
®

A U T O M A T E
T H E B O R I N G S T U F F

W I T H P Y T H O N
P R A C T I C A L P R O G R A M M I N G

F O R T O T A L B E G I N N E R S

A L S W E I G A R T

T H I R D E D I T I O N

ea
rl
y

ea
rl
y

ac
ce
ss

ac
ce
ss

N O S T A R C H P R E S S
E A R LY A C C E S S P R O G R A M :

F E E D B A C K W E L C O M E !

Welcome to the Early Access edition of the as yet unpublished Automate
the Boring Stuff with Python, 3rd edition by Al Sweigart! As a prepublication
title, this book may be incomplete and some chapters may not have been
proofread.

Our goal is always to make the best books possible, and we look forward
to hearing your thoughts. If you have any comments or questions, email us
at earlyaccess@nostarch.com. If you have specific feedback for us, please
include the page number, book title, and edition date in your note, and
we’ll be sure to review it. We appreciate your help and support!

We’ll email you as new chapters become available. In the meantime,
enjoy!

mailto:earlyaccess%40nostarch.com?subject=Real-World%20Python%20Feedback%206/17/20

A U T O M A T E T H E B O R I N G S T U F F
W I T H P Y T H O N , 3 R D E D I T I O N

A L S W E I G A R T
Early Access edition, 11/08/2024

Copyright © 2025 by Al Sweigart.

ISBN 13: 978-1-7185-0340-3 (print)
ISBN 13: 978-1-7185-0341-0 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Allison Felus
Developmental Editor: Frances Saux
Cover Illustrator: Josh Ellingson
Interior Design: Octopod Studios
Technical Reviewer: Daniel Zingaro
Copyeditor: Audrey Doyle

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

C O N T E N T S

Foreword . v
Acknowledgments . vii
Introduction . ix

PART I: PROGRAMMING FUNDAMENTALS 1
Chapter 1: Python Basics . 3
Chapter 2: if-else and Flow Control . 27
Chapter 3: Loops . 49
Chapter 4: Functions . 73
Chapter 5: Debugging . 95
Chapter 6: Lists . 109
Chapter 7: Dictionaries and Structuring Data 139
Chapter 8: Strings and Text Editing 159

PART II: AUTOMATING TASKS . 183
Chapter 9: Text Pattern Matching with Regular Expressions . . 185
Chapter 10: Reading and Writing Files 217
Chapter 11: Organizing Files . 243
Chapter 12: Designing and Deploying Command Line

Programs . 257
Chapter 13: Web Scraping . 289
Chapter 14: Excel Spreadsheets . 331
Chapter 15: Google Sheets . 359
Chapter 16: SQLite Databases . 383
Chapter 17: PDF and Word Documents 413
Chapter 18: CSV, JSON, and XML Files 439
Chapter 19: Keeping Time, Scheduling Tasks, and

Launching Programs . 461
Chapter 20: Sending Email, Texts, and Push Notifications . . . 481
Chapter 21: Making Graphs and Manipulating Images 495
Chapter 22: Recognizing Text in Images 529
Chapter 23: Controlling the Keyboard and Mouse 541
Chapter 24: Text-to-Speech and Speech Recognition Engines 567

Appendix A: Installing Third-Party Packages 579
Appendix B: Answers to the Practice Problems 583

The chapters in red are included in this Early Access PDF.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

F O R E W O R D

I’ve known Al Sweigart for as long as his books have been in print. I first
knew Al as a reader, then as a colleague, and more recently as a friend. Al
thinks deeply and critically about programming, how people learn, and
how we live together as a society. You couldn’t ask for a better person to
learn from.

There are two main reasons people tend to want to learn about pro-
gramming. Many have a particular task to automate or a specific problem
they want to solve using code, while others have a more general interest in
learning a new skill. Often, people are motivated to learn for a mix of these
two reasons. In any case, Python is a perfect language to study. It has a wide
variety of libraries you can download to help you automate almost any task
you can think of, and you’ll find a large number of Python resources that
will almost certainly let you get to work quickly solving the problems you
care about.

Automate the Boring Stuff with Python was a brilliant concept for a book
when it first came out 10 years ago, and it remains a brilliant concept today.
This is evidenced by the fact that it’s been one of the go-to resources for
learning Python for as long as it’s been in print. If you need to solve a spe-
cific task right now, you’ll find many practical examples in this book that
you can adapt to your own needs. If you’re interested in developing a more
general understanding of programming, implementing a series of real-
world projects like the ones you’ll find here is a great way to do so.

vi Foreword

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

There has never been a better time to learn Python. Some people,
believing the hype about artificial intelligence, will say that you don’t need
to learn programming anymore because AI tools can write all the code for
you. Others will say that AI-generated code is terrible and will never work.
The reality, as is almost always the case, lies somewhere between these two
extremes.

AI tools can certainly help you in your programming work. But they
work much better if you already have a reasonable understanding of pro-
gramming in general and know how you can use programming to solve the
specific task you’re working on. Otherwise, you’ll almost certainly run into
a sticking point that neither you nor the AI assistant can get past. If you use
an AI assistant with the knowledge and understanding you gain from this
book, however, you’ll be able to build useful and effective tools for yourself
quite efficiently.

Enjoy the journey; it’s a great one!

Eric Matthes
Author of Python Crash Course, 3rd Edition (No Starch Press, 2023)

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

A C K N O W L E D G M E N T S

It’s misleading to have just my name on the cover.
I couldn’t have written a book like this without the help of a lot of

people. I’d like to thank my publisher, Bill Pollock; my editors, Laurel
Chun, Leslie Shen, Greg Poulos, Jennifer Griffith-Delgado, Frances Saux,
Jill Franklin, Sabrina Plomitallo-González, and Allison Felus; and the rest
of the staff at No Starch Press for their invaluable help. Thanks to my tech
reviewers, Ari Lacenski, Philip James, and Dr. Daniel Zingaro, for great sug-
gestions, edits, and support.

Many thanks to everyone at the Python Software Foundation for their
great work. The organizers and volunteers of all the various PyCon and
DjangoCon conferences are extraordinary. The Python community is the
best one I’ve found in the tech industry.

Thank you.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

“You’ve just done in two hours what it takes
the three of us two days to do.” My college

roommate was working at a retail electronics
store in the early 2000s. Occasionally, the store

would receive a spreadsheet of thousands of product
prices from other stores. A team of three employees
would print the spreadsheet onto a thick stack of paper
and split it among themselves. For each product price,
they would look up their store’s price and note all the
products that their competitors sold for less. It usually
took a couple of days.

“You know, I could write a program to do that if you have the original
file for the printouts,” my roommate told them when he saw them sitting on
the floor with papers scattered and stacked all around.

After a couple of hours, he had a short program that read a competi-
tor’s price from a file, found the product in the store’s database, and noted

I N T R O D U C T I O N

x Introduction

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

whether the competitor was cheaper. He was still new to programming, so
he spent most of his time looking up documentation in a programming
book. The actual program took only a few seconds to run. My roommate
and his co-workers took an extra-long lunch that day.

This is the power of computer programming. A computer is like a Swiss
Army knife with tools for countless tasks. Many people spend hours clicking
and typing to perform repetitive tasks, unaware that the machine they’re
using could do their job in seconds if they gave it the right instructions.

Who Is This Book For?
Software is at the core of so many of the tools we use today: nearly everyone
uses social networks to communicate, virtually all people have internet-
connected phones in their purse or pocket, and most office jobs involve
interacting with a computer to get work done. As a result, the demand for
people who can code has skyrocketed. Countless books, online tutorials,
and developer boot camps promise to turn ambitious beginners into soft-
ware engineers with six-figure salaries.

This book is not for those people. It’s for everyone else.
On its own, this book won’t turn you into a professional software devel-

oper any more than a few guitar lessons will turn you into a rock star. But if
you’re an office worker, administrator, academic, or anyone else who uses a
computer for work or fun, you will learn the basics of programming so that
you can automate simple tasks such as these:

• Moving and renaming thousands of files and sorting them into folders

• Filling out online forms—no typing required

• Downloading files or copying text from a website whenever it updates

• Having your computer text custom notifications to your phone

• Updating or formatting Excel spreadsheets

• Checking your email and sending out prewritten responses

• Creating databases and querying them for information

• Extracting text from images and audio files

These tasks are simple but time-consuming for humans, and they’re
often so trivial or specific that there’s no ready-made software to perform
them. Armed with a little bit of programming knowledge, however, you can
have your computer do these tasks for you.

Coding Conventions Used in This Book
This book is not designed as a reference manual; it’s a guide for beginners.
The coding style sometimes goes against best practices (for example, some
programs use global variables), but this trade-off makes the code simpler to
learn. Sophisticated programming concepts—like object-oriented program-
ming, list comprehensions, and generators—aren’t covered because of the

Introduction xi

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

complexity they add. Veteran programmers may point out ways the code in
this book could be changed to improve efficiency, but this book is mostly
concerned with getting programs to work with the least amount of effort on
your part.

What Is Programming?
Television shows and films often show programmers furiously typing cryptic
streams of 1s and 0s on glowing screens, but modern programming isn’t
that mysterious. Programming is writing instructions for the computer to per-
form in a language the computer can understand. These instructions might
crunch some numbers, modify text, look up information in files, or com-
municate with other computers over the internet.

All programs use basic instructions as building blocks. Here are a few
of the most common ones, in English:

“Do this; then do that.”

“If this condition is true, perform this action; otherwise, do that action.”

“Do this action exactly 27 times.”

“Keep doing that until this condition is true.”

You can combine these building blocks to implement more intricate
decisions too. For example, here are the programming instructions, called
the source code, for a simple program written in the Python programming
language. Starting at the top, the Python software runs lines of code (some
of which are run only if a certain condition is true, or else Python runs some
other line) until it reaches the bottom:

1 password_file = open('SecretPasswordFile.txt')
2 secret_password = password_file.read()
3 print('Enter your password.')
typed_password = input()
4 if typed_password == secret_password:
 5 print('Access granted')
 6 if typed_password == '12345':
 7 print('That password is one that an idiot puts on their luggage.')

else:
 8 print('Access denied')

You might not know anything about programming, but you could prob-
ably make a reasonable guess at what the previous code does just by reading
it. First, the file SecretPasswordFile.txt is opened 1, and the secret password
in it is read 2. Then, the user is prompted to input a password (from the
keyboard) 3. These two passwords are compared 4, and if they’re the same,
the program prints Access granted to the screen 5. Next, the program checks
whether the password is 12345 6 and hints that this choice might not be
the best for a password 7. If the passwords are not the same, the program
prints Access denied to the screen 8.

xii Introduction

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Programming is a creative task, as are painting, writing, knitting, and
constructing LEGO castles. Like a blank canvas for painting, software has
many constraints but endless possibilities. The difference between pro-
gramming and other creative activities is that your computer comes with
all the raw materials you need to program; you don’t have to buy any addi-
tional canvas, paint, film, yarn, LEGO bricks, or electronic components. A
decade-old laptop is more than powerful enough to write programs. Once
you’ve written your program, you can copy it perfectly an infinite number of
times. A knit sweater can be worn by only one person at a time, but a useful
program can easily be shared online with the entire world.

What Is Python?
Python refers to both a programming language (with syntax rules for writ-
ing what is considered valid Python code) and the interpreter software
that reads source code (written in the Python language) and performs its
instructions. You can download Windows, macOS, and Linux versions of
the Python interpreter for free at https://python .org.

There are several programming languages, each with their strengths
and weaknesses. Debating which is best often leads to pointless arguments
over matters of opinion. But in my opinion, Python is the best first language
to learn if you are new to programming. Python has a gentle learning
curve and readable syntax. It doesn’t require learning dense concepts to do
simple tasks. And if you want to go further into programming, learning a
second language is easier when you first understand Python.

The name Python comes from the surreal British comedy group Monty
Python, not from the snake. Python programmers are affectionately called
Pythonistas, and both Monty Python and serpentine references usually pep-
per Python tutorials and documentation.

Common Myths About Programming
Programming has an intimidating reputation, and billion-dollar software
companies are household names. Even the English word code has an associa-
tion with secrecy and cryptic connotations. This leads many people to think
that only a select few can program. But coding is a skill anyone can learn,
and I’d like to address some of the more common myths directly.

Programmers Don’t Need to Know Much Math
The most common anxiety I hear about learning to program is the notion
that it requires a lot of math. Actually, most programming doesn’t require
math beyond basic arithmetic. Programming requires deduction and pay-
ing attention to detail more than mathematics. In fact, being good at pro-
gramming isn’t that different from being good at solving Sudoku puzzles.

To solve a Sudoku puzzle, you must fill in the numbers 1 through 9
for each row, each column, and each 3 × 3 interior square of the full 9 × 9
board. The puzzle provides you with some numbers to start, and you can

https://python.org

Introduction xiii

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

find a solution by making deductions based on these numbers. In the puz-
zle shown in Figure 1, a 5 appears in the first and second rows, so it can’t
show up in these rows again. Therefore, in the upper-right grid, it must
appear in the third row. Because the last column also already has a 5 in it,
the 5 can’t go to the right of the 6, so it must go to the left of the 6. Solving
one row, column, or square will provide more clues for solving the rest of
the puzzle, and as you fill in one group of numbers 1 to 9 and then another,
you’ll soon solve the entire grid.

Figure 1: A new Sudoku puzzle (left) and its solution (right). Despite using numbers,
Sudoku doesn’t involve much math. (Images © Wikimedia Commons)

The fact that Sudoku involves numbers doesn’t mean you have to be
good at math to figure out the solution. The same is true of programming.
Like solving a Sudoku puzzle, writing programs involves paying attention
to details and breaking down a problem into individual steps. Similarly,
when debugging programs (that is, finding and fixing errors), you’ll patiently
observe what the program is doing and find the cause of the bugs. And like
all skills, the more you program, the better you’ll become.

You Are Not Too Old to Learn Programming
The second most common anxiety I hear about learning to program is that
people think they’re too old to learn it. I read many internet comments
from folks who think it’s too late for them because they are already (gasp!)
23 years old. This is clearly not “too old” to learn to program; many people
learn much later in life.

You don’t need to have started as a child to become a capable pro-
grammer. But the image of programmers as whiz kids is a persistent one.
Unfortunately, I contribute to this myth when I tell others that I was in
grade school when I started programming.

However, programming is much easier to learn today than it was in the
1990s. Today, there are more books, better search engines, and many more
online question-and-answer websites. On top of that, the programming lan-
guages themselves are far more user-friendly. For these reasons, everything

xiv Introduction

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

I learned about programming in the years between grade school and high school grad-
uation could be learned today in about a dozen weekends. My head start wasn’t
really much of a head start.

It’s important to have a “growth mindset” about programming—in
other words, understand that people develop programming skills through
practice. They aren’t just born as programmers, and being unskilled at pro-
gramming now is not an indication that you can never become an expert.

AI Won’t Replace Programmers
In the 1990s, nanotechnology promised to change everything. New manu-
facturing processes and scientific innovation would revolutionize society,
the thinking went. Carbon nanotubes, buckyballs, and diamonds the price
of pencil lead, all assembled one atom at a time out of plentiful carbon by
germ-size nanobots, would pave the way for materials 10 times stronger
than steel at a fraction of the weight and cost. This would lead to space ele-
vators, medical miracles, and home appliances that could create anything,
just like the replicators on Star Trek! It would mean an end to economic
scarcity, world hunger, and war. It would bring on a new age of enlighten-
ment—as long as the nanobots didn’t turn on their human creators in a
tiny robot uprising. And the technology was only 10 years away!

Of course, the hype never happened. Real innovations certainly occurred
at the nanoscale (the smartphone in your pocket uses a number of them). But
the Star Trek replicators and other grandiose promises didn’t arrive, and the
excitement over nanotechnology deflated to more realistic proportions.

Let’s talk about AI.
Personal computers changed everything. The internet changed every-

thing. Social media changed everything. Smartphones changed everything.
Cryptocurrency did not change everything, but it did reveal which of your
cousins and co-workers were susceptible to get-rich-quick scams. Today, AI
is the latest marvel to emerge from the tech industry. People use the term
AI to mean everything from chess-playing computers to chatbots, so-called
“expert systems,” and machine learning. In this book, I’ll use the term large
language model (LLM), which is the conceptual category behind OpenAI’s
ChatGPT, Gemini, Facebook’s LLaMa, and other generative text systems.

LLMs have caused many breathless claims and questions. Is AI going to
take all of our jobs? Is it still worth learning to code? Are the AIs alive, and
can I survive the AI-robot uprising?

LLM technology is exciting, but to make it useful, we need to set real-
istic expectations so that we can avoid falling prey to sensationalist journal-
ism and questionable “investment opportunities.” I hope I can deflate the
hype and give you a more realistic view of how LLMs can help you learn to
code. Let’s get some of these misconceptions out of the way right now:

• LLMs are not conscious or sentient.

• LLMs will not replace human software engineers.

• LLMs do not alleviate the need to learn programming.

Introduction xv

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

• LLMs will not replace most human jobs (though this won’t prevent your
manager from thinking they can and laying you off anyway).

• LLMs are far from perfect, and are even often wrong.

Those who insist on these misconceptions get their information from
science fiction movies and internet videos, not from experience with actual
LLMs. I highly recommend Simon Willison, Python Software Foundation
board member and co-creator of the Django Web Framework, for his writ-
ing about AI at https://simonwillison .net /about. You can watch his sober and
illuminating PyCon 2024 keynote speech on LLMs at https://autbor .com /
pycon2024keynote.

How could LLMs help you as a programmer? What is obvious at this
early stage is that learning to communicate with LLMs (so-called prompt
engineering) is a skill, just like learning to effectively use a search engine is a
skill. LLMs are not people, and you need to learn how to phrase your ques-
tions to get relevant and reliable answers. When LLMs confidently make up
incorrect answers, we say that they are hallucinating. But this is just another
way of anthropomorphizing an algorithm. LLMs don’t think; they generate
text. That is to say, LLMs are always hallucinating, even when their answers
happen to be correct.

LLMs make large, obvious mistakes and simple, subtle mistakes, how-
ever. If you use them as a learning aid, you must vigilantly check everything
the LLM tells you, big or small. It’s entirely valid to choose to forego learn-
ing with LLMs altogether. At this point, the effectiveness of using LLMs in
education is unproven. We don’t know for sure in what situations LLMs are
useful as learning tools, or even if their benefits outweigh their costs.

It’s no wonder that so many buy into the hype of LLMs. We carry devices
in our pockets that scientists of the last century would consider supercom-
puters. They connect us to a global network of information (and misinfor-
mation). They can identify their position anywhere on Earth by listening to
satellites in outer space. Software can already do seemingly magical things,
but software isn’t magic. And by learning to program, you’ll get a far more
grounded idea of what computers are capable of versus what is just hype.

About This Book
The first part of this book teaches you how to program in Python. The sec-
ond part covers various software libraries for automating different kinds of
tasks. I recommend reading the chapters of Part I in order, then skipping
to the chapters in Part II that interest you. Here’s a brief rundown of what
you’ll find in each chapter.

Part I: Programming Fundamentals

Chapter 1: Python Basics Covers expressions, the most basic type of
Python instruction, and how to use the Python interactive shell soft-
ware to experiment with code.

https://simonwillison.net/about
https://autbor.com/pycon2024keynote
https://autbor.com/pycon2024keynote

xvi Introduction

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Chapter 2: if-else and Flow Control Explains how to make programs
decide which instructions to execute so that your code can intelligently
respond to different conditions.

Chapter 3: Loops Explains how to make programs repeat instructions
a set number of times, or for as long as a certain condition holds.

Chapter 4: Functions Instructs you on how to define your own func-
tions so that you can organize your code into more manageable chunks.

Chapter 5: Debugging Shows how to use Python’s various bug-finding
and bug-fixing tools.

Chapter 6: Lists Introduces the list data type and explains how to
organize data.

Chapter 7: Dictionaries and Structuring Data Introduces the diction-
ary data type and shows you more powerful ways to organize data.

Chapter 8: Strings and Text Editing Covers working with text data
(called strings in Python).

Part II: Automating Tasks

Chapter 9: Text Pattern Matching with Regular Expressions Covers
how Python can manipulate strings and search for text patterns with
regular expressions.

Chapter 10: Reading and Writing Files Explains how your program
can read the contents of text files and save information to files on your
hard drive.

Chapter 11: Organizing Files Shows how Python can copy, move,
rename, and delete large numbers of files much faster than a human
user can. Also explains compressing and decompressing files.

Chapter 12: Designing and Deploying Command Line Programs
Explains how you can package your Python programs to easily run
them either on your own computer or on co-workers’ computers.

Chapter 13: Web Scraping Shows how to write programs that can
automatically download web pages and parse them for information.
This is called web scraping.

Chapter 14: Excel Spreadsheets Covers programmatically manipu-
lating Excel spreadsheets so that you don’t have to read them. This is
helpful when the number of documents you have to analyze is in the
hundreds or thousands.

Chapter 15: Google Sheets Covers how to read and update Google
Sheets, a popular web-based spreadsheet application, using Python.

Chapter 16: SQLite Databases Explains how to use relational data-
bases with SQLite, the tiny but powerful open source database that
comes with Python.

Chapter 17: PDF and Word Documents Covers programmatically
reading Word and PDF documents.

Introduction xvii

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Chapter 18: CSV, JSON, and XML Files Continues to explain how to
programmatically manipulate documents, now discussing the data seri-
alization formats CSV, JSON, XML, YAML, and TOML.

Chapter 19: Keeping Time, Scheduling Tasks, and Launching
Programs Explains how Python programs handle time and dates and
how to schedule your computer to perform tasks at certain times. Also
shows how your Python programs can launch non-Python programs.

Chapter 20: Sending Email, Texts, and Push Notifications Explains
how to write programs that can notify you via email or mobile commu-
nications, or send these messages to others.

Chapter 21: Making Graphs and Manipulating Images Explains how
to programmatically manipulate images, such as JPEG or PNG files,
and work with the Matplotlib graph-making library.

Chapter 22: Recognizing Text in Images Covers how to extract text
from images and scanned documents for further processing with the
PyTesseract package.

Chapter 23: Controlling the Keyboard and Mouse Explains how to
programmatically control the mouse and keyboard to automate clicks
and keypresses.

Chapter 24: Text-to-Speech and Speech Recognition Engines Covers
how to use advanced computer science packages to not only generate
spoken audio from text, but also convert spoken audio to text.

You can download source code and other resources for the examples in
this book at https://nostarch .com /automate -boring -stuff -python -3rd -edition. To see
many of this book’s programs in action, visit https://autbor .com /3.

Downloading and Installing Python
You can download Python for Windows, macOS, and Ubuntu Linux for free
at https://python .org /downloads.

The download page detects your operating system and recommends the
download package for your computer. There are unofficial Python install-
ers for Android and iOS mobile operating systems, but those are beyond
the scope of this book. Windows, macOS, and Linux have their own instal-
lation options as well. Download the installer for your operating system and
run the program to install the Python interpreter software.

New versions of Python or your operating system may change the steps
needed to install Python. If you encounter difficulties, you can consult
https://autbor .com /install / for up-to-date instructions.

Downloading and Installing Mu
While the Python interpreter is the software that runs your Python programs,
the Mu editor software is where you’ll enter your programs, much the way you
enter text in a word processor. You can download Mu from https://codewith .mu.

https://nostarch.com/automate-boring-stuff-python-3rd-edition
https://autbor.com/3
https://python.org/downloads
https://autbor.com/install/
https://codewith.mu

xviii Introduction

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

On Windows and macOS, download the installer for your operating
system, then run it by double-clicking the installer file. If you are on macOS,
running the installer opens a window where you must drag the Mu icon
to the Applications folder icon to continue the installation. If you are on
Ubuntu, you’ll need to install Mu as a Python package. In that case, click the
Instructions button in the Python Package section of the download page.

Starting Mu
Once it’s installed, you can start Mu:

• On Windows, click the Start icon in the lower-left corner of your screen,
enter Mu Editor in the search box, and select it.

• On macOS, open the Finder window, click Applications, and then click
mu-editor. You can also run Mu Editor from Spotlight.

• On Ubuntu, select ApplicationsAccessoriesTerminal and then
enter python3 –m mu.

The first time Mu runs, a Select Mode window will appear with options
for Adafruit CircuitPython, BBC micro:bit, Pygame Zero, Python 3, and
others. Select Python 3. You can always change the mode later by clicking
the Mode button at the top of the editor window.

Starting IDLE
This book uses Mu as an editor and interactive shell. However, you can use
any number of editors for writing Python code. The interactive development
environment (IDLE) software installs along with Python, and it can serve as a
second editor if for some reason you can’t get Mu installed or working. Let’s
start IDLE now (assuming Python 3.13 is the version you installed):

• On Windows, click the Start icon in the lower-left corner of your screen,
enter IDLE in the search box, and select IDLE (Python 3.13 64-bit).

• On macOS, open the Finder window, click Applications, click Python 3.13,
and then click the IDLE icon. You can also run IDLE from Spotlight.

• On Ubuntu, select ApplicationsAccessoriesTerminal and then
enter idle. (You may also be able to click Show Apps at the bottom of
the Ubuntu sidebar and then click IDLE.)

The Interactive Shell
When you run Mu, the window that appears is called the file editor window.
You can open the interactive shell by clicking the REPL button. A shell is
a program that lets you enter instructions into the computer, much like
the Terminal or Command Prompt on macOS and Windows, respectively.

Introduction xix

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Python’s interpreter software will immediately run any instructions you
enter into the Python interactive shell.

In Mu, the interactive shell is a pane in the lower half of the window
with something like the following text:

Jupyter QtConsole
Python 3
Type 'copyright', 'credits' or 'license' for more information
IPython -- An enhanced Interactive Python. Type '?' for help.

In [1]:

If you run IDLE, the interactive shell is the window that first appears. It
should be mostly blank except for text that looks something like this:

>>>

In [1]: and >>> are called prompts. The examples in this book will use
the >>> prompt to represent the interactive shell, since it’s more common.
If you run Python from the Terminal or Command Prompt, they’ll use the
>>> prompt as well. The In [1]: prompt was invented by Jupyter Notebook,
another popular Python editor.

For example, enter the following into the interactive shell next to the
prompt:

>>> print('Hello, world!')

After you write the line and press enter, the interactive shell should
display this in response:

>>> print('Hello, world!')
Hello, world!

You’ve just given the computer an instruction, and it did what you told
it to do!

How to Find Help
Programmers tend to learn by searching the internet for answers to their
questions. This is quite different from the way many people are accustomed
to learning—through an in-person teacher who lectures and can answer
questions. What’s great about using the internet as a schoolroom is that
there are whole communities of folks who can help you solve your prob-
lems. Indeed, your questions have probably already been answered, and the
answers are waiting online for you to find them. If you encounter an error
message or have trouble making your code work, you won’t be the first person
to have your problem, and finding a solution is easier than you might think.

xx Introduction

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

For example, let’s cause an error on purpose: enter '42' + 3 into the
interactive shell. You don’t need to know what this instruction means right
now, but the result should look like this:

>>> '42' + 3
1 Traceback (most recent call last):
 File "<pyshell#0>", line 1, in <module>
 '42' + 3
2 TypeError: Can't convert 'int' object to str implicitly
>>>

The error message 2 appears because Python couldn’t understand
your instruction. The traceback part 1 of the error message shows the spe-
cific instruction and line number that Python had trouble with. If you’re
not sure what to make of a particular error message, search for it online.
Enter “TypeError: Can't convert 'int' object to str implicitly” (including
the quotation marks) into your favorite search engine, and you should see
tons of links explaining what the error message means and what causes it,
as shown in Figure 2.

Figure 2: The Google results for an error message can be very helpful.

Introduction xxi

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You’ll often find that someone else had the same question as you and
that some other helpful person has already answered it. No one person can
know everything about programming, so an everyday part of any software
developer’s job is looking up answers to technical questions.

Asking Smart Programming Questions
If you can’t find the answer by searching online, try asking people in a web
forum such as Stack Overflow (https://stackoverflow .com) or the “learn pro-
gramming” subreddit at https://reddit .com /r /learnprogramming. But keep in
mind there are smart ways to ask programming questions that help others
help you. To begin with, be sure to read the Frequently Asked Questions
sections at these websites about the proper way to post questions.

When asking programming questions, remember to do the following:

• Explain what you are trying to do, not just what you did. This lets your
helper know if you are on the wrong track.

• Specify the point at which the error happens. Does it occur at the very
start of the program or only after you do a certain action?

• Copy and paste the entire error message and your code to https://pastebin
.com or https://gist .github .com. These websites make it easy to share large
amounts of code with people online, without losing any text formatting.
You can then put the URL of the posted code in your email or forum
post. For example, here are the locations of some pieces of code I’ve
posted: https://pastebin .com /2k3LqDsd and https://gist .github .com /asweigart /
6912168.

• Explain what you’ve already tried to do to solve your problem. This tells
people you’ve already put in some work to figure things out on your own.

• List the version of Python you’re using. Also, say which operating system
and version you’re running.

• If the error came up after you made a change to your code, explain
exactly what you changed.

• Say whether you’re able to reproduce the error every time you run the
program or whether it happens only after you perform certain actions.
In the latter case, also explain what those actions are.

Always follow good online etiquette as well. For example, don’t post
your questions in all caps or make unreasonable demands of the people try-
ing to help you.

You can find more information on how to ask for programming help
in the blog post at https://autbor .com /help. I love helping people discover
Python. I write programming tutorials on my blog at https://inventwithpython
.com /blog, and you can contact me with questions at al@inventwithpython .com,
although you may get a faster response by posting your questions to https://
reddit .com /r /inventwithpython.

https://stackoverflow.com
https://reddit.com/r/learnprogramming
https://pastebin.com
https://pastebin.com
https://gist.github.com
https://pastebin.com/2k3LqDsd
https://gist.github.com/asweigart/6912168
https://gist.github.com/asweigart/6912168
https://autbor.com/help
https://inventwithpython.com/blog
https://inventwithpython.com/blog
https://reddit.com/r/inventwithpython
https://reddit.com/r/inventwithpython

xxii Introduction

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Summary
For most people, their computer is just an appliance instead of a tool. But
by learning how to program, you’ll gain access to one of the most powerful
tools of the modern world, and you’ll have fun along the way. Programming
isn’t brain surgery—it’s fine for amateurs to experiment and make mistakes.

This book assumes you have zero programming knowledge and will
teach you quite a bit, but you may have questions beyond its scope. Remember
that asking effective questions and knowing how to find answers are invalu-
able tools on your programming journey.

Let’s begin!

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

PART I
P R O G R A M M I N G F U N D A M E N T A L S

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The Python programming language has a
wide range of syntactical constructions, stan-

dard library functions, and interactive devel-
opment environment features. Fortunately, you

can ignore most of that; you just need to learn enough
to write some handy little programs.

To accomplish this, however, you’ll have to master some programming
concepts. Like a wizard in training, you might think these concepts seem
tedious, but with some practice, they’ll enable you to command your com-
puter like a magic wand and perform incredible feats.

This chapter has a few examples that encourage you to enter code into
the interactive shell, also called the read-evaluate-print-loop (REPL), which lets
you run (or execute) Python instructions one at a time and instantly shows
you the results. Using the interactive shell is great for learning what basic
Python instructions do, so give it a try as you follow along. You’ll remember
the things you do much better than the things you only read.

1
P Y T H O N B A S I C S

4 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Entering Expressions into the Interactive Shell
You can run the interactive shell by launching the Mu editor. This book’s
Introduction provides setup instructions for downloading and installing it.
On Windows, open the Start menu, enter Mu, and open the Mu app. On
macOS, open your Applications folder and double-click Mu. Click the New
button and save an empty file as blank.py. When you run this blank file by
clicking the Run button or pressing F5, it will open the interactive shell,
which will open as a new pane at the bottom of the Mu editor’s window. You
should see a >>> prompt in the interactive shell.

You can also run the interactive shell from the command line Terminal
(on macOS and Linux) or Windows Terminal (on Windows, where you
could also use the older Command Prompt application). After opening
these command line windows, enter python (on Windows) or python3 (on
macOS and Linux). You’ll see the same >>> prompt for the interactive shell.
If you want to run a program, run python or python3 followed by the name of
the program’s .py file, such as python blank.py. Be sure you don’t run python
on macOS’s Terminal, as this may launch the older, backward-incompatible
Python 2.7 version on certain versions of macOS. You may even see a mes-
sage saying WARNING: Python 2.7 is not recommended. Exit the 2.7 interactive
shell and run python3 instead.

Enter 2 + 2 at the prompt to have Python do some simple math. The Mu
window should now look like this:

>>> 2 + 2
4
>>>

In Python, 2 + 2 is called an expression, which is the most basic kind of
programming instruction in the language. Expressions consist of values
(such as 2) and operators (such as +), and they can always evaluate (that is,
reduce) down to a single value. That means you can use expressions any-
where in Python code that you could also use a value.

In the previous example, 2 + 2 is evaluated down to a single value, 4. A
single value with no operators is also considered an expression, though it
evaluates only to itself, as shown here:

>>> 2
2

The Mu editor has a REPL button that shows an interactive shell with
a prompt that looks like In [1]:. The popular Jupyter Notebook editor uses
this kind of interactive shell. You can use this interactive shell the same way
as the normal Python interactive shell with the >>> prompt. REPLs are not
unique to Python; many programming languages also offer REPLs so that
you can experiment with their code.

Python Basics 5

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

ER RORS A R E OK AY !

The best thing about computers is that they carry out the exact instructions you
give them . This is also the worst thing about computers . Computers can’t use
common sense to figure out what you intended to do . Programs will crash if
they contain code the computer can’t understand, which will cause Python to
show an error message . Error messages don’t damage your computer, though,
so don’t be afraid to make mistakes . A crash just means the program unexpect-
edly stopped running .

Get used to seeing error messages, because you’ll constantly encounter
them (even if you have decades of programming experience) . Error messages
are often vague and not meant to be immediately understood by beginners . If
you want to know more about an error, you can search for the exact error mes-
sage text online for more information . Note that if you are using the Mu editor,
the keyboard shortcut for copying highlighted text in the interactive shell pane
to the clipboard is CTRL-SHIFT-C, while the shortcut for copying text in the main
file editor pane is the standard CTRL-C . You can also check out the resources
at https://nostarch .com /automate -boring -stuff -python -3rd -edition to see a list of
common Python error messages and their meanings .

Programming involves some math operations you might not be famil-
iar with:

• Exponentiation (or to the power of) is multiplying a number by itself
repeatedly, just like multiplication is adding a number to itself repeat-
edly. For example, two to the power of four (or two to the fourth power), writ-
ten as or 24 or 2 ** 4, is the number two multiplied by itself four times:
24 = 2 × 2 × 2 × 2 = 16.

• Modular arithmetic is similar to the remainder result of division. For
example, 14 % 4 evaluates to 2 because 14 divided by 4 is 3 with remain-
der 2. Even though Python’s modulo operator is %, modular arithmetic
has nothing to do with percentages.

• Integer division is the same as regular division except the result is
rounded down. For example, 25 / 8 is 3.125 but 25 // 8 is 3, and 29 / 10
is 2.9 but 29 // 10 is 2.

You can use plenty of other operators in Python expressions too. For
example, Table 1-1 lists all the math operators in Python.

https://nostarch.com/automate-boring-stuff-python-3rd-edition

6 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Table 1-1: Math Operators from Highest to Lowest Precedence

Operator Operation Example Evaluates to . . .

** Exponentiation 2 ** 3 8

% Modulus/remainder 22 % 8 6

// Integer division 22 // 8 2

/ Division 22 / 8 2.75

* Multiplication 3 * 5 15

- Subtraction 5 - 2 3

+ Addition 2 + 2 4

The order of operations (also called precedence) of Python math operators
is similar to that of mathematics. The ** operator is evaluated first; the *,
/, //, and % operators are evaluated next, from left to right; and the + and -
operators are evaluated last (also from left to right). You can use parenthe-
ses to override the usual precedence if you need to. Whitespace in between
the operators and values doesn’t matter in Python, except for the indenta-
tion at the beginning of the line. But the convention, or unofficial rule, is
to have a single space in between operators and values. Enter the following
expressions into the interactive shell:

>>> 2 + 3 * 6
20
>>> (2 + 3) * 6
30
>>> 48565878 * 578453
28093077826734
>>> 2 ** 8
256
>>> 23 / 7
3.2857142857142856
>>> 23 // 7
3
>>> 23 % 7
2
>>> 2 + 2
4
>>> (5 - 1) * ((7 + 1) / (3 - 1))
16.0

Python Basics 7

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In each case, you as the programmer must enter the expression, but
Python does the hard part of evaluating it. Python will keep evaluating
parts of the expression until it becomes a single value:

(5 - 1) * ((7 + 1) / (3 - 1))

4 * ((7 + 1) / (3 - 1))

4 * () / (3 - 1)8

4 * () / ()8 2

4 * 4.0

16.0

These rules for putting operators and values together to form expres-
sions are a fundamental part of Python as a programming language, just
like the grammar rules that help us communicate. Here’s an example:

This is a grammatically correct English sentence.

This grammatically is sentence not English correct a.

The second line is difficult to parse because it doesn’t follow the rules
of English. Similarly, if you enter a bad Python instruction, Python won’t
be able to understand it and will display a SyntaxError error message, as
shown here:

>>> 5 +
 File "<stdin>", line 1
 5 +
 ^
SyntaxError: invalid syntax
>>> 42 + 5 + * 2
 File "<stdin>", line 1
 42 + 5 + * 2
 ^
SyntaxError: invalid syntax

You can always test whether an instruction works by entering it into the
interactive shell. Don’t worry about breaking the computer; the worst that
could happen is that Python responds with an error message. Professional
software developers get error messages all the time while writing code.

The Integer, Floating-Point, and String Data Types
Remember that expressions are just values combined with operators, and
they always evaluate to a single value. A data type is a category for values, and
every value belongs to exactly one data type. The most common data types

8 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

in Python are listed in Table 1-2. The values -2 and 30, for example, are said
to be integer values. The integer (or int) data type indicates values that are
whole numbers. Numbers with a decimal point, such as 3.14, are called
floating-point numbers (or floats). Note that even though the value 42 is an
integer, the value 42.0 would be a floating-point number. Programmers
often use number to refer to ints and floats collectively, although number
itself is not a Python data type.

One subtle detail about Python is that any math performed using an int
and a float results in a float, not an int. While 3 + 4 evaluates to the integer 7,
the expression 3 + 4.0 evaluates to the floating-point number 7.0. Any division
between two integers with the / division operator results in a float as well. For
example, 16 / 4 evaluates to 4.0 and not 4. Most of the time, this information
doesn’t matter for your program, but knowing it will explain why your num-
bers may suddenly gain a decimal point.

Table 1-2: Common Data Types

Data type Examples

Integer (int) -2, -1, 0, 1, 2, 3, 4, 5

Floating-point number (float) -1.25, -1.0, -0.5, 0.0, 0.5, 1.0, 1.25

String (str) 'a', 'aa', 'aaa', 'Hello!', '11 cats', '5'

Python programs can also have text values called strings, or strs (pro-
nounced stirs). Always surround your string in single-quote (') characters
(as in 'Hello' or 'Goodbye cruel world!') so that Python knows where the
string begins and ends. You can even have a string with no characters in
it, '', called a blank string or an empty string. Strings are explained in greater
detail in Chapter 8.

You may see the error message SyntaxError: unterminated string literal,
as in this example:

>>> 'Hello, world!
SyntaxError: unterminated string literal (detected at line 1)

This error means you probably forgot the final single-quote character at
the end of the string.

String Concatenation and Replication
The meaning of an operator may change based on the data types of the
values next to it. For example, + is the addition operator when it operates
on two integers or floating-point values. However, when + is used to combine
two string values, it joins the strings as the string concatenation operator. Enter
the following into the interactive shell:

>>> 'Alice' + 'Bob'
'AliceBob'

Python Basics 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The expression evaluates down to a single, new string value that com-
bines the text of the two strings. However, if you try to use the + operator
on a string and an integer value, Python won’t know how to handle this and
will display an error message:

>>> 'Alice' + 42
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 'Alice' + 42
TypeError: can only concatenate str (not "int") to str

The error message can only concatenate str (not "int") to str means
that Python thought you were trying to concatenate an integer to the string
'Alice'. Your code will have to explicitly convert the integer to a string
because Python cannot do this automatically. (I’ll explain how to convert
between data types in “Dissecting the Program” on page XX, where we talk
about the str(), int(), and float() functions.)

The * operator multiplies two integer or floating-point values. But when
the * operator is used on one string value and one integer value, it becomes
the string replication operator. Enter a string multiplied by a number into the
interactive shell to see this in action:

>>> 'Alice' * 5
'AliceAliceAliceAliceAlice'

The expression evaluates down to a single string value that repeats the
original string a number of times equal to the integer value. String replica-
tion is a useful trick, but it’s not used as often as string concatenation.

The * operator can only be used with two numeric values (for multipli-
cation), or one string value and one integer value (for string replication).
Otherwise, Python will just display an error message, such as the following:

>>> 'Alice' * 'Bob'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 'Alice' * 'Bob'
TypeError: can't multiply sequence by non-int of type 'str'
>>> 'Alice' * 5.0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 'Alice' * 5.0
TypeError: can't multiply sequence by non-int of type 'float'

It makes sense that Python wouldn’t understand these expressions: you
can’t multiply two words, and it’s hard to replicate an arbitrary string a frac-
tional number of times.

Expressions, data types, and operators may seem abstract to you right
now, but as you learn more about these concepts, you’ll be able to create
increasingly sophisticated programs that do math on data pulled from
spreadsheets, websites, the output of other programs, and other places.

10 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Storing Values in Variables
A variable is like a box in the computer’s memory where you can store a
single value. If you want to use the result of an evaluated expression later in
your program, you can save it inside a variable.

Assignment Statements
You’ll store values in variables with an assignment statement. An assignment
statement consists of a variable name, an equal sign (called the assignment
operator), and the value to be stored. If you enter the assignment statement
spam = 42, a variable named spam will have the integer value 42 stored in it.

You can think of a variable as a labeled box that a value is placed in, but
Chapter 6 explains how a name tag attached to the value might be a better
metaphor. Both are shown in Figure 1-1.

Figure 1-1: The code spam = 42 is like telling the program, “The variable
spam now has the integer value 42 in it.”

For example, enter the following into the interactive shell:

1 >>> spam = 40
>>> spam
40
>>> eggs = 2
2 >>> spam + eggs
42
>>> spam + eggs + spam
82
3 >>> spam = spam + 2
>>> spam
42

A variable is initialized (or created) the first time a value is stored in
it 1. After that, you can use it in expressions with other variables and
values 2. When a variable is assigned a new value 3, the old value is for-
gotten, which is why spam evaluated to 42 instead of 40 at the end of the
example. This is called overwriting the variable. Enter the following code
into the interactive shell to try overwriting a string:

>>> spam = 'Hello'
>>> spam

Python Basics 11

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

'Hello'
>>> spam = 'Goodbye'
>>> spam
'Goodbye'

Just like the box in Figure 1-1, the spam variable in Figure 1-2 stores
'Hello' until you replace the string with 'Goodbye'.

Figure 1-2: When a new value is assigned to a variable, the old one is forgotten.

You can also think of overwriting a variable as reassigning the name tag
to a new value.

Variable Names
A good variable name describes the data it contains. Imagine that you
moved to a new house and labeled all of your moving boxes as Stuff. You’d
never find anything! Most of this book’s examples (and Python’s documen-
tation) use generic variable names like spam, eggs, and bacon, which come
from the Monty Python “Spam” sketch. But in your programs, descriptive
names will help make your code more readable.

Though you can name your variables almost anything, Python does
have some naming restrictions. Your variable name must obey the following
four rules:

• It can’t have spaces.

• It can use only letters, numbers, and the underscore (_) character.

• It can’t begin with a number.

• It can’t be a Python keyword, such as if, for, return, or other keywords
you’ll learn in this book.

12 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Table 1-3 shows examples of legal variable names.

Table 1-3: Valid and Invalid Variable Names

Valid variable names Invalid variable names

current_balance current-balance (hyphens are not allowed)

currentBalance current balance (spaces are not allowed)

account4 4account (can’t begin with a number)

_42 42 (can begin with an underscore but not a number)

TOTAL_SUM TOTAL_$UM (special characters like $ are not allowed)

hello 'hello' (special characters like ' are not allowed)

Variable names are case-sensitive, meaning that spam, SPAM, Spam, and sPaM
are four different variables. It is a Python convention to start your variables
with a lowercase letter: spam instead of Spam.

CODE S T Y L E OPINIONS A ND PEP 8

Previous editions of this book used camelCase instead of underscores to separate
words in variable names; that is, variables lookedLikeThis instead of looking_
like_this . The latter form is called snake_case because the underscores between
words look like little snakes (while the uppercase letters in camelCase look like
the humps on a camel) . Some experienced programmers may point out that the
official Python code style document, PEP 8, says that underscores should be used .
I unapologetically prefer camelCase and point to the “A Foolish Consistency Is
the Hobgoblin of Little Minds” section in PEP 8 itself as my defense:

Consistency with the style guide is important. But most importantly:
know when to be inconsistent—sometimes the style guide just doesn’t
apply. When in doubt, use your best judgment.

The computer doesn’t care which style you use, and PEP 8 is not a stone
tablet of irrefutable commandments . It doesn’t matter which style you use as
long as you use the same style consistently . To prove this, I’ve rewritten the code
in this book to use snake_case because it truly doesn’t matter either way .

Your First Program
While the interactive shell is good for running Python instructions one at
a time, to write entire Python programs you’ll enter the instructions into
the file editor. The file editor is similar to text editors such as Notepad and
TextMate, but it has some features specifically for entering source code. To
open a new file in Mu, click the New button on the top row.

Python Basics 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The tab that appears should contain a cursor awaiting your input, but
it’s different from the interactive shell, which runs Python instructions as
soon as you press enter. The file editor lets you enter many instructions,
save the file, and run the program. Here’s how you can tell the difference
between the two:

• The interactive shell will always be the one with the >>> or In [1]: prompt.

• The file editor won’t have the >>> or In [1]: prompt.

Now it’s time to create your first program! When the file editor window
opens, enter the following into it:

This program says hello and asks for my name.

print('Hello, world!')
print('What is your name?') # Ask for their name.
my_name = input('>')
print('It is good to meet you, ' + my_name)
print('The length of your name is:')
print(len(my_name))
print('What is your age?') # Ask for their age.
my_age = input('>')
print('You will be ' + str(int(my_age) + 1) + ' in a year.')

Once you’ve entered your source code, save it so that you won’t have to
retype it each time you start Mu. Click Save, enter hello.py in the File Name
field, and then click Save.

You should save your programs every once in a while as you type them.
That way, if the computer crashes or you accidentally exit Mu, you won’t
lose the code. As a shortcut, you can press ctrl-S on Windows and Linux
or -S on macOS to save your file.

Once you’ve saved, let’s run our program. Press the F5 key or click the
Run button. Enter your name when your program asks for it. The program’s
output in the interactive shell should look something like this:

Hello, world!
What is your name?
>Al
It is good to meet you, Al
The length of your name is:
2
What is your age?
>4
You will be 5 in a year.
>>>

When there are no more lines of code to execute, the Python program
terminates; that is, it stops running. (You can also say that the Python pro-
gram exits.) The Mu editor displays the >>> interactive shell prompt after the
program terminated, in case you’d like to enter some further Python code.

14 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You can close the file editor by clicking the X on the file’s tab, just
like closing a browser tab. To reload a saved program, click Load from the
menu. Do that now, and in the window that appears, choose hello.py and
click the Open button. Your previously saved hello.py program should open
in the file editor window.

You can view the step-by-step execution of a program using the Python
Tutor visualization tool at http://pythontutor .com. Click the forward button to
move through each step of the program’s execution. You’ll be able to see
how the variables’ values and the output change.

Dissecting the Program
With your new program open in the file editor, let’s take a quick tour of the
Python instructions it uses by looking at what each line of code does.

Comments
The following line is called a comment:

This program says hello and asks for my name.

Python ignores comments, and you can use them to write notes or
remind yourself what the code is trying to do. Any text for the rest of the
line following a hash mark (#) is part of a comment.

Sometimes programmers will put a # in front of a line of code to tem-
porarily remove it while testing a program. This is called commenting out
code, and it can be useful when you’re trying to figure out why a program
isn’t working. You can remove the # later when you are ready to put the line
back in.

Python also ignores the blank line after the comment. You can add as
many blank lines to your program as you want. This spacing can make your
code easier to read, like paragraphs in a book.

The print() Function
The print() function displays the string value inside its parentheses on the
screen:

print('Hello, world!')
print('What is your name?') # Ask for their name.

The line print('Hello, world!') means “Print out the text in the string
'Hello, world!'.” When Python executes this line, you say that Python is
calling the print() function and the string value is being passed to the func-
tion. A value that is passed to a function call is an argument. Notice that
the quotes are not printed to the screen. They just mark where the string
begins and ends; they are not part of the string value’s text.

http://pythontutor.com

Python Basics 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

N O T E You can also use this function to display a blank line on the screen; call print() with
nothing in between the parentheses.

When you write a function name, the opening and closing parentheses at
the end identify it as the name of a function. This is why in this book, you’ll
see print() rather than print. It’s a standard convention to have no spaces
in between the function name and the opening parentheses, even though
Python doesn’t require this. Chapter 3 describes functions in more detail.

The input() Function
The input() function waits for the user to type some text on the keyboard
and press enter:

my_name = input('>')

This function call evaluates to a string identical to the user’s text, and
the rest of the code assigns the my_name variable to this string value. The '>'
string passed to the function causes the > prompt to appear, which serves as
an indicator to the user that they are expected to enter something. Your pro-
grams don’t have to pass a string to the input() function; if you call input(),
the program will wait for the user’s text without displaying any prompt.

T HE > A ND >>> PROMP T S

You can pass any string to input() to change the prompt that appears when
your program runs . Calling input('>') puts an angle bracket > on the screen
as the prompt . This is different from the >>> prompt that appears in the Python
interactive shell . In this book, the >>> prompt indicates a response to the Python
interactive shell and the > prompt indicates a response to a program running
the input('>') call . My choice of '>' was arbitrary; you can use any prompt
you want or no prompt at all .

You can think of the input() function call as an expression that evalu-
ates to whatever string the user typed. If the user entered 'Al', the assign-
ment statement would effectively be my_name = 'Al'.

If you call input() and see an error message, like NameError: name 'Al'
is not defined, the problem is that you’re running the code with Python 2
instead of Python 3.

The Greeting Message
The following call to print() contains the expression 'It is good to meet
you, ' + my_name between the parentheses:

print('It is good to meet you, ' + my_name)

16 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Remember that expressions can always evaluate to a single value. If 'Al'
is the value stored in my_name, then this expression evaluates to 'It is good to
meet you, Al'. This single string value is then passed to print(), which prints
it on the screen.

The len() Function
You can pass the len() function a string value (or a variable containing a
string), and the function evaluates to the integer value of the number of
characters in that string:

print('The length of your name is:')
print(len(my_name))

Enter the following into the interactive shell to try this:

>>> len('hello')
5
>>> len('My very energetic monster just scarfed nachos.')
46
>>> len('')
0

Just like in those examples, len(my_name) evaluates to an integer. We
say that the len() function call returns or outputs this integer value, and the
value is the function call’s return value. It is then passed to print() to be
displayed on the screen. The print() function allows you to pass it either
integer values or string values, but notice the error that shows up when you
enter the following into the interactive shell:

 >>> print('I am ' + 29 + ' years old.')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 print('I am ' + 29 + ' years old.')
TypeError: can only concatenate str (not "int") to str

The print() function isn’t causing that error; rather, it’s the expression
you tried to pass to print(). You’ll get the same error message if you type the
expression into the interactive shell on its own:

>>> 'I am ' + 29 + ' years old.'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 'I am ' + 29 + ' years old.'
TypeError: can only concatenate str (not "int") to str

Python gives an error because the + operator can be used only to add two
numbers together or to concatenate two strings. You can’t add an integer to
a string because this is ungrammatical in Python. You can fix this by using a
string version of the integer instead, as explained in the next section.

Python Basics 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The str(), int(), and float() Functions
If you want to concatenate an integer such as 29 with a string to pass to
print(), you’ll need to get the value '29', which is the string form of 29. The
str() function can be passed an integer value and will return a string value
version of the integer, as follows:

>>> str(29)
'29'
>>> print('I am ' + str(29) + ' years old.')
I am 29 years old.

Because str(29) evaluates to '29', the expression 'I am ' + str(29) + ' years
old.' evaluates to 'I am ' + '29' + ' years old.', which in turn evaluates to 'I
am 29 years old.' This is the string value that is passed to the print() function.

The str(), int(), and float() functions will evaluate to the string, integer,
and floating-point forms of the value you pass, respectively. Try converting
some values in the interactive shell with these functions, and watch what
happens:

>>> str(0)
'0'
>>> str(-3.14)
'-3.14'
>>> int('42')
42
>>> int('-99')
-99
>>> int(1.25)
1
>>> int(1.99)
1
>>> float('3.14')
3.14
>>> float(10)
10.0

The previous examples call the str(), int(), and float() functions and
pass them values of the other data types to obtain a string, integer, or floating-
point form of those values.

The str() function is handy when you have an integer or float that you
want to concatenate to a string. The int() function is also helpful if you
have a number as a string value that you want to use in some mathematics.
For example, the input() function always returns a string, even if the user
enters a number. Enter spam = input() into the interactive shell, then enter
101 when it waits for your text:

>>> spam = input()
101
>>> spam
'101'

18 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The value stored inside spam isn’t the integer 101 but the string '101'. If
you want to do math using the value in spam, use the int() function to get its
integer form and then store this as the variable’s new value. If spam is the string
'101', then the expression int(spam) will evaluate to the integer value 101, and
the assignment statement spam = int(spam) will be equivalent to spam = 101:

>>> spam = int(spam)
>>> spam
101

Now you should be able to treat the spam variable as an integer instead
of a string:

>>> spam * 10 / 5
202.0

Note that if you pass a value to int() that it cannot evaluate as an inte-
ger, Python will display an error message:

>>> int('99.99')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 int('99.99')
ValueError: invalid literal for int() with base 10: '99.99'
>>> int('twelve')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 int('twelve')
ValueError: invalid literal for int() with base 10: 'twelve'

The int() function is also useful if you need to round a floating-point
number down:

>>> int(7.7)
7
>>> int(7.7) + 1
8

You used the int() and str() functions in the last three lines of your
program to get a value of the appropriate data type for the code:

print('What is your age?') # Ask for their age.
my_age = input('>')
print('You will be ' + str(int(my_age) + 1) + ' in a year.')

The my_age variable contains the value returned from input(). Because
the input() function always returns a string (even if the user entered a
number), you can use the int(my_age) code to return an integer value of
the string in my_age. This integer value is then added to 1 in the expression
int(my_age) + 1.

Python Basics 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

T E X T A ND NUMBER EQUI VA L ENCE

Although the string value of a number is considered a completely different value
from the integer or floating-point version, an integer can be equal to a floating
point:

>>> 42 == '42'
False
>>> 42 == 42.0
True
>>> 42.0 == 0042.000
True

Python makes this distinction because strings are text, while integers and
floats are numbers .

The result of this addition is passed to the str() function: str(int(my
_age) + 1). The string value returned is then concatenated with the strings
'You will be ' and ' in a year.' to evaluate to one large string value. This
large string is finally passed to print() to be displayed on the screen.

Let’s say the user enters the string '4' for my_age. The evaluation steps
would look something like the following:

print('You will be ' + str(int(myAge) + 1) + ' in a year.')

print('You will be ' + str(int() + 1) + ' in a year.')

print('You will be ' + str() + ' in a year.')

print('You will be ' + str() + ' in a year.')

print('You will be ' + + ' in a year.')

'4'

'5'

print('You will be 5' + ' in a year.')

print('You will be 5 in a year.')

5

4 + 1

The string '4' is converted to an integer, so you can add 1 to it. The result
is 5. The str() function converts the result back to a string, so you can concat-
enate it with the second string, 'in a year.', to create the final message.

The type() Function
Integer, floating-point, and string aren’t the only data types in Python. As
you continue to learn about programming, you may come across values
of other data types. You can always pass these to the type() function to

20 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

determine what type they are. For example, enter the following into the
interactive shell:

>>> type(42)
<class 'int'>
>>> type(42.0)
<class 'float'>
>>> type('forty two')
<class 'str'>
>>> name = 'Zophie'
>>> type(name) # The name variable has a value of the string type.
<class 'str'>
>>> type(len(name)) # The len() function returns integer values.
<class 'int'>

Not only can you pass any value to type(), but (as with any function call)
you can also pass it any variable or expression to determine the data type of
the value that it evaluates to. The type() function itself returns values, but
the angle brackets mean they are not syntactically valid Python code; you
cannot run code like spam = <class 'str'>.

The round() and abs() Functions
Let’s learn about two more Python functions that, like the len() function, take
an argument and return a value. The round() function accepts a float value
and returns the nearest integer. Enter the following into the interactive shell:

>>> round(3.14)
3
>>> round(7.7)
8
>>> round(-2.2)
-2

The round() function also accepts an optional second argument specify-
ing how many decimal places it should round. Enter the following into the
interactive shell:

>>> round(3.14, 1)
3.1
>>> round(7.7777, 3)
7.778

The behavior for rounding half numbers is a bit odd. The function call
round(3.5) rounds up to 4, while round(2.5) rounds down to 2. This quirk is
caused by how computers handle floating-point numbers and is beyond the
scope of this book, but you should keep this behavior in mind.

The abs() function returns the absolute value of the number argument.
In mathematics, this is defined as the distance from 0, but I find it easier to

Python Basics 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

think of it as the positive form of the number. Enter the following into the
interactive shell:

>>> abs(25)
25
>>> abs(-25)
25
>>> abs(-3.14)
3.14
>>> abs(0)
0

Python comes with several different functions that you’ll learn about in
this book. This section should have shown you how you can experiment with
them in the interactive shell to see how they behave with different inputs.
This is a common technique for practicing the new code that you learn.

How Computers Store Data with Binary Numbers
That’s enough Python code for now. At this point, you might think that pro-
gramming seems almost magical. How does the computer know to transform
2 + 2 into 4? The answer is too complicated for this book, but I can explain
part of what’s going on behind the scenes by discussing what binary numbers
(numbers that have only the digits 1 and 0) have to do with computing.

Hacking in movies often involves streams of 1s and 0s flowing across
the screen. This looks mysterious and impressive, but what do these 1s and
0s actually mean? The answer is that binary is the simplest number system,
and it can be implemented with inexpensive components for computer
hardware. Binary, also called the base-2 number system, can represent all of
the same numbers that our more familiar base-10 decimal number system can.
Decimal has 10 digits, 0 through 9. Table 1-4 shows the first 27 integers in
decimal and binary.

Table 1-4: Equivalent Decimal and Binary Numbers

Decimal Binary Decimal Binary Decimal Binary

0 0 9 1001 18 10010

1 1 10 1010 19 10011

2 10 11 1011 20 10100

3 11 12 1100 21 10101

4 100 13 1101 22 10110

5 101 14 1110 23 10111

6 110 15 1111 24 11000

7 111 16 10000 25 11001

8 1000 17 10001 26 11010

22 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Think of these number systems as a mechanical odometer, like in
Figure 1-3. When you reach the last digit, they each reset to 0 while incre-
menting the value of the next digit over. In decimal, the last digit is 9, and
in binary, the last digit is 1. That’s why the decimal number after 9 is 10 and
the decimal number after 999 is 1000. Similarly, the binary number after 1
is 10 and the binary number after 111 is 1000. However, 10 in binary doesn’t
represent the same quantity as ten in decimal; rather, it represents two. And
1000 in binary doesn’t mean one thousand in decimal, but rather eight. You
can view an interactive binary and decimal odometer at https://inventwith
python .com /odometer.

Figure 1-3: A mechanical odometer in decimal (left) and in binary (right)

Representing binary numbers with computer hardware is simpler than
representing decimal numbers because there are only two states to repre-
sent. For example, Blu-ray discs and DVDs have smooth lands and indented
pits etched on their surface that will or won’t reflect the disc player’s laser,
respectively. Circuits can have electric current flowing through them or no
electric current. These various hardware standards all have ways of repre-
senting two different states. On the other hand, it’d be expensive to create
high-quality electronic components that are sensitive enough to detect the
difference between 10 different voltage levels with reliable accuracy. It’s
more economical to use simple components, and two binary states are as
simple as you can get.

These binary digits are called bits for short. A single bit can represent
two numbers, and 8 bits (or 1 byte) can represent 28, or 256, numbers, rang-
ing from 0 to 255 in decimal or 0 to 11111111 in binary. This is similar to
how a single decimal digit can represent 10 numbers (0 to 9), while an
eight-digit decimal number can represent 108 or 100,000,000 numbers (0 to
99,999,999). Files on your computer are measured in how many bytes they
take up:

• A kilobyte (KB) is 210 or 1,024 bytes.

• A megabyte (MB) is 220 or 1,048,576 bytes (or 1,024KB).

• A gigabyte (GB) is 230 or 1,073,741,824 bytes (or 1,024MB).

• A terabyte (TB) is 240 or 1,099,511,627,776 bytes (or 1,024GB).

https://inventwithpython.com/odometer
https://inventwithpython.com/odometer

Python Basics 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The text of Shakespeare’s Romeo and Juliet is about 135KB. A high-
resolution photo is about 2MB to 5MB. A movie can be anywhere from 1GB
to 50GB, depending on picture quality and movie length. However, hard
drive and flash memory manufacturers blatantly lie about what these terms
mean. For example, by calling a TB 1,000,000,000,000 bytes instead of
1,099,511,627,776 bytes, they can advertise a 9.09TB hard drive as 10TB.

The 1s and 0s of binary can represent not only any integer but also any
form of data. Instead of 0 to 255, a byte can represent the numbers –128 to
127 using a system called two’s complement. Fractional floating-point numbers
can be represented in binary using a system called IEEE-754.

Text can be stored on computers as binary numbers by assigning each
letter, punctuation mark, or symbol a unique number. A system for repre-
senting text as numbers is called an encoding. The most popular encoding
for text is UTF-8. In UTF-8, a capital letter A is represented by the decimal
number 65 (or 01000001 as an 8-bit binary number), a ? (question mark) is
represented by the number 63, and the numeral character 7 is represented
by the number 55. The string 'Hello' is stored as the numbers 72, 101, 108,
108, and 111. When stored in a computer, “Hello” appears as a stream of
bits: 0100000101100101011011000110110001101111.

Wow! Just like in those hacker movies!
Engineers need to invent a way to encode each form of data as num-

bers. Photos and images can be broken up into a two-dimensional grid of
colored squares called pixels. Each pixel can use three bytes to represent
how much red, green, and blue color it contains. (Chapter 21 covers image
data in more detail.) But for a short example, the numbers 255, 0, and 255
could represent a pixel with the maximum amount of red and blue but zero
green, resulting in a purple pixel.

Sound is made up of waves of compressed air that reach our ears, which
our brains interpret as audio sensation. We can graph the intensity and
frequency of these waves over time. The numbers on this graph can then
be converted to binary numbers and stored on a computer, which later con-
trol speakers to reproduce the sound. This is a simplification of how com-
puter audio works, but describes how numbers can represent Beethoven’s
Symphony No. 5.

The data for several images combines with audio data to store videos.
All forms of information can be encoded into binary numbers. There is, of
course, a great deal more detail to it than this, but this is how 1s and 0s rep-
resent the wide variety of data in our information age.

Summary
You can compute expressions with a calculator or enter string concatena-
tions with a word processor. You can even do string replication easily by
copying and pasting text. But expressions, and their component values—
operators, variables, and function calls—are the basic building blocks that
make up programs. Once you know how to handle these elements, you will
be able to instruct Python to operate on large amounts of data for you.

24 Chapter 1

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You’ll find it helpful to remember the different types of operators (+, -,
*, /, //, %, and ** for math operations, and + and * for string operations) and
the three data types (integers, floating-point numbers, and strings) intro-
duced in this chapter.

I introduced a few different functions as well. The print() and input()
functions handle simple text output (to the screen) and input (from the
keyboard). The len() function takes a string and evaluates to an int of the
number of characters in the string. The str(), int(), and float() functions
will evaluate to the string, integer, or floating-point number form of the
value they are passed. The round() function returns the rounded integer,
and the abs() function returns the absolute value of the arguments.

In the next chapter, you’ll learn how to tell Python to make intelligent
decisions about what code to run, what code to skip, and what code to
repeat based on the values it has. This is known as flow control, and it allows
you to write programs that make intelligent decisions.

Practice Questions
 1. Which of the following are operators, and which are values?

*
'hello'
-88.8
-
/
+
5

 2. Which of the following is a variable, and which is a string?

spam
'spam'

 3. Name three data types.

 4. What is an expression made up of? What do all expressions do?

 5. This chapter introduced assignment statements, like spam = 10. What is
the difference between an expression and a statement?

 6. What does the variable bacon contain after the following code runs?

bacon = 20
bacon + 1

 7. What should the following two expressions evaluate to?

'spam' + 'spamspam'
'spam' * 3

 8. Why is eggs a valid variable name while 100 is invalid?

Python Basics 25

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 9. What three functions can be used to get the integer, floating-point
number, or string version of a value?

 10. Why does this expression cause an error? How can you fix it?

'I eat ' + 99 + ' burritos.'

Extra credit: Search online for the Python documentation for the len()
function. It will be on a web page titled “Built-in Functions.” Skim the
list of other functions Python has, look up what the bin() and hex()
functions do, and experiment with them in the interactive shell.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

So, you know the basics of individual instruc-
tions and that a program is just a series of

such instructions. But programming’s real
strength isn’t just running one instruction after

another like a weekend errand list. Based on how
expressions evaluate, a program can decide to skip
instructions, repeat them, or choose one of several
instructions to run. In fact, you almost never want your
programs to start from the first line of code and simply
execute every line, straight to the end. Flow control state-
ments can decide which Python instructions to execute
under which conditions.

These flow control statements directly correspond to the symbols in a
flowchart, so I’ll provide flowchart versions of the code discussed in this

2
I F - E L S E A N D F L O W C O N T R O L

28 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

chapter. Figure 2-1 shows a flowchart for what to do if it’s raining. Follow the
path made by the arrows from Start to End.

No

Yes

Yes

No

NoGo outside.

Wait a while.

Start

End

Is raining? Have umbrella?

Is raining? Yes

Figure 2-1: A flowchart to tell you what to do if it is raining

In a flowchart, there is usually more than one way to go from the start
to the end. The same is true for lines of code in a computer program.
Flowcharts represent these branching points with diamonds, the other steps
with rectangles, and the starting and ending steps with rounded rectangles.

But before you learn about flow control statements, you first need to
learn how to represent those yes and no options, and you need to under-
stand how to write those branching points as Python code. To that end, let’s
explore Boolean values, comparison operators, and Boolean operators.

Boolean Values
While the integer, floating-point, and string data types have an unlimited
number of possible values, the Boolean data type has only two values: True
and False. (Boolean is capitalized because the data type is named after
mathematician George Boole.) When entered as Python code, the Boolean
values True and False lack the quotation marks you place around strings,
and they always start with a capital T or F, with the rest of the word in low-
ercase. Note that these Boolean values don’t have quotes, because they are

If-else and Flow Control 29

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

different from the string values 'True' and 'False'. Enter the following into
the interactive shell:

1 >>> spam = True
>>> spam
True
2 >>> true
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'true' is not defined
3 >>> False = 2 + 2
 File "<stdin>", line 1, in <module>
SyntaxError: can't assign to False

Some of these instructions are intentionally incorrect, and they’ll cause
error messages to appear. Like any other value, you can use Boolean values
in expressions and store them in variables 1. If you don’t use the proper
case 2 or if you try to use True and False for variable names 3, Python will
give you an error message.

Comparison Operators
Comparison operators, also called relational operators, compare two values and
evaluate down to a single Boolean value. Table 2-1 lists the comparison
operators.

Table 2-1: Comparison Operators

Operator Meaning Examples

== Equal to 5 == 5 evaluates to True .
4 == 2 + 2 evaluates to True .

!= Not equal to 1 != 2 evaluates to True .
'Hello' != 'Hello' evaluates to False .

< Less than 10 < 5 evaluates to False .
1.999 < 5 evaluates to True .

> Greater than 1 + 1 > 4 + 8 evaluates to False .
99 > 4 + 8 evaluates to True .

<= Less than or equal to 4 <= 5 evaluates to True .
5 <=5 evaluates to True .

>= Greater than or equal to 5 >= 4 evaluates to True .
5 >= 5 evaluates to True .

These operators evaluate to True or False depending on the values you
give them. Let’s try some operators now, starting with == and !=:

>>> 42 == 42
True
>>> 42 == 99
False

30 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> 2 != 3
True
>>> 2 != 2
False

As you might expect, == (equal to) evaluates to True when the values on
both sides are the same, and != (not equal to) evaluates to True when the
two values are different. The == and != operators can actually work with val-
ues of any data type:

>>> 'hello' == 'hello'
True
>>> 'hello' == 'Hello'
False
>>> 'dog' != 'cat'
True
>>> True == True
True
>>> True != False
True
>>> 42 == 42.0
True
1 >>> 42 == '42'
False

Note that an integer or floating-point value will never equal a string
value. The expression 42 == '42' 1 evaluates to False because Python consid-
ers the integer 42 to be different from the string '42'. However, Python does
consider the integer 42 to be the same as the float 42.0.

The <, >, <=, and >= operators, on the other hand, work properly only
with integer and floating-point values:

>>> 42 < 100
True
>>> 42 > 100
False
>>> 42 < 42
False
>>> eggs = 42
1 >>> eggs <= 42
True
>>> my_age = 29
2 >>> my_age >= 10
True

You’ll often use comparison operators to compare a variable’s value to
some other value, like in the eggs <= 42 1 and my_age >= 10 2 examples, or
to compare the values in two variables to each other. (After all, comparing
two literal values like 'dog' != 'cat' always has the same result.) You’ll see
more examples of this later when you learn about flow control statements.

If-else and Flow Control 31

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

T HE DIF F ER ENCE BE T W EEN T HE == A ND = OPER ATORS

You might have noticed that the == operator (equal to) has two equal signs,
while the = operator (assignment) has just one equal sign . It’s easy to confuse
these two operators with each other . Just remember these points:

• The == operator asks whether two values are the same as each other .

• The = operator puts the value on the right into the variable on the left .

To help remember which is which, notice that the == operator (equal to)
consists of two characters, just like the != operator (not equal to) consists of two
characters .

Boolean Operators
The three Boolean operators (and, or, and not) are used to compare Boolean
values. Like comparison operators, they evaluate these expressions down
to a Boolean value. Let’s explore these operators in detail, starting with the
and operator.

The and operator always takes two Boolean values (or expressions), so
it’s considered to be a binary Boolean operator. The and operator evaluates
an expression to True if both Boolean values are True; otherwise, it evaluates
to False. Enter some expressions using and into the interactive shell to see it
in action:

>>> True and True
True
>>> True and False
False

A truth table shows every possible result of a Boolean operator. Table 2-2
is the truth table for the and operator.

Table 2-2: The and Operator’s Truth Table

Expression Evaluates to . . .

True and True True

True and False False

False and True False

False and False False

Like the and operator, the or operator also always takes two Boolean
values (or expressions), and therefore is considered to be a binary Boolean

32 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

operator. However, the or operator evaluates an expression to True if either of
the two Boolean values is True. If both are False, it evaluates to False:

>>> False or True
True
>>> False or False
False

You can see every possible outcome of the or operator in its truth table,
shown in Table 2-3.

Table 2-3: The or Operator’s Truth Table

Expression Evaluates to . . .

True or True True

True or False True

False or True True

False or False False

Unlike and and or, the not operator operates on only one Boolean value
(or expression). This makes it a unary operator. The not operator simply
evaluates to the opposite Boolean value:

>>> not True
False
1 >>> not not not not True
True

Much like using double negatives in speech and writing, you can use
multiple not operators 1, though there’s never not no reason to do this in
real programs. Table 2-4 shows the truth table for not.

Table 2-4: The not Operator’s Truth Table

Expression Evaluates to . . .

not True False

not False True

Mixing Boolean and Comparison Operators
Since the comparison operators evaluate to Boolean values, you can use
them in expressions with the Boolean operators.

Recall that the and, or, and not operators are called Boolean operators
because they always operate on the Boolean values True and False. While
expressions like 4 < 5 aren’t Boolean values, they are expressions that

If-else and Flow Control 33

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

evaluate down to Boolean values. Try entering some Boolean expressions
that use comparison operators into the interactive shell:

>>> (4 < 5) and (5 < 6)
True
>>> (4 < 5) and (9 < 6)
False
>>> (1 == 2) or (2 == 2)
True

The computer will evaluate the left expression first, and then it will evalu-
ate the right expression. When it knows the Boolean value for each, it will
evaluate the whole expression down to one Boolean value. You can think of
the computer’s evaluation process for (4 < 5) and (5 < 6) as the following:

(4 < 5) and (5 < 6)

True and (5 < 6)

True and True

True

You can also use multiple Boolean operators in an expression, along
with the comparison operators:

>>> spam = 4
>>> 2 + 2 == spam and not 2 + 2 == (spam + 1) and 2 * 2 == 2 + 2
True

The Boolean operators have an order of operations just like the math
operators do. After any math and comparison operators evaluate, Python eval-
uates the not operators first, then the and operators, and then the or operators.

Components of Flow Control
Flow control statements often start with a part called the condition and are
always followed by a block of code called the clause. Before you learn about
Python’s specific flow control statements, I’ll cover what a condition and a
block are.

Conditions
The Boolean expressions you’ve seen so far could all be considered con-
ditions, which are the same thing as expressions; condition is just a more
specific name in the context of flow control statements. A condition always
evaluates to a Boolean value, True or False. A flow control statement decides
what to do based on whether its condition is True or False, and almost every
flow control statement uses a condition. You’ll frequently write code that

34 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

could be described in English as follows: “If this condition is true, do this
thing, or else do this other thing.” Other code you’ll write is the same as
saying, “Keep repeating these instructions as long as this condition contin-
ues to be true.”

Blocks of Code
Lines of Python code can be grouped together in blocks. You can tell when a
block begins and ends from the indentation of the lines of code. There are
four rules for blocks:

• A new block begins when the indentation increases.

• Blocks can contain other blocks.

• A block ends when the indentation decreases to zero or to a containing
block’s indentation.

• Python expects a new block immediately after any statement that ends
with a colon.

Blocks are easier to understand by looking at some indented code, so
let’s find the blocks in part of a small program, shown here:

username = 'Mary'
password = 'swordfish'
if username == 'Mary':
 1 print('Hello, Mary')
 if password == 'swordfish':
 2 print('Access granted.')
 else:
 3 print('Wrong password.')

The first block of code 1 starts at the line print('Hello, Mary') and con-
tains all the lines after it. Inside this block is another block 2, which has
only a single line in it: print('Access granted.'). The third block 3 is also
one line long: print('Wrong password.').

Program Execution
In the previous chapter’s hello.py program, Python started executing instruc-
tions at the top of the program going down, one after another. Program execu-
tion (or simply, execution) is a term for the current instruction being executed.
If you put your finger on each line on your screen as the line is executed, you
can think of your finger as the program execution.

Not all programs execute by simply going straight down, however. If you
use your finger to trace through a program with flow control statements,
you’ll likely find your finger jumping around to different places in the
source code based on conditions.

If-else and Flow Control 35

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Flow Control Statements
Now let’s explore the most important piece of flow control: the statements
themselves. The statements represent the diamonds you saw in the flowchart
in Figure 2-1, and they are the actual decisions your programs will make.

if
The most common type of flow control statement is the if statement. An if
statement’s clause (that is, the block following the if statement) will execute
if the statement’s condition is True. The clause is skipped if the condition
is False.

In plain English, an if statement could be read as, “If this condition is
true, execute the code in the clause.” In Python, an if statement consists of
the following:

• The if keyword

• A condition (that is, an expression that evaluates to True or False)

• A colon

• Starting on the next line, an indented block of code (called the if
clause or if block)

For example, let’s say you have some code that checks whether some-
one’s name is Alice:

name = 'Alice'
if name == 'Alice':
 print('Hi, Alice.')

All flow control statements end with a colon and are followed by a new
block of code (the clause). This if statement’s clause is the block with
print('Hi, Alice.'). Figure 2-2 shows what the flowchart of this code would
look like.

36 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

print('Hi, Alice.')

End

name == 'Alice' True

False

Start

name == 'Alice'

Figure 2-2: The flowchart for an if statement

Try changing the name variable to another string besides 'Alice', and
run the program again. Notice that “Hi, Alice.” doesn’t appear on the
screen, because that code was skipped over.

else
An if clause can optionally be followed by an else statement. The else
clause is executed only when the if statement’s condition is False. In plain
English, an else statement could be read as, “If this condition is true, exe-
cute this code. Or else, execute that code.” An else statement doesn’t have a
condition, and in code, an else statement always consists of the following:

• The else keyword

• A colon

• Starting on the next line, an indented block of code (called the else
clause or else block)

Returning to the Alice example, let’s look at some code that uses an
else statement to offer a different greeting if the person’s name isn’t Alice:

name = 'Alice'
if name == 'Alice':

If-else and Flow Control 37

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 print('Hi, Alice.')
else:
 print('Hello, stranger.')

Figure 2-3 shows what the flowchart of this code would look like.

print('Hi, Alice.')

End

name == 'Alice'

print('Hello, stranger.')

True

False

name == 'Alice'

Start

Figure 2-3: The flowchart for an else statement

Try changing the name variable to a string besides 'Alice', and rerun the
program. Instead of 'Hi, Alice.', you will see 'Hello, stranger.' on the screen.

elif
You would use if or else when you want only one of the clauses to execute.
But you may have a case where you want one of many possible clauses to
execute. The elif statement is an “else if” statement that always follows an
if or another elif statement. It provides another condition that is checked
only if all of the previous conditions were False. In code, an elif statement
always consists of the following:

• The elif keyword

• A condition (that is, an expression that evaluates to True or False)

• A colon

38 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

• Starting on the next line, an indented block of code (called the elif
clause or elif block)

Let’s add an elif to the name checker to see this statement in action:

name = 'Alice'
age = 33
if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')

This time, the program checks the person’s age and tells them some-
thing different if they’re younger than 12. You can see the corresponding
flowchart in Figure 2-4.

print('Hi, Alice.')

End

name == 'Alice'

print('You are not Alice, kiddo.')age < 12

True

False

True

False

age = 15

Start

name == 'Alice'

Figure 2-4: The flowchart for an elif statement

If-else and Flow Control 39

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The elif clause executes if age < 12 is True and name == 'Alice' is False.
However, if both of the conditions are False, Python skips both of the
clauses. There is no guarantee that at least one of the clauses will be exe-
cuted; in a chain of elif statements, only one or none of the clauses will be
executed. Once one of the statements’ conditions is found to be True, the
rest of the elif clauses are automatically skipped. For example, open a new
file editor window and enter the following code, saving it as vampire.py:

name = 'Carol'
age = 3000
if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')
elif age > 2000:
 print('Unlike you, Alice is not an undead, immortal vampire.')
elif age > 100:
 print('You are not Alice, grannie.')

Here, I’ve added two more elif statements to make the name checker
greet a person with different answers based on age. Figure 2-5 shows the
flowchart for this.

40 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

print('Hi, Alice.')

End

name == 'Alice'

print('You are not Alice, kiddo.')age < 12

True

False

True

False

age > 100

True

False

print('You are not Alice, grannie.')

age > 2000

True

False

Start

print('Unlike you, Alice is not
an undead, immortal vampire.')

Figure 2-5: The flowchart for multiple elif statements in the vampire .py program

The order of the elif statements does matter, however. Let’s rear-
range them to introduce a bug. Remember that the rest of the elif
clauses are automatically skipped once a True condition has been found,
so if you swap around some of the clauses in vampire.py, you will run into

If-else and Flow Control 41

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

a problem. Change the code to look like the following, and save it as
vampire2.py:

name = 'Carol'
age = 3000
if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')
1 elif age > 100:
 print('You are not Alice, grannie.')
elif age > 2000:
 print('Unlike you, Alice is not an undead, immortal vampire.')

Say the age variable contains the value 3000 before this code is executed.
You might expect the code to print the string 'Unlike you, Alice is not
an undead, immortal vampire.' However, because the age > 100 condition is
True (after all, 3,000 is greater than 100) 1, the string 'You are not Alice,
grannie.' is printed, and the rest of the elif statements are automatically
skipped. Remember that at most only one of the clauses will be executed,
and for elif statements, the order matters!

Figure 2-6 shows the flowchart for the previous code. Notice how the
diamonds for age > 100 and age > 2000 are swapped.

42 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

print('Hi, Alice.')

Start

End

print('You are not Alice, kiddo.')

True

False

True

False

print('Unlike you, Alice is not
an undead, immortal vampire.')

True

False

print('You are not Alice, grannie.')

False

X

name == 'Alice'

age < 12

age > 2000

age > 100

True

Figure 2-6: The flowchart for the vampire2 .py program. The X path will
logically never happen, because if age were greater than 2000, it would have
already been greater than 100.

Optionally, you can have an else statement after the last elif statement.
In that case, it is guaranteed that at least one (and only one) of the clauses
will be executed. If the conditions in every if and elif statement are False,

If-else and Flow Control 43

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

then the else clause is executed. For example, let’s re-create the Alice pro-
gram to use if, elif, and else clauses:

name = 'Carol'
age = 3000
if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')
else:
 print('You are neither Alice nor a little kid.')

Figure 2-7 shows the flowchart for this new code, which we’ll save as
littleKid.py.

print('Hi, Alice.')

Start

End

name == 'Alice'

print('You are not Alice, kiddo.')age < 12

True

False

True

False

print('You are neither Alice
nor a little kid.')

Figure 2-7: The flowchart for the littleKid .py program

In plain English, this type of flow control structure would be, “If the
first condition is true, do this. Else, if the second condition is true, do that.

44 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Otherwise, do something else.” When you use if, elif, and else statements
together, remember these rules about how to order them to avoid bugs like
the one in Figure 2-6. First, there is always exactly one if statement; any
elif statements you need should follow the if statement. Second, if you want
to be sure that at least one clause is executed, close the structure with an
else statement.

As you can see, flow control statements can make your programs more
sophisticated but also more complicated. Don’t despair; you will become
more comfortable with this complexity as you practice writing code. And
all true programmers have at some point spent an hour to find out their
program doesn’t work because they accidentally typed < instead of <=. These
little mistakes happen to everyone.

A Short Program: Opposite Day
With your knowledge of Boolean values and if-else statements, enter the
following code into a new file and save it as oppositeday.py:

today_is_opposite_day = True

Set say_it_is_opposite_day based on today_is_opposite_day:
1 if today_is_opposite_day == True:
 say_it_is_opposite_day = True
else:
 say_it_is_opposite_day = False

If it is opposite day, toggle say_it_is_opposite_day:
if today_is_opposite_day == True:
 2 say_it_is_opposite_day = not say_it_is_opposite_day

Say what day it is:
if say_it_is_opposite_day == True:
 print('Today is Opposite Day.')
else:
 print('Today is not Opposite Day.')

When you run this program, it outputs 'Today is not Opposite Day.'
There are two variables in this code. At the start of the program, the today
_is_opposite_day variable is set to True. The next if statement checks if this
variable is True (it is) 1 and sets the say_it_is_opposite_day variable to True;
otherwise, it would set the variable to False. The second if statement checks
if today_is_opposite_day is set to True (it still is), and if so, the code toggles (that
is, sets to the opposite Boolean value) the variable 2. Finally, the third if
statement checks if say_it_is_opposite_day is True (it isn’t), and prints 'Today is
Opposite Day.'; otherwise, it would have printed 'Today is not Opposite Day.'

If you change the first line of the program to today_is_opposite_day =
False and run the program again, it still prints 'Today is not Opposite Day.'
If we look through the program, we can figure out that the first if-else
statements set say_it_is_opposite_day to False. The second if statement’s

If-else and Flow Control 45

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

condition is False, so it skips its block of code. Finally, the third if state-
ment’s condition is again False and prints 'Today is not Opposite Day.'

So, if today is not Opposite Day, the program correctly prints 'Today
is not Opposite Day.' And if today is Opposite Day, the program (also cor-
rectly) prints 'Today is not Opposite Day.' as one would say on Opposite Day.
Logically, this program will never print 'Today is Opposite Day.' no matter
if the variable is set to True or False. Really, you could replace this entire
program with just print('Today is not Opposite Day.') and it would be the
same program. This is why programmers should not be paid per line of
code written.

A Short Program: Dishonest Capacity Calculator
In Chapter 1, I showed how hard drive and flash memory manufacturers lie
about the advertised capacities of their products by using a different defini-
tion of TB and GB. Let’s write a program to calculate how misleading their
advertised capacities are. Enter the following code into a new file and save it
as dishonestcapacity.py:

print('Enter TB or GB for the advertised unit:')
unit = input('>')

Calculate the amount that the advertised capacity lies:
if unit == 'TB' or unit == 'tb':
 discrepancy = 1000000000000 / 1099511627776
elif unit == 'GB' or unit == 'gb':
 discrepancy = 1000000000 / 1073741824

print('Enter the advertised capacity:')
advertised_capacity = input('>')
advertised_capacity = float(advertised_capacity)

Calculate the real capacity, round it to the nearest hundredths,
and convert it to a string so it can be concatenated:
real_capacity = str(round(advertised_capacity * discrepancy, 2))

print('The actual capacity is ' + real_capacity + ' ' + unit)

This program asks the user to enter what unit the hard drive advertises
itself as having, either TB or GB:

Calculate the amount that the advertised capacity lies:
if unit == 'TB' or unit == 'tb':
 discrepancy = 1000000000000 / 1099511627776
elif unit == 'GB' or unit == 'gb':
 discrepancy = 1000000000 / 1073741824

TBs are larger than GBs, and the larger the unit, the wider the discrep-
ancy between advertised and real capacities. The if and elif statements use
a Boolean or operator so that the program works no matter whether the

46 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

user enters the unit in lowercase or uppercase. If the user enters something
else for the unit, then neither the if clause nor the elif clause runs, and the
discrepancy variable is never assigned. Later, when the program tries to use
the discrepancy variable, this will cause an error. We’ll cover that case later.

Next, the user enters the advertised size in the given units:

Calculate the real capacity, round it to the nearest hundredths,
and convert it to a string so it can be concatenated:
real_capacity = str(round(advertised_capacity * discrepancy, 2))

We do a lot in this single line. Let’s use the example of the user entering
10TB for the advertised size and unit. If we look at the innermost part of the
line of code, we see that advertised_capacity is multiplied by discrepancy. This
is the real capacity, but it may have several digits, as in 9.094947017729282. So
this number is passed as the first argument to round() with 2 as the second
argument. This function call to round() returns, in our example, 9.09. This
is a floating-point value, but we want to get a string form of it to concatenate
to a message string in the next line of code. To do this, we pass it to the str()
function. Python evaluates this one line as the following:

real_capacity = str(round(advertised_capacity * discrepancy, 2))

real_capacity = str(round(10 * 0.9094947017729282, 2))

real_capacity = str(round(9.094947017729282, 2))

real_capacity = str(9.09)

real_capacity = '9.09'

If the user failed to enter TB, tb, GB, or gb as the unit, the conditions for
both the if and elif statements would be False and the discrepancy variable
would never be created. But the user wouldn’t know anything was wrong
until Python tried to use the nonexistent variable. Python would raise a
NameError: name 'discrepancy' is not defined error and point to the line where
real_capacity is assigned.

The true origin of this bug, however, is the fact that the program doesn’t
handle the case where the user enters an invalid unit. There are many ways
to handle this error, but the simplest would be to have an else clause that dis-
plays a message like “You must enter TB or GB” and then calls the sys.exit()
function to quit the program. (You’ll learn about this function in the next
chapter.)

The final line in the program displays the actual hard drive capacity by
concatenating a message string to the real_capacity and unit strings:

print('The actual capacity is ' + real_capacity + ' ' + unit)

As it turns out, hard drives and flash memory manufacturers lie even
more: I have a 256GB SD card in my laptop that I use for backups. In real

If-else and Flow Control 47

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

GBs, this should be 274,877,906,944 bytes. In fake GBs, it should be
256,000,000,000 bytes. But my computer reports that the actual capacity is
255,802,212,352 bytes. It’s funny how the actual size is always inaccurate in
a way that makes it less than the advertised size, and never more.

Summary
By using expressions that evaluate to True or False (also called conditions),
you can write programs that make decisions on what code to execute and
what code to skip. These conditions are expressions that compare two val-
ues with the ==, !=, <, >, <=, and >= comparison operators to evaluate to a
Boolean value. You can also use the and, or, and not Boolean operators to
connect expressions into more complicated expressions. Python uses inden-
tation to create blocks of code. In this chapter, we used blocks as part of if,
elif, and else statements, but as you’ll see, several other Python statements
use blocks as well. These flow control statements will let you write more
intelligent programs.

Practice Questions
 1. What are the two values of the Boolean data type? How do you write

them?

 2. What are the three Boolean operators?

 3. Write out the truth tables of each Boolean operator (that is, every pos-
sible combination of Boolean values for the operator and what they
evaluate to).

 4. What do the following expressions evaluate to?

(5 > 4) and (3 == 5)
not (5 > 4)
(5 > 4) or (3 == 5)
not ((5 > 4) or (3 == 5))
(True and True) and (True == False)
(not False) or (not True)

 5. What are the six comparison operators?

 6. What is the difference between the equal to operator and the assign-
ment operator?

 7. Explain what a condition is and where you would use one.

 8. Identify the three blocks in this code:

spam = 0
if spam == 10:
 print('eggs')
 if spam > 5:
 print('bacon')

48 Chapter 2

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 else:
 print('ham')
 print('spam')
print('spam')

 9. Write code that prints Hello if 1 is stored in spam, prints Howdy if 2 is
stored in spam, and prints Greetings! if anything else is stored in spam.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In the previous chapter, you learned how to
make programs run certain blocks of code

while skipping others. But there’s more to flow
control than this. In this chapter, you’ll learn

how to repeatedly execute blocks of code using loops.
Python’s two kinds of loops, while and for, open up the
full power of automation, because they can run lines of
code millions of times per second. You’ll also learn how
to import code libraries, called modules, to make even
more functions available to your programs.

while Loop Statements
You can make a block of code execute over and over again using a while
statement. The code in a while clause will be executed as long as the

3
L O O P S

50 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

statement’s condition is True. In code, a while statement always consists of
the following:

• The while keyword

• A condition (that is, an expression that evaluates to True or False)

• A colon

• Starting on the next line, an indented block of code (called the while
clause or while block)

You can see that a while statement looks similar to an if statement. The
difference is in how they behave. At the end of an if clause, the program
execution continues after the if statement. But at the end of a while clause,
the program execution jumps back to the start of the while statement. The
while clause is often called the while loop or just the loop.

Let’s look at an if statement and a while loop that use the same condi-
tion and take the same actions based on that condition. Here is the code
with an if statement:

spam = 0
if spam < 5:
 print('Hello, world.')
 spam = spam + 1

Here is the code with a while statement:

spam = 0
while spam < 5:
 print('Hello, world.')
 spam = spam + 1

These statements are similar; both if and while check the value of spam,
and if it’s less than 5, they print a message. But when you run these two code
snippets, something very different happens for each one. For the if state-
ment, the output is simply "Hello, world." But for the while statement, it’s
"Hello, world." repeated five times! Take a look at the flowcharts for these
two pieces of code, Figures 3-1 and 3-2, to see why this happens.

Loops 51

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

print('Hello, world.')

Start

End

spam < 5

spam = spam + 1

True

False

Figure 3-1: The flowchart for the if statement code

The code with the if statement checks the condition, and it prints "Hello,
world." only once if that condition is true. The code with the while loop, on the
other hand, will print it five times. The loop stops after five prints because the
integer in spam increases by one at the end of each loop iteration, which means
that the loop will execute five times before spam < 5 is False.

52 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

print('Hello, world.')

Start

End

spam < 5

spam = spam + 1

True

False

Figure 3-2: The flowchart for the while statement code

In the while loop, the condition is always checked at the start of each
iteration (that is, each time the loop is executed). If the condition is True,
then the clause is executed, and afterward, the condition is checked again.
The first time the condition is found to be False, the while clause is skipped.

An Annoying while Loop
Here’s a small example program that will keep asking you to type, literally,
your name. Select FileNew to open a new file editor window, enter the
following code, and save the file as yourName.py:

name = ''
while name != 'your name':
 print('Please type your name.')
 name = input('>')
print('Thank you!')

First, the program sets the name variable to an empty string. This is so
that the name != 'your name' condition will evaluate to True and the program
execution will enter the while loop’s clause.

The code inside this clause asks the user to type their name, which is
assigned to the name variable. Since this is the last line of the block, the exe-
cution moves back to the start of the while loop and reevaluates the condi-
tion. If the value in name is not equal to the string 'your name', the condition
is True, and the execution enters the while clause again.

Loops 53

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

But once the user literally enters your name, the condition of the while
loop will be 'your name' != 'your name', which evaluates to False. Now, instead
of the program execution reentering the while loop’s clause, Python skips
past it and continues running the rest of the program. Figure 3-3 shows the
flowchart for the yourName.py program.

print('Please type your name.')

Start

End

name != 'your name'

name = input()

True

False

print('Thank you!')

Figure 3-3: The flowchart for the yourName .py program

Now let’s see yourName.py in action. Press F5 to run it, and enter something
other than your name a few times before you give the program what it wants:

Please type your name.
>Al
Please type your name.
>Albert
Please type your name.
>%#@#%*(^&!!!
Please type your name.
>your name
Thank you!

If you never enter your name, then the while loop’s condition will never
be False, and the program will just keep asking you the question forever.
Here, the input() call lets the user enter the right string to make the pro-
gram move on. In other programs, the condition might never actually

54 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

change, and that can be a problem. Let’s look at how you can break out of a
while loop.

break Statements
There is a shortcut to getting the program execution to break out of a while
loop’s clause early. If the execution reaches a break statement, it immediately
exits the while loop’s clause. In code, a break statement simply contains the
break keyword.

Here’s a program that does the same thing as the previous yourName.py
program but uses a break statement to escape the loop. Enter the following
code, and save the file as yourName2.py:

while True:
 print('Please type your name.')
 name = input('>')
 if name == 'your name':
 break
print('Thank you!')

The first line creates an infinite loop; it is a while loop whose condition
is always True. (The expression True, after all, always evaluates to the value
True.) After the program execution enters this loop, it will exit the loop only
when a break statement is executed. (An infinite loop that never exits is a
common programming bug.)

Just like before, this program asks the user to enter your name. Now,
however, while the execution is still inside the while loop, an if statement
checks whether name is equal to 'your name'. If this condition is True, the break
statement is run, and the execution moves out of the loop to print('Thank
you!'). Otherwise, the if statement clause that contains the break statement
is skipped, which puts the execution at the end of the while loop. At this
point, the program execution jumps back to the start of the while statement
to recheck the condition. Since this condition is merely the True Boolean
value, the execution enters the loop to ask the user to enter your name again.
See Figure 3-4 for this program’s flowchart.

Loops 55

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

print('Please type your name.')

Start

End

True

name = input()

True

print('Thank you!')

name == 'your name' breakTrue

False

XFalse

Figure 3-4: The flowchart for the yourName2 .py program with an infinite loop. Note that the X path
will logically never happen, because the loop condition is always True.

Run yourName2.py, and enter the same text you entered for yourName.py.
The rewritten program should respond in the same way as the original.

continue Statements
Like break statements, we use continue statements inside loops. When the
program execution reaches a continue statement, the program execution
immediately jumps back to the start of the loop and reevaluates the loop’s
condition. (This is also what happens when the execution reaches the end
of the loop.)

56 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

T R A PPED IN A N INF INIT E LOOP?

If you ever run a program that has a bug causing it to get stuck in an infinite
loop, press CTRL-C . This will send a KeyboardInterrupt error to your program
and cause it to stop immediately . You can also click the Stop button at the top
of the Mu window . Try stopping a program by creating a simple infinite loop in
the file editor, and save the program as infiniteLoop.py . If you are running the
program from Mu, you can also click the Stop button:

while True:
 print('Hello, world!')

When you run this program, it will print Hello, world! to the screen forever
because the while statement’s condition is always True . CTRL-C is also handy if
you want to simply terminate your program immediately, even if it’s not stuck in
an infinite loop .

Let’s use continue to write a program that asks for a name and password.
Enter the following code into a new file editor window and save the pro-
gram as swordfish.py:

while True:
 print('Who are you?')
 name = input('>')
 1 if name != 'Joe':
 2 continue
 print('Hello, Joe. What is the password? (It is a fish.)')
 3 password = input('>')
 if password == 'swordfish':
 4 break
5 print('Access granted.')

If the user enters any name besides Joe 1, the continue statement 2
causes the program execution to jump back to the start of the loop. When
the program reevaluates the condition, the execution will always enter the
loop, because the condition is simply the value True. Once the user makes
it past that if statement, they are asked for a password 3. If the password
entered is swordfish, the break statement 4 is run, and the execution jumps
out of the while loop to print Access granted. 5. Otherwise, the execution
continues to the end of the while loop, where it then jumps back to the start
of the loop. See Figure 3-5 for this program’s flowchart.

Loops 57

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

print('Who are you?')

Start

End

True

name = input()

True

print('Access granted.')

name != 'Joe'continue True

X

print('Hello, Joe. What is the password? (It is a fish.)')

password = input()

password == 'swordfish'

break True

False

False

False

Figure 3-5: The flowchart for the swordfish .py program. The X path will logically never happen, because
the loop condition is always True.

58 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Run this program and give it some input. Until you claim to be Joe, the
program shouldn’t ask for a password, and once you enter the correct pass-
word, it should exit:

Who are you?
>I'm fine, thanks. Who are you?
Who are you?
>Joe
Hello, Joe. What is the password? (It is a fish.)
>Mary
Who are you?
>Joe
Hello, Joe. What is the password? (It is a fish.)
>swordfish
Access granted.

“ T RU T H Y ” A ND “FA L SE Y ” VA LUES A ND

T HE BOOL() F UNC T ION

Conditions will consider some values in other data types equivalent to True or
False . When used in conditions, 0, 0.0, and '' (the empty string) are consid-
ered False, while all other values are considered True . For example, look at the
following program:

name = ''
1 while not name:
 print('Enter your name:')
 name = input('>')
print('How many guests will you have?')
numOfGuests = int(input('>'))
2 if numOfGuests:
 3 print('Be sure to have enough room for all your guests.')
print('Done')

If the user enters a blank string for name, the while statement’s condition
will be True 1, and the program will continue to ask for a name . If the value for
numOfGuests is not 0 2, the condition is considered to be True, and the program
will print a reminder for the user 3 .

You could have entered not name != '' instead of not name, and numOf-
Guests != 0 instead of numOfGuests, but using the truthy and falsey values can
make your code easier to read .

If you want to know if a value is truthy or falsey, pass it to the bool() func-
tion as in this interactive shell example:

>>> bool(0)
False

(continued)

Loops 59

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> bool(42)
True
>>> bool('Hello')
True
>>> bool('')
False

for Loops and the range() Function
The while loop keeps looping while its condition is True (which is the rea-
son for its name), but what if you want to execute a block of code only a
certain number of times? You can do this with a for loop statement and the
range() function.

In code, a for statement looks something like for i in range(5): and
includes the following:

• The for keyword

• A variable name

• The in keyword

• A call to the range() function with up to three integers passed to it

• A colon

• Starting on the next line, an indented block of code (called the for
clause or for block)

Let’s create a new program called fiveTimes.py to help you see a for loop
in action:

print('Hello!')
for i in range(5):
 print('On this iteration, i is set to ' + str(i))
print('Goodbye!')

The code in the for loop’s clause is run five times. The first time it is run,
the variable i is set to 0. The print() call in the clause will print On this itera-
tion, i is set to 0. After Python finishes an iteration through all the code
inside the for loop’s clause, the execution goes back to the top of the loop,
and the for statement increments i by one. This is why range(5) results in five
iterations through the clause, with i being set to 0, then 1, then 2, then 3, and
then 4. The variable i will go up to, but will not include, the integer passed to
range(). Figure 3-6 shows the flowchart for the fiveTimes.py program.

60 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

print('On this iteration, i is set to ' + str(i))

Start

End

for i in range (5)

Looping

Done looping

print('My name is')

Figure 3-6: The flowchart for the fiveTimes .py program

Here is the complete output of the program:

Hello!
On this iteration, i is set to 0
On this iteration, i is set to 1
On this iteration, i is set to 2
On this iteration, i is set to 3
On this iteration, i is set to 4

Goodbye!

You can use break and continue statements inside for loops as well. The
continue statement will continue to the next value of the for loop’s counter,
as if the program execution had reached the end of the loop and returned
to the start. In fact, you can use continue and break statements only inside
while and for loops. If you try to use these statements elsewhere, Python will
give you an error.

As another for loop example, consider this story about the mathemati-
cian Carl Friedrich Gauss. When Gauss was a boy, a teacher wanted to give
the class some busywork. The teacher told them to add up all the numbers
from 0 to 100. Young Gauss came up with a clever trick to figure out the
answer in a few seconds, but you can write a Python program with a for
loop to do this calculation for you:

total = 0
for num in range(101):
 total = total + num
print(total)

Loops 61

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The result should be 5,050. When the program first starts, the total
variable is set to 0. The for loop then executes total = total + num 101 times,
each time with an incremented i variable. By the time the loop has finished
all of its 101 iterations, every integer from 0 to 100 will have been added to
total. At this point, total is printed to the screen. Even on the slowest com-
puters, this program takes less than a second to complete.

(Young Gauss figured out a way to solve the problem in seconds. There
are 50 pairs of numbers that add up to 101: 1 + 100, 2 + 99, 3 + 98, and so on,
until 50 + 51. Since 50 × 101 is 5,050, the sum of all the numbers from 0 to
100 is 5,050. Clever kid!)

W H Y “UP TO BU T NOT INCLUDING”?

It may seem strange that the range() function in for loops has you specify
the number that the loop goes up to, minus one . In programming, ranges are
often specified in a “closed, open” format that includes the starting number
but excludes the ending number . For example, the range 0, 10 would include
the numbers 0 to 9 instead of 0 to 10 . There are many advantages of using
“closed, open” instead of “closed, closed” that lead to fewer bugs . Calculating
the size of the range is just a matter of subtracting the starting number from
the ending number . The 0, 10 range (which has the numbers 0 to 9 instead of
0 to 10) has 10 - 0 or 10 numbers . With a “closed, closed” range of 0, 9, you
have to calculate the length as 9 - 0 + 1 . (And it’s easy to mistakenly do off-by-
one errors like 9 - 0 - 1 .) The start of the next range 10, 20 is just a matter of
using the previous ending number as the new starting number .

For programs that deal with timestamps, the “closed, open” range of
00:00:00, 24:00:00 .0 is much easier to work with than the “closed, closed”
range of 00:00:00, 23:59:59 .999 . “Closed, open” ranges may seem odd at
first, but they’ll become second nature as you get more experience writing code .

An Equivalent while Loop
You can actually use a while loop to do the same thing as a for loop; for
loops are just more concise. Let’s rewrite fiveTimes.py to use a while loop
equivalent of a for loop:

print('Hello!')
i = 0
while i < 5:
 print('On this iteration, i is set to ' + str(i))
 i = i + 1
print('Goodbye!')

If you run this program, the output should look the same as the five
Times.py program, which uses a for loop. Remember that for loops are

62 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

useful for looping a specific number of times, and while loops are useful for
looping as long as a particular condition is true.

Arguments to range()
Some functions can be called with multiple arguments separated by a comma,
and range() is one of them. This lets you change the integer passed to range()
to follow any sequence of integers, including starting at a number other
than zero:

for i in range(12, 16):
 print(i)

The first argument will be where the for loop’s variable starts, and the
second argument will be up to, but not including, the number to stop at:

12
13
14
15

The range() function can also be called with three arguments. The
first two arguments will be the start and stop values, and the third will be
the step argument. The step is the amount by which the variable is increased
after each iteration:

for i in range(0, 10, 2):
 print(i)

So, calling range(0, 10, 2) will count from zero to eight by intervals of two:

0
2
4
6
8

The range() function is flexible in the sequence of numbers it produces
for for loops. For example (I never apologize for my puns), you can even use
a negative number for the step argument to make the for loop count down
instead of up:

for i in range(5, -1, -1):
 print(i)

This for loop would have the following output:

5
4
3
2

Loops 63

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

1
0

Running a for loop to print i with range(5, -1, -1) should print the
numbers from five down to zero.

Importing Modules
All Python programs can call a basic set of functions called built-in functions,
including the print(), input(), and len() functions you’ve seen before.
Python also comes with a set of modules called the standard library. Each
module is a Python program that contains a related group of functions
that can be embedded in your programs. For example, the math module has
mathematics-related functions, the random module has random number–
related functions, and so on.

Before you can use the functions in a module, you must import the
module with an import statement. In code, an import statement consists of
the following:

• The import keyword

• The name of the module

• Optionally, more module names, as long as they are separated by commas

Once you import a module, you can use all the cool functions of that
module. Let’s give it a try with the random module, which will give us access
to the random.randint() function.

Enter this code into the file editor, and save it as printRandom.py:

import random
for i in range(5):
 print(random.randint(1, 10))

When you run this program, the output will look something like this:

4
1
8
4
1

The random.randint() function call evaluates to a random integer value
between the two integers that you pass it. Because randint() is in the random
module, you must first enter random. in front of the function name to tell
Python to look for this function inside the random module.

64 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

DON’T OV ERW R IT E MODUL E N A MES

When you save your Python scripts, take care not to give them a name that is
used by one of Python’s modules, such as random.py, sys.py, os.py, or math.
py . If you accidentally name one of your programs, say, random.py, and use
an import random statement in another program, your program will import your
random.py file instead of Python’s random module . This can lead to errors such as
AttributeError: module 'random' has no attribute 'randint', since your ran-
dom.py file doesn’t have the functions that the real random module has . Don’t use
the names of any built-in Python functions for your file or variable names, either .
Some common Python names are all, any, date, email, file, format, hash, id,
input, list, min, max, object, open, random, set, str, sum, test, and type .

Here’s an example of an import statement that imports four different
modules:

import random, sys, os, math

Now we can use any of the functions in these four modules. You’ll learn
more about them later in the book.

An alternative form of the import statement is composed of the from
keyword, followed by the module name, the import keyword, and a star (*);
for example, from random import *. With this form of import statement, calls
to functions in random won’t need the random. prefix. However, using the full
name makes for more readable code, so it is better to use the import random
form of the statement.

Ending a Program Early with sys.exit()
The last flow control concept to cover is how to terminate, or exit, the pro-
gram. Programs always terminate if the program execution reaches the
bottom of the instructions. However, you can cause the program to termi-
nate before the last instruction by calling the sys.exit() function. Since this
function is in the sys module, you have to import sys before your program
can use it.

Open a file editor window and enter the following code, saving it as
exitExample.py:

import sys

while True:
 print('Type exit to exit.')
 response = input('>')
 if response == 'exit':

Loops 65

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 sys.exit()
 print('You typed ' + response + '.')

Run this program in your code editor. This program has an infinite
loop with no break statement inside. The only way this program will end is if
the execution reaches the sys.exit() call. When response is equal to 'exit',
the line containing the sys.exit() call is executed. Since the response vari-
able is set by the input() function, the user must enter exit in order to stop
the program.

A Short Program: Guess the Number
The examples I’ve shown you so far are useful for introducing basic con-
cepts, but now you’ll see how everything you’ve learned comes together in
a more complete program. In this section, I’ll show you a simple guess the
number game. When you run this program, the output will look something
like this:

I am thinking of a number between 1 and 20.
Take a guess.
>10
Your guess is too low.
Take a guess.
>15
Your guess is too low.
Take a guess.
>17
Your guess is too high.
Take a guess.
>16
Good job! You got it in 4 guesses!

Enter the following source code into the file editor, and save the file as
guessTheNumber.py:

This is a guess the number game.
import random
secret_number = random.randint(1, 20)
print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.
for guesses_taken in range(1, 7):
 print('Take a guess.')
 guess = int(input('>'))

 if guess < secret_number:
 print('Your guess is too low.')
 elif guess > secret_number:
 print('Your guess is too high.')
 else:
 break # This condition is the correct guess!

66 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

if guess == secret_number:
 print('Good job! You got it in ' + str(guesses_taken) + ' guesses!')
else:
 print('Nope. The number was ' + str(secret_number))

Let’s look at this code line by line, starting at the top:

This is a guess the number game.
import random
secret_number = random.randint(1, 20)

First, a comment at the top of the code explains what the program
does. Then, the program imports the random module so that it can use
the random.randint() function to generate a number for the user to guess.
The return value, a random integer between 1 and 20, is stored in the
variable secret_number:

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.
for guesses_taken in range(1, 7):
 print('Take a guess.')
 guess = int(input('>'))

The program tells the player that it has come up with a secret number
and will give the player six chances to guess it. The code lets the player
enter a guess and checks that guess in a for loop that will loop at most six
times. The first thing that happens in the loop is that the player types in a
guess. Because input() returns a string, its return value is passed straight
into int(), which translates the string into an integer value. This gets stored
in a variable named guess:

 if guess < secret_number:
 print('Your guess is too low.')
 elif guess > secret_number:
 print('Your guess is too high.')

These few lines of code check whether the guess is less than or greater
than the secret number. In either case, a hint is printed to the screen:

 else:
 break # This condition is the correct guess!

If the guess is neither higher nor lower than the secret number, then it
must be equal to the secret number—in which case, you want the program
execution to break out of the for loop:

if guess == secret_number:
 print('Good job! You got it in ' + str(guesses_taken) + ' guesses!')
else:
 print('Nope. The number was ' + str(secret_number))

Loops 67

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

After the for loop, the previous if-else statement checks whether the
player has correctly guessed the number and then prints an appropriate
message to the screen. In both cases, the program displays a variable that
contains an integer value (guesses_taken and secret_number). Since it must
concatenate these integer values to strings, it passes these variables to the
str() function, which returns the string value form of these integers. Now
these strings can be concatenated with the + operators before finally being
passed to the print() function call.

A Short Program: Rock, Paper, Scissors
Let’s use the programming concepts we’ve learned so far to create a simple
rock, paper, scissors game. The output will look like this:

ROCK, PAPER, SCISSORS
0 Wins, 0 Losses, 0 Ties
Enter your move: (r)ock (p)aper (s)cissors or (q)uit
>p
PAPER versus...
PAPER
It is a tie!
0 Wins, 0 Losses, 1 Ties
Enter your move: (r)ock (p)aper (s)cissors or (q)uit
>s
SCISSORS versus...
PAPER
You win!
1 Wins, 0 Losses, 1 Ties
Enter your move: (r)ock (p)aper (s)cissors or (q)uit
>q

Enter the following source code into the file editor, and save the file as
rpsGame.py:

import random, sys

print('ROCK, PAPER, SCISSORS')

These variables keep track of the number of wins, losses, and ties.
wins = 0
losses = 0
ties = 0

while True: # The main game loop
 print('%s Wins, %s Losses, %s Ties' % (wins, losses, ties))
 while True: # The player input loop
 print('Enter your move: (r)ock (p)aper (s)cissors or (q)uit')
 player_move = input('>')
 if player_move == 'q':
 sys.exit() # Quit the program.

68 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 if player_move == 'r' or player_move == 'p' or player_move == 's':
 break # Break out of the player input loop.
 print('Type one of r, p, s, or q.')

 # Display what the player chose:
 if player_move == 'r':
 print('ROCK versus...')
 elif player_move == 'p':
 print('PAPER versus...')
 elif player_move == 's':
 print('SCISSORS versus...')

 # Display what the computer chose:
 move_number = random.randint(1, 3)
 if move_number == 1:
 computer_move = 'r'
 print('ROCK')
 elif move_number == 2:
 computer_move = 'p'
 print('PAPER')
 elif move_number == 3:
 computer_move = 's'
 print('SCISSORS')

 # Display and record the win/loss/tie:
 if player_move == computer_move:
 print('It is a tie!')
 ties = ties + 1
 elif player_move == 'r' and computer_move == 's':
 print('You win!')
 wins = wins + 1
 elif player_move == 'p' and computer_move == 'r':
 print('You win!')
 wins = wins + 1
 elif player_move == 's' and computer_move == 'p':
 print('You win!')
 wins = wins + 1
 elif player_move == 'r' and computer_move == 'p':
 print('You lose!')
 losses = losses + 1
 elif player_move == 'p' and computer_move == 's':
 print('You lose!')
 losses = losses + 1
 elif player_move == 's' and computer_move == 'r':
 print('You lose!')
 losses = losses + 1

Let’s look at this code line by line, starting at the top:

import random, sys

print('ROCK, PAPER, SCISSORS')

These variables keep track of the number of wins, losses, and ties.
wins = 0

Loops 69

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

losses = 0
ties = 0

First, we import the random and sys modules so that our program can
call the random.randint() and sys.exit() functions. We also set up three vari-
ables to keep track of how many wins, losses, and ties the player has had:

while True: # The main game loop
 print('%s Wins, %s Losses, %s Ties' % (wins, losses, ties))
 while True: # The player input loop
 print('Enter your move: (r)ock (p)aper (s)cissors or (q)uit')
 player_move = input('>')
 if player_move == 'q':
 sys.exit() # Quit the program.
 if player_move == 'r' or player_move == 'p' or player_move == 's':
 break # Break out of the player input loop.
 print('Type one of r, p, s, or q.')

This program uses a while loop inside another while loop. The first loop
is the main game loop, and a single game of rock, paper, scissors is played
on each iteration through this loop. The second loop asks for input from the
player, and keeps looping until the player has entered an r, p, s, or q for
their move. The r, p, and s correspond to rock, paper, and scissors, respec-
tively, while the q means the player intends to quit. In that case, sys.exit() is
called and the program exits. If the player has entered r, p, or s, the execu-
tion breaks out of the loop. Otherwise, the program reminds the player to
enter r, p, s, or q and goes back to the start of the loop:

 # Display what the player chose:
 if player_move == 'r':
 print('ROCK versus...')
 elif player_move == 'p':
 print('PAPER versus...')
 elif player_move == 's':
 print('SCISSORS versus...')

The player’s move is displayed on the screen:

 # Display what the computer chose:
 move_number = random.randint(1, 3)
 if move_number == 1:
 computer_move = 'r'
 print('ROCK')
 elif move_number == 2:
 computer_move = 'p'
 print('PAPER')
 elif move_number == 3:
 computer_move = 's'
 print('SCISSORS')

Next, the program randomly selects the computer’s move. Because
random.randint() will always return a random number, the code stores the

70 Chapter 3

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

1, 2, or 3 integer value it returns in a variable named move_number. The pro-
gram then stores an 'r', 'p', or 's' string in computer_move based on the inte-
ger in move_number, as well as displays the computer’s move:

 # Display and record the win/loss/tie:
 if player_move == computer_move:
 print('It is a tie!')
 ties = ties + 1
 elif player_move == 'r' and computer_move == 's':
 print('You win!')
 wins = wins + 1
 elif player_move == 'p' and computer_move == 'r':
 print('You win!')
 wins = wins + 1
 elif player_move == 's' and computer_move == 'p':
 print('You win!')
 wins = wins + 1
 elif player_move == 'r' and computer_move == 'p':
 print('You lose!')
 losses = losses + 1
 elif player_move == 'p' and computer_move == 's':
 print('You lose!')
 losses = losses + 1
 elif player_move == 's' and computer_move == 'r':
 print('You lose!')
 losses = losses + 1

Finally, the program compares the strings in player_move and computer
_move, and displays the results on the screen. It also increments the wins,
losses, or ties variable appropriately. Once the execution reaches the end, it
jumps back to the start of the main program loop to begin another game.

If you liked these guess the number and rock, paper, scissors games,
you can find the source code to other simple Python programs in The Big
Book of Small Python Projects (No Starch Press, 2021).

Summary
Loops let your programs execute code over and over again while a certain
condition evaluates to True. The break and continue statements are useful if
you need to exit a loop or jump back to the loop’s start.

These flow control statements will let you write more intelligent pro-
grams. You can also use another type of flow control by writing your own
functions, which is the topic of the next chapter.

Practice Questions
 1. What keys can you press if your Python program is stuck in an infinite

loop?

 2. What is the difference between break and continue?

Loops 71

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 3. What is the difference between range(10), range(0, 10), and range(0, 10, 1)
in a for loop?

 4. Write a short program that prints the numbers 1 to 10 using a for loop.
Then, write an equivalent program that prints the numbers 1 to 10
using a while loop.

 5. If you had a function named bacon() inside a module named spam, how
would you call it after importing spam?

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

A function is like a mini program within a
program. Python provides several built-in

functions, such as the print(), input(), and len()
functions from the previous chapters, but you can

also write your own. In this chapter, you’ll create func-
tions, explore the call stack used to determine the order
in which functions in a program run, and learn about
the scope of variables inside and outside functions.

Creating Functions
To better understand how functions work, let’s create one. Enter this pro-
gram into the file editor and save it as helloFunc.py:

def hello():
 # Prints three greetings

4
F U N C T I O N S

74 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 print('Good morning!')
 print('Good afternoon!')
 print('Good evening!')

hello()
hello()
print('ONE MORE TIME!')
hello()

The first line is a def statement, which defines a function named hello().
The code in the block that follows the def statement is the body of the func-
tion. This code executes when the function is called, not when the function
is first defined.

The hello() lines after the function are function calls. In code, a func-
tion call is just the function’s name followed by parentheses, possibly with
some number of arguments in between the parentheses. When the program
execution reaches these calls, it will jump to the first line in the function and
begin executing the code there. When it reaches the end of the function, the
execution returns to the line that called the function and continues moving
through the code as before.

Because this program calls hello() three times, the code in the hello()
function is executed three times. When you run this program, the output
looks like this:

Good morning!
Good afternoon!
Good evening!
Good morning!
Good afternoon!
Good evening!
ONE MORE TIME!
Good morning!
Good afternoon!
Good evening!

A major purpose of functions is to group code that gets executed mul-
tiple times. Without a function defined, you would have to copy and paste
this code each time you wanted to run it, and the program would look
like this:

print('Good morning!')
print('Good afternoon!')
print('Good evening!')
print('Good morning!')
print('Good afternoon!')
print('Good evening!')
print('ONE MORE TIME!')
print('Good morning!')
print(Good afternoon!'')
print(' Good evening!')

Functions 75

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In general, you always want to avoid duplicating code, because if you
ever decide to update the code (for example, because you find a bug you
need to fix), you’ll have to remember to change the code in every place
you copied it.

As you gain programming experience, you’ll often find yourself dedupli-
cating, which means getting rid of copied-and-pasted code. Deduplication
makes your programs shorter, easier to read, and easier to update.

Arguments and Parameters
When you call the print() or len() function, you pass it values, called argu-
ments, by entering them between the parentheses. You can also define your
own functions that accept arguments. Enter this example into the file editor
and save it as helloFunc2.py:

1 def say_hello_to(name):
 # Prints three greetings to the name provided
 2 print('Good morning, ' + name)
 print('Good afternoon, ' + name)
 print('Good evening, ' + name)

3 say_hello_to('Alice')
say_hello_to('Bob')

When you run this program, the output looks like this:

Good morning, Alice
Good afternoon, Alice
Good evening, Alice
Good morning, Bob
Good afternoon, Bob
Good evening, Bob

The definition of the say_hello_to() function has a parameter called
name 1. Parameters are variables that contain arguments. When a function
is called with arguments, the arguments are stored in the parameters. The
first time the say_hello_to() function is called, it’s passed the argument
'Alice' 3. The program execution enters the function, and the parameter
name is automatically set to 'Alice', which gets printed by the print() state-
ment 2. You should use parameters in your function if you need it to follow
slightly different instructions depending on the values you pass to the func-
tion call.

One special thing to note about parameters is that the value stored in
a parameter is forgotten when the function returns. For example, if you
added print(name) after say_hello_to('Bob') in the previous program, the pro-
gram would give you an error because there is no variable named name. This
variable gets destroyed after the function call say_hello_to('Bob') returns, so
print(name) would refer to a name variable that does not exist.

76 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The terms define, call, pass, argument, and parameter can be confusing. To
review their meanings, consider a code example:

1 def say_hello_to(name):
 # Prints three greetings to the name provided
 print('Good morning, ' + name)
 print('Good afternoon, ' + name)
 print('Good evening, ' + name)
2 say_hello_to('Al')

To define a function is to create it, just as an assignment statement like
spam = 42 creates the spam variable. The def statement defines the say_hello_to()
function 1. The say_hello_to('Al') line 2 calls the now-created function,
sending the execution to the top of the function’s code. This function call
is also known as passing the string value 'Al' to the function. A value being
passed to a function in a function call is an argument. The argument 'Al'
is assigned to a local variable named name. Variables that have arguments
assigned to them are parameters.

It’s easy to mix up these terms, but keeping them straight will ensure
that you know precisely what the text in this chapter means.

Return Values and return Statements
When you call the len() function and pass it an argument such as 'Hello',
the function call evaluates to the integer value 5, which is the length of the
string you passed it. In general, the value to which a function call evaluates
is called the return value of the function.

When creating a function using the def statement, you can specify the
return value with a return statement, which consists of the following:

• The return keyword

• The value or expression that the function should return

In the case of an expression, the return value is whatever this expres-
sion evaluates to. For example, the following program defines a function
that returns a different string depending on the number it is passed as an
argument. Enter this code into the file editor and save it as magic8Ball.py:

1 import random

2 def get_answer(answer_number):
 # Returns a fortune answer based on what int answer_number is, 1 to 9
 3 if answer_number == 1:
 return 'It is certain'
 elif answer_number == 2:
 return 'It is decidedly so'
 elif answer_number == 3:
 return 'Yes'
 elif answer_number == 4:
 return 'Reply hazy try again'

Functions 77

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 elif answer_number == 5:
 return 'Ask again later'
 elif answer_number == 6:
 return 'Concentrate and ask again'
 elif answer_number == 7:
 return 'My reply is no'
 elif answer_number == 8:
 return 'Outlook not so good'
 elif answer_number == 9:
 return 'Very doubtful'

print('Ask a yes or no question:')
input('>')
4 r = random.randint(1, 9)
5 fortune = get_answer(r)
6 print(fortune)

When the program starts, Python first imports the random module 1.
Then comes the definition of the get_answer() function 2. Because the
function isn’t being called, the code inside it is not run. Next, the program
calls the random.randint() function with two arguments: 1 and 9 4. This
function evaluates a random integer between 1 and 9 (including 1 and 9
themselves), then stores it in a variable named r.

Now the program calls the get_answer() function with r as the argu-
ment 5. The program execution moves to the top of that function 3, stor-
ing the value r in a parameter named answer_number. Then, depending on
the value in answer_number, the function returns one of many possible string
values. The execution returns to the line at the bottom of the program that
originally called get_answer() 5 and assigns the returned string to a variable
named fortune, which then gets passed to a print() call 6 and printed to
the screen.

Note that because you can pass return values as arguments to other
function calls, you could shorten these three lines

r = random.randint(1, 9)
fortune = get_answer(r)
print(fortune)

to this single equivalent line:

print(get_answer(random.randint(1, 9)))

Remember that expressions consist of values and operators; you can use a
function call in an expression because the call evaluates to its return value.

The None Value
In Python, a value called None represents the absence of a value. The None
value is the only value of the NoneType data type. (Other programming

78 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

languages might call this value null, nil, or undefined.) Just like the Boolean
True and False values, you must always write None with a capital N.

This value-without-a-value can be helpful when you need to store some-
thing that shouldn’t be confused for a real value in a variable. One place
where None is used is as the return value of print(). The print() function dis-
plays text on the screen, and doesn’t need to return anything in the same
way len() or input() does. But since all function calls need to evaluate to a
return value, print() returns None. To see this in action, enter the following
into the interactive shell:

>>> spam = print('Hello!')
Hello!
>>> None == spam
True

Behind the scenes, Python adds return None to the end of any function
definition with no return statement. This behavior resembles the way in
which a while or for loop implicitly ends with a continue statement. Functions
also return None if you use a return statement without a value (that is, just the
return keyword by itself).

Named Parameters
Python identifies most arguments by their position in the function call. For
example, random.randint(1, 10) is different from random.randint(10, 1). The
first call returns a random integer between 1 and 10 because the first argu-
ment determines the low end of the range and the next argument determines
its high end, while the second function call causes an error.

On the other hand, Python identifies named parameters by the name
placed before them in the function call. You’ll also hear named parameters
called keyword parameters or keyword arguments, though they have noth-
ing to do with Python keywords. Programmers often use named parameters
to provide optional arguments. For example, the print() function uses the
optional parameters end and sep to specify separator characters to print at
the end of its arguments and between its arguments, respectively. If you ran
a program without these arguments

print('Hello')
print('World')

the output would look like this:

Hello
World

The two strings appear on separate lines because the print() function
automatically adds a newline character to the end of the string it is passed.

Functions 79

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

However, you can set the end named parameter to change the newline char-
acter to a different string. For example, if the code were this

print('Hello', end='')
print('World')

the output would look like this:

HelloWorld

The output appears on a single line because Python no longer prints a
newline after 'Hello'. Instead, it prints a blank string. This is useful if you
need to disable the newline that gets added to the end of every print() func-
tion call. Say you wanted to print the heads-or-tails results of a series of coin
flips. Printing the output on a single line makes the output prettier, as in
this coinflip.py program:

import random
for i in range(100): # Perform 100 coin flips.
 if random.randint(0, 1) == 0:
 print('H', end=' ')
 else:
 print('T', end=' ')
print() # Print one newline at the end.

