _signInManager.SignInAsync(user); ❻
 return LocalRedirect(returnUrl);

 }

 foreach (var error in result.Errors) ❼
 { ❼
 ModelState.AddModelError(❼
 string.Empty, error.Description); ❼
 } ❼
 } ❼
 return Page(); ❼
}

❶ Creates an instance of the ApplicationUser entity
❷ Validates that the provided password meets requirements, and creates the user in the database

❸ Creates a claim, with a string name of “FullName” and the provided value
❹ Adds the new claim to the ApplicationUser’s collection

❺ Sends a confirmation email to the user, if you have configured the email sender
❻ Signs the user in by setting the HttpContext.User; the principal will include the custom claim

❼ There was a problem creating the user. Adds the errors to the ModelState and redisplays the
page.

TIP Listing 23.7 shows how you can add extra claims at registration time,
but you will often need to add more data later, such as permission-related
claims or other information. You will need to create additional endpoints

and pages for adding this data, securing the pages as appropriate (so that
users can’t update their own permissions, for example).

This is all that’s required to add the new claim, but you’re not

using it anywhere currently. What if you want to display it? Well,

you’ve added a claim to the ClaimsPrincipal, which was

assigned to the HttpContext.User property when you called

SignInAsync. That means you can retrieve the claims

anywhere you have access to the ClaimsPrincipal—including

in your page handlers and in view templates. For example, you

could display the user’s FullName claim anywhere in a Razor

template with the following statement:

@User.Claims.FirstOrDefault(x=>x.Type == "FullName")?.Value

This finds the first claim on the current user principal with a

Type of "FullName" and prints the assigned value (or, if the

claim is not found, prints nothing). The Identity system even

includes a handy extension method that tidies up this LINQ

expression (found in the System.Security.Claims

namespace):

@User.FindFirstValue("FullName")

With that last tidbit, we’ve reached the end of this chapter on

ASP.NET Core Identity. I hope you’ve come to appreciate the

amount of effort using Identity can save you, especially when

you make use of the default Identity UI package.

Adding user accounts and authentication to an app is typically

the first step in customizing your app further. Once you have

authentication, you can have authorization, which lets you lock

down certain actions in your app, based on the current user. In

the next chapter you’ll learn about the ASP.NET Core

authorization system and how you can use it to customize your

apps; in particular, the recipe application, which is coming along

nicely!

Summary
Authentication is the process of determining who you

are, and authorization is the process of determining

what you’re allowed to do. You need to authenticate

users before you can apply authorization.

Every request in ASP.NET Core is associated with a

user, also known as a principal. By default, without

authentication, this is an anonymous user. You can use

the claims principal to behave differently depending on

who made a request.

The current principal for a request is exposed on

HttpContext.User. You can access this value from

your Razor Pages and views to find out properties of

the user such as their, ID, name, or email.

Every user has a collection of claims. These claims are

single pieces of information about the user. Claims

could be properties of the physical user, such as Name

and Email, or they could be related to things the user

has, such as HasAdminAccess or IsVipCustomer.

Legacy versions of ASP.NET used roles instead of

claims. You can still use roles if you need to, but you

should typically use claims where possible.

Authentication in ASP.NET Core is provided by

AuthenticationMiddleware and a number of

authentication services. These services are responsible

for setting the current principal when a user logs in,

saving it to a cookie, and loading the principal from

the cookie on subsequent requests.

The AuthenticationMiddleware is added

automatically by WebApplication. You can ensure

that it’s inserted at a specific point in the middleware

pipeline by calling UseAuthentication(). It must

be placed before any middleware that requires

authentication, such as UseAuthorization().

ASP.NET Core Identity handles low-level services

needed for storing users in a database, ensuring that

their passwords are stored safely, and for logging

users in and out. You must provide the UI for the

functionality yourself and wire it up to the Identity

subsystem.

The Microsoft.AspNetCore.Identity.UI package provides

a default UI for the Identity system and includes email

confirmation, MFA, and external login provider

support. You need to do some additional configuration

to enable these features.

The default template for Web Application with

Individual Account Authentication uses ASP.NET Core

Identity to store users in the database with EF Core. It

includes all the boilerplate code required to wire the UI

up to the Identity system.

You can use the UserManager<T> class to create new

user accounts, load them from the database, and

change their passwords. SignInManager<T> is used

to sign a user in and out by assigning the principal for

the request and by setting an authentication cookie.

The default UI uses these classes for you, to facilitate

user registration and login.

You can update an EF Core DbContext to support

Identity by deriving from

IdentityDbContext<TUser>, where TUser is a

class that derives from IdentityUser.

You can add additional claims to a user using the

UserManager<TUser> .AddClaimAsync(TUser

user, Claim claim) method. These claims are

added to the HttpContext.User object when the

user logs in to your app.

Claims consist of a type and a value. Both values are

strings. You can use standard values for types exposed

on the ClaimTypes class, such as ClaimTypes

.GivenName and ClaimTypes.FirstName, or you

can use a custom string, such as "FullName".

24 Authorization: Securing your
application

This chapter covers

Using authorization to control who can use your app
Using claims-based authorization with policies
Creating custom policies to handle complex requirements
Authorizing a request depending upon the resource being
accessed
Hiding elements from a Razor template that the user is
unauthorized to access

In chapter 23 I showed you how to add users to an ASP.NET

Core application by adding authentication. With

authentication, users can register and log in to your app

using an email address and password. Whenever you add

authentication to an app, you inevitably find you want to be

able to restrict what some users can do. The process of

determining whether a user can perform a given action on

your app is called authorization.

On an e-commerce site, for example, you may have admin

users who are allowed to add new products and change

prices, sales users who are allowed to view completed

orders, and customer users who are allowed only to place

orders and buy products.

In this chapter I show how to use authorization in an app to

control what your users can do. In section 24.1 I introduce

authorization and put it in the context of a real-life scenario

you’ve probably experienced: an airport. I describe the

sequence of events, from checking in, to passing through

security, to entering an airport lounge, and you’ll see how

these relate to the authorization concepts in this chapter.

In section 24.2 I show how authorization fits into an

ASP.NET Core web application and how it relates to the

ClaimsPrincipal class you saw in the previous chapter.

You’ll see how to enforce the simplest level of authorization

in an ASP.NET Core app, ensuring that only authenticated

users can execute a Razor Page or MVC action. This chapter

focuses on authorization in Razor Pages and Model-View-

Controller (MVC) controllers; in chapter 25 you’ll learn how

the same principles apply to minimal API applications.

We’ll extend that approach in section 24.3 by adding the

concept of policies. These let you set specific requirements

for a given authenticated user, requiring that they have

specific pieces of information to execute an action or Razor

Page.

You’ll use policies extensively in the ASP.NET Core

authorization system, so in section 24.4 we’ll explore how to

handle more complex scenarios. You’ll learn about

authorization requirements and handlers, and how you can

combine them to create specific policies that you can apply

to your Razor Pages and actions.

Sometimes whether a user is authorized depends on which

resource or document they’re attempting to access. A

resource is anything that you’re trying to protect, so it could

be a document or a post in a social media app. For example,

you may allow users to create documents or to read

documents from other users, but to edit only documents

that they created themselves. This type of authorization,

where you need the details of the document to determine if

the user is authorized, is called resource-based

authorization, and it’s the focus of section 24.5.

In the final section of this chapter I show how you can

extend the resource-based authorization approach to your

Razor view templates. This lets you modify the UI to hide

elements that users aren’t authorized to interact with. In

particular, you’ll see how to hide the Edit button when a user

isn’t authorized to edit the entity.

We’ll start by looking more closely at the concept of

authorization, how it differs from authentication, and how it

relates to real-life concepts you might see in an airport.

24.1 Introduction to authorization
In this section I provide an introduction to authorization and

discuss how it compares with authentication. I use the real-

life example of an airport as a case study to illustrate how

claims-based authorization works.

For people who are new to web apps and security,

authentication and authorization can be a little daunting. It

certainly doesn’t help that the words look so similar! The two

concepts are often used together, but they’re definitely

distinct:

Authentication—The process of determining who

made a request

Authorization—The process of determining whether

the requested action is allowed

Typically, authentication occurs first so that you know who is

making a request to your app. For traditional web apps, your

app authenticates a request by checking the encrypted

cookie that was set when the user logged in (as you saw in

chapter 23). API applications typically use a header instead

of a cookie for authentication, but the overall process is the

same, as you’ll see in chapter 25.

Once a request is authenticated and you know who is

making the request, you can determine whether they’re

allowed to execute an action on your server. This process is

called authorization and is the focus of this chapter.

Before we dive into code and start looking at authorization in

ASP.NET Core, I’ll put these concepts into a real-life scenario

that I hope you’re familiar with: checking in at an airport. To

enter an airport and board a plane, you must pass through

several steps: an initial step to prove who you are

(authentication) and subsequent steps that check whether

you’re allowed to proceed (authorization). In simplified form,

these might look like this:

1. Show your passport at the check-in desk. Receive

a boarding pass.

2. Show your boarding pass to enter security. Pass

through security.

3. Show your frequent-flyer card to enter the airline

lounge. Enter the lounge.

4. Show your boarding pass to board the flight. Enter

the airplane.

Obviously, these steps, also shown in figure 24.1, will vary

somewhat in real life (I don’t have a frequent-flyer card!),

but we’ll go with them for now. Let’s explore each step a

little further.

Figure 24.1 When boarding a plane at an airport, you pass
through several authorization steps. At each authorization step,
you must present a claim in the form of a boarding pass or a
frequent-flyer card. If you’re not authorized, access is denied.

When you arrive at the airport, the first thing you do is go to

the check-in counter. Here, you can purchase a plane ticket,

but to do so, you need to prove who you are by providing a

passport; you authenticate yourself. If you’ve forgotten your

passport, you can’t authenticate, and you can’t go any

further.

Once you’ve purchased your ticket, you’re issued a boarding

pass, which says which flight you’re on. We’ll assume that it

also includes a BoardingPassNumber. You can think of

this number as an additional claim associated with your

identity.

DEFINITION A claim is a piece of information about a user that
consists of a type and an optional value.

The next step is security. The security guards ask you to

present your boarding pass for inspection, which they use to

check that you have a flight and so are allowed deeper into

the airport. This is an authorization process: you must have

the required claim (a BoardingPassNumber) to proceed.

If you don’t have a valid BoardingPassNumber, there are

two possibilities for what happens next:

If you haven’t yet purchased a ticket—You’ll be

directed back to the check-in desk, where you can

authenticate and purchase a ticket. At that point,

you can try to enter security again.

If you have an invalid ticket—You won’t be allowed

through security, and there’s nothing else you can

do. If, for example, you show up with a boarding

pass a week late for your flight, they probably

won’t let you through. (Ask me how I know!)

Once you’re through security, you need to wait for your flight

to start boarding, but unfortunately, there aren’t any seats

free. Typical! Luckily, you’re a regular flyer, and you’ve

notched up enough miles to achieve Gold frequent-flyer

status, so you can use the airline lounge.

You head to the lounge, where you’re asked to present your

Gold frequent-flyer card to the attendant, and they let you

in. This is another example of authorization. You must have

a FrequentFlyerClass claim with a value of Gold to

proceed.

NOTE You’ve used authorization twice so far in this scenario. Each
time, you presented a claim to proceed. In the first case, the
presence of any BoardingPassNumber was sufficient, whereas
for the FrequentFlyerClass claim, you needed the specific
value of Gold.

When you’re boarding the airplane, you have one final

authorization step, in which you must present the

BoardingPassNumber claim again. You presented this

claim earlier, but boarding the aircraft is a distinct action

from entering security, so you have to present it again.

This whole scenario has lots of parallels with requests to a

web app:

Both processes start with authentication.

You must prove who you are to retrieve the claims

you need for authorization.

You use authorization to protect sensitive actions

like entering security and the airline lounge.

I’ll reuse this airport scenario throughout the chapter to

build a simple web application that simulates the steps you

take in an airport. We’ve covered the concept of

authorization in general, so in the next section we’ll look at

how authorization works in ASP.NET Core. We’ll start with

the most basic level of authorization, ensuring that only

authenticated users can execute an action, and look at what

happens when you try to execute such an action.

24.2 Authorization in ASP.NET Core
In this section you’ll see how the authorization principles

described in the previous section apply to an ASP.NET Core

application. You’ll learn about the role of the [Authorize]

attribute and AuthorizationMiddleware in authorizing

requests to Razor Pages and MVC actions. Finally, you’ll learn

about the process of preventing unauthenticated users from

executing endpoints and what happens when users are

unauthorized.

The ASP.NET Core framework has authorization built in, so

you can use it anywhere in your app, but it’s most common

to apply authorization via the

AuthorizationMiddleware. The

AuthorizationMiddleware should be placed after both

the routing middleware and the authentication middleware

but before the endpoint middleware, as shown in figure

24.2.

Figure 24.2 Authorization occurs after an endpoint has been
selected and after the request is authenticated, but before the
action method or Razor Page endpoint is executed.

NOTE Remember that in ASP.NET Core, an endpoint refers to the
handler selected by the routing middleware, which generates a

response when executed. It is typically a Razor Page, a web API
controller action method, or a minimal API endpoint handler.

With this configuration, the RoutingMiddleware selects

an endpoint to execute based on the request’s URL, such as

a Razor Page, as you saw in chapter 14. Metadata about the

selected endpoint is available to all middleware that occurs

after the routing middleware. This metadata includes details

about any authorization requirements for the endpoint, and

it’s typically attached by decorating an action or Razor Page

with an [Authorize] attribute.

The AuthenticationMiddleware deserializes the

encrypted cookie (or bearer token for APIs) associated with

the request to create a ClaimsPrincipal. This object is

set as the HttpContext.User for the request, so all

subsequent middleware can access this value. It contains all

the Claims that were added to the cookie when the user

authenticated.

NOTE Remember that the authentication middleware may be placed
before the routing middleware when the authentication process is the
same for all endpoints. Nevertheless, I prefer to place it as shown in
figure 24.2, after the routing middleware, and always before the
authorization middleware.

Now we come to the AuthorizationMiddleware. This

middleware checks whether the selected endpoint has any

authorization requirements, based on the metadata provided

by the RoutingMiddleware. If the endpoint has

authorization requirements, the

AuthorizationMiddleware uses the

HttpContext.User to determine whether the current

request is authorized to execute the endpoint.

If the request is authorized, the next middleware in the

pipeline executes as normal. If the request is not authorized,

the AuthorizationMiddleware short-circuits the

middleware pipeline, and the endpoint middleware is never

executed.

NOTE The call to UseAuthorization() must always be placed
after UseRouting() and UseAuthentication(), but before
UseEndpoints(). WebApplication automatically adds all
this middleware in the correct order, but if you override the position in
the pipeline, such as by calling UseRouting(), you must make
sure to maintain this overall order.

The AuthorizationMiddleware is responsible for

applying authorization requirements and ensuring that only

authorized users can execute protected endpoints. In section

24.2.1 you’ll learn how to apply the simplest authorization

requirement to an endpoint, and in section 24.2.2 you’ll see

how the framework responds when a user is not authorized

to execute an endpoint.

24.2.1 Preventing anonymous users from
accessing your application

When you think about authorization, you typically think

about checking whether a particular user has permission to

execute an endpoint. In ASP.NET Core you normally achieve

this by checking whether a user has a given claim.

There’s an even more basic level of authorization we haven’t

considered yet: allowing only authenticated users to execute

an endpoint. This is even simpler than the claims scenario

(which we’ll come to later), as there are only two

possibilities:

The user is authenticated—The action executes as

normal.

The user is unauthenticated—The user can’t

execute the endpoint.

You can achieve this basic level of authorization by using the

[Authorize] attribute, which you saw in chapter 22 when

we discussed authorization filters. You can apply this

attribute to your actions and Razor Pages, as shown in the

following listing, to restrict them to authenticated (logged-

in) users only. If an unauthenticated user tries to execute an

action or Razor Page protected with the [Authorize]

attribute, they’ll be redirected to the login page.

Listing 24.1 Applying [Authorize] to an action

public class RecipeApiController : ControllerBase

{

 public IActionResult List() ❶
 {

 return Ok();

 }

 [Authorize] ❷
 public IActionResult View() ❸
 {

 return Ok();

 }

}

❶ This action can be executed by anyone, even when not logged in.

❷ Applies [Authorize] to individual actions, whole controllers, or Razor Pages
❸ This action can be executed only by authenticated users.

Applying the [Authorize] attribute to an endpoint

attaches metadata to it, indicating that only authenticated

users may access the endpoint. As you saw in figure 24.2,

this metadata is made available to the

AuthorizationMiddleware when an endpoint is selected

by the RoutingMiddleware.

You can apply the [Authorize] attribute at the action

scope, controller scope, Razor Page scope, or globally, as

you saw in chapter 21. Any action or Razor Page that has

the [Authorize] attribute applied in this way can be

executed only by an authenticated user. Unauthenticated

users will be redirected to the login page.

TIP There are several ways to apply the [Authorize] attribute
globally. You can read about the options and when to choose which
option on my blog: http://mng.bz/opQp.

Sometimes, especially when you apply the [Authorize]

attribute globally, you might need to poke holes in this

authorization requirement. If you apply the [Authorize]

attribute globally, any unauthenticated requests are

redirected to the login page for your app. But if the

[Authorize] attribute is global, when the login page tries

http://mng.bz/opQp

to load, you’ll be unauthenticated and redirected to the login

page again. And now you’re stuck in an infinite redirect loop.

To get around this, you can direct specific endpoints to

ignore the [Authorize] attribute by applying the

[AllowAnonymous] attribute to an action or Razor Page,

as shown in the next listing. This allows unauthenticated

users to execute the action, so you can avoid the redirect

loop that would otherwise result.

Listing 24.2 Applying [AllowAnonymous] to allow unauthenticated
access

[Authorize] ❶
public class AccountController : ControllerBase

{

 public IActionResult ManageAccount() ❷
 {

 return Ok();

 }

 [AllowAnonymous] ❸
 public IActionResult Login() ❹
 {

 return Ok();

 }

}

❶ Applied at the controller scope, so the user must be authenticated for all actions on the
controller

❷ Only authenticated users may execute ManageAccount.
❸ [AllowAnonymous] overrides [Authorize] to allow unauthenticated users.

❹ Login can be executed by anonymous users.

WARNING If you apply the [Authorize] attribute globally, be
sure to add the [AllowAnonymous] attribute to your login
actions, error actions, password reset actions, and any other actions
that you need unauthenticated users to execute. If you’re using the

default Identity UI described in chapter 23, this is already configured
for you.

If an unauthenticated user attempts to execute an action

protected by the [Authorize] attribute, traditional web

apps redirect them to the login page. But what about APIs

that don’t have a user interface? And what about more

complex scenarios, where a user is logged in but doesn’t

have the necessary claims to execute an action? In section

24.2.2 we’ll look at how the ASP.NET Core authentication

services handle all this for you.

24.2.2 Handling unauthorized requests

In the previous section you saw how to apply the

[Authorize] attribute to an action to ensure that only

authenticated users can execute it. In section 24.3 we’ll look

at more complex examples that require you to also have a

specific claim. In both cases, you must meet one or more

authorization requirements (for example, you must be

authenticated) to execute the action.

If the user meets the authorization requirements, the

request passes unimpeded through the

AuthorizationMiddleware, and the endpoint is

executed in the EndpointMiddleware. If they don’t meet

the requirements for the selected endpoint, the

AuthorizationMiddleware will short-circuit the request.

Depending on why the request failed authorization, the

AuthorizationMiddleware generates one of two

different types of responses, as shown in figure 24.3:

Challenge—This response indicates that the user

was not authorized to execute the action because

they weren’t yet logged in.

Forbid—This response indicates that the user was

logged in but didn’t meet the requirements to

execute the action. They didn’t have a required

claim, for example.

Figure 24.3 The three types of response to an authorization
attempt. In the left example, the request contains an
authentication cookie, so the user is authenticated in the

AuthenticationMiddleware. The AuthorizationMiddleware confirms
that the authenticated user can access the selected endpoint, so
the endpoint is executed. In the center example, the request is
not authenticated, so the Authorization-Middleware generates a
challenge response. In the right example, the request is
authenticated, but the user does not have permission to execute
the endpoint, so a forbid response is generated.

NOTE If you apply the [Authorize] attribute in basic form, as
you did in section 24.2.1, you will generate only challenge responses.
In this case, a challenge response will be generated for
unauthenticated users, but authenticated users will always be
authorized.

The exact HTTP response generated by a challenge or forbid

response typically depends on the type of application you’re

building and so the type of authentication your application

uses: a traditional web application with Razor Pages, or an

API application.

For traditional web apps using cookie authentication, such as

when you use ASP.NET Core Identity, as in chapter 23, the

challenge and forbid responses generate an HTTP redirect to

a page in your application. A challenge response indicates

the user isn’t yet authenticated, so they’re redirected to the

login page for the app. After logging in, they can attempt to

execute the protected resource again. A forbid response

means the request was from a user that already logged in,

but they’re still not allowed to execute the action.

Consequently, the user is redirected to a “forbidden” or

“access denied” web page, as shown in figure 24.4, which

informs them they can’t execute the action or Razor Page.

Figure 24.4 A forbid response in traditional web apps using
cookie authentication. If you don’t have permission to execute a
Razor Page and you’re already logged in, you’ll be redirected to
an “access denied” page.

The preceding behavior is standard for traditional web apps,

but API apps typically use a different approach to

authentication, as you’ll see in chapter 25. Instead of

logging in and using the API directly, you’d typically log in to

a third-party application that provides a token to the client-

side single-page application (SPA) or mobile app. The client-

side app sends this token when it makes a request to your

API.

Authenticating a request for an API app is essentially

identical to a traditional web app that uses cookies, as you’ll

see in chapter 25; AuthenticationMiddleware

deserializes the credentials to create the

ClaimsPrincipal. The difference is in how an API handles

authorization failures.

When an API app generates a challenge response, it returns

a 401 Unauthorized error response to the caller. Similarly,

when the app generates a forbid response, it returns a 403

Forbidden response. The traditional web app essentially

handled these errors by automatically redirecting

unauthorized users to the login or “access denied” page, but

the API app doesn’t do this. It’s up to the client-side SPA or

mobile app to detect these errors and handle them as

appropriate.

TIP This difference in authorization behavior is one of the reasons I
generally recommend creating separate apps for your APIs and
Razor pages apps; it’s possible to have both in the same app, but the
configuration is often more complex.

The different behavior between traditional web apps and

SPAs can be confusing initially, but you generally don’t need

to worry about that too much in practice. Whether you’re

building an API app or a traditional MVC web app, the

authorization code in your app looks the same in both cases.

Apply [Authorize] attributes to your endpoints, and let

the framework take care of the differences for you.

NOTE In chapter 23 you saw how to configure ASP.NET Core Identity
in a Razor Pages app. This chapter assumes that you’re building a
Razor Pages app too, but the chapter is equally applicable if you’re
building an API, as you’ll see in chapter 25. Authorization policies are
applied in the same way, whichever style of app you’re building. Only
the final response of unauthorized requests differs.

You’ve seen how to apply the most basic authorization

requirement—restricting an endpoint to authenticated users

—but most apps need something more subtle than this all-

or-nothing approach. Consider the airport scenario from

section 24.1. Being authenticated (having a passport) isn’t

enough to get you through security. Instead, you also need a

specific claim: BoardingPassNumber. In the next section

we’ll look at how you can implement a similar requirement in

ASP.NET Core.

24.3 Using policies for claims-based
authorization

In the previous section, you saw how to require that users

be logged in to access an endpoint. In this section you’ll see

how to apply additional requirements. You’ll learn to use

authorization policies to perform claims-based authorization

to require that a logged-in user have the required claims to

execute a given endpoint.

In chapter 23 you saw that authentication in ASP.NET Core

centers on a ClaimsPrincipal object, which represents

the user. This object has a collection of claims that contain

pieces of information about the user, such as their name,

email, and date of birth.

You can use this information to customize the app for each

user, by displaying a welcome message addressing the user

by name, for example, but you can also use claims for

authorization. For example, you might authorize a user only

if they have a specific claim (such as

BoardingPassNumber) or if a claim has a specific value

(FrequentFlyerClass claim with the value Gold).

In ASP.NET Core the rules that define whether a user is

authorized are encapsulated in a policy.

DEFINITION A policy defines the requirements you must meet for a
request to be authorized.

Policies can be applied to an endpoint using the

[Authorize] attribute, similar to the way you saw in

section 24.2.1. This listing shows a Razor Page PageModel

that represents the first authorization step in the airport

scenario. The AirportSecurity.cshtml Razor Page is protected

by an [Authorize] attribute, but you’ve also provided a

policy name, "CanEnterSecurity", as shown in the

following listing.

Listing 24.3 Applying an authorization policy to a Razor Page

[Authorize("CanEnterSecurity")] ❶
public class AirportSecurityModel : PageModel

{

 public void OnGet() ❷
 {

 }

}

❶ Applying the “CanEnterSecurity” policy using [Authorize]

❷ Only users that satisfy the “CanEnterSecurity” policy can execute the Razor Page.

If a user attempts to execute the AirportSecurity.cshtml

Razor Page, the authorization middleware verifies whether

the user satisfies the policy’s requirements (we’ll look at the

policy itself shortly). This gives one of three possible

outcomes:

The user satisfies the policy—The middleware

pipeline continues, and the

EndpointMiddleware executes the Razor Page

as normal.

The user is unauthenticated—The user is

redirected to the login page.

The user is authenticated but doesn’t satisfy the

policy—The user is redirected to a “forbidden” or

“access denied” page.

These three outcomes correlate with real-life outcomes you

might expect when trying to pass through security at the

airport:

You have a valid boarding pass—You can enter

security as normal.

You don’t have a boarding pass—You’re redirected

to purchase a ticket.

Your boarding pass is invalid (you turned up a day

late, for example)—You’re blocked from entering.

Listing 24.3 shows how you can apply a policy to a Razor

Page using the [Authorize] attribute, but you still need to

define the CanEnterSecurity policy.

You add policies to an ASP.NET Core application in

Program.cs, as shown in listing 24.4. First, you add the

authorization services and return an

AuthorizationBuilder object using

AddAuthorizationBuilder(). You can then add policies

to the builder by calling AddPolicy(). You define the policy

itself by calling methods in a lambda method on a

AuthorizationPolicyBuilder (called policyBuilder

here).

Listing 24.4 Adding an authorization policy using
AuthorizationPolicyBuilder

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddAuthorizationBuilder() ❶
 .AddPolicy(❷
 "CanEnterSecurity", ❸
 policyBuilder => policyBuilder ❹
 .RequireClaim("BoardingPassNumber")); ❹
});

// Additional configuration

❶ Calls AddAuthorizationBuilder to add the required authorization services
❷ Adds a new policy

❸ Provides a name for the policy

❹ Defines the policy requirements using AuthorizationPolicyBuilder

When you call AddPolicy you provide a name for the

policy, which should match the value you use in your

[Authorize] attributes, and you define the requirements

of the policy. In this example, you have a single simple

requirement: the user must have a claim of type

BoardingPassNumber. If a user has this claim, whatever

its value, the policy is satisfied, and the user will be

authorized.

NOTE A claim is information about the user, as a key-value pair. A
policy defines the requirements for successful authorization. A policy
may require that a user have a given claim, or it may specify more
complex requirements, as you’ll see shortly.

AuthorizationPolicyBuilder contains several methods

for creating simple policies like this, as shown in table 24.1.

For example, an overload of the RequireClaim() method

lets you specify a specific value that a claim must have. The

following would let you create a policy where the

"BoardingPassNumber" claim must have a value of

"A1234":

policyBuilder => policyBuilder.RequireClaim("BoardingPassNumber", "A1234");

Table 24.1 Simple policy builder methods on
AuthorizationPolicyBuilder

Method Policy behavior
RequireAuthenticatedUser() The required user must be authenticated. Creates a

policy similar to the default [Authorize] attribute,
where you don’t set a policy.

RequireClaim(claim,

values)

The user must have the specified claim. If provided,
the claim must be one of the specified values.

RequireUsername(username) The user must have the specified username.

RequireAssertion(function) Executes the provided lambda function, which
returns a bool, indicating whether the policy was
satisfied.

Role-based authorization vs. claims-based
authorization

If you look at all of the methods available on the AuthorizationPolicyBuilder
type using IntelliSense, you might notice that there’s a method I didn’t mention in table
24.1: RequireRole(). This is a remnant of the role-based approach to authorization
used in previous versions of ASP.NET, and I don’t recommend using it.

Before Microsoft adopted the claims-based authorization used by ASP.NET, role-based
authorization was the norm. Users were assigned to one or more roles, such as
Administrator or Manager, and authorization involved checking whether the
current user was in the required role.

This role-based approach to authorization is possible in ASP.NET Core, but it’s used
primarily for legacy compatibility reasons. Claims-based authorization is the suggested
approach. Unless you’re porting a legacy app that uses roles, I suggest that you
embrace claims-based authorization and leave those roles behind.

Note that the fact that you’re using claims-based permissions doesn’t mean you need
to get rid of roles entirely, but you should use roles as a basis for assigning claims to a
user rather than authorize that a user belongs to one or more roles.

You can use these methods to build simple policies that can

handle basic situations, but often you’ll need something

more complicated. What if you want to create a policy that

enforces that only users over the age of 18 can execute an

endpoint?

The DateOfBirth claim provides the information you need,

but there’s no single correct value, so you couldn’t use the

RequireClaim() method. You could use the

RequireAssertion() method and provide a function that

calculates the age from the DateOfBirth claim, but that

could get messy pretty quickly.

For more complex policies that can’t be easily defined using

the RequireClaim() method, I recommend that you take

a different approach and create a custom policy, as you’ll see

in the following section.

24.4 Creating custom policies for
authorization

You’ve already seen how to create a policy by requiring a

specific claim or requiring a specific claim with a specific

value, but often the requirements will be more complex than

that. In this section you’ll learn how to create custom

authorization requirements and handlers. You’ll also see how

to configure authorization requirements where there are

multiple ways to satisfy a policy, any of which are valid.

Let’s return to the airport example. You’ve already

configured the policy for passing through security, and now

you’re going to configure the policy that controls whether

you’re authorized to enter the airline lounge.

As you saw in figure 24.1, you’re allowed to enter the lounge

if you have a FrequentFlyerClass claim with a value of

Gold. If this was the only requirement, you could use

AuthorizationPolicyBuilder to create a policy like

this:

options.AddPolicy("CanAccessLounge", policyBuilder =>

 policyBuilder.RequireClaim("FrequentFlyerClass", "Gold");

But what if the requirements are more complicated? For

example, suppose you can enter the lounge if you’re at least

18 years old (as calculated from the DateOfBirth claim)

and you’re one of the following:

You’re a Gold-class frequent flyer (have a

FrequentFlyerClass claim with value "Gold")

You’re an employee of the airline (have an

EmployeeNumber claim).

If you’ve ever been banned from the lounge (you have an

IsBannedFromLounge claim), you won’t be allowed in,

even if you satisfy the other requirements.

There’s no way of achieving this complex set of

requirements with the basic use of

AuthorizationPolicyBuilder you’ve seen so far.

Luckily, these methods are a wrapper around a set of

building blocks that you can combine to achieve the desired

policy.

24.4.1 Requirements and handlers: The
building blocks of a policy

Every policy in ASP.NET Core consists of one or more

requirements, and every requirement can have one or more

handlers. For the airport lounge example, you have a single

policy ("CanAccessLounge"), two requirements

(MinimumAgeRequirement and

AllowedInLoungeRequirement), and several handlers,

as shown in figure 24.5.

Figure 24.5 A policy can have many requirements, and every
requirement can have many handlers. By combining multiple
requirements in a policy and providing multiple handler
implementations, you can create complex authorization policies
that meet any of your business requirements.

For a policy to be satisfied, a user must fulfill all the

requirements. If the user fails any of the requirements, the

authorize middleware won’t allow the protected endpoint to

be executed. In this example, a user must be allowed to

access the lounge and must be over 18 years old.

Each requirement can have one or more handlers, which will

confirm that the requirement has been satisfied. For

example, as shown in figure 24.5,

AllowedInLoungeRequirement has two handlers that

can satisfy the requirement:

FrequentFlyerHandler

IsAirlineEmployeeHandler

If the user satisfies either of these handlers,

AllowedInLoungeRequirement is satisfied. You don’t

need all handlers for a requirement to be satisfied; you need

only one.

NOTE Figure 24.5 shows a third handler,
BannedFromLoungeHandler, which I’ll cover in section 24.4.2.
It’s slightly different in that it can fail a requirement but not satisfy it.

You can use requirements and handlers to achieve most any

combination of behavior you need for a policy. By combining

handlers for a requirement, you can validate conditions

using a logical OR: if any of the handlers is satisfied, the

requirement is satisfied. By combining requirements, you

create a logical AND: all the requirements must be satisfied

for the policy to be satisfied, as shown in figure 24.6.

Figure 24.6 For a policy to be satisfied, every requirement must
be satisfied. A requirement is satisfied if any of the handlers is
satisfied.

TIP You can add multiple policies to a Razor Page or action method
by applying the [Authorize] attribute multiple times, as in
[Authorize ("Policy1"), Authorize("Policy2")].
All policies must be satisfied for the request to be authorized.

I’ve highlighted requirements and handlers that will make up

your "CanAccessLounge" policy, so in the next section

you’ll build each of the components and apply them to the

airport sample app.

24.4.2 Creating a policy with a custom
requirement and handler

You’ve seen all the pieces that make up a custom

authorization policy, so in this section we’ll explore the

implementation of the "CanAccessLounge" policy.

CREATING AN IAUTHORIZATIONREQUIREMENT TO

REPRESENT A REQUIREMENT

As you’ve seen, a custom policy can have multiple

requirements, but what is a requirement in code terms?

Authorization requirements in ASP.NET Core are any class

that implements the IAuthorizationRequirement

interface. This is a blank marker interface, which you can

apply to any class to indicate that it represents a

requirement.

If the interface doesn’t have any members, you might be

wondering what the requirement class needs to look like.

Typically, they’re simple plain old CLR object (POCO) classes.

The following listing shows

AllowedInLoungeRequirement, which is about as simple

as a requirement can get. It has no properties or methods;

it implements the required IAuthorizationRequirement

interface.

Listing 24.5 AllowedInLoungeRequirement

public class AllowedInLoungeRequirement

 : IAuthorizationRequirement { } ❶

❶ The interface identifies the class as an authorization requirement.

This is the simplest form of requirement, but it’s also

common to have one or two properties that make the

requirement more generalized. For example, instead of

creating the highly specific

MustBe18YearsOldRequirement, you could create a

parameterized MinimumAgeRequirement, as shown in the

following listing. By providing the minimum age as a

parameter to the requirement, you can reuse the

requirement for other policies with different minimum-age

requirements.

Listing 24.6 The parameterized MinimumAgeRequirement

public class MinimumAgeRequirement : IAuthorizationRequirement ❶
{

 public MinimumAgeRequirement(int minimumAge) ❷
 {

 MinimumAge = minimumAge;

 }

 public int MinimumAge { get; } ❸
}

❶ The interface identifies the class as an authorization requirement.
❷ The minimum age is provided when the requirement is created.

❸ Handlers can use the exposed minimum age to determine whether the requirement is
satisfied.

The requirements are the easy part. They represent each of

the components of the policy that must be satisfied for the

policy to be satisfied overall. Note that requirements are

meant to be lightweight objects that can be created

“manually.” So while you can have constructor parameters,

as shown in listing 24.6, you can’t use dependency injection

(DI) here. That’s not as limiting as it sounds, because your

handlers can use DI.

CREATING A POLICY WITH MULTIPLE REQUIREMENTS

You’ve created the two requirements, so now you can

configure the "CanAccessLounge" policy to use them. You

configure your policies as you did before, in Program.cs.

Listing 24.7 shows how to do this by creating an instance of

each requirement and passing them to

AuthorizationPolicyBuilder. The authorization

handlers use these requirement objects when attempting to

authorize the policy.

Listing 24.7 Creating an authorization policy with multiple
requirements

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.services.AddAuthorization(options =>

{ ❶
 options.AddPolicy(❶
 "CanEnterSecurity", ❶
 policyBuilder => policyBuilder ❶
 .RequireClaim(Claims.BoardingPassNumber)); ❶
 options.AddPolicy(❷
 "CanAccessLounge", ❷
 policyBuilder => policyBuilder.AddRequirements(❸
 new MinimumAgeRequirement(18), ❸
 new AllowedInLoungeRequirement() ❸
));

});

// Additional configuration

❶ Adds the previous simple policy for passing through security

❷ Adds a new policy for the airport lounge, called CanAccessLounge
❸ Adds an instance of each IAuthorizationRequirement object

You now have a policy called "CanAccessLounge" with

two requirements, so you can apply it to a Razor Page or

action method using the [Authorize] attribute, in exactly

the same way you did for the "CanEnterSecurity"

policy:

[Authorize("CanAccessLounge")]

public class AirportLoungeModel : PageModel

{

 public void OnGet() { }

}

When a request is routed to the AirportLounge.cshtml Razor

Page, the authorize middleware executes the authorization

policy and each of the requirements is inspected. But you

saw earlier that the requirements are purely data; they

indicate what needs to be fulfilled, but they don’t describe

how that has to happen. For that, you need to write some

handlers.

CREATING AUTHORIZATION HANDLERS TO SATISFY YOUR

REQUIREMENTS

Authorization handlers contain the logic of how a specific

IAuthorizationRequirement can be satisfied. When

executed, a handler can do one of three things:

Mark the requirement handling as a success.

Do nothing.

Explicitly fail the requirement.

Handlers should implement AuthorizationHandler<T>,

where T is the type of requirement they handle. For

example, the following listing shows a handler for

AllowedInLoungeRequirement that checks whether the

user has a claim called FrequentFlyerClass with a value

of Gold.

Listing 24.8 FrequentFlyerHandler for AllowedInLoungeRequirement

public class FrequentFlyerHandler :

 AuthorizationHandler<AllowedInLoungeRequirement> ❶
{

 protected override Task HandleRequirementAsync(❷
 AuthorizationHandlerContext context, ❸
 AllowedInLoungeRequirement requirement) ❹
 {

 if(context.User.HasClaim("FrequentFlyerClass", "Gold")) ❺
 {

 context.Succeed(requirement); ❻
 }

 return Task.CompletedTask; ❼
 }

}

❶ The handler implements AuthorizationHandler<T>.

❷ You must override the abstract HandleRequirementAsync method.
❸ The context contains details such as the ClaimsPrincipal user object.

❹ The requirement instance to handle
❺ Checks whether the user has the Frequent-FlyerClass claim with the Gold value

❻ If the user had the necessary claim, marks the requirement as satisfied by calling
Succeed

❼ If the requirement wasn’t satisfied, does nothing

This handler is functionally equivalent to the simple

RequireClaim() handler you saw at the start of section

24.4, but using the requirement and handler approach

instead.

When a request is routed to the AirportLounge.cshtml Razor

Page, the authorization middleware sees the [Authorize]

attribute on the endpoint with the "CanAccessLounge"

policy. It loops through all the requirements in the policy and

all the handlers for each requirement, calling the

HandleRequirementAsync method for each.

The authorization middleware passes the current

AuthorizationHandlerContext and the requirement to

be checked to each handler. The current ClaimsPrincipal

being authorized is exposed on the context as the User

property. In listing 24.8, FrequentFlyerHandler uses the

context to check for a claim called FrequentFlyerClass

with the Gold value, and if it exists, indicates that the user

is allowed to enter the airline lounge by calling Succeed().

NOTE Handlers mark a requirement as being satisfied by calling
context .Succeed() and passing the requirement as an
argument.

It’s important to note the behavior when the user doesn’t

have the claim. FrequentFlyerHandler doesn’t do

anything in this case; it returns a completed Task to satisfy

the method signature.

NOTE Remember that if any of the handlers associated with a
requirement passes, the requirement is a success. Only one of the
handlers must succeed for the requirement to be satisfied.

This behavior, whereby you either call

context.Succeed() or do nothing, is typical for

authorization handlers. The following listing shows the

implementation of IsAirlineEmployeeHandler, which

uses a similar claim check to determine whether the

requirement is satisfied.

Listing 24.9 IsAirlineEmployeeHandler

public class IsAirlineEmployeeHandler :

 AuthorizationHandler<AllowedInLoungeRequirement> ❶
{

 protected override Task HandleRequirementAsync(❷
 AuthorizationHandlerContext context, ❷
 AllowedInLoungeRequirement requirement) ❷
 {

 if(context.User.HasClaim(c => c.Type == "EmployeeNumber")) ❸
 {

 context.Succeed(requirement); ❹
 }

 return Task.CompletedTask; ❺
 }

}

❶ The handler implements AuthorizationHandler<T>.

❷ You must override the abstract HandleRequirementAsync method.
❸ Checks whether the user has the EmployeeNumber claim

❹ If the user has the necessary claim, marks the requirement as satisfied by calling
Succeed

❺ If the requirement wasn’t satisfied, does nothing

I’ve left the implementation of MinimumAgeHandler for

MinimumAgeRequirement as an exercise for the reader, as

it’s similar to the handlers you have already seen. You can

find an example implementation in the code samples for the

chapter.

TIP It’s possible to write generic handlers that can be used with
multiple requirements, but I suggest sticking to handling a single
requirement. If you need to extract some common functionality, move
it to an external service, and call that from both handlers.

This pattern of authorization handler is common, but in

some cases, instead of checking for a success condition, you

might want to check for a failure condition. In the airport

example, you don’t want to authorize someone who was

previously banned from the lounge, even if they would

otherwise be allowed to enter.

You can handle this scenario by using the context.Fail()

method exposed on the context, as shown in the following

listing. Calling Fail() in a handler always causes the

requirement, and hence the whole policy, to fail. You should

use it only when you want to guarantee failure, even if other

handlers indicate success.

Listing 24.10 Calling context.Fail() in a handler to fail the
requirement

public class BannedFromLoungeHandler :

 AuthorizationHandler<AllowedInLoungeRequirement> ❶
{

 protected override Task HandleRequirementAsync(❷
 AuthorizationHandlerContext context, ❷
 AllowedInLoungeRequirement requirement) ❷
 {

 if(context.User.HasClaim(c => c.Type == "IsBannedFromLounge")) ❸

 {

 context.Fail(); ❹
 }

 return Task.CompletedTask; ❺
 }

}

❶ The handler implements AuthorizationHandler<T>.
❷ You must override the abstract HandleRequirementAsync method.

❸ Checks whether the user has the IsBannedFromLounge claim
❹ If the user has the claim, fails the requirement by calling Fail. The whole policy fails.

❺ If the claim wasn’t found, does nothing

In most cases, your handlers will either call Succeed() or

will do nothing, but the Fail() method is useful when you

need a kill switch to guarantee that a requirement won’t be

satisfied.

NOTE Whether a handler calls Succeed(), Fail(), or neither,
the authorization system always executes all the handlers for a
requirement and all the requirements for a policy, so you can be sure
your handlers will always be called.

The final step to complete your authorization implementation

for the app is to register the authorization handlers with the

DI container, as shown in the following listing.

Listing 24.11 Registering the authorization handlers with the DI
container

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddAuthorization(options =>

 options.AddPolicy(

 "CanEnterSecurity",

 policyBuilder => policyBuilder

 .RequireClaim(Claims.BoardingPassNumber));

 options.AddPolicy(

 "CanAccessLounge",

 policyBuilder => policyBuilder.AddRequirements(

 new MinimumAgeRequirement(18),

 new AllowedInLoungeRequirement()

));

});

services.AddSingleton<IAuthorizationHandler, MinimumAgeHandler>();

services.AddSingleton<IAuthorizationHandler, FrequentFlyerHandler>();

services.AddSingleton<IAuthorizationHandler, BannedFromLoungeHandler>();

services.AddSingleton<IAuthorizationHandler, IsAirlineEmployeeHandler>();

// Additional configuration

For this app, the handlers don’t have any constructor

dependencies, so I’ve registered them as singletons with the

container. If your handlers have scoped or transient

dependencies (the EF Core DbContext, for example), you

might want to register them as scoped instead, as

appropriate.

NOTE Services are registered with a lifetime of transient, scoped, or
singleton, as discussed in chapter 9.

You can combine the concepts of policies, requirements, and

handlers in many ways to achieve your goals for

authorization in your application. The example in this

section, although contrived, demonstrates the components

you need to apply authorization declaratively at the action

method or Razor Page level by creating policies and applying

the [Authorize] attribute as appropriate.

As well as applying the [Authorize] attribute explicitly to

actions and Razor Pages, you can configure it globally, so

that a policy is applied to every endpoint in your application.

Additionally, for Razor Pages you can apply different

authorization policies to different folders. You can read more

about applying authorization policies using conventions in

Microsoft’s “Razor Pages authorization conventions in

ASP.NET Core” documentation: http://mng.bz/nMm2.

There’s one area, however, where the [Authorize]

attribute falls short: resource-based authorization. The

[Authorize] attribute attaches metadata to an endpoint,

so the authorization middleware can authorize the user

before an endpoint is executed. But what if you need to

authorize the action from within the endpoint?

This is common when you’re applying authorization at the

document or resource level. If users are allowed to edit only

documents they created, you need to load the document

before you can tell whether they’re allowed to edit it! This

isn’t easy with the declarative [Authorize] attribute

approach, so you must often use an alternative, imperative

approach. In the next section you’ll see how to apply this

resource-based authorization in a Razor Page handler.

24.5 Controlling access with resource-
based authorization

In this section you’ll learn about resource-based

authorization. This is used when you need to know details

about the resource being protected to determine whether a

user is authorized. You’ll learn how to apply authorization

http://mng.bz/nMm2

policies manually using the IAuthorizationService and

how to create resource-based AuthorizationHandlers.

Resource-based authorization is a common problem for

applications, especially when you have users who can create

or edit some sort of document. Consider the recipe

application you worked on in chapter 23. This app lets users

create, view, and edit recipes.

Up to this point, everyone can create new recipes, and

anyone can edit any recipe, even if they haven’t logged in.

Now you want to add some additional behavior:

Only authenticated users should be able to create

new recipes.

You can edit only the recipes you created.

You’ve already seen how to achieve the first of these

requirements: decorate the Create .cshtml Razor Page with

an [Authorize] attribute and don’t specify a policy, as

shown in the following listing. This will force the user to

authenticate before they can create a new recipe.

Listing 24.12 Adding AuthorizeAttribute to the Create.cshtml
Razor Page

[Authorize] ❶
public class CreateModel : PageModel

{

 [BindProperty]

 public CreateRecipeCommand Input { get; set; }

 public void OnGet() ❷
 { ❷
 Input = new CreateRecipeCommand(); ❷

 } ❷

 public async Task<IActionResult> OnPost() ❷
 { ❷
 // Method body not shown for brevity ❷
 } ❷
}

❶ Users must be authenticated to execute the Create.cshtml Razor Page.
❷ All page handlers are protected. You can apply [Authorize] only to the PageModel, not

handlers.

TIP As with all filters, you can apply the [Authorize] attribute
only to the Razor Page, not to individual page handlers. The attribute
applies to all page handlers in the Razor Page.

Adding the [Authorize] attribute fulfills your first

requirement, but unfortunately, with the techniques you’ve

seen so far, you have no way to fulfill the second. You could

apply a policy that either permits or denies a user the ability

to edit all recipes, but there’s currently no easy way to

restrict this so that a user can only edit their own recipes.

To find out who created the Recipe, you must first load it

from the database. Only then can you attempt to authorize

the user, taking the specific recipe (resource) into account.

The following listing shows a partially implemented page

handler for how this might look, where authorization occurs

partway through the method, after the Recipe object has

been loaded.

Listing 24.13 The Edit.cshtml page must load the Recipe

public IActionResult OnGet(int id) ❶
{

 var recipe = _service.GetRecipe(id); ❷
 var createdById = recipe.CreatedById; ❷
 // Authorize user based on createdById ❸
 if(isAuthorized) ❹
 { ❹
 return View(recipe); ❹
 } ❹
}

❶ The id of the recipe to edit is provided by model binding.

❷ You must load the Recipe from the database before you know who created it.
❸ You must authorize the current user to verify that they’re allowed to edit this specific

Recipe.

❹ The action method can continue only if the user was authorized.

You need access to the resource (in this case, the Recipe

entity) to perform the authorization, so the declarative

[Authorize] attribute can’t help you. In section 24.5.1

you’ll see the approach you need to take to handle these

situations and to apply authorization inside your endpoints.

WARNING Be careful when exposing the integer ID of your entities in
the URL, as in listing 24.13. Users will be able to edit every entity by
modifying the ID in the URL to access a different entity. Be sure to
apply authorization checks, or you could expose a security
vulnerability called insecure direct object reference (IDOR). You can
read more about IDOR at http://mng.bz/QPnG.

24.5.1 Manually authorizing requests with
IAuthorizationService

All of the approaches to authorization so far have been

declarative. You apply the [Authorize] attribute, with or

http://mng.bz/QPnG

without a policy name, and you let the framework take care

of performing the authorization itself.

For this recipe-editing example, you need to use imperative

authorization, so you can authorize the user after you’ve

loaded the Recipe from the database. Instead of applying a

marker saying “Authorize this method,” you need to write

some of the authorization code yourself.

DEFINITION Declarative and imperative are two different styles of
programming. Declarative programming describes what you’re trying
to achieve and lets the framework figure out how to achieve it.
Imperative programming describes how to achieve something by
providing each of the steps needed.

ASP.NET Core exposes IAuthorizationService, which

you can inject into any of your services or endpoints for

imperative authorization. The following listing shows how

you could update the Edit.cshtml Razor Page (shown

partially in listing 24.13) to use the

IAuthorizationService to verify whether the action is

allowed to continue execution.

Listing 24.14 Using IAuthorizationService for resource-based
authorization

[Authorize] ❶
public class EditModel : PageModel

{

 [BindProperty]

 public Recipe Recipe { get; set; }

 private readonly RecipeService _service;

 private readonly IAuthorizationService _authService; ❷

 public EditModel(

 RecipeService service,

 IAuthorizationService authService) ❷
 {

 _service = service;

 _authService = authService; ❷
 }

 public async Task<IActionResult> OnGet(int id)

 {

 Recipe = _service.GetRecipe(id); ❸
 AuthorizationResult authResult = await _authService ❹
 .AuthorizeAsync(User, Recipe, "CanManageRecipe"); ❹
 if (!authResult.Succeeded) ❺
 { ❺
 return new ForbidResult(); ❺
 } ❺

 return Page(); ❻
 }

}

❶ Only authenticated users should be allowed to edit recipes.
❷ IAuthorizationService is injected into the class constructor using DI.

❸ Loads the Recipe from the database
❹ Calls IAuthorizationService, providing ClaimsPrinicipal, resource, and the policy name

❺ If authorization failed, returns a Forbidden result
❻ If authorization was successful, continues displaying the Razor Page

IAuthorizationService exposes an AuthorizeAsync

method, which requires three things to authorize the

request:

The ClaimsPrincipal user object, exposed on

the PageModel as User

The resource being authorized: Recipe

The policy to evaluate: "CanManageRecipe"

The authorization attempt returns an

AuthorizationResult object, which indicates whether

the attempt was successful via the Succeeded property. If

the attempt wasn’t successful, you should return a new

ForbidResult, which is converted to an HTTP 403

Forbidden response or redirects the user to the “access

denied” page, depending on whether you’re building a

traditional web app or an API app.

NOTE As mentioned in section 24.2.2, which type of response is
generated depends on which authentication services are configured.
The default Identity configuration, used by Razor Pages, generates
redirects. API apps typically generate HTTP 401 and 403 responses
instead.

You’ve configured the imperative authorization in the

Edit.cshtml Razor Page itself, but you still need to define the

"CanManageRecipe" policy that you use to authorize the

user. This is the same process as for declarative

authorization, so you have to do the following:

Create a policy in Program.cs by calling

AddAuthorization().

Define one or more requirements for the policy.

Define one or more handlers for each requirement.

Register the handlers in the DI container.

With the exception of the handler, these steps are identical

to the declarative authorization approach with the

[Authorize] attribute, so I run through them only briefly

here.

First, you can create a simple

IAuthorizationRequirement. As with many

requirements, this contains no data and simply implements

the marker interface:

public class IsRecipeOwnerRequirement : IAuthorizationRequirement { }

Defining the policy in Program.cs is similarly simple, as you

have only a single requirement. Note that there’s nothing

resource-specific in any of this code so far:

builder.Services.AddAuthorization(options => {

 options.AddPolicy("CanManageRecipe", policyBuilder =>

 policyBuilder.AddRequirements(new IsRecipeOwnerRequirement()));

});

You’re halfway there. All you need to do now is create an

authorization handler for IsRecipeOwnerRequirement

and register it with the DI container.

24.5.2 Creating a resource-based
AuthorizationHandler

Resource-based authorization handlers are essentially the

same as the authorization handler implementations you saw

in section 24.4.2. The only difference is that the handler also

has access to the resource being authorized.

To create a resource-based handler, you should derive from

the AuthorizationHandler<TRequirement,

TResource> base class, where TRequirement is the type

of requirement to handle and TResource is the type of

resource that you provide when calling

IAuthorizationService. Compare this with the

AuthorizationHandler<T> class you implemented

previously, where you specified only the requirement.

The next listing shows the handler implementation for your

recipe application. You can see that you’ve specified the

requirement as IsRecipeOwnerRequirement and the

resource as Recipe, and you have implemented the

HandleRequirementAsync method.

Listing 24.15 IsRecipeOwnerHandler for resource-based
authorization

public class IsRecipeOwnerHandler :

 AuthorizationHandler<IsRecipeOwnerRequirement, Recipe> ❶
{

 private readonly UserManager<ApplicationUser> _userManager; ❷
 public IsRecipeOwnerHandler(❷
 UserManager<ApplicationUser> userManager) ❷
 { ❷
 _userManager = userManager; ❷
 } ❷
 protected override async Task HandleRequirementAsync(

 AuthorizationHandlerContext context,

 IsRecipeOwnerRequirement requirement,

 Recipe resource) ❸
 {

 var appUser = await _userManager.GetUserAsync(context.User);

 if(appUser == null) ❹
 {

 return;

 }

 if(resource.CreatedById == appUser.Id) ❺
 {

 context.Succeed(requirement); ❻
 }

 }

}

❶ Implements the necessary base class, specifying the requirement and resource type
❷ Injects an instance of the UserManager<T> class using DI

❸ As well as the context and requirement, you’re provided the resource instance.
❹ If you aren’t authenticated, appUser will be null.

❺ Checks whether the current user created the Recipe by checking the CreatedById
property

❻ If the user created the document, Succeeds the requirement; otherwise, does nothing

This handler is slightly more complicated than the examples

you’ve seen previously, primarily because you’re using an

additional service, UserManager<>, to load the

ApplicationUser entity based on ClaimsPrincipal

from the request.

NOTE In practice, the ClaimsPrincipal will likely already have
the Id added as a claim, making the extra step unnecessary in this
case. This example shows the general pattern if you need to use
dependency-injected services.

The other significant difference is that the

HandleRequirementAsync method has provided the

Recipe resource as a method argument. This is the same

object you provided when calling AuthorizeAsync on

IAuthorizationService. You can use this resource to

verify whether the current user created it. If so, you

Succeed() the requirement; otherwise, you do nothing.

The final task is adding IsRecipeOwnerHandler to the DI

container. Your handler uses an additional dependency,

UserManager<>, that uses EF Core, so you should register

the handler as a scoped service:

services.AddScoped<IAuthorizationHandler, IsRecipeOwnerHandler>();

TIP If you’re wondering how to know whether you register a handler
as scoped or a singleton, think back to chapter 9. Essentially, if you
have scoped dependencies, you must register the handler as scoped;
otherwise, singleton is fine.

With everything hooked up, you can take the application for

a spin. If you try to edit a recipe you didn’t create by clicking

the Edit button on the recipe, you’ll either be redirected to

the login page (if you hadn’t yet authenticated) or see an

“access denied” page, as shown in figure 24.7.

Figure 24.7 If you’re logged in but not authorized to edit a recipe,
you’ll be redirected to an “Access Denied” page. If you’re not
logged in, you’ll be redirected to the Login page.

By using resource-based authorization, you’re able to enact

more fine-grained authorization requirements that you can

apply at the level of an individual document or resource.

Instead of being able to authorize only that a user can edit

any recipe, you can authorize whether a user can edit this

recipe.

All the authorization techniques you’ve seen so far have

focused on server-side checks. Both the [Authorize]

attribute and resource-based authorization approaches focus

on stopping users from executing a protected endpoint on

the server. This is important from a security point of view,

but there’s another aspect you should consider: the user

experience when they don’t have permission.

You’ve protected the code executing on the server, but

arguably the Edit button should never have been visible to

the user if they weren’t going to be allowed to edit the

recipe! In the next section we’ll look at how you can

conditionally hide the Edit button by using resource-based

authorization in your view models.

Resource-based authorization versus
business-logic checks

The value proposition of using the ASP.NET Core framework’s resource-based
authorization approach isn’t always clear compared with using simple, manual,
business-logic based checks (as in listing 24.13). Using IAuthorizationService
and the authorization infrastructure adds an explicit dependency on the ASP.NET Core
framework that you may not want to use if you’re performing authorization checks in
your domain model services.

This is a valid concern without an easy answer. I tend to favor simple business-logic
checks inside the domain, without relying on the framework’s authorization
infrastructure, to make my domain easier to test and framework-independent. But
doing so loses some of the benefits of such a framework:

The IAuthorizationService uses declarative policies, even
though you are calling the authorization framework imperatively.

You can decouple the need to authorize an action from the actual
requirements.

You can easily rely on peripheral services and properties of the request,
which may be harder (or undesirable) with business logic checks.

You can achieve these benefits in business-logic checks, but that typically requires
creating a lot of infrastructure too, so you lose a lot of the benefits of keeping things
simple. Which approach is best will depend on the specifics of your application design,
and there may well be cases for using both.

For example, one possible approach is to use the basic [Authorize] attribute as
described in section 24.2.1 to prevent anonymous access to your APIs, potentially with
simple, coarse policies applied to your APIs. You would then rely on “manual”
business-logic checks against the ClaimsPrincipal in your domain as required.
This may reduce a lot of the complexity and indirection associated with the ASP.NET
Core authorization system.

24.6 Hiding HTML elements from
unauthorized users

All the authorization code you’ve seen so far has revolved

around protecting endpoints on the server side, rather than

modifying the UI for users. This is important and should be

the starting point whenever you add authorization to an app.

WARNING Malicious users can easily circumvent your UI, so it’s
important to always authorize your endpoints on the server, never on
the client alone.

From a user-experience point of view, however, it’s not

friendly to have buttons or links that look like they’re

available but present an “access denied” page when they’re

clicked. A better experience would be for the links to be

disabled or not visible at all.

You can achieve this in several ways in your own Razor

templates. In this section I’m going to show you how to add

an additional property to the PageModel, called

CanEditRecipe, which the Razor view template will use to

change the rendered HTML.

TIP An alternative approach would be to inject
IAuthorizationService directly into the view template using
the @inject directive, as you saw in chapter 9, but you should
generally prefer to keep logic like this in the page handler.

When you’re finished, the rendered HTML looks unchanged

for recipes you created, but the Edit button will be hidden

when viewing a recipe someone else created, as shown in

figure 24.8.

Figure 24.8 Although the HTML will appear unchanged for
recipes you created, the Edit button is hidden when you view
recipes created by a different user.

Listing 24.16 shows the PageModel for the View.cshtml

Razor Page, which is used to render the recipe page shown

in figure 24.8. As you’ve already seen for resource-based

authorization, you can use the IAuthorizationService

to determine whether the current user has permission to

edit the Recipe by calling AuthorizeAsync.

You can then set this value as an additional property on the

PageModel, called CanEditRecipe.

Listing 24.16 Setting the CanEditRecipe property in the
View.cshtml Razor Page

public class ViewModel : PageModel

{

 public Recipe Recipe { get; set; }

 public bool CanEditRecipe { get; set; } ❶

 private readonly RecipeService _service;

 private readonly IAuthorizationService _authService;

 public ViewModel(

 RecipeService service,

 IAuthorizationService authService)

 {

 _service = service;

 _authService = authService;

 }

 public async Task<IActionResult> OnGetAsync(int id)

 {

 Recipe = _service.GetRecipe(id); ❷
 AuthorizationResult isAuthorised = await _authService ❸
 .AuthorizeAsync(User, recipe, "CanManageRecipe"); ❸
 CanEditRecipe = isAuthorised.Succeeded; ❹
 return Page();

 }

}

❶ The CanEditRecipe property will be used to control whether the Edit button is rendered.
❷ Loads the Recipe resource for use with IAuthorizationService

❸ Verifies whether the user is authorized to edit the Recipe
❹ Sets the CanEditRecipe property on the PageModel as appropriate

Instead of blocking execution of the Razor Page (as you did

previously in the Edit.cshtml page handler), use the result of

the call to AuthorizeAsync to set the CanEditRecipe

value on the PageModel. You can then make a simple

change to the View.chstml Razor template, adding an if

clause around the rendering of the Edit link:

@if(Model.CanEditRecipe)

{

 <a asp-page="Edit" asp-route-id="@Model.Id"

 class="btn btn-primary">Edit

}

This ensures that only users who will be able to execute the

Edit.cshtml Razor Page can see the link to that page.

WARNING The if clause means that the Edit link will not be
displayed unless the current user created the recipe, but you should
never rely on client-side security alone. It’s important to keep the
server-side authorization check in your Edit.cshtml page handler to
protect against any direct access attempts. Even if a malicious user
circumvents your UI, the server-side authorization ensures that your
application is secure.

With that final change, you’ve finished adding authorization

to the recipe application. Anonymous users can browse the

recipes created by others, but they must log in to create

new recipes. Additionally, authenticated users can edit only

the recipes that they created, and they won’t see an Edit link

for other people’s recipes.

Authorization is a key aspect of most apps, so it’s important

to bear it in mind from an early point. Although it’s possible

to add authorization later, as you did with the recipe app, it’s

normally preferable to consider authorization sooner rather

than later in the app’s development.

In chapters 23 and 24 we focused on authentication and

authorization for traditional web applications using Razor. In

chapter 25 we’ll look at API applications, how authentication

works with tokens, and how to add authorization policies to

minimal APIs.

Summary
Authentication is the process of determining who a

user is. It’s distinct from authorization, the process

of determining what a user can do. Authentication

typically occurs before authorization.

You can use the authorization services in any part

of your application, but it’s typically applied using

the AuthorizationMiddleware by calling

UseAuthorization(). This should be placed

after the calls to UseRouting() and

UseAuthentication(), and before the call to

UseEndpoints() for correct operation.

You can protect Razor Pages and MVC actions by

applying the [Authorize] attribute. The routing

middleware records the presence of the attribute

as metadata with the selected endpoint. The

authorization middleware uses this metadata to

determine how to authorize the request.

The simplest form of authorization requires that a

user be authenticated before executing an action.

You can achieve this by applying the

[Authorize] attribute to a Razor Page, action,

controller, or globally. You can also apply attributes

conventionally to a subset of Razor Pages.

Claims-based authorization uses the current user’s

claims to determine whether they’re authorized to

execute an action. You define the claims needed to

execute an action in a policy.

Policies have a name and are configured in

Program.cs as part of the call to

AddAuthorization() in ConfigureServices.

You define the policy using AddPolicy(), passing

in a name and a lambda that defines the claims

needed.

You can apply a policy to an action or Razor Page

by specifying the policy in the authorize attribute;

for example,

[Authorize("CanAccessLounge")]. This

policy will be used by the

AuthorizationMiddleware to determine

whether the user is allowed to execute the

selected endpoint.

In a Razor Pages app, if an unauthenticated user

attempts to execute a protected action, they’ll be

redirected to the login page for your app. If they’re

already authenticated but don’t have the required

claims, they’ll be shown an “access denied” page

instead.

For complex authorization policies, you can build a

custom policy. A custom policy consists of one or

more requirements, and a requirement can have

one or more handlers. You can combine

requirements and handlers to create policies of

arbitrary complexity.

For a policy to be authorized, every requirement

must be satisfied. For a requirement to be

satisfied, one or more of the associated handlers

must indicate success, and none must indicate

explicit failure.

AuthorizationHandler<T> contains the logic

that determines whether a requirement is

satisfied. For example, if a requirement requires

that users be over 18, the handler could look for a

DateOfBirth claim and calculate the user’s age.

Handlers can mark a requirement as satisfied by

calling context.Succeed (requirement). If a

handler can’t satisfy the requirement, it shouldn’t

call anything on the context, as a different handler

could call Succeed() and satisfy the requirement.

If a handler calls context.Fail(), the

requirement fails, even if a different handler

marked it as a success using Succeed(). Use this

method only if you want to override any calls to

Succeed() from other handlers to ensure that

the authorization policy will fail authorization.

Resource-based authorization uses details of the

resource being protected to determine whether the

current user is authorized. For example, if a user is

allowed to edit only their own documents, you

need to know the author of the document before

you can determine whether they’re authorized.

Resource-based authorization uses the same

policy, requirements, and handler system as

before. Instead of applying authorization with the

[Authorize] attribute, you must manually call

IAuthorizationService and provide the

resource you’re protecting.

You can modify the user interface to account for

user authorization by adding additional properties

to your PageModel. If a user isn’t authorized to

execute an action, you can remove or disable the

link to that action method in the UI. You should

always authorize on the server, even if you’ve

removed links from the UI.

25 Authentication and authorization
for APIs

This chapter covers

Seeing how authentication works for APIs in ASP.NET Core
Using bearer tokens for authentication
Testing APIs locally with JSON Web Tokens
Applying authorization policies to minimal APIs

In chapter 23 you learned how authentication works with

traditional web apps, such as those you would build with

Razor Pages or Model-View-Controller (MVC) controllers.

Traditional web apps typically use encrypted cookies to store

the identity of a user for a request, which the

AuthenticationMiddleware then decodes. In this

chapter you’ll learn how authentication works for API

applications, how it differs from traditional web apps, and

what options are available.

We start by taking a high-level look at how authentication

works for APIs, both in isolation and when they’re part of a

larger application or distributed system. You’ll learn about

some of the protocols involved, such as OAuth 2.0 and

OpenID Connect; patterns you can use to protect your APIs;

and the tokens used to control access, typically JSON Web

Tokens, called JWTs.

In section 25.3 you’ll learn how to put this knowledge into

practice, adding authentication to a minimal API application

using JWTs. In section 25.4 you’ll learn how to use the .NET

command-line interface (CLI) to generate JWTs for testing

your API locally.

The .NET CLI works well for generating tokens, but you need

a way to add this token to a request. Specifically, if you’re

using OpenAPI definitions and Swagger UI as described in

chapter 11, you need a way to tell Swagger about your

authentication requirements. In section 25.5 you’ll learn

about some of the authentication configuration options for

your OpenAPI documents and how to use Swagger UI to

send authenticated requests to your API.

Finally, in section 25.6 I show how to apply authorization

policies to minimal API endpoints to restrict which users can

call your APIs. The authorization concepts you learned about

in chapter 24 for Razor Pages are the same for APIs, so

you’re still using claims, requirements, handlers, and

polices.

We’ll start off by looking at how authentication works when

you have an API application. Many of the authentication

concepts are similar to traditional apps, but the requirement

to support multiple types of users, traditional apps, client-

side apps, and mobile apps has led to subtly different

solutions.

25.1 Authentication for APIs and
distributed applications

In this section you’ll learn about the authentication process

for API applications, why it typically differs from

authentication for traditional web apps, and some of the

common patterns and protocols that are involved.

25.1.1 Extending authentication to multiple
apps

I outlined the authentication process for traditional web apps

in chapter 23. When a user signs in to your application, you

set an encrypted cookie. This cookie contains a serialized

version of the ClaimsPrincipal of the user, including

their ID and any associated claims. When you make a

second request, the browser automatically sends this cookie.

The AuthenticationMiddleware then decodes the

cookie, deserializes the ClaimsPrincipal, and sets the

current user for the request, as shown previously in figure

23.3 and reproduced in figure 25.1.

Figure 25.1 When a user first signs in to an app, the app sets an
encrypted cookie containing the ClaimsPrincipal. On subsequent
requests, the cookie sent with the request contains the user
principal, which is deserialized, validated, and used to
authenticate the request.

This flow works particularly well when you have a single

traditional web app that’s doing all the work. The app is

responsible for authenticating and managing users, as well

as serving your app data and executing business logic, as

shown in figure 25.2.

Figure 25.2 Traditional apps typically handle all the functionality
of an app: the business logic, generating the UI, authentication,
and user management.

In addition to traditional web apps, it’s common to use

ASP.NET Core as an API to serve data for mobile and client-

side single-page applications (SPAs). Similarly, even

traditional web apps using Razor Pages often need to call API

applications behind the scenes, as shown in figure 25.3.

Figure 25.3 Modern applications typically need to expose web
APIs for mobile and client-side apps, as well as potentially
calling APIs on the backend. When all these services need to
authenticate and manage users, this becomes logistically
complicated.

In this situation you have multiple apps and APIs, all of

which need to understand that the same user is logically

making a request across all the apps and APIs. If you keep

the same approach as before, where each app manages its

own users, things can quickly become unmanageable!

You’d need to duplicate all the sign-in logic between the

apps and APIs, as well as have some central database

holding the user details. Users would likely need to sign in

multiple times to access different parts of the service. On

top of that, using cookies becomes problematic for some

mobile clients in particular or where you’re making requests

to multiple domains (as cookies belong to only a single

domain). So how can we improve this? By moving the

authentication responsibilities to a separate service.

25.1.2 Centralizing authentication in an
identity provider

Modern systems often have many moving parts, each of

which requires some level of authentication and

authorization to protect each app from unauthorized use.

Instead of embedding authentication responsibilities in each

application, a common approach is to extract the code that’s

common to all the apps and APIs and then move it to an

identity provider, as shown in figure 25.4.

Figure 25.4 An alternative architecture involves using a central
identity provider to handle all the authentication and user
management for the system. Tokens are passed back and forth
among the identity provider, apps, and APIs.

Instead of signing in to an app directly, the app redirects to

an identity provider. The user signs in to this identity

provider, which passes bearer tokens back to the client (a

browser or mobile app, for example) to indicate who the

user is and what they’re allowed to access. The client can

pass these tokens to the APIs to provide information about

the logged-in user without needing to reauthenticate or

manage users directly in the API.

DEFINITION Bearer tokens are strings that contain authentication
details about a user or app. They may or may not be encrypted but
are typically signed to avoid tampering. JWTs are the most common
format. We’ll look more at JWTs in section 25.2.

Using a separate identity provider is clearly more

complicated on the face of it, as you’ve thrown a whole new

service into the mix, but in the long run this has several

advantages:

Users can share their identity among multiple

services. As you’re logged in to the central identity

provider, you’re essentially logged in to all apps

that use that service. This gives you the single-

sign-on experience, where you don’t have to keep

logging in to multiple services.

You don’t need to duplicate sign-in logic between

multiple services. All the sign-in logic is

encapsulated in the identity provider, so you don’t

need to add sign-in screens to all your apps.

The identity provider has a single responsibility.

The identity provider is responsible only for

authentication and managing users. In many

cases, this is generic enough that you can (and

should!) use a third-party identity service, such as

Auth0 or Azure Active Directory, instead of building

your own.

You can easily add new sign-in mechanisms.

Whether you use the identity provider approach or

the traditional approach, it’s possible to use

external services to handle the authentication of

users. You’ll have seen this in apps that allow you

to “log in using Facebook” or “log in using Google,”

for example. If you use a centralized identity

provider, you can add support for more providers

in one place instead of having to configure every

app and API explicitly.

Out of the box, ASP.NET Core supports architectures like this

and for consuming bearer tokens from identity providers,

but .NET 7 doesn’t include support for issuing those tokens

in the core framework. That means you’ll need to use

another library or service as the identity provider.

As I mentioned in chapter 23, one excellent option is to use

a third-party identity provider, such as Facebook, Google,

Okta, Auth0, or Azure Active Directory. These providers take

care of storing user passwords, authenticating using modern

standards like WebAuthn (https://webauthn.guide), and

looking for malicious attempts to impersonate users.

By using an identity provider, you leave the tricky security

details to the experts and can focus on the core purpose of

your business, whichever domain that is. Not all providers

are equal, though: For some providers (such as Auth0) you

own the profiles, whereas for others (Facebook or Google)

you don’t. Make sure to choose a provider that matches your

requirements.

https://webauthn.guide/

TIP Wherever possible, I recommend using a third-party identity
provider. Well-respected identity providers have many experts
working solely on securing your customers’ details, proactively
preventing attacks and ensuring that the data is safe. By leaving this
tricky job to the experts, you’re free to focus on the core business of
your app, whatever that may be.

Another common option is to build your own identity

provider. This may sound like a lot of work (and it is!), but

thanks to excellent libraries like OpenIddict (https://

github.com/openiddict) and Duende’s IdentityServer

(https://duendesoftware.com), it’s perfectly possible to write

your own identity provider to serve bearer tokens that can

be consumed by your apps and APIs.

WARNING You should consider carefully whether the effort and risks
associated with creating your own identity provider are worthwhile.
Bugs are a fact of life, and a bug in your identity provider could easily
result in a security vulnerability. Nevertheless, if you have specific
identity requirements, creating your own identity provider may be a
reasonable or necessary option.

An aspect often overlooked by people getting started with

OpenIddict and IdentityServer is that they aren’t

prefabricated solutions. They consist of a set of services and

middleware that you add to a standard ASP.NET Core app,

providing an implementation of relevant identity standards,

according to the specification. You, as a developer, still need

to write the profile management code that knows how to

create a new user (normally in a database), load a user’s

details, validate their password, and manage their

associated claims. On top of that, you need to provide all the

https://github.com/openiddict
https://github.com/openiddict
https://duendesoftware.com/

UI code for the user to log in, manage their passwords, and

configure multi-factor authentication (MFA). It’s not for the

faint of heart!

In many ways, you can think of an identity provider as a

traditional web app that has only account management

pages. If you want to take on building your own identity

provider, ASP.NET Core Identity, described in chapter 23,

provides a good basis for the user management side. Adding

IdentityServer or OpenIddict gives you the ability to

generate tokens for other services, using the OpenID

Connect standard, for maximum interoperability with other

services.

25.1.3 OpenID Connect and OAuth 2.0

OpenID Connect (OIDC) (http://openid.net/connect) is an

authentication protocol built on top of the OAuth 2.0

(https://oauth.net/2) specification. It’s designed to facilitate

the kind of approaches described in section 25.1.2, where

you want to leave the responsibility of storing user

credentials to someone else (an identity provider). It

provides an answer to the question “Which user sent this

request?” without your having to manage the user yourself.

NOTE It isn’t strictly necessary to understand these protocols to add
authentication to your APIs, but I think it’s best to have a basic
understanding of them so that you understand where your APIs fit
into the security landscape. If you want to learn more about OpenID
Connect, OpenID Connect in Action, by Prabath Siriwardena
(Manning, 2023), provides lots more details.

http://openid.net/connect
https://oauth.net/2/

Open ID Connect is built on top of the OAuth 2.0 protocol, so

it helps to understand that protocol a little first. OAuth 2.0 is

an authorization protocol. It allows a user to delegate access

of a resource to a different service in a controlled manner

without revealing any additional details, such as your

identity or any other information.

That’s all a bit abstract, so let’s consider an example. You

want to print some photos of your dog through a photo

printing service, dogphotos.com. You sign up to the

dogphotos.com service, and they give you two options for

uploading your photos:

Upload from your computer.

Download directly from Facebook using OAuth 2.0.

As you’re using a new laptop, you haven’t downloaded all

the photos of your dog to your computer, so you choose to

use OAuth 2.0 instead, as shown in figure 25.5. This triggers

the following sequence:

1. dogphotos.com redirects you to Facebook, where

you must sign in (if you haven’t already).

2. Once you’re authenticated, Facebook shows a

consent screen, which describes the data

dogphotos.com wants to access, which should be

your photos only in this case.

3. When you choose OK, Facebook automatically

redirects you to a URL on dog photos.com and

includes an authorization code in the URL.

4. dogphotos.com uses this code, in combination with

a secret known only by Facebook and

dogphotos.com, to retrieve an access token from

Facebook.

5. Finally, dogphotos.com uses the token to call the

Facebook API and retrieve your dog photos!

Figure 25.5 Using OAuth 2.0 to authorize dogphotos.com to
access your photos on Facebook

There’s a lot going on in this example, but it gives some nice

benefits:

You didn’t have to give your Facebook credentials

to dogphotos.com. You simply signed in to

Facebook as normal.

You had control of which details dogphotos.com

could access on your behalf via the Facebook

photos API.

You didn’t have to give dogphotos.com any of your

identity information (though in practice, this is

often requested).

Effectively, you delegated your access of the Facebook

photos API to dogphotos.com. This approach is why OAuth

2.0 is described as an authorization protocol, not an

authentication protocol. dogphotos.com doesn’t know your

identity on Facebook; it is authorized only to access the

photos API on behalf of someone.

OAuth 2.0 authorization flows and grant
types

The OAuth 2.0 example shows in this section uses a common flow or grant type, as it’s
called in OAuth 2.0, for obtaining a token from an identity provider. Oauth 2.0 defines
several grant types and extensions, each designed for a different scenario:

Authorization code—This is the flow I described in figure 25.5, in which
an application uses the combination of an authorization code and a
secret to retrieve a token.

Proof Key for Code Exchange (PKCE)—This is an extension to the
authorization code that you should always favor, if possible, as it
provides additional protections against certain attacks, as described in
the RFC at https://www.rfc-editor.org/rfc/rfc7636.

Client credentials—This is used when no user is involved, such as
when you have an API talking to another API.

Many more grants are available (see https://oauth.net/2/grant-types), and each grant is
suited to a different situation. The examples are the most common types, but if your
scenario doesn’t match these, it’s worth exploring the other OAuth 2.0 grants available
before thinking you need to invent your own! And with Oauth 2.1 coming soon
(http://mng.bz/XNav), there may well be updated guidance to be aware of.

OAuth 2.0 is great for the scenario I’ve described so far, in

which you want to delegate access to a resource (your

photos) to someone else (dogphotos.com). But it’s also

common for apps to want to know your identity in addition

to accessing an API. For example, dogphotos.com may want

to be able to contact you via Facebook if there’s a problem

with your photos.

This is where OpenID Connect comes in. OpenID Connect

takes the same basic flows as OAuth 2.0 and adds some

conventions, discoverability, and authentication. At a high

level, OpenID Connect treats your identity (such as an ID or

email address) as a resource that is protected in the same

way as any other API. You still need to consent to give

dogphotos.com access to your identity details, but once you

do, it’s an extra API call for dogphotos.com to retrieve your

identity details, as shown in figure 25.6.

https://www.rfc-editor.org/rfc/rfc7636
https://oauth.net/2/grant-types/
http://mng.bz/XNav

Figure 25.6 Using OpenID Connect to authenticate with
Facebook and retrieve identity information. The overall flow is
the same as with Oauth 2.0, as shown in figure 25.5, but with an
additional identity token describing the authentication event and
API call to retrieve the identity details.

OpenID Connect is a crucial authentication component in

many systems, but if you’re building the API only (for

example, the Facebook photos API from figures 25.5 and

25.6), all you really care about are the tokens in the

requests; how that token was obtained is less important

from a technical standpoint. In the next section we’ll look in

detail at these tokens and how they work.

25.2 Understanding bearer token
authentication

In this section you’ll learn about bearer tokens: what they

are, how they can be used for security with APIs, and the

common JWT format for tokens. You’ll learn about some of

the limitations of the tokens, approaches to work around

these, and some common concepts such as audiences and

scopes.

The name bearer token consists of two parts that describe

its use:

Token—A security token is a string that provides

access to a protected resource.

Bearer—A bearer token is one in which anyone

who has the token (the bearer) can use it like

anyone else. You don’t need to prove that you

were the one who received the token originally or

have access to any additional key. You can think of

a bearer token as being a bit like money: if it’s in

your possession, you can spend it!

If the second point makes you a little uneasy, that’s good.

You should think of bearer tokens as being a lot like

passwords: you must protect them at all costs! You should

avoid including bearer tokens in URL query strings, for

example, as these may be automatically logged, exposing

the token accidentally.

Everything old is new again: Cookies for
APIs

Bearer token authentication is extremely common for APIs, but as with everything in
tech, the landscape is constantly evolving. One area that has seen a lot of change is
the process of securing SPAs like React, Angular, and Blazor WASM. The advice for
some years was to use the Authorization code with PKCE grant (https://www.rfc-
editor.org/rfc/rfc8252#section-6), but the big problem with this pattern is that the bearer
tokens for calling the API are ultimately stored in the browser.

An alternative pattern has emerged recently: the Backend for Frontend (BFF) pattern.
In this approach, you have a traditional ASP.NET Core application (the backend),
which hosts the Blazor WASM or other SPA application (the frontend). The main job of
the ASP.NET Core application is to handle OpenID Connect authentication, store the
bearer tokens securely, and set an authentication cookie, exactly like a traditional web
app.

The frontend app in the browser sends requests to the backend app, which
automatically includes the cookie. The backend swaps out the authentication cookie for

https://www.rfc-editor.org/rfc/rfc8252#section-6
https://www.rfc-editor.org/rfc/rfc8252#section-6

the appropriate bearer token and forwards the request to the real API.

The big advantages of this approach are that no bearer tokens are ever sent to the
browser, and much of the frontend code is significantly simplified. The main down side
is that you need to run the additional backend service to support the frontend app.
Nevertheless, this is quickly becoming the recommended approach. You can read
more about the pattern in Duende’s documentation at http://mng.bz/yQdB.
Alternatively, you can find a project template for the BFF pattern from Damien Bowden
at http://mng.bz/MBlW.

Bearer tokens don’t have to have any particular value; they

could be a completely random string, for example. However,

the most common format and the format used by OpenID

Connect is a JWT. JWTs (defined in https://www.rfc-

editor.org/rfc/ rfc7519.xhtml) consist of three parts:

A JavaScript Object Notation (JSON) header

describing the token

A JSON payload containing the claims

A binary signature created from the header and

the payload

Each part is base64-encoded and concatenated with a '.'

into a single string that can be safely passed in HTTP

headers, for example, as shown in figure 25.7. The signature

is created using key material that must be shared by the

provider that created the token and any API that consumes

it. This ensures that the JWT can’t be tampered with, such

as to add extra claims to a token.

http://mng.bz/yQdB
http://mng.bz/MBlW
https://www.rfc-editor.org/rfc/rfc7519.xhtml
https://www.rfc-editor.org/rfc/rfc7519.xhtml

Figure 25.7 An example JWT, decoded using the website

https://jwt.io. The JWT consists of three parts: the header, the
payload, and the signature. You must always verify the signature
of any JWTs you receive.

WARNING Always validate the signature of any JWTs you consume,
as described in the JWT Best Current Practices RFC (https://www.rfc-
editor.org/rfc/rfc8725). ASP.NET Core does this by default.

Figure 25.7 shows the claims included in the JWT, some of

which have cryptic names like iss and iat. These are

standard claim names used in OpenID Connect (standing for

“Issuer” and “Issued at,” respectively). You generally don’t

need to worry about these, as they’re automatically handled

by ASP.NET Core when it decodes the token. Nevertheless,

it’s helpful to understand what some of these claims mean,

as it will help when things go wrong:

sub—The subject of the token, the unique

identifier of the subject it’s describing. This will

often be a user, in which case it may be the

identity provider’s unique ID for the user.

aud—The audience of the token, specifying the

domains for which this token was created. When

an API validates the token, the API should confirm

that the JWT’s aud claim contains the domain of

the API.

https://jwt.io/
https://www.rfc-editor.org/rfc/rfc8725
https://www.rfc-editor.org/rfc/rfc8725

scope—The scopes granted in the token. Scopes

define what the user/app consented to (and is

allowed to do). Taking the example from section

25.1, dogphotos.com may have requested the

photos.read and photos.edit scopes, but if

the user consented only to the photos.read

scope, the photos.edit scope would not be in

the JWT it receives for use with the Facebook

photos API. It’s up to the API itself to interpret

what each scope means for the business logic of

the request.

exp—The expiration time of the token, after which

it is no longer valid, expressed as the number of

seconds since midnight on January 1, 1970

(known as the Unix timestamp).

An important point to realize is that JWTs are not encrypted.

That means anyone can read the contents of a JWT by

default. Another standard, JSON Web Encryption (JWE), can

be used to wrap a JWT in an encrypted envelope that can’t

be read unless you have the key. Many identity providers

include support for using JWEs with nested JWTs, and

ASP.NET Core includes support for both out of the box, so it’s

something to consider.

Bearer tokens, access tokens, reference
tokens, oh my!

The concept of a bearer token described in this section is a generic idea that can be
used in several ways and for different purposes. You’ve already read about access
tokens and identity tokens used in OpenID Connect. These are both bearer tokens;
their different names describe the purpose of the token.

The following list describes some of the types of tokens you might read about or run
into:

Access token—Access tokens are used to authorize access to a
resource. These are the tokens typically referred to when you talk about
bearer authentication. They come in two flavors:

Self-contained—These are the most common tokens, with JWT
as the most common format. They contain metadata, claims, and
a signature. The strength of self-contained tokens—that they
contain all the data and can be validated offline—is also their
weakness, as they can’t be revoked. Due to this, they typically
have a limited valid lifespan. They can also become large if they
contain many claims, which increases request sizes.

Reference token—These don’t contain any data and are typically
a random string. When a protected API receives a reference
token, it must exchange the reference token with the identity
provider for the claims (for example, a JWT). This approach
ensures more privacy, as the claims are never exposed to the
client, and the token can be revoked at the identity provider.
However, it requires an extra HTTP round trip every time the API
receives a request. This makes reference tokens a good option
for high-security environments, where the performance effect is
less critical.

ID token—This token is used in OpenID Connect (http://mng.bz/a1M7)
to describe an authentication event. It may contain additional claims
about the authenticated user, but this is not required; if the claims aren’t
provided in the ID token, they can be retrieved from the identity
provider’s UserInfo endpoint. The ID token is always a JWT, but you
should never send it to other APIs; it is not an access token. The ID
token can also be used to log out the user at the identity provider.

http://mng.bz/a1M7

Refresh token—For security reasons, access tokens typically have
relatively short lifetimes, sometimes as low as 5 minutes. After this time,
the access token is no longer valid, and you need to retrieve a new one.
Making users log in to their identity provider every 5 minutes is clearly a
bad experience, so as part of the OAuth or OpenID Connect flow you
can also request a refresh token.

When an access token expires, you can send the refresh token to an identity
provider, and it returns a new access token without the user’s needing to log in
again. The power to obtain valid access tokens means that it’s critical to protect
refresh tokens; should an attacker obtain a refresh token, they effectively have
the power to impersonate a user.

In most of your work building and interacting with APIs, you’ll likely be using self-
contained JWT access tokens. These are what I’m primarily referring to in this chapter
whenever I mention bearer tokens or bearer authentication.

Now you know what a token is, as well as how they’re issued

by identity providers using the OpenID Connect and OAuth

2.0 protocols. Before we get to some code in section 25.3,

we’ll see what a typical authentication flow looks like for an

ASP.NET Core API app using JWT bearer tokens for

authentication.

At a high level, authenticating using bearer tokens is

identical to authenticating using cookies for a traditional app

that has already authenticated, which you saw in figure

25.1. The request to the API contains the bearer token in a

header. Any middleware before the authentication

middleware sees the request as unauthenticated, exactly the

same as for cookie authentication, as shown in figure 25.8.

Figure 25.8 When an API request contains a bearer token, the
token is validated and deserialized by the authentication
middleware. The middleware creates a ClaimsPrincipal from the
token, optionally transforming it with additional claims, and sets

the HttpContext.User property. Subsequent middleware sees the
request as authenticated.

Things are a bit different in the

AuthenticationMiddleware. Instead of deserializing a

cookie containing the ClaimsPrincipal, the middleware

decodes the JWT token in the Authorization header. It

validates the signature using the signing keys from the

identity provider, and verifies that the audience has the

expected value and that the token has not expired.

If the token is valid, the authentication middleware creates a

ClaimsPrincipal representing the authenticated request

and sets it on HttpContext.User. All middleware after the

authentication middleware sees the request as

authenticated.

TIP If the claims in the token don’t match the key values you’re
expecting, you can use claims transformation to remap claims. This
applies to cookie authentication too, but it’s particularly common
when you’re receiving tokens from third-party identity providers,
where you don’t control the names of claims. You can also use this
approach to add extra claims for a user, which weren’t in the original
token. To learn more about claims transformation, see
http://mng.bz/gBJV.

We’ve covered a lot of theory about JWT tokens in this

chapter, so you’ll be pleased to hear it’s time to look at some

code!

http://mng.bz/gBJV

25.3 Adding JWT bearer authentication
to minimal APIs

In this section you’ll learn how to add JWT bearer token

authentication to an ASP.NET Core app. I use the minimal

API Recipe API application we started in chapter 12 in this

chapter, but the process is identical if you’re building an API

application using web API controllers.