This program displays the H and T results on one compact line, instead
of spreading them out with one H or T result per line:

T H T T T H H T T T T H H H H T H H T T T T T H T T T T T H T T T T T H T H T
H H H T T H T T T T H T H H H T H H T H T T T T T H T T H T T T T H T H H H T
T T T H T T T T H H H T H T H H H H T H H T

Similarly, when you pass multiple string values to print(), the function
automatically separates them with a single space. To see this behavior, enter
the following into the interactive shell:

>>> print('cats', 'dogs', 'mice')
cats dogs mice

You could replace the default separating string by passing the sep named
parameter a different string. Enter the following into the interactive shell:

>>> print('cats', 'dogs', 'mice', sep=',')
cats,dogs,mice

You can add named parameters to the functions you write as well,
but first, you’ll have to learn about the list and dictionary data types in
Chapters 6 and 7. For now, just know that some functions have optional
named parameters you can specify when calling the function.

80 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The Call Stack
Imagine that you had a meandering conversation with someone. You talked
about your friend Alice, which then reminded you of a story about your
co-worker Bob, but first you had to explain something about your cousin
Carol. You finished your story about Carol and went back to talking about
Bob, and when you finished your story about Bob, you went back to talking
about Alice. But then you were reminded about your brother David, so you
told a story about him, and then you got back to finishing your original
story about Alice. Your conversation followed a stack-like structure, like in
Figure 4-1. In a stack, items get added or removed from the top only, and
the current topic is always at the top of the stack.

Alice Alice Alice Alice Alice Alice Alice

Bob

Carol

DavidBob Bob

Figure 4-1: Your meandering conversation stack

Like your meandering conversation, calling a function doesn’t send the
execution on a one-way trip to the top of a function. Python will remember
which line of code called the function so that the execution can return
there when it encounters a return statement. If that original function called
other functions, the execution would return to those function calls first,
before returning from the original function call. The function call at the
top of the stack is the execution’s current location.

Open a file editor window and enter the following code, saving it as
abcdCallStack.py:

def a():
 print('a() starts')
 1 b()
 2 d()
 print('a() returns')

def b():
 print('b() starts')
 3 c()
 print('b() returns')

def c():
 4 print('c() starts')
 print('c() returns')

def d():
 print('d() starts')
 print('d() returns')

>5 a()

Functions 81

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you run this program, the output will look like this:

a() starts
b() starts
c() starts
c() returns
b() returns
d() starts
d() returns
a() returns

When a() is called 5, it calls b() 1, which in turn calls c() 3. The c()
function doesn’t call anything; it just displays c() starts 4 and c() returns
before returning to the line in b() that called it 3. Once the execution returns
to the code in b() that called c(), it returns to the line in a() that called b()
1. The execution continues to the next line in the a() function 2, which is a
call to d(). Like the c() function, the d() function also doesn’t call anything. It
just displays d() starts and d() returns before returning to the line in a() that
called it. Because d() contains no other code, the execution returns to the line
in a() that called d() 2. The last line in a() displays a() returns before return-
ing to the original a() call at the end of the program 5.

The call stack is how Python remembers where to return the execution
after each function call. The call stack isn’t stored in a variable in your pro-
gram; rather, it’s a section of your computer’s memory that Python handles
automatically behind the scenes. When your program calls a function,
Python creates a frame object on the top of the call stack. Frame objects store
the line number of the original function call so that Python can remember
where to return. If the program makes another function call, Python adds
another frame object above the other one on the call stack.

When a function call returns, Python removes a frame object from the
top of the stack and moves the execution to the line number stored in it.
Note that frame objects always get added and removed from the top of the
stack, and not from any other place. Figure 4-2 illustrates the state of the
call stack in abcdCallStack.py as each function is called and returns.

a()

b()

c()

d()

a() a() a() a() a() a()

b() b()

Figure 4-2: The frame objects of the call stack as abcdCallStack .py calls and returns
from functions

The top of the call stack is the currently executing function. When the
call stack is empty, the execution is on a line outside all functions.

The call stack is a technical detail that you don’t strictly need to know
about to write programs. It’s enough to understand that function calls
return to the line number they were called from. However, understanding

82 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

call stacks makes it easier to understand local and global scopes, described
in the next section.

Local and Global Scopes
Only code within a called function can access the parameters and variables
assigned in that function. These variables are said to exist in that function’s
local scope. By contrast, code anywhere in a program can access variables
that are assigned outside all functions. These variables are said to exist in
the global scope. A variable that exists in a local scope is called a local variable,
while a variable that exists in a global scope is called a global variable. A vari-
able must be one or the other; it cannot be both local and global.

Think of a scope as a container for variables. There is only one global
scope, created when your program begins. When your program terminates,
it destroys the global scope, and all of its variables get forgotten. A new
local scope gets created whenever a program calls a function. Any variables
assigned in the function exist within the function’s local scope. When the
function returns, the local scope gets destroyed, along with these variables.

Python uses scoping because it enables a function to modify its vari-
ables, yet interact with the rest of the program through its parameters and
its return value only. This narrows down the number of lines of code that
might be causing a bug. If your program contained nothing but global
variables, and contained a bug caused by a variable set to a bad value, you
might struggle to track down the location of this bad value. It could have
been set from anywhere in the program, which could be hundreds or thou-
sands of lines long! But if the bug occurred in a local variable, you can
restrict your search to a single function.

For this reason, while using global variables in small programs is fine, it’s
a bad habit to rely on global variables as your programs get larger and larger.

Scope Rules
When working with local and global variables, keep the following rules
in mind:

• Code that is in the global scope, outside all functions, can’t use local
variables.

• Code that is in one function’s local scope can’t use variables in any
other local scope.

• Code in a local scope can access global variables.

• You can use the same name for different variables if they are in dif-
ferent scopes. That is, there can be a local variable named spam and a
global variable also named spam.

Let’s review these rules with examples.

Functions 83

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Code That Is in the Global Scope Can’t Use Local Variables

Consider the following code, which will cause an error when you run it:

def spam():
 1 eggs = 'sss'
spam()
print(eggs)

The program’s output will look like this:

Traceback (most recent call last):
 File "C:/test1.py", line 4, in <module>
 print(eggs)
NameError: name 'eggs' is not defined

The error happens because the eggs variable exists only in the local
scope created when spam() is called 1. Once the program execution returns
from spam(), that local scope gets destroyed, and there is no longer a variable
named eggs. So when your program tries to run print(eggs), Python gives
you an error saying that eggs is not defined. This makes sense if you think
about it; when the program execution is in the global scope, no local scopes
exist, so there can’t be any local variables. This is why you can only reference
global variables in the global scope.

Code That Is in a Local Scope Can’t Use Variables in Other Local Scopes

Python creates a new local scope whenever a program calls a function, even
when the function is called from another function. Consider this program:

def spam():
 eggs = 'SPAMSPAM'
 1 bacon()
 2 print(eggs) # prints 'SPAMSPAM'

def bacon():
 ham = 'hamham'
 eggs = 'BACONBACON'

>3 spam()

When the program starts, it calls the spam() function 3, creating a local
scope. The spam() function sets the local variable eggs to 'SPAMSPAM', then
calls the bacon() function 1, creating a second local scope. Multiple local
scopes can exist at the same time. In this new local scope, the local variable
ham gets set to 'hamham', and a local variable eggs (which differs from the one
in spam()’s local scope) gets created and set to 'BACONBACON'. At this point,
the program has two local variables named eggs that exist simultaneously:
one that is local to spam() and one that is local to bacon().

When bacon() returns, Python destroys the local scope for that call,
including its eggs variable. The program execution continues in the spam()

84 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

function, printing the value of eggs 2. Because the local scope for the call
to spam() still exists, the only eggs variable is the spam() function’s eggs vari-
able, which was set to 'SPAMSPAM'. This is what the program prints.

Code That Is in a Local Scope Can Use Global Variables

So far, I’ve demonstrated that code in the global scope can’t access variables
in a local scope; nor can code in a different local scope. Now consider the
following program:

def spam():
 print(eggs) # prints 'GLOBALGLOBAL'
eggs = 'GLOBALGLOBAL'
spam()
print(eggs)

Because the spam() function has no parameter named eggs, nor any
code that assigns eggs a value, Python considers the function’s use of eggs
a reference to the global variable eggs. This is why the program prints
'GLOBALGLOBAL' when it’s run.

Local and Global Variables Can Have the Same Name

Technically, it’s perfectly acceptable to use the same variable name for a
global variable and local variables in different scopes. But, to simplify your
life, avoid doing this. To see what could happen, enter the following code
into the file editor and save it as localGlobalSameName.py:

def spam():
 1 eggs = 'spam local'
 print(eggs) # Prints 'spam local'

def bacon():
 2 eggs = 'bacon local'
 print(eggs) # Prints 'bacon local'
 spam()
 print(eggs) # Prints 'bacon local'

3 eggs = 'global'
bacon()
print(eggs) # Prints 'global'

When you run this program, it outputs the following:

bacon local
spam local
bacon local
global

Functions 85

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This program actually contains three different variables, but confus-
ingly, they’re all named eggs. The variables are as follows:

• A variable named eggs that exists in a local scope when spam() is called 1

• A variable named eggs that exists in a local scope when bacon() is called 2

• A variable named eggs that exists in the global scope 3

Because these three separate variables all have the same name, it can
be hard to keep track of the one in use at any given time. Instead, give all
variables unique names, even when they appear in different scopes.

The global Statement
If you need to modify a global variable from within a function, use the
global statement. Including a line such as global eggs at the top of a function
tells Python, “In this function, eggs refers to the global variable, so don’t
create a local variable with this name.” For example, enter the following
code into the file editor and save it as globalStatement.py:

def spam():
 1 global eggs
 2 eggs = 'spam'

eggs = 'global'
spam()
print(eggs) # Prints 'spam'

When you run this program, the final print() call will output this:

spam

Because eggs is declared global at the top of spam() 1, setting eggs to
'spam'2 changes the value of the globally scoped eggs. No local eggs variable
is ever created.

Scope Identification
Use these four rules to tell whether a variable belongs to a local scope or
the global scope:

 1. A variable in the global scope (that is, outside all functions) is always a
global variable.

 2. A variable in a function with a global statement is always a global vari-
able in that function.

 3. Otherwise, if a function uses a variable in an assignment statement, it is
a local variable.

 4. However, if the function uses a variable but never in an assignment
statement, it is a global variable.

86 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

To get a better feel for these rules, here’s an example program. Enter
the following code into the file editor and save it as sameNameLocalGlobal.py:

def spam():
 1 global eggs
 eggs = 'spam' # This is the global variable.

def bacon():
 2 eggs = 'bacon' # This is a local variable.

def ham():
 3 print(eggs) # This is the global variable.

eggs = 'global' # This is the global variable.
spam()
print(eggs)

In the spam() function, eggs refers to the global eggs variable because
the function includes a global statement for it 1. In bacon(), eggs is a local
variable because the function includes an assignment statement for it 2. In
ham() 3, eggs is the global variable because the function contains no assign-
ment statement or global statement for the variable. If you run sameNameLo-
calGlobal.py, the output will look like this:

spam

If you try to use a local variable in a function before you assign a value
to it, as in the following program, Python will give you an error. To see this,
enter the following into the file editor and save it as sameNameError.py:

def spam():
 print(eggs) # ERROR!
 1 eggs = 'spam local'

2 eggs = 'global'
spam()

If you run the previous program, it produces an error message:

Traceback (most recent call last):
 File "C:/sameNameError.py", line 6, in <module>
 spam()
 File "C:/sameNameError.py", line 2, in spam
 print(eggs) # ERROR!
UnboundLocalError: local variable 'eggs' referenced before assignment

This error happens because Python sees that there is an assignment
statement for eggs in the spam() function 1 and, therefore, considers any
mention of an eggs variable in spam() to be a local variable. But because
print(eggs) is executed before eggs is assigned anything, the local variable
eggs doesn’t exist. Python won’t fall back to using the global eggs variable 2.

Functions 87

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The name of the error, UnboundLocalError, can be somewhat confusing.
In Python, binding is another way of saying assigning, so this error indicates
that the program used a local variable before it was assigned a value.

F UNC T IONS A S “BL ACK BOX ES”

Often, all you need to know about a function are its inputs (the parameters)
and its output value; you don’t always have to burden yourself with how the
function’s code actually works . When you think about functions in this high-level
way, it’s common to say that you’re treating a function as a “black box .”

This idea is fundamental to modern programming . Later chapters in this
book will show you several modules with functions that were written by other
people . While you can take a peek at the source code if you’re curious, you don’t
need to know how these functions work in order to use them . And because writ-
ing functions without global variables is encouraged, you usually don’t have to
worry about the function’s code interacting with the rest of your program .

Exception Handling
Right now, getting an error, or exception, in your Python program means
the entire program will crash. You don’t want this to happen in real-world
programs. Instead, you want the program to detect errors, handle them,
and then continue to run.

For example, consider the following program, which has a divide-by-zero
error. Open a file editor window and enter the following code, saving it as
zeroDivide.py:

def spam(divide_by):
 return 42 / divide_by

print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))

We’ve defined a function called spam, given it a parameter, and then
printed the value of that function with various parameters to see what hap-
pens. This is the output you get when you run the previous code:

21.0
3.5
Traceback (most recent call last):
 File "C:/zeroDivide.py", line 6, in <module>
 print(spam(0))

88 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 File "C:/zeroDivide.py", line 2, in spam
 return 42 / divide_by
ZeroDivisionError: division by zero

A ZeroDivisionError happens whenever you try to divide a number by
zero. From the line number given in the error message, you know that the
return statement in spam() is causing an error.

Most of the time, exceptions indicate a bug in your code that you need
to fix. But sometimes exceptions can be expected and recovered from. For
example, in Chapter 10 you’ll learn how to read text from files. If you spec-
ify a filename for a file that doesn’t exist, Python raises a FileNotFoundError
exception. You might want to handle this exception by asking the user to
enter the filename again rather than having this unhandled exception
immediately crash your program.

Errors can be handled with try and except statements. The code that
could potentially have an error is put in a try clause. The program execu-
tion moves to the start of a following except clause if an error happens.

You can put the previous divide-by-zero code in a try clause and have an
except clause contain code to handle what happens when this error occurs:

def spam(divideBy):
 try:
 # Any code in this block that causes ZeroDivisionError won't crash the program:
 return 42 / divideBy
 except ZeroDivisionError:
 # If ZeroDivisionError happened, the code in this block runs:
 print('Error: Invalid argument.')

print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))

When code in a try clause causes an error, the program execution imme-
diately moves to the code in the except clause. After running that code, the
execution continues as normal. If the program doesn’t raise an exception in
the try clause, the program skips the code in the except clause. The output of
the previous program is as follows:

21.0
3.5
Error: Invalid argument.
None
42.0

Note that any errors that occur in function calls in a try block will also
be caught. Consider the following program, which instead has the spam()
calls in the try block:

def spam(divideBy):
 return 42 / divideBy

Functions 89

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

try:
 print(spam(2))
 print(spam(12))
 print(spam(0))
 print(spam(1))
except ZeroDivisionError:
 print('Error: Invalid argument.')

When this program is run, the output looks like this:

21.0
3.5
Error: Invalid argument.

The reason print(spam(1)) is never executed is because once the execu-
tion jumps to the code in the except clause, it does not return to the try
clause. Instead, it just continues moving down the program as normal.

A Short Program: Zigzag
Let’s use the programming concepts you’ve learned so far to create a small
animation program. This program will create a back-and-forth zigzag pat-
tern until the user stops it by pressing the Mu editor’s Stop button or by
pressing ctrl-C. When you run this program, the output will look some-
thing like this:

Enter the following source code into the file editor, and save the file as
zigzag.py:

import time, sys
indent = 0 # How many spaces to indent
indentIncreasing = True # Whether the indentation is increasing or not

try:
 while True: # The main program loop
 print(' ' * indent, end='')
 print('********')
 time.sleep(0.1) # Pause for 1/10th of a second.

 if indentIncreasing:
 # Increase the number of spaces:
 indent = indent + 1

90 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 if indent == 20:
 # Change direction:
 indentIncreasing = False
 else:
 # Decrease the number of spaces:
 indent = indent - 1
 if indent == 0:
 # Change direction:
 indentIncreasing = True
except KeyboardInterrupt:
 sys.exit()

Let’s look at this code line by line, starting at the top:

import time, sys
indent = 0 # How many spaces to indent.
indentIncreasing = True # Whether the indentation is increasing or not

First, we’ll import the time and sys modules. Our program uses two
variables. The indent variable keeps track of how many spaces of indentation
occur before the band of eight asterisks, and the indentIncreasing variable
contains a Boolean value to determine whether the amount of indentation
is increasing or decreasing:

try:
 while True: # The main program loop
 print(' ' * indent, end='')
 print('********')
 time.sleep(0.1) # Pause for 1/10 of a second.

Next, we place the rest of the program inside a try statement. When the
user presses ctrl-C while a Python program is running, Python raises the
KeyboardInterrupt exception. If there is no try-except statement to catch this
exception, the program crashes with an ugly error message. However, we
want our program to cleanly handle the KeyboardInterrupt exception by call-
ing sys.exit(). (You can find the code that accomplishes this in the except
statement at the end of the program.)

The while True: infinite loop will repeat the instructions in the program
forever. This involves using ' ' * indent to print the correct number of
spaces for the indentation. We don’t want to automatically print a newline
after these spaces, so we also pass end='' to the first print() call. A second
print() call prints the band of asterisks. We haven’t discussed the time.
sleep() function yet; suffice it to say that it introduces a one-tenth-of-a-sec-
ond pause in our program:

 if indentIncreasing:
 # Increase the number of spaces:
 indent = indent + 1
 if indent == 20:
 indentIncreasing = False # Change direction

Functions 91

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Next, we want to adjust the amount of indentation used the next time
we print asterisks. If indentIncreasing is True, we’ll add 1 to indent, but once
indent reaches 20, we’ll decrease the indentation:

 else:
 # Decrease the number of spaces:
 indent = indent - 1
 if indent == 0:
 indentIncreasing = True # Change direction

If indentIncreasing is False, we’ll want to subtract one from indent. Once
indent reaches 0, we’ll want the indentation to increase once again. Either
way, the program execution will jump back to the start of the main pro-
gram loop to print the asterisks again.

If the user presses ctrl-C at any point that the program execution is in
the try block, this except statement raises and handles the KeyboardInterrupt
exception:

except KeyboardInterrupt:
 sys.exit()

The program execution moves inside the except block, which runs sys.
exit() and quits the program. This way, even though the main program
loop is infinite, the user has a way to shut down the program.

A Short Program: Spike
Let’s create another scrolling animation program. This program uses string
replication and nested loops to draw spikes. Open a new file in your code
editor, enter the following code, and save it as spike.py:

import time, sys

try:
 while True: # The main program loop
 # Draw lines with increasing length:
 for i in range(1, 9):
 print('-' * (i * i))
 time.sleep(0.1)

 # Draw lines with decreasing length:
 for i in range(7, 1, -1):
 print('-' * (i * i))
 time.sleep(0.1)
except KeyboardInterrupt:
 sys.exit()

92 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

When you run this program, it repeatedly draws the following spike:

-

--

Like the previous zigzag program, the spike program needs to call the
time.sleep() and sys.exit() functions. The first line imports the time and
sys modules. A try block will catch the KeyboardInterrupt exception raised
when the user presses ctrl-C, and an infinite loop continues drawing
spikes forever.

The first for loop draws spikes of increasing sizes:

 # Draw lines with increasing length:
 for i in range(1, 9):
 print('-' * (i * i))
 time.sleep(0.1)

Because the i variable is set to 1, then 2, then 3, and so on, up to but not
including 9, the following print() call replicates the '-' strings by 1 * 1 (that
is, 1), then 2 * 2 (that is, 4), then 3 * 3 (that is, 9), and so on. This code is what
creates the strings that are 1, 4, 9, 16, 25, 36, 49, and then 64 dashes long. By
having exponentially longer strings, we create the top half of the spike.

To draw the bottom half of the spike, we need another for loop that
causes i to start at 7 and then decrease down to 1, not including 1:

 # Draw lines with decreasing length:
 for i in range(7, 1, -1):
 print('-' * (i * i))
 time.sleep(0.1)

You can modify the 9 and the 7 values in the two for loops if you want to
change how wide the spike becomes. The rest of the code will continue to
work just fine with these new values.

Summary
Functions are the primary way to compartmentalize your code into logical
groups. Since the variables in functions exist in their own local scopes, the

Functions 93

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

code in one function cannot directly affect the values of variables in other
functions. This limits the sections of code able to change the values of your
variables, which can be helpful when it comes to debugging.

Functions are a great tool to help you organize your code. You can
think of them as black boxes: they have inputs in the form of parameters
and outputs in the form of return values, and the code in them doesn’t
affect variables in other functions.

In previous chapters, a single error could cause your programs to crash.
In this chapter, you learned about try and except statements, which can run
code when an error has been detected. This can make your programs more
resilient to common error cases.

Practice Questions
 1. Why are functions advantageous to have in your programs?

 2. When does the code in a function execute: when the function is
defined or when the function is called?

 3. What statement creates a function?

 4. What is the difference between a function and a function call?

 5. How many global scopes are there in a Python program? How many
local scopes are there?

 6. What happens to variables in a local scope when the function call
returns?

 7. What is a return value? Can a return value be part of an expression?

 8. If a function does not have a return statement, what is the return value
of a call to that function?

 9. How can you force a variable in a function to refer to the global
variable?

 10. What is the data type of None?

 11. What does the import areallyourpetsnamederic statement do?

 12. If you had a function named bacon() in a module named spam, how
would you call it after importing spam?

 13. How can you prevent a program from crashing when it gets an error?

 14. What goes in the try clause? What goes in the except clause?

 15. Write the following program in a file named notrandomdice.py and run
it. Why does each function call return the same number?

import random
random_number = random.randint(1, 6)

def get_random_dice_roll():
 # Returns a random integer from 1 to 6.
 return random_number

94 Chapter 4

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

print(get_random_dice_roll())
print(get_random_dice_roll())
print(get_random_dice_roll())
print(get_random_dice_roll())

Practice Programs
For practice, write programs to do the following tasks.

The Collatz Sequence
Write a function named collatz() that has one parameter named number. If
number is even, then collatz() should print number // 2 and return this value.
If number is odd, then collatz() should print and return 3 * number + 1.

Then, write a program that lets the user enter an integer and that keeps
calling collatz() on that number until the function returns the value 1.
(Amazingly enough, this sequence actually works for any integer; sooner
or later, using this sequence, you’ll arrive at 1! Even mathematicians aren’t
sure why. Your program is exploring what’s called the Collatz sequence, some-
times called “the simplest impossible math problem.”)

Remember to convert the return value from input() to an integer with
the int() function; otherwise, it will be a string value. To make the output
more compact, the print() calls that print the numbers should have a sep='
' named parameter to print all values on one line.

The output of this program could look something like this:

Enter number:
3
3 10 5 16 8 4 2 1

Hint: An integer number is even if number % 2 == 0, and it’s odd if number %
2 == 1.

Input Validation
Add try and except statements to the previous project to detect whether the
user entered a non-integer string. Normally, the int() function will raise a
ValueError error if it is passed a non-integer string, as in int('puppy'). In the
except clause, print a message to the user saying they must enter an integer.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Now that you know enough to write basic
programs, you may start finding not-so-

simple bugs in them. This chapter covers
some tools and techniques for finding the root

cause of bugs in your program to help you fix them
more quickly and with less effort. To paraphrase an
old joke among programmers, writing code accounts
for 90 percent of programming. Debugging code
accounts for the other 90 percent.

Your computer will do only what you tell it to do; it won’t read your mind
and do what you intended it to do. Even professional programmers create bugs
all the time, so don’t feel discouraged if your program has a problem.

Fortunately, a few tools and techniques can identify exactly what your
code is doing and where it’s going wrong. You’ll use the debugger, a feature
of Mu that executes a program one instruction at a time, giving you a
chance to inspect the values in variables while your code runs, and track

5
D E B U G G I N G

96 Chapter 5

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

how the values change over the course of your program. This process is
much slower than running the program at full speed, but it allows you
to see the actual values in a program while it runs, rather than having to
deduce what the values might be from the source code.

You’ll also make your programs raise custom exceptions to indicate
errors, and you’ll learn about logging and assertions, two features that can
help you detect bugs early. In general, the earlier you catch bugs, the easier
they will be to fix.

Raising Exceptions
Python raises an exception whenever it tries to execute invalid code. In
Chapter 4, you handled Python’s exceptions with try and except statements
so that your program could recover from exceptions you anticipated. But
you can also raise your own exceptions in your code. Raising an exception is
a way of saying, “Stop running this code, and move the program execution
to the except statement.”

We raise exceptions with a raise statement, which consists of the
following:

• The raise keyword

• A call to the Exception() function

• A string with a helpful error message passed to the Exception() function

For example, enter the following into the interactive shell:

>>> raise Exception('This is the error message.')
Traceback (most recent call last):
 File "<pyshell#191>", line 1, in <module>
 raise Exception('This is the error message.')
Exception: This is the error message.

If no try and except statements cover the raise statement that raised
the exception, the program simply crashes and displays the exception’s
error message.

Often, it’s the code that calls the function containing a raise statement,
rather than the function itself, that knows how to handle an exception.
That means you’ll commonly see a raise statement inside a function, and
the try and except statements in the code calling the function. For example,
open a new file editor tab, enter the following code, and save the program
as boxPrint.py:

def box_print(symbol, width, height):
 if len(symbol) != 1:
 1 raise Exception('Symbol must be a single character string.')
 if width <= 2:
 2 raise Exception('Width must be greater than 2.')
 if height <= 2:
 3 raise Exception('Height must be greater than 2.')

Debugging 97

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 print(symbol * width)
 for i in range(height - 2):
 print(symbol + (' ' * (width - 2)) + symbol)
 print(symbol * width)

try:
 box_print('*', 4, 4)
 box_print('O', 20, 5)
 box_print('x', 1, 3)
 box_print('ZZ', 3, 3)
4 except Exception as err:
 5 print('An exception happened: ' + str(err))
try:
 box_print('ZZ', 3, 3)
except Exception as err:
 print('An exception happened: ' + str(err))

Here, we’ve defined a box_print() function that takes a character, a
width, and a height, and uses the character to make a little picture of a box
with that width and height. This box shape is printed to the screen.

Say we want the function to accept a single character only, and we expect
the width and height to be greater than 2. We add if statements to raise
exceptions if these requirements aren’t satisfied. Later, when we call box
_print() with various arguments, our try/except will handle invalid arguments.

This program uses the except Exception as err form of the except state-
ment 4. If an Exception object is returned from box_print() 1 2 3, this
except statement will store it in a variable named err. We can then convert
the Exception object to a string by passing it to str() to produce a user-
friendly error message 5. When you run this boxPrint.py, the output will
look like this:

* *
* *

OOOOOOOOOOOOOOOOOOOO
O O
O O
O O
OOOOOOOOOOOOOOOOOOOO
An exception happened: Width must be greater than 2.
An exception happened: Symbol must be a single character string.

Using the try and except statements, you can handle errors gracefully,
rather than letting the entire program crash.

Assertions
An assertion is a sanity check to make sure your code isn’t doing something
obviously wrong. We perform these sanity checks with assert statements. If

98 Chapter 5

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

the sanity check fails, the code raises an AssertionError exception. An assert
statement consists of the following:

• The assert keyword

• A condition (that is, an expression that evaluates to True or False)

• A comma

• A string to display when the condition is False

In plain English, an assert statement says, “I assert that the condition
holds true, and if not, there is a bug somewhere, so immediately stop the
program.” For example, enter the following into the interactive shell:

>>> ages = [26, 57, 92, 54, 22, 15, 17, 80, 47, 73]
>>> ages.sort()
>>> ages
[15, 17, 22, 26, 47, 54, 57, 73, 80, 92]
>>> assert ages[0] <= ages[-1] # Assert that the first age is <= the last age.

The assert statement here asserts that the first item in ages should be less
than or equal to the last one. This is a sanity check; if the code in sort() is
bug-free and did its job, then the assertion would be true. Because the ages[0]
<= ages[-1] expression evaluates to True, the assert statement does nothing.

However, let’s pretend we had a bug in our code. Say we accidentally
called the reverse() list method instead of the sort() list method. When we
enter the following in the interactive shell, the assert statement raises an
AssertionError:

>>> ages = [26, 57, 92, 54, 22, 15, 17, 80, 47, 73]
>>> ages.reverse()
>>> ages
[73, 47, 80, 17, 15, 22, 54, 92, 57, 26]
>>> assert ages[0] <= ages[-1] # Assert that the first age is <= the last age.
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

Unlike exceptions, your code should not handle assert statements with
try and except; if an assert fails, your program should crash. By “failing fast”
like this, you shorten the time between the original cause of the bug and
the moment you first notice it, reducing the amount of code you’ll have to
check before finding the bug’s cause.

Assertions are for programmer errors, not user errors. Assertions should
fail only while the program is under development; a user should never see
an assertion error in a finished program. For errors that your program can
encounter as a normal part of its operation (such as a file not being found
or the user entering invalid data), raise an exception instead of detecting it
with an assert statement.

Debugging 99

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Logging
If you’ve ever put a print() function in your code to output some variable’s
value while your program is running, you’ve used a form of logging to debug
your code. Logging is a great way to understand what’s happening in your
program and in what order it’s happening. Python’s logging module makes
it easy to create a record of custom messages that you write. These log mes-
sages will describe when the program execution has reached the logging
function call and will list any variables you’ve specified at that point in time,
providing a trail of breadcrumbs that can help you figure out when things
started to go wrong. On the other hand, a missing log message indicates a
part of the code was skipped and never executed.

The logging Module
To enable the logging module to display log messages on your screen as your
program runs, copy the following to the top of your program:

import logging
logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s - %(levelname)s - %(message)s')

The logging module’s basicConfig() function lets you specify what details
you want to see and how you want those details displayed.

Say you wrote a function to calculate the factorial of a number. In math-
ematics, the factorial of 4 is 1 × 2 × 3 × 4, or 24. The factorial of 7 is 1 × 2 ×
3 × 4 × 5 × 6 × 7, or 5,040. Open a new file editor tab and enter the following
code. It has a bug in it, but you’ll generate several log messages to help fig-
ure out what’s going wrong. Save the program as factorialLog.py:

import logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logging.debug('Start of program')

def factorial(n):
 logging.debug('Start of factorial(' + str(n) + ')')
 total = 1
 for i in range(n + 1):
 total *= i
 logging.debug('i is ' + str(i) + ', total is ' + str(total))
 logging.debug('End of factorial(' + str(n) + ')')
 return total

print(factorial(5))
logging.debug('End of program')

We use the logging.debug() function to print log information. This debug()
function calls basicConfig(), which prints a line of information in the for-
mat we specified in the function call, along with the messages we passed to
debug(). The print(factorial(5)) call is part of the original program, so the
code displays the result even if logging messages are disabled.

100 Chapter 5

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The output of this program looks like this:

2035-05-23 16:20:12,664 - DEBUG - Start of program
2035-05-23 16:20:12,664 - DEBUG - Start of factorial(5)
2035-05-23 16:20:12,665 - DEBUG - i is 0, total is 0
2035-05-23 16:20:12,668 - DEBUG - i is 1, total is 0
2035-05-23 16:20:12,670 - DEBUG - i is 2, total is 0
2035-05-23 16:20:12,673 - DEBUG - i is 3, total is 0
2035-05-23 16:20:12,675 - DEBUG - i is 4, total is 0
2035-05-23 16:20:12,678 - DEBUG - i is 5, total is 0
2035-05-23 16:20:12,680 - DEBUG - End of factorial(5)
0
2035-05-23 16:20:12,684 - DEBUG - End of program

The factorial() function returns 0 as the factorial of 5, which isn’t right.
The for loop should be multiplying the value in total by the numbers from
1 to 5, but the log messages displayed by logging.debug() show that the i vari-
able starts at 0 instead of 1. Since zero times anything is zero, the rest of the
iterations have the wrong value for total.

Change the for i in range(n + 1): line to for i in range(1, n + 1):, and
run the program again. The output will look like this:

2035-05-23 17:13:40,650 - DEBUG - Start of program
2035-05-23 17:13:40,651 - DEBUG - Start of factorial(5)
2035-05-23 17:13:40,651 - DEBUG - i is 1, total is 1
2035-05-23 17:13:40,654 - DEBUG - i is 2, total is 2
2035-05-23 17:13:40,656 - DEBUG - i is 3, total is 6
2035-05-23 17:13:40,659 - DEBUG - i is 4, total is 24
2035-05-23 17:13:40,661 - DEBUG - i is 5, total is 120
2035-05-23 17:13:40,661 - DEBUG - End of factorial(5)
120
2035-05-23 17:13:40,666 - DEBUG - End of program

The factorial(5) call correctly returns 120. The log messages showed
what was going on inside the loop, which led straight to the bug.

You can see that the logging.debug() calls printed out not just the strings
passed to them but also a timestamp and the word DEBUG.

Logfiles
Instead of displaying the log messages to the screen, you can write them to
a text file. The logging.basicConfig() function takes a filename named param-
eter, like so:

import logging
logging.basicConfig(filename='myProgramLog.txt', level=logging.DEBUG,
format=' %(asctime)s - %(levelname)s - %(message)s')

This code will save the log messages to myProgramLog.txt.
While logging messages are helpful, they can clutter your screen and

make it hard to read the program’s output. Writing the logging messages to

Debugging 101

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

a file will keep your screen clear and enable you to read the messages after
running the program. You can open this text file in any text editor, such as
Notepad or TextEdit.

A Poor Practice: Debugging with print()
Entering import logging and logging.basicConfig(level=logging.DEBUG, format=
'%(asctime)s - %(levelname)s - %(message)s') is somewhat unwieldy. You may
want to use print() calls instead, but don’t give in to this temptation! Once
you’re done debugging, you’ll end up spending a lot of time removing
print() calls from your code for each log message. You might even acciden-
tally remove some print() calls that were used for non-log messages. The
nice thing about log messages is that you’re free to fill your program with as
many as you like, and can always disable them later by adding a single log-
ging.disable(logging.CRITICAL) call. Unlike print(), the logging module makes
it easy to switch between showing and hiding log messages.

Log messages are intended for the programmer, not the user. The user
won’t care about the contents of some dictionary value you need to see to
help with debugging; use a log message for something like that. For error
messages that the user should see, like File not found or Invalid input, please
enter a number, use a print() call. You don’t want to deprive the user of helpful
information they can use to solve their problem.

Logging Levels
Logging levels provide a way to categorize your log messages by impor-

tance so that you can filter less important messages while testing your pro-
grams. There are five logging levels, described in Table 5-1 from least to
most important. Your program can log messages at each level using differ-
ent logging functions.

Table 5-1: Logging Levels in Python

Level Logging function Description

DEBUG logging.debug() The lowest level, used for small details . Usually,
you’ll care about these messages only when diag-
nosing problems .

INFO logging .info() Used to record information about general events
in your program or to confirm that it’s working at
various points .

WARNING logging.warning() Used to indicate a potential problem that doesn’t
prevent the program from working but might do
so in the future .

ERROR logging.error() Used to record an error that caused the program
to fail to do something .

CRITICAL logging.critical() The highest level, used to indicate a fatal error
that has caused, or is about to cause, the pro-
gram to stop running entirely .

102 Chapter 5

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Ultimately, it’s up to you to decide which category your log message falls
into. You can pass the log message to these functions as a string. Try this
yourself by entering the following into the interactive shell:

>>> import logging
>>> logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s -
%(levelname)s - %(message)s')
>>> logging.debug('Some minor code and debugging details.')
2035-05-18 19:04:26,901 - DEBUG - Some debugging details.
>>> logging .info('An event happened.')
2035-05-18 19:04:35,569 - INFO - The logging module is working.
>>> logging.warning('Something could go wrong.')
2035-05-18 19:04:56,843 - WARNING - An error message is about to be logged.
>>> logging.error('An error has occurred.')
2035-05-18 19:05:07,737 - ERROR - An error has occurred.
>>> logging.critical('The program is unable to recover and will now terminate!')
2035-05-18 19:05:45,794 - CRITICAL - The program is unable to recover!

The benefit of logging levels is that you can change the priority of the
logging messages you want to see. Passing logging.DEBUG to the basicConfig()
function’s level named parameter will show messages from all the logging
levels (DEBUG being the lowest level). But after developing your program
some more, you may be interested only in errors. In that case, you can
set basicConfig()’s level argument to logging.ERROR. This will show only
ERROR and CRITICAL messages and will skip the DEBUG, INFO, and
WARNING messages.

Disabled Logging
After you’ve debugged your program, you probably don’t want all these log
messages cluttering the screen. The logging.disable() function disables these
so that you don’t have to remove the logging calls by hand. Simply pass
logging.disable() a logging level to suppress all log messages at that level or
lower. To disable logging entirely, add logging.disable(logging .CRITICAL) to
your program. For example, enter the following into the interactive shell:

>>> import logging
>>> logging .basicConfig(level =logging .INFO, format=' %(asctime)s -
%(levelname)s - %(message)s')
>>> logging.critical('Critical error! Critical error!')
2035-05-22 11:10:48,054 - CRITICAL - Critical error! Critical error!
>>> logging.disable(logging.CRITICAL)
>>> logging.critical('Critical error! Critical error!')
>>> logging.error('Error! Error!')

Because logging.disable() will disable all messages after it, you’ll proba-
bly want to add it near the import logging line of code in your program. This
way, you can easily find it to comment out or uncomment that call to enable
or disable logging messages as needed.

Debugging 103

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Mu’s Debugger
The debugger is a feature of the Mu editor, IDLE, and other editor software
that allows you to execute your program one line at a time. The debugger
will run a single line of code and then wait for you to tell it to continue.
By running your program “under the debugger” like this, you can take as
much time as you want to examine the values in the variables at any given
point during the program’s lifetime. This is a valuable tool for tracking
down bugs.

To run a program under Mu’s debugger, click the Debug button in
the top row of buttons, next to the Run button. The Debug Inspector pane
should open in the right side of the window. This pane lists the current
value of variables in your program. In Figure 5-1, the debugger has paused
the execution of the program just before it would have run the first line of
code. You can see this line highlighted in the file editor.

Figure 5-1: Mu running a program under the debugger

Debugging mode also adds the following new buttons to the top of the
editor: Continue, Step Over, Step In, and Step Out. The usual Stop button
is also available.

Clicking the Continue button will cause the program to execute nor-
mally until it terminates or reaches a breakpoint. (I’ll describe breakpoints
later in this chapter.) If you’re done debugging and want the program to
continue normally, click the Continue button.

Clicking the Step In button will cause the debugger to execute the next
line of code and then pause again. If the next line of code is a function call,
the debugger will step into that function, jumping to the function’s first line
of code.

Clicking the Step Over button will execute the next line of code, similar
to the Step In button. However, if the next line of code is a function call,

104 Chapter 5

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

the Step Over button will step over, or rush through, the code in the func-
tion. The function’s code will execute at full speed, and the debugger will
pause as soon as the function call returns. For example, if the next line of
code calls a spam() function but you don’t really care about code inside this
function, you can click Step Over to execute the code in the function at
normal speed, and then pause when the function returns. For this reason,
using the Step Over button is more common than using the Step In button.

Clicking the Step Out button will cause the debugger to execute lines
of code at full speed until it returns from the current function. If you’ve
stepped into a function call with the Step In button and now simply want to
keep executing instructions until you leave it, click the Step Out button to
step out of the current function call.

If you want to stop debugging entirely and not bother to continue exe-
cuting the rest of the program, click the Stop button. The Stop button will
immediately terminate the program.

Debugging an Addition Program
To practice using the Mu debugger, open a new file editor tab and enter the
following code:

print('Enter the first number to add:')
first = input()
print('Enter the second number to add:')
second = input()
print('Enter the third number to add:')
third = input()
print('The sum is ' + first + second + third)

Save it as buggyAddingProgram.py and run it first without the debugger
enabled. The program will output something like this:

Enter the first number to add:
5
Enter the second number to add:
3
Enter the third number to add:
42
The sum is 5342

The program hasn’t crashed, but the sum is obviously wrong.
Run the program again, this time under the debugger. Click the Debug

button, and the program should pause on line 1, which is the code it’s
about to execute.

Click the Step Over button once to execute the first print() call. You
should use Step Over instead of Step In here because you don’t want to step
into the code for the print() function (although Mu should prevent the
debugger from entering Python’s built-in functions). The debugger moves
on to line 2, and highlights line 2 in the file editor, as shown in Figure 5-2.
This shows you where the program execution currently is.

Debugging 105

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 5-2: The Mu editor window after clicking Step Over

Click Step Over again to execute the input() function call. The highlight-
ing will go away while Mu waits for you to type something for the input() call
into the output pane. Enter 5 and press enter. The highlighting will return.

Keep clicking Step Over, and enter 3 and 42 as the next two numbers.
When the debugger reaches line 7, the final print() call in the program, the
Mu editor window should look like Figure 5-3.

Figure 5-3: The Debug Inspector pane, located on the right side of the Mu editor window,
shows that the variables are set to strings instead of integers, causing the bug.

In the Debug Inspector pane, you should see that the first, second, and
third variables are set to string values '5', '3', and '42' instead of integer

106 Chapter 5

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

values 5, 3, and 42. When the last line is executed, Python concatenates
these strings instead of adding the numbers together, causing the bug.

Stepping through the program with the debugger is helpful but can
also be slow. Often, you’ll want the program to run normally until it
reaches a certain line of code. You can configure the debugger to do this
with breakpoints.

Setting Breakpoints
Setting a breakpoint on a specific line of code forces the debugger to pause
whenever the program execution reaches that line. Open a new file edi-
tor tab and enter the following program, which simulates flipping a coin
1,000 times. Save it as coinFlip.py:

import random
heads = 0
for i in range(1, 1001):
 1 if random.randint(0, 1) == 1:
 heads = heads + 1
 if i == 500:
 2 print('Halfway done!')
print('Heads came up ' + str(heads) + ' times.')

The random.randint(0, 1) call 1 will return 0 half of the time and 1 the
other half of the time, simulating a 50/50 coin flip where 1 represents heads.
When you run this program without the debugger, it quickly outputs some-
thing like the following:

Halfway done!
Heads came up 490 times.

If you ran this program under the debugger, you would have to click
the Step Over button thousands of times before the program terminated.
If you were interested in the value of heads at the halfway point of the pro-
gram’s execution, when 500 of 1,000 coin flips have been completed, you
could instead just set a breakpoint on the line print('Halfway done!') 2. To
set a breakpoint, click the line number in the file editor. This should cause
a red dot to appear, marking the breakpoint; see Figure 5-4.

Debugging 107

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 5-4: Setting a breakpoint causes a red dot (circled) to appear next to the
line number.

Note that you wouldn’t want to set a breakpoint on the if statement
line, as the if statement executes on every single iteration through the loop.
When you set the breakpoint on the code in the if statement, the debugger
breaks only when the execution enters the if clause.

Now when you run the program under the debugger, it should start in
a paused state at the first line, as usual, but if you click Continue, the pro-
gram should run at full speed until it reaches the line with the breakpoint
set on it. You can then click Continue, Step Over, Step In, or Step Out to
continue as normal.

If you want to remove a breakpoint, click the line number again. The red
dot will go away, and the debugger won’t break on that line in the future.

Summary
Assertions, exceptions, logging, and the debugger are all valuable tools to
find and prevent bugs in your program. Assertions with the Python assert
statement are a good way to implement “sanity checks” that give you an
early warning when a necessary condition doesn’t hold true. Assertions are
only for errors that the program shouldn’t try to recover from, and they
should fail fast. Otherwise, you should raise an exception.

An exception can be caught and handled by the try and except state-
ments. The logging module is a good way to look into your code while it’s
running, and it is much more convenient to use than the print() function
because of its different logging levels and its ability to log to a text file.

The debugger lets you step through your program one line at a time.
Alternatively, you can run your program at normal speed and have the
debugger pause execution whenever it reaches a line with a breakpoint set.
Using the debugger, you can see the state of any variable’s value at any point
during the program’s lifetime.

Accidentally introducing bugs into your code is a fact of life, no matter
how many years of coding experience you have. These debugging tools and
techniques will help you write programs that work.

108 Chapter 5

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Practice Questions
 1. Write an assert statement that triggers an AssertionError if the variable

spam is an integer less than 10.

 2. Write an assert statement that triggers an AssertionError if the variables
eggs and bacon contain strings that are the same as each other, even if
their cases are different. (That is, 'hello' and 'hello' are considered the
same, as are 'goodbye' and 'GOODbye'.)

 3. Write an assert statement that always triggers an AssertionError.

 4. What two lines must your program have to be able to call logging.debug()?

 5. What two lines must your program have to make logging.debug() send a
logging message to a file named programLog.txt?

 6. What are the five logging levels?

 7. What line of code can you add to disable all logging messages in your
program?

 8. Why is using logging messages better than using print() to display the
same message?

 9. What are the differences between the Step Over, Step In, and Step Out
buttons in the debugger?

 10. After you click Continue, when will the debugger stop?

 11. What is a breakpoint?

 12. How do you set a breakpoint on a line of code in Mu?

Practice Program: Debugging Coin Toss
The following program is meant to be a simple coin toss guessing game.
The player gets two guesses. (It’s an easy game.) However, the program has
multiple bugs in it. Run through the program a few times to find the bugs
that keep the program from working correctly.

import random
guess = ''
while guess not in ('heads', 'tails'):
 print('Guess the coin toss! Enter heads or tails:')
 guess = input()
toss = random.randint(0, 1) # 0 is tails, 1 is heads
if toss == guess:
 print('You got it!')
else:
 print('Nope! Guess again!')
 guess = input()
 if toss == guess:
 print('You got it!')
 else:
 print('Nope. You are really bad at this game.')

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

One more topic you’ll need to understand
before you can begin writing programs in

earnest is the list data type and its cousin, the
tuple. Lists and tuples can contain multiple val-

ues, which makes writing programs that handle large
amounts of data easier. And since lists themselves can
contain other lists, you can use them to arrange data
into hierarchical structures.

In this chapter, I’ll discuss the basics of lists. I’ll also teach you about
methods, which are functions that are tied to values of a certain data type.
Then, I’ll briefly cover the sequence data types (lists, tuples, and strings)
and show their differences. In the next chapter, I’ll introduce you to the
dictionary data type.

6
L I S T S

110 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The List Data Type
A list is a value that contains multiple values in an ordered sequence. The
term list value refers to the list itself (which you can store in a variable or
pass to a function, just like any other value), not the values inside the list
value. A list value looks like this: ['cat', 'bat', 'rat', 'elephant']. Just as
string values use quotation marks to mark where the string begins and
ends, a list begins with an opening square bracket and ends with a closing
square bracket, [].

We call values inside the list items. Items are separated with commas
(that is, they are comma-delimited). For example, enter the following into the
interactive shell:

>>> [1, 2, 3] # A list of three integers
[1, 2, 3]
>>> ['cat', 'bat', 'rat', 'elephant'] # A list of four strings
['cat', 'bat', 'rat', 'elephant']
>>> ['hello', 3.1415, True, None, 42] # A list of several values
['hello', 3.1415, True, None, 42]
1 >>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam
['cat', 'bat', 'rat', 'elephant']

The spam variable 1 is assigned only one value: the list value. But the
list value itself contains other values.

Note that the value [] is an empty list that contains no values, similar
to '', the empty string.

Indexes
Say you have the list ['cat', 'bat', 'rat', 'elephant'] stored in a variable
named spam. The Python code spam[0] would evaluate to 'cat', the code spam[1]
would evaluate to 'bat', and so on. The integer inside the square brackets that
follows the list is called an index. The first value in the list is at index 0, the
second value is at index 1, the third value is at index 2, and so on. Figure 6-1
shows a list value assigned to spam, along with the index expressions they’d
evaluate to. Note that because the first index is 0, the last index is the size of
the list minus one. So, a list of four items has 3 as its last index.

spam = ["cat", "bat", "rat", "elephant"]

spam[0] spam[1] spam[2] spam[3]

Figure 6-1: A list value stored in the variable
spam, showing which value each index refers to

For an example of working with indexes, enter the following expressions
into the interactive shell. We start by assigning a list to the variable spam:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[0]

Lists 111

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

'cat'
>>> spam[1]
'bat'
>>> spam[2]
'rat'
>>> spam[3]
'elephant'
>>> ['cat', 'bat', 'rat', 'elephant'][3]
'elephant'
1 >>> 'Hello, ' + spam[0]
2 'Hello, cat'
>>> 'The ' + spam[1] + ' ate the ' + spam[0] + '.'
'The bat ate the cat.'

Notice that the expression 'Hello, ' + spam[0] 1 evaluates to 'Hello, ' +
'cat' because spam[0] evaluates to the string 'cat'. This expression in turn
evaluates to the string value 'Hello, cat' 2.

Python will give you an IndexError error message if you use an index
that exceeds the number of values in your list value:

>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[10000]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 spam[10000]
IndexError: list index out of range

Lists can also contain other list values. You can access the values in
these lists of lists using multiple indexes, like so:

>>> spam = [['cat', 'bat'], [10, 20, 30, 40, 50]]
>>> spam[0]
['cat', 'bat']
>>> spam[0][1]
'bat'
>>> spam[1][4]
50

The first index dictates which list value to use, and the second indicates
the value within the list value. For example, spam[0][1] prints 'bat', the sec-
ond value in the first list.

Negative Indexes
While indexes start at 0 and go up, you can also use negative integers for
the index. For example, enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[-1] # Last index
'elephant'

112 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> spam[-3] # Third to last index
'bat'
>>> 'The ' + spam[-1] + ' is afraid of the ' + spam[-3] + '.'
'The elephant is afraid of the bat.'

The integer value -1 refers to the last index in a list, the value -2 refers
to the second to last index in a list, and so on.

Slices
Just as an index can get a single value from a list, a slice can get several val-
ues from a list, in the form of a new list. We enter a slice between square
brackets, like an index, but include two integers separated by a colon.
Notice the difference between indexes and slices:

• spam[2] is a list with an index (one integer).

• spam[1:4] is a list with a slice (two integers).

In a slice, the first integer is the index where the slice starts. The second
integer is the index where the slice ends. The list created from a slice will
go up to, but will not include, the value at the second index. For example,
enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[0:4]
['cat', 'bat', 'rat', 'elephant']
>>> spam[1:3]
['bat', 'rat']
>>> spam[0:-1]
['cat', 'bat', 'rat']

As a shortcut, you can leave out one or both of the indexes on either
side of the colon in the slice:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[:2]
['cat', 'bat']
>>> spam[1:]
['bat', 'rat', 'elephant']
>>> spam[:]
['cat', 'bat', 'rat', 'elephant']

Leaving out the first index is the same as using 0, or the beginning of
the list. Leaving out the second index is the same as using the length of the
list, which will slice to the end of the list.

Lists 113

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The len() Function
The len() function will return the number of values in a list value passed to
it. For example, enter the following into the interactive shell:

>>> spam = ['cat', 'dog', 'moose']
>>> len(spam)
3

This behavior is similar to how the function counts the number of char-
acters in a string value.

Value Updates
Normally, a variable name goes on the left side of an assignment statement,
as in spam = 42. However, you can also use an index of a list to change the
value at that index:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[1] = 'aardvark'
>>> spam
['cat', 'aardvark', 'rat', 'elephant']
>>> spam[2] = spam[1]
>>> spam
['cat', 'aardvark', 'aardvark', 'elephant']
>>> spam[-1] = 12345
>>> spam
['cat', 'aardvark', 'aardvark', 12345]

In this example, spam[1] = 'aardvark' means “Assign the value at index 1
in the list spam to the string 'aardvark'.”

Concatenation and Replication
You can concatenate and replicate lists with the + and * operators, just like
strings:

>>> [1, 2, 3] + ['A', 'B', 'C']
[1, 2, 3, 'A', 'B', 'C']
>>> ['X', 'Y', 'Z'] * 3
['X', 'Y', 'Z', 'X', 'Y', 'Z', 'X', 'Y', 'Z']
>>> spam = [1, 2, 3]
>>> spam = spam + ['A', 'B', 'C']
>>> spam
[1, 2, 3, 'A', 'B', 'C']

The + operator combines two lists to create a new list value, and the *
operator combines a list and an integer value to replicate the list.

114 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

del Statements
The del statement will delete values at an index in a list. All of the values
in the list after the deleted value will be moved up one index. For example,
enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> del spam[2]
>>> spam
['cat', 'bat', 'elephant']
>>> del spam[2]
>>> spam
['cat', 'bat']

The del statement can also operate on a simple variable to delete it, as
if it were an “unassignment” statement. If you try to use the variable after
deleting it, you’ll get a NameError error because the variable no longer exists.
In practice, you almost never need to delete simple variables, however, and
the del statement is most useful for deleting values from lists.

Working with Lists
When you first begin writing programs, you may be tempted to create many
individual variables to store a group of similar values. For example, if I
wanted to store the names of my cats, I might think to write code like this:

cat_name_1 = 'Zophie'
cat_name_2 = 'Pooka'
cat_name_3 = 'Simon'
cat_name_4 = 'Lady Macbeth'

It turns out that this is a bad way to write code. For one thing, if the
number of cats changes (and you can always have more cats), your program
will never be able to store more cats than you have variables. These pro-
grams also contain a lot of duplicate or nearly identical code. To see this
in practice, enter the following program into the file editor and save it as
allMyCats1.py:

print('Enter the name of cat 1:')
cat_name_1 = input()
print('Enter the name of cat 2:')
cat_name_2 = input()
print('Enter the name of cat 3:')
cat_name_3 = input()
print('Enter the name of cat 4:')
cat_name_4 = input()
print('The cat names are:')
print(cat_name_1 + ' ' + cat_name_2 + ' ' + cat_name_3 + ' ' + cat_name_4)

Lists 115

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Instead of using multiple, repetitive variables, you can use a single
variable that contains a list value. For example, here’s a new and improved
version of the allMyCats1.py program. This new version uses a single list and
can store any number of cats that the user enters. In a new file editor win-
dow, enter the following source code and save it as allMyCats2.py:

cat_names = []
while True:
 print('Enter the name of cat ' + str(len(cat_names) + 1) +
 ' (Or enter nothing to stop.):')
 name = input()
 if name == '':
 break
 cat_names = cat_names + [name] # List concatenation
print('The cat names are:')
for name in cat_names:
 print(' ' + name)

When you run this program, the output will look something like this:

Enter the name of cat 1 (Or enter nothing to stop.):
Zophie
Enter the name of cat 2 (Or enter nothing to stop.):
Pooka
Enter the name of cat 3 (Or enter nothing to stop.):
Simon
Enter the name of cat 4 (Or enter nothing to stop.):
Lady Macbeth
Enter the name of cat 5 (Or enter nothing to stop.):

The cat names are:
 Zophie
 Pooka
 Simon
 Lady Macbeth

The benefit of using a list is that your data is now in a structure, so your
program can process the data much more flexibly than it could with several
repetitive variables.

for Loops and Lists
In Chapter 3, you learned about using for loops to execute a block of code
a certain number of times. Technically, a for loop repeats the code block
once for each item in a list value. For example, if you ran this code

for i in range(4):
 print(i)

116 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

the output of this program would be as follows:

0
1
2
3

This is because the return value from range(4) is a sequence value that
Python considers to be similar to [0, 1, 2, 3]. The following program has
the same output as the previous one:

for i in [0, 1, 2, 3]:
 print(i)

The previous for loop actually loops through its clause with the vari-
able i set to a successive value in the [0, 1, 2, 3] list in each iteration.

A common Python technique is to use range(len(some_list)) with a for
loop to iterate over the indexes of a list. For example, enter the following
into the interactive shell:

>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']
>>> for i in range(len(supplies)):
... print('Index ' + str(i) + ' in supplies is: ' + supplies[i])
...
Index 0 in supplies is: pens
Index 1 in supplies is: staplers
Index 2 in supplies is: flamethrowers
Index 3 in supplies is: binders

Using range(len(supplies)) in the previously shown for loop is handy
because the code in the loop can access the index (as the variable i) and the
value at that index (as supplies[i]). Best of all, range(len(supplies)) will iterate
through all the indexes of supplies, no matter how many items the list contains.

The in and not in Operators
You can determine whether a value is or isn’t in a list with the in and not
in operators. Like other operators, in and not in occur in expressions and
connect two values: a value to look for in a list and the list where it may be
found. These expressions will evaluate to a Boolean value. To see how they
work, enter the following into the interactive shell:

>>> 'howdy' in ['hello', 'hi', 'howdy', 'heyas']
True
>>> spam = ['hello', 'hi', 'howdy', 'heyas']
>>> 'cat' in spam
False
>>> 'howdy' not in spam
False
>>> 'cat' not in spam
True

Lists 117

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The following program lets the user enter a pet name and then checks
whether the name is in a list of pets. Open a new file editor window, enter
the following code, and save it as myPets.py:

my_pets = ['Zophie', 'Pooka', 'Fat-tail']
print('Enter a pet name:')
name = input()
if name not in my_pets:
 print('I do not have a pet named ' + name)
else:
 print(name + ' is my pet.')

The output may look something like this:

Enter a pet name:
Footfoot
I do not have a pet named Footfoot

Keep in mind that the not in operator is distinct from the Boolean
not operator.

The Multiple Assignment Trick
The multiple assignment trick (technically called tuple unpacking) is a shortcut
that lets you assign multiple variables with the values in a list in one line of
code. So, instead of doing this

>>> cat = ['fat', 'gray', 'loud']
>>> size = cat[0]
>>> color = cat[1]
>>> disposition = cat[2]

you could enter this line of code:

>>> cat = ['fat', 'gray', 'loud']
>>> size, color, disposition = cat

The number of variables and the length of the list must be exactly
equal, or Python will give you a ValueError:

>>> cat = ['fat', 'gray', 'loud']
>>> size, color, disposition, name = cat
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 size, color, disposition, name = cat
ValueError: not enough values to unpack (expected 4, got 3)

This trick makes your code shorter and more readable than entering
three separate lines of code.

118 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

List Item Enumeration
Instead of using the range(len(some_list)) technique with a for loop to obtain
the integer index of the items in the list, you can call the enumerate() function.
On each iteration of the loop, enumerate() will return two values: the index
of the item in the list, and the item in the list itself. For example, this code is
equivalent to the code in “Using for Loops with Lists” on page XX:

>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']
>>> for index, item in enumerate(supplies):
... print('Index ' + str(index) + ' in supplies is: ' + item)
...
Index 0 in supplies is: pens
Index 1 in supplies is: staplers
Index 2 in supplies is: flamethrowers
Index 3 in supplies is: binders

The enumerate() function is useful if you need both the item and the
item’s index in the loop’s block.

Random Selection and Ordering
The random module has a couple of functions that accept lists for arguments.
The random.choice() function will return a randomly selected item from the
list. Enter the following into the interactive shell:

>>> import random
>>> pets = ['Dog', 'Cat', 'Moose']
>>> random.choice(pets)
'Cat'
>>> random.choice(pets)
'Cat'
>>> random.choice(pets)
'Dog'

You can consider random.choice(some_list) to be a shorter form of someList
[random.randint(0, len(some_list) – 1].

The random.shuffle() function will reorder the items in a list in place.
Enter the following into the interactive shell:

>>> import random
>>> people = ['Alice', 'Bob', 'Carol', 'David']
>>> random.shuffle(people)
>>> people
['Carol', 'David', 'Alice', 'Bob']
>>> random.shuffle(people)
>>> people
['Alice', 'David', 'Bob', 'Carol']

This function modifies the list in place, rather than returning a new list.

Lists 119

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Augmented Assignment Operators
The + and * operators that work with strings also work with lists, so let’s
take a short detour to learn about augmented assignment operators. When
assigning a value to a variable, you’ll frequently use the variable itself. For
example, after assigning 42 to the variable spam, you would increase the
value in spam by 1 with the following code:

>>> spam = 42
>>> spam = spam + 1
>>> spam
43

As a shortcut, you can use the augmented assignment operator += (which
is the regular operator followed by one equal sign) to do the same thing:

>>> spam = 42
>>> spam += 1
>>> spam
43

There are augmented assignment operators for the +, -, *, /, and % oper-
ators, described in Table 6-1.

Table 6-1: The Augmented Assignment Operators

Augmented assignment statement Equivalent assignment statement

spam += 1 spam = spam + 1

spam -= 1 spam = spam - 1

spam *= 1 spam = spam * 1

spam /= 1 spam = spam / 1

spam %= 1 spam = spam % 1

The += operator can also do string and list concatenation, and the *=
operator can do string and list replication. Enter the following into the
interactive shell:

>>> spam = 'Hello,'
>>> spam += ' world!' # Same as spam = spam + 'world!'
>>> spam
'Hello, world!'
>>> bacon = ['Zophie']
>>> bacon *= 3 # Same as bacon = bacon * 3
>>> bacon
['Zophie', 'Zophie', 'Zophie']

Like the multiple assignment trick, augmented assignment operators
are a shortcut to make your code simpler and more readable.

120 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Methods
A method is the same thing as a function, except it is called on a value. For
example, if a list value were stored in spam, you would call the index() list
method (which I’ll explain shortly) on that list like so: spam .index('hello').
The method part comes after the value, separated by a period.

Each data type has its own set of methods. The list data type, for exam-
ple, has several useful methods for finding, adding, removing, and other-
wise manipulating values in a list. Think of a method as a function that is
always associated with a value. In our spam list example, the function would
hypothetically be index(spam, 'hello'). But since index() is a list method and
not a function, we call spam .index('hello'). Calling index() on a list value is
how Python knows index() is a list method. Let’s learn about the list meth-
ods in Python.

Finding Values
List values have an index() method that can be passed a value. If that value
exists in the list, the method will return the index of the value. If the value
isn’t in the list, then Python produces a ValueError error. Enter the following
into the interactive shell:

>>> spam = ['hello', 'hi', 'howdy', 'heyas']
>>> spam .index('hello')
0
>>> spam .index('heyas')
3
>>> spam .index('howdy howdy howdy')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 spam .index('howdy howdy howdy')
ValueError: 'howdy howdy howdy' is not in list

When the list contains duplicates of the value, the method returns the
index of its first appearance:

>>> spam = ['Zophie', 'Pooka', 'Fat-tail', 'Pooka']
>>> spam .index('Pooka')
1

Notice that index() returns 1, not 3.

Adding Values
To add new values to a list, use the append() and insert() methods. The
append() method adds the argument to the end of the list:

>>> spam = ['cat', 'dog', 'bat']
>>> spam.append('moose')
>>> spam
['cat', 'dog', 'bat', 'moose']

Lists 121

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The insert() method can insert a value at any index in the list. The first
argument to insert() is the index of the new value, and the second argu-
ment is the new value to be inserted. Enter the following into the interac-
tive shell:

>>> spam = ['cat', 'dog', 'bat']
>>> spam .insert(1, 'chicken')
>>> spam
['cat', 'chicken', 'dog', 'bat']

Notice that the code doesn’t perform any assignment operation, such as
spam = spam.append('moose') or spam = spam .insert(1, 'chicken'). The return value
of append() and insert() is None, so you definitely wouldn’t want to store it as
the new variable value. Rather, these methods modify the list in place, a topic
covered in more detail in “Mutable and Immutable Data Types” on page XX.

Methods belong to a single data type. The append() and insert() meth-
ods are list methods, and we can call them on list values only, not on values
of other data types, such as strings or integers. To see what happens when
we try to do so, enter the following into the interactive shell:

>>> eggs = 'hello'
>>> eggs.append('world')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 eggs.append('world')
AttributeError: 'str' object has no attribute 'append'
>>> bacon = 42
>>> bacon .insert(1, 'world')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 bacon .insert(1, 'world')
AttributeError: 'int' object has no attribute 'insert'

Note the AttributeError error messages that show up.

Removing Values
The remove() method accepts a value to remove from the list on which
it’s called:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam.remove('bat')
>>> spam
['cat', 'rat', 'elephant']

Attempting to delete a value that doesn’t exist in the list will result in a
ValueError error. For example, enter the following into the interactive shell
and notice the error it displays:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam.remove('chicken')

122 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 spam.remove('chicken')
ValueError: list.remove(x): x not in list

If the value appears multiple times in the list, the method will remove
only the first instance of it:

>>> spam = ['cat', 'bat', 'rat', 'cat', 'hat', 'cat']
>>> spam.remove('cat')
>>> spam
['bat', 'rat', 'cat', 'hat', 'cat']

The del statement is useful when you know the index of the value you
want to remove from the list, while the remove() method is useful when you
know the value itself.

Sorting Values
You can sort lists of number values or lists of strings with the sort() method.
For example, enter the following into the interactive shell:

>>> spam = [2, 5, 3.14, 1, -7]
>>> spam.sort()
>>> spam
[-7, 1, 2, 3.14, 5]
>>> spam = ['Ants', 'Cats', 'Dogs', 'Badgers', 'Elephants']
>>> spam.sort()
>>> spam
['Ants', 'Badgers', 'Cats', 'Dogs', 'Elephants']

The method returns the numbers in numerical order and the strings in
alphabetical order. You can also pass True as the reverse keyword argument
to sort the values in reverse order:

>>> spam.sort(reverse=True)
>>> spam
['Elephants', 'Dogs', 'Cats', 'Badgers', 'Ants']

Note three things about the sort() method. First, it sorts the list in place;
don’t try to capture the return value by writing code like spam = spam.sort().

Second, you can’t sort lists that have both number values and string
values in them, as Python doesn’t know how to compare these values. Enter
the following into the interactive shell and notice the TypeError error:

>>> spam = [1, 3, 2, 4, 'Alice', 'Bob']
>>> spam.sort()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 spam.sort()
TypeError: '<' not supported between instances of 'str' and 'int'

Lists 123

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Third, sort() uses ASCIIbetical order rather than actual alphabetical
order for sorting strings. This means uppercase letters come before lower-
case letters, placing the lowercase a after the uppercase Z. For an example,
enter the following into the interactive shell:

>>> spam = ['Alice', 'ants', 'Bob', 'badgers', 'Carol', 'cats']
>>> spam.sort()
>>> spam
['Alice', 'Bob', 'Carol', 'ants', 'badgers', 'cats']

If you need to sort the values in regular alphabetical order, pass
str.lower for the key keyword argument in the sort() method call:

>>> spam = ['a', 'z', 'A', 'Z']
>>> spam.sort(key=str.lower)
>>> spam
['a', 'A', 'z', 'Z']

This argument causes the sort() function to treat all the items in the
list as if they were lowercase without actually changing the values in the list.

Reversing Values
If you need to quickly reverse the order of the items in a list, you can call
the reverse() list method. Enter the following into the interactive shell:

>>> spam = ['cat', 'dog', 'moose']
>>> spam.reverse()
>>> spam
['moose', 'dog', 'cat']

Like the sort() list method, reverse() doesn’t return a list, which is why
we write spam.reverse() instead of spam = spam.reverse().

E XCEP T IONS TO INDEN TAT ION RUL ES IN PY T HON

In most cases, the amount of indentation for a line of code tells Python what
block it’s in . There are some exceptions to this rule, however . For example, lists
can actually span several lines in the source code file . The indentation of these
lines doesn’t matter; Python knows that the list isn’t finished until it sees the end-
ing square bracket . This means you can write code that looks like this:

spam = ['apples',
 'oranges',
 'bananas',
'cats']
print(spam[0]) # Prints apples

(continued)

124 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Of course, practically speaking, most people use Python’s behavior to
make their lists look pretty and readable, like the messages list in “A Short
Program: Magic 8 Ball with a List” on page XX .

You can also split up a single instruction across multiple lines by ending
each line with the line continuation character (\) . Think of \ as saying, “This
instruction continues on the next line .” The indentation on the line after a \ line
continuation isn’t significant . For example, the following is valid Python code:

print('Four score and seven ' + \
 'years ago...')

These tricks are useful when you want to rearrange long lines of Python
code to be a bit more readable .

Short-Circuiting Boolean Operators
Boolean operators have a subtle behavior that is easy to miss. Recall that if
either of the values combined by an and operator is False, the entire expres-
sion is False, and if either value combined by an or operator is True, the
entire expression is True. If I presented you with the expression False and
spam, it doesn’t matter whether the spam variable is True or False because the
entire expression would be False either way. The same goes for True or spam;
this evaluates to True no matter the value of spam.

Python (and many other programming languages) use this fact to opti-
mize the code so that it runs a little faster by not examining the right-hand
side of the Boolean operator at all. This shortcut is called short-circuiting.
Most of the time, your program will behave the same way it would have if
Python checked the entire expression (albeit a few microseconds faster).
However, consider this short program, where we check whether the first
item in a list is 'cat':

spam = ['cat', 'dog']
if spam[0] == 'cat':
 print('A cat is the first item.')
else:
 print('The first item is not a cat.')

As written, this program prints A cat is the first item. But if the list
in spam is empty, the spam[0] code will cause an IndexError: list Index out
of range error. To fix this, we’ll adjust the if statement’s condition to take
advantage of short-circuiting:

spam = []
if len(spam) > 0 and spam[0] == 'cat':
 print('A cat is the first item.')

Lists 125

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

else:
 print('The first item is not a cat.')

This program never has an error, because if len(spam) > 0 is False (that
is, the list in spam is empty), then short-circuiting the and operator means
that Python doesn’t bother running the spam[0] == 'cat' code that would
cause the IndexError error. Keep this short-circuiting behavior in mind when
you write code that involves the and and or operators.

A Short Program: Magic 8 Ball with a List
Using lists, you can write a much more elegant version of Chapter 4’s
magic8ball.py program. Instead of several lines of nearly identical elif state-
ments, you can create a single list that the code works with. Open a new file
editor window and enter the following code. Save it as magic8Ball2.py:

import random

messages = ['It is certain',
 'It is decidedly so',
 'Yes definitely',
 'Reply hazy try again',
 'Ask again later',
 'Concentrate and ask again',
 'My reply is no',
 'Outlook not so good',
 'Very doubtful']

print('Ask a yes or no question:')
input('>')
print(messages[random.randint(0, len(messages) - 1)])

When you run it, you’ll see that it works the same as the previous
magic8Ball.py program.

The random.randint(0, len(messages) - 1) call produces a random num-
ber to use for the index, regardless of the size of messages. That is, you’ll get
a random number between 0 and the value of len(messages) - 1. The benefit
of this approach is that you can easily add and remove strings to and from
the messages list without changing other lines of code. If you later update
your code, you’ll have to change fewer lines, producing fewer chances for
you to introduce bugs.

Selecting a random item from a list is common enough that Python
has the random.choice(messages) function that does the same thing as random.
rand int(0, len(messages) – 1).

Sequence Data Types
Lists aren’t the only data types that represent ordered sequences of values.
For example, strings and lists are actually similar if you consider a string to

126 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

be a “list” of single text characters. The Python sequence data types include
lists, strings, range objects returned by range(), and tuples (explained in
“The Tuple Data Type” on page XX). Many of the things you can do with
lists can also be done with strings and other values of sequence types. To
see this, enter the following into the interactive shell:

>>> name = 'Zophie'
>>> name[0]
'Z'
>>> name[-2]
'i'
>>> name[0:4]
'Zoph'
>>> 'Zo' in name
True
>>> 'z' in name
False
>>> 'p' not in name
False
>>> for i in name:
... print('* * * ' + i + ' * * *')
...
* * * Z * * *
* * * o * * *
* * * p * * *
* * * h * * *
* * * i * * *
* * * e * * *

You can do all the same things with sequence values that you can do with
lists: indexing, slicing, for loops, len(), and the in and not in operators.

Mutable and Immutable Data Types
But lists and strings differ in an important way. A list value is a mutable data
type: you can add, remove, or change its values. However, a string is immutable:
it cannot be changed. Trying to reassign a single character in a string results
in a TypeError error, as you can see by entering the following into the interac-
tive shell:

>>> name = 'Zophie a cat'
>>> name[7] = 'the'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 name[7] = 'the'
TypeError: 'str' object does not support item assignment

The proper way to “mutate” a string is to use slicing and concatenation
to build a new string by copying from parts of the old string:

>>> name = 'Zophie a cat'
>>> new_name = name[0:7] + 'the' + name[8:12]
>>> name

Lists 127

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

'Zophie a cat'
>>> new_name
'Zophie the cat'

We used [0:7] and [8:12] to refer to the characters we don’t wish to
replace. Notice that the original 'Zophie a cat' string isn’t modified, because
strings are immutable.

Although a list value is mutable, the second line in the following code
doesn’t modify the list eggs:

>>> eggs = ['A', 'B', 'C']
>>> eggs = ['x', 'y', 'z']
>>> eggs
['x', 'y', 'z']

The list value in eggs isn’t being changed here; rather, a new and
entirely different list value (['x', 'y', 'z']) is replacing the old list value
(['A', 'B', 'C']).

If you wanted to actually modify the original list in eggs to contain ['x',
'y', 'z'], you would have to use del statements and the append() method,
like this:

>>> eggs = ['A', 'B', 'C']
>>> del eggs[2]
>>> del eggs[1]
>>> del eggs[0]
>>> eggs.append('x')
>>> eggs.append('y')
>>> eggs.append('z')
>>> eggs
['x', 'y', 'z']

In this example, the eggs variable ends up with the same list value it
started with. It’s just that this list has been changed (mutated) rather than
overwritten. We call this changing the list in place.

Mutable versus immutable types may seem like a meaningless distinc-
tion, but “References” on page XX will explain the different behavior when
calling functions with mutable arguments versus immutable arguments.
First, however, let’s find out about the tuple data type, which is an immu-
table form of the list data type.

The Tuple Data Type
There are only two differences between the tuple data type and the list data
type. The first difference is that you write tuples using parentheses instead of
square brackets. For example, enter the following into the interactive shell:

>>> eggs = ('hello', 42, 0.5)
>>> eggs[0]
'hello'
>>> eggs[1:3]

128 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

(42, 0.5)
>>> len(eggs)
3

The second and primary way that tuples are different from lists is that
tuples, like strings, are immutable: you can’t modify, append, or remove
their values. Enter the following into the interactive shell, and look at the
resulting TypeError error message:

>>> eggs = ('hello', 42, 0.5)
>>> eggs[1] = 99
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 eggs[1] = 99
TypeError: 'tuple' object does not support item assignment

If you have only one value in your tuple, you can indicate this by plac-
ing a trailing comma after the value inside the parentheses. Otherwise,
Python will think you’ve entered a value inside regular parentheses.
(Unlike some other programming languages, it’s fine to have a trailing
comma after the last item in a list or tuple in Python.) Enter the following
type() function calls into the interactive shell to see the distinction:

>>> type(('hello',))
<class 'tuple'>
>>> type(('hello'))
<class 'str'>

You can use tuples to convey to anyone reading your code that you
don’t intend for that sequence of values to change. If you need an ordered
sequence of values that never changes, use a tuple. A second benefit of using
tuples instead of lists is that, because they’re immutable and their contents
don’t change, Python can implement optimizations that make code using
tuples slightly faster than code using lists.

List and Tuple Type Conversion
Just as str(42) will return '42', the string representation of the integer 42, the
functions list() and tuple() will return list and tuple versions of the values
passed to them. Enter the following into the interactive shell, and notice that
the return value is of a different data type than the value passed:

>>> tuple(['cat', 'dog', 5])
('cat', 'dog', 5)
>>> list(('cat', 'dog', 5))
['cat', 'dog', 5]
>>> list('hello')
['h', 'e', 'l', 'l', 'o']

Converting a tuple to a list is handy if you need a mutable version of a
tuple value.

Lists 129

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

References
A common metaphor is that variables are boxes that “store” values like strings
and integers. However, this explanation is a simplification of what Python
is actually doing. A better metaphor is that variables are paper name tags
attached to values with string. Enter the following into the interactive shell:

1 >>> spam = 42
2 >>> eggs = spam
3 >>> spam = 99
>>> spam
99
>>> eggs
42

When you assign 42 to the spam variable, you’re actually creating the
42 value in the computer’s memory and storing a reference to it in the spam
variable. When you copy the value in spam and assign it to the variable eggs,
you’re copying the reference. Both the spam and eggs variables refer to the
42 value in the computer’s memory. Using the name tag metaphor for vari-
ables, you’ve attached the spam name tag and the eggs name tag to the same
42 value. When you assign spam a new 99 value, you’ve changed what the spam
name tag references. Figure 6-2 is a graphical depiction of the code.

Figure 6-2: Variable assignment doesn’t rewrite
the value; it changes the reference.

The change doesn’t affect eggs, which still refers to the 42 value.
But lists don’t work this way, because list values can change; that is, lists

are mutable. Here is code that will make this distinction easier to understand.
Enter it into the interactive shell:

1 >>> spam = [0, 1, 2, 3]
2 >>> eggs = spam # The reference, not the list, is being copied.
3 >>> eggs[1] = 'Hello!' # This changes the list value.
>>> spam
[0, 'Hello!', 2, 3]
>>> eggs # The cheese variable refers to the same list.
[0, 'Hello!', 2, 3]

This code might look odd to you. It touched only the cheese list, but
both the eggs and spam lists seem to have changed.

130 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

When you create the list 1, you assign a reference to it in the spam vari-
able. But the next line copies only the list reference in spam to cheese, not the
list value itself. There is still only one list, and spam and cheese now both refer
to it. The reason there is only one underlying list is that the list itself was never
actually copied. So, when you modify the first element of cheese 2, you’re
modifying the same list that spam refers to. You can see this in Figure 6-3.

Figure 6-3: Because spam and eggs refer to the same list,
changing one changes the other.

It becomes a bit more complicated, as lists also don’t contain a sequence
of values directly, but rather a sequence of references to values. I explain
this further in “The copy() and deepcopy() Functions” on page XX.

Although Python variables technically contain references to values,
people often casually say that the variable contains the value. But keep these
two rules in mind:

• In Python, variables never contain values. They contain only references
to values.

• In Python, the = assignment operator copies only references. It never
copies values.

For the most part, you don’t need to know these details, but at times,
these simple rules have surprising effects, and you should understand
exactly what Python is doing.

Arguments
References are particularly important for understanding how arguments
get passed to functions. When a function is called, Python copies to the
parameter variables the reference to the arguments. For mutable values
like lists (and dictionaries, which I’ll describe in Chapter 7), this means the
code in the function modifies the original value in place. To see the con-
sequences of this fact, open a new file editor window, enter the following
code, and save it as passingReference.py:

def eggs(some_parameter):
 some_parameter.append('Hello')

spam = [1, 2, 3]
eggs(spam)
print(spam) # Prints [1, 2, 3, 'Hello']

Lists 131

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Notice that when you call eggs(), a return value doesn’t assign a new
value to spam. Instead, it directly modifies the list in place. When run, this
program outputs [1, 2, 3, 'Hello'].

Even though spam and some_parameter contain separate references, they
both refer to the same list. This is why the append('Hello') method call
inside the function affects the list even after the function call has returned.

Keep this behavior in mind. Forgetting that Python handles list and
dictionary variables in this way can lead to unexpected behavior and con-
fusing bugs.

The copy() and deepcopy() Functions
Although passing around references is often the handiest way to deal with
lists and dictionaries, if the function modifies the list or dictionary passed
to it, you may not want these changes in the original list or dictionary value.
To control this behavior, Python provides a module named copy that pro-
vides both the copy() and deepcopy() functions. The first of these, copy .copy(),
can make a duplicate copy of a mutable value like a list or dictionary, not
just a copy of a reference. Enter the following into the interactive shell:

>>> import copy
>>> spam = ['A', 'B', 'C']
>>> cheese = copy .copy(spam) # Creates a duplicate copy of the list
>>> cheese[1] = 42 # Changes cheese
>>> spam # The spam variable is unchanged.
['A', 'B', 'C']
>>> cheese # The cheese variable is changed.
['A', 42, 'C']

Now the spam and cheese variables refer to separate lists, which is why
only the list in cheese is modified when you assign 42 at index 1.

Just as variables refer to values rather than contain values, lists contain
references to values rather than values themselves. You can see this in Figure 6-4.

Figure 6-4: Lists don’t contain values directly (left);
they contain references to values (right).

If the list you need to copy contains lists, use the copy.deepcopy() func-
tion instead of copy .copy(). The copy.deepcopy() function will copy these
inner lists as well.

132 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

A Short Program: The Matrix Screensaver
In the hacker science fiction film The Matrix, computer monitors display
streams of glowing green numbers, like digital rain pouring down a glass
window. The numbers may be meaningless, but they look cool. Just for fun,
we can create our own Matrix screensaver in Python. Enter the following
code into a new file and save it as matrixscreensaver.py:

import random, sys, time

WIDTH = 70 # The number of columns

try:
 # For each column, when the counter is 0, no stream is shown.
 # Otherwise, it acts as a counter for how many times a 1 or 0
 # should be displayed in that column.
 columns = [0] * WIDTH
 while True:
 # Loop over each column:
 for i in range(WIDTH):
 if random.random() < 0.02:
 # Restart a stream counter on this column.
 # The stream length is between 4 and 14 characters long.
 columns[i] = random.randint(4, 14)

 # Print a character in this column:
 if columns[i] == 0:
 # Change this ' '' to '.' to see the empty spaces:
 print(' ', end='')
 else:
 # Print a 0 or 1:
 print(random.choice([0, 1]), end='')
 columns[i] -= 1 # Decrement the counter for this column.
 print() # Print a newline at the end of the row of columns.
 time.sleep(0.1) # Each row pauses for one tenth of a second.
except KeyboardInterrupt:
 sys.exit() # When Ctrl-C is pressed, end the program.

When you run this program, it produces streams of binary 1s and 0s, as
in Figure 6-5.

Lists 133

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 6-5: The Matrix screensaver program

Like the previous spike and zigzag programs, this program creates a
scrolling animation by printing rows of text inside an infinite loop that is
stopped when the user presses ctrl-C. The main data structure in this
program is the columns list, which holds 70 integers, one for each column
of output. When an integer in columns is 0, it prints an empty space for that
column. When it’s greater than 0, it randomly prints a 0 or 1 and then decre-
ments the integer. Once the integer is reduced to 0, that column prints an
empty space again. The program randomly sets the integers in columns to
integers between 4 and 14 to produce streams of random binary 0s and 1s.

Let’s take a look at each part of the program:

import random, sys, time

WIDTH = 70 # The number of columns

We import the random module for its choice() and random() functions, the
sys module for its exit() function, and the time module for its sleep() func-
tion. We also set a variable named WIDTH to 70 so that the program produces
output for 70 columns of characters. You’re free to change this value to a
larger or smaller integer based on the size of the window in which you run
the program.

The WIDTH variable has an all-uppercase name because it’s a constant
variable. A constant is a variable that the code isn’t supposed to change
once set. Using constants allows you to write more readable code, such
as columns = [0] * WIDTH instead of columns = [0] * 70, which may leave you
wondering what the 70 is supposed to be when you reread the code later.
In Python, nothing prevents you from changing a constant’s value, but the
uppercase name can remind the programmer not to do so.

134 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The bulk of the program occurs inside a try block, which catches if the
user presses ctrl-C to raise a KeyboardInterrupt exception:

try:
 # For each column, when the counter is 0, no stream is shown.
 # Otherwise, it acts as a counter for how many times a 1 or 0
 # should be displayed in that column.
 columns = [0] * WIDTH

The columns variable contains a list of 0 integers. The number of inte-
gers in this list is equal to the WIDTH. Each of these integers controls whether
a column of the output window prints a stream of binary numbers or not:

 while True:
 # Loop over each column:
 for i in range(WIDTH):
 if random.random() < 0.02:
 # Restart a stream counter on this column.
 # The stream length is between 4 and 14 characters long.
 columns[i] = random.randint(4, 14)

We want this program to run forever, so we place it all inside an infinite
while True: loop. Inside this loop is a for loop that iterates over each column
of a single row. The loop variable i represents the indexes of columns; it
begins at 0 and goes up to but does not include WIDTH. The value in columns[0]
represents what should be printed in the leftmost column, columns[1] does
so for the second column from the left, and so on.

For each column, there is a two percent chance that the integer at
columns[i] is set to a number between 4 and 14. We calculate this chance by
comparing random.random() (a function that returns a random float between
0.0 and 1.0) to 0.02. If you want the streams to be denser or sparser, you can
increase or decrease this number, respectively. We set the counter integers
for each column to a random number between 4 and 14:

 # Print a character in this column:
 if columns[i] == 0:
 # Change this ' '' to '.' to see the empty spaces:
 print(' ', end='')
 else:
 # Print a 0 or 1:
 print(random.choice([0, 1]), end='')
 columns[i] -= 1 # Decrement the counter for this column.

Also inside the for loop, the program determines if it should print a
random 0 or 1 binary number or an empty space. If columns[i] is 0, it prints
an empty space. Otherwise, it passes the list [0, 1] to the random.choice()
function, which returns a random value from that list to print. The code
also decrements the counter at columns[i] so that it gets closer to 0 and no
longer prints binary numbers.

Lists 135

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you’d like to see the “empty” spaces the program prints, try changing
the ' ' string to '.' and running the program again. The output should
look like this:

............................1...

................0...........1......................1..................

................1...........0................1.....0..................

............1...0...........0.....0..........1.....0..................

............1.1.1...........0.....0..........1.....1..1...............

............0.0.0...........0.....1.........00.....1..1...............

After the else block ends, the for loop block also ends:

 print() # Print a newline at the end of the row of columns.
 time.sleep(0.1) # Each row pauses for one tenth of a second.
except KeyboardInterrupt:
 sys.exit() # When Ctrl-C is pressed, end the program.

The print() call after the for loop prints a newline, as the previous
print() calls for each column pass the end='' keyword argument to prevent
a newline from being printed after each column. For each row printed, the
program introduces a tenth-of-a-second pause by calling time.sleep(0.1).

The final part of the program is an except block that exits the program
if the user pressed ctrl-C to raise a KeyboardInterrupt exception.

Summary
Lists are useful data types, as they allow you to write code that works on a
modifiable number of values in a single variable. Later in this book, you’ll
see programs that use lists to do things that would otherwise be difficult
or impossible.

A list is a sequence data type that is mutable, meaning that its contents
can change. Tuples and strings, though also sequence data types, are immu-
table and cannot be changed. We can overwrite a variable that contains a
tuple or string value with a new tuple or string value, which isn’t the same
thing as modifying the existing value in place—as, say, the append() or
remove() method does on lists.

Variables don’t store list values directly; they store references to lists.
This is an important distinction when you’re copying variables or passing
lists as arguments in function calls. Because the value that is being copied
is the list reference, be aware that any changes you make to the list might
impact another variable in your program. You can use copy() or deepcopy()
if you want to make changes to a list in one variable without modifying the
original list.

136 Chapter 6

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Practice Questions
 1. What is []?

 2. How would you assign the value 'hello' as the third value in a list stored
in a variable named spam? (Assume spam contains [2, 4, 6, 8, 10].)

 For the following three questions, assume spam contains the list ['a', 'b',
'c', 'd'].

 3. What does spam[int(int('3' * 2) // 11)] evaluate to?

 4. What does spam[-1] evaluate to?

 5. What does spam[:2] evaluate to?

 For the following three questions, assume bacon contains the list [3.14,
'cat', 11, 'cat', True].

 6. What does bacon .index('cat') evaluate to?

 7. What does bacon.append(99) make the list value in bacon look like?

 8. What does bacon.remove('cat') make the list value in bacon look like?

 9. What are the operators for list concatenation and list replication?

 10. What is the difference between the append() and insert() list methods?

 11. What are two ways to remove values from a list?

 12. Name a few ways that list values are similar to string values.

 13. What is the difference between lists and tuples?

 14. How do you write the tuple value that has just the integer value 42 in it?

 15. How can you get the tuple form of a list value? How can you get the list
form of a tuple value?

 16. Variables that “contain” list values don’t actually contain lists directly.
What do they contain instead?

 17. What is the difference between copy .copy() and copy.deepcopy()?

Practice Programs
For practice, write programs to do the following tasks.

Comma Code
Say you have a list value like this:

spam = ['apples', 'bananas', 'tofu', 'cats']

Write a function that takes a list value as an argument and returns
a string with all the items separated by a comma and a space, with and
inserted before the last item. For example, passing the previous spam list to
the function would return 'apples, bananas, tofu, and cats'. But your func-
tion should be able to work with any list value passed to it. Be sure to test the
case where an empty list [] is passed to your function.

Lists 137

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Coin Flip Streaks
For this exercise, we’ll try doing an experiment. If you flip a coin 100 times
and write down an H for each heads and a T for each tails, you’ll create a
list that looks like T T T T H H H H T T. If you ask a human to make up 100
random coin flips, you’ll probably end up with alternating heads-tails results
like H T H T H H T H T T—which looks random (to humans), but isn’t math-
ematically random. A human will almost never write down a streak of six
heads or six tails in a row, even though it is highly likely to happen in truly
random coin flips. Humans are predictably bad at being random.

Write a program to find out how often a streak of six heads or a streak
of six tails comes up in a randomly generated list of 100 heads and tails.
Your program should break up the experiment into two parts: the first part
generates a list of 100 randomly selected 'H' and 'T' values, and the sec-
ond part checks if there is a streak in it. Put all of this code in a loop that
repeats the experiment 10,000 times so that you can find out what percent-
age of the coin flips contains a streak of six heads or six tails in a row. As a
hint, the function call random.randint(0, 1) will return a 0 value 50 percent
of the time and a 1 value the other 50 percent of the time.

You can start with the following template:

import random
number_of_streaks = 0
for experiment_number in range(10000): # Run 100,000 experiments total.
 # Code that creates a list of 100 'heads' or 'tails' values

 # Code that checks if there is a streak of 6 heads or tails in a row

print('Chance of streak: %s%%' % (number_of_streaks / 100))

Of course, this is only an estimate, but 10,000 is a decent sample size.
Some knowledge of mathematics could give you the exact answer and save
you the trouble of writing a program, but programmers are notoriously bad
at math.

To create a list, use a for loop that appends a randomly selected 'H' or
'T' to a list 100 times. To determine if there is a streak of six heads or six
tails, create a slice like some_list[i:i + 6] (which contains the six items start-
ing at index i) and then compare it to the list values ['H', 'H', 'H', 'H',
'H', 'H'] and ['T', 'T', 'T', 'T', 'T', 'T'].

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This chapter covers the dictionary data type,
which provides a flexible way to access and

organize data. By combining dictionaries with
your knowledge of lists from the previous chap-

ter, you’ll also learn how to create a data structure to
model a chessboard.

The Dictionary Data Type
Like a list, a dictionary is a mutable collection of many values. But unlike
indexes for lists, indexes for dictionaries can use many different data types,
not just integers. These dictionary indexes are called keys, and a key with its
associated value is called a key-value pair.

In code, a dictionary is entered between curly brackets ({}). Enter the
following into the interactive shell:

>>> my_cat = {'size': 'fat', 'color': 'gray', 'age': 17}

7
D I C T I O N A R I E S A N D
S T R U C T U R I N G D A T A

140 Chapter 7

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This assigns a dictionary to the my_cat variable. This dictionary’s keys
are 'size', 'color', and 'age'. The values for these keys are 'fat', 'gray', and
17, respectively. You can access these values through their keys:

>>> my_cat['size']
'fat'
>>> 'My cat has ' + my_cat['color'] + ' fur.'
'My cat has gray fur.'

Using dictionaries, you can store multiple pieces of data about the
same thing in a single variable. This my_cat variable contains three different
strings describing my cat, and I can use it as an argument or return value in
a function call, saving me from needing to create three separate variables.

Dictionaries can still use integer values as keys, just like lists use inte-
gers for indexes, but they don’t have to start at 0 and can be any number:

>>> spam = {12345: 'Luggage Combination', 42: 'The Answer'}
>>> spam[12345]
'Luggage Combination'
>>> spam[42]
'The Answer'
>>> spam[0]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 0

Dictionaries have keys, not indexes. In this example, while the diction-
ary in spam has integer keys 12345 and 42, it doesn’t have an index 0 through
41 like a list would.

Comparing Dictionaries and Lists
Unlike lists, items in dictionaries are unordered. The first item in a list
named spam would be spam[0]. But there is no “first” item in a dictionary.
While the order of items matters for determining whether two lists are the
same, you can enter the key-value pairs of a dictionary in any order. Enter
the following into the interactive shell:

>>> spam = ['cats', 'dogs', 'moose']
>>> bacon = ['dogs', 'moose', 'cats']
>>> spam == bacon # The order of list items matters.
False
>>> eggs = {'name': 'Zophie', 'species': 'cat', 'age': '8'}
>>> ham = {'species': 'cat', 'age': '8', 'name': 'Zophie'}
>>> eggs == ham # The order of dictionary key-value pairs doesn't matter.
True

The eggs and ham dictionaries are identical values even though we
entered their key-value pairs in different orders. Because a dictionary isn’t
ordered, it isn’t a sequence data type and can’t be sliced like a list.

Dictionaries and Structuring Data 141

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Trying to access a key that doesn’t exist in a dictionary will result in
a KeyError error message, much like a list’s “out-of-range” IndexError error
message. Enter the following into the interactive shell, and notice the error
message that shows up because there is no 'color' key:

>>> spam = {'name': 'Zophie', 'age': 7}
>>> spam['color']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 spam['color']
KeyError: 'color'

Though dictionaries aren’t ordered, the fact that you can use arbitrary
values as keys allows you to organize your data in powerful ways. Say you
wanted your program to store data about your friends’ birthdays. You can use
a dictionary with the names as keys and the birthdays as values. Open a new
file editor window and enter the following code, then save it as birthdays.py:

1 birthdays = {'Alice': 'Apr 1', 'Bob': 'Dec 12', 'Carol': 'Mar 4'}

while True:
 print('Enter a name: (blank to quit)')
 name = input()
 if name == '':
 break

 2 if name in birthdays:
 3 print(birthdays[name] + ' is the birthday of ' + name)
 else:
 print('I do not have birthday information for ' + name)
 print('What is their birthday?')
 bday = input()
 4 birthdays[name] = bday
 print('Birthday database updated.')

The code creates an initial dictionary and stores it in birthdays 1. You
can see if the entered name exists as a key in the dictionary with the in key-
word 2, just as you did for lists. If the name is in the dictionary, you access
the associated value using square brackets 3; if not, you can add it using
the same square bracket syntax combined with the assignment operator 4.

When you run this program, it will look like this:

Enter a name: (blank to quit)
Alice
Apr 1 is the birthday of Alice
Enter a name: (blank to quit)
Eve
I do not have birthday information for Eve
What is their birthday?
Dec 5
Birthday database updated.
Enter a name: (blank to quit)

142 Chapter 7

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Eve
Dec 5 is the birthday of Eve
Enter a name: (blank to quit)

Of course, all the data you enter in this program is forgotten when the
program terminates. You’ll learn how to save data to files on the hard drive
in Chapter 10.

Returning Keys and Values
Three dictionary methods will return list-like values of the dictionary’s
keys, values, or both keys and values: keys(), values(), and items(). The val-
ues returned by these methods aren’t true lists: they can’t be modified and
don’t have an append() method. But these data types (dict_keys, dict_values,
and dict_items, respectively) can be used in for loops. To see how these meth-
ods work, enter the following into the interactive shell:

>>> spam = {'color': 'red', 'age': 42}
>>> for v in spam.values():
... print(v)

red
42

Here, a for loop iterates over each of the values in the spam dictionary.
A for loop can also iterate over the keys or both the keys and values:

>>> for k in spam.keys():
... print(k)

color
age
>>> 'color' in spam.keys()
True
>>> 'age' not in spam.keys()
False
>>> 'red' in spam.values()
True
>>> for i in spam.items():
... print(i)

('color', 'red')
('age', 42)

When you use the keys(), values(), and items() methods, a for loop can
iterate over the keys, values, or key-value pairs in a dictionary, respectively,
and you can use the in and not in operators to determine if a value exists
as a key or value in the dictionary. Notice that the values in the dict_items
value returned by the items() method are tuples of the key and value.

Dictionaries and Structuring Data 143

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You can also use the in and not in operators with the dictionary value
itself to check for the existence of a key. This is equivalent to using these
operators with the keys() method:

>>> 'color' in spam
True
>>> 'color' in spam.keys()
True

If you want to get an actual list from one of these methods, pass its list-
like return value to the list() function. Enter the following into the interac-
tive shell:

>>> spam = {'color': 'red', 'age': 42}
>>> spam.keys() # Returns a list-like dict_keys value
dict_keys(['color', 'age'])
>>> list(spam.keys()) # Returns an actual list value
['color', 'age']

The list(spam.keys()) line takes the dict_keys value returned from keys()
and passes it to list(), which then returns a list value of ['color', 'age'].

You can also use the multiple assignment trick in a for loop to assign
the key and value to separate variables. Enter the following into the interac-
tive shell:

>>> spam = {'color': 'red', 'age': 42}
>>> for k, v in spam.items():
... print('Key: ' + str(k) + ' Value: ' + str(v))

Key: color Value: red
Key: age Value: 42

This code creates a dictionary with keys 'color' and 'age' whose values
are 'red' and 42, respectively. The for loop iterates over the tuples returned
by the items() method: ('color', 'red') and ('age', 42). The two variables,
k and v, are assigned the first (the key) and second (the value) values from
these tuples. The body of the loop prints out the k and v variables for each
key-value pair.

While you can use many values for keys, you cannot use a list or diction-
ary as the key in a dictionary. These data types are unhashable, which is a
concept beyond the scope of this book. If you need a list for a dictionary
key, use a tuple instead.

Checking If a Key Exists
Checking whether a key exists in a dictionary before accessing that key’s
value can be tedious. Fortunately, dictionaries have a get() method that
takes two arguments: the key of the value to retrieve and a fallback value to
return if that key doesn’t exist.

144 Chapter 7

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Enter the following into the interactive shell:

>>> picnic_items = {'apples': 5, 'cups': 2}
>>> 'I am bringing ' + str(picnic_items.get('cups', 0)) + ' cups.'
'I am bringing 2 cups.'
>>> 'I am bringing ' + str(picnic_items.get('eggs', 0)) + ' eggs.'
'I am bringing 0 eggs.'

Because there is no 'eggs' key in the picnic_items dictionary, the get()
method returns the default value 0. Without using get(), the code would
have caused an error message, such as in the following example:

>>> picnic_items = {'apples': 5, 'cups': 2}
>>> 'I am bringing ' + str(picnic_items['eggs']) + ' eggs.'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 'I am bringing ' + str(picnic_items['eggs']) + ' eggs.'
KeyError: 'eggs'

Checking for the existence of a key before accessing the value for that
key can prevent your programs from crashing with an error message.

Setting Default Values
You’ll often have to set a value in a dictionary for a certain key only if that
key doesn’t already have a value. Your code might look something like this:

>>> spam = {'name': 'Pooka', 'age': 5}
>>> if 'color' not in spam:
... spam['color'] = 'black'
...
>>> spam
{'name': 'Pooka', 'age': 5, 'color': 'black'}

The setdefault() method offers a way to do this in one line of code. The
first argument passed to the method is the key to check for, and the second
argument is the value to set at that key if the key doesn’t exist. If the key does
exist, the setdefault() method returns the key’s value. Enter the following
into the interactive shell:

>>> spam = {'name': 'Pooka', 'age': 5}
>>> spam.setdefault('color', 'black') # Sets 'color' key to 'black'
'black'
>>> spam
{'name': 'Pooka', 'age': 5, 'color': 'black'}
>>> spam.setdefault('color', 'white') # Does nothing
'black'
>>> spam
{'name': 'Pooka', 'age': 5, 'color': 'black'}

Dictionaries and Structuring Data 145

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The first time we call setdefault(), the dictionary in spam changes to
{'color': 'black', 'age': 5, 'name': 'Pooka'}. The method returns the
value 'black' because this is now the value set for the key 'color'. When
spam.setdefault('color', 'white') is called next, the value for that key is not
changed to 'white', because spam already has a key named 'color'.

The setdefault() method is a nice shortcut to ensure that a key exists.
Here is a short program that counts the number of occurrences of each let-
ter in a string. Open the file editor window and enter the following code,
saving it as characterCount.py:

message = 'It was a bright cold day in April, and the clocks were striking thirteen.'
count = {}

for character in message:
 count.setdefault(character, 0) 1
 count[character] = count[character] + 1 2

print(count)

The program loops over each character in the message variable’s string,
counting how often each character appears. The setdefault() method call 1
ensures that the key is in the count dictionary (with a default value of 0)
so that the program doesn’t throw a KeyError error when count[character] =
count[character] + 1 is executed 2. When you run this program, the output
will look like this:

{'I': 1, 't': 6, ' ': 13, 'w': 2, 'a': 4, 's': 3, 'b': 1, 'r': 5, 'i': 6,
'g': 2, 'h': 3, 'c': 3, 'o': 2, 'l': 3, 'd': 3, 'y': 1, 'n': 4, 'A': 1,
'p': 1, ',': 1, 'e': 5, 'k': 2, '.': 1}

From the output, you can see that the lowercase letter c appears three
times, the space character appears 13 times, and the uppercase letter A
appears one time. This program will work no matter what string is inside
the message variable, even if the string is millions of characters long!

Using Data Structures to Model Real-World Things
Even before the internet, it was possible to play a game of chess with some-
one on the other side of the world. Each player would set up a chessboard
at their home, and then they would take turns mailing a postcard to each
other describing their move. To do this, the players needed a way to unam-
biguously describe the state of the board and their moves.

In algebraic chess notation, the squares on the chessboard are identified
by a number and letter coordinate, as in Figure 7-1.

146 Chapter 7

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

a b c d e f g h

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a b c d e f g h

a1

a2

a3

a4

b1

b2

b3

b4

c2

c3

c4

d1

d2

d3

d4

e1

e2

e3

e4

f1

f2

f4

g1

g2

g3

g4

h1

h3

h4

a5

a6

a8

b5

b6

b7

b8

c5

c6

c7

c8

d5

d6

d7

d8

e5

e6

e7

e8

f5

f7

f8

g5

g6

g7

h5

h6

h8

Figure 7-1: The coordinates of a
chessboard in algebraic chess notation

The chess pieces use letters: K for king, Q for queen, R for rook, B
for bishop, and N for knight. Describing a move requires specifying the
letter of the piece and the coordinates of its destination. A pair of these
moves describes what happens in a single turn (with white going first); for
instance, the notation “2. Nf3 Nc6” indicates that white moved a knight to f3
and black moved a knight to c6 on the second turn of the game.

There’s a bit more to algebraic notation than this, but the point is that
you can unambiguously describe a game of chess without needing to be in
front of a chessboard. Your opponent can even be on the other side of the
world! In fact, you don’t even need a physical chess set if you have a good
memory: you can just read the mailed chess moves and update boards you
have in your imagination.

Computers have good memories. A program on a modern computer
can easily store billions of strings, such as '2. Nf3 Nc6'. This is how comput-
ers can play chess without having a physical chessboard. They model data to
represent a chessboard, and you can write code to work with this model to
simulate a chess game.

This is where lists and dictionaries can come in handy. For example, we
could come up with our own notation so that the Python dictionary {'h1':
'bK', 'c6': 'wQ', 'g2': 'bB', 'h5': 'bQ', 'e3': 'wK'} could represent the
chessboard in Figure 7-2.

Dictionaries and Structuring Data 147

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

a b c d e f g h

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a b c d e f g h

Figure 7-2: A chessboard modeled by
the dictionary {'h1': 'bK', 'c6': 'wQ',
'g2': 'bB', 'h5': 'bQ', 'e3': 'wK'}

Let’s use this data structure scheme to create our own interactive chess-
board program.

Project 1: Interactive Chessboard Simulator
Even the earliest computers performed calculations far faster than any
human, but back then, people considered chess a true demonstration of
computational intelligence. We won’t create our own chess-playing program
here. (That would require its own book!) But we can create an interactive
chessboard program with what we’ve discussed so far.

You don’t need to know the rules of chess for this program. Just know
that chess is played on an 8 × 8 board with white and black pieces called
pawns, knights, bishops, rooks, queens, and kings. The upper-left and lower-
right squares of the board should be white, and our program assumes the
background of the output window is black (unlike the white background of
a paper book). Our chessboard program is just a board with pieces on it; it
doesn’t even enforce the rules for how pieces move. We’ll use text characters
to “draw” a chessboard, such as the one shown in Figure 7-3.

148 Chapter 7

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 7-3: The non-graphical, text-based output of the chessboard program

Graphics would be nice and would make the pieces more readily iden-
tifiable, but we’ve captured all the information about the pieces without
them. This text-based approach allows us to write the program with just the
print() function and doesn’t require us to install any sort of graphics library
like Pygame (discussed in my book Invent Your Own Computer Games with
Python [No Starch Press, 2016]) for our program.

First, we need to design a data structure that can represent a chess-
board and any possible configuration of pieces on it. The example from the
previous section works: the board is a Python dictionary with string keys
'a1' to 'h8' to represent squares on the board. Note that these strings are
always two characters long. Also, the letter is always lowercase and comes
before the number. This specificity is important; we’ll use these details in
the code.

To represent the pieces, we’ll also use two-character strings, where the
first letter is a lowercase 'w' or 'b' to indicate the white or black color, and the
second letter is an uppercase 'P', 'N', 'B', 'R', 'Q', or 'K' to represent the kind
of piece. Figure 7-4 shows each piece, along with its string representation.

Figure 7-4: The two-character string representations for each chess piece

Dictionaries and Structuring Data 149

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The keys of the Python dictionary identify the squares of the board and
the values identify the piece on that square. The absence of a key in the dic-
tionary represents an empty square. A dictionary works well for storing this
information: keys in a dictionary can be used only once, and squares on a
chessboard can have only one piece on them at a time.

Step 1: Set Up the Program
The first part of the program imports the sys module for its exit() function
and the copy module for its copy() function. At the start of the game, the
white and black players have 16 pieces each. The STARTING_PIECES constant
will hold a chessboard dictionary with all the proper pieces in their correct
starting positions:

import sys, copy

STARTING_PIECES = {'a8': 'bR', 'b8': 'bN', 'c8': 'bB', 'd8': 'bQ',
'e8': 'bK', 'f8': 'bB', 'g8': 'bN', 'h8': 'bR', 'a7': 'bP', 'b7': 'bP',
'c7': 'bP', 'd7': 'bP', 'e7': 'bP', 'f7': 'bP', 'g7': 'bP', 'h7': 'bP',
'a1': 'wR', 'b1': 'wN', 'c1': 'ww', 'd1': 'wQ', 'e1': 'wK', 'f1': 'ww',
'g1': 'wN', 'h1': 'wR', 'a2': 'wP', 'b2': 'wP', 'c2': 'wP', 'd2': 'wP',
'e2': 'wP', 'f2': 'wP', 'g2': 'wP', 'h2': 'wP'}

(This code is a bit hard to type. You can copy and paste it from https://
autbor .com /3 /chessboard .py .) Whenever the program needs to reset the chess-
board to the starting setup, it can copy STARTING_PIECES with the copy .copy()
function.

Step 2: Create a Chessboard Template
The BOARD_TEMPLATE variable will contain a string that acts as a template for
a chessboard. The program can insert the strings of individual pieces into
it before printing. By using three double-quote characters in a row, we can
create a multiline string that spans several lines of code. The multiline string
ends with another three double-quote characters. This Python syntax is eas-
ier than trying to fit everything on a single line with \n escape characters.
You’ll learn more about multiline strings in the next chapter:

BOARD_TEMPLATE = """
 a b c d e f g h
 ____ ____ ____ ____ ____ ____ ____ ____
 |||||| |||||| |||||| |||||| |
8 ||{}|| {} ||{}|| {} ||{}|| {} ||{}|| {} |
 ||||||____||||||____||||||____||||||____|
 | |||||| |||||| |||||| ||||||
7 | {} ||{}|| {} ||{}|| {} ||{}|| {} ||{}||
 |____||||||____||||||____||||||____||||||
 |||||| |||||| |||||| |||||| |
6 ||{}|| {} ||{}|| {} ||{}|| {} ||{}|| {} |
 ||||||____||||||____||||||____||||||____|
 | |||||| |||||| |||||| ||||||

https://autbor.com/3/chessboard.py
https://autbor.com/3/chessboard.py

150 Chapter 7

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

5 | {} ||{}|| {} ||{}|| {} ||{}|| {} ||{}||
 |____||||||____||||||____||||||____||||||
 |||||| |||||| |||||| |||||| |
4 ||{}|| {} ||{}|| {} ||{}|| {} ||{}|| {} |
 ||||||____||||||____||||||____||||||____|
 | |||||| |||||| |||||| ||||||
3 | {} ||{}|| {} ||{}|| {} ||{}|| {} ||{}||
 |____||||||____||||||____||||||____||||||
 |||||| |||||| |||||| |||||| |
2 ||{}|| {} ||{}|| {} ||{}|| {} ||{}|| {} |
 ||||||____||||||____||||||____||||||____|
 | |||||| |||||| |||||| ||||||
1 | {} ||{}|| {} ||{}|| {} ||{}|| {} ||{}||
 |____||||||____||||||____||||||____||||||
"""
WHITE_SQUARE = '||'
BLACK_SQUARE = ' '

The pairs of curly brackets represent places in the string where we’ll
insert chess piece strings such as 'wR' or 'bQ'. If the square is empty, the
program will insert the WHITE_SQUARE or BLACK_SQUARE string instead, which I’ll
explain in more detail when we discuss the print_chessboard() function.

Step 3: Print the Current Chessboard
We’ll define a print_chessboard() function that accepts the chessboard
dictionary, then prints a chessboard on the screen that reflects the pieces
on this board. We’ll call the format() string method on the BOARD_TEMPLATE
string, passing the method a list of strings. The format() method returns a
new string with the {} pairs in BOARD_TEMPLATE replaced by the strings in the
passed-in list. You’ll learn more about format() in the next chapter.

Let’s take a look at the code in print_chessboard():

def print_chessboard(board):
 squares = []
 is_white_square = True
 for y in '87654321':
 for x in 'abcdefgh':
 #print(x, y, is_white_square) # DEBUG: Show coordinates

There are 64 squares on a chessboard and 64 {} pairs in the BOARD
_TEMPLATE string. We must build up a list of 64 strings to replace these
{} pairs. We store this list in the squares variable. The strings in this list rep-
resent either chess pieces, like 'wB' and 'bQ', or empty squares. Depending
on whether the empty square is white or black, we must use the WHITE_SQUARE
string ('||') or the BLACK_SQUARE string (' '). We’ll use a Boolean value in the
is_white_square variable to keep track of which squares are white and which
are black.

Two nested for loops will loop over all 64 squares on the board, start-
ing with the upper-left square and going right to left, then top to bottom.
The square in the upper left is a white square, so we’ll start is_white_square

Dictionaries and Structuring Data 151

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

as True. Remember that for loops can loop over the integers given by range(),
the value in a list, or the individual characters in a string. In these two for
loops, the y and x variables take on the characters in the strings '87654321'
and 'abcdefgh', respectively. To see the order in which the code loops over the
squares (along with the color of each square), uncomment the print(x, y),
isWhiteSpace line of code before running the program.

The code inside the for loops builds up the squares list with the appro-
priate strings:

 if x + y in board.keys():
 squares.append(board[x + y])
 else:
 if is_white_square:
 squares.append(WHITE_SQUARE)
 else:
 squares.append(BLACK_SQUARE)
 is_white_square = not is_white_square
 is_white_square = not is_white_square

 print(BOARD_TEMPLATE.format(*squares))

The strings in the x and y loop variables concatenate together to form
a two-character square string. For example, if x is 'a' and y is '8', then x + y
evaluates to 'a8', and x + y in board.keys() checks if this string exists as a key
in the chessboard dictionary. If it does, the code appends the chess piece
string for that square to the end of the squares list.

If it does not, the code must append the blank square string in WHITE
_SQUARE or BLACK_SQUARE, depending on the value in is_white_square. Once the
code is done processing this chessboard square, it toggles the Boolean value
in is_white_square to its opposite value (because the next square over will be
the opposite color). The variable needs to be toggled again after finishing a
row at the end of the outermost for loop.

After the loops have finished, the squares list contains 64 strings.
However, the format() string method doesn’t take a single list argument, but
rather one string argument per {} pair to replace. The asterisk * next to the
squares tells Python to pass the values in this list as individual arguments.
This is a bit subtle, but imagine that you have a list spam = ['cat', 'dog', 'rat'].
If you call print(spam), Python will print the list value, along with its square
brackets, quotes, and commas. However, calling print(*spam) is equivalent to
calling print('cat', 'dog', 'rat'), which simply prints cat dog rat. I call this
star syntax.

The print_chessboard() function is written to work with the specific data
structure we use to represent chessboards: a Python dictionary with keys of
square strings, like 'a8', and values of pieces of strings, like 'bQ'. If we had
designed our data structure differently, we’d have to write our function dif-
ferently too. The print_chessboard() prints out a text-based representation of
the board, but if we were using a graphics library like Pygame to render the
chessboard, we could still use this Python dictionary to represent the chess-
board configuration.

152 Chapter 7

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Step 4: Manipulate the Chessboard
Now that we have a way to represent a chessboard in a Python dictionary
and a function to display a chessboard based on that dictionary, let’s write
code that moves pieces on the board by manipulating the keys and values
of the dictionary. After the print_chessboard() function’s def block, the main
part of the program displays text explaining how to use the interactive
chessboard program:

print('Interactive Chessboard')
print('by Al Sweigart al@inventwithpython .com')
print()
print('Pieces:')
print(' w - White, b - Black')
print(' P - Pawn, N - Knight, B - Bishop, R - Rook, Q - Queen, K - King')
print('Commands:')
print(' move e2 e4 - Moves the piece at e2 to e4')
print(' remove e2 - Removes the piece at e2')
print(' set e2 wP - Sets square e2 to a white pawn')
print(' reset - Resets pieces back to their starting squares')
print(' clear - Clears the entire board')
print(' fill wP - Fills entire board with white pawns.')
print(' quit - Quits the program')

The program can move pieces, remove pieces, set squares with a piece,
reset the board, and clear the board by changing the chessboard dictionary:

main_board = copy .copy(STARTING _PIECES)
while True:
 print_chessboard(main_board)
 response = input('> ').split()

To begin, the main_board variable receives a copy of the STARTING_PIECES
dictionary, which is a dictionary of all chess pieces in their standard start-
ing positions. The execution enters an infinite loop that allows the user to
enter commands. For example, if the user enters move e2 e4 after input() is
called, the split() method returns the list ['move', 'e2', 'e4'], which the
program then stores in the response variable. The first item in the response
list, response[0], will be the command the user wants to carry out:

 if response[0] == 'move':
 main_board[response[2]] = main_board[response[1]]
 del main_board[response[1]]

If the user enters something like move e2 e4, then response[0] is 'move'.
We can “move” a piece from one square to another by first copying the
piece in main_board from the old square (in response[1]) to the new square
(in response[2]). Then, we can delete the key-value pair for the old square in
main_board. This has the effect of making it seem like the piece has moved
(though we won’t see this change until we call print_chessboard() again).

Dictionaries and Structuring Data 153

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Our interactive chessboard simulator doesn’t check if this is a valid
move to make. It just carries out the commands given by the user. If the
user enters something like remove e2, the program will set response to
['remove', 'e2']:

 elif response[0] == 'remove':
 del main_board[response[1]]

By deleting the key-value pair at key response[1] from main_board, we
make the piece disappear from the board. If the user enters something like
set e2 wP to add a white pawn to e2, the program will set response to ['set',
'e2', 'wP']:

 elif response[0] == 'set':
 main_board[response[1]] = response[2]

We can create a new key-value pair with the key response[1] and value
response[2] in main_board to add this piece to the board. If the user enters
reset, response is simply ['reset'], and we can set the board to its starting con-
figuration by copying the STARTING_PIECES dictionary to main_board:

 elif response[0] == 'reset':
 main_board = copy .copy(STARTING _PIECES)

If the user enters clear, response is simply ['clear'], and we can remove
all pieces from the board by setting main_board to an empty dictionary:

 elif response[0] == 'clear':
 main_board = {}

If the user enters fill wP, response is ['fill', 'wP'], and we change all
64 squares to the string 'wP':

 elif response[0] == 'fill':
 for y in '87654321':
 for x in 'abcdefgh':
 main_board[x + y] = response[1]

The nested for loops will loop over every square, setting the x + y key to
response[1]. There’s no real reason to put 64 white pawns on a chessboard,
but this command demonstrates how easy it is to manipulate the chess-
board data structure however we want. Finally, the user can quit the pro-
gram by entering quit:

 elif response[0] == 'quit':
 sys.exit()

After carrying out the command and modifying main_board, the execu-
tion jumps back to the start of the while loop to display the changed board
and accept a new command from the user.

154 Chapter 7

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This interactive chessboard program doesn’t restrict what pieces you
can place or move. It simply uses a dictionary as a representation of pieces
on a chessboard and has one function for displaying such dictionaries on the
screen in a way that looks like a chessboard. We can model all real-world
objects or processes by designing data structures and writing functions to
work with those data structures. If you’d like to see another example of
modeling a game board with data structures, my other book, The Big Book
of Small Python Projects (No Starch Press, 2021), has a working tic-tac-toe
program.

Nested Dictionaries and Lists
As you model more complicated things, you may find you need dictionar-
ies and lists that contain other dictionaries and lists. Lists are useful for
holding an ordered series of values, and dictionaries are useful for associ-
ating keys with values. For example, here’s a program that uses a diction-
ary to contain dictionaries of items guests are bringing to a picnic. The
total_brought() function can read this data structure and calculate the total
number of each item type. Enter the following code in a new program saved
as guestpicnic.py:

all_guests = {'Alice': {'apples': 5, 'pretzels': 12},
 'Bob': {'ham sandwiches': 3, 'apples': 2},
 'Carol': {'cups': 3, 'apple pies': 1}}

def total_brought(guests, item):
 num_brought = 0
 1 for k, v in guests.items():
 2 num_brought = num_brought + v.get(item, 0)
 return num_brought

print('Number of things being brought:')
print(' - Apples ' + str(total_brought(all_guests, 'apples')))
print(' - Cups ' + str(total_brought(all_guests, 'cups')))
print(' - Cakes ' + str(total_brought(all_guests, 'cakes')))
print(' - Ham Sandwiches ' + str(total_brought(all_guests, 'ham sandwiches')))
print(' - Apple Pies ' + str(total_brought(all_guests, 'apple pies')))

Inside the total_brought() function, the for loop iterates over the key-
value pairs in guests 1. Inside the loop, the string of the guest’s name is
assigned to k, and the dictionary of picnic items they’re bringing is assigned
to v. If the item parameter exists as a key in this dictionary, its value (the
quantity) is added to num_brought 2. If it doesn’t exist as a key, the get()
method returns 0 to be added to num_brought.

The output of this program looks like this:

 Number of things being brought:
 - Apples 7
 - Cups 3
 - Cakes 0

Dictionaries and Structuring Data 155

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 - Ham Sandwiches 3
 - Apple Pies 1

The number of items brought to a picnic may seem like such a simple
thing to model that you wouldn’t need to bother with writing a program to
do it. But realize that this same total_brought() function could easily handle
a dictionary that contains thousands of guests, each bringing thousands of
different picnic items. In that case, having this information in a data struc-
ture, along with the total_brought() function, would save you a lot of time!

You can model things with data structures in whatever way you like, as
long as the rest of the code in your program can work with the data model
correctly. When you first begin programming, don’t worry so much about
the “right” way to model data. As you gain more experience, you may come
up with more efficient models; the important thing is that the data model
works for your program’s needs.

Summary
You learned all about dictionaries in this chapter. Lists and dictionaries
are values that can contain multiple values, including other lists and dic-
tionaries. Dictionaries are useful because you can map one item (the key)
to another item (the value), whereas lists simply contain a series of values
in order. Code can access values inside a dictionary using square brackets
just as with lists. Instead of integer indexes, dictionaries can have keys of a
variety of data types: integers, floats, strings, or tuples. By organizing a pro-
gram’s values into data structures, you can create representations of real-
world objects, such as the chessboard modeled in this chapter.

Practice Questions
 1. What does the code for an empty dictionary look like?

 2. What does a dictionary value with a key 'foo' and a value 42 look like?

 3. What is the main difference between a dictionary and a list?

 4. What happens if you try to access spam['foo'] if spam is {'bar': 100}?

 5. If a dictionary is stored in spam, what is the difference between the
expressions 'cat' in spam and 'cat' in spam.keys()?

 6. If a dictionary is stored in spam, what is the difference between the
expressions 'cat' in spam and 'cat' in spam.values()?

 7. What is a shortcut for the following code?

if 'color' not in spam:
 spam['color'] = 'black'

 8. What module and function can be used to “pretty-print” dictionary
values?

156 Chapter 7

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Practice Programs
For practice, write programs to do the following tasks.

Chess Dictionary Validator
In this chapter, we used the dictionary value {'h1': 'bK', 'c6': 'wQ', 'g2':
'bB', 'h5': 'bQ', 'e3': 'wK'} to represent a chessboard. Write a function
named isValidChessBoard() that takes a dictionary argument and returns
True or False depending on whether the board is valid.

A valid board will have exactly one black king and exactly one white
king. Each player can have at most 16 pieces, of which only eight can be
pawns, and all pieces must be on a valid square from '1a' to '8h'. That is, a
piece can’t be on square '9z'. The piece names should begin with either a
'w' or a 'b' to represent white or black, followed by 'pawn', 'knight', 'bishop',
'rook', 'queen', or 'king'. This function should detect when a bug has resulted
in an improper chessboard. (This isn’t an exhaustive list of requirements,
but it is close enough for this exercise.)

Fantasy Game Inventory
Say you’re creating a medieval fantasy video game. The data structure to
model the player’s inventory is a dictionary whose keys are strings describing
the item in the inventory and whose values are integers detailing how many
of that item the player has. For example, the dictionary value {'rope': 1,
'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12} means the player has
one rope, six torches, 42 gold coins, and so on.

Write a function named display_inventory() that would take any possible
“inventory” and display it like the following:

Inventory:
12 arrow
42 gold coin
1 rope
6 torch
1 dagger
Total number of items: 62

Hint: You can use a for loop to loop through all keys in a dictionary.

stuff = {'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12}

def display_inventory(inventory):
 print("Inventory:")
 item_total = 0
 for k, v in inventory.items():
 # FILL THIS PART IN
 print("Total number of items: " + str(item_total))

display_inventory(stuff)

Dictionaries and Structuring Data 157

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

List-to-Dictionary Loot Conversion
Imagine that the same fantasy video game represents a vanquished drag-
on’s loot as a list of strings, like this:

dragon_loot = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby']

Write a function named add_to_inventory(inventory, added_items). The
inventory parameter is a dictionary representing the player’s inventory (as in
the previous project) and the added_items parameter is a list, like dragon_loot.
The add_to_inventory() function should return a dictionary that represents
the player’s updated inventory. Note that the added_items list can contain
multiples of the same item. Your code could look something like this:

def add_to_inventory(inventory, added_items):
 # Your code goes here.

inv = {'gold coin': 42, 'rope': 1}
dragon_loot = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby']
inv = add_to_inventory(inv, dragon_loot)
display_inventory(inv)

The previous program (with your display_inventory() function from the
previous project) would output the following:

Inventory:
45 gold coin
1 rope
1 ruby
1 dagger

Total number of items: 48

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Text is one of the most common forms of
data your programs will handle. You already

know how to concatenate two string values
with the + operator, but you can do much more

than that, such as extract partial strings from string
values, add or remove spacing, convert letters to lower-
case or uppercase, and check that strings are formatted
correctly. You can even write Python code to access the
clipboard used for copying and pasting text.

In this chapter, you’ll learn all of this and more. Then, you’ll work
through a programming project to automate the boring chore of adding
bullet points to text.

8
S T R I N G S A N D T E X T E D I T I N G

160 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Working with Strings
Let’s look at some of the ways Python lets you write, print, and access strings
in your code.

String Literals
While string values are stored in the program’s memory, the string values
that literally appear in our code are called string literals. Writing string liter-
als in Python code seems straightforward: they begin and end with a single
quotation mark, with the text of the string value in between. But how can
you use quotes inside a string? Entering 'That is Alice's cat.' won’t work,
because Python will think the string ends after Alice and will treat the rest
(s cat.') as invalid Python code. Fortunately, there are multiple ways to
write string literals. The term string refers to a string value in the context of
a running program and to a string literal when we’re talking about entering
Python source code.

Double Quotes

String literals can begin and end with double quotes as well as with single
quotes. One benefit of using double quotes is that the string can have a
single quote character in it. Enter the following into the interactive shell:

>>> spam = "That is Alice's cat."

Because the string begins with a double quote, Python knows that the
single quote is part of the string and is not marking the end of the string.
However, if you need to use both single quotes and double quotes in the
string, you’ll need to use escape characters.

Escape Characters

An escape character lets you use characters that are otherwise impossible
to put into a string literal. An escape character consists of a backslash (\)
followed by the character you want to add to the string. For example, \' is
the escape character for a single quote and \n is the escape character for
a newline character. (Despite consisting of two characters, it is commonly
referred to as a singular escape character.) You can use this syntax inside a
string that begins and ends with single quotes. To see how escape charac-
ters work, enter the following into the interactive shell:

>>> spam = 'Say hi to Bob\'s mother.'

Python knows that since the single quote in Bob\'s has a backslash,
it is not a single quote meant to end the string value. The escape char-
acters \' and \" let you put single quotes and double quotes inside your
strings, respectively.

Strings and Text Editing 161

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Table 8-1 lists the escape characters you can use.

Table 8-1: Escape Characters

Escape character Prints as . . .

\' Single quote

\" Double quote

\t Tab

\n Newline (line break)

\\ Backslash

To practice using these, enter the following into the interactive shell:

>>> print("Hello there!\nHow are you?\nI\'m doing fine.")
Hello there!
How are you?
I'm doing fine.

Keep in mind that because the \ backslash begins an escape character,
if you want an actual backslash in your string, you must use the \\ escape
character.

Raw Strings

You can place an r before the beginning quotation mark of a string literal
to make it a raw string literal. A raw string makes it easier to enter string
values that have backslashes by ignoring all escape characters. For example,
enter the following into the interactive shell:

>>> print(r'The file is in C:\Users\Alice\Desktop')
The file is in C:\Users\Alice\Desktop

Because this is a raw string, Python considers the backslash to be part
of the string and not the start of an escape character:

>>> print('Hello...\n\n...world!') # Without a raw string
Hello...

...world!
>>> print(r'Hello...\n\n...world!') # With a raw string
Hello...\n\n...world!

Raw strings are helpful if your string values contain many backslashes,
such as the strings used for Windows filepaths like r'C:\Users\Al\Desktop' or
regular expression strings, which are described in the next chapter.

Multiline Strings

While you can use the \n escape character to insert a newline into a string,
it’s often easier to use multiline strings. A multiline string in Python begins

162 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

and ends with either three single quotes or three double quotes. Any quotes,
tabs, or newlines in between the “triple quotes” are considered part of the
string. Python’s indentation rules for blocks don’t apply to lines inside a
multiline string.

For example, open the file editor and enter the following:

print('''Dear Alice,

Can you feed Eve's cat this weekend?

Sincerely,
Bob''')

Save this program as feedcat.py and run it. The output will look like this:

Dear Alice,

Can you feed Eve's cat this weekend?

Sincerely,
Bob

Notice that the single quote character in Eve's doesn’t need to be
escaped. Escaping single and double quotes is optional in multiline strings:

print('Dear Alice,\n\nCan you feed Eve's cat this weekend?\n\nSincerely,\nBob')

This print() call prints identical text but doesn’t use a multiline string.

Multiline Comments

While the hash character (#) marks the beginning of a comment for the
rest of the line, a multiline string is often used for comments that span mul-
tiple lines:

"""This is a test Python program.
Written by Al Sweigart al@inventwithpython .com

This program was designed for Python 3, not Python 2.
"""

def say_hello():
 """This function prints hello.
 It does not return anything."""
 print('Hello!')

The multiline string in this example is perfectly valid Python code.

Strings and Text Editing 163

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Indexes and Slices
Strings use indexes and slices the same way lists do. You can think of the
string 'Hello, world!' as a list and each character in the string as an item
with a corresponding index and negative index:

' H e l l o , w o r l d ! '

0 1 2 3 4 5 6 7 8 9 10 11 12

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

The space and exclamation mark are included in the character count,
so 'Hello, world!' is 13 characters long, from H at index 0 to ! at index 12.

Enter the following into the interactive shell:

>>> greeting = 'Hello, world!'
>>> greeting[0]
'H'
>>> greeting [4]
'o'
>>> greeting[-1]
'!'
>>> greeting[0:5]
'Hello'
>>> greeting[:5]
'Hello'
>>> greeting[7:-1]
'world'
>>> greeting[7:]
'world!'

If you specify an index, you’ll get the character at that position in the
string. If you specify a range from one index to another, the starting index
is included and the ending index is not. That’s why, if greeting is 'Hello,
world!', then greeting[0:5] evaluates to 'Hello'. The substring you get from
greeting[0:5] will include everything from greeting[0] to greeting[4], leaving
out the comma at index 5 and the space at index 6. This is similar to how
range(5) will cause a for loop to iterate up to, but not including, 5.

Note that slicing a string doesn’t modify the original string. You can
capture a slice from one variable in a separate variable. Try entering the fol-
lowing into the interactive shell:

>>> greeting = 'Hello, world!'
>>> greeting_slice = greeting[0:5]
>>> greeting_slice
'Hello'
>>> greeting
'Hello, world!'

By slicing and storing the resulting substring in another variable, you can
have both the whole string and the substring handy for quick, easy access.

164 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The in and not in Operators
You can use the in and not in operators with strings just as you can with list
values. An expression with two strings joined using in or not in will evaluate
to a Boolean True or False. Enter the following into the interactive shell:

>>> 'Hello' in 'Hello, World'
True
>>> 'Hello' in 'Hello'
True
>>> 'HELLO' in 'Hello, World'
False
>>> '' in 'spam'
True
>>> 'cats' not in 'cats and dogs'
False

These expressions test whether the first string (including its capitaliza-
tion) can be found within the second string.

F-Strings
Putting strings inside other strings is a common operation in programming.
So far, we’ve been using the + operator and string concatenation to do this:

>>> name = 'Al'
>>> age = 4000
>>> 'Hello, my name is ' + name + '. I am ' + str(age) + ' years old.'
'Hello, my name is Al. I am 4000 years old.'
>>> In ten years I will be ' + str(age + 10)
'In ten years I will be 4010'

However, this requires a lot of tedious typing. A simpler approach is to
use f-strings, which let you place variable names or entire expressions within
a string. Like the r prefix in raw strings, f-strings have an f prefix before the
starting quotation mark. Enter the following into the interactive shell:

>>> name = 'Al'
>>> age = 4000
>>> f'My name is {name}. I am {age} years old.'
'My name is Al. I am 4000 years old.'
>>> f'In ten years I will be {age + 10}'
'In ten years I will be 4010'

Everything between the curly brackets ({}) is interpreted as if it were
passed to str() and concatenated with the + operator in the middle of the
string. If you need to use literal curly bracket characters in an f-string,
use two curly brackets:

>>> name = 'Zophie'
>>> f'{name}'

Strings and Text Editing 165

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

'Zophie'
>>> f'{{name}}' # Use double curly brackets to include literal curly
brackets.
'{name}'

F-strings are a useful feature in Python, but the language only added
them in version 3.6. In older Python code, you may run into alternative
techniques.

F-String Alternatives: %s and format()
Versions of Python before 3.6 had other ways to put strings inside other
strings. The first is string interpolation, in which strings included a %s format
specifier that Python would replace with another string. For example, enter
the following into the interactive shell:

>>> name = 'Al'
>>> age = 4000
>>> 'My name is %s. I am %s years old.' % (name, age)
'My name is Al. I am 4000 years old.'
>>> 'In ten years I will be %s' % (age + 10)
'In ten years I will be 4010'

Python will replace the first %s with the first value in the parentheses
after the string, the second %s with the second string, and so on. This works
just as well as f-strings if you need to insert only one or two strings, but
f-strings tend to be more readable when you have several strings to insert.

The next way to put strings inside other strings is with the format()
string method. You can use a pair of curly brackets to mark where to insert
the strings, just like with string interpolation. Enter the following into the
interactive shell:

>>> name = 'Al'
>>> age = 4000
>>> 'My name is {}. I am {} years old.'.format(name, age)
'My name is Al. I am 4000 years old.'

The format() method has a few more features than %s string interpola-
tion. You can put the index integer (starting at 0) inside the curly brackets
to note which of the arguments to format() should be inserted. This is help-
ful when inserting strings multiple times or out of order:

>>> name = 'Al'
>>> age = 4000
>>> '{1} years ago, {0} was born and named {0}.'.format(name, age)
'4000 years ago, Al was born and named Al.'

Most programmers prefer f-strings over these two alternatives, but you
should learn them anyway, as you may run into them in existing code.

166 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Useful String Methods
Several string methods analyze strings or create transformed string values.
This section describes the methods you’ll be using most often.

Changing the Case
The upper() and lower() string methods return a new string with all the let-
ters in the original converted to uppercase or lowercase, respectively. Non-
letter characters in the string remain unchanged. For example, enter the
following into the interactive shell:

>>> spam = 'Hello, world!'
>>> spam = spam.upper()
>>> spam
'HELLO, WORLD!'
>>> spam = spam.lower()
>>> spam
'hello, world!'

Note that these methods don’t change the string itself, but return new
string values. If you want to change the original string, you have to call
upper() or lower() on the string and then assign the new string to the vari-
able that stored the original. This is why you must use spam = spam.upper()
to change the string in spam instead of simply writing spam.upper(). (This is
the same as if a variable eggs contains the value 10. Writing eggs + 3 doesn’t
change the value of eggs, but eggs = eggs + 3 does.)

The upper() and lower() methods are helpful if you need to make a case-
insensitive comparison. For example, the strings 'great' and 'GREat' aren’t
equal to each other, but in the following small program, the user can enter
Great, GREAT, or grEAT, because the code converts the string to lowercase:

print('How are you?')
feeling = input()
if feeling.lower() == 'great':
 print('I feel great too.')
else:
 print('I hope the rest of your day is good.')

When you run this program, it displays a question, and entering any
variation on great, such as GREat, will give the output I feel great too.
Adding code to your program to handle variations or mistakes in user input,
such as inconsistent capitalization, will make your programs easier to use
and less likely to fail:

How are you?
GREat
I feel great too.

Strings and Text Editing 167

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The isupper() and islower() methods will return a Boolean True value if
the string has at least one letter and all the letters are uppercase or lower-
case, respectively. Otherwise, the method returns False. Enter the following
into the interactive shell, and notice what each method call returns:

>>> spam = 'Hello, world!'
>>> spam.islower()
False
>>> spam.isupper()
False
>>> 'HELLO'.isupper()
True
>>> 'abc12345'.islower()
True
>>> '12345'.islower()
False
>>> '12345'.isupper()
False

Since the upper() and lower() string methods themselves return strings,
you can call string methods on those returned string values as well:

>>> 'Hello'.upper()
'HELLO'
>>> 'Hello'.upper().lower()
'hello'
>>> 'Hello'.upper().lower().upper()
'HELLO'
>>> 'HELLO'.lower()
'hello'
>>> 'HELLO'.lower().islower()
True

Expressions that do this will look like a chain of method calls, as
shown here.

Checking String Characteristics
Along with islower() and isupper(), several other string methods have
names beginning with the word is. These methods return a Boolean value
that describes the nature of the string. Here are some common isX()
string methods:

isalpha() Returns True if the string consists only of letters and isn’t blank

isalnum() Returns True if the string consists only of letters and numbers
(alphanumerics) and isn’t blank

isdecimal() Returns True if the string consists only of numeric charac-
ters and isn’t blank

isspace() Returns True if the string consists only of spaces, tabs, and
newlines and isn’t blank

168 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

istitle() Returns True if the string consists only of words that begin
with an uppercase letter followed by only lowercase letters

Enter the following into the interactive shell:

>>> 'hello'.isalpha()
True
>>> 'hello123'.isalpha()
False
>>> 'hello123'.isalnum()
True
>>> 'hello'.isalnum()
True
>>> '123'.isdecimal()
True
>>> ' '.isspace()
True
>>> 'This Is Title Case'.istitle()
True

The isX() string methods are helpful when you need to validate user
input. For example, the following program repeatedly asks users for their age
and a password until they provide valid input. Open a new file editor window
and enter this program, saving it as validateInput.py:

while True:
 print('Enter your age:')
 age = input()
 if age.isdecimal():
 break
 print('Please enter a number for your age.')

while True:
 print('Select a new password (letters and numbers only):')
 password = input()
 if password.isalnum():
 break
 print('Passwords can only have letters and numbers.')

In the first while loop, we ask the user for their age and store their
input in age. If age is a valid (decimal) value, we break out of this first while
loop and move on to the second, which asks for a password. Otherwise, we
inform the user that they need to enter a number and again ask them to
enter their age. In the second while loop, we ask for a password, store the
user’s input in password, and break out of the loop if the input was alphanu-
meric. If it wasn’t, we’re not satisfied, so we tell the user the password needs
to be alphanumeric and again ask them to enter a password.

When run, the program’s output looks like this:

Enter your age:
forty two
Please enter a number for your age.

Strings and Text Editing 169

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Enter your age:
42
Select a new password (letters and numbers only):
secr3t!
Passwords can only have letters and numbers.
Select a new password (letters and numbers only):
secr3t

Calling isdecimal() and isalnum() on variables, we’re able to test whether
the values stored in those variables are decimal or not and alphanumeric
or not. Here, these tests help us reject the input forty two but accept 42, and
reject secr3t! but accept secr3t.

Checking the Start or End of a String
The startswith() and endswith() methods return True if the string value on
which they’re called begins or ends (respectively) with the string passed to
the method; otherwise, they return False. Enter the following into the inter-
active shell:

>>> 'Hello, world!'.startswith('Hello')
True
>>> 'Hello, world!'.endswith('world!')
True
>>> 'abc123'.startswith('abcdef')
False
>>> 'abc123'.endswith('12')
False
>>> 'Hello, world!'.startswith('Hello, world!')
True
>>> 'Hello, world!'.endswith('Hello, world!')
True

These methods are useful alternatives to the equals operator (==) if you
need to check only whether the first or last part of the string, rather than
the whole thing, is equal to another string.

Joining and Splitting Strings
The join() method is useful when you have a list of strings that need to be
joined together into a single string value. We call the join() method on a
string and pass it a list of strings, and it returns the concatenation of each
string in the passed-in list. For example, enter the following into the inter-
active shell:

>>> ', '.join(['cats', 'rats', 'bats'])
'cats, rats, bats'
>>> ' '.join(['My', 'name', 'is', 'Simon'])
'My name is Simon'
>>> 'ABC'.join(['My', 'name', 'is', 'Simon'])
'MyABCnameABCisABCSimon'

170 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Notice that the string on which join() is called is inserted between each
string of the list argument. For example, when we call join(['cats', 'rats',
'bats']) on the ', ' string, it returns the string 'cats, rats, bats'.

Remember that we call join() on a string value and pass it a list value.
(It’s easy to accidentally call it the other way around.) The split() method
works the opposite way: we call it on a string value, and it returns a list of
strings. Enter the following into the interactive shell:

>>> 'My name is Simon'.split()
['My', 'name', 'is', 'Simon']

By default, the method splits the string 'My name is Simon' wherever it finds
whitespace such as the space, tab, or newline characters. These whitespace
characters aren’t included in the strings in the returned list. You can pass
a delimiter string to the split() method to specify a different string to split
upon. For example, enter the following into the interactive shell:

>>> 'MyABCnameABCisABCSimon'.split('ABC')
['My', 'name', 'is', 'Simon']
>>> 'My name is Simon'.split('m')
['My na', 'e is Si', 'on']

A common use of split() is to split a multiline string along the newline
characters. For example, enter the following into the interactive shell:

>>> spam = '''Dear Alice,
... There is a milk bottle in the fridge
... that is labeled "Milk Experiment."
...
... Please do not drink it.
... Sincerely,
... Bob'''
...
>>> spam.split('\n')
['Dear Alice,', 'There is a milk bottle in the
fridge', 'that is labeled "Milk Experiment."', '', 'Please do not drink it.',
'Sincerely,', 'Bob']

Passing split() the argument '\n' lets us split the multiline string stored
in spam along the newlines and return a list in which each item corresponds
to one line of the string.

Justifying and Centering Text
The rjust() and ljust() string methods return a padded version of the
string on which they’re called, with spaces inserted to justify the text. The
first argument to both methods is an integer length for the justified string.
Enter the following into the interactive shell:

>>> 'Hello'.rjust(10)
' Hello'

Strings and Text Editing 171

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> 'Hello'.rjust(20)
' Hello'
>>> 'Hello, World'.rjust(20)
' Hello, World'
>>> 'Hello'.ljust(10)
'Hello '

The code 'Hello'.rjust(10) says that we want to right-justify 'Hello' in a
string of total length 10. 'Hello' is five characters, so five spaces will be added
to its left, giving us a string of 10 characters with 'Hello' right-justified.

An optional second argument to rjust() and ljust() will specify a fill
character other than a space character. Enter the following into the interac-
tive shell:

>>> 'Hello'.rjust(20, '*')
'***************Hello'
>>> 'Hello'.ljust(20, '-')
'Hello---------------'

The center() string method works like ljust() and rjust() but centers
the text, rather than justifying it to the left or right. Enter the following
into the interactive shell:

>>> 'Hello'.center(20)
' Hello '
>>> 'Hello'.center(20, '=')
'=======Hello========'

Now the printed text is centered.

Removing Whitespace
Sometimes you may want to strip off whitespace characters (spaces, tabs,
and newlines) from the left side, right side, or both sides of a string. The
strip() string method will return a new string without any whitespace char-
acters at the beginning or end, while the lstrip() and rstrip() methods will
remove whitespace characters from the left and right ends, respectively.
Enter the following into the interactive shell:

>>> spam = ' Hello, World '
>>> spam.strip()
'Hello, World'
>>> spam.lstrip()
'Hello, World '
>>> spam.rstrip()
' Hello, World'

172 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Optionally, a string argument will specify which characters on the ends
to strip. Enter the following into the interactive shell:

>>> spam = 'SpamSpamBaconSpamEggsSpamSpam'
>>> spam.strip('ampS')
'BaconSpamEggs'

Passing strip() the argument 'ampS' will tell it to strip occurrences of a,
m, p, and S from the ends of the string stored in spam. The order of the char-
acters in the string passed to strip() doesn’t matter: strip('ampS') will do the
same thing as strip('mapS') or strip('Spam').

Numeric Code Points of Characters
Computers store information as bytes (strings of binary numbers), which
means we need to be able to convert text to numbers. Because of this
requirement, every text character has a corresponding numeric value called
a Unicode code point. For example, the numeric code point is 65 for 'A', 52 for
'4', and 33 for '!'. You can use the ord() function to get the code point of a
one-character string, and the chr() function to get the one-character string
of an integer code point. Enter the following into the interactive shell:

>>> ord('A')
65
>>> ord('4')
52
>>> ord('!')
33
>>> chr(65)
'A'

These functions are useful when you need to order or perform a math-
ematical operation on characters:

>>> ord('B')
66
>>> ord('A') < ord('B')
True
>>> chr(ord('A'))
'A'
>>> chr(ord('A') + 1)
'B'

There is more to Unicode and code points than this, but those details
are beyond the scope of this book. If you’d like to know more, I recommend
watching or reading Ned Batchelder’s 2012 PyCon talk, “Pragmatic Unicode,
or How Do I Stop the Pain?” at https://nedbatchelder .com /text /unipain .html.

When strings are written to a file or sent over the internet, the conversion
from text to bytes is called encoding. There are several Unicode encoding stan-
dards, but the most popular is UTF-8. If you ever need to choose a Unicode

https://nedbatchelder.com/text/unipain.html

Strings and Text Editing 173

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

encoding, 'utf-8' is the correct answer 99 percent of the time. Tom Scott has
a Computerphile video titled “Characters, Symbols and the Unicode Miracle”
at https://youtu .be /MijmeoH9LT4 that explains UTF-8 in particular.

Copying and Pasting Strings
The pyperclip module has copy() and paste() functions that can send text
to and receive text from your computer’s clipboard. Sending the output of
your program to the clipboard will make it easy to paste it into an email, a
word processor, or some other software.

The pyperclip module doesn’t come with Python. To install it, follow the
directions for installing third-party modules in Appendix A. After installing
pyperclip, enter the following into the interactive shell:

>>> import pyperclip
>>> pyperclip .copy('Hello, world!')
>>> pyperclip.paste()
'Hello, world!'

Of course, if something outside your program changes the clipboard
contents, the paste() function will return that other value. For example, if I
copied this sentence to the clipboard and then called paste(), it would look
like this:

>>> pyperclip.paste()
'For example, if I copied this sentence to the clipboard and then called
paste(), it would look like this:'

The clipboard is an excellent way to enter and receive large amounts
of text without having to type it when prompted by an input() call. For
example, say you want a program to turn text into aLtErNaTiNg upper-
case and lowercase letters. You can copy the text you want to alternate to
the clipboard, and then run this program, which takes this text and puts
the alternating-case text on the clipboard. Enter the following code into a
file named alternatingText.py:

import pyperclip

text = pyperclip.paste() # Get the text off the clipboard.
alt_text = '' # This string holds the alternating case.
make_uppercase = False
for character in text:
 # Go through each character and add it to alt_text:
 if make_uppercase:
 alt_text += character.upper()
 else:
 alt_text += character.lower()

 # Set make_uppercase to its opposite value:
 make_uppercase = not make_uppercase

https://youtu.be/MijmeoH9LT4

174 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

pyperclip .copy(alt _text) # Put the result on the clipboard.
print(alt_text) # Print the result on the screen too.

If you copy some text to the clipboard (for instance, this sentence) and
run this program, the output and clipboard contents become this:

iF YoU CoPy sOmE TeXt tO ThE ClIpBoArD (fOr iNsTaNcE, tHiS SeNtEnCe) AnD
 RuN ThIs pRoGrAm, ThE OuTpUt aNd cLiPbOaRd cOnTeNtS BeCoMe ThIs:

The pyperclip module’s ability to interact with the clipboard gives you a
straightforward way to input and output text to and from your programs.

Project 2: Add Bullets to Wiki Markup
When editing a Wikipedia article, you can create a bulleted list by putting
each list item on its own line and placing a star in front of it. But say you
have a really large list that you want to add bullet points to. You could type
those stars at the beginning of each line, one by one. Or you could auto-
mate this task with a short Python script.

The bulletPointAdder.py script will get the text from the clipboard, add
a star and space to the beginning of each line, and then paste this new
text to the clipboard. For example, say I copied the following text (for the
Wikipedia article “List of Lists of Lists”) to the clipboard:

Lists of animals
Lists of aquarium life
Lists of biologists by author abbreviation
Lists of cultivars

Then, if I ran the bulletPointAdder.py program, the clipboard would
contain the following:

* Lists of animals
* Lists of aquarium life
* Lists of biologists by author abbreviation
* Lists of cultivars

This star-prefixed text is ready to be pasted into a Wikipedia article as a
bulleted list.

Step 1: Copy and Paste from the Clipboard
You want the bulletPointAdder.py program to do the following:

• Paste text from the clipboard.

• Do something to it.

• Copy the new text to the clipboard.

Manipulating the text is a little tricky, but copying and pasting are pretty
straightforward: they just involve the pyperclip .copy() and pyperclip.paste()

Strings and Text Editing 175

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

functions. For now, let’s write the part of the program that calls these func-
tions. Enter the following, saving the program as bulletPointAdder.py:

import pyperclip
text = pyperclip.paste()

TODO: Separate lines and add stars.

pyperclip .copy(text)

The TODO comment is a reminder that you should complete this part of
the program eventually. The next step is to actually implement that piece of
the program.

Step 2: Separate the Lines of Text
The call to pyperclip.paste() returns all the text on the clipboard as one big
string. If we used the “List of Lists of Lists” example, the string stored in
text would look like this:

'Lists of animals\nLists of aquarium life\nLists of biologists by author
abbreviation\nLists of cultivars'

The \n newline characters in this string cause it to be displayed with
multiple lines when printed or pasted from the clipboard. There are many
“lines” in this one string value. You want to add a star to the start of each of
these lines.

You could write code that searches for each \n newline character in the
string and then adds the star just after that. But it would be easier to use the
split() method to return a list of strings, one for each line in the original
string, and then add the star to the front of each string in the list.

Edit your program so that it looks like the following:

import pyperclip
text = pyperclip.paste()

Separate lines and add stars.
lines = text.split('\n')
for i in range(len(lines)): # Loop through all indexes in the "lines" list.
 lines[i] = '* ' + lines[i] # Add a star to each string in the "lines" list.

pyperclip .copy(text)

We split the text along its newlines to get a list in which each item is one
line of the text. We store the list in lines and then loop through the items in
lines. For each line, we add a star and a space to the start of the line. Now
each string in lines begins with a star.

176 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Step 3: Join the Modified Lines
The lines list now contains modified lines that start with stars. But pyperclip
.copy() is expecting a single string value, not a list of string values. To make
this single string value, pass lines into the join() method to get a single string
joined from the list’s strings:

import pyperclip
text = pyperclip.paste()

Separate lines and add stars.
lines = text.split('\n')
for i in range(len(lines)): # Loop through all indexes in the "lines" list.
 lines[i] = '* ' + lines[i] # Add a star to each string in the "lines" list.
text = '\n'.join(lines)
pyperclip .copy(text)

When this program is run, it replaces the text on the clipboard with text
that has stars at the start of each line. Now the program is complete, and you
can try running it with text copied to the clipboard.

Even if you don’t need to automate this specific task, you might want to
automate some other kind of text manipulation, such as removing trailing
spaces from the end of lines or converting text to uppercase or lowercase.
Whatever your needs, you can use the clipboard for input and output.

A Short Program: Pig Latin
Pig latin is a silly made-up language that alters English words. If a word
begins with a vowel, the word yay is added to the end of it. If a word begins
with a consonant or consonant cluster (like ch or gr), that consonant or con-
sonant cluster is moved to the end of the word and followed by ay.

Let’s write a pig latin program that will output something like this:

Enter the English message to translate into pig latin:
My name is AL SWEIGART and I am 4,000 years old.
Ymay amenay isyay ALYAY EIGARTSWAY andyay Iyay amyay 4,000 yearsyay oldyay.

This program works by altering a string using the methods introduced
in this chapter. Enter the following source code into the file editor, and save
the file as pigLat.py:

English to pig latin
print('Enter the English message to translate into pig latin:')
message = input()

VOWELS = ('a', 'e', 'i', 'o', 'u', 'y')

pigLatin = [] # A list of the words in pig latin
for word in message.split():
 # Separate the non-letters at the start of this word:

Strings and Text Editing 177

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 prefixNonLetters = ''
 while len(word) > 0 and not word[0].isalpha():
 prefixNonLetters += word[0]
 word = word[1:]
 if len(word) == 0:
 pigLatin.append(prefixNonLetters)
 continue

 # Separate the non-letters at the end of this word:
 suffixNonLetters = ''
 while not word[-1].isalpha():
 suffixNonLetters += word[-1] + suffixNonLetters
 word = word[:-1]

 # Remember if the word was in uppercase or title case:
 wasUpper = word.isupper()
 wasTitle = word.istitle()

 word = word.lower() # Make the word lowercase for translation.

 # Separate the consonants at the start of this word:
 prefixConsonants = ''
 while len(word) > 0 and not word[0] in VOWELS:
 prefixConsonants += word[0]
 word = word[1:]

 # Add the pig latin ending to the word:
 if prefixConsonants != '':
 word += prefixConsonants + 'ay'
 else:
 word += 'yay'

 # Set the word back to uppercase or title case:
 if wasUpper:
 word = word.upper()
 if wasTitle:
 word = word.title()

 # Add the non-letters back to the start or end of the word.
 pigLatin.append(prefixNonLetters + word + suffixNonLetters)

Join all the words back together into a single string:
print(' '.join(pigLatin))

Let’s look at this code line by line, starting at the top:

English to pig latin
print('Enter the English message to translate into pig latin:')
message = input()

VOWELS = ('a', 'e', 'i', 'o', 'u', 'y')

178 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

First, we ask the user to enter the English text to translate into pig latin.
Also, we create a constant that holds every lowercase vowel (and y) as a tuple
of strings. We’ll use this variable later.

Next, we create the pigLatin variable to store the words as we translate
them into pig latin:

pigLatin = [] # A list of the words in pig latin
for word in message.split():
 # Separate the non-letters at the start of this word:
 prefixNonLetters = ''
 while len(word) > 0 and not word[0].isalpha():
 prefixNonLetters += word[0]
 word = word[1:]
 if len(word) == 0:
 pigLatin.append(prefixNonLetters)
 continue

We need each word to be its own string, so we call message.split() to
get a list of the words as separate strings. The string 'My name is AL SWEIGART
and I am 4,000 years old.' would cause split() to return ['My', 'name', 'is',
'AL', 'SWEIGART', 'and', 'I', 'am', '4,000', 'years', 'old.'].

We also need to remove any non-letters from the start and end of each
word so that strings like 'old.' translate to 'oldyay.' instead of 'old.yay'. We
save these non-letters to a variable named prefixNonLetters.

 # Separate the non-letters at the end of this word:
 suffixNonLetters = ''
 while not word[-1].isalpha():
 suffixNonLetters += word[-1] + suffixNonLetters
 word = word[:-1]

A loop that calls isalpha() on the first character in the word determines
whether we should remove a character from a word and concatenate it to the
end of prefixNonLetters. If the entire word is made of non-letter characters,
like '4,000', we can simply append it to the pigLatin list and continue to the
next word to translate. We also need to save the non-letters at the end of the
word string. This code is similar to the previous loop.

Next, we make sure the program remembers if the word was in uppercase
or title case so that we can restore it after translating the word to pig latin:

 # Remember if the word was in uppercase or title case:
 wasUpper = word.isupper()
 wasTitle = word.istitle()

 word = word.lower() # Make the word lowercase for translation.

For the rest of the code in the for loop, we’ll work on a lowercase ver-
sion of word.

Strings and Text Editing 179

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

To convert a word like sweigart to eigart-sway, we need to remove all of
the consonants from the beginning of word:

 # Separate the consonants at the start of this word:
 prefixConsonants = ''
 while len(word) > 0 and not word[0] in VOWELS:
 prefixConsonants += word[0]
 word = word[1:]

We use a loop similar to the loop that removed the non-letters from the
start of word, except now we’re pulling off consonants and storing them in a
variable named prefixConsonants.

If there were any consonants at the start of the word, they’re now in pre-
fixConsonants, and we should concatenate that variable and the string 'ay' to
the end of word. Otherwise, we can assume word begins with a vowel and we
only need to concatenate 'yay':

 # Add the pig latin ending to the word:
 if prefixConsonants != '':
 word += prefixConsonants + 'ay'
 else:
 word += 'yay'

Recall that we set word to its lowercase version with word = word.lower(). If
word was originally in uppercase or title case, this code will convert word back
to its original case:

 # Set the word back to uppercase or title case:
 if wasUpper:
 word = word.upper()
 if wasTitle:
 word = word.title()

At the end of the for loop, we append the word, along with any non-
letter prefix or suffix it originally had, to the pigLatin list:

 # Add the non-letters back to the start or end of the word.
 pigLatin.append(prefixNonLetters + word + suffixNonLetters)

Join all the words back together into a single string:
print(' '.join(pigLatin))

After this loop finishes, we combine the list of strings into a single
string by calling the join() method, then pass this single string to print() to
display our pig latin on the screen.

Summary
Text is a common form of data, and Python comes with many helpful string
methods to process the text stored in string values. You’ll make use of

180 Chapter 8

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

indexing, slicing, and string methods in almost every Python program
you write.

The programs you are writing now don’t seem too sophisticated; they
don’t have graphical user interfaces (GUIs) with images and colorful text.
So far, you’re displaying text with print() and letting the user enter text with
input(). However, the user can quickly enter large amounts of text through
the clipboard. This ability provides a useful avenue for writing programs
that manipulate massive amounts of text. These text-based programs might
not have flashy windows or graphics, but they can get a lot of useful work
done quickly.

Another way to manipulate large amounts of text is reading and writing
files directly off the hard drive. You’ll learn how to do this with Python in
Chapter 10.

That just about covers all the basic concepts of Python programming!
You’ll continue to learn new concepts throughout the rest of this book,
but you now know enough to start writing some useful programs that can
automate tasks. If you’d like to see a collection of short, simple Python
programs built from the basic concepts you’ve learned so far, you can read
my other book, The Big Book of Small Python Projects (No Starch Press, 2021).
Try copying the source code for each program by hand, and then make
modifications to see how they affect the behavior of the program. Once you
understand how the program works, try re-creating the program yourself
from scratch. You don’t need to re-create the source code exactly; just focus
on what the program does rather than how it does it.

You might not think you have enough Python knowledge to do things
such as download web pages, update spreadsheets, or send text messages,
but that’s where Python modules come in! These modules, written by other
programmers, provide functions that make it easy for you to do all these
things. In the next chapter, you’ll learn how to write real programs to do
useful automated tasks.

Practice Questions
 1. What are escape characters?

 2. What do the \n and \t escape characters represent?

 3. How can you put a \ backslash character in a string?

 4. The string value "Howl's Moving Castle" is a valid string. Why isn’t it a prob-
lem that the single quote character in the word Howl's isn’t escaped?

 5. If you don’t want to put \n in your string, how can you write a string
with newlines in it?

 6. What do the following expressions evaluate to?

 • 'Hello, world!'[1]

 • 'Hello, world!'[0:5]

 • 'Hello, world!'[:5]

 • 'Hello, world!'[3:]

Strings and Text Editing 181

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 7. What do the following expressions evaluate to?

 • 'Hello'.upper()

 • 'Hello'.upper().isupper()

 • 'Hello'.upper().lower()

 8. What do the following expressions evaluate to?

 • 'Remember, remember, the fifth of November.'.split()

 • '-'.join('There can be only one.'.split())

 9. What string methods can you use to right-justify, left-justify, and center
a string?

 10. How can you trim whitespace characters from the beginning or end of
a string?

Practice Program: Table Printer
For practice, write a function named printTable() that takes a list of lists of
strings and displays it in a well-organized table with each column right-justi-
fied. Assume that all the inner lists will contain the same number of strings.
For example, the value could look like this:

tableData = [['apples', 'oranges', 'cherries', 'banana'],
 ['Alice', 'Bob', 'Carol', 'David'],
 ['dogs', 'cats', 'moose', 'goose']]

Your printTable() function would print the following:

 apples Alice dogs
 oranges Bob cats
 cherries Carol moose
 banana David goose

Hint: Your code will first have to find the longest string in each of the
inner lists so that the whole column can be wide enough to fit all the strings.
You can store the maximum width of each column as a list of integers. The
printTable() function can begin with colWidths = [0] * len(tableData), which
will create a list containing the same number of 0 values as the number of
inner lists in tableData. That way, colWidths[0] can store the width of the lon-
gest string in tableData[0], colWidths[1] can store the width of the longest string
in tableData[1], and so on. You can then find the largest value in the colWidths
list to find out what integer width to pass to the rjust() string method.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

PART II
A U T O M A T I N G T A S K S

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You may be familiar with the process of
searching for text by pressing ctrl-F and

entering the words you’re looking for. Regular
expressions go one step further: they allow you

to specify a pattern of text to search for. You may not
know a business’s exact phone number, but if you live
in the United States or Canada, you know it will consist
of a three-digit area code, followed by a hyphen, then
three more digits, another hyphen, and four more dig-
its. This is how you, as a human, know a phone number
when you see it: 415-555-1234 is a phone number, but
$4,155,551,234 is not.

We recognize all sorts of other text patterns every day: email addresses
have @ symbols in the middle, US Social Security numbers have nine digits
and two hyphens, website URLs often have periods and forward slashes,

9
T E X T P A T T E R N M A T C H I N G W I T H

R E G U L A R E X P R E S S I O N S

186 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

news headlines use title case, and social media hashtags begin with # and
contain no spaces, to give some examples.

Regular expressions are helpful, but few nonprogrammers know about
them, even though most modern text editors and word processors have
find-and-replace features that can search based on regular expressions.
Regular expressions are huge time-savers, not just for software users but
also for programmers. In fact, in the Guardian article “Here’s What ICT
Should Really Teach Kids: How to Do Regular Expressions,” tech writer
Cory Doctorow argues that we should be teaching regular expressions
before we teach programming:

Knowing [regular expressions] can mean the difference between
solving a problem in 3 steps and solving it in 3,000 steps. When
you’re a nerd, you forget that the problems you solve with a cou-
ple keystrokes can take other people days of tedious, error-prone
work to slog through.

In this chapter, you’ll start by writing a program to find text patterns
without using regular expressions and then learn how to use regular expres-
sions to make the code simpler. I’ll show you basic matching with regular
expressions, then move on to some more powerful features, such as string
substitution and creating your own character classes. You’ll also learn how
to use the Humre module, which offers plain-English substitutes for regular
expressions’ cryptic symbol-based syntax.

Finding Text Patterns Without Regular Expressions
Say you want to find a US phone number in a string; you’re looking for
three numbers, a hyphen, three numbers, a hyphen, and four numbers.
Here’s an example: 415-555-4242.

Let’s write a function named is_phone_number() to check whether a string
matches this pattern and return either True or False. Open a new file editor
tab and enter the following code, then save the file as isPhoneNumber.py:

def is_phone_number(text):
 1 if len(text) != 12: # Phone numbers have exactly 12 characters.
 return False
 for i in range(0, 3): # The first three characters must be numbers.
 2 if not text[i].isdecimal():
 return False
 3 if text[3] != '-': # The fourth character must be a dash.
 return False
 for i in range(4, 7): # The next three characters must be numbers.
 4 if not text[i].isdecimal():
 return False
 5 if text[7] != '-': # The eighth character must be a dash.
 return False
 for i in range(8, 12): # The next four characters must be numbers.
 6 if not text[i].isdecimal():
 return False
 7 return True

Text Pattern Matching with Regular Expressions 187

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

print('Is 415-555-4242 a phone number?', is_phone_number('415-555-4242'))
print(is_phone_number('415-555-4242'))
print('Is Moshi moshi a phone number?', is_phone_number('Moshi moshi'))
print(is_phone_number('Moshi moshi'))

When this program is run, the output looks like this:

Is 415-555-4242 a phone number?
True
Is Moshi moshi a phone number?
False

The is_phone_number() function has code that does several checks to
determine whether the string in text is a valid phone number. If any of these
checks fail, the function returns False. First, the code checks that the string is
exactly 12 characters long 1. Then, it checks that the area code (that is, the
first three characters in text) consists of only numeric characters 2 by call-
ing the isdecimal() string method. The rest of the function checks that the
string follows the pattern of a phone number: the number must have the first
hyphen after the area code 3, three more numeric characters 4, another
hyphen 5, and finally, four more numeric characters 6. If the program
execution manages to get past all the checks, it returns True 7.

Calling is_phone_number() with the argument '415-555-4242' will return
True. Calling is_phone_number() with 'Moshi moshi' will return False; the first
test fails because 'Moshi moshi' is not 12 characters long.

If you wanted to find a phone number within a larger string, you would
have to add even more code to locate the pattern. Replace the last four
print() function calls in isPhoneNumber.py with the following:

message = 'Call me at 415-555-1011 tomorrow. 415-555-9999 is my office.'
for i in range(len(message)):
 1 segment = message[i:i+12]
 2 if is_phone_number(segment):
 print('Phone number found: ' + segment)
print('Done')

When this program is run, the output will look like this:

Phone number found: 415-555-1011
Phone number found: 415-555-9999
Done

On each iteration of the for loop, a new segment of 12 characters from
message is assigned to the variable segment 1. For example, on the first itera-
tion, i is 0, and segment is assigned message[0:12] (that is, the string 'Call me
at 4'). On the next iteration, i is 1, and segment is assigned message[1:13]
(the string 'all me at 41'). In other words, on each iteration of the for loop,
segment takes on the following values

'Call me at 4'
'all me at 41'

188 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

'll me at 415'
'l me at 415-'

and so on, until its last value is 's my office.'
The loop’s code passes segment to is_phone_number() to check whether

it matches the phone number pattern 2, and if so, it prints the segment.
Once it has finished going through message, we print Done.

While the string in message is short in this example, the program would
run in less than a second even if it were millions of characters long. A simi-
lar program that finds phone numbers using regular expressions would also
run in less than a second; however, regular expressions make writing these
programs much quicker.

Finding Text Patterns with Regular Expressions
The previous phone number–finding program works, but it uses a lot of
code to do something limited. The is_phone_number() function is 17 lines but
can find only one phone number format. What about a phone number for-
matted like 415.555.4242 or (415) 555-4242? And what if the phone number
had an extension, like 415-555-4242 x99? The is_phone_number() function
would fail to find them. You could add yet more code for these additional
patterns, but there is an easier way to tackle the problem.

Regular expressions, called regexes for short, are a sort of mini language
that describes a pattern of text. For example, the characters \d in a regex
stand for a decimal numeral between 0 and 9. Python uses the regex string
r'\d\d\d-\d\d\d-\d\d\d\d' to match the same text pattern the previous is_phone
_number() function did: a string of three numbers, a hyphen, three more
numbers, another hyphen, and four numbers. Any other string would not
match the r'\d\d\d-\d\d\d-\d\d\d\d' regex.

Regular expressions can be much more sophisticated than this one. For
example, adding a numeral, such as 3, in curly brackets ({3}) after a pattern
is like saying, “Match this pattern three times.” So the slightly shorter regex
r'\d{3}-\d{3}-\d{4}' also matches the phone number pattern.

Note that we often write regex strings as raw strings, with the r prefix.
This is useful, as regex strings often have backslashes. Without using raw
strings, we would have to enter expressions such as'\\d'.

Before we cover all of the details of regular expression syntax, let’s go over
how to use them in Python. We’ll stick with the example regular expression
string r'\d{3}-\d{3}-\d{4}' used to find US phone numbers in a text string 'My
number is 415-555-4242'. The general process of using regular expressions in
Python involves four steps:

 1. Import the re module.

 2. Pass the regex string to re .compile() to get a Pattern object.

 3. Pass the text string to the Pattern object’s search() method to get a Match
object.

Text Pattern Matching with Regular Expressions 189

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 4. Call the Match object’s group() method to get the string of the matched
text.

In the interactive shell, these steps look like this:

>>> import re
>>> phone_num_pattern_obj = re .compile(r'\d{3} -\d{3} -\d{4}')
>>> match_obj = phone_num_pattern_obj.search('My number is 415-555-4242.')
>>> match_obj.group()
'415-555-4242'

All regex functions in Python are in the re module. Most of the exam-
ples in this chapter will require the re module, so remember to import it at
the beginning of the program. Otherwise, you’ll get a NameError: name 're'
is not defined error message. As with importing any module, you need to
import it only once per program or interactive shell session.

Passing the regular expression string to re .compile() returns a Pattern
object. You only need to compile the Pattern object once; after that, you can
call the Pattern object’s search() method for as many different text strings as
you want.

A Pattern object’s search() method searches the string it is passed for any
matches to the regex. The search() method will return None if the regex pat-
tern isn’t found in the string. If the pattern is found, the search() method
returns a Match object, which will have a group() method that returns a string
of the matched text.

N O T E While I encourage you to enter the example code into the interactive shell, you could
also make use of web-based regular expression testers, which can show you exactly
how a regex matches a piece of text that you enter. I recommend the testers at https://
pythex .org and https://regex101 .com. Different programming languages have
slightly different regular expression syntax, so be sure to select the “Python” flavor on
these websites.

The Syntax of Regular Expressions
Now that you know the basic steps for creating and finding regular expres-
sion objects using Python, you’re ready to learn the full range of regular
expression syntax. In this section, you’ll learn how to group regular expres-
sion elements together with parentheses, escape special characters, match
several alternative groups with the pipe character, and return all matches
with the findall() method.

Grouping with Parentheses
Say you want to separate one smaller part of the matched text, such as the
area code, from the rest of the phone number (to, for example, perform
some operation on it). Adding parentheses will create groups in the regex

https://pythex.org
https://pythex.org
https://regex101.com

190 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

string: r'(\d\d\d)-(\d\d\d-\d\d\d\d)'. Then, you can use the group() method
of Match objects to grab the matching text from just one group.

The first set of parentheses in a regex string will be group 1. The sec-
ond set will be group 2. By passing the integer 1 or 2 to the group() method,
you can grab different parts of the matched text. Passing 0 or nothing to
the group() method will return the entire matched text. Enter the following
into the interactive shell:

>>> import re
>>> phone_re = re .compile(r'(\d\d\d) -(\d\d\d -\d\d\d\d)')
>>> mo = phone_re.search('My number is 415-555-4242.')
>>> mo.group(1) # Returns the first group of the matched text
'415'
>>> mo.group(2) # Returns the second group of the matched text
'555-4242'
>>> mo.group(0) # Returns the full matched text
'415-555-4242'
>>> mo.group() # Also returns the full matched text
'415-555-4242'

If you would like to retrieve all the groups at once, use the groups()
method (note the plural form in the name):

>>> mo.groups()
('415', '555-4242')
>>> area_code, main_number = mo.groups()
>>> print(area_code)
415
>>> print(main_number)
555-4242

Because mo.groups() returns a tuple of multiple values, you can use the
multiple-assignment trick to assign each value to a separate variable, as in
the previous area_code, main_number = mo.groups() line.

Using Escape Characters
Parentheses create groups in regular expressions and are not interpreted
as part of the text pattern. So, what do you do if you need to match a paren-
thesis in your text? For instance, maybe the phone numbers you are trying
to match have the area code set in parentheses: '(415) 555-4242'.

In this case, you need to escape the (and) characters with a backslash.
The \(and \) escaped parentheses will be interpreted as part of the pattern
you are matching. Enter the following into the interactive shell:

>>> pattern = re .compile(r'(\(\d\d\d\)) (\d\d\d-\d\d\d\d)')
>>> mo = pattern.search('My phone number is (415) 555-4242.')
>>> mo.group(1)
'(415)'
>>> mo.group(2)
'555-4242'

Text Pattern Matching with Regular Expressions 191

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The \(and \) escape characters in the raw string passed to re .compile()
will match actual parenthesis characters. In regular expressions, the follow-
ing characters have special meanings:

$ & () * + - . ? [\] ^ { | } ~

If you want to detect these characters as part of your text pattern, you
need to escape them with a backslash:

\# \$ \& \(\) * \+ \- \. \? \[\\ \] \^ \{ \| \} \~

Always double-check that you haven’t mistaken escaped parentheses
\(and \) for unescaped parentheses (and) in a regular expression. If you
receive an error message about “missing)” or “unbalanced parenthesis,”
you may have forgotten to include the closing unescaped parenthesis for a
group, like in this example:

>>> import re
>>> re .compile(r'(\(Parentheses\)')
Traceback (most recent call last):
--snip--
re.error: missing), unterminated subpattern at position 0

The error message tells you that there is an opening parenthesis at
index 0 of the r'(\(Parentheses\)' string that is missing its corresponding
closing parenthesis. Using the Humre module described later in this chap-
ter helps prevent these kinds of typos.

Matching Characters from Alternate Groups
The | character is called a pipe, and it’s used as the alternation operator in
regular expressions. You can use it anywhere you want to match one of mul-
tiple expressions. For example, the regular expression r'Cat|Dog' will match
either 'Cat' or 'Dog'.

You can also use the pipe to match one of several patterns as part of your
regex. For example, say you wanted to match any of the strings 'Caterpillar',
'Catastrophe', 'Catch', or 'Category'. Since all of these strings start with Cat, it
would be nice if you could specify that prefix only once. You can do this by
using the pipe within parentheses to separate the possible suffixes. Enter the
following into the interactive shell:

>>> import re
>>> pattern = re .compile(r'Cat(erpillar|astrophe|ch|egory)')
>>> match = pattern.search('Catch me if you can.')
>>> match.group()
'Catch'
>>> match.group(1)
'ch'

192 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The method call match.group() returns the full matched text 'Catch',
while match.group(1) returns just the part of the matched text inside the
first parentheses group, 'ch'. By using the pipe character and grouping
parentheses, you can specify several alternative patterns you would like your
regex to match.

If you need to match an actual pipe character, escape it with a backs-
lash, like \|.

Returning All Matches
In addition to a search() method, Pattern objects have a findall() method.
While search() will return a Match object of the first matched text in the
searched string, the findall() method will return the strings of every match
in the searched string.

There is one detail you need to keep in mind when using findall(). The
method returns a list of strings as long as there are no groups in the regular
expression. Enter the following into the interactive shell:

>>> import re
>>> pattern = re .compile(r'\d{3} -\d{3} -\d{4}') # This regex has no groups.
>>> pattern.findall('Cell: 415-555-9999 Work: 212-555-0000')
['415-555-9999', '212-555-0000']

If there are groups in the regular expression, then findall() will return
a list of tuples. Each tuple represents a single match, and the tuple has
strings for each group in the regex. To see this behavior in action, enter the
following into the interactive shell (and notice that the regular expression
being compiled now has groups in parentheses):

>>> import re
>>> pattern = re .compile(r'(\d{3}) -(\d{3}) -(\d{4})') # This regex has groups.
>>> pattern.findall('Cell: 415-555-9999 Work: 212-555-0000')
[('415', '555', '9999'), ('212', '555', '0000')]

Also keep in mind that findall() doesn’t overlap matches. For example,
matching three numbers with the regex string r'\d{3}' matches the first
three numbers in '1234' but not the last three:

>>> import re
>>> pattern = re .compile(r'\d{3}')
>>> pattern.findall('1234')
['123']
>>> pattern.findall('12345')
['123']
>>> pattern.findall('123456')
['123', '456']

Because the first three digits in '1234' have been matched as '123', the
digits '234' won’t be included in further matches, even though they fit the
r'\d{3}' pattern.

Text Pattern Matching with Regular Expressions 193

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Qualifier Syntax: What Characters to Match
Regular expressions are split into two parts: the qualifiers that dictate what
characters you are trying to match followed by the quantifiers that dictate
how many characters you are trying to match. In the r'\d{3}-\d{3}-\d{4}'
phone number regex string example we’ve been using, the r'\d' and '-'
parts are qualifiers and the '{3}' and '{4}' are quantifiers. Let’s now exam-
ine the syntax of qualifiers.

Using Character Classes and Negative Character Classes
Although you can define a single character to match, as we’ve done in the
previous examples, you can also define a set of characters to match inside
square brackets. This set is called a character class. For example, the charac-
ter class [aeiouAEIOU] will match any vowel, both lowercase and uppercase.
It’s the equivalent of writing a|e|i|o|u|A|E|I|O|U, but it’s easier to type. Enter
the following into the interactive shell:

>>> import re
>>> vowel_pattern = re .compile(r'[aeiouAEIOU]')
>>> vowel_pattern.findall('RoboCop eats BABY FOOD.')
['o', 'o', 'o', 'e', 'a', 'A', 'O', 'O']

You can also include ranges of letters or numbers by using a hyphen.
For example, the character class [a-zA-Z0-9] will match all lowercase letters,
uppercase letters, and numbers.

Note that, inside the square brackets, the normal regular expression
symbols are not interpreted as such. This means you do not need to escape
characters such as parentheses inside the square brackets if you want to
match literal parentheses. For example, the character class [()] will match
either an open or close parenthesis. You do not need to write this as [\(\)].

By placing a caret character (̂) just after the character class’s opening
bracket, you can make a negative character class. A negative character class
will match all the characters that are not in the character class. For exam-
ple, enter the following into the interactive shell:

>>> import re
>>> consonant_pattern = re .compile(r'[^aeiouAEIOU]')
>>> consonant_pattern.findall('RoboCop eats BABY FOOD.')
['R', 'b', 'C', 'p', ' ', 't', 's', ' ', 'B', 'B', 'Y', ' ', 'F', 'D', '.']

Now, instead of matching every vowel, we’re matching every character
that isn’t a vowel. Keep in mind that this includes spaces, newlines, punctua-
tion characters, and numbers.

Using Shorthand Character Classes
In the earlier phone number regex example, you learned that \d could
stand for any numeric digit. That is, \d is shorthand for the regular

194 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

expression 0|1|2|3|4|5|6|7|8|9 or [0-9]. There are many such shorthand char-
acter classes, as shown in Table 9-1.

Table 9-1: Shorthand Codes for Common Character Classes

Shorthand character class Represents . . .

\d Any numeric digit from 0 to 9 .

\D Any character that is not a numeric digit from 0 to 9 .

\w Any letter, numeric digit, or the underscore character .
(Think of this as matching “word” characters .)

\W Any character that is not a letter, numeric digit, or the
underscore character .

\s Any space, tab, or newline character . (Think of this as
matching “space” characters .)

\S Any character that is not a space, tab, or newline
character .

Note that while \d matches digits and \w matches digits, letters, and the
underscore, there is no shorthand character class that matches only letters.
Though you can use the [a-zA-Z] character class, this character class won’t
match accented letters or non-Roman alphabet letters such as 'é'. Also,
remember to use raw strings to escape the backslash: r'\d'.

For example, enter the following into the interactive shell:

>>> import re
>>> pattern = re .compile(r'\d+\s\w+')
>>> pattern.findall('12 drummers, 11 pipers, 10 lords, 9 ladies, 8 maids,
7 swans, 6 geese, 5 rings, 4 birds, 3 hens, 2 doves, 1 partridge')
['12 drummers', '11 pipers', '10 lords', '9 ladies', '8 maids', '7 swans', '
6 geese', '5 rings', '4 birds', '3 hens', '2 doves', '1 partridge']

The regular expression \d+\s\w+ will match text that has one or more
numeric digits (\d+), followed by a whitespace character (\s), followed by
one or more letter/digit/underscore characters (\w+). The findall() method
returns all matching strings of the regular expression pattern in a list.

Matching Everything with the Dot Character
The . (or dot) character in a regular expression string matches any charac-
ter except for a newline. For example, enter the following into the interac-
tive shell:

>>> import re
>>> at_re = re .compile(r' .at')
>>> at_re.findall('The cat in the hat sat on the flat mat.')
['cat', 'hat', 'sat', 'lat', 'mat']

Text Pattern Matching with Regular Expressions 195

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Remember that the dot character will match just one character, which
is why the text flat in the previous example matched only lat. To match an
actual period, escape the dot with a backslash: \.

Being Careful What You Match For
The best and worst thing about regular expressions is that they will match
exactly what you ask for. Here are some common points of confusion
regarding character classes:

• The [A-Z] or [a-z] character class matches uppercase or lowercase
letters, respectively, but not both. You need to use [A-Za-z] to match
both cases.

• The [A-Za-z] character class matches only plain, unaccented letters. For
example, the regex string r'First Name: ([A-Za-z]+)' would match “First
Name: ” followed by a group of one or more unaccented letters. But
singer Sinéad O’Connor’s first name would match up to the é only, and
the group would be set to 'Sin'.

• The \w character class matches all letters, including accented letters
and characters from other alphabets. But it also matches numbers and
the underscore character, so the regex string r'First Name: (\w+)' may
match more than you intended.

• The \w character class matches all letters, but the regex string r'Last
Name: (\w+)' would capture Sinéad O’Connor’s last name only up until
the apostrophe character. This means the group would capture her last
name as 'O'.

• Straight and smart quote characters (' " ‘ ’ “ ”) are considered com-
pletely different from each other and must be specified separately.

Real-world data is complicated. Even if your program manages to cap-
ture Sinéad O’Connor’s name, it could fail with Jean-Paul Sartre’s name
because of the hyphen.

Of course, when software declares a name to be invalid input, it is
the software, and not the name, that has a bug; people’s names cannot be
invalid. You can learn more about this issue from Patrick McKenzie’s article
“Falsehoods Programmers Believe About Names” at https://www .kalzumeus
.com /2010 /06 /17 /falsehoods -programmers -believe -about -names /. This article
spawned a genre of similar “falsehoods programmers believe” pieces about
how software mishandles dates, time zones, currencies, postal addresses,
genders, airport codes, and love. Watch Carina C. Zona’s 2015 PyCon talk
on the topic, “Schemas for the Real World,” at https://youtu .be /PYYfVqtcWQY.

Quantifier Syntax: How Many Qualifiers to Match
In a regular expression string, quantifiers follow qualifier characters to dic-
tate how many of them to match. For example, in the phone number regex
considered earlier, the {3} follows the \d to match exactly three digits. If

https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://youtu.be/PYYfVqtcWQY

196 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

there is no quantifier following a qualifier, the qualifier must appear exactly
once: you can think of r'\d' as being the same as r'\d{1}'.

Matching an Optional Pattern
Sometimes you may want to match a pattern only optionally. That is, the
regex should match zero or one of the preceding qualifiers. The ? character
flags the preceding qualifier as optional. For example, enter the following
into the interactive shell:

>>> import re
>>> pattern = re .compile(r'42! ?')
>>> pattern.search('42!')
<re.Match object; span=(0, 3), match='42!'>
>>> pattern.search('42')
<re.Match object; span=(0, 2), match='42'>

The ? part of the regular expression means that the pattern ! is optional.
So it matches both 42! (with the exclamation mark) and 42 (without it).

As you’re beginning to see, regular expression syntax’s reliance on sym-
bols and punctuation makes it tricky to read: the ? question mark has mean-
ing in regex syntax, but the ! exclamation mark doesn’t. So r'42!?' means
'42' optionally followed by a '!', but r'42?!' means '4' optionally followed
by '2' followed by '!':

>>> import re
>>> pattern = re .compile(r'42 ?!')
>>> pattern.search('42!')
<re.Match object; span=(0, 3), match='42!'>
>>> pattern.search('4!')
<re.Match object; span=(0, 2), match='4!'>
>>> pattern.search('42') == None # No match
True

To make multiple characters optional, place them in a group and put
the ? after the group. In the earlier phone number example, you can use ?
to make the regex look for phone numbers that either do or do not have an
area code. Enter the following into the interactive shell:

>>> pattern = re .compile(r'(\d{3} -) ?\d{3} -\d{4}')
>>> match1 = pattern.search('My number is 415-555-4242')
>>> match1.group()
'415-555-4242'

>>> match2 = pattern.search('My number is 555-4242')
>>> match2.group()
'555-4242'

You can think of the ? as saying, “Match zero or one of the group pre-
ceding this question mark.”

If you need to match an actual question mark character, escape it with \?.

Text Pattern Matching with Regular Expressions 197

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Matching Zero or More Qualifiers
The * (called the star or asterisk) means “match zero or more.” In other
words, the qualifier that precedes the star can occur any number of times in
the text. It can be completely absent or repeated over and over again. Take
a look at the following example:

>>> import re
>>> pattern = re .compile('Eggs(and spam)*')
>>> pattern.search('Eggs')
<re.Match object; span=(0, 4), match='Eggs'>
>>> pattern.search('Eggs and spam')
<re.Match object; span=(0, 13), match='Eggs and spam'>
>>> pattern.search('Eggs and spam and spam')
<re.Match object; span=(0, 22), match='Eggs and spam and spam'>
>>> pattern.search('Eggs and spam and spam and spam')
<re.Match object; span=(0, 31), match='Eggs and spam and spam and spam'>

While the 'Eggs' part of the string must appear once, there can be any
number of ' and spam' following it, including zero instances.

If you need to match an actual star character, prefix the star in the
regular expression with a backslash, *.

Matching One or More Qualifiers
While * means “match zero or more,” the + (or plus) means “match one or
more.” Unlike the star, which does not require its qualifier to appear in the
matched string, the plus requires the qualifier preceding it to appear at least
once. It is not optional. Enter the following into the interactive shell, and
compare it with the star regexes in the previous section:

>>> pattern = re .compile('Eggs(and spam)+')
>>> pattern.search('Eggs and spam')
<re.Match object; span=(0, 13), match='Eggs and spam'>
>>> pattern.search('Eggs and spam and spam')
<re.Match object; span=(0, 22), match='Eggs and spam and spam'>
>>> pattern.search('Eggs and spam and spam and spam')
<re.Match object; span=(0, 31), match='Eggs and spam and spam and spam'>

The regex 'Eggs(and spam)+' will not match the string 'Eggs', because
the plus sign requires at least one ' and spam'.

You’ll often use parentheses in your regex strings to group together
qualifiers so that a quantifier can apply to the entire group. For example,
you could match any combination of dots and dashes of Morse code with
r'(\.|\-)+' (though this expression would also match invalid Morse code
combinations).

If you need to match an actual plus sign character, prefix the plus sign
with a backslash to escape it: \+.

198 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Matching a Specific Number of Qualifiers
If you have a group that you want to repeat a specific number of times, fol-
low the group in your regex with a number in curly brackets. For example,
the regex (Ha){3} will match the string 'HaHaHa' but not 'HaHa', since the lat-
ter has only two repeats of the (Ha) group.

Instead of one number, you can specify a range by writing a minimum,
a comma, and a maximum in between the curly brackets. For example, the
regex (Ha){3,5} will match 'HaHaHa', 'HaHaHaHa', and 'HaHaHaHaHa'.

You can also leave out the first or second number in the curly brackets
to keep the minimum or maximum unbounded. For example, (Ha){3,} will
match three or more instances of the (Ha) group, while (Ha){,5} will match
zero to five instances. Curly brackets can help make your regular expres-
sions shorter. These two regular expressions match identical patterns:

(Ha){3}
HaHaHa

So do these two regular expressions:

(Ha){3,5}
(HaHaHa)|(HaHaHaHa)|(HaHaHaHaHa)

Enter the following into the interactive shell:

>>> import re
>>> haRegex = re .compile(r'(Ha){3}')
>>> match1 = haRegex.search('HaHaHa')
>>> match1.group()
'HaHaHa'

>>> match = haRegex.search('HaHa')
>>> match == None
True

Here, (Ha){3} matches 'HaHaHa' but not 'Ha'. Because it doesn’t match
'HaHa', search() returns None.

The syntax of the curly bracket quantifier is similar to Python’s slice
syntax (such as 'Hello, world!'[3:5], which evaluates to 'lo'). But there are
key differences. In the regex quantifier, the two numbers are separated by
a comma and not a colon. Also, the second number in the quantifier is
inclusive: '(Ha){3,5}' matches up to and including five instances of the
'(Ha)' qualifier.

Greedy and Non-greedy Matching
Because (Ha){3,5} can match three, four, or five instances of Ha in the string
'HaHaHaHaHa', you may wonder why the Match object’s call to group() in the
previous curly bracket example returns 'HaHaHaHaHa' instead of the shorter

Text Pattern Matching with Regular Expressions 199

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

possibilities. After all, 'HaHaHa' and 'HaHaHaHa' are also valid matches of the
regular expression (Ha){3,5}.

Python’s regular expressions are greedy by default, which means that
in ambiguous situations, they will match the longest string possible. The
non-greedy (also called lazy) version of the curly brackets, which matches
the shortest string possible, must follow the closing curly bracket with a
question mark.

Enter the following into the interactive shell, and notice the difference
between the greedy and non-greedy forms of the curly brackets searching
the same string:

>>> import re
>>> greedy_pattern = re .compile(r'(Ha){3,5}')
>>> match1 = greedy_pattern.search('HaHaHaHaHa')
>>> match1.group()
'HaHaHaHaHa'

>>> lazy_pattern = re .compile(r'(Ha){3,5} ?')
>>> match2 = lazy_pattern.search('HaHaHaHaHa')
>>> match2.group()
'HaHaHa'

Note that the question mark can have two meanings in regular expres-
sions: declaring a lazy match or declaring an optional qualifier. These
meanings are entirely unrelated.

It’s worth pointing out that, technically, you could get by without using
the optional ? quantifier, or even the * and + quantifiers:

• The ? quantifier is the same as {0,1}.

• The * quantifier is the same as {0,}.

• The + quantifier is the same as {1,}.

However, the ?, *, and + quantifiers are common shorthand.

Matching Everything
Sometimes you may want to match everything and anything. For example,
say you want to match the string 'First Name:', followed by any and all text,
followed by 'Last Name:' and any text once again. You can use the dot-star
(.*) to stand in for that “anything.” Remember that the dot character means
“any single character except the newline,” and the star character means
“zero or more of the preceding character.”

Enter the following into the interactive shell:

>>> import re
>>> name_pattern = re .compile(r'First Name: (.*) Last Name: (.*)')
>>> name_match = name_pattern.search('First Name: Al Last Name: Sweigart')
>>> name_match.group(1)
'Al'
>>> name_match.group(2)
'Sweigart'

200 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The dot-star uses greedy mode: it will always try to match as much text
as possible. To match any and all text in a non-greedy or lazy fashion, use the
dot, star, and question mark (.*?). As when it’s used with curly brackets,
the question mark tells Python to match in a non-greedy way.

Enter the following into the interactive shell to see the difference
between the greedy and non-greedy expressions:

>>> import re
>>> lazy_pattern = re .compile(r'< .* ?>')
>>> match1 = lazy_pattern.search('<To serve man> for dinner.>')
>>> match1.group()
'<To serve man>'

>>> greedy_re = re .compile(r'< .*>')
>>> match2 = greedy_re.search('<To serve man> for dinner.>')
>>> match2.group()
'<To serve man> for dinner.>'

Both regexes roughly translate to “Match an opening angle bracket,
followed by anything, followed by a closing angle bracket.” But the string
'<To serve man> for dinner.>' has two possible matches for the closing angle
bracket. In the non-greedy version of the regex, Python matches the short-
est possible string: '<To serve man>'. In the greedy version, Python matches
the longest possible string: '<To serve man> for dinner.>'.

Matching Newline Characters
The dot in .* will match everything except a newline. By passing re.DOTALL
as the second argument to re .compile(), you can make the dot character
match all characters, including the newline character.

Enter the following into the interactive shell:

>>> import re
>>> no_newline_re = re .compile(' .*')
>>> no_newline_re.search('Serve the public trust.\nProtect the innocent.
\nUphold the law.').group()
'Serve the public trust.'

>>> newline_re = re .compile(' .*', re.DOTALL)
>>> newline_re.search('Serve the public trust.\nProtect the innocent.
\nUphold the law.').group()
'Serve the public trust.\nProtect the innocent.\nUphold the law.'

The regex no_newline_re, which did not have re.DOTALL passed to the
re .compile() call that created it, will match everything only up to the first
newline character, whereas newline_re, which did have re.DOTALL passed to
re .compile(), matches everything. This is why the newline_re.search() call
matches the full string, including its newline characters.

Text Pattern Matching with Regular Expressions 201

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Matching at the Start and End of a String
You can use the caret symbol (̂) at the start of a regex to indicate that a
match must occur at the beginning of the searched text. Likewise, you can
put a dollar sign ($) at the end of the regex to indicate that the string must
end with this regex pattern. And you can use the ^ and $ together to indi-
cate that the entire string must match the regex—that is, it’s not enough for
a match to be made on some subset of the string.

For example, the r'^Hello' regular expression string matches strings
that begin with 'Hello'. Enter the following into the interactive shell:

>>> import re
>>> begins_with_hello = re .compile(r'^Hello')
>>> begins_with_hello.search('Hello, world!')
<re.Match object; span=(0, 5), match='Hello'>
>>> begins_with_hello.search('He said "Hello."') == None
True

The r'\d$' regular expression string matches strings that end with a
numeric character between 0 and 9. Enter the following into the interac-
tive shell:

>>> import re
>>> ends_with_number = re .compile(r'\d$')
>>> ends_with_number.search('Your number is 42')
<re.Match object; span=(16, 17), match='2'>
>>> ends_with_number.search('Your number is forty two.') == None
True

The r'^\d+$' regular expression string matches strings that both begin
and end with one or more numeric characters. Enter the following into the
interactive shell:

>>> import re
>>> whole_string_is_num = re .compile(r'^\d+$')
>>> whole_string_is_num.search('1234567890')
<re.Match object; span=(0, 10), match='1234567890'>
>>> whole_string_is_num.search('12345xyz67890') == None
True

The last two search() calls in the previous interactive shell example
demonstrate how the entire string must match the regex if ^ and $ are used.
(I always confuse the meanings of these two symbols, so I use the mnemonic
“carrots cost dollars” to remind myself that the caret comes first and the
dollar sign comes last.)

You can also use \b to make a regex pattern match only on a word
boundary: the start of a word, end of a word, or both the start and end of a
word. In this case, a “word” is a sequence of letters separated by non-letter

202 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

characters. For example, r'\bcat.*?\b' matches a word that begins with 'cat'
followed by any other characters up to the next word boundary:

>>> import re
>>> pattern = re .compile(r'\bcat .* ?\b')
>>> pattern.findall('The cat found a catapult catalog in the catacombs.')
['cat', 'catapult', 'catalog', 'catacombs']

The \B syntax matches anything that is not a word boundary:

>>> import re
>>> pattern = re .compile(r'\Bcat\B')
>>> pattern.findall('certificate') # Match
['cat']
>>> pattern.findall('catastrophe') # No match
[]

It is useful for finding matches in the middle of a word.

A R E V IE W OF R EGE X S Y MBOL S

This chapter has covered a lot of notation so far, so here’s a quick review of
what you’ve learned about basic regular expression syntax:

• The ? matches zero or one instance of the preceding qualifier .

• The * matches zero or more instances of the preceding qualifier .

• The + matches one or more instances of the preceding qualifier .

• The {n} matches exactly n instances of the preceding qualifier .

• The {n,} matches n or more instances of the preceding qualifier .

• The {,m} matches 0 to m instances of the preceding qualifier .

• The {n,m} matches at least n and at most m instances of the preceding
qualifier .

• {n,m}? or *? or +? performs a non-greedy match of the preceding qualifier .

• ^spam means the string must begin with spam .

• spam$ means the string must end with spam .

• The . matches any character, except newline characters .

• The \d, \w, and \s match a digit, word, or space character, respectively .

• The \D, \W, and \S match anything except a digit, word, or space charac-
ter, respectively . [abc] matches any character between the square brackets
(such as a, b, or c) .

• [̂ abc] matches any character that isn’t between the square brackets .

• (Hello) groups 'Hello' together as a single qualifier .

Text Pattern Matching with Regular Expressions 203

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Case-insensitive Matching
Normally, regular expressions match text with the exact casing you specify.
For example, the following regexes match completely different strings:

>>> import re
>>> pattern1 = re .compile('RoboCop')
>>> pattern2 = re .compile('ROBOCOP')
>>> pattern3 = re .compile('robOcop')
>>> pattern4 = re .compile('RobocOp')

But sometimes you care only about matching the letters, and aren’t
worried about whether they’re uppercase or lowercase. To make your regex
case-insensitive, you can pass re.IGNORECASE or re.I as a second argument to
re .compile(). Enter the following into the interactive shell:

>>> import re
>>> pattern = re .compile(r'robocop', re.I)
>>> pattern.search('RoboCop is part man, part machine, all cop.').group()
'RoboCop'

>>> pattern.search('ROBOCOP protects the innocent.').group()
'ROBOCOP'

>>> pattern.search('Have you seen robocop?').group()
'robocop'

The regular expression now matches strings with any casing.

Substituting Strings
Regular expressions don’t merely find text patterns; they can also substitute
new text in place of those patterns. The sub() method for Pattern objects
accepts two arguments. The first is a string that should replace any matches.
The second is the string of the regular expression. The sub() method
returns a string with the substitutions applied.

For example, enter the following into the interactive shell to replace
secret agents’ names with CENSORED:

>>> import re
>>> agent_pattern = re .compile(r'Agent \w+')
>>> agent_pattern.sub('CENSORED', 'Agent Alice contacted Agent Bob.')
'CENSORED contacted CENSORED.'

Sometimes you may need to use the matched text itself as part of the
substitution. In the first argument to sub(), you can include \1, \2, \3, and so
on, to mean “Enter the text of group 1, 2, 3, and so on, in the substitution.”
This syntax is called a back reference.

204 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

For example, say you want to censor the names of the secret agents by
showing just the first letters of their names. To do this, you could use the
regex Agent (\w)\w* and pass r'\1****' as the first argument to sub():

>>> import re
>>> agent_pattern = re .compile(r'Agent (\w)\w*')
>>> agent_pattern.sub(r'\1****', 'Agent Alice contacted Agent Bob.')
'A**** contacted B****.'

The \1 in the regular expression string is replaced by whatever text was
matched by group 1—that is, the (\w) group of the regular expression.

Managing Complex Regexes with Verbose Mode
Regular expressions are fine if the text pattern you need to match is simple.
But matching complicated text patterns might require long, convoluted reg-
ular expressions. You can mitigate this complexity by telling the re .compile()
function to ignore whitespace and comments inside the regular expression
string. Enable this “verbose mode” by passing the variable re.VERBOSE as the
second argument to re .compile().

Now, instead of a hard-to-read regular expression like this

pattern = re .compile(r'((\d{3}|\(\d{3}\)) ?(\s| -|\ .) ?\d{3}(\s|-
|\.)\d{4}(\s*(ext|x|ext\.)\s*\d{2,5})?)')

you can spread the regular expression over multiple lines and use comments
to label its components, like this:

pattern = re .compile(r'''(
 (\d{3}|\(\d{3}\))? # Area code
 (\s|-|\.)? # Separator
 \d{3} # First three digits
 (\s|-|\.) # Separator
 \d{4} # Last four digits
 (\s*(ext|x|ext\.)\s*\d{2,5})? # Extension
)''', re.VERBOSE)

Note how the previous example uses the triple-quote syntax (''') to
create a multiline string so that you can spread the regular expression defi-
nition over many lines, making it much more legible.

The comment rules inside the regular expression string are the same as
for regular Python code: the # symbol and everything after it until the end
of the line are ignored. Also, the extra spaces inside the multiline string
for the regular expression are not considered part of the text pattern to be
matched. This lets you organize the regular expression so that it’s easier
to read.

While verbose mode makes your regex strings more readable, I advise
you to instead use the Humre module, covered later in this chapter, to
improve the readability of your regular expressions.

Text Pattern Matching with Regular Expressions 205

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Combining re.IGNORECASE, re.DOTALL, and re.VERBOSE
What if you want to use re.VERBOSE to write comments in your regular
expression, but also want to use re.IGNORECASE to ignore capitalization?
Unfortunately, the re .compile() function takes only a single value as its sec-
ond argument.

You can get around this limitation by combining the re.IGNORECASE,
re.DOTALL, and re.VERBOSE variables using the pipe character (|), which in this
context is known as the bitwise or operator. For example, if you want a regu-
lar expression that is case-insensitive and includes newlines to match the
dot character, you would form your re .compile() call like this:

>>> some_regex = re .compile('foo', re.IGNORECASE | re.DOTALL)

Including all three options in the second argument looks like this:

>>> some_regex = re .compile('foo', re.IGNORECASE | re.DOTALL | re.VERBOSE)

This syntax is a little old-fashioned and originates from early versions
of Python. The details of the bitwise operators are beyond the scope of this
book, but check out the resources at https://nostarch .com /automatestuff3 /
for more information. You can also pass other options for the second
argument; they’re uncommon, but you can read more about them in the
resources too.

Project 3: Phone Number and Email Address Extractor
Say you’ve been given the boring task of finding every phone number and
email address in a long web page or document. If you manually scroll
through the page, you might end up searching for a long time. But if you
had a program that could search the text in your clipboard for phone num-
bers and email addresses, you could simply press ctrl-A to select all the
text, press ctrl-C to copy it to the clipboard, and then run your program.
It could replace the text on the clipboard with just the phone numbers and
email addresses it finds.

Whenever you’re tackling a new project, it can be tempting to dive right
into writing code. But more often than not, it’s best to take a step back and
consider the bigger picture. I recommend first drawing up a high-level plan
for what your program needs to do. Don’t think about the actual code yet;
you can worry about that later. Right now, stick to broad strokes.

For example, your phone number and email address extractor will need
to do the following:

• Get the text from the clipboard.

• Find all phone numbers and email addresses in the text.

• Paste them onto the clipboard.

https://nostarch.com/automatestuff3/

206 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Now you can start thinking about how this might work in code. The
code will need to do the following:

• Use the pyperclip module to copy and paste strings.

• Create two regexes, one for matching phone numbers and one for
matching email addresses.

• Find all matches (not just the first match) of both regexes.

• Neatly format the matched strings into a single string to paste.

• Display some kind of message if no matches were found in the text.

This list is like a road map for the project. As you write the code, you
can focus on each of these steps separately, and each step should seem fairly
manageable. They’re also expressed in terms of things you already know
how to do in Python.

Step 1: Create a Regex for Phone Numbers
First, you have to create a regular expression to search for phone numbers.
Create a new file, enter the following, and save it as phoneAndEmail.py:

import pyperclip, re

phone_re = re .compile(r'''(
 (\d{3}|\(\d{3}\))? # Area code
 (\s|-|\.)? # Separator
 (\d{3}) # First three digits
 (\s|-|\.) # Separator
 (\d{4}) # Last four digits
 (\s*(ext|x|ext\.)\s*(\d{2,5}))? # Extension
)''', re.VERBOSE)

TODO: Create email regex.

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

The TODO comments are just a skeleton for the program. They’ll be
replaced as you write the actual code.

The phone number begins with an optional area code, so we follow the
area code group with a question mark. Since the area code can be just three
digits (that is, \d{3}) or three digits within parentheses (that is, \(\d{3}\)),
you should have a pipe joining those parts. You can add the regex comment
Area code to this part of the multiline string to help you remember what
(\d{3}|\(\d{3}\))? is supposed to match.

The phone number separator character can be an optional space (\s),
hyphen (-), or period (.), so we should also join these parts using pipes.
The next few parts of the regular expression are straightforward: three dig-
its, followed by another separator, followed by four digits. The last part is an

Text Pattern Matching with Regular Expressions 207

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

optional extension made up of any number of spaces followed by ext, x, or
ext., followed by two to five digits.

N O T E It’s easy to get mixed up when writing regular expressions that contain groups with
parentheses () and escaped parentheses \(\). Remember to double-check that you’re
using the correct syntax if you get a “missing), unterminated subpattern” error message.

Step 2: Create a Regex for Email Addresses
You will also need a regular expression that can match email addresses.
Make your program look like the following:

import pyperclip, re

phone_re = re .compile(r'''(
--snip--

Create email regex.
email_re = re .compile(r'''(
 1 [a-zA-Z0-9._%+-]+ # username
 2 @ # @ symbol
 3 [a-zA-Z0-9.-]+ # domain name
 (\.[a-zA-Z]{2,4}) # dot-something
)''', re.VERBOSE)

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

The username part of the email address 1 consists of one or more
characters that can be any of the following: lowercase and uppercase letters,
numbers, a dot, an underscore, a percent sign, a plus sign, or a hyphen. You
can put all of these into a character class: [a-zA-Z0-9._%+-].

The domain and username are separated by an @ symbol 2. The domain
name 3 has a slightly less permissive character class, with only letters, num-
bers, periods, and hyphens: [a-zA-Z0-9.-]. Last is the “dot-com” part (techni-
cally known as the top-level domain), which can really be dot-anything.

The format for email addresses has a lot of weird rules. This regular
expression won’t match every possible valid email address, but it will match
almost any typical email address you’ll encounter.

Step 3: Find All Matches in the Clipboard Text
Now that you’ve specified the regular expressions for phone numbers and
email addresses, you can let Python’s re module do the hard work of finding
all the matches on the clipboard. The pyperclip.paste() function will get a
string value of the text on the clipboard, and the findall() regex method
will return a list of tuples.

208 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Make your program look like the following:

import pyperclip, re

phone_re = re .compile(r'''(
--snip--

Find matches in clipboard text.
text = str(pyperclip.paste())

1 matches = []
2 for groups in phone_re.findall(text):
 phone_num = '-'.join([groups[1], groups[3], groups[5]])
 if groups[6] != '':
 phone_num += ' x' + groups[6]
 matches.append(phone_num)
3 for groups in email_re.findall(text):
 matches.append(groups)

TODO: Copy results to the clipboard.

There is one tuple for each match, and each tuple contains strings for
each group in the regular expression. Remember that group 0 matches the
entire regular expression, so the group at index 0 of the tuple is the one you
are interested in.

As you can see at 1, you’ll store the matches in a list variable named
matches. It starts off as an empty list and a couple of for loops. For the email
addresses, you append group 0 of each match 3. For the matched phone
numbers, you don’t want to just append group 0. While the program detects
phone numbers in several formats, you want the phone number appended
to be in a single, standard format. The phone_num variable contains a string
built from groups 1, 3, 5, and 8 of the matched text 2. (These groups are
the area code, first three digits, last four digits, and extension.)

Step 4: Join the Matches into a String
Now that you have the email addresses and phone numbers as a list of
strings in matches, you want to put them on the clipboard. The pyperclip
.copy() function takes only a single string value, not a list of strings, so you
must call the join() method on matches.

Make your program look like the following:

import pyperclip, re

phone_re = re .compile(r'''(
--snip--
for groups in email_re.findall(text):
 matches.append(groups[0])

Copy results to the clipboard.

Text Pattern Matching with Regular Expressions 209

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

if len(matches) > 0:
 pyperclip .copy('\n' .join(matches))
 print('Copied to clipboard:')
 print('\n'.join(matches))
else:
 print('No phone numbers or email addresses found.')

To make it easier to see that the program is working, we also print any
matches you find to the terminal window. If no phone numbers or email
addresses were found, the program tells the user this.

To test your program, open your web browser to the No Starch Press
contact page at https://nostarch .com /contactus /, press ctrl-A to select all the
text on the page, and press ctrl-C to copy it to the clipboard. When you
run this program, the output should look something like this:

Copied to clipboard:
800-555-7240
415-555-9900
415-555-9950
info@nostarch .com
media@nostarch .com
academic@nostarch .com
info@nostarch .com

You can modify this script to search for mailing addresses, social media
handles, and many other types of text patterns.

Ideas for Similar Programs
Identifying patterns of text (and possibly substituting them with the sub()
method) has many different potential applications. For example, you could
do the following:

• Find website URLs that begin with http:// or https://.

• Clean up dates in different date formats (such as 3/14/2030, 03-14-2030,
and 2030/3/14) by replacing them with dates in a single, standard format.

• Remove sensitive information such as Social Security numbers or credit
card numbers.

• Find common typos, such as multiple spaces between words, acciden-
tally accidentally repeated words, or multiple exclamation marks at the
ends of sentences. Those are annoying!!

Humre: A Module for Human-Readable Regexes
Code is read far more often than it’s written, so it’s important for your code
to be readable. But the punctuation-dense syntax of regular expressions can
be hard for even experienced programmers to read. To solve this, the third-
party Humre Python module takes the good ideas of verbose mode even fur-
ther by using human-readable, plain-English names to create readable regex
code. You can install Humre by following the instructions in Appendix A.

https://nostarch.com/contactus/

210 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Let’s go back to the r'\d{3}-\d{3}-\d{4}' phone number example from
the beginning of this chapter. The functions and constants in Humre can
produce the same regex string with plain English:

>>> from humre import *
>>> phone_regex = exactly(3, DIGIT) + '-' + exactly(3, DIGIT) + '-' + exactly(4, DIGIT)
>>> phone_regex
'\\d{3}-\\d{3}-\\d{4}'

Humre’s constants (like DIGIT) contain strings, and Humre’s func-
tions (like exactly()) return strings. Humre doesn’t replace the re module.
Rather, it produces regex strings that can be passed to re .compile():

>>> import re
>>> pattern = re .compile(phone _regex)
>>> pattern.search('My number is 415-555-4242')
<re.Match object; span=(13, 25), match='415-555-4242'>

Humre has constants and functions for each feature of regular expres-
sion syntax. You can then concatenate the constants and returned strings
like any other string. For example, here are Humre’s constants for the short-
hand character classes:

• DIGIT and NONDIGIT represent r'\d' and r'\D', respectively.

• WORD and NONWORD represent r'\w' and r'\W', respectively.

• WHITESPACE and NONWHITESPACE represent r'\s' and r'\S', respectively.

A common source of regex bugs is forgetting which characters need to be
escaped. You can use Humre’s constants instead of typing the escaped char-
acter yourself. For example, say you want to match a single-digit floating-point
number with one digit after the decimal point, like '0.9' or '4.5'. However, if
you use the regex string r'\d.\d', you might not realize that the dot matches a
period (as in '4.5') but also matches any other character (as in '4A5').

Instead, use Humre’s PERIOD constant, which contains the string r'\.'.
The expression DIGIT + PERIOD + DIGIT evaluates to r'\d\.\d' and makes it
much more obvious what the regex intends to match.

The following Humre constants exist for escaped characters:

PERIOD
DOLLAR_SIGN
QUESTION_MARK
HASHTAG
AMPERSAND

OPEN_PAREN
CLOSE_PAREN
ASTERISK
PLUS
MINUS

OPEN_BRACKET
CLOSE_BRACKET
OPEN_BRACE
CLOSE_BRACE
BACKSLASH

PIPE
CARET
TILDE

There are also constants for NEWLINE, TAB, QUOTE, and DOUBLE_QUOTE. Back
references from r'\1' to r'\99' are represented as BACK_1 to BACK_99.

However, you’ll make the largest readability gains by using Humre’s
functions. Table 9-2 shows these functions and their equivalent regular
expression syntax.

Text Pattern Matching with Regular Expressions 211

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Table 9-2: Humre Functions

Humre function Regex string

group('A') r'(A)'

optional('A') r'A?'

either('A', 'B', 'C') r'A|B|C'

exactly(3, 'A') 'A{3}'

between(3, 5, 'A') 'A{3,5}'

at_least(3, 'A') 'A{3,}'

at_most(3, 'A') 'A{,3}'

chars('A-Z') '[A-Z]'

nonchars('A-Z') '[^A-Z]'

zero_or_more('A') 'A*'

zero_or_more_lazy('A') 'A*?'

one_or_more('A') 'A+'

one_or_more_lazy('A') 'A+?'

starts_with('A') '^A'

ends_with('A') 'A$'

starts_and_ends_with('A') '^A$'

named_group('name', 'A') '(?P<name>A)'

Humre also has several convenience functions that combine common
pairs of function calls. For example, instead of using optional(group('A')) to
create '(A)?', you can simply call optional_group('A'). Table 9-3 has the full
list of Humre convenience functions.

Table 9-3: Humre Convenience Functions

Convenience function Function equivalent Regex string

optional_group('A') optional(group('A')) '(A)?'

group_either('A') group(either('A', 'B', 'C')) '(A|B|C)'

exactly_group(3, 'A') exactly(3, group('A')) '(A){3}'

between_group(3, 5, 'A') between(3, 5, group('A')) '(A){3,5}'

at_least_group (3, 'A') at_least(3, group('A')) '(A){3,}'

at_most_group (3, 'A') at_most(3, group('A')) '(A){,3}'

zero_or_more_group('A') zero_or_more(group('A')) '(A)*'

zero_or_more_lazy_group('A') zero_or_more_lazy(group('A')) '(A)*?'

one_or_more_group('A') one_or_more(group('A')) '(A)+'

one_or_more_lazy_group('A') one_or_more_lazy(group('A')) '(A)+?'

212 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

All of Humre’s functions except either() and group_either() allow you
to pass multiple strings to automatically join them. This means that calling
group(DIGIT, PERIOD, DIGIT) produces the same regex string as group(DIGIT +
PERIOD + DIGIT). They both return the regex string r'(\d\.\d)'.

Finally, Humre has constants for common regex patterns:

ANY_SINGLE The . pattern that matches any single character (except
newlines)

ANYTHING_LAZY The lazy .*? zero or more pattern

ANYTHING_GREEDY The greedy .* zero or more pattern

SOMETHING_LAZY The lazy .+? one or more pattern

SOMETHING_GREEDY The greedy .+ one or more pattern

The readability of regex written with Humre becomes more obvious
when you consider large, complicated regular expressions. Let’s rewrite the
phone number regex from the previous phone number extractor project
using Humre:

import re
from humre import *
phone_regex = group(
 optional_group(either(exactly(3, DIGIT), # Area code
 OPEN_PAREN + exactly(3, DIGIT) + CLOSE_PAREN)),
 optional(group_either(WHITESPACE, '-', PERIOD)), # Separator
 group(exactly(3, DIGIT)), # First three digits
 group_either(WHITESPACE, '-', PERIOD), # Separator
 group(exactly(4, DIGIT)), # Last four digits
 optional_group(# Extension
 zero_or_more(WHITESPACE),
 group_either('ext', 'x', r'ext\.'),
 zero_or_more(WHITESPACE),
 group(between(2, 5, DIGIT))
)
)

pattern = re .compile(phone _regex)
match = pattern.search('My number is 415-555-1212.')
print(match.group())

When you run this program, the output is this:

415-555-1212

This code is much more verbose than even the verbose mode regex.
It helps to import Humre using the from humre import * syntax so that you
don’t need to put humre. before every function and constant. But the length
of the code doesn’t matter as much as the readability.

Text Pattern Matching with Regular Expressions 213

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You can switch your existing regular expressions to Humre code by call-
ing the humre.parse() function, which returns a string of Python source code:

>>> import humre
>>> humre.parse(r'\d{3}-\d{3}-\d{4}')
"exactly(3, DIGIT) + '-' + exactly(3, DIGIT) + '-' + exactly(4, DIGIT)"

When combined with a modern editor such as PyCharm or Visual
Studio Code, Humre offers several further advantages:

• You can indent your code to make it obvious which parts of the regex
contain which other parts.

• Your editor’s parentheses matching works.

• Your editor’s syntax highlighting works.

• Your editor’s linter and type hints tool picks up typos.

• Your editor’s autocomplete fills in the function and constant names.

• Humre handles raw strings and escaping for you.

• You can put Python comments alongside your Humre code.

• Typos cause more helpful error messages.

Many experienced programmers will object to using anything other
than the standard, complicated, unreadable regular expression syntax.
As programmer Peter Bhat Harkins once said, “One of the most irritating
things programmers do regularly is feel so good about learning a hard thing
that they don’t look for ways to make it easy, or even oppose things that
would do so.”

However, if a co-worker objects to your use of Humre, you can simply
print the underlying regex string that your Humre code generates and put
it back into your source code. For example, the contents of the phone_regex
variable in the phone number extractor project are as follows:

r'((\d{3}|\(\d{3}\))?(\s|-|\.)?(\d{3})(\s|-|\.)(\d{4})(\s*(ext|x|ext\.)\s*(\d{2,5}))?)'

Your co-worker is welcome to use this regular expression string if they
feel it is more appropriate.

Summary
While a computer can search for text quickly, it must be told precisely what
to look for. Regular expressions allow you to specify the pattern of charac-
ters you are looking for, rather than the exact text itself. In fact, some word
processing and spreadsheet applications provide find-and-replace features
that allow you to search using regular expressions. The punctuation-heavy
syntax of regular expressions is composed of qualifiers that detail what to
match and quantifiers that detail how many to match.

The re module that comes with Python lets you compile a regex string
into a Pattern object. These objects have several methods: search(), to find

214 Chapter 9

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

a single match; findall(), to find all matching instances; and sub(), to do a
find-and-replace substitution of text.

You can find out more in the official Python documentation at https://
docs .python .org /3 /library /re .html. Another useful resource is the tutorial
website https://www .regular -expressions .info. The Humre page on the Python
Package Index is https://pypi .org /project /Humre /.

Practice Questions
 1. What is the function that returns Regex objects?

 2. Why are raw strings often used when creating Regex objects?

 3. What does the search() method return?

 4. How do you get the actual strings that match the pattern from a Match
object?

 5. In the regex created from r'(\d\d\d)-(\d\d\d-\d\d\d\d)', what does
group 0 cover? Group 1? Group 2?

 6. Parentheses and periods have specific meanings in regular expression
syntax. How would you specify that you want a regex to match actual
parentheses and period characters?

 7. The findall() method returns a list of strings or a list of tuples of
strings. What makes it return one or the other?

 8. What does the | character signify in regular expressions?

 9. What two things does the ? character signify in regular expressions?

 10. What is the difference between the + and * characters in regular
expressions?

 11. What is the difference between {3} and {3,5} in regular expressions?

 12. What do the \d, \w, and \s shorthand character classes signify in regular
expressions?

 13. What do the \D, \W, and \S shorthand character classes signify in regular
expressions?

 14. What is the difference between the .* and .*? regular expressions?

 15. What is the character class syntax to match all numbers and lowercase
letters?

 16. How do you make a regular expression case-insensitive?

 17. What does the . character normally match? What does it match if
re.DOTALL is passed as the second argument to re .compile()?

 18. If num_re = re .compile(r'\d+'), what will num_re.sub('X', '12 drummers,
11 pipers, five rings, 3 hens') return?

 19. What does passing re.VERBOSE as the second argument to re .compile()
allow you to do?

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://www.regular-expressions.info
https://pypi.org/project/Humre/

Text Pattern Matching with Regular Expressions 215

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Practice Programs
For practice, write programs to do the following tasks.

Strong Password Detection
Write a function that uses regular expressions to make sure the password
string it is passed is strong. A strong password has several rules: it must be
at least eight characters long, contain both uppercase and lowercase char-
acters, and have at least one digit. Hint: It’s easier to test the string against
multiple regex patterns than to try to come up with a single regex that can
validate all the rules.

Regex Version of the strip() Method
Write a function that takes a string and does the same thing as the strip()
string method. If no other arguments are passed other than the string to
strip, then the function should remove whitespace characters from the
beginning and end of the string. Otherwise, the function should remove
the characters specified in the second argument to the function.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Variables are a fine way to store data while
your program is running, but if you want

your data to persist even after your program
has finished, you need to save it to a file. You can

think of a file’s contents as a single string value, poten-
tially gigabytes in size. In this chapter, you’ll learn how
to use Python to create, read, and save files on the
hard drive.

Files and Filepaths
A file has two key properties: a filename (usually written as one word) and a
path. The path specifies the location of a file on the computer. For example,
there is a file on my Windows laptop with the filename project.docx in the path
C:\Users\Al\Documents. The part of the filename after the last period is called
the file’s extension and tells you a file’s type. The filename project.docx is a Word

10
R E A D I N G A N D W R I T I N G F I L E S

218 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

document, and Users, Al, and Documents all refer to folders (also called directo-
ries). Folders can contain files and other folders (called subfolders). For exam-
ple, project.docx is in the Documents folder, which is inside the Al folder, which is
inside the Users folder. Figure 10-1 shows this folder organization.

Users

C:\

AI

Documents

project.docx

Figure 10-1: A file in a hierarchy
of folders

The C:\ part of the path is the root folder, which contains all the other
folders. On Windows, the root folder is named C:\ and is also called the C:
drive. On macOS and Linux, the root folder is /. In this book, I’ll use the
Windows-style root folder, C:\. If you are entering the interactive shell exam-
ples on macOS or Linux, enter / instead.

Additional volumes, such as a DVD drive or USB flash drive, will appear
differently on different operating systems. On Windows, they appear as
new, lettered root drives, such as D:\ or E:\. On macOS, they appear as new
folders under the /Volumes folder. On Linux, they appear as new folders
under the /mnt (“mount”) folder. Also note that while folder names and
filenames are not case-sensitive on Windows and macOS, they are case-
sensitive on Linux.

N O T E Because your system probably has different files and folders on it than mine, you
won’t be able to follow every example in this chapter exactly. Still, try to follow along
using folders that exist on your computer.

Standardizing Path Separators
On Windows, paths are written using backslashes (\) as the separator
between folder names. The macOS and Linux operating systems, however,
use the forward slash (/) as their path separator.

The Path() function in the pathlib module handles all operating sys-
tems, so the best practice is to use forward slashes in your Python code. If
you pass it the string values of individual file and folder names in your path,
Path() will return a string with a filepath using the correct path separators.
Enter the following into the interactive shell:

>>> from pathlib import Path
>>> Path('spam', 'bacon', 'eggs')
WindowsPath('spam/bacon/eggs')

Reading and Writing Files 219

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> str(Path('spam', 'bacon', 'eggs'))
'spam\\bacon\\eggs'

While the WindowsPath object may use / forward slashes, converting it to
a string with the str() function requires using \ backslashes. Note that the
convention for importing pathlib is to run from pathlib import Path, since
otherwise we’d have to enter pathlib.Path everywhere Path shows up in our
code. Not only is this extra typing redundant, but it’s also redundant.

I’m running this chapter’s interactive shell examples on Windows, so
Path('spam', 'bacon', 'eggs') returned a WindowsPath object for the joined
path, represented as WindowsPath('spam/bacon/eggs'). Even though Windows
uses backslashes, the WindowsPath representation in the interactive shell dis-
plays them using forward slashes, as open source software developers have
historically favored the Linux operating system.

If you want to get a simple text string of this path, you can pass it to the
str() function, which in our example returns 'spam\\bacon\\eggs'. (Notice
that we double the backslashes because we need to escape each backslash
with another backslash character.) If I had called this function on macOS
or Linux, Path() would have returned a PosixPath object that, when passed to
str(), would have returned 'spam/bacon/eggs'. (POSIX is a set of standards for
Unix-like operating systems.)

If you work with Path objects, WindowsPath and PosixPath never have to
appear in your source code directly. These Path objects will be passed to
several of the file-related functions introduced in this chapter. For example,
the following code joins names from a list of filenames to the end of a fold-
er’s name:

>>> from pathlib import Path
>>> my_files = ['accounts.txt', 'details.csv', 'invite.docx']
>>> for filename in my_files:
... print(Path(r'C:\Users\Al', filename))
...
C:\Users\Al\accounts.txt
C:\Users\Al\details.csv
C:\Users\Al\invite.docx

On Windows, the backslash separates directories, so you can’t use it in
filenames. However, you can use backslashes in filenames on macOS and
Linux. So, while Path(r'spam\eggs') refers to two separate folders (or a file
eggs in a folder spam) on Windows, the same command would refer to a sin-
gle folder (or file) named spam\eggs on macOS and Linux. For this reason,
it’s usually a good idea to always use forward slashes in your Python code
(and I’ll be doing so for the rest of this chapter). The pathlib module will
ensure that your code always works on all operating systems.

Joining Paths
We normally use the + operator to add two integer or floating-point num-
bers, such as in the expression 2 + 2, which evaluates to the integer value 4.
But we can also use the + operator to concatenate two string values, like the

220 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

expression 'Hello' + 'World', which evaluates to the string value 'HelloWorld'.
Similarly, the / operator that we normally use for division can combine Path
objects and strings. This is helpful for modifying a Path object after you’ve
already created it with the Path() function.

For example, enter the following into the interactive shell:

>>> from pathlib import Path
>>> Path('spam') / 'bacon' / 'eggs'
WindowsPath('spam/bacon/eggs')
>>> Path('spam') / Path('bacon/eggs')
WindowsPath('spam/bacon/eggs')
>>> Path('spam') / Path('bacon', 'eggs')
WindowsPath('spam/bacon/eggs')

The only thing you need to keep in mind when using the / operator for
joining paths is that one of the first two values in the expression must be
a Path object. This is because these expressions evaluate from left to right,
and the / operator can be used on two Path objects or on a Path object and a
string, but not on two strings. Python will give you an error if you try to
enter the following into the interactive shell:

>>> 'spam' / 'bacon'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'str' and 'str'

So, either the first or second leftmost value must be a Path object for the
entire expression to evaluate to a Path object. Here’s how the / operator and
a Path object evaluate to the final Path object:

WindowsPath('spam/bacon')/'eggs'/'ham'

Path('spam)/'bacon' /'eggs'/'ham'

WindowsPath('spam/bacon/eggs') /'ham'

WindowsPath('spam/bacon/eggs/ham')

If you see the TypeError: unsupported operand type(s) for /: 'str' and
'str' error message shown previously, you need to put a Path object instead
of a string on the left side of the expression.

The / operator replaces the older os.path.join() function, which you can
learn more about at https://docs .python .org /3 /library /os .path .html#os .path .join.

Accessing the Current Working Directory
Every program that runs on your computer has a current working directory.
Any filenames or paths that do not begin with the root folder are assumed
to be under the current working directory.

https://docs.python.org/3/library/os.path.html#os.path.join

Reading and Writing Files 221

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

N O T E While folder is the more modern name for directory, note that current working
directory (or just working directory) is the standard term, not current work-
ing folder.

You can get the current working directory as a string value with the
Path.cwd() function and can change it using os.chdir(). Enter the following
into the interactive shell:

>>> from pathlib import Path
>>> import os
>>> Path.cwd()
WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python313')'
>>> os.chdir('C:\\Windows\\System32')
>>> Path.cwd()
WindowsPath('C:/Windows/System32')

Here, the current working directory is set to C:\Users\Al\AppData\Local\
Programs\Python\Python313, so the filename project.docx refers to C:\Users\Al\
AppData\Local\Programs\Python\Python313\project.docx. When we change the
current working directory to C:\Windows\System32, the filename project.docx is
interpreted as C:\Windows\System32\project.docx.

Python will display an error if you try to change to a directory that does
not exist:

>>> import os
>>> os.chdir('C:/ThisFolderDoesNotExist')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FileNotFoundError: [WinError 2] The system cannot find the file specified:
'C:/ThisFolderDoesNotExist'

There is no pathlib function for changing the working directory. You
must use os.chdir().

The os.getcwd() function is the older way of getting the current work-
ing directory as a string. It’s documented at https://docs .python .org /3 /library /os
.html#os .getcwd.

Accessing the Home Directory
All users have a folder for their own files on their computer; this folder is
called the home directory or home folder. You can get a Path object of the home
folder by calling Path.home():

>>> from pathlib import Path
>>> Path.home()
WindowsPath('C:/Users/Al')

https://docs.python.org/3/library/os.html#os.getcwd
https://docs.python.org/3/library/os.html#os.getcwd

222 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The home directories are located in a set place depending on your
operating system:

• On Windows, home directories are under C:\Users.

• On macOS, home directories are under /Users.

• On Linux, home directories are often under /home.

Your scripts will almost certainly have permissions to read and write the
files under your home directory, so it’s an ideal place to put the files that your
Python programs will work with.

Specifying Absolute vs. Relative Paths
There are two ways to specify a filepath:

• An absolute path, which always begins with the root folder (C:\ on
Windows and / on macOS and Linux)

• A relative path, which is relative to the program’s current working directory

On Windows, C:\ is the root for the main hard drive. This lettering
dates back to the 1960s, when computers had two floppy disk drives labeled
A:\ and B:\. On Windows, USB flash memory and DVD drives are assigned
to letters D:\ and higher. Use one of these drives as the root folder to access
files on that storage media.

There are also the dot (.) and dot-dot (..) folders. These are not real fold-
ers but special names that can be used in a filepath. A single period (dot)
for a folder name is shorthand for this folder. Two periods (dot-dot) means
the parent folder.

Figure 10-2 shows some example folders and files. When the current
working directory is set to C:\bacon, the relative paths for the other folders
and files are set as they are in the figure.

bacon

C:\

fizz

spam.txt

spam.txt

eggs

spam.txt

spam.txt

Current
working
directory

Relative paths

.\

..\

.\fizz

.\fizz\spam.txt

.\spam.txt

..\eggs

..\eggs\spam.txt

..\spam.txt

Absolute paths

C:\bacon

C:\

C:\bacon\fizz

C:\bacon\fizz\spam.txt

C:\bacon\spam.txt

C:\eggs

C:\eggs\spam.txt

C:\spam.txt

Figure 10-2: The relative paths for folders and files in the working directory C:\bacon

Reading and Writing Files 223

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The .\ at the start of a relative path is optional. For example, .\spam.txt
and spam.txt refer to the same file.

Creating New Folders
Your programs can create new folders with the os.makedirs() function. Enter
the following into the interactive shell:

>>> import os
>>> os.makedirs('C:\\delicious\\walnut\\waffles')

This will create not just the C:\delicious folder but also a walnut folder
inside C:\delicious and a waffles folder inside C:\delicious\walnut. That is,
os.makedirs() will create any necessary intermediate folders to ensure that
the full path exists. Figure 10-3 shows this hierarchy of folders.

delicious

C:\

walnut

waffles

Figure 10-3: The result of
os .makedirs('C:\\delicious\\
walnut\\waffles')

To make a directory from a Path object, call the mkdir() method. For exam-
ple, this code will create a spam folder under the home folder on my computer:

>>> from pathlib import Path
>>> Path(r'C:\Users\Al\spam').mkdir()

Note that mkdir() can only make one directory at a time; it won’t make
several subdirectories at once, like os.makedirs() will.

Handling Absolute and Relative Paths
Calling the is_absolute() method on a Path object will return True if it repre-
sents an absolute path or False if it represents a relative path. For example,
enter the following into the interactive shell, using your own files and fold-
ers instead of the exact ones listed here:

>>> from pathlib import Path
>>> Path.cwd()
WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python312')
>>> Path.cwd().is_absolute()
True

224 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> Path('spam/bacon/eggs').is_absolute()
False

To get an absolute path from a relative path, you can put Path.cwd() /
in front of the relative Path object. After all, when we say “relative path,” we
almost always mean a path that is relative to the current working directory.
The absolute() method also returns this Path object. Enter the following into
the interactive shell:

>>> from pathlib import Path
>>> Path('my/relative/path')
WindowsPath('my/relative/path')
>>> Path.cwd() / Path('my/relative/path')
WindowsPath('C:/Users/Al/Desktop/my/relative/path')
>>> Path('my/relative/path').absolute()
WindowsPath('C:/Users/Al/Desktop/my/relative/path')

If your relative path is relative to another path besides the current
working directory, replace Path.cwd() with that other path. The following
example gets an absolute path using the home directory instead of the cur-
rent working directory:

>>> from pathlib import Path
>>> Path('my/relative/path')
WindowsPath('my/relative/path')
>>> Path.home() / Path('my/relative/path')
WindowsPath('C:/Users/Al/my/relative/path')

Path objects are used to represent both relative and absolute paths.
The only difference is whether the Path object begins with the root
folder or not.

Getting the Parts of a Filepath
Given a Path object, you can extract the filepath’s different parts as
strings using several Path object attributes. These can be useful for con-
structing new filepaths based on existing ones. Figure 10-4 diagrams
the attributes.

Reading and Writing Files 225

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

C:\Users\Al\spam.txt

Parent Name

/home/al/spam.txt

Anchor

Drive
Stem Suffix

Parent NameAnchor

Figure 10-4: The parts of a
Windows (top) and macOS/Linux
(bottom) filepath

The parts of a filepath include the following:

• The anchor, which is the root folder of the filesystem

• On Windows, the drive, which is the single letter that often denotes a
physical hard drive or other storage device

• The parent, which is the folder that contains the file

• The name of the file, made up of the stem (or base name) and the suffix
(or extension)

Note that Windows Path objects have a drive attribute, but macOS and
Linux Path objects don’t. The drive attribute doesn’t include the first backslash.

To extract each attribute from the filepath, enter the following into the
interactive shell:

>>> from pathlib import Path
>>> p = Path('C:/Users/Al/spam.txt')
>>> p.anchor
'C:\\'
>>> p.parent
WindowsPath('C:/Users/Al')
>>> p.name
'spam.txt'
>>> p.stem
'spam'
>>> p.suffix
'.txt'
>>> p.drive
'C:'

226 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

These attributes evaluate to simple string values, except for parent,
which evaluates to another Path object. If you want to split up a path by its
separator, access the parts attribute to get a tuple of string values:

>>> from pathlib import Path
>>> p = Path('C:/Users/Al/spam.txt')
>>> p.parts
('C:\\', 'Users', 'Al', 'spam.txt')
 >>> p.parts[3]
'spam.txt'
>>> p.parts[0:2]
('C:\\', 'Users')

Note that even though the string used in the Path() call contains for-
ward slashes, parts uses an anchor on Windows that has the appropriate
backslash: 'C:\\' (or r'C:\' as a raw string with the backslash unescaped).

The parents attribute (which is different from the parent attribute) eval-
uates to the ancestor folders of a Path object with an integer index:

>>> from pathlib import Path
>>> Path.cwd()
WindowsPath('C:/Users/Al/Desktop')
>>> Path.cwd().parents[0]
WindowsPath('C:/Users/Al')
>>> Path.cwd().parents[1]
WindowsPath('C:/Users')
>>> Path.cwd().parents[2]
WindowsPath('C:/')

If you keep following the parent folders, you will end up with the
root folder.

Finding File Sizes and Timestamps
Once you have ways to handle filepaths, you can start gathering information
about specific files and folders. The stat() method returns a stat_result
object with file size and timestamp information about a file.

For example, enter the following into the interactive shell to find out
about the calc.exe program file on Windows:

>>> from pathlib import Path
>>> calc_file = Path('C:/Windows/System32/calc.exe')
>>> calc_file.stat()
os.stat_result(st_mode=33279, st_ino=562949956525418, st_dev=3739257218,
st_nlink=2, st_uid=0, st_gid=0, st_size=27648, st_atime=1678984560,
st_mtime=1575709787, st_ctime=1575709787)
>>> calc_file.stat().st_size
27648
>>> calc_file.stat().st_mtime
1712627129.0906117
>>> import time

Reading and Writing Files 227

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> time.asctime(time.localtime(calc_file.stat().st_mtime))
'Mon Apr 8 20:45:29 2024'

The st_size attribute of the stat_result object returned by the stat()
method is the size of the file in bytes. You can divide this integer by 1024, by
1024 ** 2, or by 1024 ** 3 to get the size in KB, MB, or GB, respectively.

The st_mtime is the “last modified” timestamp, which can be useful for,
say, figuring out the last time a .docx Word file was changed. This timestamp
is in Unix epoch time, which is the number of seconds since January 1, 1970.
The time module (explained in Chapter 19) has functions for turning this
number into a human-readable form.

The stat_result object has several useful attributes:

st_size

The size of the file in bytes.

st_mtime

The “last modified” timestamp, when the file was last changed.

st_ctime

The “creation” timestamp. On Windows, this identifies when the file was
created. On macOS and Linux, this identifies the last time the file’s
metadata (such as its name) was changed.

st_atime

The “last accessed” timestamp, when the file was last read.

Keep in mind that the modified, creation, and access timestamps can
be changed manually, and are not guaranteed to be accurate.

Finding Files Using Glob Patterns
The * and ? characters can be used to match folder names and filenames
in what are called glob patterns. Glob patterns are like a simplified regex
language: the * character matches any text, and the ? character matches
exactly one character. For example, look at these glob patterns:

'*.txt' matches all files that end with .txt.

'project?.txt' matches 'project1.txt', 'project2.txt', or 'projectX.txt'.

'*project?.*' matches 'catproject5.txt' or 'secret_project7.docx'.

'*' matches all filenames.

Path objects of folders have a glob() method for listing any content in
the folder that matches the glob pattern. The glob() method returns a
generator object (the topic of which is beyond the scope of this book) that
you’ll need to pass to list() to easily view in the interactive shell:

>>> from pathlib import Path
>>> p = Path('C:/Users/Al/Desktop')
>>> p.glob('*')
<generator object Path.glob at 0x000002A6E389DED0>
>>> list(p.glob('*'))

228 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

[WindowsPath('C:/Users/Al/Desktop/1.png'), WindowsPath('C:/Users/Al/
Desktop/22-ap.pdf'), WindowsPath('C:/Users/Al/Desktop/cat.jpg'),
WindowsPath('C:/Users/Al/Desktop/zzz.txt')]

You can also use the generator object that glob() returns in a for loop:

>>> from pathlib import Path
>>> for name in Path('C:/Users/Al/Desktop').glob('*'):
>>> print(name)
C:\Users\Al\Desktop\1.png
C:\Users\Al\Desktop\22-ap.pdf
C:\Users\Al\Desktop\cat.jpg
C:\Users\Al\Desktop\zzz.txt

If you want to perform an operation on every file in a folder, such as
copying it to a backup folder or renaming it, the glob('*') method call can
get you the list of Path objects for these files and folders. Note that glob pat-
terns are also commonly used in command line commands such as ls or
dir. Chapter 12 discusses the command line in more detail.

Checking Path Validity
Many Python functions will crash with an error if you supply them with
a path that does not exist. Luckily, Path objects have methods to check
whether a given path exists and whether it is a file or folder. Assuming that
a variable p holds a Path object, you could expect the following:

• Calling p.exists() returns True if the path exists, and returns False if it
doesn’t exist.

• Calling p.is_file() returns True if the path exists and is a file, and
returns False otherwise.

• Calling p.is_dir() returns True if the path exists and is a directory, and
returns False otherwise.

On my computer, here is what I get when I try these methods in the
interactive shell:

>>> from pathlib import Path
>>> win_dir = Path('C:/Windows')
>>> not_exists_dir = Path('C:/This/Folder/Does/Not/Exist')
>>> calc_file_path = Path('C:/Windows
/System32/calc.exe')
>>> win_dir.exists()
True
>>> win_dir.is_dir()
True
>>> not_exists_dir.exists()
False
>>> calc_file_path.is_file()
True
>>> calc_file_path.is_dir()
False

Reading and Writing Files 229

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You can determine whether there is a DVD or flash drive currently
attached to the computer by checking for it with the exists() method. For
instance, if I wanted to check for a flash drive with the volume named D:\
on my Windows computer, I could do that with the following:

>>> from pathlib import Path
>>> d_drive = Path('D:/')
>>> d_drive.exists()
False

Oops! It looks like I forgot to plug in my flash drive.
The older os.path module can accomplish the same task with the

os.path.exists(path), os.path.isfile(path), and os.path.isdir(path) functions,
which act just like their Path function counterparts. As of Python 3.6, these
functions can accept Path objects as well as strings of the filepaths.

The File Reading and Writing Process
Once you’re comfortable working with folders and relative paths, you’ll be
able to specify the locations of files to read and write. The functions cov-
ered in the next few sections apply to plaintext files. Plaintext files contain
only basic text characters and do not include font, size, or color informa-
tion. Text files with the .txt extension or Python script files with the .py
extension are examples of plaintext files. You can open these with the
Windows Notepad or macOS TextEdit application, and your programs can
easily read their content, then treat it as an ordinary string value.

Binary files are all other file types, such as word processing documents,
PDFs, images, spreadsheets, and executable programs. If you open a binary
file in Notepad or TextEdit, it will look like scrambled nonsense, like that
shown in Figure 10-5.

Figure 10-5: The Windows calc .exe program opened in Notepad

230 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Because we must handle each type of binary file in its own way, this book
won’t discuss reading and writing raw binary files directly. Fortunately,
many modules make working with binary files easier, and you’ll explore one
of them, the shelve module, later in this chapter.

The pathlib module’s read_text() method returns the full contents of a
text file as a string. Its write_text() method creates a new text file (or over-
writes an existing one) with the string passed to it. Enter the following into
the interactive shell:

>>> from pathlib import Path
>>> p = Path('spam.txt')
>>> p.write_text('Hello, world!')
13
>>> p.read_text()
'Hello, world!'

These method calls create a spam.txt file with the content 'Hello, world!'.
The 13 that write_text() returns indicates that 13 characters were written
to the file. (You can often disregard this return value.) The read_text() call
reads and returns the contents of the new file as a string: 'Hello, world!'.

Keep in mind that these Path object methods allow only basic interac-
tions with files. The more common way of writing to a file involves using the
open() function and file objects. There are three steps to reading or writing
files in Python:

 1. Call the open() function to return a File object.

 2. Call the read() or write() method on the File object.

 3. Close the file by calling the close() method on the File object.

We’ll go over these steps in the following sections.
Note that as you begin working with files, you may find it helpful to be

able to quickly see their extensions (.txt, .pdf, .jpg, and so on). Windows and
macOS may hide file extensions by default, showing spam.txt as simply spam.
To show extensions, open the settings for File Explorer (on Windows) or
Finder (on macOS) and look for a checkbox that says something like “Show
all filename extensions” or “Hide extensions for known file types.” (The
exact location and wording of this setting depend on the version of your
operating system.)

Opening Files
To open a file with the open() function, pass it a string path indicating the
file you want to open. This can be either an absolute path or a relative path.
The open() function returns a File object.

Try this by creating a text file named hello.txt using Notepad or
TextEdit. Enter Hello, world! as the content of this text file and save it in
your user home folder. Then, enter the following in the interactive shell:

>>> from pathlib import Path
>>> hello_file = open(Path.home() / 'hello.txt', encoding='UTF-8')

Reading and Writing Files 231

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The open() function will open the file in “reading plaintext” mode, or
read mode for short. When a file is opened in read mode, Python lets you
read the file’s data but not write or modify it in any way. Read mode is the
default mode for files you open in Python. But if you don’t want to rely on
Python’s defaults, you can explicitly specify the mode by passing the string
value 'r' as a second argument to open(). For example, open('/Users/Al/
hello.txt', 'r') does the same thing as open('/Users/Al/hello.txt').

The encoding named parameter specifies what encoding to use when
converting the bytes in the file to a Python text string. The correct encod-
ing is almost always 'utf-8', which is also the default encoding used on
macOS and Linux. However, Windows uses 'cp1252' for its default encod-
ing (also known as extended ASCII). This can cause problems when trying
to read certain UTF-8 encoded text files with non-English characters on
Windows, so it’s a good habit to pass encoding='utf-8' to your open() function
calls when opening files in plaintext read, write, or append mode. The binary
read, write, and append modes don’t use the encoding named parameter, so
you can leave it out in those cases.

The call to open() returns a File object. A File object represents a file on
your computer; it is simply another type of value in Python, much like the
lists and dictionaries you’re already familiar with. In the previous example,
you stored the File object in the variable hello_file. Now, whenever you
want to read from or write to the file, you can do so by calling methods on
the File object in hello_file.

Reading the Contents of Files
Now that you have a File object, you can start reading from it. If you want to
read the entire contents of a file as a string value, use the File object’s read()
method. Let’s continue with the hello.txt File object you stored in hello_file.
Enter the following into the interactive shell:

>>> hello_content = hello_file.read()
>>> hello_content
'Hello, world!'

You can think of the contents of a file as a single large string value; the
read() method merely returns the string that is stored in the file.

Alternatively, you can use the readlines() method to get a list of string
values from the file, one for each line of text. For example, create a file
named sonnet29.txt in the same directory as hello.txt and place the following
text in it:

When, in disgrace with fortune and men's eyes,
I all alone beweep my outcast state,
And trouble deaf heaven with my bootless cries,
And look upon myself and curse my fate,

232 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Make sure to separate the four lines with line breaks. Then, enter the
following into the interactive shell:

>>> sonnet_file = open(Path.home() / 'sonnet29.txt', encoding='UTF-8')
>>> sonnet_file.readlines()
["When, in disgrace with fortune and men's eyes,\n", 'I all alone beweep
my outcast state,\n', And trouble deaf heaven with my bootless cries,\n',
'And look upon myself and curse my fate,']

Note that, except for the last line of the file, each of the string values
ends with a newline character \n. A list of strings is often easier to work with
than a single large string value.

Writing to Files
Python allows you to write content to a file, just as the print() function
writes strings to the screen. You can’t write to a file you’ve opened in read
mode, though. Instead, you need to open it in “write plaintext” mode or
“append plaintext” mode, called write mode and append mode for short.

Write mode will overwrite the existing file, which is similar to overwrit-
ing a variable’s value with a new value. Pass 'w' as the second argument to
open() to open the file in write mode. Append mode, on the other hand,
will append text to the end of the existing file. You can think of this mode
as appending values to a list in a variable rather than overwriting the vari-
able altogether. Pass 'a' as the second argument to open() to open the file
in append mode.

If the filename passed to open() does not exist, both write mode and
append mode will create a new, blank file. After reading or writing a file,
call the close() method before opening the file again.

Let’s put these concepts together. Enter the following into the interac-
tive shell:

>>> bacon_file = open('bacon.txt', 'w', encoding='UTF-8')
>>> bacon_file.write('Hello, world!\n')
14
>>> bacon_file.close()
>>> bacon_file = open('bacon.txt', 'a', encoding='UTF-8')
>>> bacon_file.write('Bacon is not a vegetable.')
25
>>> bacon_file.close()
>>> bacon_file = open('bacon.txt', encoding='UTF-8')
>>> content = bacon_file.read()
>>> bacon_file.close()
>>> print(content)
Hello, world!
Bacon is not a vegetable.

First, we open bacon.txt in write mode. As no bacon.txt file exists yet,
Python creates one. Calling write() on the opened file and passing write()
the string argument 'Hello, world!\n' writes the string to the file and

Reading and Writing Files 233

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

returns the number of characters written, including the newline. Then, we
close the file.

To add text to the existing contents of the file instead of replacing the
string we just wrote, we open the file in append mode. We write 'Bacon is
not a vegetable.' to the file and close it. Finally, to print the file contents to
the screen, we open the file in its default read mode, call read(), store the
resulting File object in content, close the file, and print content.

Note that the write() method does not automatically add a newline
character to the end of the string like the print() function does. You will
have to add this character yourself.

You can also pass a Path object to the open() function instead of the file-
name as a string.

Using with Statements
Every file on which your program calls open() needs close() called on it as
well, but you may forget to include the close() function, or your program
might skip over the close() call in certain circumstances.

Python’s with statement makes it easier to automatically close files. A
with statement creates something called a context manager that Python uses
to manage resources. These resources, such as files, network connections,
or segments of memory, often have setup and teardown steps during which
the resource is allocated and later released so that other programs can
make use of it. (Most of the time, however, you’ll encounter with statements
used to open files.)

The with statement adds a block of code that begins by allocating the
resource and then releases it when the program execution leaves the block,
which could happen due to a return statement, an unhandled exception
being raised, or some other reason.

Here is typical code that writes and reads the content of a file:

file_obj = open('data.txt', 'w', encoding='utf-8')
file_obj.write('Hello, world!')
file_obj.close()
file_obj = open('data.txt', encoding='utf-8')
content = file_obj.read()
file_obj.close()

Here is the equivalent code using a with statement:

with open('data.txt', 'w', encoding='UTF-8') as file_obj:
 file_obj.write('Hello, world!')
with open('data.txt', encoding='UTF-8') as file_obj:
 content = file_obj.read()

In the with statement example, notice that there are no calls to close()
at all because the with statement automatically calls it when the program
execution leaves the block. The with statement knows to do this based on
the context manager it obtains from the open() function. Creating your own

234 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

context managers is beyond the scope of this book, but you can learn about
them from the online documentation at https://docs .python .org /3 /reference /
data model .html#context -managers or the book Serious Python by Julien Danjou
(No Starch Press, 2018).

Saving Variables with the shelve Module
You can save variables in your Python programs to binary shelf files using
the shelve module. This lets your program restore that data to the variables
the next time it is run. You could use this technique to add Save and Open
features to your program; for example, if you ran a program and entered
some configuration settings, you could save those settings to a shelf file and
then have the program load the settings the next time it is run.

To practice using shelve, enter the following into the interactive shell:

>>> import shelve
>>> shelf_file = shelve.open('mydata')

>>> shelf_file['cats'] = ['Zophie', 'Pooka', 'Simon']
>>> shelf_file.close()

To read and write data using the shelve module, you first import shelve.
Next, call shelve.open() and pass it a filename, then store the returned shelf
value in a variable. You can make changes to the shelf value as if it were a
dictionary. When you’re done, call close() on the shelf value. Here, our shelf
value is stored in shelf_file. We create a list cats and write shelf_file['cats'] =
['Zophie', 'Pooka', 'Simon'] to store the list in shelf_file as a value associated
with the key 'cats' (like in a dictionary). Then, we call close() on shelf_file.

After running the previous code on Windows, you should see three new
files in the current working directory: mydata.bak, mydata.dat, and mydata.
dir. On macOS, you should see only a single mydata.db file, and Linux has
a single mydata file. These binary files contain the data you stored in your
shelf. The format of these binary files isn’t important; you only need to
know what the shelve module does, not how it does it. The module frees you
from worrying about how to store your program’s data to a file.

Your programs can use the shelve module to later reopen and retrieve
the data from these shelf files. Shelf values don’t have to be opened in read
or write mode; they allow both reading and writing once opened. Enter the
following into the interactive shell:

>>> shelf_file = shelve.open('mydata')
>>> type(shelf_file)
<class 'shelve.DbfilenameShelf'>
>>> shelf_file['cats']
['Zophie', 'Pooka', 'Simon']
>>> shelf_file.close()

https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/reference/datamodel.html#context-managers

Reading and Writing Files 235

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Here, we open the shelf files to check that they stored the data cor-
rectly. Entering shelf_file['cats'] returns the same list we created earlier.
Now that we know the file stored the list correctly, we call close().

Just like dictionaries, shelf values have keys() and values() methods that
will return list-like values of the keys and values in the shelf. Because these
return values are not true lists, you should pass them to the list() function
to get them in list form. Enter the following into the interactive shell:

>>> shelf_file = shelve.open('mydata')
>>> list(shelf_file.keys())
['cats']
>>> list(shelf_file.values())
[['Zophie', 'Pooka', 'Simon']]
>>> shelf_file.close()

Plaintext is useful for creating files that you’ll read in a text editor such
as Notepad or TextEdit, but if you want to save data from your Python pro-
grams, use the shelve module.

Project 4: Generate Random Quiz Files
Say you’re a geography teacher with 35 students in your class and you want
to give a pop quiz on US state capitals. Alas, your class has a few bad eggs in
it, and you can’t trust the students not to cheat. You’d like to randomize the
order of questions so that each quiz is unique, making it impossible for any-
one to crib answers from anyone else. Of course, doing this by hand would
be a lengthy and boring affair. Fortunately, you know some Python.

Here is what the program does:

• Creates 35 different quizzes

• Creates 50 multiple-choice questions for each quiz, in random order

• Provides the correct answer and three random wrong answers for each
question, in random order

• Writes the quizzes to 35 text files

• Writes the answer keys to 35 text files

This means the code will need to do the following:

• Store the states and their capitals in a dictionary.

• Call open(), write(), and close() for the quiz and answer key text files.

• Use random.shuffle() to randomize the order of the questions and multi-
ple-choice options.

Let’s get started.

236 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Step 1: Store the Quiz Data in a Dictionary
The first step is to create a skeleton script and fill it with your quiz data. Create
a file named randomQuizGenerator.py, and make it look like the following:

randomQuizGenerator.py - Creates quizzes with questions and answers in
random order, along with the answer key

1 import random

The quiz data. Keys are states and values are their capitals.
2 capitals = {'Alabama': 'Montgomery', 'Alaska': 'Juneau', 'Arizona':
'Phoenix', 'Arkansas': 'Little Rock', 'California': 'Sacramento', 'Colorado':
'Denver', 'Connecticut': 'Hartford', 'Delaware': 'Dover', 'Florida':
'Tallahassee', 'Georgia': 'Atlanta', 'Hawaii': 'Honolulu', 'Idaho': 'Boise',
'Illinois': 'Springfield', 'Indiana': 'Indianapolis', 'Iowa': 'Des Moines',
'Kansas': 'Topeka', 'Kentucky': 'Frankfort', 'Louisiana': 'Baton Rouge',
'Maine': 'Augusta', 'Maryland': 'Annapolis', 'Massachusetts': 'Boston',
'Michigan': 'Lansing', 'Minnesota': 'Saint Paul', 'Mississippi': 'Jackson',
'Missouri': 'Jefferson City', 'Montana': 'Helena', 'Nebraska': 'Lincoln',
'Nevada': 'Carson City', 'New Hampshire': 'Concord', 'New Jersey': 'Trenton',
'New Mexico': 'Santa Fe', 'New York': 'Albany', 'North Carolina': 'Raleigh',
'North Dakota': 'Bismarck', 'Ohio': 'Columbus', 'Oklahoma': 'Oklahoma City',
'Oregon': 'Salem', 'Pennsylvania': 'Harrisburg', 'Rhode Island': 'Providence',
'South Carolina': 'Columbia', 'South Dakota': 'Pierre', 'Tennessee':
'Nashville', 'Texas': 'Austin', 'Utah': 'Salt Lake City', 'Vermont':
'Montpelier', 'Virginia': 'Richmond', 'Washington': 'Olympia', 'West
Virginia':'Charleston', 'Wisconsin': 'Madison', 'Wyoming': 'Cheyenne'}

Generate 35 quiz files.
3 for quiz_num in range(35):
 # TODO: Create the quiz and answer key files.