.NET 7 significantly simplified the number of steps you need

to get started with JWT authentication by adding some

conventions, which we’ll discuss shortly. To add JWT to an

existing API application, first install the

Microsoft.AspNetCore.Authentication.JwtBearer NuGet

package using the .NET CLI

dotnet add package Microsoft.AspNetCore.Authentication.JwtBearer

or by adding the <PackageReference> to your project

directly:

<PackageReference Include="Microsoft.AspNetCore.Authentication.JwtBearer"

 Version="7.0.0" />

Next, add the required services to configure JWT

authentication for your application, as shown in listing 25.1.

As you may remember, the authentication and authorization

middleware are automatically added to your middleware

pipeline by WebApplication, but if you want to control the

position of the middleware, you can override the location, as

I do here.

Listing 25.1 Adding JWT bearer authentication to a minimal API
application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddAuthentication() ❶
 .AddJwtBearer(); ❷
builder.Services.AddAuthorization(); ❸

builder.Services.AddScoped<RecipeService>();

WebApplication app = builder.Build();

app.UseAuthentication(); ❹
app.UseAuthorization(); ❺

app.MapGet("/recipe", async (RecipeService service) =>

{

 return await service.GetRecipes();

}).RequireAuthorization(); ❻

app.Run();

❶ Adds the core authentication services

❷ Adds and configures JWT authentication
❸ Adds the core authorization services

❹ Adds the authentication middleware
❺ Adds the authorization middleware

❻ Adds an authorization policy to the minimal API endpoint

As well as configuring the JWT authentication, listing 25.1

adds an authorization policy to the one minimal API endpoint

shown in the app. The RequireAuthorization()

function adds a simple “Is authenticated” authorization

policy to the endpoint. This is exactly analgous to when you

add an [Authorize] attribute to MVC or Web API

controllers. Any requests for this endpoint must be

authenticated; otherwise, the request is rejected by the

authorization middleware with a 401 Unauthorized

reponse, as shown in figure 25.9.

Authentication schemes: Choosing
between cookies and bearer tokens

One question you may have while reading about bearer authentication is how the
authentication middleware knows whether to look for the cookie or a header. The
answer is authentication schemes.

An authentication scheme in ASP.NET Core has an ID and an associated
authentication handler that controls how the user is authenticated, as well as how
authentication and authorization failures should be handled.

For example, in chapter 23 the cookie authentication scheme was used implicitly by
ASP.NET Core Identity. The cookie authentication handler in this case authenticates
users by looking for a cookie and redirects users to the login or “access denied” pages
for authentication or authorization failures.

In listing 25.1 you registered the JWT Bearer authentication scheme. The JWT bearer
authentication handler reads tokens from the Authorization header and returns
401 and 403 responses for authentication or authorization failures.

When you register only a single authentication scheme, such as in listing 25.1,
ASP.NET Core automatically sets that as the default, but it’s possible to register
multiple authentication schemes. This is particularly common if you are using OpenID
Connect with a traditional web app, for example. In these cases you can choose which
scheme is used for authentication events or authentication failures and how the
schemes should interact.

Using multiple authentication schemes can be confusing, so it’s important to follow the
documentation closely when configuring authentication for your app. You can read
more about authentication schemes at http://mng.bz/5w1a. If you need only a single
scheme, you shouldn’t have any problems, but otherwise, here be dragons!

http://mng.bz/5w1a

Figure 25.9 If you send a request to an API protected with JWT
bearer authentication and don’t include a token, you’ll receive a
401 Unauthorized challenge response.

Great! The 401 response in figure 25.9 verifies that the app

is behaving correctly for unauthenticated requests. The

obvious next step is to send a request to your API that

includes a valid JWT bearer token. Unfortunately, this is

where things traditionally get tricky. How do you generate a

valid JWT? Luckily, in .NET 7, the .NET CLI comes with a tool

to make creating test tokens easy.

25.4 Using the user-jwts tool for local
JWT testing

In section 25.3 you added JWT authentication to your

application and protected your API with a basic authorization

policy. The problem is that you can’t test your API unless

you can generate JWT tokens. In production you’ll likely

have an identity provider such as Auth0, Azure Active

Directory, or IdentityServer to generate tokens for you using

OpenID Connect. But that can make for cumbersome local

testing. In this section you’ll learn how to use the .NET CLI

to generate JWTs for local testing.

In .NET 7, the .NET CLI includes a tool called user-jwts that

you can use to generate tokens. This tool acts as a mini

identity provider, meaning that you can generate tokens with

any claims you may need, and your API can verify them

using signing key material generated by the tool.

TIP The user-jwts tool is built into the software development kit
(SDK), so there’s nothing extra to install. You need to enable User
Secrets for your project, but user-jwts will do this for you if you
haven’t already. The user-jwts tool uses User Secrets to store the
signing key material used to generate the JWTs, which your app uses
to validate the JWT signatures.

Let’s look at how to create a JWT with the user-jwts tool and

use that to send a request to our application.

25.4.1 Creating JWTs with the user-jwts tool

To create a JWT that you can use in requests to your API,

run the following with the user-jwts tool from inside your

project folder:

dotnet user-jwts create

This command does several things:

Enables User Secrets in the project if they’re not

already configured, as though you had manually

run dotnet user-secrets init.

Adds the signing key material to User Secrets,

which you can view by running dotnet user-

secrets list as described in chapter 10, which

prints out the key material configuration, as in this

example:

Authentication:Schemes:Bearer:SigningKeys:0:Value =

 rIhUzB3DIbtbUwiIxkgoKfFDkLpY+gIJOB4eaQzczq8=

Authentication:Schemes:Bearer:SigningKeys:0:Length = 32

Authentication:Schemes:Bearer:SigningKeys:0:Issuer = dotnet-user-jwts

Authentication:Schemes:Bearer:SigningKeys:0:Id = c99a872d

Configures the JWT authentication services to

support tokens generated by the user-jwts tool by

adding configuration to

appsettings.Development.json, as follows:

{

 "Authentication": {

 "Schemes": {

 "Bearer": {

 "ValidAudiences": [

 "http://localhost:5073",

 "https://localhost:7112"

],

 "ValidIssuer": "dotnet-user-jwts"

 }

 }

 }

}

The user-jwts tool automatically configures the valid

audiences based on the profiles in your

launchSettings.json file. All the applicationUrls

listed in launchSettings.json are listed as valid

audiences, so it doesn’t matter which profile you use to

run your app; the generated token should be valid. The

JWT bearer authentication service automatically reads

this configuration and configures itself to support user-

jwts JWTs.

Creates a JWT. By default, the token is created

with a sub and unique_claim set to your

operating system’s username, with aud claims for

each of the applicationUrls in your

launchSettings.json and an issuer of dotnet-

user-jwts. You’ll notice that these match the

values added to your APIs configuration file.

After calling dotnet user-jwts create, the JWT

token is printed to the console, along with the sub name

used and the ID of the token. I’ve truncated the tokens

throughout this chapter for brevity:

New JWT saved with ID 'f2080e51'.

Name: andrewlock

Token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6ImFuZHJl...

TIP You can visualize exactly what’s in the token by copy and pasting
it into https://jwt.io, as I showed in figure 25.7.

Now that you have a token, it’s time to test it. To use the

token, you need to add an Authorization header to

requests using the following format (where <token> is the

full token printed by user-jwts):

Authorization: Bearer <token>

If any part of this header is incorrect—if you misspell

Authorization, misspell Bearer, don’t include a space

https://jwt.io/

between Bearer and your token, or mistype your token—

you’ll get a 401 Unauthorized response.

TIP If you get 401 Unauthorized responses even after adding
an Authorization header to your requests, double-check your
spelling, and make sure that the token is added correctly with the
"Bearer " prefix. Typos have a way of creeping in here! You can
also increase the logging level in your API to see why failures are
happening, as you’ll learn in chapter 26.

Once you have added the token you can call your API, which

should now return successfully, as shown in figure 25.10.

Figure 25.10 Sending a request with a bearer token for
authorization using Postman. The Authorization header must
have the format Bearer <token>. You can also configure this in the
Authorization tab of Postman.

The default token created by the JWT is sufficient to

authenticate with your API, but depending on your

requirements, you may want to customize the JWT to add or

change claims. In the next section you’ll learn how.

25.4.2 Customizing your JWTs

By default, the user-jwts tool creates a bare-bones JWT that

you can use to call your app. If you need more

customization, you can pass extra options to the dotnet

user-jwts create command to control the JWT it

generates. Some of the most useful options are

--name sets the sub and unique_name claims

for the JWT instead of using the operating system

user as the name.

--claim <key>=<value> adds a claim called

<key> with value <value> to the JWT. Use this

option multiple times to add claims.

--scope <value> adds a scope claim called

<value> to the JWT. Use this option multiple

times to add scopes.

These aren’t the only options; you can control essentially

everything about the generated JWT. Run dotnet user-

jwts create --help to see all the options available. One

option that may be useful in certain automated scripts or

tests is the --output option. This controls how the JWT is

printed to the console after creation. The default value,

default, prints a summary of the JWT and the token itself,

as you saw previously:

New JWT saved with ID 'f2080e51'.

Name: andrewlock

Token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6ImFuZHJl...

This is handy if you’re creating tokens ad hoc at the

command line, but the alternative output options may be

more useful for scripts. For example, running

dotnet user-jwts create --output token

outputs the token only,

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6ImFuZHJl...

which is much more convenient if you’re trying to parse the

output in a script, for example. Alternatively, you can pass -

-output json, which prints details about the JWT instead,

as in this example:

{

 "Id": "8bf9b2fd",

 "Scheme": "Bearer",

 "Name": "andrewlock",

 "Audience": " https://localhost:7236, http://localhost:5229",

 "NotBefore": "2022-10-22T17:50:26+00:00",

 "Expires": "2023-01-22T17:50:26+00:00",

 "Issued": "2022-10-22T17:50:26+00:00",

 "Token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6Im...",

 "Scopes": [],

 "Roles": [],

 "CustomClaims": {}

}

Note that this isn’t the payload of the token; it’s the

configuration details used to create the JWT. The token itself

is exposed in the Token field. Again, this may be useful if

you’re generating JWTs using a script and need to parse the

output.

25.4.3 Managing your local JWTs

When you’re generating a JWT, the user-jwts tool

automatically saves the JWT configuration (the JSON shown

in section 25.4.2) to your hard drive. This is stored next to

the secrets.json file that contains the User Secrets, in a

location that varies depending on your operating system and

the <UserSecretsId> in your project file:

Windows—%APPDATA%\Microsoft\UserSecrets\

<UserSecretsId>\user-jwts.json

Linux and macOS—

~/.microsoft/usersecrets/<UserSecretsId>/user-

jwts.json

As for User Secrets, JWTs created by user-jwts aren’t

encrypted, but they’re outside your project directory, so they

are a better approach to managing secrets locally. The

generated JWTs should be used only for local testing; you

should be using a real identity provider for production

systems to securely produce JWTs for a logged-in user. This

is the reason why the user-jwts tool updates only

appsettings.Development.json with the required

configuration, not appsettings.json; it stops you from

accidentally using user-jwts in production. You should add

your production identity provider details in appsettings.json

instead.

As well as editing the user-jwts.json file manually, you can

use the user-jwts tool to manage the JWTs stored locally. In

addition to using create, you can call dotnet user-jwts

<command> from the project folder, where <command> is

one of the following options:

list—Lists a summary of all the tokens stored in

user-jwts.json for the project.

clear—Deletes all the tokens created for a

project.

remove—Deletes a single token for the project,

using the token ID displayed by the list

command.

print—Outputs the details of a single JWT, using

the token ID, as key value pairs.

key—Can be used to view or reset the signing key

material of tokens stored in the User Secrets

Manager. Note that resetting the key material

renders all previous JWTs generated by the tool

invalid.

The user-jwts tool is handy for generating JWTs locally, but

you must remember to add it to your local testing tool for all

requests. If you’re using Postman for testing, you need to

add the JWT to your request, as I showed in figure 25.10.

However, if you’re using Swagger UI as I described in

chapter 11, things aren’t quite that simple. In the next

section you’ll learn how to describe your authorization

requirements in your OpenAPI document.

25.5 Describing your authentication
requirements to OpenAPI

In chapter 11 you learned how to add an OpenAPI document

to your ASP.NET Core app that describes your API. This is

used to power tooling such as automatic client generation,

as well as Swagger UI. In this section you’ll learn how to add

authentication requirements to your OpenAPI document so

you can test your API using Swagger UI with tokens

generated by the user-jwts tool.

One of the slightly annoying things about adding

authentication and authorization to your APIs is that it

makes testing harder. You can’t just fire a web request from

a browser; you must use a tool like Postman that you can

add headers to. Even for command-line aficionados, curl

commands can become unwieldy once you need to add

authorization headers. And tokens expire and are typically

harder to generate. The list goes on!

I’ve seen these difficulties lead people to disable

authentication requirements for local testing or to try to add

them only late in a product’s life cycle. I strongly suggest

you don’t do this! Trying to add real authentication late in a

project is likely to cause headaches and bugs that you could

easily have caught if you weren’t trying to work around the

security complexity.

TIP Add real authentication and authorization to your APIs as soon as
you understand the requirements, as you will likely catch more

security-related bugs.

The user-jwts tool can help significantly with these

challenges, as you can easily generate tokens in a format

you need, optionally with a long expiration (so you don’t

need to keep renewing them) without having to wrestle with

an identity provider directly. Nevertheless, you need a way

to add these tokens to whichever tool you use for testing,

such as Swagger UI.

Swagger UI is based on the OpenAPI definition of your API,

so the best (and easiest) way to add support for

authentication to Swagger UI is to update the security

requirements of your application in your OpenAPI document.

This consists of two steps:

Define the security scheme your API uses, such as

OAuth 2.0, OpenID Connect, or simple Bearer

authentication.

Declare which endpoints in your API use the

security scheme.

The following listing shows how to configure an OpenAPI

document using Swashbuckle for an API that uses JWT

bearer authentication. The values defined on

OpenApiSecurityScheme match the default settings

configured by the user-jwts tool when you use

AddJwtBearer(). AddSecurityDefinition() defines a

security scheme for your API, and

AddSecurityRequirement() declares that the whole API

is protected using the security scheme.

Listing 25.2 Adding bearer authentication to an OpenAPI
document using Swashbuckle

WebApplicationBuilder = WebApplication.CreateBuilder(args);

builder.Services.AddAuthentication().AddJwtBearer();

builder.Services.AddAuthorization();

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen(x =>

{

 x.SwaggerDoc("v1", new OpenApiInfo {

 Title = "Recipe App", Version = "v1" });

 var security = new OpenApiSecurityScheme ❶
 {

 Name = HeaderNames.Authorization, ❷
 Type = SecuritySchemeType.ApiKey, ❸
 In = ParameterLocation.Header, ❹
 Description = "JWT Authorization header", ❺
 Reference = new OpenApiReference

 {

 Id = JwtBearerDefaults.AuthenticationScheme, ❻
 Type = ReferenceType.SecurityScheme ❼
 }

 };

 x.AddSecurityDefinition(security.Reference.Id, security); ❽
 x.AddSecurityRequirement(new OpenApiSecurityRequirement ❾
 {{security, Array.Empty<string>()}}); ❾
});

var app = builder.Build();

app.UseSwagger();

app.UseSwaggerUI();

app.UseRouting();

app.UseAuthentication();

app.UseAuthorization();

app.MapGet("/", () => "Hello world!").RequireAuthorization();

app.Run();

❶ Defines the security used by your API

❷ The name of the header to use (required)

❸ The type of security; may be OAuth2 or OpenIdConnect if using those (required)
❹ Where the token will be provided (required)

❺ A friendly description of the scheme, used in the UI
❻ A unique ID for the scheme. This uses the default JWT scheme name.

❼ The type of OpenID object (required)
❽ Adds the security definition to the OpenAPI document

❾ Marks the whole API as protected by the security definition

When you run your application after adding the definition to

your OpenAPI document, you should see an Authorize button

in the top-right corner of Swagger UI, as shown in figure

25.11. Choosing this button opens a dialog box describing

your authentication scheme, including a text box to enter

your token. You must enter Bearer <token> in this box

with a space between them. Choose Authorize, which saves

the value, and then Close. Now when you send a request to

the API, Swagger UI attaches the token in the

Authorization header, and the request succeeds.

Figure 25.11 Adding an Authorization header using Swagger UI.
When adding the token, ensure that you enter Bearer <token>,
including the Bearer prefix. Swagger UI then attaches the token
to all subsequent requests, so you are authorized to call the API.

If you’re specifically using OpenID Connect or OAuth 2.0 to

protect your APIs, you can configure these in the

OpenApiSecurityScheme document instead of using

bearer authentication. In that case, choosing Authorize in

Swagger UI would redirect you to your identity provider to

sign in and retrieve a token without your having to copy and

paste anything. That’s extremely useful if you’re running an

identity provider locally or exposing Swagger UI in

production.

The example in listing 25.2 shows the configuration when

your whole API is protected by an authorization requirement.

That’s the most common situation in my experience, but you

may want to expose certain endpoints to anonymous users

without any authorization requirements. In that case, you

can configure Swashbuckle to conditionally apply the

requirement to only those endpoints with a requirement.

TIP See the Swashbuckle documentation to learn how to configure
this and many other features related to OpenAPI document
generation: http://mng.bz/6D1A. Swashbuckle is highly extensible,
but as always, it’s worth considering whether the added complexity
you introduce to achieve perfect documentation of your API is worth
the tradeoff. For publicly exposed OpenAPI documents, this may well
be the case, but for local testing or internal APIs, the argument may
be harder to make.

http://mng.bz/6D1A

In this chapter we’ve looked in depth at using JWT bearer

tokens for authentication and explored the parallels with

cookie authentication for traditional apps. In the final section

of this chapter we look at authorization and how you can

apply different authorization policies to your minimal API

endpoints.

25.6 Applying authorization policies to
minimal API endpoints

So far in this chapter we’ve focused on authentication: the

process of validating the identity of the request initiator. For

APIs, this typically requires decoding and validating a JWT

bearer token in the authentication middleware and setting

the ClaimsPrincipal for the request, as you saw in

section 25.2. In this section we look at the next stage in

protecting your APIs, authorization, and how you can apply

different authorization requirements to your minimal API

endpoints.

The good news is that authorization for minimal APIs is

essentially identical to the authorization process you learned

about in chapter 24 for Razor Pages and MVC controllers.

The same concept of authorization policies, requirements,

handlers, and claims-based authorization apply in the same

way and use the exact same services. Figure 25.12 shows

how this looks for a request to a minimal API endpoint

protected with bearer authentication, which is remarkably

similar to the Razor Pages equivalent in figure 24.2.

Figure 25.12 Authorizing a request to a minimal API endpoint.
The routing middleware selects an endpoint that is protected by
an authorization requirement. The authentication middleware
decodes and verifies the bearer token, creating a
ClaimsPrincipal, which the authorization middleware uses along
with the endpoint metadata to determine whether the request is
authorized.

You’ve already seen that you can apply a general

authorization requirement by calling

RequireAuthorization() on an endpoint or a route

group. This is directly equivalent to adding the

[Authorize] attribute to a Razor Page or MVC controller

action. In fact, you can use the same [Authorize]

attribute on an endpoint if you wish, so the following two

endpoint definitions are equivalent:

app.MapGet("/", () => "Hello world!").RequireAuthorization();

app.MapGet("/", [Authorize] () => "Hello world!");

If you want to require a specific policy (the "CanCreate"

policy, for example), you can pass the policy name to the

RequireAuthorization() method the same way you

would for the [Authorize] attribute:

app.MapGet("/", () => "Hello world!").RequireAuthorization("CanCreate");

app.MapGet("/", [Authorize("CanCreate")] () => "Hello world!");

Similarly, you can exclude endpoints from authentication

requirements using the AllowAnonymous() function or

[AllowAnonymous] attribute:

app.MapGet("/", () => "Hello world!").AllowAnonymous();

app.MapGet("/", [AllowAnonymous] () => "Hello world!");

This is a good start, but as you saw in chapter 24, you often

need to perform resource-based authorization. For example,

in the context of the recipe API, users should be allowed to

edit or delete only recipes that they created; they can’t edit

someone else’s recipe. That means you need to know details

about the resource (the recipe) before determining whether

a request is authorized.

Resource-based authorization is essentially the same for

minimal API endpoints as for Razor Pages or MVC

controllers. You must follow several steps, most of which we

covered in chapter 24:

1. Create an

AuthorizationHandler<TRequirement,

TResource>, and register it in the DI container,

as shown in chapter 24.

2. Inject the IAuthorizationService into your

endpoint handler.

3. Call

IAuthorizationService.AuthorizeAsync(u

ser, resource, policy), passing in the

ClaimsPrincipal for the request, the resource

to authorize access to, and the policy to apply.

The first step is identical to the process shown in chapter 24,

so you can reuse the same authorization handlers whether

you’re using Razor Pages, minimal APIs, or both! You can

access the IAuthorizationService from a minimal API

endpoint using standard dependency injection (DI), which

you learned about in chapters 8 and 9.

Listing 25.3 shows an example minimal API endpoint that

uses resource-based authorization to protect the “delete”

action for a recipe. The IAuthorizationService and

HttpContext.User property are injected into the handler

method along with the RecipeService. The endpoint then

retrieves the recipe and calls AuthorizeAsync() to

determine whether to continue with the delete or return a

403 Forbidden response.

Listing 25.3 Using resource authorization to protect a minimal
API endpoint

app.MapDelete("recipe/{id}", async (

 int id, RecipeService service,

 IAuthorizationService authService, ❶
 ClaimsPrincipal user) => ❷
{

 var recipe = await service.GetRecipe(id); ❸
 var result = await authService.AuthorizeAsync(❹
 user, recipe, "CanManageRecipe"); ❹

 if (!result.Succeeded) ❺
 { ❺
 return Results.Forbid(); ❺
 } ❺

 await service.DeleteRecipe(id); ❻
 return Results.NoContent(); ❻
});

❶ Injected to perform resource-based authorization

❷ The HttpContext.User claims principal for the request
❸ Fetches the recipe to access

❹ Performs resource-based authorization, passing in the user, resource, and the policy
name

❺ If authorization failed, returns 403 Forbidden

❻ If authorization succeeded, executes the endpoint as normal

As is common when you start adding functionality, the logic

at the heart of the endpoint has become a bit muddled as

the endpoint has grown. There are several possible

approaches you could take now:

Do nothing. The logic isn’t that confusing, and this

is only one endpoint. This may be a good approach

initially but can become problematic if the logic is

duplicated across multiple endpoints.

Pull the authorization out into a filter. As you saw

in chapters 5 and 7, endpoint filters can be useful

for extracting common cross-cutting concerns,

such as validation and authorization. You may find

that endpoint filters help reduce the duplication in

your endpoint handlers, though this often comes

at the expense of additional complexity in the filter

itself, as well as a layer of indirection in your

handlers. You can see this approach in the source

code accompanying this chapter.

Push the authorization responsibilities down into

the domain. Instead of performing the resource-

based authorization in your endpoint handlers, you

could run the checks inside the domain instead, in

the RecipeService in this case. This has

advantages, in that it often reduces duplication,

keeps your endpoints simpler, and ensures that

authorization checks are always applied regardless

of how you call the domain methods.

The downside to this approach is that it may cause your

domain/application model to depend directly on ASP.NET

Core-specific constructs such as

IAuthorizationService. You can work around this

by creating a wrapper façade around the

IAuthorizationService, but this may also add

some complexity. Even if you take this approach, you

typically want to apply declarative authorization policies

to your endpoints as well to ensure that the endpoint

executes only for users who could possibly be

authorized.

There’s no single best answer on which approach to take; it

will vary depending on what works best for your application.

Authentication and authorization are inevitably tricky

subjects, so it’s important to consider them early and design

your application with security in mind.

Scope-based authorization policies

In section 25.2 I described the role of scopes in the authentication process. When you
obtain a bearer token from an identity provider—whether you’re using OpenID Connect
or OAuth 2.0—you define the scopes that you wish to retrieve. The user can then
choose to grant or deny some or all of those requested scopes. Additionally, the
identity provider might allow certain client applications access only to specific scopes.
The final access token you receive from the identity provider, which is sent to the API,
may have some or none of the requested scopes.

It’s up to the API itself to decide what each scope means and how it should be used to
enforce authorization policies. Scopes have no inherent functionality on their own,
much like claims, but you can build functionality on top. For example, you can create
authorization polices that require a token has the scope "recipe.edit" using

builder.Services.AddAuthorizationBuilder()

 .AddPolicy("RecipeEditScope", policy =>

 policy.RequireClaim("scope", " recipe.edit "));

This policy could then be applied to any endpoints that edit a recipe.

Another common pattern is to require a specific scope for you to be authorized to
make any requests to a given ASP.NET Core app, such as a "receipeApi" scope.
This approach can often replace audience validation in bearer token authorization and
may be more flexible, as it doesn’t require your identity provider to know the domain at
which your API app will be hosted.

Alternatively, you can use scopes to partition your APIs into groups that can only be
accessed by certain types of clients. For example, you might have one set of APIs that
can be accessed only by internal machine-to-machine clients, another set that can be
accessed only by admin users, and another set that can be accessed only by
nonadmin users.

Duende has many practical examples of approaches to authorization and
authentication using OpenID Connect at http://mng.bz/o1Jp. The examples are geared
to IdentityServer users but show many best practices and patterns you can use with
identity provider services as well.

That brings us to the end of this chapter on authentication

and authorization. We’re not completely done with security,

though; in chapter 27 we look at potential security threats

and how to mitigate them. But first, in chapter 26 you’ll

http://mng.bz/o1Jp

learn about the logging abstractions in ASP.NET Core and

how you can use them to keep tabs on exactly what your

app’s up to.

Summary
In large systems with multiple applications or

APIs, you can use an identity provider to centralize

authentication and user management. This often

reduces the authentication responsibilities of apps,

reducing duplication and making it easier to add

new user management features.

You should strongly consider using a third-party

identity provider service instead of building your

own. User management is rarely core to your

business, and by delegating responsibility to a

third-party you can leave protecting your most

vulnerable assets to the experts.

If you do need to build your own identity provider,

you can use the IdentityServer or OpenIddict

library. These libraries implement the OpenID

Connect protocol, adding token generation to a

standard ASP.NET Core application. You must build

the user management and UI components

yourself.

OAuth 2.0 is an authorization protocol that allows

a user to delegate authorization for accessing a

resource to another application. This standard

allows applications to interoperate without

compromising on security.

OAuth 2.0 has multiple grant types representing

common authorization flows. The authorization

code flow with PKCE is the most common

interactive grant type when a user initiates an

interaction. For machine-only workflows, such as

an API calling another API, you can use the client

credentials grant type.

OpenID Connect is built on top of OAuth 2.0. It

adds conventions, discoverability, and

authentication to OAuth 2.0, making it easier to

interact with third-party providers and retrieve

identity information about a user.

JWTs are the most common bearer token format.

They consist of a header, a payload, and a

signature, and are base64-encoded. When

receiving a JWT you must always verify the

signature to ensure that it hasn’t been tampered

with.

JWTs are not encrypted, so anyone can read them

by default. JWE is a standard that wraps the JWT

and encrypts it, protecting the contents. Many

identity providers support generating JWEs, and

ASP.NET Core supports decoding JWEs

automatically.

Bearer token authentication in ASP.NET Core is

similar to cookie authentication with traditional

web apps. The authentication middleware

deserializes the token and validates it. If the token

is valid, the middleware creates a

ClaimsPrincipal and sets

HttpContext.User.

Configure JWT bearer authentication by adding the

Microsoft.AspNetCore.Authentication.JwtBearer

NuGet Package and calling

AddAuthentication() .AddJwtBearer() to

add the required services to your app.

To generate a JWT for local testing, run dotnet

user-jwts create. This configures your API to

support JWTs created by the tool and prints a

token to the terminal, which you can use for local

testing of your API. Add the token to requests in

the Authorization header, using the format

"Bearer <token>".

Pass additional options to the dotnet user-

jwts create command to customize the

generated JWT. Add extra claims to the generated

JWT using the —claim option, change the sub

claim name using —name, or add scope claims to

the JWT using —scope.

To enable authorization in Swagger UI, you should

add a security scheme to your OpenAPI document.

Create an OpenApiSecurityScheme object, and

register it with the OpenAPI document by calling

AddSecurityDefinition(). Apply it to all the

APIs in your app by calling

AddSecurityRequirement(), passing in the

scheme object.

To add authorization to minimal API endpoints, call

RequireAuthorization() or add the

[Authorize] attribute to your endpoint handler.

This optionally takes the name of an authorization

policy to apply, n the same way as you would

apply policies to Razor Pages and MVC controllers.

You can call RequireAuthorization() on route

groups to apply authorization to multiple APIs at

the same time.

Override an authorization requirement on an

endpoint by calling AllowAnonymous() or by

adding the [AllowAnonymous] attribute to an

endpoint handler. This removes any authentication

requirements from the endpoint, so users can call

the endpoint without a bearer token in the

request.

26 Monitoring and troubleshooting
errors with logging

This chapter covers

Understanding the components of a log message
Writing logs to multiple output locations
Controlling log verbosity in different environments using filtering
Using structured logging to make logs searchable

Logging is one of those topics that seems unnecessary, right

up until you desperately need it! There’s nothing more

frustrating than finding a problem that you can reproduce

only in production and then discovering there are no logs to

help you debug it.

Logging is the process of recording events or activities in an

app, and it often involves writing a record to a console, a

file, the Windows Event Log, or some other system. You can

record anything in a log message, though there are

generally two different types of messages:

Informational messages—A standard event

occurred: a user logged in, a product was placed in

a shopping cart, or a new post was created on a

blogging app.

Warnings and errors—An error or unexpected

condition occurred: a user had a negative total in

the shopping cart, or an exception occurred.

Historically, a common problem with logging in larger

applications was that each library and framework would

generate logs in a slightly different format, if at all. When an

error occurred in your app and you were trying to diagnose

it, this inconsistency made it harder to connect the dots in

your app to get the full picture and understand the problem.

Luckily, ASP.NET Core includes a new generic logging

interface that you can plug into. It’s used throughout the

ASP.NET Core framework code itself, as well as by third-

party libraries, and you can easily use it to create logs in

your own code. With the ASP.NET Core logging framework,

you can control the verbosity of logs coming from each part

of your code, including the framework and libraries, and you

can write the log output to any destination that plugs into

the framework.

In this chapter I cover the .NET logging framework ASP.NET

Core uses in detail, and I explain how you can use it to

record events and diagnose errors in your own apps. In

section 26.1 I’ll describe the architecture of the logging

framework. You’ll learn how dependency injection (DI)

makes it easy for both libraries and apps to create log

messages, as well as to write those logs to multiple

destinations.

In section 26.2 you’ll learn how to write your own log

messages in your apps with the ILogger interface. We’ll

break down the anatomy of a typical log record and look at

its properties, such as the log level, category, and message.

Writing logs is useful only if you can read them, so in section

26.3 you’ll learn how to add logging providers to your

application. Logging providers control where your app writes

your log messages, such as to the console, to a file, or even

to an external service.

Logging is an important part of any application, but

determining how much logging is enough can be a tricky

question. On one hand, you want to provide sufficient

information to be able to diagnose any problems. On the

other hand, you don’t want to fill your logs with data that

makes it hard to find the important information when you

need it. Even worse, what is sufficient in development might

be far too much once you’re running in production.

In section 26.4 I’ll explain how you can filter log messages

from various sections of your app, such as the ASP.NET Core

infrastructure libraries, so that your logging providers write

only the important messages. This lets you keep that

balance between extensive logging in development and

writing only important logs in production.

In the final section of this chapter I’ll touch on some of the

benefits of structured logging, an approach to logging that

you can use with some providers for the ASP.NET Core

logging framework. Structured logging involves attaching

data to log messages as key-value pairs to make it easier to

search and query logs. You might attach a unique customer

ID to every log message generated by your app, for

example. Finding all the log messages associated with a user

is much simpler with this approach, compared with recording

the customer ID in an inconsistent manner as part of the log

message.

We’ll start this chapter by digging into what logging involves

and why your future self will thank you for using logging

effectively in your application. Then we’ll look at the pieces

of the ASP.NET Core logging framework you’ll use directly in

your apps and how they fit together.

26.1 Using logging effectively in a
production app

Imagine you’ve just deployed a new app to production when

a customer calls saying that they’re getting an error

message using your app. How would you identify what

caused the problem? You could ask the customer what steps

they were taking and potentially try to re-create the error

yourself, but if that doesn’t work, you’re left trawling

through the code, trying to spot errors with nothing else to

go on.

Logging can provide the extra context you need to quickly

diagnose a problem. Arguably, the most important logs

capture the details about the error itself, but the events that

led to the error can be equally useful in diagnosing the cause

of an error.

There are many reasons for adding logging to an application,

but typically, the reasons fall into one of three categories:

Logging for auditing or analytics reasons, to trace

when events have occurred

Logging errors

Logging nonerror events to provide a breadcrumb

trail of events when an error does occur

The first of these reasons is simple. You may be required to

keep a record of every time a user logs in, for example, or

you may want to keep track of how many times a particular

API method is called. Logging is an easy way to record the

behavior of your app by writing a message to the log every

time an interesting event occurs.

I find the second and third reasons for logging to be the

most common. When an app is working perfectly, logs often

go completely untouched. It’s when there’s a problem and a

customer comes calling that logs become invaluable. A good

set of logs can help you understand the conditions in your

app that caused an error, including the context of the error

itself, but also the context in previous requests.

TIP Even with extensive logging in place, you may not realize you
have a problem in your app unless you look through your logs
regularly. For any medium-size to large app, this becomes
impractical, so monitoring services such as Sentry (https://sentry.io)
or Datadog (https://www.datadoghq.com) can be invaluable for
notifying you of problems quickly.

If this sounds like a lot of work, you’re in luck. ASP.NET Core

does a ton of the “breadcrumb logging” for you so that you

https://sentry.io/
https://www.datadoghq.com/

can focus on creating high-quality log messages that provide

the most value when diagnosing problems.

26.1.1 Highlighting problems using custom
log messages

ASP.NET Core uses logging throughout its libraries.

Depending on how you configure your app, you’ll have

access to the details of each request and EF Core query,

even without adding logging messages to your own code. In

figure 26.1 you can see the log messages created when you

view a single recipe in the recipe application.

Figure 26.1 The ASP.NET Core Framework libraries use logging
throughout. A single request generates multiple log messages
that describe the flow of the request through your application.

This gives you a lot of useful information. You can see which

URL was requested, the Razor Page and page handler that

were invoked (for a Razor Pages app), the Entity Framework

Core (EF Core)database command, the action result

executed, and the response. This information can be

invaluable when you’re trying to isolate a problem, whether

it’s a bug in a production app or a feature in development

when you’re working locally.

This infrastructure logging can be useful, but log messages

that you create yourself can have even greater value. For

example, you may be able to spot the cause of the error

from the log messages in figure 26.1; we’re attempting to

view a recipe with an unknown RecipeId of 5, but it’s far

from obvious. If you explicitly add a log message to your

app when this happens, as in figure 26.2, the problem is

much more apparent.

Figure 26.2 You can write your own logs. These are often more
useful for identifying problems and interesting events in your
apps.

This custom log message easily stands out and clearly states

both the problem (the recipe with the requested ID doesn’t

exist) and the parameters/variables that led to it (the ID

value of 5). Adding similar log messages to your own

applications will make it easier for you to diagnose problems,

track important events, and generally know what your app is

doing.

I hope you’re now motivated to add logging to your apps, so

we’ll dig into the details of what that involves. In section

26.1.2 you’ll see how to create a log message and how to

define where the log messages are written. We’ll look in

detail at these two aspects in sections 26.2 and 26.3; first,

though, we’ll look at where they fit in terms of the ASP.NET

Core logging framework as a whole.

26.1.2 The ASP.NET Core logging
abstractions

The ASP.NET Core logging framework consists of several

abstractions (interfaces, implementations, and helper

classes), the most important of which are shown in figure

26.3:

ILogger—This is the interface you’ll interact with

in your code. It has a Log() method, which is

used to write a log message.

ILoggerProvider—This is used to create a

custom instance of an ILogger, depending on the

provider. A console ILoggerProvider would

create an ILogger that writes to the console,

whereas a file ILoggerProvider would create

an ILogger that writes to a file.

ILoggerFactory—This is the glue between the

ILoggerProvider instances and the ILogger

you use in your code. You register

ILoggerProvider instances with an

ILoggerFactory and call CreateLogger() on

the ILoggerFactory when you need an

ILogger. The factory creates an ILogger that

wraps each of the providers, so when you call the

Log() method, the log is written to every

provider.

Figure 26.3 The components of the ASP.NET Core logging
framework. You register logging providers with an
ILoggerFactory, which creates implementations of ILogger. You
write logs to the ILogger, which delegates to the ILogger
implementations that write logs to the console or a file. You can
send logs to multiple locations with this design without having
to configure the locations when you create a log message.

The design in figure 26.3 makes it easy to add or change

where your application writes the log messages without

having to change your application code. The following listing

shows all the code required to add an ILoggerProvider

that writes logs to the console.

Listing 26.1 Adding a console log provider in Program.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Logging.AddConsole() ❶

WebApplication app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

❶ Adds a new provider using the Logging property on WebApplicationBuilder

NOTE The console logger is added by default by
WebApplicationBuilder, as you’ll see in section 26.3.

Other than this configuration on

WebApplicationBuilder, you don’t interact with

ILoggerProvider instances directly. Instead, you write

logs using an instance of ILogger, as you’ll see in the next

section.

26.2 Adding log messages to your
application

In this section we’ll look in detail at how to create log

messages in your own application. You’ll learn how to create

an instance of ILogger, and how to use it to add logging to

an existing application. Finally, we’ll look at the properties

that make up a logging record, what they mean, and what

you can use them for.

Logging, like almost everything in ASP.NET Core, is available

through DI. To add logging to your own services, you need

only inject an instance of ILogger<T>, where T is the type

of your service.

NOTE When you inject ILogger<T>, the DI container indirectly
calls ILoggerFactory.CreateLogger<T>() to create the
wrapped ILogger of figure 26.3. In section 26.2.2 you’ll see how to
work directly with ILoggerFactory if you prefer. The
ILogger<T> interface also implements the nongeneric ILogger
interface but includes additional convenience methods.

You can use the injected ILogger instance to create log

messages, which it writes to each configured

ILoggerProvider. The following listing shows how to

inject an ILogger<> instance into the PageModel of the

Index.cshtml Razor Page for the recipe application from

previous chapters and how to write a log message indicating

how many recipes were found.

Listing 26.2 Injecting ILogger into a class and writing a log
message

public class IndexModel : PageModel

{

 private readonly RecipeService _service;

 private readonly ILogger<IndexModel> _log; ❶

 public ICollection<RecipeSummaryViewModel> Recipes { get; set; }

 public IndexModel(

 RecipeService service,

 ILogger<IndexModel> log) ❶
 {

 _service = service;

 _log = log; ❶
 }

 public void OnGet()

 {

 Recipes = _service.GetRecipes();

 _log.LogInformation(❷
 "Loaded {RecipeCount} recipes", Recipes.Count); ❷
 }

}

❶ Injects the generic ILogger<T> using DI, which implements ILogger
❷ Writes an Information-level log. The RecipeCount variable is substituted in the message.

In this example you’re using one of the many extension

methods on ILogger to create the log message,

LogInformation(). There are many extension methods

on ILogger that let you easily specify a LogLevel for the

message.

DEFINITION The log level of a log is how important it is and is
defined by the LogLevel enum. Every log message has a log level.

You can also see that the message you pass to the

LogInformation method has a placeholder indicated by

braces, {RecipeCount}, and you pass an additional

parameter, Recipes .Count, to the logger. The logger

replaces the placeholder with the parameter at runtime.

Placeholders are matched with parameters by position, so if

you include two placeholders, for example, the second

placeholder is matched with the second parameter.

TIP You could have used normal string interpolation to create the log
message, as in $"Loaded {Recipes.Count} recipes". But
I recommend always using placeholders, as they provide additional
information for the logger that can be used for structured logging, as
you’ll see in section 26.5.

When the OnGet page handler in the IndexModel

executes, ILogger writes a message to any configured

logging providers. The exact format of the log message

varies from provider to provider, but figure 26.4 shows how

the console provider displays the log message from listing

26.2.

Figure 26.4 An example log message as it’s written to the default
console provider. The log-level category provides information
about how important the message is and where it was
generated. The EventId provides a way to identify similar log
messages.

The exact presentation of the message will vary depending

on where the log is written, but each log record includes up

to six common elements:

Log level—The log level of the log is how important

it is and is defined by the LogLevel enum.

Event category—The category may be any string

value, but it’s typically set to the name of the class

creating the log. For ILogger<T>, the full name

of the type T is the category.

Message—This is the content of the log message.

It can be a static string, or it can contain

placeholders for variables, as shown in listing 26.2.

Placeholders are indicated by braces, {} and are

replaced by the provided parameter values.

Parameters—If the message contains placeholders,

they’re associated with the provided parameters.

For the example in listing 26.2, the value of

Recipes.Count is assigned to the placeholder

called RecipeCount. Some loggers can extract

these values and expose them in your logs, as

you’ll see in section 26.5.

Exception—If an exception occurs, you can pass

the exception object to the logging function along

with the message and other parameters. The

logger records the exception in addition to the

message itself.

EventId—This is an optional integer identifier for

the error, which can be used to quickly find all

similar logs in a series of log messages. You might

use an EventId of 1000 when a user attempts to

load a non-existent recipe and an EventId of

1001 when a user attempts to access a recipe

they don’t have permission to access. If you don’t

provide an EventId, the value 0 is used.

High-performance logging with source
generators

Source generators are a compiler feature introduced in C# 9. Using this feature, you
can automatically generate boilerplate code when your project compiles. .NET 7
includes several built-in source generators, such as the Regex generator I described
in chapter 14. There’s also a source generator that works with ILogger, which can

help you avoid pitfalls such as accidentally using interpolated strings, and makes more
advanced and performant logging patterns easy to use.

To use the logging source generator in the OnGet handler from listing 26.2, define a
partial method in the IndexModel class, decorate it with a [LoggerMessage]
attribute, and invoke the method inside the OnGet handler method:

[LoggerMessage(10, LogLevel.Information, "Loaded {RecipeCount} recipes")]

partial void LogLoadedRecipes(int recipeCount);

public void OnGet()

{

 Recipes = _service.GetRecipes();

 LogLoadedRecipes(Recipes.Count);

}

The [LoggerMessage] attribute defines the event ID, log level, and message the
log message uses, and the parameters of the partial method it decorates are
substituted into the message at runtime. This pattern also comes with several
analyzers to make sure you use it correctly in your code while optimizing the generated
code behind the scenes to prevent allocations where possible.

The logging source generator is optional, so it’s up to you whether to use it. You can
read more about the source generator, the extra configuration options, and how it
works on my blog at http://mng.bz/vn14 and in the documentation at
http://mng.bz/4D1j.

Not every log message will have all the possible elements.

You won’t always have an Exception or parameters, for

example, and it’s common to omit the EventId. There are

various overloads to the logging methods that take these

elements as additional method parameters. Besides these

optional elements, each message has, at very least, a level,

category, and message. These are the key features of the

log, so we’ll look at each in turn.

http://mng.bz/vn14
http://mng.bz/4D1j

26.2.1 Log level: How important is the log
message?

Whenever you create a log using ILogger, you must

specify the log level. This indicates how serious or important

the log message is, and it’s an important factor when it

comes to filtering which logs are written by a provider, as

well as finding the important log messages after the fact.

You might create an Information level log when a user

starts to edit a recipe. This is useful for tracing the

application’s flow and behavior, but it’s not important,

because everything is normal. But if an exception is thrown

when the user attempts to save the recipe, you might create

a Warning or Error level log.

The log level is typically set by using one of several

extension methods on the ILogger interface, as shown in

listing 26.3. This example creates an Information level

log when the View method executes and a Warning level

error if the requested recipe isn’t found.

Listing 26.3 Specifying the log level using extension methods on
ILogger

private readonly ILogger _log; ❶
public async IActionResult OnGet(int id)

{

 _log.LogInformation(❷
 "Loading recipe with id {RecipeId}", id); ❷

 Recipe = _service.GetRecipeDetail(id);

 if (Recipe is null)

 {

 _log.LogWarning(❸
 "Could not find recipe with id {RecipeId}", id); ❸
 return NotFound();

 }

 return Page();

}

❶ An ILogger instance is injected into the Razor Page using constructor injection.
❷ Writes an Information level log message

❸ Writes a Warning level log message

The LogInformation and LogWarning extension

methods create log messages with a log level of

Information and Warning, respectively. There are six log

levels to choose among, ordered here from most to least

serious:

Critical—For disastrous failures that may leave

the app unable to function correctly, such as out-

of-memory exceptions or if the hard drive is out of

disk space or the server is on fire.

Error—For errors and exceptions that you can’t

handle gracefully, such as exceptions thrown when

saving an edited entity in EF Core. The operation

failed, but the app can continue to function for

other requests and users.

Warning—For when an unexpected or error

condition arises that you can work around. You

might log a Warning for handled exceptions or

when an entity isn’t found, as in listing 26.3.

Information—For tracking normal application

flow, such as logging when a user signs in or when

they view a specific page in your app. Typically

these log messages provide context when you

need to understand the steps leading up to an

error message.

Debug—For tracking detailed information that’s

particularly useful during development. Generally,

this level has only short-term usefulness.

Trace—For tracking extremely detailed

information, which may contain sensitive

information like passwords or keys. It’s rarely used

and not used at all by the framework libraries.

Think of these log levels in terms of a pyramid, as shown in

figure 26.5. As you progress down the log levels, the

importance of the messages goes down, but the frequency

goes up. Typically, you’ll find many Debug level log

messages in your application, but (I hope) few Critical-

or Error-level messages.

Figure 26.5 The pyramid of log levels. Logs with a level near the
base of the pyramid are used more frequently but are less
important. Logs with a level near the top should be rare but are
important.

This pyramid shape will become more meaningful when we

look at filtering in section 26.4. When an app is in

production, you typically don’t want to record all the Debug-

level messages generated by your application. The sheer

volume of messages would be overwhelming to sort through

and could end up filling your disk with messages that say

“Everything’s OK!” Additionally, Trace messages shouldn’t

be enabled in production, as they may leak sensitive data.

By filtering out the lower log levels, you can ensure that you

generate a sane number of logs in production but have

access to all the log levels in development.

In general, higher-level logs are more important than lower-

level logs, so a Warning log is more important than an

Information log, but there’s another aspect to consider.

Where the log came from, or who created the log, is a key

piece of information that’s recorded with each log message

and is called the category.

26.2.2 Log category: Which component
created the log?

As well as a log level, every log message also has a

category. You set the log level independently for every log

message, but the category is set when you create the

ILogger instance. Like log levels, the category is

particularly useful for filtering, as you’ll see in section 26.4.

It’s written to every log message, as shown in figure 26.6.

Figure 26.6 Every log message has an associated category,
which is typically the class name of the component creating the
log. The default console logging provider outputs the log
category for every log.

The category is a string, so you can set it to anything, but

the convention is to set it to the fully qualified name of the

type that’s using ILogger. In section 26.2 I achieved this

by injecting ILogger<T> into RecipeController; the

generic parameter T is used to set the category of the

ILogger.

Alternatively, you can inject ILoggerFactory into your

methods and pass an explicit category when creating an

ILogger instance, as shown in the following listing. This

lets you change the category to an arbitrary string.

Listing 26.4 Injecting ILoggerFactory to use a custom category

public class RecipeService

{

 private readonly ILogger _log;

 public RecipeService(ILoggerFactory factory) ❶
 {

 _log = factory.CreateLogger("RecipeApp.RecipeService"); ❷
 }

}

❶ Injects an ILoggerFactory instead of an ILogger directly
❷ Passes a category as a string when calling CreateLogger

There is also an overload of CreateLogger() with a

generic parameter that uses the provided class to set the

category. If the RecipeService in listing 26.4 were in the

RecipeApp namespace, the CreateLogger call could be

written equivalently as

_log = factory.CreateLogger<RecipeService>();

Similarly, the final ILogger instance created by this call

would be the same as if you’d directly injected

ILogger<RecipeService> instead of ILoggerFactory.

TIP Unless you’re using heavily customized categories for some
reason, favor injecting ILogger<T> into your methods over
ILoggerFactory.

The final compulsory part of every log entry is fairly obvious:

the log message. At the simplest level, this can be any

string, but it’s worth thinking carefully about what

information would be useful to record—anything that will

help you diagnose problems later on.

26.2.3 Formatting messages and capturing
parameter values

Whenever you create a log entry, you must provide a

message. This can be any string you like, but as you saw in

listing 26.2, you can also include placeholders indicated by

braces, {}, in the message string:

_log.LogInformation("Loaded {RecipeCount} recipes", Recipes.Count);

Including a placeholder and a parameter value in your log

message effectively creates a key-value pair, which some

logging providers can store as additional information

associated with the log. The previous log message would

assign the value of Recipes.Count to a key,

RecipeCount, and the log message itself is generated by

replacing the placeholder with the parameter value, to give

the following (where Recipes.Count=3):

"Loaded 3 recipes"

You can include multiple placeholders in a log message, and

they’re associated with the additional parameters passed to

the log method. The order of the placeholders in the format

string must match the order of the parameters you provide.

WARNING You must pass at least as many parameters to the log
method as there are placeholders in the message. If you don’t pass
enough parameters, you’ll get an exception at runtime.

For example, the log message

_log.LogInformation("User {UserId} loaded recipe {RecipeId}", 123, 456)

would create the parameters UserId=123 and

RecipeId=456. Structured logging providers could store

these values, in addition to the formatted log message

"User 123 loaded recipe 456". This makes it easier to

search the logs for a particular UserId or RecipeId.

DEFINITION Structured or semantic logging attaches additional
structure to log messages to make them more easily searchable and
filterable. Rather than storing only text, it stores additional contextual
information, typically as key-value pairs. JavaScript Object Notation
(JSON) is a common format used for structured log messages.

Not all logging providers use semantic logging. The default

console logging provider format doesn’t, for example; the

message is formatted to replace the placeholders, but

there’s no way of searching the console by key-value.

TIP You can enable JSON output for the console provider by calling
WebApplicationBuilder.Logging.AddJsonConsole(

). You can further customize the format of the provider, as described
in the documentation at http://mng.bz/QP8v.

http://mng.bz/QP8v

Even if you’re not using structured logging initially, I

recommend writing your log messages as though you are,

with explicit placeholders and parameters. That way, if you

decide to add a structured logging provider later, you’ll

immediately see the benefits. Additionally, I find that

thinking about the parameters that you can log in this way

prompts you to record more parameter values instead of

only a log message. There’s nothing more frustrating than

seeing a message like "Cannot insert record due to

duplicate key" but not having the key value logged!

TIP Generally speaking, I’m a fan of C#’s interpolated strings, but
don’t use them for your log messages when a placeholder and
parameter would also make sense. Using placeholders instead of
interpolated strings gives you the same output message but also
creates key-value pairs that can be searched later.

We’ve looked a lot at how you can create log messages in

your app, but we haven’t focused on where those logs are

written. In the next section we’ll look at the built-in ASP.NET

Core logging providers, how they’re configured, and how you

can add a third-party provider.

26.3 Controlling where logs are written
using logging providers

In this section you’ll learn how to control where your log

messages are written by adding ILoggerProviders to

your application. As an example, you’ll see how to add a

simple file logger provider that writes your log messages to

a file, in addition to the existing console logger provider.

Up to this point, we’ve been writing all our log messages to

the console. If you’ve run any ASP.NET Core sample apps

locally, you’ll probably have seen the log messages written

to the console window.

NOTE If you’re using Visual Studio and debugging by using the
Internet Information Services (IIS) Express option, you won’t see the
console window (though the log messages are written to the Debug
Output window instead).

Writing log messages to the console is great when you’re

debugging, but it’s not much use for production. No one’s

going to be monitoring a console window on a server, and

the logs wouldn’t be saved anywhere or be searchable.

Clearly, you’ll need to write your production logs somewhere

else.

As you saw in section 26.1, logging providers control the

destination of your log messages in ASP.NET Core. They take

the messages you create using the ILogger interface and

write them to an output location, which varies depending on

the provider.

NOTE This name always gets to me: the log provider effectively
consumes the log messages you create and outputs them to a
destination. You can probably see the origin of the name from figure
26.3, but I still find it somewhat counterintuitive.

Microsoft has written several first-party log providers for

ASP.NET Core that are available out of the box in ASP.NET

Core. These providers include

Console provider—Writes messages to the console,

as you’ve already seen

Debug provider—Writes messages to the debug

window when you’re debugging an app in Visual

Studio or Visual Studio Code, for example

EventLog provider—Writes messages to the

Windows Event Log and outputs log messages only

when running in Windows, as it requires Windows-

specific APIs

EventSource provider—Writes messages using

Event Tracing for Windows (ETW) or LTTng tracing

on Linux

There are also many third-party logging provider

implementations, such as an Azure App Service provider, an

elmah.io provider, and an Elasticsearch provider. On top of

that, there are integrations with other existing logging

frameworks like NLog and Serilog. It’s always worth looking

to see whether your favorite .NET logging library or service

has a provider for ASP.NET Core, as most do.

TIP Serilog (https://serilog.net) is my go-to logging framework. It’s a
mature framework with a huge number of supported destinations for
writing logs. See Serilog’s ASP.NET Core integration repository for
details on how to use Serilog with ASP.NET Core apps:
https://github.com/serilog/serilog-aspnetcore.

https://serilog.net/
https://github.com/serilog/serilog-aspnetcore

You configure the logging providers for your app in

Program.cs. WebApplicationBuilder configures the

console and debug providers for your application

automatically, but it’s likely that you’ll want to change or add

to these.

In this section I show how to add a simple third-party

logging provider that writes to a rolling file so our application

writes logs to a new file each day. We’ll continue to log using

the console and debug providers as well, because they’re

more useful than the file provider when developing locally.

To add a third-party logging provider in ASP.NET Core, follow

these steps:

1. Add the logging provider NuGet package to the

solution. I’m going to be using a provider called

NetEscapades.Extensions.Logging.RollingFile,

which is available on NuGet and GitHub. You can

add it to your solution using the NuGet Package

Manager in Visual Studio or using the .NET

command-line interface (CLI) by running

dotnet add package NetEscapades.Extensions.Logging.RollingFile

from your application’s project folder.

2. Add the logging provider to

WebApplicationBuilder.Logging. You can

add the file provider by calling AddFile(), as

shown in the next listing. AddFile() is an

extension method provided by the logging provider

package to simplify adding the provider to your

app.

NOTE This package is a simple file logging provider, available at
http://mng.bz/XN5a. It’s based on the Azure App Service logging
provider. If you need a more robust package, consider using Serilog’s
file providers instead.

Listing 26.5 Adding a third-party logging provider to
WebApplicationBuilder

WebApplicationBuilder builder = WebApplication.CreateBuilder(args); ❶
builder.Logging.AddFile(); ❷

WebApplication app = builder.Build();

app.MapGet("/", () => "Hello world!");

app.Run();

❶ The WebApplicationBuilder configures the console and debug providers as normal.
❷ Adds the new file logging provider to the logger factory

NOTE Adding a new provider doesn’t replace existing providers.
WebApplicationBuilder automatically adds the console and
debug logging providers in listing 26.5. To remove them, call
builder.Logging.ClearProviders() before adding the
file provider.

http://mng.bz/XN5a

With the file logging provider configured, you can run the

application and generate logs. Every time your application

writes a log using an ILogger instance, ILogger writes

the message to all configured providers, as shown in figure

26.7. The console messages are conveniently available, but

you also have a persistent record of the logs stored in a file.

Figure 26.7 Logging a message with ILogger writes the log using
all the configured providers. This lets you, for example, log a
convenient message to the console while also persisting the
logs to a file.

TIP By default, the rolling file provider writes logs to a subdirectory of
your application. You can specify additional options such as filenames
and file size limits using overloads of AddFile(). For production, I
recommend using a more established logging provider, such as
Serilog.

The key takeaway from listing 26.5 is that the provider

system makes it easy to integrate existing logging

frameworks and providers with the ASP.NET Core logging

abstractions. Whichever logging provider you choose to use

in your application, the principles are the same: add a new

logging provider to WebApplicationBuilder.Logging

using extension methods like AddConsole(), or

AddFile() in this case.

Logging your application messages to a file can be useful in

some scenarios, and it’s certainly better than logging to a

nonexistent console window in production, but it may still

not be the best option.

If you discovered a bug in production and needed to look at

the logs quickly to see what happened, for example, you’d

need to log on to the remote server, find the log files on

disk, and trawl through them to find the problem. If you

have multiple web servers, you’d have a mammoth job to

fetch all the logs before you could even start to tackle the

bug—assuming that you even have remote access to the

production servers! Not fun. Add to that the possibility of file

permission or drive space problems, and file logging seems

less attractive.

Instead, it’s often better to send your logs to a centralized

location, separate from your application. Exactly where this

location may be is up to you; the key is that each instance of

your app sends its logs to the same location, separate from

the app itself.

If you’re running your app on Microsoft Azure, you get

centralized logging for free because you can collect logs

using the Azure App Service provider. Alternatively, you

could send your logs to a third-party log aggregator service

such as elmah.io (https://elmah.io) or Seq

(https://getseq.net). You can find ASP.NET Core logging

providers for each of these services on NuGet, so adding

them is the same process as adding the file provider you’ve

seen already.

Whichever providers you add, once you start running your

apps in production, you’ll quickly discover a new problem:

the sheer number of log messages your app generates! In

the next section you’ll learn how to keep this under control

without affecting your local development.

26.4 Changing log verbosity with
filtering

In this section you’ll see how to reduce the number of log

messages written to the logger providers. You’ll learn how to

apply a base level filter, filter out messages from specific

namespaces, and use logging provider-specific filters.

https://elmah.io/
https://getseq.net/

If you’ve been playing around with the logging samples,

you’ll probably have noticed that you get a lot of log

messages, even for a single request like the one in figure

26.2: messages from the Kestrel server and messages from

EF Core, not to mention your own custom messages. When

you’re debugging locally, having access to all that detailed

information is extremely useful, but in production you’ll be

so swamped by noise that picking out the important

messages will be difficult.

ASP.NET Core includes the ability to filter out log messages

before they’re written, based on a combination of three

things:

The log level of the message

The category of the logger (who created the log)

The logger provider (where the log will be written)

You can create multiple rules using these properties, and for

each log that’s created, the most specific rule is applied to

determine whether the log should be written to the output.

You could create the following three rules:

The default minimum log level is Information. If

no other rules apply, only logs with a log level of

Information or above will be written to

providers.

For categories that start with Microsoft, the

minimum log level is Warning. Any logger created

in a namespace that starts with Microsoft will

write only logs that have a log level of Warning or

above. This would filter out the noisy framework

messages you saw in figure 26.6.

For the console provider, the minimum log level is

Error. Logs written to the console provider must

have a minimum log level of Error. Logs with a

lower level won’t be written to the console, though

they might be written using other providers.

Typically, the goal with log filtering is to reduce the number

of logs written to certain providers or from certain

namespaces (based on the log category). Figure 26.8 shows

a possible set of filtering rules that apply to the console and

file logging providers.

Figure 26.8 Applying filtering rules to a log message to
determine whether a log should be written. For each provider,
the most specific rule is selected. If the log exceeds the rule’s

required minimum level, the provider writes the log; otherwise, it
discards it.

In this example, the console logger explicitly restricts logs

written in the Microsoft namespace to Warning or above,

so the console logger ignores the log message shown.

Conversely, the file logger doesn’t have a rule that explicitly

restricts the Microsoft namespace, so it uses the

configured minimum level of Information and writes the

log to the output.

TIP Only a single rule is chosen when deciding whether a log
message should be written; rules aren’t combined. In figure 26.8, rule
1 is considered to be more specific than rule 5, so the log is written to
the file provider, even though technically, both rules could apply.

You typically define your app’s set of logging rules using the

layered configuration approach discussed in chapter 10,

because this lets you easily have different rules when

running in development and production.

TIP As you saw in chapter 11, you can load configuration settings
from multiple sources, like JSON files and environment variables, and
can load them conditionally based on the
IHostingEnvironment. A common practice is to include
logging settings for your production environment in appsettings.json
and overrides for your local development environment in appsettings
.Development.json.

WebApplicationBuilder automatically loads

configuration rules from the "Logging" section of the

IConfiguration object. This happens automatically, and

you rarely need to customize it, but listing 26.6 shows how

you could also add configuration rules from the

"LoggingRules" section using AddConfiguration().

NOTE WebApplicationBuilder always adds the configuration
to load from the "Logging" section; you can’t remove this. For this
reason, it’s rarely worth adding configuration yourself; instead, use
the default "Logging" configuration section where possible.

Listing 26.6 Loading logging configuration using
AddConfiguration()

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Logging.AddConfiguration(

 builder.Configuration.GetSection("LoggingRules")); ❶

var app = builder.Build();

app.MapGet("/", () => "Hello world!");

app.Run();

❶ Loads the log filtering configuration from the LoggingRules section

Assuming that you don’t override the configuration section,

your appsettings.json will typically contain a "Logging"

section, which defines the configuration rules for your app.

Listing 26.7 shows how this might look to define all the rules

shown in figure 26.8.

Listing 26.7 The log filtering configuration section of
appsettings.json

{

 "Logging": {

 "LogLevel": { ❶

 "Default": "Debug", ❶
 "System": "Warning", ❶
 "Microsoft": "Warning" ❶
 },

 "File": { ❷
 "LogLevel": { ❷
 "Default": "Information" ❷
 }

 },

 "Console": { ❸
 "LogLevel": { ❸
 "Default": "Debug", ❸
 "Microsoft": "Warning" ❸
 }

 }

 }

}

❶ Rules to apply if there are no specific rules for a provider
❷ Rules to apply to the File provider

❸ Rules to apply to the Console provider

When creating your logging rules, the important thing to

bear in mind is that if you have any provider-specific rules,

these will take precedence over the category-based rules

defined in the "LogLevel" section. Therefore, for the

configuration defined in listing 26.7, if your app uses only

the file or console logging providers, the rules in the

"LogLevel" section will effectively never apply.

If you find this confusing, don’t worry; so do I. Whenever

I’m setting up logging, I check the algorithm used to

determine which rule applies for a given provider and

category, which is as follows:

1. Select all rules for the given provider. If no rules

apply, select all rules that don’t define a provider

(the top "LogLevel" section from listing 26.7).

2. From the selected rules, select rules with the

longest matching category prefix. If no selected

rules match the category prefix, select the

"Default" if present.

3. If multiple rules are selected, use the last one.

4. If no rules are selected, use the global minimum

level, "LogLevel:Default" (Debug in listing

26.7).

Each of these steps except the last narrows down the

applicable rules for a log message until you’re left with a

single rule. You saw this in effect for a "Microsoft"

category log in figure 26.8. Figure 26.9 shows the process in

more detail.

Figure 26.9 Selecting a rule to apply from the available set for
the console provider and an Information level log. Each step

reduces the number of rules that apply until you’re left with only
one.

WARNING Log filtering rules aren’t merged; a single rule is selected.
Including provider-specific rules will override global category-specific
rules, so I tend to stick to category-specific rules where possible to
make the overall set of rules easier to understand.

With some effective filtering in place, your production logs

should be much more manageable, as shown in figure

26.10. Generally, I find it’s best to limit the logs from the

ASP.NET Core infrastructure and referenced libraries to

Warning or above while keeping logs that my app writes to

Debug in development and Information in production.

Figure 26.10 Using filtering to reduce the number of logs written.
In this example, category filters have been added to the
Microsoft and System namespaces, so only logs of Warning and
above are recorded. That increases the proportion of logs that
are directly relevant to your application.

This is close to the default configuration used in the ASP.NET

Core templates. You may find you need to add additional

category-specific filters, depending on which NuGet libraries

you use and the categories they write to. The best way to

find out is generally to run your app and see whether you

get flooded with uninteresting log messages.

TIP Most logging providers listen for configuration changes and
update their filters dynamically. That means you should be able to
modify your appsettings.json or appsettings.Development.json file
and check the effect on the log messages, iterating quickly without
restarting your app.

Even with your log verbosity under control, if you stick to

the default logging providers like the file or console loggers,

you’ll probably regret it in the long run. These log providers

work perfectly well, but when it comes to finding specific

error messages or analyzing your logs, you’ll have your work

cut out for you. In the next section you’ll see how structured

logging can help you tackle this problem.

26.5 Structured logging: Creating
searchable, useful logs

In this section you’ll learn how structured logging makes

working with log messages easier. You’ll learn to attach key-

value pairs to log messages and how to store and query for

key values using the structured logging provider Seq. Finally,

you’ll learn how to use scopes to attach key-value pairs to all

log messages within a block.

Let’s imagine you’ve rolled out the recipe application we’ve

been working on to production. You’ve added logging to the

app so that you can keep track of any errors in your

application, and you’re storing the logs in a file.

One day, a customer calls and says they can’t view their

recipe. Sure enough, when you look through the log

messages, you a see a warning:

warn: RecipeApplication.Pages.Recipes.ViewModel [12]

 Could not find recipe with id 3245

This piques your interest. Why did this happen? Has it

happened before for this customer? Has it happened before

for this recipe? Has it happened for other recipes? Does it

happen regularly?

How would you go about answering these questions? Given

that the logs are stored in a text file, you might start doing

basic text searches in your editor of choice, looking for the

phrase "Could not find recipe with id". Depending on

your notepad-fu skills, you could probably get a fair way in

answering your questions, but it would likely be a laborious,

error-prone, and painful process.

The limiting factor is that the logs are stored as unstructured

text, so text processing is the only option available to you. A

better approach is to store the logs in a structured format so

that you can easily query the logs, filter them, and create

analytics. Structured logs could be stored in any format, but

these days they’re typically represented as JSON. A

structured version of the same recipe warning log might look

something like this:

{

 "eventLevel": "Warning",

 "category": "RecipeApplication.Pages.Recipes.ViewModel",

 "eventId": "12",

 "messageTemplate": "Could not find recipe with {recipeId}",

 "message": "Could not find recipe with id 3245",

 "recipeId": "3245"

}

This structured log message contains all the same details as

the unstructured version, but in a format that would easily

let you search for specific log entries. It makes it simple to

filter logs by their EventLevel or to show only those logs

relating to a specific recipe ID.

NOTE This is only an example of what a structured log could look
like. The format used for the logs will vary depending on the logging
provider used and could be anything. The main point is that
properties of the log are available as key-value pairs.

Adding structured logging to your app requires a logging

provider that can create and store structured logs.

Elasticsearch is a popular general search and analytics

engine that can be used to store and query your logs. One

big advantage of using a central store such as Elasticsearch

is the ability to aggregate the logs from all your apps in one

place and analyze them together. You can add the

Elasticsearch.Extensions.Logging provider to your app in the

same way as you added the file sink in section 26.3.

NOTE Elasticsearch is a REST-based search engine that’s often
used for aggregating logs. You can find out more at
https://www.elastic.co/elasticsearch.

Elasticsearch is a powerful production-scale engine for

storing your logs, but setting it up and running it in

production isn’t easy. Even after you’ve got it up and

running, there’s a somewhat steep learning curve associated

with the query syntax. If you’re interested in something

more user-friendly for your structured logging needs, Seq

(https://getseq.net) is a great option. In the next section I’ll

show you how adding Seq as a structured logging provider

makes analyzing your logs that much easier.

26.5.1 Adding a structured logging provider
to your app

To demonstrate the advantages of structured logging, in this

section you’ll configure an app to write logs to Seq. You’ll

see that the configuration is essentially identical to

unstructured providers, but the possibilities afforded by

structured logging make considering it a no-brainer.

Seq is installed on a server or your local machine and

collects structured log messages over HTTP, providing a web

interface for you to view and analyze your logs. It is

currently available as a Windows app or a Linux Docker

container. You can install a free version for development,

which allows you to experiment with structured logging in

general.

https://www.elastic.co/elasticsearch/
https://getseq.net/

TIP You can download Seq from https://getseq.net/Download.

From the point of view of your app, the process for adding

the Seq provider should be familiar:

1. Install the Seq logging provider using Visual Studio

or the .NET CLI with

dotnet add package Seq.Extensions.Logging

2. Add the Seq logging provider in Program.cs by

calling AddSeq():

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Logging.AddSeq();

That’s all you need to add Seq to your app. This will send

logs to the default local URL when you have Seq installed in

your local environment. The AddSeq() extension method

includes additional overloads to customize Seq when you

move to production, but this is all you need to start

experimenting locally.

If you haven’t already, install Seq on your development

machine (or run the Docker container) and navigate to the

Seq app at http://localhost:5341. In a different tab, open

your app, and start browsing your app and generating logs.

Back in Seq, if you refresh the page, you’ll see a list of logs,

something like figure 26.11. Clicking a log expands it and

shows you the structured data recorded for the log.

https://getseq.net/Download

Figure 26.11 The Seq UI. Logs are presented as a list. You can
view the structured logging details of individual logs, view
analytics for logs in aggregate, and search by log properties.

ASP.NET Core supports structured logging by treating each

captured parameter from your message format string as a

key-value pair. If you create a log message using the

following format string,

_log.LogInformation("Loaded {RecipeCount} recipes", Recipes.Count);

the Seq logging provider creates a RecipeCount parameter

with a value of Recipes .Count. These parameters are

added as properties to each structured log, as you can see in

figure 26.11.

Structured logs are generally easier to read than your

standard-issue console output, but their real power comes

when you need to answer a specific question. Consider the

problem from before, where you see this error:

Could not find recipe with id 3245

You want to get a feel for how widespread the problem is.

The first step would be to identify how many times this error

has occurred and to see whether it’s happened to any other

recipes. Seq lets you filter your logs, but it also lets you craft

SQL queries to analyze your data, so finding the answer to

the question takes a matter of seconds, as shown in figure

26.12.

Figure 26.12 Querying logs in Seq. Structured logging makes log
analysis like this example easy.

NOTE You don’t need query languages like SQL for simple queries,
but they make digging into the data easier. Other structured logging
providers may provide query languages other than SQL, but the
principle is the same as in this Seq example.

A quick search shows that you’ve recorded the log message

with EventId.Id=12 (the EventId of the warning we’re

interested in) 13 times, and every time, the offending

RecipeId was 3245. This suggests that there may be

something wrong with that recipe specifically, which points

you in the right direction to find the problem.

More often than not, figuring out errors in production

involves logging detective work like this to isolate where the

problem occurred. Structured logging makes this process

significantly easier, so it’s well worth considering, whether

you choose Seq, Elasticsearch, or a different provider.

I’ve already described how you can add structured

properties to your log messages using variables and

parameters from the message. But as you can see in figure

26.11, there are far more properties visible than exist in the

message alone.

Scopes provide a way to add arbitrary data to your log

messages. They’re available in some unstructured logging

providers, but they shine when used with structured logging

providers. In the final section of this chapter I’ll demonstrate

how you can use them to add data to your log messages.

26.5.2 Using scopes to add properties to your
logs

You’ll often find in your apps that you have a group of

operations that all use the same data, which would be useful

to attach to logs. For example, you might have a series of

database operations that all use the same transaction ID, or

you might be performing multiple operations with the same

user ID or recipe ID. Logging scopes provide a way of

associating the same data to every log message in such a

group.

DEFINITION Logging scopes are used to group multiple operations
by adding relevant data to multiple log message.

Logging scopes in ASP.NET Core are created by calling

ILogger.BeginScope<T>(T state) and providing the

state data to be logged. You create scopes inside a using

block; any log messages written inside the scope block will

have the associated data, whereas those outside won’t.

Listing 26.8 Adding scope properties to log messages with
BeginScope

_logger.LogInformation("No, I don't have scope"); ❶
using(_logger.BeginScope("Scope value")) ❷
using(_logger.BeginScope(new Dictionary<string, object> ❸
 {{ "CustomValue1", 12345 } })) ❸
{

 _logger.LogInformation("Yes, I have the scope!"); ❹
}

_logger.LogInformation("No, I lost it again"); ❶

❶ Log messages written outside the scope block don’t include the scope state.

❷ Calling BeginScope starts a scope block, with a scope state of “Scope value”.
❸ You can pass anything as the state for a scope.

❹ Log messages written inside the scope block include the scope state.

The scope state can be any object at all: an int, a string,

or a Dictionary, for example. It’s up to each logging

provider implementation to decide how to handle the state

you provide in the BeginScope call, but typically, it is

serialized using ToString().

TIP The most common use for scopes I’ve found is to attach
additional key-value pairs to logs. To achieve this behavior in Seq,

you need to pass Dictionary <string, object> as the
state object. Nicholas Blumhardt, the creator of Serilog and Seq, has
examples and the reasoning for this on his blog in the “The semantics
of ILogger.BeginScope()” article: http://mng.bz/GxDD.

When the log messages inside the scope block are written,

the scope state is captured and written as part of the log, as

shown in figure 26.13. The Dictionary<> of key-value

pairs is added directly to the log message (CustomValue1),

and the remaining state values are added to the Scope

property. You will likely find the dictionary approach the

more useful of the two, as the added properties are more

easily filtered on, as you saw in figure 26.12.

http://mng.bz/GxDD

Figure 26.13 Adding properties to logs using scopes. Any scope
state that is added using the dictionary approach is added as
structured logging properties, but other state is added to the
Scope property. Adding properties makes it easier to associate
related logs with one another.

That brings us to the end of this chapter on logging.

Whether you use the built-in logging providers or opt to use

a third-party provider like Serilog or NLog, ASP.NET Core

makes it easy to get detailed logs not only for your app

code, but also for the libraries that make up your app’s

infrastructure, like Kestrel and EF Core. Whichever you

choose, I encourage you to add more logs than you think

you’ll need; you’ll thank me when it comes time to track

down a problem.

In the next chapter we’re going to be looking at your

ASP.NET Core application from a different point of view.

Instead of focusing on the code and logic behind your app,

we’re going to look at how you prepare an app for

production. You’ll see how to specify the URLs your

application uses and how to publish an app so that it can be

hosted in IIS.

Summary
Logging is critical for quickly diagnosing errors in

production apps. You should always configure

logging for your application so that logs are written

to a durable location such as a filesystem or other

service, not just to the console, where they will be

lost if the window closes or the server restarts.

You can add logging to your own services by

injecting ILogger<T>, where T is the name of the

service. Alternatively, inject ILoggerFactory

and call CreateLogger().

The log level of a message indicates how

important it is and ranges from Trace to

Critical. Typically, you’ll create many low-

importance log messages and a few high-

importance log messages.

You specify the log level of a log by using the

appropriate extension method of ILogger to

create your log. To write an Information level

log, use ILogger.LogInformation(message).

The log category indicates which component

created the log. It is typically set to the fully

qualified name of the class creating the log, but

you can set it to any string if you wish.

ILogger<T> will have a log category of T.

You can format messages with placeholder values,

similar to the string.Format method, but with

meaningful names for the parameters. Calling

logger.LogInfo ("Loading Recipe with id

{RecipeId}", 1234) would create a log reading

"Loading Recipe with id 1234", but it would

also capture the value RecipeId=1234. This

structured logging makes analyzing log messages

much easier.

ASP.NET Core includes many logging providers out

of the box, including the console, debug,

EventLog, and EventSource providers.

Alternatively, you can add third-party logging

providers.

You can configure multiple ILoggerProvider

instances in ASP.NET Core, which define where

logs are output. WebApplicationBuilder adds

the console and debug providers, and you can add

providers using the Logging property.

You can control logging output verbosity using

configuration. WebApplicationBuilder uses

the "Logging" configuration section to control

output verbosity. You typically filter out more logs

in production than when developing your

application.

Only a single log filtering rule is selected for each

logging provider when determining whether to

output a log message. The most specific rule is

selected based on the logging provider and the

category of the log message.

Structured logging involves recording logs so that

they can be easily queried and filtered, instead of

the default unstructured format that’s output to

the console. This makes analyzing logs, searching

for problems, and identifying patterns easier.

You can add properties to a structured log by using

scope blocks. A scope block is created by calling

ILogger.BeginScope<T>(state) in a using

block. The state can be any object and is added to

all log messages inside the scope block.

27 Publishing and deploying your
application

This chapter covers

Publishing an ASP.NET Core application
Hosting an ASP.NET Core application in IIS
Customizing the URLs for an ASP.NET Core app

We’ve covered a vast amount of ground so far in this book.

We’ve gone over the basic mechanics of building an ASP.NET

Core application, such as configuring dependency injection

(DI), loading app settings, and building a middleware

pipeline. We’ve looked at building APIs using minimal APIs

and web API controllers. We’ve looked at the server-

rendered UI side, using Razor templates and layouts to build

an HTML response. And we’ve looked at higher-level

abstractions, such as Entity Framework Core (EF Core) and

ASP.NET Core Identity, that let you interact with a database

and add users to your application. In this chapter we’re

taking a slightly different route. Instead of looking at ways

to build bigger and better applications, we’ll focus on what it

means to deploy your application so that users can access it.

We’ll start by looking again at the ASP.NET Core hosting

model in section 27.1 and examining why you might want to

host your application behind a reverse proxy instead of

exposing your app directly to the internet. I show you the

difference between running an ASP.NET Core app in

development using dotnet run and publishing the app for

use on a remote server. Finally, I describe some of the

options available when you’re deciding how and where to

deploy your app.

In section 27.2 I show you how to deploy your app to one

such option: a Windows server running Internet Information

Services (IIS). This is a typical deployment scenario for

many developers who are familiar with the legacy .NET

Framework version of ASP.NET, so it acts as a useful case

study, but it’s certainly not the only possibility. I don’t go

into all the technical details of configuring the venerable IIS

system; instead, I show you the bare minimum required to

get it up and running. If your focus is cross-platform

development, don’t worry, because I don’t dwell on IIS for

too long.

In section 27.3 I provide an introduction to hosting on Linux.

You’ll see how it differs from hosting applications on

Windows, learn the changes you need to make to your apps,

and find out about some gotchas to look out for. I describe

how reverse proxies on Linux differ from IIS and point you

to some resources you can use to configure your

environments rather than give exhaustive instructions in this

book.

If you’re not hosting your application using IIS, you’ll likely

need to set the URL that your ASP.NET Core app is using

when you deploy your application. In section 27.4 I show

two approaches: using the special ASPNETCORE_URLS

environment variable and using command-line arguments.

Although this task generally is not a problem during

development, setting the correct URLs for your app is critical

when you need to deploy it.

This chapter covers a relatively wide array of topics, all

related to deploying your app. But before we get into the

nitty-gritty, I’ll go over the hosting model for ASP.NET Core

so that we’re on the same page. This is significantly different

from the hosting model of the legacy version of ASP.NET, so

if you’re coming from that background, it’s best to try to

forget what you know!

27.1 Understanding the ASP.NET Core
hosting model

If you think back to part 1 of this book, you may remember

that we discussed the hosting model of ASP.NET Core.

ASP.NET Core applications are, essentially, console

applications. They have a static void Main function that

is the entry point for the application, as a standard .NET

console app would.

NOTE The entry point for programs using top-level statements is
automatically generated by the compiler. It’s not called Main (it
typically has an “invalid” name, such as <Main>$), but otherwise it
has the same signature as the classic static void Main function
you would write by hand.

What makes a .NET app an ASP.NET Core app is that it runs

a web server, typically Kestrel, inside the console app

process. Kestrel provides the HTTP functionality to receive

requests and return responses to clients. Kestrel passes any

requests it receives to the body of your application and

generates a response, as shown in figure 27.1. This hosting

model decouples the server and reverse proxy from the

application itself so that the same application can run

unchanged in multiple environments.

Figure 27.1 The hosting model for ASP.NET Core gives flexibility.
The same application can run exposed directly to the network,
behind various reverse proxies without modification, and even
inside the IIS process.

In this book we’ve focused on the “application” part of figure

27.1—the ASP.NET Core application itself—but the reality is

that sometimes you’ll want to place your ASP.NET Core apps

behind a reverse proxy, such as IIS in Windows or NGINX or

Apache in Linux. The reverse proxy is the program that

listens for HTTP requests from the internet and then makes

requests to your app as though the request came from the

internet directly.

DEFINITION A reverse proxy is software that’s responsible for
receiving requests and forwarding them to the appropriate web
server. The reverse proxy is exposed directly to the internet, whereas
the underlying web server is exposed only to the proxy.

If you’re running your application using a Platform as a

Service (PaaS) offering such as Azure App Service, you’re

using a reverse proxy there too—one that is managed by

Azure. Using a reverse proxy has many benefits:

Security—Reverse proxies are specifically designed

to be exposed to malicious internet traffic, so

they’re typically extremely well-tested and battle-

hardened.

Performance—You can configure reverse proxies to

provide performance improvements by

aggressively caching responses to requests.

Process management—An unfortunate reality is

that apps sometimes crash. Some reverse proxies

can act as monitors/schedulers to ensure that if an

app crashes, the proxy can automatically restart it.

Support for multiple apps—It’s common to have

multiple apps running on a single server. Using a

reverse proxy makes it easier to support this

scenario by using the host name of a request to

decide which app should receive the request.

I don’t want to make it seem like using a reverse proxy is all

sunshine and roses. There are some downsides:

Complexity—One of the biggest complaints is how

complex reverse proxies can be. If you’re

managing the proxy yourself (as opposed to

relying on a PaaS implementation), there can be

lots of proxy-specific pitfalls to look out for.

Inter-process communication—Most reverse

proxies require two processes: a reverse proxy

and your web app. Communicating between the

two is often slower than if you directly exposed

your web app to requests from the internet.

Restricted features—Not all reverse proxies

support all the same features as an ASP.NET Core

app. For example, Kestrel supports HTTP/2, but if

your reverse proxy doesn’t, you won’t see the

benefits.

Whether you choose to use a reverse proxy or not, when the

time comes to host your app, you can’t copy your code files

directly to the server. First, you need to publish your

ASP.NET Core app to optimize it for production. In section

27.1.1 we’ll look at building an ASP.NET Core app so that it

can be run on your development machine, compared with

publishing it so that it can be run on a server.

27.1.1 Running vs. publishing an ASP.NET
Core app

One of the key changes in ASP.NET Core from previous

versions of ASP.NET is making it easy to build apps using

your favorite code editors and integrated development

environments (IDEs). Previously, Visual Studio was required

for ASP.NET development, but with the .NET command-line

interface (CLI), you can build apps with the tools you’re

comfortable with on any platform.

As a result, whether you build using Visual Studio or the

.NET CLI, the same tools are being used under the hood.

Visual Studio provides an additional graphical user interface

(GUI), functionality, and wrappers for building your app, but

it (mostly) executes the same commands as the .NET CLI

behind the scenes.

As a refresher, you’ve used four main .NET CLI commands so

far to build your apps:

dotnet new—Creates an ASP.NET Core application

from a template

dotnet restore—Downloads and installs any

referenced NuGet packages for your project

dotnet build—Compiles and builds your project

dotnet run—Executes your app so you can send

requests to it

If you’ve ever built a .NET application, whether it’s a legacy

ASP.NET app or a .NET Framework console app, you’ll know

that the output of the build process is written to the bin

folder by default. The same is true for ASP.NET Core

applications.

If your project compiles successfully when you call dotnet

build, the .NET CLI writes the artifacts to a bin folder in

your project’s directory. Inside this bin folder are several

files required to run your app, including a .dll file that

contains the code for your application. Figure 27.2 shows the

output of the bin folder for a basic ASP.NET Core application.

Figure 27.2 The bin folder for an ASP.NET Core app after running
dotnet build. The application is compiled into a single .dll file,
ExampleApp.dll.

NOTE In Windows you also have an executable .exe file,
ExampleApp.exe. This is a simple wrapper file for convenience that
makes it easier to run the application contained in ExampleApp.dll.

When you call dotnet run in your project folder (or run

your application using Visual Studio), the .NET CLI uses the

.dll to run your application. But this file doesn’t contain

everything you need to deploy your app.

To host and deploy your app on a server, you first need to

publish it. You can publish your ASP.NET Core app from the

command line using the dotnet publish command, which

builds and packages everything your app needs to run. The

following command packages the app from the current

directory and builds it to a subfolder called publish. I’ve used

the Release configuration instead of the default Debug

configuration so that the output will be fully optimized for

running in production:

dotnet publish --output publish --configuration Release

TIP Always use the Release configuration when publishing your
app for deployment. This ensures that the compiler generates
optimized code for your app.

Once the command completes, you’ll find your published

application in the publish folder, as shown in figure 27.3.

Figure 27.3 The publish folder for the app after running dotnet
publish. The app is still compiled into a single .dll file, but all the
additional files, such as wwwroot, are also copied to the output.

As you can see, the ExampleApp.dll file is still there, along

with some additional files. Most notably, the publish process

has copied across the wwwroot folder of static files. When

running your application locally with dotnet run, the .NET

CLI uses these files from your application’s project folder

directly. Running dotnet publish copies the files to the

output directory, so they’re included when you deploy your

app to a server.

If your first instinct is to try running the application in the

publish folder using the dotnet run command you already

know and love, you’ll be disappointed. Instead of seeing the

application starting up, you’ll see a somewhat confusing

message: Couldn’t find a project to run.

To run a published application, you need to use a slightly

different command. Instead of calling dotnet run, you

must pass the path to your application’s .dll file to the

dotnet command. If you’re running the command from the

publish folder, for the example app in figure 27.3, it would

look something like

dotnet ExampleApp.dll

This is the command that your server will run when running

your application in production.

TIP You can also use the dotnet exec command to achieve the
same thing, such as dotnet exec ExampleApp.dll. This
makes some advanced runtime options available, as described in the
docs at http://mng.bz/x4d8.

When you’re developing, the dotnet run command does a

whole load of work to make things easier on you. It makes

sure that your application is built, looks for a project file in

the current folder, works out where the corresponding .dlls

will be (in the bin folder), and finally runs your app.

In production, you don’t need any of this extra work. Your

app is already built; it only needs to be run. The dotnet

<dll> syntax does this alone, so your app starts much

faster.

http://mng.bz/x4d8

NOTE The dotnet command used to run your published
application is part of the .NET Runtime. The (identically named)
dotnet command used to build and run your application during
development is part of the .NET software development kit (SDK).

Framework-dependent deployments vs.
self-contained deployments

.NET Core applications can be deployed in two ways: runtime-dependent deployments
(RDD) and self-contained deployments (SCD).

By default, you’ll use an RDD. This relies on the .NET 7 runtime being installed on the
target machine that runs your published app, but you can run your app on any platform
—Windows, Linux, or macOS—without having to recompile.

By contrast, an SCD contains all the code required to run your app, so the target
machine doesn’t need to have .NET 7 installed. Instead, publishing your app packages
up the .NET 7 runtime with your app’s code and libraries.

Each approach has its pros and cons, but in most cases I tend to create RDDs. The
final size of RDDs is much smaller, as they contain only your app code instead of the
whole .NET 7 framework, which SCDs contain. Also, you can deploy your RDD apps to
any platform, whereas SCDs must be compiled specifically for the target machine’s
operating system, such as Windows 10 64-bit or Red Hat Enterprise Linux 64-bit.

That said, SCDs are excellent for isolating your application from dependencies on the
hosting machine. SCDs don’t rely on the version of .NET installed on a hosting
provider, so you can (for example) use preview versions of .NET in Azure App Service
without needing the preview version to be supported.

Another advantage of SCDs is for regulated industries that require certification or
procedure to change applications. In RDDs (such as in Azure App Service) the
underlying runtime may be patched at any time without your intervention, potentially
leading to noncompliance. With SCDs, your app contains a fixed runtime and can be
considered an immutable snapshot of your app. Of course, that means you must make
sure to patch the runtime of your SCDs manually, performing regular deployments.

Patch versions of the .NET runtime are generally released every month, so make sure
to plan for at least monthly releases of your SCD apps.

In this book I discuss RDDs only for simplicity, but if you want to create an SCD,
provide a runtime identifier (in this case, Windows 10 64-bit) when you publish your
app:

dotnet publish -c Release -r win10-x64 --self-contained -o publish_folder

The output will contain an .exe file, which is your application, and a ton of .dlls (about
100 MB of .dlls for a default sample app), which are the .NET 7 framework. You need
to deploy this whole folder to the target machine to run your app. Note that you need to
publish for a specific operating system and architecture. The list of available runtime
identifiers is available in the documentation at http://mng.bz/Aolp.

In .NET 7 it’s possible to trim these assemblies during the publish process, but this
comes with risks in some scenarios. You can also bundle this folder into a single file
automatically for easier deployments. For more details, see Microsoft’s “.NET
application publishing overview” documentation at
https://learn.microsoft.com/dotnet/core/deploying.

We’ve established that publishing your app is important for

preparing it to run in production, but how do you go about

deploying it? How do you get the files from your computer

onto a server so that people can access your app? You have

many, many options, so in the next section I’ll give you a

brief list of approaches to consider.

27.1.2 Choosing a deployment method for
your application

To deploy any application to production, you generally have

two fundamental requirements:

A server that can run your app

http://mng.bz/Aolp
https://learn.microsoft.com/dotnet/core/deploying

A means of loading your app onto the server

Historically, putting an app into production was a laborious

and error-prone process. For many people, this is still true.