 # TODO: Write out the header for the quiz.

 # TODO: Shuffle the order of the states.

 # TODO: Loop through all 50 states, making a question for each.

Because this program will randomly order the questions and answers,
you’ll need to import the random module 1 to make use of its functions. The
capitals variable 2 contains a dictionary with US states as keys and their
capitals as values. And because you want to create 35 quizzes, the code that
actually generates the quiz and answer key files (marked with TODO com-
ments for now) will go inside a for loop that loops 35 times 3. (You can
change this number to generate any number of quiz files.)

Step 2: Create the Quiz File
Now it’s time to start filling in those TODOs.

The code in the loop will repeat 35 times, once for each quiz, so you
have to worry about only one quiz at a time within the loop. First, you’ll
create the actual quiz file. It needs a unique filename and some kind of

Reading and Writing Files 237

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

standard header, with places for the student to fill in a name, date, and class
period. Then, you’ll need to get a list of states in randomized order, which
you can use later to create the questions and answers for the quiz.

Add the following lines of code to randomQuizGenerator.py:

randomQuizGenerator.py - Creates quizzes with questions and answers in
random order, along with the answer key

--snip--

Generate 35 quiz files.
for quiz_num in range(35):
 # Create the quiz and answer key files.
 quiz_file = open(f'capitalsquiz{quiz_num + 1}.txt', 'w', encoding='UTF-8') 1
 answer_file = open(f'capitalsquiz_answers{quiz_num + 1}.txt', 'w', encoding='UTF-8') 2

 # Write out the header for the quiz.
 quiz_file.write('Name:\n\nDate:\n\nPeriod:\n\n') 3
 quiz_file.write((' ' * 20) + f'State Capitals Quiz (Form{quiz_num + 1})')
 quiz_file.write('\n\n')

 # Shuffle the order of the states.
 states = list(capitals.keys())
 random.shuffle(states) 4

 # TODO: Loop through all 50 states, making a question for each.

The quizzes will use the filenames capitalsquiz<N>.txt, where <N> is a
unique number that comes from quiz_num, the for loop’s counter. We’ll store
the answer key for capitalsquiz<N>.txt in the text files named capitalsquiz
_answers<N>.txt. On each iteration of the loop, the code will replace the
{quiz_num + 1} placeholders in these filenames with a unique number. For
example, it names the first quiz and answer key capitalsquiz1.txt and capitals-
quiz_answers1.txt. We create these files with calls to the open() function at 1
and 2, passing 'w' as the second argument to open them in write mode.

The write() statements at 3 create a quiz header for the student to fill
out. Finally, we generate a randomized list of US states with the help of the
random.shuffle() function 4, which randomly reorders the values in any list
that is passed to it.

Step 3: Create the Answer Options
Now you need to generate answer options A to D for each question using
another for loop. Later, a third, nested for loop will write these multiple-
choice options to the files. Make your code look like the following:

randomQuizGenerator.py - Creates quizzes with questions and answers in
random order, along with the answer key

--snip--

238 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 # Loop through all 50 states, making a question for each.
 for num in range(50):

 # Get right and wrong answers.
 correct_answer = capitals[states[num]]
 wrong_answers = list(capitals.values())
 del wrong _answers[wrong _answers .index(correct _answer)]
 wrong_answers = random.sample(wrong_answers, 3)
 answer_options = wrong_answers + [correct_answer]
 random.shuffle(answer_options)

 # TODO: Write the question and answer options to the quiz file.

 # TODO: Write the answer key to a file.

The correct answer is easy to create; it’s already stored as a value in the
capitals dictionary. This loop will iterate through the states in the shuffled
states list, find each state in capitals, and store that state’s corresponding
capital in correct_answer.

Creating the list of possible wrong answers is trickier. You can get it by
duplicating the values in the capitals dictionary, deleting the correct answer,
and selecting three random values from this list. The random.sample() func-
tion makes performing this selection easy. Its first argument is the list you
want to select from, and the second argument is the number of values to
select. The full list of answer options combines these three wrong answers
with the correct answers. Finally, we randomize the answers so that the cor-
rect response isn’t always choice D.

Step 4: Write the Content to the Files
All that is left is to write the question to the quiz file and the answer to the
answer key file. Make your code look like the following:

randomQuizGenerator.py - Creates quizzes with questions and answers in
random order, along with the answer key

--snip--

 # Loop through all 50 states, making a question for each.
 for num in range(50):
 --snip--

 # Write the question and the answer options to the quiz file.
 quiz_file.write(f'{num + 1}. Capital of {states[num]}:\n')
 for i in range(4): 1
 quiz_file.write(f" {2 'ABCD'[i]}. { answer_options[i]}\n")
 quiz_file.write('\n')

 # Write the answer key to a file.
 answer_file.write(f"{num + 1} .{'ABCD'[answer _options .index(correct _answer)]}") 3
 quiz_file.close()
 answer_file.close()

Reading and Writing Files 239

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

A for loop iterates through integers 0 to 3 to write the answer options
in the answer_options list to the file 1. The expression 'ABCD'[i] at 2 treats
the string 'ABCD' as an array and will evaluate to 'A','B', 'C', and 'D' on each
respective iteration through the loop.

In the final line of the loop, the expression answer _options .index(correct
_answer) 3 will find the integer index of the correct answer in the randomly
ordered answer options, causing the correct answer’s letter to be written to
the answer key file.

After you run the program, your capitalsquiz1.txt file should look some-
thing like this. Of course, your questions and answer options will depend
on the outcome of your random.shuffle() calls:

Name:

Date:

Period:

 State Capitals Quiz (Form 1)

1. What is the capital of West Virginia?
 A. Hartford
 B. Santa Fe
 C. Harrisburg
 D. Charleston

2. What is the capital of Colorado?
 A. Raleigh
 B. Harrisburg
 C. Denver
 D. Lincoln

--snip--

The corresponding capitalsquiz_answers1.txt text file will look like this:

1. D
2. C

--snip--

Randomly ordering the question set and corresponding answer key by
hand would take hours to do, but with a little bit of programming knowl-
edge, you can automate this boring task for not just a state capitals quiz but
any multiple-choice exam.

Summary
Operating systems organize files into folders (also called directories), and
use paths to describes their locations. Every program running on your

240 Chapter 10

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

computer has a current working directory, which allows you to specify
filepaths relative to the current location instead of entering the full (or
absolute) path. The pathlib and os.path modules have many functions for
manipulating filepaths.

Your programs can also directly interact with the contents of text files.
The open() function can open these files to read in their contents as one
large string (with the read() method) or as a list of strings (with the readlines()
method). The open() function can also open files in write or append mode
to create new text files or add to existing text files, respectively.

In previous chapters, you used the clipboard as a way of getting large
amounts of text into a program, rather than typing it directly. Now you can
have your programs read files from the hard drive, which is a big improve-
ment, as files are much less volatile than the clipboard.

In the next chapter, you will learn how to handle the files themselves by
copying them, deleting them, renaming them, moving them, and more.

Practice Questions
 1. What is a relative path relative to?

 2. What does an absolute path start with?

 3. What does Path('C:/Users') / 'Al' evaluate to on Windows?

 4. What does 'C:/Users' / 'Al' evaluate to on Windows?

 5. What do the os.getcwd() and os.chdir() functions do?

 6. What are the . and .. folders?

 7. In C:\bacon\eggs\spam.txt, which part is the directory name, and which
part is the base name?

 8. What three “mode” arguments can you pass to the open() function for
plaintext files?

 9. What happens if an existing file is opened in write mode?

 10. What is the difference between the read() and readlines() methods?

 11. What data structure does a shelf value resemble?

Practice Programs
For practice, design and write the following programs.

Mad Libs
Create a Mad Libs program that reads in text files and lets the user add
their own text anywhere the word ADJECTIVE, NOUN, ADVERB, or VERB
appears in the text file. For example, a text file may look like this:

The ADJECTIVE panda walked to the NOUN and then VERB. A nearby NOUN was
unaffected by these events.

Reading and Writing Files 241

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The program would find these occurrences and prompt the user to
replace them:

Enter an adjective:
silly
Enter a noun:
chandelier
Enter a verb:
screamed
Enter a noun:
pickup truck

It would then create the following text file:

The silly panda walked to the chandelier and then screamed. A nearby
pickup truck was unaffected by these events.

The program should print the results to the screen in addition to sav-
ing them to a new text file.

Regex Search
Write a program that opens all .txt files in a folder and searches for any line
that matches a user-supplied regular expression, then prints the results to
the screen.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In addition to creating and writing to new
files, your programs can organize preexist-

ing files on the hard drive. Maybe you’ve had
the experience of going through a folder full of

dozens, hundreds, or even thousands of files and copy-
ing, renaming, moving, or compressing them all by
hand. Or consider tasks such as these:
• Making copies of all PDF files (and only the PDF files) in every subfolder

of a folder

• Removing the leading zeros in the filenames for every file in a folder of
hundreds of files named spam001.txt, spam002.txt, spam003.txt, and so on

• Compressing the contents of several folders into one ZIP file (which
could serve as a simple backup system)

All this boring stuff is just begging to be automated in Python. By
programming your computer to do these tasks, you can transform it into a
quick-working file clerk that never makes mistakes.

11
O R G A N I Z I N G F I L E S

244 Chapter 11

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

While Windows uses backslashes (\) to separate folders in a filepath,
the Python code in this chapter will use forward slashes (/) instead, as they
work on all operating systems.

The shutil Module
The shutil module has functions to let you copy, move, rename, and delete
files in your Python programs. (The module’s name is short for shell utili-
ties, where shell is another term for a terminal command line.) To use the
shutil functions, you’ll first need to run import shutil.

To create an example file and folder to work with, run the following
code before the interactive shell examples in this chapter:

>>> from pathlib import Path
>>> h = Path.home()
>>> (h / 'spam').mkdir(exist_ok=True)
>>> with open(h / 'spam/file1.txt', 'w', encoding='utf-8') as file:
... file.write('Hello')
...

This will create a folder named spam with a text file named file1.txt.
The examples in this chapter will copy, move, rename, and delete this file
and folder. All shutil functions can take filepath arguments that are either
strings or Path objects.

Copying Files and Folders
The shutil module provides functions for copying files, as well as entire
folders. Calling shutil .copy(source, destination) will copy the file at the path
source to the folder at the path destination. Both source and destination can
be strings or Path objects. If destination is a filename, it will be used as the
new name of the copied file. If destination is a folder, the file will be copied
to that folder with its original name. This function returns the path of the
copied file.

Enter the following into the interactive shell to see how shutil .copy()
works:

>>> import shutil
>>> from pathlib import Path
>>> h = Path.home()
1 >>> shutil .copy(h / 'spam/file1.txt', h)
'C:\\Users\\Al\\file1.txt'
2 >>> shutil .copy(h / 'spam/file1.txt', h / 'spam/file2.txt')
WindowsPath('C:/Users/Al/spam/file2.txt')

The first shutil .copy() call copies the file at C:\Users\Al\spam\file1.txt
to the home folder C:\Users\Al. The return value is the path of the newly
copied file. Note that since we specified a folder as the destination 1, the
new, copied file will have the same filename as the original file1.txt file.

Organizing Files 245

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The second shutil .copy() call 2 copies the file at C:\Users\Al\spam\file1.txt to
the C:\Users\Al\spam folder but gives the copied file the name file2.txt.

While shutil .copy() will copy a single file, calling shutil .copytree(source,
destination) will copy the folder at the path source, along with all of its files
and subfolders, to the folder at the path destination. The function returns
the path of the copied folder.

Enter the following into the interactive shell:

>>> import shutil
>>> from pathlib import Path
>>> h = Path.home()
>>> shutil .copytree(h / 'spam', h / 'spam_backup')
WindowsPath('C:/Users/Al/spam_backup')

The shutil .copytree() call creates a new folder named spam_backup with
the same content as the original spam folder. You have now safely backed up
your precious, precious spam.

Moving and Renaming Files and Folders
Calling shutil.move(source, destination) will move the file or folder at the
path source to the path destination and return a string of the new location’s
absolute path.

If destination points to a folder, the source file gets moved into destination
and keeps its current filename. For example, enter the following into the
interactive shell:

>>> import shutil
>>> from pathlib import Path
>>> h = Path.home()
>>> (h / 'spam2').mkdir()
>>> shutil.move(h / 'spam/file1.txt', h / 'spam2')
'C:\\Users\\Al\\spam2\\file1.txt'

After creating the spam2 folder in the home folder, this shutil.move()
call says, “Move C:\Users\Al\spam\file1.txt into the folder C:\Users\Al\spam2.” If
there had been a file1.txt file already in C:\Users\Al\spam2, Python would have
raised an error.

If the destination path is not an existing folder, shutil.move() will use this
path to rename the file. In the following example, the source file is moved
and renamed:

>>> shutil.move(h / 'spam/file1.txt', h / 'spam2/new_name.txt')
'C:\\Users\\Al\\spam2\\new_name.txt'

This line says, “Move C:\Users\Al\spam\file1.txt into the folder C:\Users\Al\
spam2, and while you’re at it, rename that file1.txt file to new_name.txt.”

246 Chapter 11

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Permanently Deleting Files and Folders
You can delete a single file or a single empty folder with functions in the
os module, whereas to delete a folder and all of its contents, you use the
shutil module:

• Calling shutil.rmtree(path) will delete (that is, remove) the entire folder
tree at path, including all the files and subfolders it contains.

• Calling os.unlink(path) will delete the single file at path.

• Calling os.rmdir(path) will delete the folder at path. This folder must
be empty.

Be careful when using these functions in your programs! It’s often a
good idea to first run your program with these calls commented out and
print() calls added to show the files that would be deleted. This is called a
dry run. Here is a Python program that was intended to delete files with the
.txt file extension, but it has a typo (shown in bold) that causes it to delete
.rxt files instead:

import os
from pathlib import Path
for filename in Path.home().glob('*.rxt'):
 os.unlink(filename)

If you had any important files ending with .rxt, they would have been
accidentally, permanently deleted. Instead, you should have first run the
program like this:

import os
from pathlib import Path
for filename in Path.home().glob('*.rxt'):
 #os.unlink(filename)
 print('Deleting', filename)

The os.unlink() call is now commented, so Python ignores it. Instead,
you’ll print the filename of the file that would have been deleted. Running
this version of the program first will show you that you’ve accidentally told
the program to delete .rxt files instead of .txt files.

You should also do dry runs for programs that copy, rename, or move
files. Lastly, it may be a good idea to create a backup copy of the entire folder
of any files your program touches, just in case you need to completely restore
the original files. Once you’re certain the program works as intended,
delete the print(filename) line and uncomment the os.unlink(filename) line.
Then, run the program again to actually delete the files.

Deleting to the Recycle Bin
Python’s built-in shutil.rmtree() function irreversibly deletes files and fold-
ers. This makes the function dangerous to use, because a bug could delete

Organizing Files 247

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

files you didn’t intend. A much better way to delete files and folders is with
the third-party send2trash module. (See Appendix A for a more in-depth
explanation of how to install third-party modules.)

Using the send2trash module’s send2trash() function is much safer than
Python’s regular delete functions, because it will send folders and files to
your computer’s trash or recycling bin instead of permanently deleting
them. If a bug in your program deletes something with send2trash that you
didn’t intend to delete, you can later restore it from the recycle bin.

After you have installed send2trash, enter the following into the interactive
shell to send the file file1.txt to the recycle bin:

>>> import send2trash
>>> send2trash.send2trash('file1.txt')

In general, you should use the send2trash.send2trash() function to delete
files and folders. But while sending files to the recycle bin lets you recover
them later, it will not free up disk space like permanently deleting them does.
Note that the send2trash() function can only send files to the recycle bin; it
cannot pull files out of it.

Walking a Directory Tree
If you want to list all the files and subfolders in a folder, call the os.listdir()
function and pass it a folder name:

>>> import os
>>> os.listdir(r'C:\Users\Al')
['.anaconda', '.android', '.cache', '.dotnet', '.eclipse', '.gitconfig',
--snip--
'__pycache__']

You can also get a list of Path objects in a folder by calling the iterdir()
method:

>>> from pathlib import Path
>>> home = Path.home()
>>> list(home.iterdir())
[WindowsPath('C:/Users/Al/.anaconda'), WindowsPath('C:/Users/Al/.android'),
WindowsPath('C:/Users/Al/.cache'),
--snip--
WindowsPath('C:/Users/Al/__pycache__')]

Say you want to rename every file in some folder, and also every file in
every subfolder of that folder. That is, you want to walk through the direc-
tory tree, accessing each file as you go. Writing a program to do this could
get tricky; fortunately, Python provides the os.walk() function to handle this
process for you.

248 Chapter 11

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Let’s create a series of folders and files by running the following code in
the interactive shell:

>>> from pathlib import Path
>>> h = Path.home()
>>> (h / 'spam').mkdir(exist_ok=True)
>>> (h / 'spam/eggs').mkdir(exist_ok=True)
>>> (h / 'spam/eggs2').mkdir(exist_ok=True)
>>> (h / 'spam/eggs/bacon').mkdir(exist_ok=True)
>>> for f in ['spam/file1.txt', 'spam/eggs/file2.txt', 'spam/eggs/file3.txt',
'spam/eggs/bacon/file4.txt']:
... with open(h / f, 'w', encoding='utf-8') as file:
... file.write('Hello')
...
>>> # At this point, the folders and files now exist.

This code will create the following folders and files in your home folder:

• The spam folder

• The spam/file1.txt file

• The spam/eggs folder

• The spam/eggs/file2.txt file

• The spam/eggs/file3.txt file

• The spam/eggs2 folder

• The spam/eggs/bacon folder

• The spam/eggs/bacon/file4.txt file

Here is an example program that uses the os.walk() function on this
tree of folders and renames each file to uppercase letters:

import os, shutil
from pathlib import Path
h = Path.home()

for folder_name, subfolders, filenames in os.walk(h / 'spam'):
 print('The current folder is ' + folder_name)

 for subfolder in subfolders:
 print('SUBFOLDER OF ' + folder_name + ': ' + subfolder)

 for filename in filenames:
 print('FILE INSIDE ' + folder_name + ': '+ filename)
 # Rename file to uppercase:
 p = Path(folder_name)
 shutil.move(p / filename, p / filename.upper())

 print('')

The os.walk() function gets passed a single string value: the path of a
folder. You can use os.walk() in a for loop to walk a directory tree, much
like how you can use the range() function to walk over a range of numbers.

Organizing Files 249

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Unlike range(), the os.walk() function will return three values on each itera-
tion through the loop:

• A string of the current folder’s name

• A list of strings of the subfolders in the current folder

• A list of strings of the files in the current folder

The current folder here refers to the folder accessed in the current itera-
tion of the for loop. The os.walk() function doesn’t change the current work-
ing directory of the program. Just as you can choose the variable name i in
the code for i in range(10):, you can also choose the variable names for the
three values listed earlier. I always use the descriptive names folder_name,
subfolders, and filenames.

When I ran this program on my computer, it gave the following output:

The current folder is C:\Users\Al\spam
SUBFOLDER OF C:\Users\Al\spam: eggs
SUBFOLDER OF C:\Users\Al\spam: eggs2
FILE INSIDE C:\Users\Al\spam: file1.txt

The current folder is C:\Users\Al\spam\eggs
SUBFOLDER OF C:\Users\Al\spam\eggs: bacon
FILE INSIDE C:\Users\Al\spam\eggs: file2.txt
FILE INSIDE C:\Users\Al\spam\eggs: file3.txt

The current folder is C:\Users\Al\spam\eggs\bacon
FILE INSIDE C:\Users\Al\spam\eggs\bacon: file4.txt

The current folder is C:\Users\Al\spam\eggs2

Because os.walk() returns lists of strings for the subfolder and filename
variables, you can use the return values in their own for loops. For instance,
you can pass the folder and filename to functions like shutil.move(), as in
the example.

Compressing Files with the zipfile Module
You may be familiar with ZIP files (with the .zip file extension), which
can hold the compressed contents of many other files. Compressing a file
reduces its size, which is useful when transferring it over the internet. And
since a ZIP file can also contain multiple files and subfolders, it’s a handy
way to package several files into one. This single file, called an archive file,
can then be, say, attached to an email.

Your Python programs can create or extract from ZIP files using func-
tions in the zipfile module.

Creating and Adding to ZIP Files
To create your own compressed ZIP files, you must open the ZipFile object in
write mode by passing 'w' as the second argument. (Note the capital letters Z

250 Chapter 11

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

and F in the object name, which differs from the zipfile module name.) This
process is similar to opening a text file in write mode by passing 'w' to the
open() function. For the filename, you can pass either a string or a Path object.

When you pass a path to the write() method of a ZipFile object, Python
will compress the file at that path and add it into the ZIP file. The write()
method’s first argument is a string of the filename to add. The second
argument is the compression type parameter, which tells the computer what
algorithm it should use to compress the files; you can always set this value
to zipfile.ZIP_DEFLATED to specify the deflate compression algorithm, which
works well on all types of data. If you don’t pass this value, the write()
method adds the file to the ZIP file with its regular, uncompressed size.
Enter the following into the interactive shell:

>>> import zipfile
>>> with open('file1.txt', 'w', encoding='utf-8') as file_obj:
... file_obj.write('Hello' * 10000)
...
>>> with zipfile.ZipFile('example.zip', 'w') as example_zip:
... example_zip.write('file1.txt', compress_type=zipfile.ZIP_DEFLATED,
 compresslevel=9)

This code creates a text file named file1.txt and writes to it the
50,000-character string 'Hello' * 10000 (about 49KB). Then, it creates a
new ZIP file named example.zip that has the compressed contents of file1.
txt (about 213 bytes; highly repetitive data is also highly compressible). The
compresslevel keyword argument (added in Python 3.7 and later) can be set
to any value from 0 to 9, with 9 being the slowest but most compressed level.
If you don’t specify this keyword argument, the default is 6.

The zipfile.ZipFile() function opens a ZIP file in a with statement, in a
manner similar to how the open() function opens files. This ensures that the
close() method is automatically called when the execution leaves the with
statement’s block.

Keep in mind that, just as with writing to files, write mode will erase all
existing contents of a ZIP file. If you want to simply add files to an existing
ZIP file, pass 'a' as the second argument to zipfile.ZipFile() to open the
ZIP file in append mode.

Reading ZIP Files
To read the contents of a ZIP file, you must first create a ZipFile object by
calling the zipfile.ZipFile() function and passing the ZIP file’s filename.
Note that zipfile is the name of the Python module, and ZipFile() is the
name of the function.

For example, enter the following into the interactive shell:

>>> import zipfile

>>> example_zip = zipfile.ZipFile('example.zip')
>>> example_zip.namelist()
['file1.txt']

Organizing Files 251

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> file1_info = example_zip.getinfo('file1.txt')
>>> file1_info.file_size
50000
>>> file1 _info .compress _size
97
1 >>> f'Compressed file is {round(file1_info.file_size / file1_info
 .compress _size, 2)}x smaller!'

'Compressed file is 515.46x smaller!'
>>> example_zip.close()

A ZipFile object has a namelist() method that returns a list of strings
for all the files and folders contained in the ZIP file. These strings can be
passed to the getinfo() ZipFile method to return a ZipInfo object about that
particular file. ZipInfo objects have their own attributes, such as file_size
and compress_size, which hold integers representing the original file size
and compressed file size, respectively, in bytes. While a ZipFile object repre-
sents an entire archive file, a ZipInfo object holds useful information about
a single file in the archive.

The command at 1 calculates how efficiently example.zip is compressed
by dividing the original file size by the compressed file size, then prints
this information.

Extracting from ZIP Files
The extractall() method for ZipFile objects extracts all the files and folders
from a ZIP file into the current working directory. Create a ZIP file named
example.zip by following the instructions in “Creating and Adding to ZIP
Files” on page XX, and then enter the following into the interactive shell:

>>> import zipfile
>>> example_zip = zipfile.ZipFile('example.zip')
1 >>> example_zip.extractall()
>>> example_zip.close()

After running this code, Python will extract the contents of example.zip
to the current working directory. Optionally, you can pass a folder name to
extractall() to have it extract the files into a folder other than the current
working directory. If the folder passed to the extractall() method doesn’t
exist, Python will create it. For instance, if you replaced the call at 1 with
example_zip.extractall('C:\\spam), the code would extract the files from exam-
ple.zip into a newly created C:\spam folder.

The extract() method for ZipFile objects will extract a single file from the
ZIP file. Continue the interactive shell example by entering the following:

>>> example_zip.extract('file1.txt')
'C:\\Users\\Al\\Desktop\\file1.txt'
>>> example_zip.extract('file1.txt', 'C:\\some\\new\\folders')
'C:\\some\\new\\folders\\file1.txt'
>>> example_zip.close()

252 Chapter 11

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The string you pass to extract() must match one of the strings in the
list returned by namelist(). Optionally, you can pass a second argument to
extract() to extract the file into a folder other than the current working
directory. If this second argument is a folder that doesn’t yet exist, Python
will create the folder.

Project 5: Back Up a Folder into a ZIP File
Say you’re working on a project whose files you keep in a folder named C:\
Users\Al\AlsPythonBook. You’re worried about losing your work, so you’d like
to create ZIP file “snapshots” of the entire folder. You’d also like to keep
different versions of these snapshots, so you want the ZIP file’s filename to
increment each time a new version is made; for example, AlsPythonBook_1.
zip, AlsPythonBook_2.zip, AlsPythonBook_3.zip, and so on. You could do this by
hand, but that would be rather annoying, and you might accidentally mis-
number the ZIP files’ names. It would be much simpler to run a program
that does this boring task for you.

For this project, open a new file editor window and save it as backup_to_
zip.py.

Step 1: Figure Out the ZIP File’s Name
We’ll place the code for this program into a function named backup_to_zip().
This will make it easy to copy and paste the function into other Python pro-
grams that need this functionality. At the end of the program, the function
will be called to perform the backup. Make your program look like this:

backup_to_zip.py - Copies an entire folder and its contents into
a ZIP file whose filename increments

import zipfile, os
from pathlib import Path

def backup_to_zip(folder):
 # Back up the entire contents of "folder" into a ZIP file.
 folder = Path(folder) # Make sure folder is a Path object, not string.

 # Figure out the ZIP filename this code should use, based on
 # what files already exist.
 1 number = 1
 2 while True:

 zip_filename = Path(folder.parts[-1] + '_' + str(number) + '.zip')
 if not zip_filename.exists():
 break
 number = number + 1

 3 # TODO: Create the ZIP file.

Organizing Files 253

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 # TODO: Walk the entire folder tree and compress the files in each folder.
 print('Done.')

backup_to_zip(Path.home() / 'spam')

First, import the zipfile and os modules. Next, define a backup_to_zip()
function that takes just one parameter, folder. This parameter is a string or
Path object to the folder whose contents should be backed up. The function
will determine what filename to use for the ZIP file it will create. Then, it will
create the file, walk the folder folder, and add each of the subfolders and
files to the ZIP file. Write TODO comments for these steps in the source code
to remind yourself to do them later 3.

The first task, naming the ZIP file, uses the base name of the absolute
path of folder. If the folder being backed up is C:\Users\Al\spam, the ZIP file’s
name should be spam_N.zip, where N is 1 the first time you run the pro-
gram, N is 2 the second time, and so on.

You can determine what N should be by checking whether spam_1.zip
already exists, then checking whether spam_2.zip already exists, and so on.
Use a variable named number for N 1, and keep incrementing it inside the
loop that calls exists() to check whether the file exists 2. The first nonexis-
tent filename found will cause the loop to break, since it will have found the
filename of the new ZIP.

Step 2: Create the New ZIP File
Next, let’s create the ZIP file. Make your program look like the following:

backup_to_zip.py - Copies an entire folder and its contents into
a ZIP file whose filename increments

--snip--

 # Create the ZIP file.
 print(f'Creating {zip_filename}...')
 backup_zip = zipfile.ZipFile(zip_filename, 'w')

 # TODO: Walk the entire folder tree and compress the files in each folder.
 print('Done.')

backup_to_zip(Path.home() / 'spam')

Now that the new ZIP file’s name is stored in the zip_filename variable,
you can call zipfile.ZipFile() to actually create the ZIP file. Be sure to pass
'w' as the second argument to open the ZIP file in write mode. We’ll also
remove the TODO from the comment, as we’ve finished writing the code
for this section.

254 Chapter 11

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Step 3: Walk the Directory Tree
Now you need to use the os.walk() function to do the work of listing every file
in the folder and its subfolders. Make your program look like the following:

backup_to_zip.py - Copies an entire folder and its contents into
a ZIP file whose filename increments

--snip--

 # Walk the entire folder tree and compress the files in each folder.
 1 for folder_name, subfolders, filenames in os.walk(folder):
 folder_name = Path(folder_name)
 print(f'Adding files in folder {folder_name}...')

 # Add all the files in this folder to the ZIP file.
 2 for filename in filenames:
 print(f'Adding file {filename}...')
 backup_zip.write(folder_name / filename)
 backup_zip.close()
 print('Done.')

backup_to_zip(Path.home() / 'spam')

Use os.walk() in a for loop 1. On each iteration, the function will
return the iteration’s current folder name, the subfolders in that folder, and
the filenames in that folder. The nested for loop can go through each file-
name in the filenames list 2. Each of these is added to the ZIP file.

When you run this program, it should produce output that looks some-
thing like this:

Creating spam_1.zip...
Adding files in spam...
Adding file file1.txt...
Done.

The second time you run it, it will put all the files in the spam folder
into a ZIP file named spam_2.zip, and so on.

Ideas for Other Programs
You can walk a directory tree and add files to compressed ZIP archives in
several other programs. For example, you could write programs that do
the following:

• Walk a directory tree and archive just files with certain extensions, such
as .txt or .py, and nothing else.

• Walk a directory tree and archive every file except the .txt and .py ones.

• Only archive the folders in a directory tree that use the most disk space
or have been modified since the previous archive.

Organizing Files 255

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Summary
Even if you’re an experienced computer user, you probably handle files
manually with the mouse and keyboard. Modern file explorers make it easy
to work with a few files. But sometimes you’ll need to perform a task that
would take hours using your computer’s file explorer.

The os and shutil modules offer functions for copying, moving, renam-
ing, and deleting files. When deleting files, you might want to use the
send2trash module to move the files to the recycle bin or trash rather than
permanently deleting them. And when writing programs that handle files,
it’s a good idea to do a dry run; comment out the code that does the actual
copy, move, rename, or delete, and replace it with a print() call. This way,
you can run the program and verify exactly what it will do.

Often, you’ll need to perform these operations not only on files in one
folder, but also on every subfolder in that folder, every subfolder in those
subfolders, and so on. The os.walk() function handles this trek across the
folders for you so that you can concentrate on what your program needs to
do with the files in them.

The zipfile module gives you a way to compress and extract files in .zip
archives through Python. Combined with the file-handling functions of os
and shutil, zipfile makes it easy to package up several files from anywhere
on your hard drive. These ZIP files are much easier to upload to websites or
send as email attachments than many separate files.

Practice Questions
 1. What is the difference between shutil .copy() and shutil .copytree()?

 2. What function is used to rename files?

 3. What is the difference between the delete functions in the send2trash
and shutil modules?

 4. ZipFile objects have a close() method just like File objects’ close() method.
What ZipFile method is equivalent to File objects’ open() method?

Practice Programs
For practice, write programs to do the following tasks.

Selectively Copying
Write a program that walks through a folder tree and searches for files with
a certain file extension (such as .pdf or .jpg). Copy these files from their cur-
rent location to a new folder.

Deleting Unneeded Files
It’s not uncommon for a few unneeded but humongous files or folders to
take up the bulk of the space on your hard drive. If you’re trying to free up

256 Chapter 11

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

room on your computer, it’s more effective to identify the largest unneeded
files first.

Write a program that walks through a folder tree and searches for excep-
tionally large files or folders—say, ones that have a file size of more than
100MB. (Remember that, to get a file’s size, you can use os.path.getsize()
from the os module.) Print these files with their absolute path to the screen.

Renumbering Files
Write a program that finds all files with a given prefix, such as spam001.txt,
spam002.txt, and so on, in a single folder and locates any gaps in the num-
bering (such as if there is a spam001.txt and a spam003.txt but no spam002
.txt). Have the program rename all the later files to close this gap.

To create these example files (skipping spam042.txt, spam086.txt, and
spam103.txt), run the following code:

>>> for i in range(1, 121):
... if i not in (42, 86, 103):
... with open(f'spam{str(i).zfill(3)}.txt', 'w') as file:
... pass
...

As an added challenge, write another program that can insert gaps into
numbered files (and bump up the numbers in the filenames after the gap)
so that a new file can be inserted.

Converting Dates from American- to European-Style
Say your boss emails you thousands of files with American-style dates
(MM-DD-YYYY) in their names and needs them renamed to European-
style dates (DD-MM-YYYY). This boring task could take all day to do by
hand! Instead, write a program that does the following:

 1. Searches all filenames in the current working directory and all sub-
directories for American-style dates. Use the os.walk() function to go
through the subfolders.

 2. Uses regular expressions to identify filenames with the MM-DD-YYYY
pattern in them—for example, spam12-31-1900.txt. Assume the months
and days always use two digits, and that files with non-date matches
don’t exist. (You won’t find files named something like 99-99-9999.txt.)

 3. When a filename is found, renames the file with the month and day
swapped to make it European-style. Use the shutil.move() function to do
the renaming.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Thus far, we’ve focused on running pro-
grams from Mu (or from whatever code

editor you’re using). This chapter discusses
how to run programs from the command line

terminal. The command line can be intimidating, with
its cryptic commands and utter lack of user-friendly
presentation, and most users stay away from it. But there
are some genuine benefits to becoming familiar with it,
and it’s no more challenging than any of the program-
ming you’ve done so far.

Once you’ve written a Python program to automate some task, having
to open Mu every time you want to run it can be a burden. The command
line is a more convenient way to execute Python scripts (especially if you
share your programs with friends or co-workers who don’t have Mu, or even

12
D E S I G N I N G A N D D E P L O Y I N G
C O M M A N D L I N E P R O G R A M S

258 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Python, installed). In software development, deployment is the process of
making our software usable outside our code editors.

A Program by Any Other Name
This chapter (and programming in general) uses a lot of terms that mean
a program or some slight variation of the term. You could accurately call all
of the following items a program. But there are subtle differences between
what these names mean:

A program is a complete piece of software, large or small, with instruc-
tions that a computer carries out.

A script is a program that an interpreter runs from its source-code
form rather than from a compiled, machine-code form. This is a very
loose term. Python programs are often called scripts even though
Python code can be compiled like other languages (as you’ll learn in
“Compiling Python Programs with PyInstaller” on page XX).

A command is a program that is often run from a text-based terminal
and doesn’t have a graphical user interface (GUI). All configuration is
done up front by specifying command line arguments before running
the command (although interactive commands may sometimes interrupt
their operation with an “Are you sure? Y/N” question for the user).
Both dir and ls, explained in “The cd, pwd, dir, and ls Commands” on
page XX, are examples of commands.

A shell script is a single text file that conveniently runs several bundled
terminal commands in one batch. This way, a user can run one shell
script instead of manually entering several commands individually.
On macOS and Linux, shell script files have a .sh file extension (or no
extension), while Windows uses the term batch file for shell scripts with a
.bat file extension.

An application is a program that has a GUI and contains multiple
related features. Excel and Firefox are examples of applications.
Applications usually have several files that an installer program sets up
on your computer (and that an uninstaller program can remove), rather
than consisting of just a single executable file copied to a computer. App
is a common name for mobile phone and tablet applications, but the
term can be used for desktop applications as well. A web app is a pro-
gram that runs on a web server, and which users interact with over the
internet through a web browser.

You’re welcome to nitpick about precise definitions; these explanations
should merely give you a general sense of the terms’ usage. If you want to
become familiar with more terminology, my book Beyond the Basic Stuff with
Python (No Starch Press, 2021) has additional definitions in its “Programming
Jargon” chapter.

Designing and Deploying Command Line Programs 259

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Using the Terminal
Until the 1990s, when Apple and Microsoft popularized computers with GUIs
that could run multiple programs simultaneously, programs were launched
from a command line interface (CLI, pronounced either as “see-el-eye” or as a
word that rhymes with “fly”) and were often limited to text-based input and
output. You might also hear CLIs called the command prompt, terminal, shell, or
console. Software developers still make use of CLIs and often have several ter-
minal windows open on their computers at any given time. While a text-based
terminal might not have the icons, buttons, and graphics of a GUI, it’s an
effective way to use a computer once you’ve learned several commands.

To open a terminal window, do the following:

• On Windows, click the Start button (or press the Windows key) and
enter Command Prompt (or PowerShell or Terminal if you have them
installed).

• On macOS, click the Spotlight icon in the upper-right corner (or press
-spacebar) and enter Terminal.

• On Ubuntu Linux, press the Windows key to bring up Dash, and enter
Terminal. Alternatively, use the keyboard shortcut ctrl-alt-T.

Just as the interactive shell has a >>> prompt, the terminal will display a
prompt for you to enter commands. On Windows, this will be the full path
of the folder you are currently in, followed by an angle bracket (>):

C:\Users\al>your commands go here

On macOS, the prompt shows your username, your computer’s name,
and the current working directory (with your home folder represented as ~
for short), followed by a percent sign (%):

al@Als-MacBook-Pro ~ % your commands go here

On Ubuntu Linux, the prompt is similar to the prompt in macOS,
except it begins with the username and an @ sign:

al@al-VirtualBox:~$ your commands go here

While it’s easier to run programs from the Start menu (Windows) or
Spotlight (macOS), it’s also possible to start them from the terminal. The
Python interpreter itself is a program often run from the terminal.

In this chapter, we’ll assume the Python program you want to run is
named yourScript.py and that it’s located in a Scripts folder under your home
folder. You don’t need to open Mu to access the Python interactive shell.
From a terminal window, you can enter python on Windows or python3 on
macOS and Linux to start it. (You should then see its familiar >>> prompt.)
To run one of your .py Python files from the terminal, enter its filepath
after python or python3—either in its absolute form, like python C:\Users\al\
Scripts\yourScript.py, or in its relative form, like python yourScript.py, if the

260 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

current working directory is set to C:\Users\al\Scripts, the same folder that
yourScript.py is in.

The cd, pwd, dir, and ls Commands
Just as all running programs have a current working directory (CWD) to
which relative file paths are attached, the terminal too has a current work-
ing directory. You can see this CWD as part of the terminal prompt, or view
it by running pwd (for print working directory) on macOS and Linux or the cd
command, without any command line arguments, on Windows.

Your Python programs can change the CWD by calling the os.chdir()
function. In the terminal, you can do the same thing by entering the cd com-
mand followed by the relative or absolute filepath of the folder to change to:

C:\Users\al>cd Desktop
C:\Users\al\Desktop>cd ..
C:\Users\al>cd C:\Windows\System32
C:\Windows\System32>

On Windows, you may have the added step of needing to switch the drive
letter. You can’t change the drive you are in with the cd command. Instead,
enter the drive letter followed by a colon, then use cd to change directories on
the drive:

C:\Windows\System32>D:
D:\>cd backup
D:\backup>

The dir command on Windows and the ls command on macOS and
Linux will list the file and subfolder contents of the CWD:

C:\Users\al>dir
--snip--
08/26/2036 06:42 PM 171,304 _recursive-centaur.png
08/18/2035 11:25 AM 1,278 _viminfo
08/13/2035 12:58 AM <DIR> __pycache__
 77 File(s) 83,805,114 bytes
 108 Dir(s) 149,225,267,200 bytes free

While navigating the file system in the terminal, you’ll often bounce
between cd to change directories and dir/ls to see the contents of the direc-
tory. You can list all the executable files in the CWD by running dir *.exe
on Windows and file * | grep executable on macOS and Linux. Once you
are in the folder containing a program, you can run it in the following ways:

• On Windows, enter the program name with or without the .exe exten-
sion: example.exe.

• On macOS and Linux, enter ./ followed by the program name: ./example.

Designing and Deploying Command Line Programs 261

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Of course, you can always enter the full absolute path of a program: C:\
full\path\to\example.exe or /full/path/to/example.

If you want to open a non-program file, such as a text file named exam-
ple.txt, you can open it with its associated application by entering example.txt
on Windows or open example.txt on macOS and Linux. This does, from the
terminal, the same thing as double-clicking the example.txt file’s icon in a
GUI. If there is no associated application set for .txt files, the operating sys-
tem will prompt the user to select one and remember it for the future.

The PATH Environment Variable
All running programs, no matter the language they’re written in, have a
set of string variables called environment variables. One of these is the PATH
environment variable, which contains a list of folders the terminal checks
when you enter the name of a program. For example, if you enter python on
Windows or python3 on macOS and Linux, the terminal checks for a pro-
gram with that name in the folders listed in PATH. Operating systems have
slightly different rules for how they use PATH:

• Windows first checks the CWD for a program of that name, then the
folders in PATH.

• Linux and macOS check only the folders in PATH and don’t check the
CWD at all. If you want to run a program named example in the CWD,
you must enter ./example rather than example.

To view the contents of the PATH environment variable, run echo %PATH%
on Windows or echo $PATH on macOS and Linux. The value stored in PATH
is a long string composed of folder names separated by a semicolon (on
Windows) or a colon (on macOS and Linux). For example, on Ubuntu
Linux, the PATH environment variable may look like the following:

al@al-virtual-machine:~$ echo $PATH
/home/al/.local/bin:/home/al/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/
usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin

If you were to enter python3 into the Linux terminal with this PATH,
Linux would check for a program named python3 in the /home/al/.local/bin
folder first, then in the /home/al/bin folder, and so on. It would eventually
find python3 in /usr/bin and run that. The PATH environment variable is con-
venient because you can just drop a program in a folder on the PATH to spare
yourself from cd-ing to its folder every time you want to run it.

Note that the terminal window doesn’t search subfolders under a PATH
folder. If C:\Users\al\Scripts is listed in the PATH, running spam.exe will run a
C:\Users\al\Scripts\spam.exe file but not a C:\Users\al\Scripts\eggs\spam.exe file.

PATH Editing
So far, you may have been saving your .py files to the mu_code folder that the
Mu editor uses by default. However, I recommend creating a Scripts folder

262 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

under your home folder. If your username happens to be al, this folder
would be:

• C:\Users\al\Scripts on Windows

• /Users/al/Scripts on macOS

• /home/al/Scripts on Ubuntu Linux

Let’s add this folder to the PATH.

Windows

Windows has two sets of environment variables: system environment variables
(which apply to all users) and user environment variables (which override
the system environment variables but apply to the current user only). To edit
them, click the Start menu and then enter Edit environment variables for
your account, which should open the Environment Variables window.

Select Path from the User variable list on the top of the screen (not the
System variable list on the bottom of the screen), click Edit, add the new
folder name C:\Users\al\Scripts in the text field that appears with a semicolon
separator, and click OK.

macOS and Linux

To add folders to the PATH environment variables, you’ll need to edit the ter-
minal startup script. This is the .zshrc file on macOS and the .bashrc file on
Linux. Both of these files are in your home folder and contain commands
that are run whenever a new terminal window is opened. On macOS, add
the following to the bottom of the .zshrc file:

export PATH=/Users/al/Scripts:$PATH

On Linux, add the following to the bottom of the .bashrc file:

export PATH=/home/al/Scripts:$PATH

This line modifies PATH for all future terminal windows that you open,
so the change won’t have an effect on currently open terminal windows.

The which and where Commands
If you ever want to find out which folder in the PATH environment variable a
program is located in, you can run the which program on macOS and Linux
and the where program on Windows. For example, enter the following which
command into the macOS terminal:

al@Als-MacBook-Pro ~ % which python3
/Library/Frameworks/Python.framework/Versions/3.8/bin/python3

Designing and Deploying Command Line Programs 263

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

On Windows, enter the following where command into the terminal:

C:\Users\al>where python
C:\Users\al\AppData\Local\Programs\Python\Python313\python.exe
C:\Users\al\AppData\Local\Programs\Python\Python312\python.exe

The where command shows each folder in PATH that contains a program
named python. The one in the topmost folder is the version that is run when
you enter python. The which and where commands are helpful if you are unsure
how PATH is configured and need to find the location of a particular program.

Virtual Environments
Say you have two Python programs, one that uses version 1.0 of a package
and another that uses version 2.0 of that same package. Python can’t have
two versions of the same package installed at the same time. If version 2.0 is
not backward compatible with version 1.0, you’d be uninstalling one version
and reinstalling the other each time you wanted to switch programs to run.

Python’s solution to this problem is virtual environments; separate instal-
lations of Python that have their own set of installed third-party packages.
In general, each Python application you create needs its own virtual envi-
ronment. But you can use one virtual environment for all your small scripts
while learning to program. Python can create virtual environments with
its built-in venv module. To create a virtual environment, cd to your Scripts
folder and run python –m venv .venv (using python3 on macOS and Linux):

C:\Users\al>
C:\Users\al>cd Scripts
C:\Users\al\Scripts>python -m venv .venv

This creates the virtual environment’s files in a new folder named .venv.
You can choose any folder name you want, but .venv is conventional. Files
and folders whose names begin with a period are hidden, though you can
follow the steps in this book’s Introduction to make your operating system
show them by default.

When you run python or python3 from the terminal, you’ll still run your
original Python installation’s interpreter. To use the virtual environment’s
Python version, you must activate it. Do so by running the C:\Users\al\Scripts\.
venv\Scripts\activate.bat script on Windows:

C:\Users\al\Scripts>cd .venv\Scripts
C:\Users\al\Scripts\.venv\Scripts>activate.bat
(.venv) C:\Users\al\Scripts\.venv\Scripts>where python.exe
C:\Users\Al\Scripts\.venv\Scripts\python.exe
C:\Users\Al\AppData\Local\Programs\Python\Python313\python.exe
C:\Users\Al\AppData\Local\Programs\Python\Python312\python.exe

264 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Running where python.exe after activating the virtual environment shows
that running python from the terminal will run the Python interpreter in
the .venv\Scripts folder and not the system Python (discussed shortly).

The equivalent script on macOS and Linux is ~/Scripts/.venv/bin/activate,
but due to security permissions, you can’t directly run it. Instead, run the
command source activate:

al@al-virtual-machine:~/Scripts$ cd .venv/bin
al@al-virtual-machine:~/Scripts/.venv/bin$ source activate
(.venv) al@al-virtual-machine:~/Scripts/.venv/bin$ which python3
/home/al/Scripts/.venv/bin/python3

Activation changes the PATH environment variable so that python or
python3 runs the Python interpreter inside the .venv folder instead of the
original one. It also changes your terminal prompt to include (.venv) so
that you know the virtual environment is active. Running which python3 in
the activated virtual environment shows that python3 runs the Python inter-
preter in the newly created .venv/bin folder. These changes apply to the
current terminal window only; any existing or new terminal windows won’t
have these environment variable or prompt changes. This fresh Python
installation has only the default packages, and none of the packages you
may have already installed in the original Python installation. You can con-
firm this by running python –m pip list to list the installed packages:

(.venv) C:\Users\al\Scripts\.venv\Scripts>python -m pip list
Package Version
---------- -------
pip 23.0
setuptools 65.5.0

The standard practice is to create a virtual environment for each
Python project you’re working on, since every project could have its own
unique package dependencies. However, on Windows, we can be a bit more
lax with the random small scripts we write in our Scripts folder: they can all
share this one.

The macOS and Linux operating systems have their own programs
that rely on the Python installation that comes with the operating system.
Installing or updating packages for this original Python installation, called
the system Python, has the slight chance of introducing incompatibilities
that can cause these programs to fail. Running your own scripts with the
system Python is fine; installing third-party packages to the system Python
is slightly risky, but creating a virtual environment in your Scripts folder is a
good precaution against installing incompatible packages.

Keep in mind that Mu has its own virtual environment. When you press
F5 to run a script in Mu, it won’t have the packages you’ve installed to the
Scripts\.venv folder’s virtual environment. As you advance in your program-
ming ability, you may find it easier to have the Mu window open to edit your
code while keeping a terminal window open to run it. You can quickly swap

Designing and Deploying Command Line Programs 265

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

focus between windows with the alt-tab keyboard shortcut on Windows
and Linux and -tab on macOS.

To deactivate the virtual environment, run deactivate.bat (on Windows)
or source deactivate (on macOS and Linux) in the same folder as the activate
script. You can also simply close the terminal window and open a new one.
If you want to permanently delete the virtual environment along with its
installed packages, just delete the .venv folder and its contents.

The following sections tell you how to deploy your script after you’ve set
up the virtual environment and added your Scripts folder to PATH.

Installing Python Packages with Pip
Python comes with a command line package manager program called pip
(written in lowercase unless it’s at the start of a sentence). Pip is a recursive
acronym for pip installs package. While Python’s standard library comes with
modules such as sys, random, and os, there are also hundreds of thousands of
third-party packages you can find on PyPI (pronounced pie-pee-eye and not
pie-pie), the Python Package Index, at https://pypi .org. In Python, a package is
a collection of Python code made available on PyPI, and a module is an indi-
vidual .py file containing Python code. You install packages from PyPI that
contain modules, and you import modules with an import statement.

While pip is a program on its own, it’s easier to run it through the
Python interpreter by running python –m pip on Windows or python3 –m pip
on macOS and Linux, rather than running the pip (on Windows) or pip3
(on macOS and Linux) program directly. This prevents errors in the rare
cases where you have multiple Python installations, your PATH is misconfig-
ured, and pip/pip3 is installing to a different Python interpreter than the
one that runs when you enter python/python3.

DON’T USE PIP W IT H A N ACONDA

If you’ve installed the Anaconda distribution of Python instead of the regular
distribution from https://python .org, you should avoid using pip in your conda
environments . Instead, use the conda-specific package manager through the
conda command .

To install a package from PyPI, enter the following into the terminal:

C:\Users\al>python –m pip install package_name

Remember to run python3 if on macOS or Linux instead of python for
these various commands. Also note that you’ll need to run this from the
terminal window, and not from the Python interactive shell.

https://pypi.org
https://python.org

266 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

To list all the packages you have installed along with their version num-
bers, run python –m pip list:

C:\Users\al>python -m pip list
Package Version Editable project location
------------------------- ----------- -------------------------
altgraph 0.17.3
argon2-cffi 21.3.0
argon2-cffi-bindings 21.2.0
async-generator 1.10
--snip--
wsproto 1.2.0

You can also upgrade a package to the latest version on PyPI by run-
ning python –m pip install –U package_name, or install a particular version
(say, 1.17.4) by running python –m pip install package_name==1.17.4.

To uninstall a package, run python –m pip uninstall package_name. You can
find more information about pip by running python –m pip --help.

INS TA L L ING T HE AU TOM AT E T HE BOR ING S T UF F PACK AGE

This book covers several third-party packages . Over time, the authors of these
packages may make updates that are not backward compatible with the ver-
sions used in this book . To ensure that the information in this book is accurate,
please install the specific versions listed in Appendix A . Installing the latest
versions will sometimes work fine, but you’ll have to check the package’s online
documentation to learn about the new changes .

The easiest way to install all the correct versions of all the packages fea-
tured in this book is to install the automateboringstuff3 package to a virtual
environment . This package acts as a container for all the packages (and match-
ing versions) featured in this book . From a Windows terminal, activate a virtual
environment and run:

python –m pip install automateboringstuff3

On macOS and Linux, activate a virtual environment and run:

python3 –m pip install automateboringstuff3

Self-Aware Python Programs
Python’s standard library doesn’t come with any modules that give your pro-
grams sentience. (Yet.) But several built-in variables can give your Python
program useful information about itself, the operating system it’s on, and

Designing and Deploying Command Line Programs 267

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

the Python interpreter running it. The Python interpreter sets these vari-
ables automatically.

The __file__ variable contains the .py file’s path as a string. For exam-
ple, if I run a yourScript.py file in my home folder, it evaluates to 'C:\Users\al\
yourScript.py'. Importing from pathlib import Path and calling Path(__file__)
returns a Path object of this file. This information is useful if you need to
locate files that exist in the Python program’s folder. The __file__ variable
doesn’t exist when you run the Python interactive shell.

The sys.executable variable contains the full path and file of the Python
interpreter program itself, and the sys.version variable contains the string
that appears at the top of the interactive shell with version information
about the Python interpreter.

The sys.version_info.major and sys.version_info.minor variables contain
integers of the major and minor version numbers of the Python interpreter.
On my laptop running Python version 3.12.0 alpha 5, these are 3 and 12,
respectively. You can also pass sys.version_info to the list() function to
obtain more specific information: list(sys.version_info) returns [3, 12, 0,
'final', 0] on my laptop. Having the version information in this form is
much easier to work with than trying to pull it out of the sys.version string.

The os.name variable contains the string 'nt' if running on Windows
and 'posix' if running on macOS or Linux. This is useful if your Python
script needs to run different code depending on what operating system it’s
running on.

For more specific operating system identification, the sys.platform vari-
able contains 'win32' on Windows, 'darwin' on macOS, and 'linux' on Linux.

If you need highly specific information about the OS version and type
of CPU, the built-in platform module can retrieve this information. This
module is documented online at https://docs .python .org /3 /library /platform .html.

If you need to check whether a module is installed, put the import state-
ment in a try block and catch the ModuleNotFoundError exception:

try:
 import nonexistentModule
except ModuleNotFoundError:
 print('This code runs if nonexistentModule was not found.')

If the module is necessary for your program to function, you can put
a descriptive error message here and call sys.exit() to terminate the pro-
gram. This will be more helpful to the user than a generic error message
and traceback.

Text-Based Program Design
Before GUI-supporting operating systems were common, all programs used
text to communicate with their user. This book focuses on creating small,
useful programs rather than professional software applications, so the pro-
grams in this book use print() and input() through a command line inter-
face rather than the windows, buttons, and graphics that a GUI provides.

https://docs.python.org/3/library/platform.html

268 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Even when limited to text, however, software applications can still pro-
vide a user interface similar to modern GUIs. Figure 12-1 shows Norton
Commander, an application for browsing the file system. These kinds of
applications are retroactively called TUI (pronounced “two-ee”), or text-based
user interface, applications.

Figure 12-1: The text-based Norton Commander (left) alongside a modern GUI
application (right)

Even if you aren’t a professional software developer, the advantage of
text-based user interfaces is their simplicity. This section describes several
design approaches your programs can take for their user interface.

Short Command Names
Users often run text-based programs run from the command line rather
than by clicking an icon on the desktop or Start menu. These commands
can sometimes seem difficult to understand. When I started learning the
Linux operating system, I was surprised to find that the Windows copy com-
mand I knew well was named cp on Linux. The name copy was much more

Designing and Deploying Command Line Programs 269

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

readable than cp. Was a terse, cryptic name really worth saving two charac-
ters’ worth of typing?

As I gained more experience on the command line, I realized the
answer is a firm yes. We read source code more often than we write it, so
using verbose names for variables and functions helps. But we type com-
mands into the command line more often than we read them, so in this
case, the opposite is true: short command names make the command line
easier to use, and they reduce strain on your wrists.

If your program is a command that you’ll likely type a dozen times a
day, try to think of a short name for it. You can use the which and where com-
mands to check if the name already exists for another program. You can
also do an internet search for any existing commands by that name. A short
name goes a long way toward making it easy to use.

Command Line Arguments
To run a program from the command line, simply enter its name. For .py
Python source code files, you must run the python (Windows) or python3
(macOS and Linux) program and then supply the .py filename after it, like
this: python yourScript.py.

The bit of text supplied after a command is called a command line argu-
ment. Command line arguments are passed to commands in much the same
way as arguments to a function call. For example, the ls command by itself
lists the files in the CWD. But you could also run ls exampleFolder, and the
exampleFolder command line argument would direct the ls command to list
the files in the exampleFolder folder. Command line arguments allow you to
configure the behavior of the command.

Python scripts can access the command line scripts given to the Python
interpreter from the sys.argv list. For example, if you entered python3
yourScript.py hello world, the python3 program would receive the command
line arguments and forward them to your Python script in the sys.argv vari-
able. The sys.argv variable would contain ['yourScript.py', 'hello', 'world'].

Note that the first item in sys.argv is the filename of the Python script.
The remaining arguments are split by spaces. If you need to include space
characters in a command line argument, put them inside double quota-
tion marks when running the command. For example, python3 yourScript.py
"hello world" would set sys.argv to ['yourScript.py', 'hello world'].

The main usefulness of command line arguments is that you can
specify a wide variety of configurations before you start the program.
There’s no need to go through a configuration menu or multistep process.
Unfortunately, this approach means that command line arguments can
become incredibly complicated and unreadable. If you pass /? after any
Windows command or --help after any macOS or Linux command, you’ll
often find page after page of command line argument documentation.

If the set of command line arguments your program accepts is sim-
ple, then it’s easiest to have your program read the sys.argv list directly.
However, as you add more command line arguments, the possible combi-
nations can become cumbersome to manage. Should python yourScript.

270 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

py spam eggs do the same thing as python yourScript.py eggs spam? If the user
can have either a cheese argument or a bacon argument, what happens if they
provide both? This complexity would require you to write a lot of code to
handle the various edge cases. At this point, you’re probably better off using
Python’s built-in argparse module to handle these complicated situations.
The argparse module is beyond the scope of this book, but you can read its
documentation online at https://docs .python .org /3 /library /argparse .html.

Clipboard I/O
You don’t need to rely on input() to read text from files or the keyboard.
You can also use the clipboard for your Python program’s text input and
output. The cross-platform pyperclip module has a copy() function for plac-
ing text on the clipboard and a paste() function that returns the clipboard’s
text as a string. Pyperclip is a third-party package installed from the termi-
nal with pip: python –m pip install pyperclip. On Linux, you’ll also have to
run sudo apt-get install xclip to make Pyperclip work. See Appendix A for
full instructions.

All of your clipboard I/O programs will follow this basic design:

 1. Import the pyperclip module.

 2. Call pyperclip.paste() to obtain the input text from the clipboard.

 3. Perform some work on the text.

 4. Copy the results to the clipboard by passing them to pyperclip .copy().

The “Add Bullets to Wiki Markup” project in Chapter 8 is an example
of this kind of program. The design of this program becomes especially
useful once you’ve deployed it following the instructions in “Deploying
Python Programs” on page XX. Just highlight the input text, press ctrl-C
to copy it, and run the program. The results will be on the clipboard, ready
to paste wherever needed.

Later in this chapter we’ll look at two projects, the ccwd command and
the Clipboard Recorder, that make use of the clipboard.

Colorful Text with Bext
You can print colorful text using the third-party Bext package built on top
of Jonathan Hartley’s Colorama package. Install Bext with pip by following
the instructions in Appendix A. Bext only works in programs run from a ter-
minal window, and not from Mu or most other code editors. To have print()
produce colorful text, call the fg() and bg() functions to change the (fore-
ground) text color or the background color with a string argument such as
'black', 'red', 'green', 'yellow', 'blue', 'magenta', 'purple', 'cyan', or 'white'.
You can also pass 'reset' to change the color back to the terminal window’s
default color. For example, enter the following into the interactive shell:

>>> import bext
>>> bext.fg('red')

https://docs.python.org/3/library/argparse.html

Designing and Deploying Command Line Programs 271

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> print('This text is red.')
This text is red.
>>> bext.bg('blue')
>>> print('Red text on blue background is an ugly color scheme.')
Red text on blue background is an ugly color scheme.
>>> bext.fg('reset')
>>> bext.bg('reset')
>>> print('The text is normal again. Ah, much better.')
The text is normal again. Ah, much better.

Keep in mind that the user may have their terminal window set to light
mode or dark mode, so there’s no telling if the terminal’s default appearance
is black text on a white background or white text on a black background.
You should also be limited in your use of color: too much can make your
program look tacky or unreadable.

Bext also has some limited TUI-like features, including the following:

bext.clear() Clears the screen

bext.width() and bext.height() Returns the current width (in columns)
and height (in rows) of the terminal window, respectively

bext.hide() and bext.show() Hides and shows the cursor, respectively

bext.title(text) Changes the title bar of the terminal window to the
text string

bext.goto(x, y) Moves the cursor to column x and row y in the termi-
nal, where 0, 0 is the top-left position

bext.get_key() Waits for the user to press any key and then returns a
string describing the key

Think of the bext.get_key() function as a single-key version of input().
The returned string includes 'a', 'z', and '5', but also keys like 'left', 'f1',
and 'esc'. The tab and enter keys return '\t' and '\n', respectively. Call
bext.get_key() in the interactive shell to test various keys and see their
return values.

For a demonstration of what Bext can do, run the source code for the
ASCII Art Fish Tank program from https://inventwithpython .com /projects /
fish tank .py. First, this program uses bext.clear() to clear the terminal win-
dow of all text. Next, the program calls bext.goto() to position the cursor
and bext.fg() to change the text color before printing various fish out of
text characters like ><)))*>. This program is featured in my book The Big
Book of Small Python Projects (No Starch Press, 2021).

Terminal Clearing
The bext.clear() function is useful if you’d like your program to remove any
text left over from before it ran. You can also use it to do flipbook-style ani-
mation: call clear() to clear the terminal, then use print() calls to fill it with
text, pause for a moment with Python’s time.sleep(), and then repeat. There

https://inventwithpython.com/projects/fishtank.py
https://inventwithpython.com/projects/fishtank.py

272 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

is a Python one-liner (a single line of code to do a special trick) to clear the
screen that you can place in your own clear() function:

import os
def clear():
 os.system('cls' if os.name == 'nt' else 'clear')

This code lets your program clear the terminal screen without requir-
ing the installation of the Bext package and only works in Python scripts
run from the terminal, not from Mu or another code editor. The os.system()
call, which you’ll learn more about in Chapter 11, runs the cls program (on
Windows) or the clear program (on macOS and Linux). The odd syntax
here is an example of Python’s conditional expressions (also called ternary
operators in other languages). The syntax is value1 if condition else value2,
which evaluates to value1 if condition is True and value2 if condition is False.
In our case, the conditional expression evaluates to 'cls' if the condition
os.name == 'nt' is True; otherwise, it evaluates to 'clear'. Conditional expres-
sions (and one-liners in general) often produce unreadable code and are
usually best avoided, but this is a simple enough case.

Sound and Text Notification
Terminal programs existed before the rich audio that today’s computers pro-
vide. Today, there’s no reason your text-based programs must be silent. There
are, however, good reasons to keep sounds to a minimum or to exclude them
altogether. Sounds can provide notification that a task is complete or a prob-
lem has occurred when the user is busy looking at other windows. But, like
colorful text, it’s easy to overuse sounds to the point of annoyance. The user
may already be doing a task that involves playing audio, or perhaps they’re in
an online meeting that the sound would rudely interrupt. And if the user’s
computer is muted, they won’t hear the sound notification anyway.

If you just need to play a simple audio file, you can use the playsound
third-party package. Once it’s installed, you can play an audio file by calling
the playsound module’s playsound() function and passing the filepath of an
MP3 or WAV audio file. Download the hello.mp3 file from https://autbor .com /hello
.mp3 (or use your own file) and enter the following into the interactive shell:

>>> import playsound
>>> playsound.playsound('hello.mp3')

The playsound() function won’t return until the audio file has finished
playing; that is, the function blocks until the audio has finished. Keep in
mind that this will halt your program for a while if you give it a long audio
file to play. If playsound() raises exceptions (which happens if the filename
contains odd characters such as an equal sign), try passing a Path object of
the audio file instead of a string.

Similarly, you may want to limit the text produced by your program.
Under the Unix philosophy of command design, piping the text output of
one command to another is easier if the command outputs only relevant

https://autbor.com/hello.mp3
https://autbor.com/hello.mp3

Designing and Deploying Command Line Programs 273

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

information, as extraneous text output would have to be filtered. Many
commands keep their text output to a minimum, or they have none at all
and communicate success or error with the exit code. (Exit codes are cov-
ered in Chapter 19.) However, if you aren’t piping the output to another
command but, as a human user, want to see more information, many com-
mands accept a -v or --verbose command line argument to enable this
verbose mode. Other commands take the opposite approach and flood the
output with information, but offer a -q or --quiet command line argument
to offer a quiet mode of no text output instead. (This could double as a way
to mute sound notifications as well.) Or better yet, make silence the default
behavior and have --verbose or --beep enable sound or alert beeps.

If your program doesn’t require this level of sophistication, you can
ignore this consideration. However, once you start sharing your programs
with others who may use it in clever ways you didn’t foresee, offering these
options goes a long way toward making your programs user-friendly.

A Short Program: Snowstorm
Let’s create a text-based snowstorm animation. Our program uses block text
characters that fill out the top half-block, bottom half-block, and full block
of a single character cell. These text characters are returned as strings by
chr(9600), chr(9604), and chr(9608), respectively, and our program stores them
in the constants TOP, BOTTOM, and FULL to make our code more readable.

Enter the following code into a file named snowstorm.py:

import os, random, time, sys

TOP = chr(9600) # Character 9600 is '▀'
BOTTOM = chr(9604) # Character 9604 is '▄'
FULL = chr(9608) # Character 9608 is '█'

Set the snowstorm density to the command line argument:
DENSITY = 4 # Default snow density is 4%
if len(sys.argv) > 1:
 DENSITY = int(sys.argv[1])

def clear():
 os.system('cls' if os.name == 'nt' else 'clear')

while True:
 clear() # Clear the terminal window.

 # Loop over each row and column:
 for y in range(20):
 for x in range(40):
 if random.randint(0, 99) < DENSITY:
 # Print snow:
 print(random.choice([TOP, BOTTOM]), end='')

274 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 else:
 # Print empty space:
 print(' ', end='')
 print() # Print a newline.

 # Print the snow-covered ground:
 print(FULL * 40 + '\n' + FULL * 40)
 print('(Ctrl-C to stop.)')

 time.sleep(0.2) # Pause for a bit.

First, the program imports the os, random, sys, and time modules. These
modules are in the Python standard library and don’t require installing any
third-party packages. Then, the program sets up the constants TOP, BOTTOM, and
FULL with return values from chr(). The program uses these constant names
because they’re easier to understand than the numbers 9600, 9604, and 9608.

The user can specify the density of the snowstorm by supplying a com-
mand line argument. If no command line argument is given, then sys.argv
is set to ['snowstorm.py'] and the program leaves DENSITY at 4. But if the user
were to run the program with, say, python snowstorm.py 20, then sys.argv would
be set to ['snowstorm.py', '20'] and the program would update DENSITY to
int(sys.argv[1]), or 20. The user would then be able to modify the behavior
of the snowstorm without having to change the source code.

Inside an infinite while loop, this program first clears the screen with
the cls/clear one-liner. Next, it uses two nested for loops to loop over every
row and column in a 40 × 20 space on the terminal. (You can increase or
decrease these numbers to change the size of your snowstorm.) At each
row and column, the program prints a single character: either a randomly
selected TOP or BOTTOM character to represent snow, or an empty space char-
acter. (Only four percent of the characters are not empty spaces by default.)
These print() calls pass the end='' keyword argument so that print() doesn’t
automatically print a newline character after each call. The program prints
this newline itself by calling print() with no arguments after finishing a row.

After the nested for loops, the program prints two rows of 40 FULL char-
acters to represent the ground, along with a reminder that the user can press
ctrl-C to stop the program. All of this code produces one “frame” of the
snowstorm animation, and time.sleep(0.2) briefly holds this frame before the
execution loops back to clear the terminal and start the process all over again.

I chose the snowstorm animation because it’s fun rather than practical,
like a terminal-based snow globe. A more useful application of this tech-
nique is creating a dashboard app: a program that runs in a terminal window
you leave open to convey information at a glance. This program prints rel-
evant information, then clears the screen and reprints updated information
every second, minute, hour, or other interval.

Pop-Up Message Boxes with PyMsgBox
While designing a full GUI for your program requires learning an entire
code library such as Tkinter, wxPython, or PyQt, you can add small GUI

Designing and Deploying Command Line Programs 275

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

message boxes to your program with the PyMsgBox package. This is a third-
party package you can install by running pip install pymsgbox from the ter-
minal. PyMsgBox lets you create dialog boxes using Tkinter, which comes
with Python on Windows and macOS. On Ubuntu Linux, you must first
install Tkinter by running sudo apt-get install python3-tk in the terminal.
Appendix A has full instructions.

PyMsgBox has functions with names that mirror JavaScript’s message
box functions:

pymsgbox.alert(text) Displays a text message until the user clicks OK,
then returns the string 'OK'

pymsgbox .confirm(text) Displays a text message until the user clicks OK
or Cancel, then returns 'OK' or 'Cancel'

pymsgbox.prompt(text) Displays a text message along with a text field,
then returns the text the user entered as a string or None if they clicked
Cancel

pymsgbox.password(text) Is the same as pymsgbox.prompt(), but the text the
user enters is masked by asterisks

These functions won’t return until the user clicks OK, Cancel, or X
(close). If your program requires only the occasional notification or user
input, using PyMsgBox’s dialog boxes could be a suitable replacement for
print() and input().

Deploying Python Programs
Once your Python program is finished, you might not want to run Mu, load
the .py file, and then click the Run button each time you want to execute it.
This section explains how to deploy your Python program so that you can
run it in as few keystrokes as possible.

Be sure to follow the steps in “The PATH Environment Variable” on
page XX to add a Scripts folder to your PATH environment variable. Since
my username is al, the path to this folder is C:\Users\al\Scripts on Windows,
/Users/al/Scripts on macOS, and /home/al/Scripts on Linux. Also, you’ll need
to set up a virtual environment for your Python scripts, as described next.

Windows
On Windows, you can bring up the Run dialog box by pressing the Windows
key and the R key simultaneously (or right-clicking the Start menu button
and selecting Run). This opens a small window that acts like a one-use
terminal: in it, you can run a single command. To run your Python scripts
from here, you’ll need to do the following:

 1. Place the yourScript.py Python script in your Scripts folder.

 2. Create a yourScript.bat batch file in your Scripts folder to run the
Python script.

276 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Batch files contain terminal commands that can be run together by run-
ning the batch file. They have a .bat file extension and are similar to shell
scripts on Linux or .command scripts on macOS. If you place a batch file
named yourScript.bat in a PATH folder, you can run it from the Run dialog box
by entering yourScript. On Windows, you don’t need to enter the file exten-
sion to run .bat or .exe files.

The content of a batch file is plaintext, just like a .py file, so you can cre-
ate batch files with Mu or a text editor like Notepad. Batch files contain one
command per line. To run a yourScript.py file located in a folder C:\Users\al\
Scripts, create a file named yourScript.bat with the following contents:

@call %HOMEDRIVE%%HOMEPATH%\Scripts\.venv\Scripts\activate.bat
@python %HOMEDRIVE%%HOMEPATH%\Scripts\yourScript.py %*
@pause
@deactivate

The batch file can be named anything, but it’s easier to remember if
it has the same name as the Python script. This batch file runs three com-
mands. The first command activates the virtual environment you created
for your Scripts folder. The @ symbol at the start makes the command itself
not appear in the terminal window. The %HOMEDRIVE% environment variable
is 'C:' and the %HOMEPATH% environment variable is the path to your home
folder, like '\Users\al'. (The tilde [~] doesn’t represent the home folder on
Windows.) When combined, this provides the path to the virtual environ-
ment activation script no matter what your username is. (This is helpful if
you share these files with a co-worker for them to run on their computer.)
Note that the call is necessary; if a batch file (like yourScript.bat) runs
another batch file (like activate.bat) without call, the rest of the first batch
file’s commands won’t be run.

Next, the batch file runs python.exe, which then runs yourScript.py. The
%* causes the batch file to forward any command line arguments it received
to your Python program. It’s a good idea to always include the %* in case you
later add command line arguments to your Python program.

The third command runs the pause command, which causes Windows
to display Press any key to continue and wait for the user to press a key.
This prevents the terminal window from immediately closing after the
Python program finishes so that you can see any remaining printed output.
If your program has no printed output, you can omit this line. Finally, the
@deactivate line deactivates the virtual environment in case you ran this
batch file from the terminal and the terminal window remains open after
finishing the Python program.

With the batch file set up, now you can run your Python script by press-
ing the Windows key + R key combination to bring up the Run dialog box
and entering yourScript (followed by any command line arguments) to run
the yourScript.bat script. Or, if you have a terminal window open, you can
just enter yourScript in the terminal from any folder. This is far quicker than
running it from a code editor like Mu.

Designing and Deploying Command Line Programs 277

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you create other Python scripts, you can reuse this batch file. Just
copy the file with a new name and change the yourScript.py filename to the
new Python script’s name. Everything else can stay the same.

macOS
Pressing the command key and the spacebar simultaneously on macOS
brings up Spotlight, allowing you to enter the name of a program to run.
To add your own Python scripts to Spotlight, you must do the following:

 1. Place the yourScript.py Python script in your Scripts folder.

 2. Create a text file named yourScript .command to run the Python script.

 3. Run chmod u+x yourScript .command to add execute permissions to the
yourScript .command file.

Once you have your .py Python script in your Scripts folder, such as
/Users/al/Scripts, create a text file named yourScript .command in the Scripts
folder with the following content:

source ~/Scripts/.venv/bin/activate
python3 ~/Scripts/yourScript.py
deactivate

The ~ represents the home folder, such as /Users/al. The first line acti-
vates the virtual environment and the second line runs the Python script
using the virtual environment’s Python installation.

Finally, in a terminal, cd to ~/Scripts and run the command chmod u+x
yourScript .command. This adds execute permissions so that you can run the
script from Spotlight. Now you’ll be able to quickly run the Python script
by pressing ζ-spacebar and entering yourScript .command. (Spotlight should
autocomplete the full name for you after you enter the first few characters.)
You’ll also be able to run your Python script from the terminal by entering
yourScript .command.

The yourScript .command file is required because if you try to run the
yourScript.py file from Spotlight, Spotlight sees the .py file extension and
assumes you want to open this file in Mu or some other code editor, rather
than running it directly.

Note that if you use macOS’s TextEdit to create the yourScript .command
file, be sure to make it a plaintext file by pressing shift-ζ-T (or clicking the
Format and Make Plain Text menu items). TextEdit will also try to be help-
ful by automatically capitalizing python3 to Python3, which causes an error in
Spotlight.

Unfortunately, Spotlight has no means of letting the user pass com-
mand line arguments to the Python script. Any command line arguments
must be preemptively written in the .command file.

278 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Ubuntu Linux
Ubuntu Linux Dash can be brought up by pressing the Windows key and
entering the name of the program you want to run. To add your Python
script to Dash, you must do the following:

 1. Place the yourScript.py Python script in your Scripts folder.

 2. Create a shell script named yourScript to activate the virtual environ-
ment and run your Python script.

 3. Run the chmod u+x yourScript command to add execute permissions to
the shell script.

 4. Create a yourScript.desktop file in the ~/.local/share/applications folder to
run the shell script from Dash.

Once you have your .py Python script in your Scripts folder, such as
/home/al/Scripts, create a text file named yourScript (with no file extension) in
the Scripts folder with the following content:

#!/usr/bin/env bash
source ~/Scripts/.venv/bin/activate
python3 ~/Scripts/yourScript.py
read -p "Press any key to continue..." -n1 –s
deactivate

The ~ represents the home folder, such as /Users/al. The first line identi-
fies this file as a shell script. A .sh file extension isn’t necessary for this file.

The second line activates the virtual environment, and the third line
runs the Python script using the virtual environment’s Python installation.
The read command causes the terminal to display Press any key to continue
and wait for the user to press a key. This prevents the terminal window from
immediately closing after the Python program finishes so that you can see
any remaining printed output. If your program has no printed output, you
can omit this line.

After creating this shell script, cd to ~/Scripts and run the command
chmod u+x yourScript. This adds execute permissions so that you can run it.
At this point, you’ll also be able to run your Python script from the termi-
nal by entering yourScript. To run your Python script from Dash, you must
create a yourScript.desktop file.

In Mu or another text editor such as gedit, create a yourScript.desktop file
with the following content:

[Desktop Entry]
Name=yourScript
Exec=gnome-terminal -- /home/al/Scripts/yourScript
Type=Application

Save this file to the /home/al/.local/share/applications folder (replacing
al with your own username) as yourScript.desktop. (Note that the Exec field
requires you to spell out /home/al; you cannot replace the value with a ~ in

Designing and Deploying Command Line Programs 279

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

this file.) If your text editor doesn’t show the .local folder (because folders
that begin with a period are considered hidden), press ctrl-H in the Save
File dialog box to show hidden files.

Now you’ll be able to quickly run the Python script by pressing the
Windows key to bring up Dash and entering yourScript. Dash should autocom-
plete the full name for you. The yourScript text in the Name field of yourScript
.desktop will appear in Dash and can be anything, but it’s convenient to give it
the same name as yourScript.py.

Next, let’s create two programs using the principles in this chapter and
deploy them for easy use.

A Short Program: Copying the Current Working Directory
While the pwd command on macOS and Linux will print the current work-
ing directory, it’s sometimes useful to copy this value to the clipboard for
pasting elsewhere. For example, on Windows, I constantly find myself copy-
ing the current working directory from a terminal so that I can paste it in a
Save File dialog box to save a file in that same directory. Although I could
use the mouse to select the current working directory from the Windows
prompt to copy (or, on macOS and Linux, run the pwd command to print
the working directory and select that text to copy), this requires several
steps for what could be a one-step process.

My idea is to write a program named ccwd (for copy current working
directory). First, I’ll enter where ccwd on Windows and which ccwd on macOS
and Linux to make sure there isn’t currently a command with the same
name, then maybe also do a quick internet search for ccwd to be sure. The
name ccwd is short enough to type but also unique.

As an additional feature, say the terminal’s current working directory
was set to C:\Users\al\Scripts, but what I wanted copied to the clipboard was
C:\Users\al. I could just run the cd .. command, then ccwd, then cd Scripts to
return to C:\Users\al\Scripts. But it would be easier if I could pass a relative
filepath to ccwd as a command line argument. For example, ccwd .. would
copy C:\Users\al to the clipboard when the current working directory was
C:\Users\al\Scripts. You don’t have to specify this command line argument
(the program defaults to the current working directory if none is given),
but it’s available as a feature if the user wants it. These tiny improvements
may seem trivial, but online retailers have “one-click buying” features on
their websites because they know that slight improvements to convenience
can have a major effect.

We’ll use the Pyperclip package to handle the clipboard, so be sure to
install this into the Scripts folder’s virtual environment. Create a new file in
Mu and enter the following content:

import pyperclip, os, sys
if len(sys.argv) > 1:
 os.chdir(sys.argv[1])
pyperclip .copy(os .getcwd())

280 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Save this program as ccwd.py in the Scripts folder under your home folder.
The first line imports the modules the program needs. The second line

checks if there are any command line arguments passed to the program.
Remember that sys.argv is a list that always contains at least one string:
the 'ccwd.py' name of the script. If it has more than one string, we know the
user supplied command line arguments to the program. In that case, the
third line changes the current working directory of the program. Note that
every program has its own current working directory setting, and changing
this setting with os.chdir() doesn’t change the current working directory of
the terminal that ran the program. Finally, the fourth line copies the cur-
rent working directory to the clipboard.

The program is finished, but to run it from a terminal, we’d have to enter
the full path to it: something like python C:\Users\al\Scripts\ccwd.py. That’s a
lot to type and defeats the purpose of having a quick and easy script to copy
the current working directory to the clipboard. To improve this process, let’s
go over the deployment steps for this program on each operating system.

Windows
Save the Python file as C:\Users\al\Scripts\ccwd.py (changing al to your
username). In the same Scripts folder, create a ccwd.bat file with the follow-
ing content:

@call %HOMEDRIVE%%HOMEPATH%\Scripts\.venv\Scripts\activate.bat
@python %HOMEDRIVE%%HOMEPATH%\Scripts\ccwd.py %*
@deactivate

This batch file doesn’t have the @pause line, because it has no print()
output. You can now run this program from the terminal in any folder by
running ccwd:

C:\Users\al>ccwd
C:\Users\al>

At this point, 'C:\Users\al' is on the clipboard.

macOS
Save the Python file as /Users/al/Scripts/ccwd.py (changing al to your username).
In the same Scripts folder, create a text file with the name ccwd .command and
the following content:

source ~/Scripts/.venv/bin/activate
python3 ~/Scripts/ccwd.py
deactivate

Then, in a terminal, cd to the Scripts folder and run chmod u+x ccwd .command:

al@Als-MacBook-Pro ~ % cd ~/Scripts
al@Als-MacBook-Pro Scripts % chmod u+x ccwd .command

Designing and Deploying Command Line Programs 281

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You can now run this program from the terminal in any folder by run-
ning ccwd .command:

al@Als-MacBook-Pro ~ % ccwd .command
al@Als-MacBook-Pro ~ %

At this point, '/Users/al' should be on the clipboard.

Ubuntu Linux
Save the Python file as /home/al/Scripts/ccwd.py (changing al to your user-
name). In the same Scripts folder, create a text file named ccwd with the
following content:

#!/usr/bin/env bash
source ~/Scripts/.venv/bin/activate
python3 ~/Scripts/ccwd.py
deactivate

This ccwd shell script doesn’t need the read -p "Press any key to
continue..." -n1 –s line, because it will be run only from the terminal and
not from Dash, and the terminal window won’t disappear after running the
Python script.

Then, in a terminal, cd to the Scripts folder and run chmod u+x ccwd:

al@al-VirtualBox:~$ cd ~/Scripts
al@al-VirtualBox:~/Scripts$ chmod u+x ccwd

You can now run this program from the terminal in any folder by run-
ning ccwd:

al@al-VirtualBox:~$ ccwd
al@al-VirtualBox:~$

At this point, '/home/al' should be on the clipboard.

A Short Program: Clipboard Recorder
Let’s say that part of your job is to copy the URLs for links on a web page
and paste them into a spreadsheet. (In Chapter 13, you’ll learn how to
scrape all the links for the HTML source of the page. But let’s say you only
need to copy some of them, and a human must decide which ones on a
case-by-case basis.) You could follow these steps:

 1. Right-click a link in a web browser.

 2. Select the Copy Link or Copy Link Address item from the context menu.

 3. Switch to the spreadsheet app.

 4. Press ctrl-V to paste the link.

 5. Switch back to the web browser.

282 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This is a boring task, especially if the page has dozens or hundreds of
links. Let’s create a small clipboard-recording program to make it faster.
We’ll deploy this program on our computer so that we can conveniently run
it when needed. Our program will monitor the clipboard to see if new text
has been copied to it, and if so, it will print it to the terminal screen. This
way, we can convert our five-step process into a two-step process:

 1. Right-click a link in a web browser.

 2. Select the Copy Link or Copy Link Address item from the context menu.

Then, the user can just copy all the text from the clipboard recorder’s
terminal window and paste it into the spreadsheet at once. Enter the follow-
ing into the file editor and save it as cliprec.py:

import pyperclip, time

print('Recording clipboard... (Ctrl-C to stop)')
previous_content = ''
try:
 while True:
 content = pyperclip.paste() # Get clipboard contents.

 if content != previous_content:
 # If it's different from the previous, print it:
 print(content)
 previous_content = content

 time.sleep(0.01) # Pause to avoid hogging the CPU.
except KeyboardInterrupt:
 pass

Let’s look at each part of this program, starting with the beginning:

import pyperclip, time

print('Recording clipboard... (Ctrl-C to stop)')
previous_content = ''

This program copies and pastes text from the clipboard, so we’ll need to
import the pyperclip module. We’ll also use the time module’s sleep() func-
tion to keep the program from hogging the CPU. The program displays a
quick message to say that it is running and reminds the user that ctrl-C
causes the program to stop. The program will know that the clipboard con-
tents have changed by keeping track of what the contents were previously
with a previous_content variable, which is initially set to a blank string.

try:
 while True:
 content = pyperclip.paste() # Get clipboard contents.

The bulk of the program exists in an infinite while loop, which itself
is inside a try block. When the user presses ctrl-C, Python raises a

Designing and Deploying Command Line Programs 283

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

KeyboardInterrupt exception, causing the execution to move to the except
block at the bottom of the source code.

This loop continuously monitors the contents of the clipboard and
notes each time the user copies new text to it. Within the loop, the first step
is to collect the text on the clipboard by calling pyperclip.paste().

 if content != previous_content:
 # If it's different from the previous, print it:
 print(content)
 previous_content = content

If the current content on the clipboard is different from the previous
content, then the program prints the current content and updates previous
_content to content. This sets up the loop for the next time the user copies
new text to the clipboard.

 time.sleep(0.01) # Pause to avoid hogging the CPU.

If the clipboard contents are the same as the previously obtained clip-
board contents, we could have our program do nothing. However, this pro-
gram can easily execute this loop tens of thousands of times a second, and
it’s unlikely that the user will be updating the clipboard that frequently.
(They’d probably wear out the ctrl and C keys on their keyboard if they
tried.) To prevent the program from hogging the CPU by running this
unproductive loop as fast as possible, we introduce a 0.01-second delay so
that the loop checks for clipboard updates a mere 100 times a second.

except KeyboardInterrupt:
 pass

The last part of the program is the except clause, which uses Python’s
pass statement. This statement literally does nothing, but Python is expect-
ing at least one line in the block that follows the except statement. This is
what the pass statement was created for. When the user presses ctrl-C, the
execution moves to this except clause and proceeds to the end of the pro-
gram, where it terminates.

With this app running, the user can copy several things without having
to switch back and forth between apps. Small programs like this can make
your workflow much easier, especially if you have to do this work every day.
Now let’s deploy this program on each operating system.

Windows
Save the Python file as C:\Users\al\Scripts\cliprec.py (changing al to your
username). In the same Scripts folder, create a cliprec.bat file with the follow-
ing content:

@call %HOMEDRIVE%%HOMEPATH%\Scripts\.venv\Scripts\activate.bat
@python %HOMEDRIVE%%HOMEPATH%\Scripts\cliprec.py %*

284 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

@pause
@deactivate

You can now run this program from the terminal or by pressing the
Windows key and the R key simultaneously to open the Run dialog, and
then entering cliprec.

macOS
Save the Python file as /Users/al/Scripts/cliprec.py (changing al to your user-
name). In the same Scripts folder, create a text file with the name cliprec
.command and the following content:

source ~/Scripts/.venv/bin/activate
python3 ~/Scripts/cliprec.py
deactivate

Then, in a terminal, cd to the Scripts folder and run chmod u+x cliprec
.command:

al@Als-MacBook-Pro ~ % cd ~/Scripts
al@Als-MacBook-Pro Scripts % chmod u+x cliprec .command

You can now run this program by pressing ζ-spacebar to bring up
Spotlight and entering cliprec .command.

Ubuntu Linux
Save the Python file as /home/al/Scripts/cliprec.py (changing al to your user-
name). In the same Scripts folder, create a text file named cliprec with the
following content:

#!/usr/bin/env bash
source ~/Scripts/.venv/bin/activate
python3 ~/Scripts/cliprec.py
read -p "Press any key to continue..." -n1 –s
deactivate

Then, in a terminal, cd to the Scripts folder and run chmod u+x cliprec:

al@al-VirtualBox:~$ cd ~/Scripts
al@al-VirtualBox:~/Scripts$ chmod u+x cliprec

Finally, create a text file saved as ~/.local/share/applications/cliprec.desktop
with the following content:

[Desktop Entry]
Name=Clipboard Recorder
Exec=gnome-terminal -- /home/al/cliprec
Type=Application

Designing and Deploying Command Line Programs 285

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You can now run this program by pressing the Windows key to bring up
Dash and entering Clipboard Recorder, or entering the first few characters of
the name and letting autocomplete finish it for you.

Compiling Python Programs with PyInstaller
Python is often called an interpreted language, though programming lan-
guages themselves are neither interpreted nor compiled. You can create
an interpreter or compiler for any language. Instead, programs written in
Python are mostly run by interpreters. But it’s also possible to create execut-
able programs from Python code with the PyInstaller package, which gener-
ates executable programs you can run from the command line.

PyInstaller doesn’t compile Python programs into machine code per se;
rather, it creates an executable program that contains a copy of the Python
interpreter and your script. As such, these programs tend to be fairly large.
Even a simple “Hello, world” program compiled with PyInstaller can be
close to 8MB in size, literally a thousand times larger than a version written
in assembly language. However, the benefit of compiling your Python pro-
gram is that you can share your program with others who don’t have Python
installed. You’d be able to send them one executable file.

You can install PyInstaller by running pip install pyinstaller. You must
run PyInstaller on the operating system that you want the executable to run
on. That is, if you’re on Windows, PyInstaller can create a Windows execut-
able program but not a macOS or Linux program, and vice versa.

From the terminal, run the following command (using python3 instead of
python on macOS and Linux) to compile a Python script named yourScript.py:

C:\Users\al>python -m PyInstaller --onefile yourScript.py
378 INFO: PyInstaller: X.X.X
378 INFO: Python: 3.XX.XX
392 INFO: Platform: Windows-XX-XX.X.XXXX
393 INFO: wrote C:\Users\al\Desktop\hello-test\hello.spec
399 INFO: UPX is not available.
--snip--
11940 INFO: Appending PKG archive to EXE
11950 INFO: Fixing EXE headers
13622 INFO: Building EXE from EXE-00.toc completed successfully.

Notice that you must enter PyInstaller with a capital P and capital I or
else you’ll get a “No module named pyinstaller” error message. Also, note
that the --onefile argument has two dashes.

After running PyInstaller, there will be a build folder (which you can
delete) and a dist folder. The dist folder contains the executable program.
You don’t need to create a virtual environment for it. You can then copy
this program to other computers or send it as an email attachment. Keep in
mind that, as a security precaution, many email providers may block emails
that contain an executable program.

The instructions here work for basic Python programs. The online
documentation at https://pyinstaller .org / contains further details.

https://pyinstaller.org/

286 Chapter 12

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Summary
In this chapter, you learned how to take your programs out of the code edi-
tor and deploy them so that users can run them quickly and conveniently.
You also learned more guidelines about how to design programs that have
text-based user interfaces instead of more modern graphical ones. While a
GUI is user friendly, TUIs are simpler to code. When you need to automate
tasks for yourself, making your program look like a professional application
isn’t worth the extra effort. You just need something that works.

That said, there are several ways you can design your program to be
easy to use. Often, this involves the command line terminal, which many
users aren’t familiar with. It may take a while to learn command line con-
cepts such as navigating the file system with cd and dir/ls, the PATH environ-
ment variable, and command line arguments. But the terminal allows you
to very quickly issue commands and run programs, especially after you fin-
ish writing the programs and deploy them.

This chapter also covered several third-party packages. The Bext pack-
age lets you add colorful text, position the cursor, and clear the screen. The
PyMsgBox package creates GUI boxes for alerts or basic input without using
the terminal window. Because you may one day run programs that require
incompatible versions of the same package, it’s best to run scripts in sepa-
rate virtual environments. You can create virtual environments with the
venv module that comes with Python. Virtual environments are activated
from the terminal, and can prevent you from breaking existing programs
by giving you a separate place to install packages.

Finally, the PyInstaller package allows you to compile your .py files into
executable programs. They may be several megabytes in size, but you can
share these programs with co-workers who might not have Python (and the
third-party packages your program uses) on their computer.

This chapter didn’t cover many programming language concepts; rather,
it covered how to make your programs usable and convenient on a day-to-day
basis. At this point, you know enough Python syntax to create basic programs
(although there’s always more to learn!). In Part II of this book, you’ll explore
several third-party packages that extend the capabilities of your Python
programs.

Practice Questions
 1. What command lists folder contents on Windows? What about on

macOS and Linux?

 2. What does the PATH environment variable contain?

 3. What does the __file__ variable contain?

 4. What command erases the text from the terminal window on Windows?
What about on macOS and Linux?

 5. How do you create a new virtual environment?

 6. What command line argument should you pass to PyInstaller when
compiling programs?

Designing and Deploying Command Line Programs 287

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Practice Program: Make Your Programs Deployable
Make your existing programs easy to run by creating shell scripts in a PATH
folder that executes them, or else compiling them with PyInstaller. Do this
for the following projects:

• “Back Up a Folder into a ZIP File” from Chapter 11

• “Phone Number and Email Address Extractor” from Chapter 9

• “Add Bullets to Wiki Markup” from Chapter 8

• “Interactive Chessboard Simulator” from Chapter 7

• Any other programs you’ve created and want to easily launch or share
with others

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In those rare, terrifying moments when
I’m without Wi-Fi, I realize just how much

of what I do on the computer is really what
I do on the internet. Out of sheer habit, I’ll

find myself trying to check email, read social media,
or answer the question, “Did Kurtwood Smith have
any major roles before he was in the original 1987
RoboCop?”1

Because so much work on a computer involves going on the internet,
it’d be great if your programs could get online. Web scraping is a term for
using a program to download and process content from the web. For
example, Google runs many web scraping programs to index web pages for

1 The answer is no.

13
W E B S C R A P I N G

290 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

its search engine. In this chapter, you’ll learn about the following modules,
which make it easy to scrape web pages in Python:

webbrowser Comes with Python and opens a browser to a specific page

requests Downloads files and web pages from the internet

Beautiful Soup (bs4) Parses HTML, the format that web pages are
written in, to extract the information you want

Selenium Launches and controls a web browser, such as by filling in
forms and simulating mouse clicks

Playwright Launches and controls a web browser; newer than
Selenium and has some additional features

HTTP and HTTPS
When you visit a website, its web address, such as https://autbor .com /example3
.html, is known as a uniform resource locator (URL). The HTTPS in the URL
stands for Hypertext Transfer Protocol Secure, the protocol that your web
browser uses to access websites. The packages in this chapter allow your
scripts to access web servers through this protocol.

More precisely, HTTPS is an encrypted version of HTTP, so it protects
your privacy while you use the internet. If you were using HTTP, identity
thieves, national intelligence agencies, and your internet service provider
could view the content of the web pages you visited, including any pass-
words and credit card information you submit. Using a virtual private
network (VPN) could keep your internet service provider from viewing
your internet traffic; however, now the VPN provider would be able to view
your traffic. An unscrupulous VPN provider could then sell information
about what websites you visit to data brokers. (Tom Scott discusses what
a VPN does and does not provide in his video, “This Video Is Sponsored
by VPN.”)

By contrast, any web page content you view with HTTPS will be
encrypted and hidden. Websites used to use HTTPS only for pages that sent
passwords and credit card numbers, but nowadays, most websites encrypt all
traffic. Keep in mind, though, that the identity of the website you visit can
still be known; no one will be able to see exactly what you download from
CatPhotos .com, but they will see that you were connecting to the CatPhotos
.com website and can figure out that you were probably looking at photos of
cats. The Tor Browser, which uses the Tor anonymization network, can pro-
vide true anonymous browsing, and you can download it from https://www
.torproject .org /download /.

https://autbor.com/example3.html
https://autbor.com/example3.html
https://www.torproject.org/download/
https://www.torproject.org/download/

Web Scraping 291

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Project 6: Run a Program with the webbrowser Module
Let’s learn about Python’s webbrowser module by using it in a programming
project. The webbrowser module’s open() function can launch a new browser
to a specified URL. Enter the following into the interactive shell:

>>> import webbrowser
>>> webbrowser .open('https://inventwithpython .com /')

A web browser tab will open to the URL https://inventwithpython .com.
This is about the only thing the webbrowser module can do. Even so, the
open() function does make some interesting things possible.

For example, it’s tedious to copy a street address to the clipboard every
time you’d like to bring up a map of it on OpenStreetMap. You could
eliminate a few steps from this task by writing a simple script to automati-
cally launch the map in your browser using the contents of your clipboard.
This way, you’d only have to copy the address to a clipboard and run the
script for the map to load for you. We can put the address directly into the
OpenStreetMap URL, so all we need is the webbrowser.open() function.

This is what your program does:

• Gets a street address from the command line arguments or clipboard

• Opens the web browser to the OpenStreetMap page for that address

This means your code needs to do the following:

• Read the command line arguments from sys.argv.

• Read the clipboard contents.

• Call the webbrowser.open() function to open the web browser.

• Open a new file editor tab and save it as showmap.py.

Step 1: Figure Out the URL
By following the instructions in Chapter 12, set up a showmap.py file so that
when you run it from the command line, like so . . .

C:\Users\al> showmap 777 Valencia St, San Francisco, CA 94110

. . . the script will use the command line arguments instead of the clip-
board. If there are no command line arguments, then the program will
know to use the contents of the clipboard.

To do so, you need to figure out what URL to use for a given street
address. When you load https://www .openstreetmap .org in the browser and
search for an address, the URL in the address bar looks something like this:
https://www .openstreetmap .org /search ?query =777%20Valencia%20St%2C%20
San%20Francisco%2C%20CA%2094110#map =19 /37 .75897 / -122 .42142.

We can test that the URL doesn’t need the #map part by taking it out of
the address bar and visiting that site to confirm it still loads properly. So, your
program can be set to open a web browser to https://www .openstreetmap .org /

https://inventwithpython.com
https://www.openstreetmap.org

292 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

search ?query =<your _address _string> (where <your_address_string> is the address
you want to map). Note that your browser automatically handles any neces-
sary URL encoding, such as converting space characters in the URL to %20.

Step 2: Handle the Command Line Arguments
Make your code look like this:

showmap.py - Launches a map in the browser using an address from the
command line or clipboard

import webbrowser, sys
if len(sys.argv) > 1:
 # Get address from command line.
 address = ' '.join(sys.argv[1:])

TODO: Get address from clipboard.

TODO: Open the web browser.

First, you need to import the webbrowser module for launching the
browser and the sys module for reading the potential command line argu-
ments. The sys.argv variable stores the program’s filename and command
line arguments as a list. If this list has more than just the filename in it,
then len(sys.argv) evaluates to an integer greater than 1, meaning that com-
mand line arguments have indeed been provided.

Command line arguments are usually separated by spaces, but in this
case, you’ll want to interpret all of the arguments as a single string. Because
sys.argv is a list of strings, you can pass it to the join() method, which returns
a single string value. You don’t want the program name in this string, so you
should pass sys.argv[1:] instead of sys.argv to chop off the first element of
the array. The final string that this expression evaluates to is stored in the
address variable.

If you run the program by entering this into the command line

showmap 777 Valencia St, San Francisco, CA 94110

the sys.argv variable will contain this list value:

['showmap.py', '777', 'Valencia', 'St, ', 'San', 'Francisco, ', 'CA', '94110']

After you’ve joined sys.argv[1:] with a space character, the address vari-
able will contain the string '777 Valencia St, San Francisco, CA 94110'.

Step 3: Retrieve the Clipboard Content
To fetch the URL from the clipboard, make your code look like the
following:

showmap.py - Launches a map in the browser using an address from the
command line or clipboard

Web Scraping 293

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

import webbrowser, sys, pyperclip
if len(sys.argv) > 1:
 # Get address from command line.
 address = ' '.join(sys.argv[1:])
else:
 # Get address from clipboard.
 address = pyperclip.paste()

Open the web browser.
webbrowser .open('https://www .openstreetmap .org /search ?query =' + address)

If there are no command line arguments, the program will assume the
address is stored on the clipboard. You can get the clipboard content with
pyperclip.paste() and store it in a variable named address. Finally, to launch
a web browser with the OpenStreetMap URL, call webbrowser.open().

While some of the programs you write will perform huge tasks that save
you hours, it can be just as satisfying to use a program that conveniently
saves you a few seconds each time you perform a common task, such as get-
ting a map of an address. Table 13-1 compares the steps needed to display a
map with and without showmap.py.

Table 13-1: Getting a Map with and Without showmap.py

Manually getting a map Using showmap.py

1 . Highlight the address . 1 . Highlight the address .

2 . Copy the address . 2 . Copy the address .

3 . Open the web browser . 3 . Run showmap.py .

4 . Go to https://www .openstreetmap .org /.

5 . Click the address text field .

6 . Paste the address .

7 . Press ENTER .

We’re fortunate that the OpenStreetMap website doesn’t require any
interaction to get a map; we can just put the address information directly into
the URL. The showmap.py script makes this task less tedious, especially if you
do it frequently.

Ideas for Similar Programs
As long as you have a URL, the webbrowser module lets users cut out the step
of opening the browser and directing themselves to a website. Other pro-
grams could use this functionality to do the following:

• Open all links on a page in separate browser tabs.

• Open the browser to the URL for your local weather site.

• Open several social networking sites or bookmarked sites that you regu-
larly check.

• Open a local .html file on your hard drive.

https://www.openstreetmap.org/

294 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The last suggestion is useful for displaying help files. While your pro-
gram could use print() to display a help page to the user, calling webbrowser
.open() to open a .html file with help information allows the page to have dif-
ferent fonts, color, tables, and images. Instead of the https:// prefix, use the
file:// prefix. For example, your Desktop folder should have a local help .html
file at file:// /C: /Users /al /Desktop /help .html on Windows or file:// /Users /al /Desktop /
help .html on macOS.

Downloading Files from the Web with the requests Module
The requests module lets you easily download files from the web without
having to worry about complicated issues such as network errors, connec-
tion routing, and data compression. The module doesn’t come with Python,
so you’ll have to install it before you can use it by following the instructions
in Appendix A.

Downloading Web Pages
The requests.get() function takes a string representing a URL to download.
By calling type() on the function’s return value, you can see that it returns
a Response object, which contains the response that the web server gave for
your request. I’ll explain the Response object in more detail later, but for
now, enter the following into the interactive shell while your computer is
connected to the internet:

>>> import requests
1 >>> response = requests .get('https://automatetheboringstuff .com /files /rj .txt')
>>> type(response)
<class 'requests.models.Response'>
2 >>> response.status_code == requests .codes .ok
True
>>> len(response.text)
178978
>>> print(response.text[:210])
The Project Gutenberg EBook of Romeo and Juliet, by William Shakespeare

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or

The URL takes you to a web page containing the entire text of Romeo
and Juliet 1. You can tell that the request for the web page succeeded by
checking the Response object’s status_code attribute. If it’s equal to the value
of requests .codes .ok, everything went fine 2. (Incidentally, the status code
for “OK” in HTTP is 200. You may already be familiar with the 404 status
code for “Not Found.”)

If the request succeeded, the downloaded web page is stored as a string
in the Response object’s text variable. This large string consists of the entire
play; the call to len(response.text) shows you that it’s more than 178,000
characters long. Finally, calling print(response.text[:210]) displays only the
first 210 characters.

Web Scraping 295

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If the request failed and displayed an error message, like “Failed to
establish a new connection” or “Max retries exceeded,” check your internet
connection. Connecting to servers can be quite complicated, and I can’t
give a full list of possible problems here. You can find common causes of
your error by doing a web search of the error message in quotes. Also keep
in mind that if you download a web page with requests, you’ll get only the
HTML content of the web page. You must download images and other
media separately.

Checking for Errors
As you’ve seen, the Response object has a status_code attribute that you can
check against requests .codes .ok to see whether the download succeeded.
A simpler way to check for success is to call the raise_for_status() method
on the Response object. This method will raise an exception if an error
occurred while downloading the file and will do nothing if the download
succeeded. Enter the following into the interactive shell:

>>> response = requests .get('https://inventwithpython .com /page _that _does _not _exist')
>>> response.raise_for_status()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

 File "C:\Users\Al\AppData\Local\Programs\Python\PythonXX\lib\site-packages\
requests\models.py", line 940, in raise_for_status
 raise HTTPError(http _error _msg, response=self)
requests.exceptions.HTTPError: 404 Client Error: Not Found for url:
https://inventwithpython .com /page _that _does _not _exist .html

The raise_for_status() method is an easy way to ensure that a program
halts if a bad download occurs. Generally, you’ll want your program to stop
as soon as some unexpected error happens. If a failed download isn’t a deal
breaker, you can wrap the raise_for_status() line with try and except state-
ments to handle this error case without crashing:

import requests
response = requests .get('https://inventwithpython .com /page _that _does _not _exist')
try:
 response.raise_for_status()
except Exception as exc:
 print(f'There was a problem: {exc}')

This raise_for_status() method call causes the program to output the
following:

There was a problem: 404 Client Error: Not Found for url:
https://inventwithpython .com /page _that _does _not _exist .html

Always call raise_for_status() after calling requests.get(). You should be
sure that the download has actually worked before your program continues.

296 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Saving Downloaded Files to the Hard Drive
From here, you can save the web page to a file on your hard drive with the
standard open() function and write() method. However, you must open
the file in write binary mode by passing the string 'wb' as the second argu-
ment to open(). Even if the page is in plaintext (such as the Romeo and Juliet
text you downloaded earlier), you need to write binary data instead of text
data in order to maintain the Unicode encoding of the text.

To write the web page to a file, you can use a for loop with the Response
object’s iter_content() method:

>>> import requests
>>> response = requests .get('https://automatetheboringstuff .com /files /rj .txt')
>>> response.raise_for_status()
>>> with open('RomeoAndJuliet.txt', 'wb') as play_file:
... for chunk in response.iter_content(100000):
... play_file.write(chunk)
...
100000
78978

The iter_content() method returns “chunks” of the content on each
iteration through the loop. Each chunk is of the bytes data type, and you
get to specify how many bytes each chunk will contain. One hundred
thousand bytes is generally a good size, so pass 100000 as the argument to
iter_content().

The file RomeoAndJuliet.txt now exists in the current working directory.
Note that while the filename on the website was rj.txt, the file on your hard
drive has a different filename.

The write() method returns the number of bytes written to the file. In
the previous example, there were 100,000 bytes in the first chunk, and the
remaining part of the file needed only 78,978 bytes.

A R E V IE W OF F IL E DOW NLOA DING A ND SAV ING

To review, here’s the complete process for downloading and saving a file:

• Call requests.get() to download the file .

• Call open() with 'wb' to create a new file in write binary mode .

• Loop over the Response object’s iter_content() method .

• Call write() on each iteration to write the content to the file .

That’s all there is to the requests module! You can learn about the mod-
ule’s other features at https://requests .readthedocs .io /en /latest /.

https://requests.readthedocs.io/en/latest/

Web Scraping 297

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you want to download video files from websites such as YouTube,
Facebook, Twitter, or other sites, use the yt-dlp module instead, covered
in Chapter 24.

Accessing a Weather API
The apps you use are designed to interact with human users. However, you
can write programs to interact with other programs through their application
programming interface (API), which is the specification that defines how one
piece of software (such as your Python program) can communicate with
another piece of software (such as the web server for a weather site). Online
services often have APIs. For example, you could write a Python script to
post to your social media accounts or download new photos. In this sec-
tion, we’ll write a script that accesses weather information from the free
OpenWeather website.

Almost all online services require you to register an email address to
use their API. Even if the API is free, they may have limits to how many API
requests you can make per hour or day. If you’re worried about receiving
spam email, you can use a temporary, disposable email address service such
as https://10minutemail .com. Keep in mind that you should use such services
only to register for online accounts you don’t care about, as an unscrupu-
lous email service could take control of your online account by making a
password reset request in your name.

To start, sign up for a free account at https://openweathermap .org. The free
account tier limits you to making 60 API requests per minute. This is more
than enough for your small or medium-sized programming projects. If your
program needs more than this limit (say, because it’s processing requests
from hundreds of simultaneous visitors to your website), you can purchase
a paid account tier. Online services will give you an API key, which is sort
of a password that identifies your account in your API requests. Keep this
API key a secret! Anyone with this key can make API requests credited to
your account. If you write a program that uses an API key, consider having
the program read a text file that contains the key instead of including the
API key directly in your source code. This way, you can share your program
with others (who can sign up for their own API key) without worrying about
exceeding the API request limits of your account.

Many HTTP APIs deliver their responses as one large string. This string
is often formatted as JSON or XML. Chapter 18 covers JSON and XML in
more detail, but for now, you just need to know that json.loads(response.text)
returns a Python data structure of lists and dictionaries containing the JSON
data in response.text. The examples in this chapter store this data in a vari-
able named response_data, but this is an arbitrary choice, and you can use
any variable name you’d like.

All online services document how to use their API. OpenWeather pro-
vides its documentation at https://openweathermap .org /api. After you’ve logged
in to your account and obtained your API key from the My API keys page at
https://home .openweathermap .org /api _keys, use it in the following interactive

https://10minutemail.com
https://openweathermap.org
https://openweathermap.org/api
https://home.openweathermap.org/api_keys

298 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

shell code. I’ll use '30ee784a80d81480dab1749d33980112' as a fake API key in this
example. Don’t use this fake API key example in your code; it won’t work.

First, you’ll use OpenWeather to find the latitude and longitude of San
Francisco:

>>> import requests
>>> city_name = 'San Francisco'
>>> state_code = 'CA'
>>> country_code = 'US'
>>> API_key = '30ee784a80d81480dab1749d33980112' # Not a real API key
>>> response = requests .get(f'https://api .openweathermap .org /geo /1 .0/
direct?q={city_name},{state_code},{country_code}&appid={API_key}')
>>> response.text # This is a Python string.
'[{"name":"San Francisco","local_names":{"id":"San Francisco",
--snip--
,"lat":37.7790262,"lon":-122.419906,"country":"US","state":"California"}]'
>>> import json
>>> response_data = json.loads(response.text)
>>> response_data # This is a Python data structure.
[{"name":"San Francisco","local_names":{"id":"San Francisco",
--snip--
,"lat":37.7790262,"lon":-122.419906,"country":"US","state":"California"}]

To understand the data in the response, you should look at the online
API documentation for OpenWeather or examine the dictionary in response_
data in the interactive shell. You’ll learn that the response is a list whose first
item (at index 0) is a dictionary with keys 'lat' and 'lon'. The values for
these keys are float values of the latitude and longitude:

>>> response_data[0]['lat']
37.7790262
>>> response_data[0]['lon']
-122.419906

The specific URL used to make an API request is called the endpoint.
The f-strings in this example replace the parts in curly brackets with the
values of variables. The direct?q={city_name},{state_code},{country_code}
&appid={API_key}' in the previous example becomes direct?q=San Francisco,CA,
US&appid=30ee784a80d81480dab1749d33980112'.

Next, you can use this latitude and longitude information to find the
current temperature of San Francisco:

>>> lat = json.loads(response.text)[0]['lat']
>>> lon = json.loads(response.text)[0]['lon']
>>> response = requests .get(f'https://api .openweathermap .org /data /2 .5/
weather?lat={lat}&lon={lon}&appid={API_key}')
>>> response_data = json.loads(response.text)
>>> response_data
{'coord': {'lon': -122.4199, 'lat': 37.779}, 'weather': [{'id': 803,
--snip--
'timezone': -25200, 'id': 5391959, 'name': 'San Francisco', 'cod': 200}

Web Scraping 299

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> response_data['main']['temp']
285.44
>>> round(285.44 - 273.15, 1) # Convert Kelvin to Celsius.
12.3
>>> round(285.44 * (9 / 5) - 459.67, 1) # Convert Kelvin to Fahrenheit.
54.1

Notice that OpenWeather returns the temperature in Kelvin, so you’ll
need to do some math to get the temperature in Celsius or Fahrenheit.

Let’s break down the full URL of the geolocation endpoint from the
previous example:

https:// The scheme used to access the server, which is the protocol
name (almost always HTTPS for online APIs) followed by a colon and
two forward slashes.

api .openweathermap .org The domain name of the web server that
handles the API request.

/geo/1.0/direct The path of the API.

?q={city_name},{state_code},{country_code}&appid={API_key} The URL’s
query string. The parts inside curly brackets need to be replaced by real
values; you can think of them as parameters for a function call. In URL
encoding, the parameter name and argument value are separated by an
equal sign, and multiple parameter-argument pairs are separated by an
ampersand.

You can take the endpoint URL (with the completed query string)
and paste it into your web browser to view the response text directly. This
is often a good practice when you’re first learning how to use an API. The
response text for web-based APIs is most often formatted in JSON or XML.

To avoid confusion when updating an API, most online services include
a version number as part of the URL. Over time, a service may release new
versions of the API and deprecate older versions. At this point, you’ll have
to update the code in your scripts to continue to make use of them.

The free tier of OpenWeather also provides five-day forecasts and
information about precipitation, wind, and air pollution. The documenta-
tion web pages show you what URLs to access to get this data, as well as the
structure of the JSON response for these API calls. The code in the next
few sections assumes you’ve run response_data = json.loads(response.text) to
convert the text returned from the website into a Python data structure.

Requesting a Latitude and Longitude
The endpoint to get the latitude and longitude coordinates of a city is
https://api .openweathermap .org /geo /1 .0 /direct ?q ={city _name},{state _code},{country
_code}&appid ={API _key}. The state code refers to the state’s abbreviation
and is required only for cities in the United States. The country code is the
two- or three-letter ISO 3166 code, listed at https://en .wikipedia .org /wiki /List
_of _ISO _3166 _country _codes. For example, use the code 'US' for the United
States or 'NZ' for New Zealand. After converting the response JSON text

https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes

300 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

into a Python data structure in a variable named response_data, you can
retrieve the following information:

response_data[0]['lat'] Holds the degrees latitude of the city as a float
value

response_data[0]['lon'] Holds the degrees longitude of the city as a float
value

If the city name matches multiple responses, the list in response_data
will contain different dictionaries at response_data[0], response_data[1], and
so on. If OpenWeather is unable to locate the city, response_data will be an
empty list.

Fetching the Current Weather
The endpoint to get current weather information based on some latitude
and longitude is https://api .openweathermap .org /data /2 .5 /weather ?lat ={lat}&lon =
 {lon}&appid ={API _key}. After converting the response JSON text into a
Python data structure in a variable named response_data, you can retrieve
the following information:

response_data['weather'][0]['main'] Holds a string description, such as
'Clear', 'Rain', or 'Snow'

response_data['weather'][0]['description'] Holds a more descriptive
string, such as 'light rain', 'moderate rain', or 'extreme rain'

response_data['main']['temp'] Holds the current temperature in Kelvin

response_data['main']['feels_like'] Holds the human perception of the
temperature in Kelvin

response_data['main']['humidity'] Holds the humidity as a percentage

If you supplied an incorrect latitude or longitude argument, response
_data will be a dictionary, like {"cod":"400","message":"wrong latitude"}.

Getting a Weather Forecast
The endpoint to get a five-day forecast based on some latitude and longi-
tude is https://api .openweathermap .org /data /2 .5 /forecast ?lat ={lat}&lon ={lon}&
appid ={API _key}. After converting the response JSON text into a Python
data structure in a variable named response_data, you can retrieve the follow-
ing information:

response_data['list'] Holds a list of dictionaries containing the weather
predictions for a given time.

response_data['list'][0]['dt'] Holds a timestamp in the form of a Unix
epoch float. Pass this value as an argument to datetime.datetime.fromtime
stamp() to obtain the timestamp as a datetime object. Chapter 19 discusses
Python’s datetime module in more detail.

response_data['list'][0]['main'] Holds a dictionary with keys like 'temp',
'feels_like', 'humidity', and others.

Web Scraping 301

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

response_data['list'][0]['weather'][0] Holds a dictionary of descriptions
with keys like 'main', 'description', and others.

The list in response_data['list'] holds 40 dictionaries with forecasts at
three-hour increments for the next five days, though this may change in
future versions of the API.

Exploring APIs
Other websites, such as https://weather .gov and https://weatherapi .com, provide
their own free weather APIs. Every API works differently, but they’re often
accessed as requests over HTTPS, in which case you can use the Requests
library and return responses formatted as JSON or XML text. However,
someone may have created a third-party Python package to make using
these APIs easier, with Python functions that handle accessing the endpoints
and parsing the response for you. You can find these packages on https://pypi
.org; read the package documentation to learn about their use.

Understanding HTML
Before you pick apart web pages, you must learn some Hypertext Markup
Language (HTML) basics. HTML is the format in which web pages are writ-
ten, while Cascading Style Sheets (CSS) are a way to make categorical changes
to the look of HTML elements in a web page. This chapter assumes you
have some basic experience with HTML, but if you need a beginner tuto-
rial, I suggest one of the following sites:

• https://developer .mozilla .org /en -US /docs /Learn /HTML

• https://www .freecodecamp .org /news /html -coding -introduction -course -for -beginners

• https://www .khanacademy .org /computing /computer -programming /html -css

In this section, you’ll also learn how to access your web browser’s pow-
erful Developer Tools, which make scraping information from the web
much easier.

Exploring the Format
An HTML file is a plaintext file with the .html file extension. The text in
these files is surrounded by HTML tags, which are words enclosed in angle
brackets (<>). The tags tell the browser how to format the web page. A start-
ing tag and closing tag can enclose some text to form an HTML element.
The text to display is the content between the starting and closing tags. For
example, the following HTML will display Hello, world! in the browser, with
Hello in bold:

Hello, world!

https://weather.gov
https://weatherapi.com
https://pypi.org
https://pypi.org
https://developer.mozilla.org/en-US/docs/Learn/HTML
https://www.freecodecamp.org/news/html-coding-introduction-course-for-beginners
https://www.khanacademy.org/computing/computer-programming/html-css

302 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In a browser, this HTML will look as shown in Figure 13-1.

Figure 13-1: Hello, world! rendered in the browser

The opening tag says that the enclosed text will appear in bold. The
closing tag tells the browser where the end of the bold text is. Together,
they form an element: Hello.

There are many different tags in HTML. Some of these tags have extra
properties in the form of attributes within the angle brackets. For example,
the <a> tag encloses text that should be a link, and the href attribute deter-
mines what URL to link to. Here’s an example:

This text is a link

Some elements have an id attribute used to uniquely identify the
element in the page. You’ll often instruct your programs to seek out an
element by its id attribute, so finding this attribute using the browser’s
Developer Tools is a common task when writing web scraping programs.

Viewing a Web Page’s Source
You’ll need to look at the HTML of the web pages your programs will
work with, called the source. To do this, right-click any web page in your
web browser (or ctrl-click it on macOS), and select View Source or View
page source (Figure 13-2). The source is the text your browser actually
receives. The browser knows how to display, or render, the web page from
this HTML.

Web Scraping 303

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 13-2: Viewing the source of a web page

Go ahead and view the source HTML of some of your favorite sites. It’s
fine if you don’t fully understand what you’re seeing. You won’t need HTML
mastery to write simple web scraping programs. You just need enough
knowledge to pick out data from an existing site.

Opening Your Browser’s Developer Tools
In addition to viewing a web page’s source, you can look through a page’s
HTML using your browser’s Developer Tools. In Firefox, Chrome, and
Microsoft Edge, you can press F12 to make the tools appear (Figure 13-3).
Pressing F12 again will make them disappear.

304 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 13-3: The Developer Tools window in the Chrome browser

After enabling or installing the Developer Tools in your browser, right-
click any part of the web page and select Inspect Element from the context
menu to bring up the HTML responsible for that part of the page. This will
help you parse HTML for your web scraping programs.

DON’T USE R EGUL A R E X PR ESSIONS TO PA RSE H T ML

Locating a specific piece of HTML (or a piece of XML, JSON, TOML, or YAML)
in a string seems like a perfect case for regular expressions . However, I advise
you not to do this . HTML can be formatted in many ways and still be considered
valid, but trying to capture all these possible variations in a regular expression
is tedious and error prone . Using a module developed specifically for parsing
HTML, such as bs4, is less likely to result in bugs .

You can find an extended argument for why you shouldn’t parse HTML with
regular expressions at https://stackoverflow .com /a /1732454 /1893164.

Finding HTML Elements
Once your program has downloaded a web page using the requests module,
you’ll have the page’s HTML content as a single string value. Now you need
to figure out which part of the HTML corresponds to the information on
the web page you’re interested in.

https://stackoverflow.com/a/1732454/1893164

Web Scraping 305

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This is where the browser’s Developer Tools can help. Say you want to
write a program to pull weather forecast data from https://weather .gov. Before
writing any code, do a little research. If you visit the site and search for the
94105 ZIP code, it should take you to a page showing the forecast for that area.

What if you’re interested in scraping the weather information for
that ZIP code? Right-click that information on the page (or ctrl-click on
macOS) and select Inspect Element from the context menu that appears.
This brings up the Developer Tools window, which shows you the HTML
that produces that particular part of the web page. Figure 13-4 shows the
Developer Tools open to the HTML of the nearest forecast. Note that if the
https://weather .gov site changes the design of its web pages, you’ll need to
repeat this process to inspect the new elements.

Figure 13-4: Inspecting the element that holds forecast text

From the Developer Tools, you can see that the HTML responsible for
the forecast part of the web page is this:

<div class="col-sm-10 forecast-text">Sunny, with a high near 64.
West wind 11 to 16 mph, with gusts as high as 21 mph.</div>

https://weather.gov
https://weather.gov

306 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This is exactly what you were looking for! It seems that the forecast infor-
mation is contained inside a <div> element with the forecast-text CSS class.

Right-click this element in the browser’s developer console and, from
the context menu that appears, select CopyCSS Selector. This option
copies a string such as 'div.row-odd:nth-child(1) > div:nth-child(2)' to the
clipboard. You can pass it to Beautiful Soup’s select() method or Selenium’s
find_element() method, as explained later in this chapter, to find the ele-
ment in the string.

The CSS selector syntax used in this string specifies which HTML elements
to retrieve from a web page. The full selector syntax is beyond the scope of
this book, but you can obtain the selector from the browser Developer Tools,
as we did here. XPath is another syntax for selecting HTML elements, but is
also beyond the scope of this book.

Keep in mind that when a website changes its layout, you’ll need to
update the HTML tags your scripts check. This can happen with little or
no warning, so be sure to keep an eye on your program in case it suddenly
displays errors about not being able to find elements. In general, it’s better
to use a website’s API if it offers one, as it’s much less likely to change than
the website itself.

Parsing HTML with Beautiful Soup
Beautiful Soup is a package for extracting information from an HTML
page. You’ll use the name beautifulsoup4 to install the package but the
shorter module name bs4 to import it. In this section, we’ll use Beautiful
Soup to parse (that is, analyze and extract the parts of) the HTML file at
https://autbor .com /example3 .html, which has the following content:

<!-- This is an HTML comment. -->

<html>
<head>
 <title>Example Website Title</title>
 <style>
 .slogan {
 color: gray;
 font-size: 2em;
 }
 </style>
</head>
<body>
 <h1>Example Website</h1>
 <p>This <p> tag puts content into a <i>single</i> paragraph.</p>
 <p>This text is a link to books by <span id=
"author">Al Sweigart.</p>
 <p></p>
 <p class="slogan">Learn to program in Python!</p>
 <form>
 <p><label>Username: <input id="login_user" placeholder="admin" /></label></p>
 <p><label>Password: <input id="login_pass" type="password" placeholder="swordfish" />

https://autbor.com/example3.html

Web Scraping 307

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 </form>
</label></p>
 <p><label>Agree to disagree: <input type="checkbox" /></label><input type="submit"
value="Fake Button" /></p>
</body>
</html>

Note that the login form on this page is fake and is included for cos-
metic value.

Even a simple HTML file involves many different tags and attributes, and
matters quickly get confusing when it comes to complex websites. Thankfully,
Beautiful Soup makes working with HTML much easier.

Creating a Beautiful Soup Object
The bs4.BeautifulSoup() function accepts a string containing the HTML it will
parse, then returns a BeautifulSoup object. For example, enter the following
into the interactive shell while your computer is connected to the internet:

>>> import requests, bs4
>>> res = requests .get('https://autbor .com /example3 .html')
>>> res.raise_for_status()
>>> example_soup = bs4.BeautifulSoup(res.text, 'html.parser')
>>> type(example_soup)
<class 'bs4.BeautifulSoup'>

This code uses requests.get() to download the main page of the
Automate the Boring Stuff website and then passes the response’s text
attribute to bs4.BeautifulSoup(). Beautiful Soup can parse different formats,
and the 'html.parser' argument tells it that we are parsing HTML. Finally, the
code stores the returned BeautifulSoup object in a variable named example_soup.

You can also load an HTML file from your hard drive by passing a File
object to bs4.BeautifulSoup(). Enter the following into the interactive shell
(after making sure the example3 .html file is in the working directory):

>>> import bs4
>>> with open('example3 .html') as example_file:
... example_soup = bs4.BeautifulSoup(example_file, 'html.parser')
...
>>> type(example_soup)
<class 'bs4.BeautifulSoup'>

Once you have a BeautifulSoup object, you can use its methods to locate
specific parts of an HTML document.

Finding an Element
You can retrieve a web page element from a BeautifulSoup object by calling
its select() method and passing a CSS selector string for the element you’re
looking for. The method returns a list of Tag objects, which represent

308 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

matching HTML elements. Table 13-2 shows examples of the most common
CSS selector patterns using select().

Table 13-2: Examples of CSS Selectors

Selector passed to the select() method Will match . . .

soup.select('div') All elements named <div>

soup.select('#author') The element with an id attribute of author

soup.select('.notice') All elements that use a CSS class attribute
named notice

soup.select('div span') All elements named that are within
an element named <div>

soup.select('div > span') All elements named that are directly
within an element named <div>, with no
other element in between

soup.select('input[name]') All elements named <input> that have a
name attribute with any value

soup.select('input[type="button"]') All elements named <input> that have an
attribute named type with the value button

You can combine the various selector patterns to make sophisticated
matches. For example, soup.select('p #author') matches any element that
has an id attribute of author, as long as it’s also inside a <p> element.