If you’re working at a company that hasn’t changed

practices in recent years, you may need to request a server

or virtual machine for your app and provide your application

to an operations team that will install it for you. If that’s the

case, you may have your hands tied regarding how you

deploy.

For those who have embraced continuous integration (CI) or

continuous delivery/deployment (CD), there are many more

possibilities. CI/CD is the process of detecting changes in

your version control system (for example, Git, SVN,

Mercurial, or Team Foundation Version Control) and

automatically building, and potentially deploying, your

application to a server with little to no human intervention.

NOTE There are important but subtle differences between these
terms. Atlassian has a good comparison article, “Continuous
integration vs. delivery vs. deployment,” at http://mng.bz/vzp4.

There are many CI/CD systems out there—Azure DevOps,

GitHub Actions, Jenkins, TeamCity, AppVeyor, Travis, and

Octopus Deploy, to name a few. Each can manage some or

all of the CI/CD process and can integrate with many

systems.

Rather than push any particular system, I suggest trying

some of the services available and seeing which works best

for you. Some are better suited to open-source projects, and

http://mng.bz/vzp4

some are better when you’re deploying to cloud services; it

all depends on your particular situation.

If you’re getting started with ASP.NET Core and don’t want

to have to go through the setup process of getting CI

working, you still have lots of options. The easiest way to

get started with Visual Studio is to use the built-in

deployment options. These are available from Visual Studio

via the Build > Publish <AppName> command, which

presents the screen shown in figure 27.4.

Figure 27.4 The Publish application screen in Visual Studio 2022.
This provides easy options for publishing your application

directly to Azure App Service, to IIS, to an FTP site, or to a folder
on the local machine.

From here, you can publish your application directly from

Visual Studio to many locations. This is great when you’re

getting started, though I recommend looking at a more

automated and controlled approach when you have a larger

application or a whole team working on a single app.

TIP For guidance on choosing your Visual Studio publishing options,
see Microsoft’s “Deploy your app to a folder, IIS, Azure, or another
destination” documentation at http://mng.bz/4Z8j.

Given the number of possibilities available in this space and

the speed with which these options change, I’m going to

focus on one specific scenario in this chapter: you’ve built an

ASP.NET Core application, and you need to deploy it. You

have access to a Windows server that’s already serving

legacy .NET Framework ASP.NET applications using IIS, and

you want to run your ASP.NET Core app alongside them.

In the next section you’ll see an overview of the steps

required to run an ASP.NET Core application in production,

using IIS as a reverse proxy. It won’t be a master class in

configuring IIS (there’s so much depth to the 25-year-old

product that I wouldn’t know where to start!), but I’ll cover

the basics needed to get your application serving requests.

http://mng.bz/4Z8j

27.2 Publishing your app to IIS
In this section I briefly show you how to publish your first

app to IIS. You’ll add an application pool and website to IIS

and ensure that your app has the necessary configuration to

work with IIS as a reverse proxy. The deployment itself will

be as simple as copying your published app to IIS’s hosting

folder.

In section 27.1 you learned about the need to publish an

app before you deploy it and the benefits of using a reverse

proxy when you run an ASP.NET Core app in production. If

you’re deploying your application to Windows, IIS will likely

be your reverse proxy and will be responsible for managing

your application.

IIS is an old and complex beast, and I can’t possibly cover

everything related to configuring it in this book. Neither

would you want me to; that discussion would be tedious!

Instead, in this section I’ll provide an overview of the basic

requirements for running ASP.NET Core behind IIS, along

with the changes you may need to make to your application

to support IIS.

If you’re on Windows and want to try these steps locally,

you’ll need to enable IIS manually on your development

machine. If you’ve done this with older versions of Windows,

nothing much has changed. You can find a step-by-step

guide to configuring IIS and troubleshooting tips in the

ASP.NET Core documentation at http://mng.bz/6g2R.

http://mng.bz/6g2R

27.2.1 Configuring IIS for ASP.NET Core

The first step in preparing IIS to host ASP.NET Core

applications is installing the ASP.NET Core Windows Hosting

Bundle (http://mng.bz/opED). This includes several

components needed to run .NET apps:

The .NET Runtime—Runs your .NET 7 application

The ASP.NET Core Runtime—Required to run

ASP.NET Core apps

The IIS AspNetCore Module—Provides the link

between IIS and your app so that IIS can act as a

reverse proxy

If you’re going to be running IIS on your development

machine, make sure that you install the bundle as well;

otherwise, you’ll get strange errors from IIS.

TIP The Windows Hosting Bundle provides everything you need for
running ASP.NET Core behind IIS in Windows. If you’re hosting your
application in Linux or Mac, or aren’t using IIS in Windows, you need
to install only the .NET Runtime and ASP.NET Core Runtime to run
runtime-dependent ASP.NET Core apps. Note that you need to install
the IIS AspNetCore Module even if you are using SCDs.

Once you’ve installed the bundle, you need to configure an

application pool in IIS for your ASP.NET Core apps. Previous

versions of ASP.NET would run in a managed app pool that

used .NET Framework, but for ASP.NET Core you should

create a No Managed Code pool. The native ASP.NET Core

http://mng.bz/opED

Module runs inside the pool, which boots the .NET 7 Runtime

itself.

DEFINITION An application pool in IIS represents an application
process. You can run each app in IIS in a separate application pool to
keep the apps isolated from one another.

To create an unmanaged application pool, right-click

Application Pools in IIS and choose Add Application Pool

from the contextual menu. Provide a name for the app pool

in the resulting dialog box, such as dotnet7, and set the

.NET CLR version to No Managed Code, as shown in figure

27.5.

Figure 27.5 Creating an app pool in IIS for your ASP.NET Core
app. The .NET CLR version should be set to No Managed Code.

Now that you have an app pool, you can add a new website

to IIS. Right-click the Sites node, and choose Add Website

from the contextual menu. In the Add Website dialog box,

shown in figure 27.6, you provide a name for the website

and the path to the folder where you’ll publish your website.

I created a folder that I’ll use to deploy the Recipe app from

previous chapters. It’s important to change the Application

Pool for the app to the new dotnet7 app pool you created.

In production, you’d also provide a hostname for the

application, but I’ve left it blank for now in this example and

changed the port to 81 so the application will bind to the

URL http://localhost:81.

Figure 27.6 Adding a new website to IIS for your app. Be sure to
change the Application Pool to the No Managed Code pool
created in the previous step. You also provide a name, the path

where you’ll publish your app files, and the URL that IIS will use
for your app.

NOTE When you deploy an application to production, you need to
register a hostname with a domain registrar so that your site is
accessible by people on the internet. Use that hostname when
configuring your application in IIS, as shown in figure 27.6.

Once you click OK, IIS creates the application and attempts

to start it. But you haven’t published your app to the folder,

so you won’t be able to view it in a browser yet.

You need to carry out one more critical setup step before

you can publish and run your app: grant permissions for the

dotnet7 app pool to access the path where you’ll publish

your app. To do this, right-click the folder that will host your

app in Windows File Explorer, and choose Properties from

the contextual menu. In the Properties dialog box, choose

Security > Edit > Add. Enter IIS AppPool\dotnet7 in

the text box, as shown in figure 27.7, where dotnet7 is the

name of your app pool; then choose OK. Close all the dialog

boxes by choosing OK, and you’re all set.

Figure 27.7 Adding permission for the dotnet7 app pool to the
website’s publish folder

Out of the box, the ASP.NET Core templates are configured

to work seamlessly with IIS, but if you’ve created an app

from scratch, you may need to make a couple of changes. In

the next section I’ll briefly show the changes you need to

make and explain why they’re necessary.

27.2.2 Preparing and publishing your
application to IIS

As I discussed in section 27.1, IIS acts as a reverse proxy

for your ASP.NET Core app. That means IIS needs to be able

to communicate directly with your app to forward incoming

requests to and outgoing responses from your app.

IIS handles this with the ASP.NET Core Module, but a certain

degree of negotiation is required between IIS and your app.

For this to work correctly, you need to configure your app to

use IIS integration.

IIS integration is added automatically when you use

WebApplicationBuilder, so there’s typically nothing

more to do. However, in chapter 30 you’ll learn about the

generic host and how to create custom application builders

using HostBuilder. If your app uses a customer

application builder and you want to use IIS, you need to

ensure that you add IIS integration with the UseIIS() or

UseIISIntegration() extension methods:

UseIIS() configures your application to support

IIS with an in-process hosting model.

UseIISIntegration() configures your

application to support IIS with an out-of-process

hosting model.

These methods are automatically called by

WebApplicationBuilder, but if you’re not using your

application with IIS, the UseIIS() and

UseIISIntegration() methods will have no effect on

your app, so it’s safe to include them anyway.

In-process vs. out-of-process hosting in
IIS

The common reverse-proxy description assumes that your application is running in a
separate process from the reverse proxy itself. That is the case if you’re running on
Linux and was the default for IIS up until ASP.NET Core 3.0.

In ASP.NET Core 3.0, ASP.NET Core switched to using an in-process hosting model by
default for applications deployed to IIS. In this model, IIS hosts your application directly
inside the IIS process, reducing interprocess communication and boosting
performance.

You can switch to the out-of-process hosting model with IIS if you wish, which can
sometimes be useful for troubleshooting problems. Rick Strahl has an excellent post
on the differences between the hosting models, how to switch between them, and the
advantages of each: “ASP.NET Core In Process Hosting on IIS with ASP.NET Core” at
http://mng.bz/QmEv.

In general, you shouldn’t need to worry about the differences between the hosting
models, but it’s something to be aware of if you’re deploying to IIS. If you choose to
use the out-of-process hosting model, you should use the UseIISIntegration()
extension method. If you use the in-process model, use UseIIS(). Alternatively, play
it safe and use both; the correct extension method is activated based on the hosting
model used in production. Neither extension does anything if you don’t use IIS.

When running behind IIS, these extension methods

configure your app to pair with IIS so that it can seamlessly

accept requests. Among other things, the extensions do the

following:

Define the URL that IIS uses to forward requests

to your app and configures your app to listen on

this URL

Configure your app to interpret requests coming

from IIS as coming from the client by setting up

header forwarding

Enable Windows authentication if required

Adding the IIS extension methods is the only change you

need to make to your application to host in IIS (and even

then, only when using a custom application builder). But

there’s one additional aspect to be aware of when you

http://mng.bz/QmEv

publish your app. As with legacy .NET Framework ASP.NET,

IIS relies on a web.config file to configure the applications it

runs. It’s important that your application include a

web.config file when it’s published to IIS; otherwise, you

could get broken behavior or even expose files that shouldn’t

be exposed.

TIP For details on using web.config to customize the IIS AspNetCore
Module, see Microsoft’s “ASP.NET Core Module” documentation:
http://mng.bz/Xdna.

If your ASP.NET Core project already includes a web.config

file, the .NET CLI or Visual Studio copies it to the publish

directory when you publish your app. If your app doesn’t

include a web.config file, the publish command creates the

correct one for you. If you don’t need to customize the

web.config file, it’s generally best not to include one in your

project and let the CLI create the correct file for you.

With these changes, you’re finally in a position to publish

your application to IIS. Publish your ASP.NET Core app to a

folder, either from Visual Studio or with the .NET CLI, by

running

dotnet publish --output publish_folder --configuration Release

This will publish your application to the publish_folder folder.

You can then copy your application to the path specified in

IIS, as shown in figure 27.6. At this point, if all has gone

smoothly, you should be able to navigate to the URL you

specified for your app (http://localhost:81, in my case) and

see it running, as shown in figure 27.8.

http://mng.bz/Xdna

Figure 27.8 The published application, using IIS as a reverse
proxy listening at the URL http://localhost:81

And there you have it—your first application running behind

a reverse proxy. Even though ASP.NET Core uses a different

hosting model from previous versions of ASP.NET, the

process of configuring IIS is similar.

As is often the case when it comes to deployment, the

success you have is highly dependent on your precise

environment and your app itself. If, after following these

steps, you find that you can’t get your application to start, I

highly recommend checking out the documentation at

http://mng.bz/Zqom. This contains many troubleshooting

steps to get you back on track if IIS decides to throw a hissy

fit.

http://mng.bz/Zqom

This section was deliberately tailored to deploying to IIS, as

it provides a great segue for developers who are used to

deploying legacy ASP.NET apps and want to deploy their first

ASP.NET Core app. But that’s not to say that IIS is the only,

or best, place to host your application.

In the next section I provide a brief introduction to hosting

your app on Linux, behind a reverse proxy like NGINX or

Apache. I won’t go into configuration of the reverse proxy

itself, but I will provide an overview of things to consider and

resources you can use to run your applications on Linux.

27.3 Hosting an application in Linux
One of the great new features in ASP.NET Core is the ability

to develop and deploy applications cross-platform, whether

on Windows, Linux, or macOS. The ability to run on Linux in

particular opens the possibility of cheaper deployments to

cloud hosting, deploying to small devices like a Raspberry Pi

or to Docker containers.

One of the characteristics of Linux is that it’s almost infinitely

configurable. Although that’s definitely a feature, it can also

be extremely daunting, especially if you’re coming from the

Windows world of wizards and GUIs. This section provides an

overview of what it takes to run an application on Linux. It

focuses on the broad steps you need to take rather than the

details of the configuration itself. Instead, I point to

resources you can refer to as necessary.

27.3.1 Running an ASP.NET Core app behind
a reverse proxy in Linux

You’ll be glad to hear that running your application on Linux

is largely the same as running your application on Windows

with IIS:

1. Publish your app using dotnet publish. If

you’re creating an RDD, the output is the same as

you’d use with IIS. For an SCD, you must provide

the runtime identifier, as described in section

27.1.1.

2. Install the necessary prerequisites on the server.

For an RDD deployment, you must install the .NET

7 Runtime and the necessary prerequisites. You

can find details on this in Microsoft’s “Install .NET

on Linux” documentation at http://mng.bz/Rxlj.

3. Copy your app to the server. You can use any

mechanism you like: FTP, USB stick, or whatever

you need to get your files onto the server!

http://mng.bz/Rxlj

4. Configure a reverse proxy, and point it to your

app. As you know by now, you may want to run

your app behind a reverse proxy, for the reasons

described in section 27.1. In Windows you’d use

IIS, but in Linux you have more options. NGINX,

Apache, and HAProxy are commonly used options.

The ASP.NET Core-based YARP is also an option

(https://microsoft.github.io/reverse-proxy).

Alternatively, go without, and expose your app

directly to the network.

5. Configure a process-management tool for your

app. In Windows, IIS acts as both a reverse proxy

and a process manager, restarting your app if it

crashes or stops responding. In Linux, you

typically need to configure a separate process

manager to handle these duties; the reverse

proxies won’t do them for you.

The first three steps are generally the same, whether you’re

running in Windows with IIS or in Linux, but the last two

steps are more interesting. By contrast with the monolithic

IIS, Linux has a philosophy of small applications, each with a

single responsibility.

IIS runs on the same server as your app and takes on

multiple duties—proxying traffic from the internet to your

app, but also monitoring the app process itself. If your app

crashes or stops responding, IIS restarts the process to

ensure that you can keep handling requests.

https://microsoft.github.io/reverse-proxy

In Linux, the reverse proxy might be running on the same

server as your app, but it’s also common for it to be running

on a different server, as shown in figure 27.9. This is

similarly true if you choose to deploy your app to Docker;

your app would typically be deployed in a container without

a reverse proxy, and a reverse proxy on a server would point

to your Docker container.

Figure 27.9 In Linux, it’s common for a reverse proxy to be on a
different server from your app. The reverse proxy forwards
incoming requests to your app, while a process manager, such
as systemd, monitors your apps for crashes and restarts it as
appropriate.

As the reverse proxies aren’t necessarily on the same server

as your app, they can’t be used to restart your app if it

crashes. Instead, you need to use a process manager such

as systemd to monitor your app. If you’re using Docker, you

typically use a container orchestrator such as Kubernetes

(https://kubernetes.io) to monitor the health of your

containers.

Running ASP.NET Core applications in
Docker

Docker is the most commonly used engine for containerizing your applications. A
container is like a small, lightweight virtual machine, specific to your app. It contains an
operating system, your app, and any dependencies for your app. This container can
then be run on any machine that runs Docker, and your app will run exactly the same,
regardless of the host operating system and what’s installed on it. This makes
deployments highly repeatable: you can be confident that if the container runs on your
machine, it will run on the server too.

All the major cloud vendors have support for running containers, either standalone or
as part of an orchestration service. For example, in Azure, you can run containers in
Azure App Service, Azure Container Instances, Azure Container Apps, and Azure
Kubernetes Service. One advantage of containers is that you can easily use the same
container in all these services or even move to a different cloud provider, and your app
will run the same.

ASP.NET Core is well suited to container deployments, but moving to Docker involves
a big shift in your deployment methodology and may or may not be right for you and
your apps. If you’re interested in the possibilities afforded by Docker and want to learn
more, I suggest checking out the following resources:

Docker in Practice, 2nd ed., by Ian Miell and Aidan Hobson Sayers
(Manning, 2019) provides a vast array of practical techniques to help
you get the most out of Docker (http://mng.bz/nM8d).

Even if you’re not deploying to Linux, you can use Docker with Docker
for Windows. Check out the free e-book Introduction to Windows
Containers, by John McCabe and Michael Friis (Microsoft Press, 2017),
at https://aka.ms/containersebook.

https://kubernetes.io/
http://mng.bz/nM8d
https://aka.ms/containersebook

You can find a lot of details on building and running your ASP.NET Core
applications on Docker in the .NET documentation at
http://mng.bz/vz5a.

Steve Gordon has an excellent blog post series on Docker for ASP.NET
Core developers at http://mng.bz/2Da8.

Configuring a reverse proxy and process manager on Linux

is a laborious task that makes for dry reading, so I won’t

detail it here. Instead, I recommend checking out the

ASP.NET Core docs. They have a guide for NGINX and

systemd, “Host ASP.NET Core on Linux with Nginx”

(http://mng.bz/yYGd), and a guide for configuring Apache

with systemd, “Host ASP.NET Core on Linux with Apache”

(http://mng.bz/MXVB).

Both guides cover the basic configuration of the respective

reverse proxies and systemd supervisors, but more

important, they also show how to configure them securely.

The reverse proxy sits between your app and the unfettered

internet, so it’s important to get it right!

Configuring the reverse proxy and the process manager is

typically the most complex part of deploying to Linux, and

that isn’t specific to .NET development: the same would be

true if you were deploying a Node.js web app. But you need

to consider a few things inside your application when you’re

going to be deploying to Linux, as you’ll see in the next

section.

http://mng.bz/vz5a
http://mng.bz/2Da8
http://mng.bz/yYGd
http://mng.bz/MXVB

27.3.2 Preparing your app for deployment to
Linux

Generally speaking, your app doesn’t care which reverse

proxy it sits behind, whether it’s NGINX, Apache, or IIS;

your app receives requests and responds to them without

the reverse proxy affecting things. When you’re hosting

behind IIS, you need UseIISIntegration() to tell your

app about IIS’s configuration; when you’re hosting on Linux,

you need a similar method.

When a request arrives at the reverse proxy, it contains

some information that is lost after the request is forwarded

to your app. For example, the original request comes with

the IP address of the client/browser connecting to your app;

once the request is forwarded from the reverse proxy, the IP

address is that of the reverse proxy, not the browser. Also, if

the reverse proxy is used for SSL/TLS offloading (see

chapter 28), then a request that was originally made using

HTTPS may arrive at your app as an HTTP request.

The standard solution to these problems is for the reverse

proxy to add more headers before forwarding requests to

your app. For example, the X-Forwarded-For header

identifies the original client’s IP address, whereas the X-

Forwarded-Proto header indicates the original scheme of

the request (http or https).

For your app to behave correctly, it needs to look for these

headers in incoming requests and modify the request as

appropriate. A request to http://localhost with the X-

Forwarded-Proto header set to https should be treated

the same as if the request were to https://localhost.

You can use ForwardedHeadersMiddleware in your

middleware pipeline to achieve this. This middleware

overrides Request.Scheme and other properties on

HttpContext to correspond to the forwarded headers.

WebApplicationBuilder partially handles this for you;

the middleware is automatically added to the pipeline in a

disabled state. To enable it, set the environment variable

ASPNETCORE_FORWARDEDHEADERS_ENABLED=true.

If you don’t want to use the automatically added middleware

for some reason, or if you’re using the generic host (which

you’ll learn about in chapter 30), you can add the

middleware to the start of your middleware pipeline

manually, as shown in listing 27.1, and configure it with the

headers to look for.

WARNING It’s important that ForwardedHeadersMiddleware
be placed early in the middleware pipeline to correct
Request.Scheme before any middleware that depends on the
scheme runs.

Listing 27.1 Configuring an app to use forwarded headers in
Startup.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.UseForwardedHeaders(new ForwardedHeadersOptions ❶

{

 ForwardedHeaders = ForwardedHeaders.XForwardedFor | ❷
 ForwardedHeaders.XForwardedProto ❷
});

app.UseHttpsRedirection(); ❸
app.UseRouting(); ❸
app.MapGet("/", () => "Hello world!");

app.Run();

❶ Adds ForwardedHeadersMiddleware early in your pipeline

❷ Configures the headers the middleware should look for and use
❸ The forwarded headers middleware must be placed before all other middleware.

NOTE This behavior isn’t specific to reverse proxies on Linux; the
UseIis() extension adds ForwardedHeadersMiddleware
under the hood as part of its configuration when your app is running
behind IIS.

Aside from considering the forwarded headers, you need to

consider a few minor things when deploying your app to

Linux that may trip you up if you’re used to deploying to

Windows alone:

Line endings (LF in Linux versus CRLF in

Windows)—Windows and Linux use different

character codes in text to indicate the end of a

line. This isn’t often a problem for ASP.NET Core

apps, but if you’re writing text files on one

platform and reading them on a different platform,

it’s something to bear in mind.

Path directory separator ("\" on Windows, "/" on

Linux)—This is one of the most common bugs I see

when Windows developers move to Linux. Each

platform uses a different separator in file paths, so

although loading a file using the

"subdir\myfile.json" path will work fine in

Windows, it won’t in Linux. Instead, you should

use Path.Combine to create the appropriate

separator for the current platform, such as

Path.Combine("subdir", "myfile.json").

":" in environment variables—In some Linux

distributions, the colon character (:) isn’t allowed

in environment variables. As you saw in chapter

10, this character is typically used to denote

different sections in ASP.NET Core configuration,

so you often need to use it in environment

variables. Instead, you can use a double

underscore in your environment variables (__);

ASP.NET Core will treat it the same as though

you’d used a colon.

Missing time zone and culture data—Linux

distributions don’t always come with time zone or

culture data, which can cause localization

problems and exceptions at runtime. You can

install the time zone data using your distribution’s

package manager.
1
 It also may be organized

differently. The hierarchy of Norwegian cultures is

different in Linux, for example.

Different directory structures—Linux distributions

use a different folder structure from Windows, so

you need to bear that in mind if your app

hardcodes paths. In particular, consider differences

in temporary/cache folders.

The preceding list is not exhaustive by any means, but as

long as you set up ForwardedHeadersMiddleware and

take care to use cross-platform constructs like

Path.Combine, you shouldn’t have too many problems

running your applications on Linux. But configuring a reverse

proxy isn’t the simplest of activities, so wherever you’re

planning on hosting your app, I suggest checking the

documentation for guidance at http://mng.bz/1qM1.

27.4 Configuring the URLs for your
application

At this point, you’ve deployed an application, but there’s one

aspect you haven’t configured: the URLs for your

application. When you’re using IIS as a reverse proxy, you

don’t have to worry about this inside your app. IIS

integration with the ASP.NET Core Module works by

dynamically creating a URL that’s used to forward requests

between IIS and your app. The hostname you configure in

IIS (in figure 27.6) is the URL that external users see for

your app; the internal URL that IIS uses when forwarding

requests is never exposed.

http://mng.bz/1qM1

If you’re not using IIS as a reverse proxy—maybe you’re

using NGINX or exposing your app directly to the internet—

you may find you need to configure the URLs your

application listens to directly.

By default, ASP.NET Core listens for requests on the URL

http://localhost:5000. There are lots of ways to set this URL,

but in this section I describe two: using environment

variables or using command-line arguments. These are the

two most common approaches I see (outside of IIS) for

controlling which URLs your app uses.

TIP For further ways to set your application’s URL, see my “5 ways to
set the URLs for an ASP.NET Core app” blog post:
http://mng.bz/go0v.

In chapter 10 you learned about configuration in ASP.NET

Core, and in particular about the concept of hosting

environments so that you can use different settings when

running in development compared with production. You

choose the hosting environment by setting an environment

variable on your machine called

ASPNETCORE_ENVIRONMENT. The ASP.NET Core framework

magically picks up this variable when your app starts and

uses it to set the hosting environment.

You can use a similar special environment variable to specify

the URL that your app uses; this variable is called

ASPNETCORE_URLS. When your app starts up, it looks for

this value and uses it as the application’s URL. By changing

this value, you can change the default URL used by all

ASP.NET Core apps on the machine. For example, you could

http://mng.bz/go0v

set a temporary environment variable in Windows from the

command window using

set ASPNETCORE_URLS=http://localhost:8000

Running a published application using dotnet <app.dll>

within the same command window, as shown in figure

27.10, shows that the app is now listening on the URL

provided in the ASPNETCORE_URLS variable.

Figure 27.10 Change the ASPNETCORE_URLS environment variable to
change the URL used by ASP.NET Core apps.

You can instruct an app to listen on multiple URLs by

separating them with a semicolon, or you can listen to a

specific port without specifying the localhost hostname. If

you set the ASPNETCORE_URLS environment variable to

http://localhost:5001;http://*:5002

your ASP.NET Core apps will listen for requests sent to the

following:

http://localhost:5001—This address is accessible

only on your local computer, so it will not accept

requests from the wider internet.

http://*:5002—Any URL on port 5002. External

requests from the internet can access the app on

port 5002, using any URL that maps to your

computer.

Note that you can’t specify a different hostname, like

tastyrecipes.com. ASP.NET Core listens to all requests on a

given port; it doesn’t listen for specific domain names. The

exception is the localhost hostname, which allows only

requests that came from your own computer.

NOTE If you find the ASPNETCORE_URLS variable isn’t working
properly, ensure that you don’t have a launchSettings.json file in the
directory. When present, the values in this file take precedence. By
default, launchSettings.json isn’t included in the publish output, so
this generally won’t be a problem in production.

Setting the URL of an app using a single environment

variable works great for some scenarios, most notably when

you’re running a single application in a virtual machine, or

within a Docker container.

TIP ASP.NET Core is well suited to running in containers but working
with containers is a separate book in its own right. For details on

hosting and publishing apps using Docker, see Microsoft’s “Host
ASP.NET Core in Docker containers” documentation:
http://mng.bz/e5GV.

If you’re not using Docker containers or a PaaS offering,

chances are that you’re hosting multiple apps side-by-side

on the same machine. A single environment variable is no

good for setting URLs in this case, as it would change the

URL of every app.

In chapter 10 you saw that you could set the hosting

environment using the ASPNETCORE_ENVIRONMENT

variable, but you could also set the environment using the -

-environment flag when calling dotnet run:

dotnet run --no-launch-profile --environment Staging

You can set the URLs for your application in a similar way,

using the --urls parameter. Using command-line

arguments enables you to have multiple ASP.NET Core

applications running on the same machine, listening to

different ports. For example, the following command would

run the recipe application, set it to listen on port 8081, and

set the environment to staging (figure 27.11):

dotnet RecipeApplication.dll --urls "http://*:8081" --environment Staging

http://mng.bz/e5GV

Figure 27.11 Setting the hosting environment and URLs for an
application using command-line arguments. The values passed
at the command line override values provided from
appSettings.json or environment variables.

Remember that you don’t need to set your URLs in this way

if you’re using IIS as a reverse proxy; IIS integration

handles this for you. Setting the URLs is necessary only

when you’re manually configuring the URL your app is

listening on, such as if you’re using NGINX or are exposing

Kestrel directly to clients.

WARNING If you are running your ASP.NET Core application without
a reverse proxy, you should use host filtering for security reasons to
ensure that your app only responds to requests for hostnames you
expect. For more details, see my “Adding host filtering to Kestrel in
ASP.NET Core” blog entry: http://mng.bz/pVXK.

That brings us to the end of this chapter on publishing your

app. This last mile of app development—deploying an

application to a server where users can access it—is a

notoriously thorny problem. Publishing an ASP.NET Core

application is easy enough, but the multitude of hosting

http://mng.bz/pVXK

options available makes providing concise steps for every

situation difficult.

Whichever hosting option you choose, there’s one critical

topic that you mustn’t overlook: security. In the next

chapter you’ll learn about HTTPS, how to use it when testing

locally, and why it’s important your production apps all use

HTTPS.

Summary
ASP.NET Core apps are console applications that

self-host a web server. In production, you may use

a reverse proxy, which handles the initial request

and passes it to your app. Reverse proxies can

provide additional security, operations, and

performance benefits, but they can also add

complexity to your deployments.

.NET has two parts: the .NET SDK (also known as

the .NET CLI) and the .NET Runtime. When you’re

developing an application, you use the .NET CLI to

restore, build, and run your application. Visual

Studio uses the same .NET CLI commands from

the IDE.

When you want to deploy your app to production,

you need to publish your application, using

dotnet publish. This creates a folder containing

your application as a DLL, along with all its

dependencies.

To run a published application, you don’t need the

.NET CLI because you won’t be building the app.

You need only the .NET Runtime to run a published

app. You can run a published application using the

dotnet app.dll command, where app.dll is the

application .dll created by the dotnet publish

command.

To host ASP.NET Core applications in IIS, you must

install the ASP.NET Core Module. This allows IIS to

act as a reverse proxy for your ASP.NET Core app.

You must also install the .NET Runtime and the

ASP.NET Core Runtime, which are installed as part

of the ASP.NET Core Windows Hosting Bundle.

IIS can host ASP.NET Core applications using one

of two modes: in-process and out-of-process. The

out-of-process mode runs your application as a

separate process, as is typical for most reverse

proxies. The in-process mode runs your application

as part of the IIS process. This has performance

benefits, as no interprocess communication is

required.

If you are using a custom web application builder

with IIS, ensure that you call

UseIISIntegration() and UseIIS() so that

IIS forwards the request to your app correctly. If

you’re using the default

WebApplicationBuilder, these methods are

called automatically for you.

When you publish your application using the .NET

CLI, a web.config file is added to the output folder.

It’s important that this file be deployed with your

application when publishing to IIS, as it defines

how your application should run.

The URL that your app listens on is specified by

default using the environment variable

ASPNETCORE_URLS. Setting this value changes

the URL for all the apps on your machine.

Alternatively, pass the --urls command-line

argument when running your app, as in this

example: dotnet app.dll --urls

http://localhost:80.

1. I ran into this problem myself. You can read about it in detail and how I solved it on my
blog: http://mng.bz/aoem.

http://mng.bz/aoem

28 Adding HTTPS to an application

This chapter covers

Encrypting traffic between clients and your app using HTTPS
Using the HTTPS development certificate for local development
Configuring Kestrel with a custom HTTPS certificate
Enforcing HTTPS for your whole app

Web application security is a hot topic at the moment.

Practically every week another breach is reported, or

confidential details are leaked. It may seem like the situation

is hopeless, but the reality is that the vast majority of

breaches could have been prevented with the smallest

amount of effort.

In chapter 29 we’ll look at a range of common attacks and

how to protect against them in your ASP.NET Core app. In

this chapter we start by looking at one of the most basic

security measures: encrypting the traffic between a client

such as a browser and your application.

Without HTTPS encryption, you risk third parties spying on

or modifying the requests and responses as they travel over

the internet. The risks associated with unencrypted traffic

mean that HTTPS is effectively mandatory for production

apps these days, and it is heavily encouraged by the makers

of modern browsers such as Chrome and Firefox. In section

28.1 you’ll learn more about these risks and some of the

approaches you can take to protect your application.

In section 28.2 you’ll see how to get started with HTTPS

locally using the ASP.NET Core development certificate. I

describe what it is, how to trust it on your application, and

what to do if it’s not working as you expect.

The development certificate is great for local work, but in

production you’ll need to configure a real, production

certificate. I don’t describe the process of obtaining a

certificate in section 28.3, as that will vary by provider;

instead, I show how to configure Kestrel to use a custom

certificate you’ve acquired.

In section 28.4 I describe some of the approaches to

enforcing HTTPS in your application. Unfortunately, web

browsers still expect apps to be available over HTTP by

default, so you typically need to expose your application on

both HTTP and HTTPS ports. Nevertheless, there are things

you can do to push clients toward the HTTPS endpoint,

which are considered security best practices these days.

Before we look at HTTPS in ASP.NET Core specifically, we’ll

start by looking at HTTPS in general and why you should use

it in all your applications.

28.1 Why do I need HTTPS?
In this section you’ll learn about HTTPS: what it is, and why

you need to be aware of it for all your production

applications. We’re not going to go into details about the

protocol or how certificates work at this point, instead

focusing on why you need to use HTTPS. You’ll see two

approaches to adding HTTPS to your application: supporting

HTTPS directly in your application and using SSL/TLS-

offloading with a reverse proxy.

So far in this book, I’ve shown how the user’s browser sends

a request across the internet to your app using the HTTP

protocol. We haven’t looked too much into the details of that

protocol other than to establish that it uses verbs to describe

the type of request (such as GET and POST), that it contains

headers with metadata about the request, and optionally

includes a body payload of data.

By default, HTTP requests are unencrypted; they’re plain-

text files being sent over the internet. Anyone on the same

network as a user (such as someone using the same public

Wi-Fi in a coffee shop) can read the requests and responses

sent back and forth. Attackers can even modify the requests

or responses as they’re in transit, as shown in figure 28.1.

Figure 28.1 Unencrypted HTTP requests can be read by users on
the same network. Attackers can even intercept the request and
response, reading or changing the data. HTTPS requests can’t
be read or manipulated by attackers.

Using unencrypted web apps in this way presents both a

privacy and a security risk to your users. Attackers could

read sensitive details such as passwords and personally

identifiable information (PII), they could inject malicious

code into your responses to attack users, or they could steal

authentication cookies and impersonate the user on your

app.

To protect your users, your app should encrypt the traffic

between the user’s browser and your app as it travels over

the network by using the HTTPS protocol. This is similar to

HTTP traffic, but it uses an SSL/TLS certificate to encrypt

requests and responses, so attackers cannot read or modify

the contents.

DEFINITION Secure Sockets Layer (SSL) is an older standard that
facilitates HTTPS. The SSL protocol has been superseded by
Transport Layer Security (TLS), so I’ll be using TLS preferentially
throughout this chapter. Normally, if you hear someone talking about
SSL or SSL certificates, they actually mean TLS. You can find the
RFC for the latest version of the TLS protocol at https://www.rfc-
editor.org/rfc/rfc8446.

In browsers, you can tell that a site is using HTTPS by the

https:// prefix to URLs (notice the s), or sometimes by a

padlock, as shown in figure 28.2. Most modern browsers

these days deemphasize that a site is using HTTPS, as most

sites use HTTPS, and instead highlight when you’re on a site

that isn’t using HTTPS, flagging it as insecure.

https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446

Figure 28.2 Encrypted apps using HTTPS and unencrypted apps
using HTTP in Edge. Using HTTPS protects your application
from being viewed or tampered with by attackers.

The reality is that these days, you should always serve your

production websites over HTTPS. The industry is pushing

toward HTTPS by default, with most browsers marking HTTP

sites as explicitly not secure. Skipping HTTPS will hurt the

perception of your app in the long run, so even if you’re not

interested in the security benefits, it’s in your best interest

to set up HTTPS.

TIP You can find a good cheat sheet for HTTPS by OWASP at
http://mng.bz/PzxY. ASP.NET Core takes care of most of the points in
this list for you, but there are some important ones in the Application
section specifically.

http://mng.bz/PzxY

Another reason to support HTTPS is that many browser

features are available only when your site is served over

HTTPS. Some of these features are JavaScript browser APIs,

such as location APIs, microphone APIs, and storage APIs.

These are available only over HTTPS to protect users from

attackers that could modify insecure HTTP requests. Other

features apply to server-side apps too, such as Brotli

compression and HTTP/2 support.

TIP For details on how the SSL/TLS protocols work, see chapter 9 of
Real-World Cryptography, by David Wong (Manning, 2021),
http://mng.bz/zxz1.

To enable HTTPS, you need to obtain and configure a TLS

certificate for your server. Unfortunately, although that

process is a lot easier than it used to be and is now

essentially free thanks to Let’s Encrypt

(https://letsencrypt.org), it’s still far from simple in many

cases. If you’re setting up a production server, I recommend

carefully following the tutorials on the Let’s Encrypt site. It’s

easy to get it wrong, so take your time.

TIP If you’re hosting your app in the cloud, most providers will provide
one-click TLS certificates so that you don’t have to manage
certificates yourself. This is extremely useful, and I highly recommend
it for everyone. You don’t even have to host your application in the
cloud to take advantage of this. Cloudflare
(https://www.cloudflare.com) provides a CDN service that you can
add TLS to. You can even use it for free.

As an ASP.NET Core application developer, you can often get

away without directly supporting HTTPS in your app by

http://mng.bz/zxz1
https://letsencrypt.org/
https://www.cloudflare.com/

taking advantage of the reverse-proxy architecture, as

shown in figure 28.3, in a process called SSL/TLS

offloading/termination. This is generally standard in Platform

as a Service (PaaS) cloud services, such as Azure App

Service.

Figure 28.3 You have two options when using HTTPS with a
reverse proxy: SSL/TLS passthrough and SSL/TLS offloading. In
SSL/TLS passthrough, the data is encrypted all the way to your
ASP.NET Core app. For SSL/TLS offloading, the reverse proxy
handles decrypting the data, so your app doesn’t have to.

With SSL/TLS offloading, instead of your application handling

requests using HTTPS directly, your app continues to use

HTTP. The reverse proxy is responsible for encrypting and

decrypting HTTPS traffic to the browser. This often gives you

the best of both worlds: data is encrypted between the

user’s browser and the server, but you don’t have to worry

about configuring certificates in your application.

NOTE If you’re concerned that the traffic is unencrypted between the
reverse proxy and your app, I recommend reading Troy Hunt’s post
“CloudFlare, SSL and unhealthy security absolutism”:
http://mng.bz/eHCi. It discusses the pros and cons of the problem as
it relates to decrypting on the reverse proxy and why you must
consider the most likely attacks on your website, in a process called
threat modeling.

Depending on the specific infrastructure where you’re

hosting your app, SSL/TLS could be offloaded to a dedicated

device on your network, a third-party service like Cloudflare,

or a reverse proxy (such as Internet Information Services

[IIS], NGINX, or HAProxy) running on the same or a

different server. Nevertheless, in some situations, you may

need to handle SSL/TLS directly in your app:

If you’re exposing Kestrel to the internet directly,

without a reverse proxy—This is a supported

approach since ASP.NET Core 3.0, and can give

high performance. It is also often the case when

you’re developing your app locally.

http://mng.bz/eHCi

If having HTTP between the reverse proxy and

your app is not acceptable—While securing traffic

inside your network is less critical compared with

external traffic, it is undoubtedly more secure to

use HTTPS for internal traffic too. This may be a

hard requirement for some applications or sectors.

If you’re using technology that requires HTTPS—

Some newer network protocols, such as gRPC and

HTTP/2, generally require an end-to-end HTTPS

connection.

In each of these scenarios, you’ll need to configure a TLS

certificate for your application so Kestrel can receive HTTPS

traffic. In section 28.2 you’ll see the easiest way to get

started with HTTPS when developing locally, using the

ASP.NET Core development certificate.

28.2 Using the ASP.NET Core HTTPS
development certificates

Working with HTTPS certificates is easier than it used to be,

but unfortunately it can still be a confusing topic, especially

if you’re a newcomer to the web. In this section you’ll learn

how the .NET software development kit (SDK), Visual

Studio, and IIS Express try to improve this experience by

handling a lot of the grunt work for you, and what to do

when things go wrong.

The first time you run a dotnet command using the .NET

SDK, the SDK installs an HTTPS development certificate on

your machine. Any ASP.NET Core application you create

using the default templates (or for which you don’t explicitly

configure certificates) will use this development certificate to

handle HTTPS traffic. However, the development certificate is

not trusted by default. If you access a site that’s using an

untrusted certificate, you’ll get a browser warning, as shown

in figure 28.4.

A brief primer on certificates and signing

HTTPS uses public key cryptography as part of the data-encryption process. This uses
two keys: a public key that anyone can see and a private key that only your server can
see. Anything encrypted with the public key can be decrypted only with the private key.
That way, a browser can encrypt something with your server’s public key, and only
your server can decrypt it. A complete TLS certificate consists of both the public and
private parts.

When a browser connects to your app, the server sends the public key part of the TLS
certificate. But how does the browser know that it was definitely your server that sent
the certificate? To achieve this, your TLS certificate contains additional certificates,
including one or more certificates from a third party, a certificate authority (CA). At the
end of the certificate chain is the root certificate.

CAs are special trusted entities, and browsers are hardcoded to trust specific root
certificates. For the TLS certificate for your app to be trusted, it must contain (or be
signed by) a trusted root certificate. Browsers periodically update their internal list of
root certificates and revoke root certificates that can no longer be trusted.

When you use the ASP.NET Core development certificate, or if you create your own
self-signed certificate, your site’s HTTPS is missing that trusted root certificate. That
means browsers won’t trust your certificate and won’t connect to your server by
default. To get around this, you need to tell your development machine to explicitly trust
the certificate.

In production, you can’t use a development or self-signed certificate, as a user’s
browser won’t trust it. Instead, you need to obtain a signed HTTPS certificate from a
service like Let’s Encrypt or from a cloud provider like AWS, Azure, or Cloudflare.
These certificates are already signed by a trusted CA, so they are automatically trusted
by browsers.

Figure 28.4 The developer certificate is not trusted by default, so
apps serving HTTPS traffic using it will be marked as insecure
by browsers. Although you can bypass the warnings if
necessary, you should instead update the certificate to be
trusted.

To solve these browser warnings, you need to trust the

certificate. Trusting a certificate is a sensitive operation; it’s

saying “I know this certificate doesn’t look quite right, but

ignore that,” so it’s hard to do automatically. If you’re

running on Windows or macOS, you can trust the

development certificate by running

dotnet dev-certs https --trust

This command trusts the certificate by registering it in the

operating system’s certificate store. After you run this

command, you should be able to access your websites

without seeing any warnings or “not secure” labels, as

shown in figure 28.5.

Figure 28.5 Once the development certificate is trusted, you will
no longer see browser warnings about the connection.

TIP You may need to close your browser after trusting the certificate
to clear the browser’s cache.

If you’re using Windows, Visual Studio, and IIS Express for

development, then you might not need to explicitly trust the

development certificate. IIS Express acts as a reverse proxy

when you’re developing locally, so it handles the SSL/TLS

setup itself. On top of that, Visual Studio should trust the IIS

development certificate as part of installation, so you may

never see the browser warnings at all.

TIP In macOS, before .NET 7, you would have to retrust the
developer certificate repeatedly for every new app. In .NET 7, the
process is a lot smoother, so you shouldn’t have to retrust it anything
like as often!

Trusting the developer certificate works smoothly in

Windows and macOS, in most cases. Unfortunately, trusting

the certificate in Linux is a little trickier and depends on the

specific flavor of Linux you’re using. On top of that, software

in Linux often uses its own certificate store, so you’ll

probably need to add the certificate directly to your favorite

browser. If you’re using any of the following scenarios, you’ll

need to do more work:

Firefox browser in Windows, macOS, or Linux

Edge or Chrome browsers in Linux

API-to-API communication in Linux

An app running in Windows Subsystem for Linux

(WSL)

Running applications in Docker

Each of these scenarios requires a slightly different

approach. In many cases it’s one or two commands, so I

suggest following the documentation for your scenario

carefully at http://mng.bz/JglK.

TIP If you’ve tried trusting the certificate, and your app is still giving
errors, try closing all your browser windows and running dotnet
dev-certs https --clean followed by dotnet dev-

http://mng.bz/JglK

certs https --trust. Browsers cache certificate trust, so the
close and open step is important!

The ASP.NET Core and IIS development certificates make it

easy to use Kestrel with HTTPS locally, but those certificates

won’t help once you move to production. In the next section

I show how to configure Kestrel to use a production TLS

certificate.

28.3 Configuring Kestrel with a
production HTTPS certificate

Creating a TLS certificate for production is often a laborious

process, as it requires proving to a third-party CA that you

own the domain you’re creating the certificate for. This is an

important step in the trust process and ensures that

attackers can’t impersonate your servers. The result of the

process is one or more files, which is the HTTPS certificate

you need to configure for your app.

TIP The specifics of how to obtain a certificate vary by provider and
by your OS platform, so follow your provider’s documentation
carefully. The vagaries and complexities of this process are one of the
reasons I strongly favor the SSL/TLS-offloading or “one-click”
approaches described previously. Those approaches mean my apps
don’t need to deal with certificates, and I don’t need to use the
approaches described in this section; I delegate that responsibility to
another piece of the network, or to the underlying platform.

Once you have a certificate, you need to configure Kestrel to

use it to serve HTTPS traffic. In chapter 27 you saw how to

set the port your application listens on with the

ASPNETCORE_URLS environment variable or via the

command line, and you saw that you could provide an

HTTPS URL. As you didn’t provide any certificate

configuration, Kestrel used the development certificate by

default. In production you need to tell Kestrel which

certificate to use.

You can configure the certificates Kestrel uses in multiple

ways. For a start, you can load the certificate from multiple

locations: from a .pfx file, from .pem/.crt and .key files, or

from the OS certificate store. You can also use different

certificates for different ports, use a different configuration

for each URL endpoint you expose, or configure Server

Name Indication (SNI). For full details, see the “Replace the

default certificate from configuration” section of Microsoft’s

“Configure endpoints for the ASP.NET Core Kestrel web

server” documentation: http://mng.bz/wvv2.

The following listing shows one possible way to set a custom

HTTPS certificate for your production app by configuring the

default certificate Kestrel uses for HTTPS connections. You

can add the "Kestrel:Certificates:Default" section

to your appsettings.json file (or use any other configuration

source, as described in chapter 10) to define the .pfx file of

the certificate to use. You must also provide the password

for accessing the certificate.

http://mng.bz/wvv2

Listing 28.1 Configuring the default HTTPS certificate for Kestrel
using a .pfx file

{

 "Kestrel": { ❶
 "Certificates": { ❶
 "Default": { ❶
 "Path": "localhost.pfx", ❷
 "Password": "testpassword" ❸
 }

 }

 }

}

❶ Creates a configuration section at Kestrel:Certificates:Default
❷ The relative or absolute path to the certificate

❸ The password for opening the certificate

The preceding example is the simplest way to replace the

HTTPS certificate, as it doesn’t require changing any of

Kestrel’s defaults. You can use a similar approach to load the

HTTPS certificate from the OS certificate store (Windows or

macOS), as shown in the “Replace the default certificate

from configuration” documentation mentioned previously

(http://mng.bz/wvv2).

WARNING Listing 28.1 hardcoded the certificate filename and
password for demonstration, but you should never do this in
production. Either load these from a configuration store like user-
secrets, as you saw in chapter 10, or load the certificate from the
local store. Never put production passwords in your appsettings.json
files.

All the default ASP.NET Core templates configure your

application to serve both HTTP and HTTPS traffic, and with

the configuration you’ve seen so far, you can ensure that

http://mng.bz/wvv2

your application can handle both HTTP and HTTPS in

development and in production.

However, whether you use HTTP or HTTPS may depend on

the URL users click when they first browse to your app. For

example, imagine you have an app that listens using the

default ASP.NET Core URLs: http://localhost:5000 for HTTP

traffic and https://localhost:5001 for HTTPS traffic. The

HTTPS endpoint is available, but if a user doesn’t know that

and uses the HTTP URL (the default option in browsers),

their traffic is unencrypted. Seeing as you’ve gone to all the

trouble to set up HTTPS, it’s probably best that you force

users to use it.

28.4 Enforcing HTTPS for your whole
app

Enforcing HTTPS across your whole website is practically

required these days. Browsers are beginning to explicitly

label HTTP pages as insecure. For security reasons, you must

use TLS any time you’re transmitting sensitive data across

the internet. Additionally, thanks to HTTP/2 (and the

upcoming HTTP/3), adding TLS can improve your app’s

performance. In this section you’ll learn three techniques for

enforcing HTTPS in your application.

TIP HTTP/2 offers many performance improvements over HTTP/1.x,
and all modern browsers require HTTPS to enable it. For a great
introduction to HTTP/2, see Google’s “Introduction to HTTP/2” at
http://mng.bz/9M8j. ASP.NET Core even includes support for HTTP/3,

http://mng.bz/9M8j

the next version of the protocol! You can read about HTTP/3 at
http://mng.bz/qrrJ.

There are multiple approaches to enforcing HTTPS for your

application. If you’re using a reverse proxy with SSL/TLS-

offloading, it might be handled for you anyway, without your

having to worry about it within your apps. If that’s the case,

you may be able to disregard some of the steps in this

section.

WARNING If you’re building a web API rather than a Razor Pages
app, it’s common to reject insecure HTTP requests entirely. You’ll see
this approach in section 28.4.3.

One approach to improving the security of your app is to use

HTTP security headers. These are HTTP headers sent as part

of your HTTP response that tell the browser how it should

behave. There are many headers available, most of which

restrict the features your app can use in exchange for

increased security. In chapter 30 you’ll see how to add your

own custom headers to your HTTP responses by creating

custom middleware.

TIP Scott Helme has some great guidance on this and other security
headers you can add to your site, such as the Content Security Policy
(CSP) header. See “Hardening your HTTP response headers” on his
website at http://mng.bz/7DDe.

One of these security headers, the HTTP Strict Transport

Security (HSTS) header, can help ensure that browsers use

HTTPS where it’s available instead of defaulting to HTTP.

http://mng.bz/qrrJ
http://mng.bz/7DDe

28.4.1 Enforcing HTTPS with HTTP Strict
Transport Security headers

It’s unfortunate, but by default, browsers load apps over

HTTP unless otherwise specified. That means your apps must

typically support both HTTP and HTTPS, even if you don’t

want to serve any traffic over HTTP, as shown in figure 28.6.

On top of that, if the initial request is over HTTP, the browser

may end up sending subsequent requests over HTTP too.

Figure 28.6 When you type in a URL, browsers load the app over
HTTP by default. Depending on the links returned by your app or
the URLs entered, the browser may make HTTP or HTTPS
requests.

One partial mitigation (and a security best practice) is to add

HTTP Strict Transport Security headers to your responses.

DEFINITION HTTP Strict Transport Security (HSTS) is a specification
(https://www.rfc-editor.org/rfc/rfc6797) for the Strict-
Transport-Security header that instructs the browser to use
HTTPS for all subsequent requests to your application. The HSTS
header can be sent only with responses to HTTPS requests. It is also
relevant only for requests originating from a browser; it has no effect
on server-to-server communication or on mobile apps.

After a browser receives a valid HSTS header, the browser

stops sending HTTP requests to your app and uses only

HTTPS instead, as shown in figure 28.7. Even if your app has

an http:// link or the user enters http:// in the URL bar of

the app, the browser automatically replaces the request with

an https:// version.

https://www.rfc-editor.org/rfc/rfc6797

Figure 28.7 After a browser sends an HTTPS request, the app
returns an HSTS header, instructing the browser to always send
requests over HTTPS. The next time the user attempts to make
an http:// request, the browser aborts the request and makes an
https:// request instead.

TIP You can achieve a similar upgrading of HTTP to HTTPS requests
using the Upgrade-Insecure-Requests directive in the
Content-Security-Policy (CSP) header. This provides
fewer protections than the HSTS header but can be used in
combination with it. For more details on this directive and CSP in
general, see http://mng.bz/mVV4.

http://mng.bz/mVV4

HSTS headers are strongly recommended for production

apps. You generally don’t want to enable them for local

development, as that would mean you could never run a

non-HTTPS app locally. In a similar fashion, you should use

HSTS only on sites for which you always intend to use

HTTPS, as it’s hard (sometimes impossible) to turn off HTTPS

once it’s enforced with HSTS.

ASP.NET Core comes with built-in middleware for setting

HSTS headers, which is included in some of the default

templates automatically. Listing 28.2 shows how you can

configure the HSTS headers for your application using the

HstsMiddleware in Program.cs.

Listing 28.2 Using HstsMiddleware to add HSTS headers to an
application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages();

builder.Services.AddHsts(options => ❶
{ ❶
 options.MaxAge = TimeSpan.FromHours(1); ❶
}); ❶

WebApplication app = builder.Build();

if(app.Environment.IsProduction()) ❷
{

 app.UseHsts(); ❸
}

app.UseStaticFiles();

app.UseRouting();

app.MapRazorPages();

app.Run();

❶ Configures your HSTS header settings and changes the MaxAge from the default of 30
days

❷ You shouldn’t use HSTS in local environments.
❸ Adds the HstsMiddleware

The preceding example shows how to change the MaxAge

sent in the HSTS header. It’s a good idea to start with a

small value initially. Once you’re sure your app’s HTTPS is

functioning correctly, you can increase the age for greater

security. A typical value for production deployments is one

year.

WARNING Once client browsers have received the HSTS header,
browsers will default to using HTTPS for all requests to your
application. That means you must commit to always using HTTPS for
as long as you set MaxAge. If you disable HTTPS, browsers will not
revert to using HTTP until this duration has expired, so your
application may be inaccessible until then if you aren’t listening on
HTTPS! You can notify the browser that your app no longer supports
HSTS by setting MaxAge to 0.

One limitation with the HSTS header is that you must make

an initial request over HTTPS before you can receive the

header. If the browser makes only HTTP requests, the app

never has a chance to send the HSTS header, so the browser

never knows to use HTTPS. One potential solution is called

HSTS preload.

HSTS preload isn’t part of the HSTS specification, but it’s

supported by all modern browsers. Preload bakes your HSTS

header into the browser so that the browser knows it should

make only HTTPS requests to your site. That removes the

“first request” problem entirely, but be aware that HSTS

preload commits you to HTTPS forever, as it can’t easily be

undone.

Once you’re comfortable with your application’s HTTPS

configuration, you can prepare your app for HSTS preload by

configuring an HSTS header that

Has a MaxAge of at least one year, though two

years are recommended

Has the includeSubDomains directive

Has the preload directive

Listing 28.3 shows how you can configure these directives in

your app. The listing also shows how to exclude the domain

never-https.com so that if you host your app at this domain,

HSTS headers won’t be sent. This can be useful for testing

purposes.

Listing 28.3 Configuring the application HSTS header for preload

builder.Services.AddHsts(options =>

{

 options.Preload = true; ❶
 options.IncludeSubDomains = true; ❷
 options.MaxAge = TimeSpan.FromDays(365); ❸
 options.ExcludedHosts.Add("never-https.com"); ❹
});

❶ Sends the preload directive
❷ Sends the includeSubDomains directive

❸ You must use a max-age directive of at least one year.
❹ Don’t send the HSTS header in responses to requests for this domain.

Once you’ve prepared your application for HSTS preload, you

can submit your app for inclusion in the HSTS preload list

that ships with modern browsers. Visit the site

https://hstspreload.org, confirm that your application meets

the requirements, and submit your domain. If all goes well,

your domain will be included in a future release of all

modern browsers!

TIP For more details on HSTS and attacks it can mitigate, see Scott
Helme’s article “HSTS—The missing link in Transport Layer Security,”
at http://mng.bz/5wwa.

HSTS is a great option for forcing users to use HTTPS on

your website, and if you can use HSTS preload, you can

ensure that modern clients never send requests over HTTP.

Nevertheless, HSTS preload can take months to enforce, and

you won’t always want to take that approach. In the

meantime, if a browser makes an initial request over HTTP, it

won’t receive the HSTS header and may stay on HTTP!

That’s unfortunate, but you can mitigate the problem by

redirecting insecure requests to HTTPS immediately.

28.4.2 Redirecting from HTTP to HTTPS with
HTTPS redirection middleware

The HstsMiddleware should always be used in conjunction

with middleware that redirects all HTTP requests to HTTPS.

TIP It’s possible to apply HTTPS redirection only to specific parts of
your application, such as to specific Razor Pages, but I don’t

https://hstspreload.org/
http://mng.bz/5wwa

recommend that, as it’s too easy to open a security hole in your
application.

ASP.NET Core comes with

HttpsRedirectionMiddleware, which you can use to

enforce HTTPS across your whole app. You add it to the

middleware pipeline in Program.cs, and it ensures that any

requests that pass through it are secure. If an HTTP request

reaches the HttpsRedirectionMiddleware, the

middleware immediately short-circuits the pipeline with a

redirect to the HTTPS version of the request. The browser

then repeats the request using HTTPS instead of HTTP, as

shown in figure 28.8.

Figure 28.8 The HttpsRedirectionMiddleware works with the
HstsMiddleware to ensure that all requests after the initial request
are always sent over HTTPS.

NOTE Even with HSTS and the HTTPS redirection middleware, there
is still an inherent weakness: by default, browsers always make an
initial insecure request over HTTP to your app. The only way to
prevent this is with HSTS preload, which tells browsers to always use
HTTPS.

The HttpsRedirectionMiddleware is added in some of

the default ASP.NET Core templates. It is typically placed

after the error handling and HstsMiddleware, as shown in

the following listing. By default, the middleware redirects all

HTTP requests to the secure endpoint, using an HTTP 307

Temporary Redirect status code.

Listing 28.4 Using HttpsRedirectionMiddleware

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages();

builder.Services.AddHsts(o => options.MaxAge = TimeSpan.FromHours(1));

WebApplication app = builder.Build();

if(app.Environment.IsProduction())

{

 app.UseHsts();

}

app.UseHttpsRedirection(); ❶

app.UseStaticFiles();

app.UseRouting();

app.MapRazorPages();

app.Run();

❶ Adds the HttpsRedirectionMiddleware to the pipeline and redirects all HTTP requests to
HTTPS

The HttpsRedirectionMiddleware automatically

redirects HTTP requests to the first configured HTTPS

endpoint for your application. If your application isn’t

configured for HTTPS, the middleware won’t redirect and

instead logs a warning:

warn: Microsoft.AspNetCore.HttpsPolicy.HttpsRedirectionMiddleware[3]

 Failed to determine the https port for redirect.

If you want the middleware to redirect to a different port

than Kestrel knows about, you can configure that by setting

the ASPNETCORE_HTTPS_PORT environment variable. This

is sometimes necessary if you’re using a reverse proxy, and

it can be set in alternative ways, as described in Microsoft’s

“Enforce HTTPS in ASP.NET Core” documentation:

http://mng.bz/6DDA.

SSL/TLS offloading, header forwarding,
and detecting secure requests

At the start of section 28.1 I encouraged you to consider terminating HTTPS requests
at a reverse proxy. That way, the user uses HTTPS to talk to the reverse proxy, and the
reverse proxy talks to your app using HTTP. With this setup, your users are protected,
but your app doesn’t have to deal with TLS certificates itself.

For the HttpsRedirectionMiddleware to work correctly, Kestrel needs some
way of knowing whether the original request that the reverse proxy received was over
HTTP or HTTPS. The reverse proxy communicates to your app over HTTP, so Kestrel
can’t figure that out without extra help.

The standard approach used by most reverse proxies (such as IIS, NGINX, and
HAProxy) is to add headers to the request before forwarding it to your app. Specifically,

http://mng.bz/6DDA

a header called X-Forwarded-Proto is added, indicating whether the original
request protocol was HTTP or HTTPS.

ASP.NET Core includes ForwardedHeadersMiddleware to look for this header
(and others) and update the request accordingly, so your app treats a request that was
originally secured by HTTPS as secure for all intents and purposes.

If you’re using IIS with the UseIisIntegration() extension, the header
forwarding is handled for you automatically. If you’re using a different reverse proxy,
such as NGINX or HAProxy, you can enable the middleware by setting the
environment variable ASPNETCORE_FORWARDEDHEADERS_ENABLED=true, as
you saw in chapter 27. Alternatively, you can add the middleware to your application
manually, as shown in section 27.3.2.

When the reverse proxy forwards a request, the ForwardedHeadersMiddleware
looks for the X-Forwarded-Proto header and updates the request details as
appropriate. For all subsequent middleware, the request is considered secure. When
adding the middleware manually, it’s important that you place
ForwardedHeadersMiddleware before the call to UseHsts() or
UseHttpsRedirection() so that the forwarded headers are read and the request
is marked secure, as appropriate.

Using the HSTS and HTTPS redirection middleware is best

practice when you’re building a server-side application such

as a Razor Pages app that will always be accessed in the

browser. If you’re building an API application. however, a

better approach is to not listen for insecure HTTP requests at

all!

28.4.3 Rejecting HTTP requests in API
applications

Browsers have been adding more and more protections,

such as the HSTS header, to try to protect users from using

insecure HTTP requests. But not all clients are using a web

browser. In this section you’ll learn why API applications

should generally disable HTTP entirely.

If you’re building an API application, you often can’t rely on

requests coming from a browser. Your API application may

primarily serve a client-side framework in the browser, but it

may also serve mobile applications or provide an API to

other backend services. That means you can’t rely on the

protections built into web browsers to use HTTPS for your

API apps.

On top of that, even if you know all your users are using a

browser, the only way to prevent sending all requests over

HTTP is to use HSTS preload, as you saw in section 28.4.2.

Sending even one request over HTTP can compromise a

user, so the safest approach is to listen only for HTTPS

requests, not HTTP requests. This is the best option for API

apps.

NOTE It would be safest to take this same approach for your browser
apps, but unfortunately, browsers currently default to the HTTP
versions of apps by default.

You can disable HTTP requests for your application by setting

the URLs for your app to include only https:// requests,

using ASPNETCORE_URLS or another approach, as described

in chapter 27. Setting

ASPNETCORE_URLS=https://*:5001

would ensure that your app serves only HTTPS requests on

port 5001 and won’t handle HTTP connections at all. This

protects your clients, as they can’t incorrectly make HTTP

requests, and it may even make things simpler on your side,

as you don’t need to add the HTTP redirection middleware.

HTTPS is one of the most basic requirements for adding

security to your application these days. It can be tricky to

set up initially, but once you’re up and running, you can

largely forget about it, especially if you’re using SSL/TLS

termination at a reverse proxy.

Unfortunately, most other security practices require rather

more vigilance to ensure that you don’t accidentally

introduce vulnerabilities into your app as it grows and

develops. In the next chapter we’ll look at several common

attacks, learn how ASP.NET Core protects you, and see a few

things you need to watch out for.

Summary
HTTPS is used to encrypt your app’s data as it

travels from the server to the browser and back.

This encryption prevents third parties from seeing

or modifying it.

HTTPS is virtually mandatory for production apps,

as modern browsers like Chrome and Firefox mark

non-HTTPS apps as explicitly “not secure.”

In production, you can avoid handling the TLS in

your app by using SSL/TLS offloading. This is

where a reverse proxy uses HTTPS to talk to the

browser, but the traffic is unencrypted between

your app and the reverse proxy. The reverse proxy

could be on the same or a different server, such as

IIS or NGINX, or it could be a third-party service,

such as Cloudflare.

You can use the ASP.NET Core developer certificate

or the IIS express developer certificate to enable

HTTPS during development. This can’t be used for

production, but it’s sufficient for testing locally. You

must run dotnet dev-certs https --trust

when you first install the .NET SDK to trust the

certificate.

Kestrel is the default web server in ASP.NET Core.

It is responsible for reading and writing data from

and to the network, parsing the bytes based on

the underlying HTTP and network protocols and

converting from raw bytes to .NET objects you can

use in your apps.

You can configure an HTTPS certificate for Kestrel

in production using the

Kestrel:Certificates:Default

configuration section. This does not require any

code changes to your application; Kestrel

automatically loads the certificate when your app

starts and uses it to serve HTTPS requests.

You can use the HstsMiddleware to set HSTS

headers for your application to ensure that the

browser always sends HTTPS requests to your app

instead of HTTP requests. HSTS can be enforced

only when an initial HTTPS request is made to your

app, so it’s best used in conjunction with HTTP to

HTTPS redirection.

You can enable HSTS preload for your application

to ensure that HTTP requests from browsers are

never sent and are always upgraded to HTTPS. You

must configure your app as shown in listing 28.3,

deploy your app with a TLS certificate, and register

your app at the URL https://hstspreload.org. This

will schedule your app to be included in browsers’

built-in list of HTTPS only sites.

You can enforce HTTPS for your whole app using

the HttpsRedirectionMiddleware. This will

redirect any HTTP requests to the HTTPS version of

endpoints.

If you’re building an API application, you should

avoid exposing your application over HTTP entirely

and use only HTTPS. Mobile and other nonbrowser

clients don’t have protections such as HSTS, so

there’s no safe way to support both HTTP and

HTTPS. Disable HTTP for your app by listening only

on https:// URLs, such as by setting

ASPNETCORE_URLS=https://*:5001.

https://hstspreload.org/

29 Improving your application’s
security

This chapter covers

Defending against cross-site scripting attacks
Protecting from cross-site request forgery attacks
Allowing calls to your API from other apps using CORS
Avoiding attach vectors such as SQL injection attacks

In chapter 28 you learned how and why you should use

HTTPS in your application: to protect your HTTP requests

from attackers. In this chapter we look at more ways to

protect your application and your application’s users from

attackers. Because security is an extremely broad topic that

covers lots of avenues, this chapter is by no means an

exhaustive guide. It’s intended to make you aware of some

of the most common threats to your app and how to

counteract them, and also to highlight areas where you can

inadvertently introduce vulnerabilities if you’re not careful.

TIP I strongly advise exploring additional resources around security
after you’ve read this chapter. The Open Web Application Security
Project (OWASP) (www.owasp.org) is an excellent resource.
Alternatively, Troy Hunt has some excellent courses and workshops
on security, geared toward .NET developers
(https://www.troyhunt.com).

https://www.owasp.org/
https://www.troyhunt.com/

In sections 29.1 and 29.2 you’ll start by learning about two

potential attacks that should be on your radar: cross-site

scripting (XSS) and cross-site request forgery (CSRF). We’ll

explore how the attacks work and how you can prevent

them in your apps. ASP.NET Core has built-in protection

against both types of attacks, but you have to remember to

use the protection correctly and resist the temptation to

circumvent it unless you’re certain it’s safe to do so.

Section 29.3 deals with a common scenario: you have an

application that wants to use JavaScript requests to retrieve

data from a second app. By default, web browsers block

requests to other apps, so you need to enable cross-origin

resource sharing (CORS) in your API to achieve this. We’ll

look at how CORS works, how to create a CORS policy for

your app, and how to apply it to specific endpoints.

The final section of this chapter, section 29.4, covers a

collection of common threats to your application. Each one

represents a potentially critical flaw that an attacker could

use to compromise your application. The solutions to each

threat are generally relatively simple; the important thing is

to recognize where the flaws could exist in your own apps so

you can ensure that you don’t leave yourself vulnerable.

As I mentioned in chapter 28, you should always start by

adding HTTPS to your app to encrypt the traffic between

your users’ browsers and your app. Without HTTPS,

attackers could subvert many of the safeguards you add to

your app, so it’s an important first step to take.

Unfortunately, most other security practices require rather

more vigilance to ensure that you don’t accidentally

introduce vulnerabilities into your app as it grows and

develops. Many attacks are conceptually simple and have

been known about for years, yet they’re still commonly

found in new applications. In the next section we’ll look at

one such attack and see how to defend against it when

building apps using Razor Pages.

29.1 Defending against cross-site
scripting (XSS) attacks

In this section I describe XSS attacks and how attackers can

use them to compromise your users. I show how the Razor

Pages framework protects you from these attacks, how to

disable the protections when you need to, and what to look

out for. I also discuss the difference between HTML encoding

and JavaScript encoding, and the effect of using the wrong

encoder.

Attackers can exploit a vulnerability in your app to create

XSS attacks that execute code in another user’s browser.

Commonly, attackers submit content using a legitimate

approach, such as an input form, that is later rendered

somewhere to the page. By carefully crafting malicious

input, the attacker can execute arbitrary JavaScript on a

user’s browser and so can steal cookies, impersonate the

user, and generally do bad things.

TIP For a detailed discussion of XSS attacks, see the “Cross Site
Scripting (XSS)” article on the OWASP site: https://owasp.org/www-
community/attacks/xss.

Figure 29.1 shows a basic example of an XSS attack.

Legitimate users of your app can send their name to your

app by submitting a form. The app then adds the name to

an internal list and renders the whole list to the page. If the

names are not rendered safely, a malicious user can execute

JavaScript in the browser of every other user who views the

list.

https://owasp.org/www-community/attacks/xss
https://owasp.org/www-community/attacks/xss

Figure 29.1 How an XSS vulnerability is exploited. An attacker
submits malicious content to your app, which is displayed in the
browsers of other users. If the app doesn’t encode the content
when writing to the page, the input becomes part of the HTML of
the page and can run arbitrary JavaScript.

In figure 29.1 the user entered a snippet of HTML, such as

their name. When users view the list of names, the Razor

template renders the names using @Html.Raw(), which

writes the <script> tag directly to the document. The

user’s input has become part of the page’s HTML structure.

As soon as the page is loaded in a user’s browser, the

<script> tag executes, and the user is compromised. Once

an attacker can execute arbitrary JavaScript on a user’s

browser, they can do pretty much anything.

TIP You can dramatically limit the control an attacker has even if they
exploit an XSS vulnerability using a Content-Security-
Policy (CSP). You can read about CSP at http://mng.bz/nWW2. I
have an open-source library you can use to integrate a CSP into your
app available on NuGet at http://mng.bz/vnn4.

The vulnerability here is due to rendering the user input in

an unsafe way. If the data isn’t encoded to make it safe

before it’s rendered, you could open your users to attack. By

default, Razor protects against XSS attacks by HTML-

encoding any data written using Tag Helpers, HTML Helpers,

or the @ syntax. So generally you should be safe, as you saw

in chapter 17.

Using @Html.Raw() is where the danger lies: if the HTML

you’re rendering contains user input (even indirectly), you

could have an XSS vulnerability. By rendering the user input

with @ instead, the content is encoded before it’s written to

the output, as shown in figure 29.2.

http://mng.bz/nWW2
http://mng.bz/vnn4

Figure 29.2 Protecting against XSS attacks by HTML-encoding
user input using @ in Razor templates. The <script> tag is
encoded so that it is no longer rendered as HTML and can’t be
used to compromise your app.

This example demonstrates using HTML encoding to prevent

elements being directly added to the HTML Document Object

Model (DOM), but it’s not the only case you have to think

about. If you’re passing untrusted data to JavaScript or

using untrusted data in URL query values, you must make

sure to encode the data correctly.

A common scenario is when you’re using JavaScript with

Razor Pages, and you want to pass a value from the server

to the client. If you use the standard @ symbol to render the

data to the page, the output will be HTML-encoded.

Unfortunately, if you HTML-encode a string and inject it

directly into JavaScript, you probably won’t get what you

expect.

For example, if you have a variable in your Razor file called

name, and you want to make it available in JavaScript, you

might be tempted to use something like this:

<script>var name = '@name'</script>

If the name contains special characters, Razor will encode

them using HTML encoding, which probably isn’t what you

want in this JavaScript context. For example, if name was

Arnold "Arnie" Schwarzenegger, rendering it as you

did previously would give this:

<script>var name = 'Arnold "Arnie" Schwarzenegger';</script>

Note that the double quotation marks (") have been HTML-

encoded to ". If you use this value in JavaScript

directly, expecting it to be a safe encoded value, it’s going to

look wrong, as shown in figure 29.3.

Figure 29.3 Comparison of alerts when using JavaScript
encoding compared with HTML encoding

Instead, you should encode the variable using JavaScript

encoding so that the double-quote character is rendered as a

safe Unicode character, \u0022. You can achieve this by

injecting a JavaScriptEncoder into the view and calling

Encode() on the name variable:

@inject System.Text.Encodings.Web.JavaScriptEncoder encoder;

<script>var name = '@encoder.Encode(name)'</script>

To avoid having to remember to use JavaScript encoding, I

recommend that you don’t write values into JavaScript like

this. Instead, write the value to an HTML element’s

attributes, and then read that into the JavaScript variable

later, as shown in the following listing. That prevents the

need for the JavaScript encoder entirely.

Listing 29.1 Passing values to JavaScript by writing them to
HTML attributes

<div id="data" data-name="@name"></div>

<script> ❶
var ele = document.getElementById('data'); ❷
var name = ele.getAttribute('data-name'); ❸
</script>

❶ Write the value you want in JavaScript to a data-* attribute. This HTML-encodes the data.
❷ Gets a reference to the HTML element

❸ Reads the data-* attribute into JavaScript, which converts it to JavaScript encoding

XSS attacks are still common, and it’s easy to expose

yourself to them whenever you allow users to input data.

Validation of the incoming data can help sometimes, but it’s

often a tricky problem. For example, a naive name validator

might require that you use only letters, which would prevent

most attacks. Unfortunately, that doesn’t account for users

with hyphens or apostrophes in their name, let alone users

with non-Western names. People get (understandably) upset

when you tell them that their name is invalid, so be wary of

this approach!

Whether or not you use strict validation, you should always

encode the data when you render it to the page. Think

carefully whenever you find yourself writing @Html.Raw().

Is there any way, no matter how contrived, for a user to get

malicious data into that field? If so, you’ll need to find

another way to display the data.

XSS vulnerabilities allow attackers to execute JavaScript on

a user’s browser. The next vulnerability we’re going to

consider lets them make requests to your API as though

they’re a different logged-in user, even when the user isn’t

using your app. Scared? I hope so!

29.2 Protecting from cross-site
request forgery (CSRF) attacks

In this section you’ll learn about CSRF attacks, how

attackers can use them to impersonate a user on your site,

and how to protect against them using antiforgery tokens.

Razor Pages protects you from these attacks by default, but

you can disable these verifications, so it’s important to

understand the implications of doing so.

CSRF attacks can be a problem for websites or APIs that use

cookies for authentication. A CSRF attack involves a

malicious website making an authenticated request to your

API on behalf of the user, without the user’s initiating the

request. In this section we’ll explore how these attacks work

and how you can mitigate them with antiforgery tokens.

The canonical example of this attack is a bank

transfer/withdrawal. Imagine you have a banking application

that stores authentication tokens in a cookie, as is common

(especially in traditional server-side rendered applications).

Browsers automatically send the cookies associated with a

domain with every request so the app knows whether a user

is authenticated.

Now imagine your application has a page that lets a user

transfer funds from their account to another account using a

POST request to the Balance Razor Page. You have to be

logged in to access the form (you’ve protected the Razor

Page with the [Authorize] attribute or global

authorization requirements), but otherwise you post a form

that says how much you want to transfer and where you

want to transfer it. Seems simple enough?

Suppose that a user visits your site, logs in, and performs a

transaction. Then they visit a second website that the

attacker has control of. The attacker has embedded a form

in their website that performs a POST to your bank’s

website, identical to the transfer-funds form on your banking

website. This form does something malicious, such as

transfer all the user’s funds to the attacker, as shown in

figure 29.4. Browsers automatically send the cookies for the

application when the page does a full form post, and the

banking app has no way of knowing that this is a malicious

request. The unsuspecting user has given all their money to

the attacker!

Figure 29.4 A CSRF attack occurs when a logged-in user visits a
malicious site. The malicious site crafts a form that matches one
on your app and POSTs it to your app. The browser sends the
authentication cookie automatically, so your app sees the
request as a valid request from the user.

The vulnerability here revolves around the fact that browsers

automatically send cookies when a page is requested (using

a GET request) or a form is POSTed. There’s no difference

between a legitimate POST of the form in your banking app

and the attacker’s malicious POST. Unfortunately, this

behavior is baked into the web; it’s what allows you to

navigate websites seamlessly after initially logging in.

TIP Browsers have additional protections to prevent cookies being
sent in this situation, called SameSite cookies. By default, most
browsers use SameSite=Lax, which prevents this vulnerable
behavior. You can read about SameSite cookies and how to work with
them in ASP.NET Core at http://mng.bz/4DDj.

A common solution to this CSRF attack is the synchronizer

token pattern, which uses user-specific, unique antiforgery

tokens to enforce a difference between a legitimate POST

and a forged POST from an attacker. One token is stored in a

cookie, and another is added to the form you wish to

protect. Your app generates the tokens at runtime based on

the current logged-in user, so there’s no way for an attacker

to create one for their forged form.

TIP The “Cross-Site Request Forgery Prevention Cheat Sheet” article
on the OWASP site (http://mng.bz/5jRa) has a thorough discussion of
the CSRF vulnerability, including the synchronizer token pattern.

When the Balance Razor Page receives a form POST, it

compares the value in the form with the value in the cookie.

If either value is missing or the values don’t match, the

request is rejected. If an attacker creates a POST, the

browser posts the cookie token as usual, but there won’t be

a token in the form itself or the token won’t be valid. The

http://mng.bz/4DDj
http://mng.bz/5jRa

Razor Page rejects the request, protecting from the CSRF

attack, as in figure 29.5.

Figure 29.5 Protecting against a CSRF attack using antiforgery
tokens. The browser automatically forwards the cookie token,
but the malicious site can’t read it and so can’t include a token
in the form. The app rejects the malicious request because the
tokens don’t match.

The good news is that Razor Pages automatically protects

you against CSRF attacks. The Form Tag Helper

automatically sets an antiforgery token cookie and renders

the token to a hidden field called

__RequestVerificationToken for every <form>

element in your app (unless you specifically disable them).

For example, take this simple Razor template that posts

back to the same Razor Page:

<form method="post">

 <label>Amount</label>

 <input type="number" name="amount" />

 <button type="submit">Withdraw funds</button>

</form>

When rendered to HTML, the antiforgery token is stored in

the hidden field and is posted back with a legitimate

request:

<form method="post">

 <label>Amount</label>

 <input type="number" name="amount" />

 <button type="submit" >Withdraw funds</button>

 <input name="__RequestVerificationToken" type="hidden"

value="CfDJ8Daz26qb0hBGsw7QCK"/>

</form>

ASP.NET Core automatically adds the antiforgery tokens to

every form, and Razor Pages automatically validates them.

The framework ensures that the antiforgery tokens exist in

both the cookie and the form data, ensures that they match,

and rejects any requests where they don’t.

If you’re using Model-View-Controller (MVC) controllers with

views instead of Razor Pages, ASP.NET Core still adds the

antiforgery tokens to every form. Unfortunately, it doesn’t

validate them for you. Instead, you must decorate your

controllers and actions with the

[ValidateAntiForgeryToken] attribute. This ensures

that the antiforgery tokens exist in both the cookie and the

form data, checks that they match, and rejects any requests

in which they don’t.

WARNING ASP.NET Core doesn’t automatically validate antiforgery
tokens if you’re using MVC controllers with Views. You must make
sure to mark all vulnerable methods with
[ValidateAntiForgeryToken] attributes instead, as
described in the “Prevent Cross-Site Request Forgery (XSRF/CSRF)
attacks in ASP.NET Core” documentation: http://mng.bz/QPPv. Note
that if you’re not using cookies for authentication, you are not
vulnerable to CSRF attacks: CSRF attacks arise from attackers
exploiting the fact that browsers automatically attach cookies to
requests. No cookies, no problem!

Generally, you need to use antiforgery tokens only for POST,

DELETE, and other dangerous request types that are used

for modifying state. GET requests shouldn’t be used for this

purpose, so the framework doesn’t require valid antiforgery

tokens to call them. Razor Pages validates antiforgery tokens

for dangerous verbs like POST and ignores safe verbs like

GET. As long as you create your app following this pattern

(and you should!), the framework does the right thing to

keep you safe.

http://mng.bz/QPPv

If you need to explicitly ignore antiforgery tokens on a Razor

Page for some reason, you can disable the validation by

applying the [IgnoreAntiforgeryToken] attribute to a

Razor Page’s PageModel. This bypasses the framework

protections for those cases when you’re doing something

that you know is safe and doesn’t need protecting, but in

most cases it’s better to play it safe and validate.

CSRF attacks can be a tricky thing to get your head around

from a technical point of view, but for the most part

everything should work without much effort on your part.

Razor adds antiforgery tokens to your forms, and the Razor

Pages framework takes care of validation for you.

Things get trickier if you’re making a lot of requests to an

API using JavaScript, and you’re posting JavaScript Object

Notation (JSON) objects rather than form data. In these

cases, you won’t be able to send the verification token as

part of a form (because you’re sending JSON), so you’ll need

to add it as a header in the request instead. Microsoft’s

documentation “Prevent Cross-Site Request Forgery (XSRF/

CSRF) attacks in ASP.NET Core” contains an example of

adding the header in JavaScript and validating it in your

application. See http://mng.bz/XNNa.

TIP If you’re not using cookie authentication and instead have a
single-page application (SPA) that sends authentication tokens in a
header, the good news is that you don’t have to worry about CSRF at
all! Malicious sites can send only cookies, not headers, to your API,
so they can’t make authenticated requests.

http://mng.bz/XNNa

Generating unique tokens with the data
protection APIs

The antiforgery tokens used to prevent CSRF attacks rely on the ability of the
framework to use strong symmetric encryption to encrypt and decrypt data. Encryption
algorithms typically rely on one or more keys, which are used to initialize the
encryption and to make the process reproducible. If you have the key, you can encrypt
and decrypt data; without it, the data is secure.

In ASP.NET Core, encryption is handled by the data protection APIs. They’re used to
create the antiforgery tokens, encrypt authentication cookies, and generate secure
tokens in general. Crucially, they also control the management of the key files that are
used for encryption. A key file is a small XML file that contains the random key value
used for encryption in ASP.NET Core apps. It’s critical that it’s stored securely. If an
attacker got hold of it, they could impersonate any user of your app and generally do
bad things!

The data protection system stores the keys in a safe location, depending on how and
where you host your app:

Azure Web App—In a special synced folder, shared between regions

IIS without user profile—Encrypted in the registry

Account with user profile—In
%LOCALAPPDATA%\ASP.NET\DataProtection-Keys on Windows, or
~/.aspnet/DataProtection-Keys on Linux or macOS

All other cases—In memory; when the app restarts, the keys will be lost

So why do you care? For your app to be able to read your users’ authentication
cookies, it must decrypt them by using the same key that was used to encrypt them. If
you’re running in a web-farm scenario, by default each server has its own key and
won’t be able to read cookies encrypted by other servers.

To get around this, you must configure your app to store its data protection keys in a
central location. This could be a shared folder on a hard drive, a Redis instance, or an
Azure blob storage instance, for example.

Microsoft’s documentation on the data protection APIs is extremely detailed, but it can
be overwhelming. I recommend reading the section on configuring data protection,
(“Configure ASP.NET Core Data Protection,” http://mng.bz/d40i) and configuring a key
storage provider for use in a web-farm scenario (“Key storage providers in ASP.NET
Core,” http://mng.bz/5pW6). I also have an introduction to the data protection APIs on
my blog at http://mng.bz/yQQd.

It’s worth clarifying that the CSRF vulnerability discussed in

this section requires that a malicious site does a full form

POST to your app. The malicious site can’t make the request

to your API using client-side-only JavaScript, as browsers

block JavaScript requests to your API that are from a

different origin.

This is a safety feature, but it can often cause you problems.

If you’re building a client-side SPA, or even if you have a

little JavaScript on an otherwise server-side rendered app,

you may need to make such cross-origin requests. In the

next section I describe a common scenario you’re likely to

run into and show how you can modify your apps to work

around Pit.

29.3 Calling your web APIs from other
domains using CORS

In this section you’ll learn about cross-origin resource

sharing (CORS), a protocol to allow JavaScript to make

requests from one domain to another. CORS is a frequent

area of confusion for many developers, so this section

describes why it’s necessary and how CORS headers work.

http://mng.bz/d40i
http://mng.bz/5pW6
http://mng.bz/yQQd

You’ll then learn how to add CORS to both your whole

application and specific web API actions, and how to

configure multiple CORS policies for your application.

As you’ve already seen, CSRF attacks can be powerful, but

they would be even more dangerous if it weren’t for

browsers implementing the same-origin policy. This policy

blocks apps from using JavaScript to call a web API at a

different location unless the web API explicitly allows it.

DEFINITION Origins are deemed to be the same if they match the
scheme (HTTP or HTTPS), domain (example.com), and port (80 by
default for HTTP and 443 for HTTPS). If an app attempts to access a
resource using JavaScript, and the origins aren’t identical, the
browser blocks the request.

The same-origin policy is strict. The origins of the two URLs

must be identical for the request to be allowed. For example,

the following origins are the same:

http://example.com/home

http://example.com/site.css

The paths are different for these two URLs (/home and

/site.css), but the scheme, domain, and port (80) are

identical. So if you were on the home page of your app, you

could request the /site.css file using JavaScript without any

problems.

By contrast, the origins of the following sites are different,

so you couldn’t request any of these URLs using JavaScript

from the http://example.com origin:

https://example.com—Different scheme (https)

http://www.example.com—Different domain

(includes a subdomain)

http://example.com:5000—Different port (default

HTTP port is 80)

For simple apps, where you have a single web app handling

all your functionality, this limitation might not be a problem,

but it’s extremely common for an app to make requests to

another domain. For example, you might have an e-

commerce site hosted at http://shopping.com, and you’re

attempting to load data from http://api.shop ping.com to

display details about the products available for sale. With

this configuration, you’ll fall foul of the same-origin policy.

Any attempt to make a request using JavaScript to the API

domain will fail, with an error similar to figure 29.6.

Figure 29.6 The console log for a failed cross-origin request.
Chrome has blocked a cross-origin request from the app
http://shopping.com:6333 to the API at
http://api.shopping.com:5111.

The need to make cross-origin requests from JavaScript is

increasingly common with the rise of client-side SPAs and

the move away from monolithic apps. Luckily, there’s a web

standard that lets you work around this in a safe way; this

standard is CORS. You can use CORS to control which apps

can call your API, so you can enable scenarios like this one.

29.3.1 Understanding CORS and how it works

CORS is a web standard that allows your web API to make

statements about who can make cross-origin requests to it.

For example, you could make statements such as these:

Allow cross-origin requests from

https://shopping.com and https://app

.shopping.com.

Allow only GET cross-origin requests.

Allow returning the Server header in responses

to cross-origin requests.

Allow credentials (such as authentication cookies

or authorization headers) to be sent with cross-

origin requests.

You can combine these rules into a policy and apply different

policies to different endpoints of your API. You could apply a

policy to your entire application or a different policy to every

API action.

CORS works using HTTP headers. When your web API

application receives a request, it sets special headers on the

response to indicate whether cross-origin requests are

allowed, which origins they’re allowed from, and which HTTP

verbs and headers the request can use—pretty much

everything about the request.

In some cases, before sending a real request to your API,

the browser sends a preflight request, a request sent using

the OPTIONS verb, which the browser uses to check whether

it’s allowed to make the real request. If the API sends back

the correct headers, the browser sends the true cross-origin

request, as shown in figure 29.7.

Figure 29.7 Two cross-origin requests. The response to the GET
request doesn’t contain any CORS headers, so the browser
blocks the app from reading it, even though the response may
contain data from the server. The second request requires a

preflight OPTIONS request to check whether CORS is enabled. As
the response contains CORS headers, the browser makes the
real request and provides the response to the JavaScript app.

TIP For a more detailed discussion of CORS, see CORS in Action, by
Monsur Hossain (Manning, 2014), http://mng.bz/aD41.

The CORS specification, which you can find at

http://mng.bz/MBBB, is complicated, with a variety of

headers, processes, and terminology to contend with.

Fortunately, ASP.NET Core handles the details of the

specification for you, so your main concern is working out

exactly who needs to access your API, and under what

circumstances.

29.3.2 Adding a global CORS policy to your
whole app

Typically, you shouldn’t set up CORS for your APIs until you

need it. Browsers block cross-origin communication for a

reason: it closes an avenue of attack. They’re not being

awkward. Wait until you have an API hosted on a different

domain to the app that needs to access it.

Adding CORS support to your application requires you to do

four things:

Add the CORS services to your app.

Configure at least one CORS policy.

Add the CORS middleware to your middleware

pipeline.

http://mng.bz/aD41
http://mng.bz/MBBB

Set a default CORS policy for your entire app or

decorate your endpoints with EnableCors

metadata to selectively enable CORS for specific

endpoints.

To add the CORS services to your application, call

AddCors() on your WebApplicationBuilder instance in

Program.cs:

builder.Services.AddCors();

The bulk of your effort in configuring CORS will go into policy

configuration. A CORS policy controls how your application

responds to cross-origin requests. It defines which origins

are allowed, which headers to return, which HTTP methods

to allow, and so on. You normally define your policies inline

when you add the CORS services to your application.

Consider the previous e-commerce site example. You want

your API that is hosted at http://api.shopping.com to be

available from the main app via client-side JavaScript,

hosted at http://shopping.com. You therefore need to

configure the API to allow cross-origin requests.

NOTE Remember, it’s the app that will get errors when attempting to
make cross-origin requests, but it’s the API you’re accessing that you
need to add CORS to, not the app making the requests.