You can pass tag values to the str() function to show the HTML tags
they represent. Tag values also have an attrs attribute containing all their
HTML attributes as a dictionary. For example, download the https://autbor
.com /example3 .html page as example3 .html, then enter the following into the
interactive shell:

>>> import bs4
>>> example_file = open('example3 .html')
>>> example_soup = bs4.BeautifulSoup(example_file.read(), 'html.parser')
>>> elems = example_soup.select('#author')
>>> type(elems) # elems is a list of Tag objects.
<class 'bs4.element.ResultSet'>
>>> len(elems)
1
>>> type(elems[0])
<class 'bs4.element.Tag'>
>>> str(elems[0]) # The Tag object as a string
'Al Sweigart'
>>> elems[0].getText() # The inner text of the element
'Al Sweigart'
>>> elems[0].attrs
{'id': 'author'}

This code finds the element with id="author" in our example HTML. We
use select('#author') to return a list of all the elements with id="author". We
then store this list of Tag objects in the variable elems. Running len(elems)
tells us there is one Tag object in the list, meaning there was one match.

https://autbor.com/example3.html
https://autbor.com/example3.html

Web Scraping 309

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Passing the element to str() returns a string with the starting and clos-
ing tags and the element’s text. Calling getText() on the element returns
the element’s text, or the content between the opening and closing tags: in
this case, 'Al Sweigart'. Finally, attrs gives us a dictionary with the element’s
attribute, 'id', and the value of the id attribute, 'author'.

You can also pull all the <p> elements from the BeautifulSoup object.
Enter this into the interactive shell:

>>> p_elems = example_soup.select('p')
>>> str(p_elems[0])
'<p>This <p> tag puts content into a <i>single</i> paragraph.</p>'
>>> p_elems[0].getText()
'This <p> tag puts content into a single paragraph.'
>>> str(p_elems[1])
'<p> This text is a link to books by
Al Sweigart.</p>'
>>> p_elems[1].getText()
'This text is a link to books by Al Sweigart.'
>>> str(p_elems[2])
'<p></p>'
>>> p_elems[2].getText()
''

This time, select() gives us a list of three matches, which we store in
p_elems. Using str() on p_elems[0], p_elems[1], and p_elems[2] shows you each
element as a string, and using getText() on each element shows you its text.

Getting Data from an Element’s Attributes
The get() method for Tag objects lets you access HTML attribute values
from an element. You’ll pass the method an attribute name as a string and
receive that attribute’s value. Using example3 .html from https://autbor .com /
example3 .html, enter the following into the interactive shell:

>>> import bs4
>>> soup = bs4.BeautifulSoup(open('example3 .html'), 'html.parser')
>>> span_elem = soup.select('span')[0]
>>> str(span_elem)
'Al Sweigart'
>>> span_elem.get('id')
'author'
>>> span_elem.get('some_nonexistent_addr') == None
True
>>> span_elem.attrs
{'id': 'author'}

Here, we use select() to find any elements and then store the
first matched element in span_elem. Passing the attribute name 'id' to get()
returns the attribute’s value, 'author'.

https://autbor.com/example3.html
https://autbor.com/example3.html

310 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Project 7: Open All Search Results
When I look up a topic on a search engine, I don’t look at just one search
result at a time. By middle-clicking a search result link (or clicking it while hold-
ing ctrl), I open the first several links in a bunch of new tabs to read later.
I search the internet often enough that this workflow—opening my browser,
searching for a topic, and middle-clicking several links one by one—is tedious.
It would be nice if I could simply enter a term on the command line and have
my computer automatically open the top search results in new browser tabs.

Let’s write a script to do this for the search results page of the Python
Package Index at https://pypi .org. You could adapt a program like this to
many other websites, although Google, DuckDuckGo, Amazon, and other
large websites often employ measures that make scraping their search
results pages difficult.

This is what the program should do:

• Get search keywords from the command line arguments

• Retrieve the search results page

• Open a browser tab for each result

This means your code needs to do the following:

• Read the command line arguments from sys.argv.

• Fetch the search results page with the requests module.

• Find the links to each search result.

• Call the webbrowser.open() function to open the web browser.

• Open a new file editor tab and save it as searchpypi.py.

Step 1: Get the Search Page
Before writing code, you first need to know the URL of the search results
page. By looking at the browser’s address bar after doing a search, you can
see that the results page has a URL that looks like this: https://pypi .org /search /
?q =<SEARCH _TERM _HERE>. The requests module can download this page;
then, you can use Beautiful Soup to find the search result links in the HTML.
Finally, you’ll use the webbrowser module to open those links in browser tabs.

Make your code look like the following:

searchpypi.py - Opens several search results on pypi .org

import requests, sys, webbrowser, bs4

print('Searching...') # Display text while downloading the search results page.
res = requests.get('https://pypi .org/search/?q=' + ' '.join(sys.argv[1:]))
res.raise_for_status()

TODO: Retrieve top search result links.

TODO: Open a browser tab for each result.

https://pypi.org

Web Scraping 311

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The user will specify the search terms as command line arguments when
launching the program, and the code stores these arguments as strings in a
list in sys.argv.

Step 2: Find All Results
Now you need to use Beautiful Soup to extract the top search result links
from your downloaded HTML. But how do you figure out the right selec-
tor for the job? For example, you can’t just search for all <a> tags, because
there are lots of links you don’t care about in the HTML. Instead, you must
inspect the search results page with the browser’s Developer Tools to try to
find a selector that will pick out only the links you want.

After doing a search for pyautogui, you can open the browser’s Developer
Tools and inspect some of the link elements on the page. They can look
complicated, like pages of this: <a class="package-snippet" href="/project/
pyautogui" >. But it doesn’t matter that the element looks incredibly compli-
cated. You just need to find the pattern that all the search result links have.

Make your code look like the following:

searchpypi.py - Opens several search results on pypi .org
import requests, sys, webbrowser, bs4
--snip--
Retrieve top search result links.
soup = bs4.BeautifulSoup(res.text, 'parser .html')
Open a browser tab for each result.
link_elems = soup.select('.package-snippet')

If you look at the <a> elements, you’ll see that the search result links all
have class="package-snippet". Looking through the rest of the HTML source,
it looks like the package-snippet class is used only for search result links. You
don’t have to know what the CSS class package-snippet is or what it does. You’re
just going to use it as a marker for the <a> element you’re looking for.

You can create a BeautifulSoup object from the downloaded page’s
HTML text and then use the selector '.package-snippet' to find all <a> ele-
ments that are within an element that has the package-snippet CSS class.
Note that if the PyPI website changes its layout, you may need to update this
program with a new CSS selector string to pass to soup.select(). The rest of
the program should remain up-to-date.

Step 3: Open Web Browsers for Each Result
Finally, you must tell the program to open web browser tabs for the results.
Add the following to the end of your program:

searchpypi.py - Opens several search results on pypi .org
import requests, sys, webbrowser, bs4
--snip--
Open a browser tab for each result.
link_elems = soup.select('.package-snippet')
num_open = min(5, len(link_elems))

312 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

for i in range(num_open):
 url_to_open = 'https://pypi .org' + link_elems[i].get('href')
 print('Opening', url_to_open)
 webbrowser.open(url_to_open)

By default, the program opens the first five search results in new tabs
using the webbrowser module. However, the user may have searched for some-
thing that turned up fewer than five results. The soup.select() call returns a
list of all the elements that matched your '.package-snippet' selector, so the
number of tabs you want to open is either 5 or the length of this list (which-
ever is smaller).

The built-in Python function min() returns the smallest of the integer
or float arguments it is passed. (There is also a built-in max() function that
returns the largest argument it is passed.) You can use min() to find out
whether there are fewer than five links in the list and store the number of
links to open in a variable named num_open. Then, you can run through a for
loop by calling range(num_open).

On each iteration of the loop, the code uses webbrowser.open() to open
a new tab in the web browser. Note that the href attribute’s value in the
returned <a> elements don’t have the initial https://pypi .org part, so you have
to concatenate that to the href attribute’s string value.

Now you can instantly open the first five PyPI search results for, say,
boring stuff by running searchpypi boring stuff on the command line! See
Chapter 12 for how to easily run programs on your operating system.

Ideas for Similar Programs
The benefit of tabbed browsing is that you can easily open links in new tabs
to peruse later. A program that automatically opens several links at once
can be a nice shortcut to do the following:

• Open all the product pages after searching a shopping site such as
Amazon.

• Open all the links to reviews for a single product.

• Open the result links to photos after performing a search on a photo
site such as Flickr or Imgur.

Project 8: Download XKCD Comics
Blogs, web comics, and other regularly updating websites usually have a front
page with the most recent post, as well as a Previous button on the page that
takes you to the previous post. That post will also have a Previous button, and
so on, creating a trail from the most recent page to the first post on the site.
If you wanted a copy of the site’s content to read when you’re not online, you
could manually navigate over every page and save each one. But this is pretty
boring work, so let’s write a program to do it instead.

XKCD, shown in Figure 13-5, is a popular geek webcomic with a website
that fits this structure. The front page at https://xkcd .com has a Prev button

https://xkcd.com

Web Scraping 313

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

that guides the user back through prior comics. Downloading each comic
by hand would take forever, but you can write a script to do this in a couple
of minutes.

Figure 13-5: XKCD, “a webcomic of romance, sarcasm, math,
and language”

Here’s what your program should do:

• Load the XKCD home page.

• Save the comic image on that page.

• Follow the Previous Comic link.

• Repeat until it reaches the first comic or the max download limit.

This means your code will need to do the following:

• Download pages with the requests module.

• Find the URL of the comic image for a page using Beautiful Soup.

• Download and save the comic image to the hard drive with iter_content().

• Find the URL of the Previous Comic link, and repeat.

Open a new file editor tab and save it as downloadXkcdComics.py.

Step 1: Design the Program
If you open the browser’s Developer Tools and inspect the elements on the
page, you should find the following to be true:

• The href attribute of an element stores the URL of the comic’s
image file.

314 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

• The element is inside a <div id="comic"> element.

• The Prev button has a rel HTML attribute with the value prev.

• The oldest comic’s Prev button links to the https://xkcd .com /# URL, indi-
cating that there are no more previous pages.

To prevent the readers of this book from eating up too much of the
XKCD website’s bandwidth, let’s limit the number of downloads we make to
10 by default. Make your code look like the following:

downloadXkcdComics.py - Downloads XKCD comics

import requests, os, bs4, time

url = 'https://xkcd .com' # Starting URL
os.makedirs('xkcd', exist_ok=True) # Store comics in ./xkcd
num_downloads = 0
MAX_DOWNLOADS = 10
while not url.endswith('#') and num_downloads < MAX_DOWNLOADS:
 # TODO: Download the page.

 # TODO: Find the URL of the comic image.

 # TODO: Download the image.

 # TODO: Save the image to ./xkcd.

 # TODO: Get the Prev button's url.

print('Done.')

The program creates a url variable that starts with the value 'https://
xkcd .com' and repeatedly updates it (in a while loop) with the URL of the
current page’s Prev link. At every step in the loop, you’ll download the
comic at url. The loop stops when url ends with '#' or you have downloaded
MAX_DOWNLOADS comics.

You’ll download the image files to a folder in the current working direc-
tory named xkcd. The call os.makedirs() ensures that this folder exists, and
the exist_ok=True keyword argument prevents the function from throwing
an exception if this folder has already been created.

Step 2: Download the Web Page
Let’s implement the code for downloading the page. Make your code look
like the following:

downloadXkcdComics.py - Downloads XKCD comics

import requests, os, bs4, time

url = 'https://xkcd .com' # Starting URL
os.makedirs('xkcd', exist_ok=True) # Store comics in ./xkcd
num_downloads = 0

https://xkcd.com/#

Web Scraping 315

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

MAX_DOWNLOADS = 10
while not url.endswith('#') and num_downloads < MAX_DOWNLOADS:
 # Download the page.
 print(f'Downloading page {url}...')
 res = requests.get(url)
 res.raise_for_status()

 soup = bs4.BeautifulSoup(res.text, 'html.parser')

 # TODO: Find the URL of the comic image.

 # TODO: Download the image.

 # TODO: Save the image to ./xkcd.

 # TODO: Get the Prev button's url.

print('Done.')

First, print url so that the user knows which URL the program is about
to download; then, use the requests module’s requests.get() function to
download it. As always, you should immediately call the Response object’s
raise_for_status() method to throw an exception and end the program if
something went wrong with the download. Otherwise, create a BeautifulSoup
object from the text of the downloaded page.

Step 3: Find and Download the Comic Image
To download the comic on each page, make your code look like the following:

downloadXkcdComics.py - Downloads XKCD comics

import requests, os, bs4, time

--snip--

 # Find the URL of the comic image.
 comic_elem = soup.select('#comic img')
 if comic_elem == []:
 print('Could not find comic image.')
 else:
 comic_URL = 'https:' + comic_elem[0].get('src')
 # Download the image.
 print(f'Downloading image {comic_URL}...')
 res = requests.get(comic_URL)
 res.raise_for_status()

 # TODO: Save the image to ./xkcd.

 # TODO: Get the Prev button's url.

print('Done.')

316 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Because you inspected the XKCD home page with your Developer
Tools, you know that the element for the comic image is inside
another element with the id attribute set to comic, so the selector '#comic
img' will get you the correct element from the BeautifulSoup object.

A few XKCD pages have special content that isn’t a simple image file.
That’s fine; you’ll just skip those. If your selector doesn’t find any elements,
soup.select('#comic img') will return a ResultSet object of a blank list. When
that happens, the program can just print an error message and move on
without downloading the image.

Otherwise, the selector will return a list containing one element.
You can get the src attribute from this element and pass it to requests
.get() to download the comic’s image file.

Step 4: Save the Image and Find the Previous Comic
At this point, the comic’s image file is stored in the res variable. You need to
write this image data to a file on the hard drive. Make your code look like
the following:

downloadXkcdComics.py - Downloads XKCD comics

import requests, os, bs4, time

--snip--

 # Save the image to ./xkcd.
 image_file = open(os.path.join('xkcd', os.path.basename(comic_URL)), 'wb')
 for chunk in res.iter_content(100000):
 image_file.write(chunk)
 image_file.close()

 # Get the Prev button's URL.
 prev_link = soup.select('a[rel="prev"]')[0]
 url = 'https://xkcd .com' + prev_link.get('href')
 num_downloads += 1
 time.sleep(1) # Pause so we don't hammer the web server.

print('Done.')

You’ll also need a filename for the local image file to pass to open(). The
comic_URL will have a value like 'https://imgs .xkcd .com /comics /heartbleed _expla-
nation .png', which you might have noticed looks a lot like a filepath. In fact,
you can call os.path.basename() with comic_URL to return just the last part of
the URL, 'heartbleed_explanation.png', and use this as the filename when
saving the image to your hard drive. Join this name with the name of your
xkcd folder using os.path.join() so that your program uses backslashes (\) on
Windows and forward slashes (/) on macOS and Linux. Now that you finally
have the filename, you can call open() to open a new file in 'wb' mode.

Remember from earlier in this chapter that, to save files you’ve down-
loaded using requests, you need to loop over the return value of the

Web Scraping 317

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

iter_ content() method. The code in the for loop writes chunks of the image
data to the file. Then, the code closes the file, saving the image to your
hard drive.

Afterward, the selector 'a[rel="prev"]' identifies the <a> element with
the rel attribute set to prev. You can use this <a> element’s href attribute to
get the previous comic’s URL, which gets stored in url.

The last part of the loop’s code increments num_downloads by 1 so that
it doesn’t download all of the comics by default. It also introduces a one-
second pause with time.sleep(1) to prevent the script from “hammering” the
site (that is, impolitely downloading comics as fast as possible, which may
cause performance issues for other website visitors). Then, the while loop
begins the entire download process again.

The output of this program will look like this:

Downloading page https://xkcd .com . ..
Downloading image https://imgs .xkcd .com /comics /phone _alarm .png . ..
Downloading page https://xkcd .com /1358 / . ..
Downloading image https://imgs .xkcd .com /comics /nro .png . ..
Downloading page https://xkcd .com /1357 / . ..
Downloading image https://imgs .xkcd .com /comics /free _speech .png . ..
Downloading page https://xkcd .com /1356 / . ..
Downloading image https://imgs .xkcd .com /comics /orbital _mechanics .png . ..
Downloading page https://xkcd .com /1355 / . ..
Downloading image https://imgs .xkcd .com /comics /airplane _message .png . ..
Downloading page https://xkcd .com /1354 / . ..
Downloading image https://imgs .xkcd .com /comics /heartbleed _explanation .png . ..
--snip--

This project is a good example of a program that can automatically
follow links to scrape large amounts of data from the web. You can learn
about Beautiful Soup’s other features from its documentation at https://www
.crummy .com /software /BeautifulSoup /bs4 /doc /.

Ideas for Similar Programs
Many web crawling programs involve downloading pages and following
links. Similar programs could do the following:

• Back up an entire site by following all of its links.

• Copy all the messages on a web forum.

• Duplicate the catalog of items for sale on an online store.

The requests and bs4 modules are great as long as you can figure out
the URL you need to pass to requests.get(). However, this URL isn’t always
so easy to find. Or perhaps the website you want your program to navigate
requires you to log in first. Selenium will give your programs the power to
perform such sophisticated tasks.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

318 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Controlling the Browser with Selenium
Selenium lets Python directly control the browser by programmatically
clicking links and filling in forms, just as a human user would. Using
Selenium, you can interact with web pages in a much more advanced
way than with requests and Beautiful Soup; but because it launches a web
browser, it’s a bit slower and hard to run in the background if, say, you just
need to download some files from the web.

Still, if you need to interact with a web page in a way that, for instance,
depends on the JavaScript code that updates the page, you’ll need to use
Selenium instead of requests. That’s because major e-commerce websites
such as Amazon almost certainly have software systems to recognize traffic
that they suspect is a script harvesting their info or signing up for multiple
free accounts. These sites may refuse to serve pages to you after a while,
breaking any scripts you’ve made. Selenium is much more likely than
requests to function on these sites long term.

A major “tell” to websites that you’re using a script is the user-agent
string, which identifies the web browser and is included in all HTTP
requests. For example, the user-agent string for the requests module is
something like 'python-requests/X.XX.X'. You can visit a site such as https://
www .whatsmyua .info to see your user-agent string. Using Selenium, you’re
much more likely to pass for human, because not only is Selenium’s user
agent the same as a regular browser (for instance, ' Mozilla/5.0 (Windows
NT 10.0; Win64; x64; rv:108.0) Gecko/20100101 Firefox/108.0'), but it has the
same traffic patterns: a Selenium-controlled browser will download images,
advertisements, cookies, and privacy-invading trackers just like a regular
browser. However, websites can still find ways to detect Selenium, and major
ticketing and e-commerce websites often block it to prevent the web scrap-
ing of their pages.

Starting a Selenium-Controlled Browser
The following examples will show you how to control Firefox’s web browser.
If you don’t already have Firefox, you can download it for free from https://
getfirefox .com.

Importing Selenium’s modules is slightly tricky. Instead of import selenium,
you must run from selenium import webdriver. (The exact reason why Selenium
is set up this way is beyond the scope of this book.) After that, you can
launch the Firefox browser with Selenium. Enter the following into the
interactive shell:

>>> from selenium import webdriver
>>> browser = webdriver.Firefox()
>>> type(browser)
<class 'selenium.webdriver.firefox.webdriver.WebDriver'>
>>> browser .get('https://inventwithpython .com')

You’ll notice that when webdriver.Firefox() is called, the Firefox web
browser starts up. Calling type() on the value webdriver.Firefox() reveals it’s

https://www.whatsmyua.info
https://www.whatsmyua.info
https://getfirefox.com
https://getfirefox.com

Web Scraping 319

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

of the WebDriver data type. And calling browser .get('https://inventwithpython
.com') directs the browser to https://inventwithpython .com. Your browser should
look something like Figure 13-6.

Figure 13-6: After we call webdriver.Firefox() and get() in Mu, the Firefox
browser appears.

If you encounter the error message “geckodriver executable needs to be
in PATH,” you need to manually download the web driver for Firefox before
you can use Selenium to control it. You can also control browsers other
than Firefox if you install the web driver for them, and instead of manually
downloading browser web drivers, you can use the webdriver-manager pack-
age from https://pypi .org/project/webdriver-manager/.

Clicking Browser Buttons
Selenium can simulate clicks on various browser buttons through the fol-
lowing methods:

browser.back() Clicks the Back button

browser.forward() Clicks the Forward button

browser.refresh() Clicks the Refresh/Reload button

Browser.quit() Clicks the Close Window button

Finding Elements on the Page
A WebDriver object has the find_element() and find_elements() methods for
finding elements on a web page. The find_element() method returns a single
WebElement object, representing the first element on the page that matches
your query. The find_elements() method returns a list of WebElement objects
for every matching element on the page.

https://inventwithpython.com
https://pypi.org/project/webdriver-manager/

320 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You can find elements through their class name, CSS selector, ID, or
another means. First, run from selenium .webdriver .common .by import By to get
the By object. The By object has several constants you can pass to the find
_element() and find_elements() methods. Table 13-3 lists these constants.

Table 13-3: Selenium’s By Constants for Finding Elements

Constant name WebElement object/list returned

By.CLASS_NAME Elements that use the CSS class name

By.CSS_SELECTOR Elements that match the CSS selector

By.ID Elements with a matching id attribute value

By.LINK_TEXT <a> elements that completely match the text provided

By.PARTIAL_LINK_TEXT <a> elements that contain the text provided

By.NAME Elements with a matching name attribute value

By.TAG_NAME Elements with a matching tag name (case-insensitive; an <a>
element is matched by 'a' and 'A')

If no elements exist on the page that match what the method is looking
for, Selenium raises a NoSuchElement exception. If you do not want this excep-
tion to crash your program, add try and except statements to your code.

Once you have the WebElement object, you can learn more about it by
reading the attributes or calling the methods in Table 13-4.

Table 13-4: WebElement Attributes and Methods

Attribute or method Description

tag_name The tag name, such as 'a' for an <a> element .

get_attribute(name) The value for the element’s name attribute, like href in an <a>
element .

get_property(name) The value for the element’s property, which does not appear
in the HTML code . Some examples of HTML properties are
innerHTML and innerText .

text The text within the element, such as 'hello' in the following:
 hello

clear() For text field or text area elements, clears the text entered
into it .

is_displayed() Returns True if the element is visible; otherwise, returns False .

is_enabled() For input elements, returns True if the element is enabled; oth-
erwise, returns False .

is_selected() For checkbox or radio button elements, returns True if the ele-
ment is selected; otherwise, returns False .

location A dictionary with keys 'x' and 'y' for the position of the ele-
ment in the page .

size A dictionary with keys 'width' and 'height' for the size of the
element in the page .

Web Scraping 321

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

For example, open a new file editor tab and enter the following program:

from selenium import webdriver
from selenium .webdriver .common .by import By
browser = webdriver.Firefox()
browser .get('https://autbor .com /example3 .html')
elems = browser.find_elements(By.CSS_SELECTOR, 'p')
print(elems[0].text)
print(elems[0].get_property('innerHTML'))

Here, we open Firefox and direct it to a URL. On this page, we get a list
of the <p> elements, look at the first one at index 0, and then get the string of
the text inside that <p> element. Next, we get the string of its innerHTML prop-
erty. This program outputs the following:

This <p> tag puts content into a single paragraph.
This <p> tag puts content into a <i>single</i> paragraph.

The element’s text attribute shows the text as we’d see it in the web
browser: “This <p> tag puts content into a single paragraph.” We can also
examine the element’s innerHTML property by calling the get_property()
method, which is the HTML source code that includes tags and HTML
entities. (The < and > are HTML escape characters that represent the
less than [<] and greater than [>] characters.)

Note that the text attribute is just a shortcut for calling get_property ('inner
Text'). The names innerHTML and innerText are standard names of proper-
ties for HTML elements. In short, these element properties are accessed
by JavaScript code and web drivers, while element attributes are part of the
HTML source code, like the href in .

Clicking Elements on the Page
The WebElement objects returned from the find_element() and find_elements()
methods have a click() method that simulates a mouse click on that ele-
ment. This method can be used to follow a link, make a selection on a radio
button, click a Submit button, or trigger whatever else might happen when a
mouse clicks the element. For example, enter the following into the interac-
tive shell:

>>> from selenium import webdriver
>>> from selenium .webdriver .common .by import By
>>> browser = webdriver.Firefox()
>>> browser .get('https://autbor .com /example3 .html')
>>> link_elem = browser.find_element(By.LINK_TEXT, 'This text is a link')
>>> type(link_elem)
<class 'selenium.webdriver.remote.webelement.WebElement'>
>>> link_elem.click() # Follows the "This text is a link" link

322 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This code opens Firefox to https://autbor .com /example3 .html, gets the
WebElement object for the <a> element with the text This is a link, and then
simulates clicking that <a> element as if you’d clicked the link yourself; the
browser then follows that link.

Filling Out and Submitting Forms
Sending keystrokes to text fields on a web page is a matter of finding the
<input> or <textarea> element for that text field and then calling the send
_keys() method. For example, enter the following into the interactive shell:

>>> from selenium import webdriver
>>> from selenium .webdriver .common .by import By
>>> browser = webdriver.Firefox()
>>> browser .get('https://autbor .com /example3 .html')
>>> user_elem = browser.find_element(By.ID, 'login_user')
>>> user_elem.send_keys('your_real_username_here')
>>> password_elem = browser.find_element(By.ID, 'login_pass')
>>> password_elem.send_keys('your_real_password_here')
>>> password_elem.submit()

As long as the login page hasn’t changed the id of the username and
password <input> elements, the previous code will fill in those text fields
with the provided text. (You can always use the browser’s inspector to verify
the id.) Calling the submit() method on any element will have the same
result as clicking the Submit button for the form that element is in. (You
could have just as easily called user_elem.submit(), and the code would have
done the same thing.)

W A R N I N G Avoid putting your passwords in source code whenever possible. It’s easy to acciden-
tally leak your passwords to others when they are left unencrypted on your hard drive.

Sending Special Keys
Selenium has a module, selenium .webdriver .common .keys, to represent key-
board keys, which it stores in attributes. Because the module has such a
long name, it’s much easier to run from selenium .webdriver .common .keys import
Keys at the top of your program; if you do, you can simply write Keys any-
where you’d normally have to write selenium .webdriver .common .keys.

You can pass send_keys() any of the following constants:

Keys.ENTER
Keys.RETURN
Keys.HOME
Keys.END
Keys.PAGE_DOWN

Keys.PAGE_UP
Keys.ESCAPE
Keys.BACK_SPACE
Keys.DELETE
Keys.UP

Keys.DOWN
Keys.LEF
Keys.RIGHT
Keys.TAB
Keys.F1 to Keys.F12

You can also pass the method a string, such as 'hello' or '?'.
For example, if the cursor isn’t currently in a text field, pressing the

home and end keys will scroll the browser to the top and bottom of the

https://autbor.com/example3.html

Web Scraping 323

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

page, respectively. Enter the following into the interactive shell, and notice
how the send_keys() calls scroll the page:

>>> from selenium import webdriver
>>> from selenium .webdriver .common .by import By
>>> from selenium .webdriver .common .keys import Keys
>>> browser = webdriver.Firefox()
>>> browser .get('https://nostarch .com')
>>> html_elem = browser.find_element(By.TAG_NAME, 'html')
>>> html_elem.send_keys(Keys.END) # Scrolls to bottom
>>> html_elem.send_keys(Keys.HOME) # Scrolls to top

The <html> tag is the base tag in HTML files: the full content of the
HTML file is enclosed within the <html> and </html> tags. Calling browser.
find_element(By.TAG_NAME, 'html') is a good place to send keys to the general
web page via the main <html> tag. This would be useful if, for example, new
content is loaded once you’ve scrolled to the bottom of the page.

Selenium can do much more than the functions described here. It
can modify your browser’s cookies, take screenshots of web pages, and run
custom JavaScript. To learn more about these features, you can visit the
Selenium documentation at https://selenium -python .readthedocs .io. You can also
find Python conference talks on Selenium by searching the website https://
pyvideo .org.

Controlling the Browser with Playwright
Playwright is a browser-controlling library similar to Selenium, but it’s
newer. While it might not currently have the wide audience that Selenium
has, it does offer some features that merit learning. Chief among these new
features is the ability to run in headless mode, meaning you can simulate a
browser without actually having the browser window open on your screen.
This makes it useful for running automated tests or web scraping jobs in
the background. Playwright’s full documentation is at https://playwright .dev /
python /docs /intro.

Also, installing web drivers for individual browsers is easier to do with
Playwright compared to Selenium: just run python -m playwright install on
Windows and python3 –m playwright install on macOS and Linux from a
terminal window to install the web drivers for Firefox, Chrome, and Safari.
Because Playwright is otherwise similar to Selenium, I won’t cover the gen-
eral web scraping and CSS selector information in this section.

Starting a Playwright-Controlled Browser
Once Playwright is installed, you can test it with the following program:

from playwright.sync_api import sync_playwright
with sync_playwright() as playwright:
 browser = playwright.firefox.launch()
 page = browser.new_page()

https://selenium-python.readthedocs.io
https://pyvideo.org
https://pyvideo.org
https://playwright.dev/python/docs/intro
https://playwright.dev/python/docs/intro

324 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 page .goto('https://autbor .com /example3 .html')
 print(page.title())
 browser.close()

When run, this program pauses while it loads the Firefox browser and
the https://autbor .com /example3 .html website, and then prints its title, “Example
Website.” You can also use playwright.chromium.launch() or playwright .webkit
.launch() to use the Chrome and Safari browsers, respectively.

Playwright automatically calls the start() and stop() methods when the
execution enters and exits the with statement’s block. Playwright has a syn-
chronous mode, where its functions don’t return until the operation is com-
plete. This way, you don’t accidentally tell the browser to find an element
before the page has finished loading. Playwright’s asynchronous features
are beyond the scope of this book.

You may have noticed that no browser window appeared at all, because,
by default, Playwright runs in headless mode. This, along with how Playwright
puts its code inside a with statement, can make debugging tricky. To run
Playwright one step at a time, enter the following into the interactive shell:

>>> from playwright.sync_api import sync_playwright
>>> playwright = sync_playwright().start()
>>> browser = playwright.firefox.launch(headless=False, slow_mo=50)
>>> page = browser.new_page()
>>> page .goto('https://autbor .com /example3 .html')
<Response url ='https://autbor .com /example3 .html' request=<Request
 url ='https://autbor .com /example3 .html' method='GET'>>
>>> browser.close()
>>> playwright.stop()

The headless=False and slow_mo=50 keyword arguments to playwright
.firefox.launch() make the browser window appear on your screen and add
a 50 ms delay to its operations so that it’s easier for you to see what is hap-
pening. You don’t have to worry about adding pauses to give web pages time
to load: Playwright is much better than Selenium about not moving on to
new operations before the previous one has finished.

The Page object returned by the new_page() Browser method represents a
new tab in a new browser window. You can have multiple browser windows
open at the same time when using Playwright.

Clicking Browser Buttons
Playwright can simulate clicking the browser buttons by calling the follow-
ing Page methods on the Page object returned by browser.new_page():

page.go_back() Clicks the Back button

page.go_forward() Clicks the Forward button

page.reload() Clicks the Refresh/Reload button

page.close() Clicks the Close Window button

https://autbor.com/example3.html

Web Scraping 325

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Finding Elements on the Page
Playwright has Page object methods colloquially called locators that return
Locator objects, which represent possible HTML elements on a web page. I
say possible because, while Selenium immediately raises an error if it can’t
find the element you ask for, Playwright understands that the page might
dynamically create the element later. This is useful but has a slightly unfor-
tunate side effect: if the element you specified doesn’t exist, Playwright
pauses for 30 seconds while it waits for the element to appear.

But this 30-second pause is tedious if you’ve simply made a typo. To
immediately check whether an element exists and is visible on the page, call
the is_visible() method on the Locator object returned by the locator. You
can also call page.query_selector('selector') where selector is a string of the
element’s CSS or XPath selector. The page.query_selector() method imme-
diately returns, and if it returns None, the element doesn’t currently exist on
the page. A Locator object may match one or more HTML elements on the
web page. Table 13-5 contains Playwright’s locators.

Table 13-5: Playwright’s Locators for Finding Elements

Locator Locator object returned

page.get_by_role(role, name=label) Elements by their role and optionally their label

page.get_by_text(text) Elements that contain text as part of their
inner text

page.get_by_label(label) Elements with matching <label> text as label

page.get_by_placeholder(text) <input> and <textarea> elements with match-
ing placeholder attribute values as the text
provided

page.get_by_alt_text(text) elements with matching alt attribute val-
ues as the text provided

page.locator(selector) Elements with a matching CSS or XPath
selector

The get_by_role() method makes use of Accessible Rich Internet
Applications (ARIA) roles, a set of standards that enable software to identify
web page content to adapt it for users with vision or other disabilities. For
example, the “heading” role applies to the <h1> through <h6> tags, with the
text in between <h1> and </h1> being the text you can identify with the get
_by_role() method’s name keyword parameter. (There is much more to ARIA
roles than this, but the topic is beyond the scope of this book.)

You can use the text between the starting and ending tags to locate ele-
ments. Calling page.get_by_text('is a link') would locate the <a> element
in This text is a link. A partial,
case-insensitive text match is generally good enough to locate the element.

The page.get_by_label() method locates elements using the text between
<label> and </label> tags. For example, page.get_by_label('Agree') would
locate the <input> checkbox element in <label>Agree to disagree: <input
type="checkbox" /></label>.

326 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The <input> and <textarea> tags can have a placeholder attribute to show
placeholder text until the user enters real text. For example, page.get_by
_placeholder('admin') would locate the <input> element for <input id="login
_user" placeholder="admin" />.

Images on web pages can have alt text in their alt attribute to describe
the image contents to sight-impaired users. Some browsers show the alt text
as a tool tip if you hover the mouse cursor over the image. The page.get_by
_alt_text('Zophie') call would return the element in <img src="wow_such
_zophie_thumb.webp" alt="Close-up of my cat Zophie." />.

If you just need to obtain a Locator object via a CSS selector, call the
locator() locator and pass it the selector string. This is similar to Selenium’s
find_elements() method with the By.CSS_SELECTOR constant.

Table 13-6: Locator Methods

Method Description

get_attribute(name) Returns the value for the element’s name attribute, such as
'https://nostarch .com' for the href attribute in an element

count() Returns an integer of the number of matching elements in this
Locator object

nth(index) Returns a Locator object of the matching element given by the
index . For example, nth(3) returns the fourth matching element
since index 0 is the first matching element .

first The Locator object of the first matching element . This is the
same as nth(0) .

last The Locator object of the last matching element . If there are,
say, five match elements, this is the same as nth(4) .

all() Returns a list of Locator objects for each individual matching
element

inner_text() Returns the text within the element, such as 'hello' in
hello

inner_html() Returns the HTML source within the element, such as
'hello' in hello

click() Simulates a click on the element, which is useful for link,
checkbox, and button elements

is_visible() Returns True if the element is visible; otherwise, returns False

is_enabled() For input elements, returns True if the element is enabled; oth-
erwise, returns False

is_checked() For checkbox or radio button elements, returns True if the ele-
ment is selected; otherwise, returns False

bounding_box() Returns a dictionary with keys 'x' and 'y' for the position
of the element’s top-left corner in the page, along with keys
'width' and 'height' for the element’s size

Since Locator objects can represent multiple elements, you can obtain a
Locator object for an individual element with the nth() method, passing the

Web Scraping 327

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

zero-based index. For example, open a new file editor tab and enter the fol-
lowing program:

from playwright.sync_api import sync_playwright
with sync_playwright() as playwright:
 browser = playwright.firefox.launch(headless=False, slow_mo=50)
 page = browser.new_page()
 page .goto('https://autbor .com /example3 .html')
 elems = page.locator('p')
 print(elems .nth(0) .inner _text())
 print(elems .nth(0) .inner _html())

Like the Selenium example, this program outputs the following:

This <p> tag puts content into a single paragraph.
This <p> tag puts content into a <i>single</i> paragraph.

The page.locator('p') code returns a Locator object that matches all <p>
elements in the web page, and the nth(0) method call returns a Locator object
for just the first <p> element. The Locator objects also have a count() method
for returning the number of matching elements in the locator (similar to the
len() function for Python lists). There are also first and last attributes that
contain a locator that matches the first or last element. If you want a list of
Locator objects for each individual matching element, call the all() method.

Once you have Locator objects for elements, you can perform mouse
clicks and key presses on them, as described in the next few sections.

Clicking Elements on the Page
The Page object has click(), check(), uncheck(), and set_checked() methods for
simulating clicks on link, button, and checkbox elements. You can call these
methods and pass the string of a CSS or XPath selector of the element, or
you can use Playwright’s Locator functions in Table 13-6. Enter the following
into the interactive shell:

>>> from playwright.sync_api import sync_playwright
>>> playwright = sync_playwright().start()
>>> browser = playwright.firefox.launch(headless=False, slow_mo=50)
>>> page = browser.new_page()
>>> page .goto('https://autbor .com /example3 .html')
<Response url ='https://autbor .com /example3 .html' request=<Request
 url ='https://autbor .com /example3 .html' method='GET'>>
>>> page.click('input[type=checkbox]') # Checks the checkbox.
>>> page.click('input[type=checkbox]') # Unchecks the checkbox.
>>> page.click('a') # Clicks the link.
>>> page.go_back()
>>> checkbox_elem = page.get_by_role('checkbox') # Calls a Locator method.
>>> checkbox_elem.check() # Checks the checkbox.
>>> checkbox_elem.uncheck() # Unchecks the checkbox.
>>> checkbox_elem.set_checked(True) # Checks the checkbox.
>>> checkbox_elem.set_checked(False) # Unchecks the checkbox.
>>> page.get_by_text('is a link').click() # Uses a Locator method.

328 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> browser.close()
>>> playwright.stop()

The check() and uncheck() methods are more reliable than click() for
checkboxes. The click() method toggles the checkbox to the opposite state,
while check() and uncheck() leave them checked or unchecked no matter
what state they were in before. Similarly, the set_checked() method allows
you to pass True to check the checkbox or False to uncheck it.

Filling Out and Submitting Forms
Locator objects have a fill() method that takes a string and fills in the <input>
or <textarea> element with the text. This is useful for filling out online forms,
such as the login form in our example3 .html web page:

>>> from playwright.sync_api import sync_playwright
>>> playwright = sync_playwright().start()
>>> browser = playwright.firefox.launch(headless=False, slow_mo=50)
>>> page = browser.new_page()
>>> page .goto('https://autbor .com /example3 .html')
<Response url ='https://autbor .com /example3 .html' request=<Request
url ='https://autbor .com /example3 .html' method='GET'>>
>>> page.locator('#login_user').fill('your_real_username_here')
>>> page.locator('#login_pass').fill('your_real_password_here')
>>> page.locator('input[type=submit]').click()
>>> browser.close()
>>> playwright.stop()

There’s also a clear() method, which erases all of the text currently in
the element. Unlike in Selenium, there’s no submit() method in Playwright,
and you’ll have to call click() on its Locator object matching the Submit but-
ton’s element.

Sending Special Keys
You can also simulate keyboard key presses on elements in the web page
with the press() method for Locator objects. For example, if the cursor isn’t
currently in a text field, pressing the home and end keys will scroll the
browser to the top and bottom of the page, respectively. Enter the following
into the interactive shell, and notice how the press() calls scroll the page:

>>> from playwright.sync_api import sync_playwright
>>> playwright = sync_playwright().start()
>>> browser = playwright.firefox.launch(headless=False, slow_mo=50)
>>> page = browser.new_page()
>>> page .goto('https://autbor .com /example3 .html')
<Response url ='https://autbor .com /example3 .html' request=<Request
url ='https://autbor .com /example3 .html' method='GET'>>
>>> page.locator('html').press('End') # Scrolls to bottom
>>> page.locator('html').press('Home') # Scrolls to top
>>> browser.close()
>>> playwright.stop()

Web Scraping 329

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The strings you pass to press() can include single character strings
(such as 'a' or '?'); the modification keys 'Shift', 'Control', 'Alt', or 'Meta'
(as in 'Control+A', for ctrl-A); and any of the following:

'Backquote'
'Minus'
'Equal'
'Backslash'
'Backspace'
'Tab'
'Delete'

'Escape'
'End'
'Enter'
'Home'
'Insert'
'PageUp'
'PageDown'

'ArrowDown'
'ArrowRight'
'ArrowUp'
'F1' to 'F12'
'Digit0' to 'Digit9'
'KeyA' to 'KeyZ'

Playwright can do much more beyond the functions described here. To
learn more about these features, you can visit the Playwright documenta-
tion at https://playwright .dev. You can also find Python conference talks on
Playwright by searching https://pyvideo .org.

Summary
Most boring tasks aren’t limited to the files on your computer. Being able
to programmatically download web pages will extend your programs to the
internet. The requests module makes downloading straightforward, and
with some basic knowledge of HTML concepts and selectors, you can utilize
the BeautifulSoup module to parse the pages you download.

But to fully automate any web-based task, you need direct control of
your web browser through the Selenium and Playwright packages. These
packages will allow you to log in to websites and fill out forms automatically.
Because a web browser is the most common way to send and receive infor-
mation over the internet, this is a great ability to have in your programmer
toolkit.

Practice Questions
 1. Briefly describe the differences between the webbrowser, requests, and bs4

modules.

 2. What type of object is returned by requests.get()? How can you access
the downloaded content as a string value?

 3. What requests method checks that the download worked?

 4. How can you get the HTTP status code of a requests response?

 5. How do you save a requests response to a file?

 6. What two formats do most online APIs return their responses in?

 7. What is the keyboard shortcut for opening a browser’s Developer Tools?

 8. How can you view (in the Developer Tools) the HTML of a specific ele-
ment on a web page?

 9. What CSS selector string would find the element with an id attribute
of main?

https://playwright.dev
https://pyvideo.org

330 Chapter 13

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 10. What CSS selector string would find the elements with an id attribute
of highlight?

 11. Say you have a Beautiful Soup Tag object stored in the variable spam for
the element <div>Hello, world!</div>. How could you get a string 'Hello,
world!' from the Tag object?

 12. How would you store all the attributes of a Beautiful Soup Tag object in
a variable named link_elem?

 13. Running import selenium doesn’t work. How do you properly import
Selenium?

 14. What’s the difference between the find_element() and find_elements()
methods in Selenium?

 15. What methods do Selenium’s WebElement objects have for simulating
mouse clicks and keyboard keys?

 16. In Playwright, what locator method call simulates pressing ctrl-A to
select all the text on the page?

 17. How can you simulate clicking a browser’s Forward, Back, and Refresh
buttons with Selenium?

 18. How can you simulate clicking a browser’s Forward, Back, and Refresh
buttons with Playwright?

Practice Programs
For practice, write programs to do the following tasks.

Image Site Downloader
Write a program that goes to a photo-sharing site like Flickr or Imgur,
searches for a category of photo, and then downloads all the resulting
images. You could write a program that works with any photo site that has
a search feature.

2048
The game 2048 is a simple game in which you combine tiles by sliding them
up, down, left, or right with the arrow keys. You can actually get a fairly
high score by sliding tiles in random directions. Write a program that will
open the game at https://play2048 .co and keep sending up, right, down, and
left keystrokes to automatically play the game.

Link Verification
Write a program that, given the URL of a web page, will find every <a> link
on the page and test whether the linked URL results in a “404 Not Found”
status code. The program should print out any broken links.

https://play2048.co

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Although we don’t often think of spread-
sheets as programming tools, almost every-

one uses them to organize information into
two-dimensional data structures, perform calcu-

lations with formulas, and produce output as charts. In
the next two chapters, we’ll integrate Python into two
popular spreadsheet applications: Microsoft Excel and
Google Sheets.

Excel is a popular and powerful spreadsheet application for Windows.
The openpyxl module allows your Python programs to read and modify
Excel spreadsheet files. For example, you might have the boring task of
copying certain data from one spreadsheet and pasting it into another one.
Or you might have to go through thousands of rows and pick out just a
handful of them to make small edits based on some criteria. Or you might
have to look through hundreds of spreadsheets of department budgets,

14
E X C E L S P R E A D S H E E T S

332 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

searching for any that are in the red. These are exactly the sorts of boring,
mindless spreadsheet tasks that Python can do for you.

Although Excel is proprietary software from Microsoft, LibreOffice is
a free alternative that runs on Windows, macOS, and Linux. LibreOffice
Calc uses Excel’s .xlsx file format for spreadsheets, which means the openpyxl
module can work on spreadsheets from this application as well. You can
download it from https://www .libreoffice .org. Even if you already have Excel
installed on your computer, you may find this program easier to use. The
screenshots in this chapter, however, are all from the cloud-based Office
365 Excel.

The openpyxl module operates on Excel files, and not the desktop Excel
application or cloud-based Excel web app. If you’re using the cloud-based
Office 365, you must click FileSave AsDownload a Copy to download
a spreadsheet, run your Python script to edit the spreadsheet file, and then
re-upload the spreadsheet to Office 365 to see the changes. If you have
the desktop Excel application, you must close the spreadsheet, run your
Python script to edit the spreadsheet file, and then reopen it in Excel to see
the changes.

Python does not come with openpyxl, so you’ll have to install it.
Appendix A has information on how to install third-party packages with
Python’s pip tool. You can find the full openpyxl documentation at https://
openpyxl .readthedocs .io /en /stable /.

You’ll use several example spreadsheet files in this chapter. You can
download them from the book’s online materials at https://nostarch .com /
automatestuff3.

Reading Excel Files
First, let’s go over some basic definitions. An Excel spreadsheet document is
called a workbook. A single workbook is saved in a file with the .xlsx extension.

Each workbook can contain multiple sheets (also called worksheets). The
sheet the user is currently viewing (or last viewed before closing Excel) is
called the active sheet. Each sheet has columns (addressed by letters starting
at A) and rows (addressed by numbers starting at 1). A box at a particular
column and row is called a cell. Each cell can contain a number or text
value. The grid of cells and their data makes up a sheet.

The examples in this chapter will use a spreadsheet named example3.xlsx
stored in the current working directory. You can either create the spreadsheet
yourself or download it from this book’s online resources. Figure 14-1 shows
the tabs for the three sheets named Sheet1, Sheet2, and Sheet3.

https://www.libreoffice.org
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://nostarch.com/automatestuff3
https://nostarch.com/automatestuff3

Excel Spreadsheets 333

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 14-1: The tabs for a workbook’s sheets
are in the lower-left corner of Excel.

Sheet1 in the example file should look like Table 14-1. (If you didn’t
download example3.xlsx, you should enter this data into the sheet yourself.)

Table 14-1: The example3.xlsx Spreadsheet

A B C

1 4/5/2035 1:34:02 PM Apples 73

2 4/5/2035 3:41:23 AM Cherries 85

3 4/6/2035 12:46:51 PM Pears 14

4 4/8/2035 8:59:43 AM Oranges 52

5 4/10/2035 2:07:00 AM Apples 152

6 4/10/2035 6:10:37 PM Bananas 23

7 4/10/2035 2:40:46 AM Strawberries 98

Now that we have our example spreadsheet, let’s see how we can manip-
ulate it with the openpyxl module.

Opening a Workbook
Once you’ve imported the openpyxl module, you’ll be able to open .xlsx files
with the openpyxl.load_workbook() function. Enter the following into the
interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example3.xlsx')
>>> type(wb)
<class 'openpyxl.workbook.workbook.Workbook'>

The openpyxl.load_workbook() function takes in the filename and returns
a value of the Workbook data type. This Workbook object represents the Excel
file, a bit like how a File object represents an opened text file.

334 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Getting Sheets from the Workbook
You can get a list of all the sheet names in the workbook by accessing the
sheetnames attribute. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example3.xlsx')
>>> wb.sheetnames # The workbook's sheets' names.
['Sheet1', 'Sheet2', 'Sheet3']
>>> sheet = wb['Sheet3'] # Get a sheet from the workbook.
>>> sheet
<Worksheet "Sheet3">
>>> type(sheet)
<class 'openpyxl.worksheet.worksheet.Worksheet'>
>>> sheet.title # Get the sheet's title as a string.
'Sheet3'
>>> another_sheet = wb.active # Get the active sheet.
>>> another_sheet
<Worksheet "Sheet1">

Each sheet is represented by a Worksheet object, which you can obtain
by using the square brackets with the sheet name string, like a dictionary
key. Finally, you can use the active attribute of a Workbook object to get the
workbook’s active sheet. The active sheet is the sheet that’s on top when the
workbook is opened in Excel. Once you have the Worksheet object, you can
get its name from the title attribute.

Getting Cells from the Sheets
Once you have a Worksheet object, you can access a Cell object by its name.
Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example3.xlsx')
>>> sheet = wb['Sheet1'] # Get a sheet from the workbook.
>>> sheet['A1'] # Get a cell from the sheet.
<Cell 'Sheet1'.A1>
>>> sheet['A1'].value # Get the value from the cell.
datetime.datetime(2035, 4, 5, 13, 34, 2)
>>> c = sheet['B1'] # Get another cell from the sheet.
>>> c.value
'Apples'
>>> # Get the row, column, and value from the cell.
>>> f'Row {c.row}, Column {c .column} is {c.value}'
'Row 1, Column 2 is Apples'
>>> f'Cell {c .coordinate} is {c.value}'
'Cell B1 is Apples'
>>> sheet['C1'].value
73

The Cell object has a value attribute that contains, unsurprisingly, the
value stored in that cell. It also has row, column, and coordinate attributes that
provide location information for the cell. Here, accessing the value attribute

Excel Spreadsheets 335

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

of our Cell object for cell B1 gives us the string 'Apples'. The row attribute
gives us the integer 1, the column attribute gives us 2, and the coordinate attri-
bute gives us 'B1'.

The openpyxl module will automatically interpret the dates in column A
and return them as datetime values rather than strings. Chapter 19 explains
the datetime data type further.

Specifying a column by letter can be tricky to program, especially
because after column Z, the columns start using two letters: AA, AB, AC,
and so on. As an alternative, you can also get a cell using the sheet’s cell()
method and passing integers for its row and column keyword arguments. The
first row or column integer is 1, not 0. Continue the interactive shell exam-
ple by entering the following:

>>> sheet.cell(row=1, column=2)
<Cell 'Sheet1'.B1>
>>> sheet.cell(row=1, column=2).value
'Apples'
>>> for i in range(1, 8, 2): # Go through every other row.
... print(i, sheet.cell(row=i, column=2).value)
...
1 Apples
3 Pears
5 Apples
7 Strawberries

Using the sheet’s cell() method and passing it row=1 and column=2 gets
you a Cell object for cell B1, just like specifying sheet['B1'] did.

By using this cell() method and its keyword arguments, we wrote a for
loop to print the values of a series of cells. Say you want to go down column
B and print the value in every cell with an odd row number. By passing 2 for
the range() function’s “step” parameter, you can get cells from every second
row (in this case, all the odd-numbered rows). This example passes the for
loop’s i variable as the cell() method’s row keyword, and uses 2 for the col-
umn keyword argument on each call of the method. Note that this method
accepts the integer 2, not the string 'B'.

You can determine the size of the sheet with the Worksheet object’s max_row
and max_column attributes. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example3.xlsx')
>>> sheet = wb['Sheet1']
>>> sheet.max_row # Get the highest row number.
7
>>> sheet.max_column # Get the highest column number.
3

Note that the max_column attribute is an integer rather than the letter
that appears in Excel.

336 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Converting Between Column Letters and Numbers
To convert from numbers to letters, call the openpyxl.utils.get_column_letter()
function. To convert from letters to numbers, call the openpyxl .utils .column
_index _from _string() function. Enter the following into the interactive shell:

>>> import openpyxl
>>> from openpyxl.utils import get_column_letter, column_index_from_string
>>> get_column_letter(1) # Translate column 1 to a letter.
'A'
>>> get_column_letter(2)
'B'
>>> get_column_letter(27)
'AA'
>>> get_column_letter(900)
'AHP'
>>> wb = openpyxl.load_workbook('example3.xlsx')
>>> sheet = wb['Sheet1']
>>> get_column_letter(sheet.max_column)
'C'
>>> column_index_from_string('A') # Get A's number.
1
>>> column_index_from_string('AA')
27

After you import these two functions from the openpyxl.utils module,
you can call get_column_letter() and pass it an integer like 27 to figure out
what the letter name of the 27th column is. The function column_index_string()
does the reverse: you pass it the letter name of a column, and it tells you
what number that column is. You don’t need to have a workbook loaded to
use these functions.

Getting Rows and Columns
You can slice Worksheet objects to get all the Cell objects in a row, column, or
rectangular area of the spreadsheet. Then, you can loop over all the cells in
the slice. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example3.xlsx')
>>> sheet = wb['Sheet1']
>>> sheet['A1':'C3'] # Get cells A1 to C3.
((<Cell 'Sheet1'.A1>, <Cell 'Sheet1'.B1>, <Cell 'Sheet1'.C1>), (<Cell 'Sheet1'.A2>, <Cell
'Sheet1'.B2>, <Cell 'Sheet1'.C2>), (<Cell 'Sheet1'.A3>, <Cell 'Sheet1'.B3>, <Cell
'Sheet1'.C3>))
>>> for row_of_cell_objects in sheet['A1':'C3']: 1
... for cell_obj in row_of_cell_objects: 2
... print(cell _obj .coordinate, cell_obj.value)
... print('--- END OF ROW ---')
...
A1 2035-04-05 13:34:02
B1 Apples
C1 73

Excel Spreadsheets 337

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

--- END OF ROW ---
A2 2035-04-05 03:41:23
B2 Cherries
C2 85
--- END OF ROW ---
A3 2035-04-06 12:46:51
B3 Pears
C3 14
--- END OF ROW ---

Here, we specify ['A1':'C3'] to get a slice of the Cell objects in the rect-
angular area from A1 to C3, and we get a tuple containing the Cell objects
in that area.

This tuple contains three tuples: one for each row, from the top of
the desired area to the bottom. Each of these three inner tuples contains
the Cell objects in one row of our desired area, from the leftmost cell to the
rightmost. So, overall, our slice of the sheet contains all the Cell objects in
the area from A1 to C3, starting from the top-left cell and ending with the
bottom-right cell.

To print the values of each cell in the area, we use two for loops. The
outer for loop goes over each row in the slice 1. Then, for each row, the
nested for loop goes through each cell in that row 2.

To access the values of cells in a particular row or column, you can also
use a Worksheet object’s rows and columns attributes. These attributes must be
converted to lists with the list() function before you can use the square brack-
ets and an index with them. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example3.xlsx')
>>> sheet = wb['Sheet1']
>>> list(sheet .columns)[1] # Get the second column's cells.
(<Cell 'Sheet1'.B1>, <Cell 'Sheet1'.B2>, <Cell 'Sheet1'.B3>, <Cell 'Sheet1'.B4>, <Cell
'Sheet1'.B5>, <Cell 'Sheet1'.B6>, <Cell 'Sheet1'.B7>)
>>> for cell_obj in list(sheet .columns)[1]:
... print(cell_obj.value)
...
Apples
Cherries
Pears
Oranges
Apples
Bananas
Strawberries

Using the rows attribute on a Worksheet object, passed to list(), will give
us a list of tuples. Each of these tuples represents a row and contains the
Cell objects in that row. The columns attribute, passed to list(), also gives us
a list of tuples, with each of the tuples containing the Cell objects in a par-
ticular column. For example3.xlsx, because there are seven rows and three
columns, list(sheet.rows) gives us a list of seven tuples (each containing

338 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

three Cell objects), and list(sheet.columns) gives us a list of three tuples
(each containing seven Cell objects).

To access one particular tuple, you can refer to it by its index in the
larger tuple. For example, to get the tuple that represents column B, you’d
use list(sheet .columns)[1]. To get the tuple containing the Cell objects in
column A, you’d use list(sheet .columns)[0]. Once you have a tuple repre-
senting one row or column, you can loop through its Cell objects and print
their values.

A R E V IE W OF WOR KBOOKS, SHEE T S, A ND CEL L S

As a quick review, here’s a rundown of all the functions, methods, and data
types involved in reading a cell out of a spreadsheet file:

1 . Import the openpyxl module .

2 . Call the openpyxl.load_workbook() function to get a Workbook object .

3 . Use the active or sheetnames attribute .

4 . Get a Worksheet object .

5 . Use indexing or the cell() sheet method with row and column keyword
arguments .

6 . Get a Cell object .

7 . Read the Cell object’s value attribute .

Project 9: Gather Census Statistics
Say you have a spreadsheet of data from the 2010 US Census and you’ve
been given the boring task of going through its thousands of rows to count
both the population and the number of census tracts for each county.
(A census tract is simply a geographic area defined for the purposes of the
census.) Each row represents a single census tract. We’ll name the spread-
sheet file censuspopdata.xlsx, and you can download it from this book’s
online resources. Its contents look like Figure 14-2.

Figure 14-2: The censuspopdata .xlsx spreadsheet

Excel Spreadsheets 339

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Even though Excel can automatically calculate the sum of multiple
selected cells, you’d still have to first manually select the cells for each of the
3,000-plus counties. Even if it takes just a few seconds to calculate a county’s
population by hand, this would take hours to do for the whole spreadsheet.

In this project, you’ll write a script that can read from the census spread-
sheet file and calculate statistics for each county in a matter of seconds.

This is what your program does:

• Reads the data from the Excel spreadsheet

• Counts the number of census tracts in each county

• Counts the total population of each county

• Prints the results

This means your code will need to do the following:

• Open and read the cells of an Excel document with the openpyxl module.

• Calculate all the tract and population data and store it in a data
structure.

• Write the data structure to a text file with the .py extension using the
pprint module so that it can be imported later.

Step 1: Read the Spreadsheet Data
There is just one sheet in the censuspopdata.xlsx spreadsheet, named
'Population by Census Tract', and each row in the sheet holds the data for a
single census tract. The columns are the tract number (A), the state abbre-
viation (B), the county name (C), and the population of the tract (D).

Open a new file editor tab and enter the following code, then save the
file as readCensusExcel.py:

readCensusExcel.py - Tabulates county population and census tracts

1 import openpyxl, pprint
print('Opening workbook...')
2 wb = openpyxl.load_workbook('censuspopdata.xlsx')
3 sheet = wb['Population by Census Tract']
county_data = {}

TODO: Fill in county_data with each county's population and tracts.
print('Reading rows...')
4 for row in range(2, sheet.max_row + 1):
 # Each row in the spreadsheet has data for one census tract.
 state = sheet['B' + str(row)].value
 county = sheet['C' + str(row)].value
 pop = sheet['D' + str(row)].value

TODO: Open a new text file and write the contents of county_data to it.

This code imports the openpyxl module, as well as the pprint mod-
ule that you’ll use to print the final county data 1. Then, it opens the

340 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

censuspopdata.xlsx file 2, gets the sheet with the census data 3, and begins
iterating over its rows 4.

Note that you’ve also created a variable named county_data, which will
contain the populations and number of tracts you calculate for each county.
Before you can store anything in it, though, you should determine exactly
how you’ll structure the data inside it.

Step 2: Populate the Data Structure
In the United States, states have two-letter abbreviations and are further
split into counties. The data structure stored in county_data will be a diction-
ary with state abbreviations as its keys. Each state abbreviation will map to
another dictionary, whose keys are strings of the county names in that state.
Each county name will in turn map to a dictionary with just two keys, 'tracts'
and 'pop'. These keys map to the number of census tracts and the population
for the county. For example, the dictionary will look similar to this:

{'AK': {'Aleutians East': {'pop': 3141, 'tracts': 1},
 'Aleutians West': {'pop': 5561, 'tracts': 2},
 'Anchorage': {'pop': 291826, 'tracts': 55},
 'Bethel': {'pop': 17013, 'tracts': 3},
 'Bristol Bay': {'pop': 997, 'tracts': 1},
 --snip--

If the previous dictionary were stored in county_data, the following
expressions would evaluate like this:

>>> county_data['AK']['Anchorage']['pop']
291826
>>> county_data['AK']['Anchorage']['tracts']
55

More generally, the county_data dictionary’s keys will look like this:

county_data[state abbrev][county]['tracts']
county_data[state abbrev][county]['pop']

Now that you know how county_data will be structured, you can write the
code that will fill it with the county data. Add the following code to the bot-
tom of your program:

readCensusExcel.py - Tabulates county population and census tracts

--snip--

for row in range(2, sheet.max_row + 1):
 # Each row in the spreadsheet has data for one census tract.
 state = sheet['B' + str(row)].value
 county = sheet['C' + str(row)].value
 pop = sheet['D' + str(row)].value

Excel Spreadsheets 341

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 # Make sure the key for this state exists.
 1 county_data.setdefault(state, {})
 # Make sure the key for this county in this state exists.
 2 county_data[state].setdefault(county, {'tracts': 0, 'pop': 0})

 # Each row represents one census tract, so increment by one.
 3 county_data[state][county]['tracts'] += 1
 # Increase the county pop by the pop in this census tract.
 4 county_data[state][county]['pop'] += int(pop)

TODO: Open a new text file and write the contents of county_data to it.

The last two lines of code perform the actual calculation work, incre-
menting the value for tracts 3 and increasing the value for pop 4 for the
current county on each iteration of the for loop.

The other code is there because you cannot add a county dictionary as
the value for a state abbreviation key until the key itself exists in county_data.
(That is, county_data['AK']['Anchorage']['tracts'] += 1 will cause an error if
the 'AK' key doesn’t exist yet.) To make sure the state abbreviation key exists
in your data structure, you need to call the setdefault() method to set a
value if one does not already exist for state 1.

Just as the county_data dictionary needs a dictionary as the value for
each state abbreviation key, each of those dictionaries will need its own dic-
tionary as the value for each county key 2. And each of those dictionaries in
turn will need the keys 'tracts' and 'pop' that start with the integer value 0.
(If you ever lose track of the dictionary structure, look back at the example
dictionary at the start of this section.)

Since setdefault() will do nothing if the key already exists, you can call
it on every iteration of the for loop without a problem.

Step 3: Write the Results to a File
After the for loop has finished, the county_data dictionary will contain all of
the population and tract information keyed by county and state. At this point,
you could program more code to write this data to a text file or another Excel
spreadsheet. For now, let’s just use the pprint.pformat() function to write the
county_data dictionary value as a massive string to a file named census2010.py.
Add the following code to the bottom of your program (making sure to keep
it un-indented so that it stays outside the for loop):

readCensusExcel.py - Tabulates county population and census tracts.

--snip--

Open a new text file and write the contents of county_data to it.
print('Writing results...')
result_file = open('census2010.py', 'w')
result_file.write('allData = ' + pprint.pformat(county_data))
result_file.close()
print('Done.')

342 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The pprint.pformat() function produces a string that itself is formatted
as valid Python code. By outputting it to a text file named census2010.py,
you’ve generated a Python program from your Python program! This may
seem complicated, but the advantage is that you can now import census2010.
py just like any other Python module. In the interactive shell, change the
current working directory to the folder with your newly created census2010.
py file and then import it:

>>> import census2010
>>> census2010.allData['AK']['Anchorage']
{'pop': 291826, 'tracts': 55}
>>> anchorage_pop = census2010.allData['AK']['Anchorage']['pop']
>>> print('The 2010 population of Anchorage was ' + str(anchorage_pop))
The 2010 population of Anchorage was 291826

The readCensusExcel.py program was throwaway code: once you have
its results saved to census2010.py, you won’t need to run the program again.
Whenever you need the county data, you can just run import census2010.

Calculating this data by hand would have taken hours; this program did
it in a few seconds. Using openpyxl, you’ll have no trouble extracting informa-
tion saved to an Excel spreadsheet and performing calculations on it. You can
download the complete program from the book’s online resources.

Ideas for Similar Programs
Many businesses and offices use Excel to store various types of data, and it’s
not uncommon for spreadsheets to become large and unwieldy. Any program
that parses an Excel spreadsheet has a similar structure: it loads the spread-
sheet file, preps some variables or data structures, and then loops through
each of the rows in the spreadsheet. Such a program could do the following:

• Compare data across multiple rows in a spreadsheet.

• Open multiple Excel files and compare data between spreadsheets.

• Check whether a spreadsheet has blank rows or invalid data in any cells
and alert the user if it does.

• Read data from a spreadsheet and use it as the input for your Python
programs.

Writing Excel Documents
The openpyxl module also provides ways of writing data, meaning that your
programs can create and edit spreadsheet files. With Python, creating
spreadsheets with thousands of rows of data is simple.

Excel Spreadsheets 343

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Creating and Saving Excel Files
Call the openpyxl.Workbook() function to create a new, blank Workbook object.
Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook() # Create a blank workbook.
>>> wb.sheetnames # The workbook starts with one sheet.
['Sheet']
>>> sheet = wb.active
>>> sheet.title
'Sheet'
>>> sheet.title = 'Spam Bacon Eggs Sheet' # Change the title.
>>> wb.sheetnames
['Spam Bacon Eggs Sheet']

The workbook will start off with a single sheet named Sheet. You can
change the name of the sheet by storing a new string in its title attribute.

Anytime you modify the Workbook object or its sheets and cells, the
spreadsheet file will not be saved until you call the save() workbook method.
Enter the following into the interactive shell (with example3.xlsx in the cur-
rent working directory):

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example3.xlsx')
>>> sheet = wb['Sheet1']
>>> sheet.title = 'Spam Spam Spam'
>>> wb.save('example3_copy.xlsx') # Save the workbook.

Here, we change the name of our sheet. To save our changes, we pass
a filename as a string to the save() method. Passing a different filename
than the original, such as 'example3_copy.xlsx', saves the changes to a copy
of the spreadsheet.

Whenever you edit a spreadsheet you’ve loaded from a file, you should
always save the new, edited spreadsheet with a different filename than the
original. That way, you’ll still have the original spreadsheet file to work with
in case a bug in your code caused the new, saved file to contain incorrect
or corrupted data. Also, the save() method won’t work if the spreadsheet
is currently open in the Excel desktop application. You must first close the
spreadsheet and then run your Python program.

Creating and Removing Sheets
You can create or delete sheets from a workbook with the create_sheet()
method and del operator. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> wb.sheetnames
['Sheet']
>>> wb.create_sheet() # Add a new sheet.

344 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

<Worksheet "Sheet1">
>>> wb.sheetnames
['Sheet', 'Sheet1']
>>> # Create a new sheet at index 0.
>>> wb.create_sheet(index=0, title='First Sheet')
<Worksheet "First Sheet">
>>> wb.sheetnames
['First Sheet', 'Sheet', 'Sheet1']
>>> wb.create_sheet(index=2, title='Middle Sheet')
<Worksheet "Middle Sheet">
>>> wb.sheetnames
['First Sheet', 'Sheet', 'Middle Sheet', 'Sheet1']

The create_sheet() method returns a new Worksheet object named SheetX,
which by default is the last sheet in the workbook. Optionally, you can spec-
ify the index and name of the new sheet with the index and title keyword
arguments.

Continue the previous example by entering the following:

>>> wb.sheetnames
['First Sheet', 'Sheet', 'Middle Sheet', 'Sheet1']
>>> del wb['Middle Sheet']
>>> del wb['Sheet1']
>>> wb.sheetnames
['First Sheet', 'Sheet']

You can use the del operator to delete a sheet from a workbook, just like
you can use it to delete a key-value pair from a dictionary.

Remember to call the save() method to save the changes after adding
sheets to or removing sheets from the workbook.

Writing Values to Cells
Writing values to cells is much like writing values to keys in a dictionary.
Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> sheet = wb['Sheet']
>>> sheet['A1'] = 'Hello, world!' # Edit the cell's value.
>>> sheet['A1'].value
'Hello, world!'

If you have the cell’s coordinate as a string, you can use it just like a dic-
tionary key on the Worksheet object to specify which cell to write to.

Project 10: Update a Spreadsheet
In this project, you’ll write a program to update cells in a spreadsheet of
produce sales. Your program will look through the spreadsheet, find specific

Excel Spreadsheets 345

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

kinds of produce, and update their prices. Download this produceSales3.xlsx
spreadsheet from the book’s online resources. Figure 14-3 shows what the
spreadsheet looks like.

Figure 14-3: A spreadsheet of produce sales

Each row represents an individual sale. The columns are the type of
produce sold (A), the cost per pound of that produce (B), the number of
pounds sold (C), and the total revenue from the sale (D). The TOTAL col-
umn is set to an Excel formula like =ROUND(B2*C2, 2), which multiplies the
row’s cost per pound by the number of pounds sold and rounds the result
to the nearest cent. With this formula, the cells in the TOTAL column
will automatically update themselves if there is a change in the COST PER
POUND and POUNDS SOLD columns.

Now imagine that the prices of garlic, celery, and lemons were entered
incorrectly, leaving you with the boring task of going through thousands of
rows in this spreadsheet to update the cost per pound for any celery, gar-
lic, and lemon rows. You can’t do a simple find-and-replace for the price,
because there might be other items with the same price that you don’t want
to mistakenly “correct.” For thousands of rows, this would take hours to do
by hand. But you can write a program that can accomplish this in seconds.

Your program should do the following:

• Loop over all the rows.

• If the row is for celery, garlic, or lemons, change the price.

This means your code will need to do the following:

• Open the spreadsheet file.

• For each row, check whether the value in column A is Celery, Garlic,
or Lemon.

• If it is, update the price in column B.

• Save the spreadsheet to a new file (so that you don’t lose the original
spreadsheet, just in case).

346 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Step 1: Set Up a Data Structure with the Updated Information
The prices that you need to update are as follows:

• Celery: 1.19

• Garlic: 3.07

• Lemon: 1.27

You could write code to set these new prices, like this:

if produce_name == 'Celery':
 cell_obj = 1.19
if produce_name == 'Garlic':
 cell_obj = 3.07
if produce_name == 'Lemon':
 cell_obj = 1.27

But hardcoding the produce and updated price data like this is a bit
inelegant. If you needed to update the spreadsheet again with different
prices or different produce, you would have to change a lot of the code.
Every time you change code, you risk introducing bugs.

A more flexible solution is to store the corrected price information in a
dictionary and write your code to use this data structure. In a new file edi-
tor tab, enter the following code:

updateProduce.py - Corrects costs in produce sales spreadsheet

import openpyxl

wb = openpyxl.load_workbook('produceSales3.xlsx')
sheet = wb['Sheet']

The produce types and their updated prices
PRICE_UPDATES = {'Garlic': 3.07,
 'Celery': 1.19,
 'Lemon': 1.27}

TODO: Loop through the rows and update the prices.

Save this as updateProduce.py. If you need to update the spreadsheet again,
you’ll need to update only the PRICE_UPDATES dictionary, not any other code.

Step 2: Check All Rows and Update Incorrect Prices
The next part of the program will loop through all the rows in the spread-
sheet. Add the following code to the bottom of updateProduce.py:

#! python3
updateProduce.py - Corrects costs in produce sales spreadsheet

--snip--

Excel Spreadsheets 347

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Loop through the rows and update the prices.
1 for row_num in range(2, sheet.max_row + 1): # Skip the first row.
 2 produce_name = sheet.cell(row=row_num, column=1).value
 3 if produce_name in PRICE_UPDATES:
 sheet.cell(row=row_num, column=2).value = PRICE_UPDATES[produce_name]

4 wb.save('updatedProduceSales3.xlsx')

We loop through the rows starting at row 2, as row 1 is just the header 1.
The cell in column 1 (that is, column A) will be stored in the variable produce
_name 2. If produce_name exists as a key in the PRICE_UPDATES dictionary 3, you
know this row needs its price corrected. The correct price will be in PRICE
_UPDATES[produce_name].

Notice how clean using PRICE_UPDATES makes the code. It uses only one
if statement, rather than a separate line like if produce_name == 'Garlic': for
every type of produce to update. And since the code uses the PRICE_UPDATES
dictionary instead of hardcoding the produce names and updated costs
into the for loop, you can modify only the PRICE_UPDATES dictionary, and
not the rest of the code, if the produce sales spreadsheet needs additional
changes.

After going through the entire spreadsheet and making changes, the
code saves the Workbook object to updatedProduceSales.xlsx 4. It doesn’t over-
write the old spreadsheet, in case there’s a bug in the program and the
updated spreadsheet is wrong. After checking that the updated spreadsheet
looks right, you can delete the old spreadsheet.

Ideas for Similar Programs
Since many office workers use Excel spreadsheets all the time, a program
that can automatically edit and write Excel files could be really useful. Such
a program could do the following:

• Read data from one spreadsheet and write it to parts of other
spreadsheets.

• Read data from websites, text files, or the clipboard and write it to a
spreadsheet.

• Automatically “clean up” data in spreadsheets. For example, it could
use regular expressions to read multiple formats of phone numbers and
edit them to a single, standard format.

Setting the Font Style of Cells
Styling certain cells, rows, or columns can help you emphasize important
areas in your spreadsheet. In the produce spreadsheet, for example, your
program could apply bold text to the potato, garlic, and parsnip rows. Or
perhaps you want to italicize every row with a cost per pound greater than
$5. Styling parts of a large spreadsheet by hand would be tedious, but your
programs can do it instantly.

348 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

To customize font styles in cells, import the Font() function from the
openpyxl.styles module:

from openpyxl.styles import Font

Importing the function in this way allows you to write Font() instead of
openpyxl.styles.Font(). (See “Importing Modules” on page XX in Chapter 3
for more information.)

The following example creates a new workbook and sets cell A1 to a
24-point italic font:

>>> import openpyxl
>>> from openpyxl.styles import Font
>>> wb = openpyxl.Workbook()
>>> sheet = wb['Sheet']
1 >>> italic_24_font = Font(size=24, italic=True)
2 >>> sheet['A1'].font = italic_24_font
>>> sheet['A1'] = 'Hello, world!'
>>> wb.save('styles3.xlsx')

In this example, Font(size=24, italic=True) returns a Font object, which
we store in italic_24_font 1. The keyword arguments to Font() configure
the object’s styling information, and assigning sheet['A1'].font the italic
_24_font object 2 applies all of that font-styling information to cell A1.

To set font attributes, pass keyword arguments to Font(). Table 14-2
shows the possible keyword arguments for the Font() function.

Table 14-2: Keyword Arguments for Font Objects

Keyword argument Data type Description

name String The font name, such as 'Calibri' or
'Times New Roman'

size Integer The point size

bold Boolean True, for bold font

italic Boolean True, for italic font

You can call Font() to create a Font object and store that Font object in
a variable. You then assign that variable to a Cell object’s font attribute. For
example, this code creates various font styles:

>>> import openpyxl
>>> from openpyxl.styles import Font
>>> wb = openpyxl.Workbook()
>>> sheet = wb['Sheet']
>>> bold_font = Font(name='Times New Roman', bold=True)
>>> sheet['A1'].font = bold_font
>>> sheet['A1'] = 'Bold Times New Roman'

Excel Spreadsheets 349

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> italic_font = Font(size=24, italic=True)
>>> sheet['B3'].font = italic_font
>>> sheet['B3'] = '24 pt Italic'

>>> wb.save('styles3.xlsx')

Here, we store a Font object in bold_font and then set the A1 Cell object’s
font attribute to bold_font. We repeat the process with another Font object
to set the font of a second cell. After you run this code, the styles of the
A1 and B3 cells in the spreadsheet will have custom font styles, as shown
in Figure 14-4.

Figure 14-4: A spreadsheet with custom font styles

For cell A1, we set the font name to 'Times New Roman' and set bold to true,
so the text appears in bold Times New Roman. We didn’t specify a point
size, so the text uses the openpyxl default, 11. In cell B3, the text is italic, with
a point size of 24. We didn’t specify a font name, so the text uses the openpyxl
default, Calibri.

Formulas
Excel formulas, which begin with an equal sign, can configure cells to con-
tain values calculated from other cells. In this section, you’ll use the openpyxl
module to programmatically add formulas to cells, just as you would add
any normal value. Here is an example:

>>> sheet['B9'] = '=SUM(B1:B8)'

This code will store the formula =SUM(B1:B8) in B9, setting the cell’s
value to the sum of values in cells B1 to B8. You can see this in action in
Figure 14-5.

350 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 14-5: Cell B9 contains the
formula =SUM(B1:B8), which adds the
values in cells B1 to B8.

You can set an Excel formula just like any other text value in a cell. For
instance, enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> sheet = wb['Sheet']
>>> sheet['A1'] = 200
>>> sheet['A2'] = 300
>>> sheet['A3'] = '=SUM(A1:A2)' # Set the formula.
>>> wb.save('writeFormula3.xlsx')

The cells in A1 and A2 are set to 200 and 300, respectively. The value
in cell A3 is set to a formula that sums the values in A1 and A2. When the
spreadsheet is opened in Excel, A3 will display its value as 500.

The openpyxl module doesn’t have the ability to calculate Excel formulas
and populate cells with the results. However, if you open this writeFormula3
.xlsx file in Excel, Excel itself will populate the cells with the formula results.
You can save the file in Excel, and then open it while passing the data_only
=True keyword argument to openpyxl.load_workbook(), and the cell values
should show the calculation results instead of the formula string:

>>> # Be sure to open writeFormula3.xlsx in Excel and save it first.
>>> import openpyxl
>>> wb = openpyxl.load_workbook('writeFormula3.xlsx') # Open without data_only.
>>> wb.active['A3'].value # Get the formula string.
'=SUM(A1:A2)'
>>> wb = openpyxl.load_workbook('writeFormula3.xlsx', data_only=True) # Open with data_only.
>>> wb.active['A3'].value # Get the formula result.
500

Again, you’ll only see the 500 result in the spreadsheet file if you opened
and saved it in Excel so that Excel could run the formula calculation and
store the result in the spreadsheet file. This is the value openpyxl reads when
you pass data_only=True to openpyxl.load_workbook().

Excel Spreadsheets 351

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Excel formulas offer a level of programmability for spreadsheets, but they
can quickly become unmanageable for complicated tasks. For example, even
if you’re deeply familiar with Excel formulas, it’s a headache to try to deci-
pher what =IFERROR(TRIM(IF(LEN(VLOOKUP(F7, Sheet2!A1:B10000, 2,
FALSE))>0,SUBSTITUTE(VLOOKUP(F7, Sheet2!A1:B10000, 2, FALSE), " ",
""),"")), "") actually does. Python code is much more readable.

Adjusting Rows and Columns
In Excel, adjusting the sizes of rows and columns is as easy as clicking and
dragging the edges of a row or column header. But if you need to set the
size of a row or column based on its cells’ contents, or if you want to set sizes
in a large number of spreadsheet files, it’s much quicker to write a Python
program to do it.

You can also hide rows and columns from view, or “freeze” them in
place so that they’re always visible on the screen, appearing on every page
when you print the spreadsheet (which is handy for headers).

Setting Row Height and Column Width
A Worksheet object has row_dimensions and column_dimensions attributes that
control row heights and column widths. For example, enter the following
into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> sheet = wb['Sheet']
>>> sheet['A1'] = 'Tall row'
>>> sheet['B2'] = 'Wide column'
>>> sheet.row_dimensions[1].height = 70
>>> sheet .column _dimensions['B'] .width = 20
>>> wb.save('dimensions3.xlsx')

A sheet’s row_dimensions and column_dimensions are dictionary-like values;
row_dimensions contains RowDimension objects, and column_dimensions contains
ColumnDimension objects. In row_dimensions, you can access one of the objects
using the number of the row (in this case, 1 or 2). In column_dimensions, you can
access one of the objects using the letter of the column (in this case, A or B).

The dimensions3.xlsx spreadsheet looks like Figure 14-6.

Figure 14-6: Row 1 and column B set to
larger heights and widths

352 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The default width and height of cells varies between versions of Excel
and openpyxl.

Merging and Unmerging Cells
You can merge a rectangular group of cells into a single cell with the merge
_cells() sheet method. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> sheet = wb['Sheet']
>>> sheet.merge_cells('A1:D3') # Merge all these cells.
>>> sheet['A1'] = 'Twelve cells merged together.'
>>> sheet.merge_cells('C5:D5') # Merge these two cells.
>>> sheet['C5'] = 'Two merged cells.'
>>> wb.save('merged3.xlsx')

The argument to merge_cells() is a single string of the top-left and
bottom -right cells of the rectangular area to be merged: 'A1:D3' merges
12 cells into a single cell. To set the value of these merged cells, simply set
the value of the top-left cell of the merged group.

When you run this code, merged.xlsx will look like Figure 14-7.

Figure 14-7: Merged cells in a spreadsheet

To unmerge cells, call the unmerge_cells() sheet method:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('merged3.xlsx')
>>> sheet = wb['Sheet']
>>> sheet.unmerge_cells('A1:D3') # Split these cells up.
>>> sheet.unmerge_cells('C5:D5')
>>> wb.save('unmerged3.xlsx')

If you save your changes and then take a look at the spreadsheet, you’ll
see that the merged cells have gone back to being individual cells.

Freezing Panes
For spreadsheets that are too large to be displayed all at once, it’s helpful to
“freeze” a few of the top rows or leftmost columns onscreen. Frozen column
or row headers, for example, are always visible to the user even as they scroll
through the spreadsheet. These are known as freeze panes.

Excel Spreadsheets 353

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In openpyxl, each Worksheet object has a freeze_panes attribute that you
can set to a Cell object or a string of a cell’s coordinates. Note that this attri-
bute will freeze all rows above this cell and all columns to the left of it, but
not the row and column of the cell itself. To unfreeze all panes, set freeze
_panes to None or 'A1'. Table 14-3 shows which rows and columns get frozen
for some example settings of freeze_panes.

Table 14-3: Frozen Pane Examples

freeze_panes setting Rows and columns frozen

sheet.freeze_panes = 'A2' Row 1 (no columns frozen)

sheet.freeze_panes = 'B1' Column A (no rows frozen)

sheet.freeze_panes = 'C1' Columns A and B (no rows frozen)

sheet.freeze_panes = 'C2' Row 1 and columns A and B

sheet.freeze_panes = 'A1' or sheet.freeze_panes
= None

No frozen rows or columns

Download another copy of the produceSales3.xlsx spreadsheet, then enter
the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('produceSales3.xlsx')
>>> sheet = wb.active
>>> sheet.freeze_panes = 'A2' # Freeze the rows above A2.
>>> wb.save('freezeExample3.xlsx')

You can see the result in Figure 14-8.

Figure 14-8: Freezing row 1

Because you set the freeze_panes attribute to 'A2', row 1 will remain vis-
ible, no matter where the user scrolls in the spreadsheet.

354 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Charts
The openpyxl module supports creating bar, line, scatter, and pie charts using
the data in a sheet’s cells. To make a chart, you need to do the following:

 1. Create a Reference object from a rectangular selection of cells.

 2. Create a Series object by passing in the Reference object.

 3. Create a Chart object.

 4. Append the Series object to the Chart object.

 5. Add the Chart object to the Worksheet object, optionally specifying which
cell should be the top-left corner of the chart.

The Reference object requires some explaining. To create Reference objects,
you must call the openpyxl.chart.Reference() function and pass five arguments:

• The Worksheet object containing your chart data.

• The column and row integer of the top-left cell of the rectangular selec-
tion of cells containing your chart data: the first integer in the tuple is the
row, and the second is the column. Note that 1 is the first row, not 0.

• The column and row integer of the bottom-right cell of the rectangu-
lar selection of cells containing your chart data: the first integer in the
tuple is the row, and the second is the column.

Enter this interactive shell example to create a bar chart and add it to
the spreadsheet:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> sheet = wb.active
>>> for i in range(1, 11): # Create some data in column A.
... sheet['A' + str(i)] = i * i
...
>>> ref_obj = openpyxl.chart.Reference(sheet, 1, 1,
1, 10)

>>> series_obj = openpyxl.chart.Series(ref_obj, title='First series')

>>> chart_obj = openpyxl.chart.BarChart()
>>> chart_obj.title = 'My Chart'
>>> chart_obj.append(series_obj)

>>> sheet.add_chart(chart_obj, 'C5')
>>> wb.save('sampleChart3.xlsx')

This code produces a spreadsheet that looks like Figure 14-9.

Excel Spreadsheets 355

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 14-9: A spreadsheet with a chart added

We’ve created a bar chart by calling openpyxl.chart.BarChart(). You can
also create line charts, scatter charts, and pie charts by calling openpyxl .chart
.LineChart(), openpyxl.chart.ScatterChart(), and openpyxl.chart.PieChart().

Summary
Often, the hard part of processing information isn’t the processing itself
but simply getting the data in the right format for your program. But once
you’ve loaded your Excel spreadsheet into Python, you can extract and
manipulate its data much faster than you could by hand.

You can also generate spreadsheets as output from your programs. So, if
colleagues need a text file or PDF of thousands of sales contacts transferred
to a spreadsheet file, you won’t have to tediously copy and paste it all into
Excel. Equipped with the openpyxl module and some programming knowl-
edge, you’ll find processing even the biggest spreadsheets a piece of cake.

In the next chapter, we’ll take a look at using Python to interact with
another spreadsheet program: the popular online Google Sheets application.

Practice Questions
For the following questions, imagine you have a Workbook object in the vari-
able wb, a Worksheet object in sheet, and a Sheet object in sheet.

 1. What does the openpyxl.load_workbook() function return?

 2. What does the wb.sheetnames workbook attribute contain?

 3. How would you retrieve the Worksheet object for a sheet named 'Sheet1'?

356 Chapter 14

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 4. How would you retrieve the Worksheet object for the workbook’s active
sheet?

 5. How would you retrieve the value in cell C5?

 6. How would you set the value in cell C5 to "Hello"?

 7. How would you retrieve the cell’s row and column as integers?

 8. What do the sheet.max_column and sheet.max_row sheet attributes hold,
and what is the data type of these attributes?

 9. If you needed to get the integer index for column 'M', what function
would you need to call?

 10. If you needed to get the string name for row 14, what function would
you need to call?

 11. How can you retrieve a tuple of all the Cell objects from A1 to F1?

 12. How would you save the workbook to the filename example3.xlsx?

 13. How do you set a formula in a cell?

 14. If you want to retrieve the result of a cell’s formula instead of the cell’s
formula itself, what must you do first?

 15. How would you set the height of row 5 to 100?

 16. How would you hide column C?

 17. What is a freeze pane?

 18. What five functions and methods do you have to call to create a
bar chart?

Practice Programs
For practice, write programs to do the following tasks.

Multiplication Table Maker
Create a program multiplicationTable.py that takes a number N from the com-
mand line and creates an N×N multiplication table in an Excel spreadsheet.
For example, when the program is run like this

py multiplicationTable.py 6

it should create a spreadsheet that looks like Figure 14-10.

Figure 14-10: A multiplication table
generated in a spreadsheet

Excel Spreadsheets 357

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Row 1 and column A should contain labels and be in bold.

Blank Row Inserter
Create a program blankRowInserter.py that takes two integers and a filename
string as command line arguments. Let’s call the first integer N and the sec-
ond integer M. Starting at row N, the program should insert M blank rows
into the spreadsheet. For example, when the program is run like this . . .

python blankRowInserter.py 3 2 myProduce.xlsx

. . . the “before” and “after” spreadsheets should look like Figure 14-11.

Figure 14-11: Before (left) and after (right) the two blank rows are inserted at row 3

You can write this program by reading in the contents of the spread-
sheet. Then, when writing out the new spreadsheet, use a for loop to copy
the first N lines. For the remaining lines, add M to the row number in the
output spreadsheet.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Google Sheets, the free, web-based spread-
sheet application available to anyone with

a Google account or Gmail address, has
become a useful, feature-rich competitor to

Excel. Google Sheets has its own API, but this API can
be confusing to learn and use. This chapter covers the
EZSheets third-party library, which presents you with a
simpler way to perform common actions, handling the
details of the Google Sheets API so that you don’t have
to learn them.

Installing and Setting Up EZSheets
You can install EZSheets with the pip command line tool by following the
instructions in Appendix A.

15
G O O G L E S H E E T S

360 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Before your Python scripts can use EZSheets to access and edit your
Google Sheets spreadsheets, you need a credentials JSON file and two token
JSON files. There are five parts to creating credentials:

 1. Create a new Google Cloud project.

 2. Enable the Google Sheets API and Google Drive API for your project.

 3. Configure the OAuth consent screen.

 4. Create credentials.

 5. Log in with the credentials file.

This may seem like a lot of work, but you have to perform this setup
only once, and doing it is free. You’ll need a Google/Gmail account; I
strongly recommend creating a new Google account instead of using your
existing one, to prevent a bug in your Python script from affecting the
spreadsheets in your personal Google account. Throughout this chapter,
I’ll say your Google account and your Gmail email address to refer to the Google
account that owns the spreadsheets your Python program accesses.

Google may slightly change the layout or wording on its Google Cloud
Console website. However, the basic steps I’ve outlined should remain
the same.

Creating a New Google Cloud Project
First, you need to set up a Google Cloud project. In your browser, go to
https://console .cloud .google .com and sign in to your Google account with your
username and password. You will be taken to a Getting Started page. At the
top of the page, click Select a project. In the pop-up window that appears,
click New Project. This should take you to a new project page.

Google Cloud will generate a project name like “My Project 23135” for
you, along with a random project ID, like “macro-nuance-362516.” These val-
ues won’t be visible to users of your Python scripts, and you can change the
project name to whatever name you want, but you cannot change the project
ID. I just use the default name that the website generates for me. You can
leave the location set to “No organization.” Free Google accounts can have
up to 12 projects, but you need only one project for all the Python scripts
you want to create. Click the blue Create button to create the project.

Enabling the Sheets and Drive APIs
On the https://console .cloud .google .com page, click the Navigation button in
the upper left. (The icon has three horizontal stripes and is often called the
hamburger icon.) Go to APIs & Services Library to visit the API Library
page. You’ll see many Google APIs for Gmail, Google Maps, Google Cloud
Storage, and other Google services. We need to allow our project to use the
Google Sheets and Google Drive APIs. EZSheets uses the Google Drive API
to upload and download spreadsheet files.

Scroll down, locate the Google Sheets API, and click it, or enter
“Google Sheets API” into the search bar to find it. This should take you to

https://console.cloud.google.com
https://console.cloud.google.com

Google Sheets 361

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

the Google Sheets API page. Click the blue Enable button to enable your
Google Cloud project to use the Google Sheets API. You’ll be redirected to
the APIs & ServicesEnabled APIs & Services page, where you can find
information about how often your Python scripts are using this API. Repeat
this process for the Google Drive API to enable it as well.

Next, you need to configure your project’s OAuth consent screen.

Configuring the OAuth Consent Screen
The OAuth consent screen will appear to the user when they first run import
ezsheets. On the Step 1 OAuth consent screen page, select External and click
the blue Create button. The next page should show what the OAuth con-
sent screen looks like. Pick a name for the App Name field (I use something
generic, like “Python Google API Script”), and enter your email address for
the User Support Email and Developer Contact Information field. Then
click the Save and Continue button.

On the Step 2 Scopes page, define your project’s scopes, or the permis-
sions for the resources the project is allowed to access. Click the Add or
Remove Scopes button, and in the new panel that appears, go through the
table and check the checkboxes for the scopes .../auth/drive (the Google
Drive API) and .../auth/spreadsheets (the Google Sheets API). Then, click the
blue Update button and then click Save and Continue.

The Step 3 Test users page requires you to add the Gmail email addresses
of the Google accounts that own the spreadsheets your Python script will
interact with. Unless you go through Google’s app approval process, your
scripts are limited to interacting with the email addresses you provide in
this step. Click the + Add Users button. In the new panel that appears,
enter the Gmail address of your Google account and click the blue Add but-
ton. Then click Save and Continue.

The Step 4 Summary page provides a summary of the previous steps. If
all the information looks right, click the BACK TO DASHBOARD button.
The next step is to create credentials for your project.

Creating Credentials
First, you’ll need to create a credentials file. EZSheets needs this to use
the Google API, even for spreadsheets that are publicly shared. From the
Navigation sidebar menu, click APIs & Services and then Credentials to go
to the Credentials page. Then click the + Create Credentials link at the top
of the page. A submenu should open asking what kind of credentials you
want to create: API Key, OAuth Client ID, or Service Account. Click OAuth
Client ID.

On the next page, select Desktop App for the Application Type and
leave Name as the default “Desktop client 1.” You can change it to a differ-
ent name if you want; it doesn’t appear to the users of your Python script.
Click the blue Create button.

A pop-up window should appear. Click Download JSON to download
the credentials file, which should have a name like client _secret _2827922
35794 -p2o9gfcub4htibfg2u207gcomco9nqm7 .apps .googleusercontent .com .json.

362 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Place it in the same folder as your Python script. For simplicity, you can also
rename the JSON file to credentials-sheets.json. EZSheets searches for creden-
tials-sheets.json or any file that matches the client_secret_*.json format.

Logging In with the Credentials File
Run the Python interactive shell from the same folder that the credentials
JSON file is in and then run import ezsheets. EZSheets automatically checks
the current working directory for the credentials JSON file by calling the
ezsheets .init() function. If the file is found, EZSheets launches your web
browser to the OAuth consent screen to generate token files. EZSheets also
requires these token files, named token-drive.pickle and token-sheets.pickle, along
with the credentials file to access spreadsheets. Generating token files is a
one-time setup step that won’t happen the next time you run import ezsheets.

Sign in with your Google account. This must be the same email address
you provided for the “Test User” when configuring the Google Cloud proj-
ect’s OAuth consent screen. You should get a warning message that reads,
“Google hasn’t verified this app,” which is fine, because you are the app
creator. Click the Continue link. You should arrive at another page that
says something like “Python Google API Script wants access to your Google
Account” (or whichever name you gave in the OAuth consent screen setup).
Click Continue. You’ll come to a plain web page that says, “The authentica-
tion flow has completed.” You can now close the browser window.

Once you’ve completed the authentication flow for the Sheets API, you
must repeat this process for the Drive API in the window that opens next.
After closing the second window, you should now see token-drive.pickle and
token-sheets.pickle files in the same folder as your credentials JSON file. Treat
these files like passwords and do not share them: they can be used to log in
and access your Google Sheets spreadsheets.

Revoking the Credentials File
If you accidentally share the credential or token files with someone, they
won’t be able to change your Google account password, but they will have
access to your spreadsheets. You can revoke these files by logging in to
https://console .developers .google .com. Click the Credentials link on the sidebar.
Then, in the OAuth 2.0 Client IDs table, click the trash can icon next to the
credentials file you’ve accidentally shared. Once revoked, the credentials
and token files are useless, and you can delete them. You’ll then have to
generate a new credentials JSON file and token files.

Spreadsheet Objects
In Google Sheets, a spreadsheet can contain multiple sheets (also called
worksheets), and each sheet contains columns and rows of cells. Cells con-
tain data such as numbers, dates, or bits of text. Cells also have proper-
ties such as fonts, widths and heights, and background colors. Figure 15-1

https://console.developers.google.com

Google Sheets 363

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

shows a spreadsheet titled Sweigart Books containing two sheets, titled Books
and Websites. You can view this spreadsheet in your browser by going to
https://autbor .com /examplegs. The first column of each sheet is labeled A, and
the first row is labeled 1. (This differs from Python lists, whose first item
appears at index 0.)

Figure 15-1: A spreadsheet titled Sweigart Books with two sheets, Books and Websites

While most of your work will involve modifying the Sheet objects, you
can also modify Spreadsheet objects, as you’ll see in the next section.

Creating, Uploading, and Listing Spreadsheets
You can make a new Spreadsheet object from an existing Google Sheets
spreadsheet, a new blank spreadsheet, or an uploaded Excel spreadsheet.
All Google Sheets spreadsheets have a unique ID that can be found in
their URL, after the spreadsheets/d/ part and before the /edit part. For
example, in the URL https://docs .google .com /spreadsheets /d /1TzOJxhNKr15
tzdZxTqtQ3EmDP6em _elnbtmZIcyu8vI /edit#gid =0 /, the ID would be
1TzOJxhNKr15tzdZxTqtQ3EmDP6em_elnbtmZIcyu8vI.

A Google Sheets spreadsheet is represented as an ezsheets.Spreadsheet
object, which has id, url, and title attributes. You can create a new, blank
spreadsheet with the Spreadsheet() function:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet()
>>> ss.title = 'Title of My New Spreadsheet'
>>> ss.title
'Title of My New Spreadsheet'

https://autbor.com/examplegs

364 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> ss.url
'https://docs .google .com /spreadsheets /d /1gxz -Qr2 -RNtqi _d7wWlsDlbtPLRQigcEXvCtdVwmH40 /'
>>> ss.id
'1gxz-Qr2-RNtqi_d7wWlsDlbtPLRQigcEXvCtdVwmH40'

You can also load an existing spreadsheet by passing its ID or URL, or a
URL that redirects to its URL:

>>> import ezsheets
>>> ss1 = ezsheets .Spreadsheet('https://autbor .com /examplegs')
>>> ss2 = ezsheets .Spreadsheet('https://docs .google .com /spreadsheets /d /1TzOJxh
NKr15tzdZxTqtQ3EmDP6em_elnbtmZIcyu8vI/')
>>> ss3 = ezsheets.Spreadsheet('1TzOJxhNKr15tzdZxTqtQ3EmDP6em_elnbtmZIcyu8vI')
>>> ss1 == ss2 == ss3 # These are the same spreadsheet.
True

To upload an existing Excel, OpenOffice, CSV, or TSV spreadsheet to
Google Sheets, pass the spreadsheet’s filename to ezsheets.upload(). Enter
the following into the interactive shell, replacing my_spreadsheet.xlsx with a
spreadsheet file of your own:

>>> import ezsheets
>>> ss = ezsheets.upload('my_spreadsheet.xlsx')
>>> ss.title
'my_spreadsheet'

You can list the spreadsheets in your Google account by calling the
listSpreadsheets() function. This function returns a dictionary whose keys
are spreadsheet IDs and whose values are the titles of each spreadsheet. It
includes deleted spreadsheets in your account’s Trash folder. Try entering
the following into the interactive shell after uploading a spreadsheet:

>>> ezsheets.listSpreadsheets()
{'1J-Jx6Ne2K_vqI9J2SO-TAXOFbxx_9tUjwnkPC22LjeU': 'Education Data'}

Once you’ve obtained a Spreadsheet object, you can use its attributes and
methods to manipulate the online spreadsheet hosted on Google Sheets.

Accessing Spreadsheet Attributes
While the actual data lives in a spreadsheet’s individual sheets, the Spread
sheet object has the following attributes for manipulating the spreadsheet
itself: title, id, url, sheetTitles, and sheets. Let’s examine the spreadsheet at
https://autbor .com /examplegs. Your Google account has permissions to view but
not modify it, but you can copy the sheet to a newly created spreadsheet in
your own account:

>>> import ezsheets
>>> example_ss = ezsheets .Spreadsheet('https://autbor .com /examplegs')
>>> ss = ezsheets.Spreadsheet()
>>> example _ss .sheets[0] .copyTo(ss)

https://autbor.com/examplegs

Google Sheets 365

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> ss.sheets[0].delete() # Delete the Sheet1 sheet.
>>> ss.url
'https://docs .google .com /spreadsheets /d /15gjrbgTmUzItRt9KUcL4JajLaQU70xanstB1dXKoSlM /'

The newly copied sheet will have the title Copy of Books, as Books was the
name of the original sheet. Continue the interactive shell example with
the following code:

>>> ss.title # The title of the spreadsheet
'Untitled spreadsheet'
>>> ss.title = 'Sweigart Books' # Change the title.
>>> ss.id # The unique ID (a read-only attribute)
'15gjrbgTmUzItRt9KUcL4JajLaQU70xanstB1dXKoSlM'
>>> ss.url # The original URL (a read-only attribute)
'https://docs .google .com /spreadsheets /d /15gjrbgTmUzItRt9KUcL4JajLaQU70xanstB1dXKoSlM /'
>>> ss.sheetTitles # The titles of all the Sheet objects
('Copy of Books',)
>>> ss.sheets # The Sheet objects in this Spreadsheet, in order
(<Sheet sheetId=1464919459, title='Copy of Books', rowCount=1000, columnCount=26>,)
>>> ss.sheets[0] # The first Sheet object in this Spreadsheet
<Sheet sheetId=1464919459, title='Copy of Books', rowCount=1000, columnCount=26>
>>> ss['Copy of Books'] # Sheets can also be accessed by title.
<Sheet sheetId=1464919459, title='Copy of Books', rowCount=1000, columnCount=26>
>>> ss.Sheet('New blank sheet') # Create a new sheet.
<Sheet sheetId=1759616008, title='New blank sheet', rowCount=1000, columnCount=26>
>>> ss.sheets[1].delete() # Delete the second Sheet object in this Spreadsheet.

If someone changes the spreadsheet in their browser, your script can
update the Spreadsheet object to match the online data by calling the
refresh() method:

>>> ss.refresh()

This will refresh not only the Spreadsheet object’s attributes but also the
data in the Sheet objects it contains. You’ll see the changes you make to
the Spreadsheet object applied to the online spreadsheet in real time.

Downloading and Uploading Spreadsheets
You can download a Google Sheets spreadsheet in a number of formats:
Excel, OpenOffice, CSV, TSV, and PDF. You can also download it as a ZIP
file containing HTML files of the spreadsheet’s data. EZSheets contains
functions for each of these options:

>>> import ezsheets
>>> ss = ezsheets .Spreadsheet('https://autbor .com /examplegs')
>>> ss.title
'Sweigart Books (DO NOT DELETE)'
>>> ss.downloadAsExcel() # Downloads the spreadsheet as an Excel file
'Sweigart_Books.xlsx'
>>> ss.downloadAsODS() # Downloads the spreadsheet as an OpenOffice file
'Sweigart_Books.ods'

366 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> ss.downloadAsCSV() # Downloads only the first sheet as a CSV file
'Sweigart_Books.csv'
>>> ss.downloadAsTSV() # Downloads only the first sheet as a TSV file
'Sweigart_Books.tsv'
>>> ss.downloadAsPDF() # Downloads the spreadsheet as a PDF
'Sweigart_Books.pdf'
>>> ss.downloadAsHTML() # Downloads the spreadsheet as a ZIP of HTML files
'Sweigart_Books.zip'

Note that files in the CSV or TSV format can contain only one sheet;
therefore, if you download a Google Sheets spreadsheet in either of these
formats, you will get the first sheet only. To download other sheets, you’ll
need to reorder the Sheet objects before downloading.

The download functions all return a string of the downloaded file’s file-
name. You can also specify your own filename for the spreadsheet by pass-
ing the new filename to the download function:

>>> ss.downloadAsExcel('a_different_filename.xlsx')
'a_different_filename.xlsx'

The function returns the local filename.

Deleting Spreadsheets
To delete a spreadsheet, call the delete() method:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet() # Create the spreadsheet.
>>> ezsheets.listSpreadsheets() # Confirm that we've created a spreadsheet.
{'1aCw2NNJSZblDbhygVv77kPsL3djmgV5zJZllSOZ_mRk': 'Delete me'}
>>> ss.delete() # Delete the spreadsheet.
>>> ezsheets.listSpreadsheets() # Spreadsheets in the Trash folder are still listed.
{'1aCw2NNJSZblDbhygVv77kPsL3djmgV5zJZllSOZ_mRk': 'Delete me'}

The delete() method will move your spreadsheet to the Trash folder on
your Google Drive. You can view the contents of your Trash folder at https://
drive .google .com /drive /trash. Notice that spreadsheets in the Trash folder will
still appear in the dictionary returned by listSpreadsheets(). To permanently
delete your spreadsheet, pass True for the permanent keyword argument:

>>> ss.delete(permanent=True)
>>> ezsheets.listSpreadsheets()
{}

In general, permanently deleting your spreadsheets with automated
scripts is not a good idea, because it’s impossible to recover a spreadsheet
that a bug in your script accidentally deleted. Even free Google Drive
accounts have gigabytes of storage available, so you most likely don’t need
to worry about freeing up space.

https://drive.google.com/drive/trash
https://drive.google.com/drive/trash

Google Sheets 367

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Sheet Objects
A Spreadsheet object will have one or more Sheet objects. The Sheet objects
represent the rows and columns of data in each sheet. You can access these
sheets using the square brackets operator and an integer index.

The Spreadsheet object’s sheets attribute holds a tuple of Sheet objects
in the order in which they appear in the spreadsheet. To access the Sheet
objects in a spreadsheet, enter the following into the interactive shell:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet() # Starts with a sheet named Sheet1
>>> sheet2 = ss.Sheet('Spam')
>>> sheet3 = ss.Sheet('Eggs')
>>> ss.sheets # The Sheet objects in this Spreadsheet, in order
(<Sheet sheetId=0, title='Sheet1', rowCount=1000, columnCount=26>, <Sheet sheetId=284204004,
title='Spam', rowCount=1000, columnCount=26>, <Sheet sheetId=1920032872, title='Eggs',
rowCount=1000, columnCount=26>)
>>> ss.sheets[0] # Gets the first Sheet object in this Spreadsheet
<Sheet sheetId=0, title='Sheet1', rowCount=1000, columnCount=26>

The Spreadsheet object’s sheetTitles attribute holds a tuple of all the
sheet titles. For example, enter the following into the interactive shell:

>>> ss.sheetTitles # The titles of all the Sheet objects in this Spreadsheet
('Sheet1', 'Spam', 'Eggs')

Once you have a Sheet object, you can read data from it and write data
to it using the Sheet object’s methods, as explained in the next section.

Reading and Writing Data
Just as in Excel, Google Sheets worksheets have columns and rows of cells
containing data. You can use the square brackets operator [] to read and
write data from and to these cells. For example, to create a new spreadsheet
and add data to it, enter the following into the interactive shell:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet()
>>> ss.title = 'My Spreadsheet'
>>> sheet = ss.sheets[0] # Get the first sheet in this spreadsheet.
>>> sheet.title
'Sheet1'
>>> sheet['A1'] = 'Name' # Set the value in cell A1.
>>> sheet['B1'] = 'Age'
>>> sheet['C1'] = 'Favorite Movie'
>>> sheet['A1'] # Read the value in cell A1.
'Name'
>>> sheet['A2'] # Empty cells return a blank string.
''
>>> sheet[2, 1] # Column 2, Row 1 is the same address as B1.
'Age'
>>> sheet['A2'] = 'Alice'

368 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> sheet['B2'] = 30
>>> sheet['C2'] = 'RoboCop'
>>> sheet['B2'] # Note that all data is returned as strings.
'30'

These instructions should produce a Google Sheets spreadsheet that
looks like Figure 15-2.

Figure 15-2 The spreadsheet created with the
example instructions

All of the data in the Sheet object is loaded when the Spreadsheet object
is first loaded, so the data is read instantly. However, writing values to the
online spreadsheet requires a network connection and can take about a sec-
ond. If you have thousands of cells to update, updating them one at a time
might be quite slow. Instead, the next couple of sections will show you how
to update entire rows and columns at once.

Addressing Columns and Rows

Cell addressing works in Google Sheets just like in Excel. The only dif-
ference is that, unlike Python’s 0-based list indexes, Google Sheets have
1-based columns and rows: the first column or row is at index 1, not 0. You
can convert from the 'A2' string-style address to the (column, row) tuple-style
address (and vice versa) with the convertAddress() function. The getColumn
LetterOf() and getColumnNumberOf() functions will also convert a column
address between letters and numbers. For example, enter the following into
the interactive shell:

>>> import ezsheets
>>> ezsheets .convertAddress('A2') # Converts addresses...
(1, 2)
>>> ezsheets .convertAddress(1, 2) # ...and converts them back, too.
'A2'
>>> ezsheets.getColumnLetterOf(2)
'B'
>>> ezsheets.getColumnNumberOf('B')
2

Google Sheets 369

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> ezsheets.getColumnLetterOf(999)
'ALK'
>>> ezsheets.getColumnNumberOf('ZZZ')
18278

The 'A2' string-style addresses are convenient if you’re typing addresses
into your source code. But the (column, row) tuple-style addresses are con-
venient if you’re looping over a range of addresses and need a numeric
identifier for the column. The convertAddress(), getColumnLetterOf(), and
getColumnNumberOf() functions are helpful when you need to convert between
the two formats.

Reading and Writing Entire Columns and Rows

As mentioned, writing data one cell at a time can often take too long.
Fortunately, EZSheets has Sheet methods for reading and writing entire col-
umns and rows at the same time. The getColumn(), getRow(), updateColumn(),
and updateRow() methods will, respectively, read and write columns and
rows. These methods make requests to the Google Sheets servers to update
the spreadsheet, so they require that you be connected to the internet. In
this section’s example, we’ll upload produceSales3.xlsx from Chapter 14 to
Google Sheets. You can download it from this book’s online resources. The
first eight rows look like Table 15-1.

Table 15-1: The First Eight Rows of the produceSales3.xlsx Spreadsheet

A B C D

1 PRODUCE COST PER POUND POUNDS SOLD TOTAL

2 Potatoes 0 .86 21 .6 18 .58

3 Okra 2 .26 38 .6 87 .24

4 Fava beans 2 .69 32 .8 88 .23

5 Watermelon 0 .66 27 .3 18 .02

6 Garlic 1 .19 4 .9 5 .83

7 Parsnips 2 .27 1 .1 2 .5

8 Asparagus 2 .49 37 .9 94 .37

To upload this spreadsheet, put the produceSales3.xlsx file in the current
working directory and enter the following into the interactive shell:

>>> import ezsheets
>>> ss = ezsheets.upload('produceSales3.xlsx')
>>> sheet = ss.sheets[0]
>>> sheet.getRow(1) # The first row is row 1, not row 0.
['PRODUCE', 'COST PER POUND', 'POUNDS SOLD', 'TOTAL', '', '']
>>> sheet.getRow(2)
['Potatoes', '0.86', '21.6', '18.58', '', '']

370 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> sheet.getColumn(1)
['PRODUCE', 'Potatoes', 'Okra', 'Fava beans', 'Watermelon', 'Garlic',
--snip--
>>> sheet.getColumn('A') # The same result as getColumn(1)
['PRODUCE', 'Potatoes', 'Okra', 'Fava beans', 'Watermelon', 'Garlic',
--snip--
>>> sheet.getRow(3)
['Okra', '2.26', '38.6', '87.24', '', '']
>>> sheet.updateRow(3, ['Pumpkin', '11.50', '20', '230'])
>>> sheet.getRow(3)
['Pumpkin', '11.50', '20', '230', '', '']
>>> columnOne = sheet.getColumn(1)
>>> for i, value in enumerate(columnOne):
... # Make the Python list contain uppercase strings:
... columnOne[i] = value.upper()
...
>>> sheet.updateColumn(1, columnOne) # Update the entire column in one request.

The getRow() and getColumn() functions retrieve the data from every cell
in a specific row or column as a list of values. Note that empty cells become
blank string values in the list. You can pass getColumn() either a column
number or a letter to tell it to retrieve a specific column’s data. The previ-
ous example shows that getColumn(1) and getColumn('A') return the same list.

The updateRow() and updateColumn() functions will overwrite the data in
the row or column, respectively, with the list of values passed to the func-
tion. In this example, the third row initially contains information about
okra, but the updateRow() call replaces it with data about pumpkins. Call
sheet.getRow(3) again to view the new values in the third row.

Updating cells one at a time is slow if you have many cells to update.
Getting a column or row as a list, updating the list, and then updating the
entire column or row with the list is much faster, because you can make all
changes in one request to Google’s cloud services.

To get all of the rows at once, call the getRows() method to return a list
of lists. The inner lists inside the outer list each represent a single row of
the sheet. You can modify the values in this data structure to change the
produce name, pounds sold, and total cost of some of the rows. Then, you
can pass it to the updateRows() method by entering the following into the
interactive shell:

>>> rows = sheet.getRows() # Get every row in the spreadsheet.
>>> rows[0] # Examine the values in the first row.
['PRODUCE', 'COST PER POUND', 'POUNDS SOLD', 'TOTAL', '', '']
>>> rows[1]
['POTATOES', '0.86', '21.6', '18.58', '', '']
>>> rows[1][0] = 'PUMPKIN' # Change the produce name.
>>> rows[1]
['PUMPKIN', '0.86', '21.6', '18.58', '', '']
>>> rows[10]
['OKRA', '2.26', '40', '90.4', '', '']
>>> rows[10][2] = '400' # Change the pounds sold.

Google Sheets 371

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> rows[10][3] = '904' # Change the total.
>>> rows[10]
['OKRA', '2.26', '400', '904', '', '']
>>> sheet.updateRows(rows) # Update the online spreadsheet with the changes.

You can update the entire sheet in a single request by passing updat-
eRows() the list of lists returned from getRows(), amended with the changes
made to rows 1 and 10.

Note that the rows in the Google Sheets spreadsheet have empty strings
at the end. This is because the uploaded sheet has a column count of 6, but
we have only four columns of data. You can read the number of rows and
columns in a sheet with the rowCount and columnCount attributes. Then, by set-
ting these values, you can change the size of the sheet:

>>> sheet.rowCount # The number of rows in the sheet
23758
>>> sheet .columnCount # The number of columns in the sheet
6
>>> sheet .columnCount = 4 # Change the number of columns to 4.
>>> sheet .columnCount # Now the number of columns in the sheet is 4.
4

These instructions should delete the fifth and sixth columns of the
 produceSales3.xlsx spreadsheet, as shown in Figure 15-3.

372 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 15-3: The sheet before (left) and after (right) changing the column count to four

According to Google’s documentation, Google Sheets spreadsheets can
have up to 10 million cells in them. However, it’s a good idea to make sheets
only as big as you need to minimize the time it takes to update and refresh
the data.

Creating, Moving, and Deleting Sheets
All Google Sheets spreadsheets start with a single sheet named Sheet1. You
can add additional sheets to the end of the list of sheets with the Sheet()
method, which accepts an optional string to use as the new sheet’s title. An
optional second argument can specify the integer index of the new sheet.

Google Sheets 373

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

To create a spreadsheet and then add new sheets to it, enter the following
into the interactive shell:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet()
>>> ss.title = 'Multiple Sheets'
>>> ss.sheetTitles
('Sheet1',)
>>> ss.Sheet('Spam') # Create a new sheet at the end of the list of sheets.
<Sheet sheetId=2032744541, title='Spam', rowCount=1000, columnCount=26>
>>> ss.Sheet('Eggs') # Create another new sheet.
<Sheet sheetId=417452987, title='Eggs', rowCount=1000, columnCount=26>
>>> ss.sheetTitles
('Sheet1', 'Spam', 'Eggs')
>>> ss.Sheet('Bacon', 0) # Create a sheet at index 0 in the list of sheets.
<Sheet sheetId=814694991, title='Bacon', rowCount=1000, columnCount=26>
>>> ss.sheetTitles
('Bacon', 'Sheet1', 'Spam', 'Eggs')

These instructions add three new sheets to the spreadsheet: Bacon,
Spam, and Eggs (in addition to the default Sheet1). The sheets in a spread-
sheet are ordered, and new sheets go to the end of the list unless you pass
a second argument to Sheet() specifying the sheet’s index. Here, you create
the sheet titled Bacon at index 0, making Bacon the first sheet in the spread-
sheet and displacing the other three sheets by one position. This is similar
to the behavior of the insert() list method.

You can see the new sheets on the tabs at the bottom of the screen, as
shown in Figure 15-4.

Figure 15-4: The Multiple Sheets spreadsheet after adding sheets Spam, Eggs, and Bacon

374 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You can get the order of a sheet from its index attribute and then assign
a new index to this attribute to reorder the sheet:

>>> ss.sheetTitles
('Bacon', 'Sheet1', 'Spam', 'Eggs')
>>> ss .sheets[0] .index
0
>>> ss .sheets[0] .index = 2 # Move the sheet at index 0 to index 2.
>>> ss.sheetTitles
('Sheet1', 'Spam', 'Bacon', 'Eggs')
>>> ss .sheets[2] .index = 0 # Move the sheet at index 2 to index 0.
>>> ss.sheetTitles
('Bacon', 'Sheet1', 'Spam', 'Eggs')

The Sheet object’s delete() method will delete the sheet from the spread-
sheet. If you want to keep the sheet but delete the data it contains, call the
clear() method to clear all the cells and make it a blank sheet. Enter the fol-
lowing into the interactive shell:

>>> ss.sheetTitles
('Bacon', 'Sheet1', 'Spam', 'Eggs')
>>> ss.sheets[0].delete() # Delete the sheet at index 0: the "Bacon" sheet.
>>> ss.sheetTitles
('Sheet1', 'Spam', 'Eggs')
>>> ss['Spam'].delete() # Delete the "Spam" sheet.
>>> ss.sheetTitles
('Sheet1', 'Eggs')
>>> sheet = ss['Eggs'] # Assign a variable to the "Eggs" sheet.
>>> sheet.delete() # Delete the "Eggs" sheet.
>>> ss.sheetTitles
('Sheet1',)
>>> ss.sheets[0].clear() # Clear all the cells on the "Sheet1" sheet.
>>> ss.sheetTitles # The "Sheet1" sheet is empty but still exists.
('Sheet1',)

Deleting sheets is permanent; there’s no way to recover the data.
However, you can back up sheets by copying them to another spreadsheet
with the copyTo() method, as explained in the next section.

Copying Sheets
Every Spreadsheet object has an ordered list of the Sheet objects it contains,
and you can use this list to reorder the sheets (as shown in the previous sec-
tion) or copy them to other spreadsheets. To copy a Sheet object to another
Spreadsheet object, call the copyTo() method. Pass it the destination Spreadsheet
object as an argument. To create two spreadsheets and copy the first spread-
sheet’s data to the other sheet, enter the following into the interactive shell:

>>> import ezsheets
>>> ss1 = ezsheets.Spreadsheet()
>>> ss1.title = 'First Spreadsheet'
>>> ss1.sheets[0].title = 'Spam' # ss1 will have a sheet named Spam.

Google Sheets 375

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> ss2 = ezsheets.Spreadsheet()
>>> ss2.title = 'Second Spreadsheet'
>>> ss2.sheets[0].title = 'Eggs' # ss2 will have a sheet named Eggs.
>>> ss1[0]
<Sheet sheetId=0, title='Spam', rowCount=1000, columnCount=26>
>>> ss1[0].updateRow(1, ['Some', 'data', 'in', 'the', 'first', 'row'])
>>> ss1[0] .copyTo(ss2) # Copy the ss1's Sheet1 to the ss2 spreadsheet.
>>> ss2.sheetTitles # ss2 now contains a copy of ss1's Sheet1.
('Eggs', 'Copy of Spam')

Copied sheets appear with a prefix of Copy of at the end of the list of
the destination spreadsheet’s sheets. If you wish, you can change their index
attribute to reorder them in the new spreadsheet.

Google Forms
Your Google account also gives you access to Google Forms at https://forms
.google .com /. You can create surveys, event registrations, or feedback forms
with Google Forms, then receive the answers that users submit in a Google
Sheets spreadsheet. Using EZSheets, your Python programs can access this
data from the spreadsheet.

In Chapter 19, you’ll learn to schedule your Python programs to run at
regular, specified times. You could write a program that regularly checks a
Google Forms spreadsheet for responses and detect any new entries it hasn’t
seen before. Then, using the information in Chapter 20, you can have the
program send you a text so that you can get real-time notifications when a
form is filled out.

As you’ve seen, Python is well-known as a “glue” language for tying
together multiple existing software systems, letting you create an automated
process more powerful than the sum of its parts.

Project 11: Fake Blockchain Cryptocurrency Scam
In this project, we’ll use Google Sheets as a fake blockchain to track the
transactions of Boringcoin, a cryptocurrency scam I’m promoting. (It turns
out that investors and customers don’t care if your blockchain product uses
a real blockchain data structure; they will give you money anyway.)

The URL https://autbor .com /boringcoin redirects to the Google Sheets
URL for Boringcoin’s blockchain. The spreadsheet has three columns: the
sender of the transaction, the recipient of the transaction, and the amount
of the transaction. The amount is deducted from the sender and added to
the recipient. If the sender is 'PRE-MINE', this money is created out of thin air
and added to the recipient account. Figure 15-5 shows this Google Sheet.

https://forms.google.com/
https://forms.google.com/
https://autbor.com/boringcoin

376 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 15-5: The fake blockchain for Boringcoin, stored on a Google Sheet

The first transaction has the sender 'PRE-MINE' and the recipient 'Al
Sweigart', and the amount is a humble 1000000000. The 'Al Sweigart' account
then transfers 19116 Boringcoins to 'Miles Bron', who then transfers 118
Boringcoins to 'not_a_scammer'. The fourth transaction transfers 16273
Boringcoins from 'Al Sweigart' to 'some hacker'. (I did not authorize this
transaction and have since stopped using python12345 as my Google
account password.)

Let’s write two programs. First, the auditBoringcoin.py program exam-
ines all the transactions and generates a dictionary of all accounts and their
current balance. Second, the addBoringcoinTransaction.py program adds a
row to the end of the Google Sheets for a new transaction. These block-
chain programs are just for fun and not real (though “real” blockchain
projects such as NFTs and “web3” are just as much a fantasy).

Step 1: Audit the Fake Blockchain
We need to write a program to examine the entire “blockchain” and deter-
mine the current balance of all accounts. We’ll use a dictionary to hold this
data, where the keys are strings of the account name and the values are
integers of how many Boringcoins are in them. We also want the program
to display how many total Boringcoins are in the cryptocurrency network.
We can start by importing EZSheets and setting up the dictionary:

import ezsheets
ss = ezsheets .Spreadsheet('https://autbor .com /boringcoin')
accounts = {} # Keys are names, and values are amounts.

Next, we’ll loop through every row in the spreadsheet, identifying the
sender, recipient, and amount. Keep in mind that Google Sheets always

Google Sheets 377

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

returns data as a string, so we need to convert it to an integer to do math
with the amount value:

Each row is a transaction. Loop over each one:
for row in ss.sheets[0].getRows():
 sender, recipient, amount = row[0], row[1], int(row[2])

If the sender is the special account 'PRE-MINE', then it is simply a source
of infinite money into other accounts. All of the best cryptocurrency scams
use pre-mined coins, and ours is no exception. Add the amount to the
recipient account in the accounts dictionary. The setdefault() method sets
the value of the account to 0 if it doesn’t already exist in the dictionary:

 if sender == 'PRE-MINE':
 # The 'PRE-MINE' sender invents money out of thin air.
 accounts.setdefault(recipient, 0)
 accounts[recipient] += amount

Otherwise, we should deduct the amount from the sender and add it to
the recipient:

 else:
 # Move funds from the sender to the recipient.
 accounts.setdefault(sender, 0)
 accounts.setdefault(recipient, 0)
 accounts[sender] -= amount
 accounts[recipient] += amount

After the loop finishes, we can see the current balances by printing the
accounts dictionary.

print(accounts)

As part of our audit, let’s also go through this dictionary and add up
the totals of everyone’s balance to find out how many Boringcoins are in the
entire network. Start a total variable at 0, and then have a for loop go through
each value in the key-value pairs of the accounts dictionary. After adding each
value to total, we can print the total amount of Boringcoins:

total = 0
for amount in accounts.values():
 total += amount
print('Total Boringcoins:', total)

When we run this program, the output looks like this:

{'Al Sweigart': 999058553, 'Miles Bron': 38283, 'not_a_scammer': 48441,
'some hacker': 44429, 'Tech Bro': 53424, 'Claire Debella': 54443,
'Credulous Journalist': 50408, 'Birdie Jay': 36832, 'Carol': 82867, 'Mark Z.':
 68650, 'Bob': 37920, 'Andi Brand': 57218, 'Eve': 88296, 'Al Sweigart sock

378 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

#27': 78080, 'Tax evader': 40937, 'Duke Cody': 17544, 'Lionel Toussaint':
54650, 'some scammer': 2694, 'Alice': 44503, 'David': 41828}
Total Boringcoins: 1000000000

The total is 1000000000, which makes sense, because that’s how many
Boringcoins were pre-mined.

Step 2: Make Transactions
The next program, addBoringcoinTransaction.py, adds additional rows to the
“blockchain” Google Sheet to add new transactions. It reads three com-
mand line arguments from the list in sys.argv: the sender, the recipient, and
the amount. For example, you could run the following from the terminal:

python addBoringcoinTransaction.py "Al Sweigart" Eve 2000

The program would access the Google Sheet, add a blank row to the
bottom, and then fill it in with the values 'Al Sweigart', 'Eve', and '2000'.
Note that in the terminal, you’ll need to enclose any command line argu-
ment that contains a space in double quotes, like "Al Sweigart"; otherwise,
the terminal will think they are two separate arguments.

The start of addBoringcoinTransactions.py checks the command line argu-
ments and assigns the sender, recipient, and amount variables based on them:

import sys, ezsheets

if len(sys.argv) < 4:
 print('Usage: python addBoringcoinTransaction.py sender recipient amount')
 sys.exit()

Get the transaction info from the command line arguments:
sender, recipient, amount = sys.argv[1:]

You won’t need to convert amount from a string to an integer, because
we’ll be writing it as a string to the spreadsheet.

Next, EZSheets connects to the Google Sheets containing the fake
blockchain and selects the first sheet in the spreadsheet (at index 0). Note
that you don’t have permission to edit the Boringcoin Google Sheets, so
open that URL in a web browser while logged in to your Google account
and then select FileMake a Copy to copy it to your Google Account. Then,
replace the 'https://autbor .com /boringcoin' string with a string of your Google
Sheet’s URL from the browser address bar:

Change this URL to your copy of the Google Sheet, or else you'll
get a "The caller does not have permission" error.
ss = ezsheets .Spreadsheet('https://autbor .com /boringcoin')
sheet = ss.sheets[0]

Google Sheets 379

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Finally, you should get the number of rows in the sheet, increase it by
one, and then fill in the columns of this row with the sender, recipient, and
amount data:

Add one more row to the sheet for a new transaction:
sheet.rowCount += 1

sheet[1, sheet.rowCount] = sender
sheet[2, sheet.rowCount] = recipient
sheet[3, sheet.rowCount] = amount

Now when you run python addBoringcoinTransaction.py "Al Sweigart"
Eve 2000 from the terminal, the Google Sheets will have a new row with Al
Sweigart, Eve, and 2000 added at the bottom. You can rerun the auditBoring
coin.py program to see the updated account balances of everyone in the
cryptocurrency network.

The use of Google Sheets for our blockchain data structure is irrespon-
sible, error prone, and a security catastrophe waiting to happen. This makes
it on par with most marketed blockchain products. Don’t miss out! Contact
me to get in on this limited offer to buy Boringcoin before the pyramid
scheme collapses!

Working with Google Sheets Quotas
Because Google Sheets is online, you can easily share sheets among mul-
tiple users who can all access the sheets simultaneously. However, this also
means that reading and updating the sheets will be slower than reading
and updating Excel files stored locally on your hard drive. In addition,
Google Sheets limits how many read and write operations you can perform.

According to Google’s developer guidelines, users are restricted to creat-
ing 250 new spreadsheets a day, and free Google accounts can perform a few
hundred requests per minute. You can find Google’s usage limits at https://
developers .google .com /sheets /api /limits. Attempting to exceed this quota will raise
the googleapiclient.errors.HttpError “Quota exceeded for quota group” excep-
tion. EZSheets will automatically catch this exception and retry the request.
When this happens, the function calls to read or write data will take several
seconds (or even a full minute or two) before they return. If the request con-
tinues to fail (which is possible if another script using the same credentials is
also making requests), EZSheets will re-raise this exception.

This means that, on occasion, your EZSheets method calls may take
several seconds before they return. If you want to view your API usage or
increase your quota, go to the IAM & Admin Quotas page at https://console
.developers .google .com /iam -admin /quotas to learn about paying for increased
usage. If you’d rather just deal with the HttpError exceptions yourself, you
can set ezsheets.IGNORE_QUOTA to True, and EZSheets’ methods will raise these
exceptions when it encounters them.

https://developers.google.com/sheets/api/limits
https://developers.google.com/sheets/api/limits
https://console.developers.google.com/iam-admin/quotas
https://console.developers.google.com/iam-admin/quotas

380 Chapter 15

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Summary
Google Sheets is a popular online spreadsheet application that runs in your
browser. Using the EZSheets third-party package, you can download, cre-
ate, read, and modify spreadsheets. EZSheets represents spreadsheets as
Spreadsheet objects, each of which contains an ordered list of Sheet objects.
Each sheet has columns and rows of data that you can read and update in
several ways.

While Google Sheets makes sharing data and cooperative editing easy,
its main disadvantage is speed: you must update spreadsheets with web
requests, which can take a few seconds to execute. But for most purposes,
this speed restriction won’t affect Python scripts using EZSheets. Google
Sheets also limits how often you can make changes.

For complete documentation of EZSheets’ features, visit https://ezsheets
.readthedocs .io /.

Practice Questions
 1. What three files do you need for EZSheets to access Google Sheets?

 2. What two types of objects does EZSheets have?

 3. How can you create an Excel file from a Google Sheets spreadsheet?

 4. How can you create a Google Sheets spreadsheet from an Excel file?

 5. The ss variable contains a Spreadsheet object. What code will read data
from the cell B2 in a sheet titled Students?

 6. How can you find the column letters for column 999?

 7. How can you find out how many rows and columns a sheet has?

 8. How do you delete a spreadsheet? Is this deletion permanent?

 9. What functions will create a new Spreadsheet object and a new Sheet
object, respectively?

 10. What would happen if, by making frequent read and write requests with
EZSheets, you exceed your Google account’s quota?

Practice Programs
For practice, write programs to do the following tasks.

Downloading Google Forms Data
I mentioned earlier that Google Forms allows you to create simple online
forms that make it easy to collect information from people. The informa-
tion entered into a form is stored in a Google Sheets spreadsheet. For this
project, write a program that can automatically download the form infor-
mation that users have submitted. Go to https://docs .google .com /forms / and
start a new blank form. Add fields to the form that ask the user for a name

https://ezsheets.readthedocs.io/
https://ezsheets.readthedocs.io/
https://docs.google.com/forms/

Google Sheets 381

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

and email address. Then, click the Send button in the upper right to get a
link to your new form. Try to enter a few example responses into this form.

On the Responses tab of your form, click the green Create Spreadsheet
button to create a Google Sheets spreadsheet that will hold the responses
that users submit. You should see your example responses in the first rows
of this spreadsheet. Then, write a Python script using EZSheets to collect a
list of the email addresses on this spreadsheet.

Converting Spreadsheets to Other Formats
You can use Google Sheets to convert a spreadsheet file to other formats.
Write a script that passes a submitted file to upload(). Once the spreadsheet
has uploaded to Google Sheets, download it using downloadAsExcel(),
downloadAsODS(), and other such functions to create a copy of the spreadsheet
in these other formats.

Finding Mistakes in a Spreadsheet
After a long day at the bean-counting office, I’ve finished a spreadsheet
with all the bean totals and uploaded them to Google Sheets. The spread-
sheet is publicly viewable (but not editable). You can get this spreadsheet
with the following code:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet('1jDZEdvSIh4TmZxccyy0ZXrH-ELlrwq8_YYiZrEOB4jg')

View the spreadsheet in your browser by going to https://docs .google .com/
spreadsheets /d /1jDZEdvSIh4TmZxccyy0ZXrH -ELlrwq8 _YYiZrEOB4jg. The col-
umns of the first sheet in this spreadsheet are BEANS PER JAR, JARS, and
TOTAL BEANS. The TOTAL BEANS column is the product of the numbers
in the BEANS PER JAR and JARS columns. However, there is a mistake in
one of the 15,000 rows in this sheet. That’s too many rows to check by hand.
Luckily, you can write a script that checks the totals.

As a hint, you can access the individual cells in a row with ss.sheets[0].
getRow(rowNum), where ss is the Spreadsheet object and rowNum is the row num-
ber. Remember that row numbers in Google Sheets begin at 1, not 0. The
cell values will be strings, so you’ll need to convert them to integers before
your program can work with them. The expression int(ss.sheets[0].get
Row(2)[0]) * int(ss.sheets[0].getRow(2)[1]) == int(ss.sheets[0].getRow(2)[2])
evaluates to True if row 2 has the correct total. Put this code in a loop to
identify which row in the sheet has the incorrect total.

https://docs.google.com/spreadsheets/d/1jDZEdvSIh4TmZxccyy0ZXrH-ELlrwq8_YYiZrEOB4jg
https://docs.google.com/spreadsheets/d/1jDZEdvSIh4TmZxccyy0ZXrH-ELlrwq8_YYiZrEOB4jg

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You’re probably used to organizing infor-
mation into spreadsheets such as Excel or

Google Sheets, but most software stores its
data in applications called databases. Databases

make it easy for your programs to retrieve the specific
data you want. If you had a spreadsheet or text file of
cats and wanted to find the fur color of a cat named
Zophie, you could press ctrl-F and enter “Zophie.”
But what if you wanted to find the fur color of all cats
that weighed between 3 and 5 kilograms and were
born before October 2023? Even with the regular
expressions from Chapter 9, this would be a tricky
thing to code.

16
S Q L I T E D A T A B A S E S

384 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Databases allow you to perform complex queries like this one, written
in the mini language of Structured Query Language (SQL). You’ll see the term
SQL used to refer to both a language for database operations and the data-
bases that understand this language; it’s often pronounced “es-cue-el” but
also sometimes “sequel.” This chapter introduces you to SQL and database
concepts using SQLite (pronounced either “sequel-ite,” “es-cue-lite,” or
“es-cue-el-ite”), a lightweight database included with Python.

SQLite is the most widely deployed database software, as it runs on
every operating system and is small enough to embed within other applica-
tions. At the same time, SQLite’s simplifications make it notably different
from other databases. While large database software such as PostgreSQL,
MySQL, Microsoft SQL Server, and Oracle are intended to run on dedi-
cated server hardware accessed over a network, SQLite stores the entire
database in a single file on your computer.

Even if you’re already familiar with SQL databases, SQLite has enough
of its own quirks that you should read this chapter to learn how to make the
most of it. You can find the online SQLite documentation at https://sqlite .org /
docs .html and the Python sqlite3 module documentation at https://docs .python
.org /3 /library /sqlite3 .html.

Spreadsheets vs. Databases
Let’s consider the similarities and differences between spreadsheets and
databases. In a spreadsheet, rows contain individual records, while columns
represent the kind of data stored in the fields of each record. For example,
Figure 16-1 is a spreadsheet of some of my cats. The columns list the name,
birthday, fur color, and weight (in kilograms) of each cat.

https://sqlite.org/docs.html
https://sqlite.org/docs.html
https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/sqlite3.html

Sqlite Databases 385

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 16-1: A spreadsheet stores data records as rows with
a set column structure.

We can store this same information in a database. You can think of a
database table as a spreadsheet, and a database can contain one or more
tables. Tables have columns of different properties for each record, also
called a row or entry. Databases like SQLite are called relational databases,
where relation means that the database can contain multiple tables with rela-
tionships between them, as you’ll later see.

Both spreadsheets and databases label the data they contain. A spread-
sheet automatically labels the columns with letters and the rows with
numbers. In addition, the example cat spreadsheet uses its first row to give
the columns descriptive names. Each of the subsequent rows represents
exactly one cat. In a SQL database, tables often have an ID column for each
record’s primary key: a unique integer that can unambiguously identify the
record. In SQLite, this column is called rowid, and SQLite automatically
adds it to your tables.

Deleting a spreadsheet row moves up all the rows underneath it, chang-
ing their row numbers. But a database record’s primary key ID is unique
and doesn’t change. This is useful in many situations. What if a cat were
renamed or had a change in weight? What if we wanted to reorder the rows
to list the cats alphabetically by name? Each cat needs a unique identifica-
tion number that remains constant no matter how the data changes. We
could add a Row ID column to our spreadsheet to simulate a SQLite table’s
rowid column. This ID value would stay the same even if rows were deleted

386 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

or moved around the spreadsheet, as shown in Figure 16-2, where the cats
with the Row IDs of 5 to 10 are deleted.

Figure 16-2: The Row ID number, unlike the spreadsheet row numbers, offers a unique identifier for each
record (left) even after cats with IDs 5 to 10 are deleted (right).

There is a second way people use spreadsheets that is entirely unlike
how databases tend to store data. Spreadsheets can serve as templates for
forms rather than as row-based data storage. You may have seen spread-
sheets such as Figure 16-3.

Figure 16-3: A spreadsheet with a lot of formatting and a fixed sized is generally
not a good fit for a database.

Sqlite Databases 387

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

These spreadsheets tend to have a lot of formatting, with background
colors, merged cells, and different fonts, so that they look good to human
eyes. While the row-based data spreadsheets can expand infinitely down-
ward as new data is added, these spreadsheets usually have a fixed size and
fill-in-the-blank design. They’re often meant for humans to print out and
look at, rather than for a Python program to extract data from them.

Databases aren’t visually pleasing; they just contain raw data. More
importantly, while spreadsheets give you the flexibility of putting any data
into any cell, databases have a stricter structure to make data retrieval easier
for software. If your data tends to look like the example in Figure 16-3, you
may be better off storing it in JSON files, or using the openpyxl module from
Chapter 14 and the EZSheets library from Chapter 15 and leaving it in an
Excel or Google spreadsheet.

SQLite vs. Other SQL Databases
If you’re used to working with other SQL databases, you might be wonder-
ing how SQLite compares. In short, SQLite strikes a balance between sim-
plicity and power. It’s a full relational database that uses SQL to read and
write massive amounts of data, but it runs within your Python program and
operates on a single file. Your program imports the sqlite3 module just as it
would import sys, math, or any other module in the Python standard library.

Here are the main differences between SQLite and other database
software:

• SQLite databases are stored in a single file, which you can move, copy,
or back up like any other file.

• SQLite can run on computers with few resources, such as embedded
devices or decades-old laptops.

• SQLite is serverless; it doesn’t require a background server application
to constantly run on your laptop, or any dedicated server hardware.
There are no network connections involved.

• From the perspective of users, SQLite doesn’t require any installation
or configuration. It’s part of the Python program.

• For faster performance, SQLite databases can exist entirely in memory
and be saved to a file before the program exits.

• While SQLite columns have data types, such as numbers and text, just
as other SQL databases do, SQLite doesn’t strictly enforce a column’s
data type.

• There are no permission settings or user roles in SQLite. SQLite has no
GRANT or REVOKE statements like in other SQL databases.

• SQLite is public domain software; you can use it commercially or any
way you want without restriction.

The main disadvantage of SQLite is that it can’t efficiently handle
hundreds or thousands of simultaneous write operations (say, from a social

388 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

media web app). Aside from that, SQLite is just as powerful as any database,
able to reliably handle GBs or even TBs of data, as well as simultaneous
read operations, quickly and easily.

SQLite sells itself not so much as a competitor to other database soft-
ware but as a competitor to using the open() function to work with text files
(or the JSON, XML, and CSV files you’ll learn about in Chapter 18). If your
program needs the ability to store and quickly retrieve large amounts of
data, SQLite is a better alternative to JSON or spreadsheet files.

Creating Databases and Tables
Let’s begin by creating our first database and table using SQL. SQL is a
mini language you can work with from within Python, much like regex for
regular expressions. Like regex, SQL queries are written as Python string
values. And just as you could write your own Python code to perform the
text pattern-matching that regular expressions perform, you could write
your own custom Python code to search for matching data in Python
dictionaries and lists. But writing regular expressions and SQL database
queries makes these tasks much simpler in the long run, even if they first
require you to learn a new skill. Let’s explore how to write queries that cre-
ate tables in a new database.

We’ll create a sample SQLite database in a file named example.db to store
information about cats. To create a database, first import the sqlite3 mod-
ule. (The 3 is for SQLite major version 3, which is unrelated to Python 3.)
A SQLite database lives in a single file. The name of the file can be any-
thing, but by convention we give it a .db file extension. The extension .sqlite
is also commonly used.

A database can contain multiple tables, and each table should store one
particular type of data. For example, one table could contain records of
cats, while another table could contain records of vaccinations given to spe-
cific cats in the first table. You can think of a table as a list of tuples, where
each tuple is a table row. The cats table is essentially the same as [('Zophie',
'2021-01-24', 'black', 5.6), ('Colin', '2016-12-24', 'siamese', 6.2), ...], and so on.

Let’s create a database, then create a table for the cat data, insert some
cat records into it, read the data from the database, and close the database
connection.

Connecting to Databases
The first step of writing SQLite code is getting a Connection object for the
database file by calling sqlite3 .connect(). Enter the following into the inter-
active shell:

>>> import sqlite3
>>> conn = sqlite3 .connect('example .db', isolation_level=None)

Sqlite Databases 389

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The first argument to the function can be either a string of a filename
or a pathlib.Path object for the database file. If this filename doesn’t belong
to an existing SQLite database, the function creates a new file containing
an empty database. For example, sqlite3 .connect('example .db', isolation_level
= None) connects a database file named example.db in the current working
directory. If this file doesn’t exist, the function creates an empty one.

If the file you connect to exists but isn’t a SQLite database file, Python
raises a sqlite3.DatabaseError: file is not a database exception once you try
to execute queries. “Checking Path Validity” in Chapter 10 explains how to
use the exists() Path method and os.path.exists() function, which can tell
your program if a file exists or not.

The isolation_level=None keyword argument causes the database to use
write-ahead logging, or WAL mode. The details of WAL mode are beyond the
scope of this book, but in general, “always use WAL mode” is good advice
for beginners.

The sqlite3 .connect() function returns a Connection object, which we
store in a variable named conn for these examples. Each Connection object
connects to one SQLite database file. You can, of course, choose any vari-
able name you’d like for this Connection object, and you should use more
descriptive variable names if your program opens multiple databases at the
same time. But for small programs that connect to only one database at a
time, the name conn is easy to write and descriptive enough. (The name con
would be even shorter, but is easy to misunderstand as “console,” “content,”
or “confusing name for a variable.”)

When your program is done with the database, call conn.close() to close
the connection. The program also closes the connection automatically
when it terminates.

Creating Tables
After connecting to a new, blank database, create a table with a CREATE TABLE
SQL query. To run SQL queries, you must call the execute() method of
Connection objects. Pass this conn.execute() method a string of the query:

>>> import sqlite3
>>> conn = sqlite3 .connect('example .db', isolation_level=None)
>>> conn.execute('CREATE TABLE IF NOT EXISTS cats (name TEXT NOT NULL,
birthdate TEXT, fur TEXT, weight_kg REAL) STRICT')
<sqlite3.Cursor object at 0x00000201B2399540>

By convention, SQL keywords, such as CREATE and TABLE, are written using
uppercase letters. However, SQLite doesn’t enforce this; the query 'create
table if not exists cats (name text not null, birthdate text, fur text, weight_kg
real) strict' runs just fine. Table and column names are also case-insensitive,
but the convention is to make them lowercase and to separate multiple words
with underscores, as in weight_kg.

The CREATE TABLE statement raises a sqlite3.OperationalError: table cats
already exists exception if you try to create a table that already exists

390 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

without the IF NOT EXISTS part. Including this part is a quick way to avoid
tripping over this exception, and you’ll almost always want to add it to your
CREATE TABLE queries.

In our example, we follow the CREATE TABLE IF NOT EXISTS keywords with
the table name cats. After the table name is a set of parentheses containing
the column names and data types.

Defining Data Types
There are six data types in SQLite:

NULL Analogous to Python’s None

INT or INTEGER Analogous to Python’s int type

REAL A reference to the mathematics term real number; analogous to
Python’s float type

TEXT Analogous to Python’s str type

BLOB Short for Binary Large Object; analogous to Python’s bytes type and
useful for storing entire files in a database

ANY For columns that can store data of any type

SQLite has its own data types because it wasn’t built just for Python; other
programming languages can interact with SQLite databases as well.

Unlike other SQL database software, SQLite isn’t strict about the data
types of its columns. This means SQLite will, by default, gladly store the
string 'Hello' in an INTEGER column without raising an exception. But SQLite’s
data types aren’t entirely cosmetic, either; SQLite automatically casts (that
is, changes) data to the column’s data type if possible, a feature called type
affinity. For example, if you add the string '42' to an INTEGER column, SQLite
automatically stores the value as the integer 42, because the column has a
type affinity for integers. However, if you add the string 'Hello' to an INTEGER
column, SQLite will store 'Hello' (without error), because despite the integer
type affinity, 'Hello' cannot be converted to an integer. If you want to disable
this automatic type casting for a column, use the ANY data type to tell SQLite
that the column has no type affinity.

The STRICT keyword enables strict mode for this table. Under strict mode,
every column must be given a data type, and SQLite will raise a sqlite3
.IntegrityError exception if you try to insert data of the wrong type into the
table. SQLite will still automatically cast data to the column’s data type;
inserting '42' into an INTEGER column would insert the integer 42. However,
the string 'Hello' cannot be cast to an integer, so attempting to insert it
would raise an exception. I highly recommend using strict mode; it can give
you an early warning about bugs caused by inserting incorrect data into
your table. If your table doesn’t need to enforce data types, you can use strict
mode anyway and set the columns to the ANY data type.

SQLite added the STRICT keyword in version 3.37.0, which is used by
Python 3.11 and later. Earlier versions don’t know about strict mode and
will report a syntax error if you attempt to use it. You can always check the

Sqlite Databases 391

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

version of SQLite that Python is using by examining the sqlite3.sqlite
_version variable, which will look something like this:

>>> import sqlite3
>>> sqlite3.sqlite_version
'3.xx.xx'

SQLite doesn’t have a Boolean data type, so use INTEGER for Boolean
data instead; you can store a 1 to represent True and a 0 to represent False.
SQLite also doesn’t have a date, time, or datetime data type. Instead, you
can use the TEXT data type to store a string in a format listed in Table 16-1.

Table 16-1: Recommended Formats for Dates, Times, and Datetimes
in SQLite

Format Example

YYYY-MM-DD '2035-10-31'

YYYY-MM-DD HH:MM:SS '2035-10-31 16:30:00'

YYYY-MM-DD HH:MM:SS.SSS '2035-10-31 16:30:00.407'

HH:MM:SS '16:30:00'

HH:MM:SS.SSS '16:30:00.407'

The NOT NULL part of name TEXT NOT NULL specifies that the Python None
value cannot be stored in the name column. This is a good way to make a
table column mandatory.

SQLite tables automatically create a rowid column containing a unique
primary key integer. Even if your cats table has two cats that coincidentally
have the same name, birthday, fur color, and weight, the rowid allows you to
distinguish between them.

Listing Tables and Columns
All SQLite databases have a table named sqlite_schema that lists metadata
about the database, including all of its tables. To list the tables in the SQLite
database, run the following query:

>>> import sqlite3
>>> conn = sqlite3 .connect('example .db', isolation_level=None)
>>> conn.execute('SELECT name FROM sqlite_schema WHERE type="table"').fetchall()
[('cats',)]

The output shows the cats table we just created. (I explain the syntax
of the SELECT statement in “Reading Data from the Database” on page XX.)
To obtain information about the columns in the cats table, run the follow-
ing query:

>>> import sqlite3
>>> conn = sqlite3 .connect('example .db', isolation_level=None)

392 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> conn.execute('PRAGMA TABLE_INFO(cats)').fetchall()
[(0, 'name', 'TEXT', 1, None, 0), (1, 'birthdate', 'TEXT', 0, None, 0), (2,
'fur', 'TEXT', 0, None, 0), (3, 'weight_kg', 'REAL', 0, None, 0)]

This query returns a list of tuples that each describe a column of the
table. For example, the (1, 'birthdate', 'TEXT', 0, None, 0) tuple provides the
following information about the birthdate column:

Column position The 1 indicates that the column is second in the
table. Column numbers are zero based, like Python list indexes, so the
first column is at position 0.

Name 'birthdate' is the name of the column. Remember that SQLite
column and table names are case insensitive.

Data type 'TEXT' is the SQLite data type of the birthdate column.

Whether the column is NOT NULL The 0 means False and that the col-
umn is not NOT NULL (that is, you can put None values in this column).

Default value None is the default value inserted if no other value is
specified.

Whether the column is the primary key The 0 means False, meaning
this column is not a primary-key column.

Note that the sqlite_schema table itself isn’t listed as a table. You’ll never
need to modify the sqlite_schema table yourself, and doing so will likely cor-
rupt the database, making it unreadable.

CRUD Database Operations
CRUD is an acronym for the four basic operations that databases carry out:
creating data, reading data, updating data, and deleting data. In SQLite,
we perform these operations with INSERT, SELECT, UPDATE, and DELETE state-
ments, respectively. Here are examples of each statement, which we’ll later
pass as strings to conn.execute():

• INSERT INTO cats VALUES ("Zophie", "2021-01-24", "black", 5.6)

• SELECT rowid, * FROM cats ORDER BY fur

• UPDATE cats SET fur = "gray tabby" WHERE rowid = 1

• DELETE FROM cats WHERE rowid = 1

Most applications and social media websites are really just fancy user
interfaces for a CRUD database. When you post a photo or reply, you’re cre-
ating a record in a database somewhere. When you scroll through a social
media timeline, you’re reading records from the database. And when you
edit or delete a post, you’re performing an update or a deletion operation.
Whenever you’re learning a new app, programming language, or query lan-
guage, use the CRUD acronym to remind yourself of which basic operations
you should find out about.

Sqlite Databases 393

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Inserting Data into the Database
Now that we’ve created the database and a cats table, let’s insert records for
my pet cats. I have about 300 cats in my home, and using a SQLite database
helps me keep track of them. An INSERT statement can add new records to a
table. Enter the following code into the interactive shell:

>>> import sqlite3
>>> conn = sqlite3 .connect('example .db', isolation_level=None)
>>> conn.execute('CREATE TABLE IF NOT EXISTS cats (name TEXT NOT NULL, birthdate TEXT,
fur TEXT, weight_kg REAL) STRICT')
<sqlite3.Cursor object at 0x00000201B2399540>
>>> conn.execute('INSERT INTO cats VALUES ("Zophie", "2021-01-24", "black", 5.6)')
<sqlite3.Cursor object at 0x00000162842E78C0>

This INSERT query adds a new row to the cats table. Inside the paren-
theses are the comma-separated values for its columns. The parentheses
are mandatory for INSERT queries. Note that when inserting TEXT values, I’ve
used double quotation marks (") because I’m already using single quotation
marks (') for the query’s string. The sqlite3 module uses either single or
double quotes for its TEXT values.

Transactions

An INSERT statement begins a transaction, which is a unit of work in a database.
Transactions must pass the ACID test, a database concept meaning that
transactions are:

Atomic The transaction is carried out either completely or not at all.

Consistent The transaction doesn’t violate constraints, such as NOT
NULL rules for columns.

Isolated One transaction doesn’t affect other transactions.

Durable If committed, the transaction results are written to persistent
storage, such as the hard drive.

SQLite is an ACID-compliant database; it has even passed tests that sim-
ulate the computer losing power in the middle of a transaction, so you have
high assurance that the database file won’t be left in a corrupt, unusable
state. A SQLite query will either completely insert data into the database or
not insert it at all.

SQL Injection Attacks

A category of hacking techniques called SQL injection attacks can change
your queries to do things you didn’t intend. These techniques are beyond
the scope of this book, and they mostly likely are not an issue for your code
if your program isn’t accepting data from strangers on the internet. But to
prevent them, use the ? question mark syntax whenever you reference vari-
ables when inserting or updating data in your database.

394 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

For example, if I want to insert a new cat record based on data stored
in variables, I shouldn’t insert these variables directly into the query string
using Python, like this:

>>> cat_name = 'Zophie'
>>> cat_bday = '2021-01-24'
>>> fur_color = 'black'
>>> cat_weight = 5.6
>>> conn.execute(f'INSERT INTO cats VALUES ("{cat_name}", "{cat_bday}",
"{fur_color}", {cat_weight})')
<sqlite3.Cursor object at 0x0000022B91BB7C40>

If the values of these variables came from user input such as a web app
form, a hacker could potentially specify strings that changed the meaning
of the query. Instead, I should use a ? in the query string, then pass the vari-
ables in a list argument following the query string:

>>> conn.execute(f'INSERT INTO cats VALUES (?, ?, ?, ?)', [cat_name, cat_bday,
fur_color, cat_weight])
<sqlite3.Cursor object at 0x0000022B91BB7C40>

The execute() method replaces the ? placeholders in the query string with
the variable values after making sure they won’t cause a SQL injection attack.
While such attacks are unlikely to apply to your code, it’s a good habit to use
the ? placeholders instead of formatting the query string yourself.

Reading Data from the Database
Once there’s data inside the database, you can read it with a SELECT query.
Enter the following into the interactive shell to read data from the example.
db database:

>>> import sqlite3
>>> conn = sqlite3 .connect('example .db', isolation_level=None)
>>> conn.execute('SELECT * FROM cats').fetchall()
[('Zophie', '2021-01-24', 'black', 5.6)]

The execute() method call for the SELECT query returns a Cursor object. To
obtain the actual data, we call the fetchall() method on this Cursor object.
Each record is returned as a tuple in the list of tuples. The data in each
tuple appears in the order of the table’s columns.

Instead of writing Python code to sort through this list of tuples yourself,
you can make SQLite extract the specific information you want. The example
SELECT query has four parts:

• The SELECT keyword

• The columns you want to retrieve, where * means “all columns except
rowid”

• The FROM keyword

• The table to retrieve data from; in this case, the cats table

Sqlite Databases 395

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you wanted just the rowid and name columns of records in the cats
table, your query would look like this:

>>> conn.execute('SELECT rowid, name FROM cats').fetchall()
[(1, 'Zophie')]

You can also use SQL to filter the query results, as you’ll learn in the
next section.

Looping over Query Results

The fetchall() method returns your SELECT query results as a list of tuples.
A common coding pattern is to use this data in a for loop to perform some
operation for each tuple. For example, download the sweigartcats.db file
from https://nostarch .com /automate -boring -stuff -python -3rd -edition, then enter
the following into the interactive shell to process its data:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> for row in conn.execute('SELECT * FROM cats'):
... print('Row data:', row)
... print(row[0], 'is one of my favorite cats.')
...
Row data: ('Zophie', '2021-01-24', 'gray tabby', 5.6)
Zophie is one of my favorite cats.
Row data: ('Miguel', '2016-12-24', 'siamese', 6.2)
Miguel is one of my favorite cats.
Row data: ('Jacob', '2022-02-20', 'orange and white', 5.5)
Jacob is one of my favorite cats.
--snip--

The for loop can iterate over the tuples of row data returned by conn.
execute() without calling fetchall(), and the code in the body of the for loop
can operate on each row individually, because the row variable populates
with a tuple of row data from the query. The code can then access the col-
umns using the tuple’s integer index: index 0 for the name, index 1 for the
birthdate, and so on.

Filtering Retrieved Data

Our SELECT queries have been retrieving every row in the table, but we might
want just the rows that match some filter criteria. Using the sweigartcats.db
file, add a WHERE clause to the SELECT statement to provide search parameters,
such as having black fur:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> conn.execute('SELECT * FROM cats WHERE fur = "black"').fetchall()
[1 ('Zophie', '2021-01-24', 'black', 5.6), ('Toby', '2021-05-17', 'black',
6.8), ('Thor', '2013-05-14', 'black', 5.2), ('Sassy', '2017-08-20', 'black',
7.5), ('Hope', '2016-05-22', 'black', 7.6)]

https://nostarch.com/automate-boring-stuff-python-3rd-edition

396 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In this example, the WHERE clause WHERE fur = "black" will retrieve data
only for records that have "black" in the fur column.

SQLite defines its own operators for use in the WHERE clause, but they’re
similar to Python’s operators: =, !=, <, >, <=, >=, AND, OR, and NOT. Note that
SQLite uses the = operator to mean “is equal to,” while Python uses the ==
operator for that purpose. On either side of the operator, you can put a col-
umn name or a literal value.

The comparison will occur for each row in the table. For example, for
WHERE fur = "black", SQLite makes the following comparisons:

• Because fur is 'black' and 'black' = 'black' is true, SQLite includes the
row at 1 in the results.

• For the row (2, 'Miguel', '2016-12-24', 'siamese', 6.2), fur is 'siamese'
and 'siamese' = 'black' is false, so it doesn’t include the row in the
results.

• For the row (3, 'Jacob', '2022-02-20', 'orange and white', 5.5), fur is
'orange and white' and 'orange and white' = 'black' is false, so it doesn’t
include the row in the results.

. . . and so on, for every row in the cats table.
Let’s continue the previous example with a more complicated WHERE

clause: WHERE fur = "black" OR birthdate >= "2024-01-01"'. Let’s also use the
pprint.pprint() function to “pretty print” the returned list:

>>> import pprint
>>> matching_cats = conn.execute('SELECT * FROM cats WHERE fur = "black"
OR birthdate >= "2024-01-01"').fetchall()
>>> pprint.pprint(matching_cats)
[('Zophie', '2021-01-24', 'black', 5.6),
 ('Toby', '2021-05-17', 'black', 6.8),
 ('Taffy', '2024-12-09', 'white', 7.0),
 ('Hollie', '2024-08-07', 'calico', 6.0),
 ('Lewis', '2024-03-19', 'orange tabby', 5.1),
 ('Thor', '2013-05-14', 'black', 5.2),
 ('Shell', '2024-06-16', 'tortoiseshell', 6.5),
 ('Jasmine', '2024-09-05', 'orange tabby', 6.3),
 ('Sassy', '2017-08-20', 'black', 7.5),
 ('Hope', '2016-05-22', 'black', 7.6)]

All of the cats in the resulting matching_cats list have either black fur
or a birthdate after January 1, 2024. Note that the birthdate is just a string.
While comparison operators like >= typically perform alphabetical compari-
sons on strings, they can also perform temporal comparisons, as long as the
birthdate format is YYYY-MM-DD.

The LIKE operator lets you match just the start or end of a value, treating
the percent sign (%)as a wildcard. For example, name LIKE "%y" matches all

Sqlite Databases 397

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

the names that end with 'y', while name LIKE "Ja%" matches all the names that
start with 'Ja':

>>> conn.execute('SELECT rowid, name FROM cats WHERE name LIKE "%y"').fetchall()
[(5, 'Toby'), (11, 'Molly'), (12, 'Dusty'), (17, 'Mandy'), (18, 'Taffy'), (25, 'Rocky'), (27,
'Bobby'), (30, 'Misty'), (34, 'Mitsy'), (38, 'Colby'), (40, 'Riley'), (46, 'Ruby'), (65,
'Daisy'), (67, 'Crosby'), (72, 'Harry'), (77, 'Sassy'), (85, 'Lily'), (93, 'Spunky')]
>>> conn.execute('SELECT rowid, name FROM cats WHERE name LIKE "Ja%"').fetchall()
[(3, 'Jacob'), (49, 'Java'), (75, 'Jasmine'), (80, 'Jamison')]

You can also put percent signs at the start and end of a string to match
text anywhere in the middle. For example, name LIKE %ob% matches all names
that have 'ob' anywhere in them:

>>> conn.execute('SELECT rowid, name FROM cats WHERE name LIKE "%ob%"').fetchall()
[(3, 'Jacob'), (5, 'Toby'), (27, 'Bobby')]

The LIKE operator does a case-insensitive match, so name LIKE "%ob%" also
matches '%OB%', '%Ob%', and '%oB%'. To do a case-sensitive match, use the GLOB
operator and * as the wildcard characters:

>>> conn.execute('SELECT rowid, name FROM cats WHERE name GLOB "*m*"').fetchall()
[(4, 'Gumdrop'), (9, 'Thomas'), (44, 'Sam'), (63, 'Cinnamon'), (75, 'Jasmine'),
(79, 'Samantha'), (80, 'Jamison')]

While name LIKE "%m%" matches either a lowercase or uppercase m, name
GLOB "*m*" matches only the lowercase m.

SQLite’s wide set of operators and functionality rivals that of any full
programming language. You can read more about it in the SQLite docu-
mentation at https://www .sqlite .org /lang _expr .html.

Ordering the Results

While you can always sort the list returned by fetchall() by calling Python’s
sort() method, it’s easier to have SQLite sort the data for you by adding an
ORDER BY clause to your SELECT query. For example, if I wanted to sort the cats
by fur color, I could enter the following:

>>> import sqlite3, pprint
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> pprint.pprint(conn.execute('SELECT * FROM cats ORDER BY fur').fetchall())
[('Iris', '2017-07-13', 'bengal', 6.8),
 ('Ruby', '2023-12-22', 'bengal', 5.0),
 ('Elton', '2020-05-28', 'bengal', 5.4),
 ('Toby', '2021-05-17', 'black', 6.8),
 ('Thor', '2013-05-14', 'black', 5.2),
--snip--
 ('Celine', '2015-04-18', 'white', 7.3),
 ('Daisy', '2019-03-19', 'white', 6.0)]

https://www.sqlite.org/lang_expr.html

398 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If there is a WHERE clause in your query, the ORDER BY clause must come
after it. You can also order the rows based on multiple columns. For exam-
ple, if you want to first sort the rows by fur color and then sort the rows
within each fur color by birthdate, run the following:

>>> cur = conn.execute('SELECT * FROM cats ORDER BY fur, birthdate')
>>> pprint.pprint(cur.fetchall())
[('Iris', '2017-07-13', 'bengal', 6.8),
 ('Elton', '2020-05-28', 'bengal', 5.4),
 ('Ruby', '2023-12-22', 'bengal', 5.0),
 ('Thor', '2013-05-14', 'black', 5.2),
 ('Hope', '2016-05-22', 'black', 7.6),
--snip--
 ('Ginger', '2020-09-22', 'white', 5.8),
 ('Taffy', '2024-12-09', 'white', 7.0)]

The ORDER BY clause lists the fur column first, followed by the birthdate
column, separated by a comma. By default, these sorts are in ascending
order: the smallest values come first, followed by larger values. To sort in
descending order, add the DESC keyword after the column name. You can
also use the ASC keyword to specify ascending order if you want your query
to be explicit and readable. To practice using these keywords, enter the fol-
lowing into the interactive shell:

>>> cur = conn.execute('SELECT * FROM cats ORDER BY fur ASC, birthdate DESC')
>>> pprint.pprint(cur.fetchall())
[('Ruby', '2023-12-22', 'bengal', 5.0),
 ('Elton', '2020-05-28', 'bengal', 5.4),
 ('Iris', '2017-07-13', 'bengal', 6.8),
 ('Toby', '2021-05-17', 'black', 6.8),
 ('Sassy', '2017-08-20', 'black', 7.5),
--snip--
 ('Mitsy', '2015-05-29', 'white', 5.0),
 ('Celine', '2015-04-18', 'white', 7.3)]

The output lists the cats by fur color in ascending order (with 'bengal'
coming before 'white'). Within each fur color, the cats are sorted by birth-
date in descending order (with '2023-12-22' coming before '2020-05-28').

Limiting the Number of Results

If you’re interested in viewing only the first few rows returned by your SELECT
query, you might try to use Python list slices to limit the results. For example,
use the [:3] slice to show only the first three rows in the cats table:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> conn.execute('SELECT * FROM cats').fetchall()[:3] # This is inefficient.
[('Zophie', '2021-01-24', 'gray tabby', 5.6), ('Miguel', '2016-12-24',
'siamese', 6.2), ('Jacob', '2022-02-20', 'orange and white', 5.5)]

Sqlite Databases 399

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This code works, but it’s inefficient; it first fetches all of the rows from
the table, then discards everything except for the first three. It would be
faster for your program to fetch just the first three rows from the database.
You can do this with a LIMIT clause:

>>> conn.execute('SELECT * FROM cats LIMIT 3').fetchall()
[('Zophie', '2021-01-24', 'gray tabby', 5.6), ('Miguel', '2016-12-24',
'siamese', 6.2), ('Jacob', '2022-02-20', 'orange and white', 5.5)]

This code runs faster than the code that fetches all the rows, especially
for tables with a large number of rows. The LIMIT clause must come after the
WHERE and ORDER BY clauses if your SELECT query includes them, as in the fol-
lowing example:

>>> conn.execute('SELECT * FROM cats WHERE fur="orange" ORDER BY birthdate LIMIT 4').fetchall()
[('Mittens', '2013-07-03', 'orange', 7.4), ('Piers', '2014-07-08', 'orange', 5.2),
('Misty', '2016-07-08', 'orange', 5.2), ('Blaze', '2023-01-16', 'orange', 7.4)]

There are a few other clauses you can add to your SELECT queries, but
they are beyond the scope of this chapter. You can learn more about them
in the SQLite documentation.

Creating Indexes for Faster Data Reading

In a previous section, we ran a SELECT query to find records based on match-
ing names. You could speed up this search by creating an index on the name
column. A SQL index is a data structure that organizes a column’s data. As a
result, queries with WHERE clauses that use these columns will perform better.
The downside is that the index takes up a little bit more storage, so queries
that insert or update data will be slightly slower, because SQLite must also
update the data’s index. If your database is large, and you read data from it
more often than you insert or update its data, creating an index may be
worthwhile. However, you should conduct testing to verify that the index
actually improves performance.

To create indexes on, say, the names and birthdate columns in the cats
table, run the following CREATE INDEX queries:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> conn.execute('CREATE INDEX idx_name ON cats (name)')
<sqlite3.Cursor object at 0x0000013EC121A040>
>>> conn.execute('CREATE INDEX idx_birthdate ON cats (birthdate)')
<sqlite3.Cursor object at 0x0000013EC121A040>

Indexes require names, and by convention, we name them after the
column to which they apply, along with the idx_ prefix. Index names are
global across the entire database, so if the database contains multiple tables
with columns named birthdate, you may also want to include the table in

400 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

the index name, like idx_cats_birthdate. To see all the indexes that exist for
a table, check the built-in sqlite_schema table with a SELECT query:

>>> conn.execute('SELECT name FROM sqlite_schema WHERE type = "index" AND
tbl_name = "cats"').fetchall()
[('idx_name',), ('idx_birthdate',)]

If you change your mind or find that the indexes aren’t improving per-
formance, you can delete them with a DROP INDEX query:

>>> conn.execute('SELECT name FROM sqlite_schema WHERE type = "index" AND
tbl_name = "cats"').fetchall()
[('idx_birthdate',) ('idx_name',)]
>>> conn.execute('DROP INDEX idx_name')
<sqlite3.Cursor object at 0x0000013EC121A040>
>>> conn.execute('SELECT name FROM sqlite_schema WHERE type = "index" AND
tbl_name = "cats"').fetchall()
[('idx_birthdate',)]

For small databases with only a few thousand records, you can safely
ignore indexes, as the benefits they provide are negligible. However, if you
find that your database queries are taking a noticeable amount of time, cre-
ating indexes could improve their performance.

Updating Data in the Database
Once you’ve inserted rows into a table, you can change a row with an UPDATE
statement. For example, let’s update the record (1, 'Zophie', '2021-01-24',
'black', 5.6) to change the fur color from 'black' to 'gray tabby' in the
sweigartcats.db file:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> conn.execute('SELECT * FROM cats WHERE rowid = 1').fetchall()
[('Zophie', '2021-01-24', 'black', 5.6)]
>>> conn.execute('UPDATE cats SET fur = "gray tabby" WHERE rowid = 1')
<sqlite3.Cursor object at 0x0000013EC121A040>
>>> conn.execute('SELECT * FROM cats WHERE rowid = 1').fetchall()
[('Zophie', '2021-01-24', 'gray tabby', 5.6)]

The UPDATE statement has the following parts:

• The UPDATE keyword

• The name of the table containing the rows to update

• The SET clause, which specifies the column to update, as well as the
value to update it to

• The WHERE clause, which specifies which rows to update

You can update multiple columns at a time by separating them with
commas. For example, the query 'UPDATE cats SET fur = "black", weight = 6

Sqlite Databases 401

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

WHERE rowid = 1' updates the value in the fur and weight columns to "black"
and 6, respectively.

The UPDATE query updates every row in which the WHERE clause is true. If
you ran the query 'UPDATE cats SET fur = "gray tabby" WHERE name = "Zophie"',
the updates would apply for every cat named Zophie. That might be more
cats than you intended! This is why, in most update queries, the WHERE clause
uses the primary key from the rowid column to specify an individual record
to update. The primary key uniquely identifies a row, so using it in the WHERE
clause ensures that you update only the one row you intended.

It’s a common bug to forget the WHERE clause when updating data. For
example, if you wanted to do a find-and-replace to change every cat with
'white and orange' fur to 'orange and white' fur, you would run the following:

>>> conn.execute('UPDATE cats SET fur = "orange and white" WHERE fur = "white and orange"')

If you forgot to include the WHERE clause, the updates would apply to
every row in the table. and suddenly all of your cats would have orange and
white fur!

To avoid this bug, always include a WHERE clause in your UPDATE queries,
even if you intend to apply a change to every row. In that case, you can use
WHERE 1. Since 1 is the value that SQLite uses for a Boolean True, this tells
SQLite to apply the change to every row. It may seem silly to have a super-
fluous WHERE 1 at the end of your query, but it lets you avoid dangerous bugs
that could easily wipe out real data.

Deleting Data from the Database
You can delete rows from a table with a DELETE query. For example, to remove
Zophie from the cats table, run the following on the sweigartcats.db file:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> conn.execute('SELECT rowid, * FROM cats WHERE rowid = 1').fetchall()
[(1, 'Zophie', '2021-01-24', 'gray tabby', 5.6)]
>>> conn.execute('DELETE FROM cats WHERE rowid = 1')
<sqlite3.Cursor object at 0x0000020322D183C0>
>>> conn.execute('SELECT * FROM cats WHERE rowid = 1').fetchall()
[]

The DELETE statement has the following parts:

• The DELETE FROM keywords

• The name of the table containing the rows to delete

• The WHERE clause, which specifies which rows to delete

As with the INSERT statement, it’s vital to always include a WHERE clause in
your DELETE statements; otherwise, you’ll delete every row from the table. If
you intend to delete every row, use WHERE 1 so that you can identify any DELETE
statement without a WHERE clause as a bug.

402 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Rolling Back Transactions
You may sometimes want to run several queries all together, or else not run
those queries at all, but you won’t know which you want to do until you’ve
run at least some of the queries. One way to handle this situation is to begin
a new transaction, execute the queries, and then either commit all of the
queries to the database to complete the transaction or roll them back so that
the database looks as if none of them were made.

Normally, a new transaction starts and finishes every time you call conn.
execute() when connected to the SQLite database in WAL mode. However,
you can also run a BEGIN query to start a new transaction; then, you can
either complete the transaction by calling conn .commit() or undo all the que-
ries by calling conn.rollback().

For example, let’s add two new cats to the cats table, then roll back the
transaction so that the table remains unchanged:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> conn.execute('BEGIN')
<sqlite3.Cursor object at 0x00000219C8BF7C40>
>>> conn.execute('INSERT INTO cats VALUES ("Socks", "2022-04-04", "white", 4.2)')
<sqlite3.Cursor object at 0x00000219C8BF7C40>
>>> conn.execute('INSERT INTO cats VALUES ("Fluffy", "2022-10-30", "gray", 4.5)')
<sqlite3.Cursor object at 0x00000219C8BF7C40>
>>> conn.rollback() # This undoes the INSERT statements.
>>> conn.execute('SELECT * FROM cats WHERE name = "Socks"').fetchall()
[]
>>> conn.execute('SELECT * FROM cats WHERE name = "Fluffy"').fetchall()
[]

The new cats, Socks and Fluffy, were not inserted into the database.
On the other hand, if you want to apply all of the queries you’ve run,

call conn .commit() to commit the changes to the database:

>>> conn.execute('BEGIN')
<sqlite3.Cursor object at 0x00000219C8BF7C40>
>>> conn.execute('INSERT INTO cats VALUES ("Socks", "2022-04-04", "white", 4.2)')
<sqlite3.Cursor object at 0x00000219C8BF7C40>
>>> conn.execute('INSERT INTO cats VALUES ("Fluffy", "2022-10-30", "gray", 4.5)')
<sqlite3.Cursor object at 0x00000219C8BF7C40>
>>> conn .commit()
>>> conn.execute('SELECT * FROM cats WHERE name = "Socks"').fetchall()
[('Socks', '2022-04-04', 'white', 4.2)]
>>> conn.execute('SELECT * FROM cats WHERE name = "Fluffy"').fetchall()
[('Fluffy', '2022-10-30', 'gray', 4.5)]

Now the cats Socks and Fluffy have records in the database.

Sqlite Databases 403

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Backing Up Databases
A friend of mine was once making changes to a database used by an
e-commerce site specializing in collectible sports cards. She had to correct
some naming mistakes in a few cards, and had just typed UPDATE cards SET
name = 'Chris Clemons' when her cat walked on her keyboard, pressing enter.
Without a WHERE clause, the query updated every one of the thousands of
cards for sale on the website.

Fortunately, she had backups of the database, so she could restore it to
its previous state. (This was especially useful because the same thing hap-
pened again in the exact same way, making her suspect the cat was doing it
on purpose.)

If a program isn’t currently accessing the SQLite database, you can
back it up by simply copying the database file. A Python program might
do this by calling shutil .copy('sweigartcats .db', 'backup.db'), as described in
Chapter 11. If your software is constantly reading or updating the data-
base’s contents, however, you’ll need to use the Connection object’s backup()
method instead. For example, enter the following into the interactive shell:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> backup_conn = sqlite3 .connect('backup .db', isolation_level=None)
>>> conn.backup(backup_conn)

The backup() method safely backs up the contents of the sweigartcats.db
database to the backup.db file in between the other queries being run on it.
Now that your data is safely backed up, your cat is free to step on your key-
board as much as it wants.

Altering and Dropping Tables
After creating a table in a database and inserting rows into it, you may want
to rename the table or its columns. You may also wish to add or delete col-
umns in the table, or even delete the entire table itself. You can use an ALTER
TABLE query to perform these actions.

The following interactive shell examples start with a fresh copy of the
sweigartcats.db database file. Run an ALTER TABLE RENAME query to rename
the cats table to felines:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> conn.execute('SELECT name FROM sqlite_schema WHERE type="table"').fetchall()
[('cats',)]
>>> conn.execute('ALTER TABLE cats RENAME TO felines') # Rename the table.
<sqlite3.Cursor object at 0x000001EDDB477C40>
>>> conn.execute('SELECT name FROM sqlite_schema WHERE type="table"').fetchall()
[('felines',)]

404 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

To rename a column in a table, run an ALTER TABLE RENAME COLUMN query.
For example, let’s rename the fur column to description:

>>> conn.execute('PRAGMA TABLE_INFO(felines)').fetchall()[2] # List the third column.
(2, 'fur', 'TEXT', 0, None, 0)
>>> conn.execute('ALTER TABLE felines RENAME COLUMN fur TO description')
<sqlite3.Cursor object at 0x000001EDDB477C40>
>>> conn.execute('PRAGMA TABLE_INFO(felines)').fetchall()[2] # List the third column.
(2, 'description', 'TEXT', 0, None, 0)

To add a new column to the table, run an ALTER TABLE ADD COLUMN query.
For example, let’s add a new is_loved column to the felines table containing
a Boolean value. SQLite uses 0 for false values and 1 for true values; we’ll set
the default value for is_loved to 1:

>>> conn.execute('ALTER TABLE felines ADD COLUMN is_loved INTEGER DEFAULT 1')
<sqlite3.Cursor object at 0x000001EDDB477C40>
>>> import pprint
>>> pprint.pprint(conn.execute('SELECT * FROM felines LIMIT 3').fetchall())
[('Zophie', '2021-01-24', 'gray tabby', 5.6, 1),
 ('Miguel', '2016-12-24', 'siamese', 6.2, 1),
 ('Jacob', '2022-02-20', 'orange and white', 5.5, 1)]

It turns out the is_loved column isn’t needed, since I store a 1 in it for all
my cats, so I can remove the column with an ALTER TABLE DROP COLUMN query:

>>> conn.execute('PRAGMA TABLE_INFO(felines)').fetchall() # List all columns.
[(0, 'name', 'TEXT', 1, None, 0), (1, 'birthdate', 'TEXT', 0, None, 0), (2, 'description',
'TEXT',
0, None, 0), (3, 'weight_kg', 'REAL', 0, None, 0), (4, 'is_loved', 'INTEGER', 0, '1', 0)]
>>> conn.execute('ALTER TABLE felines DROP COLUMN is_loved') # Delete the column.
<sqlite3.Cursor object at 0x000001EDDB477C40>
>>> conn.execute('PRAGMA TABLE_INFO(felines)').fetchall() # List all columns.
[(0, 'name', 'TEXT', 1, None, 0), (1, 'birthdate', 'TEXT', 0, None, 0), (2, 'description',
'TEXT',
0, None, 0), (3, 'weight_kg', 'REAL', 0, None, 0)]

Any data stored in the deleted column will also be deleted.
If you want to delete the entire table, run a DROP TABLE query:

>>> conn.execute('SELECT name FROM sqlite_schema WHERE type="table"').fetchall()
[('felines',)]
>>> conn.execute('DROP TABLE felines') # Delete the entire table.
<sqlite3.Cursor object at 0x000001EDDB477C40>
>>> conn.execute('SELECT name FROM sqlite_schema WHERE type="table"').fetchall()
[]

Try to limit how often you change your tables and columns, as you’ll
also have to update the queries in your program to match.

Sqlite Databases 405

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Joining Multiple Tables with Foreign Keys
The structure of SQLite tables is rather strict; for example, each row has a
set number of columns. But real-world data is often more complicated than
a single table can capture. In relational databases, we can store complex
data across multiple tables, and we can create links between them called
foreign keys.

Say we want to store information about the vaccinations our cats
receive. We can’t just add columns to our cats table, as each cat could have
one vaccination or many. Also, for each vaccination, we’d also want to list
the vaccination date and the name of the doctor who administered it. SQL
tables are not good at storing a list of columns. You would not want to have
columns named vaccination1, vaccination2, vaccination3, and so on, for the
same reason you wouldn’t want variables named vaccination1 and vaccination2.
If you create too many columns or variables, your code becomes a verbose,
unreadable mess. If you create too few, you will have to constantly update
your program to add more as needed.

Whenever you have a varying amount of data to add to a row, it makes
more sense to list the added data as rows in a separate table, then have
those rows refer back to the rows in the main table. In our sweigartcats.db
database, add a second vaccinations table by entering the following into the
interactive shell:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> conn.execute('PRAGMA foreign_keys = ON')
<sqlite3.Cursor object at 0x000001E730AD03C0>
>>> conn.execute('CREATE TABLE IF NOT EXISTS vaccinations (vaccine TEXT,
date_administered TEXT, administered_by TEXT, cat_id INTEGER,
FOREIGN KEY(cat_id) REFERENCES cats(rowid)) STRICT')
<sqlite3.Cursor object at 0x000001CA42767D40>

The new vaccinations table has a column named cat_id with an INTEGER
type. The integer values in this column matches the rowid values of the rows
in the cats table. We call the cat_id column a foreign key because it refers to
the primary key column of another table.

In the cats table, the cat Zophie has a rowid of 1. To record her vaccina-
tions, we insert new rows into the vaccinations table with a cat_id value of 1:

>>> conn.execute('INSERT INTO vaccinations VALUES ("rabies", "2023-06-06", "Dr. Echo", 1)')
<sqlite3.Cursor object at 0x000001CA42767D40>
>>> conn.execute('INSERT INTO vaccinations VALUES ("FeLV", "2023-06-06", "Dr. Echo", 1)')
<sqlite3.Cursor object at 0x000001CA42767D40>
>>> conn.execute('SELECT * FROM vaccinations').fetchall()
[('rabies', '2023-06-06', 'Dr. Echo', 1), ('FeLV', '2023-06-06', 'Dr. Echo', 1)]

We could record vaccinations for other cats by using their rowid. If we
wanted to add vaccination records for Mango, we could find Mango’s rowid

406 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

in the cats table and then add records to the vaccinations table using that
value for the cat_id column:

>>> conn.execute('SELECT rowid, * FROM cats WHERE name = "Mango"').fetchall()
[(23, 'Mango', '2017-02-12', 'tuxedo', 6.8)]
>>> conn.execute('INSERT INTO vaccinations VALUES ("rabies", "2023-07-11", "Dr. Echo", 23)')
<sqlite3.Cursor object at 0x000001CA42767D40>

We can also perform a type of SELECT query called an inner join, which
returns the linked rows from both tables. For example, enter the following
into the interactive shell to retrieve the vaccinations rows joined with the
data from the cats table:

>>> conn.execute('SELECT * FROM cats INNER JOIN vaccinations ON cats.rowid =
vaccinations.cat_id').fetchall()
[('Zophie', '2021-01-24', 'gray tabby', 5.6, 'rabies', '2023-06-06', 'Dr. Echo', 1),
 ('Zophie', '2021-01-24', 'gray tabby', 5.6, 'FeLV', '2023-06-06', 'Dr. Echo', 1),
 ('Mango', '2017-02-12', 'tuxedo', 6.8, 'rabies', '2023-07-11', 'Dr. Echo', 23)]

Note that while you could make cat_id an INTEGER column and use it as
a foreign key without actually setting up the FOREIGN KEY(cat_id) REFERENCES
cats(rowid) syntax, foreign keys have several safety features to ensure that
your data remains consistent. For example, you can’t insert or update a vac-
cination record using a cat_id for a nonexistent cat. SQLite also forces you
to delete all vaccination records for a cat before deleting the cat so as to not
leave behind “orphaned” vaccination records.

These safety features are disabled by default. You can enable them by
running the PRAGMA query after calling sqlite3 .connect():

>>> conn.execute('PRAGMA foreign_keys = ON')

Foreign keys and joins have additional features, but they are outside the
scope of this book.

In-Memory Databases and Backups
If your program is making a large number of queries, you can significantly
improve the speed of your database by using an in-memory database. These
databases are stored entirely in the computer’s memory rather than in a file
on the computer’s hard drive. This makes changes incredibly fast. However,
you’ll need to remember to save the in-memory database to a file using the
backup() method. If your program crashes in the middle of running, you’ll
lose the entire in-memory database, just as you would the values in the pro-
gram’s variables.

The following example creates an in-memory database and then saves it
to a database in the file test.db:

>>> import sqlite3
>>> memory_db_conn = sqlite3 .connect(':memory:',

Sqlite Databases 407

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

isolation_level=None) # Create an in-memory database.
>>> memory_db_conn.execute('CREATE TABLE test (name TEXT, number REAL)')
<sqlite3.Cursor object at 0x000001E730AD0340>
>>> memory_db_conn.execute('INSERT INTO test VALUES ("foo", 3.14)')
<sqlite3.Cursor object at 0x000001D9B0A07EC0>
>>> file_db_conn = sqlite3 .connect('test .db', isolation_level=None)
>>> memory_db_conn.backup(file_db_conn) # Save the database to test.db.

You can load a SQLite database file into memory with the backup()
method as well:

>>> import sqlite3
>>> file_db_conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> memory_db_conn = sqlite3 .connect(':memory:', isolation_level=None)
>>> file_db_conn.backup(memory_db_conn)
>>> memory_db_conn.execute('SELECT * FROM cats LIMIT 3').fetchall()
[('Zophie', '2021-01-24', 'gray tabby', 5.6), ('Miguel', '2016-12-24',
'siamese', 6.2), ('Jacob', '2022-02-20', 'orange and white', 5.5)]

There are some downsides to using in-memory databases. If your program
crashes from an unhandled exception, you’ll lose the database. You can miti-
gate this risk by wrapping your code in a try statement that catches any unhan-
dled exceptions and then uses an except statement to save the file to a database.
Chapter 4 covers exception handling with the try and except statements.

Copying Databases
You can obtain a copy of a database by calling the iterdump() method on the
Connection object. This method returns an iterator that generates the text of
the SQLite queries needed to re-create the database. You can use iterators
in for loops or pass them to the list() function to convert them to a list of
strings. For example, to get the SQLite queries needed to re-create the
sweigartcats.db database, enter the following into the interactive shell:

>>> import sqlite3
>>> conn = sqlite3 .connect('sweigartcats .db', isolation_level=None)
>>> with open('sweigartcats-queries.txt', 'w', encoding='utf-8') as fileObj:
... for line in conn.iterdump():
... fileObj.write(line + '\n')

This code creates a sweigartcats-queries.txt file with the following SQLite
queries, which can re-create the database:

BEGIN TRANSACTION;
CREATE TABLE "cats" (name TEXT NOT NULL, birthdate TEXT, fur TEXT, weight_kg REAL) STRICT;
INSERT INTO "cats" VALUES('Zophie','2021-01-24','gray tabby',5.6);
INSERT INTO "cats" VALUES('Miguel','2016-12-24','siamese',6.2);
INSERT INTO "cats" VALUES('Jacob','2022-02-20','orange and white',5.5);
--snip--
INSERT INTO "cats" VALUES('Spunky','2015-09-04','gray',5.9);

408 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

INSERT INTO "cats" VALUES('Shadow','2021-01-18','calico',6.0);
COMMIT;

The text of these queries will almost certainly be larger than the origi-
nal database, but the queries have the advantage of being human readable
and easy to edit before copying and pasting into your Python code or into a
SQLite app, as we’ll cover next.

SQLite Apps
At times, you may want to investigate a SQLite database directly without
having to write all of this extraneous Python code. You can do so by install-
ing the sqlite3 command, which runs from a terminal command line win-
dow and is documented at https://sqlite .org /cli .html.

On Windows, download the files labeled “A bundle of command line tools
for managing SQLite database files” from https://sqlite .org /download .html and
place the sqlite3.exe program in a folder on the system PATH. (See Chapter 12 for
information about the PATH environment variable and terminal windows.) The
sqlite3 command is preinstalled on macOS. For UbuntuLinux, run sudo apt
install sqlite3 to install it.

Next, in a terminal window, run sqlite3 example.db to connect to the
database in example.db. If this file doesn’t exist, sqlite3 creates this file with
an empty database. You can enter SQL queries into this tool, though unlike
the queries passed to conn.execute() in Python, they must end with a semi-
colon. Also, text values in SQLite must be enclosed in single quotes only;
double quotes are not allowed.

For example, enter the following into the terminal window:

C:\Users\Al>sqlite3 example.db
SQLite version 3.xx.xx
Enter ".help" for usage hints.
sqlite> CREATE TABLE IF NOT EXISTS cats (name TEXT NOT NULL,
birthdate TEXT, fur TEXT, weight_kg REAL) STRICT;
sqlite> INSERT INTO cats VALUES ('Zophie', '2021-01-24', 'gray tabby', 4.7);
sqlite> SELECT * from cats;
Zophie|2021-01-24|gray tabby|4.7

As you can see in this example, the sqlite3 command line tool provides a
sort of SQLite interactive shell for you to enter queries at its sqlite> prompt.
The .help command displays additional commands, such as .tables (which
shows the tables in the database) and .headers (which lets you turn column
headers on or off):

sqlite> .tables
cats
sqlite> .headers on
sqlite> SELECT * from cats;
name|birthdate|fur|weight_kg
Zophie|2021-01-24|gray tabby|4.7

https://sqlite.org/cli.html
https://sqlite.org/download.html

Sqlite Databases 409

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If the command line tool is too sparse for you, there are also free, open
source apps for displaying SQLite databases in a graphical user interface
(GUI) on Windows, macOS, and Linux:

• DB Browser for SQLite (https://sqlitebrowser .org)

• SQLite Studio (https://sqlitestudio .pl)

• DBeaver Community (https://dbeaver .io)

While these GUI apps make it easier to work with SQLite databases, it’s
still worth learning the text-based syntax of SQLite queries.

Summary
Computers make it possible to deal with large amounts of data, but sim-
ply putting data into a text file, or even a spreadsheet, might not organize
it well enough for you to make efficient use of it. SQL databases such as
SQLite offer an advanced way to not only store large amounts of informa-
tion but also retrieve the precise data you want through the SQL language.

SQLite is an impressive database, and Python comes with the sqlite3
module in its standard library. SQLite’s version of SQL is different from
that used in other relational databases, but it’s similar enough that learning
SQLite provides a good introduction to databases in general.

SQLite databases live in a single file without a dedicated server. They
can contain multiple tables (which you can think of as analogous to spread-
sheets), and each table can contain multiple columns. To edit a table’s val-
ues, you can perform the CRUD operations (for create, read, update, and
delete) with the INSERT, SELECT, UPDATE, and DELETE queries. To change tables
and columns themselves, you can use the ALTER TABLE and DROP TABLE queries.
Lastly, foreign keys allow you to link records in multiple tables together
using a technique called joins.

There’s a lot more to SQLite and databases than can be covered in one
chapter. If you’d like to learn more about SQL databases in general, I rec-
ommend Practical SQL, 2nd Edition (No Starch Press, 2022) by Anthony
DeBarros.

Practice Questions
 1. What Python instructions will obtain a Connection object for a SQLite

database in a file named example.db?

 2. What Python instruction will create a new table named students with
TEXT columns named first_name, last_name, and favorite_color?

 3. How do you connect to a SQLite database in WAL mode?

 4. What’s the difference between the INTEGER and REAL data types in
SQLite?

 5. What does strict mode add to a table?

 6. What does the * in the query 'SELECT * FROM cats' mean?

https://sqlitebrowser.org
https://sqlitestudio.pl
https://dbeaver.io

410 Chapter 16

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 7. What does CRUD stand for?

 8. What does ACID stand for?

 9. What query adds new records to a table?

 10. What query deletes records from a table?

 11. What happens if you don’t specify the WHERE clause in an UPDATE query?

 12. What is an index? What code would create an index for a column
named birthdate in a table named cats?

 13. What is a foreign key?

 14. How can you delete a table named cats?

 15. What “filename” do you specify to create an in-memory database?

 16. How can you copy a database to another database?

Practice Programs
For practice, write programs to do the following tasks.

Cat Vaccination Checker
Download the sweigartcats.db database of my cats from the book’s resources
at https://nostarch .com /automate -boring -stuff -python -3rd -edition. Write a program
that opens this database and lists all cats that don’t have vaccines named
'rabies', 'FeLV', and 'FVRCP'. Also, check the database for errors by finding
all vaccines that were administered on a date before the cat’s birthday.

Meal Ingredients Database
Write a program that creates two tables, one for meals and one for ingredi-
ents, using these SQL queries:

CREATE TABLE IF NOT EXISTS meals (name TEXT) STRICT
CREATE TABLE IF NOT EXISTS ingredients (name TEXT,
meal_id INTEGER, FOREIGN KEY(meal_id) REFERENCES meals
(rowid)) STRICT

Then, write a program that prompts the user for input. If the user
enters 'quit', the program should exit. The user can also enter a new meal
name, followed by a colon and a comma-delimited list of ingredients:
'meal:ingredient1,ingredient2'. Save the meal and its ingredients in the meals
and ingredients tables.

Finally, the user can enter the name of a meal or ingredient. If the name
appears in the meals table, the program should list the meal’s ingredients.
If the name appears in the ingredients table, the program should list every

https://nostarch.com/automate-boring-stuff-python-3rd-edition

Sqlite Databases 411

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

meal that uses this ingredient. For example, the output of the program
could look like this:

> onigiri:rice,nori,salt,sesame seeds
Meal added: onigiri
> chicken and rice:chicken,rice,cream of chicken soup
Meal added: chicken and rice
> onigiri
Ingredients of onigiri:
 rice
 nori
 salt
 sesame seeds
> chicken
Meals that use chicken:
 chicken and rice
> rice
Meals that use rice:
 onigiri
chicken and rice
> quit

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

While you might think of PDF and Word as
formats for storing text, these documents are

binary files also containing font, color, and
layout information, making them much more

complex than simple plaintext files. If you want your
programs to read or write PDFs or Word documents,
you’ll need to do more than simply pass their filenames
to open(). Fortunately, several Python packages make
these interactions easy. This chapter will cover two
of them: PyPDF and Python-Docx.

PDF Documents
PDF stands for Portable Document Format and uses the .pdf file extension.
Although PDFs support many features, this section will focus on three

17
P D F A N D W O R D D O C U M E N T S

414 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

common tasks: extracting a document’s text content, extracting its images,
and crafting new PDFs from existing documents.

PyPDF is a Python package for creating and modifying PDF files. Install
the package by following the instructions in Appendix A. If the package was
installed correctly, running import pypdf in the interactive shell shouldn’t
display any errors.

While PDF files are great for laying out text in a way that is easy for peo-
ple to print and read, they’re not easy to parse into plaintext. As a result,
PyPDF might make mistakes when extracting text from a PDF and may even
fail to open some PDFs. There isn’t much you can do about this, unfortu-
nately. PyPDF may simply be unable to work with some of your particular
files. That said, I haven’t personally encountered a PDF file that PyPDF
couldn’t open.

Extracting Text
To begin working with PyPDF, let’s use the PDF of a sample chapter from
my book on recursive algorithms, The Recursive Book of Recursion (No Starch
Press, 2022), shown in Figure 17-1.

PDF and Word Documents 415

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 17-1: The PDF file from which we will be extracting text

Download this Recursion_Chapter1.pdf file from the online resources at
https://nostarch .com /automate -boring -stuff -python -3rd -edition, then enter the fol-
lowing into the interactive shell:

>>> import pypdf
1 >>> reader = pypdf.PdfReader('Recursion_Chapter1.pdf')
2 >>> len(reader.pages)
18

https://nostarch.com/automate-boring-stuff-python-3rd-edition

416 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Import the pypdf module, then call pypdf.PdfReader() with the filename
of the PDF to get a PdfReader object that represents the PDF 1. Store this
object in a variable named reader.

The pages attribute of the PdfReader object is a list-like data structure of
Page objects that represent individual pages in the PDF. Like actual Python
lists, you can pass this data structure to the len() function 2. This example
PDF has 18 pages.

To extract the text from this PDF and output it to a text file, open a new
file editor tab and save the following code to extractpdftext.py:

import pypdf
import pdfminer.high_level

PDF_FILENAME = 'Recursion_Chapter1.pdf'
TEXT_FILENAME = 'recursion.txt'

text = ''
try:
 reader = pypdf.PdfReader(PDF_FILENAME)
 1 for page in reader.pages:
 2 text += page.extract_text()
except Exception:
 3 text = pdfminer.high_level.extract_text(PDF_FILENAME)
with open(TEXT_FILENAME, 'w', encoding='utf-8') as file_obj:
 4 file_obj.write(text)

We use the pypdf module to extract the text, but if it fails for a particu-
lar PDF file and raises an exception, we fall back on the pdfminer module.
Inside a try block, we use a for loop 1 to iterate over each Page object in the
PDF file’s PdfReader object. Calling the Page object’s extract_text() method 2
returns a string that we can concatenate to the text variable. When the loop
finishes, text will contain a single string of the entire text of the PDF.

If the PDF file has an unconventional format that PyPDF can’t under-
stand, we can try using pdfminer.high_level, an older module included in this
book’s third-party packages. The module’s extract_text() function obtains the
PDF’s contents as a single string, rather than operating one page at a time 3.

Finally, we can use the open() function and the write() method covered
in Chapter 10 to write the string to a text file 4.

Post-Processing with AI
The text extraction we just performed isn’t perfect. The PDF file format is
infamously convoluted and was originally designed for printing documents,
not for making them machine readable. Even if there are no problems with
the extraction, the text layout is fixed: the string will contain newline char-
acters after each row of text and hyphenated words at the ends of rows. For
instance, the extracted text from our example PDF looks like this:

1
WHAT IS RECURSION?

PDF and Word Documents 417

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Recursion has an intimidating reputation.
It's considered hard to understand, but
at its core, it depends on only two things:
 function calls and stack data structures.
Most new programmers trace through what a program does by follow -
ing the execution. It's an easy way to read code: you just put your finger
--snip--

As you can see, there are many subjective decisions to make:

• Where should paragraphs in the PDF end and begin?

• Should page numbers, headers, and footers be included in the
extracted text?

• How should tables of data in the PDF be converted to plaintext?

• How much whitespace should be included in the extract text?

Cleaning up this text is boring and cannot easily be automated with
code. However, a large language model (LLM) AI such as ChatGPT can
understand the context of the text well enough to produce a cleaned-up ver-
sion automatically. Use a prompt such as the following before copying and
pasting the extracted text:

The following is text extracted from several pages of a PDF of a
book on recursive algorithms. Clean up this text. By this, I mean
put paragraphs on a single, separate line. Also remove the footer
and header text from each page. Also get rid of the hyphens at
the end of each line for words split up across the line. Do not
make any spelling, grammar corrections, or rewording. Here is
the text . . .

In a trial, this prompt produced the following text:

WHAT IS RECURSION?

Recursion has an intimidating reputation. It's considered hard
to understand, but at its core, it depends on only two things:
function calls and stack data structures. Most new programmers
trace through what a program does by following the execution.
It's an easy way to read code: you just put your finger...

A human must always review the output of any AI system. For example,
the LLM removed the chapter number 1 from the start of the text, which
wasn’t my intention. You may have to refine the prompt to correct any
misunderstandings.

If you don’t have access to an LLM, the PyPDF documentation has a list
of post-processing tips with code snippets at https://pypdf .readthedocs .io /en /
latest /user /post -processing -in -text -extraction .html.

https://pypdf.readthedocs.io/en/latest/user/post-processing-in-text-extraction.html
https://pypdf.readthedocs.io/en/latest/user/post-processing-in-text-extraction.html

418 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Extracting Images
PyPDF can also extract the images from a PDF document. Each Page object
has an images attribute containing a list-like data structure of Image objects.
We can write the bytes of these Image objects to an image file opened in 'wb'
(write-binary) mode. An Image object also has a name attribute that contains a
string of the image’s name. Here is code that extracts images from all pages
of the sample chapter PDF. Open a new file editor tab and save the follow-
ing code as extractpdfimages.py:

import pypdf
PDF_FILENAME = 'Recursion_Chapter1.pdf'

reader = pypdf.PdfReader(PDF_FILENAME)
1 image_num = 0
2 for i, page in enumerate(reader.pages):
 print(f'Reading page {i+1} - {len(page.images)} images found...')
 try:
 3 for image in page.images:
 4 with open(f'{image_num}_page{i+1}_{image.name}', 'wb') as file:
 5 file.write(image.data)
 print(f'Wrote {image_num}_page{i+1}_{image.name}...')
 6 image_num += 1
 except Exception as exc:
 7 print(f'Skipped page {i+1} due to error: {exc}')

The output of this program will look like this:

Reading page 1 - 7 images found...
Wrote 0_page1_Im0.jpg...
Wrote 1_page1_Im1.png...
--snip--
Reading page 7 - 1 images found...
Skipped page 7 due to error: not enough image data
--snip--
Reading page 17 - 0 images found...
Reading page 18 - 0 images found...

The images in a PDF document often have generic names, like Im0.jpg
or Im1.png, so we use a variable counter named image_num 1 along with the
page number to assign them unique names. First, we loop over each Page
object in the pages attribute of the PdfReader object. Recall that Python’s
enumerate() function 2 returns integer indexes and the list item of the list-
like object we pass it. Each Page object has an images attribute that we’ll iter-
ate over as well 3.

Inside that second, nested for loop that iterates over the Image objects
in the images attribute, we call open() and use an f-string to provide the file-
name 4. This filename is made up of the integer in the image_num counter,
the page number, and the string in the name attribute of the Image object.
Because i starts at 0 while PDF page numbers start at 1, we use i+1 to store

PDF and Word Documents 419

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

the page number. This name will include the file extension, such as .png
or .jpg. We must also pass 'wb' to the open() function call so that the file is
opened in write-binary mode. The bytes of the image file are stored in the
Image object’s data attribute, which we pass to the write() method 5. After
writing an image, the code increments image_num by 1 6.

If some incompatibility between the PDF file and PyPDF causes a Page
object’s images attribute to raise an exception, our try and except statements
can catch it and print a short error message 7. This way, a problem on one
page won’t cause the entire program to crash.

Like text extraction, image extraction may be imperfect. For example,
PyPDF failed to detect many of the images from the sample chapter PDF,
and showed an error message instead. Meanwhile, you may be surprised
that PyPDF extracts small, blank images used as background or spacers.
When working with PDFs, you’ll often require human review to ensure that
the output is acceptable.

Creating PDFs from Other Pages
PyPDF’s counterpart to PdfReader is PdfWriter, which can create new PDF
files. But PyPDF cannot write arbitrary text to a PDF like Python can with
plaintext files. Instead, PyPDF’s PDF-writing capabilities are limited to copy-
ing, merging, cropping, and transforming pages from other PDFs into new
ones. The code in this interactive shell example creates a copy of the sample
chapter PDF with just the first five pages:

>>> import pypdf
1 >>> writer = pypdf.PdfWriter()
2 >>> writer.append('Recursion_Chapter1.pdf', (0, 5))
>>> with open('first_five_pages.pdf', 'wb') as file:
3 ... writer.write(file)
...
(False, <_io.BufferedWriter name='first_five_pages.pdf'>)

First, we create a PdfWriter object by calling pypdf.PdfWriter() 1. The
PdfWriter object in the writer variable represents a blank PDF document
with zero pages. Then, the PdfWriter object’s append() method copies the first
five pages from the sample chapter PDF, which we identify by the 'Recursion_
Chapter1.pdf' filename 2. (Despite the identical name, the PdfWriter object’s
append() method differs from the append() list method.)

The second argument to this method is the tuple (0, 5), which tells the
PdfWriter object to copy pages starting at page index 0 (the first page in
the PdfWriter object), up to but not including page index 5. PyPDF considers
index 0 to be the first page, even though PDF applications call it page 1.

Finally, to write the contents of the PdfWriter object to a PDF file, call
open() with the filename and 'wb' mode, and then pass the File object to the
write() method of the PdfWriter object 3. This should generate a new PDF file.

The tuple provided to append() can contain either two or three integers.
If a third integer is provided, the method skips that number of pages.

420 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Because this behavior matches the range() function, you could pass the two
or three integers to list(range()) to see which pages the code would copy:

>>> list(range(0, 5)) # Passing (0, 5) makes append() copy these pages:
[0, 1, 2, 3, 4]
>>> list(range(0, 5, 2)) # Passing (0, 5, 2) makes append() copy these pages:
[0, 2, 4]

The append() method can also accept a list argument with page number
integers for each page to append. For example, say we replace the code in
the previous interactive shell example with this:

>>> writer.append('Recursion_Chapter1.pdf', [0, 1, 2, 3, 4])

This code would also copy the first five pages of the PDF document to
the PdfWriter object. Note that append() interprets tuples and list arguments
differently; the tuple (0, 5) tells append() to copy pages at index 0 up to but
not including page index 5, but the list [0, 5] would tell append() to individually
copy page index 0 and then copy page index 5. This difference in meaning
between tuples and lists is unconventional, and you won’t see it in other
Python libraries, but it’s part of PyPDF’s design.

The append() method adds the copied pages to the end of the PdfWriter
object. To insert copied pages before the end, call the merge() method
instead. The merge() method has an additional integer argument that speci-
fies where to insert the pages. For example, look at this code:

>>> writer.merge(2, 'Recursion_Chapter1.pdf', (0, 5))

This code copies the pages at index 0 up to but not including index 5
and inserts them where page index 2 (the third page) is in the PdfWriter
object in writer. The original page at index 2, and all other pages, get
shifted back after the inserted set of pages.

Rotating Pages

We can also rotate the pages of a PDF in 90-degree increments with the
rotate() method of Page objects. Pass either 90, 180, or 270 as an argument
to this method to rotate the page clockwise, and either -90, -180, or -270 to
rotate the page counterclockwise. Rotating pages is useful if you have many
PDFs that are, for whatever reason, already incorrectly rotated and you need
to rotate them back, or else need to rotate only a few select pages in a PDF
document. PDF apps often have rotation features that you can use to manu-
ally correct PDFs, but Python allows you to quickly apply rotations to many
PDFs to automate this boring task.

For example, enter the following into the interactive shell to rotate the
pages of the sample chapter PDF:

>>> import pypdf
>>> writer = pypdf.PdfWriter()

PDF and Word Documents 421

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> writer.append('Recursion_Chapter1.pdf')
1 >>> for i in range(len(writer.pages)):
... 2 writer.pages[i].rotate(90)
...
{'/ArtBox': [21, 21, 525, 687], '/BleedBox': [12, 12, 534, 696],
--snip--

>>> with open('rotated.pdf', 'wb') as file:
... writer.write(file)
...
(False, <_io.BufferedWriter name='rotated.pdf'>)

We create a new PdfWriter object and copy the pages of the sample chapter
PDF to it. Then, we use a for loop to loop over each page number. The call to
len(writer.pages) returns the number of pages 1 as an integer. The expression
writer.pages[i] accesses each Page object on an iteration of the for loop, and the
rotate(90) method call 2 rotates this page in the PdfWriter object.

The resulting PDF should consist of all pages rotated 90 degrees clock-
wise, as shown in Figure 17-2.

Figure 17-2: The rotated .pdf file with the page rotated 90 degrees clockwise

PyPDF can’t rotate documents in increments other than 90 degrees.

422 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Inserting Blank Pages

You can insert or append a blank page to a PdfWriter object with the insert
_blank_page() and add_blank_page() methods. The size of the new page will
be the same as that of the preceding page. For example, let’s create a copy
of the sample chapter PDF with blank pages at the end and on page 3:

>>> import pypdf
>>> writer = pypdf.PdfWriter()
>>> writer.append('Recursion_Chapter1.pdf')
1 >>> writer.add_blank_page()
{'/Type': '/Page', '/Resources': {}, '/MediaBox': [0.0, 0.0,
546, 708], '/Parent': IndirectObject(1, 0, 2629126028624)}
2 >>> writer .insert _blank _page(index =2)
{'/Type': '/Page', '/Parent': NullObject, '/Resources': {},
'/MediaBox': RectangleObject([0.0, 0.0, 546, 708])}
>>> with open('with_blanks.pdf', 'wb') as file:
... writer.write(file) # Save the writer object to a PDFfile.
...
(False, <_io.BufferedWriter name='with_blanks.pdf'>)

After copying all the pages from the sample chapter PDF to the PdfWriter
object, the add_blank_page() method adds a blank page to the end of the doc-
ument. The insert_blank_page() method inserts a blank page at page index
2 (which is the third page, as page index 0 is the first page). This method
requires that you specify the index parameter name.

You can either leave these pages blank or add content to them later,
such as overlays and watermarks, as the next section explains.

Adding Watermarks and Overlays

PyPDF can also overlay the contents of one page on top of another, which
is useful for adding a logo, timestamp, or watermark to a page. In PyPDF,
a stamp or overlay is content placed on top of the page’s existing content,
while a watermark or underlay is content placed underneath the page’s exist-
ing content.

Download watermark.pdf from the book’s online resources and place the
PDF in the current working directory along with the sample chapter PDF.
Then, enter the following into the interactive shell:

>>> import pypdf
>>> writer = pypdf.PdfWriter()
>>> writer.append('Recursion_Chapter1.pdf')
1 >>> watermark_page = pypdf.PdfReader('watermark.pdf').pages[0]
>>> for page in writer.pages:
2 ... page.merge_page(watermark_page, over=False)
...
>>> with open('with_watermark.pdf', 'wb') as file:
... writer.write(file)
...
(False, <_io.BufferedWriter name='with_watermark.pdf'>)

PDF and Word Documents 423

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This example creates a copy of the sample chapter PDF in a new
PdfWriter object, saved in the writer variable. We also obtain the Page object
for the first page of the watermark PDF and store it in the watermark_page
variable. The for loop then loops over all the Page objects in the PdfWriter
object and applies the watermark by passing it to merge_page(). (Don’t con-
fuse the merge_page() method of Page objects with the merge() method of
PdfWriter objects discussed earlier in this chapter.)

The merge_page() method also has an over keyword argument. Pass True
for this argument to create a stamp or overlay, or pass False to create a
watermark or underlay.

After modifying the PdfWriter object’s pages in the loop, the code then
saves it as with_watermark.pdf. Figure 17-3 shows the original watermark PDF
and two pages from the sample chapter PDF with the watermark applied.

Figure 17-3: The watermark PDF (left) and pages with the added watermark (center, right)

The merge_page() method is useful for making broad changes to PDF
documents, such as merging the contents of two pages.

Encrypting and Decrypting PDFs

PDFs allow you to encrypt their contents, making them unreadable. The
encryption is only as strong as the password you choose, so create a pass-
word that uses different character types, isn’t a word in the dictionary,
and has around 14 to 16 characters. Keep in mind that PDFs have no pass-
word reset mechanism; if you forget the password, the PDF will be forever
unreadable unless you can guess it.

The encrypt() method of PdfWriter objects accepts a password string and
a string that selects the encryption algorithm. The 'AES-256' argument imple-
ments a recommended modern encryption algorithm, so we’ll always use
that. Enter the following into the interactive shell to create an encrypted
copy of the sample chapter PDF:

>>> import pypdf
>>> writer = pypdf.PdfWriter()
>>> writer.append('Recursion_Chapter1.pdf')

424 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> writer.encrypt('swordfish', algorithm='AES-256')
>>> with open('encrypted.pdf', 'wb') as file:
... writer.write(file)
...
(False, <_io.BufferedWriter name='encrypted.pdf'>)

The encrypt('swordfish', algorithm='AES-256') method call on the PdfWriter
object encrypts the content of the PDF. After we write this encrypted PDF
to the encrypted.pdf file, no PDF app, including PyPDF, should be able to
open it without entering the password swordfish. (This is a poor password,
as it’s a word that occurs in the dictionary and is therefore easy to guess.)
Encrypted data looks random unless you apply the correct decryption key
or password, and decrypting the document with the wrong password results
in garbage data. PDF apps will detect this, then prompt you to try the pass-
word again.

PyPDF can apply a password to an encrypted PDF to decrypt it. Enter
the following into the interactive shell to detect encrypted PDFs with the
is_encrypted attribute and decrypt them with decrypt():

>>> import pypdf
1 >>> reader = pypdf.PdfReader('encrypted.pdf')
>>> writer = pypdf.PdfWriter()
2 >>> reader.is_encrypted
True
3 >>> reader.pages[0]
Traceback (most recent call last):
--snip--
pypdf.errors.FileNotDecryptedError: File has not been decrypted
4 >>> reader.decrypt('an incorrect password').name
'NOT_DECRYPTED'
5 >>> reader.decrypt('swordfish').name
'OWNER_PASSWORD'
6 >>> writer.append(reader)
>>> with open('decrypted.pdf', 'wb') as file:
... writer.write(file)
...
(False, <_io.BufferedWriter name='decrypted.pdf'>)

We load the encrypted PDF into a PdfReader object just like any other
PDF 1. The PdfReader object has an is_encrypted attribute 2 that is set to
either True or False. If you try to read the PDF content by, for example,
accessing the pages attribute 3, PyPDF raises a FileNotDecryptedError because
it’s unable to read it.

PDFs can have a user password that allows you to view the PDF and an
owner password that allows you to set permissions for printing, commenting,
extracting text, and other features. The user password and owner password
are the first and second arguments to encrypt(), respectively. If only one
string argument is passed to encrypt(), PyPDF will use it for both passwords.

To decrypt the PdfReader object, call the decrypt() method and pass it
the string of the password. This method call returns a PasswordType object;

PDF and Word Documents 425

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

we’re interested only in the name attribute of this object. If name is set to
'NOT_DECRYPTED' 4, we provided the wrong password. If name is set to 'OWNER
_PASSWORD' or 'USER_PASSWORD' 5, we’ve entered the correct owner or
user password.

We can now append the pages from the PdfReader object to a PdfWriter
object 6 and save the decrypted PDF to a file.

Project 12: Combine Select Pages from Many PDFs
Say you have the boring job of merging several dozen PDF documents into
a single PDF file. The first page of each document is a cover sheet, but you
don’t want the cover sheets repeated in the final result. Even though there
are lots of free programs for combining PDFs, many of them simply merge
entire files together. Let’s write a Python program to customize the pages to
include in the combined PDF.

At a high level, here is what the program will do:

• Find all PDF files in the current working directory and sort them
alphabetically.

• For each PDF, copy all the pages after the first page to an output PDF.

• Save the output PDF to a file.

In terms of implementation, your code will need to do the following:

• Call os.listdir() to find all the files in the working directory and
remove any non-PDF files. (We covered this function in Chapter 11.)

• Call Python’s sort() list method to alphabetize the filenames.

• Create a PdfWriter object for the output PDF.

• Loop over each PDF file, creating a PdfReader object for it.

• From the PdfReader object, copy to the output PDF all the pages after
the first page.

• Write the output PDF to a file.

Open a new file editor tab for this project and save it as combine_pdfs.py.

Step 1: Find All PDF Files
First, your program needs to get a list of all files with the .pdf extension in
the current working directory and sort them. Make your code look like
the following:

combine_pdfs.py - Combines all the PDFs in the current working directory
into a single PDF

1 import pypdf, os

Get all the PDF filenames.
pdf_filenames = []
for filename in os.listdir('.'):

426 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 if filename.endswith('.pdf'):
 2 pdf_files.append(filename)
3 pdf_filenames.sort(key=str.lower)

4 writer = pypdf.PdfWriter()

TODO: Loop through all the PDF files.

TODO: Copy all pages after the first page.

TODO: Save the resulting PDF to a file.

This code imports the pypdf and os modules 1. The os.listdir('.') call
will return a list of every file in the current working directory. The code
then loops over this list, adding files with the .pdf extension to a list in the
pdf_filenames variable 2. Next, we sort this list in alphabetical order with
the key=str.lower keyword argument to sort() 3. For technical reasons, the
sort() method puts uppercase characters like Z before lowercase characters
like a; the keyword argument we provide prevents this by comparing the lower-
case form of the strings. We create a PdfWriter object to hold the combined
PDF pages 4. Finally, a few comments outline the rest of the program.

Step 2: Open Each PDF
Now the program must read each PDF file in pdf_filenames. Add the follow-
ing to your program:

combine_pdfs.py - Combines all the PDFs in the current working directory
into a single PDF

import pypdf, os

--snip--

Loop through all the PDF files:
for pdf_filename in pdf_filenames:
 reader = pypdf.PdfReader(pdf_filename)
 # Copy all pages after the first page:
 writer.append(pdf_filename, (1, len(reader.pages)))

TODO: Save the resulting PDF to a file.

For each PDF filename, the loop creates a PdfFileReader object and
stores it in a variable named reader. Now the code inside the loop can call
len(reader.pages) to find out how many pages the PDF has. It uses this infor-
mation in the append() method call to copy pages starting at 1 (the second
page, because PyPDF uses 0 as the first page index) up to the end of the
PDF. Then, it appends the content to the same PdfWriter object in writer.

PDF and Word Documents 427

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Step 3: Save the Results
Once these for loops have finished looping, the writer variable should con-
tain a PdfFileWriter object with the pages of all the PDFs combined. The last
step is to write this content to a file on the hard drive. Add this code to
your program:

combine_pdfs.py - Combines all the PDFs in the current working directory
into a single PDF

import pypdf, os

--snip--

Save the resulting PDF to a file:
with open('combined.pdf', 'wb') as file:
 writer.write(file)

Passing 'wb' to open() opens the output PDF file, combined.pdf, in write-
binary mode. Then, passing the resulting File object to the write() method
creates the actual PDF file. (Be aware of the identically named write() meth-
ods of File objects and PdfWriter objects.) At the end of the program, a single
PDF contains all the pages (except the first) of every PDF in a folder, sorted
alphabetically by filename.

Ideas for Similar Programs
Being able to create PDFs from the pages of other PDFs will let you make
programs that can do the following:

• Cut out specific pages from PDFs.

• Reverse or reorder pages in a PDF.

• Create a PDF from only those pages of other PDFs that have some spe-
cific text, identified by the extract_text() method of Page objects.

Word Documents
Python can create and modify Microsoft Word documents, which have the
.docx file extension, with the Python-Docx package, which you can install by
following the instructions in Appendix A.

W A R N I N G Be sure to install Python-Docx, not Docx, which belongs to a different package that
this book doesn’t cover. When importing the module from the Python-Docx package,
however, you’ll need to run import docx, not import python-docx.

If you don’t have Word, you can use the free LibreOffice Writer applica-
tion for Windows, macOS, and Linux to open .docx files. Download it from
https://www .libreoffice .org . Although Word can run on macOS, this chapter
will focus on Word for Windows. Also note that while the browser-based

https://www.libreoffice.org

428 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Office 365 and Google Docs web apps are popular word processors, they
too import and export .docx files.

Compared to plaintext files, .docx files have many structural elements,
which Python-Docx represents using three different data types. At the high-
est level, a Document object represents the entire document. The Document
object contains a list of Paragraph objects for the paragraphs in the docu-
ment. (A new paragraph begins whenever the user presses enter or return
while typing in a Word document.) Each of these Paragraph objects contains a
list of one or more Run objects. The single-sentence paragraph in Figure 17-4
has four runs.

A plain paragraph with some bold and some italic
Run Run RunRun

Figure 17-4: The Run objects identified in a Paragraph object

The text in a Word document is more than just a string. It has font, size,
color, and other styling information associated with it. A style in Word is a
collection of these attributes. A Run object is a contiguous run of text with
the same style. You’ll need a new Run object whenever the text style changes.

Reading Word Documents
Let’s experiment with the docx module. Download demo.docx from the
book’s online resources and save the document to the working directory.
Then, enter the following into the interactive shell:

>>> import docx
>>> doc = docx.Document('demo.docx')
>>> len(doc.paragraphs)
7
>>> doc.paragraphs[0].text
'Document Title'
>>> doc.paragraphs[1].text
'A plain paragraph with some bold text and some italic'
>>> len(doc.paragraphs[1].runs)
4
>>> doc.paragraphs[1].runs[0].text
'A plain paragraph with some '
>>> doc.paragraphs[1].runs[1].text
'bold'
>>> doc.paragraphs[1].runs[2].text
' and some '
>>> doc.paragraphs[1].runs[3].text
'italic'

We open a .docx file in Python, call docx.Document(), and pass it the
filename demo.docx. This will return a Document object, which has a paragraphs
attribute that is a list of Paragraph objects. When we call len() on this

PDF and Word Documents 429

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

attribute, it returns 7, which tells us that there are seven Paragraph objects in
this document. Each of these Paragraph objects has a text attribute that con-
tains a string of the text in that paragraph (without the style information).
Here, the first text attribute contains 'DocumentTitle', and the second contains
'A plain paragraph with some bold text and some italic'.

Each Paragraph object also has a runs attribute that is a list of Run objects.
Run objects also have a text attribute, containing just the text in that par-
ticular run. Let’s look at the text attributes in the second Paragraph object.
Calling len() on this object tells us that there are four Run objects. The first
Run object contains 'A plain paragraph with some '. Then, the text changes
to a bold style, so 'bold' starts a new Run object. The text returns to an
unbolded style after that, which results in a third Run object, ' text and some '.
Finally, the fourth and last Run object contains 'italic' in an italic style.

Using Python-Docx, your Python programs can now read the text from
a .docx file and use it just like any other string value.

Getting the Full Text from a .docx File
If you care only about a Word document’s text and not about its styling
information, you can use the getText() function. It accepts a filename of a
.docx file and returns a single string value of its text. Open a new file editor
tab and enter the following code, saving it as readDocx.py:

import docx

def get_text(filename):
 doc = docx.Document(filename)
 full_text = []
 for para in doc.paragraphs:
 full_text.append(para.text)
 return '\n'.join(full_text)

The get_text() function opens the Word document, loops over all the
Paragraph objects in the paragraphs list, and then appends their text to the list
in full_text. After the loop, the code joins the strings in full_text with new-
line characters.

You can import the readDocx.py program like any other module. Now, if
you need just the text of a Word document, you can enter the following:

>>> import readDocx
>>> print(readDocx.get_text('demo.docx'))
Document Title
A plain paragraph with some bold text and some italic
Heading, level 1
Intense quote
first item in unordered list
first item in ordered list

430 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You can also adjust get_text() to modify the string before returning it. For
example, to indent each paragraph, replace the append() call in readDocx .py
with this:

full_text.append(' ' + para.text)

To add a double space between paragraphs, change the join() call code
to this:

return '\n\n'.join(full_text)

As you can see, it takes only a few lines of code to write functions that
will read a .docx file and return a string of its content to your liking.

Styling Paragraph and Run Objects
Word and other word processors use styles to keep the visual presentation of
text consistent and easy to change. For example, perhaps you want all body
paragraphs to be 11-point, Times New Roman, left-justified, ragged-right text.
You can create a style with these settings and assign it to all body paragraphs.
If you later want to change the presentation of all body paragraphs in the doc-
ument, you can change the style to automatically update those paragraphs.

To view styles in the browser-based Office 365 Word application, click
the Home menu item, then the Headings and Other Styles drop-down
menu, which will likely display “Normal” or another style name. Click
See More Styles to bring up the More Styles window. In the Microsoft
Word desktop application for Windows, you can see the styles by pressing
ctrl-alt-shift-S to display the Styles pane, which looks like Figure 17-5.
In LibreOffice Writer, you can view the Styles pane by clicking the
ViewStyles menu item.

Figure 17-5: The Styles pane

Word documents contain three types of styles: paragraph styles apply
to Paragraph objects, character styles apply to Run objects, and linked styles

PDF and Word Documents 431

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

apply to both kinds of objects. To style Paragraph and Run objects, set their
style attribute to a string of the style’s name. If style is set to None, no style
will be associated with the Paragraph or Run object. The default Word styles
have the following string values:

'Normal'
'Body Text'
'Body Text 2'
'Body Text 3'
'Caption'
'Heading 1'
'Heading 2'
'Heading 3'
'Heading 4'

'Heading 5'
'Heading 6'
'Heading 7'
'Heading 8'
'Heading 9'
'Intense Quote'
'List'
'List 2'
'List 3'

'List Bullet'
'List Bullet 2'
'List Bullet 3'
'List Continue'
'List Continue 2'
'List Continue 3'
'List Number '
'List Number 2'
'List Number 3'

'List Paragraph'
'MacroText'
'No Spacing'
'Quote'
'Subtitle'
'TOC Heading'
'Title'

When using a linked style for a Run object, you’ll need to add ' Char' to
the end of its name. For example, to set the Quote linked style for a Paragraph
object, you would use paragraphObj.style = 'Quote', but for a Run object, you
would use runObj.style = 'Quote Char'.

To create custom styles, use the Word application to define them, then
read them from the style attribute of a Paragraph or Run object.

Applying Run Attributes
We can further style runs using text attributes. Each attribute can be set to
one of three values: True (meaning the attribute is always enabled, no matter
what other styles are applied to the run), False (meaning the attribute is
always disabled), or None (which defaults to whatever the run’s style is set to).
Table 17-1 lists the text attributes that can be set on Run objects.

Table 17-1: Run Object text Attributes

Attribute Description

bold The text appears in bold .

italic The text appears in italic .

underline The text is underlined .

strike The text appears with a strikethrough .

double_strike The text appears with a double strikethrough .

all_caps The text appears in capital letters .

small_caps The text appears in capital letters, with lowercase letters two points
smaller .

shadow The text appears with a shadow .

outline The text appears outlined rather than solid .

rtl The text is written right-to-left .

imprint The text appears pressed into the page .

emboss The text appears raised off the page in relief .

432 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

For example, to change the styles of demo.docx, enter the following into
the interactive shell:

>>> import docx
>>> doc = docx.Document('demo.docx')
>>> doc.paragraphs[0].text
'Document Title'
>>> doc.paragraphs[0].style # The exact id may be different:
_ParagraphStyle('Title') id: 3095631007984
>>> doc.paragraphs[0].style = 'Normal'
>>> doc.paragraphs[1].text
'A plain paragraph with some bold text and some italic'
>>> (doc.paragraphs[1].runs[0].text, doc.paragraphs[1].runs[1].text,
doc.paragraphs[1].runs[2].text, doc.paragraphs[1].runs[3].text)
('A plain paragraph with some ', 'bold', ' and some ', 'italic')
>>> doc.paragraphs[1].runs[0].style = 'Quote Char'
>>> doc.paragraphs[1].runs[1].underline = True
>>> doc.paragraphs[1].runs[3].underline = True
>>> doc.save('restyled.docx')

We use the text and style attributes to easily view the paragraphs in the
document. As you can see, it’s easy to divide a paragraph into runs and access
each run individually. We get the first, second, and fourth runs in the second
paragraph, style each run, and save the results to a new document.

Now the words Document Title at the top of restyled.docx should have the
Normal style instead of the Title style, the Run object for the text A plain
paragraph with some should have the Quote Char style, and the two Run objects
for the words bold and italic should have their underline attributes set to True.
Figure 17-6 shows how the styles of paragraphs and runs look in restyled.docx.

Figure 17-6: The restyled .docx file

You can find complete documentation on Python-Docx’s use of styles at
https://python -docx .readthedocs .io /.

https://python-docx.readthedocs.io/

PDF and Word Documents 433

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Writing Word Documents
To create your own .docx file, call docx.Document() to return a new, blank Word
Document object. For example, enter the following into the interactive shell:

>>> import docx
>>> doc = docx.Document()
>>> doc.add_paragraph('Hello, world!')
<docx.text.paragraph.Paragraph object at 0x0000000003B56F60>
>>> doc.save('helloworld.docx')

The add_paragraph() document method adds a new paragraph of text
to the document and returns a reference to the Paragraph object that was
added. When you’re done adding text, pass a filename string to the save()
document method to save the Document object to a file.

This code will create a file named helloworld.docx in the current working
directory. When opened, it should look like Figure 17-7. You can upload this
.docx file into Office 365 or Google Docs or open it in Word or LibreOffice.

Figure 17-7: The Word document created using add_paragraph('Hello, world!')

You can add paragraphs to the document by calling the add_paragraph()
method again with the new paragraph’s text. To add text to the end of an
existing paragraph, call the paragraph’s add_run() method and pass it a
string. Enter the following into the interactive shell:

>>> import docx
>>> doc = docx.Document()
>>> doc.add_paragraph('Hello world!')
<docx.text.paragraph.Paragraph object at 0x000000000366AD30>
>>> para_obj_1 = doc.add_paragraph('This is a second paragraph.')
>>> para_obj_2 = doc.add_paragraph('This is a yet another paragraph.')
>>> para_obj_1.add_run(' This text is being added to the second paragraph.')
<docx.text.run.Run object at 0x0000000003A2C860>
>>> doc.save('multipleParagraphs.docx')

The resulting document should look like Figure 17-8. Note that the
text This text is being added to the second paragraph. was added to the Paragraph

434 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

object in para_obj_1, which was the second paragraph added to doc. The add
_paragraph() and add_run() functions return Paragraph and Run objects, respec-
tively, to save you the trouble of extracting them as a separate step.

Keep in mind that, as of this writing, new Paragraph objects can be added
only to the end of the document, and new Run objects can be added only to
the end of a Paragraph object.

Call the save() method again to save the additional changes you’ve made.

Figure 17-8: The document with multiple Paragraph and Run objects added

Both add_paragraph() and add_run() accept an optional second argument
that is a string of the Paragraph or Run object’s style. Here is an example:

>>> doc.add_paragraph('Hello, world!', 'Title')
<docx.text.paragraph.Paragraph object at 0x00000213E6FA9190>

This line adds a paragraph with the text Hello, world! in the Title style.

Adding Headings
Calling add_heading() adds a paragraph with one of the heading styles. Enter
the following into the interactive shell:

>>> import docx
>>> doc = docx.Document()
>>> doc.add_heading('Header 0', 0)
<docx.text.paragraph.Paragraph object at 0x00000000036CB3C8>
>>> doc.add_heading('Header 1', 1)
<docx.text.paragraph.Paragraph object at 0x00000000036CB630>
>>> doc.add_heading('Header 2', 2)
<docx.text.paragraph.Paragraph object at 0x00000000036CB828>
>>> doc.add_heading('Header 3', 3)
<docx.text.paragraph.Paragraph object at 0x00000000036CB2E8>
>>> doc.add_heading('Header 4', 4)
<docx.text.paragraph.Paragraph object at 0x00000000036CB3C8>
>>> doc.save('headings.docx')

The resulting headings.docx file should look like Figure 17-9.

PDF and Word Documents 435

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 17-9: The headings .docx document with headings 0 to 4

The arguments to add_heading() are a string containing the heading text
and an integer ranging from 0 to 4. The integer 0 makes the heading the
Title style, which we use for the top of the document. Integers 1 to 9 are for
various heading levels, with 1 being the main heading and 9 being the low-
est subheading. The add_heading() function returns a Paragraph object to save
you the step of extracting it from the Document object as a separate step.

Adding Line and Page Breaks
To add a line break (rather than starting a whole new paragraph), you can
call the add_break() method on the Run object you want to have the break
appear after. If you want to add a page break instead, you need to pass the
value docx.enum.text.WD_BREAK.PAGE as a lone argument to add_break(), as is
done in the middle of the following example:

>>> doc = docx.Document()
>>> doc.add_paragraph('This is on the first page!')
<docx.text.paragraph.Paragraph object at 0x0000000003785518>
1 >>> doc.paragraphs[0].runs[0].add_break(docx.enum.text.WD_BREAK.PAGE)
>>> doc.add_paragraph('This is on the second page!')
<docx.text.paragraph.Paragraph object at 0x00000000037855F8>
>>> doc.save('twoPage.docx')

This code creates a two-page Word document with This is on the first
page! on the first page and This is on the second page! on the second. Even
though there was still plenty of space on the first page after the text This is
on the first page!, we forced the next paragraph to begin on a new page by
inserting a page break after the first run of the first paragraph 1.

436 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Adding Pictures
You can use the add_picture() method of Document objects to add an image to
the end of the document. Say you have a file zophie.png in the current work-
ing directory. You can add zophie.png to the end of your document with a
width of 1 inch and height of 4 centimeters (Word can use both imperial
and metric units) by entering the following:

>>> doc.add_picture('zophie.png', width =docx .shared .Inches(1), height=docx.shared.Cm(4))
<docx .shape .InlineShape object at 0x00000000036C7D30>

The first argument is a string of the image’s filename. The optional
width and height keyword arguments will set the width and height of the
image in the document. If left out, the width and height will default to the
normal size of the image.

You’ll probably prefer to specify an image’s height and width in familiar
units such as inches and centimeters, so you can use the docx .shared .Inches()
and docx.shared.Cm() functions when you’re specifying the width and height
keyword arguments.

Summary
Text information isn’t just for plaintext files; in fact, it’s pretty likely that
you deal with PDFs and Word documents much more often. You can use the
PyPDF package to read and write PDF documents, but many other Python
libraries can read and write PDF files. If you want to go beyond those dis-
cussed in this chapter, I recommend searching for pdfplumber, ReportLab,
pdfrw, PyMuPDF, pdfkit, and borb on the PyPI website.

Unfortunately, reading text from PDF documents might not always
result in a perfect translation to a string, because the file format is compli-
cated and some PDFs might not be readable at all. The pdfminer.six pack-
age is a fork of a no-longer-maintained pdfminer package that focuses on
extracting text from PDFs. This chapter used pdfminer.six as a fallback
mechanism if you’re unable to extract text from a particular PDF file.

Word documents are more reliable, and you can read them with the
python-docx package’s docx module. You can manipulate text in Word docu-
ments via Paragraph and Run objects. These objects can also be given styles,
though they must be from the default set of styles or from styles already in
the document. You can add new paragraphs, headings, breaks, and pictures
to the ends of documents.

Many of the limitations that come with working with PDFs and Word doc-
uments occur because these formats are meant to display nicely for human
readers, rather than be easy to parse by software. The next chapter takes a
look at some other common formats for storing information: CSV, JSON,
XML, YAML, and TOML files. These formats were designed for use by com-
puters, and you’ll see that Python can work with them much more easily.

PDF and Word Documents 437

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Practice Questions
 1. What modes does the File object for PdfWriter objects need to be

opened in to save the PDF file?

 2. How do you acquire a Page object for page 5 from a PdfReader or
PdfWriter object?

 3. If a PdfReader object’s PDF is encrypted with the password swordfish,
what must you do before you can obtain Page objects from it?

 4. If the rotate() method rotates pages clockwise, how do you rotate a
page counterclockwise?

 5. What method returns a Document object for a file named demo.docx?

 6. What is the difference between a Paragraph object and a Run object?

 7. How do you obtain a list of Paragraph objects for a Document object that’s
stored in a variable named doc?

 8. What type of object has bold, underline, italic, strike, and outline variables?

 9. What is the difference between setting the bold variable to True, False,
or None?

 10. How do you create a Document object for a new Word document?

 11. How do you add a paragraph with the text 'Hello, there!' to a Document
object stored in a variable named doc?

 12. What integers represent the levels of headings available in Word
documents?

Practice Programs
For practice, write programs to do the following tasks.

PDF Paranoia
Using the os.walk() function from Chapter 11, write a script that will go
through every PDF in a folder (and its subfolders) and encrypt the PDFs
using a password provided on the command line. Save each encrypted PDF
with an _encrypted.pdf suffix added to the original filename. Before deleting
the original file, have the program attempt to read and decrypt the new file
to ensure that it was encrypted correctly.

Then, write a program that finds all encrypted PDFs in a folder (and
its subfolders) and creates a decrypted copy of the PDF using a provided
password. If the password is incorrect, the program should print a message
to the user and continue to the next PDF.

Custom Invitations
Say you have a text file of guest names. This guests.txt file has one name per
line, as follows:

Prof. Plum
Miss Scarlet

438 Chapter 17

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Col. Mustard
Al Sweigart
RoboCop

Write a program that generates a Word document with custom invita-
tions that look like Figure 17-10.

Because Python-Docx can only use styles that already exist in a Word
document, you’ll have to first add these styles to a blank Word file and then
open that file with Python-Docx. There should be one invitation per page
in the resulting Word document, so call add_break() to add a page break
after the last paragraph of each invitation. This way, you will need to open
only one Word document to print all of the invitations at once.

Figure 17-10: The Word document generated by your custom invite script

You can download a sample guests.txt file from the book’s online
resources.

PDF Password Breaker
Say you have an encrypted PDF that you’ve forgotten the password to, but
you remember it was a single English word. Trying to guess your forgotten
password is quite a boring task. Instead, you can write a program that will
decrypt the PDF by trying every possible English word until it finds one
that works. This is called a brute-force password attack. Download the text file
dictionary.txt from the book’s online resources. This dictionary file contains
over 44,000 English words, with one word per line.

Using the file-reading skills you learned in Chapter 10, create a list of
word strings by reading this file. Then, loop over each word in this list, passing
it to the decrypt() method. You should try both the uppercase and lowercase
forms of each word. (On my laptop, going through all 88,000 uppercase and
lowercase words from the dictionary file takes a couple of minutes. This is why
you shouldn’t use a simple English word for your passwords.)

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

CSV, JSON, and XML are data serialization
formats used to store data as plaintext files.

Serialization converts data into a string to save
your program’s work to a text file, transfer it over

an internet connection, or even just copy and paste it
into an email. Python comes with the csv, json, and xml
modules to help you work with these file formats.

While files in these formats are essentially text files that you could read
and write with Python’s open() function or the other file I/O functions from
Chapter 10, it’s easier to use Python’s modules to handle them, just as we
used the Beautiful Soup module in Chapter 13 to handle HTML-formatted
text. Each format has its own use case:

Comma-separated values (CSV, pronounced “see-ess-vee”) is a simpli-
fied spreadsheet format, and works best for storing a variable number
of rows of data that share the same columns.

18
C S V, J S O N , A N D X M L F I L E S

440 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

JavaScript Object Notation (JSON, pronounced “JAY-sawn” or “Jason”)
uses the same syntax as objects, arrays, and data types in the JavaScript
programming language, though it doesn’t require you to know how to
program in JavaScript. It was created as a simpler alternative to XML.

Extensible Markup Language (XML, pronounced “ex-em-el”) is an
older, more established data serialization format widely used in enter-
prise software, but is overly complicated to work with if you don’t need
its advanced features.

This chapter covers the basics of these formats’ syntax and the Python
code to work with them.

The CSV Format
Each line in a CSV file (which uses the .csv file extension) represents a row
in a spreadsheet, and commas separate the cells in the row. For example, the
spreadsheet example3.xlsx included in the online resources at https://nostarch
.com /automate -boring -stuff -python -3rd -edition would look like this in a CSV file:

4/5/2035 13:34,Apples,73
4/5/2035 3:41,Cherries,85
4/6/2035 12:46,Pears,14
4/8/2035 8:59,Oranges,52
4/10/2035 2:07,Apples,152
4/10/2035 18:10,Bananas,23
4/10/2035 2:40,Strawberries,98

I’ll use this file in this chapter’s CSV interactive shell examples. Download
it or enter the text into a text editor and save it as example3.csv.

You can think of CSV files as a list of lists of values. Python code could
represent the example3.csv content as the value [['4/5/2035 13:34', 'Apples',
'73'], ['4/5/2035 3:41', 'Cherries', '85'], ... ['4/10/2035 2:40', 'Strawberries',
'98']]. CSV files are simple, lacking many of the features of an Excel spread-
sheet. For example, they:

• Don’t have multiple data types; every value is a string

• Don’t have settings for font size or color

• Don’t have multiple worksheets

• Can’t specify cell widths or cell heights

• Can’t merge cells

• Can’t have embedded images or charts

The advantage of CSV files is simplicity. Many apps and programming
languages support them, you can view them in text editors (including Mu),
and they’re a straightforward way to represent spreadsheet data.

Because CSV files are just text files, you might be tempted to read them
as a string and then process that string using the techniques you learned
in Chapter 8. For example, because each cell in a CSV file is separated by

https://nostarch.com/automate-boring-stuff-python-3rd-edition
https://nostarch.com/automate-boring-stuff-python-3rd-edition

CSV, JSON, and XML Files 441

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

a comma, you might try to call split(',') on each line of text to get the
comma-separated values as a list of strings. But not every comma in a CSV
file represents the boundary between two cells. CSV files have a set of
escape characters that allow you to include commas and other characters
as part of the values. The split() method doesn’t handle these escape char-
acters. Because of these potential pitfalls, the csv module provides a more
reliable way to read and write CSV files.

Reading CSV Files
To read a CSV file, you must create a csv.reader object, which lets you iterate
over lines in the CSV file. The csv module comes with Python, so you can
import it without having to first install it. Place example3.csv in the current
working directory, then enter the following into the interactive shell:

>>> import csv
>>> example_file = open('example3.csv')
>>> example_reader = csv.reader(example_file)
>>> example_data = list(example_reader)
>>> example_data
[['4/5/2035 13:34', 'Apples', '73'], ['4/5/2035 3:41', 'Cherries', '85'],
['4/6/2035 12:46', 'Pears', '14'], ['4/8/2035 8:59', 'Oranges', '52'],
['4/10/2035 2:07', 'Apples', '152'], ['4/10/2035 18:10', 'Bananas', '23'],
['4/10/2035 2:40', 'Strawberries', '98']]
>>> example_file.close()

To read a CSV file with the csv module, open it using the open() function,
just as you would any other text file, but instead of calling the read() or
readlines() method on the File object that open() returns, pass it to the csv
.reader() function. This function should return a reader object. Note that
you can’t pass a filename string directly to the csv.reader() function.

The easiest way to access the values in the reader object is to convert it to
a plain Python list by passing it to list(). Using list() on this reader object
returns a list of lists, which you can store in a variable, like example_data.
Entering example_data in the shell displays the list of lists.

Now that you have the CSV file as a list of lists, you can access the value
at a particular row and column with the expression example_data[row][col],
where row is the index of one of the lists in example_data and col is the index of
the item you want from that list. Enter the following into the interactive shell:

>>> example_data[0][0] # First row, first column
'4/5/2035 13:34'
>>> example_data[0][1] # First row, second column
'Apples'
>>> example_data[0][2] # First row, third column
'73'
>>> example_data[1][1] # Second row, second column
'Cherries'
>>> example_data[6][1] # Seventh row, second column
'Strawberries'

442 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

As evident from the output, example_data[0][0] goes into the first list and
gives us the first string, example_data[0][2] goes into the first list and gives us
the third string, and so on.

Accessing Data in a for Loop
For large CSV files, you may want to use the reader object in a for loop. This
approach saves you from having to load the entire file into memory at once.
For example, enter the following into the interactive shell:

>>> import csv
>>> example_file = open('example3.csv')
>>> example_reader = csv.reader(example_file)
1 >>> for row in example_reader:
... 2 print('Row #' + str(example_reader.line_num) + ' ' + str(row))
...
Row #1 ['4/5/2035 13:34', 'Apples', '73']
Row #2 ['4/5/2035 3:41', 'Cherries', '85']
Row #3 ['4/6/2035 12:46', 'Pears', '14']
Row #4 ['4/8/2035 8:59', 'Oranges', '52']
Row #5 ['4/10/2035 2:07', 'Apples', '152']
Row #6 ['4/10/2035 18:10', 'Bananas', '23']
Row #7 ['4/10/2035 2:40', 'Strawberries', '98']

After you import the csv module and make a reader object from the CSV
file, you can loop through the rows in the reader object 1. Each row is a list of
values stored in the row variable, with each value in the list representing a cell.

The print() function call 2 prints the number of the current row and
the contents of the row. To get the row number, use the reader object’s
line_num attribute, which stores an integer. If your CSV file contains column
headers in the first row, you could use line_num to check whether you’re on
row 1 and run a continue instruction to skip the headers. Unlike Python list
indexes, line numbers in line_num begin at 1, not 0.

You can loop over the reader object only once. To reread the CSV file,
you must call open() and csv.reader() again to create another reader object.

Writing CSV Files
A csv.writer object lets you write data to a CSV file. To create a writer object,
use the csv.writer() function. Enter the following into the interactive shell:

>>> import csv
1 >>> output_file = open('output.csv', 'w', newline='')
2 >>> output_writer = csv.writer(output_file)
>>> output_writer.writerow(['spam', 'eggs', 'bacon', 'ham'])
21
>>> output_writer.writerow(['Hello, world!', 'eggs', 'bacon', 'ham'])
32
>>> output_writer.writerow([1, 2, 3.141592, 4])
16
>>> output_file.close()

CSV, JSON, and XML Files 443

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Call open() and pass it 'w' to open a file in write mode 1. This code
should create an object you can then pass to csv.writer() 2 to generate a
writer object.

On Windows, you’ll also need to pass a blank string for the open() func-
tion’s newline keyword argument. For technical reasons that are beyond the
scope of this book, if you forget to set the newline argument, the rows in
output.csv will be double-spaced, as shown in Figure 18-1.

Figure 18-1: A double-spaced CSV file

The writerow() method of writer objects takes a list argument. Each
value in the list will appear in its own cell in the output CSV file. The meth-
od’s return value is the number of characters written to the file for that row
(including newline characters). For example, this code in our example pro-
duces an output.csv file that looks like this:

spam,eggs,bacon,ham
"Hello, world!",eggs,bacon,ham
1,2,3.141592,4

Notice how the writer object automatically escapes the comma in the
value 'Hello, world!' with double quotes in the CSV file. The csv module
saves you from having to handle these special cases yourself.

Using Tabs Instead of Commas
Tab-separated value (TSV) files are similar to CSV files but, unsurprisingly,
use tabs instead of commas. Their files have the .tsv file extension. Say you
want to separate cells with a tab character instead of a comma and want the
rows to be double-spaced. You could enter something like the following into
the interactive shell:

>>> import csv
>>> output_file = open('output.tsv', 'w', newline='')
>>> output_writer = csv.writer(output_file, delimiter='\t', lineterminator='\n\n') 1
>>> output_writer.writerow(['spam', 'eggs', 'bacon', 'ham'])
21
>>> output_writer.writerow(['Hello, world!', 'eggs', 'bacon', 'ham'])
30
>>> output_writer.writerow([1, 2, 3.141592, 4])
16
>>> output_file.close()

444 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This code changes the delimiter and line terminator characters in your
file. The delimiter is the character that appears between cells on a row. By
default, the delimiter for a CSV file is a comma. The line terminator is the
character that comes at the end of a row. By default, the line terminator is
a newline. You can change characters to different values by using the delim-
iter and lineterminator keyword arguments with csv.writer().

Passing delimiter='\t' and lineterminator='\n\n' 1 changes the delim-
iter to a tab and the line terminator to two newlines. The code then calls
writerow() three times to create three row, producing a file named output.tsv
with the following contents:

spam eggs bacon ham

Hello, world! eggs bacon ham

1 2 3.141592 4

Tabs now separate the cells in the spreadsheet.

Handling Header Rows
For CSV files that contain header rows, it’s often more convenient to work
with the DictReader and DictWriter objects rather than the reader and writer
objects. While reader and writer read and write to CSV file rows by using
lists, DictReader and DictWriter perform the same functions using dictionar-
ies, treating the values in the first row as the keys.

Download exampleWithHeader3.csv from the book’s online resources for
the next example. This file is the same as example3.csv except it includes
Timestamp, Fruit, and Quantity as column headers in the first row. To read
the file, enter the following into the interactive shell:

>>> import csv
>>> example_file = open('exampleWithHeader3.csv')
>>> example_dict_reader = csv.DictReader(example_file)
1 >>> example_dict_data = list(example_dict_reader)
>>> example_dict_data
[{'Timestamp': '4/5/2035 3:41', 'Fruit': 'Cherries', 'Quantity': '85'},
{'Timestamp': '4/6/2035 12:46', 'Fruit': 'Pears', 'Quantity': '14'},
{'Timestamp': '4/8/2035 8:59', 'Fruit': 'Oranges', 'Quantity': '52'},
{'Timestamp': '4/10/2035 2:07', 'Fruit': 'Apples', 'Quantity': '152'},
{'Timestamp': '4/10/2035 18:10', 'Fruit': 'Bananas', 'Quantity': '23'},
{'Timestamp': '4/10/2035 2:40', 'Fruit': 'Strawberries', 'Quantity': '98'}]
>>> example_file = open('exampleWithHeader3.csv')
>>> example_dict_reader = csv.DictReader(example_file)
2 >>> for row in example_dict_reader:
... print(row['Timestamp'], row['Fruit'], row['Quantity'])
...
4/5/2035 13:34 Apples 73
4/5/2035 3:41 Cherries 85
4/6/2035 12:46 Pears 14
4/8/2035 8:59 Oranges 52

CSV, JSON, and XML Files 445

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

4/10/2035 2:07 Apples 152
4/10/2035 18:10 Bananas 23
4/10/2035 2:40 Strawberries 98

By passing the DictReader object to list() 1, you can get the CSV data
as a list of dictionaries. Each row corresponds to one dictionary in the list.
Alternatively, you can use the DictReader object inside a for loop 2. The
DictReader object sets row to a dictionary object with keys derived from the
headers in the first row. Using a DictReader object means you don’t need
additional code to skip the first row’s header information, as the DictReader
object does this for you.

If you tried to use a DictReader object with example3.csv, which doesn’t
have column headers in the first row, the DictReader object would use
'4/5/2035 13:34', 'Apples', and '73' as the dictionary keys. To avoid this, you
can supply the DictReader() function with a second argument containing
made-up header names:

>>> import csv
>>> example_file = open('example3.csv')
>>> example_dict_reader = csv.DictReader(example_file, ['time', 'name', 'amount'])
>>> for row in example_dict_reader:
... print(row['time'], row['name'], row['amount'])
...
4/5/2035 13:34 Apples 73
4/5/2035 3:41 Cherries 85
4/6/2035 12:46 Pears 14
4/8/2035 8:59 Oranges 52
4/10/2035 2:07 Apples 152
4/10/2035 18:10 Bananas 23
4/10/2035 2:40 Strawberries 98

Because example3.csv’s first row doesn’t contain column headings, we
created our own: 'time', 'name', and 'amount'. The DictWriter objects use dic-
tionaries to create CSV files:

>>> import csv
>>> output_file = open('output.csv', 'w', newline='')
>>> output_dict_writer = csv.DictWriter(output_file, ['Name', 'Pet', 'Phone'])
>>> output_dict_writer.writeheader()
16
>>> output_dict_writer.writerow({'Name': 'Alice', 'Pet': 'cat', 'Phone': '555-1234'})
20
>>> output_dict_writer.writerow({'Name': 'Bob', 'Phone': '555-9999'})
15
>>> output_dict_writer.writerow({'Phone': '555-5555', 'Name': 'Carol', 'Pet': 'dog'})
20
>>> output_file.close()

If you want your file to contain a header row, write that row by calling
writeheader(). Otherwise, skip calling writeheader() to omit a header row
from the file. You can then write each row of the CSV file with a writerow()

446 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

method call, passing a dictionary that uses the headers as keys and contains
the data to write to the file.

The output.csv file that this code creates looks like this:

Name,Pet,Phone
Alice,cat,555-1234
Bob,,555-9999
Carol,dog,555-5555

The double commas indicate that Bob has a blank value for a pet.
Notice that the order of the key-value pairs in the dictionaries you passed
to writerow() doesn’t matter; they’re written in the order of the keys given to
DictWriter(). For example, even though you passed the Phone key and value
before the Name and Pet keys and values in the fourth row, the phone num-
ber still appears last in the output.

Notice also that any missing keys, such as 'Pet' in {'Name': 'Bob', 'Phone':
'555-9999'}, will become empty cells in the CSV file.

Project 13: Remove the Header from CSV Files
Say you have the boring job of removing the first line from several hundred
CSV files. Maybe you’ll be feeding them into an automated process that
requires just the data, without the headers at the top of the columns. You
could open each file in Excel, delete the first row, and resave the file—but
that would take hours. Let’s write a program to do it instead.

The program will need to open every file with the .csv extension in the
current working directory, read the contents of the CSV file, and rewrite
the contents without the first row to a file of the same name. This will
replace the old contents of the CSV file with the new, headless contents.

W A R N I N G As always, whenever you write a program that modifies files, be sure to back up the
files first, in case your program doesn’t work the way you expect it to. You don’t want
to accidentally erase your original files.

At a high level, the program must do the following:

• Find all the CSV files in the current working directory.

• Read the full contents of each file.

• Write the contents, skipping the first line, to a new CSV file.

At the code level, this means the program will need to do the following:

• Loop over a list of files from os.listdir(), skipping the non-CSV files.

• Create a CSV reader object and read the contents of the file, using the
line_num attribute to figure out which line to skip.

• Create a CSV writer object and write the read-in data to the new file.

For this project, open a new file editor window and save it as removeCsv
Header.py.

CSV, JSON, and XML Files 447

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Step 1: Loop Through Each File
The first thing your program needs to do is loop over a list of all CSV
filenames for the current working directory. Make removeCsvHeader.py look
like this:

Removes the header line from csv files
import csv, os

os.makedirs('headerRemoved', exist_ok=True)

Loop through every file in the current working directory.
for csv_filename in os.listdir('.'):
 if not csv_filename.endswith('.csv'):
 1 continue # Skip non-CSV files.

 print('Removing header from ' + csv_filename + '...')

 # TODO: Read the CSV file (skipping the first row).

 # TODO: Write the CSV file.

The os.makedirs() call create a headerRemoved folder in which to save the
headless CSV files. A for loop on os.listdir('.') gets you partway there, but
it will loop over all files in the working directory, so you’ll need to add some
code at the start of the loop that skips filenames that don’t end with .csv.
The continue statement 1 makes the for loop move on to the next filename
when it comes across a non-CSV file.

To see output as the program runs, print a message indicating which
CSV file the program is working on. Then, add some TODO comments indi-
cating what the rest of the program should do.

Step 2: Read the File
The program doesn’t remove the first line from the CSV file. Rather, it cre-
ates a new copy of the CSV file without the first line. That way, we can use
the original file in case a bug incorrectly modifies the new file.

The program will need a way to track whether it’s currently looping on
the first row. Add the following to removeCsvHeader.py.

Removes the header line from csv files
import csv, os

--snip--

 # Read the CSV file (skipping the first row).
 csv_rows = []
 csv_file_obj = open(csv_filename)
 reader_obj = csv.reader(csv_file_obj)
 for row in reader_obj:
 if reader_obj.line_num == 1:
 continue # Skip the first row.