The following listing shows how to configure a policy called

"AllowShoppingApp" to enable cross-origin requests from

http://shopping.com to the API. Additionally, we explicitly

allow any HTTP verb type; without this call, only simple

methods (GET, HEAD, and POST) are allowed. The policies

are built up using the familiar fluent builder style you’ve

seen throughout this book.

Listing 29.2 Configuring a CORS policy to allow requests from a
specific origin

public void ConfigureServices(IServiceCollection services)

{

 services.AddCors(options => { ❶
 options.AddPolicy("AllowShoppingApp", policy => ❷
 policy.WithOrigins("http://shopping.com") ❸
 .AllowAnyMethod()); ❹
 });

 // other service configuration

}

❶ The AddCors method exposes an Action<CorsOptions> overload.
❷ Every policy has a unique name.

❸ The WithOrigins method specifies which origins are allowed. Note that the URL has no
trailing /.

❹ Allows all HTTP verbs to call the API

WARNING When listing origins in WithOrigins(), ensure that
they don’t have a trailing "/"; otherwise, the origin will never match,
and your cross-origin requests will fail.

Once you’ve defined a CORS policy, you can apply it to your

application. In the following listing, you apply the

"AllowShoppingApp" policy to the whole application

using CorsMiddleware by calling UseCors().

Listing 29.3 Adding the CORS middleware and configuring a
default CORS policy

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddCors(options => {

 options.AddPolicy("AllowShoppingApp", policy =>

 policy.WithOrigins("http://shopping.com")

 .AllowAnyMethod());

});

var app = builder.Build();

app.UseRouting();

app.UseCors("AllowShoppingApp"); ❶
app.UseAuthentication();

app.UseAuthorization();

app.MapGet("/api/products", () => new string[] {});

app.Run();

❶ Adds the CORS middleware and uses AllowShoppingApp as the default policy

NOTE As with all middleware, the order of the CORS middleware is
important. You must place the call to UseCors() after
UseRouting(). The CORS middleware needs to intercept cross-
origin requests to your web API actions so it can generate the correct
responses to preflight requests and add the necessary headers. It’s
common to place the CORS middleware before a call to
UseAuthentication().

With the CORS middleware in place for the API, the shopping

app can now make cross-origin requests. You can call the

API from the http://shopping.com site, and the browser lets

the CORS request through, as shown in figure 29.8. If you

make the same request from a domain other than

http://shopping.com, the request continues to be blocked.

Figure 29.8 With CORS enabled, as in the bottom image, cross-
origin requests can be made, and the browser will make the
response available to the JavaScript. Compare this to the top
image, in which the request was blocked.

Applying a CORS policy globally to your application in this

way may be overkill. If there’s only a subset of actions in

your API that need to be accessed from other origins, it’s

prudent to enable CORS only for those specific actions. This

can be achieved by adding metadata to your endpoints.

29.3.3 Adding CORS to specific endpoints
with EnableCors metadata

Browsers block cross-origin requests by default for good

reason: they have the potential to be abused by malicious or

compromised sites. Enabling CORS for your entire app may

not be worth the risk if you know that only a subset of

actions will ever need to be accessed cross-origin.

If that’s the case, it’s best to enable a CORS policy only for

those specific endpoints. ASP.NET Core provides the

RequireCors() method, which you can apply to your

minimal API endpoints or route groups, and the

[EnableCors] attribute, which lets you select a policy to

apply to a given controller or action method.

NOTE Both these methods add CORS metadata to the endpoint,
which is used by the CorsMiddleware to determine the policy to
apply. This is why the CorsMiddleware should be placed after
the RoutingMiddleware, so that the CorsMiddleware
knows which endpoint was selected and so which CORS policy to
apply.

With the RequireCors() method and [EnableCors]

attribute, you can apply different CORS policies to different

endpoints. For example, you could allow GET requests

access to your entire API from the http://shopping.com

domain but allow other HTTP verbs only for a specific

endpoint while allowing anyone to access your product list

endpoints.

You define CORS policies in the call to AddCors() by calling

AddPolicy() and giving the policy a name, as you saw in

listing 29.2. If you’re using endpoint-specific policies, instead

of calling UseCors("AllowShoppingApp") as you saw in

listing 29.3, you should add the middleware without a

default policy by calling UseCors() only.

You can then selectively enable CORS for individual

endpoints and specifying the policy to apply. To apply CORS

to a minimal API endpoint or route group, call

RequireCors("AllowShoppingApp"), as shown in the

following listing. To apply a policy to a controller or an action

method, apply the [EnableCors("AllowShoppingApp"]

attribute. You can disable cross-origin access for an endpoint

by applying the [DisableCors] attribute.

Listing 29.4 Applying a CORS policy to minimal API endpoints

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddCors(options => { /* Config not shown*/});

var app = builder.Build();

app.UseCors(); ❶

app.MapGet("/api/products", () => new string[] {})

 .RequireCors("AllowShoppingApp"); ❷

app.MapGet("/api/products",

 [EnableCors("AllowShoppingApp")] () => new { }); ❸

app.MapGroup("/api/categories")

 .RequireCors("AllowAnyOrigin"); ❹

app.MapDelete("/api/products",

 [DisableCors] () => Results.NoContent()); ❺

app.Run();

❶ Adds the CorsMiddleware without configuring a default policy

❷ Applies the AllowShoppingApp CORS policy to the endpoint
❸ You can apply attributes to the lamba or handler method, as well as to MVC action

methods.

❹ You can apply CORS policies to whole route groups.
❺ The DisableCors attribute disables CORS for the endpoint completely.

If you define a default policy but then also call

RequireCors() or add an [EnableCors] attribute, then

both policies are applied. This can get confusing, so I

recommend not applying a default CORS policy in the

middleware and specifying the policy at the route group or

endpoint level. Alternatively, if you do want to apply a policy

to your whole app, avoid applying individual policies to

endpoints as well.

Whether you choose to use a single default CORS policy or

multiple policies, you need to configure the CORS policies for

your application in the call to AddCors. Many options are

available when configuring CORS. In the next section I

provide an overview of the possibilities.

29.3.4 Configuring CORS policies

Browsers implement the cross-origin policy for security

reasons, so you should carefully consider the implications of

relaxing any of the restrictions they impose. Even if you

enable cross-origin requests, you can still control what data

cross-origin requests can send and what your API returns.

For example, you can configure

The origins that may make a cross-origin request

to your API

The HTTP verbs (such as GET, POST, and DELETE)

that can be used

The headers the browser can send

The headers the browser can read from your app’s

response

Whether the browser will send authentication

credentials with the request

You define all these options when creating a CORS policy in

your call to AddCors() using the CorsPolicyBuilder, as

you saw in listing 29.2. A policy can set all or none of these

options, so you can customize the results to your heart’s

content. Table 29.1 shows some of the options available and

their effects.

Table 29.1 The methods available for configuring a CORS policy
and their effect on the policy

CorsPolicyBuilder method
example

Result

WithOrigins("http://shopping.com") Allows cross-origin requests from http:/
/shopping.com

AllowAnyOrigin() Allows cross-origin requests from any
origin. This means any website can make
JavaScript requests to your API.

WithMethods()/AllowAnyMethod() Sets the allowed methods (such as GET,
POST, and DELETE) that can be made to your
API

WithHeaders()/AllowAnyHeader() Sets the headers that the browser may
send to your API. If you restrict the
headers, you must include at least Accept,
Content-Type, and Origin to allow valid
requests.

WithExposedHeaders() Allows your API to send extra headers to
the browser. By default, only the Cache-
Control, Content-Language, Content-Type,
Expires, Last-Modified, and Pragma
headers are sent in the response.

AllowCredentials() By default, the browser won’t send
authentication details with cross-origin
requests unless you explicitly allow it. You
must also enable sending credentials
client-side in JavaScript when making the
request.

One of the first problems in setting up CORS is realizing you

have a cross-origin problem at all. Several times I’ve been

stumped trying to figure out why a request won’t work, until

I realize the request is going cross-domain or from HTTP to

HTTPS, for example.

Whenever possible, I recommend avoiding cross-origin

requests. You can end up with subtle differences in the way

browsers handle them, which can cause more headaches. In

particular, avoid HTTP to HTTPS cross-domain problems by

running all your applications behind HTTPS. As discussed in

chapter 28, that’s a best practice anyway, and it’ll help

prevent a whole class of CORS headaches.

TIP Another (often preferable) option is to configure CORS policies in
your reverse proxy or application gateway. You can configure Azure
App Service with allowed origins, for example, so that you don’t need
to modify your application code.

Once I’ve established that I definitely need a CORS policy, I

typically start with the WithOrigins() method. Then I

expand or restrict the policy further, as need be, to provide

cross-origin lockdown of my API while still allowing the

required functionality. CORS can be tricky to work around,

but remember, the restrictions are there for your safety.

Cross-origin requests are only one of many potential

avenues attackers could use to compromise your app. Many

of these are trivial to defend against, but you need to be

aware of them and know how to mitigate them. In the next

section we’ll look at common threats and how to avoid them.

29.4 Exploring other attack vectors
So far in this chapter, I’ve described two potential ways

attackers can compromise your apps—XSS and CSRF attacks

—and how to prevent them. Both of these vulnerabilities

regularly appear in the OWASP top ten list of most critical

web app risks, so it’s important to be aware of them and to

avoid introducing them into your apps.

TIP OWASP publishes the list online, with descriptions of each attack
and how to prevent those attacks. There’s a cheat sheet for staying
safe here: https://cheatsheetseries.owasp.org.

In this section I’ll provide an overview of some of the other

most common vulnerabilities and how to avoid them in your

apps.

29.4.1 Detecting and avoiding open redirect
attacks

A common OWASP vulnerability is due to open redirect

attacks. An open redirect attack occurs when a user clicks a

link to an otherwise-safe app and ends up being redirected

to a malicious website, such as one that serves malware.

The safe app contains no direct links to the malicious

website, so how does this happen?

Open redirect attacks occur where the next page is passed

as a parameter to an endpoint. The most common example

is when you’re logging in to an app. Typically, apps

remember the page a user is on before redirecting them to a

login page by passing the current page as a returnUrl

query string parameter. After the user logs in, the app

redirects the user to the returnUrl to carry on where they

left off.

https://cheatsheetseries.owasp.org/

Imagine a user is browsing an e-commerce site. They click

Buy for a product and are redirected to the login page. The

product page they were on is passed as the returnUrl, so

after they log in, they’re redirected to the product page

instead of being dumped back to the home screen.

An open redirect attack takes advantage of this common

pattern, as shown in figure 29.9. A malicious attacker

creates a login URL where the returnUrl is set to the

website they want to send the user to and convinces the

user to click the link to your web app. After the user logs in,

a vulnerable app redirects the user to the malicious site.

Figure 29.9 An open redirect makes use of the common return
URL pattern. This is typically used for login pages but may be
used in other areas of your app too. If your app doesn’t verify
that the URL is safe before redirecting the user, it could redirect
users to malicious sites.

The simple solution to this attack is to always validate that

the returnUrl is a local URL that belongs to your app

before redirecting users to it. The default Identity UI does

this already, so you shouldn’t have to worry about the login

page if you’re using Identity, as described in chapter 23.

If you have redirects in other parts of your app, ASP.NET

Core provides a couple of helper methods for staying safe,

the most useful of which is Url.IsLocalUrl(). Listing

29.5 shows how you could verify that a provided return URL

is safe and, if not, redirect to the app’s home page.

You can also use the LocalRedirect() helper method on

the ControllerBase and Razor Page PageModel classes,

which throw an exception if the provided URL isn’t local.

Listing 29.5 Detecting open redirect attacks by checking for
local return URLs

[HttpPost]

public async Task<IActionResult> Login(

 LoginViewModel model, string returnUrl = null) ❶
{

 // Verify password, and sign user in

 if (Url.IsLocalUrl(returnUrl)) ❷
 {

 return Redirect(returnUrl); ❸
 }

 else

 {

 return RedirectToPage("Index"); ❹
 }

}

❶ The return URL is provided as an argument to the action method.
❷ Returns true if the return URL starts with / or ~/

❸ The URL is local, so it’s safe to redirect to it.

❹ The URL was not local and could be an open redirect attack, so redirect to the homepage
for safety.

This simple pattern protects against open redirect attacks

that could otherwise expose your users to malicious content.

Whenever you’re redirecting to a URL that comes from a

query string or other user input, you should use this pattern.

TIP In some authentication flows, such as when authenticating with
OpenID Connect, you can’t redirect to a local URL, so you can’t use
this pattern. Instead, OpenID Connect requires that you preregister
the allowed redirect URLs and redirect only to a registered URL. You
should consider using this pattern when you can’t enforce a local-only
redirect.

Open redirect attacks present a risk to your users rather

than to your app directly. The next vulnerability represents a

critical vulnerability in your app itself.

29.4.2 Avoiding SQL injection attacks with EF
Core and parameterization

SQL injection attacks represent one of the most dangerous

threats to your application. Attackers craft simple malicious

input, which they send to your application as traditional

form-based input or by customizing URLs and query strings

to execute arbitrary code against your database. An SQL

injection vulnerability could expose your entire database to

attackers, so it’s critical that you spot and remove any such

vulnerabilities in your apps.

I hope I’ve scared you a little with that introduction, so now

for the good news: if you’re using Entity Framework Core

(EF Core) or pretty much any other object-relational mapper

(ORM) in a standard way, you should be safe. EF Core has

built-in protections against SQL injection, so as long as

you’re not doing anything funky, you should be fine.

SQL injection vulnerabilities occur when you build SQL

statements yourself and include dynamic input that an

attacker provides, even indirectly. EF Core provides the

ability to create raw SQL queries using the FromSqlRaw()

method, so you must be careful when using this method.

Imagine your recipe app has a search form that lets you

search for a recipe by name. If you write the query using

LINQ extension methods (as discussed in chapter 12), you

would have no risk of SQL injection attacks. However, if you

decide to write your SQL query by hand, you open yourself

to such a vulnerability, as shown in the following listing.

Listing 29.6 An SQL injection vulnerability in EF Core due to
string concatenation

public IList<User> FindRecipe(string search) ❶
{

 return _context.Recipes ❷
 .FromSqlRaw("SELECT * FROM Recipes" + ❸
 "WHERE Name = '" + search + "'") ❹
 .ToList();

}

❶ The search parameter comes from user input, so it’s unsafe.

❷ The current EF Core DbContext is held in the _context field.
❸ You can write queries by hand using the FromSqlRaw extension method.

❹ This introduces the vulnerability—including unsafe content directly in an SQL string.

In this listing, the user input held in search is included

directly in the SQL query. By crafting malicious input, users

can potentially perform any operation on your database.

Imagine an attacker searches your website using the text

'; DROP TABLE Recipes; --

Your app assigns this to the search parameter, and the SQL

query executed against your database becomes

SELECT * FROM Recipes WHERE Name = ''; DROP TABLE Recipes; --'

Simply by entering text into the search form of your app, the

attacker has deleted the entire Recipes table from your app!

That’s catastrophic, but an SQL injection vulnerability

provides more or less unfettered access to your database.

Even if you’ve set up database permissions correctly to

prevent this sort of destructive action, attackers will likely be

able to read all the data from your database, including your

users’ details.

The simple way to prevent this from happening is to avoid

creating SQL queries by hand this way. If you do need to

write your own SQL queries, don’t use string concatenation,

as in listing 29.6. Instead, use parameterized queries, in

which the (potentially unsafe) input data is separate from

the query itself, as shown here.

Listing 29.7 Avoiding SQL injection by using parameterization

public IList<User> FindRecipe(string search)

{

 return _context.Recipes

 .FromSqlRaw("SELECT * FROM Recipes WHERE Name = '{0}'", ❶
 search) ❷
 .ToList();

}

❶ The SQL query uses a placeholder {0} for the parameter.
❷ The dangerous input is passed as a parameter, separate from the query.

Parameterized queries are not vulnerable to SQL injection

attacks, so the attack presented earlier won’t work. If you

use EF Core or other ORMs to access data using standard

LINQ queries, you won’t be vulnerable to injection attacks.

EF Core automatically creates all SQL queries using

parameterized queries to protect you. Even if you’re using

the low-level ADO.NET database APIs, stick to parameterized

queries!

NOTE I’ve talked about SQL injection attacks only in terms of a
relational database, but this vulnerability can appear in NoSQL and
document databases too. Always use parameterized queries or the
equivalent, and don’t craft queries by concatenating strings with user
input.

Injection attacks have been the number-one vulnerability on

the web for more than a decade, so it’s crucial to be aware

of them and how they arise. Whenever you need to write

raw SQL queries, make sure that you always use

parameterized queries.

The next vulnerability is also related to attackers accessing

data they shouldn’t be able to. It’s a little subtler than a

direct injection attack but is trivial to perform; the only skill

the attacker needs is the ability to count.

29.4.3 Preventing insecure direct object
references

Insecure direct object reference is a bit of a mouthful, but it

means users accessing things they shouldn’t by noticing

patterns in URLs. Let’s revisit our old friend the recipe app.

As a reminder, the app shows you a list of recipes. You can

view any of them, but you can edit only recipes you created

yourself. When you view someone else’s recipe, there’s no

Edit button visible.

A user clicks the Edit button on one of their recipes and

notices that the URL is /Recipes/Edit/120. That 120 is a

dead giveaway as being the underlying database ID of the

entity you’re editing. A simple attack would be to change

that ID to gain access to a different entity, one that you

wouldn’t normally have access to. The user could try

entering /Recipes/Edit/121. If that lets them edit or

view a recipe that they shouldn’t be able to, you have an

insecure direct object reference vulnerability.

The solution to this problem is simple: you should have

resource-based authorization in your endpoint handlers. If a

user attempts to access an entity they’re not allowed to

access, they should get a permission-denied error. They

shouldn’t be able to bypass your authorization by typing a

URL directly into the search bar of their browser.

In ASP.NET Core apps, this vulnerability typically arises when

you attempt to restrict users by hiding elements from your

UI, such as by hiding the Edit button. Instead, you should

use resource-based authorization, as discussed in chapter

24.

WARNING You must always use resource-based authorization to
restrict which entities a user can access. Hiding or disabling UI
elements provides an improved user experience, but it isn’t a security
measure.

You can sidestep this vulnerability somewhat by avoiding

integer IDs for your entities in the URLs, perhaps by using a

pseudorandom globally unique identifier (GUID) such as

C2E296BA-7EA8-4195-9CA7-C323304CCD12 instead.

This makes the process of guessing other entities harder, as

you can’t simply add 1 to an existing number, but it’s

masking the problem rather than fixing it. Nevertheless,

using GUIDs can be useful when you want to have publicly

accessible pages that don’t require authentication but don’t

want their IDs to be easily discoverable.

The final section in this chapter doesn’t deal with a single

vulnerability. Instead, I discuss a separate but related

problem: protecting your users’ data.

29.4.4 Protecting your users’ passwords and
data

For many apps, the most sensitive data you’ll be storing is

the personal data of your users. This could include emails,

passwords, address details, or payment information. You

should be careful when storing any of this data. As well as

presenting an inviting target for attackers, you may have

legal obligations for how you handle it, such as data

protection laws and Payment Card Industry (PCI) compliance

requirements.

The easiest way to protect yourself is to not store data you

don’t need. If you don’t need your user’s address, don’t ask

for it. That way, you can’t lose it! Similarly, if you use a

third-party identity service to store user details, as described

in chapter 23, you won’t have to work as hard to protect

your users’ personal information.

If you store user details in your own app or build your own

identity provider, then you need to make sure to follow best

practices when handling user information. The new project

templates that use ASP.NET Core Identity follow most of

these practices by default, so I highly recommend you start

from one of these. You need to consider many aspects, too

many to go into detail here,
1
 but they include the following:

Never store user passwords anywhere directly. You

should store only cryptographic hashes computed

using an expensive hashing algorithm, such as

BCrypt or PBKDF2.

Don’t store more data than you need. You should

never store credit card details.

Allow users to use multifactor authentication (MFA)

to sign in to your site.

Prevent users from using passwords that are

known to be weak or compromised, such as

disallowing dictionary words, sequential

characters, and so on.

Mark authentication cookies as http (so that they

can’t be read using JavaScript) and secure so

they’ll be sent only over an HTTPS connection,

never over HTTP. Where possible, you should also

mark your cookies as SameSite=strict. See the

documentation for details: http://mng.bz/a11m.

Don’t expose whether a user is already registered

with your app. Leaking this information can expose

you to enumeration attacks.

TIP You can learn more about website enumeration in this video
tutorial by Troy Hunt: http://mng.bz/PAAA.

These guidelines represent the minimum you should be

doing to protect your users. The most important thing is to

be aware of potential security problems as you’re building

your app. Trying to bolt on security at the end is always

harder than thinking about it from the start, so it’s best to

think about it earlier rather than later.

This chapter has been a whistle-stop tour of things to look

out for. We’ve touched on most of the big names in security

vulnerabilities, but I strongly encourage you to check out the

other resources mentioned in this chapter. They provide a

more exhaustive list of things to consider, complementing

the defenses mentioned in this chapter. On top of that, don’t

http://mng.bz/a11m
http://mng.bz/PAAA

forget about input validation and mass

assignment/overposting, as discussed in chapter 16.

ASP.NET Core includes basic protections against some of the

most common attacks, but you can still shoot yourself in the

foot. Make sure it’s not your app making headlines for being

breached!

Summary
XSS attacks involve malicious users injecting

content into your app, typically to run malicious

JavaScript when users browse your app. You can

prevent XSS injection attacks by always encoding

unsafe input before writing it to a page. Razor

Pages do this automatically unless you use the

@Html.Raw() method, so use it sparingly and

carefully.

CSRF attacks are a problem for apps that use

cookie-based authentication, such as ASP.NET Core

Identity. These attacks rely on the fact that

browsers automatically send cookies to a website.

A malicious website could create a form that

POSTs to your site, and the browser will send the

authentication cookie with the request. This allows

malicious websites to send requests as though

they’re the logged-in user.

You can mitigate CSRF attacks using antiforgery

tokens, which involve writing a hidden field in

every form that contains a random string based on

the current user. A similar token is stored in a

cookie. A legitimate request will have both parts,

but a forged request from a malicious website will

have only the cookie half; it cannot re-create the

hidden field in the form. By validating these

tokens, your API can reject forged requests.

The Razor Pages framework automatically adds

antiforgery tokens to any forms you create using

Razor and validates the tokens for inbound

requests. You can disable the validation check if

necessary, using the

[IgnoreAntiForgeryToken] attribute.

Browsers won’t allow websites to make JavaScript

AJAX requests from one app to others at different

origins. To match the origin, the app must have

the same scheme, domain, and port. If you wish to

make cross-origin requests like this, you must

enable CORS in your API.

CORS uses HTTP headers to communicate with

browsers and defines which origins can call your

API. In ASP.NET Core, you can define multiple

policies, which can be applied globally to your

whole app or to specific controllers and actions.

You can add the CORS middleware by calling

UseCors() on WebApplication and optionally

providing the name of the default CORS policy to

apply. You can also apply CORS to endpoints by

calling RequireCors() or adding the

[EnableCors] attribute and providing the name

of the policy to apply.

Configure the policies for your application by

calling AddCors() on WebApplicationBuilder and

adding policies in the lambda using

AddPolicy(). A policy defines which origins are

allowed to call an endpoint, which HTTP methods

they can use, and which headers are allowed.

Open redirect attacks use the common

returnURL mechanism after logging in to redirect

users to malicious websites. You can prevent this

attack by ensuring that you redirect only to local

URLs—URLs that belong to your app.

Insecure direct object references are a common

problem where you expose the ID of database

entities in the URL. You should always verify that

users have permission to access or change the

requested resource by using resource-based

authorization in your action methods.

SQL injection attacks are a common attack vector

when you build SQL requests manually. Always use

parameterized queries when building requests or

use a framework like EF Core, which isn’t

vulnerable to SQL injection.

The most sensitive data in your app is often the

data of your users. Mitigate this risk by storing

only data that you need. Ensure that you store

passwords only as a hash, protect against weak or

compromised passwords, and provide the option

for MFA. ASP.NET Core Identity provides all of this

out of the box, so it’s a great choice if you need to

create an identity provider.

1. In 2020 the National Institute of Standards and Technology (NIST) updated its Digital
Identity Guidelines on handling user details, which contains some great advice. See
http://mng.bz/6gRA.

http://mng.bz/6gRA

Part 5 Going further with ASP.NET
Core
Parts 1 through 4 of this book touched on all the aspects of

ASP.NET Core you need to learn to build an HTTP

application, whether that’s server-rendered applications

using Razor Pages or JavaScript Object Notation (JSON)

APIs using minimal APIs. In part 5 we look at four topics

that build on what you’ve learned so far: customizing

ASP.NET Core to your needs, interacting with third-party

HTTP APIs, background services, and testing.

In chapter 30 we start by looking at an alternative way to

bootstrap your ASP.NET Core applications, using the generic

host instead of the WebApplication approach you’ve

seen so far in the book. The generic host was the standard

way to bootstrap apps before .NET 6 (and is the approach

you’ll find in previous editions of this book), so it’s useful to

recognize the pattern, but it also comes in handy for

building non-HTTP applications, as you’ll see in chapter 34.

In part 1 you learned about the middleware pipeline, and

you saw how it is fundamental to all ASP.NET Core

applications. In chapter 31 you’ll learn how to take full

advantage of the pipeline, creating branching middleware

pipelines, custom middleware, and simple middleware-

based endpoints. You’ll also learn how to handle some

complex chicken-and-egg configuration issues that often

arise in real-life applications. Finally, you’ll learn how to

replace the built-in dependency injection container with a

third-party alternative.

In chapter 32 you’ll learn how to create custom components

for working with Razor Pages and API controllers. You’ll

learn how to create custom Tag Helpers and validation

attributes, and I’ll introduce a new component—view

components—for encapsulating logic with Razor view

rendering. You’ll also learn how to replace the attribute-

based validation framework used by default in ASP.NET Core

with an alternative.

Most apps you build aren’t designed to stand on their own.

It’s common for your app to need to interact with APIs,

whether those are APIs for sending emails, taking

payments, or interacting with your own internal

applications. In chapter 33 you’ll learn how to call these

APIs using the IHttpClientFactory abstraction to

simplify configuration, add transient fault handling, and

avoid common pitfalls.

This book deals primarily with serving HTTP traffic, both

server-rendered web pages using Razor Pages and web APIs

commonly used by mobile and single-page applications.

However, many apps require long-running background tasks

that execute jobs on a schedule or that process items from

a queue. In chapter 34 I’ll show how you can create these

long-running background tasks in your ASP.NET Core

applications. I’ll also show how to create standalone

services that have only background tasks, without any HTTP

handling, and how to install them as a Windows Service or

as a Linux systemd daemon.

Chapters 35 and 36, the final chapters, cover testing your

application. The exact role of testing in application

development can lead to philosophical arguments, but in

these chapters I stick to the practicalities of testing your

app with the xUnit test framework. You’ll see how to create

unit tests for your apps, test code that’s dependent on EF

Core using an in-memory database provider, and write

integration tests that can test multiple aspects of your

application at the same time.

In the fast-paced world of web development there’s always

more to learn, but by the end of part 5 you should have

everything you need to build applications with ASP.NET

Core, whether they be server-rendered page-based

applications, APIs, or background services.

In the appendices for this book, I provide some background

and resources about .NET. Appendix A describes how to

prepare your development environment by installing .NET 7

and an IDE or editor. In appendix B you’ll find a list of

resources I use to learn more about ASP.NET Core and to

stay up to date with the latest features.

30 Building ASP.NET Core apps with
the generic host and Startup

This chapter covers

Using the generic host and a Startup class to bootstrap your
ASP.NET Core app
Understanding how the generic host differs from WebApplication
Building a custom generic IHostBuilder
Choosing between the generic host and minimal hosting

Some of the biggest changes introduced in ASP.NET Core in

.NET 6 were the minimal hosting APIs, namely the

WebApplication and WebApplicationBuilder types

you’ve seen throughout this book. These were introduced to

dramatically reduce the amount of code needed to get

started with ASP.NET Core and are now the default way to

build ASP.NET Core apps.

Before .NET 6, ASP.NET Core used a different approach to

bootstrap your app: the generic host, IHost,

IHostBuilder, and a Startup class. Even though this

approach is not the default in .NET 7, it’s still valid, so it’s

important that you’re aware of it, even if you don’t need to

use it yourself. In this chapter I introduce the generic host

and show how it relates to the minimal hosting APIs you’re

already familiar with. In chapter 34 you’ll learn how to use

the generic host approach to build nonweb apps too.

I start by introducing the two main concepts: the generic

host components (IHostBuilder and IHost) and the

Startup class. These split your app bootstrapping code

between two files, Program.cs and Startup.cs, handling

different aspects of your app’s configuration. You’ll learn why

this split was introduced, where each component is

configured, and how it compares with minimal hosting using

WebApplication.

In section 30.4 you’ll learn how the helper function

Host.CreateDefaultBuilder() works and use this

knowledge to customize the IHostBuilder instance. This

can give you greater control than minimal hosting, which

may be useful in some situations.

In section 30.5 we take a step back and look at some of the

drawbacks in the generic host bootstrapping code we’ve

explored, particularly its apparent complexity compared to

minimal hosting with WebApplication.

Finally, in section 30.6 I discuss some of the reasons you

might nevertheless choose to use the generic host instead of

minimal hosting in your .NET 7 app. In most cases I suggest

using minimal hosting with WebApplication, but there are

valid cases in which the generic host makes sense.

30.1 Separating concerns between two
files

As you’ve seen throughout this book, the standard way to

create an ASP.NET Core application in .NET 7 is with the

WebApplicationBuilder and WebApplication classes

inside Program.cs, using top-level statements. Before .NET

6, however, ASP.NET Core used a different approach, which

you can still use in .NET 7 if you wish.

This approach typically uses a traditional static void

Main() entry point (although top-level statements are

supported) and splits its bootstrapping code across two files,

as shown in figure 30.1:

Program.cs—This contains the entry point for the

application, which bootstraps a host object. This is

where you configure the infrastructure of your

application, such as Kestrel, integration with

Internet Information Services (IIS), and

configuration sources.

Startup.cs—The Startup class is where you

configure your dependency injection (DI)

container, your middleware pipeline, and your

application’s endpoints.

Figure 30.1 The different responsibilities of the Program and
Startup classes in an ASP.NET Core app that uses the generic
host instead of WebApplication

We’ll look at each of these files in turn in section 30.2 and

30.3 to see how they might look for a typical Razor Pages

app. I discuss the generic host at the center of this setup

and compare the approach with the newer

WebApplication APIs you’ve used so far throughout the

book.

30.2 The Program class: Building a
Web Host

All ASP.NET Core apps are fundamentally console

applications. With the Startup-based hosting model, the

Main entry point builds and runs an IHost instance, as

shown in the following listing, which shows a typical

Program.cs file. The IHost is the core of your ASP.NET Core

application: it contains the HTTP server (Kestrel) for

handling requests, along with all the necessary services and

configuration to generate responses.

Listing 30.1 The Program.cs file configures and runs an IHost

public class Program

{

 public static void Main(string[] args)

 {

 CreateHostBuilder(args) ❶
 .Build() ❷
 .Run(); ❸
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args) ❹
 .ConfigureWebHostDefaults(webBuilder => ❺
 {

 webBuilder.UseStartup<Startup>(); ❻
 });

}

❶ Creates an IHostBuilder using the CreateHostBuilder method
❷ Builds and returns an instance of IHost from the IHostBuilder

❸ Runs the IHost and starts listening for requests and generating responses
❹ Creates an IHostBuilder using the default configuration

❺ Configures the application to use Kestrel and listen to HTTP requests

❻ The Startup class defines most of your application’s configuration.

The Main function contains all the basic initialization code

required to create a web server and to start listening for

requests. It uses an IHostBuilder, created by the call to

CreateDefaultBuilder, to define how the generic

IHost is configured, before instantiating the IHost with a

call to Build().

TIP The IHost object represents your built application. The
WebApplication type you’ve used throughout the book also
implements IHost.

Much of your app’s configuration takes place in the

IHostBuilder created by the call to

CreateDefaultBuilder, but it delegates some

responsibility to a separate class, Startup. The Startup

class referenced in the generic UseStartup<> method is

where you configure your app’s services and define your

middleware pipeline.

NOTE The code to build the IHostBuilder is extracted to a
helper method called CreateHostBuilder. The name of this
method is historically important, as it was used implicitly by tooling
such as the Entity Framework Core (EF Core) tools, as I discuss in
section 30.5.

You may be wondering why you need two classes for

configuration: Program and Startup. Why not include all

your app’s configuration in one class or the other? The idea

is to separate code that changes often from code that rarely

changes.

The Program class for two different ASP.NET Core

applications typically look similar, but the Startup classes

often differ significantly (though they all follow the same

basic pattern, as you’ll see in section 30.3). You’ll rarely find

that you need to modify Program as your application grows,

whereas you’ll normally update Startup whenever you add

additional features. For example, if you add a new NuGet

dependency to your project, you’ll normally need to update

Startup to make use of it.

The Program class is where a lot of app configuration takes

place, but this is mostly hidden inside the

Host.CreateDefaultBuilder method.

CreateDefaultBuilder is a static helper method that

simplifies the bootstrapping of your app by creating an

IHostBuilder with some common configuration. This is

similar to the way you’ve used

WebApplication.CreateDefaultBuilder()

throughout the book.

NOTE You can create custom HostBuilder instances if you want
to customize the default setup and create a completely custom
IHost instance, as you’ll see in section 30.4. This is different from
WebApplicationBuilder, which always uses the same
defaults.

The other helper method used by default is

ConfigureWebHostDefaults. This uses a

WebHostBuilder object to configure Kestrel to listen for

HTTP requests.

Creating services with the generic host

It might seem strange that you must call ConfigureWebHostDefaults as well as
CreateDefaultBuilder. Couldn’t we have one method? Isn’t handling HTTP
requests the whole point of ASP.NET Core?

Well, yes and no! ASP.NET Core 3.0 introduced the concept of a generic host. This
allows you to use much of the same framework as ASP.NET Core applications to write
non-HTTP applications. These apps can run as console apps or can be installed as
Windows services (or as systemd daemons in Linux) to run background tasks or read
from message queues, for example.

Kestrel and the web framework of ASP.NET Core build on top of the generic host
functionality introduced in ASP.NET Core 3.0. To configure a typical ASP.NET Core
app, you configure the generic host features that are common across all apps—
features such as configuration, logging, and dependency services. For web
applications, you then also configure the services, such as Kestrel, that are necessary
to handle web requests. In chapter 34 you’ll see how to build applications using the
generic host to run scheduled tasks and build background services.

Even in .NET 7, WebApplication and WebApplicationBuilder use the
generic host behind the scenes. You can read more about the evolution of ASP.NET
Core’s bootstrapping code and the relationship between IHost and WebApplication on
my blog at http://mng.bz/gBBv.

Once the configuration of the IHostBuilder is complete,

the call to Build produces the IHost instance, but the

application still isn’t handling HTTP requests yet. It’s the call

to Run() that starts the HTTP server listening. At this point,

http://mng.bz/gBBv

your application is fully operational and can respond to its

first request from a remote browser.

30.3 The Startup class: Configuring
your application

As you’ve seen, Program is responsible for configuring a lot

of the infrastructure for your app, but you configure some of

your app’s behavior in Startup. The Startup class is

responsible for configuring two main aspects of your

application:

DI container service registration

Middleware configuration and mapping of

endpoints

You configure each of these aspects in its own method in

Startup: service registration in ConfigureServices and

middleware/endpoint configuration in Configure. A typical

outline of Startup is shown in the following listing.

Listing 30.2 An outline of Startup.cs showing how each aspect is
configured

public class Startup

{

 public void ConfigureServices(IServiceCollection services) ❶
 {

 // method details

 }

 public void Configure(IApplicationBuilder app) ❷
 {

 // method details

 }

}

❶ Configures services by registering them with the IServiceCollection
❷ Configures the middleware pipeline for handling HTTP requests

The IHostBuilder created in Program automatically calls

ConfigureServices and then Configure, as shown in

figure 30.2. Each call configures a different part of your

application, making it available for subsequent method calls.

Any services registered in the ConfigureServices

method are available to the Configure method. Once

configuration is complete, you create an IHost by calling

Build() on the IHostBuilder.

Figure 30.2 The IHostBuilder is created in Program.cs and calls
methods on Startup to configure the application’s services and
middleware pipeline. Once configuration is complete, the IHost
is created by calling Build() on the IHostBuilder.

An interesting point about the Startup class is that it

doesn’t implement an interface as such. Instead, the

methods are invoked by using reflection to find methods

with the predefined names of Configure and

ConfigureServices. This makes the class more flexible

and enables you to modify the signature of the Configure

method to inject any services you registered in

ConfigureServices using DI.

TIP If you’re not a fan of the flexible reflection approach, you can
implement the IStartup interface or derive from the
StartupBase class, which provide the method signatures shown
previously in listing 30.2. If you take this approach, you won’t be able
to use DI to inject services into the Configure() method.

ConfigureServices is where you add all your required

and custom services to the DI container, exactly as you do

with WebApplicationBuilder.Services in a typical

.NET 7 ASP.NET Core app. The following listing shows how

you might configure all the services for the Razor Pages

recipe app you’ve seen throughout this book. This listing

also shows how you can access the IConfiguration for

your app: by injecting into the Startup constructor. You’ll

see how to customize your app’s configuration in section

30.4.

Listing 30.3 Registering services with DI in ConfigureServices

public class Startup

{

 public IConfiguration Configuration { get; } ❶

 public Startup(IConfiguration configuration) ❶
 {

 Configuration = configuration;

 }

 public void ConfigureServices(IServiceCollection services) ❷
 {

 var conn = Configuration.GetConnectionString("DefaultConnection");

 services.AddDbContext<AppDbContext>(options => ❸
 options.UseSqlite(conn)); ❸
 services.AddDefaultIdentity<ApplicationUser>(options => ❸
 options.SignIn.RequireConfirmedAccount = true) ❸
 .AddEntityFrameworkStores<AppDbContext>(); ❸

 services.AddScoped<RecipeService>(); ❹
 services.AddRazorPages(); ❺

 services.AddScoped<IAuthorizationHandler, IsRecipeOwnerHandler>();

 services.AddAuthorizationBuilder()

 .AddPolicy("CanManageRecipe",

 p => p.AddRequirements(new IsRecipeOwnerRequirement()));

 }

 public void Configure(IApplicationBuilder app) => { /* Not shown */ }

}

❶ The IConfiguration for the app is injected into the constructor.
❷ You must register your services against the provided IServiceCollection.

❸ Registers all the EF Core and ASP.NET Core Identity services
❹ Registers the custom service implementations

❺ Registers the framework services

After configuring all your services, you need to set up your

middleware pipeline and map your endpoints. The process is

similar to configuring your middleware pipeline using

WebApplication:

You add middleware to the pipeline by calling

Use* extension methods on an

IApplicationBuilder instance.

The order in which you add the middleware to the

pipeline is important and defines the final pipeline

order.

You can add middleware conditionally based on the

environment.

However, there are some important differences between the

WebApplication approach you’ve seen so far and the

Startup approach:

The IWebHostEnvironment for your app is

exposed directly on WebApplication

.Environment. To access this information inside

Startup, you must inject it into the constructor

or the Configure method using DI.

As you saw in chapter 4, WebApplication

automatically adds a lot of middleware to your

pipeline, such as routing middleware, endpoint

middleware, and the authentication middleware.

You must add this middleware manually when

using the Startup approach.

WebApplication implements both

IApplicationBuilder and

IEndpointRouteBuilder, so you can add

endpoints directly to WebApplication, by calling

MapGet() or MapRazorPages(), for example.

When using the Startup approach, you must call

UseEndpoints() and map all your endpoints in a

lambda method instead.

The Configure method is not async, so it’s

cumbersome to do async tasks. By contrast, when

using WebApplication, you’re free to use

async methods between any of your general

bootstrapping code.

Despite these caveats, in many cases your

Startup.Configure method will look almost identical to

the way you configure the pipeline on WebApplication.

The following listing shows how the Configure() method

for the Razor Pages recipe app might look.

Listing 30.4 Startup.Configure() for a Razor Pages application

public class Startup

{

 public void Configure(

 IApplicationBuilder app, ❶
 IWebHostEnvironment env) ❷
 {

 if (env.IsDevelopment()) ❸
 {

 app.UseDeveloperExceptionPage(); ❹
 }

 else

 {

 app.UseExceptionHandler("/Error");

 app.UseHsts();

 }

 app.UseHttpsRedirection();

 app.UseStaticFiles();

 app.UseRouting(); ❺

 app.UseAuthentication();

 app.UseAuthorization(); ❻

 app.UseEndpoints(endpoints => ❼
 {

 endpoints.MapRazorPages(); ❽
 });

 }

}

❶ IApplicationBuilder is used to build the middleware pipeline.

❷ Other services can be accepted as parameters.
❸ Different behavior when in development or production

❹ WebApplication adds this automatically. You must explicitly add it when using Startup.
❺ Similarly, you must explicitly call UseRouting.

❻ Must always be placed between the call to UseRouting and UseEndpoints
❼ Adds the endpoint middleware, which executes the endpoints

❽ Maps the Razor Pages endpoints

In this example, the IWebHostEnvironment object is

injected into the Configure() method using DI so that you

can configure the middleware pipeline differently in

development and production. In this case, we add the

DeveloperExceptionPageMiddleware to the pipeline

when we’re running in development.

NOTE Remember that WebApplication adds this middleware
automatically, but with Startup you must add it manually. The

same goes for all the other automatically added middleware.

After adding all the middleware to the pipeline, you come to

the UseEndpoints() call, which adds the

EndpointMiddleware to the pipeline. When you use

WebApplication, you rarely need to call this, as

WebApplication automatically adds it at the end of the

pipeline, but when you use Startup, you should add it at

the end of your pipeline.

Note as well that the call to UseEndpoints() is where you

define all the endpoints in your application. Whether they’re

Razor Pages, Model-View-Controller (MVC) controllers, or

minimal APIs, you must register them in the

UseEndpoints() lambda.

NOTE Endpoints must be registered inside the call to
UseEndpoints() using the IEndpointRouteBuilder
instance from the lambda method.

Other than the noted differences, moving your service,

middleware, and endpoint configuration between a

Startup-based approach and WebApplication should be

relatively simple, which may lead you to wonder whether

there’s any good reason to choose the Startup approach

over WebApplication. As always, the answer is “It

depends,” but one possible reason is so that you can

customize your IHostBuilder.

30.4 Creating a custom IHostBuilder
As you saw in section 30.2, the default way to work with a

Startup class in ASP.NET Core is to use the

Host.CreateDefaultBuilder() method. This

opinionated helper method sets up many defaults for your

app. It is analogous to the WebApplication

.CreateBuilder() method in that way.

However, you don’t have to use the

CreateDefaultBuilder method to create an

IHostBuilder instance: you can directly create a

HostBuilder instance and customize it from scratch if you

prefer. Before you start doing that, though, it’s worth seeing

some of the things the CreateDefaultBuilder method

gives you and what they’re used for. You may then consider

customizing the default HostBuilder instance instead of

creating a completely bespoke instance.

NOTE You can use Host.CreateDefaultBuilder() in .NET
7 even if you’re not using ASP.NET Core by installing the
Microsoft.Extensions.Hosting package. You’ll learn how to create
non-HTTP applications using the generic host in chapter 34.

The defaults chosen by CreateDefaultBuilder are ideal

when you’re initially setting up an app, but as your

application grows, you may find you need to break it apart

and tinker with some of the internals. The following listing

shows a rough overview of the CreateDefaultBuilder

method, so you can see how the HostBuilder is

constructed. It’s not exhaustive or complete, but it should

give you an idea of the amount of work the

CreateDefaultBuilder method does for you!

Listing 30.5 The Host.CreateDefaultBuilder method

public static IHostBuilder CreateDefaultBuilder(string[] args)

{

 var builder = new HostBuilder() ❶
 .UseContentRoot(Directory.GetCurrentDirectory()) ❷
 .ConfigureHostConfiguration(IConfigurationBuilder config => ❸
 { ❸
 config.AddEnvironmentVariables("DOTNET_"); ❸
 config.AddCommandLine(args); ❸
 }) ❸
 .ConfigureAppConfiguration((hostingContext, config) => ❹
 { ❹
 IHostEnvironment env = hostingContext.HostingEnvironment; ❹
 config ❹
 .AddJsonFile("appsettings.json") ❹
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json"); ❹

 if (env.IsDevelopment()) ❹
 { ❹
 config.AddUserSecrets(); ❹
 } ❹

 config ❹
 .AddEnvironmentVariables() ❹
 .AddCommandLine(); ❹
 }) ❹
 .ConfigureLogging((hostingContext, logging) => ❺
 { ❺
 logging.AddConfiguration(❺
 hostingContext.Configuration.GetSection("Logging")); ❺
 logging.AddConsole(); ❺
 logging.AddDebug(); ❺
 logging.AddEventSourceLogger(); ❺

 logging.AddEventLog(); ❺
 }) ❺
 .UseDefaultServiceProvider((context, options) => ❻
 { ❻
 var isDevelopment = context.HostingEnvironment ❻
 .IsDevelopment(); ❻
 options.ValidateScopes = isDevelopment; ❻
 options.ValidateOnBuild = isDevelopment; ❻
 }); ❻

 return builder; ❼
}

❶ Creates an instance of HostBuilder
❷ The content root defines the directory where configuration files can be found.

❸ Configures hosting settings such as determining the hosting environment
❹ Configures application settings

❺ Sets up the logging infrastructure
❻ Configures the DI container, optionally enabling verification settings

❼ Returns HostBuilder for further configuration by calling extra methods before calling
Build()

The first method called on HostBuilder is

UseContentRoot(). This tells the application in which

directory it can find any configuration or Razor files it needs

later. This is typically the folder in which the application is

running, hence the call to GetCurrentDirectory.

TIP Remember that ContentRoot is not where you store static
files that the browser can access directly. That’s the WebRoot,
typically wwwroot.

The ConfigureHostingConfiguration() method is

where your application determines which

HostingEnvironment it’s currently running in. The

framework looks for environment variables that start with

"DOTNET_" (such as the DOTNET_ENVIRONMENT variable

you learned about in chapter 10) and command-line

arguments to determine whether it’s running in a

development or production environment. This is used to

populate the IWebHostEnvironment object that’s used

throughout your app.

The ConfigureAppConfiguration() method is where

you configure the main IConfiguration object for your

app, populating it from appsettings.json files, environment

variables, and User Secrets, for example. The default builder

populates the configuration using all the sources shown in

listing 30.5, which is similar to the configuration

WebApplicationBuilder uses.

TIP There are some important differences in how the
IConfiguration object is built using the default builder and the
approach used by WebApplicationBuilder. You can read
about these differences on my blog at http://mng.bz/e11V.

Next up after app configuration comes

ConfigureLogging(). ConfigureLogging is where you

specify the logging settings and providers for your

application, which you learned about in chapter 26. In

addition to setting up the default ILoggerProviders, this

method sets up log filtering, using the IConfiguration

prepared in ConfigureAppConfiguration().

http://mng.bz/e11V

The last method call shown in listing 30.5,

UseDefaultServiceProvider, configures your app to

use the built-in DI container. It also sets the

ValidateScopes and ValidateOnBuild options based

on the current HostingEnvironment. This ensures that

when running the application in the development

environment, the container automatically checks for

captured dependencies, which you learned about in chapter

9.

As you can see, CreateDefaultBuilder does a lot for

you. In many cases, these defaults are exactly what you

need, but if they’re not, the default builder is optional. You

could call new HostBuilder() and start customizing it

from there, but you’d need to set up everything that

CreateHostBuilder does: logging, hosting configuration,

and service provider configuration, as well as your app

configuration.

An alternative approach is to layer additional configuration

on top of the existing defaults. In the following listing, I

show how to add a Seq logging provider to the configured

providers using ConfigureLogging(), as well as how to

reconfigure the app configuration to load only from the

appsettings.json provider by clearing the default providers.

Listing 30.6 Customizing the default HostBuilder

public class Program

{

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureLogging(logBuilder => logBuilder.AddSeq()) ❶
 .ConfigureAppConfiguration((hostContext, config) => ❷
 {

 config.Sources.Clear(); ❸
 config.AddJsonFile("appsettings.json"); ❹

 }

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 });

}

❶ Adds the Seq logging provider to the configuration
❷ HostBuilder provides a hosting context and an instance of ConfigurationBuilder.

❸ Clears the providers configured by default in CreateDefaultBuilder
❹ Adds a JSON configuration provider, providing the filename of the configuration file

A new HostBuilder is created in

CreateDefaultBuilder() and executes all the

configuration methods you saw in listing 30.5. Next, the

HostBuilder invokes the extra ConfigureLogging()

and ConfigureAppConfiguration() methods added in

listing 30.6. You can call any of the other configuration

methods on HostBuilder to further customize the instance

before calling Build().

NOTE Each call to a Configure*() method on HostBuilder
adds an extra configuration function to the setup code; these calls
don’t replace existing Configure*() calls. The configuration
methods are executed in the same order in which they’re added to

the HostBuilder, so they execute after the
CreateDefaultBuilder() configuration methods.

One of the criticisms of early ASP.NET Core apps was that

they were quite complex to understand when you’re getting

started, and after working your way through this chapter,

you might well be able to see why! In the next section we

compare the generic host and Startup approach with the

newer minimal hosting WebApplication approach and

discuss when you might want to use one over the other.

30.5 Understanding the complexity of
the generic host

Before .NET 6, all ASP.NET Core apps used the generic host

and Startup approach. Many people liked the consistent

structure this added, but it also has some drawbacks and

complexity:

Configuration is split between two files.

The separation between Program.cs and Startup

is somewhat arbitrary.

The generic IHostBuilder exposes newcomers

to legacy decisions.

The lambda-based configuration can be hard to

follow and reason about.

The pattern-based conventions of Startup may

be hard to discover.

Tooling historically relies on your defining a

CreateHostBuilder method in Program.cs.

I’ll address each of these problems in turn and afterward

discuss how WebApplication attempted to improve the

situation.

Points 1 and 2 in the preceding list deal with the separation

between Program.cs and Startup. As you saw in section

30.1, theoretically the intention is that Program.cs defines

the host and rarely changes, whereas Startup defines the

app features (services, middleware, and endpoints). This

seems like a reasonable decision, but one inevitable

downside is that you need to flick back and forth between at

least two files to understand all your bootstrapping code.

On top of that, you don’t necessarily need to stick to these

conventions. You can register services in Program.cs by

calling HostBuilder.ConfigureServices(), for

example, or register middleware using

WebHostBuilder.Configure(). This is relatively rare

but not entirely unheard-of, further blurring the lines

between the files.

Point 3 relates to the fact that you must call

ConfigureWebHostDefaults() (which uses an

IWebHostBuilder) to set up Kestrel and register your

Startup class. This level of indirection (and the

introduction of another builder type) is a remnant of

decisions harking back to ASP.NET Core 1.0. For people

familiar with ASP.NET Core, this pattern is just one of those

things, but it adds confusion when you’re new to it.

NOTE For a walk-through of the evolution of ASP.NET Core
bootstrapping code, see my blog post at http://mng.bz/pPPK.

Similarly, the lambda-based configuration mentioned in point

4 can be hard for newcomers to ASP.NET Core to follow. If

you’re new to .NET, lambdas are an extra concept you’ll

need to understand before you can understand the basics of

the code. On top of that, the execution of the lambdas

doesn’t necessarily happen sequentially; the HostBuilder

essentially queues the lambda methods so they’re executed

at the right time. Consider the following snippet:

public static IhostBuilder CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureLogging(logging => logging.AddSeq())

 .ConfigureAppConfiguration(config => {})

 .ConfigureServices(s => {})

 .ConfigureHostConfiguration(config => {})

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 });

The lambdas execute in the following order:

1. ConfigureWebHostDefaults()

2. ConfigureHostConfiguration()

3. ConfigureAppConfiguration()

4. ConfigureLogging()

http://mng.bz/pPPK

5. ConfigureServices()

6. Startup.ConfigureServices()

7. Startup.Configure()

For the most part, this ordering detail shouldn’t matter, but

it still adds apparent complexity for those who are new to

ASP.NET Core.

Point 5 in the list of challenges relates to the Startup class

and the default convention/ pattern-based approach. Users

coming to ASP.NET Core for the first time will likely be

familiar with interfaces and base classes, but they may not

have experienced the reflection-based approach.

Using conventions instead of an explicit interface adds

flexibility but can make things harder for discoverability.

There are also various caveats and edge cases to consider.

For example, you can inject only IWebHostEnvironment

and IConfiguration into the Startup constructor; you

can’t inject anything into the ConfigureServices()

method, but you can inject any registered service into

Configure(). These are implied rules that you discover

primarily by breaking them and then having your app shout

at you!

TIP The pattern-based approach allows for a lot more than DI into
Configure. You can also create environment-specific methods,
such as Configure-DevelopmentServices or
ConfigureProductionServices, and ASP.NET Core
invokes the correct method based on the environment. You can even

create a whole StartupProduction class if you wish! For more
details on these Startup conventions, see the documentation at
http://mng.bz/Oxxw.

The Startup class isn’t the only place where ASP.NET Core

relies on opaque conventions. You may remember in section

30.2 I mentioned that Program.cs deliberately extracts the

building of the IHostBuilder to a method called

CreateHostBuilder. The name of this method was

historically important. Tooling such as the EF Core tools

hooked into it so that they could load your application

configuration and services when running migrations and

other functionality. In earlier versions of ASP.NET Core,

renaming this method would break all your tooling!

NOTE As of .NET 6, you don’t have to create a
CreateHostBuilder method; you can create your whole app
inside your Main function (or using top-level statements), and the EF
Core tools will work without error. This was fixed partly to add support
for WebApplication. If you’re interested in the mechanics of how
it was fixed, see my blog at http://mng.bz/Y11z.

Once you’re experienced with ASP.NET Core, most of these

gripes become relatively minor. You quickly get used to the

standard patterns and avoid the pitfalls. But for new users of

ASP.NET Core, Microsoft wanted a smoother experience,

closer to the experience you get in many other languages.

The minimal hosting APIs provided by

WebApplicationBuilder and WebApplication largely

address these concerns. Configuration happens all in one file

http://mng.bz/Oxxw
http://mng.bz/Y11z

using an imperative style, with far fewer lambda-based

configuration methods or implicit convention-based setup.

All the relevant objects like configuration and environment

are exposed as properties on the

WebApplicationBuilder or WebApplication types, so

they’re easy to discover.

WebApplicationBuilder and WebApplication also try

to hide much of the complexity and legacy decisions from

you. Under the hood, WebApplication uses the generic

host, but you don’t need to know that to use it or be

productive. As you’ve seen throughout the book,

WebApplication automatically adds various middleware to

your pipeline, helping you avoid common pitfalls, such as

incorrect middleware ordering.

NOTE If you’re interested in how WebApplicationBuilder
abstracts over the generic host, see my post at http://mng.bz/GyyD.

In most cases, minimal hosting provides an easier

bootstrapping experience to the generic host and Startup,

and Microsoft considers it to be the modern way to create

ASP.NET Core apps. But there are cases in which you might

want to consider using the generic host instead.

http://mng.bz/GyyD

30.6 Choosing between the generic
host and minimal hosting

The introduction of WebApplication and

WebApplicationBuilder in .NET 6, also known as

minimal hosting, was intended to provide a dramatically

simpler “getting started” experience for newcomers to .NET

and ASP.NET Core. All the built-in ASP.NET Core templates

use minimal hosting now, and in most cases there’s little

reason to look back. In this section I discuss some of the

cases in which you might still want to use the generic host

approach.

In three main cases, you’ll likely want to stick with the

generic host instead of using minimal hosting with

WebApplication:

When you already have an ASP.NET Core

application that uses the generic host

When you need (or want) fine control of building

the IHost object

When you’re creating a non-HTTP application

The first use case is relatively obvious: if you already have

an ASP.NET Core app that uses the generic host and

Startup, you don’t need to change it. You can still upgrade

your app to .NET 7, and you shouldn’t need to change any of

your startup code. The generic host and Startup are fully

supported in .NET 7, but they’re not the default experience.

TIP In many cases, upgrading an existing project to .NET 7 simply
requires updating the framework in the .csproj file and updating some
NuGet packages. If you’re unlucky, you may find that some APIs have
changed. Microsoft publishes upgrade guides for each major version
release, so it’s worth reading these before upgrading your apps:
http://mng.bz/zXX1.

If you’re creating a new app, but for some reason you don’t

like the default options used by WebApplicationBuilder,

using the generic host may be your best option. I generally

wouldn’t advise this approach, as it will likely require more

maintenance than using WebApplication, but it does give

you complete control of your bootstrap code if you need or

want it.

The final case applies when you’re building an ASP.NET Core

application that primarily runs background processing

services, handling messages from a queue for example, but

doesn’t handle HTTP requests. The minimal hosting

WebApplication and WebApplicationBuilder are, as

their names imply, focused on building web applications, so

they don’t make sense in this situation.

NOTE You’ll learn how to create background tasks and services using
the generic host in chapter 34. .NET 8 introduces a non-HTTP
version of the WebApplicationBuilder called
HostApplicationBuilder which aims to simplify app
bootstrapping for your background services.

If you’re not in any of these situations, strongly consider

using the minimal hosting WebApplication approach and

http://mng.bz/zXX1

the imperative, scriptlike bootstrapping of top-level

statements.

NOTE The fact that you’re using WebApplication doesn’t mean
you have to dump all your service and middleware configuration into
Program.cs. For alternative approaches, such as using a Startup
class you invoke manually or local functions to separate your
configuration, see my blog post at http://mng.bz/0KKJ.

In this chapter I provided a relatively quick overview of the

generic host and Startup-based approach. If you’re thinking

of moving from the generic host to minimal hosting, or if

you’re familiar with minimal hosting but need to work with

the generic host, you may find yourself looking around for

an equivalent feature in the other hosting model. The

documentation for migrating from .NET 5 to .NET 6 provides

a good description of the differences between the two

models, and how each individual feature has changed. You

can find it at http://mng.bz/KeeX.

TIP Alternatively, David Fowler from the .NET team has a similar
cheat sheet describing the migration. See http://mng.bz/9DDj.

Whether you choose to use the generic host or minimal

hosting, all the same ASP.NET Core concepts are there:

configuration, middleware, and DI. In the next chapter you’ll

learn about some more advanced uses of each of these

concepts, such as creating branching middleware pipelines

and custom DI containers.

http://mng.bz/0KKJ
http://mng.bz/KeeX
http://mng.bz/9DDj

Summary
Before .NET 6, ASP.NET Core apps split

configuration between two files: Program.cs and

Startup.cs. Program.cs contains the entry point for

the app and is used to configure and build a

IHost object. Startup is where you configure

the DI container, middleware pipeline, and

endpoints for your app.

The Program class typically contains a method

called CreateHostBuilder(), which creates an

IHostBuilder instance. The Main entry point

invokes CreateHostBuilder(), calls

IHostBuilder.Build() to create an instance of

IHost, and finally runs the app by calling

IHost.Run().

You can create an IHostBuilder by calling

Host.CreateDefaultBuilder(). This creates

a HostBuilder instance using the default

configuration, similar to the configuration used

when calling

WebApplication.CreateBuilder(). The

default HostBuilder uses default logging and

configuration providers, configures the hosting

environment based on environment variables and

command-line arguments, and configures the DI

container settings.

ASP.NET Core apps using the generic host typically

call ConfigureWebHostDefaults(), on the

HostBuilder, providing a lambda that calls

UseStartup<Startup>() on an

IWebHostBuilder instance. This tells the

HostBuilder to configure the DI container and

middleware pipeline based on the Startup class.

Use the Startup class to register services with

DI, configure your middleware pipeline, and

register your endpoints. It is a conventional class,

in that it doesn’t have to implement an interface or

base class. Instead, the IHostBuilder looks for

specific named methods to invoke using reflection.

Register your DI services in the

ConfigureServices(IServiceCollection)

method of Startup. You register services using

the same Add* methods you use to register

services on

WebApplicationBuilder.Services when

using minimal hosting.

If you need to access your app’s

IConfiguration or IWebHostEnvironment

(exposed as Configuration and Environment,

respectively, on WebApplicationBuilder), you

can inject them into your Startup constructor.

You can’t inject any other services into the

Startup constructor.

Register your middleware pipeline in

Startup.Configure(IApplicationBuilder)

. Use the same Use* methods you use with

WebApplication to add middleware to the

pipeline. As for WebApplication, the order in

which you add the middleware defines their order

in the pipeline.

WebApplication automatically adds middleware

such as the routing middleware and endpoint

middleware to the pipeline when you’re using

minimal hosting. When using Startup, you must

explicitly add this middleware yourself.

To register endpoints, call

UseEndpoints(endpoints => {}) and call

the appropriate Map* functions on the provided

IEndpointRouteBuilder in the lambda

function. This differs significantly from minimal

hosting, in which you can call Map* directly on the

WebApplication instance.

You can customize the IHostBuilder instance by

adding configuration methods such as

ConfigureLogging() or

ConfigureAppConfiguration(). These

methods run after any previous invocations,

adding extra layers of configuration to the

IHostBuilder instance.

The generic host is flexible but has greater

inherent complexity due to its deferred execution

style, extensive use of lambda methods, and

heavy use of convention. Minimal hosting aimed to

simplify the bootstrapping code to make it more

imperative, reducing much of the indirection.

Minimal hosting enforces more defaults but is

generally easier to work with for newcomers to

ASP.NET Core.

If you already have an ASP.NET Core application

using Startup and the generic host, there’s no

need to switch to using WebApplication and

minimal hosting; the generic host is fully

supported in .NET 7. Additionally, if you’re creating

a non-HTTP application, the generic host is

currently the best option.

If you’re creating a new ASP.NET Core application,

minimal hosting will likely provide a smoother

experience. You should generally favor it over the

generic host for new apps unless you need fine

control of the IHostBuilder configuration.

31 Advanced configuration of ASP.NET
Core

This chapter covers

Building custom middleware
Using dependency injection (DI) services in IOptions
configuration
Replacing the built-in DI container with a third-party container

When you’re building apps with ASP.NET Core, most of your

creativity and specialization go into the services and models

that make up your business logic and the Razor Pages and

APIs that expose them. Eventually, however, you’re likely to

find that you can’t quite achieve a desired feature using the

components that come out of the box. At that point, you

may need to look to more complex uses of the built- in

features.

This chapter shows some of the ways you can customize

cross-cutting parts of your application, such as your DI

container or your middleware pipeline. These approaches are

particularly useful if you’re coming from a legacy application

or are working on an existing project, and you want to

continue to use the patterns and libraries you’re familiar

with.

We’ll start by looking at the middleware pipeline. You saw

how to build pipelines by piecing together existing

middleware in chapter 4, but in this chapter you’ll create

your own custom middleware. You’ll explore the basic

middleware constructs of the Map, Use, and Run methods

and learn how to create standalone middleware classes.

You’ll use these to build middleware components that can

add headers to all your responses as well as middleware that

returns responses. Finally, you’ll learn how to turn your

custom middleware into a simple endpoint, using endpoint

routing.

In chapter 10 you learned about strongly typed configuration

using the IOptions<T> pattern, and in section 31.2 you’ll

learn how to take this further. You’ll learn how to use the

OptionsBuilder<T> type to fluently build your

IOptions<T> object with the builder pattern. You’ll also

see how to use services from DI when configuring your

IOptions objects—something that’s not possible using the

methods you’ve seen so far.

We stick with DI in section 31.3, where I’ll show you how to

replace the built-in DI container with a third-party

alternative. The built-in container is fine for most small apps,

but your ConfigureServices function can quickly get

bloated as your app grows and you register more services.

I’ll show you how to integrate the third-party Lamar library

into an existing app, so you can use extra features such as

automatic service registration by convention.

The components and techniques shown in this chapter are

more advanced than most features you’ve seen so far. You

likely won’t need them in every ASP.NET Core project, but

they’re good to have in your back pocket should the need

arise!

31.1 Customizing your middleware
pipeline

In this section you’ll learn how to create custom middleware.

You’ll learn how to use the Map, Run, and Use extension

methods to create simple middleware using lambda

expressions. You’ll then see how to create equivalent

middleware components using dedicated classes. You’ll also

learn how to split the middleware pipeline into branches, and

you’ll find out when this is useful.

The middleware pipeline is one of the building blocks of

ASP.NET Core apps, so we covered it in depth in chapter 4.

Every request passes through the middleware pipeline, and

each middleware component in turn gets an opportunity to

modify the request or to handle it and return a response.

ASP.NET Core includes middleware for handling common

scenarios out of the box. You’ll find middleware for serving

static files, handling errors, authentication, and many more

tasks.

You’ll spend most of your time during development working

with Razor Pages, minimal API endpoints, or web API

controllers. These are exposed as the endpoints for most of

your app’s business logic, and they call methods on your

app’s various business services and models. However, you’ve

also seen middleware like the Swagger middleware and the

WelcomePageMiddleware that returns a response without

using the endpoint routing system. The various

improvements to the routing system in .NET 7 mean I rarely

find the need to create “terminal” middleware like this, as

endpoint routing is easy to work with and extensible.

Nevertheless, it may occasionally be preferable to create

small, custom, terminal middleware components like these.

At other times, you might have requirements that lie outside

the remit of Razor Pages or minimal API endpoints. For

example, you might want to ensure that all responses

generated by your app include a specific header. This sort of

cross-cutting concern is a perfect fit for custom middleware.

You could add the custom middleware early in your

middleware pipeline to ensure that every response from your

app includes the required header, whether it comes from the

static-file middleware, the error handling middleware, or a

Razor Page.

In this section I show three ways to create custom

middleware components, as well as how to create branches

in your middleware pipeline where a request can flow down

either one branch or another. By combining the methods

demonstrated in this section, you’ll be able to create custom

solutions to handle your specific requirements.

We start by creating a middleware component that returns

the current time as plain text whenever the app receives a

request. From there we’ll look at branching the pipeline,

creating general-purpose middleware components, and

encapsulating your middleware into standalone classes.

Finally, in section 31.1.5 you’ll see how to turn your custom

middleware component into an endpoint and integrate it with

the endpoint routing system.

31.1.1 Creating simple apps with the Run
extension

As you’ve seen in previous chapters, you define the

middleware pipeline for your app in Program.cs by adding

middleware to a WebApplication object, typically using

extension methods, as in this example:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.UseExceptionHandler();

app.UseStaticFiles();

app.Run();

When your app receives a request, the request passes

through each middleware component, each of which gets a

chance to modify the request or handle it by generating a

response. If a middleware component generates a response,

it effectively short-circuits the pipeline; no subsequent

middleware in the pipeline sees the request. The response

passes back through the earlier middleware components on

its way back to the browser.

You can use the Run extension method to build a simple

middleware component that always generates a response.

This extension takes a single lambda function that runs

whenever a request reaches the component. The Run

extension always generates a response, so no middleware

placed after it ever executes. For that reason, you should

always place the Run middleware last in a middleware

pipeline.

TIP Remember that middleware components run in the order in which
you add them to the pipeline. If a middleware component handles a
request and generates a response, later middleware never sees the
request.

The Run extension method provides access to the request in

the form of the HttpContext object you saw in chapter 4.

This contains all the details of the request in the Request

property, such as the URL path, the headers, and the body

of the request. It also contains a Response property you

can use to return a response.

The following listing shows how you could build a simple

middleware component that returns the current time. It uses

the provided HttpContext context object and the

Response property to set the Content-Type header of the

response (not strictly necessary in this case, as

text/plain is used if an alternative content type is not

set) and writes the body of the response using

WriteAsync(text).

Listing 31.1 Creating simple middleware using the Run extension

app.Run(async (HttpContext context) => ❶
{

 context.Response.ContentType = "text/plain"; ❷
 await context.Response.WriteAsync(❸
 DateTimeOffset.UtcNow.ToString()); ❸

});

app.UseStaticFiles(); ❹

❶ Uses the Run extension to create simple middleware that always returns a response

❷ You should set the content-type of the response you’re generating; text/plain is the default
value.

❸ Returns the time as a string in the response. The 200 OK status code is used if not
explicitly set.

❹ Any middleware added after the Run extension will never execute.

The Run extension is useful for two different things:

Creating simple middleware that always generates

a response

Creating complex middleware that hijacks the

whole request to build an additional framework on

top of ASP.NET Core

Whether you’re using the Run extension to create basic

endpoints or a complex extra framework layer, the

middleware always generates some sort of response.

Therefore, you must always place it at the end of the

pipeline, as no middleware placed after it will execute.

TIP Using the Run extension to unconditionally generate a response
is rare these days. The endpoint routing system used by minimal
APIs provides many extra niceties such as model binding, routing,
integration with other middleware such as authentication and
authorization, and so on.

There may be occasional situations where you want to

unconditionally generate a response, but a more common

scenario is where you want your middleware component to

respond only to a specific URL path, such as the way the

Swagger UI middleware responds only to the /swagger

path. In the next section you’ll see how you can combine

Run with the Map extension method to create branching

middleware pipelines.

31.1.2 Branching middleware pipelines with
the Map extension

So far when discussing the middleware pipeline, we’ve

always considered it to be a single pipeline of sequential

components. Each request passes through every middleware

component until one component generates a response; then

the response passes back through the previous middleware.

The Map extension method lets you change that simple

pipeline into a branching structure. Each branch of the

pipeline is independent; a request passes through one

branch or the other but not both, as shown in figure 31.1.

The Map extension method looks at the path of the request’s

URL. If the path starts with the required pattern, the request

travels down the branch of the pipeline; otherwise, it

remains on the main trunk. This lets you have completely

different behavior in different branches of your middleware

pipeline.

Figure 31.1 A sequential middleware pipeline compared with a
branching pipeline created with the Map extension. In branching
middleware, requests pass through only one of the branches at
most. Middleware on the other branch never see the request and
aren’t executed.

NOTE The URL-matching used by Map is conceptually similar to the
routing you’ve seen throughout the book, but it is much more basic,
with many limitations. For example, it uses a simple string-prefix
match, and you can’t use route parameters. Generally, you should
favor using endpoint routing instead of branching using Map. A
similar extension, MapWhen, allows matching based on anything in
HttpContext, such as headers or query string parameters.

For example, imagine you want to add a simple health-check

endpoint to your existing app. This endpoint is a simple URL

you can call that indicates whether your app is running

correctly. You could easily create a health-check middleware

using the Run extension, as you saw in listing 31.1, but then

that’s all your app can do. You want the health-check to

respond only to a specific URL, /ping. Your Razor Pages

should handle all other requests as normal.

TIP The health-check scenario is a simple example for demonstrating
the Map method, but ASP.NET Core includes built-in support for
health-check endpoints, which integrate into the endpoint routing
system. You should use these instead of creating your own. You can
learn more about creating health checks in Microsoft’s “Health checks
in ASP.NET Core” documentation: http://mng.bz/nMA2.

One solution would be to create a branch using the Map

extension method and to place the health-check middleware

on that branch, as shown in figure 31.1. Only those requests

that match the Map pattern /ping will execute the branch;

all other requests are handled by the standard routing

middleware and Razor Pages on the main trunk instead, as

shown in the following listing.

Listing 31.2 Using the Map extension to create branching
middleware pipelines

app.UseStatusCodePages(); ❶

app.Map("/ping", (IApplicationBuilder branch) => ❷
{

 branch.UseExceptionHandler(); ❸
 branch.Run(async (HttpContext context) => ❹

http://mng.bz/nMA2

 { ❹
 context.Response.ContentType = "text/plain"; ❹
 await context.Response.WriteAsync("pong"); ❹
 }); ❹
});

app.UseStaticFiles(); ❺
app.UseRouting(); ❺

app.MapRazorPages(); ❺
app.Run();

❶ Every request passes through this middleware.
❷ The Map extension method branches if a request starts with /ping.

❸ This middleware runs only for requests matching the /ping branch.
❹ The Run extension always returns a response, but only on the /ping branch.

❺ The rest of the middleware pipeline run for requests that don’t match the /ping branch.

The Map middleware creates a completely new

IApplicationBuilder (called branch in the listing),

which you can customize as you would your main app

pipeline. Middleware added to the branch builder are added

only to the branch pipeline, not the main trunk pipeline.

TIP The WebApplication object you typically add middleware to
implements the IApplicationBuilder interface. Most
extension methods for adding middleware use the
IApplicationBuilder interface, so you can use the extension
methods in branches as well as your main middleware pipeline.

In this example, you add the Run middleware to the branch,

so it executes only for requests that start with /ping, such

as /ping, /ping/go, and /ping?id=123. Any requests

that don’t start with /ping are ignored by the Map

extension. Those requests stay on the main trunk pipeline

and execute the next middleware in the pipeline after Map

(in this case, the StaticFilesMiddleware).

WARNING There are several Map extension method overloads.
Some of these are extension methods on
IApplicationBuilder and are used to branch the pipeline, as
you saw in listing 31.2. Other overloads are extensions on
IEndpointRouteBuilder and are used to create minimal
endpoints, using the endpoint routing system. If you’re struggling to
make your app compile, make sure that you’re not accidentally using
the wrong Map overload!

If you need to, you can create sprawling branched pipelines

using Map, where each branch is independent of every other.

You could also nest calls to Map so you have branches

coming off branches.

The Map extension can be useful, but if you try to get too

elaborate, it can quickly get confusing. Remember that you

should use middleware for implementing cross-cutting

concerns or simple endpoints. The endpoint routing

mechanism of minimal APIs and Razor Pages is better suited

to more complex routing requirements, so always favor it

over Map where possible.

One situation where Map can be useful is when you want to

have two independent subapplications but don’t want the

hassle of multiple deployments. You can use Map to keep

these pipelines separate, with separate routing and

endpoints inside each branch of the pipeline.

TIP This approach can be useful, for example, if you’re embedding an
OpenID Connect server such as IdentityServer in your application. By
mapping IdentityServer to a branch, you ensure that the endpoints
and controllers in your main app can’t interfere with the endpoints
exposed by IdentityServer.

Be aware that these branches share configuration and a DI

container, so they’re independent only from the middleware

pipeline’s point of view. You must also remember that

WebApplication adds lots of middleware to the pipeline

by default, so you may need to override these by explicitly

calling UseRouting() in all your branches, for example.

NOTE Achieving truly independent branches in the same application
requires a lot of effort. See Filip Wojcieszyn’s blog post, “Running
multiple independent ASP.NET Core pipelines side by side in the
same application,” for guidance: http://mng.bz/vzA4.

The final point you should be aware of when using the Map

extension is that it modifies the effective Path seen by

middleware on the branch. When it matches a URL prefix,

the Map extension cuts off the matched segment from the

path, as shown in figure 31.2. The removed segments are

stored on a property of HttpContext called PathBase, so

they’re still accessible if you need them.

http://mng.bz/vzA4

Figure 31.2 When the Map extension diverts a request to a
branch, it removes the matched segment from the Path property
and adds it to the PathBase property.

NOTE ASP.NET Core’s link generator (used in Razor and minimal
APIs, as discussed in chapter 6) uses PathBase to ensure that it
generates URLs that include the PathBase as a prefix.

You’ve seen the Run extension, which always returns a

response, and the Map extension, which creates a branch in

the pipeline. The next extension we’ll look at is the general-

purpose Use extension.

31.1.3 Adding to the pipeline with the Use
extension

You can use the Use extension method to add a general-

purpose piece of middleware. You can use it to view and

modify requests as they arrive, to generate a response, or to

pass the request on to subsequent middleware in the

pipeline.

As with the Run extension, when you add the Use extension

to your pipeline, you specify a lambda function that runs

when a request reaches the middleware. ASP.NET Core

passes two parameters to this function:

The HttpContext representing the current

request and response—You can use this to inspect

the request or generate a response, as you saw

with the Run extension.

A pointer to the rest of the pipeline as a

Func<Task>—By executing this task, you can

execute the rest of the middleware pipeline.

By providing a pointer to the rest of the pipeline, you can

use the Use extension to control exactly how and when the

rest of the pipeline executes, as shown in figure 31.3. If you

don’t call the provided Func<Task> at all, the rest of the

pipeline doesn’t execute for the request, so you have

complete control.

Figure 31.3 Three pieces of middleware, created with the Use
extension. Invoking the provided Func<Task> using next() invokes
the rest of the pipeline. Each middleware component can run
code before and after calling the rest of the pipeline, or it can
choose to not call next() to short-circuit the pipeline.

Exposing the rest of the pipeline as a Func<Task> makes it

easy to conditionally short-circuit the pipeline, which enables

many scenarios. Instead of branching the pipeline to

implement the health-check middleware with Map and Run,

as you did in listing 31.2, you could use a single instance of

the Use extension, as shown in the following listing. This

provides the same required functionality as before but does

so without branching the pipeline.

Listing 31.3 Using the Use extension method to create a health-
check middleware

app.Use(async (HttpContext context, Func<Task> next) => ❶
{

 if (context.Request.Path.StartsWithSegments("/ping")) ❷
 {

 context.Response.ContentType = "text/plain"; ❸
 await context.Response.WriteAsync("pong"); ❸
 }

 else

 {

 await next(); ❹
 }

});

app.UseStaticFiles();

❶ The Use extension takes a lambda with HttpContext (context) and Func<Task> (next)
parameters.

❷ The StartsWithSegments method looks for the provided segment in the current path.

❸ If the path matches, generates a response and short-circuits the pipeline
❹ If the path doesn’t match, calls the next middleware in the pipeline—in this case

UseStaticFiles()\

If the incoming request starts with the required path

segment (/ping), the middleware responds and doesn’t call

the rest of the pipeline. If the incoming request doesn’t start

with /ping, the extension calls the next middleware in the

pipeline, with no branching necessary.

With the Use extension, you have control of when and

whether you call the rest of the middleware pipeline. But it’s

important to note that you generally shouldn’t modify the

Response object after calling next(). Calling next() runs

the rest of the middleware pipeline, so subsequent

middleware may start streaming the response to the

browser. If you try to modify the response after executing

the pipeline, you may end up corrupting the response or

sending invalid data.

WARNING Don’t modify the Response object after calling
next(). Also, don’t call next() if you’ve written to the
Response.Body; writing to this Stream can trigger Kestrel to
start streaming the response to the browser, and you could cause
invalid data to be sent. You can generally read from the Response
object safely, such as to inspect the final StatusCode or
ContentType of the response.

Another common use for the Use extension method is to

modify every request or response that passes through it. For

example, you should send various HTTP headers with all

your applications for security reasons. These headers often

disable old, insecure legacy behaviors by browsers or restrict

the features enabled by the browser. You learned about the

HSTS header in chapter 28, but you can add other headers

for additional security.

TIP You can test the security headers for your app at
https://securityheaders.com, which also provides information about
what headers you should add to your application and why.

Imagine you’ve been tasked with adding one such header—

X-Content-Type-Options: nosniff, which provides

added protection against cross-site scripting (XSS) attacks—

to every response generated by your app. This sort of cross-

cutting concern is perfect for middleware. You can use the

Use extension method to intercept every request, set the

https://securityheaders.com/

response header, and then execute the rest of the

middleware pipeline. No matter what response the pipeline

generates, whether it’s a static file, an error, or a Razor

Page, the response will always have the security header.

Listing 31.4 shows a robust way to achieve this. When the

middleware receives a request, it registers a callback that

runs before Kestrel starts sending the response back to the

browser. It then calls next() to run the rest of the

middleware pipeline. When the pipeline generates a

response, likely in some later middleware, Kestrel executes

the callback and adds the header. This approach ensures

that the header isn’t accidentally removed by other

middleware in the pipeline and also ensures that you don’t

try to modify the headers after the response has started

streaming to the browser.

Listing 31.4 Adding headers to a response with the Use extension

app.Use(async (HttpContext context, Func<Task> next) => ❶
{

 context.Response.OnStarting(() => ❷
 {

 context.Response.Headers["X-Content-Type-Options"] = "nosniff"; ❸
 return Task.CompletedTask; ❹
 });

 await next(); ❺
}

app.UseStaticFiles(); ❻
app.UseRouting(); ❻

app.MapRazorPages ❻

❶ Adds the middleware at the start of the pipeline

❷ Sets a function that runs before the response is sent to the browser

❸ Adds the header to the response for added protection against XSS attacks

❹ The function passed to OnStarting must return a Task.
❺ Invokes the rest of the middleware pipeline

❻ No matter what response is generated, it’ll have the security header added.

Simple cross-cutting middleware like the security header

example is common, but it can quickly clutter your

Program.cs configuration and make it difficult to understand

the pipeline at a glance. Instead, it’s common to encapsulate

your middleware in a class that’s functionally equivalent to

the Use extension but that can be easily tested and reused.

31.1.4 Building a custom middleware
component

Creating middleware with the Use extension, as you did in

listings 31.3 and 31.4, is convenient, but it’s not easy to

test, and you’re somewhat limited in what you can do. For

example, you can’t easily use DI to inject scoped services

inside these basic middleware components. Normally, rather

than call the Use extension directly, you’ll encapsulate your

middleware into a class that’s functionally equivalent.

Custom middleware components don’t have to derive from a

specific base class or implement an interface, but they have

a certain shape, as shown in listing 31.5. ASP.NET Core uses

reflection to execute the method at runtime. Middleware

classes should have a constructor that takes a

RequestDelegate object, which represents the rest of the

middleware pipeline, and they should have an Invoke

function with a signature similar to

public Task Invoke(HttpContext context);

The Invoke() function is equivalent to the lambda function

from the Use extension, and it is called when a request is

received. The following listing shows how you could convert

the headers middleware from listing 31.4 into a standalone

middleware class.

Listing 31.5 Adding headers to a Response using a custom
middleware component

public class HeadersMiddleware

{

 private readonly RequestDelegate _next; ❶
 public HeadersMiddleware(RequestDelegate next) ❶
 { ❶
 _next = next; ❶
 } ❶

 public async Task Invoke(HttpContext context) ❷
 {

 context.Response.OnStarting(() => ❸
 { ❸
 context.Response.Headers["X-Content-Type-Options"] = ❸
 "nosniff"; ❸
 return Task.CompletedTask; ❸
 }); ❸

 await _next(context); ❹
 }

}

❶ The RequestDelegate represents the rest of the middleware pipeline.

❷ The Invoke method is called with HttpContext when a request is received.

❸ Adds the header to the response as before

❹ Invokes the rest of the middleware pipeline. Note that you must pass in the provided
HttpContext.

NOTE Using this shape approach makes the middleware more
flexible. In particular, it means you can easily use DI to inject services
into the Invoke method. This wouldn’t be possible if the Invoke
method were an overridden base class method or an interface.
However, if you prefer, you can implement the IMiddleware
interface, which defines the basic Invoke method.

This middleware is effectively identical to the example in

listing 31.4, but it’s encapsulated in a class called

HeadersMiddleware. You can add this middleware to your

app in Startup.Configure by calling

app.UseMiddleware<HeadersMiddleware>();

A common pattern is to create helper extension methods to

make it easy to consume your extension method from

Program.cs (so that IntelliSense reveals it as an option on

the WebApplication instance). The following listing shows

how you could create a simple extension method for

HeadersMiddleware.

Listing 31.6 Creating an extension method to expose
HeadersMiddleware

public static class MiddlewareExtensions

{

 public static IApplicationBuilder UseSecurityHeaders(❶
 this IApplicationBuilder app) ❶
 {

 return app.UseMiddleware<HeadersMiddleware>(); ❷
 }

}

❶ By convention, the extension method should return an IApplicationBuilder to allow
chaining.

❷ Adds the middleware to the pipeline

With this extension method, you can now add the headers

middleware to your app using

app.UseSecurityHeaders();

TIP My SecurityHeaders NuGet package makes it easy to add
security headers using middleware without having to write your own.
The package provides a fluent interface for adding the recommended
security headers to your app. You can find instructions on how to
install it at http://mng.bz/JggK.

Listing 31.5 is a simple example, but you can create

middleware for many purposes. In some cases you may

need to use DI to inject services and use them to handle a

request. You can inject singleton services into the

constructor of your middleware component, or you can inject

services with any lifetime into the Invoke method of your

middleware, as demonstrated in the following listing.

Listing 31.7 Using DI in middleware components

public class ExampleMiddleware

{

 private readonly RequestDelegate _next;

 private readonly ServiceA _a; ❶
 public HeadersMiddleware(RequestDelegate next, ServiceA a) ❶
 { ❶
 _next = next; ❶

http://mng.bz/JggK

 _a = a; ❶
 }

 public async Task Invoke(

 HttpContext context, ServiceB b, ServiceC c) ❷
 {

 // use services a, b, and c

 // and/or call _next.Invoke(context);

 }

}

❶ You can inject additional services in the constructor. These must be singletons.

❷ You can inject services into the Invoke method. These may have any lifetime.

WARNING ASP.NET Core creates the middleware only once for the
lifetime of your app, so any dependencies injected in the constructor
must be singletons. If you need to use scoped or transient
dependencies, inject them into the Invoke method.

In addition to cross-cutting concerns, a good use for

middleware is creating simple handlers with as few

dependencies as possible that respond to a fixed URL,

similar to the Use extension method you learned about in

section 31.1.3. These simple handlers can be dropped into

multiple applications, regardless of how the app’s routing is

configured.

So-called well-known Uniform Resource Identifiers (URIs)

are a good use case for these simple middleware handlers,

such as the security.txt well-known URI (https://www.rfc-

editor.org/rfc/rfc9116) and the OpenID Connect URIs

(http://mng.bz/wvj2). These handlers always respond to a

single path, so they can neatly encapsulate all the logic

without risk of interfering with any other routing

configuration.

https://www.rfc-editor.org/rfc/rfc9116
https://www.rfc-editor.org/rfc/rfc9116
http://mng.bz/wvj2

Listing 31.8 shows a simple example of a security.txt handler

implemented as middleware. It always responds to the well-

known path with a fixed value and is easy to add to any

application by calling

app.UseMiddleware<SecurityTxtHandler>.

Listing 31.8 A Security.txt handler implemented as middleware

public class SecurityTxtHandler

{

 private readonly RequestDelegate _next;

 public SecurityTxtHandler(RequestDelegate next)

 {

 _next = next;

 }

 public Task Invoke(HttpContext context)

 {

 var path = context.Request.Path;

 if(path.StartsWithSegments("/.well-known/security.txt")) ❶
 {

 context.Response.ContentType = "text/plain"; ❷
 return context.Response.WriteAsync(❷
 "Contact: mailto:security@example.com"); ❷
 }

 return _next.Invoke(context); ❸
 }

}

❶ The middleware looks for a fixed, well-known path.

❷ If the path is matched, the middleware returns a response.
❸ If the path didn’t match, the next middleware in the pipeline is called.

That covers pretty much everything you need to start

building your own middleware components. By encapsulating

your middleware in custom classes, you can easily test their

behavior or distribute them in NuGet packages, so I strongly

recommend taking this approach. Apart from anything else,

it will make Program.cs file less cluttered and easier to

understand.

31.1.5 Converting middleware into endpoint
routing endpoints

In this section you’ll learn how you can take the custom

middleware you created in section 31.1.2 and convert it to a

simple middleware endpoint that integrates into the endpoint

routing system. Then you can take advantage of features

such as routing and authorization.

In section 31.1.2 I described creating a simple ping-pong

endpoint, using the Map and Run extension methods, that

returns a plain-text pong response whenever a /ping

request is received by branching the middleware pipeline.

This is fine because it’s so simple, but what if you have more

complex requirements?

Consider a basic enhancement of this ping-pong example.

How would you add authorization to the request? The

AuthorizationMiddleware looks for metadata on

endpoints like Razor Pages or minimal APIs to see whether

there’s any authorization metadata, but it doesn’t know how

to work with the ping-pong Map extension.

Similarly, what if you wanted to use more complex routing?

Maybe you want to be able to call /ping/3 and have your

ping-pong middleware reply pong-pong-pong. (No, I can’t

think why you would either!) You now have to try to parse

that integer from the URL, make sure it’s valid, and so on.

That’s sounding like a lot more work and seems to be a clear

indicator you should have created a minimal API endpoint

using endpoint routing!

For our simple ping-pong endpoint, that wouldn’t be hard to

do, but what if you have a more complex middleware

component that you don’t want to rewrite completely? Is

there some way to convert the middleware to an endpoint?

Let’s imagine that you need to apply authorization to the

simple ping-pong endpoint you created in section 31.1.2.

This is much easier to achieve with endpoint routing than

simple middleware branches like Map or Use, but let’s

imagine you want to stick to using middleware instead of a

traditional minimal API endpoint. The first step is creating a

standalone middleware component for the functionality,

using the approach you saw in section 31.1.4, as shown in

the following listing.

Listing 31.9 The PingPongMiddleware implemented as a
middleware component

public class PingPongMiddleware

{

 public PingPongMiddleware(RequestDelegate next) ❶
 {

 }

 public async Task Invoke(HttpContext context) ❷
 {

 context.Response.ContentType = "text/plain"; ❸
 await context.Response.WriteAsync("pong"); ❸
 }

}

❶ Even though it isn’t used in this case, you must inject a RequestDelegate in the
constructor.