448 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 csv_rows.append(row)
 csv_file_obj.close()

 # TODO: Write the CSV file.

The reader object’s line_num attribute can be used to determine which
line in the CSV file it’s currently reading. Another for loop will loop over
the rows returned from the CSV reader object, and all rows but the first will
be appended to csv_rows.

As the for loop iterates over each row, the code checks whether reader
_obj.line_num is set to 1. If so, it executes a continue to move on to the next
row without appending it to csv_rows. For every subsequent row, the condi-
tion will be always be False, and the code will append the row to csv_rows.

Step 3: Write the New CSV File
Now that csv_rows contains all rows but the first row, we need to write the
list to a CSV file in the headerRemoved folder. Add the following to remove
CsvHeader.py:

Removes the header line from csv files
import csv, os

--snip--

Loop through every file in the current working directory.
1 for csv_filename in os.listdir('.'):
 if not csv_filename.endswith('.csv'):
 continue # Skip non-CSV files.

 --snip--

 # Write the CSV file.
 csv_file_obj = open(os.path.join('headerRemoved', csv_filename), 'w',
 newline='')
 csv_writer = csv.writer(csv_file_obj)
 for row in csv_rows:
 csv_writer.writerow(row)
 csv_file_obj.close()

The CSV writer object will write the list to a CSV file in headerRemoved
using csv_filename (which we also used in the CSV reader). After creating
the writer object, we loop over the sublists stored in csv_rows and write each
sublist to the file.

The outer for loop 1 will then loop to the next filename returned by
os.listdir('.'). When that loop is finished, the program will be complete.

To test your program, download removeCsvHeader.zip from the book’s
online resources and unzip it to a folder. Then, run the removeCsvHeader.py
program in that folder. The output will look like this:

Removing header from NAICS_data_1048.csv...
Removing header from NAICS_data_1218.csv...

CSV, JSON, and XML Files 449

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

--snip--
Removing header from NAICS_data_9834.csv...
Removing header from NAICS_data_9986.csv...

This program should print a filename each time it strips the first line
from a CSV file.

Ideas for Similar Programs
Programs that work with CSV files are similar to those that work with Excel
files, as CSV and Excel are both spreadsheet files. For example, you could
write programs to do the following:

• Compare data between different rows in a CSV file, or between mul-
tiple CSV files.

• Copy specific data from a CSV file to an Excel file, or vice versa.

• Check for invalid data or formatting mistakes in CSV files and alert the
user about these errors.

• Read data from a CSV file as input for your Python programs.

Versatile Plaintext Formats
While CSV files are useful for storing rows of data that have the exact same
columns, the JSON and XML formats can store a variety of data structures.
(This book skips the less popular but still useful YAML and TOML formats.)
These formats aren’t specific to Python; many programming languages have
functions for reading and writing data in these formats.

Each of these formats organizes data using the equivalent of nested
Python dictionaries and lists. In other programming languages, you’ll see
dictionaries referred to as mappings, hash maps, hash tables, or associative arrays
(because they map, or associate, one piece of data, the key, to another, the
value). Likewise, you may see Python’s lists called arrays in other languages.
But the concepts are the same: they organize data into key-value pairs
and lists.

You can nest dictionaries and lists within other dictionaries and lists to
form elaborate data structures. But if you want to save these data structures
to a text file, you’ll need to choose a data serialization format such as JSON
or XML. The Python modules in this chapter can parse (that is, read and
understand) text written in these formats to create Python data structures
from their text.

These human-readable plaintext formats don’t make the most efficient
use of disk space or memory, but they have the advantage of being easy to
view and edit in a text editor and are language neutral, as programs written
in any language can read or write text files. By contrast, the shelve module,
covered in Chapter 10, can store all Python data types in binary shelf files,
but other languages don’t have modules to load this data into their programs.

450 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In the remainder of this chapter, I’ll represent the following Python
data structure, which stores personal details about someone named Alice,
in each of these formats, so you can compare and contrast them:

{
 "name": "Alice Doe",
 "age": 30,
 "car": None,
 "programmer": True,
 "address": {
 "street": "100 Larkin St.",
 "city": "San Francisco",
 "zip": "94102"
 },
 "phone": [
 {
 "type": "mobile",
 "number": "415-555-7890"
 },
 {
 "type": "work",
 "number": "415-555-1234"
 }
]
}

These text formats have their own histories and occupy specific niches
in the computing ecosystem. If you have to choose a data serialization format
for storing your data, keep in mind that JSON is simpler than XML and
more widely adopted than YAML, and that TOML is chiefly used as a for-
mat for configuration files. Lastly, coming up with your own data serializa-
tion format might be tempting, but it’s also reinventing the wheel, and you
would have to write your own parser for your custom format. It’s better to
simply choose an existing format.

JSON
JSON stores information as JavaScript source code, though many non-
JavaScript applications use it. In particular, websites often make their
data available to programmers in the JSON format through APIs like the
OpenWeather API covered in Chapter 13. We save JSON-formatted text in
plaintext files with the .json file extension. Here is the example data struc-
ture formatted as JSON text:

{
 "name": "Alice Doe",
 "age": 30,
 "car": null,
 "programmer": true,
 "address": {
 "street": "100 Larkin St.",
 "city": "San Francisco",

CSV, JSON, and XML Files 451

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 "zip": "94102"
 },
 "phone": [
 {
 "type": "mobile",
 "number": "415-555-7890"
 },
 {
 "type": "work",
 "number": "415-555-1234"
 }
]
}

The first thing you’ll notice is that JSON is similar to Python syntax.
Python’s dictionaries and JSON’s objects both use curly brackets and con-
tain key-value pairs separated by commas, with each key and value sepa-
rated by a colon. Python’s lists and JSON’s arrays both use square brackets
and contain values separated by commas. In JSON, whitespace is insig-
nificant outside of double-quoted strings, meaning you can space values
however you like. However, it’s best to format nested objects and arrays with
increased indentation, like blocks of indented Python code. In our example
data, the list of phone numbers is indented by two spaces, with each phone
number dictionary in the list indented by four spaces.

But there are also differences between JSON and Python. Instead of
Python’s None value, JSON uses the JavaScript keyword null. The Boolean
values are JavaScript’s lowercase true and false keywords. JSON doesn’t
allow JavaScript comments or multiline strings; all strings in JSON must use
double quotes. Unlike Python lists, JSON arrays can’t have trailing commas,
so while ["spam", "eggs"] is valid JSON, ["spam", "eggs",] is not.

Facebook, Twitter, Yahoo!, Google, Tumblr, Wikipedia, Flickr, Data .gov,
Reddit, IMDb, Rotten Tomatoes, LinkedIn, and many other popular sites
offer APIs that work with JSON data. Some of these sites require registra-
tion, which is almost always free. You’ll have to find documentation to learn
what URLs your program needs to request in order to get the data you want,
as well as the general format of the JSON data structures returned. If the site
offering the API has a Developers page, look for the documentation there.

Python’s json module handles the details of translating between a string
formatted as JSON data and corresponding Python values with the json
.loads() and json.dumps() functions. JSON can’t store every kind of Python
value, only those of the following basic data types: strings, integers, floats,
Booleans, lists, dictionaries, and NoneType. JSON can’t represent Python-
specific objects, such as File objects, CSV reader or writer objects, or Selenium
WebElement objects. The full documentation for the json module is at https://
docs .python .org /3 /library /json .html.

https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html

452 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Reading JSON Data

To translate a string containing JSON data into a Python value, pass it to
the json.loads() function. (The name means “load string,” not “loads.”)
Enter the following into the interactive shell:

1 >>> import json
>>> json_string = '{"name": "Alice Doe", "age": 30, "car": null, "programmer":
 true, "address": {"street": "100 Larkin St.", "city": "San Francisco", "zip":
 "94102"}, "phone": [{"type": "mobile", "number": "415-555-7890"}, {"type":
"work", "number": "415-555-1234"}]}'
2 >>> python_data = json.loads(json_string)
>>> python_data
{'name': 'Alice Doe', 'age': 30, 'car': None, 'programmer': True, 'address':
{'street': '100 Larkin St.', 'city': 'San Francisco', 'zip': '94102'},
'phone': [{'type': 'mobile', 'number': '415-555-7890'}, {'type': 'work',
'number': '415-555-1234'}]}

After you import the json module 1, you can call loads() 2 and pass it
a string of JSON data. Note that JSON strings always use double quotes. It
should return the data as a Python dictionary.

Writing JSON Data

The json.dumps() function (which means “dump string,” not “dumps”) will
translate Python data into a string of JSON-formatted data. Enter the fol-
lowing into the interactive shell:

>>> import json
>>> python_data = {'name': 'Alice Doe', 'age': 30, 'car': None, 'programmer': True, 'address':
{'street': '100 Larkin St.', 'city': 'San Francisco', 'zip': '94102'}, 'phone': [{'type':
'mobile', 'number': '415-555-7890'}, {'type': 'work', 'number': '415-555-1234'}]}
>>> json_string = json.dumps(python_data) 1
>>> print(json_string) 2APSSPACE APSSPACE
{"name": "Alice Doe", "age": 30, "car": null, "programmer": true, "address": {"street":
"100 Larkin St.", "city": "San Francisco", "zip": "94102"}, "phone": [{"type": "mobile",
"number": "415-555-7890"}, {"type": "work", "number": "415-555-1234"}]}
>>> json_string = json.dumps(python_data, indent=2) 3
>>> print(json_string)
{
 "name": "Alice Doe",
 "age": 30,
 "car": null,
 "programmer": true,
 "address": {
 "street": "100 Larkin St.",
 "city": "San Francisco",
--snip--
}

The value passed to json.dumps() 1 can consist only of the following
basic Python data types: strings, integers, floats, Booleans, lists, dictionaries,
and NoneType.

CSV, JSON, and XML Files 453

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

By default, the entire JSON text is written on a single line 2. This com-
pressed format is fine for reading and writing JSON text between programs,
but a multiline, indented form would be nicer for humans to read. The
indent=2 keyword argument 3 formats the JSON text into separate lines,
with two spaces of indentation for each nested dictionary or list. Unless
your JSON is megabytes in size, increasing the size by adding the space and
newline characters is worth it for the readability.

Once you have the JSON text as a Python string value, you can write it
to a .json file, pass it to a function, use it in a web request, or perform any
other operation you can do with a string.

XML
The XML file format is older than JSON but still widely used. Its syntax is
similar to HTML, which we covered in Chapter 18, and involves nesting
opening and closing tags inside angle brackets that contain other content.
These tags are called elements. SVG image files are made up of text written
in XML. The RSS and Atom web feed formats are also written in XML, and
Microsoft Word documents are just ZIP files that have the .docx file exten-
sion and contain XML files.

We store XML-formatted text in plaintext files with the .xml file exten-
sion. Here’s the example data structure formatted as XML:

<person>
 <name>Alice Doe</name>
 <age>30</age>
 <programmer>true</programmer>
 <car xsi:nil="true" xmlns:xsi ="http://www .w3 .org /2001 /XMLSchema -instance" />
 <address>
 <street>100 Larkin St.</street>
 <city>San Francisco</city>
 <zip>94102</zip>
 </address>
 <phone>
 <phoneEntry>
 <type>mobile</type>
 <number>415-555-7890</number>
 </phoneEntry>
 <phoneEntry>
 <type>work</type>
 <number>415-555-1234</number>
 </phoneEntry>
 </phone>
</person>

In this example, the <person> element has subelements <name>, <age>,
and so on. The <name> and <age> subelements are child elements, and <person>
is their parent element. Valid XML documents must have a single root element
that contains all the other elements, such as the <person> element in this

454 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

example. A document with multiple root elements like the following is
not valid:

<person><name>Alice Doe</name></person>
<person><name>Bob Smith</name></person>
<person><name>Carol Watanabe</name></person>

XML is quite verbose compared to more modern serialization formats
like JSON. Each element has an opening and closing tag, such as <age> and
</age>. An XML element is a key-value pair, with the key being the element’s
tag (in this case, <age>) and the value being the text in between the open-
ing and closing tags. XML text has no data type; everything in between the
opening and closing tags is considered a string, including the 94102 and true
text in our example data. Lists of data, such as the <phone> element, have to
name their individual items with their own elements, such as <phoneEntry>.
The “Entry” suffix for these subelements is just a naming convention.

XML’s comments are identical to HTML’s comments: anything in
between <!-- and --> is meant to be ignored.

Whitespace outside the opening and closing tags is insignificant, and
you can format it however you like. There is no “null” value in XML, but
you can approximate it by adding the xsi:nil="true" and xmlns:xsi ="http://
www .w3 .org /2001 /XMLSchema -instance" attributes to a tag. XML attributes are
key-value pairs written in a key="value" format within the opening tag. The
tag is written as a self-closing tag; instead of using a closing tag, the opening
tag ends with />, as in <car xsi:nil="true" xmlns:xsi ="http://www .w3 .org /2001 /
XMLSchema -instance" />.

Tag and attribute names can be written in any case, but are lowercase
by convention. Attribute values can be enclosed in single or double quotes,
but double quotes are standard.

Whether to use subelements or attributes is often ambiguous. Our
example data uses these elements for the address data:

<address>
 <street>100 Larkin St.</street>
 <city>San Francisco</city>
 <zip>94102</zip>
</address>

However, it could have easily formatted the subelement data as attri-
butes in a self-closing <address> element:

<address street="100 Larkin St." city="San Francisco" zip="94102"/>

These sorts of ambiguities, as well as the verbose nature of tags, have
made XML less popular than it once was. XML was widely deployed through-
out the 1990s and 2000s, and much of that software is still used today.
But unless you have a specific reason to use XML, you’re better served by
using JSON.

CSV, JSON, and XML Files 455

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In general, XML software libraries have two ways of reading XML doc-
uments. The Document Object Model (DOM) approach reads the entire XML
document into memory at once. This makes it easy to access data anywhere
in the XML document, but generally only works for small or moderately
sized XML documents. The Simple API for XML (SAX) approach reads the
XML document as a stream of elements, so it doesn’t have to load the entire
document into memory at once. This approach is ideal for XML documents
that are GBs in size but is less convenient, as you can’t work with elements
until you’ve iterated over them in the document.

Python’s standard library has the xml.dom, xml.sax, and xml.etree.Element
Tree modules for handling XML text. For our simple examples, we’ll use
Python’s xml.etree.ElementTree module to read the entire XML document
at once.

Reading XML Files

The xml.etree module uses Element objects to represent an XML element and
its child elements. Enter the following into the interactive shell:

1 >>> import xml.etree.ElementTree as ET
2 >>> xml_string = """<person><name>Alice Doe</name><age>30</age>
<programmer>true</programmer><car xsi:nil="true" xmlns:xsi=
"http://www .w3 .org /2001 /XMLSchema -instance" /><address><street>
100 Larkin St.</street><city>San Francisco</city><zip>94102</zip>
</address><phone><phoneEntry><type>mobile</type><number>415-555-
7890</number></phoneEntry><phoneEntry><type>work</type><number>
415-555-1234</number></phoneEntry></phone></person>"""
3 >>> root = ET.fromstring(xml_string)
>>> root
<Element 'person' at 0x000001942999BBA0>

We import the xml.etree.ElementTree module 1 with the as ET syntax
so that we can enter ET instead of the long xml.etree.ElementTree module
name. The xml_string variable 2 contains the text of the XML we wish to
parse, though this text could have just as easily been read from a text file
with the .xml file extension. Finally, we pass this text to the ET.fromstring()
function 3, which returns an Element object containing the data we want to
access. We’ll store this Element object in a variable named root.

The xml.etree.ElementTree module also has a parse() function. You can
pass it the name of a file from which to load XML, and it returns an Element
object:

>>> import xml.etree.ElementTree as ET
>>> tree = ET.parse('my_data.xml')
>>> root = tree.getroot()

Once you have an Element object, you can access its tag and text Python
attributes to see the name of the tag, as well as the text enclosed within
its opening and closing tags. If you pass the Element object to the list()

456 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

function, it should return a list of its immediate child elements. Continue
the interactive shell by entering the following:

>>> root.tag
'person'
>>> list(root)
[<Element 'name' at 0x00000150BA4ADDF0>, <Element 'age' at
0x00000150BA4ADF30>, <Element 'programmer' at 0x00000150BA4ADEE0>,
<Element 'car' at 0x00000150BA4ADD00>, <Element 'address' at
0x00000150BA4ADCB0>, <Element 'phone' at 0x00000150BA4ADA30>]

The child Element objects of a parent Element object are accessible through
an integer index, just like Python lists. So, if root contains the <person> ele-
ment, then root[0] and root[1] contain the <name> and <age> elements, respec-
tively. You can access the tag and text attributes of all of these Element objects.
However, any self-closing tags, like <car/>, will use None for their text attribute.
For example, enter the following into the interactive shell:

>>> root[0].tag
'name'
>>> root[0].text
'Alice Doe'
>>> root[3].tag
'car'
>>> root[3].text == None # <car/> has no text.
True
>>> root[4].tag
'address'
>>> root[4][0].tag
'street'
>>> root[4][0].text
'100 Larkin St.'

From the root element, you can explore the data in the entire XML
document. You can also iterate over the immediate child elements by put-
ting an Element object in a for loop:

>>> for elem in root:
... print(elem.tag, '--', elem.text)
...
name -- Alice Doe
age -- 30
programmer -- true
car -- None
address -- None
phone -- None

If you want to iterate over all children underneath the Element, you can
call the iter() method in a for loop:

>>> for elem in root.iter():
... print(elem.tag, '--', elem.text)

CSV, JSON, and XML Files 457

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

...
person -- None
name -- Alice Doe
age -- 30
programmer -- true
car -- None
address -- None
street -- 100 Larkin St.
city -- San Francisco
zip -- 94102
phone -- None
phoneEntry -- None
type -- mobile
number -- 415-555-7890
phoneEntry -- None
type -- work
number -- 415-555-1234

Optionally, you can pass a string to the iter() method to filter for XML
elements with a matching tag. This example calls iter('number') to iterate
over only the <number> child elements of the root element:

>>> for elem in root.iter('number'):
... print(elem.tag, '--', elem.text)
...
number -- 415-555-7890
number -- 415-555-1234

There’s much more to browsing the data in an XML document than
the attributes and methods covered in this section. For example, just as
the CSS selectors covered in Chapter 13 can find elements in a web page’s
HTML, a language called XPath can locate elements in an XML document.
These concepts are beyond the scope of this chapter, but you can learn
about them in the Python documentation at https://docs .python .org /3 /library /
xml .etree .elementtree .html.

Python’s XML modules have no way to convert XML text to a Python
data structure. However, the third-party xmltodict module at https://pypi
.org /project /xmltodict / can do this. The full installation instructions are in
Appendix A. Here is an example of its use:

>>> import xmltodict
>>> xml_string = """<person><name>Alice Doe</name><age>30</age>
<programmer>true</programmer><car xsi:nil="true" xmlns:xsi=
"http://www .w3 .org /2001 /XMLSchema -instance" /><address><street>
100 Larkin St.</street><city>San Francisco</city><zip>94102
</zip></address><phone><phoneEntry><type>mobile</type><number>
415-555-7890</number></phoneEntry><phoneEntry><type>work</type>
<number>415-555-1234</number></phoneEntry></phone></person>"""
>>> python_data = xmltodict.parse(xml_string)
>>> python_data
{'person': {'name': 'Alice Doe', 'age': '30', 'programmer': 'true',
'car': {'@xsi:nil': 'true', '@xmlns:xsi': 'http://www .w3 .org /2001/

https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://pypi.org/project/xmltodict/
https://pypi.org/project/xmltodict/

458 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

XMLSchema-instance'}, 'address': {'street': '100 Larkin St.', 'city':
'San Francisco', 'zip': '94102'}, 'phone': {'phoneEntry': [{'type':
'mobile', 'number': '415-555-7890'}, {'type': 'work', 'number':
'415-555-1234'}]}}}

One reason the XML standard has fallen to the wayside compared to
formats like JSON is that representing data types in XML is more compli-
cated. For example, the <programmer> element was parsed as the string value
'true' instead of the Boolean value True. And the <car> element was parsed
into the awkward 'car': {'@xsi:nil': 'true', '@xmlns:xsi': 'http://www .w3 .org/
2001 /XMLSchema-instance'} key-value pair instead of the value None. You must
double-check the input and output of any XML module to verify that it is
representing your data as you intend.

Writing XML Files

The xml.etree module is a bit unwieldy, so for small projects, you may be bet-
ter off calling the open() function and write() method to create XML text
yourself. But to create an XML document from scratch with the xml.etree
module, you’ll need to create a root Element object (such as the <person> ele-
ment in our example) and then call the SubElement() function to create child
elements for it. You can set any XML attributes in the element with the set()
method. For example, enter the following:

>>> import xml.etree.ElementTree as ET
>>> person = ET.Element('person') # Create the root XML element.
>>> name = ET.SubElement(person, 'name') # Create <name> and put it under <person>.
>>> name.text = 'Alice Doe' # Set the text between <name> and </name>.
>>> age = ET.SubElement(person, 'age')
>>> age.text = '30' # XML content is always a string.
>>> programmer = ET.SubElement(person, 'programmer')
>>> programmer.text = 'true'
>>> car = ET.SubElement(person, 'car')
>>> car.set('xsi:nil', 'true')
>>> car.set('xmlns:xsi', 'http://www .w3 .org /2001 /XMLSchema-instance')
>>> address = ET.SubElement(person, 'address')
>>> street = ET.SubElement(address, 'street')
>>> street.text = '100 Larkin St.'

For brevity, we’ll leave out the rest of the <address> and <phone> elements.
Call the ET.tostring() and decode() functions with the root Element object to
get a Python string of the XML text:

>>> ET.tostring(person, encoding='utf-8').decode('utf-8')
'<person><name>Alice Doe</name><age>30</age><programmer>true</programmer>
<car xsi:nil="true" xmlns:xsi ="http://www .w3 .org /2001 /XMLSchema -instance" />
<address><street>100 Larkin St.</street></address></person>'

It’s rather unfortunate that the tostring() method returns a bytes object
instead of a string, necessitating a decode() method call to obtain an actual
string. But once you have the XML text as a Python string value, you can

CSV, JSON, and XML Files 459

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

write it to a .xml file, pass it to a function, use it in a web request, or do any-
thing else you can do with a string.

Summary
CSV, JSON, and XML are common plaintext formats for storing data.
They’re easy for programs to parse while still being human readable, so
they are often used for simple spreadsheets or web app data. The csv, json,
and xml.etree.ElementTree modules in the Python standard library greatly
simplify the process of reading and writing these files, so you don’t need to
do so with the open() function.

These formats are not specific to Python; many other programming
languages and software applications use these file types. This chapter can
help you write Python programs that can also interact with any apps that
use them.

Practice Questions
 1. What are some features that Excel spreadsheets have but CSV spread-

sheets don’t?

 2. What do you pass to csv.reader() and csv.writer() to create reader and
writer objects?

 3. What modes do File objects for reader and writer objects need to be
opened in?

 4. What method takes a list argument and writes it to a CSV file?

 5. What do the delimiter and lineterminator keyword arguments do?

 6. Of CSV, JSON, and XML, which formats can be easily edited with a text
editor application?

 7. What function takes a string of JSON data and returns a Python data
structure?

 8. What function takes a Python data structure and returns a string of
JSON data?

 9. Which data serialization format resembles HTML, with tags enclosed
in angle brackets?

 10. How does JSON write None values?

 11. How do you write Boolean values in JSON?

Practice Program: Excel-to-CSV Converter
Excel can save a spreadsheet to a CSV file with a few mouse clicks, but if
you had to convert hundreds of Excel files to CSVs, it would take hours of
clicking. Using the openpyxl module from Chapter 14, write a program that
reads all the Excel files in the current working directory and outputs them
as CSV files.

460 Chapter 18

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

A single Excel file might contain multiple sheets; you’ll have to create
one CSV file per sheet. The filenames of the CSV files should be <excel
filename>_<sheet title>.csv, where <excel filename> is the filename of the Excel
file without the file extension (for example, spam_data, not spam_data.xlsx)
and <sheet title> is the string from the Worksheet object’s title variable.

This program will involve many nested for loops. The skeleton of the
program should look something like this:

for excel_file in os.listdir('.'):
 # Skip non-xlsx files, load the workbook object.
 for sheet_name in wb.sheetnames:
 # Loop through every sheet in the workbook.
 # Create the CSV filename from the Excel filename and sheet title.
 # Create the csv.writer object for this CSV file.

 # Loop through every row in the sheet.
 for row_num in range(1, sheet.max_row + 1):
 row_data = [] # append each cell to this list
 # Loop through each cell in the row.
 for col_num in range(1, sheet.max_column + 1):
 # Append each cell's data to row_data

 # Write the row_data list to the CSV file.

 csv_file.close()

Download the ZIP file excelSpreadsheets.zip from the book’s online
resources and unzip the spreadsheets into the same directory as your pro-
gram. You can use these as the files to test the program on.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Running programs while you’re sitting at
your computer is fine, but it’s also useful to

have programs run without your direct super-
vision. Your computer’s clock can schedule pro-

grams to run code at some specified time and date or
at regular intervals. For example, your program could
scrape a website every hour to check for changes or do a
CPU-intensive task at 4 am while you sleep. Python’s time
and datetime modules provide these functions.

You can also write programs that launch other programs on a sched-
ule by using the subprocess and threading modules. Often, the fastest way
to program is to take advantage of applications that other people have
already written.

19
K E E P I N G T I M E ,

S C H E D U L I N G T A S K S ,
A N D L A U N C H I N G P R O G R A M S

462 Chapter 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The time Module
Your computer’s system clock is set to a specific date, time, and time zone.
The built-in time module allows your Python programs to read the system
clock for the current time. The most useful of its functions are time.time(),
which returns a value called the epoch timestamp, and time.sleep(), which
pauses a program.

Returning the Epoch Timestamp
The Unix epoch is a time reference commonly used in programming: mid-
night on January 1, 1970, Coordinated Universal Time (UTC). The time
.time() function returns the number of seconds since that moment as a float
value. (Recall that a float is just a number with a decimal point.) This num-
ber is called an epoch timestamp. For example, enter the following into the
interactive shell:

>>> import time
>>> time.time()
1773813875.3518236

Here, I’m calling time.time() on March 17, 2026, at 11:04 pm Pacific
Standard Time. The return value is how many seconds have passed between
the Unix epoch and the moment time.time() was called.

The return value from time.time() is useful, but is not human readable.
The time.ctime() function returns a string description of the current time.
You can also optionally pass the number of seconds since the Unix epoch,
as returned by time.time(), to get a string value of that time. Enter the fol-
lowing into the interactive shell:

>>> import time
>>> time.ctime()
'Tue Mar 17 11:05:38 2026'
>>> this_moment = time.time()
>>> time.ctime(this_moment)
'Tue Mar 17 11:05:45 2026'

Epoch timestamps can be used to profile code: that is, measure how long a
piece of code takes to run. If you call time.time() at the beginning of the code
block you want to measure and again at the end, you can subtract the first
timestamp from the second to find the elapsed time between those two calls.
For example, open a new file editor tab and enter the following program:

Measure how long it takes to multiply 100,000 numbers.
import time
1 def calculate_product():
 # Calculate the product of the first 100,000 numbers.
 product = 1
 for i in range(1, 100001):
 product = product * i
 return product

Keeping Time, Scheduling Tasks, and Launching Programs 463

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

2 start_time = time.time()
result = calculate_product()
3 end_time = time.time()
4 print(f'It took {end_time – start_time} seconds to calculate.')

At 1, we define a function calculate_product() to loop through the inte-
gers from 1 to 100,000 and return their product. At 2, we call time.time()
and store it in start_time. Right after calling calculate_product(), we call time
.time() again and store it in end_time 3. We end by printing how long it took
to run calculate_product() 4.

Save this program as calcProd.py and run it. The output will look some-
thing like this:

It took 2.844162940979004 seconds to calculate.

Another way to profile your code is to use the cProfile.run() function,
which provides a much more informative level of detail than the simple time
.time() technique. You can read about cProfile.run() function in Chapter 13
of my other book, Beyond the Basic Stuff with Python (No Starch Press, 2020).

Pausing Programs
If you need to pause your program for a while, call the time.sleep() function
and pass it the number of seconds you want your program to stay paused.
For example, enter the following into the interactive shell:

>>> import time
>>> for i in range(3):
... 1 print('Tick')
... 2 time.sleep(1)
... 3 print('Tock')
... 4 time.sleep(1)
...
Tick
Tock
Tick
Tock
Tick
Tock
5 >>> time.sleep(5)
>>>

The for loop will print Tick 1, pause for one second 2, print Tock 3,
pause for one second 4, print Tick, pause, and so on, until Tick and Tock
have each been printed three times.

The time.sleep() function will block (that is, it won’t return or release
your program to execute other code) until after the number of seconds you
passed to time.sleep() has elapsed. For example, if you enter time.sleep(5) 5,
you’ll see that the next prompt (>>>) doesn’t appear until five seconds
have passed.

464 Chapter 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Rounding Numbers
When working with time, you’ll often encounter float values with many
digits after the decimal. To make these values easier to work with, you can
shorten them with Python’s built-in round() function, which rounds a float
to the precision you specify. Just pass in the number you want to round, plus
an optional second argument representing how many digits after the deci-
mal point you want to round it to. If you omit the second argument, round()
rounds your number to the nearest whole integer. Enter the following into
the interactive shell:

>>> import time
>>> now = time.time()
>>> now
1773814036.6147408
>>> round(now, 2)
1773814036.61
>>> round(now, 4)
1773814036.6147
>>> round(now)
1773814037

After importing time and storing time.time() in now, we call round(now, 2)
to round now to two digits after the decimal, round(now, 4) to round to four
digits after the decimal, and round(now) to round to the nearest integer.

Project 14: Super Stopwatch
Say you want to track how much time you spend on boring tasks you haven’t
automated yet. You don’t have a physical stopwatch, and it’s surprisingly dif-
ficult to find a free stopwatch app for your laptop or smartphone that isn’t
covered in ads and doesn’t send a copy of your browser history to marketers.
(It says it can do this in the license agreement you agreed to. You did read
the license agreement, didn’t you?) You can write a simple stopwatch pro-
gram yourself in Python.

At a high level, here’s what your program will do:

• Find the current time by calling time.time() and store it as a timestamp
at the start of the program, as well as at the start of each lap.

• Keep a lap counter and increment it every time the user presses enter.

• Calculate the elapsed time by subtracting timestamps.

• Handle the KeyboardInterrupt exception so that the user can press
ctrl-C to quit.

Open a new file editor tab and save it as stopwatch.py.

Keeping Time, Scheduling Tasks, and Launching Programs 465

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Step 1: Set Up the Program to Track Times
The stopwatch program will need to use the current time, so you’ll want to
import the time module. Your program should also print some brief instruc-
tions to the user before calling input() so that the timer can begin after the
user presses enter. Then, the code will start tracking lap times each time
the user presses enter until they press ctrl-C to quit.

Enter the following code into the file editor, writing a TODO comment as
a placeholder for the rest of the code:

A simple stopwatch program
import time

Display the program's instructions.
print('Press ENTER to begin and to mark laps. Ctrl-C quits.')
input() # Press Enter to begin.
print('Started.')
start_time = time.time() # Get the first lap's start time.
last_time = start_time
lap_number = 1

TODO: Start tracking the lap times.

Now that you’ve written the code to display the instructions, start the
first lap, note the time, and set the lap_number to 1.

Step 2: Track and Print Lap Times
Now let’s write the code to start each new lap, calculate how long the previ-
ous lap took, and calculate the total time elapsed since starting the stop-
watch. We’ll display the lap time and total time and increase the lap count
for each new lap. Add the following code to your program:

A simple stopwatch program
import time

--snip--

Start tracking the lap times.
1 try:
 2 while True:
 input()
 3 lap_time = round(time.time() – last_time, 2)
 4 total_time = round(time.time() – start_time, 2)
 5 print('Lap #{lap_number}: {total_time}({lap_time})', end='')
 lap_number += 1
 last_time = time.time() # Reset the last lap time.
6 except KeyboardInterrupt:
 # Handle the Ctrl-C exception to keep its error message from displaying.
 print('\nDone.')

466 Chapter 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If the user presses ctrl-C to stop the stopwatch, the KeyboardInterrupt
exception will be raised, and the program will crash. To prevent crashing,
we wrap this part of the program in a try statement 1. We’ll handle the
exception in the except clause 6, which prints Done when the exception is
raised instead of showing the KeyboardInterrupt error message. Until this
happens, the execution occurs inside an infinite loop 2 that calls input()
and waits until the user presses enter to end a lap. When a lap ends, we
calculate how long the lap took by subtracting the start time of the lap,
last_time, from the current time, time.time() 3. We calculate the total time
elapsed by subtracting the overall start time of the stopwatch, start_time,
from the current time 4.

Because the results of these time calculations will have many digits
after the decimal point (such as 4.766272783279419), we use the round() func-
tion to round the float value to two digits at 3 and 4.

At 5, we print the lap number, total time elapsed, and lap time. As the
user pressing enter for the input() call will print a newline to the screen,
pass end='' to the print() function to avoid double-spacing the output. After
printing the lap information, we get ready for the next lap by adding 1 to
the count lap_number and setting last_time to the current time, which is the
start time of the next lap.

Ideas for Similar Programs
Time tracking opens up several possibilities for your programs. Although
you can download apps to do some of these things, the benefit of writing
programs yourself is that they will be free and not bloated with ads and use-
less features. You could write similar programs to do the following:

• Create a simple timesheet app that records when you type a person’s
name and uses the current time to clock them in or out.

• Add a feature to your program to display the elapsed time since a pro-
cess started, such as a download that uses the requests module. (See
Chapter 13.)

• Intermittently check how long a program has been running and offer
the user a chance to cancel tasks that are taking too long.

The datetime Module
The time module is useful for getting a Unix epoch timestamp to work with.
But if you want to display a date in a more convenient format, or do arith-
metic with dates (for example, figuring out what date was 205 days ago or
what date is 123 days from now), you should use the datetime module.

The datetime module has its own datetime data type. The datetime values
represent a specific moment in time. Enter the following into the interac-
tive shell:

>>> import datetime
1 >>> datetime.datetime.now()

Keeping Time, Scheduling Tasks, and Launching Programs 467

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

2 datetime.datetime(2026, 2, 27, 11, 10, 49, 727297)
3 >>> dt = datetime.datetime(2026, 10, 21, 16, 29, 0)
4 >>> dt.year, dt.month, dt.day
(2026, 10, 21)
5 >>> dt.hour, dt.minute, dt.second
(16, 29, 0)

Calling datetime.datetime.now() 1 returns a datetime object 2 for the
current date and time, according to your computer’s clock. This object
includes the year, month, day, hour, minute, second, and microsecond of
the current moment. You can also retrieve a datetime object for a specific
moment by using the datetime.datetime() function 3, passing it integers rep-
resenting the year, month, day, hour, and second of the moment you want.
These integers will be stored in the datetime object’s year, month, day 4, hour,
minute, and second 5 attributes.

A Unix epoch timestamp can be converted to a datetime object with the
datetime.datetime.fromtimestamp() function. The date and time of the datetime
object will be converted for the local time zone. Enter the following into the
interactive shell:

>>> import datetime, time
>>> datetime.datetime.fromtimestamp(1000000)
datetime.datetime(1970, 1, 12, 5, 46, 40)
>>> datetime.datetime.fromtimestamp(time.time())
datetime.datetime(2026, 10, 21, 16, 30, 0, 604980)

Calling datetime.datetime.fromtimestamp() and passing it 1000000 returns
a datetime object for the moment 1,000,000 seconds after the Unix epoch.
Passing time.time(), the Unix epoch timestamp for the current moment,
returns a datetime object for the current moment. So, the expressions
datetime.datetime.now() and datetime.datetime.fromtimestamp(time.time()) do
the same thing; they both give you a datetime object for the present moment.

You can compare datetime objects with each other using comparison
operators to find out which one precedes the other. The later datetime
object is the “greater” value. Enter the following into the interactive shell:

>>> import datetime
1 >>> halloween_2026 = datetime.datetime(2026, 10, 31, 0, 0, 0)
2 >>> new_years_2027 = datetime.datetime(2027, 1, 1, 0, 0, 0)
>>> oct_31_2026 = datetime.datetime(2026, 10, 31, 0, 0, 0)
3 >>> halloween_2026 == oct_31_2026
True
4 >>> halloween_2026 > new_years_2027
False
5 >>> new_years_2027 > halloween_2026
True
>>> new_years_2027 != oct_31_2026
True

This code makes a datetime object for the first moment (midnight) of
October 31, 2026, and stores it in halloween_2026 1. Then, it makes a datetime

468 Chapter 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

object for the first moment of January 1, 2027, and stores it in new_years
_2027 2. It creates another object for midnight on October 31, 2026, and
stores it in oct_31_2026. Comparing halloween_2026 and oct_31_2026 shows that
they’re equal 3. Comparing new_years_2027 and halloween_2026 shows that
new_years_2027 is greater (later) than halloween_2026 4 5.

Representing Duration
The datetime module also provides a timedelta data type, which represents a
duration of time rather than a moment in time. Enter the following into the
interactive shell:

>>> import datetime
1 >>> delta = datetime.timedelta(days=11, hours=10, minutes=9, seconds=8)
2 >>> delta.days, delta.seconds, delta.microseconds
(11, 36548, 0)
>>> delta.total_seconds()
986948.0
>>> str(delta)
'11 days, 10:09:08'

To create a timedelta object, use the datetime.timedelta() function. The
datetime.timedelta() function takes the keyword arguments weeks, days, hours,
minutes, seconds, milliseconds, and microseconds. There is no month or year
keyword argument, because “a month” or “a year” is a variable amount of
time depending on the particular month or year. A timedelta object has the
total duration represented in days, seconds, and microseconds. These num-
bers are stored in the days, seconds, and microseconds attributes, respectively.
The total_seconds() method will return the duration in number of seconds
alone. Passing a timedelta object to str() will return a nicely formatted,
human-readable string representation of the object.

In this example, we pass keyword arguments to datetime.delta() to
specify a duration of 11 days, 10 hours, 9 minutes, and 8 seconds, and store
the returned timedelta object in delta 1. This timedelta object’s days attribute
stores 11, and its seconds attribute stores 36548 (10 hours, 9 minutes, and 8 sec-
onds, expressed in seconds) 2. Calling total_seconds() tells us that 11 days,
10 hours, 9 minutes, and 8 seconds is 986,948 seconds. Finally, passing the
timedelta object to str() returns a string that plainly describes the duration.

The arithmetic operators can be used to perform date arithmetic on
datetime values. For example, to calculate the date 1,000 days from now,
enter the following into the interactive shell:

>>> import datetime
>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2026, 12, 2, 18, 38, 50, 636181)
>>> thousand_days = datetime.timedelta(days=1000)
>>> now + thousand_days
datetime.datetime(2029, 8, 28, 18, 38, 50, 636181)

Keeping Time, Scheduling Tasks, and Launching Programs 469

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

First, make a datetime object for the current moment and store it in now.
Then, make a timedelta object for a duration of 1,000 days and store it in
thousand_days. Add now and thousand_days together to get a datetime object for
the date 1,000 days from the date and time in now. Python will do the date
arithmetic to figure out that 1,000 days after December 2, 2026, will be
August 28, 2029. When calculating 1,000 days from a given date, you have
to remember how many days are in each month and factor in leap years and
other tricky details. The datetime module handles all of this for you.

You can add or subtract timedelta objects with datetime objects or other
timedelta objects using the + and - operators. A timedelta object can be mul-
tiplied or divided by integer or float values with the * and / operators. Enter
the following into the interactive shell:

>>> import datetime
1 >>> oct_21st = datetime.datetime(2026, 10, 21, 16, 29, 0)
2 >>> about_thirty_years = datetime.timedelta(days=365 * 30)
>>> oct_21st
datetime.datetime(2026, 10, 21, 16, 29)
>>> oct_21st – about_thirty_years
datetime.datetime(1996, 10, 28, 16, 29)
>>> oct_21st - (2 * about_thirty_years)
datetime.datetime(1966, 11, 5, 16, 29)

Here, we make a datetime object for October 21, 2026, 1 and a time-
delta object for a duration of about 30 years 2. (We’re using 365 days
for each of those years and ignoring leap years.) Subtracting about_thirty
_years from oct_21st gives us a datetime object for the date 30 years before
October 21, 2026. Subtracting 2 * about_thirty_years from oct_21st returns
a datetime object for the date about 60 years before: the late afternoon of
November 5, 1966.

Pausing Until a Specific Date
The time.sleep() method lets you pause a program for a certain number
of seconds. By using a while loop, you can pause your programs until a
specific date. For example, the following code will continue to loop until
Halloween 2039:

import datetime
import time
halloween_2039 = datetime.datetime(2039, 10, 31, 0, 0, 0)
while datetime.datetime.now() < halloween_2039:
 time.sleep(1) # Wait 1 second before looping to check again.

The time.sleep(1) call will pause your Python program so that the com-
puter doesn’t waste CPU processing cycles by checking the time over and
over as fast as possible. Rather, the while loop will just check the condition
once per second and continue with the rest of the program after Halloween
2039 (or whenever you program it to stop).

470 Chapter 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Converting datetime Objects into Strings
Epoch timestamps and datetime objects aren’t very friendly to the human
eye. Use the strftime() method to display a datetime object as a string. (The f
in the name of the strftime() function stands for format.)

The strftime() method uses directives similar to Python’s string format-
ting. Table 19-1 has a full list of strftime() directives. You can also consult
the helpful https://strftime .org website for this information.

Table 19-1: strftime() Directives

strftime() directive Meaning

%Y Year with century, as in '2026'

%y Year without century, '00' to '99' (1970 to 2069)

%m Month as a decimal number, '01' to '12'

%B Full month name, as in 'November'

%b Abbreviated month name, as in 'Nov'

%d Day of the month, '01' to '31'

%j Day of the year, '001' to '366'

%w Day of the week, '0' (Sunday) to '6' (Saturday)

%A Full weekday name, as in 'Monday'

%a Abbreviated weekday name, as in 'Mon'

%H Hour (24-hour clock), '00' to '23'

%I Hour (12-hour clock), '01' to '12'

%M Minute, '00' to '59'

%S Second, '00' to '59'

%p 'AM' or 'PM'

%% Literal '%' character

Pass strftime() a custom format string containing formatting direc-
tives (along with any desired slashes, colons, and so on), and strftime() will
return the datetime object’s information as a formatted string. Enter the
following into the interactive shell:

>>> oct_21st = datetime.datetime(2026, 10, 21, 16, 29, 0)
>>> oct_21st.strftime('%Y/%m/%d %H:%M:%S')
'2026/10/21 16:29:00'
>>> oct_21st.strftime('%I:%M %p')
'04:29 PM'
>>> oct_21st.strftime("%B of '%y")
"October of '26"

Here, we have a datetime object for October 21, 2026, at 4:29 pm, stored
in oct_21st. Passing the custom format string '%Y/%m/%d %H:%M:%S' to strftime()
returns a string containing 2026, 10, and 21 separated by slashes and 16, 29,

https://strftime.org

Keeping Time, Scheduling Tasks, and Launching Programs 471

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

and 00 separated by colons. Passing '%I:%M %p' returns '04:29 PM', and pass-
ing "%B of '%y" returns "October of '26".

Converting Strings into datetime Objects
If you have a string of date information, such as '2026/10/21 16:29:00' or
'October 21, 2026', and you need to convert it to a datetime object, use the
datetime.datetime.strptime() function. The strptime() function is the inverse
of the strftime() method, and you must pass it a custom format string using
the same directives as strftime() so that the function knows how to parse
and understand the string. (The p in the name of the strptime() function
stands for parse.)

Enter the following into the interactive shell:

1 >>> datetime.datetime.strptime('October 21, 2026', '%B %d, %Y')
datetime.datetime(2026, 10, 21, 0, 0)
>>> datetime.datetime.strptime('2026/10/21 16:29:00', '%Y/%m/%d %H:%M:%S')
datetime.datetime(2026, 10, 21, 16, 29)
>>> datetime.datetime.strptime("October of '26", "%B of '%y")
datetime.datetime(2026, 10, 1, 0, 0)
>>> datetime.datetime.strptime("November of '63", "%B of '%y")
datetime.datetime(2063, 11, 1, 0, 0)
2 >>> datetime.datetime.strptime("November of '73", "%B of '%y")
datetime.datetime(1973, 11, 1, 0, 0)

To get a datetime object from the string 'October 21, 2026', pass that
string as the first argument to strptime() and the custom format string that
corresponds to 'October 21, 2026' as the second argument 1. The string
with the date information must match the custom format string exactly,
or Python will raise a ValueError exception. Notice that "November of '63" is
interpreted as 2063 while "November of '73" is interpreted as 1973 because
the %y directive spans from 1970 to 2069.

A R E V IE W OF PY T HON’S T IME F UNC T IONS

Dates and times in Python can involve quite a few different data types and func-
tions . Here’s a review of the three different types of values used to represent time:

• A Unix epoch timestamp (used by the time module) is a float or integer
value representing the number of seconds since midnight on January 1,
1970, UTC .

• A datetime object (of the datetime module) has integers stored in the attri-
butes year, month, day, hour, minute, second, and microsecond .

• A timedelta object (of the datetime module) represents a time duration,
rather than a specific moment .

(continued)

472 Chapter 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Here’s a review of time functions, their parameters, and their return values:

time.time() This function returns an epoch timestamp of the current moment as
a float value .

time.sleep(seconds) This function stops the program for the number of seconds
specified by the seconds argument .

datetime.datetime(year, month, day, hour, minute, second) This function
returns a datetime object of the moment specified by the arguments . If hour,
minute, or second arguments are not provided, they default to 0 .

datetime.datetime.now() This function returns a datetime object of the current
moment .

datetime.datetime.fromtimestamp(epoch) This function returns a datetime
object of the moment represented by the epoch timestamp argument .

datetime.timedelta(weeks, days, hours, minutes, seconds, milliseconds,
microseconds) This function returns a timedelta object representing a duration
of time . The function’s keyword arguments are all optional and do not include
month or year .

total_seconds() This timedelta method returns the number of seconds the
timedelta object represents .

strftime(format) This datetime method returns a string of the time in a custom
format based on the format string . See Table 19-1 for the format details .

datetime.datetime.strptime(time_string, format) This function returns a date-
time object representing the moment specified by time_string, parsed using the
format string argument . See Table 19-1 for the format details .

Launching Other Programs from Python
Your Python program can start other programs on your computer with
the run() function in the built-in subprocess module. If you have multiple
instances of an application open, each of those instances is a separate pro-
cess of the same program. For example, each open window of the calculator
app shown in Figure 19-1 is a different process.

Keeping Time, Scheduling Tasks, and Launching Programs 473

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 19-1: Six running processes of the same calculator program

If you want to start an external program from your Python script, pass
the program’s filename to subprocess.run(). (On Windows, right-click the
application’s Start menu item and select Properties to view the application’s
filename. On macOS, ctrl-click the application and select Show Package
Contents to find the path to the executable file.) The run() function will
block until the launched program closes. Pass the program to launch as a
string of the executable program’s filepath inside a list, keeping in mind
that the launched program will be run in a separate process, not in the
same process as your Python program.

On a Windows computer, enter the following into the interactive shell:

>>> import subprocess
>>> subprocess.run(['C:\\Windows\\System32\\calc.exe'])
CompletedProcess(args=['C:\\Windows\\System32\\calc.exe'], returncode=0)

On Ubuntu Linux, enter the following:

>>> import subprocess
>>> subprocess.run(['/usr/bin/gnome-calculator'])
CompletedProcess(args=['/usr/bin/gnome-calculator'], returncode=0)

On macOS, enter the following:

>>> import subprocess
>>> subprocess.run(['open', '/System/Applications/Calculator.app'])
CompletedProcess(args=['open', '/System/Applications/Calculator.app'], returncode=0)

Notice that macOS requires you to run the open program and pass it a
command line argument of the program you want to launch.

474 Chapter 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

In these examples, our Python code launched the program, waited for
the program to close, and then continued. If you want your Python code to
launch a program and then immediately continue without waiting for the pro-
gram to close, call the subprocess.Popen() (“process open”) function instead:

>>> import subprocess
>>> calc_proc = subprocess.Popen(['C:\\Windows\\System32\\calc.exe'])

The return value is a Popen object, which has two useful methods: poll()
and wait().

You can think of the poll() method as asking your driver “Are we there
yet?” over and over until you arrive. The poll() method will return None if
the process is still running at the time poll() is called. If the program has
terminated, it will return the process’s integer exit code. An exit code indi-
cates whether the process terminated without errors (represented by an
exit code of 0) or whether an error caused the process to terminate (repre-
sented by a nonzero exit code—generally 1, but it may vary depending on
the program).

The wait() method is like waiting until the driver has arrived at your
destination. The method will block until the launched process has termi-
nated. This is helpful if you want your program to pause until the user fin-
ishes interacting with the other program. The return value of wait() is the
process’s integer exit code.

On Windows, enter the following into the interactive shell. Note that
the wait() call may block until you quit the launched Calculator program:

>>> import subprocess
1 >>> calc_proc = subprocess.Popen('c:\\Windows\\System32\\calc.exe')
2 >>> calc_proc.poll() == None
True
3 >>> calc_proc.wait() # Doesn't return until Calculator closes.
0
>>> calc_proc.poll()
0

Here, we open a Calculator process 1. On older versions of Windows,
poll() returns None 2 if the process is still running. Then, we close the
Calculator application’s window, and back in the interactive shell, we call
wait() on the terminated process 3. Now wait() and poll() return 0, indicat-
ing that the process terminated without errors.

If you run calc.exe on Windows 10 and later using subprocess.Popen(),
you’ll notice that wait() instantly returns even though the calculator app is
still running. This is because calc.exe launches the calculator app and then
instantly closes itself. The calculator program in Windows is a “Trusted
Microsoft Store app,” and its specifics are beyond the scope of this book.
Suffice it to say that programs can run in many application-specific and
operating system–specific ways.

Keeping Time, Scheduling Tasks, and Launching Programs 475

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you want to close a process you’ve launched with subprocess.Popen(),
call the kill() method of the Popen object the function returned. If you have
MS Paint on Windows, enter the following into the interactive shell:

>>> import subprocess
>>> paint_proc = subprocess.Popen('c:\\Windows\\System32\\mspaint.exe')
>>> paint_proc.kill()

Note that the kill() method immediately terminates a program and
bypasses any “Are you sure you want to quit?” confirmation window. Any
unsaved work in the program will be lost.

Passing Command Line Arguments to Processes
You can pass command line arguments to processes you create with run().
To do so, pass a list as the sole argument to run(). The first string in this
list will be the executable filename of the program you want to launch; all
the subsequent strings will be the command line arguments to pass to the
program when it starts. In effect, this list will be the value of sys.argv for the
launched program.

Most applications with a graphical user interface (GUI) don’t use com-
mand line arguments as extensively as command line–based or terminal-
based programs do. But most GUI applications will accept a single argu-
ment for a file that the applications will immediately open when they start.
For example, if you’re using Windows, create a text file named C:\Users\Al\
hello.txt and then enter the following into the interactive shell:

>>> subprocess.run(['C:\\Windows\\notepad.exe', 'C:\\Users\Al\\hello.txt'])
CompletedProcess(args=['C:\\Windows\\notepad.exe', 'C:\\Users\\Al\\hello.txt'], returncode=0)

This will not only launch the Notepad application but also have it
immediately open the C:\Users\Al\hello.txt file. Every program has its own set
of command line arguments, and some programs (especially GUI applica-
tions) don’t use command line arguments at all.

The subprocess.Popen() function handles command line arguments in
a similar way, and you should add them to the end of the list you pass
the function.

Receiving Output Text from Launched Commands
You can also launch terminal commands using subprocess.run() and
subprocess.Popen(). You may want your Python code to receive the text out-
put of these commands or simulate keyboard input to them. For example,
let’s launch the ping command from Python and receive the text it pro-
duces. (The details of the ping command are beyond the scope of this
book.) On Windows, you’ll use the -n 4 arguments to send four network
“ping” requests that check whether the Nostarch .com server is online. If

476 Chapter 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

you’re on macOS and Linux, replace -n with -c. This command takes a few
seconds to run:

>>> import subprocess
>>> proc = subprocess.run(['ping', '-n', '4', 'nostarch .com'], capture_output=True, text=True)
>>> print(proc.stdout)
Pinging nostarch .com [104.20.120.46] with 32 bytes of data:
Reply from 104.20.120.46: bytes=32 time=19ms TTL=59
Reply from 104.20.120.46: bytes=32 time=17ms TTL=59
Reply from 104.20.120.46: bytes=32 time=97ms TTL=59
Reply from 104.20.120.46: bytes=32 time=217ms TTL=59

Ping statistics for 104.20.120.46:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 17ms, Maximum = 217ms, Average = 87ms

When you pass the capture_output=True and text=True arguments to
subprocess.run(), the text output of the launched program is stored as a
string in the returned CompletedProcess object’s stdout (“standard output”)
attribute. Your Python script can use the features of other programs and
then parse the text output as a string.

Running Task Scheduler, launchd, and cron
If you’re computer savvy, you may know about Task Scheduler on Windows,
launchd on macOS, or the cron scheduler on Linux. These well-documented
and reliable tools all allow you to schedule applications to launch at spe-
cific times.

Using your operating system’s built-in scheduler saves you from writing
your own clock-checking code to schedule your programs. If you just need
your program to pause only briefly, however, it’s best to instead loop until
a certain date and time, calling time.sleep(1) on each iteration through
the loop.

Opening Files with Default Applications
Double-clicking a .txt file on your computer will automatically launch the
application associated with the .txt file extension. Each operating system
has a program that performs the equivalent of this double-clicking action.
On Windows, this is the start command. On macOS and Linux, this is the
open command. Enter the following into the interactive shell, passing either
'start' or 'open' to run(), depending on your system. Also, on Windows, you
should pass the shell=True keyword argument, as shown here:

>>> file_obj = open('hello.txt', 'w') # Create a hello.txt file.
>>> file_obj.write('Hello, world!')
13
>>> file_obj.close()
>>> import subprocess
>>> subprocess.run(['start', 'hello.txt'], shell=True)

Keeping Time, Scheduling Tasks, and Launching Programs 477

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Here, we write Hello, world! to a new hello.txt file. Then, we call run(),
passing it a list containing the program or command name (in this exam-
ple, 'start' for Windows) and the filename. The operating system knows all
of the file associations and can figure out that it should launch, say, Notepad
.exe to handle the hello.txt file on Windows.

Project 15: Simple Countdown Program
Just as it’s hard to find a simple stopwatch application, it can be hard to
find a simple countdown application. Let’s write a countdown program that
plays an alarm at the end of the countdown.

At a high level, here’s what your program will do:

• Pause for one second in between displaying each number in the count-
down by calling time.sleep().

• Call subprocess.run() to open an alarm.wav sound file with the default
application.

Open a new file editor tab and save it as simplecountdown.py.

Step 1: Count Down
This program will require the time module for the time.sleep() function and
the subprocess module for the subprocess.run() function. Enter the following
code and save the file as simplecountdown.py:

https://autbor .com /simplecountdown .py - A simple countdown script

import time, subprocess

1 time_left = 60
while time_left > 0:
 2 print(time_left)
 3 time.sleep(1)
 4 time_left = time_left - 1

TODO: At the end of the countdown, play a sound file.

After importing time and subprocess, make a variable called time_left to
hold the number of seconds left in the countdown 1. We set it to 60 here,
but you can change the value to whatever you’d like, or even set it based on
a command line argument.

In a while loop, display the remaining count 2, pause for one second 3,
and then decrement the time_left variable 4 before the loop starts over
again. The loop will keep looping as long as time_left is greater than 0.
After that, the countdown will be over. Next, let’s fill in the TODO comment
with code that plays the sound file.

478 Chapter 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Step 2: Play the Sound File
While Chapter 12 covers the playsound module to play sound files of various
formats, the quick and easy way to do this is to launch whatever application
the user already uses to play sound files. The operating system will figure
out from the .wav file extension which application it should launch to play
the file. This .wav file could easily be some other sound file format, such as
.mp3 or .ogg. You can use any sound file on your computer to play at the end
of the countdown, or download alarm.wav from https://autbor .com /alarm .wav.

Add the following to your code:

https://autbor .com /simplecountdown .py - A simple countdown script

--snip--

At the end of the countdown, play a sound file.
#subprocess.run(['start', 'alarm.wav'], shell=True) # Windows
#subprocess.run(['open', 'alarm.wav']) # macOS and Linux

After the while loop finishes, alarm.wav (or the sound file you choose)
will play to notify the user that the countdown is over. Uncomment the
subprocess.run() call for your operating system. On Windows, be sure to
include 'start' in the list you pass to run(). On macOS and Linux, pass
'open' instead of 'start' and remove shell=True.

Instead of playing a sound file, you could save a text file somewhere with
a message like Break time! and use subprocess.run() to open it at the end of the
countdown. This will effectively create a pop-up window with a message. Or
you could use the webbrowser.open() function to open a specific website at the
end of the countdown. Unlike some free countdown application you’d find
online, your own countdown program’s alarm can be anything you want!

Ideas for Similar Programs
A countdown essentially produces a simple delay before continuing the pro-
gram’s execution. You could use the same approach for other applications
and features, such as the following:

• Use time.sleep() to give the user a chance to press ctrl-C to cancel an
action, such as deleting files. Your program can print a “Press ctrl-C
to cancel” message and then handle any KeyboardInterrupt exceptions
with try and except statements.

• For a long-term countdown, you can use timedelta objects to measure
the number of days, hours, minutes, and seconds until some point (a
birthday? an anniversary?) in the future.

Summary
The Unix epoch (January 1, 1970, at midnight, UTC) is a standard refer-
ence time for many programming languages, including Python. While the

https://autbor.com/alarm.wav

Keeping Time, Scheduling Tasks, and Launching Programs 479

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

time.time() function module returns an epoch timestamp (that is, a float
value of the number of seconds since the Unix epoch), the datetime module
is better for performing date arithmetic and formatting or parsing strings
with date information.

The time.sleep() function will block (that is, not return) for a certain
number of seconds. It can be used to add pauses to your program. But if
you want to schedule your programs to start at a certain time, the instruc-
tions at https://nostarch .com/automate-boring-stuff-python-3rd-edition can tell you
how to use the scheduler already provided by your operating system.

Finally, your Python programs can launch other applications with the
subprocess.run() function. Command line arguments can be passed to the
run() call to open specific documents with the application. Alternatively,
you can use the start or open program with run() and use your computer’s
file associations to automatically figure out which application to use to
open a document. By using the other applications on your computer, your
Python programs can leverage their capabilities for your automation needs.

Practice Questions
 1. What is the Unix epoch?

 2. What function returns the number of seconds since the Unix epoch?

 3. What time module function returns a human-readable string of the cur-
rent time, like 'Mon Jun 15 14:00:38 2026'?

 4. How can you pause your program for exactly five seconds?

 5. What does the round() function return?

 6. What is the difference between a datetime object and a timedelta object?

 7. Using the datetime module, what day of the week was January 7, 2019?

Practice Programs
For practice, write programs to do the following tasks.

Prettified Stopwatch
Expand the stopwatch project from this chapter so that it uses the rjust()
and ljust() string methods to “prettify” the output. (These methods were
covered in Chapter 8.) Instead of output such as this . . .

Lap #1: 3.56 (3.56)
Lap #2: 8.63 (5.07)
Lap #3: 17.68 (9.05)
Lap #4: 19.11 (1.43)

. . . the output should look like this:

Lap # 1: 3.56 (3.56)
Lap # 2: 8.63 (5.07)

480 Chapter 19

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Lap # 3: 17.68 (9.05)
Lap # 4: 19.11 (1.43)

Next, use the pyperclip module introduced in Chapter 8 to copy the text
output to the clipboard so that the user can quickly paste the output to a
text file or email.

Friday the 13th Finder
Friday the 13th is considered an unlucky day by those with triskaideka-
phobia (though personally I celebrate it as a lucky day). With leap years
and months of varying lengths, it can be hard to figure out when the next
Friday the 13th is coming.

Write two programs. The first program should create a datetime object
for the current day and a timedelta object of one day. If the current day is a
Friday the 13th, it should print the month and year. Then, it should add the
timedelta object to the datetime object to set it to the next day, and repeat the
check. Have it repeat until it has found the next ten Friday the 13th dates.

The second program should do the same thing except subtract the
timedelta object. This program will find all of the past months and years
with a Friday the 13th, and stop when it reaches the year 1.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Checking and replying to email is a huge
time sink, and you can’t just write a program

to handle all your email for you, as each mes-
sage requires its own response. But you can still

automate plenty of email-related tasks once you know
how to write programs that can send and receive email.

For example, maybe you have a spreadsheet full of customer records
and want to send each customer a different form letter depending on their
age and location details. Commercial software might not be able to do this
for you. Fortunately, you can write your own program to send these emails,
saving yourself a lot of time spent copying and pasting.

You can also write programs to send SMS text messages and push noti-
fications to notify you of things even while you’re away from your computer.
If you’re automating a task that takes a couple of hours to do, you probably
don’t want to go back to your computer every few minutes to check on the
program’s status. Instead, the program can just text your phone when it’s

20
S E N D I N G E M A I L , T E X T S , A N D

P U S H N O T I F I C A T I O N S

482 Chapter 20

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

done, freeing you to focus on more important things while you’re away from
your computer.

This chapter features the EZGmail module, a simple way to send and
read emails from Gmail accounts, as well as the free ntfy service that pro-
vides push notifications between devices.

W A R N I N G I highly recommend that you set up a separate email account for any scripts that send
or receive emails. This will prevent bugs in your programs from affecting your per-
sonal email account (by deleting emails or accidentally spamming your contacts, for
example). It’s a good idea to first do a dry run by commenting out the code that actu-
ally sends or deletes emails and replacing it with a temporary print() call. This way,
you can test your program before running it for real.

The Gmail API
Gmail owns close to one-third of the email client market share, and most
likely you have at least one Gmail email address. Because of Gmail’s addi-
tional security and anti-spam measures, controlling a Gmail account is better
done through the EZGmail module than through the smtplib and imaplib
modules in Python’s standard library. I wrote EZGmail to work on top of the
official Gmail API and provide functions that make it easy to use Gmail from
Python. For full instructions on installing EZGmail, see Appendix A.

Enabling the API
Before you write code, you must first sign up for a Gmail email account
at https://gmail .com. Then, you must set up the Gmail API for your account
through the Google Cloud console at https://console .cloud .google .com. These
steps are identical to the steps for setting up EZSheets detailed in Chapter 15,
so I won’t repeat them in this chapter. Create a new project and make sure
to enable the Gmail API instead of the Google Sheets API. On step 2 of the
OAuth consent screen configuration, add the https://mail .google .com scope to
let your Python scripts read and send email. When you’re done, you should
have a credentials file and a token file.

Then, in the interactive shell, enter the following code:

>>> import ezgmail
>>> ezgmail .init()

If no error appears, EZGmail has been correctly installed.

Sending Mail
Once EZGmail is configured, you should be able to send email with a single
function call:

>>> import ezgmail
>>> ezgmail .send('recipient@example .com', 'Subject line', 'Body of the email')

https://gmail.com
https://console.cloud.google.com

Sending Email, Texts, and Push Notifications 483

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you want to attach files to your email, you can provide an extra list
argument to the send() function:

>>> ezgmail .send('recipient@example .com', 'Subject line', 'Body of the email',
['attachment1.jpg', 'attachment2.mp3'])

Note that as part of its security and anti-spam features, Gmail might not
send repeated emails with the exact same text (as these are likely spam) or
emails that contain .exe or .zip file attachments (as they are potentially viruses).

You can also supply the optional keyword arguments cc and bcc to send
carbon copies and blind carbon copies:

>>> import ezgmail
>>> ezgmail .send('recipient@example .com', 'Subject line', 'Body of the
email', cc ='friend@example .com', bcc ='otherfriend@example .com,
someoneelse@example .com')

If you need to remember which Gmail address the token.json file is con-
figured for, you can examine ezgmail.EMAIL_ADDRESS:

>>> import ezgmail
>>> ezgmail.EMAIL_ADDRESS
'example@gmail .com'

Be sure to treat the token.json file in the same way as your password. If
someone else obtains this file, they can access your Gmail account (though
they won’t be able to change your Gmail password). To revoke previously
issued token.json files, return to the Google Cloud console and delete the
credential for the compromised token. You will need to repeat the setup
steps to generate a new credential and token file before you can resume
using EZGmail.

Reading Mail
Gmail organizes emails that are replies to each other into conversation
threads. When you log in to Gmail in your web browser or through an app,
you’re really looking at email threads rather than individual emails (even if
the thread has only one email in it).

EZGmail has GmailThread and GmailMessage objects to represent conversa-
tion threads and individual emails, respectively. A GmailThread object has
a messages attribute that holds a list of GmailMessage objects. The unread()
function returns a list of GmailThread objects for the 25 most recent unread
emails, which can then be passed to ezgmail.summary() to print a summary of
the conversation threads in that list:

>>> import ezgmail
>>> unread_threads = ezgmail.unread() # List of GmailThread objects
>>> ezgmail.summary(unread_threads)
Al, Jon - Do you want to watch RoboCop this weekend? - Dec 09
Jon - Thanks for stopping me from buying Bitcoin. - Dec 09

484 Chapter 20

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The summary() function is handy for displaying a quick summary of the
email threads, but to access specific messages (and parts of messages), you’ll
want to examine the messages attribute of the GmailThread object. The messages
attribute contains a list of the GmailMessage objects that make up the thread,
and these have subject, body, timestamp, sender, and recipient attributes that
describe the email:

>>> len(unread_threads)
2
>>> str(unread_threads[0])
"<GmailThread len=2 snippet= Do you want to watch RoboCop this weekend?'>"
>>> len(unread_threads[0].messages)
2
>>> str(unread_threads[0].messages[0])
"<GmailMessage from='Al Sweigart <al@inventwithpython .com>' to='Jon Doe
<example@gmail .com>' timestamp=datetime.datetime(2026, 12, 9, 13, 28, 48)
subject='RoboCop' snippet='Do you want to watch RoboCop this weekend?'>"
>>> unread_threads[0].messages[0].subject
'RoboCop'
>>> unread_threads[0].messages[0].body
'Do you want to watch RoboCop this weekend?\r\n'
>>> unread_threads[0].messages[0].timestamp
datetime.datetime(2026, 12, 9, 13, 28, 48)
>>> unread_threads[0].messages[0].sender
'Al Sweigart <al@inventwithpython .com>'
>>> unread_threads[0].messages[0].recipient
'Jon Doe <example@gmail .com>'

To retrieve more than the 25 most recent unread emails, pass an inte-
ger for the maxResults keyword argument. For example, ezgmail.unread (max
Results=50) will return the 50 most recent unread emails.

Like the ezgmail.unread() function, the ezgmail.recent() function will
return the 25 most recent threads in your Gmail account:

>>> recent_threads = ezgmail.recent()
>>> len(recent_threads)
25
>>> recent_threads = ezgmail.recent(maxResults=100)
>>> len(recent_threads)
46

You can pass an optional maxResults keyword argument to change this
limit.

Searching for Mail
In addition to using ezgmail.unread() and ezgmail.recent(), you can search
for specific emails, the same way you would if you entered queries into the
Gmail search box, by calling ezgmail.search():

>>> result_threads = ezgmail.search('RoboCop')
>>> len(result_threads)

Sending Email, Texts, and Push Notifications 485

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

1
>>> ezgmail.summary(result_threads)
Al, Jon - Do you want to watch RoboCop this weekend? - Dec 09

The previous search() call should yield the same results as if you had
entered RoboCop into the search box, as in Figure 20-1.

Figure 20-1: Searching for RoboCop emails at the Gmail website

Like unread() and recent(), the search() function returns a list of Gmail
Thread objects. You can also pass to the search() function any of the special
search operators that you can enter into the search box, such as the following:

'label:UNREAD' For unread emails

'from:al@inventwithpython .com' For emails from al@inventwithpython .com

'subject:hello' For emails with “hello” in the subject

'has:attachment' For emails with file attachments

You can view a full list of search operators at https://support .google .com /
mail /answer /7190.

Downloading Attachments
A GmailMessage object has an attachments attribute that is a list of filenames
for the message’s attached files. You can pass any of these names to a
GmailMessage object’s downloadAttachment() method to download the files. You
can also download all of them at once with downloadAllAttachments(). By
default, EZGmail saves attachments to the current working directory, but
you can pass an additional downloadFolder keyword argument to download
Attachment() and downloadAllAttachments() as well. Here is an example:

>>> import ezgmail
>>> threads = ezgmail.search('vacation photos')
>>> threads[0].messages[0].attachments
['tulips.jpg', 'canal.jpg', 'bicycles.jpg']
>>> threads[0].messages[0].downloadAttachment('tulips.jpg')
>>> threads[0].messages[0].downloadAllAttachments(downloadFolder='vacation2026')
['tulips.jpg', 'canal.jpg', 'bicycles.jpg']

If a file already exists with the attachment’s filename, the downloaded
attachment will automatically overwrite it.

EZGmail contains additional features, and you can find the full docu-
mentation at https://github .com /asweigart /ezgmail.

https://support.google.com/mail/answer/7190
https://support.google.com/mail/answer/7190
https://github.com/asweigart/ezgmail

486 Chapter 20

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

SMS Email Gateways
People are more likely to be near their smartphones than their computers,
so text messages are often a more reliable way of sending immediate notifi-
cations than email. Also, text messages are usually shorter, making it more
likely that a person will get around to reading them. The easiest, though not
most reliable, way to send text messages is by using a short message service (SMS)
email gateway, an email server that a cell phone provider has set up to receive
texts via email and then forward them to the recipient as text messages.

You can write a program to send these emails using EZGmail or the
smtplib module. The phone number and phone company’s email server
make up the recipient email address. For example, to send a text to a
Verizon customer with the phone number 212-555-1234, you would send
an email to 2125551234@vtext .com. The subject and body of the email would
appear in the body of the text message.

You can find the SMS email gateway for a cell phone provider by doing
a web search for “sms email gateway provider name.” Table 20-1 lists the
gateways for several popular providers. Many providers have separate email
servers for SMS, which limits messages to 160 characters, and Multimedia
Messaging Service (MMS), which has no character limit. If you wanted to
send a photo, you would have to use the MMS gateway and attach the file to
the email.

If you don’t know the recipient’s cell phone provider, you can try search-
ing for it using a carrier lookup site. The best way to find these sites is by
searching the web for “find cell phone provider for number.” Many of these
sites will let you look up numbers for free (though they will charge you to
look up hundreds or thousands of phone numbers through their API).

Table 20-1: SMS Email Gateways for Cell Phone Providers

Cell phone provider SMS gateway MMS gateway

AT&T number@txt .att .net number@mms .att .net

Boost Mobile number@sms .myboostmobile .com Same as SMS

Cricket number@sms .cricketwireless .net number@mms .cricketwireless .net

Google Fi number@msg .fi .google .com Same as SMS

Metro PCS number@mymetropcs .com Same as SMS

Republic Wireless number@text .republicwireless .com Same as SMS

Sprint (now T -Mobile) number@messaging .sprintpcs .com number@pm .sprint .com

T -Mobile number@tmomail .net Same as SMS

U .S . Cellular number@email .uscc .net number@mms .uscc .net

Verizon number@vtext .com number@vzwpix .com

Virgin Mobile number@vmobl .com number@vmpix .com

Xfinity Mobile number@vtext .com number@mypixmessages .com

Sending Email, Texts, and Push Notifications 487

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

While SMS email gateways are free and simple to use, there are several
major disadvantages to them:

• You have no guarantee that the text will arrive promptly, or at all.

• You have no way of knowing if the text failed to arrive.

• The text recipient has no way of replying.

• SMS gateways may block you if you send too many emails, and there’s
no way to find out how many is “too many.”

• The fact that the SMS gateway delivers a text message today doesn’t
mean it will work tomorrow.

Sending texts via an SMS gateway is ideal when you need to transmit
the occasional nonurgent message. If you want a more reliable way to send
SMS text messages, especially in bulk, you can use the API of a telecom
service provider such as Twilio. These services often require a subscrip-
tion or usage fees, and you may need to submit an application to use them.
Regulations may differ for each country and change over time.

An alternative to sending SMS texts is to use a free push notification
service, as the next section will explain.

Push Notifications
HTTP pub-sub notification services allow you to send and receive short, dispos-
able messages over the internet via HTTP web requests. Chapter 13 covers
the use of the Requests library to make HTTP requests, and we’ll use it
here to interact with the free online service ntfy (pronounced notify and
always written in lowercase) at https://ntfy .sh. The ntfy service is free and
doesn’t require any sign-up or registration.

Before we get started, install the ntfy app on your mobile phone so that
you can receive notifications. This app is free and can be found in the app
stores for Android and iPhone. You can also receive notifications in your
web browser by going to https://ntfy .sh /app.

These apps check with the ntfy service for any messages sent to a topic.
You can think of a topic as a chat room or group chat name. Anyone in
the world can send messages to a topic, and anyone in the world can sub-
scribe to a topic to read these messages. If you want to send messages to just
yourself, use a secret topic with random letters. Treat this topic name as a
password and share it only with those you intend to read the messages. This
chapter will use the topic AlSweigartZPgxBQ42 in the example code, though I
recommend you use your own secret topic that contains a suffix of random
letters and numbers. Topics are case-sensitive, and even if you keep the
topic a secret, do not use ntfy to send sensitive information such as pass-
words or credit card numbers.

Sending Notifications
Sending a push notification to everyone who is subscribed to a topic requires
nothing more than making an HTTP request to the ntfy web server. This

https://ntfy.sh
https://ntfy.sh/app

488 Chapter 20

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

means it can be done entirely with the Requests library. You don’t need to
install a ntfy-specific package.

To send the request, enter the following into the interactive shell.
Replace the AlSweigartZPgxBQ42 example topic used throughout this chapter
with your own random, secret topic:

>>> import requests
>>> requests .post('https://ntfy .sh /AlSweigartZPgxBQ42', 'Hello, world!')
<Response [200]>

Note that we call requests.post() to make a POST HTTP request to send
a notification. This is different from the requests.get() function covered in
Chapter 13 to download web pages.

Anyone subscribed to the topic AlSweigartZPgxBQ42 will receive the mes-
sage “Hello, world!” within a few seconds (though sometimes messages may
be delayed by a few minutes). You can also view these yourself at https://ntfy
.sh /AlSweigartZPgxBQ42.

The ntfy service has some limitations. Free users are limited to 250
messages per day, and messages can be 4,096 bytes in size at most. Flooding
messages to various topics may result in your IP address becoming tempo-
rarily blocked. You can obtain a paid account to increase these limits on the
ntfy website. Paid ntfy accounts can set reserved topics and limit who posts
to them. If you don’t have permission to post to a reserved topic, you’ll get a
<Response [403]> response to your requests.post() function call.

Within the 4,096-byte limit, your messages can take on any format.
Note that there is no way to determine who posted a message to a topic, so
you may want to include “To” and “From” labels within the text of your mes-
sage. Better yet, you could do so using JSON or some other data serializa-
tion format covered in Chapter 18.

If you want your Python programs to send you a notification, these are
the only two lines of code you need once you have the ntfy app installed
on your phone and have subscribed to the topic. You’re free to run your
Python program and step away for coffee, knowing that you’ll receive a noti-
fication on your phone when your program has finished its boring task.

Transmitting Metadata
While the message you send is a freeform text string value, ntfy can option-
ally attach metadata values, such as a title, a priority level, and tags, to
each message.

A title is similar to an email subject line, and most apps display it above
the message text in a larger font. A priority level ranges from 1 (the low-
est priority) to 5 (the highest), with 3 being the default. A higher priority
doesn’t deliver messages any faster; it just allows subscribers to configure
their notification apps to display only messages of a certain priority or
higher. Tags are keywords that subscribers can use to filter messages. Tags
can also be the name of an emoji to display next to the message title. You
can find a list of these emojis at https://docs .ntfy .sh /publish /#tags -emojis.

https://ntfy.sh/AlSweigartZPgxBQ42
https://ntfy.sh/AlSweigartZPgxBQ42
https://docs.ntfy.sh/publish/#tags-emojis

Sending Email, Texts, and Push Notifications 489

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This metadata is included in the HTTP request as headers, so you’ll
need to pass a dictionary of them to the headers keyword argument. Enter
the following into the interactive shell to post a message with metadata:

>>> import requests
>>> requests .post('https://ntfy .sh /AlSweigartZPgxBQ42', 'The rent is too high!',
headers={'Title':'Important: Read this!', 'Tags': 'warning,neutral_face', 'Priority':'5'})
<Response [200]>

These features are useful for human users reading the notifications on
their phone app. However, you can also write code so that Python scripts
can receive push notifications, as we’ll discuss in the next section.

Receiving Notifications
Your Python programs can also read the messages posted to a particular
topic by making HTTP requests with the Requests library. Send a notifica-
tion message using the code in the previous sections, and then enter the
following into the interactive shell using the same topic as the notifications:

>>> import requests
>>> resp = requests .get('https://ntfy .sh /AlSweigartZPgxBQ42 /json ?poll =1')
>>> resp.text
'{"id":"1jnHKeFNqwnS","time":1797823340,"expires":1797866540,"event":
"message","topic":"AlSweigartZPgxBQ42","message":"Hello, world!"}\n
{"id":"wZ22cjyKXw1F","time":1797823712,"expires":1797866912,"event":
"message","topic":"AlSweigartZPgxBQ42","title":"Important: Read this!",
"message":"The rent is too high!","priority":5,"tags":["warning",
"neutral_face"]}\n'

Note that we call the requests.get() function to receive notifications,
unlike the requests.post() function used when sending notifications. Also,
the URL ends in /json?poll=1.

This is retrieving messages through polling, which returns all the mes-
sages for a topic that the server has. There are also streaming methods for
retrieving ntfy messages, but polling has the simplest code. You can also
add a since URL parameter after poll=1 to get the messages by one of the
following criteria:

since=10m Retrieves all messages for the topic in the last 10 minutes.
You can also use s for seconds and h for hours, such as since=2h30m for
all messages in the last two and a half hours.

since=1737866912 Retrieves all messages since the Unix epoch time-
stamp of 1737866912. This kind of timestamp is returned by time.time()
and represents the number of seconds since January 1, 1970. Chapter 19
covers time-related functions.

since=wZ22cjyKXw1F Retrieves all messages after the message that had
the ID of 'wZ22cjyKXw1F'.

490 Chapter 20

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Separate additional URL parameters by an ampersand (&). For exam-
ple, passing the URL https://ntfy .sh /AlSweigartZPgxBQ42 /json ?poll =1&since
=10m retrieves all messages for the AlSweigartZPgxBQ42 topic in the last
10 minutes. To reduce the load on the ntfy server, you should poll only once
a minute or once every few minutes rather than as fast as possible in an
infinite loop. If you need to receive notifications immediately, consult the
online documentation to read about subscribing to notification streams.

The text of this HTTP response is not valid JSON, since it contains a
JSON object on each line of text, rather than one JSON object, so we use
the splitlines() string method before parsing them individually with the
json module (as covered in Chapter 18). Continue the previous interactive
shell example:

>>> import json
>>> notifications = []
>>> for json_text in resp.text.splitlines():
... notifications.append(json.loads(json_text))
...
>>> notifications[0]['message']
'Hello, world!'
>>> notifications[1]['message']
'The rent is too high!'

The json.loads() function converts the JSON text from ntfy into a
Python dictionary. Let’s look at each of the key value pairs:

"id":"wZ22cjyKXw1F" The 'id' key’s value is a unique identification string
that can help differentiate multiple notifications even if they have the
same text.

"time":1797823712 The 'time' key’s value is a Unix epoch timestamp
of when the notification was created. Calling str(datetime.datetime
.fromtimestamp(1797823712)) returns the human-readable string '2026
-12-20 21:28:32'.

"expires":1797866912 The 'expires' key’s value is a Unix epoch time-
stamp of when the notification will be deleted from the ntfy server.

"event":"message" The 'event' key’s value can be either 'message', 'open',
'keepalive', or 'poll_request'. These event types are explained in the
online documentation, but for now, you’re probably only interested in
'message' events.

"topic":"AlSweigartZPgxBQ42" The topic part of the URL is repeated in
the 'topic' key’s value.

"title":"Important: Read this!" If the notification has a title, there will
be a 'title' key with it as a string value.

"message":"The rent is too high!" The 'message' key’s value is a string of
the notification’s text.

"priority":5 If the notification has a priority, there will be a 'priority'
key with an integer value from 1 to 5.

Sending Email, Texts, and Push Notifications 491

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

"tags":["warning","neutral_face"] @RunInPara:If the notification has
tags, there will be a 'tags' key with it as a list of string values. These
string values may be the names of emoji characters to display.

By reading the values in this dictionary, your Python programs can use
the Requests library to receive notifications made by users or other Python
scripts. The ntfy service is one of the easiest ways to make programs that
can communicate with each other over the internet (though keep in mind
the limit of 250 messages per day for free users).

Summary
We communicate with each other over the internet and cell phone networks
in dozens of different ways, but email and texting predominate. Your pro-
grams can communicate through these channels, which gives them power-
ful new notification features.

As a security and spam precaution, some popular email services like
Gmail don’t allow you to use the standard SMTP and IMAP protocols to
access their services. The EZGmail package acts as a convenient wrapper
for the Gmail API, letting your Python scripts access your Gmail account. I
highly recommend that you set up a separate Gmail account for your scripts
to use so that potential bugs in your program don’t cause problems for your
personal Gmail account.

Texting is a bit different from email, since, unlike with email, you’ll need
more than just an internet connection to send SMS texts. You can use SMS
email gateways to send texts from an email account, though this requires you
to know the phone user’s telecom carrier and is not a reliable way to send
messages. If you’re only sending short messages to yourself, you can use the
push notification system at https://ntfy .sh, then install the ntfy app on your
phone to have your Python scripts send messages to topic subscribers.

With these modules in your skill set, you’ll be able to program the spe-
cific conditions under which your programs should send notifications or
reminders. Now your programs will have a reach that’s far beyond the com-
puter they’re running on!

Practice Questions
 1. When using the Gmail API, what are the credentials and token files?

 2. In the Gmail API, what’s the difference between “thread” and “mes-
sage” objects?

 3. Using ezgmail.search(), how can you find emails that have file
attachments?

 4. What are some of the disadvantages of using an SMS email gateway
to send text messages?

 5. What Python library can send and receive notifications to ntfy?

https://ntfy.sh

492 Chapter 20

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Practice Programs
For practice, write programs to do the following tasks.

Umbrella Reminder
Chapter 13 showed you how to use the requests module to scrape data from
https://weather .gov. Write a program that runs just before you wake up in the
morning and checks whether rain is in the forecast for that day. If so, have the
program text you a reminder to pack an umbrella before leaving the house.

Auto Unsubscriber
Write a program that scans your email account, finds all the unsubscribe
links in all your emails, and automatically opens them in a browser. This
program will have to log in to your Gmail account. You can use Beautiful
Soup (covered in Chapter 13) to check for any instance where the word
unsubscribe occurs within an HTML link tag. Once you have a list of these
URLs, you can use webbrowser.open() to automatically open all of these links
in a browser.

You’ll still have to manually go through and complete any additional
steps to unsubscribe yourself from these lists. In most cases, this involves
clicking a link to confirm. But this script saves you from having to go
through all of your emails looking for unsubscribe links.

Email-Based Computer Control
Write a program that checks an email or ntfy account every 15 minutes for
any instructions you send it and executes those instructions automatically.
For example, BitTorrent is a peer-to-peer downloading system. Using free
BitTorrent software such as qBittorrent, you can download large media files
on your home computer. If you send the program a (completely legal, not
at all piratical) BitTorrent link, the program will eventually check its email
or look for ntfy notifications, find this message, extract the link, and then
launch qBittorrent to start downloading the file. This way, you can have your
home computer begin downloads while you’re away, and finish the (com-
pletely legal, not at all piratical) download by the time you return home.

Chapter 19 covered how to launch programs on your computer using
the subprocess.Popen() function. For example, the following call would
launch the qBittorrent program, along with a torrent file:

qbProcess = subprocess.Popen(['C:\\Program Files (x86)\\qBittorrent\\
qbittorrent.exe', 'shakespeare_complete_works.torrent'])

Of course, you’ll want the program to make sure the emails come from
you. In particular, you might want to require that the emails contain a pass-
word, since it is fairly trivial for hackers to fake a “from” address in emails.
The program should delete the emails it finds so that it doesn’t repeat
instructions every time it checks the email account. As an extra feature,

https://weather.gov

Sending Email, Texts, and Push Notifications 493

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

have the program email or text you a confirmation every time it executes
a command. Since you won’t be sitting in front of the computer that is
running the program, it’s a good idea to use the logging functions (see
Chapter 5) to write a text file log that you can check if errors come up.

The qBittorrent program (as well as other BitTorrent applications) has
a feature that enables it to quit automatically after the download completes.
Chapter 19 explained how you can determine when a launched application
has quit with the wait() method for Popen objects. The wait() method call
will block until qBittorrent has stopped, and then your program can email
or text you a notification that the download has completed.

There are plenty of possible features you could add to this project. If
you get stuck, you can download an example implementation of this pro-
gram from https://nostarch .com/automate-boring-stuff-python-3rd-edition.

https://nostarch.com/automate-boring-stuff-python-3rd-edition

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you own a digital camera or upload photos
from your phone to a social media site, you

probably cross paths with digital image files all
the time. You may know how to use basic graphics

software such as Microsoft Paint or Paintbrush, or even
more advanced applications such as Adobe Photoshop.
But if you need to edit a massive number of images,
altering them by hand can be a lengthy, boring job.

Enter Pillow, a third-party Python package for interacting with image
files. This package has several functions that make cropping, resizing, and
editing the content of an image easy. This chapter covers the use of Pillow
to enable Python to automatically edit hundreds or thousands of images
with ease.

This chapter also covers Matplotlib, a popular library for making
professional-looking graphs. Matplotlib is rich in features and customizable
options, and there are many books entirely dedicated to it. Here, we’ll cover
the basics of generating graph images with Matplotlib.

21
M A K I N G G R A P H S A N D

M A N I P U L A T I N G I M A G E S

496 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Computer Image Fundamentals
To manipulate an image, you must understand how to work with colors and
coordinates in Pillow. You can install the latest version of Pillow by follow-
ing the instructions in Appendix A.

Colors and RGBA Values
Computer programs often represent a color in an image as an RGBA value,
a group of numbers that specify the amount of red, green, blue, and alpha
(or transparency) to include. Each of these component values is an integer
ranging from 0 (none at all) to 255 (the maximum). These RGBA values
belong to individual pixels, the smallest dot of a single color the computer
screen can show. A pixel’s RGB setting tells it precisely what shade of color
it should display. If an image on the screen is superimposed over a back-
ground image or desktop wallpaper, the alpha value determines how much
of the background you can “see through” the image’s pixel.

Pillow represents RGBA values using a tuple of four integer values. For
example, it represents the color red with (255, 0, 0, 255). This color has the
maximum amount of red, no green or blue, and the maximum alpha value,
meaning it’s fully opaque. Pillow represents green with (0, 255, 0, 255) and
blue with (0, 0, 255, 255). White, the combination of all colors, is (255, 255,
255, 255), while black, which has no color at all, is (0, 0, 0, 255).

If a color has an alpha value of 0, it is invisible, and it doesn’t really mat-
ter what the RGB values are. After all, invisible red looks the same as invis-
ible black.

Pillow uses the same standard color names as HTML. Table 21-1 lists a
selection of standard color names and their values.

Table 21-1: Standard Color Names and Their RGBA Values

Name RGBA value Name RGBA value

White (255, 255, 255, 255) Red (255, 0, 0, 255)

Green (0, 255, 0, 255) Blue (0, 0, 255, 255)

Gray (128, 128, 128, 255) Yellow (255, 255, 0, 255)

Black (0, 0, 0, 255) Purple (128, 0, 128, 255)

Pillow offers the ImageColor.getcolor() function so that you don’t have to
memorize RGBA values for the colors you want to use. This function takes
a color name string as its first argument and the string 'RGBA' as its second
argument, and it returns an RGBA tuple. To see how this function works,
enter the following into the interactive shell:

1 >>> from PIL import ImageColor
2 >>> ImageColor.getcolor('red', 'RGBA')
(255, 0, 0, 255)
3 >>> ImageColor.getcolor('RED', 'RGBA')
(255, 0, 0, 255)

Making Graphs and Manipulating Images 497

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> ImageColor.getcolor('Black', 'RGBA')
(0, 0, 0, 255)
>>> ImageColor.getcolor('chocolate', 'RGBA')
(210, 105, 30, 255)
>>> ImageColor.getcolor('CornflowerBlue', 'RGBA')
(100, 149, 237, 255)

First, import the ImageColor module from PIL (not from Pillow, due to
naming history beyond the scope of this book) 1. The color name string
you pass to ImageColor.getcolor() is case-insensitive, so 'red' 2 and 'RED' 3
give you the same RGBA tuple. You can also pass more unusual color
names, like 'chocolate' and 'CornflowerBlue'.

Pillow supports a huge number of color names, from 'aliceblue' to
'yellowgreen'. Enter the following into the interactive shell to view the color
names:

>>> from PIL import ImageColor
>>> list(ImageColor .colormap)
['aliceblue', 'antiquewhite', 'aqua', ... 'yellow', 'yellowgreen']

You can find the full list of more than 100 standard color names in the
keys of the ImageColor .colormap dictionary.

Coordinates and Box Tuples
Image pixels are addressed with x- and y-coordinates, which respectively
specify a pixel’s horizontal and vertical locations in an image. The origin is
the pixel at the top-left corner of the image and is specified with the nota-
tion (0, 0). The first zero represents the x-coordinate, which starts at zero
at the origin and increases from left to right. The second zero represents
the y-coordinate, which starts at zero at the origin and increases down the
image. This bears repeating: y-coordinates increase going downward, which
is the opposite of how you may remember y-coordinates being used in math
class. Figure 21-1 demonstrates how this coordinate system works.

x increases

y
in

cr
ea

se
s

(0,0)

(27,26)

Figure 21-1: The x- and y-coordinates
of a 28 × 27 image of some sort of
ancient data storage device

498 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Many of Pillow’s functions and methods take a box tuple argument. This
means Pillow is expecting a tuple of four integer coordinates that represent
a rectangular region in an image. The four integers are, in order, as follows:

Left The x-coordinate of the leftmost edge of the box.

Top The y-coordinate of the top edge of the box.

Right The x-coordinate of one pixel to the right of the rightmost edge
of the box. This integer must be greater than the left integer.

Bottom The y-coordinate of one pixel lower than the bottom edge of
the box. This integer must be greater than the top integer.

Note that the box includes the left and top coordinates and goes up to
but does not include the right and bottom coordinates. For example, the box
tuple (3, 1, 9, 6) represents all the pixels in the black box in Figure 21-2.

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

Figure 21-2: The area represented
by the box tuple (3, 1, 9, 6)

Now that you know how colors and coordinates work in Pillow, let’s use
Pillow to manipulate an image.

Manipulating Images with Pillow
To practice working with Pillow, we’ll use the zophie.png image file shown in
Figure 21-3. You can download it from the book’s online resources at https://
nostarch .com /automate -boring -stuff -python -3rd -edition. Save the file in your cur-
rent working directory, and then load the image into Python, like so:

>>> from PIL import Image
>>> cat_im = Image.open('zophie.png')
>>> cat_im.show()

Import the Image module from Pillow and call Image.open(), passing it
the image’s filename. You can then store the loaded image in a variable like
cat_im. Pillow Image objects have a show() method that opens the image in a

https://nostarch.com/automate-boring-stuff-python-3rd-edition
https://nostarch.com/automate-boring-stuff-python-3rd-edition

Making Graphs and Manipulating Images 499

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

window. This is useful when you’re debugging your programs and need to
identify the image in an Image object.

Figure 21-3: My cat, Zophie

If the image file isn’t in the current working directory, change the
working directory to the folder that contains the image file by calling the
os.chdir() function:

>>> import os
>>> os.chdir('C:\\folder_with_image_file')

The Image.open() function returns a value of the Image object data type,
which Pillow uses to represent an image as a Python value. You can load
an Image object from an image file of any format by passing the Image.open()
function a string of the filename. You can save any changes you make to the
Image object to an image file (also of any format) with the save() method. All
the rotations, resizing, cropping, drawing, and other image manipulations
will occur through method calls on this Image object.

To shorten the examples in this chapter, I’ll assume you’ve imported
Pillow’s Image module and stored the Zophie image in a variable named
cat_im. Be sure that the zophie.png file is in the current working directory so
that the Image.open() function can find it. Otherwise, you’ll have to specify
the full absolute path in the function’s string argument.

Working with the Image Data Type
An Image object has several useful attributes that give you basic information
about the image file from which it was loaded: its width and height, the

500 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

filename, and the graphics format (such as JPEG, WebP, GIF, or PNG). For
example, enter the following into the interactive shell:

>>> from PIL import Image
>>> cat_im = Image.open('zophie.png')
>>> cat_im.size
1 (816, 1088)
2 >>> width, height = cat_im.size
3 >>> width
816
4 >>> height
1088
>>> cat_im.filename
'zophie.png'
>>> cat_im.format
'PNG'
>>> cat_im.format_description
'Portable network graphics'
5 >>> cat_im.save('zophie.jpg')

After you’ve created an Image object from zophie.png and stored the Image
object in cat_im, the object’s size attribute contains a tuple of the image’s
width and height in pixels 1. You can assign the values in the tuple to width
and height variables 2 in order to access the width 3 and height 4 indi-
vidually. The filename attribute describes the original file’s name. The format
and format_description attributes are strings that describe the image format
of the original file (with format_description being a bit more verbose).

Finally, calling the save() method and passing it 'zophie.jpg' saves a new
image with the filename zophie.jpg to your hard drive 5. Pillow sees that
the file extension is .jpg and automatically saves the image using the JPEG
image format. Now you should have two images, zophie.png and zophie.jpg, on
your hard drive. While these files are based on the same image, they are not
identical, because of their different formats.

Pillow also provides the Image.new() function, which returns an Image
object—much like Image.open(), except the image represented by Image.new()’s
object will be blank. The arguments to Image.new() are as follows:

• The string 'RGBA', which sets the color mode to RGBA. (There are other
modes that this book doesn’t go into.)

• The size as a two-integer tuple of the new image’s width and height.

• The background color that the image should start with, as a four-
integer tuple of an RGBA value. You can use the return value of the
ImageColor.getcolor() function for this argument. Alternatively, you can
pass the standard color name as a string.

For example, enter the following into the interactive shell:

>>> from PIL import Image
1 >>> im = Image.new('RGBA', (100, 200), 'purple')
>>> im.save('purpleImage.png')

Making Graphs and Manipulating Images 501

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

2 >>> im2 = Image.new('RGBA', (20, 20))
>>> im2.save('transparentImage.png')

Here, we create an Image object for an image that’s 100 pixels wide and
200 pixels tall, with a purple background 1. We then save this image to
the file purpleImage.png. We call Image.new() again to create another Image
object, this time passing (20, 20) for the dimensions and nothing for the
background color 2. Invisible black, (0, 0, 0, 0), is the default color used if
no color argument is specified, so the second image has a transparent back-
ground. We save this 20 × 20 transparent square in transparentImage.png.

Cropping Images
Cropping an image means selecting a rectangular region inside an image
and removing everything outside the rectangle. The crop() method of
Image objects takes a box tuple and returns an Image object representing the
cropped image. The cropping doesn’t happen in place—that is, the original
Image object is left untouched, and the crop() method returns a new one.
Remember that a box tuple (in this case, the cropped section) includes
the left column and top row of pixels but not the right column and bottom
row of pixels.

Enter the following into the interactive shell:

>>> from PIL import Image
>>> cat_im = Image.open('zophie.png')
>>> cropped_im = cat_im.crop((335, 345, 565, 560))
>>> cropped_im.save('cropped.png')

This code makes a new Image object for the cropped image, stores the
object in cropped_im, and then calls save() on cropped_im to save the cropped
image in cropped.png, shown in Figure 21-4.

502 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 21-4: The new image is the cropped section
of the original image.

Cropping creates the new file from the original.

Pasting Images onto Other Images
The copy() method will return a new Image object containing the same
image as the Image object on which it was called. This is useful if you need
to make changes to an image but also want to keep an untouched version of
the original. For example, enter the following into the interactive shell:

>>> from PIL import Image
>>> cat_im = Image.open('zophie.png')
>>> cat_copy_im = cat _im .copy()

The cat_im and cat_copy_im variables contain two separate Image objects,
which both have the same image on them. Now that you have an Image
object stored in cat_copy_im, you can modify cat_copy_im as you like and save
it to a new filename, leaving cat_im untouched.

When called on an Image object, the paste() method pastes another
image on top of it. Let’s continue the shell example by pasting a smaller
image onto cat_copy_im:

>>> face_im = cat_im.crop((335, 345, 565, 560))
>>> face_im.size
(230, 215)
>>> cat_copy_im.paste(face_im, (0, 0))
>>> cat_copy_im.paste(face_im, (400, 500))
>>> cat_copy_im.save('pasted.png')

Making Graphs and Manipulating Images 503

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

First, we pass crop() a box tuple for the rectangular area in zophie.
png that contains Zophie’s face. This method call creates an Image object
representing a 230 × 215 crop, which we store in face_im. Now we can paste
face_im onto cat_copy_im. The paste() method takes two arguments: a source
Image object and a tuple of the x- and y-coordinates where we want to paste
the top-left corner of the source Image object onto the main Image object.
Here, we call paste() twice on cat_copy_im, pasting two copies of face_im onto
cat_copy_im. Finally, we save the modified cat_copy_im to pasted.png, shown
in Figure 21-5.

N O T E Despite their names, the copy() and paste() methods in Pillow don’t use your com-
puter’s clipboard.

The paste() method modifies its Image object in place; it doesn’t return
an Image object with the pasted image. If you want to call paste() but also
keep an untouched version of the original image around, you’ll need to
first copy the image and then call paste() on that copy.

Figure 21-5: Zophie the cat, with her
face pasted twice

Say you want to tile Zophie’s head across the entire image, as in
Figure 21-6.

504 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 21-6: Nested for loops used with paste() can duplicate the cat’s face (creating a
dupli-cat, if you will).

You can achieve this effect with a couple of for loops. Continue the
interactive shell example by entering the following:

>>> cat_im_width, cat_im_height = cat_im.size
>>> face_im_width, face_im_height = face_im.size
1 >>> cat_copy_im = cat _im .copy()
2 >>> for left in range(0, cat_im_width, face_im_width):
... 3 for top in range(0, cat_im_height, face_im_height):

Making Graphs and Manipulating Images 505

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

... print(left, top)

... cat_copy_im.paste(face_im, (left, top))

...
0 0
0 215
0 430
0 645
0 860
0 1075
230 0
230 215
--snip--
690 860
690 1075
>>> cat_copy_im.save('tiled.png')

We store the original image’s width and height in cat_im_width and cat_im
_height. Next, we make a copy of the image and store it in cat_copy_im 1. Now
we can loop, pasting face_im onto the copy. The outer for loop’s left variable
starts at 0 and increases by face_im_width 2. The inner for loop’s top vari-
able starts at 0 and increases by face_im_height 3. These nested for loops pro-
duce values for left and top that paste a grid of face_im images over the Image
object, as in Figure 21-6. To see the nested loops at work, we print left and
top. After the pasting is complete, we save the modified cat_copy_im to tiled.png.

If you’re pasting an image with transparency, you’ll need to pass the
image as the optional third argument, which tells Pillow what parts of the
original image to paste. Otherwise, transparent pixels in the original image
will appear as white pixels in the pasted-on image. We’ll explore this prac-
tice in more detail in “Project 16: Add a Logo” on page XX.

Resizing Images
When called on an Image object, the resize() method returns a new Image
object of the specified width and height. It accepts a two-integer tuple argu-
ment representing the new dimensions. Enter the following into the inter-
active shell:

>>> from PIL import Image
>>> cat_im = Image.open('zophie.png')
1 >>> width, height = cat_im.size
2 >>> quarter_sized_im = cat_im.resize((int(width / 2), int(height / 2)))
>>> quarter_sized_im.save('quartersized.png')
3 >>> svelte_im = cat_im.resize((width, height + 300))
>>> svelte_im.save('svelte.png')

We assign the two values in the cat_im.size tuple to the variables width and
height 1. Using these variables instead of cat_im.size[0] and cat_im.size[1]
makes the rest of the code more readable.

The first resize() call passes int(width / 2) for the new width and
int(height / 2) for the new height 2, so the Image object returned from
resize() will be half the width and height of the original image, or one-
quarter of the original image size overall. The resize() method accepts only

506 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

integers in its tuple argument, which is why you needed to wrap both divi-
sions by 2 in an int() call.

This resizing keeps the same proportions as the original image, but the
new width and height values don’t have to conserve those proportions. The
svelte_im variable contains an Image object that has the original width but a
height that is 300 pixels taller 3, giving Zophie a more slender look.

Note that the resize() method doesn’t edit the Image object in place but
instead returns a new Image object.

Rotating and Flipping Images
To rotate images, use the rotate() method, which returns a new Image object
and leaves the original unchanged. The method accepts a single integer
or float representing the number of degrees by which to rotate the image
counterclockwise. Enter the following into the interactive shell:

>>> from PIL import Image
>>> cat_im = Image.open('zophie.png')
>>> cat_im.rotate(90).save('rotated90.png')
>>> cat_im.rotate(180).save('rotated180.png')
>>> cat_im.rotate(270).save('rotated270.png')

Note that you can chain method calls by calling save() directly on the
Image object returned from rotate(). The first rotate() and save() chain
rotates the image counterclockwise by 90 degrees and saves it to rotated90
.png. The second and third calls do the same, except they rotate the image by
180 degrees and 270 degrees, respectively. The results look like Figure 21-7.

Figure 21-7: The original image (left) and the image rotated counterclockwise by 90, 180,
and 270 degrees

The rotated images will have the same height and width as the original
image. On Windows, a black background will fill in any gaps made by the
rotation, as in Figure 21-8. On macOS and Linux, transparent pixels will fill
in the gaps instead.

The rotate() method has an optional expand keyword argument that can
be set to True to enlarge the dimensions of the image to fit the entire rotated
new image. For example, enter the following into the interactive shell:

>>> cat_im.rotate(6).save('rotated6.png')
>>> cat_im.rotate(6, expand=True).save('rotated6_expanded.png')

Making Graphs and Manipulating Images 507

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The first call rotates the image by six degrees and saves it to rotated6.png.
(See the image on the left of Figure 21-8.) The second call rotates the
image by six degrees, sets expand to True, and saves the image to rotated6
_expanded.png. (See the image on the right of Figure 21-8.)

Figure 21-8: The image rotated by six degrees normally (left) and with expand=True (right)

If you rotate the image by 90, 180, or 270 degrees with expand=True, the
rotated image won’t have a black or transparent background.

You can also mirror-flip an image, as in Figure 21-9, with the transpose()
method.

Figure 21-9: The original image (left), the image with a horizontal flip (center), and the
image with a vertical flip (right)

508 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Enter the following into the interactive shell:

>>> cat_im.transpose(Image.FLIP_LEFT_RIGHT).save('horizontal_flip.png')
>>> cat_im.transpose(Image.FLIP_TOP_BOTTOM).save('vertical_flip.png')

Like rotate(), transpose() creates a new Image object. We pass Image.FLIP
_LEFT_RIGHT to flip the image horizontally and then save the result to horizon-
tal_flip.png. To flip the image vertically, we pass Image.FLIP_TOP_BOTTOM and
save the result to vertical_flip.png.

Changing Individual Pixels
The getpixel() method can retrieve the color of an individual pixel, and
putpixel() can additionally alter that color. Both methods accept a tuple rep-
resenting the pixel’s x- and y-coordinates. The putpixel() method takes an
additional argument for the pixel’s new color, either as a four-integer RGBA
tuple or as a three-integer RGB tuple. Enter the following into the interac-
tive shell:

>>> from PIL import Image
1 >>> im = Image.new('RGBA', (100, 100))
2 >>> im.getpixel((0, 0))
(0, 0, 0, 0)
3 >>> for x in range(100):
... for y in range(50):
... 4 im.putpixel((x, y), (210, 210, 210))
...
>>> from PIL import ImageColor
5 >>> for x in range(100):
... for y in range(50, 100):
... 6 im.putpixel((x, y), ImageColor.getcolor('darkgray', 'RGBA'))
...
>>> im.getpixel((0, 0))
(210, 210, 210, 255)
>>> im.getpixel((0, 50))
(169, 169, 169, 255)
>>> im.save('putPixel.png')

We make a new image that is a 100 × 100 transparent square 1. Calling
getpixel() on coordinates in this image returns (0, 0, 0, 0) because the
image is transparent 2. To color its pixels, we use nested for loops to cycle
through the pixels in the top half of the image 3, passing putpixel() an
RGB tuple representing a light gray 4.

Say we want to color the bottom half of the image dark gray but don’t
know the RGB tuple for dark gray. The putpixel() method doesn’t accept a
standard color name like 'darkgray', so we use ImageColor.getcolor() to get a
corresponding color tuple 6. We loop through the pixels in the bottom half
of the image 5 and pass putpixel() the return value of this call, producing an
image that is half light gray and half dark gray, as shown in Figure 21-10. We
call getpixel() on any of the coordinates to confirm that the color of a given
pixel is what we expect. Finally, we save the image to putPixel.png.

Making Graphs and Manipulating Images 509

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 21-10: The putPixel .png
image

Of course, drawing one pixel of an image at a time isn’t very conve-
nient. If you need to draw shapes, use the ImageDraw functions explained in
“Drawing on Images” on page XX.

Project 16: Add a Logo
Say you have the boring job of resizing thousands of images and adding a
small logo watermark to the corner of each. Doing this with a basic graph-
ics program such as Paintbrush or Paint would take forever. A fancier
graphics application such as Photoshop can do batch processing, but that
software costs hundreds of dollars. Let’s write a script to do it instead.

Imagine that Figure 21-11 is the logo you want to add to the bottom-
right corner of each image: a black cat icon with a white border and trans-
parent background. You can use your own logo image or download the one
included in this book’s online resources.

Figure 21-11: The logo to add to the image

At a high level, here’s what the program should do:

• Load the logo image.

• Loop over all .png and.jpg files in the working directory.

• Check whether the image is wider and taller than 300 pixels.

510 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

• If so, reduce the width or height (whichever is larger) to 300 pixels and
scale down the other dimension proportionally.

• Paste the logo image into the corner.

• Save the altered images to another folder.

This means the code will need to do the following:

• Open the catlogo.png file as an Image object.

• Loop over the strings returned from os.listdir('.').

• Get the width and height of the image from the size attribute.

• Calculate the new width and height of the resized image.

• Call the resize() method to resize the image.

• Call the paste() method to paste the logo in the bottom-right corner.

• Call the save() method to save the changes, using the original filename.

Step 1: Open the Logo Image
Open a new file editor tab, enter the following code, and save it as resizeAnd
AddLogo.py:

Resizes images to fit in a 300x300 square with a logo in the corner
import os
from PIL import Image

1 SQUARE_FIT_SIZE = 300
2 LOGO_FILENAME = 'catlogo.png'

3 logo_im = Image.open(LOGO_FILENAME)
4 logo_width, logo_height = logo_im.size

TODO: Loop over all files in the working directory.

TODO: Check if the image needs to be resized.

TODO: Calculate the new width and height to resize to.

TODO: Resize the image.

TODO: Add the logo.

TODO: Save changes.

By setting up the SQUARE_FIT_SIZE 1 and LOGO_FILENAME 2 constants at the
start of the program, we’ve made it easy to change the program later. Say
the logo that you’re adding isn’t the cat icon, or say you’re reducing the out-
put images’ largest dimension to something other than 300 pixels. You can
straightforwardly open the code and change those values once. You could
also set the values of these constants by accepting command line argu-
ments. Without these constants, you’d instead have to search the code for
all instances of 300 and 'catlogo.png' and replace them with the new values.

Making Graphs and Manipulating Images 511

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The Image.open() method returns the logo Image object 3. For readabil-
ity, we assign the logo’s width and height to variables 4. The rest of the pro-
gram is a skeleton of TODO comments.

Step 2: Loop Over All Files
Now you need to find every .png file and .jpg file in the current working
directory. You don’t want to add the logo image to the logo image itself,
so the program should skip any image with a filename that is the same as
LOGO_FILENAME. Add the following to your code:

Resizes images to fit in a 300x300 square with a logo in the corner
import os
from PIL import Image

--snip--

os.makedirs('withLogo', exist_ok=True)
Loop over all files in the working directory.
1 for filename in os.listdir('.'):
 2 if not (filename.endswith('.png') or filename.endswith('.jpg')) \
 or filename == LOGO_FILENAME:
 3 continue # Skip non-image files and the logo file itself.

 4 im = Image.open(filename)
 width, height = im.size

--snip--

First, the os.makedirs() call creates a withLogo folder in which to store
the modified images, rather than overwriting the original image files. The
exist_ok=True keyword argument will keep os.makedirs() from raising an
exception if withLogo already exists. While the code loops through all the
files in the working directory 1, a long if statement checks for filenames
that don’t end with .png or .jpg 2. If it finds any—or if the file is the logo
image itself—the loop should skip it and use continue to go to the next file 3.
If filename does end with '.png' or '.jpg' and isn’t the logo file, the code
opens it as an Image object 4 and saves its width and height.

Step 3: Resize the Images
The program should resize the image only if the width or height is larger
than SQUARE_FIT_SIZE (300 pixels, in this case), so you should put the resizing
code inside an if statement that checks the width and height variables. Add
the following code to your program:

Resizes images to fit in a 300x300 square with a logo in the corner
import os
from PIL import Image

--snip--

512 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 # Check if the image needs to be resized.
 if width > SQUARE_FIT_SIZE and height > SQUARE_FIT_SIZE:
 # Calculate the new width and height to resize to.
 if width > height:
 1 height = int((SQUARE_FIT_SIZE / width) * height)
 width = SQUARE_FIT_SIZE
 else:
 2 width = int((SQUARE_FIT_SIZE / height) * width)
 height = SQUARE_FIT_SIZE

 # Resize the image.
 print(f'Resizing {filename}...')
 3 im = im.resize((width, height))

--snip--

If the image needs resizing, you must find out whether it’s a wide or tall
image. If width is greater than height, the code should reduce the height by
the same proportion as the width 1. This proportion is the SQUARE_FIT_SIZE
value divided by the current width, so the code sets the new height value to
this proportion multiplied by the current height value. Because the division
operator returns a float value, and resize() requires the dimensions to be
integers, you must remember to convert the result to an integer with the int()
function. Finally, the code will set the new width value to SQUARE_FIT_SIZE.

If the height is greater than or equal to the width, the else clause per-
forms the same calculation, but swaps the height and width variables 2.
Once those variables contain the new image dimensions, the code passes
them to the resize() method and stores the returned Image object 3.

Step 4: Add the Logo and Save the Changes
Whether or not you resized the image, you should paste the logo to its
bottom-right corner. Where exactly to insert the logo depends on the size
of both the image and the logo. Figure 21-12 shows how to calculate the
pasting position. The left coordinate at which to paste the logo is the image
width minus the logo width, and the top coordinate at which to paste the
logo is the image height minus the logo height.

Image
Logo width

Lo
go

 h
ei

gh
t

Logo

Image width

Im
ag

e
he

ig
ht

Figure 21-12: The left and top coordinates
of the logo are the image width/height
minus the logo width/height.

Making Graphs and Manipulating Images 513

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

After your code pastes the logo into the image, it should save the modi-
fied Image object. Add the following to your program:

Resizes images to fit in a 300x300 square with a logo in the corner
import os
from PIL import Image

--snip--

 # Check if the image needs to be resized.
 --snip--

 # Add the logo.
 1 print(f'Adding logo to {filename}...')
 2 im.paste(logo_im, (width – logo_width, height – logo_height), logo_im)

 # Save changes.
 3 im.save(os.path.join('withLogo', filename))

The new code prints a message telling the user that the logo is being
added 1, pastes logo_im onto im at the calculated coordinates 2, and saves
the changes to a filename in the withLogo directory 3. When you run this
program with the zophie.png and other image files in the working directory,
the output will look like this:

Resizing zophie.png...
Adding logo to zophie.png...
Resizing zophie_xmas_tree.png...
Adding logo to zophie_xmas_tree.png...
Resizing me_and_zophie.png...
Adding logo to me_and_zophie.png...

The program converts zophie.png to a 225 × 300-pixel image that looks
like Figure 21-13.

514 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 21-13: The program resized zophie .png and added the logo (left). If you forget the
third argument, the transparent pixels in the logo will appear as solid white pixels (right).

Remember that the paste() method won’t paste the transparency pixels
unless you pass logo_im as the third argument. This program can automati-
cally resize and “logo-ify” hundreds of images in just a couple of minutes.

Ideas for Similar Programs
The ability to build composite images or modify image sizes in a batch
is useful for many applications. You could write similar programs to do
the following:

• Add text or a website URL to images.

• Add timestamps to images.

• Copy or move images into different folders based on their sizes.

• Add a mostly transparent watermark to an image to prevent others
from copying it.

Drawing on Images
If you need to draw lines, rectangles, circles, or other simple shapes on an
image, use Pillow’s ImageDraw module. For example, enter the following into
the interactive shell:

>>> from PIL import Image, ImageDraw
>>> im = Image.new('RGBA', (200, 200), 'white')
>>> draw = ImageDraw.Draw(im)

Making Graphs and Manipulating Images 515

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

First, we import Image and ImageDraw. Then, we create a 200 × 200 white
image and store it in im. We pass this Image object to the ImageDraw.Draw()
function to receive an ImageDraw object. This object has several methods for
drawing shapes and text. Store the new object in a variable like draw so that
you can easily use it in the following example.

Shapes
The following ImageDraw methods draw various kinds of shapes on the
image. The fill and outline parameters for these methods are optional and
will default to white if left unspecified.

Points

The point(xy, fill) method draws individual pixels. The xy argument rep-
resents a list of the points to draw. The list can contain x- and y-coordinate
tuples, such as [(x, y), (x, y), ...], or x- and y-coordinates without tuples,
such as [x1, y1, x2, y2, ...]. The fill argument colors the points and can
be either an RGBA tuple or a string, such as 'red'. The fill argument is
optional. The “point” name here refers to a pixel, not the unit of font size.

Lines

The line(xy, fill, width) method draws a line or series of lines. The xy
argument is either a list of tuples, such as [(x, y), (x, y), ...], or a list of
integers, such as [x1, y1, x2, y2, ...]. Each point is a connecting points
on the lines you’re drawing. The optional fill argument specifies the color
of the lines as an RGBA tuple or color name. The optional width argument
determines the width of the lines, and defaults to 1 if left unspecified.

Rectangles

The rectangle(xy, fill, outline, width) method draws a rectangle. The xy
argument is a box tuple of the form (left, top, right, bottom). The left and
top values specify the x- and y-coordinates of the upper-left corner of the
rectangle, while right and bottom specify the coordinates of the lower-right
corner. The optional fill argument is the color of the inside of the rect-
angle. The optional outline argument is the color of the rectangle’s outline.
The optional width argument represents the width of the lines, and defaults
to 1 if left unspecified.

Ellipses

The ellipse(xy, fill, outline, width) method draws an ellipse. If the width
and height of the ellipse are identical, this method will draw a circle. The
xy argument is a box tuple (left, top, right, bottom) representing a box that
precisely contains the ellipse. The optional fill argument is the color of the
inside of the ellipse, and the optional outline argument is the color of the
ellipse’s outline. The optional width argument is the width of the lines, and
defaults to 1 if left unspecified.

516 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Polygons

The polygon(xy, fill, outline, width) method draws an arbitrary polygon.
The xy argument is a list of tuples, such as [(x, y), (x, y), ...], or integers,
such as [x1, y1, x2, y2, ...], representing the connecting points of the
polygon’s sides. The last pair of coordinates will automatically connect to
the first pair. The optional fill argument is the color of the inside of the
polygon, and the optional outline argument is the color of the polygon’s
outline. The optional width argument is the width of the lines, and defaults
to 1 if left unspecified.

A Drawing Example

To practice using these methods, enter the following into the interactive shell:

>>> from PIL import Image, ImageDraw
>>> im = Image.new('RGBA', (200, 200), 'white')
>>> draw = ImageDraw.Draw(im)
>>> draw.line([(0, 0), (199, 0), (199, 199), (0, 199), (0, 0)], fill='black') 1
>>> draw.rectangle((20, 30, 60, 60), fill='blue') 2
>>> draw.ellipse((120, 30, 160, 60), fill='red') 3
>>> draw.polygon(((57, 87), (79, 62), (94, 85), (120, 90), (103, 113)), fill='brown') 4
>>> for i in range(100, 200, 10): 5
... draw.line([(i, 0), (200, i - 100)], fill='green')

>>> im.save('drawing.png')

After making an Image object for a 200 × 200 white image, passing it to
ImageDraw.Draw() to get an ImageDraw object, and storing the ImageDraw object
in draw, we can call drawing methods on draw. Here, we make a thin, black
outline at the edges of the image 1, a blue rectangle whose top-left corner
is at (20, 30) and whose bottom-right corner is at (60, 60) 2, a red ellipse
defined by a box from (120, 30) to (160, 60) 3, a brown polygon with five
points 4, and a pattern of green lines drawn with a for loop 5. The result-
ing drawing.png file will look like Figure 21-14 (though the colors aren’t
printed in this book).

Making Graphs and Manipulating Images 517

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 21-14: The resulting drawing .png image

You can use several other shape-drawing methods on ImageDraw objects.
The full documentation is available at https://pillow .readthedocs .io /en /latest /
reference /ImageDraw .html.

Text
The ImageDraw object also has a text() method for drawing text onto an
image. This method takes four arguments:

xy A two-integer tuple specifying the upper-left corner of the text box

text The string of text you want to write

fill The color of the text

font An optional ImageFont object used to set the typeface and size of
the text

Because it’s often hard to know in advance the size of a block of text in a
given font, the ImageDraw module offers a textsize() method. Its first argument
is the string to measure, and its second argument is an optional ImageFont
object. The method will return a two-integer tuple representing the width
and height of the text in the given font if written onto the image. You can use
this width and height to help you calculate exactly where you want to put the
text on your image or find out if the text is too large for the image.

Before we use text() to draw text onto an image, let’s discuss the
optional font argument in more detail. This argument is an ImageFont object,
which you can get by running the following:

>>> from PIL import ImageFont

Once you’ve imported Pillow’s ImageFont module, access the font by call-
ing the ImageFont.truetype() function, which takes two arguments. The first
is a string representing the font’s TrueType file, the actual font file that lives
on your hard drive. A TrueType file has the .ttf file extension and usually

https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html

518 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

lives in C:\Windows\Fonts on Windows, /Library/Fonts and /System/Library/
Fonts on macOS, and /usr/share/fonts/truetype on Linux. You don’t need to
enter these paths as part of the TrueType file string, because Pillow knows
to automatically search these directories, but it will display an error if it’s
unable to find the font you specified.

The second argument to ImageFont.truetype() is an integer for the font
size in points (rather than pixels). Pillow creates PNG images that are
72 pixels per inch by default, and a point is 1/72 of an inch. For practice,
enter the following into the interactive shell:

>>> from PIL import Image, ImageDraw, ImageFont
>>> import os
1 >>> im = Image.new('RGBA', (200, 200), 'white')
2 >>> draw = ImageDraw.Draw(im)
3 >>> draw.text((20, 150), 'Hello', fill='purple')
4 >>> arial_font = ImageFont.truetype('arial.ttf', 32)
5 >>> draw.text((100, 150), 'Howdy', fill='gray', font=arial_font)
>>> im.save('text.png')

After importing Image, ImageDraw, ImageFont, and os, we make an Image
object for a new 200 × 200 white image 1 and create an ImageDraw object
from the Image object 2. We use text() to write Hello at (20, 150) in purple 3.
We didn’t pass the optional fourth argument in this call, so the text’s type-
face and size aren’t customized.

Next, to set a typeface and size, we call ImageFont.truetype(), passing it the
.ttf file for the desired font, followed by an integer font size 4. We store the
returned Font object in a variable, then pass the variable to the text() meth-
od’s final keyword argument. The method call draws Howdy at (100, 150) in
gray in 32-point Arial 5. The resulting text.png file looks like Figure 21-15.

Figure 21-15: The resulting text .png image

Making Graphs and Manipulating Images 519

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you’re interested in creating computer-generated art with Python,
check out Learn Python Visually by Tristan Bunn (No Starch Press, 2021) or
my book The Recursive Book of Recursion (No Starch Press, 2022).

Copying and Pasting Images to the Clipboard
Just as the third-party pyperclip module allows you to copy and paste text
strings to the clipboard, the pyperclipimg module can copy and paste Pillow
Image objects. To install pyperclipimg, see the instructions in Appendix A.

The pyperclipimg .copy() function takes a Pillow Image object and puts it
on your operating system’s clipboard. You can then paste it into a graphics
or image processing program such as MS Paint. The pyperclipimg.paste()
function returns the image contents of the clipboard as an Image object.
With zophie.png in the current working directory, enter the following into
the interactive shell:

>>> from PIL import Image
>>> im = Image.open('zophie.png')
>>> import pyperclipimg
>>> pyperclipimg .copy(im)
>>> # Paste the clipboard contents to a graphics program.
>>> # Now copy a new image to the clipboard.
>>> pasted_im = pyperclipimg.paste()
>>> pasted_im.show() # Shows the image from the clipboard.

In this code, we first open the zophie.png image as an Image object, then
pass it to pyperclipimg .copy() to copy it to the clipboard. You can verify that
the copy worked by pasting the image into a graphics program. Next, copy
a new image from a graphics program or by right-clicking an image in your
web browser and copying it. Calling pyperclipimg.paste() returns this image
as an Image object in the pasted_im variable. You can verify that the paste
worked by viewing it with pasted_im.show().

The pyperclipimg module can be useful as a way to let users input and
output image data to your Python programs.

Creating Graphs with Matplotlib
Drawing your own graphs using Pillow is possible but would require a lot
of work. The Matplotlib library creates a wide variety of graphs for use in
professional publications. In this chapter, we’ll create basic line graphs, bar
graphs, scatter plots, and pie charts, but Matplotlib is able to create more
complex 3D graphs as well. You can find the full documentation at https://
matplotlib .org. Install Matplotlib by following the instructions in Appendix A.

Line Graphs and Scatter Plots
Let’s start by creating a 2D line graph with two axes, x and y. A line graph
is ideal for showing changes in one measure over time. In Matplotlib, the

https://matplotlib.org
https://matplotlib.org

520 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

terms plot, graph, and chart are often used interchangeably, and the term
figure refers to the window that contains one or more plots. Enter the follow-
ing into the interactive shell:

>>> import matplotlib.pyplot as plt 1
>>> x_values = [0, 1, 2, 3, 4, 5]
>>> y_values1 = [10, 13, 15, 18, 16, 20]
>>> y_values2 = [9, 11, 18, 16, 17, 19]
>>> plt.plot(x_values, y_values1) 2
[<matplotlib.lines.Line2D object at 0x000002501D9A7D10>]>>> plt.plot(x_values, y_values2)
[<matplotlib.lines.Line2D object at 0x00000250212AC6D0>]
>>> plt.savefig('linegraph.png') # Saves the plot as an image file
>>> plt.show() # Opens a window with the plot
>>> plt.show() # Does nothing

We import matplotlib.pyplot under the name plt 1 to make it easier to
enter its functions. Next, to plot data points to a 2D figure, we must call the
plt.plot() function. We first save a list of integers or floats in x_values for the
x-axis, and then save a list of integers or floats in y_values1 for the y-axis 2.
The first values in the x-axis and y-axis lists are associated with each other,
the second values in the two lists are associated with each other, and so on.
After calling plt.plot() with these values, we call it a second time with
x_values and y_values2 to add a second line to the graph.

Matplotlib will automatically select colors for the lines and an appro-
priate size for the graph. We can save the default graph as a PNG image by
calling plt.savefig('linegraph.png').

Matplotlib has a preview feature that shows you the graph in a window,
much like Pillow has the show() method for previewing Image objects. Call
plt.show() to open the graph in a window. It will look like Figure 21-16.

Figure 21-16: A line graph displayed with plt.show()

Making Graphs and Manipulating Images 521

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The window that plt.show() creates is interactive: you can move the
graph around or zoom in or out. The house icon in the lower-left corner
resets the view, and the floppy disk icon allows you to save the graph as an
image file. If you’re experimenting with data, plt.show() is a convenient visu-
alization tool. The plt.show() function call will block and not return until
the user closes this window.

When you close the window that the plt.show() method creates, you also
reset the graph data. Calling plt.show() a second time either does nothing
or displays an empty window. You’ll have to call plt.plot() and any other
plot-related functions again to re-create the graph. To save an image file of
the graph, you must call plt.savefig() before calling plt.show().

To create a scatter plot of this same data, pass the x-axis and y-axis val-
ues to the plt.scatter() function:

>>> import matplotlib.pyplot as plt
>>> x_values = [0, 1, 2, 3, 4, 5]
>>> y_values1 = [10, 13, 15, 18, 16, 20]
>>> y_values2 = [9, 11, 18, 16, 17, 19]
>>> plt.scatter(x_values, y_values1)
<matplotlib .collections .PathCollection object at 0x00000250212CBAD0>
>>> plt.scatter(x_values, y_values2)
<matplotlib .collections .PathCollection object at 0x000002502132DC10>
>>> plt.savefig('scatterplot.png')
>>> plt.show()

When you call plt.show(), Matplotlib displays the plot in Figure 21-17.
The code to create a scatter plot is identical to the code that creates a line
graph, except for the function call.