❷ Invoke is called to execute the middleware.
❸ The middleware always returns a “pong” response.

Note that this middleware always returns a "pong"

response regardless of the request URL; we will configure

the "/ping" path later. We can use this class to convert a

middleware pipeline from the branching version shown in

figure 31.1, to the endpoint version shown in figure 31.4.

Figure 31.4 Endpoint routing separates the selection of an
endpoint from the execution of an endpoint. The routing
middleware selects an endpoint based on the incoming request
and exposes metadata about the endpoint. Middleware placed
before the endpoint middleware can act based on the selected
endpoint, such as short-circuiting unauthorized requests. If the

request is authorized, the endpoint middleware executes the
selected endpoint and generates a response.

Converting the ping-pong middleware to an endpoint doesn’t

require any changes to the middleware itself. Instead, you

need to create a mini middleware pipeline containing only

your ping-pong middleware.

TIP Converting response-generating middleware to an endpoint
essentially requires converting it to its own mini pipeline, so you can
even include additional middleware in the endpoint pipeline if you
wish.

To create the mini pipeline, you call

CreateApplicationBuilder() on

IEndpointRouteBuilder instance, which creates a new

IApplicationBuilder. There are two ways to access the

IEndpointRouteBuilder: call

UseEndpoints(endpoints =>{}) and use the

endpoints variable or explicitly cast WebApplication to

IEndpointRouteBuilder.

NOTE Although WebApplication implements
IEndpointRouteBuilder, it deliberately hides the advanced
CreateApplicationBuilder() method from you! This
should be a good indication that you’re in advanced territory and
should probably consider using minimal API endpoints instead.

In the following listing, we create a new

IApplicationBuilder, add the middleware that makes

up the endpoint to it, and then call Build() to create the

pipeline. Once you have a pipeline, you can associate it with

a given route by calling Map() on the

IEndpointRouteBuilder instance and passing in a route

template.

Listing 31.10 Mapping the ping-pong endpoint in UseEndpoints

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.UseRouting();

app.UseAuthentication();

app.UseAuthorization();

var endpoint = ((IEndpointRouteBuilder)app) ❶
 .CreateApplicationBuilder() ❷
 .UseMiddleware<PingPongMiddleware>() ❸
 .Build(); ❸

app.Map("/ping", endpoint); ❹
app.MapRazorPages();

app.MapHealthChecks("/healthz");

app.Run();

❶ Casts the WebApplication to IEndpointRouteBuilder so you can call
CreateApplicationBuilider

❷ Creates a miniature, standalone IApplicationBuilder to build your endpoint

❸ Adds the middleware and builds the final endpoint. This is executed when the endpoint is
executed.

❹ Maps the new endpoint with the route template “/ping”

TIP Note that the Map() function on
IEndpointRouteBuilder creates a new endpoint (consisting
of your mini-pipeline) with an associated route. Although it has the
same name, this is conceptually different from the Map function on
IApplicationBuilder from section 31.1.2, which is used to

branch the middleware pipeline. It is analogous to the MapGet (and
kin) methods you use to create minimal API endpoints.

As is common with ASP.NET Core, you can extract this

somewhat-verbose functionality into an extension method to

make your endpoint easier to read and discover. The

following listing extracts the code to create an endpoint from

listing 31.10 into a separate class, taking the route template

to use as a method parameter.

Listing 31.11 An extension method for using the
PingPongMiddleware as an endpoint

public static class EndpointRouteBuilderExtensions

{

 public static IEndpointConventionBuilder MapPingPong(❶
 this IEndpointRouteBuilder endpoints, ❶
 string route) ❷
 {

 var pipeline = endpoints

 .CreateApplicationBuilder() ❸
 .UseMiddleware<PingPongMiddleware>() ❸
 .Build(); ❸

 return endpoints ❹
 .Map(route, pipeline) ❹
 .RequireAuthorization(); ❺
 }

}

❶ Creates an extension method for registering the PingPongMiddleware as an endpoint
❷ Allows the caller to pass in a route template for the endpoint

❸ Creates the endpoint pipeline
❹ Adds the new endpoint to the provided endpoint collection, using the provide route

template

❺ You can add additional metadata here directly, or the caller can add metadata themselves.

Now that you have an extension method, MapPingPong(),

you can update your mapping code to be simpler and easier

to understand:

app.MapPingPong("/ping");

app.MapRazorPages();

app.MapHealthChecks("/healthz");

Congratulations—you’ve created your first custom endpoint

from middleware! By turning the middleware into an

endpoint, you can now add extra metadata, as shown in

listing 31.11. Your middleware is hooked into the endpoint

routing system and benefits from everything it offers.

The example in listing 31.11 used a basic route template,

"/ping", but you can also use templates that contain route

parameters, such as "/ping/{count}", as you would with

minimal APIs. The big difference is that you don’t get the

benefits of model binding that you get from minimal APIs,

and it clearly takes more effort than using minimal APIs!

TIP For examples of how to access the route data from your
middleware, as well as best-practice advice, see my blog entry titled
“Accessing route values in endpoint middleware in ASP.NET Core
3.0” at http://mng.bz/4ZRj.

Converting existing middleware like PingPongMiddleware

to work with endpoint routing can be useful when you have

already implemented that middleware, but it’s a lot of

boilerplate to write if you want to create a new simple

endpoint. In almost all cases you should use minimal API

endpoints instead. But if you ever find yourself needing to

http://mng.bz/4ZRj

reuse some existing middleware as an endpoint, now you

know how!

In the next section we’ll move away from the middleware

pipeline and look at how to handle a common configuration

requirement: using DI services to build a strongly typed

IOptions objects.

31.2 Using DI with OptionsBuilder and
IConfigureOptions

In this section I describe how to handle a common scenario:

you want to use services registered in DI to configure

IOptions<T> objects. There are several ways to achieve

this, but in this section I introduce the

OptionsBuilder<T> as one possible approach and

highlight some of the other features it enables.

In chapter 10 we discussed the ASP.NET Core configuration

system in depth. You saw how an IConfiguration object

is built from multiple layers, where subsequent layers can

add to or replace configuration values from previous layers.

Each layer is added by a configuration provider, which reads

values from a file, from environment variables, from User

Secrets, or from any number of possible locations.

A common and encouraged practice is to bind your

configuration object to strongly typed IOptions<T>

objects, as you saw in chapter 10. Typically, you configure

this binding in Program.cs by calling

builder.Services.Configure<T>() and providing an

IConfiguration object or a configuration section to bind.

For example, to bind a strongly typed object called

CurrencyOptions to the "Currencies" section of an

IConfiguration object, you could use the following:

builder.services.Configure<CurrencyOptions>(

 Configuration.GetSection("Currencies"));

TIP You can see an example of the CurrencyOptions type and
the associated "Currencies" section of appsetttings.json in the
source code for this chapter.

This sets the properties of the CurrencyOptions object,

based on the values in the "Currencies" section of your

IConfiguration object. Simple binding like this is

common, but sometimes you might not want to rely on

configuring your IOptions<T> objects via the configuration

system; you might want to configure them in code instead.

The IOptions pattern requires only that you configure a

strongly typed object before it’s injected into a dependent

service; it doesn’t mandate that you have to bind it to an

IConfiguration section.

TIP Technically, even if you don’t configure an IOptions<T> at all,
you can still inject it into your services. In that case, the T object is
simply created using the default constructor.

The Configure<T>() method has an additional overload

that takes a lambda function. The framework executes the

lambda function to configure the CurrencyOptions object

when it is injected using DI. The following listing shows an

example that uses a lambda function to set the

Currencies property on a configured CurrencyOptions

object to a fixed array of strings.

Listing 31.12 Configuring an IOptions object using a lambda
function

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.Configure<CurrencyOptions>(❶
 builder.Configuration.GetSection("Currencies")); ❶

builder.services.Configure<CurrencyOptions>(options => ❷
 options.Currencies = new string[] { "GBP", "USD"}); ❷

WebApplication app = builder.Build();

app.MapGet("/", (IOptions<CurrencyOptions> opts) => opts.Value); ❸
app.Run();

❶ Configures the IOptions object by binding to an IConfiguration section

❷ Configures the IOptions object by executing a lambda function
❸ The injected IOptions value is built by first binding to configuration and then applying the

lambda.

Each call to Configure<T>(), both the binding to

IConfiguration and the lambda function, adds another

configuration step to the CurrencyOptions object. When

the DI container first requires an instance of

IOptions<CurrencyOptions>, the steps run in turn, as

shown in figure 31.5.

Figure 31.5 Configuring a CurrencyOptions object. When the DI
container needs an IOptions<> instance of a strongly typed
object, the container creates the object and then uses each of
the registered Configure() methods to set the object’s properties.

In the previous code snippet, you set the Currencies

property to a static array of strings in a lambda function. But

what if you don’t know the correct values ahead of time? You

might need to load the available currencies from a database

or from some remote service, such as an

ICurrencyProvider.

This situation, in which you need a configured service to

configure your IOptions<T>, is potentially hard to resolve.

Remember that you declared your IOptions<T>

configuration as part of your app’s DI configuration. But if

you need to resolve a service from DI to configure the

IOptions object, you’re stuck with a chicken-and-egg

problem: how can you access a service from the DI

container before you’ve finished configuring the DI

container?

This circular problem has several potential solutions, but the

easiest approach is to use an alternative API for configuring

IOptions instances, using the OptionsBuilder<T> type.

This type is effectively a wrapper around some of the core

IOptions interfaces, but it often results in a terser and

more convenient syntax to the approach you’ve seen so far.

TIP Another helpful feature of OptionsBuilder<T> is adding
validation to your IOptions objects. This ensures that your
configuration is loaded and bound correctly on app startup so that
you don’t have any typos in your configuration section names, for
example. You can read more about adding validation to your
IOptions objects on my blog at http://mng.bz/qrjJ.

The following listing shows the equivalent of listing 31.12

but using OptionsBuilder<T> instead. You create an

OptionsBuilder<T> instance by calling AddOptions<T>

(), and then chain additional methods such as

BindConfiguration() and Configure() to configure

your final IOptions<T> object, building up layers of

options configuration, as shown previously in figure 31.5.

http://mng.bz/qrjJ

Listing 31.13 Configuring an IOptions<T> object using
OptionsBuilder<T>

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services

 .AddOptions<CurrencyOptions>() ❶
 .BindConfiguration("Currencies") ❷
 .Configure(opts => ❸
 opts.Currencies = new string[] { "GBP", "USD"}); ❸

WebApplication app = builder.Build();

app.MapGet("/", (IOptions<CurrencyOptions> opts) => opts.Value);

app.Run();

❶ Creates an OptionsBuilder<CurrencyOptions> object
❷ Binds to the Currencies section of the IConfiguration

❸ Configures the IOptions object by executing a lambda function

You’ve seen the builder pattern many times throughout the

book, and the pattern in this case is no different. The builder

exposes methods that you can chain together fluently. One

of the benefits of the builder pattern is that it’s easy to

discover all the methods it exposes. In this case, if you

explore the type in your integrated development

environment (IDE), you may notice that

OptionsBuilder<T> exposes multiple Configure

overloads, such as

Configure<TDep>(Action<T,TDep>

config);

Configure<TDep1,TDep2>(Action<T,

TDep1, TDep2> config);

Configure<TDep1,TDep2,TDep3>

(Action<T,TDep1,TDep2,TDep3> config);

These methods allow you to specify dependencies that are

automatically retrieved from the DI container and passed to

the config action when the IOptions object is fetched from

DI, as shown in figure 31.6. Five overloads for

Configure<TDeps> allow you to inject dependencies,

allowing you to inject up to five dependencies with these

methods.

Figure 31.6 Using OptionsBuilder to build an IOptions object.
Dependencies that are requested via the Configure<TDeps>
methods are automatically retrieved from the DI container and
used to execute the lambda function.

Using this pattern, we can update the code from listing

31.13 to use the ICurrencyProvider whenever our app

needs to create the CurrencyOptions object. We can

register the service in the DI container and know that the DI

will take care of providing it to the lambda function at

runtime, as shown in the following listing.

Listing 31.14 Using a DI service

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services

 .AddOptions<CurrencyOptions>()

 .BindConfiguration("Currencies")

 .Configure<ICurrencyProvider>((opts, service) => ❶
 opts.Currencies = service.GetCurrencies()); ❶

builder.Services.AddSingleton<ICurrencyProvider, CurrencyProvider>(); ❷

WebApplication app = builder.Build();

app.MapGet("/", (IOptions<CurrencyOptions> opts) => opts.Value); ❸
app.Run();

❶ Configures the Ioptions object using a service from DI
❷ Registers the service with the DI container

❸ Retrieves the IOptions object, which retrieves the service from DI and runs the lambda
method

With the configuration in listing 31.14, when the

IOptions<CurrencyOptions> is first injected into the

minimal API endpoint, the IOptions<CurrencyOptions>

object is built as described by the OptionsBuilder. First,

the "Currencies" section of the app IConfiguration is

bound to a new CurrencyOptions object. Then the

ICurrencyProvider is retrieved from DI and passed to

the Configure<TDep> lambda, along with the options

object. Finally, the IOptions object is injected into the

endpoint.

WARNING You must inject only singleton services using
Configure<TDeps> methods. If you try to inject a scoped
service, such as a DbContext, you will get an error in development
warning you about a captive dependency. I describe how to work
around this on my blog at http://mng.bz/7Dve.

The OptionsBuilder<T> is a convenient way to configure

your IOptions objects using dependencies, but you can

use an alternative approach: implementing the

IConfigureOptions<T> interface. You implement this

interface in a configuration class and use it to configure the

IOptions<T> object in any way you need, as shown in the

following listing. This class can use DI, so you can easily use

any other required services.

Listing 31.15 Implementing IConfigureOptions<T> to configure an
options object

public class ConfigureCurrencyOptions : IConfigureOptions<CurrencyOptions>

{

 private readonly ICurrencyProvider _currencyProvider; ❶
 public ConfigureCurrencyOptions(ICurrencyProvider currencyProvider)

http://mng.bz/7Dve

 {

 _currencyProvider = currencyProvider; ❶
 }

 public void Configure(CurrencyOptions options) ❷
 {

 options.Currencies = _currencyProvider.GetCurrencies(); ❸
 }

}

❶ You can inject services that are available only after the DI is completely configured.

❷ Configure is called when an instance of IOptions<CurrencyOptions> is required.
❸ Uses the injected service to load the values

All that remains is to register the implementation in the DI

container. As always, order is important, so if you want

ConfigureCurrencyOptions to run after binding to

configuration, you must add it after configuring your

OptionsBuilder<T>:

builder.Services.AddOptions<CurrencyOptions>()

 .BindConfiguration("Currencies");

builder.AddSingleton

 <IConfigureOptions<CurrencyOptions>, ConfigureCurrencyOptions>();

TIP The order in which you configure your options matters. If you
want to always run your configuration last, after all other configuration
methods, you can use the PostConfigure() method on
OptionsBuilder, or the IPostConfigureOptions
interface. You can read more about this approach on my blog at
http://mng.bz/mVj4.

With this configuration, when

IOptions<CurrencyOptions> is injected into an

endpoint or service, the CurrencyOptions object is first

http://mng.bz/mVj4

bound to the "Currencies" section of your

IConfiguration and then configured by the

ConfigureCurrencyOptions class.

WARNING The CurrencyConfigureOptions object is
registered as a singleton, so it will capture any injected services of
scoped or transient lifetimes.

Whether you use the OptionsBuilder<T> or the

IConfigureOptions<T> approach, you need to register

the ICurrencyProvider dependency with the DI

container. In the sample code for this chapter, I created a

simple CurrencyProvider service and registered it with

the DI container using

builder.Services.AddSingleton<ICurrencyProvider, CurrencyProvider>();

As your app grows and you add extra features and services,

you’ll probably find yourself writing more of these simple DI

registrations, where you register a Service that

implements IService. The built-in ASP.NET Core DI

container requires you to explicitly register each of these

services manually. If you find this requirement frustrating, it

may be time to look at third-party DI containers that can

take care of some of the boilerplate for you.

31.3 Using a third-party dependency
injection container

In this section I show you how to replace the default DI

container with a third-party alternative, Lamar. Third-party

containers often provide additional features compared with

the built-in container, such as assembly scanning, automatic

service registration, and property injection. Replacing the

built-in container can also be useful when you’re porting an

existing app that uses a third-party DI container to ASP.NET

Core.

The .NET community had used DI containers for years

before ASP.NET Core decided to include a built-in one. The

ASP.NET Core team wanted a way to use DI in their own

framework libraries, and they wanted to create a common

abstraction
1
 that allows you to replace the built-in container

with your favorite third-party alternative, such as Autofac,

StructureMap/Lamar, Ninject, Simple Injector, or Unity.

The built-in container is intentionally limited in the features

it provides, and realistically, it won’t be getting many more.

By contrast, third-party containers can provide a host of

extra features. These are some of the features available in

Lamar (https://jasperfx.github.io/lamar/guide/ioc), the

spiritual successor to StructureMap

(https://structuremap.github.io):

Assembly scanning for interface/implementation

pairs based on conventions

https://jasperfx.github.io/lamar/guide/ioc
https://structuremap.github.io/

Automatic concrete class registration

Property injection and constructor selection

Automatic Lazy<T>/Func<T> resolution

Debugging/testing tools for viewing inside your

container

None of these features is a requirement for getting an

application up and running, so using the built-in container

makes a lot of sense if you’re building a small app or are

new to DI containers in general. But if at some undefined

tipping point, the simplicity of the built-in container becomes

too much of a burden, it may be worth replacing.

TIP A middle-of-the-road approach is to use the Scrutor NuGet
package, which adds some features to the built-in DI container
without replacing it. For an introduction and examples, see my blog
post, “Using Scrutor to automatically register your services with the
ASP.NET Core DI container” at http://mng.bz/MX7B.

In this section I show how you can configure an ASP.NET

Core app to use Lamar for dependency resolution. It won’t

be a complex example or an in-depth discussion of Lamar

itself. Instead, I’ll cover the bare minimum to get you up and

running.

Whichever third-party container you choose to install in an

existing app, the overall process is pretty much the same:

1. Install the container NuGet package.

2. Register the third-party container with

WebApplicationBuilder in Program.cs.

http://mng.bz/MX7B

3. Configure the third-party container to register your

services.

Most of the major .NET DI containers include adapters and

extension methods to hook easily into your ASP.NET Core

app. For details, it’s worth consulting the specific guidance

for the container you’re using. For Lamar, the process looks

like this:

1. Install the Lamar.Microsoft.DependencyInjection

NuGet package using the NuGet package manager,

by running dotnet add package

dotnet add package Lamar.Microsoft.DependencyInjection

or by adding a <PackageReference> to your .csproj

file:

<PackageReference

 Include="Lamar.Microsoft.DependencyInjection" Version="8.1.0" />

2. Call UseLamar() on

WebApplicationBuilder.Host in Program.cs:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Host.UseLamar(services => {})

WebApplication app = builder.Build();

3. Configure the Lamar ServiceRegistry in the

lambda method passed to UseLamar(), as shown

in the following listing. This is a basic

configuration, but you can see a more complex

example in the source code for this chapter.

Listing 31.16 Configuring Lamar as a third-party DI container

builder.Host.UseLamar(services => ❶
{

 services.AddAuthorization(); ❷
 services.AddControllers() ❷
 .AddControllersAsServices(); ❸

 services.Scan(_ => { ❹
 _.AssemblyContainingType(typeof(Program)); ❹
 _.WithDefaultConventions(); ❹
 }); ❹
}

❶ Configures your services in UseLamar() instead of on builder.Services

❷ You can (and should) add ASP.NET Core framework services to the ServiceRegistry, as
usual.

❸ Required so that Lamar is used to build your web API controllers

❹ Lamar can automatically scan your assemblies for services to register.

In this example I’ve used the default conventions to register

services. This automatically registers concrete classes and

services that are named following expected conventions (for

example, Service implements IService). You can change

these conventions or add other registrations in the

UseLamar() lambda.

The ServiceRegistry passed into UseLamar()

implements IServiceCollection, which means you can

use all the built-in extension methods, such as

AddControllers() and AddAuthorization(), to add

framework services to your container.

WARNING If you’re using DI in your Model-View-Controller (MVC)
controllers (almost certainly!), and you register those dependencies

with Lamar rather than the built-in container, you may need to call
AddControllersAsServices(), as shown in listing 31.16.
This is due to an implementation detail in the way your MVC
controllers are created by the framework. For details, see my blog
entry titled “Controller activation and dependency injection in
ASP.NET Core MVC” at http://mng.bz/aogm.

With this configuration in place, whenever your app needs to

create a service, it will request it from the Lamar container,

which will create the dependency tree for the class and

create an instance. This example doesn’t show off the power

of Lamar, so be sure to check out the documentation

(https://jasperfx.github.io/lamar) and the associated source

code for this chapter for more examples. Even in modest-

size applications, Lamar can greatly simplify your service

registration code, but its party trick is showing all the

services you have registered and any associated issues.

TIP Third-party containers typically add configuration approaches but
don’t change any of the fundamentals of how DI works in ASP.NET
Core. All the techniques you’ve seen in this book will work whether
you’re using the built-in container or a third-party container, so you
can use the IConfigureOptions<T> approach in section 31.2,
for example, regardless of which container you choose.

That brings us to the end of this chapter on advanced

configuration. In this chapter I focused on some of the core

components of any ASP.NET Core app: middleware,

configuration, and DI. In the next chapter you’ll learn about

more custom components, with a focus on Razor Pages and

web API controllers.

http://mng.bz/aogm
https://jasperfx.github.io/lamar

Summary
Use the Run extension method to create

middleware components that always return a

response. You should always place the Run

extension at the end of a middleware pipeline or

branch, as middleware placed after it will never

execute.

You can create branches in the middleware

pipeline with the Map extension. If an incoming

request matches the specified path prefix, the

request will execute the pipeline branch;

otherwise, it will execute the trunk.

When the Map extension matches a request path

segment, it removes the segment from the

request’s HttpContext.Path and moves it to

the PathBase property. This ensures that routing

in branches works correctly.

You can use the Use extension method to create

generalized middleware components that can

generate a response, modify the request, or pass

the request on to subsequent middleware in the

pipeline. This is useful for cross-cutting concerns,

like adding a header to all responses.

You can encapsulate middleware in a reusable

class. The class should take a RequestDelegate

object in the constructor and should have a public

Invoke() method that takes an HttpContext

and returns a Task. To call the next middleware

component in the pipeline, invoke the

RequestDelegate with the provided

HttpContext.

To create endpoints that generate a response,

build a miniature pipeline containing the response-

generating middleware, and call

endpoints.Map(route, pipeline). Endpoint

routing will be used to map incoming requests to

your endpoint.

You can configure IOptions<T> objects using a

fluent builder interface. Call AddOptions<T>()

to create an OptionsBuilder<T> instance and

then chain configuration calls.

OptionsBuilder<T> allows easy access to

dependencies for configuration, as well as features

such as validation.

You can also use services from the DI container to

configure an IOptions<T> object by creating a

separate class that implements

IConfigureOptions<T>. This class can use DI

in the constructor and is used to lazily build a

requested IOptions<T> object at runtime.

You can replace the built-in DI container with a

third-party container. Third-party containers often

provide additional features, such as convention-

based dependency registration, assembly

scanning, and property injection.

1. Although the promotion of DI as a core practice has been applauded, this abstraction has
seen some controversy. This post, titled “What’s wrong with the ASP.NET Core DI
abstraction?”, from one of the maintainers of the SimpleInjector DI library, describes many
of the arguments and concerns: http://mng.bz/yYAd. You can also read more about the
decisions at http://mng.bz/6DnA.

http://mng.bz/yYAd
http://mng.bz/6DnA

32 Building custom MVC and Razor
Pages components

This chapter covers

Creating custom Razor Tag Helpers
Using view components to create complex Razor views
Creating a custom DataAnnotations validation attribute
Replacing the DataAnnotations validation framework with an
alternative

In the previous chapter you learned how to customize and

extend some of the core systems in ASP.NET Core:

configuration, dependency injection (DI), and your

middleware pipeline. These components form the basis of all

ASP.NET Core apps. In this chapter we’re focusing on Razor

Pages and Model-View-Controller (MVC)/API controllers.

You’ll learn how to build custom components that work with

Razor views. You’ll also learn how to build components that

work with the validation framework used by both Razor

Pages and API controllers.

We’ll start by looking at Tag Helpers. In section 32.1 I show

how to create two Tag Helpers: one that generates HTML to

describe the current machine and one that lets you write if

statements in Razor templates without having to use C#.

These will give you the details you need to create your own

custom Tag Helpers in your own apps if the need arises.

In section 32.2 you’ll learn about a new Razor concept: view

components. View components are a bit like partial views,

but they can contain business logic and database access. For

example, on an e-commerce site you might have a shopping

cart, a dynamically populated menu, and a login widget all

on one page. Each of those sections is independent of the

main page content and has its own logic and data-access

needs. In an ASP.NET Core app using Razor Pages, you’d

implement each of those as a view component.

In section 32.3 I’ll show you how to create a custom

validation attribute. As you saw in chapter 6, validation is a

key responsibility of Razor Page handlers and action

methods, and the DataAnnotations attributes provide a

clean, declarative way of doing so. We previously looked

only at the built-in attributes, but you’ll often find you need

to add attributes tailored to your app’s domain. In section

32.3 you’ll see how to create a simple validation attribute

and how to extend it to use services registered with the DI

container.

Throughout this book I’ve mentioned that you can easily

swap out core parts of the ASP.NET Core framework if you

wish. In section 32.4 you’ll do that by replacing the built-in

attribute-based validation framework with a popular

alternative, FluentValidation. This open-source library allows

you to separate your binding models from the validation

rules, which makes building certain validation logic easier.

Many people prefer this approach of separating concerns to

the declarative approach of DataAnnotations.

When you’re building pages with Razor Pages, one of the

best productivity features is Tag Helpers, and in the next

section you’ll see how you can create your own.

32.1 Creating a custom Razor Tag
Helper

In this section you’ll learn how to create your own Tag

Helpers, which allow you to customize your HTML output.

You’ll learn how to create Tag Helpers that add new elements

to your HTML markup, as well as Tag Helpers that can

remove or customize existing markup. You’ll also see that

your custom Tag Helpers integrate with the tooling of your

integrated development environment (IDE) to provide rich

IntelliSense in the same way as the built-in Tag Helpers.

In my opinion, Tag Helpers are one of the best additions to

the venerable Razor template language in ASP.NET Core.

They allow you to write Razor templates that are easier to

read, as they require less switching between C# and HTML,

and they augment your HTML tags rather than replace them

(as opposed to the HTML Helpers used extensively in the

legacy version of ASP.NET).

ASP.NET Core comes with a wide variety of Tag Helpers (see

chapter 18), which cover many of your day-to-day

requirements, especially when it comes to building forms.

For example, you can use the Input Tag Helper by adding an

asp-for attribute to an <input> tag and passing a

reference to a property on your PageModel, in this case

Input.Email:

<input asp-for="Input.Email" />

The Tag Helper is activated by the presence of the attribute

and gets a chance to augment the <input> tag when

rendering to HTML. The Input Tag Helper uses the name of

the property to set the <input> tag’s name and id

properties, the value of the model to set the value

property, and the presence of attributes such as

[Required] or [EmailAddress] to add attributes for

validations:

<input type="email" id="Input_Email" name="Input.Email"

 value="test@example.com" data-val="true"

 data-val-email="The Email Address field is not a valid e-mail address."

 data-val-required="The Email Address field is required."

 />

Tag Helpers help reduce the duplication in your code, or they

can simplify common patterns. In this section I show how

you can create your own custom Tag Helpers.

In section 32.1.1 you’ll create a system information Tag

Helper, which prints details about the name and operating

system of the server your app is running on. In section

32.1.2 you’ll create a Tag Helper that you can use to

conditionally show or hide an element based on a C#

Boolean property. In section 32.1.3 you’ll create a Tag

Helper that reads the Razor content written inside the Tag

Helper and transforms it.

32.1.1 Printing environment information with
a custom Tag Helper

A common problem you may run into when you start

running your web applications in production, especially if

you’re using a server-farm setup, is working out which

machine rendered the page you’re currently looking at.

Similarly, when deploying frequently, it can be useful to

know which version of the application is running. When I’m

developing and testing, I sometimes like to add a little “info

dump” at the bottom of my layouts so I can easily work out

which server generated the current page, which environment

it’s running in, and so on.

In this section I’m going to show you how to build a custom

Tag Helper to output system information to your layout.

You’ll be able to toggle the information it displays, but by

default it displays the machine name and operating system

on which the app is running, as shown in figure 32.1.

Figure 32.1 The SystemInfoTagHelper displays the machine name
and operating system on which the application is running. It can
be useful for identifying which instance of your app handled the
request when running in a web-farm scenario.

You can call this Tag Helper from Razor by creating a

<system-info> element in your template:

<footer>

 <system-info></system-info>

</footer>

TIP You might not want to expose this sort of information in
production, so you could also wrap it in an <environment> Tag
Helper, as you saw in chapter 18.

The easiest way to create a custom Tag Helper is to derive

from the TagHelper base class and override the

Process() or ProcessAsync() function that describes

how the class should render itself. The following listing

shows your complete custom Tag Helper,

SystemInfoTagHelper, which renders the system

information to a <div>. You could easily extend this class if

you wanted to display additional fields or add options.

Listing 32.1 SystemInfoTagHelper to render system information to
a view

public class SystemInfoTagHelper : TagHelper ❶
{

 private readonly HtmlEncoder _htmlEncoder; ❷
 public SystemInfoTagHelper(HtmlEncoder htmlEncoder) ❷
 {

 _htmlEncoder = htmlEncoder;

 }

 [HtmlAttributeName("add-machine")] ❸
 public bool IncludeMachine { get; set; } = true;

 [HtmlAttributeName("add-os")] ❸
 public bool IncludeOS { get; set; } = true;

 public override void Process(❹
 TagHelperContext context, TagHelperOutput output) ❹
 {

 output.TagName = "div"; ❺
 output.TagMode = TagMode.StartTagAndEndTag; ❻
 var sb = new StringBuilder();

 if (IncludeMachine) ❼
 { ❼
 sb.Append(" Machine "); ❼
 sb.Append(_htmlEncoder.Encode(Environment.MachineName)); ❼
 } ❼

 if (IncludeOS) ❽
 { ❽
 sb.Append(" OS "); ❽
 sb.Append(❽
 _htmlEncoder.Encode(RuntimeInformation.OSDescription)); ❽
 } ❽
 output.Content.SetHtmlContent(sb.ToString()); ❾
 }

}

❶ Derives from the TagHelper base class

❷ An HtmlEncoder is necessary when writing HTML content to the page.
❸ Decorating properties with HtmlAttributeName allows you to set their values from Razor

markup.

❹ The main function called when an element is rendered.
❺ Replaces the <system-info> element with a <div> element

❻ Renders both the <div> </div> start and end tag
❼ If required, adds a element and the HTML-encoded machine name

❽ If required, adds a element and the HTML-encoded OS name
❾ Sets the inner content of the <div> tag with the HTML-encoded value stored in the string

builder

There’s a lot of new code in this example, so we’ll work

through it line by line. First, the class name of the Tag

Helper defines the name of the element you must create in

your Razor template, with the suffix removed and converted

to kebab-case. As this Tag Helper is called

SystemInfoTagHelper, you must create a <system-

info> element.

TIP If you want to customize the name of the element, for example to
<env-info>, but you want to keep the same class name, you can
apply [HtmlTargetElement] with the desired name, such as

[HtmlTargetElement("Env-Info")]. HTML tags are not
case-sensitive, so you could use "Env-Info" or "env-info".

Inject an HtmlEncoder into your Tag Helper so you can

HTML-encode any data you write to the page. As you saw in

chapter 29, you should always HTML-encode data you write

to the page to avoid cross-site scripting (XSS) vulnerabilities

and to ensure that the data is displayed correctly.

You’ve defined two properties on your Tag Helper,

IncludeMachine and IncludeOS, which you’ll use to

control which data is written to the page. These are

decorated with a corresponding [HtmlAttributeName],

which enables setting the properties from the Razor

template. In Visual Studio you’ll even get IntelliSense and

type-checking for these values, as shown in figure 32.2.

Figure 32.2 In Visual Studio, Tag Helpers are shown in a purple
font, and you get IntelliSense for properties decorated with
[HtmlAttributeName].

Finally, we come to the Process() method. The Razor

engine calls this method to execute the Tag Helper when it

identifies the target element in a view template. The

Process() method defines the type of tag to render

(<div>), whether it should render a start and end tag (or a

self-closing tag—it depends on the type of tag you’re

rendering), and the HTML content of the <div>. You set the

HTML content to be rendered inside the tag by calling

Content.SetHtmlContent() on the provided instance of

TagHelperOutput.

WARNING Always HTML-encode your output before writing to your
tag with SetHtmlContent(). Alternatively, pass unencoded input
to SetContent(), and the output will be automatically HTML-
encoded for you.

Before you can use your new Tag Helper in a Razor

template, you need to register it. You can do this in the

_ViewImports.cshtml file, using the @addTagHelper

directive and specifying the fully qualified name of the Tag

Helper and the assembly, as in this example:

@addTagHelper CustomTagHelpers.SystemInfoTagHelper, CustomTagHelpers

Alternatively, you can add all the Tag Helpers from a given

assembly by using the wildcard syntax, *, and specifying the

assembly name:

@addTagHelper *, CustomTagHelpers

With your custom Tag Helper created and registered, you’re

now free to use it in any of your Razor views, partial views,

or layouts.

TIP If you’re not seeing IntelliSense for your Tag Helper in Visual
Studio, and the Tag Helper isn’t rendered in the bold font used by
Visual Studio, you probably haven’t registered your Tag Helpers
correctly in _ViewImports .cshtml using @addTagHelper.

The SystemInfoTagHelper is an example of a Tag Helper

that generates content, but you can also use Tag Helpers to

control how existing elements are rendered. In the next

section you’ll create a simple Tag Helper that can control

whether an element is rendered based on an HTML attribute.

32.1.2 Creating a custom Tag Helper to
conditionally hide elements

If you want to control whether an element is displayed in a

Razor template based on some C# variable, you’d typically

wrap the element in a C# if statement:

@{

 var showContent = true;

}

@if(showContent)

{

 <p>The content to show</p>

}

Falling back to C# constructs like this can be useful, as it

allows you to generate any markup you like. Unfortunately,

it can be mentally disruptive having to switch back and forth

between C# and HTML, and it makes it harder to use HTML

editors that don’t understand Razor syntax.

In this section you’ll create a simple Tag Helper to avoid the

cognitive dissonance problem. You can apply this Tag Helper

to existing elements to achieve the same result as shown

previously but without having to fall back to C#:

@{

 var showContent = true;

}

<p if="showContent" >

 The content to show

</p>

When rendered at runtime, this Razor template would return

the HTML

<p>

 The content to show

</p>

Instead of creating a new element, as you did for

SystemInfoTagHelper (<system-info>), you’ll create a

Tag Helper that you apply as an attribute to existing HTML

elements. This Tag Helper does one thing: controls the

visibility of the element it’s attached to. If the value passed

in the if attribute is true, the element and its content is

rendered as normal. If the value passed is false, the Tag

Helper removes the element and its content from the

template. The following listing shows how you could achieve

this.

Listing 32.2 Creating an IfTagHelper to conditionally render
elements

[HtmlTargetElement(Attributes = "if")] ❶
public class IfTagHelper : TagHelper

{

 [HtmlAttributeName("if")] ❷
 public bool RenderContent { get; set; } = true;

 public override void Process(❸
 TagHelperContext context, TagHelperOutput output) ❸
 {

 if(RenderContent == false) ❹
 {

 output.TagName = null; ❺
 output.SuppressOutput(); ❻
 }

 }

 public override int Order => int.MinValue; ❼
}

❶ Setting the Attributes property ensures that the Tag Helper is triggered by an if attribute.
❷ Binds the value of the if attribute to the RenderContent property

❸ The Razor engine calls Process() to execute the Tag Helper.
❹ If the RenderContent property evaluates to false, removes the element

❺ Sets the element the Tag Helper resides on to null, removing it from the page
❻ Doesn’t render or evaluate the inner content of the element

❼ Ensures that this Tag Helper runs before any others attached to the element

Instead of a standalone <if> element, the Razor engine

executes the IfTagHelper whenever it finds an element

with an if attribute. This can be applied to any HTML

element: <p>, <div>, <input>, whatever you need. You

should define a Boolean property specifying whether you

should render the content, which is bound to the value in the

if attribute.

The Process() function is much simpler here. If

RenderContent is false, it sets the

TagHelperOutput.TagName to null, which removes the

element from the page. It also calls SuppressOutput(),

which prevents any content inside the attributed element

from being rendered. If RenderContent is true, you skip

these steps, and the content is rendered as normal.

One other point of note is the overridden Order property.

This controls the order in which Tag Helpers run when

multiple Tag Helpers are applied to an element. By setting

Order to int.MinValue, you ensure that IfTagHelper

always runs first, removing the element if required, before

other Tag Helpers execute. There’s generally no point

running other Tag Helpers if the element is going to be

removed from the page anyway.

NOTE Remember to register your custom Tag Helpers in
_ViewImports .cshtml with the @addTagHelper directive.

With a simple HTML attribute, you can now conditionally

render elements in Razor templates without having to fall

back to C#. This Tag Helper can show and hide content

without needing to know what the content is. In the next

section we’ll create a Tag Helper that does need to know the

content.

32.1.3 Creating a Tag Helper to convert
Markdown to HTML

The two Tag Helpers shown so far are agnostic to the

content written inside the Tag Helper, but it can also be

useful to create Tag Helpers that inspect, retrieve, and

modify this content. In this section you’ll see an example of

one such Tag Helper that converts Markdown content written

inside it to HTML.

DEFINITION Markdown is a commonly used text-based markup
language that is easy to read but can also be converted to HTML. It is
the common format used by README files on GitHub, and I use it to
write blog posts, for example. For an introduction to Markdown, see
the GitHub guide at http://mng.bz/o1rp.

We’ll use the popular Markdig library

(https://github.com/xoofx/markdig) to create the Markdown

Tag Helper. This library converts a string containing

Markdown to an HTML string. You can install Markdig

using Visual Studio by running dotnet add package

Markdig or by adding a <PackageReference> to your

.csproj file:

<PackageReference Include="Markdig" Version="0.30.4" />

The Markdown Tag Helper that we’ll create shortly can be

used by adding <markdown> elements to your Razor Page,

as shown in the following listing.

Listing 32.3 Using a Markdown Tag Helper in a Razor Page

@page

@model IndexModel

@{

 var showContent = true;

}

<markdown> ❶
This is a markdown title ❷

http://mng.bz/o1rp
https://github.com/xoofx/markdig

This is a markdown list: ❸

* Item 1 ❸
* Item 2 ❸

<div if="showContent"> ❹
 Content is shown when showContent is true ❹
</div> ❹
</markdown>

❶ Adds the Markdown Tag Helper using the <markdown> element
❷ Creates titles in Markdown using # to denote h1, ## to denote h2, and so on

❸ Markdown converts simple lists to HTML elements.
❹ Razor content can be nested inside other Tag Helpers.

The Markdown Tag Helper renders content with these steps:

1. Render any Razor content inside the Tag Helper.

This includes executing any nested Tag Helpers

and C# code inside the Tag Helper. Listing 32.3

uses the IfTagHelper, for example.

2. Convert the resulting string to HTML using the

Markdig library.

3. Replace the content with the rendered HTML and

remove the Tag Helper <markdown> element.

The following listing shows a simple approach to

implementing a Markdown Tag Helper using Markdig.

Markdig supports many additional extensions and features

that you could enable, but the overall pattern of the Tag

Helper would be the same.

Listing 32.4 Implementing a Markdown Tag Helper using Markdig

public class MarkdownTagHelper: TagHelper ❶
{

 public override async Task ProcessAsync(

 TagHelperContext context, TagHelperOutput output)

 {

 TagHelperContent markdownRazorContent = await ❷
 output.GetChildContentAsync(); ❷
 string markdown = ❸
 markdownRazorContent.GetContent(); ❸

 string html = Markdig.Markdown.ToHtml(markdown); ❹

 output.Content.SetHtmlContent(html); ❺
 output.TagName = null; ❻
 }

}

❶ The Markdown Tag Helper will use the <markdown> element.
❷ Retrieves the contents of the <markdown> element

❸ Renders the Razor contents to a string
❹ Converts the Markdown string to HTML using Markdig

❺ Writes the HTML content to the output
❻ Removes the <markdown> element from the content

When rendered to HTML, the Markdown content in listing

32.3 becomes

<h2>This is a markdown title</h2>

<p>This is a markdown list:</p>

Item 1

Item 2

<div>

 Content is shown when showContent is true

</div>

NOTE In listing 32.4 we implemented ProcessAsync() instead
of Process() because we called the async method
GetChildContentAsync(). You must call async methods

only from other async methods; otherwise, you can get problems
such as thread starvation. For more details, see Microsoft’s
“ASP.NET Core Best Practices” at http://mng.bz/KM7X.

The Tag Helpers in this section represent a small sample of

possible avenues you could explore, but they cover the two

broad categories: Tag Helpers for rendering new content and

Tag Helpers for controlling the rendering of other elements.

TIP For further details and examples, see Microsoft’s “Author Tag
Helpers in ASP.NET Core” documentation at http://mng.bz/Idb0.

Tag Helpers can be useful for providing small pieces of

isolated, reusable functionality like this, but they’re not

designed to provide larger, application-specific sections of an

app or to make calls to business-logic services. Instead, you

should use view components, as you’ll see in the next

section.

32.2 View components: Adding logic
to partial views

In this section you’ll learn about view components, which

operate independently of the main Razor Page and can be

used to encapsulate complex business logic. You can use

view components to keep your main Razor Page focused on

a single task—rendering the main content—instead of also

being responsible for other sections of the page.

http://mng.bz/KM7X
http://mng.bz/Idb0

If you think about a typical website, you’ll notice that it may

have multiple independent dynamic sections in addition to

the main content. Consider Stack Overflow, shown in figure

32.3. As well as the main body of the page, which shows

questions and answers, there’s a section showing the current

logged-in user, a panel for blog posts and related items, and

a section for job suggestions.

Figure 32.3 The Stack Overflow website has multiple sections
that are independent of the main content but contain business
logic and complex rendering logic. Each of these sections could
be rendered as a view component in ASP.NET Core.

Each of these sections is effectively independent of the main

content. Each section contains business logic (deciding which

posts or ads to show), database access (loading the details

of the posts), and rendering logic for how to display the

data.

In chapter 7 you saw that you can use layouts and partial

views to split the rendering of a view template into similar

sections, but partial views aren’t a good fit for this example.

Partial views let you encapsulate view rendering logic but

not business logic that’s independent of the main page

content. Instead, view components provide this functionality,

encapsulating both the business logic and rendering logic for

displaying a small section of the page. You can use DI to

provide access to a database context, and you can test view

components independently of the view they generate, much

like MVC and API controllers. Think of them as being a bit

like mini MVC controllers or mini Razor Pages, but you

invoke them directly from a Razor view instead of in

response to an HTTP request.

TIP View components are comparable to child actions from the
legacy .NET Framework version of ASP.NET, in that they provide
similar functionality. Child actions don’t exist in ASP.NET Core.

View components vs. Razor Components
and Blazor

In this book I focus on server-side rendered applications using Razor Pages and API
applications using minimal APIs and web API controllers. .NET 7 also has a different
approach to building ASP.NET Core applications: Blazor. I don’t cover Blazor in this
book, so I recommend reading Blazor in Action, by Chris Sainty (Manning, 2021).

Blazor has two programming models, client-side and server-side, but both approaches
use Blazor components (confusingly, officially called Razor components). Blazor
components have a lot of parallels with view components, but they live in a
fundamentally different world. Blazor components can interact easily, but you can’t use

them with Tag Helpers or view components, and it’s hard to combine them with Razor
Page form posts.

Nevertheless, if you need an island of rich client-side interactivity in a single Razor
Page, you can embed a Blazor component in a Razor Page, as shown in the “Render
components from a page or view” section of the “Prerender and integrate ASP.NET
Core Razor components” documentation at http://mng.bz/PPen. You could also use
Blazor components as a way to replace Asynchronous JavaScript and XML (AJAX)
calls in your Razor Pages, as I show in my blog entry “Replacing AJAX calls in Razor
Pages with Razor Components and Blazor” at http://mng.bz/9MJj.

If you don’t need the client-side interactivity of Blazor, view components are still the
best option for isolated sections in Razor Pages. They interoperate cleanly with your
Razor Pages; have no additional operational overhead; and use familiar concepts like
layouts, partial views, and Tag Helpers. For more details on why you should continue
to use view components, see my “Don’t replace your View Components with Razor
Components” blog entry at http://mng.bz/1rKq.

In this section you’ll see how to create a custom view

component for the recipe app you built in previous chapters,

as shown in figure 32.4. If the current user is logged in, the

view component displays a panel with a list of links to the

user’s recently created recipes. For unauthenticated users,

the view component displays links to the login and register

actions.

http://mng.bz/PPen
http://mng.bz/9MJj
http://mng.bz/1rKq

Figure 32.4 The view component displays different content
based on the currently logged-in user. It includes both business
logic (determining which recipes to load from the database) and
rendering logic (specifying how to display the data).

This component is a great candidate for a view component,

as it contains database access and business logic (choosing

which recipes to display) as well as rendering logic (deciding

how the panel should be displayed).

TIP Use partial views when you want to encapsulate the rendering of
a specific view model or part of a view model. Consider using a view
component when you have rendering logic that requires business
logic or database access or when the section is logically distinct from
the main page content.

You invoke view components directly from Razor views and

layouts using a Tag Helper-style syntax with a vc: prefix:

<vc:my-recipes number-of-recipes="3">

</vc:my-recipes>

Custom view components typically derive from the

ViewComponent base class and implement an

InvokeAsync() method, as shown in listing 32.5. Deriving

from this base class allows access to useful helper methods

in much the same way that deriving from the

ControllerBase class does for API controllers. Unlike with

API controllers, the parameters passed to InvokeAsync

don’t come from model binding. Instead, you pass the

parameters to the view component using properties on the

Tag Helper element in your Razor view.

Listing 32.5 A custom view component to display the current
user’s recipes

public class MyRecipesViewComponent : ViewComponent ❶
{

 private readonly RecipeService _recipeService; ❷
 private readonly UserManager<ApplicationUser> _userManager; ❷

 public MyRecipesViewComponent(RecipeService recipeService, ❷
 UserManager<ApplicationUser> userManager) ❷
 { ❷
 _recipeService = recipeService; ❷
 _userManager = userManager; ❷
 } ❷

 public async Task<IViewComponentResult> InvokeAsync(❸
 int numberOfRecipes) ❹
 {

 if(!User.Identity.IsAuthenticated)

 {

 return View("Unauthenticated"); ❺
 }

 var userId = _userManager.GetUserId(HttpContext.User); ❻
 var recipes = await _recipeService.GetRecipesForUser(❻
 userId, numberOfRecipes);

 return View(recipes); ❼
 }

}

❶ Deriving from the ViewComponent base class provides useful methods like View().
❷ You can use DI in a view component.

❸ InvokeAsync renders the view component. It should return a
Task<IViewComponentResult>.

❹ You can pass parameters to the component from the view.

❺ Calling View() will render a partial view with the provided name.
❻ You can use async external services, allowing you to encapsulate logic in your business

domain.

❼ You can pass a view model to the partial view. Default.cshtml is used by default.

This custom view component handles all the logic you need

to render a list of recipes when the user is logged in or a

different view if the user isn’t authenticated. The name of

the view component is derived from the class name, like Tag

Helpers. Alternatively, you can apply the

[ViewComponent] attribute to the class and set a different

name entirely.

The InvokeAsync method must return a

Task<IViewComponentResult>. This is similar to the

way you can return IActionResult from an action method

or a page handler, but it’s more restrictive; view components

must render some sort of content, so you can’t return status

codes or redirects. You’ll typically use the View() helper

method to render a partial view template (as in the previous

listing), though you can also return a string directly using

the Content() helper method, which will HTML-encode the

content and render it to the page directly.

You can pass any number of parameters to the

InvokeAsync method. The name of the parameters (in this

case, numberOfRecipes) is converted to kebab-case and

exposed as a property in the view component’s Tag Helper

(<number-of-recipes>). You can provide these

parameters when you invoke the view component from a

view, and you’ll get IntelliSense support, as shown in figure

32.5.

Figure 32.5 Visual Studio provides IntelliSense support for the
method parameters of a view component’s InvokeAsync method.
The parameter name, in this case numberOfRecipes, is converted
to kebab-case for use as an attribute in the Tag Helper.

View components have access to the current request and

HttpContext. In listing 32.5 you can see that we’re

checking whether the current request was from an

authenticated user. You can also see that we’ve used some

conditional logic. If the user isn’t authenticated, we render

the “Unauthenticated” Razor template; if they’re

authenticated, we render the default Razor template and

pass in the view models loaded from the database.

NOTE If you don’t specify a specific Razor view template to use in the
View() function, view components use the template name
Default.cshtml.

The partial views for view components work similarly to

other Razor partial views that you learned about in chapter

7, but they’re stored separately from them. You must create

partial views for view components at one of these locations:

Views/Shared/Components/ComponentName/Tem

plateName

Pages/Shared/Components/ComponentName/Tem

plateName

Both locations work, so for Razor Pages apps I typically use

the Pages/ folder. For the view component in listing 32.5, for

example, you’d create your view templates at

Pages/Shared/Components/MyRecipes/Defa

ult.cshtml

Pages/Shared/Components/MyRecipes/Unau

thenticated.cshtml

This was a quick introduction to view components, but it

should get you a long way. View components are a simple

way to embed pockets of isolated, complex logic in your

Razor layouts. Having said that, be mindful of these caveats:

View component classes must be public, non-

nested, and nonabstract classes.

Although they’re similar to MVC controllers, you

can’t use filters with view components.

You can use layouts in your view components’

views to extract rendering logic common to a

specific view component. This layout may contain

@sections, as you saw in chapter 7, but these

sections are independent of the main Razor view’s

layout.

View components are isolated from the Razor Page

they’re rendered in, so you can’t, for example,

define a @section in a Razor Page layout and

then add that content from a view component; the

contexts are completely separate.

When using the <vc:my-recipes> Tag Helper

syntax to invoke your view component, you must

import it as a custom Tag Helper, as you saw in

section 32.1.

Instead of using the Tag Helper syntax, you may

invoke the view component from a view directly by

using IViewComponentHelper Component,

though I don’t recommend using this syntax, as in

this example:

@await Component.InvokeAsync("MyRecipes", new { numberOfRecipes = 3 })

We’ve covered Tag Helpers and view components, which are

both features of the Razor engine in ASP.NET Core. In the

next section you’ll learn about a different but related topic:

how to create a custom DataAnnotations attribute. If

you’ve used older versions of ASP.NET, this will be familiar,

but ASP.NET Core has a couple of tricks up its sleeve to help

you out.

32.3 Building a custom validation
attribute

In this section you’ll learn how to create a custom

DataAnnotations validation attribute that specifies

specific values a string property may take. You’ll then

learn how you can expand the functionality to be more

generic by delegating to a separate service that is configured

in your DI controller. This will allow you to create custom

domain-specific validations for your apps.

We looked at model binding in chapter 7, where you saw

how to use the built-in DataAnnotations attributes in

your binding models to validate user input. These provide

several built-in validations, such as

[Required]—The property isn’t optional and

must be provided.

[StringLength(min, max)]—The length of the

string value must be between min and max

characters.

[EmailAddress]—The value must have a valid

email address format.

But what if these attributes don’t meet your requirements?

Consider the following listing, which shows a binding model

from a currency converter application. The model contains

three properties: the currency to convert from, the currency

to convert to, and the quantity.

Listing 32.6 Currency converter initial binding model

public class CurrencyConverterModel

{

 [Required] ❶
 [StringLength(3, MinimumLength = 3)] ❷
 public string CurrencyFrom { get; set; }

 [Required] ❶
 [StringLength(3, MinimumLength = 3)] ❷
 public string CurrencyTo { get; set; }

 [Required] ❶
 [Range(1, 1000)] ❸
 public decimal Quantity { get; set; }

}

❶ All the properties are required.

❷ The strings must be exactly three characters.
❸ The quantity can be between 1 and 1000.

There’s some basic validation on this model, but during

testing you identify a problem: users can enter any three-

letter string for the CurrencyFrom and CurrencyTo

properties. Users should be able to choose only a valid

currency code, like "USD" or "GBP", but someone attacking

your application could easily send "XXX" or "£$%".

Assuming that you support a limited set of currencies—say,

GBP, USD, EUR, and CAD—you could handle the validation in

a few ways. One way would be to validate the

CurrencyFrom and CurrencyTo values within the Razor

Page handler method, after model binding and attribute

validation has already occurred.

Another way would be to use a [RegularExpresssion]

attribute to look for the allowed strings. The approach I’m

going to take here is to create a custom

ValidationAttribute. The goal is to have a custom

validation attribute you can apply to the CurrencyFrom

and CurrencyTo attributes, to restrict the range of valid

values. This will look something like the following example.

Listing 32.7 Applying custom validation attributes to the binding
model

public class CurrencyConverterModel

{

 [Required]

 [StringLength(3, MinimumLength = 3)]

 [CurrencyCode("GBP", "USD", "CAD", "EUR")] ❶
 public string CurrencyFrom { get; set; }

 [Required]

 [StringLength(3, MinimumLength = 3)]

 [CurrencyCode("GBP", "USD", "CAD", "EUR")] ❶
 public string CurrencyTo { get; set; }

 [Required]

 [Range(1, 1000)]

 public decimal Quantity { get; set; }

}

❶ CurrencyCodeAttribute validates that the property has one of the provided values.

Creating a custom validation attribute is simple; you can

start with the ValidationAttribute base class, and you

have to override only a single method. The next listing

shows how you could implement

CurrencyCodeAttribute to ensure that the currency

codes provided match the expected values.

Listing 32.8 Custom validation attribute for currency codes

public class CurrencyCodeAttribute : ValidationAttribute ❶
{

 private readonly string[] _allowedCodes; ❷
 public CurrencyCodeAttribute(params string[] allowedCodes) ❷
 { ❷
 _allowedCodes = allowedCodes; ❷
 } ❷

 protected override ValidationResult IsValid(❸
 object value, ValidationContext context) ❸
 {

 if(value is not string code ❹
 || !_allowedCodes.Contains(code)) ❺
 { ❺
 return new ValidationResult("Not a valid currency code"); ❺
 }

 return ValidationResult.Success; ❻
 }

}

❶ Derives from ValidationAttribute to ensure that your attribute is used during validation

❷ The attribute takes in an array of allowed currency codes.
❸ The IsValid method is passed the value to validate and a context object.

❹ Tries to cast the value to a string and store it in the code variable
❺ If the value provided isn’t a string, is null, or isn’t an allowed code, returns an error . . .

❻ . . .otherwise, returns a success result.

As you know from chapter 16, Validation occurs in the filter

pipeline after model binding, before the action or Razor Page

handler executes. The validation framework calls

IsValid() for each instance of ValidationAttribute

on the model property being validated. The framework

passes in value (the value of the property being validated)

and the ValidationContext to each attribute in turn. The

context object contains details that you can use to validate

the property.

Of particular note is the ObjectInstance property. You

can use this to access the top-level model being validated

when you validate a subproperty. For example, if the

CurrencyFrom property of the CurrencyConvertModel

is being validated, you can access the top-level object from

the ValidationAttribute as follows:

var model = validationContext.ObjectInstance as CurrencyConverterModel;

This can be useful if the validity of a property depends on

the value of another property of the model. For example,

you might want a validation rule that says that GBP is a valid

value for CurrencyTo except when CurrencyFrom is also

GBP. ObjectInstance makes these sorts of comparison

validations easy.

NOTE Although using ObjectInstance makes it easy to make
model-level comparisons like these, it reduces the portability of your
validation attribute. In this case, you would be able to use the
attribute only in the application that defines
CurrencyConverterModel.

Within the IsValid() method, you can cast the value

provided to the required data type (in this case, string)

and check against the list of allowed codes. If the code isn’t

allowed, the attribute returns a ValidationResult with

an error message indicating that there was a problem. If the

code is allowed, ValidationResult.Success is returned,

and the validation succeeds.

Putting your attribute to the test in figure 32.6 shows that

when CurrencyTo is an invalid value (£$%), the validation

for the property fails, and an error is added to the

ModelState. You could do some tidying-up of this attribute

to set a custom message, allow nulls, or display the name of

the property that’s invalid, but all the important features are

there.

Figure 32.6 The Watch window of Visual Studio showing the
result of validation using the custom ValidationAttribute. The
user has provided an invalid currencyTo value, £$%. Consequently,
ModelState isn’t valid and contains a single error with the
message "Not a valid currency code".

The main feature missing from this custom attribute is

client-side validation. You’ve seen that the attribute works

well on the server side, but if the user entered an invalid

value, they wouldn’t be informed until after the invalid value

had been sent to the server. That’s safe, and it’s as much as

you need to do for security and data-consistency purposes,

but client-side validation can improve the user experience by

providing immediate feedback.

You can implement client-side validation in several ways, but

it’s heavily dependent on the JavaScript libraries you use to

provide the functionality. Currently, ASP.NET Core Razor

templates rely on jQuery for client-side validation. See the

“Custom client-side validation” section of Microsoft’s “Model

validation in ASP.NET Core MVC and Razor Pages”

documentation for an example of creating a jQuery

Validation adapter for your attributes: http://mng.bz/Wd6g.

TIP Instead of using the official jQuery-based validation libraries, you
could use the open source aspnet-client-validation library
(https://github.com/haacked/aspnet-client-validation) as I describe on
my blog at http://mng.bz/AoXe.

Another improvement to your custom validation attribute

would be to load the list of currencies from a DI service,

such as an ICurrencyProvider. Unfortunately, you can’t

use constructor DI in your CurrencyCodeAttribute, as

you can pass only constant values to the constructor of an

Attribute in .NET. In chapter 22 we worked around this

limitation for filters by using [TypeFilter] or

http://mng.bz/Wd6g
https://github.com/haacked/aspnet-client-validation
http://mng.bz/AoXe

[ServiceFilter], but there’s no such solution for

ValidationAttribute.

Instead, for validation attributes you must use the service

locator pattern. As I discussed in chapter 9, this antipattern

is best avoided where possible, but unfortunately it’s

necessary in this case. Instead of declaring an explicit

dependency via a constructor, you must ask the DI container

directly for an instance of the required service.

Listing 32.9 shows how you could rewrite listing 32.8 to load

the allowed currencies from an instance of

ICurrencyProvider instead of hardcoding the allowed

values in the attribute’s constructor. The attribute calls the

GetService<T>() method on ValidationContext to

resolve an instance of ICurrencyProvider from the DI

container. Note that ICurrencyProvider is a hypothetical

service that would need to be registered in your application’s

ConfigureServices() method in Startup.cs.

Listing 32.9 Using the service-locator pattern to access services

public class CurrencyCodeAttribute : ValidationAttribute

{

 protected override ValidationResult IsValid(

 object value, ValidationContext context)

 {

 var provider = context ❶
 .GetRequiredService<ICurrencyProvider>(); ❶
 var allowedCodes = provider.GetCurrencies(); ❷

 if(value is not string code ❸
 || !_allowedCodes.Contains(code)) ❸
 { ❸
 return new ValidationResult("Not a valid currency code"); ❸

 } ❸
 return ValidationResult.Success; ❸
 }

}

❶ Retrieves an instance of ICurrencyProvider directly from the DI container

❷ Fetches the currency codes using the provider
❸ Validates the property as before

TIP The generic GetRequiredService<T> method is an
extension method available in the
Microsoft.Extensions.DependencyInjection

namespace.

The default DataAnnotations validation system can be

convenient due to its declarative nature, but this has

tradeoffs, as shown by the dependency injection problem

above. Luckily, you can replace the validation system your

application uses, as shown in the following section.

32.4 Replacing the validation
framework with FluentValidation

In this section you’ll learn how to replace the

DataAnnotations-based validation framework that’s used

by default in Razor Pages and MVC Controllers. You’ll see the

arguments for why you might want to do this and learn how

to use a third-party alternative: FluentValidation. This open-

source project allows you to define the validation

requirements of your models separately from the models

themselves. This separation can make some types of

validation easier and ensures that each class in your

application has a single responsibility.

Validation is an important part of the model-binding process

in ASP.NET Core. In chapter 7 you learned that minimal APIs

don’t have any validation built in, so you’re free to choose

whichever framework you like. I demonstrated using

DataAnnotations, but you could easily choose a different

validation framework.

In Razor Pages and MVC, however, the DataAnnotations

validation framework is built into ASP.NET Core. You can

apply DataAnnotations attributes to properties of your

binding models to define your requirements, and ASP.NET

Core automatically validates them. In section 32.3 we even

created a custom validation attribute.

But ASP.NET Core is flexible. You can replace whole chunks

of the Razor Pages and MVC frameworks if you like. The

validation system is one such area that many people choose

to replace.

FluentValidation (https://fluentvalidation.net) is a popular

alternative validation framework for ASP.NET Core. It is a

mature library, with roots going back well before ASP.NET

Core was conceived of. With FluentValidation you write your

validation code separately from your binding model code.

This gives several advantages:

https://fluentvalidation.net/

You’re not restricted to the limitations of

Attributes, such as the dependency injection

problem we had to work around in listing 32.9.

It’s much easier to create validation rules that

apply to multiple properties, such as to ensure that

an EndDate property contains a later value than a

StartDate property. Achieving this with

DataAnnotations attributes is possible but

difficult.

It’s generally easier to test FluentValidation

validators than DataAnnotations attributes.

The validation is strongly typed compared with

DataAnnotations attributes where it’s possible

to apply attributes in ways that don’t make sense,

such as applying an [EmailAddress] attribute to

an int property.

Separating your validation logic from the model

itself arguably better conforms to the single-

responsibility principle (SRP).

That final point is sometimes given as a reason not to use

FluentValidation: FluentValidation separates a binding model

from its validation rules. Some people are happy to accept

the limitations of DataAnnotations to keep the model and

validation rules together.

Before I show how to add FluentValidation to your

application, let’s see what FluentValidation validators look

like.

32.4.1 Comparing FluentValidation with
DataAnnotations attributes

To better understand the difference between the

DataAnnotations approach and FluentValidation, we’ll

convert the binding models from section 32.3 to use

FluentValidation. The following listing shows what the

binding model from listing 32.7 would look like when used

with FluentValidation. It is structurally identical but has no

validation attributes.

Listing 32.10 Currency converter initial binding model for use
with FluentValidation

public class CurrencyConverterModel

{

 public string CurrencyFrom { get; set; }

 public string CurrencyTo { get; set; }

 public decimal Quantity { get; set; }

}

In FluentValidation you define your validation rules in a

separate class, with a class per model to be validated.

Typically, these rules derive from the

AbstractValidator<> base class, which provides a set of

extension methods for defining your validation rules.

The following listing shows a validator for the

CurrencyConverterModel, which matches the validations

added using attributes in listing 32.7. You create a set of

validation rules for a property by calling RuleFor() and

chaining method calls such as NotEmpty() from it. This

style of method chaining is called a fluent interface, hence

the name.

Listing 32.11 A FluentValidation validator for the currency
converter binding model

public class CurrencyConverterModelValidator ❶
 : AbstractValidator<CurrencyConverterModel> ❶
{

 private readonly string[] _allowedValues ❷
 = new []{ "GBP", "USD", "CAD", "EUR" }; ❷

 public CurrencyConverterModelValidator() ❸
 {

 RuleFor(x => x.CurrencyFrom) ❹
 .NotEmpty() ❺
 .Length(3) ❺
 .Must(value => _allowedValues.Contains(value)) ❻
 .WithMessage("Not a valid currency code"); ❻

 RuleFor(x => x.CurrencyTo)

 .NotEmpty()

 .Length(3)

 .Must(value => _allowedValues.Contains(value))

 .WithMessage("Not a valid currency code");

 RuleFor(x => x.Quantity)

 .NotNull()

 .InclusiveBetween(1, 1000); ❼
 }

}

❶ The validator inherits from AbstractValidator.
❷ Defines the static list of currency codes that are supported

❸ You define validation rules in the validator’s constructor.
❹ RuleFor is used to add a new validation rule. The lambda syntax allows for strong typing.

❺ There are equivalent rules for common DataAnnotations validation attributes.
❻ You can easily add custom validation rules without having to create separate classes.

❼ Thanks to strong typing, the rules available depend on the property being validated.

Your first impression of this code might be that it’s quite

verbose compared with listing 32.7, but remember that

listing 32.7 used a custom validation attribute,

[CurrencyCode]. The validation in listing 32.11 doesn’t

require anything else. The logic implemented by the

[CurrencyCode] attribute is right there in the validator,

making it easy to reason about. The Must() method can be

used to perform arbitrarily complex validations without

having the additional layers of indirection required by

custom DataAnnotations attributes.

On top of that, you’ll notice that you can define only

validation rules that make sense for the property being

validated. Previously, there was nothing to stop us from

applying the [CurrencyCode] attribute to the Quantity

property; that’s not possible with FluentValidation.

Of course, just because you can write the custom

[CurrencyCode] logic in-line doesn’t necessarily mean

you have to. If a rule is used in multiple parts of your

application, it may make sense to extract it into a helper

class. The following listing shows how you could extract the

currency code logic into an extension method that can be

used in multiple validators.

Listing 32.12 An extension method for currency validation

public static class ValidationExtensions

{

 public static IRuleBuilderOptions<T, string> ❶
 MustBeCurrencyCode<T>(❶
 this IRuleBuilder<T, string> ruleBuilder) ❶
 {

 return ruleBuilder ❷
 .Must(value => _allowedValues.Contains(value)) ❷
 .WithMessage("Not a valid currency code"); ❷
 }

 private static readonly string[] _allowedValues = ❸
 new []{ "GBP", "USD", "CAD", "EUR" }; ❸
}

❶ Creates an extension method that can be chained from RuleFor() for string properties

❷ Applies the same validation logic as before
❸ The currency code values to allow

You can then update your

CurrencyConverterModelValidator to use the new

extension method, removing the duplication in your validator

and ensuring consistency across country-code fields:

RuleFor(x => x.CurrencyTo)

 .NotEmpty()

 .Length(3)

 .MustBeCurrencyCode();

Another advantage of the FluentValidation approach of using

standalone validation classes is that they are created using

DI, so you can inject services into them. As an example,

consider the [CurrencyCode] validation attribute from

listing 32.9, which used a service, ICurrencyProvider,

from the DI container. This requires using service location to

obtain an instance of ICurrencyProvider using an

injected context object.

With the FluentValidation library, you can inject the

ICurrencyProvider directly into your validator, as shown

in the following listing. This requires fewer gymnastics to get

the desired functionality and makes your validator’s

dependencies explicit.

Listing 32.13 Currency converter validator using dependency
injection

public class CurrencyConverterModelValidator

 : AbstractValidator<CurrencyConverterModel>

{

 public CurrencyConverterModelValidator(ICurrencyProvider provider) ❶
 {

 RuleFor(x => x.CurrencyFrom)

 .NotEmpty()

 .Length(3)

 .Must(value => provider ❷
 .GetCurrencies() ❷
 .Contains(value)) ❷
 .WithMessage("Not a valid currency code");

 RuleFor(x => x.CurrencyTo)

 .NotEmpty()

 .Length(3)

 .MustBeCurrencyCode(provider.GetCurrencies()); ❸

 RuleFor(x => x.Quantity)

 .NotNull()

 .InclusiveBetween(1, 1000);

 }

}

❶ Injects the service using standard constructor dependency injection

❷ Uses the injected service in a Must() rule
❸ Uses the injected service with an extension method

The final feature I’ll show demonstrates how much easier it

is to write validators that span multiple properties with

FluentValidation. For example, imagine we want to validate

that the value of CurrencyTo is different from

CurrencyFrom. Using FluentValidation, you can implement

this with an overload of Must(), which provides both the

model and the property being validated, as shown in the

following listing.

Listing 32.14 Using Must() to validate that two properties are
different

RuleFor(x => x.CurrencyTo) ❶
 .NotEmpty()

 .Length(3)

 .MustBeCurrencyCode()

 .Must((InputModel model, string currencyTo) ❷
 => currencyTo != model.CurrencyFrom) ❸
 .WithMessage("Cannot convert currency to itself"); ❹

❶ The error message will be associated with the CurrencyTo property.
❷ The Must function passes the top-level model being validated and the current property.

❸ Performs the validation. The currencies must be different.
❹ Uses the provided message as the error message

Creating a validator like this is certainly possible with

DataAnnotations attributes, but it requires far more

ceremony than the FluentValidation equivalent and is

generally harder to test. FluentValidation has many more

features for making it easier to write and test your

validators, too:

Complex property validations—Validators can be

applied to complex types as well as to the

primitive types like string and int shown here

in this section.

Custom property validators—In addition to simple

extension methods, you can create your own

property validators for complex validation

scenarios.

Collection rules—When types contain collections,

such as List<T>, you can apply validation to each

item in the list, as well as to the overall collection.

RuleSets—You can create multiple collections of

rules that can be applied to an object in different

circumstances. These can be especially useful if

you’re using FluentValidation in additional areas of

your application.

Client-side validation—FluentValidation is a server-

side framework, but it emits the same attributes

as DataAnnotations attributes to enable client-

side validation using jQuery.

There are many more features, so be sure to browse the

documentation at https://docs.fluentvalidation.net for

details. In the next section you’ll see how to add

FluentValidation to your ASP.NET Core application.

32.4.2 Adding FluentValidation to your
application

Replacing the whole validation system of ASP.NET Core

sounds like a big step, but the FluentValidation library makes

it easy to add to your application. Simply follow these steps:

https://docs.fluentvalidation.net/

1. Install the FluentValidation.AspNetCore NuGet

package using Visual Studio’s NuGet package

manager via the command-line interface (CLI) by

running dotnet add package

FluentValidation.AspNetCore or by adding

a <PackageReference> to your .csproj file:

<PackageReference Include="FluentValidation.AspNetCore" Version="11.2.2" />

2. Configure the FluentValidation library for MVC and

Razor Pages in Program.cs by calling

builder.Services.AddFluentValidationAu

toValidation(). You can further configure the

library as shown in listing 32.15.

3. Register your validators (such as the

CurrencyConverterModelValidator from

listing 32.13) with the DI container. These can be

registered manually, using any scope you choose:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages();

builder.Services.AddFluentValidationAutoValidation();

builder.services.AddScoped<

 IValidator<CurrencyConverterModelValidator>,

 CurrencyConverterModelValidator>();

Alternatively, you can allow FluentValidation to

automatically register all your validators using the

options shown in listing 32.15.

For such a mature library, FluentValidation has relatively few

configuration options to decipher. The following listing shows

some of the options available; in particular, it shows how to

automatically register all the custom validators in your

application and disable DataAnnotations validation.

Listing 32.15 Configuring FluentValidation in an ASP.NET Core
application

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages();

builder.Services.AddValidatorsFromAssemblyContaining<Program>(); ❶

builder.Services.AddFluentValidationAutoValidation(❷
 x => x.DisableDataAnnotationsValidation = true) ❷
 .AddFluentValidationClientsideAdapters(); ❸

ValidatorOptions.Global.LanguageManager.Enabled = false; ❹

❶ Instead of manually registering validators, FluentValidation can autoregister them for you.
❷ Setting to true disables DataAnnotations validation completely for model binding.

❸ Enables integration with client-side validation via data-* attributes
❹ FluentValidation has full localization support, but you can disable it if you don’t need it.

It’s important to understand that if you don’t set

DisableDataAnnotationsValidation to true,

ASP.NET Core will run validation with both

DataAnnotations and FluentValidation. That may be

useful if you’re in the process of migrating from one system

to the other, but otherwise, I recommend disabling it. Having

your validation split between both places seems like the

worst of both worlds!

One final thing to consider is where to put your validators in

your solution. There are no technical requirements for this; if

you’ve registered your validator with the DI container, it will

be used correctly, so the choice is up to you. I prefer to

place validators close to the models they’re validating.

For Razor Pages binding-model validators, I create the

validator as a nested class of the PageModel, in the same

place as I create the InputModel, as described in chapter

16. That gives a class hierarchy in the Razor Page similar to

the following:

public class IndexPage : PageModel

{

 public class InputModel { }

 public class InputModelValidator: AbstractValidator<InputModel> { }

}

That’s my preference. Of course, you’re free to adopt

another approach if you prefer.

That brings us to the end of this chapter on custom Razor

Pages components. When you combine it with the

components in the previous chapter, you’ve got a great base

for extending your ASP.NET Core applications to meet your

needs. It’s a testament to ASP.NET Core’s design that you

can swap out whole sections like the Validation framework

entirely. If you don’t like how some part of the framework

works, see whether someone has written an alternative!

Summary
With Tag Helpers, you can bind your data model to

HTML elements, making it easier to generate

dynamic HTML. Tag Helpers can customize the

elements they’re attached to, add attributes, and

customize how they’re rendered to HTML. This can

greatly reduce the amount of markup you need to

write.

The name of a Tag Helper class dictates the name

of the element in the Razor templates, so the

SystemInfoTagHelper corresponds to the

<system-info> element. You can choose a

different element name by adding the

[HtmlTargetElement] attribute to your Tag

Helper.

You can set properties on your Tag Helper object

from Razor syntax by decorating the property with

an [HtmlAttributeName("name")] attribute

and providing a name. You can set these

properties from Razor using HTML attributes, as in

<system-info name="value">.

The TagHelperOutput parameter passed to the

Process or ProcessAsync methods control the

HTML that’s rendered to the page. You can set the

element type with the TagName property and set

the inner content using Content.SetContent()

or Content.SetHtmlContent().

You can prevent inner Tag Helper content from

being processed by calling SupressOutput(),

and you can remove the element by setting

TagName=null. This is useful if you want to

conditionally render elements to the response.

You can retrieve the contents of a Tag Helper by

calling GetChildContentAsync() on the

TagHelperOutput parameter. You can then

render this content to a string by calling

GetContent(). This will render any Razor

expressions and Tag Helpers to HTML, allowing you

to manipulate the contents.

View components are like partial views, but they

allow you to use complex business and rendering

logic. You can use them for sections of a page,

such as the shopping cart, a dynamic navigation

menu, or suggested articles.

Create a view component by deriving from the

ViewComponent base class and implementing

InvokeAsync(). You can pass parameters to this

function from the Razor view template using HTML

attributes, in a similar way to Tag Helpers.

View components can use DI, access the

HttpContext, and render partial views. The

partial views should be stored in the

Pages/Shared/Components/ <Name>/ folder,

where Name is the name of the view component.

If not specified, view components will look for a

default view named Default.cshtml.

You can create a custom DataAnnotations

attribute by deriving from

ValidationAttribute and overriding the

IsValid method. You can use this to decorate

your binding model properties and perform

arbitrary validation.

You can’t use constructor DI with custom

validation attributes. If the validation attribute

needs access to services from the DI container,

you must use the Service Locator pattern to load

them from the validation context, using the

GetService<T> method.

FluentValidation is an alternative validation system

that can replace the default DataAnnotations

validation system. It is not based on attributes,

which makes it easier to write custom validations

for your validation rules and makes those rules

easier to test.

To create a validator for a model, create a class

derived from AbstractValidator<> and call

RuleFor<>() in the constructor to add validation

rules. You can chain multiple requirements on

RuleFor<>() in the same way that you could add

multiple DataAnnotations attributes to a

model.

If you need to create a custom validation rule, you

can use the Must() method to specify a

predicate. If you wish to reuse the validation rule

across multiple models, encapsulate the rule as an

extension method to reduce duplication.

To add FluentValidation to your application, install

the FluentValidation .AspNetCore NuGet package,

call AddFluentValidationAutoValidation()

in Program.cs, and register your validators with

the DI container. This will add FluentValidation

validations in addition to the built-in

DataAnnotations system.

To remove the DataAnnotations validation

system and use FluentValidation only, set the

DisableDataAnnotationsValidation option

to true in your call to

AddFluentValidationAutoValidation().

Favor this approach where possible to avoid

running validation methods from two different

systems.

You can allow FluentValidation to automatically

discover and register all the validators in your

application by calling

AddValidatorsFromAssemblyContaining<T>

(), where T is a type in the assembly to scan. This

means you don’t have to register each validator in

your application with the DI container individually.

33 Calling remote APIs with
IHttpClientFactory

This chapter covers

Seeing problems caused by using HttpClient incorrectly to call
HTTP APIs
Using IHttpClientFactory to manage HttpClient lifetimes
Encapsulating configuration and handling transient errors with
IHttpClientFactory

So far in this book we’ve focused on creating web pages and

exposing APIs. Whether that’s customers browsing a Razor

Pages application or client-side SPAs and mobile apps

consuming your APIs, we’ve been writing the APIs for others

to consume.

However, it’s common for your application to interact with

third-party services by consuming their APIs as well as your

own API apps. For example, an e-commerce site needs to

take payments, send email and Short Message Service

(SMS) messages, and retrieve exchange rates from a third-

party service. The most common approach for interacting

with services is using HTTP. So far in this book we’ve looked

at how you can expose HTTP services, using minimal APIs

and API controllers, but we haven’t looked at how you can

consume HTTP services.

In section 33.1 you’ll learn the best way to interact with

HTTP services using HttpClient. If you have any

experience with C#, it’s likely that you’ve used this class to

send HTTP requests, but there are two gotchas to think

about; otherwise, your app could run into difficulties.

IHttpClientFactory was introduced in .NET Core 2.1; it

makes creating and managing HttpClient instances easier

and avoids the common pitfalls. In section 33.2 you’ll learn

how IHttpClientFactory achieves this by managing the

HttpClient handler pipeline. You’ll learn how to create

named clients to centralize the configuration for calling

remote APIs and how to use typed clients to encapsulate the

remote service’s behavior.

Network glitches are a fact of life when you’re working with

HTTP APIs, so it’s important for you to handle them

gracefully. In section 33.3 you’ll learn how to use the open-

source resilience and fault-tolerance library Polly to handle

common transient errors using simple retries, with the

possibility for more complex policies.

Finally, in section 33.4 you’ll see how you can create your

own custom HttpMessageHandler handlers managed by

IHttpClientFactory. You can use custom handlers to

implement cross-cutting concerns such as logging, metrics,

and authentication, whenever a function needs to execute

every time you call an HTTP API. You’ll also see how to

create a handler that automatically adds an API key to all

outgoing requests to an API.

To misquote John Donne, no app is an island, and the most

common way of interacting with other apps and services is

over HTTP. In .NET, that means using HttpClient.

33.1 Calling HTTP APIs: The problem
with HttpClient

In this section you’ll learn how to use HttpClient to call

HTTP APIs. I’ll focus on two common pitfalls in using

HttpClient—socket exhaustion and DNS rotation

problems—and show why they occur. In section 33.2 you’ll

see how to avoid these problems by using

IHttpClientFactory.

It’s common for an application to interact with other services

to fulfill its duty. Take a typical e-commerce store, for

example. In even the most basic version of the application,

you will likely need to send emails and take payments using

credit cards or other services. You could try to build that

functionality yourself, but it probably wouldn’t be worth the

effort.

Instead, it makes far more sense to delegate those

responsibilities to third-party services that specialize in that

functionality. Whichever service you use, they will almost

certainly expose an HTTP API for interacting with the service.

For many services, that will be the only way.

RESTful HTTP vs. gRPC vs. GraphQL

There are many ways to interact with third-party services, but HTTP RESTful services
are still the king, decades after HTTP was first proposed. Every platform and
programming language you can think of includes support for making HTTP requests
and handling responses. That ubiquity makes it the go-to option for most services.

Despite their ubiquity, RESTful services are not perfect. They are relatively verbose,
which means that more data ends up being sent and received than with some other
protocols. It can also be difficult to evolve RESTful APIs after you have deployed them.
These limitations have spurred interest in two alternative protocols in particular: gRPC
and GraphQL.

gRPC is intended to be an efficient mechanism for server-to-server communication. It
builds on top of HTTP/2 but typically provides much higher performance than
traditional RESTful APIs. gRPC support was added in .NET Core 3.0 and is receiving
many performance and feature updates. For a comprehensive view of .NET support,
see the documentation at https://learn.microsoft.com/aspnet/core/grpc.

Whereas gRPC works best with server-to-server communication and nonbrowser
clients, GraphQL is best used to provide evolvable APIs to mobile and single-page
application (SPA) apps. It has become popular among frontend developers, as it can
reduce the friction involved in deploying and using new APIs. For details, I recommend
GraphQL in Action, by Samer Buna (Manning, 2021).

Despite the benefits and improvements gRPC and GraphQL can bring, RESTful HTTP
services are here to stay for the foreseeable future, so it’s worth making sure that you
understand how to use them with HttpClient.

In .NET we use the HttpClient class for calling HTTP APIs.

You can use it to make HTTP calls to APIs, providing all the

headers and body to send in a request, and reading the

response headers and data you get back. Unfortunately, it’s

hard to use correctly, and even when you do, it has

limitations.

https://learn.microsoft.com/aspnet/core/grpc

The source of the difficulty with HttpClient stems partly

from the fact that it implements the IDisposable

interface. In general, when you use a class that implements

IDisposable, you should wrap the class with a using

statement whenever you create a new instance to ensure

that unmanaged resources used by the type are cleaned up

when the class is removed, as in this example:

using (var myInstance = new MyDisposableClass())

{

 // use myInstance

}

TIP C# also includes a simplified version of the using statement
called a using declaration, which omits the curly braces, as shown in
listing 33.1. You can read more about the syntax at
http://mng.bz/nW12.

That might lead you to think that the correct way to create

an HttpClient is shown in listing 33.1. This listing shows a

simple example where a minimal API endpoint calls an

external API to fetch the latest currency exchange rates, and

returns them as the response.

http://mng.bz/nW12

Figure 33.1 To create a connection, a client selects a random
port and connects to the HTTP server’s port and IP address. The
client can then send HTTP requests to the server.

WARNING Do not use HttpClient as it’s shown in listing 33.1.
Using it this way could cause your application to become unstable, as
you’ll see shortly.

Listing 33.1 The incorrect way to use HttpClient

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/", async () =>

{

 using HttpClient client = new HttpClient(); ❶
 client.BaseAddress = new Uri("https://example.com/rates/"); ❷

 var response = await client.GetAsync("latest"); ❸

 response.EnsureSuccessStatusCode(); ❹

 return await response.Content.ReadAsStringAsync(); ❺
});

app.Run();

❶ Wrapping the HttpClient in a using declaration means it is disposed at the end of the
scope.

❷ Configures the base URL used to make requests using the HttpClient
❸ Makes a GET request to the exchange rates API

❹ Throws an exception if the request was not successful
❺ Reads the result as a string and returns it from the action method

HttpClient is special, and you shouldn’t use it like this!

The problem is due primarily to the way the underlying

protocol implementation works. Whenever your computer

needs to send a request to an HTTP server, you must create

a connection between your computer and the server. To

create a connection, your computer opens a port, which has

a random number between 0 and 65,535, and connects to

the HTTP server’s IP address and port, as shown in figure

33.1. Your computer can then send HTTP requests to the

server.

DEFINITION The combination of IP address and port is called a
socket.

The main problem with the using statement/declaration

and HttpClient is that it can lead to a problem called

socket exhaustion, illustrated in figure 33.2. This happens

when all the ports on your computer have been used up

making other HTTP connections, so your computer can’t

make any more requests. At that point, your application will

hang, waiting for a socket to become free—a bad

experience!

Figure 33.2 Disposing of HttpClient can lead to socket
exhaustion. Each new connection requires the operating system
to assign a new socket, and closing a socket doesn’t make it
available until the TIME_WAIT period of 240 seconds has elapsed.
Eventually you can run out of sockets, at which point you can’t
make any outgoing HTTP requests.

Given that I said there are 65,536 different port numbers,

you might think that’s an unlikely situation. It’s true that you

will likely run into this problem only on a server that is

making a lot of connections, but it’s not as rare as you might

think.

The problem is that when you dispose of an HttpClient, it

doesn’t close the socket immediately. The design of the

TCP/IP protocol used for HTTP requests means that after

trying to close a connection, the connection moves to a state

called TIME_WAIT. The connection then waits for a specific

period (240 seconds in Windows) before closing the socket.

Until the TIME_WAIT period has elapsed, you can’t reuse

the socket in another HttpClient to make HTTP requests.

If you’re making a lot of requests, that can quickly lead to

socket exhaustion, as shown in figure 33.2.

TIP You can view the state of active ports/sockets in Windows and
Linux by running the command netstat from the command line or
a terminal window. Be sure to run netstat -n in Windows to skip
Domain Name System (DNS) resolution.

Instead of disposing of HttpClient, the general advice

(before the introduction of IHttpClientFactory) was to

use a single instance of HttpClient, as shown in the

following listing.

Listing 33.2 Using a singleton HttpClient to avoid socket
exhaustion

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

HttpClient client = new HttpClient ❶
{ ❶
 BaseAddress = new Uri("https://example.com/rates/"), ❶
}; ❶

app.MapGet("/", async () =>

{

 var response = await client.GetAsync("latest"); ❷

 response.EnsureSuccessStatusCode();

 return await response.Content.ReadAsStringAsync();

});

app.Run();

❶ A single instance of HttpClient is created for the lifetime of the app.

❷ Multiple requests use the same instance of HttpClient.

This solves the problem of socket exhaustion. As you’re not

disposing of the HttpClient, the socket is not disposed of,

so you can reuse the same port for multiple requests. No

matter how many times you call the API in the preceding

example, you will use only a single socket. Problem solved!

Unfortunately, this introduces a different problem, primarily

related to DNS. DNS is how the friendly hostnames we use,

such as manning.com, are converted to the Internet Protocol

(IP) addresses that computers need. When a new connection

is required, the HttpClient first checks the DNS record for

a host to find the IP address and then makes the connection.

For subsequent requests, the connection is already

established, so it doesn’t make another DNS call.

For singleton HttpClient instances, this can be a problem

because the HttpClient won’t detect DNS changes. DNS is

often used in cloud environments for load balancing to do

graceful rollouts of deployments.
1
 If the DNS record of a

service you’re calling changes during the lifetime of your

application, a singleton HttpClient will keep calling the

old service, as shown in figure 33.3.

Figure 33.3 HttpClient does a DNS lookup before establishing a
connection to determine the IP address associated with a

hostname. If the DNS record for a hostname changes, a
singleton HttpClient will not detect it and will continue sending
requests to the original server it connected to.

NOTE HttpClient won’t respect a DNS change while the original
connection exists. If the original connection is closed (for example, if
the original server goes offline), it will respect the DNS change, as it
must establish a new connection.

It seems that you’re damned if you do and damned if you

don’t! Luckily, IHttpClientFactory can take care of all

this for you.

33.2 Creating HttpClients with
IHttpClientFactory

In this section you’ll learn how you can use

IHttpClientFactory to avoid the common pitfalls of

HttpClient. I’ll show several patterns you can use to

create an HttpClient:

Using CreateClient() as a drop-in replacement

for HttpClient

Using named clients to centralize the configuration

of an HttpClient used to call a specific third-

party API

Using typed clients to encapsulate the interaction

with a third-party API for easier consumption by

your code

IHttpClientFactory makes it easier to create

HttpClient instances correctly instead of relying on either

of the faulty approaches I discussed in section 33.1. It also

makes it easier to configure multiple HttpClients and

allows you to create a middleware pipeline for outgoing

requests.

Before we look at how IHttpClientFactory achieves all

that, we will look at how HttpClient works under the

hood.

33.2.1 Using IHttpClientFactory to manage
HttpClientHandler lifetime

In this section we’ll look at the handler pipeline used by

HttpClient. You’ll see how IHttpClientFactory

manages the lifetime of this pipeline and how this enables

the factory to avoid both socket exhaustion and DNS

problems.

The HttpClient class you typically use to make HTTP

requests is responsible for orchestrating requests, but it isn’t

responsible for making the raw connection itself. Instead,

the HttpClient calls into a pipeline of

HttpMessageHandler, at the end of which is an

HttpClientHandler, which makes the actual connection

and sends the HTTP request, as shown in figure 33.4.

Figure 33.4 Each HttpClient contains a pipeline of
HttpMessageHandlers. The final handler is an HttpClientHandler,
which makes the connection to the remote server and sends the
HTTP request. This configuration is similar to the ASP.NET Core

middleware pipeline, and it allows you to make cross-cutting
adjustments to outgoing requests.

This configuration is reminiscent of the middleware pipeline

used by ASP.NET Core applications, but this is an outbound

pipeline. When an HttpClient makes a request, each

handler gets a chance to modify the request before the final

HttpClientHandler makes the real HTTP request. Each

handler in turn then gets a chance to view the response

after it’s received.

TIP You’ll see an example of using this handler pipeline for cross-
cutting concerns in section 33.3 when we add a transient error
handler.

The problems of socket exhaustion and DNS I described in

section 33.1 are related to the disposal of the

HttpClientHandler at the end of the handler pipeline. By

default, when you dispose of an HttpClient, you dispose

of the handler pipeline too. IHttpClientFactory

separates the lifetime of the HttpClient from the

underlying HttpClientHandler.

Separating the lifetime of these two components enables the

IHttpClientFactory to solve the problems of socket

exhaustion and DNS rotation. It achieves this in two ways:

By creating a pool of available handlers—Socket

exhaustion occurs when you dispose of an

HttpClientHandler, due to the TIME_WAIT

problem described previously.

IHttpClientFactory solves this by creating a

pool of handlers.

IHttpClientFactory maintains an active handler

that it uses to create all HttpClients for two minutes.

When the HttpClient is disposed of, the underlying

handler isn’t disposed of, so the connection isn’t closed.

As a result, socket exhaustion isn’t a problem.

By periodically disposing of handlers—Sharing

handler pipelines solves the socket exhaustion

problem, but it doesn’t solve the DNS problem. To

work around this, the IHttpClientFactory

periodically (every two minutes) creates a new

active HttpClientHandler that it uses for each

HttpClient created subsequently. As these

HttpClients are using a new handler, they make

a new TCP/IP connection, so DNS changes are

respected.

IHttpClientFactory disposes of expired handlers

periodically in the background once they are no longer

used by an HttpClient. This ensures that your

application’s HttpClients use a limited number of

connections.

TIP I wrote a blog post that looks in depth at how
IHttpClientFactory achieves its handler rotation. This is a
detailed post, but it may be of interest to those who like to know how
things are implemented behind the scenes. See “Exploring the code
behind IHttpClientFactory in depth” at http://mng.bz/8NRK.

Rotating handlers with IHttpClientFactory solves both

the problems we’ve discussed. Another bonus is that it’s

easy to replace existing uses of HttpClient with

IHttpClientFactory.

IHttpClientFactory is included by default in ASP.NET

Core. You simply add it to your application’s services in

Program.cs:

builder.Services.AddHttpClient();

This registers the IHttpClientFactory as a singleton in

your application, so you can inject it into any other service.

The following listing shows how you can replace the

HttpClient approach from listing 33.2 with a version that

uses IHttpClientFactory.

Listing 33.3 Using IHttpClientFactory to create an HttpClient

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddHttpClient(); ❶

WebApplication app = builder.Build();

app.MapGet("/", async (IHttpClientFactory factory) => ❷
{

 HttpClient client = factory.CreateClient(); ❸

http://mng.bz/8NRK

 client.BaseAddress = ❹
 new Uri("https://example.com/rates/"); ❹

 var response = await client.GetAsync("latest"); ❺

 response.EnsureSuccessStatusCode(); ❺
 return await response.Content.ReadAsStringAsync(); ❺
});

app.Run();

❶ Registers the IHttpClientFactory service in DI

❷ Injects the IHttpClientFactory using DI
❸ Creates an HttpClient instance with an HttpClientHandler managed by the factory

❹ Configures the HttpClient for calling the API as before
❺ Uses the HttpClient in exactly the same way you would otherwise

The immediate benefit of using IHttpClientFactory in

this way is efficient socket and DNS handling. When you

create an HttpClient using CreateClient(),

IHttpClientFactory uses a pooled

HttpClientHandler to create a new instance of an

HttpClient, pooling and disposing the handlers as

necessary to find a balance between the tradeoffs described

in section 33.1.

Minimal changes should be required to take advantage of

this pattern, as the bulk of your code stays the same. Only

the code where you’re creating an HttpClient instance

changes. This makes it a good option if you’re refactoring an

existing app.

SocketsHttpHandler vs.
IHttpClientFactory

The limitations of HttpClient described in section 33.1 apply specifically to the
HttpClientHandler at the end of the HttpClient handler pipeline in older
versions of .NET Core. IHttpClientFactory provides a mechanism for managing
the lifetime and reuse of HttpClientHandler instances.

From .NET 5 onward, the legacy HttpClientHandler has been replaced by
SocketsHttpHandler. This handler has several advantages, most notably
performance benefits and consistency across platforms. The
SocketsHttpHandler can also be configured to use connection pooling and
recycling, like IHttpClientFactory.

So if HttpClient can already use connection pooling, is it worth using
IHttpClientFactory? In most cases, I would say yes. You must manually
configure connection pooling with SocketsHttpHandler, and
IHttpClientFactory has additional features such as named clients and typed
clients. In any situations where you’re using dependency injection (DI), which is every
ASP.NET Core app and most .NET 7 apps, I recommend using
IHttpClientFactory to take advantage of these benefits.

Nevertheless, if you’re working in a non-DI scenario and can’t use
IHttpClientFactory, be sure to enable the SocketsHttpHandler connection
pooling as described in this post by Steve Gordon, titled “HttpClient connection pooling
in .NET Core”: http://mng.bz/E27q.

Managing the socket problem is one big advantage of using

IHttpClientFactory over HttpClient, but it’s not the

only benefit. You can also use IHttpClientFactory to

clean up the client configuration, as you’ll see in the next

section.

http://mng.bz/E27q

33.2.2 Configuring named clients at
registration time

In this section you’ll learn how to use the Named Client

pattern with IHttpClientFactory. This pattern

encapsulates the logic for calling a third-party API in a single

location, making it easier to use the HttpClient in your

consuming code.

NOTE IHttpClientFactory uses the same HttpClient
type you’re familiar with if you’re coming from .NET Framework. The
big difference is that IHttpClientFactory solves the DNS and
socket exhaustion problem by managing the underlying message
handlers.

Using IHttpClientFactory solves the technical problems

I described in section 33.1, but the code in listing 33.3 is still

pretty messy in my eyes, primarily because you must

configure the HttpClient to point to your service before

you use it. If you need to create an HttpClient to call the

API in more than one place in your application, you must

configure it in more than one place too.

IHttpClientFactory provides a convenient solution to

this problem by allowing you to centrally configure named

clients, which have a string name and a configuration

function that runs whenever an instance of the named client

is requested. You can define multiple configuration functions

that run in sequence to configure your new HttpClient.

The following listing shows how to register a named client

called "rates". This client is configured with the correct

BaseAddress and sets default headers that are to be sent

with each outbound request. Once you have configured this

named client, you can create it from an

IHttpClientFactory instance using the name of the

client, "rates".

Listing 33.4 Using IHttpClientFactory to create a named
HttpClient

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddHttpClient("rates", (HttpClient client) => ❶
{

 client.BaseAddress = ❷
 new Uri("https://example.com/rates/"); ❷
 client.DefaultRequestHeaders.Add(❷
 HeaderNames.UserAgent, "ExchangeRateViewer"); ❷
})

.ConfigureHttpClient((HttpClient client) => {}) ❸

.ConfigureHttpClient(

 (IServiceProvider provider, HttpClient client) => {}); ❹

WebApplication app = builder.Build();

app.MapGet("/", async (IHttpClientFactory factory) => ❺
{

 HttpClient client = factory.CreateClient("rates"); ❻

 var response = await client.GetAsync("latest"); ❼
 ❼
 response.EnsureSuccessStatusCode();

 return await response.Content.ReadAsStringAsync();

});

app.Run();

❶ Provides a name for the client and a configuration function
❷ The configuration function runs every time the named HttpClient is requested.

❸ You can add more configuration functions for the named client, which run in sequence.

❹ Additional overloads exist that allow access to the DI container when creating a named
client.

❺ Injects the IHttpClientFactory using DI
❻ Requests the configured named client called “rates”

❼ Uses the HttpClient the same way as before

NOTE You can still create unconfigured clients using
CreateClient() without a name. Be aware that if you pass an
unconfigured name, such as CreateClient ("MyRates"),
the client returned will be unconfigured. Take care—client names are
case-sensitive, so "rates" is a different client from "Rates".

Named clients help centralize your HttpClient

configuration in one place, removing the responsibility for

configuring the client from your consuming code. But you’re

still working with raw HTTP calls at this point, such as

providing the relative URL to call ("/latest") and parsing

the response. IHttpClientFactory includes a feature

that makes it easier to clean up this code.

33.2.3 Using typed clients to encapsulate
HTTP calls

A common pattern when you need to interact with an API is

to encapsulate the mechanics of that interaction in a

separate service. You could easily do this with the

IHttpClientFactory features you’ve already seen by

extracting the body of the GetRates() function from listing

33.4 into a separate service. But IHttpClientFactory

has deeper support for this pattern.

IHttpClientFactory supports typed clients. A typed

client is a class that accepts a configured HttpClient in its

constructor. It uses the HttpClient to interact with the

remote API and exposes a clean interface for consumers to

call. All the logic for interacting with the remote API is

encapsulated in the typed client, such as which URL paths to

call, which HTTP verbs to use, and the types of responses

the API returns. This encapsulation makes it easier to call

the third-party API from multiple places in your app by using

the typed client.

The following listing shows an example typed client for the

exchange rates API shown in previous listings. It accepts an

HttpClient in its constructor and exposes a

GetLatestRates() method that encapsulates the logic for

interacting with the third-party API.

Listing 33.5 Creating a typed client for the exchange rates API

public class ExchangeRatesClient

{

 private readonly HttpClient _client; ❶
 public ExchangeRatesClient(HttpClient client) ❶
 {

 _client = client;

 }

 public async Task<string> GetLatestRates() ❷
 {

 var response = await _client.GetAsync("latest"); ❸
 response.EnsureSuccessStatusCode(); ❸

 return await response.Content.ReadAsStringAsync(); ❸
 }

}

❶ Injects an HttpClient using DI instead of an IHttpClientFactory

❷ The GetLatestRates() logic encapsulates the logic for interacting with the API.
❸ Uses the HttpClient the same way as before

We can then inject this ExchangeRatesClient into

consuming services, and they don’t need to know anything

about how to make HTTP requests to the remote service;

they need only to interact with the typed client. We can

update listing 33.3 to use the typed client as shown in the

following listing, at which point the API endpoint method

becomes trivial.

Listing 33.6 Consuming a typed client to encapsulate calls to a
remote HTTP server

app.MapGet("/", async (ExchangeRatesClient ratesClient) => ❶
 await ratesClient.GetLatestRates()); ❷

❶ Injects the typed client using DI

❷ Calls the typed client’s API. The typed client handles making the correct HTTP requests.

You may be a little confused at this point. I haven’t

mentioned how IHttpClientFactory is involved yet!

The ExchangeRatesClient takes an HttpClient in its

constructor. IHttpClientFactory is responsible for

creating the HttpClient, configuring it to call the remote

service and injecting it into a new instance of the typed

client.

You can register the ExchangeRatesClient as a typed

client and configure the HttpClient that is injected in

ConfigureServices, as shown in the following listing.

This is similar to configuring a named client, so you can

register additional configuration for the HttpClient that

will be injected into the typed client.

Listing 33.7 Registering a typed client with HttpClientFactory in
Startup.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddHttpClient<ExchangeRatesClient> ❶
 (HttpClient client) => ❷
 { ❷
 client.BaseAddress = ❷
 new Uri("https://example.com/rates/"); ❷
 client.DefaultRequestHeaders.Add(❷
 HeaderNames.UserAgent, "ExchangeRateViewer"); ❷
 })

 .ConfigureHttpClient((HttpClient client) => {}); ❸
}

WebApplication app = builder.Build();

app.MapGet("/", async (ExchangeRatesClient ratesClient) =>

 await ratesClient.GetLatestRates());

app.Run();

❶ Registers a typed client using the generic AddHttpClient method
❷ You can provide an additional configuration function for the HttpClient that will be injected.

❸ As for named clients, you can provide multiple configuration methods.

Behind the scenes, the call to

AddHttpClient<ExchangeRatesClient> does several

things:

Registers HttpClient as a transient service in

DI. That means you can accept an HttpClient in

the constructor of any service in your app and

IHttpClientFactory will inject a default pooled

instance, which has no additional configuration.

Registers ExchangeRatesClient as a transient

service in DI.

Controls the creation of ExchangeRatesClient

so that whenever a new instance is required, a

pooled HttpClient is configured as defined in

the AddHttpClient<T> lambda method.

TIP You can think of a typed client as a wrapper around a named
client. I’m a big fan of this approach, as it encapsulates all the logic
for interacting with a remote service in one place. It also avoids the
magic strings that you use with named clients, removing the
possibility of typos.

Another option when registering typed clients is to register

an interface in addition to the implementation. This is often

good practice, as it makes it much easier to test consuming

code. If the typed client in listing 33.5 implemented the

interface IExchangeRatesClient, you could register the

interface and typed client implementation using

builder.Services.AddHttpClient<IExchangeRatesClient, ExchangeRatesClient>()

You could then inject this into consuming code using the

interface type

app.MapGet("/", async (IExchangeRatesClient ratesClient) =>

 await ratesClient.GetLatestRates());

Another common pattern is to not provide any configuration

for the typed client in the AddHttpClient() call. Instead,

you could place that logic in the constructor of your

ExchangeRatesClient using the injected HttpClient:

public class ExchangeRatesClient

{

 private readonly HttpClient _client;

 public ExchangeRatesClient(HttpClient client)

 {

 _client = client;

 _client.BaseAddress = new Uri("https://example.com/rates/");

 }

}

This is functionally equivalent to the approach shown in

listing 33.7. It’s a matter of taste where you’d rather put the

configuration for your HttpClient. If you take this

approach, you don’t need to provide a configuration lambda

in AddHttpClient():

builder.Services.AddHttpClient<ExchangeRatesClient>();

Named clients and typed clients are convenient for

managing and encapsulating HttpClient configuration, but

IHttpClientFactory has another advantage we haven’t

looked at yet: it’s easier to extend the HttpClient handler

pipeline.

33.3 Handling transient HTTP errors
with Polly

In this section you’ll learn how to handle a common

scenario: transient errors when you make calls to a remote

service, caused by an error in the remote server or

temporary network problems. You’ll see how to use

IHttpClientFactory to handle cross-cutting concerns

like this by adding handlers to the HttpClient handler

pipeline.

In section 33.2.1 I described HttpClient as consisting of a

pipeline of handlers. The big advantage of this pipeline,

much like the middleware pipeline of your application, is that

it allows you to add cross-cutting concerns to all requests.

For example, IHttpClientFactory automatically adds a

handler to each HttpClient that logs the status code and

duration of each outgoing request.

In addition to logging, another common requirement is to

handle transient errors when calling an external API.

Transient errors can happen when the network drops out, or

if a remote API goes offline temporarily. For transient errors,

simply trying the request again can often succeed, but

having to write the code to do so manually is cumbersome.

ASP.NET Core includes a library called

Microsoft.Extensions.Http.Polly that makes handling

transient errors easier. It uses the popular open-source

library Polly (https://github.com/App-vNext/Polly) to

https://github.com/App-vNext/Polly

automatically retry requests that fail due to transient

network errors.

Polly is a mature library for handling transient errors that

includes a variety of error-handling strategies, such as

simple retries, exponential backoff, circuit breaking, and

bulkhead isolation. Each strategy is explained in detail at

https://github.com/App-vNext/Polly, so be sure to read

about the benefits and trade-offs when selecting a strategy.

To provide a taste of what’s available, we’ll add a simple

retry policy to the ExchangeRatesClient shown in

section 33.2. If a request fails due to a network problem,

such as a timeout or a server error, we’ll configure Polly to

automatically retry the request as part of the handler

pipeline, as shown in figure 33.5.

https://github.com/App-vNext/Polly

Figure 33.5 Using the PolicyHttpMessageHandler to handle
transient errors. If an error occurs when calling the remote API,
the Polly handler will automatically retry the request. If the
request then succeeds, the result is passed back to the caller.
The caller didn’t have to handle the error, making it simpler to
use the HttpClient while remaining resilient to transient errors.

To add transient error handling to a named client or

HttpClient, follow these steps:

1. Install the Microsoft.Extensions.Http.Polly NuGet

package in your project by running dotnet add

package

Microsoft.Extensions.Http.Polly, by

using the NuGet explorer in Visual Studio, or by

adding a <PackageReference> element to your

project file as follows:

<PackageReference Include="Microsoft.Extensions.Http.Polly"

 Version="7.0.0" />

2. Configure a named or typed client as shown in

listings 33.4 and 33.7.

3. Configure a transient error-handling policy for your

client as shown in list- ing 33.8.

Listing 33.8 Configuring a transient error-handling policy for a
typed client

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.services.AddHttpClient<ExchangeRatesClient>() ❶

 .AddTransientHttpErrorPolicy(policy => ❷
 policy.WaitAndRetryAsync(new[] { ❸
 TimeSpan.FromMilliseconds(200), ❹
 TimeSpan.FromMilliseconds(500), ❹
 TimeSpan.FromSeconds(1) ❹
 })

);

❶ You can add transient error handlers to named or typed clients.
❷ Uses the extension methods provided by the NuGet package to add transient error

handlers

❸ Configures the retry policy used by the handler. There are many types of policies to
choose among.

❹ Configures a policy that waits and retries three times if an error occurs

In the preceding listing we configure the error handler to

catch transient errors and retry three times, waiting an

increasing amount of time between requests. If the request

fails on the third try, the handler ignores the error and pass

it back to the client, as though there was no error handler at

all. By default, the handler retries any request that

Throws an HttpRequestException, indicating

an error at the protocol level, such as a closed

connection

Returns an HTTP 5xx status code, indicating a

server error at the API

Returns an HTTP 408 status code, indicating a

timeout

TIP If you want to handle more cases automatically or to restrict the
responses that will be automatically retried, you can customize the

selection logic as described in the “Polly and HttpClientFactory”
documentation on GitHub: http://mng.bz/NY7E.

Using standard handlers like the transient error handler

allows you to apply the same logic across all requests made

by a given HttpClient. The exact strategy you choose will

depend on the characteristics of both the service and the

request, but a good retry strategy is a must whenever you

interact with potentially unreliable HTTP APIs.

WARNING When designing a policy, be sure to consider the effect of
your policy. In some circumstances it may be better to fail quickly
instead of retrying a request that is never going to succeed. Polly
includes additional policies such as circuit-breakers to create more
advanced approaches.

The Polly error handler is an example of an optional

HttpMessageHandler that you can plug in to your

HttpClient, but you can also create your own custom

handler. In the next section you’ll see how to create a

handler that adds a header to all outgoing requests.

33.4 Creating a custom
HttpMessageHandler

Most third-party APIs require some form of authentication

when you’re calling them. For example, many services

require you to attach an API key to an outgoing request, so

that the request can be tied to your account. Instead of

having to remember to add this header manually for every

http://mng.bz/NY7E

request to the API, you could configure a custom

HttpMessageHandler to attach the header automatically

for you.

NOTE More complex APIs may use JSON Web Tokens (JWT)
obtained from an identity provider. If that’s the case, consider using
the open source IdentityModel library
(https://identitymodel.readthedocs.io), which provides integration
points for ASP.NET Core Identity and HttpClientFactory.

You can configure a named or typed client using

IHttpClientFactory to use your API-key handler as part

of the HttpClient’s handler pipeline, as shown in figure

33.6. When you use the HttpClient to send a message,

the HttpRequestMesssage is passed through each

handler in turn. The API-key handler adds the extra header

and passes the request to the next handler in the pipeline.

Eventually, the HttpClientHandler makes the network

request to send the HTTP request. After the response is

received, each handler gets a chance to inspect (and

potentially modify) the response.

https://identitymodel.readthedocs.io/

Figure 33.6 You can use a custom HttpMessageHandler to modify
requests before they’re sent to third-party APIs. Every request
passes through the custom handler before the final handler (the
HttpClientHandler) sends the request to the HTTP API. After the
response is received, each handler gets a chance to inspect and
modify the response.

To create a custom HttpMessageHandler and add it to a

typed or named client’s pipeline, follow these steps:

1. Create a custom handler by deriving from the

DelegatingHandler base class.

2. Override the SendAsync() method to provide

your custom behavior. Call base.SendAsync()

to execute the remainder of the handler pipeline.

3. Register your handler with the DI container. If your

handler does not require state, you can register it

as a singleton service; otherwise, you should

register it as a transient service.

4. Add the handler to one or more of your named or

typed clients by calling

AddHttpMessageHandler<T>() on an

IHttpClientBuilder, where T is your handler

type. The order in which you register handlers

dictates the order in which they are added to the

HttpClient handler pipeline. You can add the

same handler type more than once in a pipeline if

you wish and to multiple typed or named clients.

The following listing shows an example of a custom

HttpMessageHandler that adds a header to every

outgoing request. We use the custom "API-KEY" header in

this example, but the header you need will vary depending

on the third-party API you’re calling. This example uses

strongly typed configuration to inject the secret API key, as

you saw in chapter 10.

Listing 33.9 Creating a custom HttpMessageHandler

public class ApiKeyMessageHandler : DelegatingHandler ❶
{

 private readonly ExchangeRateApiSettings _settings; ❷
 public ApiKeyMessageHandler(❷
 IOptions<ExchangeRateApiSettings> settings) ❷
 { ❷
 _settings = settings.Value; ❷
 } ❷

 protected override async Task<HttpResponseMessage> SendAsync(❸
 HttpRequestMessage request, ❸
 CancellationToken cancellationToken) ❸
 {

 request.Headers.Add("API-KEY", _settings.ApiKey); ❹

 HttpResponseMessage response = ❺
 await base.SendAsync(request, cancellationToken); ❺

 return response; ❻
 }

}

❶ Custom HttpMessageHandlers should derive from DelegatingHandler.

❷ Injects the strongly typed configuration values using DI
❸ Overrides the SendAsync method to implement the custom behavior

❹ Adds the extra header to all outgoing requests
❺ Calls the remainder of the pipeline and receives the response

❻ You could inspect or modify the response before returning it.

To use the handler, you must register it with the DI container

and add it to a named or typed client. In the following

listing, we add it to the ExchangeRatesClient, along with

the transient error handler we registered in listing 33.7. This

creates a pipeline similar to that shown in figure 33.6.

Listing 33.10 Registering a custom handler in
Startup.ConfigureServices

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddTransient<ApiKeyMessageHandler>(); ❶

builder.Services.AddHttpClient<ExchangeRatesClient>()

 .AddHttpMessageHandler<ApiKeyMessageHandler>() ❷
 .AddTransientHttpErrorPolicy(policy => ❸
 policy.WaitAndRetryAsync(new[] {

 TimeSpan.FromMilliseconds(200),

 TimeSpan.FromMilliseconds(500),

 TimeSpan.FromSeconds(1)

 })

);

❶ Registers the custom handler with the DI container
❷ Configures the typed client to use the custom handler

❸ Adds the transient error handler. The order in which the handlers are registered dictates
their order in the pipeline.

Whenever you make a request using the typed client

ExchangeRatesClient, you can be sure that the API key

will be added and that transient errors will be handled

automatically for you.

That brings us to the end of this chapter on

IHttpClientFactory. Given the difficulties in using

HttpClient correctly that I showed in section 33.1, you

should always favor IHttpClientFactory where possible.

As a bonus, IHttpClientFactory allows you to easily

centralize your API configuration using named clients and to

encapsulate your API interactions using typed clients.

Summary
Use the HttpClient class for calling HTTP APIs.

You can use it to make HTTP calls to APIs,

providing all the headers and body to send in a

request, and reading the response headers and

data you get back.

HttpClient uses a pipeline of handlers,

consisting of multiple HttpMessageHandlers

connected in a similar way to the middleware

pipeline used in ASP.NET Core. The final handler is

the HttpClientHandler, which is responsible

for making the network connection and sending

the request.

HttpClient implements IDisposable, but

typically you shouldn’t dispose of it. When the

HttpClientHandler that makes the TCP/IP

connection is disposed of, it keeps a connection

open for the TIME_WAIT period. Disposing of

many HttpClients in a short period of time can

lead to socket exhaustion, preventing a machine

from handling any more requests.

Before .NET Core 2.1, the advice was to use a

single HttpClient for the lifetime of your

application. Unfortunately, a singleton

HttpClient will not respect DNS changes, which

are commonly used for traffic management in

cloud environments.

IHttpClientFactory solves both these

problems by managing the lifetime of the

HttpMessageHandler pipeline. You can create a

new HttpClient by calling CreateClient(),

and IHttpClientFactory takes care of

disposing of the handler pipeline when it is no

longer in use.

You can centralize the configuration of an

HttpClient in ConfigureServices() using

named clients by calling

AddHttpClient("test", c => {}). You can

then retrieve a configured instance of the client in

your services by calling

IHttpClientFactory.CreateClient("test"

).

You can create a typed client by injecting an

HttpClient into a service, T, and configuring the

client using AddHttpClient<T>(c => {}).

Typed clients are great for abstracting the HTTP

mechanics away from consumers of your client.

You can use the Microsoft.Extensions.Http.Polly

library to add transient HTTP error handling to

your HttpClients. Call

AddTransientHttpErrorPolicy() when

configuring your IHttpClientFactory, and

provide a Polly policy to control when errors should

be automatically handled and retried.

It’s common to use a simple retry policy to try

making a request multiple times before giving up

and returning an error. When designing a policy, be

sure to consider the effect of your policy; in some

circumstances it may be better to fail quickly

instead of retrying a request that is never going to

succeed. Polly includes additional policies such as

circuit-breakers to create more advanced

approaches.

By default, the transient error-handling

middleware will handle connection errors, server

errors that return a 5xx error code, and 408

(timeout) errors. You can customize this if you

want to handle additional error types but ensure

that you retry only requests that are safe to do so.

You can create a custom HttpMessageHandler

to modify each request made through a named or

typed client. Custom handlers are good for

implementing cross-cutting concerns such as

logging, metrics, and authentication.

To create a custom HttpMessageHandler,

derive from DelegatingHandler and override

the SendAsync() method. Call

base.SendAsync() to send the request to the

next handler in the pipeline and finally to the

HttpClientHandler, which makes the HTTP

request.

Register your custom handler in the DI container

as either a transient or a singleton. Add it to a

named or typed client using

AddHttpMessageHandler<T>(). The order in

which you register the handler in the

IHttpClientBuilder is the order in which the

handler will appear in the HttpClient handler

pipeline.

1. Azure Traffic Manager, for example, uses DNS to route requests. You can read more about
how it works at http://mng.bz/vnP4.

http://mng.bz/vnP4

34 Building background tasks and ser
vices

This chapter covers

Creating tasks that run in the background for your application
Using the generic IHost to create Windows Services and Linux
daemons
Using Quartz.NET to run tasks on a schedule in a clustered
environment

We’ve covered a lot of ground in the book so far. You’ve

learned how to create page-based applications using Razor

Pages and how to create APIs for mobile clients and

services. You’ve seen how to add authentication and

authorization to your application, use Entity Framework Core

(EF Core) for storing state in the database, and create

custom components to meet your requirements.

As well as using these UI-focused apps, you may find you

need to build background or batch-task services. These

services aren’t meant to interact with users directly. Rather,

they stay running in the background, processing items from

a queue or periodically executing a long-running process.

For example, you might want to have a background service

that sends email confirmations for e-commerce orders or a

batch job that calculates sales and losses for retail stores

after the shops close. ASP.NET Core includes support for

these background tasks by providing abstractions for

running a task in the background when your application

starts.

In section 34.1 you’ll learn about the background task

support provided in ASP.NET Core by the IHostedService

interface. You’ll learn how to use the BackgroundService

helper class to create tasks that run on a timer and how to

manage your DI lifetimes correctly in a long-running task.

In section 34.2 we’ll take the background service concept

one step further to create headless worker services using

the generic IHost. Worker services don’t use Razor Pages,

API controllers, or minimal API endpoints; instead, they

consist only of IHostedService services running tasks in

the background. You’ll also see how to configure and install a

worker service app as a Windows Service or as a Linux

daemon.

In section 34.3 I introduce the open-source library

Quartz.NET, which provides extensive scheduling capabilities

for creating background services. You’ll learn how to install

Quartz.NET in your applications, create complex schedules

for your tasks, and add redundancy to your worker services

using clustering.

Before we get to more complex scenarios, we’ll start by

looking at the built-in support for running background tasks

in your apps.

34.1 Running background tasks with
IHostedService

In most applications, it’s common to create tasks that

happen in the background rather than in response to a

request. This could be a task to process a queue of emails,

handling events published to some sort of a message bus or

running a batch process to calculate daily profits. By moving

this work to a background task, your user interface can stay

responsive. Instead of trying to send an email immediately,

for example, you could add the request to a queue and

return a response to the user immediately. The background

task can consume that queue in the background at its

leisure.

In ASP.NET Core, you can use the IHostedService

interface to run tasks in the background. Classes that

implement this interface are started when your application

starts, shortly after your application starts handling

requests, and they are stopped shortly before your

application is stopped. This provides the hooks you need to

perform most tasks.

NOTE Even the default ASP.NET Core server, Kestrel, runs as an
IHosted-Service. In one sense, almost everything in an
ASP.NET Core app is a background task.

In this section you’ll see how to use the IHostedService

to create a background task that runs continuously

throughout the lifetime of your app. This could be used for

many things, but in the next section you’ll see how to use it

to populate a simple cache. You’ll also learn how to use

services with a scoped lifetime in your singleton background

tasks by managing container scopes yourself.

34.1.1 Running background tasks on a timer

In this section you’ll learn how to create a background task

that runs periodically on a timer throughout the lifetime of

your app. Running background tasks can be useful for many

reasons, such as scheduling work to be performed later or

performing work in advance.

In chapter 33 we used IHttpClientFactory and a typed

client to call a third-party service to retrieve the current

exchange rate between various currencies and returned

them in an API endpoint, as shown in the following listing.

Listing 34.1 Using a typed client to return exchange rates from a
third-party service

app.MapGet("/", async (ExchangeRatesClient ratesClient) => ❶
 await ratesClient.GetLatestRatesAsync()); ❷

❶ A typed client created using IHttpClientFactory is injected using dependency injection (DI).

❷ The typed client is used to retrieve exchange rates from the remote API and returns them.

A simple optimization for this code might be to cache the

exchange rate values for a period. There are multiple ways

you could implement that, but in this section we’ll use a

simple cache that preemptively fetches the exchange rates

in the background, as shown in figure 34.1. The API

endpoint simply reads from the cache; it never has to make

HTTP calls itself, so it remains fast.

Figure 34.1 You can use a background task to cache the results
from a third-party API on a schedule. The API controller can then
read directly from the cache instead of calling the third-party API

itself. This reduces the latency of requests to your API controller
while ensuring that the data remains fresh.

NOTE An alternative approach might add caching to your strongly
typed client, ExchangeRatesClient. The downside is that
when you need to update the rates, you will have to perform the
request immediately, making the overall response slower. Using a
background service keeps your API endpoint consistently fast.

You can implement a background task using the

IHostedService interface. This consists of two methods:

public interface IHostedService

{

 Task StartAsync(CancellationToken cancellationToken);

 Task StopAsync(CancellationToken cancellationToken);

}

There are subtleties to implementing the interface correctly.

In particular, the StartAsync() method, although

asynchronous, runs inline as part of your application startup.

Background tasks that are expected to run for the lifetime of

your application must return a Task immediately and

schedule background work on a different thread.

WARNING Calling await in the
IHostedService.StartAsync() method blocks your
application from starting until the method completes. This can be
useful in some cases, when you don’t want the application to start
handling requests until the IHostedService task has completed,
but that’s often not the desired behavior for background tasks.

To make it easier to create background services using best-

practice patterns, ASP.NET Core provides the abstract base

class BackgroundService, which implements

IHostedService and is designed to be used for long-

running tasks. To create a background task, you must

override a single method of this class, ExecuteAsync().

You’re free to use async-await inside this method, and

you can keep running the method for the lifetime of your

app.

The following listing shows a background service that fetches

the latest interest rates using a typed client and saves them

in a cache, as you saw in figure 34.1. The

ExecuteAsync() method keeps looping and updating the

cache until the Cancellation-Token passed as an

argument indicates that the application is shutting down.

Listing 34.2 Implementing a BackgroundService that calls a remote
HTTP API

public class ExchangeRatesHostedService : BackgroundService ❶
{

 private readonly IServiceProvider _provider; ❷
 private readonly ExchangeRatesCache _cache; ❸
 public ExchangeRatesHostedService(

 IServiceProvider provider, ExchangeRatesCache cache)

 {

 _provider = provider;

 _cache = cache;

 }

 protected override async Task ExecuteAsync(❹
 CancellationToken stoppingToken) ❺
 {

 while (!stoppingToken.IsCancellationRequested) ❻
 {

 var client = _provider ❼
 .GetRequiredService<ExchangeRatesClient>(); ❼

 string rates = await client.GetLatestRatesAsync(); ❽
 _cache.SetRates(rates); ❾

 await Task.Delay(TimeSpan.FromMinutes(5), stoppingToken); ❿
 }

 }

}

❶ Derives from BackgroundService to create a task that runs for the lifetime of your app
❷ Injects an IServiceProvider so you can create instances of the typed client

❸ A simple cache for exchange rates
❹ You must override ExecuteAsync to set the service’s behavior.

❺ The CancellationToken passed as an argument is triggered when the application shuts
down.

❻ Keeps looping until the application shuts down

❼ Creates a new instance of the typed client so that the HttpClient is short-lived
❽ Fetches the latest rates from the remote API

❾ Stores the rates in the cache
❿ Waits for 5 minutes (or for the application to shut down) before updating the cache

The ExchangeRateCache in listing 34.2 is a simple

singleton that stores the latest rates. It must be thread-safe,

as it is accessed concurrently by your API endpoint. You can

see a simple implementation in the source code for this

chapter.

To register your background service with the dependency

injection (DI) container, use the AddHostedService()

extension method in Program.cs, which registers the service

using a singleton lifetime, as shown in the following listing.

Listing 34.3 Registering an IHostedService with the DI container

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddHttpClient<ExchangeRatesClient>(); ❶
builder.Services.AddSingleton<ExchangeRatesCache>(); ❷
builder.Services.AddHostedService<ExchangeRatesHostedService>(); ❸

❶ Registers the typed client as before

❷ Adds the cache object as a singleton so it is shared throughout your app
❸ Registers ExchangeRatesHostedService as an IHostedService

By using a background service to fetch the exchange rates,

your API endpoint becomes even simpler. Instead of fetching

the latest rates itself, it returns the value from the cache,

which is kept up to date by the background service:

app.MapGet("/", (ExchangeRatesCache cache) =>

 cache.GetLatestRatesAsync());

This approach to caching works to simplify the API, but you

may have noticed a potential risk: if the API receives a

request before the background service has successfully

updated the rates, the API will fail to return any rates.

This may be OK, but you could take another approach. As

well as updating the rates periodically, you could use the

StartAsync method to block app startup until the rates

have successfully updated. That way, you guarantee that the

rates are available before the app starts handling requests,

so the API will always return successfully. Listing 34.4 shows

how you could update listing 34.2 to block startup until the

rates have been updated while still updating periodically in

the background.

Listing 34.4 Implementing StartAsync to block startup in an
IHostedService

public class ExchangeRatesHostedService : BackgroundService

{

 private readonly IServiceProvider _provider;

 private readonly ExchangeRatesCache _cache;

 public ExchangeRatesHostedService(

 IServiceProvider provider, ExchangeRatesCache cache)

 {

 _provider = provider;

 _cache = cache;

 }

 public override async Task StartAsync(❶
 CancellationToken cancellationToken) ❶
 {

 var success = false;

 while(!success && !cancellationToken.IsCancellationRequested) ❷
 { ❷
 success = await TryUpdateRatesAsync(); ❷
 } ❷

 await base.StartAsync(cancellationToken); ❸
 }

 protected override async Task ExecuteAsync(

 CancellationToken stoppingToken)

 {

 while (!stoppingToken.IsCancellationRequested)

 {

 await Task.Delay(TimeSpan.FromMinutes(5), stoppingToken);

 await TryUpdateRatesAsync();

 }

 }

 private async Task<bool> TryUpdateRatesAsync()

 {

 try

 {

 var client = _provider

 .GetRequiredService<ExchangeRatesClient>();

 string rates = await client.GetLatestRatesAsync();

 _cache.SetRates(rates);

 return true;

 }

 catch(Exception ex)

 {

 return false;

 }

 }

}

❶ The StartAsync method runs on start, before the app starts handling requests.

❷ Keeps trying to update the rates until it succeeds
❸ Once the update succeeds, starts the background process

WARNING The downside to listing 34.4 is that if there’s a problem
retrieving the rates, the app won’t ever start up and start listening for
requests. Whether you consider that a bug or a feature will depend
on your deployment process! Many orchestrators, for example, will
use rolling updates, which ensure that a new deployment is listening
for requests before shutting down the old deployment instances.

One slightly messy aspect of both listings 34.2 and 34.4 is

that I used the Service Locator pattern to retrieve the typed

client. This isn’t ideal, but you shouldn’t inject typed clients

into background services directly. Typed clients are designed

to be short-lived to ensure that you take advantage of the

HttpClient handler rotation, as described in chapter 21.

By contrast, background services are singletons that live for

the lifetime of your application.

TIP If you wish, you can avoid the Service Locator pattern in listing
34.2 by using the factory pattern described in Steve Gordon’s post
titled “IHttpClientFactory Patterns: Using Typed Clients from Singleton
Services”: http://mng.bz/opDZ.

The need for short-lived services leads to another common

question: how can you use scoped services in a background

service?

http://mng.bz/opDZ

34.1.2 Using scoped services in background
tasks

Background services that implement IHostedService are

created once when your application starts. That means they

are by necessity singletons, as there will be only a single

instance of the class.

That leads to a problem if you need to use services

registered with a scoped lifetime. Any services you inject

into the constructor of your singleton IHostedService

must themselves be registered as singletons. Does that

mean there’s no way to use scoped dependencies in a

background service?

NOTE As I discussed in chapter 9, the dependencies of a service
must always have a lifetime that’s the same as or longer than that of
the service itself, to avoid captive dependencies.

Imagine a slight variation on the caching example from

section 34.1.1. Instead of storing the exchange rates in a

singleton cache object, you want to save the exchange rates

to a database so you can look up the historic rates.

Most database providers, including EF Core’s DbContext,

register their services with scoped lifetimes. That means you

need to access the scoped DbContext from inside the

singleton ExchangeRatesHostedService, which

precludes injecting the DbContext with constructor

injection. The solution is to create a new container scope

every time you update the exchange rates.

In typical ASP.NET Core applications, the framework creates

a new container scope every time a new request is received,

immediately before the middleware pipeline executes. All the

services that are used in that request are fetched from the

scoped container. When the request ends, the scoped

container is disposed, along with any of the IDisposable

scoped and transient services that were obtained from it. In

a background service, however, there are no requests, so no

container scopes are created. The solution is to create your

own.

You can create a new container scope anywhere you have

access to an IServiceProvider by calling

IServiceProvider.CreateScope(). This creates a

scoped container, which you can use to safely retrieve

scoped and transient services.

WARNING Always make sure to dispose of the IServiceScope
returned by CreateScope() when you’re finished with it, typically
with a using statement. This disposes of any IDisposable
services that were created by the scoped container and prevents
memory leaks.

The following listing shows a version of the

ExchangeRatesHostedService that stores the latest

exchange rates as an EF Core entity in the database. It

creates a new scope for each iteration of the while loop

and retrieves the scoped AppDbContext from the scoped

container.

Listing 34.5 Consuming scoped services from an IHostedService

public class ExchangeRatesHostedService : BackgroundService ❶
{

 private readonly IServiceProvider _provider; ❷
 public ExchangeRatesHostedService(IServiceProvider provider) ❷
 {

 _provider = provider;

 }

 protected override async Task ExecuteAsync(

 CancellationToken stoppingToken)

 {

 while (!stoppingToken.IsCancellationRequested)

 {

 using(IServiceScope scope = _provider.CreateScope()) ❸
 {

 var scopedProvider = scope.ServiceProvider; ❹

 var client = scope.ServiceProvider ❺
 .GetRequiredService<ExchangeRatesClient>(); ❺

 var context = scope.ServiceProvider ❻
 .GetRequiredService<AppDbContext>(); ❻

 var rates = await client.GetLatestRatesAsync(); ❻

 context.Add(rates); ❻
 await context.SaveChanges(rates); ❻
 } ❼

 await Task.Delay(TimeSpan.FromMinutes(5), stoppingToken); ❽
 }

 }

}

❶ Background-Service is registered as a singleton.

❷ The injected IServiceProvider can be used to retrieve singleton services or to create
scopes.

❸ Creates a new scope using the root IServiceProvider

❹ The scope exposes an IServiceProvider that can be used to retrieve scoped components.

❺ Retrieves the scoped services from the container
❻ Fetches the latest rates, and saves using EF Core

❼ Disposes of the scope with the using statement
❽ Waits for the next iteration. A new scope is created on the next iteration.

Creating scopes like this is a general solution whenever you

need to access scoped services and you’re not running in the

context of a request. For example, if you need to access

scoped or transient services in Program.cs, you can create a

new scope by calling

WebApplication.Services.CreateScope(). You can

then retrieve the services you need, do your work, and

dispose the scope to clean up the services.

Another prime example is when you’re injecting services into

an OptionsBuilder instance, as you saw in chapter 31.

You can take exactly the same approach—create a new

scope—as shown in my blog post titled “The dangers and

gotchas of using scoped services in OptionsBuilder”:

http://mng.bz/4D6j.

TIP Using service location in this way always feels a bit convoluted. I
typically try to extract the body of the task to a separate class and use
service location to retrieve that class only. You can see an example of
this approach in the “Consuming a scoped service in a background
task” section of Microsoft’s “Background tasks with hosted services in
ASP.NET Core” documentation: http://mng.bz/4ZER.

IHostedService is available in ASP.NET Core, so you can

run background tasks in your Razor Pages and minimal API

applications. However, sometimes all you want is the

http://mng.bz/4D6j
http://mng.bz/4ZER

background task; you don’t need any UI. For those cases,

you can use the generic IHost abstraction without having to

bother with HTTP handling at all.

34.2 Creating headless worker
services using IHost

In this section you’ll learn about worker services, which are

ASP.NET Core applications that do not handle HTTP traffic.

You’ll learn how to create a new worker service from a

template and compare the generated code with a traditional

ASP.NET Core application. You’ll also learn how to install the

worker service as a Windows Service or as a systemd

daemon in Linux.

In section 34.1 we cached exchange rates based on the

assumption that they’re being consumed directly by the UI

part of your application, such as by Razor Pages or minimal

API endpoints. However, in the section 34.1.2 example we

saved the rates to a database instead of storing them in-

process. That raises the possibility that other applications

with access to the database will use the rates too. Taking

that one step further, could we create an application which is

responsible only for caching these rates and has no UI at all?

Since .NET Core 3.0, ASP.NET Core has been built on top of

a generic IHost implementation, as you learned in chapter

30. The IHost implementation provides features such as

configuration, logging, and DI. ASP.NET Core adds the

middleware pipeline for handling HTTP requests, as well as

paradigms such as Razor Pages or Model-View-Controller

(MVC) controllers on top of that, as shown in figure 34.2.

Figure 34.2 ASP.NET Core builds on the generic IHost
implementation. IHost provides features such as configuration,
DI, and configuration. ASP.NET Core adds HTTP handling on top
of that by way of the middleware pipeline, Razor Pages, and API
controllers. If you don’t need HTTP handling, you can use IHost
without the additional ASP.NET Core libraries to create a smaller
application.

If your application doesn’t need to handle HTTP requests,

there’s no real reason to use ASP.NET Core. You can use the

IHost implementation alone to create an application that

has a lower memory footprint, faster startup, and less

surface area to worry about from a security perspective than

a full ASP.NET Core application. .NET applications that use

this approach are commonly called worker services or

workers.

DEFINITION A worker is a .NET application that uses the generic
IHost but doesn’t include the ASP.NET Core libraries for handling
HTTP requests. They are sometimes called headless services, as
they don’t expose a UI for you to interact with.

Workers are commonly used for running background tasks

(IHostedService implementations) that don’t require a

UI. These tasks could be for running batch jobs, running

tasks repeatedly on a schedule, or handling events using

some sort of message bus. In the next section we’ll create a

worker for retrieving the latest exchange rates from a

remote API instead of adding the background task to an

ASP.NET Core application.

34.2.1 Creating a worker service from a
template

In this section you’ll see how to create a basic worker

service from a template. Visual Studio includes a template

for creating worker services: choose File > New > Project

> Worker Service. You can create a similar template using

the .NET command-line interface (CLI) by running dotnet

new worker. The resulting template consists of two C#

files:

Worker.cs—This simple BackgroundService

implementation writes to the log every second, as

shown in listing 34.6. You can replace this class

with your own BackgroundService

implementation, such as the example from listing

34.5.

Program.cs—As in a typical ASP.NET Core

application, this contains the entry point for your

application, and it’s where the IHost is built and

run. By contrast with a typical .NET 7 ASP.NET

Core app, it uses the generic host instead of the

minimal hosting WebApplication and

WebApplicationBuilder.

Listing 34.6 Default BackgroundService implementation for
worker service template

public class Worker : BackgroundService ❶
{

 private readonly ILogger<Worker> _logger;

 public Worker(ILogger<Worker> logger)

 {

 _logger = logger;

 }

 protected override async Task ExecuteAsync(❷
 CancellationToken stoppingToken)

 {

 while (!stoppingToken.IsCancellationRequested) ❸
 {

 _logger.LogInformation(

 "Worker running at: {time}", DateTimeOffset.Now);

 await Task.Delay(1000, stoppingToken); ❹
 }

 }

}

❶ The Worker service derives from BackgroundService.
❷ ExecuteAsync starts the main execution loop for the service.

❸ When the app is shutting down, the CancellationToken is canceled.
❹ The service writes a log message every second until the app shuts down.

The most notable difference between the worker service

template and an ASP.NET Core template is that Program.cs

doesn’t use the WebApplicationBuilder and

WebApplication APIs for minimal hosting. Instead, it uses

the Host.CreateDefaultBuilder() helper method you

learned about in chapter 30 to create an IHostBuilder.

NOTE .NET 8 will change the worker service template to use a new
type, HostApplicationBuilder, which is analogous to
WebApplicationBuilder. HostApplicationBuilder
brings the familiar script-like setup experience of minimal hosting to
worker services, instead of using the callback-based approach of
IHostBuilder.

You configure your DI services in Program.cs using the

ConfigureServices() method on IHostBuilder, as

shown in listing 34.7. This method takes a lambda method,

which takes two arguments:

A HostBuilderContext object. This context

object exposes the IConfiguration for your app

as the property Configuration, and the

IHostEnvironment as the property

HostingEnvironment.

An ISeviceCollection object. You add your

services to this collection in the same way you add

them to WebApplicationBuilder.Services

in typical ASP.NET Core apps.

The following listing shows how to configure EF Core, the

exchange rates typed client from chapter 33, and the

background service that saves exchange rates to the

database, as you saw in section 34.1.2. It uses C#’s top-

level statements, so no static void Main entry point is

shown.

Listing 34.7 Program.cs for a worker service that saves
exchange rates using EF Core

using Microsoft.EntityFrameworkCore;

IHost host = Host.CreateDefaultBuilder(args) ❶
 .ConfigureServices((hostContext, services) => ❷
 {

 services.AddHttpClient<ExchangeRatesClient>(); ❸
 services.AddHostedService<ExchangeRatesHostedService>(); ❸

 var connectionString = hostContext.Configuration ❹
 .GetConnectionString("SqlLiteConnection")) ❹

 services.AddDbContext<AppDbContext>(options => ❺
 options.UseSqlite(connectionString)); ❺
 })

 .Build(); ❻

host.Run(); ❼

❶ Creates an IHostBuilder using the default helper

❷ Configures your DI services
❸ Adds services to the IServiceCollection

❹ IConfiguration can be accessed from the HostBuilderContext parameter.
❺ Adds services to the IServiceCollection

❻ Builds an IHost instance
❼ Runs the app and waits for shutdown

The changes in Program.cs to use the generic host instead of

minimal hosting are the most obvious differences between a

worker service and an ASP.NET Core app, but there are

some important differences in the .csproj project file too.

The following listing shows the project file for a worker

service that uses IHttpClientFactory and EF Core, and

highlights some of the differences with a similar ASP.NET

Core application.

Listing 34.8 Project file for a worker service

<Project Sdk="Microsoft.NET.Sdk.Worker"> ❶

 <PropertyGroup>

 <TargetFramework>net7.0</TargetFramework> ❷
 <Nullable>enable</Nullable>

 <ImplicitUsings>enable</ImplicitUsings>

 <UserSecretsId>5088-4277-B226-DC0A790AB790</UserSecretsId> ❸
 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Microsoft.Extensions.Hosting" ❹
 Version="7.0.0" /> ❹
 <PackageReference Include="Microsoft.Extensions.Http" ❺
 Version="7.0.0" /> ❺
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design" ❻

 Version="7.0.0" PrivateAssets="All" /> ❻
 <PackageReference Include="Microsoft.EntityFrameworkCore.Sqlite" ❻
 Version="7.0.0" /> ❻
 </ItemGroup>

</Project>

❶ Worker services use a different project software development kit (SDK) type from
ASP.NET Core apps.

❷ The target framework is the same as for ASP.NET Core apps.

❸ Worker services use configuration so they can use User Secrets, like ASP.NET Core
apps.

❹ All worker services must explicitly add this package. ASP.NET Core apps add it implicitly.

❺ If you’re using IHttpClient-Factory, you’ll need to add this package in worker services.
❻ EF Core packages must be explicitly added, the same as for ASP.NET Core apps.

Some parts of the project file are the same for both worker

services and ASP.NET Core apps:

Both types of apps must specify a

<TargetFramework>, such as net7.0 for .NET

7.

Both types of apps use the configuration system,

so you can use <UserSecretsId> to manage

secrets in development, as discussed in chapter

10.

Both types of apps must explicitly add references

to the EF Core NuGet packages to use EF Core in

the app.

There are also several differences in the project template:

The <Project> element’s Sdk for a worker

service should be Microsoft.NET

.Sdk.Worker, whereas for an ASP.NET Core app

it is Microsoft.NET.Sdk.Web. The Web SDK

includes implicit references to additional packages

that are not generally required in worker services.

The worker service must include an explicit

PackageReference for the

Microsoft.Extensions.Hosting NuGet package. This

package includes the generic IHost

implementation used by worker services.

You may need to include additional packages to

reference the same functionality as in an ASP.NET

Core app. An example is the

Microsoft.Extensions.Http package (which provides

IHttpClientFactory). This package is

referenced implicitly in ASP.NET Core apps but

must be explicitly referenced in worker services.

Running a worker service is the same as running an ASP.NET

Core application: use dotnet run from the command line

or press F5 in Visual Studio. A worker service is essentially a

console application (as are ASP.NET Core applications), so

they both run the same way.

You can run worker services in most of the same places you

would run an ASP.NET Core application, though as a worker

service doesn’t handle HTTP traffic, some options make

more sense than others. In the next section we’ll look at two

supported ways of running your application: as a Windows

Service or as a Linux systemd daemon.

34.2.2 Running worker services in production

In this section you’ll learn how to run worker services in

production. You’ll learn how to install a worker service as a

Windows Service so that the operating system monitors and

starts your worker service automatically. You’ll also see how

to prepare your application for installation as a systemd

daemon in Linux.

Worker services, like ASP.NET Core applications, are

fundamentally .NET console applications. The difference is

that they are typically intended to be long-running

applications. The common approach for running these types

of applications on Windows is to use a Windows Service or to

use a systemd daemon in Linux.

NOTE It’s also common to run applications in the cloud using Docker
containers or dedicated platform services like Azure App Service. The
process for deploying a worker service to these managed services is
typically identical to deploying an ASP.NET Core application.

Adding support for Windows Services or systemd is easy,

thanks to two optional NuGet packages:

Microsoft.Extensions.Hosting.Systemd—Adds

support for running the application as a systemd

application. To enable systemd integration, call

UseSystemd() on your IHostBuilder in

Program.cs.

Microsoft.Extensions.Hosting.WindowsServices—

Adds support for running the application as a

Windows Service. To enable the integration, call

UseWindowsService() on your IHostBuilder

in Program.cs.

These packages each add a single extension method to

IHostBuilder that enables the appropriate integration

when running as a systemd daemon or as a Windows

Service. The following listing shows how to enable Windows

Service support.

Listing 34.9 Adding Windows Service support to a worker
service

IHost host = Host.CreateDefaultBuilder(args) ❶
 .ConfigureServices((hostContext, services) => ❶
 { ❶
 Services.AddHostedService<Worker>(); ❶
 }) ❶
 .UseWindowsService() ❷
 .Build();

host.Run();

❶ Configures your worker service as you would normally
❷ Adds support for running as a Windows Service.

During development, or if you run your application as a

console app, UseWindowsService() does nothing; your

application runs exactly the same as it would without the

method call. However, your application can now be installed

as a Windows Service, as your app now has the required

integration hooks to work with the Windows Service system.

The following basic steps show how to install a worker

service app as a Windows Service:

1. Add the

Microsoft.Extensions.Hosting.WindowsServices

NuGet package to your application using Visual

Studio by running dotnet add package

Microsoft

.Extensions.Hosting.WindowsServices in

the project folder, or by adding a

<PackageReference> to your .csproj file:

<PackageReference Include="Microsoft.Extensions.Hosting.WindowsServices"

➥ Version="7.0.0" />

2. Add a call to UseWindowsService() on your

IHostBuilder, as shown in listing 34.9.

3. Publish your application, as described in chapter

27. From the command line you could run dotnet

publish -c Release from the project folder.

4. Open a command prompt as Administrator and

install the application using the Windows sc utility.

You need to provide the path to your published

project’s .exe file and a name to use for the

service, such as My Test Service:

sc create "My Test Service" BinPath="C:\path\to\MyService.exe"

5. You can manage the service from the Services

control panel in Windows, as shown in figure 34.3.

Alternatively, to start the service from the

command line run sc start "My Test Service",

or to delete the service run sc delete "My Test

Service".

After you complete the preceding steps, your worker service

will be running as a Windows Service.

Figure 34.3 The Services control panel in Windows. After
installing a worker service as a Windows Service using the sc
utility, you can manage your worker service from here. This
control panel allows you to control when the Windows Service
starts and stops, the user account that the application runs
under, and how to handle errors.

WARNING These steps are the bare minimum required to install a
Windows Service. When running in production, you must consider
many security aspects not covered here. For more details, see
Microsoft’s “Host ASP.NET Core in a Windows Service”
documentation: http://mng.bz/Xdy9.

An interesting point of note is that installing as a Windows

Service or system daemon isn’t limited to worker services;

you can install an ASP.NET Core application in the same way.

Simply follow the preceding instructions, add the call to

UseWindowsService(), and install your ASP.NET Core

app. You can do this thanks to the fact that the ASP.NET

Core functionality is built directly on top of the generic Host

functionality.

NOTE Hosting an ASP.NET Core app as a Windows Service can be
useful if you don’t want to (or can’t) use Internet Information Services
(IIS). Some older versions of IIS don’t support gRPC, for example. By
hosting as a Windows Service, your application can be restarted
automatically if it crashes.

You can follow a similar process to install a worker service as

a system daemon by installing the

Microsoft.Extensions.Hosting.Systemd package and calling

UseSystemd() on your IHostBuilder. For more details

on configuring system, see the “Monitor the app” section of

Microsoft’s “Host ASP.NET Core on Linux with Nginx”

documentation: http://mng.bz/yYDp.

So far in this chapter we’ve used IHostedService and the

BackgroundService to run tasks that repeat on an

http://mng.bz/Xdy9
http://mng.bz/yYDp

interval, and you’ve seen how to install worker services as

long-running applications by installing as a Windows Service.

In the final section of this chapter we’ll look at how you can

create more advanced schedules for your background tasks,

as well as how to add resiliency to your application by

running multiple instances of your workers. To achieve that,

we’ll use a mature third-party library, Quartz.NET.

34.3 Coordinating background tasks
using Quartz.NET

In this section you’ll learn how to use the open-source

scheduler library Quartz.NET. You’ll learn how to install and

configure the library and how to add a background job to run

on a schedule. You’ll also learn how to enable clustering for

your applications so that you can run multiple instances of

your worker service and share jobs among them.

All the background tasks you’ve seen so far in this chapter

repeat a task on an interval indefinitely, from the moment

the application starts. However, sometimes you want more

control of this timing. Maybe you always want to run the

application at 15 minutes past each hour. Or maybe you

want to run a task only on the second Tuesday of the month

at 3 a.m. Additionally, maybe you want to run multiple

instances of your application for redundancy but ensure that

only one of the services runs a task at any time.

It would certainly be possible to build all this extra

functionality into your app yourself, but excellent libraries

already provide all this functionality for you. Two of the most

well known in the .NET space are Hangfire

(https://www.hangfire.io) and Quartz.NET

(https://www.quartz-scheduler.net).

Hangfire is an open-source library that also has a Pro

subscription option. One of its most popular features is a

dashboard UI that shows the state of all your running jobs,

each task’s history, and any errors that have occurred.

Quartz.NET is completely open-source and essentially offers

a beefed-up version of the BackgroundService

functionality. It has extensive scheduling functionality, as

well as support for running in a clustered environment,

where multiple instances of your application coordinate to

distribute the jobs among themselves.

NOTE Quartz.NET is based on a similar Java library called Quartz
Scheduler. When looking for information on Quartz.NET, be sure
you’re looking at the correct Quartz!

Quartz.NET is based on four main concepts:

Jobs—The background tasks that implement your

logic.

Triggers—Control when a job runs based on a

schedule, such as “every five minutes” or “every

second Tuesday.” A job can have multiple triggers.

https://www.hangfire.io/
https://www.quartz-scheduler.net/

Job factory—Responsible for creating instances of

your jobs. Quartz.NET integrates with ASP.NET

Core’s DI container, so you can use DI in your job

classes.

Scheduler—Keeps track of the triggers in your

application, creates jobs using the job factory, and

runs your jobs. The scheduler typically runs as an

IHostedService for the lifetime of your app.

Background services vs. cron jobs

It’s common to use cron jobs to run tasks on a schedule in Linux, and Windows has
similar functionality with Task Scheduler, used to periodically run an application or
script file, which is typically a short-lived task.

By contrast, .NET apps using background services are designed to be long-lived, even
if they are used only to run tasks on a schedule. This allows your application to do
things like adjust its schedule as required or perform optimizations. In addition, being
long-lived means your app doesn’t only have to run tasks on a schedule. It can
respond to ad hoc events, such as events in a message queue.

Of course, if you don’t need those capabilities and would rather not have a long-
running application, you can use .NET in combination with cron jobs. You could create
a simple .NET console app that runs your task and then shuts down, and you could
schedule it to execute periodically as a cron job. The choice is yours!

In this section I show you how to install Quartz.NET and

configure a background service to run on a schedule. Then I

explain how to enable clustering so that you can run multiple

instances of your application and distribute the jobs among

them.

34.3.1 Installing Quartz.NET in an ASP.NET
Core application

In this section I show how to install the Quartz.NET

scheduler into an ASP.NET Core application. Quartz.NET runs

in the background in the same way as the

IHostedService implementations do. In fact, Quartz.NET

uses the IHostedService abstractions to schedule and

run jobs.

DEFINITION A job in Quartz.NET is a task to be executed that
implements the IJob interface. It is where you define the logic that
your tasks execute.

Quartz.NET can be installed in any .NET 7 application, so in

this chapter I show how to install Quartz.NET in a worker

service using the generic host rather than an ASP.NET Core

app using minimal hosting. You’ll install the necessary

dependencies and configure the Quartz.NET scheduler to run

as a background service. In section 34.3.2 we’ll convert the

exchange-rate downloader task from section 34.1 to a

Quartz.NET IJob and configure triggers to run on a

schedule.

NOTE The instructions in this section can be used to install
Quartz.NET in either a worker service or a full ASP.NET Core
application. The only difference is whether you use the generic host in
Program.cs or WebApplicationBuilder.

To install Quartz.NET, follow these steps:

1. Install the Quartz.AspNetCore NuGet package in

your project by running dotnet add package

Quartz.Extensions.Hosting, by using the

NuGet explorer in Visual Studio, or by adding a

<PackageReference> element to your project

file as follows:

<PackageReference Include="Quartz.Extensions.Hosting" Version="3.5.0" />

2. Add the Quartz.NET IHostedService scheduler

by calling AddQuartzHostedService() on the

IServiceCollection in ConfigureServices

(or on WebApplicationBuilder.Services) as

follows. Set WaitForJobsToComplete=true so

that your app will wait for any jobs in progress to

finish when shutting down.

services.AddQuartzHostedService(q => q.WaitForJobsToComplete = true);

3. Configure the required Quartz.NET services. The

example in the following listing configures the

Quartz.NET job factory to retrieve job

implementations from the DI container and adds

the required hosted service.

Listing 34.10 Configuring Quartz.NET

using Quartz;

IHost host = Host.CreateDefaultBuilder(args)

 .ConfigureServices((hostContext, services) => ❶
 {

 services.AddQuartz(q => ❷
 {

 q. UseMicrosoftDependencyInjectionJobFactory(); ❸
 });

 services.AddQuartzHostedService(❹
 q => q.WaitForJobsToComplete = true); ❹
 })

 .Build();

host.Run();

❶ Adds Quartz.NET in ConfigureServices for worker services

❷ Registers Quartz.NET services with the DI container
❸ Configures Quartz.NET to load jobs from the DI container

❹ Adds the Quartz.NET IHostedService that runs the Quartz.NET scheduler

This configuration registers all Quartz.NET’s required

components, so you can now run your application using

dotnet run or by pressing F5 in Visual Studio. When your

app starts, the Quartz.NET IHostedService starts its

scheduler, as shown in figure 34.4. We haven’t configured

any jobs to run yet, so the scheduler doesn’t have anything

to schedule. The app will sit there, periodically checking

whether any jobs have been added.

Figure 34.4 The Quartz.NET scheduler starts on app startup and
logs its configuration. The default configuration stores the list of
jobs and their schedules in memory and runs in a nonclustered
state. In this example, you can see that no jobs or triggers have
been registered, so the scheduler has nothing to schedule yet.

TIP Running your application before you’ve added any jobs is good
practice. It lets you check that you have installed and configured
Quartz.NET correctly before you get to more advanced configuration.

A job scheduler without any jobs to schedule isn’t a lot of

use, so in the next section we’ll create a job and add a

trigger for it to run on a timer.

34.3.2 Configuring a job to run on a schedule
with Quartz.NET

In section 34.1 we created an IHostedService that

downloads exchange rates from a remote service and saves

the results to a database using EF Core. In this section you’ll

see how you can create a similar Quartz.NET IJob and

configure it to run on a schedule.

The following listing shows an implementation of IJob that

downloads the latest exchange rates from a remote API

using a typed client, ExchangeRatesClient. The results

are then saved using an EF Core DbContext,

AppDbContext.

Listing 34.11 A Quartz.NET IJob for downloading and saving
exchange rates

public class UpdateExchangeRatesJob : IJob ❶
{

 private readonly ILogger<UpdateExchangeRatesJob> _logger; ❷
 private readonly ExchangeRatesClient _typedClient; ❷
 private readonly AppDbContext _dbContext; ❷
 public UpdateExchangeRatesJob(❷
 ILogger<UpdateExchangeRatesJob> logger, ❷
 ExchangeRatesClient typedClient, ❷
 AppDbContext dbContext) ❷
 { ❷
 _logger = logger; ❷
 _typedClient = typedClient; ❷
 _dbContext = dbContext; ❷
 } ❷

 public async Task Execute(IJobExecutionContext context) ❸

 {

 _logger.LogInformation("Fetching latest rates");

 var latestRates = await _typedClient.GetLatestRatesAsync(); ❹

 _dbContext.Add(latestRates); ❺
 await _dbContext.SaveChangesAsync(); ❺

 _logger.LogInformation("Latest rates updated");

 }

}

❶ Quartz.NET jobs must implement the IJob interface.
❷ You can use standard DI to inject any dependencies.

❸ IJob requires you to implement a single asynchronous method, Execute.
❹ Downloads the rates from the remote API

❺ Saves the rates to the database

Functionally, the IJob in listing 34.11 is doing a similar task

to the BackgroundService implementation in listing 34.5,

with a few notable exceptions:

The IJob defines only the task to execute; it

doesn’t define timing information. In the

BackgroundService implementation, we also

had to control how often the task was executed.

A new IJob instance is created every time the job

is executed. By contrast, the

BackgroundService implementation is created

only once, and its Execute method is invoked

only once.

We can inject scoped dependencies directly into

the IJob implementation. To use scoped

dependencies in the IHostedService

implementation, we had to create our own scope

manually and use service location to load

dependencies. Quartz.NET takes care of that for

us, allowing us to use pure constructor injection.

Every time the job is executed, a new scope is

created and used to create a new instance of the

IJob.

The IJob defines what to execute, but it doesn’t define

when to execute it. For that, Quartz.NET uses triggers.

Triggers can define arbitrarily complex blocks of time during

which a job should execute. For example, you can specify

start and end times, how many times to repeat, and blocks

of time when a job should or shouldn’t run (such as only 9

a.m. to 5 p.m. Monday to Friday).

In the following listing, we register the

UpdateExchangeRatesJob with the DI container using

the AddJob<T>() method, and we provide a unique name

to identify the job. We also configure a trigger that fires

immediately and then every five minutes until the

application shuts down.

Listing 34.12 Configuring a Quartz.NET IJob and trigger

using Quartz;

IHost host = Host.CreateDefaultBuilder(args)

 .ConfigureServices((hostContext, services) =>

 {

 services.AddQuartz(q =>

 {

 q. UseMicrosoftDependencyInjectionJobFactory();

 var jobKey = new JobKey("Update exchange rates"); ❶
 q.AddJob<UpdateExchangeRatesJob>(opts => ❷
 opts.WithIdentity(jobKey)); ❷

 q.AddTrigger(opts => opts ❸
 .ForJob(jobKey) ❸
 .WithIdentity(jobKey.Name + " trigger") ❹
 .StartNow() ❺
 .WithSimpleSchedule(x => x ❻
 .WithInterval(TimeSpan.FromMinutes(5)) ❻
 .RepeatForever())

);

 });

 services.AddQuartzHostedService(

 q => q.WaitForJobsToComplete = true);

 })

 .Build();

host.Run();

❶ Creates a unique key for the job, used to associate it with a trigger

❷ Adds the IJob to the DI container and associates it with the job key
❸ Registers a trigger for the IJob via the job key

❹ Provides a unique name for the trigger for use in logging and in clustered scenarios
❺ Fires the trigger as soon as the Quartz.NET scheduler runs on app startup

❻ Fires the trigger every 5 minutes until the app shuts down

Simple triggers like the schedule defined here are common,

but you can also achieve more complex configurations using

other schedules. The following configuration would set a

trigger to fire every week on a Friday at 5:30 p.m.:

q.AddTrigger(opts => opts

 .ForJob(jobKey)

 .WithIdentity("Update exchange rates trigger")

 .WithSchedule(CronScheduleBuilder

 .WeeklyOnDayAndHourAndMinute(DayOfWeek.Friday, 17, 30)));

You can configure a wide array of time- and calendar-based

triggers with Quartz.NET. You can also control how

Quartz.NET handles missed triggers—that is, triggers that

should have fired, but your app wasn’t running at the time.

For a detailed description of the trigger configuration options

and more examples, see the Quartz.NET documentation at

https://www.quartz-scheduler.net/documentation.

TIP A common problem people run into with long-running jobs is that
Quartz.NET keeps starting new instances of the job when a trigger
fires, even though it’s already running. To avoid that, tell Quartz.NET
to not start another instance by decorating your IJob
implementation with the [DisallowConcurrentExecution]
attribute.

The ability to configure advanced schedules, the simple use

of DI in background tasks, and the separation of jobs from

triggers are reasons enough for me to recommend

Quartz.NET if you have anything more than the most basic

background service needs. However, the real tipping point is

when you need to scale your application for redundancy or

performance reasons; that’s when Quartz.NET’s clustering

capabilities make it shine.

34.3.3 Using clustering to add redundancy to
your background tasks

In this section you’ll learn how to configure Quartz.NET to

persist its configuration to a database. This is a necessary

https://www.quartz-scheduler.net/documentation

step in enabling clustering so that multiple instances of your

application can coordinate to run your Quartz.NET jobs.

As your applications become more popular, you may need to

run more instances of your app to handle the traffic they

receive. If you keep your ASP.NET Core applications

stateless, the process of scaling is relatively simple: the

more applications you have, the more traffic you can handle,

everything else being equal.

However, scaling applications that use IHostedService to

run background tasks might not be as simple. For example,

imagine your application includes the BackgroundService

that we created in section 34.1.2, which saves exchange

rates to the database every five minutes. When you’re

running a single instance of your app, the task runs every

five minutes as expected.

But what happens if you scale your application and run 10

instances of it? Every one of those applications will be

running the BackgroundService, and they’ll all be

updating every five minutes from the time each instance

started!

One option would be to move the BackgroundService to

a separate worker service app. You could then continue to

scale your ASP.NET Core application to handle the traffic as

required but deploy a single instance of the worker service.

As only a single instance of the BackgroundService

would be running, the exchange rates would be updated on

the correct schedule again.

TIP Differing scaling requirements, as in this example, are one of the
best reasons for splitting bigger apps into smaller microservices.
Breaking up an app like this has a maintenance overhead, however,
so think about the tradeoffs if you take this route. For more on this
tradeoff, I recommend Microservices in .NET Core, 2nd ed., by
Christian Horsdal Gammelgaard (Manning, 2021).

However, if you take this route, you add a hard limitation

that you can have only a single instance of your worker

service. If you need to run more instances of your worker

service to handle additional load, you’ll be stuck.

An alternative option to enforcing a single service is using

clustering, which allows you to run multiple instances of your

application, with tasks distributed among the instances.

Quartz.NET achieves clustering by using a database as a

backing store. When a trigger indicates that a job needs to

execute, the Quartz.NET schedulers in each app attempt to

obtain a lock to execute the job, as shown in figure 34.5.

Only a single app can be successful, ensuring that a single

app handles the trigger for the IJob.

Figure 34.5 Using clustering with Quartz.NET allows horizontal
scaling. Quartz.NET uses a database as a backing store,
ensuring that only a single instance of the application handles a
trigger at a time. This makes it possible to run multiple instances
of your application to meet scalability requirements.

Quartz.NET relies on a persistent database for its clustering

functionality. Quartz .NET stores descriptions of the jobs and

triggers in the database, including when the trigger last

fired. The locking features of the database ensure that only

a single application can execute a task at a time.

TIP You can also enable persistence without enabling clustering,
allowing the Quartz.NET scheduler to catch up with missed triggers.

Listing 34.13 shows how to enable persistence for

Quartz.NET and how to enable clustering. This example

stores data in a Microsoft SQL Server (or LocalDB) server,

but Quartz.NET supports many other databases. This

example uses the recommended values for enabling

clustering and persistence as outlined in the documentation.

TIP The Quartz.NET documentation discusses many configuration
setting controls for persistence. See the “Job Stores” documentation
at http://mng.bz/PP0R. To use the recommended JSON serializer for
persistence, you must also install the Quartz.Serialization.Json
NuGet package.

Listing 34.13 Enabling persistence and clustering for Quartz.NET

using Quartz;

IHost host = Host.CreateDefaultBuilder(args)

 .ConfigureServices((hostContext, services) => ❶
 {

 var connectionString = Configuration ❷
 .GetConnectionString("DefaultConnection"); ❷

 services.AddQuartz(q =>

 {

 q.SchedulerId = "AUTO"; ❸

 q. UseMicrosoftDependencyInjectionJobFactory();

 q.UsePersistentStore(s => ❹
 {

 s.UseSqlServer(connectionString); ❺
 s.UseClustering(); ❻
 s.UseProperties = true; ❼
 s.UseJsonSerializer(); ❼
 });

http://mng.bz/PP0R

 var jobKey = new JobKey("Update_exchange_rates");

 q.AddJob<UpdateExchangeRatesJob>(opts =>

 opts.WithIdentity(jobKey));

 q.AddTrigger(opts => opts

 .ForJob(jobKey)

 .WithIdentity(jobKey.Name + " trigger")

 .StartNow()

 .WithSimpleSchedule(x => x

 .WithInterval(TimeSpan.FromMinutes(5))

 .RepeatForever())

);

 });

 services.AddQuartzHostedService(

 q => q.WaitForJobsToComplete = true);

 })

 .Build();

host.Run();

❶ Configuration is identical for both ASP.NET Core apps and worker services.
❷ Obtains the connection string for your database from configuration

❸ Each instance of your app must have a unique SchedulerId. AUTO takes care of this for
you.

❹ Enables database persistence for the Quartz.NET scheduler data

❺ Stores the scheduler data in a SQL Server (or LocalDb) database
❻ Enables clustering between multiple instances of your app

❼ Adds the recommended configuration for job persistence

With this configuration, Quartz.NET stores a list of jobs and

triggers in the database, and uses database locking to

ensure that only a single instance of your app handles a

trigger and runs the associated job.

WARNING SQLite doesn’t support the database locking primitives
required for clustering. You can use SQLite as a persistence store,
but you won’t be able to use clustering.

Quartz.NET stores data in your database, but it doesn’t

attempt to create the tables it uses itself. Instead, you must

add the required tables manually. Quartz.NET provides SQL

scripts on GitHub for all the supported database server

types, including SQL Server, SQLite, PostgreSQL, MySQL,

and many more; see http://mng.bz/JDeZ.

TIP If you’re using EF Core migrations to manage your database, I
suggest using them even for ad hoc scripts like these. In the code
sample associated with this chapter, you can see a migration that
creates the required tables using the Quartz.NET scripts.

Clustering is one of those advanced features that is

necessary only as you start to scale your application, but it’s

an important tool to have in your belt. It gives you the

ability to safely scale your services as you add more jobs.

There are some important things to bear in mind, however,

so I suggest reading the warnings in the Quartz.NET

documentation at http://mng.bz/aozj.

That brings us to the end of this chapter on background

services. In the final chapters of this book I describe an

important aspect of web development that sometimes,

despite the best intentions, is left until last: testing. You’ll

learn how to write simple unit tests for your classes, design

for testability, and build integration tests that test your

whole app.

http://mng.bz/JDeZ
http://mng.bz/aozj

Summary
You can use the IHostedService interface to

run tasks in the background of your ASP.NET Core

apps. Call AddHostedService<T>() to add an

implementation T to the DI container.

IHostedService is useful for implementing

long-running tasks.

Typically, you should derive from

BackgroundService to create an

IHostedService, as this implements best

practices required for long-running tasks. You

must override a single method, ExecuteAsync,

that is called when your app starts. You should run

your tasks within this method until the provided

CancellationToken indicates that the app is

shutting down.

You can create DI scopes manually using

IServiceProvider.CreateScope(). This is

useful for accessing scoped lifetime services from

within a singleton lifetime component, such as

from an IHostedService implementation.

A worker service is a .NET Core application that

uses the generic IHost but doesn’t include the

ASP.NET Core libraries for handling HTTP requests.

It generally has a smaller memory and disk

footprint than an ASP.NET Core equivalent.

Worker services use the same logging,

configuration, and DI systems as ASP.NET Core

apps. However, they don’t use the

WebApplicationBuilder minimal hosting APIs,

so you must configure your app using the generic

host APIs. For example, configure your DI services

using IHostBuilder.ConfigureServices().

To run a worker service or ASP.NET Core app as a

Windows Service, add the

Microsoft.Extensions.Hosting.WindowsServices

NuGet package, and call UseWindowsService()

on IHostBuilder. You can install and manage

your app with the Windows sc utility.

To install a Linux systemd daemon, add the

Microsoft.Extensions.Hosting.Systemd NuGet

package and call AddSystemd() on

IHostBuilder. Both the Systemd and Windows

Service integration packages do nothing when

running the application as a console app, which is

great for testing your app. You can even add both

packages so that your app can run as a service in

both Windows and Linux.

Quartz.NET runs jobs based on triggers using

advanced schedules. It builds on the

IHostedService implementation to add extra

features and scalability. You can install Quartz by

adding the Quartz.AspNetCore NuGet package and

calling AddQuartz() and

AddQuartzHostedService() in

ConfigureServices().

You can create a Quartz.NET job by implementing

the IJob interface. This requires implementing a

single method, Execute. You can enable DI for

the job by calling

UseMicrosoftDependencyInjectionJobFact

ory in AddQuartz(). This allows you to directly

inject scoped (or transient) services into your job

without having to create your own scopes.

You must register your job, T, with DI by calling

AddJob<T>() and providing a JobKey name for

the job. You can add an associated trigger by

calling AddTrigger() and providing the JobKey.

Triggers have a wide variety of schedules available

for controlling when a job should be executed.

By default, triggers spawn new instances of a job

as often as necessary. For long-running jobs

scheduled with a short interval, that will result in

many instances of your job running concurrently. If

you want a trigger to execute a job only when an

instance is not already running, decorate your job

with the [DisallowConcurrentExecution]

attribute.

Quartz.NET supports database persistence for

storing when triggers have executed. To enable

persistence, call UsePersistentStore() in

your AddQuartz() configuration method, and

configure a database, using UseSqlServer() for

example. With persistence, Quartz.NET can persist

details about jobs and triggers between application

restarts.

Enabling persistence also allows you to use

clustering. Clustering enables multiple apps using

Quartz.NET to coordinate, so that jobs are spread

across multiple schedulers. To enable clustering,

first enable database persistence and then call

UseClustering(). SQLite does not support

clustering due to limitations of the database itself.

35 Testing applications with xUnit

This chapter covers

Testing in ASP.NET Core
Creating unit test projects with xUnit
Creating Fact and Theory tests

When I started programming, I didn’t understand the benefits

of automated testing. It involved writing so much more code.

Wouldn’t it be more productive to be working on new features

instead? It was only when my projects started getting bigger

that I appreciated the advantages. Instead of having to run

my app and test each scenario manually, I could click Play on

a suite of tests and have my code tested for me automatically.

Testing is universally accepted as good practice, but how it fits

into your development process can often turn into a religious

debate. How many tests do you need? Should you write tests

before, during, or after the main code? Is anything less than

100 percent coverage of your code base adequate? What

about 80 percent?

This chapter won’t address any of those questions. Instead, I

focus on the mechanics of creating a test project in .NET. In

this chapter I show you how to use isolated unit tests to verify

the behavior of your services in isolation. In chapter 36 we

build on these basics to create unit tests for an ASP.NET Core

application, as well as create integration tests that exercise

multiple components of your application at the same time.

TIP For a broader discussion of testing, or if you’re brand-new to unit
testing, see The Art of Unit Testing, 3rd ed., by Roy Osherove
(Manning, 2024). If you want to explore unit test best practices using C#
examples, see Unit Testing Principles, Practices, and Patterns, by
Vladimir Khorikov (Manning, 2020). Effective Software Testing: A
Developers Guide, by Maurício Aniche (Manning, 2022), uses Java
examples but covers a broad range of topics and techniques.
Alternatively, for an in-depth look at testing with xUnit in .NET Core, see
.NET in Action, 2nd ed., by Dustin Metzgar (Manning, 2023).

In section 35.1 I introduce the .NET software development kit

(SDK) testing framework and show how you can use it to

create unit testing apps. I describe the components involved,

including the testing SDK and the testing frameworks

themselves, like xUnit and MSTest. Finally, I cover some of the

terminology I use throughout this chapter and chapter 36.

This chapter focuses on the mechanics of getting started with

xUnit. You’ll learn how to create unit test projects, reference

classes in other projects, and run tests with Visual Studio or

the .NET command-line interface (CLI). You’ll create a test

project and use it to test the behavior of a basic currency-

converter service. Finally, you’ll write some simple unit tests

that check whether the service returns the expected results

and throws exceptions when you expect it to.

Let’s start by looking at the overall testing landscape for

ASP.NET Core, the options available to you, and the

components involved.

35.1 An introduction to testing in
ASP.NET Core

In this section you’ll learn about the basics of testing in

ASP.NET Core. You’ll learn about the types of tests you can

write, such as unit tests and integration tests, and why you

should write both types. Finally, you’ll see how testing fits into

ASP.NET Core.

If you have experience building apps with the full .NET

Framework or mobile apps with Xamarin, you might have

some experience with unit testing frameworks. If you were

building apps in Visual Studio, the steps for creating a test

project differed among testing frameworks (such as xUnit,

NUnit, and MSTest), and running the tests in Visual Studio

often required installing a plugin. Similarly, running tests from

the command line varied among frameworks.

With the .NET SDK, testing in ASP.NET Core and .NET Core is a

first-class citizen, on a par with building, restoring packages,

and running your application. Just as you can run dotnet

build to build a project, or dotnet run to execute it, you

can use dotnet test to execute the tests in a test project,

regardless of the testing framework used.

The dotnet test command uses the underlying .NET SDK to

execute the tests for a given project. This is the same as when

you run your tests using the Visual Studio test runner, so

whichever approach you prefer, the results are the same.

Test projects are console apps that contain several tests. A

test is typically a method that evaluates whether a given class

in your app behaves as expected. The test project typically has

dependencies on at least three components:

The .NET Test SDK

A unit testing framework, such as xUnit, NUnit, Fixie,

or MSTest

A test-runner adapter for your chosen testing

framework so that you can execute your tests by

calling dotnet test

These dependencies are normal NuGet packages that you can

add to a project, but they allow you to hook in to the dotnet

test command and the Visual Studio test runner. You’ll see an

example .csproj file from a test app in the next section.

Typically, a test consists of a method that runs a small piece of

your app in isolation and checks whether it has the desired

behavior. If you were testing a Calculator class, you might

have a test that checks that passing the values 1 and 2 to the

Add() method returns the expected result, 3.

You can write lots of small, isolated tests like this for your

app’s classes to verify that each component is working

correctly, independent of any other components. Small

isolated tests like these are called unit tests.

Using the ASP.NET Core framework, you can build apps that

you can easily unit-test. You can test some aspects of your API

controllers in isolation from your action filters and model

binding, for example, because the framework

Avoids static types

Uses interfaces instead of concrete implementations

Has a highly modular architecture, allowing you to

test your API controllers in isolation from your action

filters and model binding

But the fact that all your components work correctly

independently doesn’t mean they’ll work when you put them

together. For that, you need integration tests, which test the

interaction between multiple components.

The definition of an integration test is another somewhat-

contentious problem, but I think of integration tests as testing

multiple components together or testing large vertical slices of

your app—testing a user manager class that can save values

to a database, for example, or testing that a request made to

a health-check endpoint returns the expected response.

Integration tests don’t necessarily include the entire app, but

they use more components than unit tests.

NOTE I don’t cover UI tests, which (for example) interact with a browser
to provide true end-to-end automated testing. Playwright
(https://playwright.dev) and Cypress (https://www.cypress.io) are two of
the most popular modern tools for UI testing.

ASP.NET Core has a couple of tricks up its sleeve when it

comes to integration testing, as you’ll see in chapter 36. You

can use the Test Host package to run an in-process ASP.NET

Core server, which you can send requests to and inspect the

responses. This saves you from the orchestration headache of

trying to spin up a web server on a different process, making

https://playwright.dev/
https://www.cypress.io/

sure ports are available, and so on, but still allows you to

exercise your whole app.

At the other end of the scale, the Entity Framework Core (EF

Core) SQLite in-memory database provider lets you isolate

your tests from the database. Interacting with and configuring

a database is often one of the hardest aspects of automating

tests, so this provider lets you sidestep the problem. You’ll see

how to use it in chapter 36.

The easiest way to get to grips with testing is to give it a try,

so in the next section you’ll create your first test project and

use it to write unit tests for a simple custom service.

35.2 Creating your first test project with
xUnit

As I described in section 35.1, to create a test project you

need to use a testing framework. You have many options, such

as NUnit and MSTest, but (anecdotally) the most used test

framework with ASP.NET Core is xUnit (https://xunit.net). The

ASP.NET Core framework project itself uses xUnit as its testing

framework, so it’s become somewhat of a convention. If you’re

familiar with a different testing framework, feel free to use

that instead.

Visual Studio includes a template to create a .NET 7 xUnit test

project, as shown in figure 35.1. Choose File > New >

Project, and choose xUnit Test Project in the New Project

dialog box. Alternatively, you could choose MSTest Project or

https://xunit.net/

NUnit Test Project if you’re more comfortable with those

frameworks.

Figure 35.1 The New Project dialog box in Visual Studio. Choose
xUnit Test Project to create an xUnit project, or choose Unit Test
Project to create an MSTest project.

Alternatively, if you’re not using Visual Studio, you can create

a similar template using the .NET CLI with

dotnet new xunit

Whether you use Visual Studio or the .NET CLI, the template

creates a console project and adds the required testing NuGet

packages to your .csproj file, as shown in the following listing.

If you chose to create an MSTest (or other framework) test

project, the xUnit and xUnit runner packages would be

replaced by packages appropriate to your testing framework of

choice.

Listing 35.1 The .csproj file for an xUnit test project

<Project Sdk="Microsoft.NET.Sdk"> ❶
 <PropertyGroup> ❶
 <TargetFramework>net7.0</TargetFramework> ❶
 <IsPackable>false</IsPackable>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference

 Include="Microsoft.NET.Test.Sdk" Version="17.3.2" /> ❷
 <PackageReference Include="xunit" Version="2.4.2" /> ❸
 <PackageReference

 Include="xunit.runner.visualstudio" Version="2.4.5" /> ❹
 <PackageReference Include="coverlet.collector" Version="3.1.2" /> ❺
 </ItemGroup>

</Project>

❶ The test project is a standard .NET 7.0 project.

❷ The .NET Test SDK, required by all test projects
❸ The xUnit test framework

❹ The xUnit test adapter for the .NET Test SDK
❺ An optional package that collects metrics about how much of your code base is covered by

tests

TIP Adding the Microsoft.NET.Test.Sdk package marks the project as a
test project by setting the IsTestProject MsBuild property.

In addition to the NuGet packages, the template includes a

single example unit test. This doesn’t do anything, but it’s a

valid xUnit test all the same, as shown in the following listing.

In xUnit, a test is a method on a public class, decorated with a

[Fact] attribute.

Listing 35.2 An example xUnit unit test, created by the default
template

public class UnitTest1 ❶
{

 [Fact] ❷
 public void Test1() ❸
 {

 }

}

❶ xUnit tests must be in public classes.
❷ The [Fact] attribute indicates that the method is a test method.

❸ The Fact must be public and have no parameters.

Even though this test doesn’t test anything, it highlights some

characteristics of xUnit [Fact] tests:

Tests are denoted by the [Fact] attribute.

The method should be public, with no method

arguments.

The method is void. It could also be an async

method and return Task.

The method resides inside a public, nonstatic class.

NOTE The [Fact] attribute and these restrictions are specific to the
xUnit testing framework. Other frameworks have other ways to denote
test classes and different restrictions on the classes and methods
themselves.

It’s also worth noting that although I said test projects are

console apps, there’s no Program class or static void

Main method. Instead, the app looks more like a class library

because the test SDK automatically injects a Program class at

build time. It’s not something you have to worry about in

general, but you may have problems if you try to add your

own Program.cs file to your test project.

NOTE This isn’t a common thing to do, but I’ve seen it done
occasionally. I describe this problem in detail and how to fix it in my blog
post “Fixing the error ‘Program has more than one entry point defined’
for console apps containing xUnit tests,” at http://mng.bz/w9q5.

Before we go any further and create some useful tests, we’ll

run the test project as it is, using both Visual Studio and the

.NET SDK tooling, to see the expected output.

35.3 Running tests with dotnet test
When you create a test app that uses the .NET Test SDK, you

can run your tests by using Visual Studio or the .NET CLI. In

Visual Studio, you run tests by choosing Test > Run All Tests

or by choosing Run All in the Test Explorer window, as shown

in figure 35.2.

http://mng.bz/w9q5

Figure 35.2 The Test Explorer window in Visual Studio lists all
tests found in the solution and their most recent pass/fail status.
Click a test in the left pane to see details about the most recent
test run in the right pane.

The Test Explorer window lists all the tests found in your

solution and the results of each test. In xUnit, a test passes if

it doesn’t throw an exception, so UnitTest1.Test1 passed

successfully.

NOTE The Test Explorer in Visual Studio uses the open-source VSTest
protocol (https://github.com/microsoft/vstest) for listing and debugging
tests. It’s also used by Visual Studio for Mac and Visual Studio Code,
for example.

Alternatively, you can run your tests from the command line

using the .NET CLI by running

https://github.com/microsoft/vstest

dotnet test

from the unit-test project’s folder, as shown in figure 35.3.

Figure 35.3 You can run tests from the command line using dotnet
test. This restores and builds the test project before executing all
the tests in the project.

NOTE You can also run dotnet test from the solution folder. This
runs all test projects referenced in the .sln solution file.

Calling dotnet test runs a restore and build of your test

project and then runs the tests, as you can see from the

console output in figure 35.3. Under the hood, the .NET CLI

calls in to the same underlying infrastructure that Visual

Studio does (the .NET SDK), so you can use whichever

approach better suits your development style.

You’ve seen a successful test run, so it’s time to replace that

placeholder test with something useful. First things first,

though: you need something to test.

35.4 Referencing your app from your
test project

In test-driven development (TDD), you typically write your

unit tests before you write the actual class you’re testing, but

I’m going to take a more traditional route here and create the

class to test first. You’ll write the tests for it afterward.

Let’s assume you’ve created an app called

ExchangeRates.Web, which exposes an API that converts

among different currencies, and you want to add tests for it.

You’ve added a test project to your solution as described in

section 35.2.1, so your solution looks like figure 35.4.

Figure 35.4 A basic solution containing an ASP.NET Core app
called ExchangeRates.Web and a test project called
ExchangeRates.Web.Tests

For the ExchangeRates.Web.Tests project to test the classes in

the ExchangeRates.Web project, you need to add a reference

to the web project from your test project. In Visual Studio, you

can do this by right-clicking the Dependencies node of your

test project and choosing Add Project Reference from the

contextual menu, as shown in figure 35.5. You can then select

the web project in the Reference Manager dialog box. After

adding it to your project, it shows up inside the Dependencies

node, under Projects.

Figure 35.5 To test your app project, you need to add a reference
to it from the test project. Right-click the Dependencies node, and
choose Add Project Reference from the contextual menu. The app
project is referenced inside the Dependencies node, under
Projects.

Alternatively, you can edit the .csproj file directly and add a

<ProjectReference> element inside an <ItemGroup>

element with the relative path to the referenced project’s

.csproj file:

<ItemGroup>

 <ProjectReference

 Include="..\..\src\ExchangeRates.Web\ExchangeRates.Web.csproj" />

</ItemGroup>

Note that the path is the relative path. A ".." in the path

means the parent folder, so the relative path shown correctly

traverses the directory structure for the solution, including

both the src and test folders shown in Solution Explorer in

figure 35.5.

TIP Remember that you can edit the .csproj file directly in Visual Studio
by double-clicking the project in Solution Explorer.

Common conventions for project layout

The layout and naming of projects within a solution are completely up to you, but
ASP.NET Core projects have generally settled on a couple of conventions that differ
slightly from the Visual Studio File > New defaults. These conventions are used by the
ASP.NET team on GitHub, as well as by many other open-source C# projects.

The following figure shows an example of these layout conventions. In summary, these
are as follows:

The .sln solution file is in the root directory.

The main projects are placed in a src subdirectory.

The test projects are placed in a test or tests subdirectory.

Each main project has a test project equivalent, named the same as the associated
main project with a .Test or .Tests suffix.

Other folders (such as samples, tools, and docs) contain sample projects, tools for
building the project, or documentation.

Conventions for project structures have emerged in the
ASP.NET Core framework libraries and open-source projects
on GitHub. You don’t have to follow them for your own project,
but it’s worth being aware of them.

All these conventions are optional. Whether to follow them is entirely up to you. Either
way, it’s good to be aware of them so you can easily navigate other projects on GitHub.

Your test project is now referencing your web project, so you

can write tests for classes in the web project. You’re going to

be testing a simple class used for converting among

currencies, as shown in the following listing.

Listing 35.3 Example CurrencyConverter class to convert currencies
to GBP

public class CurrencyConverter

{

 public decimal ConvertToGbp(❶
 decimal value, decimal exchangeRate, int decimalPlaces) ❶
 {

 if (exchangeRate <= 0) ❷
 { ❷
 throw new ArgumentException(❷
 "Exchange rate must be greater than zero", ❷
 nameof(exchangeRate)); ❷
 } ❷
 var valueInGbp = value / exchangeRate; ❸
 return decimal.Round(valueInGbp, decimalPlaces); ❹
 }

}

❶ The ConvertToGbp method converts a value using the provided exchange rate and rounds it.

❷ Guard clause, as only positive exchange rates are valid
❸ Converts the value

❹ Rounds the result and returns it

This class has a single method, ConvertToGbp(), that

converts a value from one currency into GBP, given the

provided exchangeRate. Then it rounds the value to the

required number of decimal places and returns it.

WARNING This class is a basic implementation. In practice, you’d need
to handle arithmetic overflow/underflow for large or negative values, as

well as consider other edge cases. This example is for demonstration
purposes only!

Imagine you want to convert 5.27 USD to GBP, and the

exchange rate from GBP to USD is 1.31. If you want to round

to four decimal places, you’d make this call:

converter.ConvertToGbp(value: 5.27, exchangeRate: 1.31, decimalPlaces: 4);

You have your sample application, a class to test, and a test

project, so it’s about time you wrote some tests.

35.5 Adding Fact and Theory unit tests
When I write unit tests, I usually target one of three paths

through the method under test:

The happy path—Where typical arguments with

expected values are provided

The error path—Where the arguments passed are

invalid and tested for

Edge cases—Where the provided arguments are

right on the edge of expected values

I realize that this is a broad classification, but it helps me think

about the various scenarios I need to consider.

TIP A completely different approach to testing is property-based testing.
This fascinating approach is common in functional programming
communities, like F#. You can find a great introduction by Scott
Wlaschin in his blog post series “The ‘Property Based Testing’ Series” at

http://mng.bz/o1eZ. That post uses F#, but it is still highly accessible
even if you’re new to the language.

Let’s start with the happy path, writing a unit test that verifies

that the ConvertToGbp() method is working as expected

with typical input values, as shown in the following listing.

Listing 35.4 Unit test for ConvertToGbp using expected arguments

[Fact] ❶
public void ConvertToGbp_ConvertsCorrectly() ❷
{

 var converter = new CurrencyConverter(); ❸
 decimal value = 3; ❹
 decimal rate = 1.5m; ❹
 int dp = 4; ❹
 decimal expected = 2; ❺

 var actual = converter.ConvertToGbp(value, rate, dp); ❻

 Assert.Equal(expected, actual); ❼
}

❶ The [Fact] attribute marks the method as a test method.

❷ You can call the test anything you like.
❸ The class to test, commonly called the “system under test”

❹ The parameters of the test that will be passed to ConvertToGbp
❺ The result you expect

❻ Executes the method and captures the result
❼ Verifies that the expected and actual values match; if they don’t, throws an exception

This is your first proper unit test, which has been configured

using Arrange, Act, Assert (AAA) style:

Arrange—Define all the parameters and create an

instance of the system (class) under test (SUT).

http://mng.bz/o1eZ

Act—Execute the method being tested, and capture

the result.

Assert—Verify that the result of the Act stage had

the expected value.

Most of the code in this test is standard C#, but if you’re new

to testing, the Assert call will be unfamiliar. This is a helper

class provided by xUnit for making assertions about your code.

If the parameters provided to Assert.Equal() aren’t equal,

the Equal() call will throw an exception and fail the test. If

you change the expected variable in listing 35.4 to 2.5

instead of 2, for example, and run the test, Test Explorer

shows a failure, as you see in figure 35.6.

Figure 35.6 When a test fails, it’s marked with a red cross in Test
Explorer. Clicking the test in the left pane shows the reason for the
failure in the right pane. In this case, the expected value was 2.5,
but the actual value was 2.

TIP Alternative assertion libraries such as Fluent Assertions
(https://fluentassertions.com) and Shouldly

https://fluentassertions.com/

(https://github.com/shouldly/shouldly) allow you to write your assertions
in a more natural style, such as
actual.Should().Be(expected). These libraries are
optional, but I find they make tests more readable and error messages
easier to understand.

In listing 35.4 you chose specific values for value,

exchangeRate, and decimalPlaces to test the happy

path. But this is only one set of values in an infinite number of

possibilities, so you probably should test at least a few

different combinations. One way to achieve this would be to

copy and paste the test multiple times, tweak the parameters,

and change the test method name to make it unique. xUnit

provides an alternative way to achieve the same thing without

requiring so much duplication.

NOTE The names of your test class and method are used throughout
the test framework to describe your test. You can customize how these
are displayed in Visual Studio and in the CLI by configuring an
xunit.runner.json file, as described at
https://xunit.net/docs/configuration-files.

Instead of creating a [Fact] test method, you can create a

[Theory] test method. A theory provides a way of

parameterizing your test methods, effectively taking your test

method and running it multiple times with different

arguments. Each set of arguments is considered a different

test.

You could rewrite the [Fact] test in listing 35.4 to be a

[Theory] test, as shown in the next listing. Instead of

specifying the variables in the method body, pass them as

https://github.com/shouldly/shouldly
https://xunit.net/docs/configuration-files

parameters to the method and then decorate the method with

three [InlineData] attributes. Each instance of the

attribute provides the parameters for a single run of the test.

Listing 35.5 Theory test for ConvertToGbp testing multiple sets of
values

[Theory] ❶
[InlineData(0, 3, 0)] ❷
[InlineData(3, 1.5, 2)] ❷
[InlineData(3.75, 2.5, 1.5)] ❷
public void ConvertToGbp_ConvertsCorrectly (❸
 decimal value, decimal rate, decimal expected) ❸
{

 var converter = new CurrencyConverter();

 int dps = 4; ❹

 var actual = converter.ConvertToGbp(value, rate, dps); ❺

 Assert.Equal(expected, actual); ❻
}

❶ Marks the method as a parameterized test

❷ Each [InlineData] attribute provides all the parameters for a single run of the test method.
❸ The method takes parameters, which are provided by the [InlineData] attributes.

❹ The dps variable doesn’t change, so there’s no need to include it in [InlineData].
❺ Executes the SUT

❻ Verifies the result

If you run this [Theory] test using dotnet test or Visual

Studio, it will show up as three separate tests, one for each

set of [InlineData], as shown in figure 35.7.

Figure 35.7 Each set of parameters in an [InlineData] attribute for
a [Theory] test creates a separate test run. In this example, a single
[Theory] has three [InlineData] attributes, so it creates three tests,
named according to the method name and the provided
parameters.

[InlineData] isn’t the only way to provide the parameters

for your theory tests, but it’s one of the most commonly used.

You can also use a static property on your test class with the

[MemberData] attribute or a class itself using the

[ClassData] attribute.

TIP I describe how you can use the [ClassData] and
[MemberData] attributes in my blog post “Creating parameterised
tests in xUnit with [InlineData], [ClassData], and
[MemberData]”: http://mng.bz/8ayP.

You now have some tests for the happy path of the

ConvertToGbp() method, and I even sneaked an edge case

into listing 35.5 by testing the case where value = 0. The

final concept I’ll cover is testing error cases, where invalid

values are passed to the method under test.

35.6 Testing failure conditions
A key part of unit testing is checking whether the system

under test handles edge cases and errors correctly. For the

CurrencyConverter, that would mean checking how the

class handles negative values, small or zero exchange rates,

large values and rates, and so on.

Some of these edge cases might be rare but valid cases,

whereas other cases might be technically invalid. Calling

ConvertToGbp with a negative value is probably valid; the

converted result should be negative too. On the other hand, a

negative exchange rate doesn’t make sense conceptually, so it

should be considered an invalid value.

http://mng.bz/8ayP

Depending on the design of the method, it’s common to throw

exceptions when invalid values are passed to a method. In

listing 35.3 you saw that we throw an ArgumentException

if the exchangeRate parameter is less than or equal to 0.

xUnit includes a variety of helpers on the Assert class for

testing whether a method throws an exception of an expected

type. You can then make further assertions on the exception,

such as to test whether the exception had an expected

message.

WARNING Take care not to tie your test methods too closely to the
internal implementation of a method. Doing so can make your tests
brittle, and trivial changes to a class may break the unit tests.

The following listing shows a [Fact] test to check the

behavior of the ConvertToGbp() method when you pass it a

0 exchangeRate. The Assert.Throws method takes a

lambda function that describes the action to execute, which

should throw an exception when run.

Listing 35.6 Using Assert.Throws<> to test whether a method throws
an exception

[Fact]

public void ThrowsExceptionIfRateIsZero()

{

 var converter = new CurrencyConverter();

 const decimal value = 1;

 const decimal rate = 0; ❶
 const int dp = 2;

 var ex = Assert.Throws<ArgumentException>(❷
 () => converter.ConvertToGbp(value, rate, dp)); ❸

 // Further assertions on the exception thrown, ex

}

❶ An invalid value

❷ You expect an Argument-Exception to be thrown.
❸ The method to execute, which should throw an exception

The Assert.Throws method executes the lambda and

catches the exception. If the exception thrown matches the

expected type, the test passes. If no exception is thrown or

the exception thrown isn’t of the expected type, the

Assert.Throws method throws an exception and fails the

test.

That brings us to the end of this brief introduction to unit

testing with xUnit. The examples in this section described how

to use the new .NET Test SDK, but we didn’t cover anything

specific to ASP.NET Core. In chapter 36 we’ll focus on applying

these techniques to testing ASP.NET Core projects specifically.

Summary
Unit test apps are console apps that have a

dependency on the .NET Test SDK, a test framework

such as xUnit, MSTest, or NUnit, and a test runner

adapter. You can run the tests in a test project by

calling dotnet test from the command line in your

test project or by using Test Explorer in Visual

Studio.

Many testing frameworks are compatible with the

.NET Test SDK, but xUnit has emerged as an almost

de facto standard for ASP.NET Core projects. The

ASP.NET Core team themselves use it to test the

framework.

To create an xUnit test project, choose xUnit Test

Project in Visual Studio or use the dotnet new

xunit CLI command. This creates a test project

containing the Microsoft.NET.Test.Sdk, xunit, and

xunit.runner.visualstudio NuGet packages.

xUnit includes two attributes to identify test

methods. [Fact] methods should be public and

parameterless. [Theory] methods can contain

parameters, so they can be used to run a similar test

repeatedly with different parameters. You can

provide the data for each [Theory] run using the

[InlineData], [ClassData], or [MemberData]

attributes.

Use assertions in your test methods to verify that

the SUT returned an expected value. Assertions exist

for most common scenarios, including verifying that

a method call raised an exception of a specific type.

If your code raises an unhandled exception, the test

will fail.

36 Testing ASP.NET Core applications

This chapter covers

Writing unit tests for custom middleware, API controllers, and
minimal API endpoints
Using the Test Host package to write integration tests
Testing your real application’s behavior with
WebApplicationFactory
Testing code dependent on Entity Framework Core with the in-
memory database provider

In chapter 35 I described how to test .NET 7 applications

using the xUnit test project and the .NET Test software

development kit (SDK). You learned how to create a test

project, add a project reference to your application, and

write unit tests for services in your app.

In this chapter we focus on testing ASP.NET Core

applications specifically. In sections 36.1 and 36.2 we’ll look

at how to test common features of your ASP.NET Core apps:

custom middleware, API controllers, and minimal API

endpoints. I show you how to write isolated unit tests for

both, much like you would any other service, and I’ll point

out the tripping points to watch for.

To ensure that components work correctly, it’s important to

test them in isolation. But you also need to test that they

work correctly in a middleware pipeline. ASP.NET Core

provides a handy Test Host package that lets you easily

write these integration tests for your components. You can

even go one step further with the

WebApplicationFactory helper class and test that your

app is working correctly. In section 36.3 you’ll see how to

use WebApplicationFactory to simulate requests to

your application and verify that it generates the correct

response.

In the final section of this chapter I’ll demonstrate how to

use the SQLite database provider for Entity Framework Core

(EF Core) with an in-memory database. You can use this

provider to test services that depend on an EF Core

DbContext without having to use a real database. That

prevents the pain of having unknown database infrastructure

and resetting the database between tests, with different

people having slightly different database configurations.

In chapter 35 I showed how to write unit tests for an

exchange-rate calculator service, such as you might find in

your application’s domain model. If well designed, domain

services are normally relatively easy to unit-test. But domain

services only make up a portion of your application. It can

also be useful to test your ASP.NET Core-specific constructs,

such as custom middleware, as you’ll see in the next section.

36.1 Unit testing custom middleware
In this section you’ll learn how to test custom middleware in

isolation. You’ll see how to test whether your middleware

handled a request or whether it called the next middleware

in the pipeline. You’ll also see how to read the response

stream for your middleware.

In chapter 31 you saw how to create custom middleware

and encapsulate middleware as a class with an Invoke

function. In this section you’ll create unit tests for a simple

health-check middleware component, similar to the one in

chapter 31. This is a basic implementation, but it

demonstrates the approach you can take for more complex

middleware components.

The middleware you’ll be testing is shown in listing 36.1.

When invoked, this middleware checks that the path starts

with /ping and, if it does, returns a plain text "pong"

response. If the request doesn’t match, it calls the next

middleware in the pipeline (the provided

RequestDelegate).

Listing 36.1 StatusMiddleware to be tested, which returns a "pong"
response

public class StatusMiddleware

{

 private readonly RequestDelegate _next; ❶
 public StatusMiddleware(RequestDelegate next) ❶
 {

 _next = next;

 }

 public async Task Invoke(HttpContext context) ❷
 {

 if(context.Request.Path.StartsWithSegments("/ping")) ❸
 { ❸
 context.Response.ContentType = "text/plain"; ❸
 await context.Response.WriteAsync("pong"); ❸

 return; ❸
 } ❸
 await _next(context); ❹
 }

}

❶ The RequestDelegate representing the rest of the middleware pipeline
❷ Called when the middleware is executed

❸ If the path starts with “/ping”, a “pong” response is returned . . .
❹ . . . otherwise, the next middleware in the pipeline is invoked.

In this section, you’re going to test two simple cases:

When a request is made with a path of "/ping"

When a request is made with a different path

WARNING Where possible, I recommend that you don’t directly
inspect paths in your middleware like this. A better approach is to use
endpoint routing instead, as I discussed in chapter 31. The
middleware in this section is for demonstration purposes only.

Middleware is slightly complicated to unit-test because the

HttpContext object is conceptually a big class. It contains

all the details for the request and the response, which can

mean there’s a lot of surface area for your middleware to

interact with. For that reason, I find unit tests tend to be

tightly coupled to the middleware implementation, which is

generally undesirable.

For the first test, you’ll look at the case where the incoming

request Path doesn’t start with /ping. In this case,

StatusMiddleware should leave the HttpContext

unchanged and call the RequestDelegate provided in the

constructor, which represents the next middleware in the

pipeline.

You could test this behavior in several ways, but in listing

36.2 you test that the RequestDelegate (essentially a

one-parameter function) is executed by setting a local

variable to true. In the Assert at the end of the method,

you verify that the variable was set and therefore that the

delegate was invoked. To invoke StatusMiddleware,

create and pass in a DefaultHttpContext, which is an

implementation of HttpContext.

NOTE The DefaultHttpContext derives from HttpContext
and is part of the base ASP.NET Core framework abstractions. If
you’re so inclined, you can explore the source code for it on GitHub at
http://mng.bz/MB9Q.

Listing 36.2 Unit testing StatusMiddleware when a nonmatching
path is provided

[Fact]

public async Task ForNonMatchingRequest_CallsNextDelegate()

{

 var context = new DefaultHttpContext(); ❶
 context.Request.Path = "/somethingelse"; ❶
 var wasExecuted = false; ❷
 RequestDelegate next = (HttpContext ctx) => ❸
 { ❸
 wasExecuted = true; ❸
 return Task.CompletedTask; ❸
 }; ❸
 var middleware = new StatusMiddleware(next); ❹

 await middleware.Invoke(context); ❺

http://mng.bz/MB9Q

 Assert.True(wasExecuted); ❻
}

❶ Creates a DefaultHttpContext and sets the path for the request
❷ Tracks whether the RequestDelegate was executed

❸ The RequestDelegate representing the next middleware should be invoked in this
example.

❹ Creates an instance of the middleware, passing in the next RequestDelegate

❺ Invokes the middleware with the HttpContext; should invoke the RequestDelegate
❻ Verifies that RequestDelegate was invoked

When the middleware is invoked, it checks the provided

Path and finds that it doesn’t match the required value of

/ping. The middleware therefore calls the next

RequestDelegate and returns.

The other obvious case to test is when the request Path is

"/ping"; the middleware should generate an appropriate

response. You could test several characteristics of the

response:

The response should have a 200 OK status code.

The response should have a Content-Type of

text/plain.

The response body should contain the "pong"

string.

Each of these characteristics represents a different

requirement, so you’d typically codify each as a separate

unit test. This makes it easier to tell exactly which

requirement hasn’t been met when a test fails. For

simplicity, in listing 36.3 I show all these assertions in the

same test.

The positive case unit test is made more complex by the

need to read the response body to confirm it contains

"pong". DefaultHttpContext uses Stream.Null for

the Response .Body object, which means anything written

to Body is lost. To capture the response and read it out to

verify the contents, you must replace the Body with a

MemoryStream. After the middleware executes, you can

use a StreamReader to read the contents of the

MemoryStream into a string and verify it.

Listing 36.3 Unit testing StatusMiddleware when a matching Path
is provided

[Fact]

public async Task ReturnsPongBodyContent()

{

 var bodyStream = new MemoryStream(); ❶
 var context = new DefaultHttpContext(); ❶
 context.Response.Body = bodyStream; ❶
 context.Request.Path = "/ping"; ❷
 RequestDelegate next = (ctx) => Task.CompletedTask; ❸
 var middleware = new StatusMiddleware(next: next); ❸

 await middleware.Invoke(context); ❹

 string response; ❺
 bodyStream.Seek(0, SeekOrigin.Begin); ❺
 using (var stringReader = new StreamReader(bodyStream)) ❺
 { ❺
 response = await stringReader.ReadToEndAsync(); ❺
 } ❺

 Assert.Equal("pong", response); ❻

 Assert.Equal("text/plain", context.Response.ContentType); ❼
 Assert.Equal(200, context.Response.StatusCode); ❽
}

❶ Creates a DefaultHttpContext and initializes the body with a MemoryStream

❷ The path is set to the required value for the StatusMiddleware.
❸ Creates an instance of the middleware and passes in a simple RequestDelegate

❹ Invokes the middleware
❺ Rewinds the MemoryStream and reads the response body into a string

❻ Verifies that the response has the correct value
❼ Verifies that the ContentType response is correct

❽ Verifies that the Status Code response is correct

As you can see, unit testing middleware requires a lot of

setup. On the positive side, it allows you to test your

middleware in isolation, but in some cases, especially for

simple middleware without any dependencies on databases

or other services, integration testing can (somewhat

surprisingly) be easier. In section 36.3 you’ll create

integration tests for this middleware to see the difference.

Custom middleware is common in ASP.NET Core projects,

but far more common are Razor Pages, API controllers, and

minimal API endpoints. In the next section you’ll see how

you can unit test them in isolation from other components.

36.2 Unit testing API controllers and
minimal API endpoints

In this section you’ll learn how to unit-test API controllers

and minimal API endpoints. You’ll learn about the benefits

and difficulties of testing these components in isolation and

the situations when it can be useful.

Unit tests are all about isolating behavior; you want to test

only the logic contained in the component itself, separate

from the behavior of any dependencies. The Razor Pages

and MVC/API frameworks use the filter pipeline, routing, and

model-binding systems, but these are all external to the

controller or PageModels. The PageModels and controllers

themselves are responsible for a limited number of things:

For invalid requests (that have failed validation, for

example), return an appropriate ActionResult

(API controllers) or redisplay a form (Razor

Pages).

For valid requests, call the required business logic

services and return an appropriate

ActionResult (API controllers), or show or

redirect to a success page (Razor Pages).

Optionally, apply resource-based authorization as

required.

Controllers and Razor Pages generally shouldn’t contain

business logic themselves; instead, they should call out to

other services. Think of them more as orchestrators, serving

as the intermediary between the HTTP interfaces your app

exposes and your business logic services.

If you follow this separation, you’ll find it easier to write unit

tests for your business logic, and you’ll benefit from greater

flexibility when you want to change your controllers to meet

your needs. With that in mind, there’s often a drive to make

your controllers and page handlers as thin as possible, to the

point where there’s not much left to test!

TIP One of my first introductions to this idea was a series of posts by
Jimmy Bogard. The following link points to the last post in the series,
but it contains links to all the earlier posts too. Bogard is also behind
the MediatR library (https://github.com/jbogard/MediatR), which
makes creating thin controllers even easier. See “Put your controllers
on a diet: POSTs and commands”: http://mng.bz/7VNQ.

All that said, controllers and actions are classes and

methods, so you can write unit tests for them. The difficulty

is deciding what you want to test. As an example, we’ll

consider the simple API controller in the following listing,

which converts a value using a provided exchange rate and

returns a response.

Listing 36.4 The API controller under test

[Route("api/[controller]")]

public class CurrencyController : ControllerBase

{

 private readonly CurrencyConverter _converter ❶
 = new CurrencyConverter(); ❶

 [HttpGet]

 public ActionResult<decimal> Convert(InputModel model) ❷
 {

 if (!ModelState.IsValid) ❸
 { ❸
 return BadRequest(ModelState); ❸
 } ❸

 decimal result = _converter.ConvertToGbp(model) ❹

 return result; ❺

https://github.com/jbogard/MediatR
http://mng.bz/7VNQ

 }

}

❶ The CurrencyConverter would normally be injected using DI and is created here for
simplicity.

❷ The Convert method returns an Action-Result<T>.

❸ If the input is invalid, returns a 400 Bad Request result, including the ModelState
❹ If the model is valid, calculates the result

❺ Returns the result directly

Let’s first consider the happy path, when the controller

receives a valid request. The following listing shows that you

can create an instance of the API controller, call an action

method, and receive an ActionResult<T> response.

Listing 36.5 A simple API controller unit test

public class CurrencyControllerTest

{

 [Fact]

 public void Convert_ReturnsValue()

 {

 var controller = new CurrencyController(); ❶
 var model = new InputModel ❶
 { ❶
 Value = 1, ❶
 ExchangeRate = 3, ❶
 DecimalPlaces = 2, ❶
 }; ❶

 ActionResult<decimal> result = controller.Convert(model); ❷
 Assert.NotNull(result); ❸
 }

}

❶ Creates an instance of the ConvertController to test and a model to send to the API
❷ Invokes the ConvertToGbp method and captures the value returned

❸ Asserts that the IActionResult is not null

An important point to note here is that you’re testing only

the return value of the action, the ActionResult<T>, not

the response that’s sent back to the user. The process of

serializing the result to the response is handled by the

Model-View-Controller (MVC) formatter infrastructure, as

you saw in chapter 9, not by the controller.

When you unit-test controllers, you’re testing them

separately from the MVC infrastructure, such as formatting,

model binding, routing, and authentication. This is obviously

by design, but as with testing middleware in section 36.1, it

can make testing some aspects of your controller somewhat

complex.

Consider model validation. As you saw in chapter 6, one of

the key responsibilities of action methods and Razor Page

handlers is to check the ModelState.IsValid property

and act accordingly if a binding model is invalid. Testing that

your controllers and PageModels handle validation failures

correctly seems like a good candidate for a unit test.

Unfortunately, things aren’t simple here either. The Razor

Page/MVC framework automatically sets the ModelState

property as part of the model-binding process. In practice,

when your action method or page handler is invoked in your

running app, you know that the ModelState will match the

binding model values. But in a unit test, there’s no model

binding, so you must set the ModelState yourself

manually.

Imagine you’re interested in testing the error path for the

controller in listing 36.4, where the model is invalid and the

controller should return BadRequestObjectResult. In a

unit test, you can’t rely on the ModelState property being

correct for the binding model. Instead, you must add a

model-binding error to the controller’s ModelState

manually before calling the action, as shown in the following

listing.

Listing 36.6 Testing handling of validation errors in MVC
controllers

[Fact]

public void Convert_ReturnsBadRequestWhenInvalid()

{

 var controller = new CurrencyController(); ❶
 var model = new ConvertInputModel ❷
 { ❷
 Value = 1, ❷
 ExchangeRate = -2, ❷
 DecimalPlaces = 2, ❷
 }; ❷

 controller.ModelState.AddModelError(❸
 nameof(model.ExchangeRate), ❸
 "Exchange rate must be greater than zero" ❸
); ❸

 ActionResult<decimal> result = controller.Convert(model); ❹

 Assert.IsType<BadRequestObjectResult>(result.Result); ❺
}

❶ Creates an instance of the Controller to test

❷ Creates an invalid binding model by using a negative ExchangeRate
❸ Manually adds a model error to the Controller’s ModelState. This sets ModelState.IsValid

to false.

❹ Invokes the action method, passing in the binding models

❺ Verifies that the action method returned a BadRequestObjectResult

NOTE In listing 36.6, I passed in an invalid model, but I could just as
easily have passed in a valid model or even null; the controller
doesn’t use the binding model if the ModelState isn’t valid, so the
test would still pass. But if you’re writing unit tests like this one, I
recommend trying to keep your model consistent with your
ModelState; otherwise, your unit tests won’t be testing a situation
that occurs in practice.

I tend to shy away from unit testing API controllers directly

in this way. As you’ve seen with model binding, the

controllers are somewhat dependent on earlier stages of the

MVC framework, which you often need to emulate. Similarly,

if your controllers access the HttpContext (available on

the ControllerBase base classes), you may need to

perform additional setup.

NOTE You can read more about why I generally don’t unit-test my
controllers in my blog article “Should you unit-test API/MVC
controllers in ASP.NET Core?” at http://mng.bz/YqMo.

So what about minimal API endpoints? There’s both good

news and bad news here. On one hand, minimal API

endpoints are simple lambda functions, so you can unit-test

them, but these tests also suffer from many drawbacks:

You must write your endpoint handlers as static or

instance methods on a class, not as lambda

methods or local functions, so that you can

reference them from the test project.

http://mng.bz/YqMo

You are testing only the execution of the endpoint

handler, outside any filters applied to the endpoint

or route group that execute in the real app.

You are not testing model-binding or result

serialization—two common sources of errors in

practice.

If your endpoint is simple, as it should be, there’s

not much to test!

I find unit tests for minimal APIs to be overly restrictive and

limited in value, so I avoid them, but you can see an

example of a minimal API unit test in the source code for

this chapter.

NOTE I haven’t discussed Razor Pages much in this section, as they
suffer from many of the same problems, in that they are dependent
on the supporting infrastructure of the framework. Nevertheless, if
you do wish to test your Razor Page PageModel, you can read
about it in Microsoft’s “Razor Pages unit tests in ASP.NET Core”
documentation: http://mng.bz/GxmM.

Instead of using unit testing, I try to keep my minimal API

endpoints, controllers, and Razor Pages as thin as possible. I

push as much of the behavior in these classes into business

logic services that can be easily unit-tested, or into

middleware and filters, which can be more easily tested

independently.

NOTE This is a personal preference. Some people like to get as
close to 100 percent test coverage for their code base as possible,

http://mng.bz/GxmM

but I find testing orchestration classes is often more hassle than it’s
worth.

Although I tend to forgo unit-testing my ASP.NET Core

endpoints, I often write integration tests that test them in

the context of a complete application. In the next section,

we’ll look at ways to write integration tests for your app so

you can test its various components in the context of the

ASP.NET Core framework as a whole.

36.3 Integration testing: Testing your
whole app in-memory

In this section you’ll learn how to create integration tests

that test component interactions. You’ll learn to create a

TestServer that sends HTTP requests in-memory to test

custom middleware components more easily. You’ll then

learn how to run integration tests for a real application,

using your real app’s configuration, services, and middleware

pipeline. Finally, you’ll learn how to use

WebApplicationFactory to replace services in your app

with test versions to avoid depending on third-party APIs in

your tests.

If you search the internet for types of testing, you’ll find a

host of types to choose among. The differences are

sometimes subtle, and people don’t universally agree on the

definitions. I chose not to dwell on that topic in this book. I

consider unit tests to be isolated tests of a component and

integration tests to be tests that exercise multiple

components at the same time.

In this section I’m going to show how you can write

integration tests for the StatusMiddleware from section

36.1 and the API controller from section 36.2. Instead of

isolating the components from the surrounding framework

and invoking them directly, you’ll specifically test them in a

context similar to how you use them in practice.

Integration tests are an important part of confirming that

your components function correctly, but they don’t remove

the need for unit tests. Unit tests are excellent for testing

small pieces of logic contained in your components and are

typically quick to execute. Integration tests are normally

significantly slower, as they require much more configuration

and may rely on external infrastructure, such as a database.

Consequently, it’s normal to have far more unit tests for an

app than integration tests. As you saw in chapter 35, unit

tests typically verify the behavior of a component, using

valid inputs, edge cases, and invalid inputs to ensure that

the component behaves correctly in all cases. Once you have

an extensive suite of unit tests, you’ll likely need only a few

integration tests to be confident your application is working

correctly.

You could write many types of integration tests for an

application. You could test that a service can write to a

database correctly, integrate with a third-party service (for

sending emails, for example), or handle HTTP requests made

to it.

In this section we’re going to focus on the last point:

verifying that your app can handle requests made to it, as it

would if you were accessing the app from a browser. For

this, we’re going to use a library provided by the ASP.NET

Core team called Microsoft.AspNetCore.TestHost.

36.3.1 Creating a TestServer using the Test
Host package

Imagine you want to write some integration tests for the

StatusMiddleware from section 36.1. You’ve already

written unit tests for it, but you want to have at least one

integration test that tests the middleware in the context of

the ASP.NET Core infrastructure.

You could go about this in many ways. Perhaps the most

complete approach would be to create a separate project

and configure StatusMiddleware as the only middleware

in the pipeline. You’d then need to run this project, wait for

it to start up, send requests to it, and inspect the responses.

This would possibly make for a good test, but it would also

require a lot of configuration, and it would be fragile and

error-prone. What if the test app can’t start because it tries

to use an already-taken port? What if the test app doesn’t

shut down correctly? How long should the integration test

wait for the app to start?

The ASP.NET Core Test Host package lets you get close to

this setup without having the added complexity of spinning

up a separate app. You add the Test Host to your test project

by adding the Microsoft.AspNetCore.TestHost NuGet

package, using the Visual Studio NuGet GUI, Package

Manager Console, or .NET command-line interface (CLI).

Alternatively, add the <PackageReference> element

directly to your test project’s .csproj file:

<PackageReference Include="Microsoft.AspNetCore.TestHost" Version="7.0.0"/>

In a typical ASP.NET Core app, you create a HostBuilder

in your Program class; configure a web server (Kestrel);

and define your application’s configuration, services, and

middleware pipeline (using a Startup file). Finally, you call

Build() on the HostBuilder to create an instance of an

IHost that can be run and that will listen for requests on a

given URL and port.

NOTE All this happens behind the scenes when you use the minimal
hosting WebApplicationBuilder and WebApplication
APIs. I have an in-depth post exploring the code behind
WebApplicationBuilder and how it relates to
HostBuilder on my blog at http://mng.bz/a1mj.

The Test Host package uses the same HostBuilder to

define your test application, but instead of listening for

requests at the network level, it creates an IHost that uses

in-memory request objects, as shown in figure 36.1.

http://mng.bz/a1mj

Figure 36.1 When your app runs normally, it uses the Kestrel
server. This listens for HTTP requests and converts the requests
to an HttpContext, which is passed to the middleware pipeline.
The TestServer doesn’t listen for requests on the network.
Instead, you use an HttpClient to make in-memory requests.
From the point of view of the middleware, there’s no difference.

It even exposes an HttpClient that you can use to send

requests to the test app. You can interact with the

HttpClient as though it were sending requests over the

network, but in reality, the requests are kept entirely in

memory.

Listing 36.7 shows how to use the Test Host package to

create a simple integration test for the

StatusMiddleware. First, create a HostBuilder, and

call ConfigureWebHost() to define your application by

adding middleware in the Configure method. This is

equivalent to the Startup.Configure() method you

would typically use to configure your application when using

the generic host approach.

NOTE You can write a similar test using
WebApplicationBuilder, but this sets up lots of extra defaults
such as configuration, extra dependency injection (DI) services, and
automatically added middleware, which can generally slow and add
some confusion to simple tests. You can see an example of this
approach in StatusMiddlewareTestHostTests in the

source code for this book, but I recommend using the approach in
listing 36.7, using HostBuilder, in most cases.

Call the UseTestServer() extension method in

ConfigureWebHost(), which replaces the default Kestrel

server with the TestServer from the Test Host package.

The TestServer is the main component in the Test Host

package, which makes all the magic possible. After

configuring the HostBuilder, call StartAsync() to build

and start the test application. You can then create an

HttpClient using the extension method

GetTestClient(). This returns an HttpClient

configured to make in-memory requests to the

TestServer, as shown in the following listing.

Listing 36.7 Creating an integration test with TestServer

public class StatusMiddlewareTests

{

 [Fact]

 public async Task StatusMiddlewareReturnsPong()

 {

 var hostBuilder = new HostBuilder() ❶
 .ConfigureWebHost(webHost => ❶
 {

 webHost.Configure(app => ❷
 app.UseMiddleware<StatusMiddleware>()); ❷
 webHost.UseTestServer(); ❸
 });

 IHost host = await hostBuilder.StartAsync(); ❹
 HttpClient client = host.GetTestClient(); ❺

 var response = await client.GetAsync("/ping"); ❻

 response.EnsureSuccessStatusCode(); ❼

 var content = await response.Content.ReadAsStringAsync(); ❽
 Assert.Equal("pong", content); ❽
 }

}

❶ Configures a HostBuilder to define the in-memory test app

❷ Adds the Status-Middleware as the only middleware in the pipeline
❸ Configures the host to use the TestServer instead of Kestrel

❹ Builds and starts the host
❺ Creates an HttpClient, or you can interact directly with the server object

❻ Makes an in-memory request, which is handled by the app as normal
❼ Verifies that the response was a success (2xx) status code

❽ Reads the body content and verifies that it contains “pong”

This test ensures that the test application defined by

HostBuilder returns the expected value when it receives a

request to the /ping path. The request is entirely in-

memory, but from the point of view of StatusMiddleware,

it’s the same as if the request came from the network.

The HostBuilder configuration in this example is simple.

Even though I’ve called this an integration test, you’re

specifically testing the StatusMiddleware on its own

rather than in the context of a real application. I think this

setup is preferable for testing custom middleware compared

with the “proper” unit tests I showed in section 36.1.

Regardless of what you call it, this test relies on simple

configuration for the test app. You may also want to test the

middleware in the context of your real application so that the

result is representative of your app’s real configuration.

If you want to run integration tests based on an existing

app, you don’t want to have to configure the test

HostBuilder manually, as you did in listing 36.7. Instead,

you can use another helper package,

Microsoft.AspNetCore.Mvc.Testing.

36.3.2 Testing your application with
WebApplicationFactory

Building up a HostBuilder and using the Test Host

package, as you did in section 36.3.1, can be useful when

you want to test isolated infrastructure components, such as

middleware. However, it’s also common to want to test your

real app, with the full middleware pipeline configured and all

the required services added to DI. This gives you the most

confidence that your application is going to work in

production.

The TestServer that provides the in-memory server can

be used for testing your real app, but in principle, a lot more

configuration is required. Your real app likely loads

configuration files or static files; it may use Razor Pages and

views, as well as using WebApplicationBuilder instead

of the generic host. Fortunately, the

Microsoft.AspNetCore.Mvc.Testing NuGet package and

WebApplicationFactory largely solve these

configuration problems for you.

NOTE Don’t be put off by the Mvc in the package name; you can use
this package for testing ASP.NET Core apps that don’t use any MVC

or Razor Pages services or components.

You can use the WebApplicationFactory class (provided

by the Microsoft.AspNetCore.Mvc.Testing NuGet package) to

run an in-memory version of your real application. It uses

the TestServer behind the scenes, but it uses your app’s

real configuration, DI service registration, and middleware

pipeline. The following listing shows an example that tests

that when your application receives a "/ping" request, it

responds with "pong".

Listing 36.8 Creating an integration test with
WebApplicationFactory

public class IntegrationTests: ❶
 IClassFixture<WebApplicationFactory<Program>> ❶
{

 private readonly WebApplicationFactory<Program> _fixture; ❷
 public IntegrationTests(❷
 WebApplicationFactory<Startup> fixture) ❷
 { ❷
 _fixture = fixture; ❷
 } ❷

 [Fact]

 public async Task PingRequest_ReturnsPong()

 {

 HttpClient client = _fixture.CreateClient(); ❸

 var response = await client.GetAsync("/ping"); ❹

 response.EnsureSuccessStatusCode(); ❹
 var content = await response.Content.ReadAsStringAsync(); ❹
 Assert.Equal("pong", content); ❹
 }

}

❶ Implementing the interface allows sharing an instance across tests.

❷ Injects an instance of WebApplicationFactory<T>, where T is a class in your app

❸ Creates an HttpClient that sends requests to the in-memory TestServer
❹ Makes requests and verifies the response as before

One of the advantages of using WebApplicationFactory

as shown in listing 36.8 is that it requires less manual

configuration than using the TestServer directly, as shown

in listing 36.13, despite performing more configuration

behind the scenes. The WebApplicationFactory tests

your app using the configuration defined in your Program.cs

and Startup.cs files.

NOTE The generic WebApplicationFactory<T> must
reference a public class in your app project. It’s common to use the
Program or Startup class. If you’re using top-level statements
for your app (the default in .NET 7), the automatically generated
Program class is internal by default. To make it public and
thereby expose it to your test project, add the following partial class
definition to your app: public partial class Program
{}.

Listings 36.8 and 36.7 are conceptually quite different too.

Listing 36.7 tests that the StatusMiddleware behaves as

expected in the context of a dummy ASP.NET Core app;

listing 36.7 tests that your app behaves as expected for a

given input. It doesn’t say anything specific about how that

happens. Your app doesn’t have to use the

StatusMiddleware for the test in listing 36.7 to pass; it

simply has to respond correctly to the given request. That

means the test knows less about the internal

implementation details of your app and is concerned only

with its behavior.

DEFINITION Tests that fail whenever you change your app slightly
are called brittle or fragile. Try to avoid brittle tests by ensuring that
they aren’t dependent on the implementation details of your app.

To create tests that use WebApplicationFactory, follow

these steps:

1. Install the Microsoft.AspNetCore.Mvc.Testing

NuGet package in your project by running dotnet

add package

Microsoft.AspNetCore.Mvc.Testing, by

using the NuGet explorer in Visual Studio, or by

adding a <PackageReference> element to your

project file as follows:

<PackageReference Include="Microsoft.AspNetCore.Mvc.Testing"

 Version="7.0.0" />

2. Update the <Project> element in your test

project’s .csproj file to the following:

<Project Sdk="Microsoft.NET.Sdk.Web">

This is required by WebApplicationFactory so that it

can find your configuration files and static files.

3. Implement

IClassFixture<WebApplicationFactory<T>

> in your xUnit test class, where T is a class in

your real application’s project. By convention, you

typically use your application’s Program class for

T.

WebApplicationFactory uses the T

reference to find the entry point for your

application, running the application in memory,

and dynamically replacing Kestrel with a

TestServer for tests.

If you’re using C# top-level statements and

using the Program class for T, you need to

make sure that the Program class is

accessible from the test project. You can

change the visibility of the automatically

generated Program class by adding public

partial class Program {} to your app.

The IClassFixture<TFixture> is an xUnit

marker interface that tells xUnit to build an

instance of TFixture before building the test

class and to inject the instance into the test

class’s constructor. You can read more about

fixtures at https://xunit.net/docs/shared-

context.

https://xunit.net/docs/shared-context
https://xunit.net/docs/shared-context

4. Inject an instance of

WebApplicationFactory<T> in your test

class’s constructor. You can use this fixture to

create an HttpClient for sending in-memory

requests to the TestServer. Those requests

emulate your application’s production behavior, as

your application’s real configuration, services, and

middleware are all used.

The big advantage of WebApplicationFactory is that

you can easily test your real app’s behavior. That power

comes with responsibility: your app will behave as it would

in real life, so it will write to a database and send to third-

party APIs! Depending on what you’re testing, you may want

to replace some of your dependencies to avoid this, as well

as to make testing easier.

36.3.3 Replacing dependencies in
WebApplicationFactory

When you use WebApplicationFactory to run

integration tests on your app, your app will be running in-

memory, but other than that, it’s as though you’re running

your application using dotnet run. That means any

connection strings, secrets, or API keys that can be loaded

locally will also be used to run your application.

TIP By default, WebApplicationFactory uses the
"Development" hosting environment, the same as when you run

locally.

On the plus side, that means you have a genuine test that

your application can start correctly. For example, if you’ve

forgotten to register a required DI dependency that is

detected on application startup, any tests that use

WebApplicationFactory will fail.

On the downside, that means all your tests will be using the

same database connection and services as when you run

your application locally. It’s common to want to replace

those with alternative test versions of your services.

As a simple example, imagine the CurrencyConverter

that you’ve been testing in this app uses

IHttpClientFactory to call a third-party API to retrieve

the latest exchange rates. You don’t want to hit that API

repeatedly in your integration tests, so you want to replace

the CurrencyConverter with your own

StubCurrencyConverter.

The first step is to ensure that the service

CurrencyConverter implements an interface—

ICurrencyConverter for example—and that your app

uses this interface throughout, not the implementation. For

our simple example, the interface would probably look like

the following:

public interface ICurrencyConverter

{

 decimal ConvertToGbp(decimal value, decimal rate, int dps);

}

You would register your real CurrencyConverter service

in Program.cs using

builder.Services.AddScoped<ICurrencyConverter, CurrencyConverter>();

Now that your application depends on

CurrencyConverter only indirectly, you can provide an

alternative implementation in your tests.

TIP Using an interface decouples your application services from a
specific implementation, allowing you to substitute alternative
implementations. This is a key practice for making classes testable.

We’ll create a simple alternative implementation of

ICurrencyConverter for our tests that always returns the

same value, 3. It’s obviously not terribly useful as an actual

converter, but that’s not the point: you have complete

control! Create the following class in your test project:

public class StubCurrencyConverter : ICurrencyConverter

{

 public decimal ConvertToGbp(decimal value, decimal rate, int dps)

 {

 return 3;

 }

}

You now have all the pieces you need to replace the

implementation in your tests. To achieve that, we’ll use a

feature of WebApplicationFactory that lets you

customize the DI container before starting the test server.

TIP It’s important to remember that you want to replace the
implementation only when running in the test project. I’ve seen some

people try to configure their real apps to replace live services for fake
services when a specific value is set, for example. That is often
unnecessary, bloats your apps with test services, and generally adds
confusion!

WebApplicationFactory exposes a method,

WithWebHostBuilder, that allows you to customize your

application before the in-memory TestServer starts. The

following listing shows an integration test that uses this

builder to replace the default ICurrencyConverter

implementation with our test stub.

Listing 36.9 Replacing a dependency in a test using
WithWebHostBuilder

public class IntegrationTests: ❶
 IClassFixture<WebApplicationFactory<Startup>> ❶
{ ❶
 private readonly WebApplicationFactory<Startup> _fixture; ❶
 public IntegrationTests(WebApplicationFactory<Startup> fixture) ❶
 { ❶
 _fixture = fixture; ❶
 } ❶

 [Fact]

 public async Task ConvertReturnsExpectedValue()

 {

 var customFactory = _fixture.WithWebHostBuilder(❷
 (IWebHostBuilder hostBuilder) => ❷
 {

 hostBuilder.ConfigureTestServices(services => ❸
 {

 services.RemoveAll<ICurrencyConverter>(); ❹
 services.AddScoped

 <ICurrencyConverter, StubCurrencyConverter>(); ❺
 });

 });

 HttpClient client = customFactory.CreateClient(); ❻

 var response = await client.GetAsync("/api/currency"); ❼

 response.EnsureSuccessStatusCode(); ❼
 var content = await response.Content.ReadAsStringAsync(); ❼

 Assert.Equal("3", content); ❽
 }

}

❶ Implements the required interface and injects it into the constructor
❷ Creates a custom factory with the additional configuration

❸ ConfigureTestServices executes after all other DI services are configured in your real app.
❹ Removes all implementations of ICurrency-Converter from the DI container

❺ Adds the test service as a replacement
❻ Calling CreateClient bootstraps the application and starts the TestServer.

❼ Invokes the currency converter endpoint
❽ As the test converter always returns 3, so does the API endpoint.

There are a couple of important points to note in this

example:

WithWebHostBuilder() returns a new

WebApplicationFactory instance. The new

instance has your custom configuration, and the

original injected _fixture instance remains

unchanged.

ConfigureTestServices() is called after your

real app’s ConfigureServices() method. That

means you can replace services that have been

previously registered. You can also use this to

override configuration values, as you’ll see in

section 36.4.

WithWebHostBuilder() is handy when you want to

replace a service for a single test. But what if you want to

replace the ICurrencyConverter in every test? All that

boiler- plate would quickly become cumbersome. Instead,

you can create a custom WebApplicationFactory.

36.3.4 Reducing duplication by creating a
custom WebApplicationFactory

If you find yourself writing WithWebHostBuilder() a lot

in your integration tests, it might be worth creating a custom

WebApplicationFactory instead. The follow- ing listing

shows how to centralize the test service we used in listing

36.9 into a custom WebApplicationFactory.

Listing 36.10 Creating a custom WebApplicationFactory to reduce
duplication

public class CustomWebApplicationFactory ❶
 : WebApplicationFactory<Program> ❶
{

 protected override void ConfigureWebHost(❷
 IWebHostBuilder builder) ❷
 {

 builder.ConfigureTestServices(services => ❸
 { ❸
 services.RemoveAll<ICurrencyConverter>(); ❸
 services.AddScoped ❸
 <ICurrencyConverter, StubCurrencyConverter>(); ❸
 }); ❸
 }

}

❶ Derives from WebApplicationFactory

❷ There are many functions available to override. This is equivalent to calling
WithWebHostBuilder.

❸ Adds custom configuration for your application

In this example, we override ConfigureWebHost and

configure the test services for the factory.
1
 You can use your

custom factory in any test by injecting it as an

IClassFixture, as you have before. The following listing

shows how you would update listing 36.9 to use the custom

factory defined in listing 36.10.

Listing 36.11 Using a custom WebApplicationFactory in an
integration test

public class IntegrationTests: ❶
 IClassFixture<CustomWebApplicationFactory> ❶
{

 private readonly CustomWebApplicationFactory _fixture; ❷
 public IntegrationTests(CustomWebApplicationFactory fixture) ❷
 {

 _fixture = fixture;

 }

 [Fact]

 public async Task ConvertReturnsExpectedValue()

 {

 HttpClient client = _fixture.CreateClient(); ❸

 var response = await client.GetAsync("/api/currency");

 response.EnsureSuccessStatusCode();

 var content = await response.Content.ReadAsStringAsync();

 Assert.Equal("3", content); ❹
 }

}

❶ Implements the IClassFixture interface for the custom factory
❷ Injects an instance of the factory in the constructor

❸ The client already contains the test service configuration.

❹ The result confirms that the test service was used.

You can also combine your custom

WebApplicationFactory, which substitutes services that

you always want to replace, with the

WithWebHostBuilder() method to override additional

services on a per-test basis. That combination gives you the

best of both worlds: reduced duplication with the custom

factory and control with the per-test configuration.

Running integration tests using your real app’s configuration

provides about the closest thing you’ll get to a guarantee

that your app is working correctly. The sticking point in that

guarantee is nearly always external dependencies, such as

third-party APIs and databases.

In the final section of this chapter we’ll look at how to use

the SQLite provider for EF Core with an in-memory

database. You can use this approach to write tests for

services that use an EF Core database context without

needing access to a real database.

36.4 Isolating the database with an in-
memory EF Core provider

In this section you’ll learn how to write unit tests for code

that relies on an EF Core DbContext. You’ll learn how to

create an in-memory database, and you’ll see the difference

between the EF in-memory provider and the SQLite in-

memory provider. Finally, you’ll see how to use the in-

memory SQLite provider to create fast, isolated tests for

code that relies on a DbContext.

As you saw in chapter 12, EF Core is an object-relational

mapper (ORM) that is used primarily with relational

databases. In this section I’m going to discuss one way to

test services that depend on an EF Core DbContext without

having to configure or interact with a real database.

NOTE To learn more about testing your EF Core code, see Entity
Framework Core in Action, 2nd ed., by Jon P. Smith (Manning, 2021),
http://mng.bz/QPpR.

The following listing shows a highly stripped-down version of

the RecipeService you created in chapter 12 for the

recipe app. It shows a single method to fetch the details of a

recipe using an injected EF Core DbContext.

Listing 36.12 RecipeService to test, which uses EF Core to store
and load entities

public class RecipeService

{

 readonly AppDbContext _context; ❶
 public RecipeService(AppDbContext context) ❶
 { ❶
 _context = context; ❶
 } ❶
 public RecipeViewModel GetRecipe(int id)

 {

 return _context.Recipes ❷
 .Where(x => x.RecipeId == id)

 .Select(x => new RecipeViewModel

 {

 Id = x.RecipeId,

 Name = x.Name

 })

http://mng.bz/QPpR

 .SingleOrDefault();

 }

}

❶ An EF Core DbContext is injected in the constructor.

❷ Uses the DbSet<Recipes> property to load recipes and creates a RecipeViewModel

Writing unit tests for this class is a bit of a problem. Unit

tests should be fast, repeatable, and isolated from other

dependencies, but you have a dependency on your app’s

DbContext. You probably don’t want to be writing to a real

database in unit tests, as it would make the tests slow,

potentially unrepeatable, and highly dependent on the

configuration of the database—a failure on all three

requirements!

NOTE Depending on your development environment, you may want
to use a real database for your integration tests, despite these
drawbacks. Using a database like the one you’ll use in production
increases the likelihood that you’ll detect any problems in your tests.
You can find an example of using Docker to achieve this in
Microsoft’s “Testing ASP.NET Core services and web apps”
documentation at http://mng.bz/zxDw.

Luckily, Microsoft ships two in-memory database providers

for this scenario. Recall from chapter 12 that when you

configure your app’s DbContext in Program.cs, you

configure a specific database provider, such as SQL Server:

builder.Services.AddDbContext<AppDbContext>(options =>

 options.UseSqlServer(connectionString);

The in-memory database providers are alternative providers

designed only for testing. Microsoft includes two in-memory

http://mng.bz/zxDw

providers in ASP.NET Core:

Microsoft.EntityFrameworkCore.InMemory—This

provider doesn’t simulate a database. Instead, it

stores objects directly in memory. It isn’t a

relational database as such, so it doesn’t have all

the features of a normal database. You can’t

execute SQL against it directly, and it won’t

enforce constraints, but it’s fast. These limitations

are large enough that Microsoft generally advise

against using it. See http://mng.bz/e1E9.

Microsoft.EntityFrameworkCore.Sqlite—SQLite is a

relational database. It’s limited in features

compared with a database like SQL Server, but it’s

a true relational database, unlike the in-memory

database provider. Normally a SQLite database is

written to a file, but the provider includes an in-

memory mode, in which the database stays in

memory. This makes it much faster and easier to

create and use for testing.

Unfortunately, EF Core migrations are tailored to a specific

database, which means you can’t run migrations created for

SQL Server or PostreSQL against a SQLite database. It’s

possible to create multiple sets of migrations, as described in

the documentation (http://mng.bz/pP15), but this can add a

lot of complexity. Consequently, always use

EnsureCreated() with SQLite tests, which creates the

database without running migrations, as you’ll see in listing

36.13.

http://mng.bz/e1E9
http://mng.bz/pP15

Instead of storing data in a database on disk, both of these

providers store data in memory, as shown in figure 36.2.

This makes them fast and easy to create and tear down,

which allows you to create a new database for every test to

ensure that your tests stay isolated from one another.

Figure 36.2 The in-memory database provider and SQLite
provider (in-memory mode) compared with the SQL Server
database provider. The in-memory database provider doesn’t
simulate a database as such. Instead, it stores objects in
memory and executes LINQ queries against them directly.

NOTE In this section I describe how to use the SQLite provider as an
in-memory database, as it’s more full-featured than the in-memory
provider. For details on using the in-memory provider, see Microsoft’s
“EF Core In-Memory Database Provider” documentation:
http://mng.bz/hdIq.

To use the SQLite provider in memory, add the

Microsoft.EntityFrameworkCore.Sqlite package to your test

project’s .csproj file. This adds the UseSqlite() extension

method, which you’ll use to configure the database provider

for your unit tests.

Listing 36.13 shows how you could use the in-memory

SQLite provider to test the GetRecipe() method of

RecipeService. Start by creating a SqliteConnection

object and using the "DataSource=:memory:" connection

string. This tells the provider to store the database in

memory and then open the connection. This is typically

faster than using a file-based connection-string and means

you can easily run multiple tests in parallel, as there’s no

shared database.

WARNING The SQlite in-memory database is destroyed when the
connection is closed. If you don’t open the connection yourself, EF

http://mng.bz/hdIq

Core closes the connection to the in-memory database when you
dispose of the DbContext. If you want to share an in-memory
database between DbContexts, you must explicitly open the
connection yourself.

Next, pass the SqliteConnection instance into the

DbContextOptionsBuilder<> and call UseSqlite().

This configures the resulting DbContextOptions<> object

with the necessary services for the SQLite provider and

provides the connection to the in-memory database.

Because you’re passing this options object in to an instance

of AppDbContext, all calls to the DbContext result in calls

to the in-memory database provider.

Listing 36.13 Using the in-memory database provider to test an
EF Core DbContext

[Fact]

public void GetRecipeDetails_CanLoadFromContext()

{

 var connection = new SqliteConnection("DataSource=:memory:"); ❶
 connection.Open(); ❷

 var options = new DbContextOptionsBuilder<AppDbContext>() ❸
 .UseSqlite(connection) ❸
 .Options; ❸

 using (var context = new AppDbContext(options)) ❹
 {

 context.Database.EnsureCreated(); ❺
 context.Recipes.AddRange(❻
 new Recipe { RecipeId = 1, Name = "Recipe1" }, ❻
 new Recipe { RecipeId = 2, Name = "Recipe2" }, ❻
 new Recipe { RecipeId = 3, Name = "Recipe3" }); ❻
 context.SaveChanges(); ❼
 }

 using (var context = new AppDbContext(options)) ❽
 {

 var service = new RecipeService(context); ❾
 var recipe = service.GetRecipe (id: 2); ❿
 Assert.NotNull(recipe); ⓫
 Assert.Equal(2, recipe.Id); ⓫
 Assert.Equal("Recipe2", recipe.Name); ⓫
 }

}

❶ Configures an in-memory SQLite connection using the special “in-memory” connection
string

❷ Opens the connection so EF Core won’t close it automatically
❸ Creates an instance of DbContextOptions<> and configures it to use the SQLite

connection

❹ Creates a DbContext and passes in the options
❺ Ensures that the in-memory database matches EF Core’s model (similar to running

migrations)

❻ Adds some recipes to the DbContext
❼ Saves the changes to the in-memory database

❽ Creates a fresh DbContext to test that you can retrieve data from the DbContext
❾ Creates the Recipe-Service to test and pass in the fresh DbContext

❿ Executes the GetRecipe function. This executes the query against the in-memory
database.

⓫ Verifies that you retrieved the recipe correctly from the in-memory database

This example follows the standard format for any time you

need to test a class that depends on an EF Core

DbContext:

1. Create a SqliteConnection with the

"DataSource=:memory:" connection string, and

open the connection.

2. Create a DbContextOptionsBuilder<> and call

UseSqlite(), passing in the open connection.

3. Retrieve the DbContextOptions object from the

Options property.

4. Pass the options to an instance of your

DbContext and ensure the database matches EF

Core’s model by calling

context.Database.EnsureCreated(). This is

similar to running migrations on your database,

but it should be used only on test databases.

Create and add any required test data to the in-

memory database, and call SaveChanges() to

persist the data.

5. Create a new instance of your DbContext and

inject it into your test class. All queries will be

executed against the in-memory database.

By using a separate DbContext for each purpose, you can

avoid bugs in your tests due to EF Core caching data without

writing it to the database. With this approach, you can be

sure that any data read in the second DbContext was

persisted to the underlying in-memory database provider.

This was a brief introduction to using the SQLite provider as

an in-memory database provider and EF Core testing in

general, but if you follow the setup shown in listing 36.13, it

should take you a long way. The source code for this chapter

shows how you can combine this code with a custom

WebApplicationFactory to use an in-memory database

for your integration tests. For more details on testing EF

Core, including additional options and strategies, see Entity

Framework Core in Action, 2nd ed., by Jon P. Smith

(Manning, 2021).

Summary
Use the DefaultHttpContext class to unit-test

your custom middleware components. If you need

access to the response body, you must replace the

default Stream.Null with a MemoryStream

instance and read the stream manually after

invoking the middleware.

API controllers, minimal APIs, and Razor Page

models can be unit-tested like other classes, but

they should generally contain little business logic,

so it may not be worth the effort. For example, the

API controller is tested independently of routing,

model validation, and filters, so you can’t easily

test logic that depends on any of these aspects.

Integration tests allow you to test multiple

components of your app at the same time,

typically within the context of the ASP.NET Core

framework itself. The

Microsoft.AspNetCore.TestHost package provides a

TestServer object that you can use to create a

simple web host for testing. This creates an in-

memory server that you can make requests to and

receive responses from. You can use the

TestServer directly when you wish to create

integration tests for custom components like

middleware.

For more extensive integration tests of a real

application, you should use the

WebApplicationFactory class in the

Microsoft.AspNetCore.Mvc.Testing package.

Implement

IClassFixture<WebApplicationFactory<Pr

ogram>> on your test class, and inject an instance

of WebApplicationFactory<Program> into

the constructor. This creates an in-memory version

of your whole app, using the same configuration,

DI services, and middleware pipeline. You can

send in-memory requests to your app to get the

best idea of how your application will behave in

production.

To customize the WebApplicationFactory, call

WithWebHostBuilder() and then call

ConfigureTestServices(). This method is

invoked after your app’s standard DI configuration.

This enables you to add or remove the default

services for your app, such as to replace a class

that contacts a third-party API with a stub

implementation.

If you need to customize the services for every

test, you can create a custom

WebApplicationFactory by deriving from it

and overriding the ConfigureWebHost method.

You can place all your configuration in the custom

factory and implement

IClassFixture<CustomWebApplicationFact

ory> in your test classes instead of calling

WithWebHostBuilder() in every test method.

You can use the EF Core SQLite provider as an in-

memory database to test code that depends on an

EF Core database context. You configure the in-

memory provider by creating a

SqliteConnection with a

"DataSource=:memory:" connection string.

Create a DbContextOptionsBuilder<> object

and call UseSqlite(), passing in the connection.

Finally, pass DbContextOptions<> into an

instance of your app’s DbContext, and call

context.Database.EnsureCreated() to

prepare the in-memory database for use with EF

Core.

The SQLite in-memory database is maintained as

long as there’s an open SqliteConnection.

When you open the connection manually, the

database can be used with multiple DbContexts.

If you don’t call Open() on the connection, EF

Core will close the connection (and delete the in-

memory database) when the DbContext is

disposed of.

1. WebApplicationFactory has many other methods you could override for other scenarios.
For details, see https://learn.microsoft.com/aspnet/core/test/integration-tests.

https://learn.microsoft.com/aspnet/core/test/integration-tests

appendix A. Preparing your
development environment
For .NET developers in a Windows-centric world, Visual

Studio was pretty much a developer requirement in the past.

But with .NET and ASP.NET Core going cross-platform, that’s

no longer the case.

All of ASP.NET Core (creating new projects, building, testing,

and publishing) can be run from the command line for any

supported operating system. All you need is the .NET

software development kit (SDK), which provides the .NET

command-line interface (CLI). Alternatively, if you’re using

Windows and not comfortable with the command line, you

can choose File > New > Project in Visual Studio to dive

straight in. With ASP.NET Core, it’s all about choice!

In a similar vein, you can now get a great editing experience

outside Visual Studio thanks to the OmniSharp

(www.omnisharp.net) project. This is an open-source set of

libraries and editor plugins that provide code suggestions

and autocomplete (IntelliSense) across a wide range of

editors and operating systems. How you set up your

environment will likely depend on which operating system

you’re using and what you’re used to.

Remember that for .NET 7, the operating system you choose

for development has no bearing on the final systems you can

run on. Whether you choose Windows, macOS, or Linux for

development, you can deploy to any supported system.

http://www.omnisharp.net/

In this appendix I’ll show you how to install the .NET SDK so

you can build, run, and publish .NET apps. I’ll also discuss

some of the integrated development environment (IDE) and

editor options available for you to build applications.

NOTE In this book I use Visual Studio for most of the examples, but
you’ll be able to follow along using any of the tools I discuss here.
The book assumes that you’ve successfully installed .NET 7 and an
editor on your computer.

A.1 Installing the .NET SDK
The most important thing you need for .NET Core and .NET

7 development is the .NET SDK. In this section I describe

how to install the .NET SDK and how to check which version

you have installed.

To start programming with .NET, you need to install the .NET

SDK (also known as the dotnet CLI). This contains the

base libraries, tooling, and compiler you need to create .NET

applications.

You can download the .NET SDK at

https://dotnet.microsoft.com/download. This page contains

links to download the latest version of .NET for your

operating system. If you’re using Windows or macOS, the

page contains installer download links; if you’re using Linux,

the page has instructions for installing .NET using your

distribution’s package manager, as a Snap package, or as a

manual download.

https://dotnet.microsoft.com/download

WARNING Make sure that you download the .NET SDK, not the .NET
Runtime. The .NET runtime is used to execute .NET applications, but
it can’t be used to build them. The .NET SDK includes a copy of the
runtime, so it can run your applications, but it can also build, test, and
publish them. Also make sure to choose the right architecture—x64 or
arm64—depending on your processor’s architecture.

After installing the .NET SDK, you can run commands with

the .NET CLI using the dotnet command. Run dotnet --

info to see information about the version of the .NET SDK

currently in use, as well as the .NET SDKs and .NET

runtimes you have installed, as shown in figure A.1.

Figure A.1 Use dotnet --info to check which version of the .NET
SDK is currently used and which versions are available. This
screenshot shows that I’m currently using the release version of
the .NET 7 SDK (version 7.0.100).

As you can see in figure A.1, I have multiple versions of the

.NET SDK installed. This is perfectly fine but not necessary.

Newer versions of the .NET SDK can build applications that

target older versions of .NET. For example, the .NET 7 SDK

can also build .NET 6 apps, .NET 5 apps, .NET Core 3.1

apps, and so on. By contrast, the .NET 6 SDK can’t build

.NET 7 applications.

TIP Some IDEs, such as Visual Studio, can automatically install .NET
7 as part of their installation process. There is no problem installing

multiple versions of .NET side by side, so you can always install the
.NET SDK manually, whether your IDE installs a different version or
not.

By default, when you run dotnet commands from the

command line, you’ll be using the latest version of the .NET

SDK you have installed. You can control that and use an

older version of the SDK by adding a global.json file to the

folder. For an introduction to this file, as well as details on

how to use it and how to understand .NET’s versioning

system, see my blog entry “Exploring the new rollForward

and allowPrerelease settings in global.json” at

http://mng.bz/KMzP.

TIP If you run into any problems during the install process, the
dotnet command isn’t recognized, or you get an error when
running the command, I suggest checking the installation
documentation for troubleshooting tips:
https://learn.microsoft.com/dotnet/core/install.

Once you have the .NET SDK installed, it’s time to choose an

IDE or editor. The choices available will depend on which

operating system you’re using and will largely be driven by

personal preference.

A.2 Choosing an IDE or editor
In this section I’ll describe a few of the most popular IDEs

and editors for .NET development and how to install them.

Choosing an IDE is a personal choice, so this section

http://mng.bz/KMzP
https://learn.microsoft.com/dotnet/core/install

describes only a few of the options. If your favorite IDE isn’t

listed here, check the documentation to see whether .NET is

supported.

A.2.1 Visual Studio (Windows)

For a long time, Windows has been the best system for

building .NET applications, and with the availability of Visual

Studio that’s arguably still the case.

Visual Studio (figure A.2) is a full-featured IDE that provides

one of the best all-around experiences for developing

ASP.NET Core applications. Luckily, the Visual Studio

Community edition is now free for open-source projects,

students, and small teams of developers.

Figure A.2 Visual Studio provides one of the most complete
ASP.NET Core development environments for Windows users.

Visual Studio comes loaded with a host of templates for

building new projects, best-in-class debugging, and

publishing; you never need to touch a command prompt. It’s

especially suitable if you’re publishing to Microsoft Azure, as

it has many direct hooks to Azure features that make

development and deployment easier.

You can install Visual Studio by visiting

https://visualstudio.microsoft.com/vs and choosing

Download. Choose Community 2022 (unless you have a

license for the Professional or Enterprise version) and follow

the prompts to install Visual Studio.

Figure A.3 Rider is a cross-platform .NET IDE from JetBrains. It
is based on the ReSharper plugin for Visual Studio, so it

https://visualstudio.microsoft.com/vs

includes many of the same refactoring features, as well as a
debugger, test runner, and all the other integration features you
expect from a full-featured IDE.

The Visual Studio installer is an application in and of itself. It

will ask you to select workloads to install. You can select as

many as you like, but for ASP.NET Core development, make

sure that you select ASP.NET and web development at a

minimum.

TIP A lot of workloads and optional components are available in the
installer. Don’t worry about installing everything now; you can always
launch the installer again later to add or remove components.

After selecting your workloads, click Download, and fetch a

beverage of your choice. Despite having been on a diet

recently, Visual Studio still requires many GB to be

downloaded and installed. Once it’s finished, you’ll be ready

to start building ASP.NET Core applications.

A.2.2 JetBrains Rider (Windows, Linux,
macOS)

Rider (figure A.3), from the company JetBrains, is a cross-

platform IDE alternative to Visual Studio. Released in 2017,

Rider is another full-featured IDE, based on the venerable

ReSharper plugin. If you’re used to using Visual Studio with

the ReSharper plugin and the multitude of refactorings that

this plugin provides, I strongly suggest investigating Rider.

Similarly, if you’re familiar with JetBrains’ IntelliJ products,

you will feel at home in Rider.

To install Rider, visit https://www.jetbrains.com/rider, and

click Download. Rider comes with a 30-day free trial, after

which you will need to purchase a license. If you already

have a ReSharper license, you may already have a license

for Rider. The company also offers discounts and free

licenses for various users, such as students and startups, so

Rider is worth looking into.

A.2.3 Visual Studio for Mac (macOS)

Despite the branding, Visual Studio for Mac is a completely

different product from Visual Studio. Rebranded and

extended from its Xamarin Studio precursor, Visual Studio

for Mac now allows you to build ASP.NET Core applications in

macOS. Visual Studio for Mac generally has fewer features

than Visual Studio or Rider, but it offers a native experience

and is under active development.

To install Visual Studio for Mac, visit

https://visualstudio.microsoft.com/vs/mac, choose

Download, and download and run the installer.

A.2.4 Visual Studio Code (Windows, Linux,
macOS)

Sometimes you don’t want a full-fledged IDE. Maybe you

want to view or edit a file quickly, or you don’t like the

sometimes-unpredictable performance of Visual Studio. In

those cases, a simple editor may be all you want or need,

and Visual Studio Code (VS Code) is a great choice. VS Code

https://www.jetbrains.com/rider
https://visualstudio.microsoft.com/vs/mac

(figure A.4) is an open-source, lightweight editor that

provides editing, IntelliSense, and debugging for a wide

range of languages, including C# and ASP.NET Core.

Figure A.4 VS Code provides cross-platform IntelliSense and
debugging.

To install VS Code, visit https://code.visualstudio.com, and

download and run the installer.

NOTE Make sure to choose the correct download for your operating
system and architecture. The download page tries to choose the most
appropriate download. You can see all the available options at
https://code.visualstudio.com/#alt-downloads.

The first time you open a folder containing a C# project or

solution file with VS Code, you’ll be prompted to install a C#

extension, which provides the IntelliSense and integration

between VS Code and the .NET SDK.

The extension model of VS Code is one of its biggest assets,

as you can add a huge amount of functionality. Whether

you’re working with Azure, Amazon Web Services (AWS,) or

any other technology, be sure to check the extension

marketplace at https://marketplace.visualstudio.com/vscode

to see what’s available. If you search for “.NET”, you’ll also

find a huge array of extensions that can bring VS Code

closer to that full-blown IDE experience, if you wish.

https://code.visualstudio.com/
https://code.visualstudio.com/#alt-downloads
https://marketplace.visualstudio.com/vscode

Appendix B. Useful references
In this appendix I provide many links and references that

I’ve found useful for learning about .NET 7 and ASP.NET

Core.

B.1 Relevant books
This book touched on several topics and aspects of the .NET

ecosystem that are somewhat peripheral to building

ASP.NET Core applications. For a deeper understanding of

those topics, I recommend the books in this section. They

cover areas that you’ll inevitably encounter when building

ASP.NET Core applications:

Vladimir Khorikov, Unit Testing Principles,

Patterns, and Practices (Manning, 2020),

http://mng.bz/E2go. Learn to refine your unit

tests using modern best practices in this excellent

book that contains examples in C#.

Dustin Metzgar, .NET in Action, 2nd ed. (Manning,

2023), http://mng.bz/OxPK. .NET Core apps are

built using .NET 7. This book provides everything

you need to know about running on the platform.

http://mng.bz/E2go
http://mng.bz/OxPK

Roy Osherove, The Art of Unit Testing, 3rd ed.

(Manning, 2024), http://mng.bz/lW5o. In

ASP.NET Core in Action, I discuss the mechanics

of unit testing ASP.NET Core applications. For a

deeper discussion of how to create your tests, I

recommend The Art of Unit Testing.

Chris Sainty, Blazor in Action (Manning, 2021),

http://mng.bz/l1P6. Blazor is an exciting new

framework that uses the power of industry-

standard WebAssembly to run .NET in the

browser. With Blazor you can build single-page

applications as you would with a JavaScript

framework like Angular or React, but using the C#

language and tooling that you already know.

Jon P. Smith, Entity Framework Core in Action,

2nd ed. (Manning, 2021), http://mng.bz/BRj0. If

you’re using EF Core in your apps, I highly

recommend Entity Framework Core in Action. It

covers all the features and pitfalls of EF Core, as

well as how to tune your app for performance.

Steven Van Deursen and Mark Seemann,

Dependency Injection Principles, Practices, and

Patterns (Manning, 2019), http://mng.bz/d4lN.

Dependency injection is a core aspect of ASP.NET

Core, so Dependency Injection Principles,

Practices, and Patterns is especially relevant now.

It introduces the patterns and antipatterns of

dependency injection in the context of .NET and

the C# language.

http://mng.bz/lW5o
http://mng.bz/l1P6
http://mng.bz/BRj0
http://mng.bz/d4lN

B.2 Announcement blog posts
When Microsoft releases a new version of ASP.NET Core or

.NET Core, it typically posts an announcement blog. These

posts provide a high-level overview of the topic, with many

examples of new features. They’re a great place to start if

you want to get acquainted with a topic quickly:

Jon Douglas, Jeremy Likness, and Angelos

Petropoulos, “.NET 7 is Available Today,” .NET Blog

(Microsoft, November 8, 2022),

http://mng.bz/Y1Ro. Announcement blog post for

.NET 7, describing a huge number of the features

introduced in .NET 7.

Richard Lander, “Introducing .NET 5,” .NET Blog

(Microsoft, May 6, 2019), http://mng.bz/Gy9M.

The original announcement blog post for .NET 5,

describing the One .NET vision for the platform.

Immo Landwerth, “The future of .NET Standard,”

.NET Blog (Microsoft, September 15, 2020),

http://mng.bz/zX0w. A discussion of what .NET 5

means for the future of .NET Standard, including

guidance for library authors.

Immo Landwerth, “.NET Standard—Demystifying

.NET Core and .NET Standard,” Microsoft

Developer Network (Microsoft, September 2017),

http://mng.bz/0Klp. A long post introducing .NET

Core and explaining where .NET Standard fits in

the .NET ecosystem.

http://mng.bz/Y1Ro
http://mng.bz/Gy9M
http://mng.bz/zX0w
http://mng.bz/0Klp

Microsoft Docs, “.NET and .NET Core Support

Policy,” http://mng.bz/Ke9P. Microsoft’s official

support policy for .NET Core and .NET 7.

Daniel Roth, “Announcing ASP.NET Core in .NET

7,” ASP.NET Blog (Microsoft, November 8, 2022),

http://mng.bz/gBve. Announcement blog post for

ASP.NET Core 7, describing how to upgrade a

project from .NET 6 to .NET 7 and providing links

to many of the new features introduced in

ASP.NET Core 7.

Mads Torgersen, “Welcome to C# 11,” .NET Blog

(Microsoft, November 8, 2022),

http://mng.bz/9DQx. Announcement blog post for

C# 11, released alongside .NET 7.

B.3 Microsoft documentation
Historically, Microsoft documentation has been poor, but

with ASP.NET Core there has been a massive push to ensure

that the docs are useful and current. You can find walk-

throughs, targeted documentation for specific features,

documentation for supported APIs, and even an in-browser

C# compiler:

Microsoft Docs, “.NET API browser,”

https://learn.microsoft.com/dotnet/api. This is an

API browser that can be used to work out which

.NET APIs are available on which .NET platforms.

http://mng.bz/Ke9P
http://mng.bz/gBve
http://mng.bz/9DQx
https://learn.microsoft.com/dotnet/api

Microsoft Docs, “ASP.NET documentation,”

https://learn.microsoft.com/aspnet/core. This is

the official documentation for ASP.NET Core.

Microsoft Docs, “Cross-platform targeting,”

http://mng.bz/e1o9. The official guidance on

choosing a target framework for your libraries.

Microsoft Docs, “Entity Framework Core,”

https://learn.microsoft.com/ef/core. This is the

official documentation for EF Core.

B.4 Security-related links
Security is an important aspect of modern web

development. This section contains some of the sites I refer

to regularly, which describe some best practices for web

development as well as practices to avoid:

Duende, “Duende IdentityServer v6

Documentation,” https://docs.duendesoft

ware.com/identityserver/v6. Documentation for

Duende’s IdentityServer, the OpenID Connect,

and OAuth 2.0 framework for ASP.NET Core.

Dominick Baier, Dominick Baier on Identity &

Access Control (blog), https://leastprivilege.com.

The personal blog of Dominick Baier, co-author of

IdentityServer; a great resource for working with

authentication and authorization in ASP.NET Core.

https://learn.microsoft.com/aspnet/core
http://mng.bz/e1o9
https://learn.microsoft.com/ef/core/
https://docs.duendesoftware.com/identityserver/v6
https://docs.duendesoftware.com/identityserver/v6
https://leastprivilege.com/

Scott Helme, Scott Helme (blog),

https://scotthelme.co.uk. Blog with advice on

security standards, especially security headers

you can add to your application.

Scott Helme, “SecurityHeaders.io—Analyse your

HTTP response headers,”

https://securityheaders.com. Test your website’s

security headers and get advice on why and how

you should add them to your app.

Troy Hunt, Troy Hunt (blog),

https://www.troyhunt.com. Personal blog of Troy

Hunt, with security-related advice for web

developers, particularly .NET developers.

Microsoft Docs, “ASP.NET Core security topics”

(Microsoft, March 6, 2022),

https://learn.microsoft.com/aspnet/core/security.

The home page of the official ASP.NET Core

documentation for all things security-related.

B.5 ASP.NET Core GitHub repositories
ASP.NET Core is entirely open-source and developed on

GitHub. One of the best ways I’ve found to learn about the

framework is to browse the source code itself. This section

contains the main repositories for ASP.NET Core, .NET 7,

and EF Core:

https://scotthelme.co.uk/
https://securityheaders.com/
https://www.troyhunt.com/
https://learn.microsoft.com/aspnet/core/security

.NET Foundation, “ASP.NET Core,”

https://github.com/dotnet/aspnetcore. The

framework libraries that make up ASP.NET Core.

.NET Foundation, “Entity Framework Core,”

https://github.com/dotnet/efcore. The EF Core

library.

.NET Foundation, “.NET Runtime,”

https://github.com/dotnet/runtime. The .NET

CoreCLR runtime and BCL libraries, as well as

extension libraries.

.NET Foundation, “.NET SDK and CLI,”

https://github.com/dotnet/sdk. The .NET

command-line interface (CLI), assets for building

the .NET SDK, and project templates.

.NET Foundation, “Docker image for .NET,”

https://github.com/dotnet/ dotnet-docker. The

Dockerfile definitions for the official .NET Docker

images.

B.6 Tooling and services
This section contains links to tools and services you can use

to build ASP.NET Core projects:

.NET SDK—

https://dotnet.microsoft.com/download

https://github.com/dotnet/aspnetcore
https://github.com/dotnet/efcore
https://github.com/dotnet/runtime
https://github.com/dotnet/sdk
https://github.com/dotnet/dotnet-docker
https://dotnet.microsoft.com/download

Cloudflare, a global content delivery network you

can use to add caching and HTTPS to your

applications for free—https://www.cloudflare.com

JetBrains Rider, a fast and powerful cross-platform

.NET IDE—https://www.jetbrains.com/rider

Let’s Encrypt, a free, automated, and open

certificate authority you can use it to obtain free

Secure Sockets Layer (SSL) certificates to secure

your application—https://letsencrypt.org

Muhammed Rehan Saeed’s .NET Boxed, a

comprehensive collection of templates to get

started with ASP.NET Core, preconfigured with

many best practices—https://github.com/Dotnet-

Boxed/Templates

Visual Studio, Visual Studio for Mac and Visual

Studio Code—https://visualstudio.microsoft.com

B.7 ASP.NET Core blogs
This section contains blogs that focus on ASP.NET Core.

Whether you’re trying to get an overview of a general topic

or trying to solve a specific problem, it can be useful to

have multiple viewpoints on a topic:

Khalid Abuhakmeh, Abuhakmeh,

https://khalidabuhakmeh.com. A wide variety of

posts by Khalid, focused on .NET and software

development in general.

https://www.cloudflare.com/
https://www.jetbrains.com/rider
https://letsencrypt.org/
https://github.com/Dotnet-Boxed/Templates
https://github.com/Dotnet-Boxed/Templates
https://visualstudio.microsoft.com/
https://khalidabuhakmeh.com/

Chris Alcock, The Morning Brew,

https://blog.cwa.me.uk. A collection of .NET-

related blog posts, curated daily.

Damien Boden, Software Engineering,

https://damienbod.com. An excellent blog by

Microsoft MVP Damien Boden on ASP.NET Core,

with lots of posts about ASP.NET Core with

Angular.

Mike Brind, Mikesdotnetting,

https://www.mikesdotnetting.com. Brind has

many posts on ASP.NET Core, especially focused

on ASP.NET Core Razor Pages.

Steve Gordon, Steve Gordon—Code with Steve,

https://www.stevejgordon.co.uk. Personal blog of

Steve Gordon, focused on .NET and often focused

on writing high-performance code with .NET.

Scott Hanselman, Scott Hanselman,

https://www.hanselman.com/blog. Renowned

speaker Scott Hanselman’s personal blog, a highly

diverse blog focused predominantly on .NET.

Andrew Lock, .NET Escapades,

https://andrewlock.net. My personal blog, focused

on ASP.NET Core.

Microsoft .NET Team, .NET Blog,

https://blogs.msdn.microsoft.com/dotnet. The

.NET team’s blog, with lots of great links.

https://blog.cwa.me.uk/
https://damienbod.com/
https://www.mikesdotnetting.com/
https://www.stevejgordon.co.uk/
https://www.hanselman.com/blog
https://andrewlock.net/
https://blogs.msdn.microsoft.com/dotnet

David Pine, IEvangelist, https://davidpine.net.

Personal blog of David Pine, with lots of posts on

ASP.NET Core.

Muhammed Rehan Saeed, Muhammed Rehan

Saeed, https://rehansaeed.com. Personal blog of

Muhammad Rehan Saeed, Microsoft MVP and

author of the .NET Boxed project.

Rick Strahl, Rick Strahl’s Weblog,

https://weblog.west-wind.com. Excellent blog by

Microsoft MVP Rick Strahl covering a wide variety

of ASP.NET Core topics.

Filip W., StrathWeb, https://www.strathweb.com.

Lots of posts on ASP.NET Core and ASP.NET by

Filip, a Microsoft MVP and prolific open-source

contributor.

B.8 Video links
If you prefer video for learning a subject, I recommend

checking out the links in this section. In particular, the

ASP.NET Core community standup provides great insight

into the changes you’ll see in future ASP.NET Core versions,

straight from the team building the framework:

Microsoft, “.NET Conf 2022,” YouTube video

playlist (November 15, 2022),

http://mng.bz/8r4Z. All the sessions from the

.NET Conf 2022 online conference announcing

.NET 7.

https://davidpine.net/
https://rehansaeed.com/
https://weblog.west-wind.com/
https://www.strathweb.com/
http://mng.bz/8r4Z

.NET Foundation, “.NET Community Standup,”

https://live.asp.net. Weekly videos with the

ASP.NET Core team discussing development of the

framework; includes standups with the .NET

team, the Xamarin team, and the EF Core team.

Immo Landwerth, “.NET Standard—Introduction,”

YouTube video (November 28, 2016),

http://mng.bz/Vd0P. The first video in an

excellent series on .NET standard.

Steve Gordon, “Integration Testing ASP.NET Core

Applications: Best Practices,” Pluralsight course,

3:25 hours (July 15, 2020), http://mng.bz/A09z.

One of several courses from Steve Gordon

providing guidance and advice on building

ASP.NET Core applications.

Nick Chapsas, “Nick Chapsas”, YouTube channel

(November 14, 2022), http://mng.bz/pPp5. The

YouTube channel of Nick Chapsas, posting many

videos about .NET and ASP.NET Core.

https://live.asp.net/
http://mng.bz/Vd0P
http://mng.bz/A09z
http://mng.bz/pPp5

index
Symbols
!= null expression 148
.csproj project file 41 – 43
.NET 5+, use of term 15
.NET Blog (Microsoft .NET Team) 923
.NET CLI (command-line interface) 31, 317, 345, 624, 669, 687, 896, 913
.NET Core, use of term 15
.NET Escapades (Lock) 923
.NET Framework developers

creating new applications 23 – 27
new to .NET development 22 – 23

.NET Global tool 261 – 263

.NET in Action, 2nd ed. (Metzgar) 873, 919

.NET SDK (Software Development Kit) 294, 689, 873, 913 – 915

.NET Test SDK (Software Development Kit) 887
“.NET 7 is Available Today” .NET Blog (Douglas and Likness) 920
“.NET Standard—Demystifying .NET Core and .NET Standard” Microsoft Developer

Network (Landwerth) 920
“Announcing ASP.NET Core in .NET 7” ASP.NET Blog (Roth) 920
“Future of .NET Standard, The” .NET Blog (Landwerth) 920
“Introducing .NET 5” .NET Blog (Lander) 920
“Kestrel:Certificates:Default” section 715
“property based testing series, The” Blog series (Wlaschin) 882
“Welcome to C# 11” .NET Blog (Torgersen) 920
[action] token 500
[AllowAnonymous] attribute 597, 649
[ApiController] attribute 502 – 505, 540 – 541, 544
[AsParameters] attribute 161 – 162
[Authorize] attribute 536, 594 – 598, 600 – 602, 605, 607 – 608, 611 – 614, 616, 618, 638,

649, 730
[BindProperties] attribute 403, 412, 447, 548
[ClassData] attribute 884
[controller] token 500
[CurrencyCode] attribute 819 – 820
[DisableCors] attribute 740
[DisallowConcurrentExecution] attribute 866
[Display] attribute 446
[DisplayFormat] attribute 450
[EmailAddress] attribute 165, 447 – 448
[EnableCors] attribute 740 – 741
[Fact] attribute 876 – 877
[Fact] test 883, 885
[From*] attributes 145 – 146, 158, 162
[FromBody] attribute 146, 150, 161, 392 – 393, 503, 505
[FromForm] attribute 393
[IgnoreAntiforgeryToken] attribute 733

[InlineData] attributes 883 – 884
[LoggerMessage] attribute 662
[MemberData] attribute 884
[ModelBinder] attribute 393
[NonAction] attribute 470
[Phone] attribute 165
[RegularExpresssion] attribute 813
[Required] attribute 398, 800
[ResponseCache] attribute 539
[Route] attributes 342, 497 – 499, 501
[Theory] test 883 – 884
[ValidateAntiForgeryToken] attributes 733
[ViewComponent] attribute 811
[ViewData] attribute 416
{area} route parameter 571
{category} parameter 128
{handler} route parameter 362
{id} parameter 128, 144
{name} parameter 128
{query} route parameter 380
{someValue} expression 89
{speed} route parameter 498
@addTagHelper directive 803, 805
@inject directive 618
@inject service 478
@model directive 411 – 412, 414 – 415, 478
@page directive 324, 346 – 348, 354, 356, 385 – 386, 411 – 412, 415, 425, 497
@page statement 346
@RenderBody() function 425
@section definition 426
@task Razor expression 421
@using newNamespace directive 411
@using statement 431, 433
*Executed command 549
*Executed method 528 – 529, 538
*Executing command 549
*Executing method 528 – 529, 538
/person API 89
/person endpoint 47 – 48
/person/{name} routing template 89
/ping request 784

Numerics
204 No Content response 510
2FA (two-factor authentication) 566
401 Unauthorized responses 642
403 Forbidden response 650

A
AAA (Arrange, Act, Assert) unit test style 882
abstraction 181

AbstractValidator<> base class 818
Abuhakmeh, Khalid 922
Accept header 506, 509 – 510, 546
AcquireRequestState event 60
action attribute 442, 444 – 445
action filters 539 – 543
action invocation pipeline 516
action methods 349 – 350, 469, 471
action route parameter 471
action, defined 471
ActionResult<> response 892
Add function 236
Add() method 301, 874
Add* APIs 194
Add* method 186, 193, 195, 198, 200 – 201
Add*File methods 229
AddAuthorization() method 795
AddConsole() method 670
AddControllers() method 505, 508, 795
AddDbContext<> 311
AddDefaultIdentity() method 572
AddEndpointFilterFactory() method 110
AddEnvironmentVariables method 226
AddFile() method 669 – 670
AddHostedService() method 850
AddHttpClient() call 838
AddJob<>() method 865
AddJsonFile() method 221
AddMvcOptions() method 527
AddPageRoute() convention 354, 356
AddProblemDetails() method 103
AddRazorPageOptions() configuration lambda 355
AddRazorPages() function 186
AddRazorPages() method 185 – 186, 198, 354
AddRazorPagesOptions() method 354
AddScoped method 194, 206
AddScoped<TService, TImplementation> method 194
AddScoped<TService> method 194
AddSeq() method 677
AddSingleton<>() method 196
AddSingleton<TService> method 194
AddSwaggerGen() method 251
AddTransient methods 205
AddUserSecrets method 228
Administrator role 603
Agile Software Development, Principles, Patterns, and Practices (Martin) 48
AJAX (Asynchronous JavaScript and XML) 432, 809
Alcock, Chris 922
AllowAnonymous() function 649
AllowAnyHeader() method 742

AllowAnyMethod method 742
AllowAnyOrigin() CorsPolicyBuilder method 741
AllowCredentials() CorsPolicyBuilder method 742
ambient values 350
Anchor Tag Helper 459 – 460
AND:,logical 605
Angular in Action (Wilken) 88
Aniche, Maurício 873
API model 496
HTTP API creation

using common conventions with 502 – 505
web API controllers

creating HTTP APIs using
using common conventions with 502 – 505

app pipeline 776
AppDbContext class 292
AppDisplaySettings 232, 234 – 235
Append Version Tag Helper 460 – 461
apples category 494, 496
application model 333 – 334, 530
application pool 693
application/json MIME type 510
ApplicationDbContext EF Core DbContext 571
ApplicationUser 580 – 581, 616
<appsettings> element 217
area route 572
areas, in Razor Pages, defined 570
args parameter 44
args variable 44
Arrange, Act, Assert (AAA) unit test style 882
arrays 151 – 153
Art of Unit Testing, The, 3rd ed. (Osherove) 873, 919
asp- attribute 444, 463
asp-append-version attribute 461
asp-area attribute 572
asp-controller attribute 445
asp-for attribute 446 – 447, 451, 453 – 454, 800
asp-format attribute 450
asp-items attribute 453 – 454
asp-page attribute 444, 459 – 460
asp-page Tag Helper attribute 444
asp-page-handler attribute 445, 459
asp-route-* attributes 445, 459
asp-validation-for attribute 456
asp-validation-summary attribute 457
ASP.NET applications, converting to ASP.NET Core 27 – 29
ASP.NET Core 1 – 9, 13 – 29

advanced configuration of 771 – 797
authorization in 594 – 600
blogs 922 – 923

dependency injection 793 – 796
hosting model 684 – 692
choosing deployment method 690 – 692
running vs. publishing 686 – 690

inner workings of 4 – 8
HTTP web requests 5 – 7
processing requests 7 – 8

logging abstractions 658 – 659
middleware pipeline 772 – 788
motivations for creating 15 – 17
ovewview of 1 – 2
paradigms of 18 – 21
reasons to choose 3 – 4
routing in 340 – 342
testing in 873 – 875
types of applications you can build with 2 – 3
web frameworks 13 – 14
when to use 21 – 29
.NET Framework developers creating new application 23 – 27
converting existing ASP.NET applications to ASP.NET Core 27 – 29
developers who are new to .NET development 22 – 23

ASP.NET Core apps
authentication for 624 – 631
centralizing authentication in identity providers 626 – 629
extending authentication to multiple apps 624 – 626
OIDC and OAuth 2.0 629 – 631

building with generic host and Startup class 753 – 770
complexity of generic host 764 – 767
creating custom IHostBuilder 761 – 764
minimal hosting vs. generic host 767 – 768
Program class 755 – 757
separating concerns between two files 754
Startup class 757 – 761

installing Quartz.NET 862 – 864
rejecting HTTP requests in 722 – 723
signing in to 562 – 564
testing 887 – 911

ASP.NET Core Identity
adding custom data to users 586 – 588
adding to existing projects 578 – 583
configuring services 579 – 580
updating EF Core data model to support Identity 581
updating Razor views to link to Identity UI 582 – 583

creating projects 568 – 578
data model 573 – 576
exploring templates in Solution Explorer 570 – 572
from templates 569 – 570
interacting with Identity 576 – 578

customizing pages in default UI 583 – 586
overview of 566 – 568

ASP.NET Core web applications 30 – 54, 215 – 247
.csproj project file 41 – 43
configuration for multiple environments 238 – 246
identifying hosting environment 239 – 240
loading environment-specific configuration files 240 – 242
setting hosting environment 243 – 246

configuration model 216 – 218
configuration objects 218 – 230
adding configuration providers in Program.cs 221 – 223
overriding configuration values using multiple providers 223 – 225
reloading configuration values 229 – 230
storing configuration secrets 225 – 229

converting existing ASP.NET applications to 27 – 29
creating 33 – 37
dependency injection 173 – 189
functionality 46 – 52
adding and configuring services 48 – 50
defining request handling with middleware and endpoints 50 – 52

JSON APIs 84 – 117
mapping URLs to endpoints using routing 118 – 140
overview of 31 – 33
Program.cs file 43 – 46
project layout 40 – 41
request handling with middleware 55 – 83
running 39 – 40
strongly typed settings with options pattern 230 – 238
binding strongly typed settings 237 – 238
designing options classes for automatic binding 235 – 237
IOptions 232 – 234
IOptionsSnapshot 234 – 235

templates 34 – 37
aspnet-client-validation 449
ASPNETCORE_ENVIRONMENT environment variable 239, 243, 703 – 704
ASPNETCORE_FORWARDEDHEADERS_ENABLED 722
ASPNETCORE_HTTPS_PORT environment variable 721
ASPNETCORE_URLS environment variable 684, 703 – 704, 714
Assert call 882
Assert class 885
Assert.Equal() 882
Assert.Throws method 885
AsSpan() 148
async methods 301, 760, 807
attribute 145 – 146, 152, 157, 161, 379 – 381, 383, 392, 403
attribute routing 342, 497 – 502

combining route attributes 499 – 500
handling HTTP verbs with 501 – 502
using token replacement to reduce duplication 500 – 501

attributes, adding metadata to endpoints using 271 – 272
authentication 559 – 589, 623 – 653

applying authorization policies to minimal API endpoints 648 – 651

ASP.NET Core Identity
adding custom data to users 586 – 588
adding to existing projects 578 – 583
creating projects 568 – 578
customizing pages in default UI 583 – 586
overview of 566 – 568

bearer token authentication
adding to minimal APIs 637 – 640
overview of 632 – 637

defined 536, 560 – 561
describing requirements to OpenAPI 645 – 648
for APIs and distributed apps 624 – 631
centralizing authentication in identity providers 626 – 629
extending authentication to multiple apps 624 – 626
OIDC and OAuth 2.0 629 – 631

JSON Web Tokens
adding bearer token authentication to minimal APIs 637 – 640
user-jwts tool 640 – 644

services and middleware 562 – 566
authenticating users for subsequent requests 564 – 566
signing in to ASP.NET Core application 562 – 564

users and claims 561 – 562
authentication handler 639
authentication scheme 639
authorization 590 – 622

claims-based authorization policies 600 – 603
creating custom policies 603 – 611
custom requirements and handlers 606 – 611
requirements and handlers 604 – 605

defined 536, 560 – 561
hiding HTML elements from unauthorized users 618 – 620
in ASP.NET Core 594 – 600
handling unauthorized requests 598 – 600
preventing anonymous users from accessing apps 596 – 598

overview of 591 – 594
resource-based authorization 611 – 616
creating resource-based handlers 615 – 616
manually authorizing requests 613 – 615

authorization filters 535 – 536
Authorization header 636, 639, 642, 646 – 647
authorization protocol 629
AuthorizationBuilder object 602
AuthorizationHandler

creating resource-based 615 – 616
custom handlers 606 – 611
overview of 604 – 605

AuthorizationPolicyBuilder type 603
AuthorizationResult object 614
AuthorizeAsync method 614

B

Backend for Frontend (BFF) pattern 633
background tasks and services 846 – 871

coordinating using Quartz.NET 861 – 870
configuring jobs to run on schedule 864 – 867
installing in ASP.NET Core apps 862 – 864
using clustering to add redundancy 867 – 870

creating headless worker services using IHost 854 – 861
from templates 856 – 858
running in production 859 – 861

running with IHostedService 847 – 854
running background tasks on timer 848 – 852
using scoped services in background tasks 852 – 854

BackgroundService 847, 849, 856, 862
Baier, Dominick 921
BaseAddress property 265
BaseController class 501
baseUrl parameter 265
Bearer <token> 642
bearer token authentication

adding to minimal APIs 637 – 640
overview of 632 – 637

BeginRequest event 60
BeginScope call 680
BFF (Backend for Frontend) pattern 633
BindAsync 159 – 160
BindConfiguration() method 790
binders 232
binding models 376 – 404

building 332 – 333
in Razor Pages and MVC 377 – 380
organizing 401 – 404
requests 380 – 393
binding complex types 388 – 391
binding simple types 384 – 387
choosing binding source 391 – 393

validating 393 – 400
in Razor Pages 394 – 396
on client for user experience 399 – 400
on server for safety 396 – 399

binding sources 379 – 381, 382, 383, 389, 403
Blazor components 808
Blazor in Action (Sainty) 21, 85, 88, 395, 484, 808, 919
Boden, Damien 922
bool data type 146, 232, 450
bool IsComplete property 418
branch builder 776
Brind, Mike 412, 922
brittle tests 900
Building Web APIs with ASP.NET Core (De Sanctis) 87, 484
Buna, Samer 827

byte data type 450
Byte method 104

C
C# in Depth, 4th ed. (Skeet) 22
C#, using in Razor templates 417 – 418
CA (certificate authority) 712
cache-busting 460 – 461
Calculator class 874
CanEditRecipe property 618
captive dependencies 208 – 210
catch-all parameter 132 – 133
category binding model 333
category parameter 327, 378
Category property 381
CategoryModel 328
CategoryModel.OnGet page handler 333
CD (continuous delivery/deployment) 690
CDN (content delivery network) 449
ceremony code 178
certificate authority (CA) 712
certificate chain 712
chain-of-responsibility design pattern 58
Chang, Sau Sheong 6
checkbox input type 450
CI (continuous integration) 690
CI/CD application development 690
claims

claims-based authorization policies 600 – 603
overview of 561 – 562

claims transformation 637
claims-based authorization, policies for 600 – 603
ClaimsPrincipal 561, 591, 600
class attributes 443
class declaration 148
ClassName attribute 263
CLI (command-line interface) 468, 488, 574, 856, 873
client-side validation 395
clustering 867 – 870
CMSs (content management systems) 19
Code Like a Pro in C# (Rodenburg) 22
code parameter 349
code-first approach 292
collections, binding 390 – 391
color picker, HTML5 443
command-line interface (CLI) 468, 488, 574, 856, 873
complex segments 127
complex types 93
concrete type 194
conditional markup 462 – 463

configuration model 216 – 218
configuration objects 218 – 230

adding configuration providers in Program.cs 221 – 223
overriding configuration values using multiple providers 223 – 225
reloading configuration values 229 – 230
storing configuration secrets 225 – 229

Configuration property 221
configuration providers 218
configuration secret storage 225 – 229

in environment variables in production 226 – 227
with User Secrets manager in development 227 – 229

ConfigurationManager 218, 221
Configure() method 237, 758, 760 – 761, 764, 789 – 790, 897
Configure<T>() method 137, 788
Configure<T>extension instance 233
Configure<T>extension objects 233
Configure<TDeps> methods 792
ConfigureAppConfiguration() method 763 – 764
ConfigureCurrencyOptions class 793
ConfigureHostingConfiguration() method 763
ConfigureLogging() method 764
Configuremethods 791
ConfigureServices method 758, 766, 772, 816, 857, 904
ConfigureWebHostDefaults helper method 756
ConnectionStrings__ DefaultConnection environment variable 226
conneg (content negotiation) 511
constraints for routes 130
Contact method 497
containers

adding ASP.NET Core framework services to 184 – 186
defined 699
registering services
in containers multiple times 199 – 202
with DI containers 191 – 195

third-party DI containers 793 – 796
using services from DI containers 186 – 188

content delivery network (CDN) 449
content management systems (CMSs) 19
content negotiation (conneg) 509 – 511
Content-Security-Policy (CSP) 716 – 717, 728
Content-Type header 506, 774
Content() helper method 811
ContentRootPath property 239
context object 538
context parameter 542
context.Fail() method 609
context.GetArgument() function 106
context.Result property 538, 549
continuous delivery/deployment (CD) 690
continuous integration (CI) 690

Controller base class 349, 476, 490
controller route parameter 471
ControllerBase 490 – 492, 496, 543, 548, 744, 810
controllers concept 469
convention-based routing 342 – 343
conventions, in Razor Pages 342
ConvertToGbp() method 881 – 882, 884 – 885
cookies 563
CORS (cross-origin resource sharing) 735 – 742

adding global policy to whole app 737 – 740
adding to specific endpoints 740 – 741
configuring policies 741 – 742
overview of 736 – 737

CORS in Action (Hossain) 737
CorsPolicyBuilder method 742
coupling 180
Create command 306
CreateApplicationBuilder() method 786
CreateDefaultBuilder method 756, 761 – 762, 764
CreateHostBuilder method 756, 766
CreateLogger call 666
CreateRecipeCommand model 300
cross-site scripting (XSS) attacks 726 – 730, 780
CRUD (Create, Read, Update, Delete) API 92, 281
CSP (Content-Security-Policy) 716 – 717, 728
CSRF (cross-site request forgery) attacks 445, 730 – 735
curl commands 645
Currencies property 789
CurrencyConfigureOptions object 793
CurrencyConverter service 902
CurrencyFrom attribute 813
CurrencyFrom property 438, 813, 815
CurrencyOptions object 788 – 789, 791 – 793
CurrencyProvider service 793
CurrencyTo attribute 813
CurrencyTo property 813
custom route template 347

D
data type, inout element mapping 450
data-* attribute 442
data-val-* attributes 447, 449, 456
DataAnnotation attributes 164 – 166, 168, 291, 309, 393, 395, 399 – 400, 435, 438, 440,

447, 450, 812, 817 – 818, 821
DataContext instances 203 – 206, 208, 212
date data type 447, 450
datetime-local input type 450
DbContext 286, 291, 302
DbContext .Remove(entity) command 308
DbContext base 291, 573

DbContextOptions<> object 909
DbContextOptionsBuilder instance 292
DbSet<Recipe> property 302
DbSet<T> properties 311 – 312
De Sanctis, Valerio 87, 484
Debug configuration 688
Debug level log messages 664
Dec property 450
decimal data type 450 – 451
decimal route constraint 130
declarative programming 613
DefaultLocation key 220
DELETE attribute 502
DELETE request 363, 502
DELETE verb 90, 363
dependency graph 176
Dependency Injection Principles, Practices, and Patterns (van Deursen and Seemann) 174,

188, 920
dependency injection. See DI
deploying apps

ASP.NET Core hosting model 684 – 692
choosing deployment method 690 – 692
running vs. publishing 686 – 690

configuring URLs 702 – 705
hosting on Linux 697
preparing apps for deployment 700 – 702
running apps behind reverse proxy on Linux 698 – 700

publishing to IIS 692 – 697
configuring IIS for ASP.NET Core 692 – 694
preparing and publishing 695 – 697

descriptions
adding to apps 249 – 252
adding to endpoints 268 – 275
refreshing 267 – 268

design patterns 23
Design Patterns: Elements of Reusable Object-Oriented Software (Gamma, Helm, Johnson,

Vlissides) 45
DeveloperExceptionPage 76 – 77
development environment 76, 913 – 918

IDEs and editors 915 – 918
JetBrains Rider 916
Visual Studio Code 917 – 918
Visual Studio for Mac 917
Visual Studio for Windows 915 – 916

installing .NET SDK 914 – 915
DI (dependency injection) 49, 173 – 189, 222, 265, 393, 414, 533, 649, 655, 683, 798, 835,

898
adding ASP.NET Core framework services to container 184 – 186
benefits of 174 – 180
containers, third-party 793 – 796

creating loosely coupled code 180 – 182
registering services 190 – 214
in containers multiple times 199 – 202
lifetimes 202 – 210
resolving scoped services outside requests 211 – 213
using objects and lambdas 195 – 199
with DI containers 191 – 195

using in ASP.NET Core 182 – 183
using services from DI container 186 – 188
using with OptionsBuilder and IConfigureOptions 788 – 793
vs. dependency inversion 174
with filter attributes 551 – 554

DI (dependency inversion) 174, 179
DI container 178, 292, 754, 850
dictionaries, binding 390 – 391
directive statement 411
distributed apps, authentication for 624 – 631

centralizing authentication in identity providers 626 – 629
extending authentication to multiple apps 624 – 626
OIDC and OAuth 2.0 629 – 631

<div> element 437, 805
Docker in Practice, 2nd ed. (Miell and Sayers) 699
documenting APIs 248 – 279

adding descriptions and summaries to endpoints 268 – 275
using attributes to add metadata 271 – 272
using fluent methods to add descriptions 269 – 270
using XML documentation comments to add metadata 272 – 275

adding descriptions to apps 249 – 252
adding metadata to minimal APIs 254 – 256
limitations of OpenAPI 275 – 278
generated code is opinionated 276 – 277
not all APIs can be described 275 – 276
tooling often lags specification 277 – 278

strongly typed clients 256 – 268
customizing generated code 264 – 267
generating using .NET Global tool 261 – 263
generating using Visual Studio 257 – 261
refreshing description 267 – 268
using generated client to call APIs 263 – 264

testing APIs with Swagger UI 252 – 253
DoesRecipeExist() method 542
domain model 334
Dominick Baier on Identity & Access Control blog 921
dotnet build command 38, 687
dotnet command 689
dotnet commands 689, 712, 914 – 915
dotnet ef command 295, 574
dotnet exec command 689
dotnet new command 687
dotnet new template 569

dotnet publish command 688, 698
dotnet restore command 38, 687
dotnet run command 684, 687 – 689
dotnet syntax 689
dotnet test 877 – 878
dotnet user-jwts create command 643
DOTNET_ENVIRONMENT environment variable 239
dotnet7 app pool 694 – 695
double data type 144, 146, 450 – 451
Douglas, Jon 920
DRY (don’t repeat yourself) priciple 499
dynamic web page creation 416 – 423

adding loops and conditionals to Razor templates 418 – 420
rendering HTML with Raw method 421 – 423
using C# in Razor templates 417 – 418

E
Edit method 537, 542
EF Core (Entity Framework Core) 280 – 312, 683, 756, 846, 888

adding to apps 287 – 293
building data model 290 – 292
choosing database provider and installing EF Core 288 – 289
registering data context 292 – 293

avoiding SQL injection attacks 745 – 746
isolating databases with in-memory providers 905 – 910
mapping database to application code 285 – 287
migrations 293 – 299
adding 297 – 299
creating 294 – 297

object-relational mappers 283 – 284
overview of 282 – 283
querying and saving data 299 – 309
creating records 300 – 302
loading lists of records 302 – 304
loading single record 304 – 305
updating model with changes 305 – 309

updating data model to support Identity 581
using in production apps 309 – 310
when to choose 284 – 285

Effective Software Testing (Aniche) 873
email input type 450
Email property 446 – 447, 457
email type 400
EmailAddress data type 450
EmailSender 175 – 176, 178 – 181, 187, 191, 194, 199
emailSender parameter 192
EmailServerSettings 176 – 178, 193, 195, 197
EnableCors metadata 740 – 741
EndDate property 817
endpoint filters 104 – 113

adding multiple filters to endpoints 107 – 108
generalizing 109 – 112
IEndpointFilter interface 112 – 113
middleware vs. 108 – 109

endpoint middleware 33, 51
endpoint routing 122
EndpointFilterDelegate named delegate type 106
EndpointFilterFactoryContext object 112
EndpointMetadata property 112
EndpointMiddleware class 57
endpoints 69, 88 – 94, 594

adding CORS to 740 – 741
adding descriptions and summaries to 268 – 275
using attributes to add metadata 271 – 272
using fluent methods to add descriptions 269 – 270
using XML documentation comments to add metadata 272 – 275

adding multiple filters to 107 – 108
converting middleware into 784 – 788
defining request handling with 50 – 52
defining route handlers with functions 92 – 94
extracting values from URLs with routing 89 – 90
mapping URLs to with routing 118 – 140
generating URLs from route parameters 133 – 139
in ASP.NET Core 122 – 126
route template syntax 126 – 133

mapping verbs to endpoints 90 – 92
minimal API
applying authorization policies to endpoints 648 – 651
testing 891 – 895

endpoints variable 786
EnsureRecipeExistsAttribute action filter 542, 547
EnsureRecipeExistsAttribute class 552
EnsureRecipeExistsFilter class 552
Entity Framework Core in Action, 2nd ed. (Smith) 165, 281, 305, 307, 309, 906, 910, 919
enum options 453
env variable 462
—environment flag 704
Environment property 51, 239
Environment Tag Helper 462 – 463
<environment> Tag Helper 801
environments 216
Equal() call 882
Error action method 471
error handling

converting error status codes to Problem Details 102 – 103
converting exceptions to Problem Details 100 – 102
IResult interface
returning status codes 95 – 98
returning useful errors 98 – 99

middleware 74 – 82

handling exceptions in production 77 – 82
viewing exceptions in development 76 – 77

Error level log 663, 671
ErrorMessage property 398
exception filters 543 – 545
ExceptionHandlerMiddleware 77 – 82
exceptions

converting responses to Problem Details 100 – 102
handling in production 77 – 82
viewing in development 76 – 77

exchangeRate parameter 885
ExchangeRatesClient typed client 848, 864
ExecuteAsync() class 849
explicit routing 342 – 343, 497

F
FacebookSender implementation 199, 201
Fact and Theory unit tests 881 – 884
Fail() method 610
failure conditions, testing 884 – 885
FavoriteColor property 443
feature toggle 537
File method 104
FileName property 159
filter factory 110
filter function 110
filtering log messages 671 – 675
filters 516 – 555

adding to actions and Razor Pages 525 – 528
creating 523 – 525
creating custom filters 533 – 549
action filters 539 – 543
authorization filters 535 – 536
exception filters 543 – 545
page filters 547 – 549
resource filters 537 – 539
result filters 545 – 547

dependency injection with filter attributes 551 – 554
filter pipelines
MVC 517 – 520
Razor Pages 520 – 522

middleware vs. 522 – 523
order of execution 528 – 530
default scope execution order 528 – 529
overriding default order of execution 529 – 530

pipeline short-circuiting 549 – 551
FindAsync(id) method 307
FirstName property 164, 446 – 447
float data type 450
fluent interface 818
fluent methods 269

FluentValidation 817 – 823
adding to apps 821 – 823
DataAnnotations attributes vs. 818 – 821

for attribute 446
for loop 412 – 413, 418
ForbidResult 614
foreach construct 418
foreach loop 200, 409
foreign key 290 – 291
<form> element 442, 444, 732
Form Tag Helper 444 – 445
format query string parameter 546
forms 434 – 465

catering to editors 436 – 438
conditional markup 462 – 463
creating 439 – 459
Form Tag Helper 444 – 445
Input and Textarea Tag Helpers 447 – 451
Label Tag Helper 446 – 447
Select Tag Helper 451 – 456
Validation Message and Validation Summary Tag Helpers 456 – 459

generating links 459 – 460
ForwardedHeadersMiddleware 700, 702
fragile tests 900
Friis, Michael 699
FromSqlRaw() method 745

G
Gamma, Erich 45
Gammelgaard, Christian Horsdal 867
generic host 753 – 770

complexity of 764 – 767
creating custom IHostBuilder 761 – 764
minimal hosting vs. 767 – 768
Program class 755 – 757
separating concerns between two files 754
Startup class 757 – 761

Get action method 542
GET endpoint 161, 253
GET HTTP verb 45 – 46, 90, 251, 406, 444, 497, 501, 733
GET list endpoint 303
GET method 250
Get method 537
GET requests 52, 94, 150 – 151, 153, 324, 363 – 365, 381, 383, 403, 490, 501, 733, 737,

740
GET type 161
GetChildContentAsync() method 807
GetLatestRates() method 837
GetPathByAction() method 351
GetPathByName() method 135, 351
GetPathByPage() method 351

GetRates() function 836
GetRecipe() method 907
GetRecipes() method 302, 308
GetRequiredService() method 197
GetRequiredService<T> method 817
GetSection(section) method 223
GetService() method 198
GetService<T>() method 816
GetUriByName() method 135, 351
GetUriByPage() method 351
GitHub 921 – 922
global query filters 309
globally unique identifiers (GUIDs) 41, 228, 747
Go Web Programming (Chang) 6
Gordon, Steve 922
grant type 631
GraphQL in Action (Buna) 827
Group property 454
Guid route constraint 130
GUIDs (globally unique identifiers) 41, 228, 747

H
<h1> tag 323
Hanchett, Erik 88
handler parameter 152, 154, 362
HandleRequirementAsync method 608, 615 – 616
HandlerInstance property 548
Hanselman, Scott 923
HasAdminAccess claim 562
HATEOAS (Hypertext As the Engine of Application State) 275
HEAD requests 363
HEAD verb 363
HeadersMiddleware class 782
headless services 855
Hello World minimal API application 46
Hello World! responses 84
Helm, Richard 45
Helme, Scott 921
helper method 492
hidden input type 450
HiddenInput data type 450
holding pages 61 – 64
HomeController 469, 477
Hossain, Monsur 737
host filtering 705
Host property 210
Host.CreateDefaultBuilder method 754, 756, 761, 856
HostBuilder configuration 898
HostBuilder instances 756, 761
hosting apps

ASP.NET Core hosting model 684 – 692
choosing deployment method 690 – 692
running vs. publishing 686 – 690

on Linux 697
preparing apps for deployment 700 – 702
running app behind reverse proxy 698 – 700

hosting environments 238 – 246
identifying 239 – 240
loading environment-specific configuration files 240 – 242
setting 243 – 246

hostname 6
href attribute 459
HSTS (HTTP Strict Transport Security) 717
HTML

building using view model 334 – 335
converting Markdown to 805 – 807
generating with Razor Pages 321 – 323
hiding elements from unauthorized users 618 – 620
rendering using Razor views 405 – 433
_VIewImports file 431
_ViewStart file 431 – 433
creating dynamic web pages 416 – 423
creating Razor views 410 – 416
layouts 424 – 428
overview of 406 – 410
partial views 428 – 430

Html property 422 – 423
HTML5 color picker 444
HTML5 email type 449
HtmlHelper method 423
HTTP (Hypertext Transfer Protocol) 6

handling transient errors with Polly 839 – 842
using typed clients to encapsulate calls 836 – 839

HTTP 307 Temporary Redirect status code 721
HTTP 403 Forbidden 614
HTTP API creation 486 – 515

applying MVC design pattern 493 – 497
attribute routing 497 – 502
combining route attributes 499 – 500
handling HTTP verbs 501 – 502
using token replacement to reduce duplication 500 – 501

generating response from model 506 – 511
adding XML support to default formatters 508 – 509
content negotiation 509 – 511

overview of 487 – 493
web API controllers vs. minimal APIs 511 – 513

HTTP APIs 85 – 88
HTTP body 6
HTTP handlers 60
HTTP headers 6, 708

HTTP modules 60
http profile 243
HTTP security headers 716
HTTP status code 6, 67
HTTP Strict Transport Security headers 716 – 720
HTTP verbs 6, 501 – 502
HTTP web requests

binding simple types to 144 – 148
extracting values from 142 – 144
handling with middleware 55 – 83
and endpoints 50 – 52
combining middleware in pipeline 61 – 73
error handling 74 – 82

inner workings of 5 – 7
processing 7 – 8
rejecting requests in API apps 722 – 723
resolving scoped services outside requests 211 – 213

http:// requests 243
HttpClient class 826, 832
HttpClient handler pipeline 826, 834, 839, 842
HttpClient handler rotation 852
HttpClient instances 263, 826, 830, 832, 834
HttpClient type 265, 835
HttpClientHandlers 832, 834 – 835
HttpClients

creating with IHttpClientFactory 831 – 839
problem with 826 – 831

HttpContext 700
HttpContext objects 7, 32, 59, 124, 156 – 157, 414, 524, 561, 774, 889
HttpContext type 156, 161
HttpContext.User principal 561, 563 – 565, 588, 637, 649
HttpMessageHandlers 842 – 844
HttpRequest type 161
HTTPS 707 – 724

certificates
configuring Kestrel with 714 – 716
using 712 – 714

enforcing for whole app 716 – 723
HTTP Strict Transport Security headers 716 – 720
HTTPS redirection middleware 720 – 721
rejecting HTTP requests in API apps 722 – 723

need for 708 – 712
https profile 243
Hunt, Troy 921
Hypertext As the Engine of Application State (HATEOAS) 275

I
IActionResult interface 366, 487, 538

returning responses 366 – 369
NotFoundResult and StatusCodeResult 368 – 369
PageResult and RedirectToPageResult 367

IApplicationBuilder interface 776
IAuthorizationRequirement interface 606
IAuthorizationService interface 613 – 615
IConfiguration interface 218, 221 – 223, 226, 237, 673, 763, 788
IConfigurationBuilder interface 218
IConfigurationRoot interface 218, 222
IConfigureOptions interface 788 – 793
IConfigureOptions<T> 793, 796
ICurrencyConverter 903
ICurrencyProvider 793, 820
id attribute 439, 449
id parameter 93, 109 – 110, 114, 130, 144, 146, 151, 153, 251, 270, 491
Id primary key 575
Id property 384
id property 800
id route parameter 128, 130, 147, 445
identity providers 626 – 629
IdentityDbContext class 573, 581
IdentityUser entity 576, 586
IDEs and editors 915 – 918

JetBrains Rider 916
Visual Studio
macOS 917
Windows 915 – 916

Visual Studio Code 917 – 918
IDisposable interface 827, 853
IDOR (insecure direct object reference) 613, 747
IEmailSender interface 181 – 182, 191 – 194
IEndpointFilter interface 112 – 113
IEndpointRouteBuilder 123, 761, 786
IEnumerable<> property 236
IEvangelist blog 923
IExchangeRatesClient interface 838
if attribute 804 – 805
if construct 418
<if> element 805
if loop 418
if statements 433, 462, 799, 803
IFilterFactory attribute 553
IFormFile interface 158 – 159, 391
IFormFileCollection interface 158 – 159, 391
IFruitClient interface 265
IHost interface 854

creating headless worker services from templates 856 – 858
running headless worker services in production 859 – 861

IHostBuilder interface 46, 761 – 764
IHostedService interface 847 – 854

running background tasks on timer 848 – 852
using scoped services in background tasks 852 – 854

IHostedService.StartAsync() method 849

IHostEnvironment interface 239 – 240
IHostEnvironment.EnvironmentName property 239
IHttpClientFactory interface

creating HttpClients with 831 – 839
managing HttpClientHandler lifetime 832 – 835

IIS (Internet Information Services) 4, 17, 33, 243, 684, 861
IIS (Internet Information Services), publishing apps to 692 – 697

configuring IIS for ASP.NET Core 692 – 694
preparing and publishing 695 – 697

IIS Express profile 243
IJob interface 863, 866
IL (Intermediate Language) code 22
ILogger interface 655, 659 – 660, 663, 665 – 666, 668 – 669
ILogger<> instance 660
ILogger<> interface 660
ILogger<PrivacyModel> instance 325
ILoggerProvider interface 658, 763
IMessageSender interface 199, 202
IMiddleware interface 782
imperative authorization 613
imperative programming 613
implicit page handler 363
IMvcBuilder object 505, 508
IncludeMachine property 802
IncludeOS property 802
Index method 477 – 478, 490, 497
Index Razor Page 365, 460
IndexModel class 662
Information log 663, 665, 674
INI (Initialization) files 218
<input> element 437, 442 – 443, 447, 805
input formatters 496
Input property 365, 396 – 397, 440
<input> tag 800
Input Tag Helper 447 – 451
<input> type 449
InputModel class 403
insecure direct object reference (IDOR) 613, 747
int data type 144, 146, 160, 168, 365, 450
int parameter 386
int route constraint 130
integer id parameter 130
integration testing 895 – 905

creating TestServer 896 – 899
WebApplicationFactory
creating custom 904 – 905
replacing dependencies in 901 – 904
testing with 899 – 901

Introduction to Windows Containers (McCabe and Friis) 699
Invoke function 781 – 783, 888

InvokeAsync method 810 – 811
IoC (Inversion of Control) 49, 174, 179
IoC container 178
IOptions interface 790

binding strongly typed settings without 237 – 238
designing options classes for automatic binding 235 – 237
overview of 232 – 234
reloading strongly typed options 234 – 235

IOptionsSnapshot interface 234 – 235
IOrderedFilter interface 529 – 530
IOutputFormatter interface 507, 510
IPageFilter interface 548
IPageRouteModelConvention interface 355
IParsable interface 148
IPostConfigureOptions interface 793
IProblemDetailsService service 100 – 101
IQueryable interface 303, 312
IResult interface 94 – 104

converting responses to Problem Details 99 – 103
error status codes 102 – 103
exceptions 100 – 102

generating URLs from route parameters with 136 – 137
returning status codes with Results and TypedResults 95 – 98
returning useful errors with Problem Details 98 – 99

is not null pattern 148
IsDeleted flag 308, 312
IServiceCollection 184
IServiceProvider 197, 212
IServiceScope 211 – 212
IsReusable flag 554
IStartup interface 758
IsTestProject MsBuild property 876
IsValid() method 815
<ItemGroup> element 879
Items property 328, 453
IUrlHelper helper 350
IWebHostEnvironment 51, 239, 761, 763

J
JetBrains Rider 916
job, in Quartz.NET 863
Johnson, Ralph 45
JSON (JavaScript Object Notation) 31, 57, 141, 216, 249, 315, 379, 467, 544, 667, 733
JSON APIs 84 – 117

binding complex types to JSON body 149 – 150
creating with minimal APIs 88 – 94
defining route handlers with functions 92 – 94
extracting values from URLs with routing 89 – 90
mapping verbs to 90 – 92

endpoint filters 104 – 113
adding multiple filters to endpoints 107 – 108

generalizing 109 – 112
IEndpointFilter interface 112 – 113
middleware vs. 108 – 109

HTTP APIs 85 – 88
organizing APIs with route groups 113 – 115
response generation 94 – 104
converting all responses to Problem Details 99 – 103
returning status codes 95 – 98
returning useful errors 98 – 99

JWE (JSON Web Encryption) 635
JWTs (JSON Web Tokens) 842

adding bearer token authentication to minimal APIs 637 – 640
user-jwts tool 640 – 644
creating JWTs with 640 – 642
customizing JWTs 642 – 644
managing local JWTs 644

K
Kestrel 714 – 716
key file 734
Khorikov, Vladimir 873, 919

L
Label Tag Helper 446 – 447
lambdas 195 – 199
Lander, Richard 920
Language Integrated Query (LINQ) 22, 283
Last-Modified header 546 – 547
latitude key 220, 222
layout files 414
Layout property 425, 427, 431
layouts

overriding parent layouts using sections 426 – 428
using for shared markup 424 – 426

length(value) route constraint 130
lifetimes 202 – 210

captive dependencies 208 – 210
scoped 206 – 207
singleton 207 – 208
transient 205 – 206

link generation 459 – 460
LinkGenerator 133 – 134

generating URLs 350 – 352
generating URLs for minimal API endpoints with 134 – 136
implementation 187
methods 138

LinkOptions parameter 138
LINQ (Language Integrated Query) 22, 283
Linux, hosting apps on 697

preparing apps for deployment 700 – 702
running app behind reverse proxy on Linux 698 – 700

Listwon, Benjamin 88
literal segments 126 – 128
literal value 127
LocalRedirect() method 744
Location header 97
Lock, Andrew 923
Log() method 658
logging 654 – 682

adding log messages to apps 660 – 667
formatting messages and capturing parameter values 666 – 667
log categories 665 – 666
log levels 663 – 665

filtering 671 – 675
logging providers 667 – 671
structured logging 675
adding provider to apps 677 – 679
using scopes to add properties 679

using effectively 656 – 659
ASP.NET Core logging abstractions 658 – 659
custom log messages 657

LogInformation extension 661, 663
LogLevel enum 661
LogLevel.Information events 305
LogWarning method 663
long data type 450
longitude key 220
loosely coupled code 180 – 182

M
Main entry point 755
managed app pool 693
Manager role 603
Map extension 775 – 778
Map* functions 45, 90, 114, 123
MapDelete(path, handler) method 91
MapFallback(handler) method 91
MapGet endpoint 104
MapGet function 45, 69, 90, 786
MapGet(path, handler) method 90
MapMethods() method 91
MapMethods(path, methods, handler) method 91
MapPatch(path, handler) method 91
MapPingPong() method 787
MapPost endpoint 98
MapPost handler 109
MapPost(path, handler) method 90
MapPut(path, handler) method 90
MapRazorPages() method 340
MapSettings object 220, 237
MapSettings parent key 220
MapWhen extension 775

Markdown content, converting to HTML 805 – 807
<markdown> elements 805
Martin, Robert C. 48
max parameter 365
McCabe, John 699
MDN (Mozilla Developer Network), introduction to HTTP 90
MessageFactory object 176
metadata

adding to endpoints using attributes 271 – 272
adding to endpoints using XML documentation comments 272 – 275
adding to minimal APIs 254 – 256

method attribute 444
method parameters 388 – 389
MethodInfo property 112
Metzgar, Dustin 873, 919
Microservices in .NET Core, 2nd ed. (Gammelgaard) 867
Microsoft .NET Team's blog 923
Microsoft namespace 671 – 672, 675
Microsoft.AspNetCore.Http namespace 95
Microsoft.AspNetCore.HttpLogging namespace 50
Microsoft.Extensions.DependencyInjection namespace 817
Microsoft.Extensions.DependencyInjection.Extensions namespace 202
middleware 772 – 788

adding to with Use extension 778 – 781
authentication 562 – 566
branching with Map extension 775 – 778
combining in pipeline 61 – 73
holding pages 61 – 64
minimal API applications 68 – 73
static file handling 64 – 68

converting middleware into endpoint routing endpoints 784 – 788
creating simple apps with Run extension 773 – 774
custom middleware components 781 – 784
defining request handling with 50 – 52
endpoint filters vs. 108 – 109
error handling 74 – 82
handling exceptions in production 77 – 82
viewing exceptions in development 76 – 77

HTTPS redirection 720 – 721
overview of 56 – 60
unit testing 888 – 891

Miell, Ian 699
migrations 293 – 299

adding 297 – 299
creating 294 – 297

Mikesdotnetting (Brind) 922
min(value) route constraint 130
minimal API applications

combining middleware in pipeline 68 – 73
creating JSON APIs with 88 – 94

model binding and validation in 141 – 170
minimal APIs

adding bearer token authentication to 637 – 640
adding metadata to 254 – 256
applying authorization policies to endpoints 648 – 651
unit testing endpoints 891 – 895
web API controllers vs. 511 – 513

model binding 120, 128, 141 – 162, 364, 380
arrays 151 – 153
binding complex types to JSON body 149 – 150
binding services and special types 156 – 159
binding file uploads 158 – 159
injecting services 157 – 158
injecting well-known types 156 – 157

binding simple types to requests 144 – 148
binding strongly typed settings without IOptions 237 – 238
choosing binding source 160 – 161
custom binding 159 – 160
designing options classes for automatic binding 235 – 237
extracting values from requests 142 – 144
making parameters optional with nullables 153 – 155
simplifying handlers 161 – 162

Model property 415, 478
model validation, handling user input with

adding validation filters to minimal APIs 167 – 169
DataAnnotations attributes 164 – 167
handling user input with 163 – 169
need for 163

Model. prefix 454
ModelState construct 522
ModelState property 365, 379, 396 – 397, 494, 496, 893
ModelState validation errors 397, 457
ModelState.IsValid pattern 399
ModelState.IsValid property 893
ModelStateDictionary object 396
Morning Brew, The (Alcock) 922
Mozilla Developer Network (MDN), introduction to HTTP 90
Muhammed Rehan Saeed blog 923
multi-factor authentication (MFA) 628
multiple HTML attribute 454
multiple URLs 120
Must() method 819
MVC (Model-View-Controller) design pattern 330 – 337

binding models 377 – 380
building HTML using view model 334 – 335
complete Razor Page requests 335 – 337
custom validation attributes 812 – 817
directing request to Razor Page and building binding model 332 – 333
executing handler using application model 333 – 334
filters 532 – 555

adding filters to actions and Razor Pages 525 – 528
creating custom filters 533 – 549
creating simple filters 523 – 525
dependency injection with filter attributes 551 – 554
filter pipeline 517 – 520
filter pipeline short-circuiting 549 – 551
middleware vs. filters 522 – 523
order of filter execution 528 – 530

generating URLs for MVC controllers 349 – 350
HTTP API creation 493 – 497
overview of 328 – 330
replacing validation framework with FluentValidation 817 – 823
adding to apps 821 – 823
DataAnnotations attributes vs. 818 – 821

website creation with MVC controllers 466 – 485
creating web apps 468 – 472
Razor Pages vs. MVC controllers 467 – 468, 472 – 474, 480 – 484
selecting view from controller 474 – 480

MVVM (Model-View-View Model) 331
MyAppConnString key 225
myService variable 414

N
name attribute 439, 449
NAME key 220
name key 220
name parameter 89 – 90, 127, 135
Name property 586
name property 800
name variable 729
named clients 835
nameof operator 233, 542
Namespace attribute 263
netstat command 830
NetworkClient 176 – 177
new keyword 49
newNamespace namespace 411
next endpoint parameter 106
No Managed Code pool 693
noninteger value 130
NotFound() method 366
NotFoundResult 368 – 369
NRT (nullable reference type annotation) 154
NSwag, generating strongly-typed clients using 256 – 268

customizing generated code 264 – 267
generating using .NET Global tool 261 – 263
generating using Visual Studio 257 – 261
refreshing OpenAPI description 267 – 268
using generated client to call APIs 263 – 264

NuGet packages 42
nullable reference type annotation (NRT) 154

nullables 153 – 155
number input type 450
number integer 385
number parameter 385

O
OAuth 2.0 629 – 631
object-relational mappers. See ORMs
ObjectInstance property 814
OIDC (OpenID Connect) 565, 629 – 631
Ok helper method 491
OkObjectResult instance 547
OnActionExecuted method 541, 543
OnActionExecuting method 542 – 543
OnConfiguring method 293
OnGet handler 325 – 328, 333, 361, 363, 365, 385, 403, 661 – 662
OnHead handler 363
OnPageHandlerExecuting method 548
OnPost handler 365, 396, 403
OnPostAsync handler 361, 587
OnPostCustomSearch handler 361
OnResourceExecuted method 523
OnResourceExecuting method 523
OnResultExecuted method 547
open category 379
open generics 198
open redirect attacks 743 – 745
Open Web Application Security Project (OWASP) 726
OpenAPI 248 – 279

adding descriptions and summaries to endpoints 268 – 275
using attributes to add metadata 271 – 272
using fluent methods to add descriptions 269 – 270
using XML documentation comments to add metadata 272 – 275

adding descriptions to apps 249 – 252
adding metadata to minimal APIs 254 – 256
describing authentication requirements to 645 – 648
limitations of 275 – 278
generated code is opinionated 276 – 277
not all APIs can be described by OpenAPI 275 – 276
tooling often lags specification 277 – 278

strongly typed clients 256 – 268
customizing generated code 264 – 267
generating using .NET Global tool 261 – 263
generating using Visual Studio 257 – 261
refreshing OpenAPI description 267 – 268
using generated client to call APIs 263 – 264

testing APIs with Swagger UI 252 – 253
<OpenApiReference> element 259, 266
OpenApiReference element 263, 267
OpenApiSecurityScheme document 646

OpenID Connect (OIDC) 565, 629 – 631
OpenID Connect in Action (Siriwardena) 629
OpenReadStream method 159
<optgroup> elements 455
optional int constraint 131
optional int max(value) route constraint 131
OPTIONS attribute 502
options class 232
Options element 265
<options> element 266
options object 293
OPTIONS request 737
OPTIONS verb 736
OptionsBuilder<T> 772, 788, 790, 793, 854
OR: logical 605
Order property 529, 805
origins, defined 735
ORMs (object-relational mappers) 282 – 284, 568, 745, 905
Osherove, Roy 873, 919
output formatter 496
—output option 643
overposting vulnerability 301
OWASP (Open Web Application Security Project) 726

P
<p> element 805
PaaS (Platform as a Service) 686, 710
Package Manager Console (PMC) 294
<PackageReference> element 840, 896, 900
PackageReference elements 38, 42, 289
page filters 520, 547 – 549
page handlers

executing using application model 333 – 334
generating responses with 359 – 375
accepting parameters to page handlers 363 – 366
handler status codes 369 – 374
overview of 360 – 361
returning IActionResult responses 366
selecting page handlers to invoke 361 – 363

handling request logic with 324 – 325
Page method 349 – 350, 366
page models, handling request logic with 324 – 325
PageHandlerSelected method 529
PageModel 335, 348, 365 – 366, 376, 379 – 381, 400, 405 – 406, 408, 414, 416, 438, 454,

472 – 474, 480, 494, 548, 601, 733, 744, 895
PageResponseCacheFilter action filter 547
PageResult 367
Pages/Currency/View.cshtml Razor Page 348
Pages/Products/View.cshtml path 344
parameterization 745 – 746

parameterized routes 89
Parse method 148
<partial /> tag 429, 433
partial method 662
partial views

adding logic to 807 – 812
encapsulating markup 428 – 430

Password data type 450
password input type 450
passwords, protecting 747 – 748
Path property 778
Path.Combine construct 702
PathBase property 778
pattern matching for null values 148
Petropoulos, Angelos 920
Phone data type 450
Photo objects 392
Pine, David 923
pipeline, defined 57
plain-text pong response 784
Platform as a Service (PaaS) 686, 710
PMC (Package Manager Console) 294
POCO (plain old CLR object) 94, 142, 216, 283, 379, 474, 523, 606
policy, defined 601 – 602, 736
Polly, handling transient HTTP errors with 839 – 842
POST endpoint 90, 93, 300
POST form 732
POST HTTP verb 45, 84, 90, 381, 406, 444, 497, 501, 733
POST method 250
POST requests 91, 93 – 94, 149, 153, 300, 363, 365, 402, 501, 730
PostAcquireRequestState event 60
PostConfigure() method 793
preflight request 736
primary key 290
Problem Details

converting responses to 99 – 103
error status codes 102 – 103
exceptions 100 – 102

returning useful errors with 98 – 99
Problem method 99
ProblemDetails 492, 503, 505, 544
Process() function 801 – 802, 805
ProcessAsync() function 801
Product instance 149, 277
product segment 128
Product type 277
ProductId 146 – 147
ProductId endpoint parameter type 147
ProductId property 445
ProductModel custom type 386

ProductModel property 381
Products/ProductDetails route template 352
profiles for applications 243
Program class 43, 46, 228, 755 – 757, 877, 896, 900 – 901
Program.cs file

adding configuration providers in 221 – 223
overview of 43 – 46

Project element 41
project layout 40 – 41
projects 34
properties 389
public key cryptography 712
public parameterless constructor 232
publish command 696
publish output 704
publishing. See deploying apps
PUT endpoint 93
PUT HTTP verb 84, 381

Q
qty integer property 387
Quantity property 819
Quartz.NET 861 – 870

configuring jobs to run on schedule 864 – 867
installing in ASP.NET Core apps 862 – 864
using clustering to add redundancy 867 – 870

query string 120

R
Range header 104
range inputs 444
Raw method, rendering HTML with 421 – 423
Razor code block 418
Razor expressions 417
Razor Pages 315 – 338

binding models 376 – 404
organizing 401 – 404
overview of 377 – 380
requests 380 – 393
validating 393 – 400

creating apps 316 – 325
adding and configuring services 319 – 321
generating HTML 321 – 323
handling request logic with page models and handlers 324 – 325
Web Application template 316 – 319

custom Razor Tag Helpers 799 – 807
conditionally hiding elements 803 – 805
converting Markdown to HTML 805 – 807
printing environment information 800 – 803

filters 532 – 555
adding filters to actions and Razor Pages 525 – 528

creating custom filters 533 – 549
creating simple filters 523 – 525
dependency injection with filter attributes 551 – 554
filter pipeline 520 – 522
filter pipeline short-circuiting 549 – 551
middleware vs. filters 522 – 523
order of filter execution 528 – 530

generating responses with page handlers 359 – 375
accepting parameters to page handlers 363 – 366
handler status codes 369 – 374
overview of 360 – 361
returning IActionResult responses 366 – 369
selecting page handlers to invoke 361 – 363

Model-View-Controller design pattern 330 – 337
building HTML using view model 334 – 335
complete Razor Page requests 335
directing request to Razor Page and building binding model 332 – 333
executing handler using application model 333 – 334
overview of 328 – 330

MVC controllers vs. 467 – 468, 480 – 484
benefits of Razor Pages 480 – 483
Razor Page PageModel 472 – 474
when to choose MVC controllers 483 – 484

routing 339 – 358
convention-based routing vs. explicit routing 342 – 343
customizing conventions 352 – 357
customizing route templates 346 – 348
generating URLs 348 – 352
in ASP.NET Core 340 – 342
routing requests 344 – 345

typical Razor Page 326 – 328
Razor Pages in Action (Brind) 412
Razor Tag Helpers 799 – 807

conditionally hiding elements 803 – 805
converting Markdown to HTML 805 – 807
printing environment information 800 – 803

Razor templates
adding loops and conditionals to 418 – 420
overview of 412 – 413
using C# in 417 – 418

Razor views 405 – 433
_VIewImports file 431
_ViewStart file 431 – 433
creating 410 – 416
code-behind 411 – 412
passing data to views 414 – 416
Razor templates 412 – 413

creating dynamic web pages 416 – 423
adding loops and conditionals to Razor templates 418 – 420
rendering HTML with Raw method 421 – 423

using C# in Razor templates 417 – 418
layouts
overriding parent layouts using sections 426 – 428
using for shared markup 424 – 426

overview of 406 – 410
partial views
adding logic to 807 – 812
encapsulating markup 428 – 430

updating to link to Identity UI 582 – 583
RDD (runtime-dependent deployments) 689
React in Action (Thomas) 88
readonly record struct 148
ReadOnlySpan<T> 148
Real-World Cryptography (Wong) 710
reason phrase 67
records

creating 300 – 302
loading lists of 302 – 304
loading single 304 – 305

REDIRECT response 398
RedirectToPage() method 365 – 366
RedirectToPageResult 367
RedirectToRoute() method 136
references 919 – 923

ASP.NET Core blogs 922 – 923
ASP.NET Core GitHub repositories 921 – 922
blog posts 920
books 919 – 920
Microsoft documentation 920 – 921
security-related links 921
tooling and services 922
video links 923

Regex instances 353
register services 182, 187
RegisterUser handler 175 – 176, 178 – 180, 199 – 200
relational databases 283
relative file path 349, 880
Release configuration 688
reloadOnChange parameter 229, 233
remote APIs 825 – 845

creating custom HttpMessageHandlers 842 – 844
creating HttpClients with IHttpClientFactory 831 – 839
configuring named clients at registration time 835 – 836
managing HttpClientHandler lifetime 832 – 835
using typed clients to encapsulate HTTP calls 836 – 839

handling transient HTTP errors with Polly 839 – 842
problem with HttpClients 826 – 831

remote procedure call (RPC) 20, 278, 484
Remove method 312
Replace() method 202

Repository <T> generic type parameter 198
Repository class 204
Request object 384
Request property 774
request services 187
Request.Scheme 700
RequestDelegate object 781
RequireAssertion() method 603
RequireAssertion(function) method 603
RequireAuthenticatedUser() method 602
RequireAuthorization() function 638, 649
RequireClaim() handler 602 – 603, 608
RequireCors() method 740
required keyword 290
RequireUsername(username) method 602
resource filters 537 – 539
resource-based authorization 611 – 616

creating resource-based AuthorizationHandler 615 – 616
manually authorizing requests 613 – 615

ResourceExecutedContext method 524
ResourceExecutingContext object 524
Response object 779 – 780
Response property 774
Response.Body object 890
ResponseCacheFilter action filter 539, 547
REST (representational state transfer) 20
result filters 545 – 547
Result property 541
ResultFilterAttribute helper base class 546
Results class 85, 103
Results methods 96
Results property 365
Results type 95 – 98
Results.Problem() method 98 – 99
Results.Redirect() method 136
Results.ValidationProblem() method 98 – 99
return statement 327
returnUrl query string parameter 743
returnUrl URL 743
reverse proxy 24, 685 – 686, 700
Rick Strahl’s Weblog (Strahl) 923
Rodenburg, Jort 22
root certificate 712
RootDirectory property 355
Roth, Daniel 920
route groups, organizing APIs with 113 – 115
route handlers, defining with functions 92 – 94
route parameters

adding constraints to 129 – 132
generating URLs from 133 – 139

controlling generated URLs with RouteOptions 137 – 139
with IResults 136 – 137
with LinkGenerator 134 – 136

matching arbitrary URLs with catch-all parameter 132 – 133
overview of 126 – 128

route templates 124, 341, 499 – 500
route values 127 – 128
RouteAttribute templates 498
RouteOptions 137 – 139
routing 339 – 358

convention-based routing vs. explicit routing 342 – 343
customizing conventions 352 – 357
customizing Razor Page route templates 346 – 348
adding segments 346 – 347
replacing completely 347 – 348

extracting values from URLs with 89 – 90
generating URLs 348 – 352
for MVC controllers 349 – 350
for Razor Pages 348 – 349
with LinkGenerator 350 – 352

in ASP.NET Core 340 – 342
mapping URLs to endpoints using 118, 140
generating URLs from route parameters 133 – 139
in ASP.NET Core 126
route template syntax 126 – 133

overview of 119 – 122
routing requests to Razor Pages 344 – 345

RowCount property 203 – 204
RowCounts handler 204 – 206, 208
RPC (remote procedure call) 20, 278, 484
Run method 772 – 774, 784
Run middleware 773, 776
runtime-dependent deployments (RDD) 689

S
Saeed, Muhammed Rehan 923
Sainty, Chris 21, 395, 484, 808, 919
same-origin policy 735
SaveChanges() command 301
SaveChangesAsync() command 301
Sayers, Aidan Hobson 699
sc utility 860
scaffolding, defined 583
SCD (self-contained deployments) 23, 689
schema, defined 293
Scope property 680 – 681
scoped lifetimes 206 – 207
scoped services, using in background tasks 852 – 854
<script> tag 727 – 728
Scripts section 427, 449
SDK (Software Development Kit) 8, 229, 272, 640, 712

Sdk attribute 41
search parameter 746
SearchModel Razor Page 361
secret setting type 216
sections 426
Secure Sockets Layer (SSL) 709
security 725 – 750

cross-origin resource sharing 735 – 742
adding CORS to specific endpoints 740 – 741
adding global CORS policy to whole app 737 – 740
configuring CORS policies 741 – 742
overview of 736 – 737

cross-site request forgery attacks 730 – 735
cross-site scripting attacks 726 – 730
insecure direct object references 747
open redirect attacks 743 – 745
protecting user passwords and data 747 – 748
security-related links 921
SQL injection attacks 745 – 746

security tokens 632
Seemann, Mark 174, 920
segments 126
<select> elements 451, 455
Select Tag Helper 451 – 456
Select() method 303 – 304
SelectListItem 453 – 454
self-contained deployments (SCD) 23, 689
SendEmail method 182
server-side validation 395
service locator pattern 188
Service type 414
ServiceFilterAttribute helper filter 533, 551
services

adding and configuring 48 – 50
authentication 562 – 566
background 846 – 871
coordinating using Quartz.NET 861 – 870
creating headless worker services using IHost 854 – 861
running background tasks with IHostedService 847 – 854

configuring Identity services 579 – 580
injecting 157 – 158
lifetimes 202 – 210
registering with DI 190 – 214
using from DI containers 186 – 188

Services property 49, 184 – 185
settings, defined 216
short data type 450
Short Message Service (SMS) 199, 566, 825
Sidebar section 426 – 427
SignInManager service 563

single endpoint handler 120
single-page applications (SPAs) 18, 34, 85, 315, 395, 426, 508, 598, 625, 734, 827
single-responsibility principle (SRP) 48, 232, 377, 458
singleton lifetimes 207 – 208
Siriwardena, Prabath 629
SizeDetails object 160
Skeet, Jon 22
Smith, Jon P. 165, 281, 305, 307, 309, 906, 910, 919
SMS (Short Message Service) 199, 566, 825
SmsSender implementation 199
socket exhaustion 828
sockets, defined 828
Software Development Kit (SDK) 8, 229, 272, 640, 712
Software Engineering (Boden) 922
SOLID (“single responsibility principle, open-closed, Liskov substitution, interface

segregation, and dependency inversion 174
Solution Explorer 570 – 572
SourceUri attribute 267
SourceUrl attribute 267
 elements 442, 456
Span<T> 148
SPAs (single-page applications) 18, 34, 85, 315, 395, 426, 508, 598, 625, 734, 827
SQL (Structured Query Language) 283
SQL injection attacks 745 – 746
SQL INSERT statements 301, 311
SqliteConnection 909
SqliteConnection object 907
Square property 385
SRP (single-responsibility principle) 48, 232, 377, 458
SSL (Secure Sockets Layer) 709
Start method 498
StartAsync method 848, 851
StartDate property 817
Startup class 46, 756 – 757, 900
Startup constructor 759, 766
Startup-based hosting model 755
Startup.Configure method 760, 897
StartupBase class 758
StartupProduction class 766
state data 680
stateful application model 481
stateless web application 481
static abstract interfaces feature 148
static file handling 64 – 68
static void Main entry point 43, 684, 857, 877
StatusCode() method 366
StatusCodePagesMiddleware 369 – 374
StatusCodeResult 368 – 369, 493
Steve Gordon—Code with Steve blog 922
Stock level 93

Strahl, Rick 923
StrathWeb (Filip) 923
Stream type 161
Strict-Transport-Security header 717
string array 509
string data type 144, 160, 232, 390, 450
string id parameter 109, 112
string keys 223, 231, 237, 414
string property 812
StringValues type 152, 161
strongly typed clients 256 – 268

customizing generated code 264 – 267
generating using .NET Global tool 261 – 263
generating using Visual Studio 257 – 261
refreshing OpenAPI description 267 – 268
using generated client to call APIs 263 – 264

strongly typed configuration 230 – 238
structured logging 675

adding provider to apps 677 – 679
overview 655
using scopes to add properties 679

structured or semantic logging 667
sub name 641
Succeeded property 614
summaries, adding to endpoints 268 – 275
SupportsGet property 365, 381
Swagger UI 252 – 253
sync versions, of EF Core commands 301
synchronizer token pattern 731
System namespace 675
<system-info> element 800, 802
System.ComponentModel.DataAnnotations namespace 165
SystemInfoTagHelper 801 – 802

T
Tag Helpers 406, 434 – 465

cache-busting 460 – 461
catering to editors 436 – 438
conditional markup 462 – 463
creating forms 439 – 459
Form Tag Helper 444 – 445
Input and Textarea Tag Helpers 447 – 451
Label Tag Helper 446 – 447
Select Tag Helper 451 – 456
Validation Message and Validation Summary Tag Helpers 456 – 459

custom Razor Tag Helpers 799 – 807
conditionally hiding elements 803 – 805
converting Markdown to HTML 805 – 807
printing environment information 800 – 803

generating links 459 – 460

Tag metadata 256
TagHelper class 801
TargetFramework element 41
task variable 421
tel input type 450
TempData service 478
templates 34 – 37

ASP.NET Core Identity
creating projects from templates 569 – 570
exploring templates in Solution Explorer 570 – 572

creating headless worker services from 856 – 858
customizing Razor Page route templates 346 – 348
adding segments 346 – 347
replacing completely 347 – 348

defined 31
route template syntax 126 – 133
adding constraints to route parameters 129 – 132
catch-all parameter 132 – 133
literal segments 126 – 128
optional and default values 128 – 129
route parameters 126 – 128

terminal middleware 59
Test Host package 896 – 899
testing 872, 887 – 911

creating test projects 875 – 877
dotnet test 877 – 878
Fact and Theory unit tests 881 – 884
failure conditions 884 – 885
in ASP.NET Core 873 – 875
integration testing 895 – 905
creating custom WebApplicationFactory 904 – 905
creating TestServer 896 – 899
replacing dependencies in WebApplicationFactory 901 – 904
testing with WebApplicationFactory 899 – 901

isolating databases with in-memory EF Core providers 905 – 910
referencing apps from test projects 878 – 881
unit testing
API controllers and minimal API endpoints 891 – 895
custom middleware 888 – 891

TestServer 896 – 899
text input type 450
Text property 453
text/html MIME type 510
text/plain formatter 510
text/plain MIME type 510
text/xml accept header 509
Textarea Tag Helper 447 – 451
Thomas, Mark Tielens 88
threat modeling 711
TIME_WAIT period 829 – 830

Title property 415
TLS (Transport Layer Security) 709
ToDoController 473
ToDoItemModel.Title property 415
token replacement 500 – 501
ToListAsync() command 303
Torgersen, Mads 920
ToString() call 506
Trace messages 664
transient lifetimes 205 – 206
triggers, in Quartz.NET 865
Troy Hunt blog 921
TryAdd 201 – 202
TryParse methods 146, 148, 152, 161, 387
TService 194
two-factor authentication (2FA) 566, 628
type 161
type attribute 443, 450
TypedResults type 95 – 98
TypeFilterAttribute base class 533
TypeFilterAttribute helper filter 551

U
uint data type 450
Unit Testing Principles, Practices, and Patterns (Khorikov) 873, 919
unit tests 874
unstructured text 676
UPDATE statement 307
UpdateRecipeCommand parameter 306
Upgrade-Insecure-Requests directive 717
URIs (Uniform Resource Identifiers) 783
Url data type 450
Url helper 348 – 349
url input type 450
Url property 348
URLs

configuring f 702, 705
extracting values with routing 89 – 90
generating 348 – 352
for MVC controllers 349 – 350
for Razor Pages 348 – 349
with LinkGenerator 350 – 352

generating from route parameters 133 – 139
controlling your generated URLs with RouteOptions 137 – 139
generating URLs for minimal API endpoint with LinkGenerator 134 – 136
generating URLs with IResults 136 – 137

linking action methods to 497 – 502
combining route attributes 499 – 500
handling HTTP verbs 501 – 502
using token replacement to reduce duplication 500 – 501

mapping to endpoints using routing 118 – 140
—urls parameter 704
Use extension 772, 778 – 781, 783
Use middleware branch 784
Use* methods 50, 62, 69, 293
UseDefaultServiceProvider method 763
UseEndpoints() lambda 761
UseIIS() method 695 – 696, 701
UseIISIntegration() method 695 – 696, 700
UseLamar() lambda 795
user parameter 167
User property 389, 561, 608
User Secrets manager 227 – 229
user-jwts tool 640 – 644

creating JWTs with 640 – 642
customizing JWTs 642 – 644
managing local JWTs 644

UserBindingModel model 439
UserBindingModel property 440
userId parameter 392
UserModel parameter 164
UserModel type 164 – 165
username parameter 378
Username property 381
users

adding custom data to 586 – 588
authenticating for subsequent requests 564 – 566
concept of 561 – 562
protecting user passwords and data 747 – 748
signing in to apps 562 – 564

UserSecretsId property 228 – 229
UseSqlite method 292, 907
UseStartup<> method 756
UseStatusCodePages() method 103
UseStatusCodePagesWithReExecute() method 372
UseTestServer() method 898
UseWelcomePage method 63 – 64
using statement 827 – 828, 853

V
Validate function 166
ValidateId filter 110
ValidateOnBuild setting 210, 763
ValidateScopes option 210, 763
validating binding models 393 – 400

in Razor Pages 394 – 396
on client for user experience 399 – 400
on server for safety 396 – 399

Validation Message Tag Helper 456 – 459
Validation Summary Tag Helper 456 – 459
ValidationAttribute base class 814

ValidationProblem method 99
ValidationProblemDetails object 503
ValidationSummary enum 457
Value attribute 455
Value property 232 – 233, 453, 800
ValueTask 148
van Deursen, Steven 174, 920
vc: prefix 810
verbs in HTML 708
verbs, mapping to endpoints 90 – 92
vertical slice architecture 489
view components 430
view engine 360
View method 476 – 478, 663, 811
view models 334 – 335, 471, 496
View Razor Page 407
ViewComponent base class 810
ViewData dictionary 323, 415 – 416, 433
ViewData keys 416
ViewData service 478
_ViewImports file 431
ViewResult objects 474, 476
_ViewStart file 431 – 433
Visual Studio

generating strongly typed clients 257 – 261
macOS 917
Windows 915 – 916

Visual Studio Code 917 – 918
Vlissides, John 45
void method 265, 327
VS Code (Visual Studio Code) 917
Vue.js in Action (Hanchett and Listwon) 88

W
Warning level error 663
Warning log 663, 665
WASM (WebAssembly) 21
WCF (Windows Communication Foundation) 28
web API controllers 467

creating HTTP APIs using 486 – 515
applying MVC design pattern 493 – 497
attribute routing 497 – 502
generating response from model 506 – 511
overview of 487 – 493

minimal APIs vs. 511 – 513
Web Application template 316 – 319
WebApplication 44 – 46, 50 – 51, 62 – 63, 68, 71, 114, 123, 513, 753 – 754, 756, 759, 764,

767 – 768, 773, 776
WebApplication APIs 856, 896
WebApplication.CreateBuilder() method 761

WebApplication.Environment property 51
WebApplication.Services property 187
WebApplicationBuilder 46, 50, 184, 221, 239, 320, 738, 753 – 754, 767, 896
WebApplicationBuilder.Services property 193
WebApplicationFactory

creating custom 904 – 905
replacing dependencies in 901 – 904
testing with 899 – 901

WebHostBuilder object 756
website creation

typical Razor Page 326 – 328
with MVC controllers 466 – 485
creating web apps 468 – 472
Razor Pages vs. MVC controllers 467 – 468, 472 – 474, 480 – 484
selecting view from controller 474 – 480

with Razor Pages 315 – 338
creating apps 316 – 325
Model-View-Controller design pattern 330 – 337

Where LINQ expression 303 – 304
while construct 418
while loop 853
whole element 463
Wilken, Jeremy 88
With* methods 269
WithDescription() method 269
WithExposedHeaders() CorsPolicyBuilder method 742
WithHeaders() method 742
WithName() method 135, 254, 269
WithOpenApi() method 270 – 271
WithOrigins() method 742
WithParameterValidation() method 167
WithSummary() method 269
WithTags() method 269 – 270
WithWebHostBuilder method 903, 905
Wlaschin, Scott 882
Wong, David 710
worker services 855
workers 855
WSDL (Web Service Description Language) 249

X
X-Content-Type-Options: nosniff header 780
X-Forwarded-For header 700
X-Forwarded-Proto header 700, 722
XML (Extensible Markup Language) 272, 315, 467, 508 – 509, 537
XML documentation comments 272 – 275
XSRF/CSRF (Prevent Cross-Site Request Forgery) attacks 733 – 734
XSS (cross-site scripting) attacks 726 – 730, 780
xUnit 872

creating test projects 875 – 877
dotnet test 877 – 878

Fact and Theory unit tests 881 – 884
referencing apps from test projects 878 – 881
testing failure conditions 884 – 885

Y
YARP (Yet Another Reverse Proxy) 29

inside back cover

	inside front cover
	ASP.NET Core in Action
	Copyright
	Praise for the Second Edition
	contents
	front matter
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration

	1 Getting started with ASP.NET Core
	1.1 What is ASP.NET Core?
	1.2 What types of applications can you build?
	1.3 Choosing ASP.NET Core
	1.4 How does ASP.NET Core work?
	1.4.1 How does an HTTP web request work?
	1.4.2 How does ASP.NET Core process a request?

	1.5 What you’ll learn in this book
	Summary

	Part 1 Getting started with minimal APIs
	2 Understanding ASP.NET Core
	2.1 Using a web framework
	2.2 Why ASP.NET Core was created
	2.3 Understanding the many paradigms of ASP.NET Core
	2.4 When to choose ASP.NET Core
	2.4.1 If you’re new to .NET development
	2.4.2 If you’re a .NET Framework developer creating a new application
	2.4.3 Converting an existing ASP.NET application to ASP.NET Core

	Summary

	3 Your first application
	3.1 A brief overview of an ASP.NET Core application
	3.2 Creating your first ASP.NET Core application
	3.2.1 Using a template to get started
	3.2.2 Building the application

	3.3 Running the web application
	3.4 Understanding the project layout
	3.5 The .csproj project file: Declaring your dependencies
	3.6 Program.cs file: Defining your application
	3.7 Adding functionality to your application
	3.7.1 Adding and configuring services
	3.7.2 Defining how requests are handled with middleware and endpoints

	Summary

	4 Handling requests with the middleware pipeline
	4.1 Defining middleware
	4.2 Combining middleware in a pipeline
	4.2.1 Simple pipeline scenario 1: A holding page
	4.2.2 Simple pipeline scenario 2: Handling static files
	4.2.3 Simple pipeline scenario 3: A minimal API application

	4.3 Handling errors using middleware
	4.3.1 Viewing exceptions in development: DeveloperExceptionPage
	4.3.2 Handling exceptions in production: ExceptionHandlerMiddleware

	Summary

	5 Creating a JSON API with minimal APIs
	5.1 What is an HTTP API, and when should you use one?
	5.2 Defining minimal API endpoints
	5.2.1 Extracting values from the URL with routing
	5.2.2 Mapping verbs to endpoints
	5.2.3 Defining route handlers with functions

	5.3 Generating responses with IResult
	5.3.1 Returning status codes with Results and TypedResults
	5.3.2 Returning useful errors with Problem Details
	5.3.3 Converting all your responses to Problem Details
	5.3.4 Returning other data types

	5.4 Running common code with endpoint filters
	5.4.1 Adding multiple filters to an endpoint
	5.4.2 Filters or middleware: Which should you choose?
	5.4.3 Generalizing your endpoint filters
	5.4.4 Implementing the IEndpointFilter interface

	5.5 Organizing your APIs with route groups
	Summary

	6 Mapping URLs to endpoints using routing
	6.1 What is routing?
	6.2 Endpoint routing in ASP.NET Core
	6.3 Exploring the route template syntax
	6.3.1 Working with parameters and literal segments
	6.3.2 Using optional and default values
	6.3.3 Adding additional constraints to route parameters
	6.3.4 Matching arbitrary URLs with the catch-all parameter

	6.4 Generating URLs from route parameters
	6.4.1 Generating URLs for a minimal API endpoint with LinkGenerator
	6.4.2 Generating URLs with IResults
	6.4.3 Controlling your generated URLs with RouteOptions

	Summary

	7 Model binding and validation in minimal APIs
	7.1 Extracting values from a request with model binding
	7.2 Binding simple types to a request
	7.3 Binding complex types to the JSON body
	7.4 Arrays: Simple types or complex types?
	7.5 Making parameters optional with nullables
	7.6 Binding services and special types
	7.6.1 Injecting well-known types
	7.6.2 Injecting services
	7.6.3 Binding file uploads with IFormFile and IFormFileCollection

	7.7 Custom binding with BindAsync
	7.8 Choosing a binding source
	7.9 Simplifying handlers with AsParameters
	7.10 Handling user input with model validation
	7.10.1 The need for validation
	7.10.2 Using DataAnnotations attributes for validation
	7.10.3 Adding a validation filter to your minimal APIs

	Summary

	Part 2 Building complete applications
	8 An introduction to dependency injection
	8.1 Understanding the benefits of dependency injection
	8.2 Creating loosely coupled code
	8.3 Using dependency injection in ASP.NET Core
	8.4 Adding ASP.NET Core framework services to the container
	8.5 Using services from the DI container
	Summary

	9 Registering services with dependency injection
	9.1 Registering custom services with the DI container
	9.2 Registering services using objects and lambdas
	9.3 Registering a service in the container multiple times
	9.3.1 Injecting multiple implementations of an interface
	9.3.2 Injecting a single implementation when multiple services are registered
	9.3.3 Conditionally registering services using TryAdd

	9.4 Understanding lifetimes: When are services created?
	9.4.1 Transient: Everyone is unique
	9.4.2 Scoped: Let’s stick together
	9.4.3 Singleton: There can be only one
	9.4.4 Keeping an eye out for captive dependencies

	9.5 Resolving scoped services outside a request
	Summary

	10 Configuring an ASP.NET Core application
	10.1 Introducing the ASP.NET Core configuration model
	10.2 Building a configuration object for your app
	10.2.1 Adding a configuration provider in Program.cs
	10.2.2 Using multiple providers to override configuration values
	10.2.3 Storing configuration secrets safely
	10.2.4 Reloading configuration values when they change

	10.3 Using strongly typed settings with the options pattern
	10.3.1 Introducing the IOptions interface
	10.3.2 Reloading strongly typed options with IOptionsSnapshot
	10.3.3 Designing your options classes for automatic binding
	10.3.4 Binding strongly typed settings without the IOptions interface

	10.4 Configuring an application for multiple environments
	10.4.1 Identifying the hosting environment
	10.4.2 Loading environment-specific configuration files
	10.4.3 Setting the hosting environment

	Summary

	11 Documenting APIs with OpenAPI
	11.1 Adding an OpenAPI description to your app
	11.2 Testing your APIs with Swagger UI
	11.3 Adding metadata to your minimal APIs
	11.4 Generating strongly typed clients with NSwag
	11.4.1 Generating a client using Visual Studio
	11.4.2 Generating a client using the .NET Global tool
	11.4.3 Using a generated client to call your API
	11.4.4 Customizing the generated code
	11.4.5 Refreshing the OpenAPI description

	11.5 Adding descriptions and summaries to your endpoints
	11.5.1 Using fluent methods to add descriptions
	11.5.2 Using attributes to add metadata
	11.5.3 Using XML documentation comments to add metadata

	11.6 Knowing the limitations of OpenAPI
	11.6.1 Not all APIs can be described by OpenAPI
	11.6.2 Generated code is opinionated
	11.6.3 Tooling often lags the specification

	Summary

	12 Saving data with Entity Framework Core
	12.1 Introducing Entity Framework Core
	12.1.1 What is EF Core?
	12.1.2 Why use an object-relational mapper?
	12.1.3 When should you choose EF Core?
	12.1.4 Mapping a database to your application code

	12.2 Adding EF Core to an application
	12.2.1 Choosing a database provider and installing EF Core
	12.2.2 Building a data model
	12.2.3 Registering a data context

	12.3 Managing changes with migrations
	12.3.1 Creating your first migration
	12.3.2 Adding a second migration

	12.4 Querying data from and saving data to the database
	12.4.1 Creating a record
	12.4.2 Loading a list of records
	12.4.3 Loading a single record
	12.4.4 Updating a model with changes

	12.5 Using EF Core in production applications
	Summary

	Part 3 Generating HTML with Razor Pages and MVC
	13 Creating a website with Razor Pages
	13.1 Your first Razor Pages application
	13.1.1 Using the Web Application template
	13.1.2 Adding and configuring services
	13.1.3 Generating HTML with Razor Pages
	13.1.4 Handling request logic with page models and handlers

	13.2 Exploring a typical Razor Page
	13.3 Understanding the MVC design pattern
	13.4 Applying the MVC design pattern to Razor Pages
	13.4.1 Directing a request to a Razor Page and building a binding model
	13.4.2 Executing a handler using the application model
	13.4.3 Building HTML using the view model
	13.4.4 Putting it all together: A complete Razor Page request

	Summary

	14 Mapping URLs to Razor Pages using routing
	14.1 Routing in ASP.NET Core
	14.2 Convention-based routing vs. explicit routing
	14.3 Routing requests to Razor Pages
	14.4 Customizing Razor Page route templates
	14.4.1 Adding a segment to a Razor Page route template
	14.4.2 Replacing a Razor Page route template completely

	14.5 Generating URLs for Razor Pages
	14.5.1 Generating URLs for a Razor Page
	14.5.2 Generating URLs for an MVC controller
	14.5.3 Generating URLs with LinkGenerator

	14.6 Customizing conventions with Razor Pages
	Summary

	15 Generating responses with page handlers in Razor Pages
	15.1 Razor Pages and page handlers
	15.2 Selecting a page handler to invoke
	15.3 Accepting parameters to page handlers
	15.4 Returning IActionResult responses
	15.4.1 PageResult and RedirectToPageResult
	15.4.2 NotFoundResult and StatusCodeResult

	15.5 Handler status codes with StatusCodePagesMiddleware
	Summary

	16 Binding and validating requests with Razor Pages
	16.1 Understanding the models in Razor Pages and MVC
	16.2 From request to binding model: Making the request useful
	16.2.1 Binding simple types
	16.2.2 Binding complex types
	16.2.3 Choosing a binding source

	16.3 Validating binding models
	16.3.1 Validation in Razor Pages
	16.3.2 Validating on the server for safety
	16.3.3 Validating on the client for user experience

	16.4 Organizing your binding models in Razor Pages
	Summary

	17 Rendering HTML using Razor views
	17.1 Views: Rendering the user interface
	17.2 Creating Razor views
	17.2.1 Razor views and code-behind
	17.2.2 Introducing Razor templates
	17.2.3 Passing data to views

	17.3 Creating dynamic web pages with Razor
	17.3.1 Using C# in Razor templates
	17.3.2 Adding loops and conditionals to Razor templates
	17.3.3 Rendering HTML with Raw

	17.4 Layouts, partial views, and _ViewStart
	17.4.1 Using layouts for shared markup
	17.4.2 Overriding parent layouts using sections
	17.4.3 Using partial views to encapsulate markup
	17.4.4 Running code on every view with _ViewStart and _ViewImports

	Summary

	18 Building forms with Tag Helpers
	18.1 Catering to editors with Tag Helpers
	18.2 Creating forms using Tag Helpers
	18.2.1 The Form Tag Helper
	18.2.2 The Label Tag Helper
	18.2.3 The Input and Textarea Tag Helpers
	18.2.4 The Select Tag Helper
	18.2.5 The Validation Message and Validation Summary Tag Helpers

	18.3 Generating links with the Anchor Tag Helper
	18.4 Cache-busting with the Append Version Tag Helper
	18.5 Using conditional markup with the Environment Tag Helper
	Summary

	19 Creating a website with MVC controllers
	19.1 Razor Pages vs. MVC in ASP.NET Core
	19.2 Your first MVC web application
	19.3 Comparing an MVC controller with a Razor Page PageModel
	19.4 Selecting a view from an MVC controller
	19.5 Choosing between Razor Pages and MVC controllers
	19.5.1 The benefits of Razor Pages
	19.5.2 When to choose MVC controllers over Razor Pages

	Summary

	20 Creating an HTTP API using web API controllers
	20.1 Creating your first web API project
	20.2 Applying the MVC design pattern to a web API
	20.3 Attribute routing: Linking action methods to URLs
	20.3.1 Combining route attributes to keep your route templates DRY
	20.3.2 Using token replacement to reduce duplication in attribute routing
	20.3.3 Handling HTTP verbs with attribute routing

	20.4 Using common conventions with [ApiController]
	20.5 Generating a response from a model
	20.5.1 Customizing the default formatters: Adding XML support
	20.5.2 Choosing a response format with content negotiation

	20.6 Choosing between web API controllers and minimal APIs
	Summary

	21 The MVC and Razor Pages filter pipeline
	21.1 Understanding the MVC filter pipeline
	21.2 The Razor Pages filter pipeline
	21.3 Filters or middleware: Which should you choose?
	21.4 Creating a simple filter
	21.5 Adding filters to your actions and Razor Pages
	21.6 Understanding the order of filter execution
	21.6.1 The default scope execution order
	21.6.2 Overriding the default order of filter execution with IOrderedFilter

	Summary

	22 Creating custom MVC and Razor Page filters
	22.1 Creating custom filters for your application
	22.1.1 Authorization filters: Protecting your APIs
	22.1.2 Resource filters: Short-circuiting your action methods
	22.1.3 Action filters: Customizing model binding and action results
	22.1.4 Exception filters: Custom exception handling for your action methods
	22.1.5 Result filters: Customizing action results before they execute
	22.1.6 Page filters: Customizing model binding for Razor Pages

	22.2 Understanding pipeline short-circuiting
	22.3 Using dependency injection with filter attributes
	Summary

	Part 4 Securing and deploying your applications
	23 Authentication: Adding users to your application with Identity
	23.1 Introducing authentication and authorization
	23.1.1 Understanding users and claims in ASP.NET Core
	23.1.2 Authentication in ASP.NET Core: Services and middleware

	23.2 What is ASP.NET Core Identity?
	23.3 Creating a project that uses ASP.NET Core Identity
	23.3.1 Creating the project from a template
	23.3.2 Exploring the template in Solution Explorer
	23.3.3 The ASP.NET Core Identity data model
	23.3.4 Interacting with ASP.NET Core Identity

	23.4 Adding ASP.NET Core Identity to an existing project
	23.4.1 Configuring the ASP.NET Core Identity services
	23.4.2 Updating the EF Core data model to support Identity
	23.4.3 Updating the Razor views to link to the Identity UI

	23.5 Customizing a page in ASP.NET Core Identity’s default UI
	23.6 Managing users: Adding custom data to users
	Summary

	24 Authorization: Securing your application
	24.1 Introduction to authorization
	24.2 Authorization in ASP.NET Core
	24.2.1 Preventing anonymous users from accessing your application
	24.2.2 Handling unauthorized requests

	24.3 Using policies for claims-based authorization
	24.4 Creating custom policies for authorization
	24.4.1 Requirements and handlers: The building blocks of a policy
	24.4.2 Creating a policy with a custom requirement and handler

	24.5 Controlling access with resource-based authorization
	24.5.1 Manually authorizing requests with IAuthorizationService
	24.5.2 Creating a resource-based AuthorizationHandler

	24.6 Hiding HTML elements from unauthorized users
	Summary

	25 Authentication and authorization for APIs
	25.1 Authentication for APIs and distributed applications
	25.1.1 Extending authentication to multiple apps
	25.1.2 Centralizing authentication in an identity provider
	25.1.3 OpenID Connect and OAuth 2.0

	25.2 Understanding bearer token authentication
	25.3 Adding JWT bearer authentication to minimal APIs
	25.4 Using the user-jwts tool for local JWT testing
	25.4.1 Creating JWTs with the user-jwts tool
	25.4.2 Customizing your JWTs
	25.4.3 Managing your local JWTs

	25.5 Describing your authentication requirements to OpenAPI
	25.6 Applying authorization policies to minimal API endpoints
	Summary

	26 Monitoring and troubleshooting errors with logging
	26.1 Using logging effectively in a production app
	26.1.1 Highlighting problems using custom log messages
	26.1.2 The ASP.NET Core logging abstractions

	26.2 Adding log messages to your application
	26.2.1 Log level: How important is the log message?
	26.2.2 Log category: Which component created the log?
	26.2.3 Formatting messages and capturing parameter values

	26.3 Controlling where logs are written using logging providers
	26.4 Changing log verbosity with filtering
	26.5 Structured logging: Creating searchable, useful logs
	26.5.1 Adding a structured logging provider to your app
	26.5.2 Using scopes to add properties to your logs

	Summary

	27 Publishing and deploying your application
	27.1 Understanding the ASP.NET Core hosting model
	27.1.1 Running vs. publishing an ASP.NET Core app
	27.1.2 Choosing a deployment method for your application

	27.2 Publishing your app to IIS
	27.2.1 Configuring IIS for ASP.NET Core
	27.2.2 Preparing and publishing your application to IIS

	27.3 Hosting an application in Linux
	27.3.1 Running an ASP.NET Core app behind a reverse proxy in Linux
	27.3.2 Preparing your app for deployment to Linux

	27.4 Configuring the URLs for your application
	Summary

	28 Adding HTTPS to an application
	28.1 Why do I need HTTPS?
	28.2 Using the ASP.NET Core HTTPS development certificates
	28.3 Configuring Kestrel with a production HTTPS certificate
	28.4 Enforcing HTTPS for your whole app
	28.4.1 Enforcing HTTPS with HTTP Strict Transport Security headers
	28.4.2 Redirecting from HTTP to HTTPS with HTTPS redirection middleware
	28.4.3 Rejecting HTTP requests in API applications

	Summary

	29 Improving your application’s security
	29.1 Defending against cross-site scripting (XSS) attacks
	29.2 Protecting from cross-site request forgery (CSRF) attacks
	29.3 Calling your web APIs from other domains using CORS
	29.3.1 Understanding CORS and how it works
	29.3.2 Adding a global CORS policy to your whole app
	29.3.3 Adding CORS to specific endpoints with EnableCors metadata
	29.3.4 Configuring CORS policies

	29.4 Exploring other attack vectors
	29.4.1 Detecting and avoiding open redirect attacks
	29.4.2 Avoiding SQL injection attacks with EF Core and parameterization
	29.4.3 Preventing insecure direct object references
	29.4.4 Protecting your users’ passwords and data

	Summary

	Part 5 Going further with ASP.NET Core
	30 Building ASP.NET Core apps with the generic host and Startup
	30.1 Separating concerns between two files
	30.2 The Program class: Building a Web Host
	30.3 The Startup class: Configuring your application
	30.4 Creating a custom IHostBuilder
	30.5 Understanding the complexity of the generic host
	30.6 Choosing between the generic host and minimal hosting
	Summary

	31 Advanced configuration of ASP.NET Core
	31.1 Customizing your middleware pipeline
	31.1.1 Creating simple apps with the Run extension
	31.1.2 Branching middleware pipelines with the Map extension
	31.1.3 Adding to the pipeline with the Use extension
	31.1.4 Building a custom middleware component
	31.1.5 Converting middleware into endpoint routing endpoints

	31.2 Using DI with OptionsBuilder and IConfigureOptions
	31.3 Using a third-party dependency injection container
	Summary

	32 Building custom MVC and Razor Pages components
	32.1 Creating a custom Razor Tag Helper
	32.1.1 Printing environment information with a custom Tag Helper
	32.1.2 Creating a custom Tag Helper to conditionally hide elements
	32.1.3 Creating a Tag Helper to convert Markdown to HTML

	32.2 View components: Adding logic to partial views
	32.3 Building a custom validation attribute
	32.4 Replacing the validation framework with FluentValidation
	32.4.1 Comparing FluentValidation with DataAnnotations attributes
	32.4.2 Adding FluentValidation to your application

	Summary

	33 Calling remote APIs with IHttpClientFactory
	33.1 Calling HTTP APIs: The problem with HttpClient
	33.2 Creating HttpClients with IHttpClientFactory
	33.2.1 Using IHttpClientFactory to manage HttpClientHandler lifetime
	33.2.2 Configuring named clients at registration time
	33.2.3 Using typed clients to encapsulate HTTP calls

	33.3 Handling transient HTTP errors with Polly
	33.4 Creating a custom HttpMessageHandler
	Summary

	34 Building background tasks and ser vices
	34.1 Running background tasks with IHostedService
	34.1.1 Running background tasks on a timer
	34.1.2 Using scoped services in background tasks

	34.2 Creating headless worker services using IHost
	34.2.1 Creating a worker service from a template
	34.2.2 Running worker services in production

	34.3 Coordinating background tasks using Quartz.NET
	34.3.1 Installing Quartz.NET in an ASP.NET Core application
	34.3.2 Configuring a job to run on a schedule with Quartz.NET
	34.3.3 Using clustering to add redundancy to your background tasks

	Summary

	35 Testing applications with xUnit
	35.1 An introduction to testing in ASP.NET Core
	35.2 Creating your first test project with xUnit
	35.3 Running tests with dotnet test
	35.4 Referencing your app from your test project
	35.5 Adding Fact and Theory unit tests
	35.6 Testing failure conditions
	Summary

	36 Testing ASP.NET Core applications
	36.1 Unit testing custom middleware
	36.2 Unit testing API controllers and minimal API endpoints
	36.3 Integration testing: Testing your whole app in-memory
	36.3.1 Creating a TestServer using the Test Host package
	36.3.2 Testing your application with WebApplicationFactory
	36.3.3 Replacing dependencies in WebApplicationFactory
	36.3.4 Reducing duplication by creating a custom WebApplicationFactory

	36.4 Isolating the database with an in-memory EF Core provider
	Summary

	appendix A. Preparing your development environment
	A.1 Installing the .NET SDK
	A.2 Choosing an IDE or editor
	A.2.1 Visual Studio (Windows)
	A.2.2 JetBrains Rider (Windows, Linux, macOS)
	A.2.3 Visual Studio for Mac (macOS)
	A.2.4 Visual Studio Code (Windows, Linux, macOS)

	Appendix B. Useful references
	B.1 Relevant books
	B.2 Announcement blog posts
	B.3 Microsoft documentation
	B.4 Security-related links
	B.5 ASP.NET Core GitHub repositories
	B.6 Tooling and services
	B.7 ASP.NET Core blogs
	B.8 Video links

	index
	inside back cover