Figure 21-17: A scatter plot displayed with plt.show()

522 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you compare this graph to the line graph in Figure 21-16, you’ll see
the data is the same, though the scatter plot uses points instead of con-
nected lines.

Bar Graphs and Pie Charts
Let’s create a basic bar graph using Matplotlib. Bar graphs are useful for
comparing the same type of data in different categories. Unlike a line
graph, the order of the categories isn’t important, though they’re often
listed alphabetically. Enter the following into the interactive shell:

>>> import matplotlib.pyplot as plt
>>> categories = ['Cats', 'Dogs', 'Mice', 'Moose']
>>> values = [100, 200, 300, 400]
>>> plt.bar(categories, values)
<BarContainer object of 4 artists>
>>> plt.savefig('bargraph.png')
>>> plt.show()

This code creates the bar graph shown in Figure 21-18. We pass the
categories to list on the x-axis as the first list argument to plt.bar() and the
values for each category as the second list argument.

Figure 21-18: A bar graph displayed with plt.show()

Remember that closing the plt.show() window resets the graph data.

Making Graphs and Manipulating Images 523

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

To create a pie chart, call the plt.pie() function. Instead of categories
and values, a pie chart has labels and slices. Enter the following into the
interactive shell:

>>> import matplotlib.pyplot as plt
>>> slices = [100, 200, 300, 400] # The size of each slice
>>> labels = ['Cats', 'Dogs', 'Mice', 'Moose'] # The name of each slice
>>> plt.pie(slices, labels=labels, autopct='%.1f%%')
([<matplotlib.patches.Wedge object at 0x00000218F32BA950>,
--snip--
>>> plt.savefig('piechart.png')
>>> plt.show()

When you call plt.show() for the pie chart, Matplotlib displays it in a
window, like in Figure 21-19. The plt.pie() function accepts a list of slice
sizes and a list of labels for each slice.

The autopct argument specifies the precision of the percentage label
for each slice. The argument is a format specifier string; the '%.1f%%' string
specifies that the number should show one digit after the decimal point.
If you leave this keyword argument out of the function call, the pie chart
won’t list the percentage text.

Figure 21-19: A pie chart displayed with plt.show()

Matplotlib automatically picks the colors for each slice, but you can cus-
tomize this behavior, along with many other aspects of the graphs you create.

524 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Additional Components
The graphs we created in the previous section are fairly basic. Matplotlib
has a vast number of additional features that could fill a book of its own, so
we’ll look at the most common components only. Let’s add data point mark-
ers, custom colors, and labels to our graphs. Enter the following into the
interactive shell:

>>> import matplotlib.pyplot as plt
>>> x_values = [0, 1, 2, 3, 4, 5]
>>> y_values1 = [10, 13, 15, 18, 16, 20]
>>> y_values2 = [9, 11, 18, 16, 17, 19]
1 >>> plt.plot(x_values, y_values1, marker='o', color='b', label='Line 1')
[<matplotlib.lines.Line2D object at 0x000001BC339D2F90>]
>>> plt.plot(x_values, y_values2, marker='s', color='r', label='Line 2')
[<matplotlib.lines.Line2D object at 0x000001BC339D1A90>]
2 >>> plt.legend()
<matplotlib.legend.Legend object at 0x000001BC20915B90>
3 >>> plt.xlabel('X-axis Label')
Text(0.5, 0, 'X-axis Label')
>>> plt.ylabel('Y-axis Label')
Text(0, 0.5, 'Y-axis Label')
>>> plt.title('Graph Title')
Text(0.5, 1.0, 'Graph Title')
4 >>> plt.grid(True)
>>> plt.show()

After running this code, Matplotlib displays a window that looks like
Figure 21-20. It contains the same line graph created previously, but we’ve
added marker, color, and label keyword arguments to the plt.plot() function
calls 1. The marker creates a dot for each data point in the line. An 'o'
value makes the dot an O-shaped circle, while 's' makes it a square. The 'b'
and 'r' color arguments set the line to blue and red, respectively. We give
each line a label to use in the legend created by calling plt.legend() 2.

We also create labels for the x-axis, the y-axis, and the entire graph
itself by calling plt.xlabel(), plt.ylabel(), and plt.title() 3, passing the
label text as strings. Finally, passing True to plt.grid() 4 enables a grid with
lines along the x-axis and y-axis values.

Making Graphs and Manipulating Images 525

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 21-20: The example line graph with additional components

This is just a small sample of the features that Matplotlib provides. You
can read about the other features in the online documentation.

Summary
Images consist of a collection of pixels, which each have an RGBA value
for its color and a set of x- and y-coordinates representing its location. Two
common image formats are JPEG and PNG. Pillow can handle both of
these image formats, and others.

When a program loads an image into an Image object, its width and
height dimensions are stored as a two-integer tuple in the size attribute.
Objects of the Image data type also have methods for common image mani-
pulations: crop(), copy(), paste(), resize(), rotate(), and transpose(). To save
the Image object to an image file, call the save() method.

If you want your program to draw shapes onto an image, use ImageDraw
methods to draw points, lines, rectangles, ellipses, and polygons. The mod-
ule also provides methods for drawing text in a typeface and font size of
your choosing.

While the Pillow library lets you draw shapes and individual pixels, it’s
easier to generate graphs using the Matplotlib library. You can create line,
bar, and pie charts using Matplotlib’s default settings, or you can make spe-
cific customizations. The show() method displays the chart on your screen
for previewing, and the save() method generates image files you could
include in documents or spreadsheets. The library’s online documentation
can tell you more about its rich features.

526 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Although advanced (and expensive) applications such as Photoshop
provide automatic batch processing features, you can use Python scripts to
do many of the same modifications for free. In the previous chapters, you
wrote Python programs to deal with plaintext files, spreadsheets, PDFs, and
other formats. With Pillow, you’ve extended your programming powers to
processing images as well!

Practice Questions
 1. What is an RGBA value?

 2. How can you get the RGBA value of 'CornflowerBlue' from the Pillow
module?

 3. What is a box tuple?

 4. What function returns an Image object for, say, an image file named
zophie.png?

 5. How can you find out the width and height of an Image object’s image?

 6. What method would you call to get the Image object for the lower-left
quarter of a 100 × 100 image?

 7. After making changes to an Image object, how could you save it as an
image file?

 8. What module contains Pillow’s shape-drawing code?

 9. Image objects do not have drawing methods. What kind of object does?
How do you get this kind of object?

 10. Which Matplotlib functions create a line graph, scatter plot, bar graph,
and pie chart?

 11. How can you save a Matplotlib graph as an image?

 12. What does the plt.show() function do, and why can’t you call it twice
in a row?

Practice Programs
For practice, write programs to do the following tasks.

Tile Maker
Write a program that produces a tiled image from a single image, much
like tiles of cat faces in Figure 21-6. Your program should have a make_tile()
function with three arguments: a string of the image filename, an integer
for how many times it should be tiled horizontally, and an integer for how
many times it should be tiled vertically. The make_tile() function should
return a larger Image object of the tiled image. You will use the paste() meth-
ods as part of this function.

For example, if zophie_the_cat.jpg was a 20 × 50-pixel image, calling make
_tile('zophie_the_cat.jpg', 6, 10) should return a 120 × 500 image with

Making Graphs and Manipulating Images 527

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

60 tiles total. For a bonus, try randomly flipping or rotating the image to
tile when pasting it to the larger image. This tile maker works best with
smaller images to tile. See what abstract art you can create with this code.

Identifying Photo Folders on the Hard Drive
I have a bad habit of transferring files from my digital camera to temporary
folders somewhere on the hard drive and then forgetting about these fold-
ers. It would be nice to write a program that could scan the entire hard
drive and find these leftover photo folders.

Write a program that goes through every folder on your hard drive and
finds potential photo folders. Of course, first you’ll have to define what you
consider a “photo folder” to be; let’s say that it’s any folder where more than
half of the files are photos. And how do you define what files are photos?
First, a photo file must have the file extension .png or .jpg. Also, photos
are large images; a photo file’s width and height must both be larger than
500 pixels. This is a safe bet, since most digital camera photos are several
thousand pixels in width and height.

As a hint, here’s a rough skeleton of what this program might look like:

Import modules and write comments to describe this program.

for folder_name, subfolders, filenames in os.walk('C:\\'):
 num_photo_files = 0
 num_non_photo_files = 0
 for filename in filenames:
 # Check if the file extension isn't .png or .jpg.
 if TODO:
 num_non_photo_files += 1
 continue # Skip to the next filename.

 # Open image file using Pillow.

 # Check if the width & height are larger than 500.
 if TODO:
 # Image is large enough to be considered a photo.
 num_photo_files += 1
 else:
 # Image is too small to be a photo.
 num_non_photo_files += 1

 # If more than half of files were photos,
 # print the absolute path of the folder.
 if TODO:
 print(TODO)

When the program runs, it should print the absolute path of any photo
folders to the screen.

528 Chapter 21

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Creating Custom Seating Cards
In a practice program in Chapter 17, you created custom invitations from a
list of guests in a plaintext file. As an additional project, use Pillow to create
images that will serve as custom seating cards for your guests. For each of
the guests listed in the guests.txt file from the book’s online resources, gen-
erate an image file with the guest’s name and some flowery decoration. A
public domain flower image is also available in the book’s resources.

To ensure that each seating card is the same size, add a black rectangle to
the edges of the invitation image; that way, when you print the image, you’ll
have a guideline for cutting. The PNG files that Pillow produces are set to
72 pixels per inch, so a 4 × 5-inch card would require a 288 × 360-pixel image.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Text recognition, more formally called optical
character recognition (OCR), is the extraction

of text from an image. Python has a rich col-
lection of string methods and regular expres-

sions for processing text, but these require you to first
input the text as a string. Programs can use OCR to, for
example, recognize the names on street signs and writ-
ing on checks deposited at an ATM, or to scan receipts
to create electronic copies.

Like text-to-speech or speech recognition, OCR involves carrying out
advanced computer science techniques, but Python modules obscure these
details, making it easy to use. This chapter covers PyTesseract, the Python
package that works with the open source Tesseract OCR engine. We’ll
also look at the free NAPS2 application, which Python can run to apply
Tesseract OCR to PDF files.

22
R E C O G N I Z I N G T E X T I N I M A G E S

530 Chapter 22

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Installing Tesseract and PyTesseract
To work with PyTesseract, you must install the free Tesseract OCR engine
software on your Windows, macOS, or Linux computer by following the
instructions in this section. You can also choose to install the language
packs for non-English languages. Afterward, install the PyTesseract package
so that your Python scripts can interact with Tesseract.

Windows
On Windows, open your browser to https://github .com /UB -Mannheim /tesseract/
wiki and follow the page’s instructions to download the latest installer pro-
gram. Then, double-click this installer to install Tesseract.

Tesseract recognizes English text by default. During installation, you
may optionally check the checkboxes for “Additional script data (down-
load)” and “Additional language data (download)” so that Tesseract can
recognize non-English letters and languages, respectively. Installing all
languages adds about 600MB to the install size. These language packs have
filenames identifying the language and a .traineddata extension, such as
jpn.traineddata for Japanese. Alternatively, you can check the checkboxes for
individual languages to save space.

After the installation has finished, add the C:\Program Files\Tesseract-OCR
folder (or whichever folder you installed Tesseract in) to the PATH environ-
ment variable so that PyTesseract can access the tesseract.exe program.
Chapter 12 covered how to modify the PATH environment variable.

macOS
The Homebrew package manager can install Tesseract on macOS. Navigate
to https://docs .brew .sh to install Homebrew. Install Tesseract by opening a
terminal window and running brew install tesseract, then run brew install
tesseract-lang to install non-English language packs.

Linux
To install Tesseract on Linux, open a terminal window and run sudo apt
install tesseract-ocr. You’ll have to enter the administrator password to run
this command.

To install the language packs for every language, run sudo apt-get
install tesseract-ocr-all from the terminal. To install just the language
packs you want, replace all with a three-character ISO 639 language code,
such as fra for French, deu for German, or jpn for Japanese.

PyTesseract
After installing the Tesseract OCR engine, you can install the latest version
of PyTesseract by following the instructions in Appendix A. PyTesseract also
installs the Pillow image library.

https://github.com/UB-Mannheim/tesseract/wiki
https://github.com/UB-Mannheim/tesseract/wiki
http://.traineddata
http://jpn.traineddata
https://docs.brew.sh

Recognizing Text in Images 531

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

OCR Fundamentals
Using PyTesseract and the Pillow image library, you can extract text from
an image in four lines of code. You’ll need to import the PyTesseract and
Pillow libraries, open the image using the Image.open() function, and then
finally pass the opened image to the tess.image_to_string() function.

Let’s walk through a basic example: extracting the text from a screen-
shot of the introduction of my book The Big Book of Small Python Projects (No
Starch Press, 2021). Download the ocr-example.png image from the book’s
online resources at https://nostarch .com /automate -boring -stuff -python -3rd -edition,
then enter the following into the interactive shell to open the image with
Pillow and scan it with Tesseract:

>>> import pytesseract as tess
>>> from PIL import Image
>>> img = Image.open('ocr-example.png')
>>> text = tess.image_to_string(img)
>>> print(text)
This book provides you with practice examples of how programming
concepts are applied, with a collection of over 80 games, simulations, and dig-
ital art programs. These aren't code snippets; they're full, runnable Python
programs. You can copy their code to become familiar with how they work,
experiment with your own changes, and then attempt to re-create them on
your own as practice. After a while, you'll start to get ideas for your own pro-
grams and, more importantly, know how to go about creating them.
--snip--

Converting text from an image file into a string requires sophisticated
algorithms, but Python makes these accessible with four lines of code!

Preprocessing an Image
The text in the image from the previous section extracted almost perfectly
to a Python string. However, OCR has limitations. Unlike computer-
generated images such as screenshots, scanned or photographed paper
can contain flaws, and photographs of real-world scenes are far too com-
plicated to extract text from. You cannot, say, take a photo of the back of a
car and expect Tesseract to extract the license plate number from it. You’d
first need to crop the image around the license plate; even then, it may
be unreadable. For that reason, Tesseract is intended for print documents
rather than photos or handwritten text.

Even in screenshots, always consider OCR text to be imperfect and
in need of correction. In particular, you might encounter issues like the
following:

• The string maintains any end-of-line hyphenation (for example, in
“dig-” and “ital” or “pro-” and “grams”).

• The string doesn’t conserve any font or size information.

• The whitespace in the string may not match the text.

https://nostarch.com/automate-boring-stuff-python-3rd-edition

532 Chapter 22

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

• The string may have incorrectly scanned characters, such as confusing
lowercase j and lowercase i.

• If the image contains tables or multiple columns of text, the string may
mix the text and include it out of order.

Pay special attention to mistakes in numbers, as they can be harder to
spot than misspelled words.

Tesseract takes preprocessing steps to mitigate certain issues, but you
can possibly improve its accuracy by using an image editing program to
perform the following preprocessing steps:

• Don’t scan multicolumn images; put each column of text into a sepa-
rate image.

• Use only typewritten text, not handwritten text.

• Use conventional fonts, not cursive or stylized fonts.

• Rotate the image so that the lines of text are perfectly upright and not
skewed at a slight angle.

• Use dark text on a light background, not white text on a black
background.

• Remove any dark borders at the edges of the image.

• Add a small white border if the text runs up against the edge of
the image.

• Adjust the brightness and contrast of the image so that the text stands
out from the background.

• Remove small bits of “noise” pixels to clean up the image before
scanning.

Some of these steps can be performed automatically with Python using
the OpenCV library. Check out the blog post “Preprocessing Images for
OCR with Python and OpenCV” at https://autbor .com /preprocessingocr for
more examples.

Fixing Mistakes Using Large Language Models
The kinds of mistakes that OCR algorithms tend to make involve spacing
and individual characters. Using a spellcheck algorithm won’t find OCR
errors: it will point out the accurately recognized characters of words mis-
spelled in the original image and miss errors that result in correctly spelled
words. Identifying these kinds of character mistakes requires understand-
ing context and a common sense for what the characters should be.

This is exactly the type of problem that large language model (LLM)
AIs such as ChatGPT, Gemini, and LLaMA can solve. For example, consider
Figure 22-1, a raw scan from Mary Shelley’s novel Frankenstein. This particu-
lar page was printed in 1831, so the paper is wrinkled and yellowed, with
inconsistently inked characters. You can download frankenstein.png from the
book’s online resources.

https://autbor.com/preprocessingocr

Recognizing Text in Images 533

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 22-1: The top part of a scanned page from an 1831 print
of Frankenstein by Mary Shelley

Without any preprocessing, Tesseract identifies the following text:

>>> import pytesseract as tess
>>> from PIL import Image
>>> img = Image.open('frankenstein.png')
>>> text = tess.image_to_string(img)
>>> print(text)
THE MODERN PROMETHEUS. 43

CHAPTER V.

Iv was on a dreary night of November, that I beheld the
accomplishment of my toils. With an anxiety that almost
amounted to agony, I collected the instruments of life
around me, that I might infuse a spark of being into the
lifeless thing that lay at my feet. It was already one in
the morning ; the rain pattered dismally against the panes,
and my candle was nearly burnt out, when, by the glimmer
of the half-extinguished light, I saw the dull yellow eye
of the creature open ; it breathed hard, and a convulsive
Motion agitated its limbs.

It does a pretty good job, but produces the incorrectly scanned char-
acters 'Iv' instead of 'IT' at the beginning of the paragraph and 'Motion'
instead of 'motion' on the last line. (The exact results may vary as the lan-
guage packs are updated.)

To fix these issues, try feeding an LLM the following sample prompt
and the text output of the scanned Frankenstein text:

The following is the text output from an OCR scan. Correct any spacing,
missing characters, or inaccurately recognized characters from it. Do
not correct spelling or grammar mistakes that exist in the original text.
Put paragraphs on a single line and undo the hyphenated words that

534 Chapter 22

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

are broken across the end of a line. Only give the corrected text without
explaining what OCR is or any other preface. Here is the text:

THE MODERN PROMETHEUS. 43
CHAPTER V.
Iv was on a dreary night of November, that I beheld the . . .

When fed this prompt, the LLM produced this output:

THE MODERN PROMETHEUS. 43

CHAPTER V.

It was on a dreary night of November that I beheld the accomplishment of
my toils. With an anxiety that almost amounted to agony, I collected the
instruments of life around me, that I might infuse a spark of being into
the lifeless thing that lay at my feet. It was already one in the morning;
the rain pattered dismally against the panes, and my candle was nearly burnt
out, when, by the glimmer of the half-extinguished light, I saw the dull
yellow eye of the creature open; it breathed hard, and a convulsive motion
agitated its limbs.

The LLM corrected 'Iv' to 'It' and 'Motion' to 'motion'. It also removed
the hyphenated words at the end of each line so that the newlines could be
removed. This makes it easier to, say, copy and paste the text into a Word
document or email. To automate this process, most online LLMs have APIs
so that your programs can directly send prompts and receive responses.
Unless you run an LLM on your local machine (which is beyond the scope
of this book), you’ll have to register for these online LLM services. This may
be free or require a subscription fee.

Always remember that LLMs are prone to overconfidence. You should
always verify their output. The text they return may have missed some mis-
takes, fixed the wrong kinds of mistakes, or even introduced new mistakes
of their own. You’ll still need a human to review the machine output. (And
you may want a second human to review the first human’s work, as humans
often make mistakes to.)

Recognizing Text in Non-English Languages
Tesseract assumes the text it is scanning is English by default, but you can
specify other languages as well. “Installing Tesseract and PyTesseract” on
page XX has instructions for installing non-English language packs. You
can see the language packs you have installed by entering the following into
the interactive shell:

>>> import pytesseract as tess
>>> tess.get_languages()
['afr', 'amh', 'ara', 'asm', 'aze', 'aze_cyrl', 'bel', 'ben', 'bod', 'bos',
--snip--
'ton', 'tur', 'uig', 'ukr', 'urd', 'uzb', 'uzb_cyrl', 'vie', 'yid', 'yor']

Recognizing Text in Images 535

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The strings in this list are mostly three-character ISO 639-3 language
codes, with a few exceptions. For example, while 'aze' is the ISO 639-3 code
for the Azeri language with Latin letters, the 'aze_cyrl' string is Azeri with
Cyrillic letters. Consult the Tesseract documentation for full details.

To scan images with non-English text, pass one of these string values for
the lang keyword argument. For example, frankenstein_jpn.png has a Japanese
translation of a section from Frankenstein. Download this file from the book’s
online resources and enter the following into the interactive shell:

>>> import pytesseract as tess
>>> from PIL import Image
>>> img = Image.open('frankenstein_jpn.png')
>>> text = tess.image_to_string(img, lang='jpn')
>>> print(text)
第 5 剖 私が自分の労苦の成果を目の当たりにしたのは、11 月の芝鬱な夜でした。 ほとんど苦
痛に等しい不安を抱えながら、 私は足元に横たわる生命のないものに存在の輝きを吹き込むこ
--snip--
だ有目、 しわが寄った顔色、 そしてまっすぐな黒い大と、 より恐ろしいコントラストを形成した
だけでした。

If you use the wrong language, image_to_string() returns Tesseract’s
best guess as to what English characters the Japanese characters looked
like. Of course, since the characters aren’t English, the returned text will
be gibberish:

>>> import pytesseract as tess
>>> from PIL import Image
>>> img = Image.open('frankenstein_jpn.png')
>>> text = tess.image_to
_string(img, lang='eng')
>>> print(text)
BS FABADOABOMEE AOYEVICLEDIL, 1 ADBBERKCLE, (ELA ER
WISE LW ABBA A TRA B, ALE TIRE DO EMO REVS DICED MS EKA
--snip--

To recognize text in multiple languages, you can combine language
codes with a '+' character before passing it to the image_to_string() func-
tion’s lang keyword argument. For example, tess.image_to_string(img, lang=
'eng+jpn') recognizes both English and Japanese characters in an image.

The NAPS2 Scanner Application
While PyTesseract is useful for extracting text from images, a common use
case for OCR is to create PDF documents of scanned images with search-
able text. Although there are apps to do this, they often don’t offer the flex-
ibility needed to automate the PDF generation for hundreds or thousands
of images. I recommend the open source Not Another PDF Scanner 2
(NAPS2) application not just for controlling flatbed scanners but also for
its ability to run Tesseract and add text to PDF documents. It is free, has

536 Chapter 22

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

straightforward features, and is available on Windows, macOS, and Linux.
NAPS2 can combine several images into a PDF file with embedded text
without being connected to a physical scanner. It also knows how to use
Tesseract’s advanced features, so it can embed the text strings at their cor-
rect location on the PDF’s pages, and you can run it from a Python script.

Installing and Setting Up NAPS2
To install NAPS2, navigate to https://www .naps2 .com /download and down-
load the installer for your operating system. On Windows and macOS, run
the downloaded installer. On Linux, download the Flatpak installer for
Tesseract. Then, open a Terminal window and run flatpak install naps2-
X.X.X-linux-x64.flatpak (or whatever the downloaded installer filename is)
from the download folder. You may need to enter the administrator pass-
word to finish installation.

Once it’s installed, you can run the NAPS2 desktop application. On
Windows, you can select NAPS2 from the Start menu. On macOS, you can
run NAPS2 from Spotlight. On Linux, you’ll need to open a new termi-
nal window and run flatpak run com.naps2.Naps2. However, this book uses
NAPS2 from Python code with the subprocess module instead of the graph-
ical user interface.

Running NAPS2 from Python
Python scripts can use the subprocess module to run the NAPS2 application
with several command line arguments. When run this way, NAPS2 does not
make its application window appear, which is ideal for an automation step
in a Python script.

Let’s use the frankenstein.png image once again and have NAPS2 gener-
ate a PDF with embedded OCR text. The location of the NAPS2 program
is different on each operating system; the following interactive shell code
shows the path for Windows:

>>> import subprocess
>>> naps2_path = [r'C:\Program Files\NAPS2\NAPS2 .Console .exe'] # Windows
>>> proc = subprocess.run(naps2_path + ['-i', 'frankenstein.png', '-o',
'output.pdf', '--install', 'ocr-eng', '--ocrlang', 'eng', '-n', '0', '-f',
'-v'], capture_output=True)

On macOS, replace the line that sets the path with the following: naps2
_path = ['/Applications/NAPS2.app/Contents/MacOS/NAPS2', 'console']. On Linux,
use the following instead: naps2_path = ['flatpak', 'run', 'com.naps2.Naps2',
'console'].

The code creates a new file named output.pdf that contains a single page
with the scanned image from frankenstein.png. However, if you open this file
in a PDF application, you’ll notice that you can highlight the text and copy
it to the clipboard. Many PDF applications will also let you save the PDF as a
.txt text file of the OCR text.

https://www.naps2.com/download
http://frankenstein.png

Recognizing Text in Images 537

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Let’s take a look at each of the command line arguments in this exam-
ple. You can change them as needed for your own purposes:

'-i', 'frankenstein.png' Sets the input as the frankenstein.png image file.
See “Specifying Input” on page XX for more information on specifying
multiple inputs in various formats.

'-o', 'output.pdf' Creates a file named output.pdf to hold the OCR
results.

'--install', 'ocr-eng' Installs the English language pack for OCR. This
does nothing if the language is already installed. If you want to install
a different language pack, use the ocr- prefix with another three-letter
ISO 639 language code.

'--ocrlang', 'eng' Sets English as the language that the OCR scan rec-
ognizes. This argument is passed directly to Tesseract’s command line
argument, so you could use an argument like 'eng+jpn+rus' to specify
that the image has text in English, Japanese, and Russian.

'-n', '0' Specifies that you want to do zero scans and not use a flatbed
scanner. This prevents error messages when there’s no physical flatbed
scanner connected to your computer.

'-f' Forces NAPS2 to overwrite the output.pdf output file if a file with
that name already exists.

'-v' Enables verbose mode so that status text appears as NAPS2
creates your PDF. If you want to see this status text, change the
capture_output=True keyword argument for subprocess.run() to capture
_output=False.

The online documentation for NAPS2’s command line arguments is at
https://www .naps2 .com /doc /command -line. Chapter 19 covered the subprocess
module in more detail.

Specifying Input
NAPS2 lets you import PDFs and most image formats to create a final
combined PDF. The application has its own mini language for specifying
multiple inputs as a single command line argument following -i. This can
become quite complicated, but you can think of it as semicolon delimited,
with Python index and slice notation.

To specify multiple files, separate them with a semicolon. For example,
passing '-i', 'cat.png;dog.png;moose.png' creates a PDF with cat.png used for
the first page, dog.png used for the second page, and moose.png used for the
third page.

You can also specify individual pages in a PDF with syntax that is identi-
cal to Python’s list slice syntax. Follow the PDF filename with square brack-
ets containing the page number to use. As in Python, 0 represents the first
page. For example, passing '-i', 'spam.pdf[0];spam.pdf[5];eggs.pdf' creates
a PDF with page 1 of spam.pdf, followed by page 6 of spam.pdf, and then all
pages of eggs.pdf.

https://www.naps2.com/doc/command-line

538 Chapter 22

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

You can specify a range of pages with this slice notation or use negative
numbers to represent pages from the end of the PDF document. For exam-
ple, passing '-i', 'spam.pdf[0:2];eggs.pdf[-1]' combines the first two pages
of spam.pdf with the last page from eggs.pdf.

There are several more features that NAPS2 provides through its com-
mand line arguments. Check out its online documentation to learn more
about them. If you find that NAPS2 isn’t suitable for your needs, I also rec-
ommend the ocrmypdf package at https://pypi .org /project /ocrmypdf / for creat-
ing PDFs with embedded text.

Summary
In this chapter, you learned how to harness the power of Tesseract to
extract text from images. This is quite a powerful ability that can save you
hours of data entry. However, OCR isn’t magic, and your images may need
preprocessing to get accurate results. Tesseract is also designed to work
with typewritten dark text on light backgrounds where the text is level, and
you must know the language of the image’s text to get good results. Large
language model AI can help fix incorrectly recognized characters, but its
output requires human oversight as well. Finally, the open source NAPS2
application provides a way to take several images and combine them into a
single PDF with embedded OCR text. OCR is an incredible breakthrough of
computer science, but you don’t need an advanced degree to use it. Python
makes OCR accessible to everyone.

Practice Questions
 1. What language does Tesseract recognize by default?

 2. Name a Python image library that PyTesseract works with.

 3. What PyTesseract function accepts an image object and returns a string
of the text in the image?

 4. If you take a photo of a street sign, will Tesseract be able to identify the
sign text in the photo?

 5. What function returns the list of language packs installed for Tesseract?

 6. What keyword argument do you specify to PyTesseract if an image con-
tains both English and Japanese text?

 7. What application lets you create PDFs with embedded OCR text?

Practice Program: Browser Text Scraper
Some websites allow you to view their text contents but make it difficult to
save or even copy and paste the text to your computer. You may see them as
PDFs embedded within the web page. An example of this is at https://autbor
.com /embeddedfrankenstein /, shown in Figure 22-2.

https://pypi.org/project/ocrmypdf/
https://autbor.com/embeddedfrankenstein/
https://autbor.com/embeddedfrankenstein/

Recognizing Text in Images 539

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Figure 22-2: An example webpage with an embedded document

The PyAutoGUI library covered in Chapter 23 can take screenshots and
save them to an image, while the Pillow library covered in Chapter 21 can
crop images. PyAutoGUI also has a MouseInfo application for finding XY
coordinates on the screen.

Write a program named ocrscreen.py that takes a screenshot, crops the
image to just the text portion in the screenshot, then passes it on to Py
Tesseract for OCR. The program should append the recognized text to
the end of a text file named output.txt. Here is a template for the ocrscreen.py
program:

import pyautogui
TODO - Add the additionally needed import statements.

The coordinates for the text portion. Change as needed:
LEFT = 400
TOP = 200
RIGHT = 1000
BOTTOM = 800

Capture a screenshot:
img = pyautogui.screenshot()

Crop the screenshot to the text portion:
img = img.crop((LEFT, TOP, RIGHT, BOTTOM))

Run OCR on the cropped image:
TODO - Add the PyTesseract code here.

Add the OCR text to the end of output.txt:
TODO - Call open() in append mode and append the OCR text.

540 Chapter 22

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This program should let you scroll the embedded, unsavable text into
view in your browser, run the program, and then scroll the PDF to the next
page of content. Once done, you’ll have your own copy of the document’s
text. (If you read Chapter 23, you’ll also learn how you can make your script
simulate key presses to scroll the web page for you.)

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Knowing various Python packages for edit-
ing spreadsheets, downloading files, and

launching programs is useful, but sometimes
there just aren’t any packages for the applications

you need to work with. The ultimate tools for automat-
ing tasks on your computer are programs that you write
to directly control the keyboard and mouse. These pro-
grams can send other applications virtual keystrokes
and mouse clicks, as if you were sitting at your computer
and interacting with the applications yourself.

This technique is known as graphical user interface automation, or GUI
automation for short. With GUI automation, your programs can do any-
thing that a human user sitting at the computer can do, except spill coffee
on the keyboard. Think of GUI automation as programming a robotic
arm. You can program the robotic arm to type at your keyboard and

23
C O N T R O L L I N G T H E K E Y B O A R D

A N D M O U S E

542 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

move your mouse for you. This technique is particularly useful for tasks
that involve a lot of mindless clicking or filling out of forms. This powerful
technique is why account sign-up and login web pages have bot-detecting
captcha challenges. Otherwise, automation programs could sign up for
multiple free accounts, flood social media with spam, or guess account
passwords.

Some companies sell innovative (and pricey) “automation solutions,”
usually marketed as robotic process automation (RPA) tools. These products are
effectively no different from the Python scripts you can make yourself with
the PyAutoGUI library, which has functions for simulating mouse move-
ments, button clicks, and keyboard typing. This chapter covers only a subset
of PyAutoGUI’s features; you can find the full documentation at https://py
autogui .readthedocs .io /. To install the latest version of PyAutoGUI compatible
with this book, follow the instructions in Appendix A.

W A R N I N G Don’t save your programs as pyautogui.py. If you do, then when you run import
pyautogui Python will import your program instead of PyAutoGUI, and you’ll get
error messages like AttributeError: module 'pyautogui' has no attribute 'click'.

Setting Up Accessibility Apps on macOS
As a security measure, macOS doesn’t normally let programs control the
mouse or keyboard. To make PyAutoGUI work on macOS, you must set
the program running your Python script to be an accessibility application.
Without this step, your PyAutoGUI function calls will have no effect.

Whether you run your Python programs from Mu, IDLE, or the
Terminal, keep that application open. Then, open System Preferences and
go to the Accessibility tab. The currently open applications will appear
under the “Allow the apps below to control your computer” label. Check
Mu, IDLE, Terminal, or whichever app you use to run your Python scripts.
You’ll be prompted to enter your password to confirm these changes.

Staying on Track
Before you jump into a GUI automation, you should know how to escape
problems that may arise. Python can move your mouse and type keystrokes
at an incredible speed. In fact, it might be too fast for other programs to
keep up with. Also, if something goes wrong but your program keeps mov-
ing the mouse around, it will be hard to tell exactly what the program is
doing or how to recover from the problem. Like the enchanted brooms
from “The Sorcerer’s Apprentice” sequence in Disney’s Fantasia, which kept
filling (and then overfilling) Mickey’s tub with water, your program could
get out of control even though it’s following your instructions perfectly.
Stopping the program can be difficult if the mouse is moving around on
its own, preventing you from clicking the Mu Editor window to close it.

https://pyautogui.readthedocs.io/
https://pyautogui.readthedocs.io/

Controlling the Keyboard and Mouse 543

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Fortunately, there are several ways to prevent or recover from GUI automa-
tion problems.

Pauses and Fail-Safes
If your program has a bug and you’re unable to use the keyboard and mouse
to shut it down, you can use PyAutoGUI’s fail-safe feature. Quickly slide the
mouse to one of the four corners of the screen. Every PyAutoGUI function
call has a one-tenth-of-a-second pause after performing its action to give you
enough time to move the mouse to a corner. If PyAutoGUI then finds that
the mouse cursor is in a corner, it raises the pyautogui.FailSafeException excep-
tion. Non-PyAutoGUI instructions won’t have this pause. You can adjust this
pause duration by setting pyautogui.PAUSE to a value other than 0.1.

If you find yourself in a situation where you need to stop your
PyAutoGUI program, just slam the mouse toward a screen corner to stop it.

Log Outs
Perhaps the simplest way to stop an out-of-control GUI automation program
is to log out, which will shut down all running programs. On Windows and
Linux, the log-out hotkey is ctrl-alt-del. On macOS, it is -shift-Q. By
logging out, you’ll lose any unsaved work, but at least you won’t have to wait
for a full reboot of the computer.

Controlling Mouse Movement
In this section, you’ll learn how to move the mouse and track its position
on the screen using PyAutoGUI, but first you need to understand how
PyAutoGUI works with coordinates.

PyAutoGUI’s mouse functions use x- and y-coordinates. Figure 23-1
shows the coordinate system for the computer screen; it’s similar to the coor-
dinate system used for images, discussed in Chapter 21. The origin, where x
and y are both zero, is at the upper-left corner of the screen. The x-coordi-
nates increase going to the right, and the y-coordinates increase going down.
All coordinates are positive integers; there are no negative coordinates.

544 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

(0,0) (1919,0)

(0,1079) (1919,1079)

x increases

y
in

cr
ea

se
s

Figure 23-1: The coordinates of a computer screen
with 1920 × 1080 resolution

Your resolution is how many pixels wide and tall your screen is. If your
screen’s resolution is set to 1920 × 1080, then the coordinate for the upper-
left corner will be (0, 0), and the coordinate for the bottom-right corner
will be (1919, 1079).

The pyautogui.size() function returns a Size named tuple of the screen’s
width and height in pixels. Named tuples are beyond the scope of this book,
but they are basically tuples with integer indexes that also have named attri-
butes. Enter the following into the interactive shell:

>>> import pyautogui
>>> screen_size = pyautogui.size() # Obtain the screen resolution.
>>> screen_size
Size(width=1920, height=1080)
>>> screen_size[0], screen_size[1]
(1920, 1080)
>>> screen_size.width, screen_size.height
(1920, 1080)
>>> tuple(screen_size)
(1920, 1080)

The pyautogui.size() function returns a Size object of (1920, 1080) on a
computer with a 1920 × 1080 resolution; depending on your screen’s resolu-
tion, your return value may be different.

Moving the Mouse
Now that you understand screen coordinates, let’s move the mouse. The
pyautogui.moveTo() function will instantly move the mouse cursor to a speci-
fied position on the screen. Integer values for the x- and y-coordinates make

Controlling the Keyboard and Mouse 545

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

up the function’s first and second arguments, respectively. An optional
duration integer or float keyword argument specifies the number of seconds
it should take to move the mouse to the destination. If you leave it out, the
default is 0 for instantaneous movement. (All of the duration keyword argu-
ments in PyAutoGUI functions are optional.) Enter the following into the
interactive shell:

>>> import pyautogui
>>> for i in range(10): # Move the mouse in a square.
... pyautogui.moveTo(100, 100, duration=0.25)
... pyautogui.moveTo(200, 100, duration=0.25)
... pyautogui.moveTo(200, 200, duration=0.25)
... pyautogui.moveTo(100, 200, duration=0.25)
...

This example moves the mouse cursor clockwise in a square pattern
among the four coordinates provided a total of 10 times. Each movement
takes one-quarter of a second, as specified by the duration=0.25 keyword
argument. If you hadn’t passed a third argument to any of the pyautogui
.moveTo() calls, the mouse cursor would have instantly teleported from point
to point.

The pyautogui.move() function moves the mouse cursor relative to its
current position. The following example moves the mouse in the same square
pattern, except it begins the square from wherever the mouse happens to
be on the screen when the code starts running:

>>> import pyautogui
>>> for i in range(10):
... pyautogui.move(100, 0, duration=0.25) # Right
... pyautogui.move(0, 100, duration=0.25) # Down
... pyautogui.move(-100, 0, duration=0.25) # Left
... pyautogui.move(0, -100, duration=0.25) # Up
...

The pyautogui.move() function also takes three arguments: how many
pixels to move horizontally to the right, how many pixels to move vertically
downward, and (optionally) how long it should take to complete the move-
ment. A negative integer for the first or second argument will cause the
mouse to move left or upward, respectively.

Getting the Current Position
You can determine the mouse’s current position by calling the pyautogui
.position() function, which will return a Point named tuple of the mouse
cursor’s x and y positions at the time of the function call. You can access
the x- and y-coordinates either through the 0 and 1 integer indexes of the
Point named tuple or through the x and y attributes. (This is similar to the

546 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Size named tuple’s width and height attributes.) Enter the following into the
interactive shell, moving the mouse around after each call:

>>> pyautogui.position() # Get the current mouse position.
Point(x=311, y=622)
>>> pyautogui.position() # Get the current mouse position again.
Point(x=377, y=481)
>>> p = pyautogui.position() # And again
>>> p
Point(x=1536, y=637)
>>> p[0] # The x-coordinate is at index 0.
1536
>>> p.x # The x-coordinate is also in the x attribute.
1536

Of course, your return values will vary depending on where your mouse
cursor is.

Controlling Mouse Interaction
Now that you know how to move the mouse and figure out where it is on the
screen, you’re ready to start clicking, dragging, and scrolling.

Clicking
To send a virtual mouse click to your computer, call the pyautogui.click()
method. By default, this click uses the left mouse button and takes place
wherever the mouse cursor is currently located. You can pass x- and
y-coordinates of the click as optional first and second arguments if you
want it to take place somewhere other than the mouse’s current position.

If you want to specify which mouse button to use, include the button
keyword argument, with a value of 'left', 'middle', or 'right'. For example,
pyautogui.click(100, 150, button='left') will click the left mouse button at
the coordinates (100, 150), while pyautogui.click(200, 250, button='right')
will perform a right-click at (200, 250).

Enter the following into the interactive shell:

>>> import pyautogui
>>> pyautogui.click(10, 5) # Move the mouse to (10, 5) and click.

You should see the mouse pointer move to near the top-left corner of
your screen and click once. A full “click” is defined as pushing a mouse but-
ton down and then releasing it without moving the cursor. You can also per-
form a click by calling pyautogui.mouseDown(), which only pushes the mouse
button down, and pyautogui.mouseUp(), which only releases the button. These
functions have the same arguments as click(), and in fact, the click() func-
tion is just a convenient wrapper around these two function calls.

As a further convenience, the pyautogui.doubleClick() function will per-
form two clicks with the left mouse button. The pyautogui.rightClick() and

Controlling the Keyboard and Mouse 547

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

pyautogui.middleClick() functions will perform a click with the right and
middle mouse buttons, respectively.

Dragging
Dragging means moving the mouse while holding down one of the mouse
buttons. For example, you can move files between folders by dragging the
folder icons, or you can move appointments around in a calendar app.

PyAutoGUI provides the pyautogui.dragTo() and pyautogui.drag() func-
tions to drag the mouse cursor to a new location or a location relative to its
current one. The arguments for dragTo() and drag() are the same as moveTo()
and move(): the x-coordinate/horizontal movement, the y-coordinate/vertical
movement, and an optional duration of time. (The macOS operating sys-
tem doesn’t drag correctly when the mouse moves too quickly, so passing a
duration keyword argument is recommended.)

To try these functions, open a graphics drawing application such as MS
Paint on Windows, Paintbrush on macOS, or GNU Paint on Linux. (If you
don’t have a drawing application, you can use the online one at https://sumo
paint .com .) I will use PyAutoGUI to draw in these applications.

With the mouse cursor over the drawing application’s canvas and the
Pencil or Brush tool selected, enter the following into a new file editor win-
dow and save it as spiralDraw.py:

import pyautogui
1 pyautogui.sleep(5)
2 pyautogui.click() # Click to make the window active.
distance = 300
change = 20
while distance > 0:
 3 pyautogui.drag(distance, 0, duration=0.2) # Move right.
 4 distance = distance – change
 5 pyautogui.drag(0, distance, duration=0.2) # Move down.
 6 pyautogui.drag(-distance, 0, duration=0.2) # Move left.
 distance = distance – change
 pyautogui.drag(0, -distance, duration=0.2) # Move up.

When you run this program, there will be a five-second delay 1 during
which you can move the mouse cursor over the drawing program’s window
with the Pencil or Brush tool selected. PyAutoGUI’s sleep() function is identi-
cal to time.sleep() but exists so that you don’t need to add import time to your
code. Then, spiralDraw.py will take control of the mouse and click to make
the drawing program’s window active 2. The active window is the window that
currently accepts keyboard input, and the actions you take (like typing or, in
this case, dragging the mouse) will affect that window. The active window is
also known as the focused or foreground window. Once the drawing program
is active, spiralDraw.py draws a square spiral pattern like the one on the left
of Figure 23-2.

The distance variable starts at 300, so on the first iteration of the while
loop, the first drag() call drags the cursor 300 pixels to the right, taking
0.2 seconds 3. Then, distance is decreased to 280 4, and the second drag()

https://sumopaint.com
https://sumopaint.com

548 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

call drags the cursor 280 pixels down 5. The third drag() call drags the
cursor -280 horizontally (280 to the left) 6, distance is decreased to 260,
and the last drag() call drags the cursor 260 pixels up. On each iteration,
the mouse is dragged right, down, left, and up, and distance is slightly
smaller than it was in the previous iteration. By looping over this code, you
can move the mouse cursor to draw a square spiral.

While you can also create a square spiral image by using the Pillow
package discussed in Chapter 21, creating the image by controlling the
mouse to draw it in MS Paint lets you make use of this program’s various
brush styles, as shown in Figure 23-2 on the right, as well as other advanced
features, such as gradients or the fill bucket. You can preselect the brush
settings yourself (or have your Python code select these settings) and then
run the spiral-drawing program.

Figure 23-2: The results from the pyautogui.drag() example,
drawn with MS Paint’s different brushes

You could draw this spiral by hand (or rather, by mouse), but you’d have
to work slowly to be so precise. PyAutoGUI can do it in a few seconds!

Scrolling
The final PyAutoGUI mouse function is scroll(), to which you pass an inte-
ger argument for how many units you want to scroll the mouse up or down.

Controlling the Keyboard and Mouse 549

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The size of a unit varies for each operating system and application, so you’ll
have to experiment to see exactly how far it scrolls in your particular situ-
ation. The scrolling takes place at the mouse cursor’s current position.
Passing a positive integer scrolls up, and passing a negative integer scrolls
down. Run the following in the Mu Editor’s interactive shell while the
mouse cursor is over the Mu Editor window:

>>> pyautogui.scroll(200)

You’ll see Mu scroll upward if the mouse cursor is over a text field that
can be scrolled up.

Planning Your Mouse Movements
One of the difficulties of writing a program that will automate clicking the
screen is finding the x- and y-coordinates of the things you’d like to click.
The pyautogui.mouseInfo() function can help you with this.

The pyautogui.mouseInfo() function is meant to be called from the inter-
active shell, rather than as part of your program. It launches a small appli-
cation named MouseInfo that’s included with PyAutoGUI. The window for
the application looks like Figure 23-3.

Figure 23-3: The MouseInfo application’s window

550 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Enter the following into the interactive shell:

>>> import pyautogui
>>> pyautogui.mouseInfo()

This makes the MouseInfo window appear. This window gives you infor-
mation about the mouse cursor’s current position, as well the color of the
pixel underneath the mouse cursor, as a three-integer RGB tuple and as a
hex value. The color itself appears in the color box in the window.

To help you record this coordinate or pixel information, you can click
one of the eight Copy or Log buttons. The Copy All, Copy XY, Copy RGB,
and Copy RGB Hex buttons will copy their respective information to the
clipboard. The Log All, Log XY, Log RGB, and Log RGB Hex buttons will
write their respective information to the large text field in the window. You
can save the text in this log text field by clicking the Save Log button.

By default, the 3 Sec. Button Delay checkbox is checked, causing a
three-second delay between clicking a Copy or Log button and the copying
or logging taking place. This gives you a short amount of time in which to
click the button and then move the mouse into your desired position. It may
be easier to uncheck this box, move the mouse into position, and press the
F1 to F8 keys to copy or log the mouse position. You can look at the Copy
and Log menus at the top of the MouseInfo window to find out which key
maps to which buttons.

For example, uncheck 3 Sec. Button Delay, then move the mouse around
the screen while pressing F6, and notice how the x- and y-coordinates of the
mouse are recorded in the large text field in the middle of the window. You
can later use these coordinates in your PyAutoGUI scripts.

For more information on MouseInfo, review the complete documenta-
tion at https://mouseinfo .readthedocs .io /.

Taking Screenshots
Your GUI automation programs don’t have to click and type blindly.
PyAutoGUI has screenshot features that can create an image file based on
the current contents of the screen. These functions can also return a Pillow
Image object of the current screen’s appearance. If you’ve been skipping
around in this book, you’ll want to read Chapter 21 and install the Pillow
package before continuing with this section.

To take screenshots in Python, call the pyautogui.screenshot() function.
Enter the following into the interactive shell:

>>> import pyautogui
>>> im = pyautogui.screenshot()

The im variable will contain the Image object of the screenshot. You can
now call methods on the Image object in the im variable, just like any other
Image object. Chapter 21 has more information about Image objects.

https://mouseinfo.readthedocs.io/

Controlling the Keyboard and Mouse 551

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Say that one of the steps in your GUI automation program is to click
a gray button. Before calling the click() method, you might want to take a
screenshot and look at the pixel where the script is about to click. If it’s not
the same gray as the gray button, then your program knows something is
wrong. Maybe the window moved unexpectedly, or maybe a pop-up dialog
has blocked the button. At this point, instead of continuing, and possibly
wreaking havoc by clicking the wrong thing, your program can stop itself.

You can obtain the RGB color value of a particular pixel on the screen
with the pixel() function. Enter the following into the interactive shell:

>>> import pyautogui
>>> pyautogui.pixel(0, 0)
(176, 176, 175)
>>> pyautogui.pixel((50, 200))
(130, 135, 144)

Pass pixel() two integers for an XY coordinate and it will tell you the
color of the pixel at those coordinates in your image. The return value from
pixel() is an RGB tuple of three integers for the amount of red, green, and
blue in the pixel. (There is no fourth value for alpha, because screenshot
images are fully opaque.)

PyAutoGUI’s pixelMatchesColor() function will return True if the pixel at
the given x- and y-coordinates on the screen matches the given color. The
first and second arguments are integers for the x- and y-coordinates, and
the third argument is a tuple of three integers for the RGB color the screen
pixel must match. Enter the following into the interactive shell:

>>> import pyautogui
1 >>> pyautogui.pixel((50, 200))
(130, 135, 144)
2 >>> pyautogui.pixelMatchesColor(50, 200, (130, 135, 144))
True
3 >>> pyautogui.pixelMatchesColor(50, 200, (255, 135, 144))
False

After using pixel() to get an RGB tuple for the color of a pixel at spe-
cific coordinates 1, pass the same coordinates and RGB tuple to pixel
MatchesColor() 2, which should return True. Then, change a value in the
RGB tuple and call pixelMatchesColor() again for the same coordinates 3.
This should return false. This method can be useful to call whenever your
GUI automation programs are about to call click(). Note that the color at
the given coordinates must match exactly. If it is even slightly different—for
example, (255, 255, 254) instead of (255, 255, 255)—then pixelMatchesColor()
will return False.

552 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Image Recognition
But what if you do not know beforehand where PyAutoGUI should click?
You can use image recognition instead. Give PyAutoGUI an image of what
you want to click, and let it figure out the coordinates.

For example, if you have previously taken a screenshot to capture the
image of a Submit button in submit.png, the locateOnScreen() function will
return the coordinates where that image is found. To see how locateOn
Screen() works, try taking a screenshot of a small area on your screen; then
save the image and enter the following into the interactive shell, replacing
'submit.png' with the filename of your screenshot:

>>> import pyautogui
>>> box = pyautogui.locateOnScreen('submit.png')
>>> box
Box(left=643, top=745, width=70, height=29)
>>> box[0]
643
>>> box.left
643

The Box object is a named tuple that locateOnScreen() returns and has
the x-coordinate of the left edge, the y-coordinate of the top edge, the
width, and the height for the first place on the screen the image was found.
If you’re trying this on your computer with your own screenshot, your
return value will be different from the one shown here.

If the image cannot be found on the screen, locateOnScreen() raises an
ImageNotFoundException. Note that the image on the screen must match the
provided image perfectly in order to be recognized. If the image is even a
pixel off, locateOnScreen() raises an ImageNotFoundException exception. If you’ve
changed your screen resolution, images from previous screenshots might
not match the images on your current screen because they have a different
scaling factor. Scaling factors are beyond the scope of this book, but they are
sometimes used in modern, high-resolution displays. You can change the scal-
ing in the display settings of your operating system, as shown in Figure 23-4.

Figure 23-4: The scale display settings in Windows (left) and macOS (right)

If the image can be found in several places on the screen, locateAll
OnScreen() will return a Generator object. Generators are beyond the scope

Controlling the Keyboard and Mouse 553

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

of this book, but you can pass them to list() to return a list of Box objects.
There will be one Box object for each location where the image is found on
the screen. Continue the interactive shell example by entering the following
(and replacing 'submit.png' with your own image filename):

>>> list(pyautogui.locateAllOnScreen('submit.png'))
[(643, 745, 70, 29), (1007, 801, 70, 29)]

In this example, the image appears in two locations. If your image is
found in only one area, calling list(locateAllOnScreen()) returns a list con-
taining just one Box object.

Once you have the Box object for the specific image you want to select,
you can click the center of this area by passing the tuple to click(). Enter
the following into the interactive shell:

>>> pyautogui.click((643, 745, 70, 29))

As a shortcut, you can also pass the image filename directly to the
click() function:

>>> pyautogui.click('submit.png')

The moveTo() and dragTo() functions also accept image filename argu-
ments. Remember that locateOnScreen() raises an exception if it can’t find
the image on the screen, so you should call it from inside a try statement:

try:
 location = pyautogui.locateOnScreen('submit.png')
except pyautogui.ImageNotFoundException:
 print('Image could not be found.')

Without the try and except statements, the uncaught exception would
crash your program. Since you can’t be sure that your program will always
find the image, it’s a good idea to use the try and except statements when
calling locateOnScreen(). In versions of PyAutoGUI before 1.0.0, locateOn
Screen() would return None instead of raising an exception. Call pyautogui
.useImageNotFoundException() in these old versions to raise an exception
instead, or call pyautogui .useImageNotFoundException(False) for newer versions
to return None.

Getting Window Information
Image recognition is a fragile way to find things on the screen; if a single
pixel is a different color, then pyautogui.locateOnScreen() won’t find the
image. If you need to find where a particular window is on the screen, it’s
faster and more reliable to use PyAutoGUI’s window features.

554 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

N O T E As of version 1.0.0, PyAutoGUI’s window features work only on Windows, not
on macOS or Linux. These features come from PyAutoGUI’s inclusion of the
PyGetWindow package.

Obtaining the Active Window
The active window on your screen is the window currently in the fore-
ground and accepting keyboard input. If you’re presently writing code in
the Mu Editor, the Mu Editor’s window is the active window. Of all the win-
dows on your screen, only one will be active at a time.

In the interactive shell, call the pyautogui.getActiveWindow() function to
get a Window object (technically a Win32Window object when run on Windows).
Once you have that Window object, you can retrieve any of the object’s attri-
butes, which describe its size, position, and title:

left, right, top, bottom A single integer for the x- or y-coordinate of the
window’s side

topleft, topright, bottomleft, bottomright A Point named tuple of two
integers for the (x, y) coordinate of the window’s corner

midleft, midright, midtop, midbottom A Point named tuple of two integers
for the (x, y) coordinate of the middle of the window’s sides

width, height A single integer for one of the window’s dimensions,
in pixels

size A Size named tuple of two integers for the (width, height) of
the window

area A single integer representing the area of the window, in pixels

center A Point named tuple of two integers for the (x, y) coordinate of
the window’s center

centerx, centery A single integer for the x- or y-coordinate of the win-
dow’s center

box A Box named tuple of four integers for the (left, top, width, height)
measurements of the window

title A string of the text in the title bar at the top of the window

To get the window’s position, size, and title information from the window
object, for example, enter the following into the interactive shell:

>>> import pyautogui
>>> active_win = pyautogui.getActiveWindow()
>>> active_win
Win32Window(hWnd=2034368)
>>> str(active_win)
'<Win32Window left="500", top="300", width="2070", height="1208", title="Mu 1.0.1 – test1.py">'
>>> active_win.title
'Mu 1.0.1 – test1.py'
>>> active_win.size
Size(width=2070, height=1208)
>>> active_win.left, active_win.top, active_win.right, active_win.bottom

Controlling the Keyboard and Mouse 555

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

(500, 300, 2570, 1508)
>>> active_win.topleft
Point(x=500, y=300)
>>> pyautogui.click(active_win.left + 10, active_win.top + 20)

You can now use these attributes to calculate precise coordinates within
a window. If you know that a button you want to click is always 10 pixels to
the right of and 20 pixels down from the window’s top-left corner, and the
window’s top-left corner is at screen coordinates (300, 500), then calling
pyautogui.click(310, 520) (or pyautogui.click(active_win.left + 10, active_win
.top + 20) if active_win contains the Window object for the window) will click
the button. This way, you won’t have to rely on the slower, less reliable locate
OnScreen() function to find the button for you.

Finding Windows in Other Ways
While getActiveWindow() is useful for obtaining the window that is active
at the time of the function call, you’ll need to use some other function to
obtain Window objects for the other windows on the screen. The following
three functions return a list of Window objects. If they’re unable to find any
windows, they return an empty list:

pyautogui.getAllWindows() Returns a list of Window objects for every vis-
ible window on the screen

pyautogui.getWindowsAt(x, y) Returns a list of Window objects for every
visible window that includes the point (x, y)

pyautogui.getWindowsWithTitle(title) Returns a list of Window objects for
every visible window that includes the string title in its title bar

PyAutoGUI also has a pyautogui.getAllTitles() function, which returns a
list of strings of every visible window.

Manipulating Windows
Windows attributes can do more than just tell you the size and position of
the window. You can also set their values in order to resize or move the
window. For example, enter the following into the interactive shell:

>>> import pyautogui
>>> active_win = pyautogui.getActiveWindow()
1 >>> active_win.width # Gets the current width of the window.
1669
2 >>> active_win.topleft # Gets the current position of the window.
Point(x=174, y=153)
3 >>> active_win.width = 1000 # Resizes the width.
4 >>> active_win.topleft = (800, 400) # Moves the window.

First, we use the Window object’s attributes to find out information about
the window’s size 1 and position 2. After calling these functions in the

556 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Mu Editor, the window should become narrower 3 and move 4, as in
Figure 23-5.

Figure 23-5: The Mu Editor window before (top) and after (bottom) using the Window
object attributes to resize and move it

You can also find out and change the window’s minimized, maximized,
and activated states. Try entering the following into the interactive shell:

>>> import pyautogui
>>> active_win = pyautogui.getActiveWindow()
>>> active_win.isMaximized # Returns True if the window is maximized
False
>>> active_win.isMinimized # Returns True if the window is minimized
False

Controlling the Keyboard and Mouse 557

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

>>> active_win.isActive # Returns True if the window is the active window
True
>>> active_win.maximize() # Maximizes the window
>>> active_win.isMaximized
True
>>> active_win.restore() # Undoes a minimize/maximize action
>>> active_win.minimize() # Minimizes the window
>>> import time
>>> # Waits 5 seconds while you activate a different window:
>>> time.sleep(5); active_win.activate()
>>> active_win.close() # This will close the window you're typing in.

The isMaximized, isMinimized, and isActive attributes contain Boolean val-
ues that indicate whether the window is currently in that state. The maximize(),
minimize(), activate(), and restore() methods change the window’s state. After
you maximize or minimize the window with maximize() or minimize(), the
restore() method will restore the window to its former size and position.

The close() method will close a window. Be careful with this method, as
it may bypass any message dialogs asking you to save your work before quit-
ting the application.

The complete documentation for PyAutoGUI’s window-controlling fea-
ture can be found in its documentation.

CA P TCH A S A ND COMPU T ER E T HICS

Completely Automated Public Turing test to tell Computers and Humans Apart,
or captchas, are those small tests that ask you to type the letters in a distorted
picture or click photos of fire hydrants . These tests are easy, if annoying, for
humans to pass but nearly impossible for software to solve . After reading this
chapter, you can see how easy it is to write a script that could, say, sign up
for billions of free email accounts or flood users with harassing messages .
Captchas mitigate this by requiring a step that only a human can pass .

Not all websites implement captchas, however, and these sites can be
vulnerable to abuse by unethical programmers . Learning to code is a powerful
and exciting skill, and you may be tempted to misuse this power for personal
gain or even just to show off . But just as an unlocked door isn’t justification for
trespass, the responsibility for your programs falls upon you, the programmer .
There is nothing clever about circumventing systems to cause harm, invade
privacy, or gain unfair advantage . I hope that my efforts in writing this book
enable you to become your most productive self, rather than a mercenary one .

558 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Controlling the Keyboard
PyAutoGUI also has functions for sending virtual key presses to your com-
puter, which enables you to fill out forms or enter text into applications.

Sending Key Press Strings
The pyautogui.write() function sends virtual key presses to the computer.
What these key presses do depends on what window is active and what text
field has focus. You may want to first send a mouse click to the text field you
want in order to ensure that it has focus.

As a simple example, let’s use Python to automatically type the words
Hello, world! into a file editor window. First, open a new file editor window
and position it in the upper-left corner of your screen so that PyAutoGUI
will click in the right place to bring it into focus. Next, enter the following
into the interactive shell:

>>> pyautogui.click(100, 200); pyautogui.write('Hello, world!')

Notice how placing two commands on the same line, separated by
a semicolon, keeps the interactive shell from prompting you for input
between running the two instructions. This prevents you from accidentally
bringing a new window into focus between the click() and write() calls,
which would mess up the example.

Python will first send a virtual mouse click to the coordinates (100, 200),
which should click the file editor window and put it in focus. The write()
call will send the text Hello, world! to the window, making it look like
Figure 23-6. You now have code that can type for you!

Figure 23-6: Using PyAutoGUI to click the file editor window and enter Hello,
world! into it

Controlling the Keyboard and Mouse 559

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

By default, the write() function will enter the full string instantly.
However, you can pass an optional second argument to add a short pause
between each character. This second argument is an integer or float value
of the number of seconds to pause. For example, pyautogui.write('Hello,
world!', 0.25) will wait a quarter-second after typing H, another quarter-
second after e, and so on. This gradual typewriter effect may be useful for
slower applications that can’t process keystrokes fast enough to keep up
with PyAutoGUI.

For characters such as A or !, PyAutoGUI will automatically simulate
holding down the shift key as well.

Specifying Key Names
Not all keys are easy to represent with single text characters. For example,
how do you represent shift or the left arrow key as a single character? In
PyAutoGUI, these keyboard keys are represented by short string values
instead: 'esc' for the esc key or 'enter' for the enter key.

Instead of a single string argument, a list of these keyboard key strings
can be passed to write(). For example, the following call presses the A key,
then the B key, then the left arrow key twice (moving the cursor in front of
the “a”), and finally the X and Y keys:

>>> pyautogui.write(['a', 'b', 'left', 'left', 'X', 'Y'])

Because pressing the left arrow key moves the keyboard cursor, this will
output XYab. Table 23-1 lists the PyAutoGUI keyboard key strings that you
can pass to write() to simulate pressing any combination of keys.

You can also examine the pyautogui.KEYBOARD_KEYS list to see all possible
keyboard key strings that PyAutoGUI will accept. The 'shift' string refers
to the left shift key and is equivalent to 'shiftleft'. The same applies for
'ctrl', 'alt', and 'win' strings; they all refer to the left-side key.

Table 23-1: String Values for Keyboard Keys

Keyboard key string Meaning

'a', 'b', 'c', 'A', 'B', 'C', '1',
'2', '3', '!', '@', '#', and so on

The keys for single characters

'enter' (or 'return' or '\n') The ENTER key

'esc' The ESC key

'shiftleft', 'shiftright' The left and right SHIFT keys

'altleft', 'altright' The left and right ALT keys

'ctrlleft', 'ctrlright' The left and right CTRL keys

'tab' (or '\t') The TAB key

'backspace', 'delete' The BACKSPACE and DELETE keys

'pageup', 'pagedown' The PAGE UP and PAGE DOWN keys

(continued)

560 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Keyboard key string Meaning

'home', 'end' The HOME and END keys

'up', 'down', 'left', 'right' The up, down, left, and right arrow keys

'f1', 'f2', 'f3', and so on The F1 to F12 keys

'volumemute', 'volumedown',
'volumeup'

The mute, volume down, and volume up keys
(some keyboards do not have these keys, but your
operating system will still be able to understand
these simulated key presses)

'pause' The PAUSE key

'capslock', 'numlock',
'scrolllock'

The CAPS LOCK, NUM LOCK, and SCROLL LOCK keys

'insert' The INS or INSERT key

'printscreen' The PRTSC or PRINT SCREEN key

'winleft', 'winright' The left and right WIN keys (on Windows)

'command' The COMMAND () key (on macOS)

'option' The OPTION key (on macOS)

Pressing and Releasing the Keyboard
Much like the mouseDown() and mouseUp() functions, pyautogui.keyDown() and
pyautogui.keyUp() will send virtual key presses and releases to the computer.
They are passed a keyboard key string (see Table 23-1) for their argument.
For convenience, PyAutoGUI provides the pyautogui.press() function, which
calls both of these functions to simulate a complete key press.

Run the following code, which will type a dollar sign ($) character
(obtained by holding the shift key and pressing 4):

>>> pyautogui.keyDown('shift'); pyautogui.press('4'); pyautogui.keyUp('shift')

This line holds down shift, presses (and releases) 4, and then releases
shift. If you need to type a string into a text field, the write() function
is more suitable. But for applications that take single-key commands, the
press() function is the simpler approach.

Running Hotkey Combinations
A hotkey or shortcut is a combination of key presses to invoke some applica-
tion function. The common hotkey for copying a selection is ctrl-C (on
Windows and Linux) or -C (on macOS). The user presses and holds the
ctrl key, then presses the C key, and then releases the C and ctrl keys.

Table 23-1: String Values for Keyboard Keys (continued)

Controlling the Keyboard and Mouse 561

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

To do this with PyAutoGUI’s keyDown() and keyUp() functions, you would
have to enter the following:

pyautogui.keyDown('ctrl')
pyautogui.keyDown('c')
pyautogui.keyUp('c')
pyautogui.keyUp('ctrl')

This is rather complicated. Instead, use the pyautogui.hotkey() function,
which takes multiple keyboard key string arguments, presses them in order,
and releases them in the reverse order. For the ctrl-C example, the code
would simply be as follows:

pyautogui.hotkey('ctrl', 'c')

This function is especially useful for larger hotkey combinations. In
Word, the ctrl-alt-shift-S hotkey combination displays the Style pane.
Instead of making eight different function calls (four keyDown() calls and
four keyUp() calls), you can just call hotkey('ctrl', 'alt', 'shift', 's').

Setting Up GUI Automation Scripts
GUI automation scripts are a great way to automate the boring stuff, but
your scripts can also be finicky. If a window is in the wrong place on a desk-
top or some pop-up appears unexpectedly, your script could be clicking
the wrong things on the screen. Here are some tips for setting up your GUI
automation scripts:

• Use the same screen resolution each time you run the script so that the
position of windows doesn’t change.

• The application window that your script clicks should be maximized
so that its buttons and menus are in the same place each time you run
the script.

• Add generous pauses while waiting for content to load; you don’t want
your script to begin clicking before the application is ready.

• Use locateOnScreen() to find buttons and menus to click, rather than
relying on coordinates. If your script can’t find the thing it needs to
click, stop the program rather than letting it continue blindly clicking.

• Use getWindowsWithTitle() to ensure that the application window you
think your script is clicking exists, and use the activate() method to put
that window in the foreground.

• Use the logging module from Chapter 5 to keep a logfile of what
your script has done. This way, if you have to stop your script halfway
through a process, you can change it to pick up from where it left off.

• Add as many checks as you can to your script. Think about how it could
fail if an unexpected pop-up window appears or if your computer loses
its internet connection.

562 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

• You may want to supervise the script when it first begins to ensure that
it’s working correctly.

You might also want to put a pause at the start of your script so that the
user can set up the window the script will click on. PyAutoGUI has a sleep()
function that acts identically to time.sleep() (but frees you from having to
add import time to your scripts). There is also a countdown() function that
prints numbers counting down to give the user a visual indication that the
script will continue soon. Enter the following into the interactive shell:

>>> import pyautogui
>>> pyautogui.sleep(3) # Pauses the program for 3 seconds
>>> pyautogui .countdown(10) # Counts down over 10 seconds
10 9 8 7 6 5 4 3 2 1
>>> print('Starting in ', end=''); pyautogui .countdown(3)
Starting in 3 2 1

These tips can help make your GUI automation scripts easier to use
and better able to recover from unforeseen circumstances.

A R E V IE W OF T HE PYAU TOGUI F UNC T IONS

Since this chapter covered many different functions, here is a quick summary to
use as reference:

moveTo(x, y) Moves the mouse cursor to the given x- and y-coordinates

move(xOffset, yOffset) Moves the mouse cursor relative to its current position

dragTo(x, y) Moves the mouse cursor while the left button is held down

drag(xOffset, yOffset) Moves the mouse cursor relative to its current position
while the left button is held down

click(x, y, button) Simulates a click (left button by default)

rightClick() Simulates a right-button click

middleClick() Simulates a middle-button click

doubleClick() Simulates a double left-button click

mouseDown(x, y, button) Simulates pressing the given button at the position x, y

mouseUp(x, y, button) Simulates releasing the given button at the position x, y

scroll(units) Simulates the scroll wheel; a positive argument scrolls up, and a
negative argument scrolls down

write(message) Types the characters in the given message string

write([key1, key2, key3]) Types the given keyboard key strings

press(key) Presses the given keyboard key string

keyDown(key) Simulates pressing the given keyboard key

keyUp(key) Simulates releasing the given keyboard key

Controlling the Keyboard and Mouse 563

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

hotkey(key1, key2, key3) Simulates pressing the given keyboard key strings in
order and then releasing them in reverse order

screenshot() Returns a screenshot as an Image object (see Chapter 21 for
information on Image objects)

getActiveWindow(), getAllWindows(), getWindowsAt(), and getWindowsWithTitle()
Return Window objects that can resize and reposition application windows on the
desktop

getAllTitles() Returns a list of strings of the title bar text of every window on
the desktop

Displaying Message Boxes
The programs you’ve been writing so far all tend to use plaintext output
(with the print() function) and input (with the input() function). However,
PyAutoGUI programs will use your entire desktop as its playground. The
text-based window that your program runs in, whether it’s Mu or a terminal
window, will probably be lost as your PyAutoGUI program clicks and interacts
with other windows. This can make getting input and output from the user
difficult if the Mu or terminal window gets hidden under other windows.

To solve this, PyAutoGUI includes the PyMsgBox module to create
pop-up notifications to the user and receive input from them. There are
four message box functions:

pyautogui.alert(text) Displays text and has a single OK button

pyautogui .confirm(text) Displays text and has OK and Cancel buttons,
returning either 'OK' or 'Cancel' depending on the button clicked

pyautogui.prompt(text) Displays text and has a text field for the user to
type in, which it returns as a string

pyautogui.password(text) Is the same as prompt(), but displays asterisks so
that the user can enter sensitive information such as a password

These functions are identical to the four covered in the “Pop-Up
Message Boxes with PyMsgBox” in Chapter 12.

Summary
GUI automation with the PyAutoGUI package allows you to interact with
applications on your computer by controlling the mouse and keyboard.
While this approach is flexible enough to do anything that a human user
can do, the downside is that these programs are fairly blind to what they are
clicking or typing. When writing GUI automation programs, try to ensure

564 Chapter 23

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

that they will crash quickly if they’re given bad instructions. Crashing is
annoying, but it’s much better than the program continuing in error.

You can move the mouse cursor around the screen and simulate mouse
clicks, keystrokes, and keyboard shortcuts with PyAutoGUI. The PyAutoGUI
package can also check the colors on the screen, which can provide your
GUI automation program with enough of an idea of the screen contents
to know whether it has gotten off track. You can even give PyAutoGUI a
screenshot and let it figure out the coordinates of the area you want to click.

You can combine all of these PyAutoGUI features to automate any
mindlessly repetitive task on your computer. In fact, it can be downright
hypnotic to watch the mouse cursor move on its own and to see text appear
on the screen automatically. Why not spend the time you saved by sitting
back and watching your program do all your work for you? There’s a certain
satisfaction that comes from seeing how your cleverness has saved you from
the boring stuff.

Practice Questions
 1. How can you trigger PyAutoGUI’s fail-safe to stop a program?

 2. What function returns the current screen resolution?

 3. What function returns the coordinates for the mouse cursor’s current
position?

 4. What is the difference between pyautogui.moveTo() and pyautogui.move()?

 5. What functions can be used to drag the mouse?

 6. What function call will type out the characters of "Hello, world!"?

 7. How can you do keypresses for special keys, such as the keyboard’s left
arrow key?

 8. How can you save the current contents of the screen to an image file
named screenshot.png?

 9. What code would set a two-second pause after every PyAutoGUI func-
tion call?

 10. If you want to automate clicks and keystrokes inside a web browser,
should you use PyAutoGUI or Selenium?

 11. What makes PyAutoGUI error-prone?

 12. How can you find the size of every window on the screen that includes
the word Notepad in its title?

 13. How can you make, say, the Firefox browser active and in front of every
other window on the screen?

Practice Programs
For practice, write programs to do the following tasks.

Controlling the Keyboard and Mouse 565

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Looking Busy
Many instant messaging programs determine whether you are idle, or away
from your computer, by detecting a lack of mouse movement over some
period of time—say, 10 minutes. Maybe you’re away from your computer
but don’t want others to see your instant messenger status go into idle mode
to give the impression that you’re slacking. Write a script to nudge your
mouse cursor by one pixel to the left every 10 seconds, and then one pixel
to the right 10 seconds after that. The nudge should be small and infre-
quent enough so that it won’t get in the way if you do happen to need to use
your computer while the script is running.

Reading Text Fields with the Clipboard
While you can send keystrokes to an application’s text fields with pyautogui
.write(), you can’t use PyAutoGUI alone to read the text already inside
a text field. This is where the pyperclip module can help. You can use
PyAutoGUI to obtain the window for a text editor such as Mu or Notepad,
bring it to the front of the screen by clicking it, click inside the text field,
and then send the ctrl-A or -A hotkey to “select all” and ctrl-C or -C
hotkey to “copy to clipboard.” Your Python script can then read the clip-
board text by running import pyperclip and pyperclip.paste().

Write a program that follows this procedure for copying the text from
a window’s text fields. Use pyautogui.getWindowsWithTitle('Notepad') (or
whichever text editor you choose) to obtain a Window object. The top and
left attributes of this Window object can tell you where this window is, while
the activate() method will ensure that it is at the front of the screen. You
can then click the main text field of the text editor by adding, say, 100 or
200 pixels to the top and left attribute values with pyautogui.click() to put
the keyboard focus there. Call pyautogui.hotkey('ctrl', 'a') and pyautogui
.hotkey('ctrl', 'c') to select all the text and copy it to the clipboard.
Finally, call pyperclip.paste() to retrieve the text from the clipboard and
paste it into your Python program. From there, you can use this string how-
ever you want, but just pass it to print() for now.

Note that the window functions of PyAutoGUI only work on Windows
as of PyAutoGUI version 1.0.0, and not on macOS or Linux.

Writing a Game-Playing Bot
There is an old Flash game called Sushi Go Round. The game involves
clicking the correct ingredient buttons to fill customers’ sushi orders. The
faster you fill orders without mistakes, the more points you get. This is a
perfectly suited task for a GUI automation program—and a way to cheat to
a high score! Although Flash is discontinued as a product, there are instruc-
tions for playing it offline on your computer and a list of websites that host
the Sushi Go Round game at https://github .com /asweigart /sushigoroundbot.
That GitHub repo also has the Python source code for a game-playing bot.
A video of the bot playing the game is at https://youtu .be /lfk _T6VKhTE.

https://github.com/asweigart/sushigoroundbot
https://youtu.be/lfk_T6VKhTE

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This chapter covers a text-to-speech package,
pyttsx3, and a speech recognition package,

Whisper. Text-to-speech packages can convert
text strings into spoken words, then send them

to your computer’s speakers or save them to an audio
file. By adding this new dimension to your programs,
you can free the user from having to read text off a
screen. For example, a cooking recipe application could
read the ingredients list aloud as you move through the
kitchen, and your daily script could scrape news articles
(or your emails) and then prepare an MP3 to play dur-
ing your morning commute.

On the other end, speech recognition technologies can convert audio
files of spoken words into text string values. You can use this capability to

24
T E X T - T O - S P E E C H A N D S P E E C H

R E C O G N I T I O N E N G I N E S

568 Chapter 24

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

add voice commands to your program or automate the transcription of
podcasts. And, unlike with humans, you can always mute the volume on a
computer that talks too much.

Both pyttsx3 and Whisper are free to use and don’t require an internet
connection. The text-to-speech and speech recognition engines featured
in this chapter aren’t limited to English, and work with most widely spoken
human languages.

Text-to-Speech Engine
To produce spoken audio, the pyttsx3 third-party package uses your operat-
ing system’s built-in text-to-speech engine: Microsoft Speech API (SAPI5)
on Windows, NSSpeechSynthesizer on macOS, and eSpeak on Linux. On
Linux, you may need to install the engine by running sudo apt install
espeak from a terminal window. You can install pyttsx3 by running pip
install pyttsx3 from a terminal. Appendix A has full instructions for install-
ing third-party packages.

The name of the package is based on py for Python, tts for text-to-speech,
x because it’s extended from the original pytts package, and 3 because it’s for
Python 3.

Generating Speech
Producing a computerized voice is a complex topic in computer science.
Fortunately, the operating system’s text-to-speech engine does the hard
work for us, and interacting with this engine is straightforward. Open a new
file editor, enter the following code, and save it as hello_tts.py:

import pyttsx3
engine = pyttsx3 .init()
engine.say('Hello. How are you doing?')
engine.runAndWait() # The computer speaks.
feeling = input('>')
engine.say('Yes. I am feeling ' + feeling + ' as well.')
engine.runAndWait() # The computer speaks again.

After importing the pyttsx3 module, we call the pyttsx3 .init() function
to initialize the speech engine. This function returns an Engine object. We
can pass a string of text to its say() method to tell the engine what to speak,
but the actual speaking won’t begin until we call the runAndWait() method.
This method blocks (that is, will not return) until the computer has fin-
ished speaking the entire string.

The program doesn’t produce any text output, because it never calls
the print() function. Instead, you should hear your computer speak, “Hello.
How are you doing?” (Make sure the volume isn’t muted.) The user can
enter a response from the keyboard, to which the computer should verbally
reply, “Yes. I am feeling <your response> as well.”

Text-to-Speech and Speech Recognition Engines 569

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The pyttsx3 module allows you to make some changes to the computer
voice. You can pass the strings 'rate', 'volume', and 'voices' to the
getProperty() method of the Engine object to view its current settings. Enter
the following into the interactive shell:

>>> import pyttsx3
>>> engine = pyttsx3 .init()
>>> engine.getProperty('volume')
1.0
>>> engine.getProperty('rate')
200
>>> engine.getProperty('voices')
[<pyttsx3.voice.Voice object at 0x0000029DA7FB4B10>,
<pyttsx3.voice.Voice object at 0x0000029DAA3DAAD0>]

Note that the output may differ on your computer. The volume setting is
a float, where 1.0 indicates 100 percent. The computer voice speaks at a rate
of 200 words per minute. Continue this example with the following code:

>>> for voice in engine.getProperty('voices'): # List all the available voices.
... print(voice.name, voice.gender, voice.age, voice.languages)
...
Microsoft David Desktop - English (United States) None None []
Microsoft Zira Desktop - English (United States) None None []

On my Windows laptop with the English (United States) language,
getProperty('voices') returns two Voice objects. (Note that this string is the
plural 'voices' and not the singular 'voice'.) These Voice objects have name,
gender, and age attributes, though gender and age are set to None when the
operating system doesn’t store that information. The languages attribute is
a list of strings of languages the voice supports, which is a blank list if that
information is unknown.

Let’s continue the interactive shell example by calling the setProperty()
method to change these settings:

>>> engine.setProperty('rate', 300)
>>> engine.setProperty('volume', 0.5)
>>> voices = engine.getProperty('voices')
>>> engine.setProperty('voice', voices[1].id)
>>> engine.say('The quick brown fox jumps over the yellow lazy dog.')
>>> engine.runAndWait()

In this example, we’ve changed the speaking rate to 300 words per
minute and set the volume to 50 percent by passing 0.5 for the 'volume' rate.
We then changed the voice to the female “Zira” voice that Windows pro-
vides by passing the id attribute of the Voice object at index 1 of the list that
getProperty('voices') returned. Also note that to set the voice, we use the
singular 'voice' string and not the plural 'voices' string.

570 Chapter 24

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Saving Speech to WAV Files
The pyttsx3 module’s save_to_file() method can save the generated speech
to a WAV file (with the .wav file extension). Enter the following into the
interactive shell:

>>> import pyttsx3
>>> engine = pyttsx3 .init()
>>> engine.save_to_file('Hello. How are you doing?', 'hello.wav')
>>> engine.runAndWait() # The computer creates hello.wav.

The first argument to save_to_file() is a string of the speech to gener-
ate, while the second string argument is the filename of the .wav file. The
text string could be a short sentence, as in the interactive shell example, or
it could be pages of text. On my computer, pyttsx3 was able to turn a string
of 1,800 words into a 10-minute-long audio file in about two seconds. It’s
important to note that calling save_to_file() alone isn’t enough. You must
also call the runAndWait() method before Python will create the .wav file.

The pyttsx3 module can save .wav files only, not .mp3 files or any other
audio format.

Speech Recognition
Whisper is a speech recognition system that can recognize multiple lan-
guages. Given an audio or video file, Whisper can return the speech as
text in a Python string. It also returns the start and end times for groups of
words, which you can use to generate subtitle files.

Install Whisper by running pip install openai-whisper from the terminal.
(Note that the name of the speech recognition package is openai-whisper; the
whisper package on the PyPI website refers to something else.) This is a large
download and may take several minutes to install. Also, the first time you call
the load_model() method, your computer will download the speech recogni-
tion model, which can be hundreds of megabytes or more in size.

Let’s say you have an audio file named hello.wav in the current working
directory. (Whisper can also handle .mp3 and several other audio formats.)
You could enter the following into the interactive shell:

>>> import whisper
>>> model = whisper.load_model('base')
>>> result = model.transcribe('hello.wav')
>>> print(result['text'])
 Hello. How are you doing?

After importing the whisper module, you must load the speech recogni-
tion model to use by calling the whisper.load_model() function, passing it
the string of the trained machine learning model you want to use: 'tiny',
'base', 'small', 'medium', or 'large-v2'. (New models will continue to be
released as well.) The smaller of these models can transcribe audio more

Text-to-Speech and Speech Recognition Engines 571

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

quickly, but the larger models will do so more accurately, even when the
audio has ambient noise in the background.

The first time you load a model, your computer must be connected to
the internet so that the whisper module can download it from OpenAI’s
servers. Table 24-1 lists the model names as strings you could pass to the
whisper.load_model() function, along with their file size, memory usage, and
the results of some runtime tests on my laptop.

Table 24-1: Properties of Whisper Speech Recognition Models

Model name Model file size

Estimated
required
memory

Runtime for a
10-word, three-
second audio
sample

Runtime for an
1,800-word,
15-minute audio
sample

'tiny' 74MB 1GB 1 .9s 1m 20s

'base' 142MB 1GB 3 .0s 2m 34s

'small' 472MB 2GB 9 .6s 6m 37s

'medium' 1 .5GB 5GB 28 .6s 20m 17s

'large-v2' 3GB 10GB 51 .9s 32m 58s

My personal opinion is that for 99 percent of purposes, the 'base'
model should be suitable and the 'medium' model is good enough when
more accuracy is needed. All models produce errors, so the output should
always undergo human review. You can experiment with larger models if
you find many transcription errors in the text, or smaller models if Whisper
is taking too long to transcribe the audio. As you can see in Table 24-1,
however, there is a substantial difference in the two minutes and 34 seconds
that the 'base' model takes to transcribe 15 minutes of audio and the nearly
33 minutes that the 'large-v2' model takes.

With the model.Whisper object that whisper.load_model() returns, you can
call the transcribe() method to perform the actual transcription. Pass the
method a string of the audio file’s name. This method will take anywhere
from a few seconds to a few hours to run, depending on the model and
length of the audio file. Whisper can accept any audio or video file, and
converts it to the format it requires automatically.

Whisper can automatically detect the language of the audio, but you
can specify the language by passing a language keyword argument to tran-
scribe, such as model.transcribe('hello.wav', language='English'). To find
the languages that Whisper supports, you can run whisper --help from the
terminal. Whisper is pretty good (but never perfect) at guessing where it
should insert punctuation and at capitalizing proper names. However, you
should always review the output to clean up any mistakes.

The dictionary that model.transcribe() returns has several key-value
pairs, but the 'text' key contains the string of the transcription.

By default, Whisper uses your CPU to transcribe text, but if your com-
puter has a 3D graphics card, you can greatly speed up transcriptions by
setting it up to use the graphics processing unit (GPU). You’ll find these

572 Chapter 24

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

setup instructions in the online documentation at https://github .com /openai /
whisper. If your computer has an NVIDIA graphics card, you can follow the
instructions in Appendix A to install packages for faster speech recogni-
tion. To use the GPU, replace the whisper.load_model('base') code in this
chapter with whisper.load_model('base', device='cuda').

You can find several additional options for Whisper in its online
documentation.

Creating Subtitle Files
In addition to the transcribed audio, Whisper’s results dictionary contains
timing information that identifies the text’s location in the audio file.
You can use this text and timing data to generate subtitle files that other
software can ingest. The two most common subtitle file formats are SRT
SubRip Subtitle (with the .srt extension) and VTT Web Video Text Tracks
(with the .vtt file extension). SRT is an older and more widespread standard,
while modern video websites generally use VTT. The formats are similar.
For example, here is the first part of an SRT file:

1
00:00:00,000 --> 00:00:05,640
Dinosaurs are a diverse group of reptiles of the clade dinosauria. They first

2
00:00:05,640 --> 00:00:14,960
appeared during the triassic period. Between 245 and 233.23 million years ago.
--snip--

Compare it with the first part of a VTT file for the same subtitles:

WEBVTT

00:00.000 --> 00:05.640
Dinosaurs are a diverse group of reptiles of the clade dinosauria. They first

00:05.640 --> 00:14.960
appeared during the triassic period. Between 245 and 233.23 million years ago.
--snip--

These files both indicate that the words “Dinosaurs are a diverse group
. . .” appear between the start of the transcribed audio file (at 0 seconds)
and the 5.640-second mark.

Whisper can also output its results as TSV data (with the .tsv extension)
or JSON data (with the .json extension). TSV isn’t an official subtitles for-
mat, but it may be useful if you need to export the text and timing data to,
say, another Python program that can read it using the csv module covered
in Chapter 18. TSV-formatted subtitles look like the following:

https://github.com/openai/whisper
https://github.com/openai/whisper

Text-to-Speech and Speech Recognition Engines 573

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

start end text
0 5640 Dinosaurs are a diverse group of reptiles of the clade dinosauria. They
5640 14960 appeared during the triassic period. Between 245 and 233.23 million years ago.
--snip--

To create these subtitle files, add two extra lines of code after calling
model.transcribe():

>>> import whisper
>>> model = whisper.load_model('base')
>>> result = model.transcribe('hello.wav')
1 >>> write_function = whisper.utils.get_writer('srt', '.')
2 >>> write_function(result, 'audio')

The whisper.utils.get_writer() function 1 accepts the subtitle file for-
mat as a string ('srt', 'vtt', 'txt', 'tsv', or 'json') and the folder in which
to save the file (with the '.' string meaning the current working directory).
The get_writer() function returns a function to pass the transcription results.
(This is a rather odd way to create the transcript files, but it’s the way the
whisper module is designed.) We store it in a variable named write_function,
which we can then treat as a function and call, passing the result dictionary
and the filename for the subtitle file 2. These two lines of code produce an
SRT-formatted file named audio.srt in the current working directory, using
the text and timing information in the result dictionary.

Downloading Videos from Websites
While downloading audio files to transcribe with Whisper’s speech recog-
nition is often straightforward, video websites such as YouTube often don’t
make it easy to download their content. The yt-dlp module allows Python
scripts to download videos from YouTube and hundreds of other video web-
sites so that you can watch them offline. Appendix A has instructions for
installing yt-dlp. Once it’s installed, the following code will download the
video at the given URL:

>>> import yt_dlp
>>> video_url = 'https://www .youtube .com /watch ?v =kSrnLbioN6w'
>>> with yt_dlp.YoutubeDL() as ydl:
... ydl.download([video_url])
...

Note that the ydl.download() function expects a list of video URLs,
which is why we put the video_url string inside a list before passing it to the
function call. The video’s filename is based on the title on the video website,
and could have a .mp4, .mkv, or other video format file extension. You’ll see
a lot of debugging output as the video downloads.

The video website could refuse the download due to age or login
requirements, geographic restrictions, or anti-web scraping measures. If

574 Chapter 24

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

you’re encountering errors, the first step you should try is installing the
latest version of yt-dlp, which updates to stay compatible as video websites
change their layout.

You can read about yt-dlp’s many configuration options in the online
documentation at https://pypi .org /project /yt -dlp. For example, you can extract
the audio from a YouTube video by passing a dictionary of configuration
settings to the yt_dlp.YoutubeDL() function:

>>> import yt_dlp
>>> video_url = 'https://www .youtube .com /watch ?v =kSrnLbioN6w'
>>> options = {
... 1 'quiet': True, # Suppress the output.
... 'no_warnings': True, # Suppress warnings.
... 2 'outtmpl': 'downloaded_content.%(ext)s',
... 'format': 'm4a/bestaudio/best',
... 'postprocessors': [{ # Extract audio using ffmpeg.
... 'key': 'FFmpegExtractAudio',
... 'preferredcodec': 'm4a',
... }]
... }
...
>>> with yt_dlp.YoutubeDL(options) as ydl:
... ydl.download([video_url])
...

The 'quiet': True and 'no_warnings': True key-value pairs 1 prevent the
verbose debugging output. The options dictionary passed to yt_dlp.Youtube()
tells it to download the video and then extract the audio to a file named
downloaded_content.m4a 2. (The file extension may differ if the video has a
different audio format, though the .m4a format is the most popular one.)
If we hadn’t set the 'outtmpl': 'downloaded_content.%(ext)s' key-value pair
in the options dictionary, the downloaded filename would be based on the
video’s title (excluding characters not allowed in filenames, such as ques-
tion marks and colons).

To get the exact filename, we can use glob patterns, discussed in
Chapter 10. We know the main part of the file is 'downloaded_content', but
the file extension could be any audio format. The following code uses Path
objects to find the exact downloaded filename:

>>> from pathlib import Path
>>> matching_filenames = list(Path().glob('downloaded_content.*'))
>>> downloaded_filename = str(matching_filenames[0])
>>> downloaded_filename
'downloaded_content.m4a'

Setting the filename makes it easier for the code to use this file later,
such as by running it through Whisper speech recognition. The 'base' and
'medium' models create much higher-quality subtitles than the YouTube’s
current auto-generated subtitles.

https://pypi.org/project/yt-dlp

Text-to-Speech and Speech Recognition Engines 575

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

If you just want to download the information about a given video, you
can tell yt-dlp to skip the file and download only its metadata with the fol-
lowing code:

>>> import yt_dlp, json
>>> video_url = 'https://www .youtube .com /watch ?v =kSrnLbioN6w'
>>> options = {
... 'quiet': True, # Suppress the output.
... 'no_warnings': True, # Suppress warnings.
... 1 'skip_download': True, # Do not download the video.
... }
...
>>> with yt_dlp.YoutubeDL(options) as ydl:
... 2 info = ydl.extract_info(video_url)
... 3 json_info = ydl.sanitize_info(info)
... print('TITLE:', json_info['title']) # Print the video title.
... print('KEYS:', json_info.keys())
... with open('metadata.json', 'w', encoding='utf-8') as json_file:
... 4 json_file.write(json.dumps(json_info))
...
TITLE: Beyond the Basic Stuff with Python - Al Sweigart - Part 1
KEYS: dict_keys(['id', 'title', 'formats', 'thumbnails', 'thumbnail',
'description', 'channel_id', 'channel_url', 'duration', 'view_count',
'average_rating', 'age_limit', 'webpage_url',
--snip--

If we just want the metadata for the video and not the video itself, we can
include the 'skip_download': True key-value pair 1 in the options dictionary
passed to yt_dlp.YoutubeDL(). The ydl.extract_info() method call returns a
dictionary of information about the video 2. Some of this data might not be
properly formatted as JSON (discussed in Chapter 18), but we can get it in a
JSON-compatible form by calling ydl.sanitize() 3. The dictionary that the
sanitize() method returns has several keys, including 'title' for the name of
the video, 'duration' for the video’s length in seconds, and so on. Our code
here additionally writes this JSON data to a file named metadata.json 4.

Summary
One of Python’s great strengths is its vast ecosystem of third-party packages
for tasks such as text-to-speech and speech recognition. These packages
take some of the hardest problems in computer science and make them
available to your programs with just a few lines of code.

The pyttsx3 package does text-to-speech using your computer’s speech
engine to create audio that you can either play from the speakers or save to
a .wav file. The Whisper speech recognition system uses several underlying
models to transcribe the words of an audio file. These models have dif-
ferent sizes; the smaller models transcribe faster with less accuracy, while
larger models are slower but more accurate. They work for many human
languages, not just English. Whisper runs on your computer and doesn’t
connect to online servers except to download the model on first use.

576 Chapter 24

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

The speech engines that these Python packages use have seen a large
leap in quality that wasn’t available before the 2020s. Python is an excel-
lent “glue” language that allows your scripts to connect with this software
so that you can add these speech features to your own programs with just a
few lines of code. If you want to learn more about text-to-speech and speech
recognition, you can find many fun example projects in Make Python Talk by
Mark Liu (No Starch Press, 2021).

Practice Questions
 1. How can you make pyttsx3’s voice speak faster?

 2. What audio format does pyttsx3 save to?

 3. Do pyttsx3 and Whisper rely on online services?

 4. Do pyttsx3 and Whisper support other languages besides English?

 5. What is the name of Whisper’s default machine learning model for
speech recognition?

 6. What are two common subtitle text file formats?

 7. Can yt-dlp download videos from websites besides YouTube?

Practice Programs
For practice, write programs to do the following tasks.

Adding Voice to Guess the Number
Revisit the guess the number game from Chapter 3 and add a voice feature
to it. Replace all of the function calls to print() with calls to a function
named speak(). Next, define the speak() function to accept a string argu-
ment (just like print() did), but have it both print the string to the screen
and say it out loud. For example, you’ll replace this line of code

print('I am thinking of a number between 1 and 20.')

with this line of code:

speak('I am thinking of a number between 1 and 20.')

To make full use of the speech-generation feature, let’s change the
'Your guess is too low.' and 'Your guess is too high.' text to say the player’s
guess. For example, the computer should say, “Your guess, 42, is too low.”
You can also add a voice feature to other projects in this book, such as the
rock, paper, scissors game.

Text-to-Speech and Speech Recognition Engines 577

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Singing “99 Bottles of Beer”
Cumulative songs are songs whose verses repeat with additions or slight
changes. The songs “99 Bottles of Beer” and “The 12 Days of Christmas”
are examples of cumulative songs. Write a program that sings (or at least
speaks) the lyrics in “99 Bottles of Beer”:

99 bottles of beer on the wall,
99 bottles of beer,
Take one down, pass it around,
98 bottles of beer on the wall.

These lyrics repeat, with one fewer bottle each time. The song contin-
ues until it reaches zero bottles, at which point the last line is “No more
bottles of beer on the wall.” (You may wish to have the program start at
2 or 3 instead of 99 to make testing easier.)

YouTube Transcriber
Write a program that glues together the features of yt-dlp and Whisper to
automatically download YouTube videos and produce subtitle files in the
.srt format. The input can be a list of URLs to download and transcribe.
You can also add options to produce different subtitle formats. Python is
an excellent “glue language” for combining the capabilities of different
modules.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Many developers have written their own
modules, extending Python’s capabilities

beyond those provided by the standard library
packaged with Python. The primary way to

access third-party modules is to use Python’s pip tool,
which securely downloads and installs modules onto
your computer from the Python Package Index (PyPI)
website, a sort of free app store for Python modules.
This appendix provides instructions for installing the
packages used throughout the book.

For general information about working with the command line, virtual
environments, packages, and modules, see Chapter 12.

A
I N S T A L L I N G T H I R D - P A R T Y

P A C K A G E S

580 Appendix A

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Installing Pip
The executable file for the pip tool is named pip on Windows and pip3 on
macOS and Linux. The pip tool has been included with Python since ver-
sion 3.4. However, some distributions of Linux may not have it preinstalled.

To install pip3 on Ubuntu or Debian Linux, open a new terminal win-
dow and enter sudo apt-get install python3-pip. To install pip3 on Fedora
Linux, enter sudo yum install python3-pip. These commands ask you to enter
the administrator password for your computer.

Finding Pip
If pip’s folder isn’t included in the PATH environment variable, you may
have to change directories in the terminal window with the cd command
before running pip. First, find your username by running echo %USERNAME% on
Windows or whoami on macOS and Linux.

Then, on Windows, run the following command, specifying your user-
name and adjusting the folder name for the version of Python you have
installed:

C:\Users\al>cd C:\Users\your_username\AppData\Local\Programs\Python\Python313\Scripts

On macOS, run this command instead (making sure to specify the cor-
rect folder name):

al@Als-MacBook-Pro ~ %cd /Library/Frameworks/Python.framework/Versions/3.13/bin/

On Linux, run this command, specifying your username:

al@al-VirtualBox:~$ cd /home/your_username/.local/bin/

You should now be in the right folder to run the pip tool. Alternatively,
you can add these folders to the PATH environment variable by following the
instructions in “The PATH Environment Variable” on page XX in Chapter 12.

Running pip from Virtual Environments
Some operating systems may not allow you to run pip without first creating
and activating a virtual environment using Python’s built-in venv module.
For learning Python and experimenting with code, it’s fine to create one
virtual environment for all of your programs. See “Virtual Environments”
on page XX in Chapter 12 for more details.

Installing the Packages Used in This Book
Because future changes to third-party modules may be incompatible with
the book’s code examples, I recommend that you install the exact versions

Installing Third-Party Packages 581

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

used in this book by adding ==version to the end of the module name. (Note
the two equal signs in this command line option.) For example, pip install
send2trash==1.8.3 installs version 1.8.3 of the send2trash package.

The easiest way to install all compatible packages at once is to install
the automateboringstuff3 package. I’ll update this package as new versions
of the third-party packages become available, so long as they’re compatible
with the book’s code examples. If you’d like to install the newest versions,
consult their online documentation for updated usage information.

On Windows, run the following command:

C:\Users\al>python –m pip install automateboringstuff3

On macOS and Linux, run this command:

al@Als-MacBook-Pro ~ % python3 –m pip install automateboringstuff3

To install Chapter 23’s PyAutoGUI package on Linux, you must take
additional steps. Open a terminal window and run sudo apt-get install
python3-tk and sudo apt-get install python3-dev. To get Chapter 8’s pyperclip
module working on Linux, you must run sudo apt-get install xclip. You’ll
need the computer’s administrator password.

As of publication, these commands install the following versions of
packages:

beautifulsoup4 == 4.12.3
matplotlib==3.92
openpyxl==3.1.5
pdfminer.six==20240706
pillow==10.4.0
playsound==1.3.0
playwright==1.47.0
PyPDF==5.0.1
python-docx==1.1.2
pyttsx3 == 2.98
PyYAML==6.0.2
requests==2.32.3
selenium==4.25.0
tomli_w==1.0.0
xmltodict==0.13.0

In addition, the automateboringstuff3 package always installs the latest
version of the these packages:

bext
ezgmail
ezsheets
humre
pyautogui
pymsgbox
pyperclip

582 Appendix A

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

pyperclipimg
yt-dlp

The Playwright package requires one more step to install separate
browsers the module uses. After installing the automateboringstuff3 pack-
age, run playwright install to install the browsers that Playwright uses.

The pytesseract package covered in Chapter 22 and the openai-whisper
package covered in Chapter 24 are fairly large, and some readers may not
want to install them, so I’ve left them out of the automateboringstuff3 pack-
age. You can install them by running the following on Windows:

C:\Users\al>pip install pytesseract==0.3.10
C:\Users\al>pip install openai-whisper==20231117

On macOS and Linux, run the following:

al@Als-MacBook-Pro ~ % pip3 install pytesseract==0.3.10
al@Als-MacBook-Pro ~ % pip3 install openai-whisper==20231117

If you’re on Windows, you might see an error like this one when install-
ing Whisper:

A module that was compiled using NumPy 1.x cannot be run in
NumPy 2.0.1 as it may crash

You can fix this issue by running pip install "numpy<2" to downgrade
NumPy to a compatible version. Be sure to include the double quotation
marks.

Additionally, the Whisper package can make use of your computer’s
NVIDIA graphics card (GPU) to perform speech recognition faster if you
run this command:

C:\Users\al>pip install torch torchvision torchaudio --index-url
https://download .pytorch .org /whl /cu118

Computers with non-NVIDIA brand GPUs, including all MacBooks,
don’t support this feature.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

This appendix contains the answers to the
practice problems at the end of each chapter.

I highly recommend that you take the time
to work through these problems. Programming

is more than memorizing syntax and a list of function
names. As when learning a foreign language, the more
practice you put into it, the more you will get out of it.
There are many websites with practice programming
problems as well. You can find a list of these at https://
nostarch .com /automate -boring -stuff -python -3rd -edition.

When it comes to the practice programs, there is no one correct solu-
tion. As long as your program performs what the project asks for, you can
consider it correct. However, if you want to see examples of completed proj-
ects, they are available in the “Download the files used in the book” link at
https://nostarch .com /automate -boring -stuff -python -3rd -edition.

B
A N S W E R S T O T H E

P R A C T I C E P R O B L E M S

https://nostarch.com/automate-boring-stuff-python-3rd-edition
https://nostarch.com/automate-boring-stuff-python-3rd-edition
https://nostarch.com/automate-boring-stuff-python-3rd-edition

584 Appendix B

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Chapter 1

 1. The operators are +, -, *, and /. The values are 'hello', -88.8, and 5.

 2. The string is 'spam'; the variable is spam. Strings always start and end
with quotes.

 3. The three data types introduced in this chapter are integers, floating-
point numbers, and strings.

 4. An expression is a combination of values and operators. All expressions
evaluate (that is, reduce) to a single value.

 5. An expression evaluates to a single value. A statement does not.

 6. The bacon variable is set to 20. The bacon + 1 expression does not reassign
the value in bacon (that would need an assignment statement: bacon =
bacon + 1).

 7. Both expressions evaluate to the string 'spamspamspam'.

 8. Variable names cannot begin with a number.

 9. The int(), float(), and str() functions will evaluate to the integer, float-
ing-point number, and string versions of the value passed to them.

 10. The expression causes an error because 99 is an integer, and only
strings can be concatenated to other strings with the + operator. The
correct way is I have eaten ' + str(99) + ' burritos.'

Chapter 2

 1. True and False, using capital T and F, with the rest of the word in
lowercase.

 2. and, or, and not

 3. True and True is True.
True and False is False.
False and True is False.
False and False is False.
True or True is True.
True or False is True.
False or True is True.
False or False is False.
not True is False.
not False is True.

 4. False
False
True
False
False
True

 5. ==, !=, <, >, <=, and >=

Answers to the Practice Problems 585

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 6. == is the equal to operator that compares two values and evaluates to
a Boolean, while = is the assignment operator that stores a value in a
variable.

 7. A condition is an expression used in a flow control statement that evalu-
ates to a Boolean value.

 8. The three blocks are everything inside the if statement and the lines
print('bacon') and print('ham'):

print('eggs')
if spam > 5:
 print('bacon')
else:
 print('ham')
print('spam')

 9. The code:

if spam == 1:
 print('Hello')
elif spam == 2:
 print('Howdy')
else:
 print('Greetings!')

Chapter 3

 1. Press ctrl-C to stop a program stuck in an infinite loop.

 2. The break statement will move the execution outside and just after a
loop. The continue statement will move the execution to the start of
the loop.

 3. They all do the same thing. The range(10) call ranges from 0 up to (but
not including) 10, range(0, 10) explicitly tells the loop to start at 0, and
range(0, 10, 1) explicitly tells the loop to increase the variable by 1 on
each iteration.

 4. The code:

for i in range(1, 11):
 print(i)

and:

i = 1
while i <= 10:
 print(i)
 i = i + 1

 5. This function can be called with spam.bacon().

586 Appendix B

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Chapter 4

 1. Functions reduce the need for duplicate code. This makes programs
shorter, easier to read, and easier to update.

 2. The code in a function executes when the function is called, not when
the function is defined.

 3. The def statement defines (that is, creates) a function.

 4. A function consists of the def statement and the code in its def clause.
A function call is what moves the program execution into the function,
and the function call evaluates to the function’s return value.

 5. There is one global scope, and a local scope is created whenever a func-
tion is called.

 6. When a function returns, the local scope is destroyed, and all the vari-
ables in it are forgotten.

 7. A return value is the value that a function call evaluates to. Like any
value, a return value can be used as part of an expression.

 8. If there is no return statement for a function, its return value is None.

 9. A global statement will force a variable in a function to refer to the
global variable.

 10. The data type of None is NoneType.

 11. That import statement imports a module named areallyourpetsnamederic.
(This isn’t a real Python module, by the way.)

 12. This function can be called with spam.bacon().

 13. Place the line of code that might cause an error in a try clause.

 14. The code that could potentially cause an error goes in the try clause.
The code that executes if an error happens goes in the except clause.

 15. The random_number global variable is set once to a random number, and
the random_number variable in the get_random_dice_roll() function uses the
global variable. This means the same number is returned for every get
_random_dice_roll() function call.

Chapter 5

 1. assert spam >= 10, 'The spam variable is less than 10.'

 2. Either assert eggs.lower() != bacon.lower() 'The eggs and bacon variables
are the same!' or assert eggs.upper() != bacon.upper(), 'The eggs and bacon
variables are the same!'

 3. assert False, 'This assertion always triggers.'

 4. To be able to call logging.debug(), you must have these two lines at the
start of your program:

import logging
logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s -
%(levelname)s - %(message)s')

Answers to the Practice Problems 587

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 5. To be able to send logging messages to a file named programLog.txt with
logging.debug(), you must have these two lines at the start of
 your program:

import logging
logging.basicConfig(filename='programLog.txt', level=logging.DEBUG,
format=' %(asctime)s - %(levelname)s - %(message)s')

 6. DEBUG, INFO, WARNING, ERROR, and CRITICAL

 7. logging.disable(logging.CRITICAL)

 8. You can disable logging messages without removing the logging func-
tion calls. You can selectively disable lower-level logging messages. You
can create logging messages. Logging messages provides a timestamp.

 9. The Step In button will move the debugger into a function call. The
Step Over button will quickly execute the function call without step-
ping into it. The Step Out button will quickly execute the rest of the
code until it steps out of the function it currently is in.

 10. After you click Continue, the debugger will stop when it has reached
the end of the program or a line with a breakpoint.

 11. A breakpoint is a setting on a line of code that causes the debugger to
pause when the program execution reaches the line.

 12. To set a breakpoint in Mu, click the line number to make a red dot
appear next to it.

Chapter 6

 1. The empty list value, which is a list value that contains no items. This is
similar to how '' is the empty string value.

 2. spam[2] = 'hello' (Notice that the third value in a list is at index 2
because the first index is 0.)

 3. 'd' (Note that '3' * 2 is the string '33', which is passed to int() before
being divided by 11. This eventually evaluates to 3. Expressions can be
used wherever values are used.)

 4. 'd' (Negative indexes count from the end.)

 5. ['a', 'b']

 6. 1

 7. [3.14, 'cat', 11, 'cat', True, 99]

 8. [3.14, 11, 'cat', True]

 9. The operator for list concatenation is +, while the operator for replica-
tion is *. (This is the same as for strings.)

 10. While append() will add values only to the end of a list, insert() can add
them anywhere in the list.

 11. The del statement and the remove() list method are two ways to remove
values from a list.

588 Appendix B

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 12. Both lists and strings can be passed to len(), have indexes and slices, be
used in for loops, be concatenated or replicated, and be used with the
in and not in operators.

 13. Lists are mutable; they can have values added, removed, or changed.
Tuples are immutable; they cannot be changed at all. Also, tuples are
written using parentheses, (and), while lists use square brackets, [and].

 14. (42,) (The trailing comma is mandatory.)

 15. The tuple() and list() functions, respectively.

 16. They contain references to list values.

 17. The copy .copy() function will do a shallow copy of a list, while the copy
.deepcopy() function will do a deep copy of a list. That is, only copy
.deepcopy() will duplicate any lists inside the list.

Chapter 7

 1. Two curly brackets: {}

 2. {'foo': 42}

 3. The items stored in a dictionary are unordered, while the items in a list
are ordered.

 4. You get a KeyError error.

 5. There is no difference. The in operator checks whether a value exists as
a key in the dictionary.

 6. The expression 'cat' in spam checks whether there is a 'cat' key in the
dictionary, while 'cat' in spam.values() checks whether there is a value
'cat' for one of the keys in spam.

 7. spam.setdefault('color', 'black')

 8. pprint.pprint()

Chapter 8

 1. Escape characters represent characters in string values that would oth-
erwise be difficult or impossible to type into code.

 2. The \n escape character is a newline; the \t escape character is a tab.

 3. The \\ escape character will represent a backslash character.

 4. The single quote in Howl's is fine because you’ve used double quotes to
mark the beginning and end of the string.

 5. Multiline strings allow you to use newlines in strings without the \n
escape character.

 6. The expressions evaluate to the following:

'e'

'Hello'

'Hello'

'lo world!

Answers to the Practice Problems 589

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 7. The expressions evaluate to the following:

'HELLO'

True

'hello'

 8. The expressions evaluate to the following:

['Remember,', 'remember,', 'the', 'fifth', 'of', 'November.']

'There-can-be-only-one.'

 9. The rjust(), ljust(), and center() string methods, respectively.

 10. The lstrip() and rstrip() methods remove whitespace from the left and
right ends of a string, respectively.

Chapter 9

 1. The re .compile() function creates Regex objects.

 2. Raw strings are used so that backslashes do not have to be escaped.

 3. The search() method returns Match objects.

 4. The group() method returns strings of the matched text.

 5. Group 0 is the entire match, group 1 covers the first set of parentheses,
and group 2 covers the second set of parentheses.

 6. Periods and parentheses can be escaped with a backslash: \., \(, and \).

 7. If the regex has no groups, a list of strings is returned. If the regex has
groups, a list of tuples of strings is returned.

 8. The | character signifies matching “either, or” between two groups.

 9. The ? character can either mean “ match zero or one of the preceding
group” or be used to signify nongreedy matching.

 10. The + matches one or more. The * matches zero or more.

 11. The {3} matches exactly three instances of the preceding group. The
{3,5} matches between three and five instances.

 12. The \d, \w, and \s shorthand character classes match a single digit,
word, or space character, respectively.

 13. The \D, \W, and \S shorthand character classes match a single character
that is not a digit, word, or space character, respectively.

 14. The .* performs a greedy match, and the .*? performs a nongreedy
match.

 15. Either [0-9a-z] or [a-z0-9].

 16. Passing re.I or re.IGNORECASE as the second argument to re .compile() will
make the matching case insensitive.

 17. The . character normally matches any character except the newline
character. If re.DOTALL is passed as the second argument to re .compile(),
then the dot will also match newline characters.

 18. The sub() call will return the string 'X drummers, X pipers, five rings,
X hens'.

590 Appendix B

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 19. The re.VERBOSE argument allows you to add whitespace and comments to
the string passed to re .compile().

Chapter 10

 1. Relative paths are relative to the current working directory.

 2. Absolute paths start with the root folder, such as / or C:\.

 3. On Windows, it evaluates to WindowsPath('C:/Users/Al'). On other operat-
ing systems, it evaluates to a different kind of Path object but with the
same path.

 4. The expression 'C:/Users' / 'Al' results in an error, since you can’t use
the / operator to join two strings.

 5. The os.getcwd() function returns the current working directory. The
os.chdir() function changes the current working directory.

 6. The . folder is the current folder, and .. is the parent folder.

 7. C:\bacon\eggs is the directory name, while spam.txt is the base name.

 8. The string 'r' for read mode, 'w' for write mode, and 'a' for append
mode.

 9. An existing file opened in write mode is erased and completely
overwritten.

 10. The read() method returns the file’s entire contents as a single string
value. The readlines() method returns a list of strings, where each
string is a line from the file’s contents.

 11. A shelf value resembles a dictionary value; it has keys and values, along
with keys() and values() methods that work similarly to the dictionary
methods of the same names.

Chapter 11

 1. The shutil .copy() function will copy a single file, while shutil .copytree()
will copy an entire folder, along with all its contents.

 2. The shutil.move() function is used for renaming files, as well as moving
them.

 3. The send2trash function will move a file or folder to the recycle bin,
while shutil will permanently delete files and folders.

 4. The zipfile.ZipFile() function is equivalent to the open() function; the
first argument is the filename, and the second argument is the mode to
open the ZIP file in (read, write, or append).

Chapter 12

 1. The dir command lists folder contents on Windows. The ls command
lists folder contents on macOS and Linux.

 2. The PATH environment variable contains a list of folders that are checked
when a program name is entered into the terminal.

Answers to the Practice Problems 591

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 3. The __file__ variable contains the filename of the Python script cur-
rently being run. This variable doesn’t exist in the interactive shell.

 4. The cls command clears the terminal on Windows, while the clear com-
mand does so on macOS and Linux.

 5. Run python -m venv .venv on Windows, or python3 -m venv .venv on
macOS and Linux.

 6. Run python -m PyInstaller --onefile yourScript.py on Windows, or python3
-m PyInstaller --onefile yourScript.py on macOS and Linux.

Chapter 13

 1. The webbrowser module has an open() method that will launch a web
browser to a specific URL, and that’s it. The requests module can down-
load files and pages from the web. The bs4 module parses HTML.

 2. The requests.get() function returns a Response object, which has a text
attribute that contains the downloaded content as a string.

 3. The raise_for_status() method raises an exception if the download had
problems and does nothing if the download succeeded.

 4. The status_code attribute of the Response object contains the HTTP sta-
tus code.

 5. After opening the new file on your computer in 'wb' “write binary”
mode, use a for loop that iterates over the Response object’s iter_con-
tent() method to write out chunks to the file. Here’s an example:

saveFile = open('filename .html', 'wb')
for chunk in res.iter_content(100000):
 saveFile.write(chunk)

 6. Most online APIs return their responses formatted as JSON or XML.

 7. F12 brings up the developer tools in Chrome. Pressing ctrl-shift-C
(on Windows and Linux) or -option-C (on OS X) brings up the
developer tools in Firefox.

 8. Right-click the element in the page and select Inspect Element from the
menu.

 9. '#main'

 10. '.highlight'

 11. spam.getText()

 12. linkElem.attrs

 13. The selenium module is imported with from selenium import webdriver.

 14. The find_element_* methods return the first matching element as a
WebElement object. The find_elements_* methods return a list of all match-
ing elements as WebElement objects.

 15. The click() and send_keys() methods simulate mouse clicks and key-
board keys, respectively.

592 Appendix B

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 16. The press('Control+A') method simulates pressing ctrl+A.

 17. The forward(), back(), and refresh() WebDriver object methods simulate
these browser buttons.

 18. The go_forward(), go_back(), and reload()Page object methods simulate
these browser buttons.

Chapter 14

 1. The openpyxl.load_workbook() function returns a Workbook object.

 2. The sheetnames attribute contains a list of strings of the worksheet titles.

 3. Run wb['Sheet1'].

 4. Use wb.active.

 5. sheet['C5'].value or sheet.cell(row=5, column=3).value

 6. sheet['C5'] = 'Hello' or sheet.cell(row=5, column=3).value = 'Hello'

 7. cell.row and cell .column

 8. They hold the highest column and row with values in the sheet, respec-
tively, as integer values.

 9 . openpyxl .cell .column _index _from _string('M')

 10. openpyxl.cell.get_column_letter(14)

 11. sheet['A1':'F1']

 12. wb.save('example3.xlsx')

 13. A formula is set the same way as any value. Set the cell’s value attribute
to a string of the formula text. Remember that formulas begin with the
equal sign (=).

 14. Pass data_only=True when calling load_workbook() to make OpenPyXL
retrieve the calculated results of formulas.

 15. sheet.row_dimensions[5].height = 100

 16 . sheet .column _dimensions['C'] .hidden = True

 17. Freeze panes are rows and columns that will always appear on the
screen. They are useful for headers.

 18. openpyxl.chart.Reference(), openpyxl.chart.Series(), openpyxl.chart.
BarChart(), chartObj.append(seriesObj), and add_chart()

Chapter 15

 1. To access Google Sheets, you need a credentials file, a token file for
Google Sheets, and a token file for Google Drive.

 2. EZSheets has ezsheets.Spreadsheet and ezsheets.Sheet objects.

 3. Call the downloadAsExcel() Spreadsheet method.

 4. Call the ezsheets.upload() function and pass the filename of the Excel
file.

 5. Read the value at ss['Students']['B2'].

 6. Call ezsheets.getColumnLetterOf(999).

Answers to the Practice Problems 593

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 7. Access the rowCount and columnCount properties of the Sheet object.

 8. Call the delete() Sheet method. This is only permanent if you pass the
permanent=True keyword argument.

 9. The createSpreadsheet() function and createSheet() Spreadsheet method
will create Spreadsheet and Sheet objects, respectively.

 10. EZSheets will throttle your method calls.

Chapter 16

 1. conn = sqlite3 .connect('example .db', isolation_level=None)

 2. conn.execute('CREATE TABLE students (first_name TEXT, last_name TEXT,
favorite_color TEXT) STRICT')

 3. Pass the isolation_level=None keyword argument when calling sqlite3
.connect().

 4. While INTEGER is analogous to Python’s int type, REAL is analogous to
Python’s float type.

 5. Strict mode adds a requirement that every column must have a data
type, and SQLite raises an exception if you try to insert data of the
wrong type.

 6. The * means “select all columns in the table.”

 7. CRUD stands for Create, Read, Update, and Delete, the four standard
operations that databases perform.

 8. ACID stands for Atomic, Consistent, Isolated, and Durable, the four
properties that database transactions should have.

 9. INSERT queries add new records to tables.

 10. DELETE queries delete records from tables.

 11. Without a WHERE clause, the UPDATE query applies to all records in the
table, which may or may not be what you want.

 12. An index is a data structure that organizes a column’s data, which takes
up more storage but makes queries faster. 'CREATE INDEX idx_birthdate
ON cats (birthdate)' would create an index for the cats table’s birthdate
column.

 13. A foreign key links records in one table to a record in another table.

 14. You can delete a table named cats by running the query 'DROP TABLE cats'.

 15. The string ':memory:' is used in place of a filename to create an in-
memory database.

 16. The iterdump() method can create the queries to copy a database. You
can also copy the database file itself.

Chapter 17

 1. A File object must be opened in write mode by passing 'w' to open().

 2. Calling getPage(4) will return a Page object for page 5, since page 0 is the
first page.

594 Appendix B

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 3. Call decrypt('swordfish').

 4. Rotate pages counterclockwise by passing a negative integer: -90, -180,
or -270.

 5. docx.Document('demo.docx')

 6. Use doc.paragraphs to obtain a list of Paragraph objects.

 7. A Paragraph object represents a paragraph of text and is itself made up
of one or more Run objects.

 8. A Run object has these variables (not a Paragraph object).

 9. True always makes the Run object bolded and False always makes it not
bolded, no matter what the style’s bold setting is. None will make the Run
object just use the style’s bold setting.

 10. Call the docx.Document() function.

 11. doc.add_paragraph('Hello there!')

 12. The integers 0 through 9.

Chapter 18

 1. In Excel, spreadsheets can have values of data types other than strings;
cells can have different fonts, sizes, or color settings; cells can have
varying widths and heights; adjacent cells can be merged; and you can
embed images and charts.

 2. You pass a File object, obtained from a call to open().

 3. File objects need to be opened in read-binary ('rb') mode for Reader
objects and write-binary ('wb') mode for Writer objects.

 4. The writerow() method.

 5. The delimiter argument changes the string used to separate cells in a
row. The lineterminator argument changes the string used to separate
rows.

 6. All of them can be easily edited with a text editor: CSV, JSON, and
XML are plaintext formats.

 7. json.loads()

 8. json.dumps()

 9. XML’s format resembles HTML.

 10. JSON represents None values as the keyword null.

 11. Boolean values in JSON are written in lowercase: true and false.

Chapter 19

 1. A reference moment that many date and time programs use. The
moment is January 1, 1970, UTC.

 2. time.time()

 3. time.asctime()

 4. time.sleep(5)

Answers to the Practice Problems 595

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 5. It returns the closest integer to the argument passed. For example,
round(2.4) returns 2.

 6. A datetime object represents a specific moment in time. A timedelta
object represents a duration of time.

 7. Run datetime.datetime(2019, 1, 7).weekday(), which returns 0. This
means Monday, as the datetime module uses 0 for Monday, 1 for Tuesday,
and so on, up to 6 for Sunday.

Chapter 20

 1. The credentials.json and token.json files tell the EZGmail module which
Google account to use when accessing Gmail.

 2. A message represents a single email, while a back-and-forth conversa-
tion involving multiple emails is a thread.

 3. Include the 'has:attachment' text in the string you pass to search().

 4. SMS email gateways are not guaranteed to work, don’t notify you if the
message was delivered, and just because they worked before does not
mean they will work again.

 5. The Requests library can send and receive ntfy notifications.

Chapter 21

 1. An RGBA value is a tuple of four integers, each ranging from 0 to 255.
The four integers correspond to the amount of red, green, blue, and
alpha (transparency) in the color.

 2. Calling ImageColor.getcolor('CornflowerBlue', 'RGBA') will return (100,
149, 237, 255), the RGBA value for the cornflower blue color.

 3. A box tuple is a tuple value of four integers: the left-edge x-coordinate,
the top-edge y-coordinate, the width, and the height, respectively.

 4. Image.open('zophie.png')

 5. im.size is a tuple of two integers, the width and the height.

 6. im.crop((0, 50, 50, 50)). Notice that you are passing a box tuple to
crop(), not four separate integer arguments.

 7. Call the im.save('new_filename.png') method of the Image object.

 8. The ImageDraw module contains code to draw on images.

 9. ImageDraw objects have shape-drawing methods such as point(), line(),
or rectangle(). They are returned by passing the Image object to the
ImageDraw.Draw() function.

 10. plt.plot() creates a line graph, plt.scatter() creates a scatterplot, plt.
bar() creates a bar graph, and plt.pie() creates a pie chart.

 11. The savefig() method saves the graph as an image.

 12. You cannot call plt.show() twice in a row because it resets the graph
data, forcing you to run the graph-making code again if you want to
show it a second time.

596 Appendix B

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

Chapter 22

 1. Tesseract recognizes English by default.

 2. PyTesseract works with the Pillow image library.

 3. The image_to_string() function accepts an Image object and returns a
string.

 4. No, Tesseract only extracts text from scanned documents of typewritten
text and not text from photographs.

 5. tess.get_languages() returns a list of language pack strings.

 6. You can pass the lang='eng+jpn' keyword argument to identify both
English and Japanese text in an image.

 7. NAPS2 can be run from a Python script to create PDFs with embedded
OCR text.

Chapter 23

 1. Move the mouse to any corner of the screen.

 2. The pyautogui.size() function returns a tuple with two integers for the
width and height of the screen.

 3. The pyautogui.position() function returns a tuple with two integers for
the x- and y-coordinates of the mouse cursor.

 4. The moveTo() function moves the mouse to absolute coordinates on
the screen, while the move() function moves the mouse relative to the
mouse’s current position.

 5. pyautogui.dragTo() and pyautogui.drag()

 6. pyautogui.typewrite('Hello world!')

 7. Either pass a list of keyboard key strings to pyautogui.write() (such as
'left') or pass a single keyboard key string to pyautogui.press().

 8. pyautogui.screenshot('screenshot.png')

 9. pyautogui.PAUSE = 2

 10. You should use Selenium for controlling a web browser instead of
PyAutoGUI.

 11. PyAutoGUI clicks and types blindly and cannot easily find out if it’s
clicking and typing into the correct windows. Unexpected pop-up win-
dows or errors can throw the script off track and require you to shut it
down.

 12. Call the pyautogui.getWindowsWithTitle('Notepad') function.

 13. Run w = pyatuogui.getWindowsWithTitle('Firefox'), and then run
w.activate().

Chapter 24

 1. Call engine.setProperty('rate', 300), for example, to make pyttsx3’s voice
speak at 300 words per minute.

Answers to the Practice Problems 597

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

 2. The pyttsx3 module saves to the WAV audio format.

 3. No, pyttsx3 and Whisper do not require an online service or internet
access.

 4. Yes, pyttsx3 and Whisper support languages other than English.

 5. Whisper’s default model is 'base'.

 6. SRT (SubRip Subtitle) and VTT Web Video Text Tracks are two com-
mon subtitle file formats.

 7. Yes, yt-dlp can download from hundreds of video websites other than
YouTube.

Automate the Boring Stuff with Python, 3rd edition (Early Access) © 2025 by Al Sweigart

	Contents
	Foreword���������������
	Acknowledgments����������������������
	Introduction�������������������
	PART I: PROGRAMMING FUNDAMENTALS���������������������������������������
	Chapter 1: Python Basics�������������������������������
	Chapter 2: if-else and Flow Control
	Chapter 3: Loops�����������������������
	Chapter 4: Functions���������������������������
	Chapter 5: Debugging���������������������������
	Chapter 6: Lists�����������������������
	Chapter 7: Dictionaries and Structuring Data���
	Chapter 8: Strings and Text Editing��
	PART II: AUTOMATING TASKS��������������������������������
	Chapter 9: Text Pattern Matching with Regular Expressions��
	Chapter 10: Reading and Writing Files��
	Chapter 11: Organizing Files�����������������������������������
	Chapter 12: Designing and Deploying Command Line Programs
	Chapter 13: Web Scraping�������������������������������
	Chapter 14: Excel Spreadsheets�������������������������������������
	Chapter 15: Google Sheets��������������������������������
	Chapter 16: SQLite Databases�����������������������������������
	Chapter 17: PDF and Word Documents���
	Chapter 18: CSV, JSON, and XML Files���
	Chapter 19: Keeping Time, Scheduling Tasks, and Launching Programs
	Chapter 20: Sending Email, Texts, and Push Notifications���
	Chapter 21: Making Graphs and Manipulating Images��
	Chapter 22: Recognizing Text in Images���
	Chapter 23: Controlling the Keyboard and Mouse���
	Chapter 24: Text-to-Speech and Speech Recognition Engines��
	Appendix A: Installing Third-Party Packages��
	Appendix B: Answers to the Practice Problems���

